ML20236J622
Text
{{#Wiki_filter:1 ~ PACIFIC GAS AND ELECTRIC COMPANY C0AST VALLEYS DIVISION DIABLO CANYON POWER PLANT UNIT NOS. 1 AND 2 l -j SURVEILLANCE TEST PROCEDURE N0. V-5 1 TITLE: EMERGENCY CORE COOLING SYSTEM CHECK VALVE LEAK TEST RESPONSIBILITY _ 1. PowerProActionEngineer(TestDirector),forcoordir,ationoftest 1 with Shift foreman, providing technical guidance during the test. I final data reduction and reporting of results. ) 2. Shift Foreman, for operation of equipment as required by the test procedure, for obtaining data, and determining valve acceptability. j 3. Instrument and Controls Supervisor, for installation of test gauges. FREQUENCY This proce' dure is performed during primary system heatup and pressuri-zation from cold shutdown to hot standby. This test shall be performed following refueling outages or other outages where the ECCS check valves l have been unseated and should be performed during each transition from cold shutdown to hot standby. SCOPE L) t L This test verifies that ECCS check valves are properly seated. 1. At an RCS pressure of 1000 psig, the following check valves are tested: a. Cold leg first off 8948A, B, C & D ) b. Hot leg first off 8949A, B, C & D B'IT first off 8900A, B, C & D c. 2. If the BIT first off valves are not seated, the BIT second off 8820 l shall be checked. i 3. After the accumulator stop valves are opened, the RHR cold leg second l off valves 8818A, B, C & D are checked. 4. When the RCS pressure has reached 1700 psig, a SI pump is started on recirculation and the following valves are tested. a. Accumulator discharge checks 89S6A, B, C & D b. Hot leg RHR second off check (8740A and 87408) D PAGE I 0F 6 REVISION 0 DATE 11/23/76 APPROVAL MfMAG% //!) f PLANT SUPERINTElpE,NJA" BATE' B708060223 B70729 PDR FOIA ]ONNORB7-214 PDR
'b!ABLO CANYON POWER PLANT UNIT NOS. 1&2 ' SURVEILLANCE TEST PROCEDURE NO. V-5 TITLE: EMERGENCY CORE COOLING SYSTEM CHECK VALVE LEAK TEST NOTE: The hot leg second off SIS che~ck valves are not tested. i 5. This test is necessary because leaking check valves could cause dilution i of accumulators and/or lifting of relief valves in the safety injection or RHR systems during power operation. Accumulators could loose their inventory to the RHR or SI systems through leaking check valves. More-over, during slave relay testing performed during power operation, dilution of the BIT could result from leaking check valves. i 6. In general, check valves will be monitored for leakage by establishing a AP across the valve to be tested and then opening the SI test line on the low pressure side of the valve (upstream). The test line will l then be monitored for an increase in pressure, which is indicative of check valve leakage. For most valves, this is performed in the following sequence: The system isolation valve between the (RHR, SIS or charging) system a. and the valve to be tested is closed if permitted by the Technical Specifications. i 1 b. The SI test line valve upstream of the check valve (s) to be tested is opened. c. SI test line valves 8871 and 8961 are opened to bleed off most of c the pressure in the test line. \\.) l d. SI test line valve 8961 is closed and SI test line pressure indicator PI-942 is observed. With the rest of the SI test line and accumula-tion fill valves closed, an increase in pressure is indicative of check valve leakage. If an increase in pressure is observed, the leak rate may be measured e. by observation of FI-928A or B, at the discretion of the Test Director. 7. The test will be conducted during plant heatup at two pressures.. When at 1000 psig, before the accumulator isolation valves are opened, valves / 8948A-D will be tested, using the RCS pressure to provide the AP across the check valves. After opening the accumulator isolation valves at 1000 psig, 8819A-D and 8818A-D will be tested, using the accumulator pressure of approximately 600 psig to provide the AP across the check valves. When the RCS pressure has increased to > 1700 psig, the remaining check valves will be tested. At 1700 psig, tHe RCS pressure is high enough to permit the SI pump to be used to pressurize the space between the 1st i and 2nd off check valves without injection to the RCS actually occurring. This is necessary because the SI pump must be used to pressurize between the first anG second off check valves, providing verification of second off valve seating. Testing valves using the SI pump at an RCS pressure h lower than the SIP shutoff head (= 1500 psig) would result in flow into 1 the RCS. j l PAGE _2_ op 6 REVISION j 0 [DATE 11/23/75 {
l,* D1ABLO CANYON POWER PLANT UNIT NOS.1 & 2
- SURVEILLANCE TEST PROCEDURE NO. V-5
' TITLE: EMERGENCY CORE COOLING SYSTEM CHECK VALVE LEAK TEST O f ACCEPTANCE CRITERIA The check valves or combinations of check valves indicated below shall be demonstrated to be properly seated by observation of negligible pressure buildup (< 10% of the AP across the valve being tested) in the test line during the valve test: 1. Either all four BIT to RCS cold leg first off check valves (8900A, B, C and D) or second off valve (8820) shall be properly seated. 2. For each accumulator, either the first off 8948A-D check valve or the respective second off 8956A-D check valve shall be properly seated. I 3. All second off RHR check valves from the RCS cold legs; 8818A, B, C, l and D shall be properly seated. 4. All second off SI check valves from the RCS cold legs; 8819A, B, C, l and D shall be properly seated. 5. For each hot leg safety injection line, either the first off 8949A-D check valve or the respective Fecond off 8905A-D check valve shall be properly seated. 6. For each hot leg RHR line, either the first off 8949A, B check valve or the respective second off 8740A, B check valve shall be properly [ seated. l l If any check valve (or group of check valves) tested is not properly seated, a Form 23 shall be filed requesting corrective action. I If criteria 2, 3 and 4 above are not satisfied, the plant heatup and pressurization shall be terminated and appropriate corrective action taken. In addition a Nonconformance Report shall be filed and manage-ment notified.. PREREQUISITES 1. Safety injection pump 1-1 shall be OPERABLE and AVAILAELE for performance of this test. 2. All accumulators are charged to the pressure' required by the Technical Specifications. 3. Instrumentation employed in obtaining the data used in determining whether the acceptance criteria of this procedure has been satisfied l shall be in current calibration. 4. Plant is at approximately 1000 psig with accumulators isolated at beginning of test. J PAGE 3 0F 6 REVISION 0 DATE 11/23/76
blABLOCANYONPOWERPLANTUNITNOS.1&2 SURVEILLANCE TEST PROCEDURE NO. V-5 TITLE: EMERGENCY CORE COOLING SYSTEM CHECK VALVE LEAK TEST O PROCEDURE A. Precautions and Limitations l. Do not operate the safety injection pump without flow through it I (shutoff condition). Insure that the SIP recirculation valves I 8974A and B are open when the pump is operating. 2. Perform this procedure in the sequence as written. g B. Valve Alignment 1. Verify the ECCS aligned for LOCA injection (with the exception of the accumulator isolation valves) per Operating Procedure No. L-1. ) 1 2. Perform and/or verify the SIS test line valve alignment indicated on the data sheet: a. Accumulator fill valves closed. l l b. All air-operated test line valves closed, except 8871. I c. SI test line to liquid holdup tanks' valves open. b l d. Valve 8969 (charging header BIT bypass) closed. l e. FI-927 isolation valves closed. j f. All other manual test lines valves, except drains, vents, and ] test connections open. { I C. Establish communications between PI-942 and VB1 in the control room. I PI-942 is located inside mechanical panel 184 on the 100 foot elevation ) of the auxiliary building adjacent to penetration 51. ] D. Check the Hot Leg First Off Valves (8949A, B, C & D) (Plant at 1000 psig) 1. Check valve 8871 open. Bleed the pressure off PI-942 using valve 8961. Record the low pressure reading on the data sheet. Close valve 8961. 2. CheckhotlegSIandRHRvalves8802A,B,and8h03 closed. 3. Open the hot leg one test valve 8884A from VB1 and record the pressure reading on PI-942 on the data sheet. Close 8884A'.. 4. Repeat steps 1 through 2 above for hot legs 2, 3 and 4, using-valves 8884B, C, and D 5. If there is evidence of leakage through the hot leg first off valves, ) l the hot le l (8740 A&B)g second off valves must be tested for the RHR system only 1 ~ PAGE 4 0F 6 REVISION 0 DATE 11/%3/76
r i NIABLO CANYON POWER PLANT UNIT NOS.1 & 2 SURVEILLANCE TEST PROCEDURE NO. V-5 i ' TITLE: EMERGENCY CORE COOLING SYSTEM CHECK VALVE LEAK TEST O E. Check the Coid te9 e4rst off veives (8948^. B. C a o) caCse=iOOOPsie. l Accumulator Isolation Valves Closed) ,i ~~ l i 1. Check valve 8871 open. Bleed the pressure off PI-942 by opening valve 8961. Record the low pressure reading on the data sheet. l Close valve 8961. 2. Open the cold leg one test valve 8879A from VB1 and record the pressure reading on PI-942 on the data sheet. Close 8879A. 3. Repeat steps 1 through 2 above for cold legs 2, 3 and 4, using valves 88798, C,' and D. F. Boron Injection Tank Cold Loop First Off Valves (8900A, B, C & D),(RCSP=1000 psig) j l. Check valve 8871 is open. Bleed the pressure off PI-942 by opening f valve 8961. Record the low pressure reading on the data sheet. Close valve 8961. 2. Open the BIT cold loop first off test valve 8881 from VB1 and l record the pressure reading on PI-942 on the data sheet. Close 8881. If the pressure reading does not meet the acceptance criteria, check the second off valve 8820 by repeating step 1 1 and opening test valve 8843. l. G. Check the Cold Leg Second Off RHR Check Valves (8818A, B, C & D) (RCSP=1000 l I psig, kcumulator Isolation Valves Open) 1. Check valve 8871 is open. Bleed the pressure of PI-942 by opening valve 8961. Record the low pressure reading on the data sheet, j Close valve 8961. 1 I 2. Open cold leg 1 and 2 test valve 8885A and record the pressure reading on PI-942 on the data sheet. Close 8885A. 3. Repeat steps 1 through 2 above for cold legs 3 and 4 check valves, using valve 8885B. H. After primary system pressure has reached 1700 psig, start safety injection pump 1-1 on recirculation. I. Check the Accumulator Discharge Check Valves (8956A, B, C & D) '(RCS P >- 1700 psig) 1. Check valve 8871 is open. Bleed the pressure off PI-942 by opening valve 8961. Record the low pressure on data sheet. Close valve 8961. 2. Open accumulator 1 discharge check test valve 8877A and record the pressure reading on the data sheet. Close 8808A. t' 3. Repeat steps 1 through 2 for accumulators 2, 3 end 4, using 88778, .j.; C and D. PAGE 5 0F 6 REVISION O DATE J/23/76
DIABLO CANYON POWER PLANT Ui11T NOS. 1&2 l SURVEILLANCE TEST PROCEDURE N0. V-5 TITLE: EMERGENCY CORE COOLING SYSTEM CHECK VALVE LEAK TEST J. RHR Second Off Hot Leg Check Valves (8740A and B) 1. Check valve 8871 is open. Bleed the pressure of PI-942 by opening valve 8961. Record the low pressure reading on the data sheet. Close valve 8961. 2. Pressurize the piping upstream of valves 8740A and B by opening valve 8802A. Open the RHR hot leg test line valve 8825 and record the pressure reading on PI-942 on the data sheet. 3. Close valve 8802A and 8825. K. Shutdown Safety Injection Pump 1-1 { L. Check the SIS Cold Leg Second Off Check Valves (8819A, B, C & D) (RCS p > l 1000 psig, Accumulator Isolation Valves Open; No SI Pumps Operating). 1. Check that valve 8871 is open. Bleed the pressure off PI-942 by opening valve 8961. Record the low pressure reading o'n the data i sheet. Close valve 8961. l l 2. Open the SIS cold leg second off valve 8923. Record the pressure I on PI-942 on the data sheet. Close valve 8923. I L l DATA REDUCTION AND REPORTING OF RESULTS ( i, l l \\ 1. (SFM) Forward the data sheet to the Test Coordin'ator. I l 2. (TC) Forward the data sheet to the TD for review. 3. (TD) Return data sheet to TC for filing. REFERENCES 1. Westinghouse Drocedure for Periodic Testing of ECCS Check Valves, Letter PGE-2926, February 21, 1975, DCPP Master File 428.1 2. D.C. Record Print 663216-46, SIS Specification 3. P&ID 102008, Sheet 5 4. P&ID 102009, Sheet 9 5. PG&E Drawing 504481, Arrangement VB1 6. PG&E Drawing 500186, Containment Penetrations ATTACHMENTS 1. Form 18-969011/76, Data Sheet PAGE 6 0F 6 REVISION __0h_ ~ DATtt H/23/70
,18-969.0 I i/ /0 (10)' PAGE 1 0F 2 C0AST VALLEYS DIVISION DIABLO CANYON POWER PLANT UNIT NOS.1 AND 2 l. DATA SHEET - ECCS CHECK VALVE LEAK TEST -STP V-5 V UNIT NO. DATE TIME TEST PERFORMED BY l DATA TAKEN BY l l PREREQUISITES 1 2 3 4 1. Accumulators charged and isolated 2. Plant at 1000 psig I i I 3. PI-942 in calibration l Date of expiration 'l l PROCEDURE B. Valvesclosed(VB2) 1 & 2 a. 8877A, B, C, D l b. 8879A, B, C, D c. 8884A, B, C, D d. 8885A, B e. 8824, 8825, 8963 f. 8883, 8961 9. 8823, 8881, 8843 h. 8878A, B, C, D 4 i. 8969 j. SI-161 & 162 l Valves open SI-32 SI-149 8963 ) 8251A, B, C 8871 I i j
] 18-9693 11/76 (10) PAGE 2 0F 2 C0AST VALLEYS DIVISION DIABLO CANYON POWER PLANT UNIT NOS.1 AND 2 DATA SHEET - ECCS CHECK VALVE LEAK TEST-STP V-5 f] C. Communications established between PI-942 and control room A B C D D. Hot leg first off valves (8949) P* (Check valve AP = 1000 psid) l E. Cold leg first off valves (8948) P* (Check valve AP = 1000 psid) I F. BIT first off valve (8900A, B, C, D) P* (Check valve AP = 1000 ps.id) j BIT second off valves (8820) if required P* (Check valve AP = 1000 psid) l i j G. Cold leg second off RHR valves (8818A, B) P* l (Check valve AP = 600 psid) ~ Cold leg second off RHR valves (8818C, D) { (Check valve AP = 600 psid) i A B C D (7) ~ I. Accumulator discharge check valves (8056 A, B, C, and D) (Check valve AP = 900 psid) J. RHR second off hot leg check valves (8740A, B) (Check valve AP = 1500 psid) A B C D L. SIS cold leg second off check valves (8819) TEST IS ACCEPTABLE / NOT ACCEPTABLE i REPARKS: ) TEST PERFORMED BY (SFM)/DATE/ TIME / / TEST REVIEWED BY (F.E)/DATE/ TIME / / 1
- Pressure indicated at PI-942 with test line valve 8871.opeli' and 8961 closed.
