ML20248H045
| ML20248H045 | |
| Person / Time | |
|---|---|
| Site: | McGuire, Mcguire |
| Issue date: | 09/26/1989 |
| From: | Tucker H DUKE POWER CO. |
| To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
| References | |
| NUDOCS 8910110158 | |
| Download: ML20248H045 (100) | |
Text
%;
-y x
SC ik'.',.;[//
,1 DuxE POWER GOMPANY P.O. box 33189.
CHARLOTTE, N.O. 28242 HAL B. TUCKER 4 reLeranoxz vum russiamme (704) 373-4 sat
==.m.
om-o.
September 26; 1989 U..Sr Nuclear Regulatory Commission 1 Washington, D.C.
20555 Attention: / Document Control Desk
Subject:
- .McGuire Nuclear _ Station:
Docket Numbers 50-369:and -370 Containment Liner Corrosion; Supplemental Information
'As' requested by Darl Hood (ONRR) in'a' telephone conversation.or September 13, 1989, attached is additional information regarding the subject Containment Liner, Corrosion.
- If there are any questions, please call Scott Gewehr at (704) 373-7581.
Very truly youta, H.lB. Tucker SAG 189/lcs l:
'~
xc:
S. D. Ebneter Regional Administrator.RII U. S.'Naclear Regulatory Commission 101 Marietta St., NW, Suite 2900 Atlanta, Georgia 30323 P. K. VanDoorn Senior Resident Inspector McGuire Nuclear' Station Darl S. Hood
. Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission l-Washington, D.C. 20555 (O
II g
l I-8910110158 890926 PDR ADOCK 05000369 P
FDC
McGUIRE NUCLEAR STATION UNITS 1 & 2 CONTAINMENT VESSEL CORROSION PROBLEM The following-additional containment design information is provided as requested by C. P. Tan of the U.S. Nuclear Regulatory Commission.
Description Section Containment Layout, Details A
FSAR Section 3.8.2 B
KSHEL Model and Program Description C
Seismic Analysis Summary D
Wilson-Ghosh FEM and Program Description E
Transient Pressure Analysis and Results F
Membrane Stress Resultant Plots (Catawba)
G Stress Resultants From KSHEL Analysis H
-Load Combination Results (KSHEL)
I Stress Intensities and Code Allowables J
Determination of Minimum Wall Thickness K
(
N _ _ _ _-__ -_ _ -_____ ___-__-_-__- -__
SECTION A CONTAINMENT LAYOUT AND DETAILS 1
ELWI e v3*"E e.ew ar
.a
[
\\,
ll,y W
MU_
A C~
m AM Af(
- E L W+tf
/
Ik a
Y A c' 51 s' g,4 l
9 n
3
$ rt er,e
/
g.
r' f
t-
+
. --<E coNCCffCR N
p 4
STEAu GENERATOR Y
Luhlt t,c,.c
- t.. - -
Mm1; \\
A Y
~
en.,
n gm 3yp:e e.-
)
)
g W
I'.Z'.% _,;
4
.a N
cDtCfF mr m.w 9
CMN h} ~-
4 kJ Y
k g.jr' 2..--.
I
. qL ca.
'll [(I ELN+ f
[*?
l
.5 x
ag gTon vt!xL w
s-r T
- l:rYT Et m +0 u
a
.*'. J j
=.
w:- -
n+v j
I tt serve l
l
=
S ECTION A-A I
DEACTOA BUILONG AND CONTAINMENT STAUC V AL OUTLRE l
Fcra OI163 M cC 11310000-0 003 PROJECT McGUIME !!UCLEAR STATION ITEM. CONTAIMPENT 'TESSEL ANALYSIS PAGE 2-3a ORIGINATEDBY/C undefb D ATE Jf lq _]9 _ CHECKED BY 0"-r[dI'i[
4_
DATE WNd 3</#2 (L
4 EL 894+ 3' l
9l
- 4 9
a e
N.
EL. 836'+ 9' o
o
'E THN.
M F-1
$h,',fu Mi s
N ot S k<nm, i
EL.73 +$
o
$h~_ ~l THK,
~
EL.723'+ 6 6
_ j4 T H'K EL. 694'+ 4's' d e FK3URE 2 THE PLATE THICKNESS OF CONTAINMENT VESSEL.
i
___ _ _ J l
IlC : 11310000-0 003 PROJECT McGutRE NUCLEAR STATION ITEM CONTAINMENT VESSEL DESIGN PAGE.3.4a ORIGINATED BYMd.
Idl4 ATE //-/9-7@
CHECKE0 BY 1 DATE 2-j/c g~
' MA&
3-/-79
,i i
10 i
~
A
[
"o j
9 L
J o
r
_N R=690" 29.750
.75 3
l CONTAINMENT VESSELQ 75 l
=
=
k RING STIFF ENER l
FIGURE 3.I TYP. RING STIFFENER ARRANGEMENT :
l l
L
1 'I:
I i
i SECTION B McGUIRE FSAR SECTION 3.8.2 a
W6 vin FSAL 3.8.2 STEEL CONTAINMENT SYSTEM 3.8.2.1 Description of the Containment The Containment Vessel is a freestanding welded steel structure with a vertical cylinder, hemispherical dome and a flat base.
The Containment shell is anchored to the Reactor Building foundation by means of anchor bolts around the circumference of the cylinder base.
The base of the Containment is 1/4 in liner plate encased in concrete and anchored to the Reactor Building foundation.
The base liner plate functions only as a leak-tight membrane and I
is not designed for structural capabilities.
The Containment Vessel has a diameter of 115 ft. and overall height of 171 ft. 3 in.
Other details are as shown in Figures 3.8.1-1 and 3.8.2-1.
The Containment penetrations are:
(1) EQUIPMENT HATCH The equipment hatch is composed of a cylindrical sleeve in the Containment shell and a dished head 20.0 feet in diameter with mating, bolted flanges. The flanged joint has double compressible seals with an annulus space for pressur-ization and testing.
The equipment hatch is designed, fabricated and tested in accordance with Section III, Subsection B, of the AEME Boiler and Pressure Vessel Code, 1968 Edition, including all addenda through Summer 1970.
Details of the equipment hatch are shown on Figure 3.8.2-2.
(2) PERSONNEL LOCKS Two personnel locks are provided for each unit.
Each lock has double doors with an interlocking system to prevent both doors being opened simultaneously.
Remote indication is provided to indicate the position of each door.
Double, inflatable seals are provided on each door.
A top connection between the seals provides the capability for local leak rate testing as required.
The use of double inflatable seals allows testing of the annulus space without the use of external strongbacks or other remote devices.
The personnel locks are a completely prefabricated and assembled welded steel subassembly designed, fabricated, tested and stamped in accordance with Section III, Subsection B of the ASME Code.
Details of the personnel locks are shown on Figure 3.8.2-2.
(3) FUEL TRANSFER PENETRATION A 20-inch fuel transfer penetration is provided for transfer of fuel to and from the fuel pool and the Containment fuel transfer canal.
The fuel transfer penetration is provided with a double gasketed blind flange in the transfer canal and a gate valve in the fuel pool.
3.8-5 12/83
Expansion bellows are provided to accommodate differential movement between the connecting buildings.
Figure 3.8.2-3 shows conceptual details of the fuel transfer penetration.
(4) SPARE PENETRATIONS Spare penetrations are provided to accommodate future piping and electrical penetrations.
The spare penetrations consist of the penetration sleeve and head.
(5) PENETRATION SLEEVES All penetration sleeves are pre-assembled into Containment Vessel shell plates and stress relieved prior to installation into the Containment Vessel as shown on Figures 3.8.2-4 and 3.8.2-5.
(6) PURGE PENETRATIONS The purge penetrations have one interior and one exterior quick-acting tight-sealing isolation valve.
Details of the purge penetrations are shown on i
l Figure 3.8.2-3.
(7) ELECTRICAL PENETRATIONS Medium voltage electrical penetrations for reactor coolant pump power (shown on Figure 3.8.2-3) use sealed bushings for conductor seals.
The assemblies incorporate dual seals along the axis of each conductor.
Low voltage power,. control and instrumentation cable e ter the Containment Vessel through penetration assemblies which have been designed to provide two leak tight barriers in series with each conductor.
All electrical penetrations have been designed to maintain Containment integrity for Design Basis Accident conditions including pressure, temperature and radiation.
Double barriers permit testing of each assembly as required to verify that Containment integrity is maintained.
The conformance of the electrical penetrations to Regulatory Guide 1.63 is discussed in subdivision 8.3.1.2.7.7.
Qualification tests which may be supplemented by analysis are performed and documented on all electrical penetration assembly types to verify that Containment integrity is not violated by the assemblies in the event of a design basis accident.
Existing test data and analysis on electrical pene-tration types may be used for this verification if the particular environ-mental conditions of the test are equal to or exceeded those for the McGuire Nuclear Station.
I (8) MECHANICAL PENETRATIONS Typical mechanical penetrations are shown on Figure 3.8.2-3.
Mechanical penetration functional requirements, code considerations, analysis and design crite'ta are defined in Subdivision 3.9.2.8.
r 3.8-6 12/83 1
Figures 3.8.2-4 through 3.8.2-7 provide details of the Containment Vessel plate thickness, size and spacing of ring and vertical stiffeners and other information for the as-built structure.
The Containment Vessel overall dimensions and plate thicknesses are shown on Figure 3.8.2-7a.
3.8.2.2 Applicable Codes, Standards and Specifications The Containment Vessel is designed, fabricated, constructed and tested in accordance with Subsection B,Section III, of the ASME Boiler and Pressure Vessel Code, 1968 Edition, including all addenda and code cases through Summer 1970.
The Containment Vessel is analyzed as defined in Subdivision 3.8.2.4.
Subsection B,Section III, does not make provisions for stamping pressure vessels of this geometry, and therefore the Containment Vessel has not received an ASME Code Stamp.
The personnel lock has received a code stamp.
The shop fabrication, field erection, non-destructive testing, pressure testing and quality assurance documentation are in accordance with the ASME Code.
j Regulatory Guide 1.19 is used for nondestructive testing of the Contain-ment bottom liner with the following additions or exceptions:
i C.I.b - Add liquid penetrant method as an acceptable means of testing a.
liner seal welds.
Liquid penetrant is used more successfully in detecting circular defects.
b.
Delete C.I.c Non-destructive testing as required in C.I.b and leak chase pressure testing to peak Containment pressure as required in C.I.d have been successful in detecting leaks in seal welds.
Vacuum box tests run at five psi do not necessarily detect leaks that might occur at peak Containment pressure.
In addition to the pressure test required in C.I.d an additional ten minute peak Containment pressure leak chase pressure test is performed prior to and after placing concrete over the leak chase system.
These tests are performed in order to detect leaks, if any, created during construction activities after the completion of C.I.d and during place-ment of concrete around the chase system.
3.8.2.3 Loads and Loading Combinations The Containment Vessel steel shell is designed for the following loads:
a.
Dead loads and construction loads.
b.
Design basis accident.
3.8-7 12/83
c.
External pressure, d.
Seismic loads.
e.
Penetration loads.
Dead Load The dead load includes the weight of the Containment shall and attachments.
Construction loads include all loads imposed on the Containment shall during construction.
Design Basis Accident The Design Basis Accident loads are the peak pressure and temperature deve-loped inside Containment as a result of a rupture in the primary coolant system up to and including a double-ended rupture of the largest pipe.
The Containment Vessel peak pressure is 15 psig and the design temperature is as follows:
(a) The water accumulated in the lower compartment after a loss-of-coolant accident has the maximum temperature of 190 degrees.
(b) The Containment atmosphere temperature in the lower compartment below the ice condenser is 250 degrees after LOCA.
(c) The Containment atmosphere temperature in the upper compartment adjacent to the ice condenser is 190 degrees.
See Chapter 6 for details of the Containment Design Basis Accident.
External Pressure The external pressure is the internal vacuum created by an accidental trip of a portion of the Containment Spray System during normal unit operation.
The maximum design pressure is 1.5 psig.
For details of the design vacuum pressure conditions refer to Subsection 7.6.4.
Seismic Loads See Section 3.7, " Seismic Design" for the seismic design loadings.
Penetration Loads l
Those loads are imposed upon the Containment Vessel due to penetration dead j
load or pipe reactions.
l l
Table 3.8.2-1 lists the Containment Vessel load combinations and code require-
)
ments.
l l
The material, fabrication (except for weld details) and allowable stresses for 3.8-8 12/83
l the transition torus meet the requirements of Subsection B, Section 111 of the
.ASME Code,.1968 Edition.
The welds'and test channels on the torus are as shown in Figure 3.8.2-1..
The torus is considered part of the bottom liner plate and all welds have been
. tested as.specified in Subdivision 3.8.2.7.
Plates used to transfer loads through the thickness'of the plate are ultra-sonically tested in accordance with Subparagraph N-321.1 of Section 111 of the ASME Code.
1'
' Table 3.8.2-1 summarizes the loading combinations and code requirements for the Containment Vessel.
3.8.2.4 Desian and Analytical Procedures The Containment shell is designed based on the-loads and loading combinations of Subdivision 3.8.2.3 using the codes, standards and specifications defined in Subdivisions 3.8.2.2.
The Containment Vessel shell is analyzed to determine all membrane forces, moments and shears as a result of all specified static loadings.
The static load stresses and deflections that are in a thin, elastic shell of revolution are calculated by a numerical solution of the general bending theory of shells.
This analysis employs the differential equations derived by E. Reissne'r and published in the "American Journal of Mathematics,". Volume 63, 1941, pp. 177-184.
These equations are generally accepted as the standards for the analysis of thin shells of revolution.
The equations given by E.
Reissner are based on the linear theory of elasticity and consider bending as well as membrane action of the shell.
The method of solution is the multisegment method of direct integration, which is capable of calculating the stress resultants and stresses of an arbitrary thin, elastic shell of revolution when subjected to any given edge, surface and temperature loads.
This method of analysis was published in the " journal of Applied Mechanics," Volume 31, 1964, pp. 467-476, and has found wide application by many engineers concerned with the analysis of thin shells of revolution.
The actual. calculation of the stresses and stress resultants produced in the shell is determined by a computer program written by Professer A. Kalnins of Lehigh University, Bethlehem, Pennsylvania.
The program makes use of the exact equations given by E. Reissner, and solves them by means of the multi-segment method.
Applied loads can vary in meridional and circumferential directions.
Boundary conditions and discontinuity loads may be specified and varied around the circumference of the shell.
The toroidal transition section between the cylindrical shell and the floor plate is designed by considering a torus fixed at the floor plate and imposing the movements of the Containment shell (at the point of attachment of the torus) as the opposite end boundary conditions.
The surface loads on the torus are the Containment design pressure and temperature.
The method of analysis for the torus is by Kalnins' program as defined above.
1 3.8-9 12/83
l The stresses, stress resultants and displacements due to the response of a shell of revolution to the excitation of an earthquake are calculated by the method described in Subdivision 3.7.2.1(A).
Localized Areas Around Large and Small Openings of the Containment Vessel The localized areas around large and small openings of the Containment Vessel are analyzed and designed to meet the requirements of the ASME Code N450 of Section III, 1968 Edition, including the addenda through the Summer of 1970.
A systematic numerical procedure is set up in order to analyze the small penetrations reinforcement and stress analysis in accordance with the ASME code requirements.
The numerical procedure provides detailed requirements for thickening the shell around the opening or using a reinforcement ring.
Separate analysis and design are performed on the equipment hatch penetration and the personnel air lock penetration.
Transient Dynamic Pressure Due to LOCA The stresses, stress resultants and displacements of the steel Containment Vessel due to the transient dynamic pressure associated with a loss-of-coolant accident are determined by performing a dynamic analysis as follows:
1.
Design Considerations:
The rapid energy absorption capability of the Containment Vessel, due to the use of the Ice Condenser, maintains the Containment Vessel design at a low level as well as reducing the peak duration.
This reduction in peak pressure keeps the shell thickness below the stress-relieving requirements of the ASME Boiler and Pressure Vessel Code.
2.
Loss-of-Coolant Accident:
A LOCA is a hypothetical double-ended rupture of a reactor coolant pipe in which the pressurized water flashes immediately into steam causing a pressure transient build-up in the Containmen compartments.
The Containment is divided into 37 compartments (see Figures 3.8.3-1 through 3.8.3-3 for compartments layout).
A pressure transient analysis is performed to determine the various compartment pressure transients resulting from a reactor coolant pipe break in each of the possible six breaks of the lower compartment elements.
3.
Analytical Representation of the Shell:
The Containment Vessel shell is idealized as an assemblage of horizontal conical frusta joined together at their nodal circles.
As part of the model the stiffening girders are also included as finite elements.
To incorporate the vertical stringers into the solution, the shell material is assumed to be elastically orthotropic, which implies that the value of the modulus of elasticity E has different magnitudes in the longitudinal and circumferential directions.
The value of E = 29 x 106 psi is used for 3.8-10 12/83 J
the'circumferential direction, while an equivalent value, E'9, is used in the longitudinal' direction, and.is.given by Wh-Ghew E,q
= E h,q
/hshell T%M L-_Ad I
where,.h
= the equivalent thickness of a smooth shell~(without stringerD whose cross-sectional area in the longitudinal direction equals that of the real shell with stringers.
4.
Analysis Procedure:
To analyze the discrete Containment shell, the Hamilton's variational principle is used to derive the structure's equations of motion.
This leads.to the formation of the mass matrix, stiffness matrix and the load vectors.
The equations of motion are solved numerically by the direct integration procedure in the. time domain.
The transient loading on the shell is first approximated by a Fourier Series with a finitelnumber of-teres.
For each Fourier component, the stiffness _and mass materials and their corresponding load vector are formed and the equation of motion is saved.
After solving for.the response of all the Fourier terms, their contributions are summed to obtain the total response.
The computer program (Reference 1) employed for this analysis was originally written in Fortran IV language'at the University of California at Berkeley.
This; program has been modified and verified at Duke Power Company.
5.
Dynamic Loads:
The time-dependent loads applied to the Containment Vessel are those loads caused by a blowdown of a major pipe of the reactor coolant system.
Referring to Figures 3.8.3-1 through 3.8.3-3 the compartments to be considered for the transient load analysis of the Containment Vessel
. are only those compartments in contact with the Containment shell inner surface.
The pressure in each of these compartments varies with time af, shown in Figure 3.8.2-8 for Compartments 7, 8 and 9.
Figures 3.8.2-9 through 3.8.2-14 show the pressure transients, due to break in element No._1 of the Reactor Coolant System, in the remaining compartments in contact with the Containment shell.
The dynamic load at each node of the discrete Containment shell is the resultant of pressures on an area extending between mid points of adjacent elements.
A time-history of dynamic forces at each node is developed for each specified break location.
Since the load varies around the circumference, it is resolved into its Fourier components, both symmetrical and asymmetrical terms are used in the final Fourier representation of the pressure transient.
Six Fourier components were employed in the presentation since convergence was found satisfactory.
A typical comparison of the actual pressure distribution around the circumference versus the Fourier Series distribution for a given time step is shown in Figure 3.8.2-15.
Stability of the Containment Shell Under LOCA Conditions:
Since the LOCA loads on the Containment Vessel are not of a symmetrical nature, the stability of the Containment shell is investigated.