1 1 ) l Q. It is apparent that you use the same general failure rates as a function l 1 of acceleration for both Class I and other piping. Provide a justification l 1 or explanation for this assumption. Is this assumption an important one in I terms of the influence on risk to the public? l A. Although there are slight differences in the design, non-destructive examination, and inservice inspection requirements between Class I piping I and other piping, these differences are not great enough to justify using ] 1 significantly different general failure assumptions for these different j i clssses of piping. Furthermore the plant response is not sensitive to the piping failure data, i.e., a large change in the piping failure data either, up or down, has every little effect on the overall plant response. Because the plant response is not sensitive to piping failure data, the risk to the public will, even to a greater extent, be essentia11y unaffected by changes in the piping failure data. i 1 i l i i 1 l l l i l l l l i l l l _.____m__.__m___
l j Lj ~j I Q. How are the differences between systers at Surry and Diablo Canyon q reflected in the analysis? ] i i A. Sequences resulting'in core nelt were examined to determine the functions accomplished by the mitigating systems.. These functions were then equated. l between Surry and Diablo Canyon. Some' of these functions are equivalent ~-i on a system basis; examples are containment spray and auxiliary feedwater.
- ]
Other functions are made up of different systems; for example at Diablo, r containment heat removal can be accomplished by containment spray recirculation, - fan cooler operation, while Surry relies completely on spray recirculation. t i t l l l 1 i j 1 l l i l l l i
I l 1 s 1 l l l Q: It is possible that structures may fail and damage the components inside the structure, and it is not clear how your report has considered this. I I Provide an explanation. l A: The major pathway for seismically induced common mode failure was assumed to be building structural failure. l Failure of the turbine building, for example, failed three Class I functions: 1) On site emergency power (Diesel generator) l k 2) Offsite power (4 kV switchgear) i l 4
- 3) Component Cooling Water System (Component cooling water heat exchangers).
1 Failure of the auxiliary building was assumed to fail all active engineered i safety features along with auxiliary feedwater. It can be seen from the analysis that even at relatively low accelerations, the sequences which dominate the seismic risk are those which don't require the successful operation of any active engineered safety features. This is primarily due to the relatively high probability of turbine building failure and consequent loss of all AC electrical power. Failures such as these were determined from plant layout drawings and a site inspection by the fault tree analysts. Due to such considerations, event sequences which result in not shutdown in WASH-1400 (without meltdown) were included in the Diablo Canyon sequences as melt sequences to account for such things as loss of long term water for the auxiliary feedwater system, i l l I 1 i l l
s Q: It is apparent that your treatment of the transient analysis of radiation released from the containment was adopted from the work reported in t'ne Reactor Safety Study, which was carried out using the CORRAL computer program. Provide a justification for this, in terms of the similarities between the containment design used in the Reactor Safety Study and the Diablo Canyon design. l l A. The following table is a general comparison of the Diablo Canyon and j Surry containment, containment atmosphere cleanup systems, and the containment heat removal systems: Containment Characteristic Diablo Canyon Surry reinforced concrete reinforced concrete Construction w/ steel liner w/ steel liner 6 3 Volume 2.7x106 fe3 1.8x10 ft Heat Removal sprays & fan sprays and fan coolers coolers design basis accident LOCA LOCA design pressure 47.0 psig 45.0 psig peak LOCA pressure 46.7 psig 39.2 psig pressure 1 hour after 13.0 psig 0 psig LOCA operating pressure 14.7 psia 11.0 psia Atmospheric Cleanup-sprays sprays design basis accident LOCA LOCA l spray additive NaOH NaOH spray ph 8.5-11.0 8.5-11.0 { ~1 ~1 l iodine spray removal rate 10 hr 10 hr Spray System 2 systems 3 systems injection mode 2 trains 2 trains number of pumps 2 pumps 2 pumps
- 7. req'd flow per pump
- 1007, 1007.
water source RWST RWST recirculation mode 2 trains 4 trains number of pumps 2 pumps 4 pumps
- 7. req'd flow per pump 1007.
- 507, water source containment sump containment sump Fan Coolers 5
3
- 7. req'd cooling per cooler 6 07, 337.
- Diablo Canyon spray recirculation head provided by RHR pumps.
1 s 1 ) Q: The description of the reliability of the offsite power system and grid s tability and their significance is not clear. Provide additional discussion i on the relevance of the reliability of offsite power. l There are three factors involved in the reliability of offsite i power following a local seismic disturbance at Diablo Canyon:
- 1) The ability of the PG&E system to provide capacity equivalent to Diablo Canyon auxiliary requirements.
- 2) The seismic strength and redundancy of the transmission l
l lines bringing this power to the Diablo Canyon Site.
- 3) The seismic strength of the Diablo Canyon switchyard j
I which provides stepdowned power to the plant. / I In this study, we have assumed that the Diablo Canyon switchyard is ] the dominant contributor to the risk of loss of offiste power. ] Following a.4g Hosgri event, the Diablo Canyon switchyard was assumed to fail with a probability of 0.33. We believe the prob-I ability of the inability of the PG&E system and transmission lines to provide power to the switchyard under these conditions is signif- ) icantly lower than this value. It was therefore concluded that the 0.33 value was adequate to cover loss of off-site power. w___-_-__
Q. Provide the Boolean expression for each fault tree. A. The fault trees as shown in' Section III were input to the WAM-BAM fault tree evaluation code in 'their detailed form. The code directly solves. the fault trees (which are themselves Boolean expressions for the systems .in an unreduced form) and calculates the system and. sequence probabilities. Utilizing this methodology does.not require the finding of Boolean expressions more simple than the detailed fault trees. The detailed correspondence between the fault tree terminology and the terminology used the computer output is shown in the detailed l table of failure rates supplied -1 in answer to another question. I I l l l l I ._=_
{ l i Q. What was the failure criteria for valves? A. Only valves that must change state were considered in the fault tree analysis and failure data are presented only for these valves. As with piping and structures, seismic stress for valves was assumed to be a linear function of ground acceleration. Loss of function of a ' I valve was assumed to occur for any stress greater than yield. This l assumption is conservative because valves function even with some dis-tortion of the valves body. i As with mechanical equipment, a step function was used to describe the probability of valve failure. Valves were assumed to have a zero chance of failure below the acceleration which corresponds to the yield stress and a 1.0 chance of failure above this acceleration. Failure data for the valves are summarized in Table 3-25. I i 1 l 1 l _______________o
4 1 1 Q. Provide tables of fluid inventories for water supplied relevant to accident sequences that were considered. I s L i i A. The following table is a summary of information that can be found in l i Chapters 6, 9, and 15 of the Diablo Canyon FSAR. In most cases, the { l quantities of water required to be avaiLable for successful operation of safety systems were conservatively based on technical specifications. Quantity of Fluid Required for Success-Time Fluid Name of Type of ful Operation of Supply is Required F1pid Supply Fluid Safety System to be Available ] i l Pacific Ocean
- saltwater very large many days j
Raw Water Reservoir raw water 2 million gallons 4 days l Condensate Storage condensate 0.178 million gallons 1 hour j t Tank water 1 Refueling Water 2000 ppm 0.377 million gallons 20 minutes to Storage Tank boric acid several hours { solution i l i i 1
- in extreme emergencies, and with special efforts to connect emergency pumps, salt water can be used for various cooling duties.
t
s l l j l Q. How do containment fan coolers enter the analysis? ) A. Containment fan coolers are a subsystem of function "F", Containment Fluid Recirculation" (Figure 3-25, Section 3). For success of the function, one of the following is required: 1 a) all five f an coolers b) re:.culation through all 4 containment spray rings l l c) 3 of 5 f ans and 2 of 4 spray rings I i 1 i ) 4 I + l l I t I I i l f, I 1 l Wm ~
/ ) Q. Identify.the principal sequences which dominate the risk results. A. In general for both the modified and base cases, the dominant sequences I a e as follows: Acceleration Range Dominant Sequence From.4 to.75 g TMLB i From.75 to 2 g ThLB & Si CDF l A brief discussion of these sequences can be found in section 3.5 of f Amendment 52. I 1 i l 'i 1 1 i
Q. It appears that the accumulators were not explicitly modeled in your fault trees. Discuss the reason for this. A. The accumulators are part of the emergency core coolant injection system. Rupture of the accumulator tanks was inadvertently left off the fault j trees. Including th(se failures correctly will not affect the results. If included, failure of the accumulator system would still be dominated by check valve failures at low accelerations. At high accelerations loss of electric power fails the emergency core coolant injection function independently of accumulator performance. 1
Q. How were containment failure modes treated? A. The containment failure modes were assumed identical to those identified to those identified in WASH-1400, except for B, defined as containment le akage. Containment leakage was defined as a function of the earthquake magnitudo. As B becomes larger, other failure modes, except steam explosion (E), become small, the sum always being 1. This essentially forces the dominant sequences into the lower numbered release categories as the earthquake magnitude increases. I i
= Q. How sensitive are the results to the meteorological assumptions? A. The sensitivity of the results to the meteorological assumptions is variable, and depends primarily on the cumulative probability for l exceeding a given (normalized) cloud concentration. l l On the one hand, if the X/Q value which is necessary at a given location to produce a specified dose level is frequently reached or exceeded at that location, then the cumulative probability for that condition is high (near 1.0) and is very insensitive to changes in meteorological i assumptions, models, or data, l On the other hand, if the necessary X/Q valuc is seldom reached or exceeded at that location, then the probability is low and is very ) l sensitive to changes in meteorological input. j An example may help to clarify this point. In Table 6-6, the normalized cloud concentrations at Avila Beach which are necessary to produce a j dose level of 300 rem to the thyroid for release categories 2 and 3 are given as 2.7E-8 and 3.6E-7. The corresponding cloud concentration l probabilities from Table 6-7 are 1.0 and 0.70. Thus a variation in X.Q of about 13 results in a probability variation of only about 1.4. However, for a dose level of 510 rem to the bone marrow, using the same two release categories, the tabulated X/Q values of 2.7E-6 and 2.2E-5 lead to probabilities of 0.060 and 2E-5 In this case a variation in X/Q of about 8 result. In a probability variation of about 3000. In the first case the X/Q values are small and are frequently reached or exceeded at Avila Beach. In the second case, they are high and are seldom exceeded. Thus, the probabilities in the latter cast are much lower, in addition to being more sensitive to variations in X/Q. The difference in the two cases reflects the shape of the corresponding cumulative probability curve for X/Q at Avila Beach, Figure 4-4, which _ _ _ _ - _ _ _ _ _ _ _ ~
. I l has a slope of essentially zero at low values of X/Q, and an increasingly _ steeper slope (on a log-log plot) as X/Q increases. Although different meteorological input would affect this curve at larger values of X/Q, all such curves start with a slope of essentially zero at low values of X/Q. The use in this study of a cumulative probability curve for X/Q is necessary to determine whether a particular dose level, of significance for some health effect, is reached or exceeded. The risk estimate for a specified dose level from a particular release category is the product of the cumulative probability of exceeding the necessary X/Q value at the given location and the probabilities of the wind blowing in the appropriate direction and the occurrence of the release. The total risk estimate is then the summation of the risk over all release categories. l Thus changes in meteorological input can also affect the risk estimate through the probability of the wind blowing in the appropriate direction as well as through the cumulative probability for X/Q. A comparison of wind direction frequencies, within 22.5 degree sectors, for the six Diablo Canyon meteorological stations is given in the Diablo Canyon FSAR in Figure 1, page 2.3A-18. Tables of the wind direction frequencies derived from measurements at the'25 foot and 250 foot levels j of Station E are given on pages 2.3A-81, 2.3A-87, 2.3A-93, and 2.3A-99. l 1 This data, taken from July 1,1967, through October 31, 1969, shows the wind direction frequencies fc; the same sector from the two levels at I Station E to be approximately the same in most cases. The maximum difference is a factor of about two in several sectors where the wind direction frequency is changing rapidly in adjacent sectors. Avila I Beach is in one of those sectors, and the wind frequency drops about a factor of two for the data from the upper level of 250 feet, compared to i 25 feet. The discussion on page 2.3A-25 notes that there is approximately a 25 degree veering in the mean wind direction at Station E between the two levels, which is presumably caused by terrain features, 1 j
i . The effect of different wind frequencies on the final results of total risk at a given location is a direct multiplicative effect. The wind frequency is a separable multiplicative factor at a single location. Factors of two would not significantly change the interpretation to be drawn from the results. .The effect of different meteorological assumptions, models, or data on the cumulative probability for X/Q is, as discussed previously, a variable effect. In general we have chosen the data and models so as to be conservative in our estimates of X/Q probabilities, even though more realistic choices would be reasonable for the purposes of a. pro-babilistic study. We have done so to ensure that enanges in the models or data would be more likely to decrease the risk estimates than to increase them. An example of such conservatism is the extrapolation of the cumulative probability curves for X/Q beyond the limits of our data. Although the l available data show these curves to have increasing slopes on log-log l' plots as X/Q increases (see Figure 4-2, 4-3, 4-4, and 4-5) we fixed the l slopes at a constant value (as determined within the decade from 0.01 to 0.001 in probability) in order to extrapolate to probabilities below 0.001. This procedure will increasingly overestimate the probability at larger X/Q values, and thereby conservatively M the increasing i sensitivity to variations in X/Q estimates at larger X/Q values. This procedure will also minimize the effect of grouping at larger X/Q values, which is implicit in our use of joint frequency tables for our i source of data. Another example of conservatism is our use of joint meteorological frequency tables based on vertical temperature gradient as the criterion of atmospheric stability. In the past we have found that the use of frequency tables based on azimuthal or vertical wind fluctuations have consistently resulted in significantly lower estimates of X/Q values than tables based on vertical temperature gradient. Although we feel that the use of tables based on wind fluctuations provide more realistic estimatos for a coastal site like Diablo Canyon, we chose tables based on vertical temperature gradient to ensure that the ]
= i uncertainties in choice of atmospheric stability criterion would be in the direction of reducing the risk estimates rather than increasing them. Thus we feel that, as a result of our conservative choices in meteorological ) assumptions,models,anddata,theuncertaigesfromthesefactors in our probabilistic risk estimates are such changes in the meteorological g ,i input would be more likely to reduce the risk estimates than to increase them. l 1 l 1 i l 4 l l i j i I i __--_-___Q
i l Q. You have not included in your report any discussion of release to the public through-water pathways. A draft analysis done by the NRC in 'l connection with the floating nuclear power plant has indicated that water ' pathways may be important following melt down. Why were these pathways not discussed in your report? A. In the analysis presented in Chapter 11 of the Diablo Canyon FSAR,' the contribution of liquid pathways to the total offsite radiation doses from normal plant operation was shown to be small. This analysis used very conservative assumptions, including an ocean dilution factor of 5.0; a ..i realistic calculation would show that liquid pathway doses are negligible compared to gaseous pathway doses for the Diablo Canyon Site. The NRC, in the Diablo Canyon FES, also concluded, using cor servative assumptions, that liquid pathways population doses were small es 9ared to gaseous pathways population doses. These conclusions are applicable to meltdown accidents only in a general way. However, given that the transport mechanism for melt down radioactive offluent to the water at an ocean site is leaching a considerable distance through the ground, it is reasonable to expect that liquid pathways doses from a melt down accident would also be very small compared to the gaseous. pathways doses.. A review of the Draft Liquid Pathways Generic Study (NUREG-0140) leads to the conclusion that for an ocean site like Diablo Canyon, the maximum population l dose from liquid pathways following a melt down would be about' 10 man-rem over a 2-year period. This is roughly equal to the natural background dose q to the population within 50 miles of the Diablo Canyon plant during the same time period, and in our opinion is a negligible contribution to the overall l public rish from seismically-induced melt down accidents. I l 1 I L l ( i i