Two basic stability criteria.are employed.
These criteria are:
3.8-11 12/83 ht a rr
J 1.
Stability of the Overall Shell:
Reference 4 is utilized in order to investigate the overall stability of the stiffened Containment shell.
As a result of this investigation, it is concluded that the actual compressive stresses due to LOCA are much lower in nagnitude than the critical buckling stresses as calculated from Reference 4.
2.
Stability of Individual Shell Panels:
Extensive investigation is perfor,.ad on the stability of the individual shell panels isolated between two adjacent vertical and circumferential stiffeners known as local buckling.
Two different buckling criteria are considered; buckling of panels as flat plate, Reference 5, and buckling of curved panels as prescribed in Reference 6.
For both cases of shell panels, the following panel loadings are investigated:
a)
Axially loaded panels; b)
Axial and shear loaded panels.
The critical buckling stresses as determined in References 4, 5 and 6 are based on experimental data from tests performed on similar shell panels under--
going similar loading conditions.
These buckling stresses are lower in magnitude than the critical buckling stresses calculated from theoretical and.
closed form mathematical solutions.
Considering the above, it is concluded that the buckling f actors of safety calculated for the McGuire Containment Vessel based upon References 4, 5 and 6 are conservat' /e.
Table 3.8.2-4 re-presents typical buckling factors of safety at severa~ points on the Containment Vessel shell.
The most critical factor of safety (the minimum value) is close to the base of the Containment.
As sNwn in Table 3.8.2-4, the minimum buckling factor of safety for the Containment Vessel is 3.27.
It can also be concluded from Table 2.8.2-4 that the minimum value of the buckling factor of saf aty of the shell panels result from considering the panels as curved plates under the combined action of axial and shear loadings.
Regulatory Guide 1.57 did not exist during the licensing, analysis and design of the McGuire Containment.
As a result, Regulatory Guide 1.57 is not adopted in the Containment design of the McGuire Station.
Regulatory Guide 1.57 references Subsection NE of Section III of the ASME Code.
Subsection B of Section III of the ASME Code was in effect during the licensing of McGuire; therefore, Subsection NE was not used in the design of the Containment Vessel.
Regulatory Guide 1.57 references a minimum factor of safety for stability of 2.0 computed based upon analytical solutions for the appropriate load combinations.
The factors of safety for stability used in the actual design of tne Containment Vessel are based upon test teruits which are mare conservative than being based upon analytical results.
In order to evaluate the design of the McGuire Containment Vessel for 49 compartments as compared to the original 37 compartments, a comparison is provided for the McGuire Containment Vessel and the Catawba Containment Vessel (Docket No. 50-413, -414).
i 3.8-12 12/83
The layout of the compartments inside the McGuire Containment Vessel is as~
outlined in Figures 3.8.3-1 to 3.8.3-3.
The compartment layout inside the Catawba Containment is st.own in Figures 6.2.1-1 to 6.2.1-4.
The two Contain-ments are identical except for the circumferential sttffeners arrangement and plate thickness as shown in Figure 3.8.2-78.
The two Containments are analyzed using the same techniques as previously discussed in Subdivision 3.8.2-4.
The mass and energy release values currently tabulated in Section 6.2 of the McGuire FSAR were used to generate the compartment pressures i
utilized in the Catawba Containment analysis.
The results of the preliminary Catawba containment analysis can be used for comparison utilizing the buckling analysis procedures previously discussed (References 4, 5 and 6).
The model of the two containments and a summary of the resulting factors of safety against buckling are shown in Figure 3.8.3-78.
From this comparison, it is concluded that the buckling factor of safety at the most critical point on the McGuire Containment Vessel is net significantly altered by the change from a 37 subcompartment to'49 subcompartment layout.
As discussed in Section 6.2, the TM) model was revised to include 53 sub-compartments.
Containment has been analyzed using the pressures described in 6.2.1.3-4 Rev. 10.
The minimum factor of safety using these pressures was between the values given in Figure ~3.8.2-78 for the 37 and 49.subcompartment pressures.
Desfon Bases The Containment ' Vessel is designed to assure that an acceptable upper limit of leakage of radioactive material is not t'o be exceeded under design basis accident conditions.
The Containment Vessel utilizes the ice condenser concept for energy absorption during a loss-of-coolant accident.
The rapid energy absorption capability maintains the Containment Vessel design pressure at a low level as well as reducing the peak duration.
See Section 6.2 for details and description of the ice condenser design and function.
The use of the ice condenser requires that the Containment Vessel is divided into three major volumes.
The lower volume houses the Reactor Coolant System, the intermediate volume houses the ice condenser energy attsorption system, and the upper volume contains the air after passing from the lower volume through the ice condenser.
Compartments have been designed for peak differ-ential presN res (plus a 40 percent margin) due to a severance of the largest pipe within the enclosure or flow into the compartment from a break in an adjacent compartment.
The Containment Vessel is designed to accommodate all calculated external pressures.
Vacuum breakers are not required.
The Containment shell plate (cylinder and dome) is not exposed to ground water and is protected by the Containment Annulus.
The Containment bottom liner plate is anchored to the Reactor Building foundation which is constructed of reinforced concrete with waterstop in all construction joints.
No water-proofing is provided.
3.8-13 12/83 j
The Containment liner is designed to function as a leak-tight membrane,and is not required to function as a structural component.
The bottom liner plate is 1/4 inch carbon steel of which its total thickness is available for corrosion allowance.
The materials used for the design and construction of the Containment Vessel are given.in Table 3.8.2-2.
Containment Vessel Coatings The interior steel surface of Containment Vessel and penetrations are cleaned and coated with materials meeting ANSI N101.2-1972, Section 1.4.2.2, Design Basis Accident Environmental Conditions for PWR's.
The environmental conditions for the Containment are listed in Subdivision 6.2.1.1 for normal operating conditions and Subdivision 6.2.1.2 for DBA conditions.
The integ-rated radiation dose is 3 x 107 Rads during normal operating conditions ~and 2 x 10s Rads for DBA conditions.
The coating systems, surface preparation, type of coating, required thickness, limiting temperatures, humidity corditions, acceptance criteria and quality assurance methods are tabulated in Table 3.8.2-3.
l All exterior surfaces of the Containment Vessel and penetrations are coated with a suitable system for outdoor exposure.
3.8.2.5 Structural Acceptance Criteria The Containee'nt Vessel is designed and fabricated in accordance with the provisions of. Subsection B,Section III, of the ASME Code.
Refer to Sub-division 3.8.2.4 for more details on the Containment design basis and its compliance with codes and specifications.
3.8.2.6.
Cesign Lt. ding Combination Stress / Limits Table 3.8.2-1 summarizes the Containment Vessel loading combinations and code requirements for the Containment design.
As shown in the table, the stress limits are as defined in ASME Section III, Subsection B.
3.8.2.7 Steel Containment Tests and Inspection 3.8.2.7.1 Preoperational Testing and Inspection (A) Structural Testing The Containment shell, personnel airlocks and equipment hatch are inspected and tested in accordance with the ASME Boiler and Pressure Vessel Code,Section III, Subsection B.
(B)
Leakage Rate Tests Bottom Liner Plate:
The bottom liner plate welds are inspected, prior to j
placing fill concrete, in accordance with the following:
3.8-14 1985 Update
1.
Dye penetrant examinations are performed in accordance with Appendix VIII of Section VIII of the ASME Boiler and Pressure Vessel Code.
2.
Upon completion of the dye penetration test, the weld seams are covered with test channels and pressure tested.
All detected leaks are repaired and retested.
Personnel Airlocks and Equipment Hatch:
The personnel airlocks are pressurized and a Type B leak rate test is performad as described in Subdivision 6.2.1.4.
The double o-ring seals in the equipment hatch are tested for leakage as specified in Subdivision 6.2.1.4.
(
Containment Leakage Rate Test:
Upon completion of all penetration, personnel
)
alrlocks, equ'ipment hatch, bottom liner plate and structural testing, a leak-age rate test is performed on the Containment as described in Subdivision i
6.2.1.4.1.
I 3.8.2.7.2 Postoperational Surveillance j
i (A) Structural Integrity
)
\\
The Containment Vessel shell has been designed, fabricated and tested in accordance with the ASME Boiler and Pressure Vessel Code,Section III, Sub-section B.
The Containment shell is protected by the Reactor Building from adverse environmental conditions.
In addition, under operating conditions, the shell j
does not experience design pressure and temperature load cycling.
It is therefore contemplated that additional structural testing of the Containment shell other than the initial structural test is not necessary.
Visual 1
ex'aminations are conducted as outlined in the Technical Specifications.
(B) Leakage Rate Testing and Inspection Periodic leakage rate tests of the Containment Vessel, testable penetrations, personnel locks and equipment hatch are conducted to verify leak tightness integrity as descrited in Subdivision 6.2.1.4.2.
3.8.3 CONCRETE AND STRUCTURAL STEEL INTERNAL STRUCTURES OF THE STEEL CONTAINMENT 3.8.3.1 Description of Ir.ternal Structures The Internal Structures enclose the primary coolant systen and provide bio-logical shielding and pressure boundaries for the lower, intermediate and upper volumes of the Containment interior.
The Internal Structures are anchored to the Reactor Building foundation as shown in Figure 3.8.1-1.
The Internal Structures are primarily poured-in place reinforced concrete.
i G
3.8-15 12/83
r Table 3.8.2-1 Containment Vessel Loadina Combination and Code Requirements Loadina Combination Code Reference DL_+ CL ASME - Normal Condition DL + OL + DBA ASME - Normal Condition DL + OL + OBE ASME - Normal ~ Condition j
DL + OL + 08E + P' ASME - Nomal Condition l
DL + OL + SSE ASME - Emergency Condition
(
'DL + OL + SSE + DBA ASME - Emergency Condition DL + OL + SSE + P' AShE - Emergency Condition ASME =
'ASME Boiler and Pressure Vessel Code,Section III, Subsection B, 1968, including all addenda through Summer of 1970.
Own weight of the Containment Vessel and all the permanent DL
=
attachments to the Containment.
I Construction Loads.
CL
=
DBA =
Design Basis Accident which includes temperature and pressure f
effects.
OBE =
Operating Basis Earthquake, 8 percent G.
SSE =
Safe Shutdown Earthquake, 15 percent G.
Normal Operating Loads _of the Containment Vessel, including Live OL
=
Loads, thermal loads and operating pipe reactions.
External pressure due to the internal vacuum created by accidental P'
=
trip of the Containment Spray System.
I Stress limits of the Containment Vessel are as prescribed in Figure N-414 of the ASME,Section III, Nuclear Vessels, 1968 including all the addenda up to the Summer of 1970.
Buckling is considered In all loading combinations.
i 12/83
f b
TABLE 3.8.2-2 4
Containment Materials, Material Location
$terialSpecification j
Base Liners SA 516, Grade 60 Base Liner Embedments SA 516, Grade 60 and/or ASTM A36 Knuckle Plate SA 516, Grade 60 Shell and Dome Plate SA 516, Grade 60' Penetrations (Piping and Electrical)
SA 333, Grade 8 and/or SA 516, Grade 60 Personnel Locks SA 516, Grade 60 and/or Grade 70-Stiffeners SA 516, Grade 60 Equipment Hatch SA 516, Grade 60 and/or Grade 70 Ancher' Bolts SA 320-L43 Anchor Bolt Anchor Plates SA 516, Grade 60 6
12/83
~ '. 8 4~ ;. -
i 7-_.---
w es:
,j si i
v n;
oy. :
g.,
3 y.
- f;.
j
't
.Y
,j
'r f,r.r y q,
.t
-gg
" '.lj ca
-c 4, / g y..,
-ggg
. g..
, '3
.g.,
,,j
- h,3.
~_
- 3 -y g
- w-
.q'ac g; m t
- t t
Ng
.a a:..t
.3 g g 9.g.,
g.,,
- g,, qj
-v
. a *,
.. =. " = _ - - - *:, t > *t
- . * * ' ' ' ".. t "
"1. ".:. *, 3 : *: : =_* a: *: -
s g
).y.
- S. -*s
^
. ~ ~~ ~
~ ~ ~
~ ~_ -~ ~
y y
,e
+1, [., : *,
s
.3 fc
,,t.
.S X.
8 *in iL 18 %';'L's' & L,'j g-I*
-83
.3..
13 y-
--3,'p +A; L '
t-
=
?
,y.s
, s!: :.
z!::
2 s i. e
=...:33 h,j,l,l s
- 9. 3'n 3 $ 33l.3.r.g 2 s
s s4 2 s
. 3 5 3 3 9.E I 33 h 5
?
.I.
,-1 -1.}
35.5 5 ) )-34 L
9';g;jpg o
. h,*
4 9d. e 9 7-
--11
]61 1
l1 1: 153 3 g
- p y
.7..,.
9 9.y a 9
y : yg; ;;;
4.
3:s.1 8 1 1
.3 t ' s.3, _g ! g :,
..} :t ' f :1 152 n ~L -
j '.].f
..: :s; :.
- 1..
_] :a :
^
- =:. =.=..==
s :: =
r;.
a - a.: n
.n-4 s
f 3 k
4<
E'
-D e 4
4 g
4 4
- 4 k
4 4 1
4 4 g f3
_,, j 5
l.* a r k.
k.
k.
,. g.,
.t
, s i *.
- a..i
- s. s' s' a.
=
.1
- 3:8 4 *
- ll'
- .1 :
' ' $"4 - }.3:'I'*13 o, "3 31 1
'240-
}
J :i 1 f. J.1 s
4:
1:3 j.2 t :.
k.
24 :
- 43'
- 1
- : ce-
,, - ;.,.-. t 9 - 3
- 4, [.
3 :.
3
. -. % 42:
5 3 3
' t,
..5 I
- 5. 4. : 3 3 I
-4.3 3==
-.by-g
- aggh-e, s s g.; aim - - 9.33 g j e.
23 43
,s*
agg g me.*-1 5.22 __:12 2 at, -
l 3. : ; {d. i ' z. 5_d j zg Eij z
- m.. e -
- 2..u, a
- m. e. 2 s2
- a. t,-,,a.
s 3
- i Mg_ ;325t;e; 12:g 4 2:
_- g g
E_j j jaisg g ; E_] ] J:
42:
3 8
i 2
r z
t rz iS, f..
w 9
> - 1!'.
- :se
. :1:,ssi e
e de e s-4 a a 4 s 4 3
s a.
v,a 3. jaa.
3 3:3 p ; 3:a.
ja e ei 4 25;aaa.,.
5.
i
,, Y:n! a "s&&
- sis:;s * :.:k t ji EE aa ; k 5
a a
- :n a i
- x e
s=
a
- at si: : : :
m t,g
- i I
. -; :.l -
2 l5
..e x IE a
aa-aaaa aaa aa a ma aa aaaa aaa aaaa 8
el.
4 x4 s, 4,, 4 4 4 4 4 4.e.
. 44 4 4 4 4 4 4 4 4 4 4 4 4 4 s s.
g:.c 2
m a
a xxr:s_
r ax x
x - -. -
E=.8- --. --x
_, a
_e w=
s I=c-aA I =& & &
I.
_2 y
i &
. _e _.
a &&
A& Iaas a&& I&ia
=
e : 3 e
C 2 3 5
- 1 ',
2 2
- 2
.a 1
E
= = =-
E l =-
5
- ta E:
aaa aaa ei!
i l
- ga
- 3 a'._3. :
_5
-!!! : III
_[tI a
t a__
-::l:-I. g_I.
- z.
I ca!! :,.-
- .g ;
5 s 3
s I
.g: : : : : i. : : : : : : -
g.-
. i:a::
- .tl:.. ;55.l3.
a. g.g.t l t : [
g:w =:.:_ -l.1
, i:
5 I..
,,2
,, 4. e a us2 a.g 3.[ :
t
.. s s
s.gi:n:
t g
a c a
-s assa aas 3
!?
,...l,.
. e i _.,,.I. 2., e.
2 ::e. : : p,
..e_.,,.e_.., --
s,-
p 2-2 s
e:
- e s
s s
s s
Jl
,J
=
4_
4 A _.
2 4
2 A
=.
E a _.i..
a.
a.
- a. : 8
. i... 3 a.
1...
a.
vj
!ii!
Elil ele E!3lil!.El!!Ii!!!!!. Ell 3
5 3
8 8
8 8
8 4
I e
i e
i e
e e
e e
e
! i i
1 I
i l
i I
g :
a. i g i a g r
a a
e s a
g a
a a
a Is Is Is
- l. 2
.! I s a}s
_i ::
_1 :
s :
- as x 3: : : 3:
= a: : :
s 8
2 g
.;.; 1 3 :
- 2 : 3:
3: 2 :
a: :
3: a:
?l r
e r
r r
r r
r r
s a
a a
g a
a a
a e
e e
t r.
r.
r.
r.
r.
r.
r.
r.
r.
,\\
s W
!i 1
3
_i g =s g
a a
a a
a x
er ea4.h_-___________.____m
Notes for Table 3.8.2-3 Page 2 of 2 NOTES:
1 Grit is washed, dried and of proper particle size to yield profile specified.
2 A psychometer is used to determine dew point when required.
Dew Point is not within 5'F.
3 Project specifications specify minimum recoat for temperatures above and below 70*F.
4 Coating materials are certified by manufacturer.
5 Inspection by other than the applicator is made of all field finished work.
6 Containment coatings are selected based on ANSI N101.2-1972, Section 1.4.2.2.
7 Concrete is allowed to cure 28 days prior to coating.
Surface Profile 4
12/83
c a e 3
4 5
4 S'
o e
d u
P v B
l C r.
t l
t s
e i
h s n
sa ag A
r d
o e
t t
c a
a e
s l
F r
T s e
y e
3 3
2 3
n t
s t 0
t.
4 3
a e
l a
l a
nP 1
3 P
f el I%sl S
a 1
d P t e
a 5 s l l e
l F e
f.
b h s t
S a t
gn ine 4
t m
s 6 l h
ca 2
ut g
c 1
s n, n
i 2
13 4
7 to.
n 5
7 5
t 3
t C i
/
r 5
5 4
1 s
a Ns e
n e e
ip i
r h
l iai s l L ba g u.
T A d
-gM e e.
f r at S
r f o h
of c
' n 0
2 3
3 s
i 7
0 5
e I
/
i r
t I
s 5
3 3
s 4
ip ca k
F t
i.
i I
2 3
4 3
o P
EN I
L G
L NI E
R D
P O
S M
s
- i,
LA C
I TAM E
H TA M
g,
F e
L E
SS J,n =
'g9 e o0. e
_g
'm m E
V F
we -
g F
T N
p' t
8*
_4M-EM N
AITN O
l C
p
-,,-_ - - - _--- -- _.~ _
SECTION C KSHEL MODEL AND PROGRAM DESCRIPTION
Form 08163 N C :.11310000-0 003
. PROJECT McGHIRE NUCLEAR STATION ITEM CONTAINMENT VESSEL ANAL.YSIS P M 2-3b ORIGINATED BY MJJ D ATE S-/-79 CHECKED BY DATE II I
m 5#
ivis't
-- + 1341 836+9
- + 1217 826+5 R=690" E
--+ 1097 816+5 II I
- A 977 806+5 I
I AXIS OF SYMMETRY McGUIRE 737 786 + 5 CONTAINMENT VESSEL M
KSHEL MODEL 374"g
- + 617 776+5 i
FIG,2.2 E
+ 497 766+5 g
- + 383 756+5 SC4bm& awl.gss*s)1 g-
+ 257 746 + 5 4
E 149 737 + 5 o
m: + 137 736+5 I" t II
-- + 35 727+11 I
p
==
0 725t0 PART 4 i COOR.