a l l l l l Q. Your piping analysis and failure rates were based upon the assumptions of failure at a specific multiples of allowable stresses. Provide additional justification for these assumptions and some analysis which demonstrates the sensitivity of your final results to these specific assumptions. A. To determine the effect of the choice of stress levels at which piping is assumed to have a significant failure probability (ramp section of failure curve), the following case was analyzed: 1) It was assumed that at any stress below yield, piping 1 l remains elastic and failure would be essentially random. 2) Piping failure was assumed to be a linear function of acceleration from yield stress to ultimate strength of the material ( 2.4 & 4 s ) h I l The results of this analysis can be seen in Tables 2A and 2B. Comparison with the base caso, Tables lA and 1B, shows that for release category 2, which dominates risk to the public, lowering the onset of significant piping failure from (3.6 & 7.2 S ) to (2.4 & 4 Sh) results in a 10% h increase in the risk to the public. l l This is because-j 1 1) Even for significant piping failure from (2.4 & 4 S ), LOCAs h do not begin to contribute to the risk till about.9. At l 9 this high an acceleration the distinction between transients ) and LOCA's as initiating events begins to lose significance relative to risk to the public. 1 I Near this acceleration range transient sequences dominate the j risk for the (3.6 & 7.2 S ) case. LOCA's dominate for the l h (2.4 & 4.0 S ) case. However, since most mitigating systems h for either type of initiating event are failed at this high an acceleration, it becomes irrelevant to the risk which initiating event has occurred. Note that differences in plant response at accelerations less than about.9g do not contribute to the risk. n a-- n---~ an
~,
n-. .____,_ ~ c
l. ab 0 0 0 0 0 0 0 0 0 0 0 0 t o or 1 1 1 1 1 1 1 1 1 1 1 1 TP s g i t e 9 4 8 4 o nns 9 6 2 1 8 6 l gaa 9 0 9 9 9 5 0 0 0 9 0 9 9 9 6 0 0 0 0 i ce 1 sil nf e 1 0 1 0 0 0 0 0 0 e s I R v l i i t a 6 5 5 3 3 3 ctT en E E E E E E f eg ll t 2 0 4 fi n l ea 3 9 6 9 7 2 4 9 9 esi ARC 5 0 2 5 6 3 9 9 0 0 0 1 np kai 5 8 4 3 7 8 0 0 0 1 1 1 arP eT p 7 7 6 8 rh h oS E E E E tf lt 0 0 0 0 0 0 0 0 2 ea7 1 7 3 3 iwd RC 4 8 9 7 e7 et 3 8 1 3 k cd aen ura qr 7 5 5 4 3 3 2 1 1 1 2 2 S h o6 E t c lt E E E E E E E E E E E E I r 3 ea6 T ae RC 0 8 5 1 1 0 7 6 4 9 7 5 I est 3 2 6 7 3 5 4 0 4 0 1 1 L aa I mc 8 1 3 5 1 1 5 1 1 1 6 1 B o e A rer B f su 0 O al 9 9 8 1 R yBi P r a l t E E E E o f ea5 0 0 0 0 0 0 0 0 E g: RC 4 6 5 8 S eeg N t sn 4 9 9 4 O aai 3 8 1 3 P cCp S i E etP 1 R sn 1 aa - T el l t E N l P s ea4 0 0 0 0 0 0 0 0 0 0 0 A e e RC 6 L r i 3 P .t d ei 5 e gl A t ni 9 9 8 6 L aab cra E E E E E i b 0 0 0 0 0 0 0 0 L d no lt 8 6 7 0 B ner ea3 A i vp RC 4 0 9 6 T i 3 9 1 9 gge n d i no 6 5 6 3 3 3 1 1 1 1 1 cim 1 u E E E E E E E E E E E d ne E oor lt 0 4 9 7 0 4 5 4 1 6 5 riu ea2 3 6 8 9 0 4 8 2 4 8 2 7 ptl RC ai 4 6 1 2 6 7 2 8 8 8 9 9 f ra oef l yet 8 7 6 5 5 5 3 3 3 2 2 2 t cn i ce E E E E E E E E E E E E l am lt i n ea1 9 0 8 9 7 2 2 0 1 0 0 0 bdil RC 1 0 2 5 6 4 9 9 0 0 0 1 anaa b ut m 5 8 2 3 7 8 3 9 9 1 1 1 oonr rroo Pgcn . c 5 5 5 5 3 5 5 0 f c 3 4 5 6 7 8 9 3 5 1 fA 7 7 E ) 0 0 0 0 0 0 0 1 1 1 dg 1 1 kn( 5 5 5 5 5 5 5 5 au 2 3 4 5 6 7 8 9 3 5 1 eo P r 0 0 0 0 0 0 0 0 1 1 1 G !!ll<
7 7 8 7 0 0 1 9 9 8 8 9 7 7 7 7 8 1 ea6 l t E E E E E E E E E E E E RC 3 0 3 0 3 0 5 0 1 2 5 8 8 5 2 3 8 3 3 5 6 1 1 1 ~ 1 1 1 1 1 8 2 5 3 1 1 3 r 3 3 3 5 o 1 1 1 1 f n e l t E E E E y v ea5 0 0 0 O 0 0 0 0 r i RC - 7 1 9 1 o g 5 7 3 1 g e n 7 7 8 7 t i ac s E n e o 5 s i 1 a t e a E l r l t S e e ea4 0 0 0 3 0 0 0 0 0 0 0 O E r l RC 1 I e C d c 1 N e c I t a l a Q c d E i n 3 3 3 0 R d u 1 1 1 1 F n o i r l t E E E E E g ea3 0 0 0 0 0 0 0 O S g RC 6 9 7 2 A nE 6 7 2 0 E. i Sf cAf 7 7 8 2 I E uCe R doEk C rS a pAe T B p 0 1 S f 1 9 1 8 8 8 6 6 6 ) 7 8 I o h E t l t E E E E E E E E E E E E S ) i ea2 r w RC 6 1 4 4 0 5 4 0 3 7 2 1 a 4 9 2 2 9 8 ' 9 0 2 4 7 1 B e s y e 9 5 7 6 7 5 1 2 1 9 2 3 I k E r a L e u B p q A h 1 1 l 0 0 0 0 T s t 1 1 I 1 1 1 8 8 8 8 9 1 t r n c l t E E E E E E E E E E E E-e e ea1 v RC 4 8 8 4 0 3 7 7 8 3 0 0 e m 8 5 5 6 0 3 2 0 4 1 3 5 o n r 1 6 9 7 8 6 1 3 2 1 2 3 i f ( e y s c a ) n c e 6 e k yr 4 5 5 6 6 6 6 7 8 u t e acY ~ 0 q ng un/ 0 0 0 0 0 0 0 0 0 1 0 0 e an qes 1 1 1 1 1 1 1 1 1 1 1 r l a h ut x F pr t qn x x x x x x x x x x x ree 3 arv 2 6 2 2 0 0 4 3 0 4 5 1 EFE ( 2 8 4 2 1 8 4 3 2 1 2 3 . c f c 5 5 5 5 5 5 5 0 fA 1 E 3 4 5 6 7 8 9 3 5 7 7 d) 0 0 0 0 0 0 0 1 1 1 1 1 kng au( 5 5 5 5 5 5 5 5 eo 2 3 4 5 6 7 8 9 3 5 1 P r G 0 0 0 0 O 0 0 0 1 1 1
s 9 8 4 1 1 i t e 9 9 6 3 3 0 4 2 nns gaa 9 9 9 9 9 5 0 0 i ce 0 9 9 0 0 0 0 9 9 9 5 sil 1 0 0 0 0 0 0 0 0 nf e e I R vg i n ti 6 5 4 3 3 3 cp ei E E E E E E f P ll t f, l ea 0 6 8 3 9 0 7 2 2 5 9 9 0 0 ee ARC 5 0 3 5 4 9 0 0 9 9 9 r k u 5 8 2 3 6 6 0 0 0 1 1 al ei pa F 7 7 6 h E E E t m l t 0 0 0 0 0 0 0 0 io ea7 1 8 3 wd RC n 4 9 8 ea kR 3 8 1 aun qa 7 5 5 4 3 3 2 2 1 2 4 S hi E td l t E E E E E E E E E E E I re ea6 T aM RC 0 8 5 1 1 1 8 4 6 6 I e m-3 7 1 2 6 1 9 1 7 7 L I 8 1 3 5 1 1 4 8 1 3 5 B os A rl B fi e 9 9 8 O ar R yT u E E E P r l l t o i ea5 0 0 0 0 0 0 0 0 4 7 5 E g: a RC 9 S eeF 4 9 N t s 3 8 1 O aam P cC o S d E et n R s na aaR T el l t 0 0 0 0 0 0 0 0 0 0 0 N l P - ea4 A e RC L r s P .l d ei ega A t nT 9 9 8 2 aa crg E E E E i n L d ni l t 0 0 0 0 0 0 0 0 8 6 7 B nep ea3 A i vi RC 4 0 9 T i P gg 3 9 1 n i nh 6 5 4 3 3 3 1 1 1 1 1 ciS u E E E E E E E E E E E d n4 oo l t 1 4 9 6 4 4 0 6 4 3 9 rid ea2 3 6 7 7 8 pt n RC 8 9 7 0 9 5 aa f r 4 6 1 2 5 5 4 B 8 9 9 oe4 l ye2 8 7 6 5 5 5 3 3 3 2 2 t c i c-E E E E E E E E E E E l a lt i e ea1 9 0 8 7 1 1 9 4 8 0 0 bd r RC anu 1 0 2 9 9 4 0 0 5 9 9 b ul 5 8 2 3 6 6 4 9 9 1 1 ooi rra P gF . c f c f A E ) d g 5 5 5 5 5 5 5 0 kn( au 3 4 7 8 5 5 6 9 1 3 7 7 eo 0 0 0 0 0 0 0 1 1 1 1 1 P r G 5 5 5 5 5 5 5 5 2 3 4 5 7 8 1 3 5 6 9 0 0 0 0 0 0 0 0 1 1 1 l
i ll 1 1 1 0 1 1 1 1 lt E E E E ea7 0 0 0 0 0 0 0 0 RC 0 4 1 3 5 6 3 1 7 7 8 2 e ~ 0 0 1 9 9 8 8 9 7 7 7 7 1 7 l t E E E E E E E E E E E E ea6 RC 3 0 3 0 3 8 5 2 8 8 2 8 5 2 3 8 8 0 6 3, 0 1 1 1 1 1 1 1 8 1 3 2 1 1 9 r 3 3 3 2 o 1 1 1 1 f n E-e l t E E E y v ea5 0 0 0 0 0 0 0 0 r i RC 7 1 9 5 o g 5 7 3 1 g e n 7 7 8 2 t i ac sn e o s i a t e a l r l t S e e ea4 0 0 0 0 0 0 0 0 0 0 0 0 E r"l RC I e C d r c N e u c l a E t i U a Q c a d F E i n 3 3 3 2 R d u 1 1 1 1 F n m o io r l t E E E E E d g ea3 0 0 0 0 0 0 0 0 S gn RC 6 9 7 A n a 7 6 2 3 7 E. i R f c f 7 7 8 2 lE u n e R d a i o k C rd a e I p e H M p 0 S f 1 9 9 8 8 8 6 6 6 7 7 6 o-h I E t l t E E E E E E E E E E E E S i ea2 S )rL w RC 8 1 4 2 8 9 5 1 9 7 9 aI 4 7 9 2 8, 5 6 0 0 9 3 9 B eA s 2 yT e 9 5 7 6 6 4 1 3 2 8 2 7 k E r a L e u B p q A h 1 1 0 0 0 T s t 1 1 9 1 1 1 8 8 8 8 9 8 t r n a lt E E E E E E E E E-E E E e e ea1 v Rc 4 8 4 0 9 3 0 8 0 3 7 e m 1 8 9 5 2 5 8 3 3 0 4 7 o n r 1 6 7 7 8 5 1 3 2 1 2 9 i f ( e y s c a ) n c e 6 e kyr 4 5 5 5 6 6 6 6 8 u t e acY ~ 0 ~ q ng un/ 0 0 0 0 0 0 0 0 0 1 0 0 e an qes 1 1 1 1 1 1 1 1 1 1 1 r l a h ut x F pr t qn x x x x x x x x x x x ree 3 arv 2 6 2 1 2 0 0 4 3 0 4 5 EFE ( 2 8 4 2 1 8 4 3 2 1 2 3 . c f c 5 5 5 5 5 5 5 0 fA 3 4 5 6 7 8 9 3 5 7 1 E l 7 d) 0 0 0 0 0 0 0 1 1 1 1 e kng 1 c au( 5 5 5 5 5 5 5 5 c eo 2 3 4 5 6 7 8 9 1 3 5 A P rG 0 0 0 0 0 0 0 0 1 1 1 l l A
? Q. In all of your failure rates, certain low acceleration tails were assumed. Some data indicates that the tails that you assumed ray not be conservative for some components. provide a discussion or analysis of the sensitivity of your final results to the value of some of these tails. l l A. To determine the effect of the magnitude of the low acceleration tails, the following cases were analyzed: A) Tails were raised by a factor of 10 for all components. i l This assumptions guarr ' tees use of at least the upper bound, l 90% confidence level or WASH 1400 random failure probabilities for all components except piping. For most components this I ass'imption results in low acceleration tail probabilities three j times the WASH 1400 upper bound probabilities for random failure. l l Results are shown in Tables 3A, B. l Comparison with the Base Case (Table 1A, B) shows that for release i Category 2, which dominates risk to the public, raising all tail i \\ I probabilities by a factor of 10 results in a 23% increase in risk j l (10% of which is due to the piping *). This is because: Raising the tails only increases occurrence of a given release category at low accelerations. public risk is still dominated by contributions above.9g where tails have little or no effect. Observation of Tables 2A, 3A, 4A shows that above.9, changes in tail probabilities have no effect. 9 B) Tails were raised by a factor of 30 for all components. This assumption guarantees use of at least the upper bound 90% confidence level of WASH 1400 random failure probabilities for all components including piping. For most components this assumption results in low acceleration tail probabilities ten times the WASH 1400 upper bound probabilities for random failure.
1 1 1 l 1 Results are shown in Tables 4A,B. 9 Comparison with the Base Case (Table lA, B) shows that for release i category 2, raising all tail probabilities by a factor of 30 results in a 59% increase in risk (10% of which is due to the piping. *) This results from the same reasons as outlined in Case A. To develop a bcunding case, plant piping was assumed to have significance failure probability in the acceleration range (2.4 & 4 S ) as opposed to (3.6 & 7.2 S ) specified in h h Amendment 52. t I 1 l i l -_____--__-___________,1
s i t e 7 2 2 8 0 0 nns 9 9 8 1 5 5 5 5 2 gaa 9 9 9 8 6 6 3 0 0 i ce sil 9 9 9 9 9 9 0 0 0 0 5 nf e 0 0 0 0 0 0 0 0 O e I R v i t 4 4 3 2 2 2 c e E E E E E E f m ll t 5 5 6 f o l ea 7 6 7 2 0 0 6 9 9 0 0 ed ARC n 6 9 7 8 5 4 9 0 0 5 9 k a 2 7 1 1 3 3 0 0 0 1 1 aR e pn 6 5 5 6 a hi E E E E td l t ie ea7 6 9 8 6 0 0 0 0 0 0 0 wMe RC 7 5 7 7 r esu 3 2 6 7 k el ami uia 5 4 4 3 3 3 2 2 1 2 4 qTF S h E E E E E E E E E E E E t nm l t I reo ea6 0 3 0 1 0 0 5 8 5 6 6 ~ T aTd RC 2 7 6 7 7 I e n 2 9 6 7 9 1 L a 4 1 2 2 5 5 4 8 1 3 5 I mR B os A rl - B fi 8 7 7 8 O as R yTl E E E E P r i lt o .a ea5 9 1 4 7 0 0 0 0 0 0 0 E g: T RC 7 1 S ee 6 8 N t sg 3 2 6 7 O aan P cCi S p 1 1 0 E eti 1 1 1 9 R snP aa E E E E T el, l t N l P h ea4 9 5 6 4 0 0 0 0 0 0 0 A e S RC L r' 5 3 9 3 P 4 5 5 1 6 d e egd A t nn 7 6 6 5 3 aaa cr E E E E E i 4 L d n lt 2 2 8 8 0 0 0 0 0 0 0 B ne2 ea3 A i v RC 0 3 6 7 T i t 3 2 9 2 gga n i ne cir 4 4 3 2 2 2 1 1 1 1 1 u u d nl E E E E E E E E E E E ooi lt ria ea2 8 6 0 1 0 0' 3 5 3 3 9 ptF RC a 1 3 4 5 9 9 1 9 7 5 8 f rg 2 6 1 1 2 2 4 8 8 9 9 oen li yep 6 6 5 4 4 4 3 3 3 2 2 t ci i c P, a lt - E E E E E E E E E E E l i e ea1 3 9 0 2 1 1 5 4 8 0 0 bd r RC anu 6 6 7 8 5 5 6 9 9 0 0 b ul 2 7 1 1 3 3 4 9 9 1 1 ooi rra P gF . c 5 5 5 5 5 5 5 0 fA 3 4 5 6 7 8 9 1 f c 3 5 7 7 E ) 0 0 0 0 0 0 0 1 d g 1 1 1 1 kn( 5 5 5 5 5 5 5 5 au eo 2 3 4 5 6 7 8 9 1 3 5 P r 0 0 0 0 0 0 0 0 1 l 1 G
0 9 8 8 8 8 8 7 7 7 7 1 l t E E E E E E E E E E E ea6 RC 4 6 3 1 2 8 0 5 5 8 8 G. 7 4 9 0 6 3 2 1 1 1 9 1 1 6 6 4 1 3 2 1 1 r 2 1 1 2 o 1 1 1 1 f n e l t E E E E y v ea5 0 0 0 0 0 0 0 r i RC 4 4 7 1 o g 3 2 8 5 g e n 8 2 2 1 t i a c s n e o 4 5 5 3 s i 1 1 1 1 a t e a E E E E l r lt 0 0 0 0 0 0 0 S e e ea4 3 0 1 6 E r l RC 2 6 7 4 I e C d c 1 4 5 1 N e c l t e a E r a l y cud E i l n 1 0 0 0 R d i u 1 1 1 1 F na o i f r l t E E E E E g ea3 0 0 0 0 0 0 0 S gm RC 4 4 4 3 A no E. idf 6 3 9 6 c nf 6 2 3 5 I E u a e R d r o k C r x a FI p e I 0 p S f1 8 8 8 7 7 7 6 6 6 7 7 I oh E t l t E E E E E E E E E E E S ) i ea2 r s w RC 0 7 8 7 8 2 5 4 1 9 7 1 al 8 4 8 4 3 0 0 9 3 1 6 1 ei s 3 yae 4 5 5 3 3 2 1 3 2 8 2 t k E r a L e u l p q lA h 0 0 T s t 1 8 1 9 9 9 8 H 8 8 t r n a l t E E E E E E-9 E E E E e e ea1 E v RC 9 7 4 2 1 1 6 8 0 3 e m 7 4 1 8 2 8 3 0 8 3 4 o n r 5 5 7 3 4 2 1 3 2 1 2 i f ( e y s c a ) n c e e k yr 5 5 5 6 6 6 ~ u t e acY ~ ~ ~ 0 ~ ~ q ng un/ 0 0 0 0 0 0 0 0 0 1 0 0 e an qes 1 1 1 1 1 1 1 1 1 1 1 r l a h ut x F pr t qn x x x x x x x x x x x ree 3 arv 2 6 2 1 2 0 0 4 3 0 4 5 EFE ( 2 8 4 2 1 8 4 3 2 1 2 3 . c f c 5 5 5 5 5 5 5 0 fA 3 4 5 6 7 8 9 3 5 7 1 7 E d) 0 0 0 0 0 0 0 1 1 1 1 1 k ng au( 5 5 5 5 5 5 5 5 eo 2 3 4 5 6 7 8 9 3 5 1 P r G 0 0 G 0 0 0 0 0 1 1 1
s i t e 8 2 5 2 6 6 nns 7 5 0 9 4 4 2 6 2 gaa 9 9 9 4 0 0 0 0 0 i ce 9 9 9 9 9 9 5 0 0 0 0 - sil nf e 0 0 0 0 0 0 0 0 0 e I R v i t 3 3 3 2 2 2 c E E E E E E e f ll t 8 4 8 f m l ea 6 2 6 8 4 4 9 9 9 0 0 eo ARC 1 8 4 0 5 5 4 9 9 0 0 d k n 2 4 9 5 9 9 0 0 0 1 1 aa eR p 5 4 4 5 n h a E E E E ti lt 0 0 0 0 0 0 0 - i d ea7 3 5 9 6 wee RC 2 8 9 2 M r e u 1 2 7 1 k sl aei uma qiF 4 4 3 3 2 2 2 2 1 2 4 S ht E t m l t E E E E E E E E E E E I r0 o ea6 T a3d RC 3 3 8 2 3 3 8 8 5 6 6 E I e n 2 1 1 7 4 3 5 5 2 9 7 S L - a A I m R 3 7 1 8 1 1 5 8 1 3 5 - C B os A rl - E B f i S O as 7 6 6 7 A R yTl B P r i l t E E E E o a ea5 0 0 0 0 0 0 0 - s E g: T RC 3 8 7 9 a S ee 2 8 0 0 N t sg e O aan 1 2 8 1 m P cCi a S p s E eti 0 0 0 R s nP 1 1 1 8 e aa h T el, l t E E E E t N l P h ea4 0 0 0 0 0 0 0 - A e S RC 9 4 2 7 d L r 2 0 5 9 e P 4 m d e 7 6 9 1 u e gd s A t nn s 4 aaa 6 5 5 A cr 5 E i 4 E E E L d n l t E 0 0 0 0 0 0 0 ' B ne2 ea3 4 9 6 A i v RC 5 3 4 8 T i t gga 2 1 4 6 n i ne cir 3 3 3 2 2 2 1 1 1 1 1 u u d nl E E E E E E E E E E E ooi lt ria ea2 8 5 4 1 1 1 0 4 3 3 9 ptF RC 7 7 2 9 9 4 9 7 5 8 1 a f rg 1 3 7 4 7 7 4 8 8 9 9 oen li yep 5 5 5 4 4 4 3 3 3 t ci 2 2 i cP E E E E E E E E E l a, l t E E i e ea1 5 3 5 9 5 5 8 4 8 bd r RC 1 5 6 0 5 5 9 9 9 0 0 anu b ul 2 4 8 5 9 9 4 9 9 1 1 ooi rra P gF . c 5 5 5 5 5 5 5 0 f c 3 4 5 6 7 8 9 3 5 7 7 1 fA E ) 0 0 0 0 0 0 0 1 1 1 1 1 ~ d g kn( 5 5 5 5 5 5 5 5 au 2 3 4 5 6 7 8 9 3 5 1 eo P r 0 0 0 0 0 0 0 0 1 1 1 G
2 2 3 2 0 8 8 8 7 7 7 7 7 7 8 1 l t E E E E E E E E E E E ea6 RC 5 2 0 1 4 2 1 5 5 7 8 5 2 8 7 2 1 0 6 3 8 8 7 6 5 1 1 1 2 3 2 3 1 r l 0 0 2 o l 1 1 1 f n e l t E E E E y v ea5 r i RC 1 8 9 9 0 0 0 0 0 0 0 o g 7 4 3 2 g e n 2 2 3 2 t i a c s n e o s i 3 4 4 3 a t 1 1 1 1 e a l r l t E E E E S e e ea4 E r l RC 0 9 0 4 0 0 0 O 0 0 0 I e 6 0 1 1 C d c 1 e c 1 5 4 4 E t a U a e Q c rd E i un 0 i dl u 1 9 9 9 t F nio i ar l t E E E E E f g ea3 S g RC 9 0 7 3 0 0 0 0 0 0 0 5 2 8 4 A nm E. i of l d a cd f 5 1 1 1 l u ne E t ork C r a I p x e l p i S f 0 7 7 7 7 7 7 6 6 6 7 7 I o3h E t l t E E E E E E E E E E E S ) i ea2 ~ r w RC 2 3 0 4 9 3 6 4 1 2 7 a s 9 2 0 8 3 7 0 0 8 4 3 B el s 4 yi e 3 3 3 8 9 6 1 3 2 9 2 ak E rt a L e u B p q A h z T s t 9 9 9 8 8 9 8 8 8 8 9 t r n a l t E E E E E E E E E E E e e ea1 v RC 3 0 3 7 5 4 9 8 0 3 0 6 0 9 3 3 0 4 1 6 e m 7 9 o n r 4 3 3 1 1 7 1 3 2 1 2 i f ( e y s c a ) n c e 6 e k yr 0 5 5 5 5 6 0 6 6 7 8 u t e acY ~ 0 q ng un/ 0 0 0 0 0 0 0 0 0 1 0 0 e an qes 1 1 1 1 1 1 1 1 1 1 1 r l a h ut x F pr t qn x x x x x x x x x x x ree 3 arv 2 0 EFE 2 6 2 1 0 4 3 0 4 5 ( 2 8 4 2 1 8 4 3 2 1 2 3 . c f c 5 5 5 5 5 5 5 0 f A E 3 4 5 6 7 8 9 3 5 7 7 1 d) 0 0 0 0 0 0 0 1 1 1 l 1 kng au( 5 5 5 5 5 5 5 5 eo 2 3 4 5 6 7 8 1 3 5 9 P r G 0 0 0 0 0 0 0 0 1 1 1
r \\ ~ Q. provide an analysis of the sensitivity of the final risk estimates to various hypothetical changes in individual assumptions or parameters used in the study. A. A sensitivity analysis of the final results for risk estimates has been performed. For this purpose, a number of simplifications were adopted to permit focusing on the essential points without getting buried in a mass of detail. A single location was chosen (Avila Beach) since this location presented the highest values for risk estimates, of those considered in our study. Two dose types were considered - 510 rem to the bone marrow and 15 rem long-term to the whole body - since these tend to span the spectrum of risk estimates developed in the study. } l In performing the sensitivity analysis, the following general constraints were placed on the procedure as various hypothetical changes in parameters or assumptions were made. 1. The summation of the conditional plant response probab'ilities over all seven release categories in a given internal in seismic ground acceleration could not exceed 1.0. j 2. The probability of the wind direction being in any given sector could not exceed 1.0. 3. The cumulative probability of exceeding any given X/Q value could not exceed 1.0. The following cases were analyzed. l 1 Case 1 This case deals with the effect of an underestimation (case 1A) or j overestimation (case 1B) of the annual frequency of seismic ground ,j accelerations. Raising or lowering these values, Figure 2-1 and Table 6-1 i ) i i i
f '. l + ( t in the study, by a factor of 10 at all. accelerations was' chosen to test l the effect. Since the annual frequency of seismic ground accelerations' * ^ I within a given interval is a separable multiplicative factor, the effect is simply to increase or decrease the tested _ risk estimates by a factor of l 10. The effect on both dose types is the same. Case 2 This case tested the effect of an underestimation (case 2A) or over-estimation (case 2B) of the annual frequency of seismic ground accelerations i just in the acceleration range above 0.75. A factor of 10 was chosen, 9 as in case 1. Since the acceleration-ranges above 0.75g, contribute most' but not all of the risk, the result is an increase of not quite a factor. of 10 (actually 9.8) for case 2A. The decrease in case 2B (a factor of 0.12) is not as much as the increase in case 2A since the relative t contribution of acceleration ranges below 0.75g becomes more important. I as that from the upper. range is reduced, i Case 3 I This case tested the effect of taking the dominant release category (category 2) in the dominant acceleration. range (0.95 to 1.10g) and. ) increasing the plant response probability for that category (previously 0.824) to 1.0. This also involved reducing the plant response probabilities for all other release categories in this acceleration range to zero, by virtue of the first constraint. The result was an increase in total risk of 1.08, for both dose types. This increase is less than the increase in plant response probability (of 1/0.824 = 1.21) .) because of compensating effects from reducing plant response probabilities in other release categories and contributions from other (unchanged) acceleration ranges. 1 Case 4 This case tested the effect of changing the plant response probability of the dominant release category (category 2) by a factor of 10 in all acceleration ranges. In many of the acceleration ranges the full factor of 10 could not be employed in increasing the plant response probability (case 4A) because of the first constraint. Because of this and because of compensating effects from reducing plant response probabilities ' for other release categories, the result for case 4A.was an increase of only