EL
^
N :: 11310000-0 003
'- o"#3 PROJECT McGUIRE NUCLEAR STATION ITEM CONTAINMENT VESSEL ANALYSIS PAGE 2-3c ORIGINATED BY M3d DATE 3-A PP CHECKED BY DATE AXIS OF SYMMETRY STIFFENER (T SECTION) p r-PART I l
3/4"TYP-PART 2 o u
,f p 6
i
'6' l
~
PART 3
~
, 690" 30" r
SPRING CONSTANTS
~
n=1 n=O I
Kan = 1930.5 abAw*
Kap = 1834 'b/as*
Knu.= 2027 'bhn2
- Kes = 5320 '"*hn l
Kas - 5023 '"~'6/is Ku.a = 1845 lb/ int
- Ku
= 1930.8 '6 bas
- u. TANGENTIAL DISPLACEMENT
- Knu. = Ku.a = 1936 USED RING GIRDER KSHEL MODEL & STIFFNESS FIG 2.3
Nele: TaL=~% waita RM-l>sdapplicdale do W6uirs CNS Local. buckling capacity of the region surrounding the equipment hatch and personnel-lock is based on a bifurcation analysis of a three-dimensional' finite element model with the NASTRAN computer code'(see Reference 8).
The 8050R and NASTRAN computer mathematical models used for the bucking analysis are shown in Figures 3.8.2-17 and 3.8.2-18, respectively.
The containment vessel buckling capacity is evaluated for the load combinations defined in.
Table 3.8.2-3 as well as the transient dynamic pressure load due to LOCA.
3.8.2.4.7 Ultimate Capacity Analysis The ultimate capacity of the containment vessel due to overpressurization-is evaluated by a large displacement elastic plastic analysis.
The contain-ment vessel is represented by an axisymmetric shell finite element model with the MARC computer code (see Reference 9).
Actual material properties based on a statistical analysis of mill test reports are used in determining the stress-strain curve for input to the MARC program.
The material properties obtained from the statistical analysis are listed in Table 3.8.2-8.
Figure 3.8.2-19 shows the finite element model used for this analysis.
The criteria used in determining the collapse load is given in the 1980 ASME Code,Section III, Appendix II, Article 1430.
The ultimate capacity of localized areas such as the equipment hatch, personnel lock and other penetrations is also evaluated.
3.8.2.4.8 Computer Program Description n
I (1) ' Kalnin's shell program (Reference 1) uses the finite difference method to solve the differential equations for a thin shell of revolution de-rived.by E. Reissner (Reference 10).
The equations are based on the linear theory of elasticity and consider both membrane and bending action in the shell.
This method of analysis (Reference 11) has been widely used in the analysis of thin axisymmetric. shells.
(K5H EL')
(2) The Wilson-Ghosh computer program (Reference 2) as modified and verified at Duke Power Company uses the finite element method to determine the stress resultants and displacements of axisymmetric structures.
The applied loadings may be symmetric or arbitrary'(in which case the load must be represented by a Fourier Series).
1 (3) STARDYNE (Reference 3) is a general purpose finite element program for-the analysis of linear elastic structures.
It can perform both static and dynamic analyses; it is particularly useful in the solution of large dynamic problems.
(4) STRUDL (Reference 4) is a general purpose finite element program for
.the analysis of linear elastic structures.
It has the capability for both static and dynamic analysis.
)
I (5) MARC (Reference 9) is a general purpose finite element program.
It is J
capable of linear and nonlinear analysis.
A wide range of both geometric and material nonlinearities are available in the program such as large displacements, large strains, strain harden ~1ng and plasticity.
The tangent modulus solution method is applied to nonlinear problems.
f f
3.8-18 t
Note :
- Tau.(m
- c. fan p
RAL kJepplic< tale 8
CNS REFERENCES FOR.SECTION 3.8 1.
Kalinis, A.,
" Computer Programs for the Analysis of Axisymmetric Shells,"
1971.
2.
Wilson,' Edward and Ghosh, Sukmar; " Dynamic Stress Analysis of Axi-symmetric Structures Under Arbitrary Loading," Report No. EERC 69-10, College of Engineering, University of California, Berkeley, California, September 1969.
3.
Control Data Corporation, "STARDYNE User Information Manual," Rev. C, April 1980.
4.
McDonnell Douglas Automation Company, " ICES STRUDL User Manual," October 1981.
5.
U.S. Atomic Energy Commission, " Regulatory Standard Review Plan," Section J 8.2, NUREG-75/087, Rev. O, 1975.
6.
ASME Code Case N-284, " Metal Containment Sh61'1 Buckling Design Methods,"
August 1980.
7.
Bushnell, D., "B050R4 Program for Stress, Buckling and Vibration of Com-plex Shells of Revolution," Structural Mechanics Software Series, Vol.1, Perrone, N. and Pilkey, W. (editors), University of Virginia Press, 1974.
8.
MacNeal-Schwendler Corporation, "MSC/NASTRAN User's Manual," Version 61, February 1981.
9.
MARC Analysis Research Corporation, " MARC General Purpose Finite Element Program User Information Manual," Version J.1, June 1980.
10.
Reissner, E., "A New Derivation of the Equations for the Deformations of Elastic Shells," American Journal of* Mathematics, Vol. 63, 1941, pp. 177-184.
11.
Kalnins, A., " Analysis of Shells of Revolution Subjected to Symmetrical and Nonsymmetrical Loads," Journal of Applied Mechanics, Volume 31, September 1964, pp. 467-476.
12.
U.S. Nuclear Regulatory Commission, " Standard Review Plan," Section 3.8.2, NUREG-0800, Rev. 1, July 1981.
3.8-38
l'
(
1 i
l l..
i 1.
1 I~
I SECTION D l
SEISMIC ANALYSIS
SUMMARY
i i
.__m_____._--_-_____.._____.__.___m____
m m,___._
m m
m__,._____
M CO 113:.0000-0 003
. PROJECT McGU'RE NUCLEAR STATION.
_ ITEM CONTAI NMENT VESSEL ANALYSIS PAGE 2-20 ORIGINATED BY NMd DATE 7-/'79 CHECKED BY k
DATE kid D
/
2.3 Seismic Analysis The seismic analysis for the loads given in Section 1.3.5 is done using the KSHEL3 program described in Ref. 6,' 7, and Section 3 7.2.1 of Ref. 4.
The model shown in Figure
- 9. 2 along with mass equivalent to the dead loads calculated in Section 2.2.3 was used for the seismic analysis. The results of this analysis were verified by a similar analysis using the program described in Ref. 9, the results of this analysis (ID DY-1) and the KSHEL analysis ('D DY-2) are very similar as shown below:
KSHEL3 Wilson-Ghosh Natural Frequency Mode 1 7.13 7.03 cps Mode 2 18.3 17.7 cps Horizontal Disp. at top Mode 1
.15
.15 in Mode 2
.0054
.0027 in N$ at base Mode i 1059 lb/in 1075 lb/in (abs. mode 1 + abs.
mode 2)
Mode 2 24 lb/in The response spectra values used as input for these programs are taken f rom Figure 1.2. The acceleration at a period, T, of.03 sec. is the same as.05 sec. and for all values of T less than.03 sec. ground ac-celeration is used as required by Ref. 4 Section 3.7.1.1.
The relation-ship between acceleration (A), velocity (V) and natural. frequency (w) for a one degree of freedom system is:
A = Vw The acceleration from Figure 1.2 for 1% critical damping and T =.05 sec.
is.228g which corresponds to a V of.7 in/sec.
The V corresponding to A of.228g at T =.03 'sec. -i s.42 i n./sec. The following values were
-Fcrm 01163 l
N.C : 11310000-0 003 o
l-l PROJECT McGUI RE NUct EAR STATION
__ITEMcnNTAiNMENT VFERFt ANAtYsIs PAGE g ORIGINATED BY
/h///
DATE ' SM77 CHECKED BY b ktu DATENN)9 p
used as input for the program:
l-Frequency (cps)
Period (sec)
Velocity (in/sec) 33.3
.03
.42 20.
.05
.7 5.88
.17 6.0 2.0
.5 18.5
.40 2.5 18.5 The KSHEL analysis was done for 2 horizontal and I vertical modes-. The deflected shape of the shell is given in Figures 2.10 to 2.12 for these modes. The response for all modes should be combined by the square root of the sum of the squares but if this is done all signs are lost.
Since the response due to the first horizontal mode is much larger than that of the other modes only I mode will be considered. This will allow the signs to be retained so the stresses will have the correct relative sign.
Due to the cyclic nature of the load the stresses must be consi d-
~'
ered to act in either direction.
Page 2-22 ORIG./jfM CHECKED o
g//pg 9hf McGUIRE NUCLEAR STATION o
N CONTAINMENT VESSEL ANALYSIS G
112011310000-0 003 i
'o,
7".
g_
o ll U
>-e a
58 ll
!I Ed ll h' o
Il p '.
gy llh m
u_
o llk r-
"_,)_
E!
ll!
.x*
l i
cc o
!!g'i g
o d-il!
l l E
I I
%.00 3'3.33* 1 0' 65.67 BASE MCGUIRE CONTAINMENT VESSEL DEFLECTED SHAPE OF THE SHELL SEISHIC LORDING SSE.15G N=1 FREQ l.13 He MODE 1
FIG 2.10
Page 2-23 G.4[M CHECKED g
McGUIRE NUCLEAR STATION j;
CONTAlhMENT VESSEL ANALYSIS G
d_
M C :.:.3:.0000-0 003
~
o n*
N_
l
~
c o
t-@
o IJJ r.
o ro o
> o-o ll l
u.
l i
o r
m "'
ll RE~
ll 9,
e o
g o
N-ll l
8 k.00 3'3.33 SE. 67 BASE
- 10' MCGUIRE CONTAINMENT VESSEL DEFLECTED SHAPE OF THE SHELL SEISMIC LOADING SSE.15G N=1 FREQ 1834 MODE 2
FIG 2.11
Page 2-24
=
McGUIRE NUCLEAR STATION ORIG M h CHECKED M"'N J
CONTAINMENT VESSEL ANALYSIS G
Il 2011% 0000-0 00{ i Os xg S
l c
I
[o i
1 r.
i ro
< i O-t en
< n
< l L
4 o.
l I e
Cw*.
I '
x*
l i
l C
q l
i E
lu n-l 8a (L
! h 8
1,'
"b.ca 3's 33 ss.s7 BASE x10' MCGUIRE CONTAINMENT VESSEL DEFLECTED SHAPE OF THE SHELL SEISMIC LOADING SSE.15G N=O
~
FRED =19 5 Ha MODE 1
FIG 2.12
SECTION E WILSON-GHOSH FINITE ELEMENT MODEL AND PROGRAM DESCRIPTION l
l l
l-l
Page 2-31 McGUIRE NUCLEAR STATION CONTAINMENT VESSEL ANALYSIS ORIG. CHECKEDI I
8 g
~.
y.
3-/ n l
$o D g4 /f l
I shh
~
g/
e.
e 5
f
=
g t
t' 0Q.
/
G n
./
o E
/
e sg I y/
f 0
.c 03 a
e _
.s...
i e
n Wilsnt-6hosh FE!A
- a,, nu.,
s a
~
~*'
WaJ-vsd W
?
l[
h ec_au & Pa u o<<
?a,a.-n 1
5 M. d.-
s l:,
d L<..
i, O fik M.f M M %
e,,
?-
i-Wccid th e
A a,vs l
y, 7) %Ekv& hadalar cf 6
L% h'% %'uf-p 4=
o " " " * *
- A M fn.v d c J shif 4
- g l
.m,
s)Fowa.g h,f b,,..s.
8 W-T E
G n.,erv~ s a.
o
~
8 o
m.
G E
a-
- s.. n '<e's 8
e g
-- ?2,n,we s
FIG 2.13 51.
.n.,,,...
8 Nl N.co io.co 20.00 s'o.co io co so.co so.go so y,
50.00 (RM3 3 Y N NI[T Nl C___NOLM L__________._
Nok l h k {n k [At4* % RAJC' M 9pUcate k vad.
CNS Local buckling capacity of the region surrounding the equipment hatch and personnel lock is based on a bifurcation analysis of a three-dimensional' finite element model with the NASTRAN computer code (see Reference 8).
The BOSOR and NASTRAN computer mathematical models used for the bucking analysis are shown in Figures 3.8.2-17 and 3.8.2-18, respectively.
The containment vessel buckling capacity is evaluated for the load combinations defined in Table 3.8.2-1 as well as the transient dynamic pressure load dua to_LOCA.
3.8.2.4.7 Ultimate Capaoity Analysis The ultimate capacity of the containment vessel due to overpressurization-is evaluated by a large displacement elastic plastic analysis.
The contain-ment vessel 13 represented by an axisymmetric shell finite element model with the MARC computer code (see Reference 9).
Actual material properties based on a statistical analysis of mill test reports are used in determining the stress-strain curve for input to the MARC program.
The material properties obtained from the statistical analysis are listed in Table 3.8.2-8.
Figure 3.8.2-19 shows the' finite element model used for this analysis.
The criteria used in determining the collapse load is given in the 1980 ASME Code,Section III, Appendix II, Article 1430.
The ultimate capacity of localized areas such as the equipment batch, personnel lock and other penetrations is also evaluated.
3.8.2.4.8
-Computer Program Description I
(1) 'Kalnin's shell program (Reference 1) uses the finite difference method to solve the differential equations for a thin shell of revolution de-rived by E. Reissner (Reference 10).
The equations are based on the linear theory of elasticity and consider both membrane and bending action in the shell. This method of analysis (Reference 11) has been widely
^ used in the analysis of thin axisymmetric shells.
n (2) The Wilson-Ghosh computer program (Reference 2) as modified and verified at Duke Power Company uses the finite element method to determine the stress resultants and disp 1acements of axisymmetric structures.
The applied loadings may be symmetric or arbitrary-(in which case the load must be represented by a Fourier Series).
STARDYNE (Reference 3) is a general purpose finite element program for -
(3) the analysi's of linear elastic structures.
It can perform both static and dynamic analyses; it is particularly useful in the solution of large dynamic problems.
(4) STRUDL (Reference 4) is a general purpose finite element program for the analysis of linear elastic structures.
It has the capability for both static and dynamic analysis.
(5) MARC (Reference 9) is a general purpose finite element program.
It is capable of linear and nonlinear analysis.
A wide range of both geometric and material nonlinearities are available in the program such as large displacements, large strains, strain harden ~ing and plasticity.
The tangent modulus solution method is applied to nonlinear problems.
3.8-18
Note : Tak % Ghe FcAd kJ9pid<4 ele.,~ le Meg,uirs 1
. C_NS An u fwol.
,l REFERENCES FOR SECTION 3.8 1.
Kalinis, A., " Computer Programs for the Analysis of Axisymmetric Shells,"
1971..
2.
Wilson, Edward and Ghosh, Sukmar; " Dynamic Stress Analysis of Axi-symmetric. Structures Under Arbitrary Loading," Report No. EERC 69-10, College of Engineering, University of California, Berkeley, California,.
September 1969.
3.
Control-Data Corporation, "STARDYNE User Information Manual," Rev. C, April 1980.
4.
McDonnell Douglas Automation Company, " ICES STRUDL User Manual," October 1981.
5.
U.S. Atomic Energy Commission, " Regulatory Standard Review Plan," Section 3.8.2, NUREG-75/087, Rev. O, 1975.
6.
ASME Code Case N-284, " Metal Containment Sheil Buckling Design Methods,"
August 1980.
4
- 7. ' Bushnell, D., "8050R4 Program for Stress, Buckling and Vibration of. Com-plex Shells of Revolution," Structural Mechanics Software Series, Vol.1, Perrone, N. and Pilkey, W. (editors), University of Virginia Press,1974.
8.
MacNeal-Schwendler Corporation, "MSC/NASTRAN User's Manual," Version 61, February.1981.
9.' MARC Analysis Research Corporation, " MARC General Purpose Finite Element Program User Information Manual," Version J.1, June 1980.
10.
Reissner, E., "A New Derivation of the Equations for the: Deformations of Elastic Shells," American Journal of' Mathematics, Vol. 63, 1941, pp. 177-184.
11.
Kalnins, A., " Analysis of Shells of Revolution Subjected to Symmetrical and Nonsymmetrical Loads," Journal of Applied Mechanics, Volume 31, September 1964, pp. 467-476.
12.
U.S. Nuclear Regulatory Commission, " Standard Review Plan," Section 3.8.2, NUREG-0800, Rev. 1, July 1981.
3.8-38
u-~--,-
g-SECTION F TRANSIENT PRESSURE ANALYSIS AND RESULTS
- g..
% rm " ' '
y OC 11310000-0 003 L
PROJECT McGUIRE NUCLEAR STATION ITEM CONTAINMENT VESSEL ANALYSIS _
PAGE E Op D ATE kld{9 ORIGINATED BY /J8] d DATE M-79 CHECKED BY_
2.4 Transient Pressure Analysis 2.4.1 Introduction The transient pressure analysis for compartment pressures inside Containment due to LOCA (TMD) is done by Westinghouse, as des-cribed in Section 6.2.1.3.4 of Ref. 4.
The original analysis was based on a 37 compartment model as discussed in Ref. 4, Section 3.8.2.4.
The Containment analysis for pressures from
- ?
the 37 compartment model are included in Appendix H for reference information since the design of Containment is based on this analysis.
At a later date, the TMD model was refined and expanded to 49 compartments. The pressure results from this analysis were used in the design of the Containment Vessel for the Catawba Nuclear Station.
The TMD models for McGuire and Catawba are identical so the same pressure data is used for both plants.
The Containment vessels for McGuire and Catawba are identical ex-cept for stiffener locati,on.
Based on a comparison of the McGuire analysis using 37 compartment data and Catawba analysis using 49 compartment data, it was concluded that there were no significant differences and McGuire Containment was adequate for the 49 compartment pressures (see Ref. 4 Section 3.8.2.4 and Ref. 28).
The final TMD analysis is based on a 53 compartment model and assumptions described in Ref. 4 Section 6.2.1.3.4.
The McGuire Containment will be reanalyzed for these final pressures as described in the following section.
Form 01163 M CC 11310000-0 003 PROJECT McGUIRE NUCLEAR STATION
_ ITEM CONTAINMENT VESSEL ANALYSIS PAGE 2-26 ORIGINATED BY
///dd D ATE 8/-77 CHECKED BY 6
DATE$ld)9 Westinghouse letter Duke 3066 dated July 21, 1975, transmits the latest results for the TMD analysis using 53 compartments.
Figures 6.2.1-1 to 4 from Ref. 4 show the compartment layout and are included on the following pages. These pressures are from the short term analysis described in Ref. 4.
As indicated in the letter 12 break locations are being considered. Computer run ID TMD-1 gives a listing of these pressures.
Plots of the pressure transient are given in Vol. 3 of this report for each compartment and break.
The analysis of Containment for these loads is done using the Wilson Ghosh Axisymmetric Finite Element program described in Ref. 9 and the model shown in Figure.2.13 This program handles nonsymmetric loads on an axisymmetric
^
structure by representing the loads as a fourier series of sin and cos terms.
This analysis procedure is described in Ref. 14.
)
Duke file STR 100.07 describes in detail and verifies the program, CIVMSS08, that calculates the fourier series transient load.
4
Page 2-27 Nbb.3 M
h D1f.-1/27l7f p
N C : 11310000-0 003 COMP RTMENT
/ aC 37
'sS*G*
. G.,#
6 g
I t
f 5
4 g
1 ----
e N
l\\
29
\\
h 2
52 s
1 l
'S G G's t
34 35 27 FAM COMPARTMENT PLAN AT E0VIPMENT P00f15 ELEVATION 0 McGUIRE NUCLEA Fiqure 6.2.1-1 P.evision 10
= _ _ _ _ _ _ _ _ _ _ _ - - - - - _..
d O *" l y 0 0 00-0 00 3 ag,ge 2-28 Pa
- y ff 4l2')
25 j
UPPER COMPARTMENT TOP DECK 000RS o
49, 48. 47. 46. 39 38 l INTERMEDIATE DECK DOORS 24, 21. 18. 15. 12 9
25 23, 20. 17. 14 11 8
25
- 22. 19. 16. 13. 10 7
- 45. 44. 43. 42. 41 40 1.2.3.4 33 GATE 52,34, 27, 35, 29m
[
\\
25 h
_J 50, 36, 31, 37, 53
- REFUELING CANAL 26, 28 3
SECTION "A-A"
(
i 51 CONTAINf1ENT SECTION VIEW uen McGUIRE NUCLEAR STATION
$]
Figure 6.2.1-2 a
m nm, c nn
Page 2-29
$/46 3-/ 79 o
Yf.$
1f27l77 M X :' :' 3100 00-0 003 I
i 44.19.20.21.48 f
\\
45.22.23 43.16.
17.18.
s.G.
5 S.G.
6
,s' g
\\
g
~~,
Q Uf
.O
\\.
f lh x
/
S.G.
S G-D Rs 2
M 42.I3.
14.15.46 go,7, B.9.38 f
41.10.11.12.39 g
.~
l PLAN VIEW AT ICE CONDEflSER g
ELEVATION - ICE CONDENSER p
I'"8 h"i eb fkNCLEAR STATION Ficure 6.2.1-3 I
i
Q%
3 E
T A S l
-l l
N R
I O
l
- h DE O C
M D C
R A
7 E K 3
T C N E g
4 3
2 s
I D
g 2
2 2
u.
,2 M5 3
g I g l l
1g, Nh tt 0
0 2
1 5
1 0
9 n
3 8 I h
4 2
2 1
u,
N A
F I
';I g I
l, l
d I
l tT 0
C 6
3 C
3 7
3 7
6 3
A 4
1 1
1 9
n w
OU u o0 r
t xo5 a
HR t
k g g l
g l,
1
.C8 0
N US E
0 R
s R
. Te OO 2
R 9 E
i T
2 P
S l
P S
N I
T N
E 6
S 4
3 2
t t
4 i
i 1
4 i
d dI a
,2
- N P t
f C 5 0
~
C 1
C A
IN mM A g
g l
,l l,.
l l
JNE R
P N
1 I
1 L
M N
9 2
l 0
O i
I O
E 3
1 i
1 4
_ O E
W R
7 2
N S
i A
t R0 g l
,l l
l I,
i l
['ML 0
A 0
t A
S C
3 8
7 0
i e
4.
2 t
E i
D G
C 4
t P
0 C
3 A
1
- ' +;
' ;~.
1 2
!i
$N m I
,/
1
/
1 5
/ /w G
I
,e el 7b5 3
2 i
v.
e qQ@-
4>2'f r 5'*
,L 03{-
[r ga mm 2h'i~h7.Ny62 o
m x4* *. " '
e1 $ o C
Ij:,'
1l l
Form 01163 M :C 113100 00-0 003-
)
PROJECT McGUI RE NUCLEAR STATION ITEM CONTAINMENT VESSEL ANALYSIS PAGE 2-48 DATE kik))
ORIGINATED-BY M2.d DATE }/.,99 CHECKED BY s
\\
l stored results and print the following Information.
g For each node l
Maximum and Minimum R displacement Maximum and Minimum T displacement Maximum and Minimum Z displacement with the corresponding displacements and the time and angle at which they occur.
For each element Maximum stress intensity (SI) with corresponding stresses and the.
angle and time at which they occur.
Stress intensity is defined as twice the maximum shear stress.
The results for all six (6) breaks analyzed are summarized as follows:
Sunmary of Results of Transient Pressure Analysis Break Max R Min R SI 1 " 'll Si 3/4"W Dome Max.N Min.N g
g Disp Disp Base Dome HL1 1.55"
-1.21" 15.0 KSI 20.04 KSl 7.10 KSI
+6.36k/in
-2.08k/in CLI 1.36"
-1.02" 13.1 KSI 16.4 KSI 5.56 KSI
+6.2 k/in
-1.6 K/in HL4 1.53"
-1.59" 14.5 KSI 17.9 KSl 7.69 KSI
,,8.5 k/in
-2 3 k/in
+
CL4 1.35"
-1.41" 12.9 KSI 17.2 KSI 6.04 KSl
+7.54k/in
-2.0 k/(n HL6 1.41"
-1.07" 15.3 KSl 20.3 KSI 6.47 KSI
,4.82k/in
-1.41k/in CL6 1.22"
.91 13.6 KSI 18.1 KSI 5.19 KS1
+5.42k/in
-1.6 k/in Based on the similarity of the results from these breaks, which include both hot and cold leg breaks in representative areas of Containment, no analysis will be performed for the other six (6) breaks.
In addition, Hot Leg Break i is generally the most severe and only the results from this break will be used in the design.
L__________
W
(
SECTION G MEMBRANE STRESS RESULTANT PLOTS Note:
The..following plots are provided for information-to aid-- in understanding. the general membrane forces and behavior of the McGuire containment.
They are taken from the Catawba containment analysis.-
There. are minor differences between 'the McGuire and
- Catawba ' containments with respect to geometry,- loadings and.
analyses (the radius.and plate thicknesses are the same).
L w - ___- _ ___-_-_- _ _ ______ - __ - ____-______.._:______--__
1
2' E CATAWBA CONTAINMENT il N1 PLOT a-DEAD LOAD
-FIGURE 5.1 h PTS \\
~.
\\
I
\\
c'
\\.
?.
9 S'6
\\
f
\\'
EL bdA's 1
- G8 2
- 04,
- K 322*
5 PT3
- L u f.9*
at s r.t*
l
~
,,,,a -
u
.s.
- E st 6m.r-Mc I
m-
,a.,.
ei WN-g it se'.e-I h
- r. w -
C t LH* T
- em W
b g
tu ts,'.s-
,, w r e es %+-
g et ser.<
~
l f
J'113' o
1 f
r-e.6 s*
g
,,a*c r e t#
et s d.s-n I
Ge i I' bt *4" Lj 2
3 i
rs s s '.c o
,,,-}
~\\
m
..<.3- _g 5 },..
25
\\
\\
l -
= - -
=.a CATAWPA CONTAINMENT r
A N2 PLOT
]I o
DEAD LOAD FIGURE 5.2 i
SEG 9 o
3: Pts 5
1 gto t
eo r e'. i'
-i, I
j 8
rU+
j',i3
- t 1.c.r.s.
r, is.,-
j
[
r,,,
at <.w..
$E I
- s. o su ~
Gu w.g*
- a IL L39'e f*
l
- ss-Et <.F. g*
m:
o I L bl9 8
- C e..
I can-
.i>
et ss.t.
l wt it w.s*
E s eYl'1' e nr.c I
- C r_ as.,,-
vnr
<i r_ <-se
[C 2
5 f.,e it
- 9. f '. <
- a 4
c:
Y
- r a 3
et, s.'..e
,--j.,
.,r.c S
~
26 4.t k
s
.a CATAWBA CONTAINMENT NI PLOT HORIZONTAL $EiSMC, THETA:90 DEG FIGURE 5.3 I
sto s su ns \\
l f
s IL No f
- I M~sto s
,,,3.,.
t u:'
s ets rtr r.,-
f nt a.e
- E C
l
- . # ep" E ' d ' '
+
g
,e m. r-
- c I
wr
- N e6 et6s.s-
$ 9"
[
k T4*21' s'_ & *A '. (
- em l
M g tu m.c
,,,, r e tw. -
l Mw ft tai * *t v11r a
c_ n~s W 3E
- c sie et..s.s*
l f=
l ec c
d '4 e
p~3 ru esa.c
,~
_ * *f. 3 '__ g
+
27 2a
\\
s
2* M L
N CATAWBA CONTAINMENT N2 PLOT I
. HORIZONTAL SEISMC, THETA =90 DEe FIGURE 5.4 l-SEG 9 -
l 3s PT3 I
.s V
{
B 2
1 t _ m
- r.
m I
g
/
sw.
.$1G 4 i
.t a...
t
.t as I
, ~....
- e
,t s,.,-
Mc I
eur
, < a.,.
- $g et w,.e-
- 1. w f t &%1*
l m-
=
.t m c I. +f?"
2 t9I' E*
,p a;
i rn-l et u-d e' y,
9 l
d * *d V g
et s j. s
- 7 Y
30 j
- 5 l
< s t.e 2
l
~
..,r. q g
,,y N i, 28 2.
\\
s
2* L CATAWBA CONTAINMENT L
NI2 PLOT I'
I-HORIZONTAL SEISMIC, THETA.O FIGURE 5.5 I
seos l
38 PTS
/
1
$t &m's%' (*
p w
SEG S
,,,p,.
K3:2' sPts TL I 63'* 9" RL h 6 *4*
E i
E' # *I g. H6) *
,p g
u s,.r-
^c I
f Wi*
o at 63.5-M$
es itas.=-
Ng I
- a. m -
etgg.t*
ea CU l
M g it..,'.s-
,,,p.
t ssss~
l Me E
f _18 f. ' 9" cid.--
a I
c_ c_iw q$
3%.
(I gg 1
'O,
h f2l}-
-=
u
+.e
.sr.q g S h..
29 z
\\
\\
a.u:C_
CATAWBA CONTAINMENT I
NI PLOT EXTERNAL PRESSURE 1.5 PSI l
FIGURE 5.6-l SKr9 38 PTS I
o b
i
M il" j
t 1
SEG 8 f.e34s*
K 322' 5 Pts et g y,,.
at mas'. i' I
Is is&
- at m.g.
en et et m.r-Mc I
m-o st m.s*
m*
st he'.t*
I ri72/*
fL&M.1*
O-l m*::
it m.c Is+ W et tsf.s*
l Mw 45 3
tu la1".o*
ref13" I
et <*6 4*
u,
- E a_
I ' ##
in at sg3 '. g
- l -
a O
1 o
=
D-1 2,l
=
<t es+.e-70"I' l
ct * *f. 3
- a 30 dae N
\\
z.cs CATAWBA CONTAINMENT
.i N2 PLOT' EXTERNAL PRESSURE n.5 PS)
FIGURE 5.7 1
SEG 9 f
31FTS A
i z
1 U
.,0 EL faim4
- l*
g 1
i StG 5
,,,3,.
r s22*
s ets rus 3*.9-t at.....
Y$
4
~.
\\
a.,,,, -
r
- s*
E
_.m. '= r -
me I
e g.ss-sL w. s.
Va $
C4 M r.
ft hW.@-
gi 72/
- 9 t E *.A
- S
- 4 9-
- dU
(
l M~
t u s,'.s-
~
I' *U-e_19f.4" i
l Me f
E r_ 8& fe '5*
2
- 12.T
+
c._
t
- We (*
l Ne f
SE a
- 2 5
s. re et +.3 '. 5 -
I G2 2 a
... y e
o +
31 Nz.
\\
r
2* C CATAWBA CONTAINMENT N1 PLOT I
ANGLE 23 TIMESTEP 7 LOCA WILSOFJ-GOSH ANALYSIS l
FIGURE 5.8 SEO S 38 Pts \\
\\
\\
i s
/
I at u.au l
9 EG 6 y,,p,
- f 322' 5 PTS rL u.1'.9*
t
\\
.c...
~=
l
,,,a,-
.c ed Y
st 61s'. f
- I WN es i t.a.. -
WP l
-. $ D
- a. w -
,as. s _ y OE g
(L 699'= $'
y, #yp",
c _ t9% %*
l me f t fa3".***
s'723' c_ <-n s-SE
- e f
- t4" 4,
rt %3 '. 9
- b 2o m%
t.
y rt e s 4'.v
,,,y} /;
e _ * *1'. 0 g
34 \\
\\
i 2' d CATAWBA CONTAINMENT N2 PLOT dli ANGLE 23 TIMESTEP 7 LOCA WILSON-GOSH ANALYSIS FIGURE 5.9 i
SEG 9 Je PTS \\
l*
0 M '9 IL MA l*
g
$fG 8
,,,p,*
- 5. W2' 5 Pts tt El *9*
t
\\
.t
-=
b l
^
g,no- '
p in++ S*
gy atsw.s~
Mc E' Wi*
st w.c es itss.e-C I
Es 121
- y ttL'A"1*
i 2-h
- {g 1
1 t<sw.s*
e._ u r. <-
L l
Me gC, r_ ur e
,.nr e_ unt" SE
- e
~
g.ok 1 et sd.s
- 4 I
i E
f.
/'
r <.....e r.
. f.3*
_ g 35 N)
Zs
\\
\\
r-_.___-_-___----
2'd CATAWBA CONTAINMENT I
lj N12 PLOT ANGLE 23 TIMESTEP 7 LOCA WILSON GOSH ANALYSIS FIGURE 5.10 l
"o IL fals4' t
- l
\\
SEG 6 2ed41*
I 322*
5 'T3 f ' "3 '* *
- se fmWe 1*
~
I a
P g, i tQ ~
,p 1L (s49'* $
- 7,E no a.r-Ec l'NI i,
at m*.g*
c6 stas.s*
C l
- u. nc 8L 63B'- 5
- em A
l M
6 g
it._,.s-ti m ' "
"f'*
+
l MM
@E_
e inr..i
- 1*123" g
eu ta n t*
2 d*A e u ns'.s*
9 I
se 2,
4 ee s**.e*
.._ -\\
- ,.... a
\\
\\
1.mc.
CATAWBA CONTAINMENT
~
LOCA THERMA _
l s
r-INFUT T3 5080R 4 FIGURE 5.11 i
S80 9 Je ns I
pl
' tt ada.t*
SE5 6 1.,3..-
ssn-i ns
, < m...
f u w.c 1
Es #167
- tt 1.ee'.g*
ea et a sm.r-de I
r,w-o st w.s*
g; et w.e-I u,,v -
8t LW.1" I,
I f5
- 11. 199'.6*
E s 497~'
et 19f 4*
l me
$c o
rt sas'.9*
i.fis-m.
9
- 5.9 i
."9 i
~
Eines
- Md 84ed &
I*
t t. M '.4
- 2 a a
,..i
{.=-
.... y l
37 l
F
\\
s
2' E
. gagy py,;,gg CATAWM CONTAINMENT LOCA THERMAL HOOP STRESS - N2 FIGURE 5.12 I
300 9 31 PTS I
,f u
EL inf.4e f
- g stG 8 r e i34l' K 312*
s PT3 rt m'.9-et son'W
=-
l s.r u-at a.,.
.gt et m'.r-c I
ew-
\\n **
f t 619'* 9
- i
- r. w -
't d'-1*
oN I
$5
{
<< w.s-
=
2 2
- a. m""
l r< t9f +-
1 i
or
~
M_
et es s. i-
.. w-I o
- r..-sw
$Ue I ' '#
et so'..e*
o 9
~
l
.4 i
yt:
E'h lM1 at e ss'.e-
,,o f et esf.o* _g n~
+
38 g
\\
\\
y CATAWBA CONTAINMENT y
J, Ni PLOT l
l LOAD COMBINATION NQ 10 FIGURE 6.1 W tScibf 2., t WA (TMD) l 3F0 9
($h%em6g &.
30 773 I
pi t.
' IL (m(s4. t
- g
$EG 8 i
2e'14,*
K 312*
$ r13 et t.&3'.9*
EL in99'* l'
-=
W-I Es IIO
- _ (L 1W. 9
- en st st 'w' r*
- c I
MN gg et w,'. e-1 Ts 72/
- tLLW*$*
5 i
j
.c.
k
-n a m.s-g 4rF*'
et f9% s*
l Me FL 983 '* ' ,
1*!!3" m,,,.,-
$U I'
FL963a!*
ik i
e 2 d M *4 c t s s4..q'
,,4-r t_ **2'0I g
3 gn
.T
\\
\\
. z.nn' CATAWBA CONTAINMENT N2 PLOT I
LOAD COM6h4AT10N No 1o o
M t.5cdmd.+ WA (7440)
FIGURE 6.2 l
SEO S se r7s i
l l
IL addl** l' l
\\
^
f
)
,in-
.StG 8 ns
.t a r...
l u w.i-i I
j e
3 l
e, yy
.o.
IL 689.$*
i
(
g.12/*
g f L 639*. t
- l 5i
\\
w am.g
\\
,,,,, ~
y m e, r..-
l m.
h
. J63"*"*
1*nr l
y, n.1?n f.
ace y
j rose at so '.!*
i
=
,1 3 d m'
4 rt 114 80*
2'.0". g
,,4 i
et
+
n g
41
\\
\\
rmmF' '
.c
.y 2-yic g~
sc uC. _,
N CATAWBA CONTAINMENT
\\
N12 PLOT-LOAO COMSWAT]CN NO.10 N
i FIGURE 6.3
.{
t ^
i.
N W +. m e.+ t.oc4 (r e '
5fC 9
.I Je m '
J
\\
i gt iL' dde* (*
Ito 6 A
,,,3,.
tan
- asm
<d.-
it m'.x,_
.. It hW* C r
24114)*' '
.bb*
gg N
I ew-
. a.,.
WNy S
t;
,A.et' I
,, m -
St d 's$*
?
3 l
6 wg ut m.s-t k
rat W C'" #***
i.
i mm l-gE r s.r.. -
i
\\
I f *
- tT i
o g
rt 19N '_*
$e r
- td
q et so's*
3
,=
.. ase.-
,,g.}
es2*.c* g rt
+
42 b) s A
p
-e: r _-. j..j,.
'e-7-
3 3 i
V '.
[
CATAWBA CONTAINMENT y
3-1 Ni FLOT n
g.:
i 8
LOAD COMBINATION NO.6
,N FIGURE 6.15 l
) W + 5***as'c t LocA (L+. P **xes
/
15* pd I
,o
,/
i s
,s/
SEG 8
(
san s ns a u r.s-l u m. -
r:$'
\\
u w.s-g n a r-w e FNS*
g m s=
MU e6 st se.c I
rs711*
i f L W'* 5
- 1 N
usw.c
,,,y,-o n <,r. s-l Megc
- r..c E*123" rt s t6 s*
0*e r * #49't
_ tt 50* 5?
o 1
I
- E i
7 3
- 4
\\
e t s t s' e"
,,,f
\\
r esf.o* g
\\
\\
d'C
_x~
o NAy q weg CATAWM CONTAINMENT LOADCOMBINATION NO 6: LOCA, INTERNAL PRESSURE, DEADLOAD
+.Sesims'.