i 4 about 1.8, for both dose types. In case 4B, testing an overestimation of-the plant response probability, the result was a factor of 0.12, which more I closely approached the pertubing factor of 10 decrease in plant response probability. This case illustrates the point that built-in limitations (from the first constraint) prevent large increases in _ the dominant 4 'I plant response probabilities from being carried ' through directly to the i 1 final result, whereas large decreases are more fully transmitted. ] 1 d Case 5 This case is similar to case 4, except that release category 6 was. chosen. ( 1 This release category has almost as high a release frequency as release 4 i category 2, both the consequences are much smaller. Thus the effect on total risk is much different, as is shown by the results. -Case SA, testing an underestimation of the plant response probability, category 6, by a factor of 10 in all acceleration ranges, actually results in a decrease of the risk (factor of 0.18) since increasing' the probability for release category 6 tends to decrease the probability for release categories which l 4 have more severe consequences. Conversely, case 5B, testing an overestimation j a of the probability for release category 6 by a factor of 10 in all- ] acceleration ranges, results in no effect on the risk (factor of 1.0) because of the compensation of these effects. Case 6 This case tests the effect of opposite extreme assumptions on plant response probabilities for acceleration ranges daove 0.75. ' Case 6A assumes the 9 l plant response probability is increased to 1.0' for accelerations above 0.75g j l for the release category with the most severe consequences (category 1). l Case 6B assumes the probability is decreased to zero for all release categories above 0.75. The results for case 6A, the worst effect is an increase I 9 of a factor of 4.3 for exceeding the bone marrow dose level of 510 rem i and a factor of 2.7 for exceeding 'the long-term whole body dose level of 15 rem. In case 6B, the risk estimates decrease by 50 times (factor of j 0.02) for both dose types. I l ) l 1 I
4 Case 7 This case tests the effect of an underestimation (case.7A) or over-estimation (case 7B) of the wind direction frequency for the appropriate sector by a factor of 2 subject to the second constraint. This factor .j l carries through directly to the final results since wind direction. frequency-is a separable multiplicative factor for a' single location. -Thus the results are a factor of 2.0 for: case 7A, and 0.5 for case 73, for both dose types. The second constraint does not operate for Avila Beach since the wind frequency of 8.69% used in the study is more than a factor of two below the limit imposed by the constraint. . l Case 8 i r This case tests the effect of an underestimation (case 8A) or overestimation (case 8B) of the cloud concentration probabilities by a factor of 5, subject j to the third constraint (that the cumulative probability not exceed 1.0). -I The results for case 8A are different for the two dose types since the necessary X/Q values at Avila Beach to reach a dose level of 15 rem long-term q to the whole body are relatively small and frequently exceeded. Thus the j cumulative probabilities for exceeding the necessary X/Q value are near 1.0, and cannot be increased above that limit. The resulting'effect on total risk for that dose type is therefore very small (factor of 1.04), whereas.the l full factor of 5 is realized for. the dose level of 510 rem to the bone marrow. In case 8B, both dose types exhibit the full decrease (factor of i 0.2). i l l
)2) 7 6 868 7 7 8 8 7 7 97778 ( 5 1 E E EEE E E E E E E EEEEE h 4 4 4 91 0 8 1 3 4 6 4 4788 D 1 07 5 8 1 1522 1 1 4 4 1 4 ( P 3 3 3 3 3 3 5 3 5 3 8 66136 ) ) O O 4 2 8 6 2 8 2 rse 0 0 0 1 81 7 1 1 0 3 00502 s ) a 1 0 090 1 1 0 0 1 4 2050 D C 1 ( ( PP ) O 0 8 7 979 8 8 9 9 8 8 l8989 1 5 E E E EE E E E E E E EEEEE 2 8 8 843 4 8 4 6 8 3 66009 S D 9 9 993 1 4 6 9 5 89996 3 I ( S P 1 1 1 1 2 2 3 2 3 1 8 33993 YL l l A g l l l l N 5 g a l a l e A 75 sas sasv e 7 ,n n ,n ni v Y ns s0 X o,oX o,or i0 T 0iXiOiXid r m o e n e ) >0
- 0. d 0 i gog 1 t0 tl tO t I
e t nins a1 a al a-V r I aat ans yr ryr r 1 - o T rraront b eyeb eyeg t 5 I e r i os l bl l bl 5 og 1 S l e ti r 2 e e6 e e7 t5 n 7 w m h N e l at o c2 c c6 c E c e raw yc cyc c p o e e S c c er r ayar ayaeu d r s a c l et o r o r v e o F a el n g o g o o v 0 d O l cee e g e g b o 1 c c s 0. t l l e t e a b 5 y S a l ace a t a t a d T a ,ar1 C a C a s 2 o L p C C e s b X U X on n s e 5 e S 0 X 0X nti n i n n s 5 s e E 1 O 1 0i i i o n f o l R l 1 ye e p o of d o y y yt s e s e s p 22 o h b y b yti n s n s e s r w w b bil o n o n R e ff or o y y l ip o p o R oot o r m t y t yib s p s p t ct r r i t i tb ae s e s n t rrac a e l i li abR e R e a n oof a m t i l il b o R R l a tt f b i bi ort t P l ccy e g a b ab rpn t n t P aab y n n n b a b ap a n a n l ff b o o o o b ob pl a l a l l s b l i r o roeuP l P l a l yyes t p r prs P P a bbi e f f p p paef f f ti o o i e e evo f o f o f y yi t r k e k el i o o o ccli r r c a k ak ery y y nnil a a s u a uaRdt y t y t y eebi e e e q u qu i t i t i t uuab y y D h q h q2 l i l i l i qqb a t h th - i l i l i l eeob r r r t rtR eb i b i b i rrro e e a r arW ga b a b a b ff pr p p e a eaP nb a b a b a d p e e ao b o b o b ndQ y y f f f rr o r o r o i n/Q t t o f of o p r p r p r wiX/ i i o o n p p p w X l l e e eoe e e e e i i t e t eti t e t e t e t et e b b a t at at a t a t a t at at a a m a mamam a m a m a mama b b ei m i miri m i m i m i mim o o st i tit et i t i t i titi r r as t st sl s t s t s t st st P P Ce s eseee s e s e s eses r e rercr e r e r e rere ee r erece r e r e r erer sd e d ed ad e d e d e d ed e ) ) an v nvn n v n v n v nvnv 1 2 BU O UOU U O U O U O UOUO ( ( es A B AB A B A B A B ABAB a O1 1 22 3 4 4 S S 6 6 7788 C l
j 1 l l l ( Q: The description of the failure rates of your corponents is not summarized in the report. Provide a concise summary table of all component failure i rateo, including the tails used for each. A: The attached table contains a complete summary of failure data used, as well as, nomenclature summary. l \\ l 1 i i l l 1 l r I i i 1 I l l I l L_____.
a t o ec c r, -i - c s 6 r {, 'I ' y E'. 6 3 (, 3 3 yL { 1 3 3l L Y a v j 3 l C. 0 c. 1 0 c ; m Nt rt 7 ( a s
- f-E g ~
't 6 E E ( g C c6 'L c e G ~E E t T t. O D. f J S / / 5. i i /s. 0 b a c 1 3 ) C. D f 4 l l I 1 f t 1 S e Qf llI F v fa O rt Ewr n, Ts fe or o 1 t e. _. Pr t c w r a t. c j) . t 'f l' 4 t 3 0 O 3 0 g t ) 3 3-f, 3 u. f-F. 3 M
- s. S N1 a
r { ) Kk, L. 2 7 l (t j 6, a 3 r s b. t f i s i 'r e p o. e ( . 3 p 3
- b. O i r "G
9Ej-f gI ? a r_ . 3 n. W.. ~ 3 3 . i. r, U S I r$ Q a . 1 . T' c l p R. - 1 t. l 3 1 G. - 5 - l L. 6 T 0 0 ] 8 0 O 3 C 0 t O r $. 7 O f t. a 'l l' 4 4 A 3 E E r 5 1 r T . rL. E Y E - s "w r= p tt .W s QW . W ~ p& D _ F f + f P f
- O
$'J t S eS S S e t _ o o t s p w +1 A r . E e T MF f S m . f T w s e. T A t a o f b t c. t L g _ t y c g x __ _ r y j y j w _ _ (f j f f f. r t - b e, I) p t o. ,. _ _. C C_ J_. _ I dF L f_. C 0" 1 1 $ F L 5 L 3 B C / C A F t 1 D L 0 f t# 0 1 f-l s A 4 E 0 r 7 T 6 lyhlGi T YN O r /6ll f 4 G l I 0 f C I' {tl f 0 a at ( V T (' 3/C t c D9 t D Y Y
- 1 T
D 9 u S 'F f f i s L a 9 i D e A A / f 9 / 9 s /T F m P A G 9 t S r V V V v y d N F N ns T e WM M t'r r C G iJ C C t
- P U
%c t C 1A V v T u C P 'E P s L G r O p C c ( ( C C L 4 C C C C C C r _ c f__. S s r _ 5 Vt i O s t t* t ~ te s p W w d i e N u i S f @m e s ~ r Vtl p L L r m mp M i t f4, 74 w T WC t T) d / J 1 / s Z N m 5 A t A e. s T , d ~ E E E t E t E C r s y T D O C ot b t ~ f f f f f f. i Ct IL C u ~ L's 6 r e, se t r S r 0 f cG ' 1 e, T J V .f O M ,t ' s r 't c C 1 D e c m O N T s D L r 1 c L s r t R C y t 3 s t T t %a = e ? TIfi v. ' ( N g S T g t V e s s ow p C M t i 4 0 L 8 3 C E s a o r t L t c f 1 I tt / L T l T wWo 7 N s t -u fL L m TWT 53 F t a r p F r o
- t' p
r r G A r r w 0 I o o 5 f F L. t M t p T C C n C_g' _ i s n pa r T O t' t e n tn M e n o Y t's N M f e, n i!E d e y M, %/f O 4 3 t 3 e o s t t 1 1 f P {b wtr fO U D ?f I e f N f l 0 D t s&l -r r i 't % n ti C p ul O D 0 h' l ) S i L 9 O 9 R 9 mo u .a h , C tn v v mm t 7 s c C es, C FN. U V V ? c 'Y V V O o ?j C f t D L n C C C N to A p 3 h t l 0 D 5 S D a C h e v y m r T e S l i - f j n v ) n i Nvr ~ 1 Ltil ,t!! T y t b t _ c _ E s c w% wL T t e o s , E l 6 f g l
- 5 i
,{ . j; I [ ,Ii l E j* a T MG r v t f C r: m es f p T E u t g ' L er w s
- 1 f
.;i h i i, ' ' f! T t w' t re e D r A F t i t s v i F e i T f. e M m u 7 t r w r t u. t t p i T
1 n i 1 e e l ,f,, ..-.-_-n.. 2 l ia i, r i r i, l r !o i f I i _iI t l i i i i i t
- i i !
l > i 7 l' l l -[ L 'c ( I f p E + i i l j ' w ! i I l t i l' l j i l l i i. i .i d3 L i y 6 +b;,.,+.,'; '.a 0 'W / g u to 1 1 ; y & O 'e v39a .QLC 's wuM 'd iL y'
- g,w iJ i ;E ;
4 .o.:. >. - of o o oo o o i .,r .- - -.:r. y ev ~y ~, i ..s . l E'i-sg l l1 ll -,!I l s !lt .l l i i i o. i, l - I ,k, I I h l" L,i L b 1 ~ t t "" d:" a; w e- .g l -- * - % Y d -- TnI/,;lj$l. a,g.j gsqq! g e e.e's y > 4 3 )
- n v} <e d e i
I 16 s a: w o] 2. 1 S, * % T T -.9 ei " M M *!n 8 W M, I 9 19,I i i 0 O 8"} $ ea h==. kf r,. .6 l '; i! 6564 a h.f.. e. 'b ).m..]e... h h f t n$$.a e o b e. = l i $'t i i< i l 1 i { l! l l j i I ll,i l l 3 i g x l i I I l r-I i i uude i v s g a,,, v u e
- @_Sggas gw _t g g, p - i a v a u w
r,t p, y 9 0.-.04 h-3_.n-y a-n_2...e g; i c itEs 3.? l e,c, 0 g *9 d *;- 1$cs;g &AET-eRee: d4 <j uown>,h&D%C. o,. u e [lu> > g *> 1 > I ;A t &
- c. v s o. s. s;
$>888a aooda1a := g g % $ "a8 d E [. b. k 9" ". k 4 a" s4
- c. u a 1
,I, f f d, 'a.$i 6 o' e i rs 9 l l : i E' & 's s i . '- E N *E l i' R. . #i i. l -)> H~i % 4 1 1 % h ' i 3 s jd j ! te {4 8
- ( i ; { ! s ",
I j j (' i g '.. i, *S d r $ a G Lreis 'o 5 :, u. i .n ', j e i[: j e l a R' 6-4 3 9' ~ g 7 -- aifyt,2u.t. A. l 1 -3 s. , I 34. v a ,o 1-- - &*&3 $. +BI n m-C i l st Uk'E$E l L I s t, r r; %s! 4 E 3 . ( ! I l i i w e 4 s
- o v s u
u s I 1 i T vi i [ 2 t.i t s 3 4 'seeoa
- 'j h 2 h_g,J
.gm', g cu a m j j.J O_ _N..h._5 m ,f 3.}.}..[ d p r..p. S Sepos - ! - ~ ~ t e s v$.. L_ p ysss i s ,e s g,l,$,[,ni > s EU Y,i' s y A 0?,2 121!$ i l l j s-mi x 5 i i sm vg g g l! i I a i i 4 l t
- t l l 4
i A f N f 5 5 I l i - #-iw,. i l l c i eu ; t g. 3 b 1 I ,.4. _..g -._, { O r pil! .W v e., I f I i w y j.. l, d; W..e i e' l! i j l p__._.1_..__t_L __.h - j _- 1 -_I e e * *a, i ,2 i i I L, 9 l i"
- s i
.... a L. '....__-.g H se ur I l1 3 i t r: ,2 x e, i 6 t -i .j v i j l f l 5 u
1 t I l Q. m ' 'r )
- u..