HOOP STRESS N2 c
l FIGURE 6.16 2n FTs l
9
.L ddd'. l
- I
\\
2.d48*
Kan*
s Pts eL u1'.9*
f a t m'. t -
I m m.r jE
- =' r -
e I
m-o st w<.v.
wa EL.Al!'d*
I r, w-it up'.t*
l 1
g
. t s,....
g.+ #
et ts N' **
l v
m.
i E *si".o' I
k, 1*123" q
g it <?6 t*
h.e I
a* +
,t se'.s-gl I.
p
,,,-, j.
e a
.m,11.,r r< nec g I-
~.
3 58 2
I s
1 I\\
SECTION H STRESS RESULTANTS FROM KSHEL ANALYSIS (Results at base highlighted) 1 l
l-
-~
(
4 e
t
- s r.
'h k.
D f.,,.
~
,,.h
+
. h2?be i
6
' h l,l"'
}
_ j.
l l
(
l g
v 1
Q.Q ua s.
i O
@j l
I O
O l
O
^
O s-4 N N Q
O.
O.
O.
C.
C.
O.
O.
O.
C.
O.
O.
O. O.
O.
O.
p O O O O C O O O O C O O O O O O
a e e
a e
s 7
k E
M O.
O.
C.
O.
O.
O.
O.
C.
O.
O.
O. O.
O.
O.
M M M
M N N
.~ 1 w 4
's
- j. W E
z O
O.
O O C O O O
O O O O
O. O C O.
e F e e e a s
n r'
e MK I
.,-Q s
.J C
Z S
2' ~
O.
O.
O.
O.
C O.
O.
O.
O.
O O.
O.
O.
l' O.
O.
c W 4 2
O O O O C O Q O O C O O O O O O
> k n
C W
b-E cr'.
5i M M ~
b e
oe
..G
. O O O C.
O O O O O O
\\
{
h M4 N N O O C O -
WV
=
E O O O
O.
C C-O O O C O
O-O. O O O
- d H
e e
s e
e a
e 9
e e
b.
H Mb E
2
.'~
' b co e o al nO O N LN O O e eb N
- e. e.
N.
b.
b b.
N.
N.
N.
b.
0 0 0,
0 W
O. O. O. O.
C.
O. O. O. O. C.
O. O. O. O. O. O.
-4 E
z g
bg.
kn V
O O O O O C O O O O C O O O O O O
W G e ee G e O
@ S S S e
@ e a e
Q e
e e
e e
e e
b S
C k
O v
40 h.
u.
Y p
O
=
e e
W h
'E to H
s O
4 O
C O
H O m O
a S
H F
v W v O
O H
M M C v
e W
(
4 G
H e -
1
(
E U
.J 0
0 O
a U
H H
l l
i I
(\\
l l
i j
I co-selnd -rvusAs smAme s awyer n5FfEN&
1
e 0 'g
~
A p
N.Q n
O l
S. N "
y i
2 N
9 o'
O l
- O O
O O
m a O O G S OJ N N N e e 4
C.
C.
- v. v. 0 O.
M.
M.
O.
O.
N N.
O.
O.
O.
O.
F k
W Q Q O O O O O O O O O.
O O O O O
gg Z
s e
e a i
e a
s e
e E W E
to k C C M M G m W
@ 8 e O O O 8
- m. O.
M.
M.
N N.
O.
O.
O.
O N.
N.
O.
O.
O.
O.
W L O O O O O O O O
E Z
e e e
w Q O e e
i
>- F A
e a e :
e a a
e e
O d-i O M H
O.
O.
O.
O.
O.
O.
O.
O.
O.
O O.
O.
O. O.
O.
O.
O &
J W
32 O O O O O O O O O O O O O O O O
> C to W
>=
E Z
W to C C N N C C N N O O O O N N b N
N E
h.
C4 C.
C. e. e. W W.W N.
N.
N.
0.
C C
b e e e e
Z WF W D C O O v v 0
@ W W K6 e e
.=< m HZ
- e u-t-
CF Z
Z O
O -
N N N N b N N N N b N N N N b b
e e e
.= e e e e e e e e e e e e
y W
E=
V 1
C C C.
C C C.
C.
C C C C.
C.
C C C C.
v (L
3 h 2
8*
E E O
O O O O O O O O O O O O O O O O
W G e S e 0 e e e ae m e m'e G e
Q e
e e
e e
e e
e=
.u.
b C
k O
v W
h.
h.
T C
C
.=
e CD
.b.
W e
e
=
F-e e
e Z
40 O
0 0
0
>= 0 vj O
e 10 T
C v m
O C
e F-M M C v
e W
v O
e
>= e --
e e
e g
E r
O J
O O
O O
e J
O
>=
V-O 1
l I
i i
/
I
~.
1 l
l i
l o
o
\\
W d "4 O
S %0
, g Dr l
l 9
i
%Q 7 T
.,a o
d O
D o
-l O
J O
O 1
O v
M M C O u
~ O O O O H
4
- m. h. v. v.
M.
O O.
N.
N.
O.
O.
O O.
d
= C O
0 0 0 0 0 C O M
E2 D.
O.
0 0
W rf\\
Wg E
z N N W W q3 0 C e @ G
@ ~
w N 5 @
@ T 4 M M O O O O
M Y.- 2 5
- b. b. k. k.
- b. b. b. b
- b. b.
b 0 a.
eo gr c3 a
r W N 99
'. 9 o 99 999 99 999 o.
C3
- E Y}
Y2 O O O O O O O O O O O O O O O O
E 8
u n
- b
=
s
(
h, E La.
W e
W W O O O O 4 4 O n O O M4 b.
b.
- c. 0.
.0 0 0 0 0 0 0
C.
O O.
We
@ @ C O C C - -
M M O O O O
=>
=W H
Y7 777 77,7 h 8!
Z Z
%-Q D
M O O O O C O O O O O O O O O O O
l l
=M k dd dbC ddddb dd ddb d
a.
3 h 2
O 2 O F a
E M O
O O O O C O O O O O O O O O O O
W G C 2 e @
e e e S e O @
@ c'm e
a e
e e
e e
e e
C k
O
(
v Q
La LL 4
o O
e La.
W k
O C
O 5O $
b I
I o
ID H
F v
W v G
O O
M M
M C v
Q
(
v G
H - -
W 4
(
E E
0 J
O O
O O
.J U
V H
Q I
I l
1
[
I L
1 co-asind -mIsAs vNiAnsum uMMsEN
e o
r
\\%
l IE pch I
v tt W
O i
Ooo
-O M
H 4
O O O O C O O O O O O O O O O O
dd ddd dd ddd dd ddb d
w 5 H
?
a:
E g
eE M
0 0 0 0 C 0 0 0 0 0 0 0 0 0 0 0
q 5 dd ddd dd ddd dd ddd b
H C (L
O
'W W
ME
'O d
k O O O O C O O O O O O O O O O O
y 2 dd ddC dd ddd dd ddd d
W g
N N
H d
O W W O O C O v v nW C O E'
Y EN bbC bb bNe bb bb 2
=>
d 5 "1 EE 77 7TT TT T
x]
-A g
D Wl 0 C O O C C O O O C O O O O O O
YV 5 db bC b b b
b bb b
5:
n O. O. O. O. O. O.
O O
O C O
O. O.
O. C. O.
O.
w O
O e
e e
e e
e e
e Oz m
C to O
v La.
th V
O O
57 h
Z O
0 0
O H O M C
e 8
Q H
F v
O v e
O O.
=
O O C v
taJ v
G e
H e -
9 4
E g U
,J 5
Q 0
l I
l i
(
i l
l l
iso-se 614 -nsTdTi~ Del AN!We 39 Vd '473EAINOTI"
h A
N
)
O 3
l'
- gC I
i
$.N r tu O
4 O
I O
O O
O H
(
N N O O O O O O O O O O O O O O
N dd ddo dd ddd dd ddd d
r<v m
M e N N O O M C
O O O O O O O O O O O
M IL ee e e M
C
'd d ddC dd ddd dd ddd d
M b-ME N
C J
Z W M Q
M H
O O O O O O O O O O O O O O O O
g O
Z dd ddd dd ddd dd ddd d
M M.
V e
2 bC C C 0 0
O O O O O O O O O O
M4 O O N N g4 e
dd N 0l d dd ddd dd ddd d
l
=
4 (E HZ Z
Z j
-.o 85 E
O O O O O O O O O O O O O O O O
E 5 5d ddd ddddd dd ddd d
se 8 !'
E M O
O O O O O O O O O O O O O O O O
W me a e a e e e m 40 me e e a e
a e
e e
e e
e e
e k
m O
k O
(
v
'C IL L
T C
C 5Y
~
Z M
=
O 4
O C
O H O c1 O
e e
e O
O a
H v
M
.v O
V W
=
F M
k k
h J
S 5
E E
I
~
I 1
I I
1 l
l 1
l l
t - --- -- - - _ -- _ --
I O o N
(
o i
R i
l h%
C dM*
O I
O O
O O
H 4
O O O O O O O O O O O O O O O O
N O
bb bbb bb bbb bb b
L 2
8
~#
E E
O. b. O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
W 2
O O O O O O O O O O O O O O O O
g E
s W W WE
.O
.J L
Z4 h
N e
O O
O W
=
O O O
H nO O O C O O O C O N O l
2 b
bb b
b E bbb b
W
=
M c
H E
Z &
O e
N W L M
C N
E' Y
bb bbb b
b bb E
b*
( t H3 e
e e
H WW Z
Z b-O M
M M
N O
N Wl C O O O O 9 O e O m O -
O O O O b $, b E, b b, b b, b d, b b, b b, b b, E
2 g 5{
g 8E E M O,
O O O O O O O O O O O O O O O O 6'
.9 e
9 e 0 e S e e e ae S e @ e UL !
e e
w k
e O
k O v
6 6 4 o
O
- e e
e W
e La Z
e e
C 0
C O
H O M O
e C
H H
v W v m
O O
F M
M C v
W W
v G
H - -
E 0
J 0
0 O
J U
H H
l l
I I
l i
I co-se 6 64 -ns Ans oNI AN!Wd '49 Vd 'n3I@E
i O
$ }%)
m%.
i O
e,e
=
N b
4 Q) m es d5 OT i-O v
O
.I
..O-O
. e H
4 O O N N b b O O N N O O v v O O
dd d, d, d, d, d d d, d, dd d, d, d d h
O O N
N O O N5 O O O
O E r I dd d, d d, d, d d d, d dd
- d.. d d d W C s
e a
M MZ g
O J W Z
W W
e N
Qp e -1 r
o.
O.
O.
O.
O.
O.
O.
O. O.
O.
O DZ O O O O O O O O O O O.
O.
O.
O.
O O,
e <
a W
E O
O O O O
E g
E Z =
g\\
C M
e S S S e S e a e m e e e n N) h.
M4 N.
N.
N.
N.
N N.
N.
N.
N.
N O.
O.
O. N.
O O.
WF 0
N Eg 0 0 0
< =
g g
Z Z
0 0 C O C O C O C O O k O C @
vj M.
M.
O.
O.
c5 O.
O.
M.
M. e O
O.
O O.
=
W E tt I
O, O
- - O O
a
==
y, 5
8 9
6 8
i 4
8 i
8 3
3 k 2
85 E M O
O O O O O O O O O O O O OO O O
W Os e e e G e O e S e
@ e G e O e
O k
e O
A O
(
v W
La.
A T
C O
W e
6 Z
y)
H O
(
0 0
0 H O M O
i 8
e T
W v O
O H
M M
O.
Y e
W
(
v G
H -.
0 J
9
(
E 0
0 O
.J U
V H
I I
l l
n i
1 t
l I
_-------__m
o
~;.
l
- to We o-9 C.
1
~
l g s(
I D 3
'K 9cA T
3 cp
. d g o
l.
O
'O O
-O
, T,
e e H
H.
0 C. e.. e. a 3 O.
O. 3. e, C.
O. v. v. 0 O.
e r
. O O
O. O. O O C O O,
O, C,
O.
O. O. O O
cA-g g
m E
M s
s s
ss e e 2
s, O.
O.
, 5 O.
O.. v. 0 O.
O.
O.
H w
z O O O
O eo O O O O
c.
.g 777 7
77 "I
c3 a
'c) d il i
bO e
s e
M h H
O O C O O O O O O O O O O O
a 0%
dz dd d 6,. ; dd ddo 66 666 d
>R M
x y ;
E
~'
./
wo e.
e..
. e
. e.
e e e n N
N.
N.
N.
N.
N O.
O.
O. s.
O.
O.
M4 N.
N.
N.
N.
(
Ek w-b.
l2 &
Ei 77 777 77 777 77 b
er r
z r
b O O O O C D O O O m N O O e e
- a. e. a. e. e
- a. o. o. a. e C.
. e. o. O O.
.w 0
0, 0,
0 E g 2
-g g
8E E e O
O O O O C O O O O C O O O O O O
G e ee a eS e 2 e ee e e a 10 WQ !
e
- =
e-b C
k O
4 Y
W L
L T
C O
e to W
e L
=
H l
Z m
t O
4 O
C O
H O M O
O H
H v
M v 2
O O
j H
n nC 4
e j
W
,t'a H - -
(
E 0
J.
0 0
O
)
e J
U H
H 4
t L^
I i
1 l
(
l I
I I
~
l i
I
I O h.
i
'M 8
M i
N Qk cr e
O:-
~
.~
D>2 4
O..
l-O
.O
.Oo H' ' 1 O.
O.
O.
O.
O.
O.
b
(
O.
O. v. v.
O.
O. v. v e
0 0 0 C O C
0 0 - -
O O g
g W-E E
m O
O Y v 0 C O O O O
M O O vv
-Y..
Y I b ANe Nb bee bbb b
Q'-'
>=W
.k k
z h
O O O O O O O O O O O O O O O O
I td 2 bb bbb bb bbb bb bbb b
g Q.
W H
E g g
- Q W C M
g g6
,M 4 O O O O O O O O O O O O O O O O
b b
b b bb b
b b m
h 4 k HZ n
en
)
Z 2
)
O l.
O N N N N N N N N N b
...e O.
O O.
O.
O.
O.
^
V e
W W
E V I
O O O O O O O O.
O O O O O O O O
d A.
D h Z
O R U >
e E V O
O O O O C O O O O C O O O O O O
W e e e e G e a e a e e e a 4 e e
Q k
L O
.O e
m a
v n
O v
W Q
e L
e Z
u)
O
(
O O
O H O M O
s W
W
>=
v M v e
O O
F M
M Q v
W
(
v G
M -.-
4
(
E U
J 0
0 O
.J U
W H
l l
l l
i
(
i
- m i. --. i.
.mo...... n srm su-
1 I
SECTION I LOAD COMBINATION RESULTS (KSHEL)
(Results at base highlighted) m__
l il m
O 2
'4 9
1 0 2 i 3 9 0 9 a 5 0 7 0 u
T
. 6.
S O 0
2 7 6 8 8 1
/
/
S U 3
. 3 3 2 z2 2 6 6 u0 8 8 0 u
3 0 1
i 1
a 7
h w.
E 2 2 R
I C
t T S
,R S
m L N 2 7 4 9 2 s 9 5 6 3 U 4 4 6 0 u
2 3
Z 2 7 6
1 i
. 4 1
1 5
O
'u.
A 5 6.
6 6
- u. 2 2 0 0 u0.
0.
u.
1 I
3
/
T
/f, 8 N T S 6
3 3
O t
1 1
1 1
0 d
0 A
9 9 8
8 T
2 2 8 8 5 o1 1
T 0.
0 4 4 3 a0 0 7 7 U.
0 0 u.
8 u0 0 H
8 E
1 1
3 3 9 s
1 1
0 0 6 G 0 u
S S S B E
R 0
T 5 6 6 6 5 o 2 2 9 9 0 5 8 8
H
, 9
. 2 0 0 0 u.
3 3 2 2
v 3 3 8 8 4
S I
0 D P u 0 4 4 3 s
0.
0 7 7 u0 6 6 0 u
pl N S E B 0,
B h
9 0 u
5 3 8 3 7 4
1 7
7 3 3 9 1
0
,0 9 0 5
5 1
i 5
4 5 4 4 8 9 5 35. 2 2 2 u 0 2 2 0 u.
/
I t
T
/T S
2 2 2 2
1 1
1 R
I O
C P
A 3
E
,/
R s
6 8
8 8
u 2
R AV A
u 0.
0 0 o0 0 0 0 0 0 u
E
. 0.
0 i
1 1
S W
H 0 0 0 0 0 U.
0 0 0 0 u0 0 0 0 v
S S S E
,1 R
S T
E f
S R
J 3 4 9 0 u
T A 3 4 7 8 3 4 4 3 9
1
.i L
D.
5 3 3 8 e 8 7 6 7
.. 2 2
0.
u 3
5 1
i j4 S T i
1 E
E C
u 0 S
1 E H 1
1 1
1 1
1 1
1 1
1 o
S 4
N T l
E 0
A S i
'R g
B 2
3 0 u
5 3 8 3 7 4
1 7
7 3 2 6 T
M 1
I
. 3 5 4
9 5 6 5 5 4 5 J
N E H 9 0 8 1
i o7 E
M P
. 2 2
z2 2 2 2 0 0 2 2 0 u
M S
1 1
1 N
I e
A T
/
N 2 2 3 3 7
/
1 1
4 4 8
8 h
O A
0 0 7 7 3 a 0 0 7 7 o 0 4 4 0 u
C T
. 0 0 0.
0 u.
. 0 u0 0 0.
0 u
Ta N
E 0
0 0 0
E O L
H L
T R
I T
M I
U A K
7
/ 3 3 4 4 d 2 8 8
G N C
5 6 1
1 O
0 0 7 7 3 a 0 0 7 7
- u. 0 4 4 0 c
C I
M B SL I
M D
H 0 0 0 0 0 U 0 0 0 0 0 0 0 0 0 u
ODAR P
CAOI S M CLA T
0I N
L.
A 5
6 6
6 6
/
8 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 u
AS T
DKCR L
AEOE U N 0 0 0 0 0
- u. 0 0 0
0.
U.
0 0 0 0 u
ODLP S
L ER RXXX 1
8 7
/
O S
3 4 7 8 7 s 8 0 7 8 S 9 F
S A D.
5 3 3 3 s 3 3 2 2 u 0 6 7 0 u
000 E T
. 0.
0 u
u 1
1 Y000 R E 1
1 1
1 1
1 1
1 1
1 R
T H S T Al11 M
N MU 8 3 8 3 3 5 8 3 5 0 Z 5 3 7 7
/
9 9 9 8 9 8 9 Z 2 7 6 0 u
S 9 0 8
u 0.
0 u
I
. 2 1
1 1
1 1
1 1
1 H
1 1
E 1
P F
N E
I I
)
S O
0 0 0 0 0 o0 0 0 0 O 0 0 0 0 D E
9 8 9 8 9 s 9 8,
9 8 W 8 9 8 9 U
~
1 1
i 1
1 1
1 T
D
(
~
O N
9 0
F u
A 4_
6 F
F 4
5 0
0 8
F I
1 r
N
- E j
I 0 S u
1 T -
1 1
O A
Q O
0 T T
4 S 4
W 0
5 B
T_
I 3
3 D 4
6 T
L A
4 9
1 T
1 I
1 1
C L
1_
4 A
M M
O O
u O
Y 1
T T
D L
C
~
0
! >s
- 7 l
Il 4
g 1
ll l
0 O
l y
a T ee m.
N o-e N T -.
W D
0 O e aW a
W M M eab P--
N. a. 0 -
cc
--a W
N M 3 M. M.
~
O 4
mC e
eN b E
Y
{
I N W (D
ff'\\
Q T
f 2 O O C T M N O M e T O e e. e n.
T. e l
M.
N. e. N.
M e e T T O O W W.
w es e e M M C C T O
O-O
$it' F
m--
--e U
H e e e
@ e e O O O O e e T.
T.
O.
O.
0 O.
W
- e. e.
T.
T.
- e. e.
N.
N N e @ O O
d N
O g
M W eO M N b T
.@e e-T I.
M g a
s e e i e e
e s a e e
s W g W
O E
O O C O O O M M T T e e N.
N.
O.
O.
O.
O.
- e. e.
N.
N.
C O.
O. W O
O g
2 0
0 N b ee
@ 10 C O
O 0.
.C C
O Z M
- e a
i e
i W g a e a e e
e a e
m N - G N @
N O M T C N T W
- h. OW O.
O.
N.
O O.
4 T.
T.
M. W h
@ W T T e N
b M
N N N N (C W v n
g W
s E
s 2
E e
C N
T"4 4
4 O.
O.
O. O C O.
O.
O.
O.
O O.
0 0 C.
V) 6 2
O O O Os C O O O O O O O O O O O
, 'g g
g E
D W)
W i
W)
EH 4 T C N - G N @
N O M N N N @ W e
O.
O.
h N.
O.
O.
. c.
v.
J W
w O
T T to W
W 2 O O N is W
@ T C
'g Z
s e
Of N
G O D O O b O T N - T T C C T W H
E Z
W 2 C.
T.
C.
T.
T.
C.
T.
C.
4 Y.
Y.
N O W W
.C W
3 g E
g
.D Z
O O e e e M O O N N O m e 40 T.
T.
O O.
O W
4 10 ED. o.
O.
E e
M.
N.
b M
O WE H
. O O O O O O O O O O
- - C C
2 E3 L
O O W C DM 2
e a
e e e
a e
e e e e
a e
e 40 6 H
E
=
F W)W E
3 4 WE EL M M N N e M e e N b p D e e 83 L
- e. C O.
O.
m W @
W @
v.
v.
0 O.
i C H.0 E
sp)
N.
N
. O O. O'O.
O O O O
O O
2
=
O(ZH c.
e e e e e a e e
e a
e e
a a C40-4 O E OJ >
CJ
=0 Z
Z Jmo 4
(C N
e
< woc >
3 2 O O O O C O O O O O O
O.
O.
O.
O O.
O(LE t-O.
C.
O.
O.
C O.
O.
O.
O.
O.
O.
O cgo O J
O O O O
COJ-Z DW E
EXXXX 0 N O @ O N N T N e c
C M
T C N - -
e 0000 W H O.
O.
b N.
N e M M e e O.
- aq c h
to 4 4
E W O O N N T T M M e e M M M N T
O.O.m.o.
e-2 e :
a --O-W) H*
O O O O Ci c p O M e M O N e to-e C.
T.
C.
O.
@ @ W D.
- v. v. 3 m. W. D
. N h N
N.
N.
N.
N T T N N 4 T
2 N N N
A2 e
a y
C O O O O C O O O O O O O O O O W
me m e O e m e m
@ to m e W e 0
OZ m
C to O
r
(
4 40 14.
16 T
BO O
KD toi
==
e IL W
I 2,
H e
r so O
4 O
C O
H O M O
le el m
H H
T to v 2
O W
M O V
O W
.M
(
4 a
H - w W T
21 E 0
J 0
0 0
4 O ~ >
' O H
H Q
J l
ED-se sis -wz AfAs DNI AN6Em 3D ru 'n5ETERMP"
0
- =
b 3
T @ M C e M e-T H - W W
N.
N.
N.
M T.
N.
- e.. N
- e. e.
O.
.O s)
[)
N.
N e
m W
N N N N S S n M W W O O e -
0 W
- e 1 4
M f1 M M N
E l
M Y
T
.J Z
l M
eO M C O
- 'N O @
M.
M.
O. E. v, N. e. e.
O.
O o.
Y.
i W
- 3. N.
N N O v -
- e e M M O O 2.
as Lv I
s W
eg 0
3 N N M
T T N N O C -
O F W 6
)
o s..
M e e ee W
T.
T.
C.
O.
O.
O.
O O.
@ m. a O.
O.
O.
O.
I W W D O O
H O O C
N N 4 T
T T e-.C M
9 l ' - -
- e e e e e e e
i I
8 8
0 0
I WE s
O 3
@ W W W b N -
e e e
e.
N.
N.
@ W O.
O.
O.
O.
b N.
N.
D.
O.
eM M ee e@
O O W
b.
=
N I
O O ev,.
e m
- - e M. M.
M M.
N.
N.
v.
g s
s e
a Z
e o
g s
O G e v c O M e-O V O N v 3 @
O
+
N.
O..oe e M M ee s T eW 5 "
" 5
- n t
eT s N
E z
g s
E E @
e e
e O
N
.-w W
O.
O. O.
4 O.
O O.
O.
O.
O.
O O.
O.
O. - O (Q
M e
z O O O O O O O O O O O O O O O O v-l W
- a. J G
N e
O ee N e o e Q
y w
< O -
e e e e a e
O e N N m v M M.
N.
N v.
e.
N
- e. a v.
v.
.O O
N.
J n
e r
W u
W T T
@ W M
a W
I W
Q Z
p-
- e e
e e a -
W
@ s s
e e
.g k
-O O
O O N O 4 N -
T T O O T d
Z W
Z C.
4 W
D. v. v. W v.
C.
- v. v.
v.
N.
M C.
W g
L
. N M M e M M M W G v v b W.
M N N N
Q g
' 1 8
~
H a\\
Z T 1
-. =
M M N N N N m 01 e e d
0 0 U
C WC 4
N.
b c.
p.
M. W M.
M v. v O
Wg2 e
- 0 0 C O.
O O O O M
2 EDW W - -
N N W C Dog I e e
e e
e e e s
a e
a e
a a
MM k.
0; F
MWN E
D 4 WE3 e e EA e e M M N N G S O O== --
82 A C N.
b.
W @
O.
O. e.
M.
M.
M. M M v.
v.
0 O.
g n 04 Ok=C Z C m W W N N 9 v O O...
O C O O O(Zha L e e
e a
e a e a e e e e a
e C40-4 m
E DJ HJ dJ
-M Z
j 23 Jmo 4
W w
N e
-*O(LE F
0 0 0
C.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O O.
O Q(O ow J
O O.
< woc >%
3 Z O O O O O O O O O O O O O O CCJ-ZH nW K
EXXXXX O N b vN e e e e e O N 4 -
C M
O 2
- m. a
- v. v M
V.
O N.
- m. m. e.
O. e D.
O.
0000C W
W 8
O m O O M
N.
00900 E
W - -
2 m-C C Y v H
I e
i e
s -
e e
a e
--0--
O lt-1
=
O O O O Ol O M e M O N e 30 e L
- Ol O a h a 9 * *.
9 a. 9 a a * '
I I N N N N N N N N N N T T N N v v LZ H
=
,O O O O O O O G5 O
O O O O O O O O O W
m e a e a e G e m e e e m e O e C
e e
2 lC 6 O v
lc I k 6 v c
O
(
W L
go Z.
M l
l
==.
k e
w 0
0 iO O
t-O M O e
b S
H
't-T W v m
O 40 H
M M
C v
4 v
Im s -
- W jv zr i
o J
O O
O l
O J l 0
H H
C co-se um -rrs AsAs emAmum :iB"GPI'f sEITN51P"
N N
d Oe H O -
@ N v eN E O eO v v-
@ W S.
O. W e
3 is
- b. e. e.
O.
O. N
. e.
n O.
on
@. e O e N S-W ee E
.(-
g T
H 80 l
u e
T l
N J
Z O e
- N N O v N -
O e v 9
- v. M e.
N. v. v.
N.
9 9 W W C. v.
. W
(
=
n0 W @
v v p p O O v v O O O
=
F W N N
- - N N N N -
- he e; e
& @ e e O O O O e e W
e.
- v. v.
- e. e.
N.
v.
v.
O.
O.
O.
O.
e N
I O
H vv W W e e M M N N N N W W D C e
e e ei a e
e a
e e
a e a e a e i
M e
W E
O O O O O O O M (9 v v e e s
V W = e.
N.
N.
O.
O.
O.
O.
N.
N.
O.
O.
O.
O.
e e
x O
- - 0 0 N N e e W W D O O
L cn b a77 77 777 7
O g
=
O e m v p O M C -
O v O N v
@ W O
M 4
v.
O.
O.
@ W W v.
N.
N.
Y.
- v. v.
M.
n ev,.
N N O.
O e e O M ee v v
@. e g
T E
3d FN WE E W W
e e
e O
N
,g 4
O.
O O.
O.
O.
O.
O.
O.
O.
O..O
. 0 0
O.
W n
I O O O O O O O O O O O O O O O O d
E sm M
W E
O W (D N e C W e @
e m O 8 -
J H
< O M
M A O v.
v.
N.
N N N O
9
@ W Y.
4' W
W
@ S N N O v M M - -
4 T W. @.
O W
I - e M
Z H - -
a e
a a -
E g
k T T C O v
-O m
O O N O v N
N HZ W
I O. v. W D.
- v. v.
0 v.
C.
v.
v.
v.
N M
@ W
- N '
W g
L E
_(
H Z
O O ee M M O O N N m a e e O.
O.
O. e. e. M M.
N.
. C O O O O
N -
O WC 4
- e. e T.
v O
Wg2 H
0 0 0 0 0 0
2 EDb W O O W C 3eg I e a
e a e
a e
a e
a e
e e
s E
M t/)
H H
MWC E
=
3 4 WE2 EL M fi N N M M e e N N O O e e 82 A C
@ to
- e. e.
O.
O.
- m. to
@ W (D
- v. v.
O.
O.
g e 04
- N N Ok-C I
O.
O O.
O.
O.
O O O O O O(ZH.
L s e
e a s s e e
e e
e e
a C40-4 M
E O.J Ha H
GJ -M4 Z
Z JMcE
(
W W
(D N
e wo(LER H
Q O O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
c(o ow J
. O O O O O O O O O O O O O O O (woc >2.
3 Z Q COJ-IH MWE EXXXXX l
0 N N v N e e O S S O N v -
C M
O D.
CD D D M
N @
@ @ W M
< @ G V.
V.
M v.
COOOC W
H 2 O O O -
- m
- m. O C O N v v 0 0 9 0.C K
W - -
H I
e e
a
--O--
to 5
s a
s z
1 O O dO M e M O N e 10 e e c Q' cc en e @
c vv a aeo O O M
cv M
I NN NNNNNNN NkV NN v v M
L
=
n O
O O O O O O O O t) sC O O O O O O W
me S e O e ee e e
@ e 0 e O
e e
e G
O L O
(
v h.
L T C
O W
(D
'e
.h Z
r/)
H e O
(
0 0
0
> 0 O
e is H
H v
to v m
O O
=
M M
v
'O W
(
v G
H -
T
(
lE l
0 J
l l
0 O
0; J
O n
H I
I
....... -s,, m a, _.. m r n a a m -
1
l 1
h.s 9
0 r oe ee aeN M T o
N e nN to 3
O.
M.
N.
O.
N.
O.
T.
N. W T.
N.
(D G.
S.
S.
S.
N e c O O M M O O M
T O
[
W N M e N O
e N N N
N E
==
e*
h N
.A P
W*.
J Z N N eN a O e eO s eN
- e nN C.
O.
N.
N.
S.
O. e. e e.
W N. W r.
O.
O e
A C 4 D v 0.
0 O O N
O T T
.Al H e H M o v v M M en p N N M M O
N N M M T v N N O O N N O M C O b b
- b. b.
N bN Nb
- b. b.
b e
e e
e c
E-
- N N.
, M M M M O
6 - e.
W. D.
T.
S.
@ e p O.
e.
M.
M. W W M.
Z
. O O O O.
O O
O..
O.
O.
M O O O
L O C e
e.
O Z
so a
W e
C
.a
. S o - e
~ M.
, M
. N 0-W M 1 M
M.
M.
O.
M.
O.
LD. e. e O.
C N. e N
- N 10 gang g'
T T O
O.
T C v 10 T O
E Y
- ,b E
E O O
N N
N so w.
I O C O O O O O.
C.
D.
0 M.
O.
N.
O. b. O.
(
T.
C.
v.
O.
O.
O.
p 4
o O O OO O O O O O W
1L M
e E
Q M
i
>~Q 6-W n
e I
- M
@ N O N M C O H
<N m
M v N O M.
N.
N.
35 @ O Y.
O.
O. v. M M.
(D. e. e.
J to H
g W
W 40 W
Z N.
N.
N N.
M. M..M.
M.
O O.
T T.
C.
O T.
T.
W Z
s s
s s
W 4
to E
k -W O
@ N O - e v -
N M O Y p n N F
e.
Z W
I M.
Q N. e M.
O.
M.
O.
N N
O. v c
N W
g A
8 E
M. T.. M. M.
T.
C. v.
v.
0 T.
v.
0 0 E0 10
')
Z v e O W N N N N e O N N v v 0
4 O.
O O.
O.
O O.
O.
O.
O.
O.
O.
O N.
N O
O.
O W
6-
. O 7
O 2
E W O O
- - 0 0
0 0 0
W C 3d I
e E0 e 6-E 6-MO E
3 sf W
82 E,J-,
M C N N
@ (D e e M M 10 0 T T Y.
Y.
Y.
v.
O.
O O. o..O.
O.
N.
N.
O O.
ta.
E M W
=
~
O O O.
O.
O O 0
0 l
0 6-40 Z O C I
O(Zs0 L
e.
s U40-M E
OJ U>
>=
dJ
==Z Z
E JMZW
(
O O
m m
(n O
M c(o J
. O O.
0 0
O.
- O ( L.f4 y T.
C. v.
O.
M.
O.
C.
O.
N O 0-M M
(WCCWM 3
7.
O C O O O O O O O O O.
O O O CO J-so gn W
W I
0:XXXXX C
EO N O M v N v M (D N v th e N (n en O N.
c.
0 0 N N (D.
O. O 0
0 so 4
M.
4 N.
N N
k.OOOMe W
v.
\\
N N.
M O O..N.
(
O.O..ID.in E
W N.
N.
N.
N.
N.
N.
O.
M l
=
H Z
t 8
8 O
B 8
--00C to 6-j l
8 Z
f~
O Cl (f. N r@ M -l @ M C N e M @ XD O M Q N e ini e NN N e N O
- O )0 @
b
%. b. b. Ib. b. b. b. b. b. b. b. b. b. b.
ZL Z
N O
O O O b O C
O O O O O O O
,O
.O O.
. e. e e
WC e
e E
o 10 L O v
e i u.
av c
o
(
I W
W
' A e
icd
-Z, O
t==
p-e 0
(
0 O
d W O e O S
t-vi to v i e
O i
=
v 1.D D-M O C
(
v S
W 0
J T
Z E 0
0 0
O
.J l O
H
>=
O l
ro-a s & &d -Ns.Ls As O NIA Mit el ;[ITE YSli~ATN6E**
\\. '.. -
l r-1.
i n
1 e
1 i
a N
I H -
O v p
@ O v @ @
e 4 3 N v m
O N.
b.
M e
M
'3 O.
v.
O. e.
O.
O.
3_,
O
==
W N
IS v c M p O O O b.
0 W W W @
v l
N E
)
, reg w
4 @
S.
s M @
e e N v J
Z
. 0 N O.
b D b 10 W -b i
18 09 O m 10 e
(
. Q @
@ (D
.O
]
.O a.
. O M
@ v 0 v
.N e
e v it M.
(
i N v v O O O e@
(D O 3
4 T. - O. C O.
O.
- - N N
W G
@ v v.
. N V O 0; O O 1
JC.
T - -
H T 0 0 S M I
M to e a
a a
e e
a e
to e
O u
F N 4 e m @
O O N N v g
.O to
- tD I
O.
O.
O A
D.
O.
O.
O.
0 N N. O.
O O O O
tb 10 0 0 0 O
O b
b e o O O
Z M -
- - a a
a e
W g e e
a a
e e
e s
)
O 6
O 4 o-a e s e c 4 e
~ N v W @
m.
. 0 5 N ID u) b.
@ b 80 40 4D.
O.
M m N
g H
M M N 40 e b b
@ (D N N
D. @ @
@ Q k
W Q
.M E
s E s s
e o
o a
o s
. 0 O.
O.
- o. N 3
0 0
N b
< 0 0
C.
O N
to W
O I O O O O O O O O O O
O.
3.
O O O O W
M M
E O
H mD W
.Q i
to Q
E
@ e A e p V -
S N v F
( v v O J
M H
b.
e 40 h O,
O.
is -e e p 3
M.
M. m W
W
- y. y.
to W
I -
O e e
-N f%
@ @ N N
O.
O @
W' (D tD.
- g th Z
W W
4 M
f E
al F
k
-O 4 O O O @
s M v O O
% n b W M W
Z W
I CD N m m N a N. O N O
O.
5 (D O W-g g,
N M N O M D v 0 4 @
D @ @
(D @
M M g
g
-(
H 3 O N N m 5)
Z O
- e v O C O O O
W 4 e e N N O
O.
O M -
O WE O O O O O 3
O.
O O.
Z S*. 3 W O O
3 O-O O
O*
s W D isto I e e
e e
a s
e e
E to to H
==
F MW E
D 4 WE O Z EL M
Ch c c N N D e @
(D D 0
O.
O D) D) @
D O.
O O.
O.
L (0
40 '
g e
'M OW e.
0
=
0 0 0 0 0 3 O O O O E
CH-M I N N
OO(ZHM L e i e e e e e
e e
a e
i OMO-(
M E IO J >- O>
W M-Z Z
y =MOE J
W
(
N N
(D (D
C O
O o c-w a
O.
O.
O O O O.
O. o O.
O.
(LEM O
N 3
0 0
< W O c > Who 3
Z O O O O O.
O O O O O O 3 O O O O O D J-Ito to M
J W
OL EXXXXXX me o e v M m 4 N O e O C
M v
v o A
to
( -
G) (9 M S.
m O O @
(D b
- 3) - @ b 'c (D.
000000 W
W
>O00000 E W e 0 e CD D D 0 C m m M l9 4 v v v g
p I
<--O---
M W
e Z
O v O O O N O N M O O O N N ID @
. 0 0 0 0 ED N m c) m O 31 O C#
0 0 5
I O N M N M N O M M M 4 T T 4 4 4 0.