'J t e j I IE h ,I i l l t i }I l I I f 1 i I I'.. i ! ;' t t a Ie i. 4 6 I i i t ][ ]'} l - I ll;'i I [j l j l ; i i ! l I -
- i S k l s'
f"3 l ! l l t, l' I
- ! i l'
I s . I i i +- +4 l a. nK !>u l t 4 st
- ! S ca
, c.. c a c-
- j j ;
l I o n o o c, 4 Qy I. t j f [ QI g, f M f$ 0 D Q .4 'h f Ch q 6 t i l =,%', j. j. f g . i I lC a 'd I l l -) t I-i i b'$$ N 6 ~*J i ~ i,s I i ! j l l !! t I lIl l ll I l Fig i mm i i I , E: 1I .' C' s b, l lh [ jS d d; ' ldId 5 M i l I I ') h e-e- o-i l je i c a a y !y .e v ; ~ r %' o: ; l i, { , s t. e) i t i l! 4 r,>, I ... n o o s j l j;_ j-l ' - '- 5 -- o; ,i j ; ~ g 'C l )i d l : [ l-f l 1 ? g p.I g ' j! Cl C o, au I teY es d { l >llI,-}! C I b -i ikl [r2- = o i u i e i - 7 7, l Ili i, f L i 'l i j l 1 e' t j s i 9,. . j,. l 5E i
- x x >. -l x l
x e. ,,,..y I l l 1 I. I I i e i l 6 g l l l
- I J.l' l
l 1 - la t l1 I't l i tJ l >o o . i LLil _1p 3 ' : g_g.g.idM&i_p2y&;'._dm ovigE.dia 1 t r e c ~$ D d i #*rqas ~h 1
- gour i19t trr@eF'5
- * ': L ' ' s e.
(w s 2 R (>., f ' 9 &, ll' :lr a
- 7 C' N, t, 2.
gCye i r v ea . t :s E a 8 q 88xa3 ?., d 3 2 r 8 a 8 8 8 h &q, E, > > v r
- i.
, d, e t i i Bccca c a I fil f 3 I l 1 3 i 1 I ',ii f f I I!1 i ' < I !.i -l E.,3 i 1 i L_ l
- 3 U
L_. 3 f...._ Ly.&. _,._ ! h ,_W i . s s h-j i .s i i l
- a l1 l 2
' S ::' h'a l'g3Sa, & r'*;, t 1
- L w
c-e, I i i>ii 2 .f...'.j a I g-# .lg.l. l !g j l b i ai s 9, !u l 4 j t -l m A_+6 4 K. O a ' e._M. e t s . tu i .4 t s. k f.
- {
h l i g 1 -, c. - 2 l' 2 t I l l l i i '} g, .t 1 l ! i l l l J I I ) - L ge 9 s' l l~ ! i 1 i l y . b b q ro d h 4OdEd ,h +N$ c w &,. o y =q $ M a, 5 +, a o3-t-esM'.' "L.3-M-%+ l t d vi 4 4 as o ct : e eh e i t , *t
- # ::: 55*
c* j
- 3. s w.; 2 Tr yye
> v, g'
- a. >. D < c, e; 0 p i
t o 3
- n. >
r C i u ~ c, _ w, - 9 ot >>>>i.~. i u A a! l I I l lvj l l G G U. % I i ,q e '.[z > > l 0 i iw>> vv .,>k$$ hOV " V, U U V v v i a-i i l 1 e i L i : r8, l!li li t i l i 4 i I 'Mll t l s ai! i 1 kd i f l i 2 i = j 1 i u s, y i el $ r 1 - 5 l d 3._ _.a L .? 6,_
- j..{
I g I 7 ~~ i i i q l 3h I i i 5i i l I ! l, v{ i l w i b. -.. _ d_ /.._.'.g -i o E I }. ).3.[e ' 3; )3 i i
- 4...$._J,-
i M., ,._.2 (t r l i < = je w t4 i 1 Fy q b o u it i i st i I..;.. ! 'i iJ j,. _ _ a _ L,.__ m _
- i_. Lg.E..v i
. i u A a 3 w w i l, bg kh l [ il i ? z, t-a b. a_ F r P_ b t WnW r t p" p_ T. cf r 7 ~ y r o f e n m p i@s s"_t t t r * * ' * ' ' p i i PE l v s T w T *_ s u 5 -w
- _ "
a _.7 y
- c-wo S
t _3 F t f_ t T c c 1. Mw D E Y X. T s h _ 6_'C Pf F p C 3 3 L C c F CC C C e-cC C 6 F F
- a. 0 rWNts A E fl n
e Il i t E A c I b yA f[r H f {3 o pb D fs D / n t T A . Wt 8 WM M "T, n W s i t l S t E r 2 2 r t a r y i p % ey t t t v f" ts E ' v_ q. yt u e cr 6 mrs r W(V. 4 n. t E C re v mr s e y V v p r m (- T v vv ( rG WL ' r
P f. ri u v 'we > P O a S e Mt
- b O
m c w t T T r r 0 r m".r D t s e
- a N
t 7'" C" r s t c7 a e s c L T e a T T r t r u t nA w N S. T y E S T t r 3 . t]r e, p t _ P" r r , i t c o o 7 r e t e u c t r .M wt~r o 'S ww ce g n5 e t z,
- ^!
? c. n s s F t r F e t r M ?* . r C > i D T "e _ r ap f_ c t d" r o s _ r O e 7 t. r D r m __ 'T W, - H f M _ _ _. f ..W 0 A6 F TA B. AG CD4 B c. b N 1 t 2 t 1 A E 2 2 t /, q$t {( h .- [l5 hV IdMf1 h N U ?_N 9 it t d ] . _ U" _. 9 0 Y t 2 s 4 Mm _ _ m n i ~ $ F'f ft 2 Ot t e ? I T ( u 9 T tvWM v s v V vV v u vU d' C. c_ W s _ C 7 t W C /v pMr
- c. C C. C _.
. C_ c c C D e m n c t e _ A _ c S > M s P _ r _ m ) 4 - u _. s % c G ( fe m kkl. E5 3 _ j_. n% . 7 D. D ; L y t s 9 e t s kT e mE p r 4 Il w Mdfi $! d. iN k u e><. t r . t t t p T n f A w. r . _I I rkg l* i _ 3_lJ' m'd!.f_' 1 t aj! t4 o 'll 7 t r , = u - e s i G _._. o c. s . D. r f c r. F . f u M P c'
- v. s t
r. r ?F _.
- F 7
l b! ' i l 1 I g 7-A r 9 + aw =* 9 4 9* ) G i. : i ,, i i__t i
- l..: i i
! ;, i
- ~
e 6 I l } f l I l > + l l' . I ! t 8 i a ~ .i i j j. l l l ; 4 lil I 5 i u. l'j, jl .. A ll 1 i 1 i s i. t : i i >1 d, a d,.; y ' Y ! > 9 0 'P k Y n. m O ': o.' ?,0. ! N 40Y '? T nde i n ,u , o'u
- 0..
) o y s oo g .o*' - w to w tu .a b ?w wo 4W , 9. o.o.. o - '. 3 o, di w '.s 'e. i, a : s i.i - woo ao > -9 o a,e c. o -t .e 41
- . %,;,,. y a ;-
.3 -c. 7 a -, i .s.: 3 } l e 1 g %. ..y' I. - -. - . lll !l ,) i 1 I l o-i, i g.
- e. -
,A ! I i Il ty f f ! 1 t I i a i .$j;.f -l.m y.g b,, h, b O, P b !,. n o 'j . g'. l j &. fi, df 6 g: .2g If!gl0 f $s' a gd t h [! O *. I b r-i ' M .3 j i l. _. f ] f, f d d' 6 f d i. M;. ~ l l i l * \\ ! "lI 'S l I i i l I[s E o-M ' i i Ie $ ! !l 4 l 5 $- N 'N kN ii* l ii t ig5 2; b gl A o i i :% $ "a I!4 i % 6! E ~ i d de k k b =g: b I. $ h t $l k :$ 2 l'8l $; k; $ = k k,l= i. L' i Ie d a,a L u i I bt bL [.
- z. h h3
_A _r m i t e -e m h y E i l 8 I 8, I l lX i . l 1. X . Oh I I l l ! I i 1 l gl w l j l j I l-l l }, r i w[ J JYa (5 k LC S a
- u. tl d-
'm( l 3 3_ o y "e xa'0 E E C [ ' o-8 8 9 9 0 w-2 m% eau u.a e 4 8 1 did [ } C '$ $ OE !!E 7 CDl !,, *6 E i a ! S i f li! E' E E i ! 5 t ;t f i;s i s.d 4 [ [ Q I } [ !,! l CC h - e%m e me mum ec 2 3m m. m aa f, h y ; J N h f ^ $ $ hph. II f f.Yy 3et g;aa etcL: Et ege-e - s > 3o rp 5 n.. ~ u lL 8$
- 6. -
N 3 l h l l stew ta3ac awl g t; J. a. s. y as 1 s - e a 2s g [ s'
- o ga y J I o.; 0s u -
c
- 5. CYa d o U, a
A = r ~ # xJ -, ! i 63 g-&~h 5 1; u 'w gg t -W;y E -U-f? h ; g. 5 -- --N0 LC u l lij 3 f E I 4 5 5 ' n a
- . 8 2$!95,@I$ek%d5% [
i !#!l l st2 ts i tt g; e. o l 2d%de j ! j t i 4 t e.
- d
. s e. $ l I l l l L J I ,L Jfl ' 2. li r' , 'i n,r r - 7 ;t.4_h, _, e - e! ; p
- '1 "
.. 3, 46, --p1);.._{..k.ep g ;;._._A q g <j i. m 1 i -. C.
- ., i 7'
c 55' O,, e T l C. e 5 y lg 1 4 e ** y g i g as j l fik kh l !b d} lt i i . i i lN O I l(! l f !n j i i ! lb E lM l I l t' i i i ,e Ia g l l 6 J N i e. i Y n i - o.i I +g i t F q j 2 h ~! l t l ml e 4, i i s ;>: a n t l g' u i 3_,.,___.,--., 5q, ,L a.p ",l.7q_q_ . -[, IL - l pi 9 i 12 9 12 - i t.y i 0 2 i 6 . i g { t it 6 - l 1 I &s i s., i I-
- g.g
1 ..L.q (C. t i,H g .___j ; y., _.[. g.;3._ _ _7...,. g y. I .o w 9 i i i l ! !V" l ;E E i> l i y 1, (( ! i C l i G;,,i ' i.ll , i l ;i )!' e., h x y i' p , i '.