1 3
W O
O O O O O O O O O O O O O O O O W
CD ED m &
G t0 p) e a e m D G ED m @ I I,
C l
3
- B I
~
l E
m O
w O
(
4 la.
- Y O
O O
W L
Z to
> a 1
D 0
(
0 0
0 W O to o a
e t-F v M v m
O
}O I
i M
M O
v i
i W
s
(
. cn s -
-E E
O J I
(
lv 0
0 0
O J
O j
F O
t I
l l
'h es..T':=UsTnrmIR% u w 9unnoe.c
lik i.
i o q j
0 0 C
'M e
2
.W ED S H -
3 0 V
O O 4 0 t v 0 W e W W O
3 4 0
~ -
V O
(
4 W
S N N N*
2 O O N M v v S M M
.W ID N O O ()
N N l
h %y E
9 W
M
- - n O n n - e ee oeM e a J
Z H
O. e. C e v N (D O LD @
N e e Q
(D.
>?
.=
N
. b cv 0
0.
0 W @
D O
N m v v
- O m O N -
H M N N
O 3 N b O v v cp O e W
e.
N.
b.
. v.
v.
C.
N N N G
O a
IH v w e w n n n a v v N N N N O O O
M M e e
e s -
- e e - -
b E
0 O v N N O O v v v v b b O
F a-O L p p @ to O O 3.
0.
M.
N
.N O.
O.
0 0 M M
- e y p 4 4 4 O N N O O I.
v v to.
O
- - N N s e - -
Z M
N N (D e 8
g 4 @
(D m n
O O v b O
@ (D b,.-
O 4
v.
O. =. = *
- v. o a a M
H. 2 v.
.
=
D O C W 10
@ W H
M @
N O O H
E tA 6
D e
s E
E.
< tD (D O m
O.
. 0.
v.
O.
3 m
O 3 M C O
M M
W
. 0. O O0 3 O O O O 3 O O O O M
I O O O W
to M i a
e e
e e
e M
E M
s-H W
M E
H
< O N @ b
.- p C v b
- CD D
-S ED @
W W
D.
b.
- m. e.
v.
3 N.
N O N 3
O.
J M
M e
v 0
W W
O @
3 O C W :n to W
I M M O O M
Z
\\
V v O O N
e n O
@ C O b 4 4
H
. m.
Z W
I
- v. n. n @
c O N - b o b 3 v M c
(,
~
W g
A Q 9 b,e O O 4D O.
Q M (D N
O.
.O g
m.
i Z
O m v v m m O O O O.m m O C
@ Os O
O.
O WE O.
O N N M M v 0.
0.
v.
O O O
W-(
CD. -O N
=
0 3 O C Z
E3 W O W O DM I e e-e e
i e
E MM H
- H MW E
'3 WK O Z EL M
N e N N N O e ID e 0 0 (D (D g
M Uw
- c. O O 03 On m 01 N N LD D @ @
O O.
L Q
. O O
0 0 N N O 3 O O O
OH-M I N N - -
O(ZHM L s a
e a
e e
O*( 0 - 4 m' E CJ HU>
H
- M iZ Z
J m
e e
e v
C D
-b(MO
< W O C >h*o 3
Z O O O O O.
O.
O.
O.
M.
O.
O.
A tt eo e
N O O>( U O
.J o.
@- O Q
O O O O O O O O O O COJ-IMM to e
e 6
e e
e a
a J
WE EXXXXXX o
M O
N O b O CD
@ e C O M e 4 (D -
b O C C h.
M
< b On e e O.
O.
O LD N N
(D.
000000 W
H O
e O N b
>O00000 E W O n
O-
-. N N M 5 b e v 4 I
<--O--
E a
e Z
h O
@ O O O n O e n 0 4 N N O e O V.
O.
O C O.
O.
O O O O.
Q O e. e O (0 I (D N (D b ID b
@ N O N 4 4 b b v v L
9 g
O O O O O O O O O O O O O O O O 1
C
- I
.e.
s 01 On 4D 0) CD W
- 0) se On fD
- 0) e m I
b I
I 2"
O E o a
v W
L E v 0
O U
C O
6 2
to
> e O
0 0
0 W O M O e
e (D
H H
v M V 0)
O O
I n
n a
4 c
i v
m
- H -
-W o
J t r
lV O
0 0
O J
u i
M O
I I
- ' d
'S so 4%YisAs swiAFume asys n3aAENOH~C
i l.
0 0
l.
I.
e '"y
""T I
A
]h s
- W e N O e N.. e N ee oe W
- W D.
C. 6T.
N.
N W
N.
O.
. e. a.
- e. e.
O n
['
N 0
N N O O
.i W
M 1 W N e a1 O e 0 -
N-N N
M y
EF W
T W
M k
m-.
l O e N T N e 8 -
J Z e e N N C.
M N. e.
N..
N.
N. a..6 N. W O
(
T m
- N e W O N e N - N W W Q
O.
O H n
-e e
O 5M s
O O N N a a T T N N N N O.
O.
W W N N.
N.
N.
N.
N W
N.
ZH C O e e
.e T C O T T C O N N O O O
e e
a e
= -
e a e
i e s 1
WE W
W M M N N
- W T e W W -
l O
O. O.
- (
O.
T.
D.
N.
N.
- e. W W W W W
W e
Z O
L 0 0 N N M M C O M M
O.
O N N O O N N N
N Z
M
.= -
W e e s e
a e
e e e O
=
N e N N W M.
9 N S. M
. N O
O.
- e. m T
W N.
- e. e 0 0 Y.
T.
N.
e o
g H
@ M C M T C W C
@ C C D O O E
v W\\
u F
E a m
m
~
4' W C W
D.
G.
O. e O. m. O.
T.
C M.
O.
O. O.
W M
O O O O O O O O O O O O O O O O
't W
to e D
b
'C 6
E H
(
e M T N W O N M N W M e N O O M.
T.
T.
N. e. e.
M.
M.
N.
- e. N.
J M
N M
M W
W Q
EO W
I N O D
0 C T
T Q O. C.
O, O
T T T T.
e Z
- e s
s e
s e
e e
e e e s
E d
t
-N e
N N W M.
9 u
. N M W W o.
n l.
e.
- T W cm
. 0 0 T.
T.
O C O O Z
W I e W
g-L 2
6 M W M V O W m W D W - -
e e
e e a e e
a e
e e
a a
e
(
Z T M C C N N N N e e N N W W D
4 O.
O.
O.
O.
O.
O O.
M.
M.
O.
O S.
O.
O.
y W
0 0 0 0 0 C 2
E W O
'1
- 0 0 -
W C 3
I e
a e a e
e e
a E
W
~
b to E
=
O 4 W
O e e e e N N O O W W E
M b 82 Ok s0 I O O N N N N O O N N O O O
O.
O.
O.
0 O.
O
- m. m 0
N.
N L
. 0 g
to W O O O(ZW L
e a e a e
a e
s (O=
6 E
O.J O>
c J
--Z Z
2 JMZW m
S e
e e
T W
D C(O - h, J
. O O.
O O O O.
O.
O.
O.
M C.
N.
O.
O.
O.
4WCCWM 3
Z O.
O. W O. W
-O(AW H
W O W
O O O
O.
O O O O O COJ-WM mW E
RXXXXX T n N N O n O
- N m N C
O W e M T k
so 4 m. e M.
M M.
M.
N.
N.
- 0) )O C.
N
.= 0 W
0000C W
W s.
> O.O..O.C E
W N M M M M M M M M M C C O M O
H Z
9 e
s 4
e a e s
9 e e a
a e
4 e
- ---O-e W H s
Z l
-5 N N N N iN O dcT N - m O M m -
m.
- e. e. 9le e. e.l e. e. e. e. e
- a. e no. @
I M W M T S T M T M T O 7 O O O O L e a
s e e
e e
e e
e e
e e e e
e Z
H O O O O O O n
O O O O O O O O O O
>O W
ee a e m e a e e e m e m, eD @ c O
e e
e e
e e
e w
OZ m
O A O lk A T C
.C
(
T W
u L=
I
.Z W
80 t
> e w
O
(
0 0
Of F 0 c0 c a
la 81 W
H T
EO T e
O
'O H
n M
Q T
'e p W
(
T a
H -
O J
e T
4 E
0 0
i O
Jf O
i l
"~""~#*""""**""'"
I I
N.."
I i
d N
0 4
i
.j 9
b f
%. C gN e e c.
O.
O O e N -
0 N
>- O W e
N..
- e..
S.
- o. @..
m [)
N..
W
- O.. D e.-
O e
. O O O
O.
O O C
i E
W l
s.
i p o O M N
J Z ee F.-
@ ce
. p
'n Q
S..
- s...
D O.
4 N.
N. e. a.,.
M.
O C l
C O
. e N S'-
O N
>- M 4
Os
\\
M M.
. N N H M.
N N
.N N.
N.
N.
O.
O.
N.
N O.
O.
O.
O.
W N.
N
- v. v.
. O O O e
.O g
O O O
O O O O O O W O O l
B e
e i a e e
e e
e 3
g j
si e
l 5
g l
e
- O O M M 6
O W O O e.
N.
O.
O.
O.
O.
- e N @ @
e - e.
O..
O d
g I
p v e e O O N N O O O O O O A O W
N e
.. W
@ p
.O N.
O c 8 -
- e..
- e..
M
>=
s 6 - C
- O O.
N..
v.
N.
N. W..
e
- q
- 0 0 0 0 0
0.
=
O 4
O b
E E N N
O
~
,M
(,
D.
C C.
O.
N.
O.
O.
N.
O. '. N. O.
O.
O. O.
l.
N e
e O C O O O O O O O O O O O O O O 1
T={
W e
o e i
e a
i e
e s
E W
t-W
. +J Q M
y E
e Oto -
O -
p C.
l H
<O C
S O J
Q e
H
- e..
S.
l
@ e T.
N.
N.
N.
O.. e 8 v.
v.
. O O O O O y
w O
O.
O O
W W
Z C C O O e
i to Z
H e a
a e e e e
a e
a e a e
s M
W M
E k
- N O N O O N
-W N N
. O N e 0 q
m, w
g L
'M.
O N.
N.
- v. @
M.
T. '*. O e e e
e.
Z W
I
. 0 O.
O O O i.
i.
O 0 0 O
O W
E eC Z
v s
e e
i s
e a
s e
e a
e e
s 3
D H
D Z
v c N N
.. N N O O N N N
O
< O C O.
O O.
O.
O O.
.. 0 0 0 0
O.
0 A
O W
H
=.
2 E
W O O O O O O C O O O O O O O O O D.W C
3 I
s s
e i
e a
E
=F M
E 3 4 W
CJ 2 E
M.
M N e N c) O O O -
A O.
N.
O O.
N.
O.
O.
O.
O.
O.
O.
@ e N
N E
eW O >= n 1 0 C O O O O O O O O O O O O O O(Zto L
C40=
W E
OJ O '>
>=
C.J
--Z Z
Z JME6
(
N N
10 W
O O
O
-O ( L.Mg O.
C.
D.
C.
O. o.
O.
O.
O N.
O.. 0 0
C.
n c40 J
. O O O O O.
O I
dwOcWM 3
Z O C O O O O O O O O
CO J-(C M M
s e
e e
e e
e e
a WE EXXXXX C
M C C N e n 4 N N @
p - @
O M h.
to v.
N.
N.
N h N O O.
O O v. c p @
p @
e COOOC W
>=
O-O O -
E W O O O O O
0 0-0 0
O-l
>O.O..O.C I a e
e e
e e
e a
e e i e
e e
cc g
ese inj>Z j
4--Oe*
N O O O P N N -
N N v N
. 4 M.
N.
N.
N M.
N N.
N.
M. @ c O. p C.
. O O O
,O.
O O O.
O O e O
U 1 -
L e a e
e e
e e e
e e
e e
e a e b
O O O O O O O O O O O O O O O
.O O W
. e
. e
. e.
S.
c. e
. S e
0.,
b O
L O 4
v h
la.
v 0
0
(
W k.
c H.
j
.g n
l 0
0 0
0 H O to O e
e a
v (0 v O
O t
n M
O Y
c v
>= =
= W T
4 E
U J
0 0
O J ;
O r
r I
so-se s su -mmi um Axianw74e ves ns1rIWW51T"
~
%. N 4
>V)
'1(
n
- M eM v
- N eO h e0 e e a
.M M. v.
0 M 3
- e. M. e e.
O..Y
- b. o O.
M t
e c b
LJ M p egb e m V W e G
- e N N O O
- - N N
N N g, {
) }Z EN*
Y i
J
% UJ J Z ee eM -
O e en8 s a M e o M
i 0 e.
O.
O.
N.
O.
O. e.
O.
M.
v S
< =
M M O e a N y O S b e O N N O O
D F to e
e=
O N N
~ n N e
,, N N -
M. M. 6 S.
N.
b O.
O.
O.
O.
y O
xH O O e e v O O v v O O N N O O
to m a i e
s -
- e e
e -
I
@ g a
s a a a a W
s-W N v e b N N N N b O O N N M.
N.
v.
M.
O.
O.
M.
M.
C.
O.
N.
N.
.. 0 0
g W
=
O 2
M M M O O M M O O N N O O
O &
O O O
N N a e N N e
a Z M s s W g e e a
e e
s s
O S
i
- - =
M aas v 0 N M o a=
O
= -
- g y e.
M. v v
- e. v N.
4 0.
10 12 4
M v v cv 0 v O 4 c0 C
y=s4 y
e M v cN b
4 4
a O v.
O.
- n. O.
O.
O.
M e.
C. e.
O. a O. o.
O.
. O O O O O O O
w O O O O 2
O O O O C W
g M M E
M g%
W to EH <
- M cc el N O N O v O N v - O
'J to >
e O
@ 10 0 p p v v v N v ID O -
O b, b d T
W 2 N$
N N N, bb b N, N bd v
s a
n e
a s
a e
e Z
g
\\r E
-O M
O c-O p b rO N M O N e N
H v
e (2 e Z
Z v.
(D. M. v.
. e. v N.
v.
v.
(D.
.t, W
E &
0 v 0 0 O Y v 0 C
M M \\v M v v C 4 e
e e
a a
r a e a e
a e
e s
i a
4W A
Z N M mM e e -
- e to
@ (D 0
O.
O.
M M.
M.
O.
O.
M M.
O.
O. m. o O O.
q U
O O
O O O O O O
2 k
O O 2
e e
e a e
e e e a
e s
W
.C.
E b
E "D
N.N
@ W
@ N v M -
- M M
82
-I O O N N N N O O N N O'O O O O O
O.
N.
N.
N.
O.
O.
N.
N O,
O.
@ @ O O.
N E
mW 06 O t to a
a e
e s i e :
a a
e s
e
- s C(O
@ E OJO>
CJ
=Z Z
2 JEW m
m E
e e
4 O
04M H
W O. e.
C.
W O. c. 0 @
O.
M.
C.
N.
O O.
O.
( 0.= W
.J
. O O O C O O O O O O O O O O O
WOWW D 2 O
OJe to MW a
0:
EKKKK M
O (D C e o O O to b N m O N C
to M.
T.
O.
O.
la.
to <
@ Q Q W (C (D. to..@. O.
O 0000 W b
>O000 E L M M N N N N N N N N O O M M O O
M 1 0
e 8
e 0
0 I
t e e a
E
<-e--
to N' m O -
M O 01 e O N O m N e
E I
M V M V f1 Y M v fa v O O M
M.
O.l O.
M T.
M. v. 4 M.
M.
. v.
M. M E M N
O O
M s e a
e a
e s
i e e e
e s
i L
2 C
O O O O O'
O O O O O O
O O O
.O O. a S.
e. c
. e m e. e W
. e Q
e e
e e
e e
e 4
4 40 k
O E
C la v
0 0
q W
L H
s Z.~
so
.=
O O
C O
H O m o
a a
==
10 P.
H v
to v O
ci H
~
M M O v
c:
(
v a
> - w W 9
4 C E O
J 0
0 O
O a,
o r
r O
- ~
ro-se t se -agas AE Wm ANiWgg !J 6 Vas [73EIYW5W"
~'
.O.
l f
Q $
l b
N N on-C O
- N e W 0 0 C m O
h M 3 y e.
M.
N..
O.
N.
O.
M.
N.
I
.N ec W
-O V cC' e-O. G O O O O O O
Y T
g a.
C uj w a I
{.
J 2 0 -
O @ m O
T C m
- O M v 0 l.d N N w v e o@
@ S @
p v M e N
l-
==
Nb b v' b b
bb@
bb bb O
N.
N -
- - b
-O
@ @ C O -
- 0 0 O O O O O O O
g
- b. b. b, b, e,
b, b,
e, b bbb H
1 m m l
M d W
h O v G m N N m G C D e-M.
O.
N.
N.
M.
M.
N.
N.
N.
O.
O.
O.
O.
6 b
O 1
O &
Q O vv b N O O N b o O O O O O
Z g
a e
a e e e
O N C n C @
-. e M C 0 @ C O
s N.
N.
O.
M.
b M @
M.
N.
N W W M.
N.
e e C O.
O.
O O O O
O.
0 Q
M
- O
- O I%
h E
(E N
N O
O O
O O
b
.M 4
0 O.
O.
O.
b.
O.
N.
O.
N.
O N.
O.. 0 0 o.
a w
F W
2 O O O O O O O O O O O O O O O O
M W
2" e
W V
M LE:
- M
- O v W O O
c c 9 O N
- M O
.J W H N.
O.
O.
O O O.
O O,
O, O,
O, O.
0 0 0 0
N.
O.
N.
3o W
g w
O.
O, O,
O, O,
O, m
W z O
g g
a g;
g Ek-
- tD e N v N v 0 N
0 O O
'v M
E At H
Z W Z
.t N.
N.
N.O N m.
M.
O N N.
O.
O.
O
.(
W g A
. O O
O.
0 0 0 0 C O O O O O O
E M
O Z.
a e
e e
i e
a e
e i
e O O C
O A
Z N -
== -
4 O.
O.
. 0 0..
O.
O.
O.
O O.
0 g
e I
w O O O O O O O O O O O O O O O O
W C 2
s e
e s e a
e e
e s
H E-p E
"J 4
0 2 W
O 0) d M M M M M N N 0 0 N. e. b N.
O.
O.
N.
b O O O.
O.
O O.
O g
eW De I
C O O O O O O O O O O.
O.
O O O.
O O(M L
a e
e e e C (O M I DJO>
H J== Z Z
JEW 4
N N
W (D
O O
O O O O
C"( 0.D C.
C.
C O C O
D.
O C C N O O4
- - 4
=W
.J 4WDWM 3 Z O O O O O O O O O Q O-O O O O O
C O.J o e o
a e
i e
e s
WE E XXXX N
- 4 M - N v
C M
C O
@ O O
. O O
O
- O O O O O -
h, W 4 N O O - 0 O -
0000 W >
O.
O. O. O.
O, O,
- - O O
O.
O. O.-O.
O, O O O,
W
>C000
,E-z
=
e g- -. - -
kes a & h a 4
- E la R E *8 8 8 if 8 I bb b.bdbdbbb bb bbb b
A e
e e
e e
e e
e e
Z b
O O'
O O
O.
.O O.
O.. O.
O O O O O O O O W
.. G O
2 L
O
(
v lh.
A v
c O
o W
.u
(
Y s
Z co O'
4 O
O > 0 d O e
a m
W v 80 v i e O
O
==
M M Q v
v ad
> - w W O
.J 9t!
(
El O
W D
C u
n w
a l
re-seu -enrrsu suumu usu ns1rIYmm-
'I SECTION J STRESS INTENSITIES AND CODE ALLOWABLES
L M M 11310000-0 003 l
PROJECT McGUIRE NUCLE _AR STATION ITEM _ ANALYSIS LOCAL ATTACHMENTS PAGE 7-53 dTED BY bd DATE(klk S*
CHECKED BY N -
DATEp et ORI Iw fj.i I;
7.3.8 Comparison of Actual Stress Intensity with Allowable 7.3.8.1 Load Combination 1 = DL + DL(L) + LL (Table 7.2a)
From calculation file MCC-1117.03-0020 it is seen that personnel lock live load stresses (LL) oppose dead load stresses, which accounts for sign difference between
' Tables 7.lg and i.
3 a)
General Primary Membrane SA = 15 ksi 2.03 ksi.
1)
Cyl., 1" E
=
2.64 ksi.
ii)
Cyl., 3/4" E
=
2.59 ksi.
iii) Dome 11/16" E
=
SA = 22.5 b)
P, + Pb 6.19 ksi.
i)
Cyl., 1" E
=
ii)
Cyl., 3/4" E
= 10.43 ksi.
iii) Dome 11/16" 2. = 8.67 ksi.
There are no secondary stresses.
7.3.8.2 Load Combination 2:
DL + DL(L) +.9P + HY + T a)
General Primary Membrane (Table 7.2b)
S
= 15 A
7.02 ksi i)
Cyl., 1" E
=
ii)
Cyl., 3/4" E
= 11.15 ksi.
6.66 ksi.
iii) Dome 11/16" E
=
b)
P, + Pb (Table 7.2b)
SA = 22.5 i)
Cyl., 1" E
= 18.31 ksi ii)
Cyl., 3/4" E
= 18.85 ksi h
iii) Dome 11/16" E
= 14.68 ksi.
15807155-61
0 2:'.1310000-0 003 PROJECT McGUIRE NUCLEAR STATION ITEM ANALYSIS LOCAL ATTACHMENTS __ PAGE 7-54 nub DATE /Oftt.f60 I
DATE#/c/$o CHECKED BY ORI I ATED BY
~
ld
/
/
~
5 c)
P, + Pb + Secondary (Table 7.2c)
SA = 45 (Load Combination 2b) g:4)o pale; ///fr/6*
i)
Cyl., 1" E
= 42.36 ksi, Rev. 2 CVd4M(8P4te:/@/f6 fi)
Cyl., 3/4" E
= 51.44ksi.
See Section 7 3 8.7 for revised Pm + Pb+
This is less than 53.6 from Section 3.3.3.2 and is secondary stress in-tensities due to acceptable for the same reasons.
revised containment accident ~ temperatures.
- excluding thermal bending, 25.94 ksi (see Table 7.2d) iii) Dome, 11/16" E
= 23.05 ksi.
7.3.8.3 Load Combination 3:
DL + DL (L)
.1P + OBE a)
General Primary Membrane (Table 7.2e)
S = 15 A
i)
Cyl., 1" E 4.00 ksi,
=
ii)
Cyl., 3/4" E 5.11 ksi.
=
iii) Dome 11/16" E 4.63 ksi.
=
b)
P, + Pb (Table 7.2e)
SA = 22.5 i) Cyl. 1" E
= 12.36 ksi.
ii) Cyl. 3/4" E
= 21.41 ksi, iii) Dome 11/16" E
= 13.96 ksi.
c)
P, + Pb + secondary There are no secondary stresses for this combination.
~
7.3.8.4 Load Combination 4:
DL + DL(L) +.9P + HY SSE (Table 7.2f & g) i a)
General Primary Membrane SA= 2 i)
Cyl., 1" E
= 10.87 ksi.
ii)
Cyl., 3/4" E
= 16.31 ksi.
iii) Dome 11/16" E
= 11.69 ksi.
15807155-62 n
k i
N 0011310000-0 003 PROJECT McGUIRE NUCLEAR STAT'ON ITEM ' ANALYSIS LOCAL ATTACHMENTS PAGE 7-55 I
$fA) I I
DATE A ORIGINkTEDBY'haw $
!.tf80 CHECKED BY DA) t bA
- 40 b)
Py + Pb i)
Cyl., 1" E
= 23.01 ksi.
ii)
Cyl., 3/4" E
= 34.43 ksi.
iii) Dome, 11/16" E
= 23.86 ksi.
Secondary stresses are not evaluated for emergency conditions (ref. Code Fig N-414) 7.3.8.5 Load Combination 5:
DL + OL(L)
.1P i SSE (Tables 7.2h & i)
' ~>
a)
General Primary Membrane SA = 32 5.13 ksi.
i)
Cyl., 1" E
=
6.53 ksi.
ii)
Cyl., 3/4" E
=
5.77 ksi.
iii) Dome 11/16" E
=
(.-
b)
P, + P SA = 48 b.
[
i)
Cyl., 1" 2-
= 17.55 ksi.
ii) Cyl., 3/4'! 2
= 30.15 ksi.
iii) Dome 11/16" E
= 17.93 ksi.
7.3.8.6 Load __C_ombination 6:
DL + DL(L) i SSE + TP*
(Tables 7.2j & k) a)
General Primary Merbrane SA = 32 ksi l
4.61 ksi + 15.3 = 19.91 ksi.
i)
Cyl., 1" E
=
5.84 ksi + 20.3 = 26.14 ksi.
ii)
Cyl., 3/4" E
=
5.01 ksi + 7.69 = 12.70 ksi.
l iii) Dome 11/16" E
=
e i
- For TP stresses see Sect. 2.4.4.
(50CTION I,p3 1-510) 15807155-63
M M 1 :L 310000-n 003
)
i PROJECT McGUIRE NUCLEAR STATION ITEM ANALYSIS LOCAL ATTACHMENTS PAGE 7-56 I N. h k DATE Afri/do
-ORIIATEDBYby d DATE Lofzt/Ao CHECKED BY fJ 5
!//
/ *
?
S = 48 ksi.
b)
P, + Pb A
1)
Cy1'., 1" E
= 17.83 ksi + 15.3 = 33.13 ksi.
ii)
Cyl., 3/4" E
= 29.41 ksi + 20.3 = 49.71 ksi.
This stress exceeds allowable by less than 4% and is acceptable.
j iii) Dome, 11/16" E
= 17.18 ksi + 7.69 = 24.87 ksi.
Transient pressure does not produce additional significant bending stress.
The containment cylinder and dome are adequate for local stresses caused by attachments.
m e
6 I
15807155-64
M'CC :L13 :' 00 00-0 00 3-1 PROJECT McGUIRE NL' CLEAR STATION ITEM ANALYSIS LOCAL ATTACHMENTS PAGE 7-57 j
fed t.
ORIGINATED BY [f/) M DATE a/co/go
/
CHECKED BY f M AM _DATE /%
?
i
~
7.3.8.7 Evaluation of Increased Thermal Stress Intensities Due.to Revised Containment Accident Temperatures (Ref. Sect.
1.3.3) 1 7.3.8.7.1 Comparison of Revised Actual Stress j
Intensities with Allowable for Load
{
Combinations Including Local Loads.
(
From Sect. 3.3.3.5.2, the stress intensity increases are:
For thermal with bending, SI = 7.08 ksi.
For thermal with no bending, SI = 2.71 ksi.
From Sect. 7.3.8.2, Primary Membrane +
Bending + Secondary in 3/4" plate becomes:
p 51.44 ksi + 7.08 ksi. = 58.52 ksi.
This stress intensity exceeds the allowable of~
45 ksi., but is less than 60.68 ksi. from Section 3.3.3.5.4, and is acceptable based on l
the same justification as used for the stress intensity of 53.6 ksi 3.3.3.2.
C ees. o, w n o. in Sect.ryamw, 1
Excluding thermal
- bending, the stress intensity becomes:
25.94ksi.+2.71ksi.=58.65ksi.
This is less than 45 ksi. and is acceptable.
15807155-74 M
1
7 Form ~01163 Mjn..13:.0000-0003 PROJECT,,_M,cGUIRE NUCLEAR stall-ON ITEM ' CONTAINMENT VESSEL DESIGN PAGE }-lp_
ORIGINATED BY ////l M
___D ATE,fd**21,,_ CHECKED BV k\\ k 6 0 ATE b f~
./
3.3.3 C_ompart, son of Actual Stress _lg ens'ty,with. Allowable 3.3.3.1 Load Combination 1 (Section 14) 1.s considered only for buckilng.
3.3 3 2 Load Combination 2 (Section 1.4)
DL + SSE + W. + HY +.9p + T Stress Intensity Allowable Geneeal Primary Membrane (Table 3.2b) 15 KSI Cy1 I in. pi. 8.33 KS1
~
75 in. pl. 12.9 KSI
[
Sphere.688 in. pl. 11.7 KS1
{'
Primary Membrane + Primary Bending 22.5KSI (Table 3 2b)
Cyl 1 In. pl. 20.5 KSI 75 in. pl. 17 2 K31 s
Sphere 688 in. pl. 23.8 KS1 g:6#0 Sletyd(Note: slight overstress is very localized at hanger and I
d'd*#f pale:/2Qv is acceptable since SSE loads are included w/0BE allowable)
Rev. 2 See Section 3.3.3.5 Primary Membrane + Bendinq + Secondary 45 KSI (Table 3.2c) for revised primary Cy1 1 in, pl.
40.4 KSI membrane + bending
+ secondary stress
.75 in. pl.
53.6 Ksl* (See discussion below) e tt i
t accident temperatures.
Sphere.688 in, pl.
23.8 KS1 (See pages 3-21 to 3-23)
- For this combination the maximum stress intensity eneeds the allowable. This high stress is from large bending q
stresses at the stiffeners for the thermal load. This is due to the restraint provided by the stiffener preventing i
free thermal expansion. This resta int is over-estimated due to the assumptions made about the temperature distrl-bution in the stiffener.
However, hstead of attempting to calculate a more accurate temocrature for the stif fer,er l
paragraph N417.6 of the Code will be used to allcw higher stress at this point.
N417.5 allows the 3 Sm limit on combined primary and secondary stresses to be exceeded pro-vided certain requirements are satisfied. N417.6 (a)(2)
I 1
M CC 113100 00-0 003 i
-- PROJECT McGUIRE NUCLEAR STATION ITEM CONTAINMENT VESSEL DESIGN PAGE 3-20
~
-OR I IATED BY hM M DATElO th Bo CHECKED BY N h d _
DATE/ g k
{
w requires a plastic analysis to assure that shakedown f
occurs as opposed to continuing deformation, and that the deformations ' are acceptable.
This is not necessary in this case since the local yielding that will occur at the stiffener will not change the general deformation of the structure and since there is no cyclic loading shakedown P
.and fatigue evaluation is.not required.
.4 When thermal bending stress is not included the remaining stress is well within the allowable.
);
3.3.3.3 Load Combination 3 DL + SSE + HL + TP Stress Intensity Allowable
' ' ~
General Primary Membrane 32 KSI
~
Using results from Tables 3.2e and (see Section 1.4) f and TMD-4 Cylinder 1 in, pl. 15. + 2. = 17 ksi
.75 in. pl. 20 + 2.4 = 22.4 ksi Sphere.688 in. pl. 7.1 + 5.2 = 12.3 ksi Membrane + Bending Transient pressure does not produce I
significant bending stress.
Combination 2 will control bending.
3.3.3.4 Load Combination 4 DL + SSE + HL + JI Stress Intensity Allowable General Primary Membrane 32 KSI 1.56 + 2.05 = 3.61 KSI Primary Membrane + Bending 48 KSI 14.6 + 2.72 = 17.32 KSI l
l 15807155-25 l
SECTION K DETERMINATION OF MINIMUM WALL THICKNESS W.
Determination of Minimum Wall Thickness General Discussion The design of the McGuire SCV is based on the 1968 ASME Code,Section III, Subsection B.
The Code requirements include both I
analyses and the satisfying of the formulas given in ASME Section I
VIII, Division 1 (UG-27).
The Code formulas are meant to be applied to a smooth shell distant from any gross structural I
discontinuities.
Since the base of the containment where encased in concrete is a gross structural discontinuity (because of the restraint of concrete on each side), the determination of the minimum required thickness will be based on the computer model i
analysis results as detailed in the McGuire SCV Stress Report.
I Thicknesses based on formula will be checked and may form the basis for subsequent weld repair to insure Code compliance, i
however, they will not be used as the basis for the minimum wall for operability determination.
Assumptions and Justification 1)
Only primary membrane stresses will be considered since this category of stress can cause failure of the vessel and is j
not self limiting in that redistribution of the stress with
{
yielding does not occur (at the base).
The classification primary bending stress at the base does not exist as the bending stress there is not required for equilibrium (a pinned base condition would be equally stable).
j 2)
Bending stresses at the base due to M4 and Me.are classified as secondary stresses (N-412(i)(2), 1968 ASME III) and will j
be evaluated for Service Level A and B limits only, which j
correspond to the Normal Conditions given in Table 3.8.2-1 of the McGuire FSAR.
Note:
Iri the original analysis these were taken as P which is conservative.
3)
Thermal stresses will not be considered except for Service Levels A
and B.
Thermal stresses are self limiting secondary stresses and are not required to be evaluated for Emergency Conditions.
Note:
For several load combinations, the 3S Code limit for primary + bending + secondary stress-es was exceeded for thermal conditions and N-417.6 was applied for justification.
As such, only primary membrane forces will be considered in the determination of minimum wall (see additional discussion at the end of this section).
4)
Since in-plance seismic membrane shear stresses at the base are very low, stress intensities will be calculated neglect-ing shear stress.
This is considered to be sufficiently accurate since the seismic membrane meridonal and circumfer-l ential stresses (which do not occur simultaneously with the shear stresses) add to the stresses due to other loads to produce a more severe loading.
)
l I
J 5)
In calculating required thicknesses, the ratio of the. stress resultants at the base will be considered to be unaffected by the thinned zone.
6)
Since external pressure is one-tenth the internal pressure, it will not be considered to control.
Load' Combinations (Ref. MCC-1131.00-00-0003, pgs. 7.42-7.52)
Load Comb. 1 DL + DL(L) + LL Load Comb. 2 DL + DL(L) +.9P + HY + T Load Comb. 3 DL + DL(L)
.1P i OBE Load Comb. 4 DL + DL(L) +.9P + HY SSE Load Comb. 5 DL + DL(L) -.1P' SSE Load Comb. 6 DL + DL(L)
SSE + TP Membrane Total Load Comb.
Does Not Control, by Inspection 2a 2.64 15' 18.31 45.0 2b 15.85*
45 38.66 Note 4 2c 15.85*
45' 25.40 Note 4 3
External Pressure - Exclude 4a 3.80 32.0 N/A N/A 4b 7.56 32.0 N/A N/A 5
External Pressure - Exclude 8
6a 19.91 32.0 N/A N/A 8
6b 16.59 32.0 N/A N/A Notes:
- 1) All units in ksi
- 2) Includes additional 1.45 ksi due to revised thermal analysis
- 3) Includes thermal loads, allowable is 3S.
- 4) Thermal - will exceed 3S (see Assumption 3) m
- 5) Includes 15.3 ksi from transient pressure analysis
L:'
h l-calculation of Minianna Wall Thickness -
L Load combination 2' 15.85 Membrane:
t=4
= 0.352 inches i
Total:.
f '+ h ' < 3S, 1
From Table 7.2b 2.50, g 2.63) = 45 ksi By trial and error:
t
=
0.621 inches Load combination.
Membrane:
-t = 3
= 0.622 inches Use Minimum Wall Thickness of 0.65 Inches
l' McGuire Nuclear Station, Units 1 and 2 l
Containment Vessel Corrosion Evaluation Observations on the Requirement to Evaluate Extreme Fiber Stresses at the Containment Vessel Base The McGuire Containment Vessels are designed and constructed in accordance with the requirements of the 1968 ASME Code, including addenda through Summer 1970.
This Code places requirements on j
the Designer to evaluate extreme fiber stresses in the pressure-l retaining portions of the vessels.
The purpose of this series of observations is to document the thought process used in establishing that the design of the McGuire Containments k
satisfies necessary ASME Code requirements with respect to those stresses.
The primary load-carrying mechanism for these vessels is membrane action.
There are no primary bending stresses in these vessels, since there is no primary load-carrying member which uses bending as its load-carrying mode.
There is therefore no Pb component in the evaluation of stresses.
This is not to say that there are no bending stresses, but rather implies that the bending stresses are not required to assure a stable load-carrying mechanism.
Since the vessels are ring-stiffened, and since the base of the cylinder wall is embedded in concrete, there are significant restraints on the radial movements of the vessel wall, especially with respect to expansion due to mechanical pressure loads and thermal effects.
These stresses meet the definition of secondary stresses (0) established in Figure N-414 of the 1968 ASME Code w/ Summer 1970 Addenda, in that they are self-equilibrating stresses necessary for insuring continuity of the structure, and which occur at structural discontinuities because of mechanical loads or thermal expansion.
This Figure requires that the cumulative effect of these stresses with other membrane stresses he compared against a 3Sm limit for Normal and Upset conditions.
This check is not required for Emergency and Faulted Conditions.
The specific point of these observations is to evaluate the need to assess these stresses at the base of the containment shell where it becomes embedded in the concrete of the basemat.
These extreme fiber stresses are, in fact, not required for the structural capability of the containment vessel.
For convenience in the design process, the base of the vessel has been modeled as a fixed boundary condition.
It would have been equally appropriate and conservative to ignore the restraint provided by the fixed base, and to assume a momentless (pinned) boundary condition.
Because the bottom panel of the Containment Vessel is so short from the concrete surface to the first ring girder (less than three feet), this revised assumption would have made very little difference in the panel directly affected, and virtually no difference at any other part of the vessel.
This pinned-base condition would give an upper-bound assessment of the potential
rotation of the containment base without the rotational restraint of the base fixity.
If the actual extreme fiber stresses at that point were to become significantly inelastic due to local shell bending at the structural discontinuity, the residual deformed shape would approach that of the pinned-bottom shell, which is still a stable structural configuration.
The code recognizes that this type of situation can and will occur.
Paragraph N-417.6 provides for procedures to demonstrate that the structure remains stable, and that " shakedown" occurs, that is, that deformations do not continue to grow.
These practices need not be applied for this case, since as explained above, the minor distortions which would be caused at the base j
would approach those anticipated for a configuration which is also stable and structurally sound, the pinned-base shell.
Likewise, since the frequency of loadings is so sparse (three pressure tests per ten years over the forty year life of the plant, and only one accident thermal cycle), it is also unnecessary to investigate fatigue effects in detail.
In summary, it is our opinion that though the code formally requires that the (extreme fiber) secondary stresses must be evaluated at gross structural discontinuities such as the containment base, there are adequate provisions in the code that there is no requirement to reject the design if conservative 3Sm limits for those secondary stresses are not met.
I l
I o__________________________________