- ! c, i
.e. i c[! I t .., e ' ,I 13 l
- 5 i
i i ..g p 1 s 4 I ,i.; a n. i l ie I,. G j'.1 ' I ! ;i l l T* { i pF., 7' ' i i i T-E I l-i , i e i 1, r. t l3 l - I 8 i sv
- i i,
c, i i I l r S , ; e .f i c t i it i i i i p, --.~.4 + ' (9 f O M N rd O FI,' M @ ti N 4 ' > q g 63l N U g y F a ta lu ds *'t "Cl +: li w l 9 I !e s w 6 6 o c 49 tb a 0 6 U de a 1 i wi Sia & L 9 ": a: 9 * *> ? ~9 9 5 9 '. es 4E1 e9 ". 9 q w '.~ d w a a t <a , d. - rs -3 r r '.- - n.-. w -r r-k.. 8..c. v y-- ~ l. l l ll gl g A ! l l ! ! e 1 1 F c. d i i_1 4__._ llff! l l l ~ l h I I E~ ^h-l ~~-t 7 ij, i ! ~, l > N { $ el % l ' k l l 't ff3 ($ Nk n l b. j ll ~l l~~ ~j- ) a* i s r.x g g l, q h l. e' i9 o e e__g k NN j l 57 0 l 2 j ~ li s ll2 9 r la 6 @" -;
- j ' l l
2 is,. 3 am l ,~ c ~r m e,. i ,e ,,_a as.g-s-s t e r' bst ,, a 3 b 1 3 aa et j t m i l d I i l l 1 l l '2's 1 l - l l l i I ,aw l wl I, l I' its i l 1 i l. i c l h l ll' i t I y i.i 1 i W u U tt t h. t .;,,.b f_j h,-f [_ - [ k y--h. J; b lTa.N., m._ . _ d_ m,a __-~~=, , e_- =_x 4 2 2< cC D
- A C E c., W 1,
s, c 2; g.je oJ 4 F Or =. =t ca >t tu c{ m
- e. ( ( i v
,6 rA 0 > w e i sg e a 2 r e@ c 1 >2 2 >:u> oa e i w g t4 y .neu as o. m3ou o, c o e. 'e se o m ks iu e t x g e. S o :, .e e l l l,; I l W !j - L I l 'ii'. I o' k,! l e f Y i l ,! e_' u - l 2,,.? T s
- x
- 1 o 1_
e e 1 s t Eg>iI L O g *. o. Ih e s 1 . a -L
- i' s<
E.,. I.em 't i o l i a a d'8 <T g 4'- [3Ve "'-~ ,9 <gR $ e E 9 i w E - e, {? t r2 3 1 i i a w =
- ) M i
A A J,,, ge wW sl O ! !' i x-dy< jt n o 3 s i o E $_a 1 e.ws$:*6 O.{tilj_.g. J A
- ' ! g y : dg a a:
i: td _e$_ ___'7 i a i >g $._Q' F
- p. f.__
f B e' l _ij t L
- e!=e i 2
2e = % !,i j e ! ? ', l E I s t-w. ,eae a !s l l<E E 5 Il!!d$ l 5j U i 3
- s, :-
!s ,a w 's j l I i ! a 1 ! l. I i
- I
>w
- . j p
l q1 i i 9 se -', l : w *& E. t i e go 1 + ' i i it 7 39. i s o -..$ $ E, c', s
- p e
i n l lg ) 3 i! I ,.o t' .t st ~ ~ >h iT~
- ~
di gh I '{s t > > f^y~> '~h-I 'g h^
- j
""~ 232 as a %v, :2! t a d l' i f 1" d k x! e? 2 f 5a.f; n a? s .s . lj j !3 l 1 t 6 2' s g 2 i; ' u s a. eo 4 i i t 8 e t i l$ h 4 l l 1 I I ' l I nl l'I l 'I l 'l' !J I I I !I l $ lI i i >- e a !. o N b l Y II 1 i t E-x.- j .I.?a.- t ie i ! ..s~ _ b h.' e [ ! fi l $h( t. ! .o l if I II i i t l l} ! i vA 'tt i! }i /. g k o E. t s r s a %.. _. 4 4_ _ _ ? ^ a_ e . i g '{o b i} ~ {(. T 3 i I y g i 1 l 'r I h c.1 l i. 'i-E 3a, i, i ;g. a .i s, o .s I I -u d l
- O t
r !... b., h. d -.. N h. 1 2,.. [_ 4 1 d._. d._.-.4.h,,.j..[, _. d. h 4t._ g h.f._ _.. .a m *. ' s 3 y f,. r' 9 2 # C C l ! U l,i .r w h ^,), I b $ UV I .E I 0$'M ij!j l !I /3 Ma, ! l l j 3 I. ll D 7,; b 5 l l l, ,i is. . V.r.. (. i i s l g.,- m 7 O -(* ,N g .m, ~. 3 f. i b .c .l l a j .e o.,i P' l' l i i J.. g: ; + I i _ g._ a. i n -.~ l l
- 4, i l l l
l l ~ .3 j
- r i
l u! i .l
- r
- 1; i
a i i 1 A i ji ! i i 4 Z. _ -.__ a K ..a ,' m? o 91/newc9af91m o w y u 'u Nu,e> m A 9 e .9 e.a.w. I a c,a i w o a>.;,s. m
- 'T -
e 9 e-o s
- oo 9
o-s., - w
- ev -y
.c. -c t .c, o,, o a a ~~ r~ p l ~~ ~~ ~~ j ._ _. ! I t i2 /,, __ _ l .l i q;E i e ~ l'l l t .__-.._o l l1 l l l l j i i i .G'_ t i i [ 1, k "I b r.T llr l! i
- f.o!.a,l'd,I U
l l n i e 9 a E4 ;a e t . i i i ! s I. w te l 1 i i ,i, n t'E ~ iu a-i, l l l,,g ,i 6 i f l j 1 j l l,'.;3 , 9 *: O99 i I i e Il '* R l ; ' i l'.l' 9: } l '2 1; !c I 1 ll [i '. j a 'i .s ! i ') ie j 15
- e, l
E 4i t's t 4 9 '* ~ _a_ m dw* f f 4, l fk l $ 4 A h,:;!,e' y e g[ l 5k 8. I (: I A g, o-A l f 8 !S
- t l
E3y 4 li t: 0 4 l 5
- c A, e.'
alc5 b# 2 { ei.$*i> n i n g _r e a i r e-j <,l,l 5 l l I f e i, j .i p,:
- _y i
. d ! a. d h h uf D
- v. oV o g i,, s M c
n, ! I ! ds - u. 8v e -,+._s._e.f, '. <+ _s ,i.. x,t 1 y e %_e._ - _i i_E_1. _ 4 o-- 3 i s i, l 3. [ p s y_A _3_q_.g-Idh,3fji' 'l ! cE'[$,5,.53 s,iEN! i ! li! 3IE bo'?<{,le a.re,rf e, <;+2= a e .S m .ooooceese aee eou o ggerge u3ggs 1 i i i i i ..a i,. f l f l *ol . h i .f,i Nh I f j I I f' f .[ ! ! k I i g ' 1_ d_E 'M j _-q,.d E b $ ${ !Ee s it eY= g i ,v g _i ! e l 0 ' o 3. M I 1 e t.3g j >e t! ! i t ", t.,'z a t e s,! '. t 'si: t t E 's>! g E 3 s c 4' 2 i s e o o E =:. a ; ;f s yr, B ' t i =a ooa 1 s 2 1 y l*- R au ' I e [ y. ' t e? w i o 7,c y _ _ m._ w,[R_j s g - ' a j ei g e i g e [ d '.. s. _a. l ls-q.m g w. o 4_ '. _ u t 6-r l.li l i E ;, l l B !l 8Wf'e??$'-{*{y a c c g
- a. u
.r. M sC* i li t 52j 3 7 ) l ! 11 ju1 ; '. " 1 ! s 9 l XAg a-l ik= _l l l l l r, M l l l'1i l. l [s ( i -1 i i.' 1
- I 3 k S.a l l I
S-l! l t to g' to O c' e I k t, d i 4 L' ?_._L 13..z, - - 9:. },_' U 1.* _ L___43._f.x_p_._L~:_ <,.43
- / _
!a i a i t. s 4
- i rr
~~t my d,. ,3 >r p o 'a w !y cc oc e v & f e s. 4 > o .r q, h h4 l l $, $ s-l l 5 l l l .g e !' ! b' ,!o 4 7' ,{ p i ll h 9 l9 j ! i l l0 l N ! I a r.j 'I l l l.t V_ i } I., l l i i >. i, m [ l
- D l
l iC I p&__g g._l 3 .,i d,. ;,, 9, c. l 1 3st i i t s. 6e - i i
- ,[:
ex 3 ~, c t O w. I I l l ! g". l,. ,,._ !. p., wm.__.. m. . %}._. g... _'. ..,__r_ 4 s i e- [ 3 i i > i. l I o o .t h.k 9 l ! I I l .3 g.;-_. ."".b..,.._9 _.._j._a_ ' z, 3 3 i y.' t -3 t Og i z -i ! a .C s g E . d, . p._ g.. C_._._ . g, 2. (_ l ... a t y ~ d j 't% ?' eu i g t 'l t' g
- y N,
s J l.I ,5 Ul ' i t l' V i l u ~ e i i [ 14! lX E l f ].l ljil ' '( 3 i E. f', ) es 1 e i d
- =* J
p. in* ,X .T y ' 11 ll u il ^. .e-c l
- a. ).
.. ~ _ d r, l i ll g ee ., 4 F' I, {.. q.___lir;-i-- F., i i . __j_._ gg 3.- i , i i
- 1
! I ll !
- i 4L
- i:t d
M. 1 }e* i h* .. 4 !,i !l f. Il l I 0E l ,. 4 v s f b I 6 i g.. uw w v w ,.., u w t., u u o g a. is u L s1 o o, o o-y i I n-o >i o o - o 'r - 9 'W j .i- ..--... 6. A, 4 4 P >: - 4 ( ". zi '.- 3'- wl A Y . l., .-,_.s ! 'j! ij l Q4 b 'L
- . :._a 4 -- y A, w.$ e a
, il i.. -.- l ' ,ii ,i l e l i, t 1 i v a s h, hr-3 ' M'" e$ I
- b.#. m'.id 7
ep h_d.!(la, b p:e,N$ of '.' !i l N ) I ! s {a !M r s !> i ; u 9[o u p fI l }l'i v) l ~ i i l, i 4 ! i , 0; I io m e. a l i ~ _3. t 3 --o. 0-o r-4 l 62 5 h#.% : $ !H I I ~ R'; " l _ g l >i l l dA I c a or J a. g_. i. ii.ii i, i, l tu e. a 'i E Bl s. e i e ic is
- s-D 1,
I i t t t-E, . g E' E p. y .s. 'a t El.s. p d i -,. c l c dy n ( a e c . N<: @,, I k} O !% #' tie l fi @l h( f k "., W *
- A, EL % "
j i i I l l l 1 l l 3' b l l l l 1 !Nf l fd l% W%}[W M l xx x f 8a;ox Wsge-p E V !g o te. O8 f K i W st 41 t a o sys a e: t* gzt s % g., ' ! ql :51$ z < e c - a. g s ? ' S 5 C&k!LE $ 3,_ 0 e # a6.AliAsT3.g c y a g e +'S h j ; e"'d h; "! e g x &- a m e, 3-ma4 3 . rl 2 c, 3 s- ? g> y,A' e a a a E,a A; c ,e E oW e s e -> t 8 e o i ' p,
- a 3, b__ t s.,. y E
l d 's ce o g.*. t > e.; e s e c e
- a. c u
1 % m a~ n u o m. s ,t
- i S.
rt S b 3 M g 'J g' 3 a- . g 'o % e 1 3 e 5 i $ 5 h 4 b.':13-531 I l5$ s: t- ~ t .3 l' 't"W I l I j l gl l l i l I 1 l l' t l l 1 t { i 1 i f i ! l I 5 i f ,b h Y.P. e l .l l., NM,.u .N 9 Y I I a ,Y~b b.-! e "~ ~8 o c:6.garis atcy stecEte rf,a x s, u. sc 4 w o g 4 t9e=2 6 i. is V5 3-t: e c:. w 7f A:o (f-'i gT@r, v-a et = u c, e 2 ~ p3s s, d v 1 a- , % w t.. O,. - u p ,a w s s s es on q k ( 6 t,R;,w: -R-cd,-1 1 x e a
- -3-.s
- Pr n
a e w v s M i k, eg &;'
- v, t
i . ' Ll g: x w-7--5 -} sr.,7 5 4 V,
- t e.
ia g 3 5%z ~.< e a 2 i& . s s e j ;u t 4, I,f;{ i 1 "- e i !,. ' s u i 3 W ', l E I I l' ( i 4 i l i I , i < a i i ll u N.l. l 1 ) i
- i i
r [ ? I t
- i-l
's g . I
- i..r e
1 i R ':.,yg. [._..I.is%,m a, ,,. =; =a.._H+ il;*
- m
- f, s
a 6 4 s. y= r u. ,.,.-,!..?
- ,0-y._.
't, - w t. 7,,a* $ U,* $, $, -. d L. s i - i n e.n,...w %a.*.m, .e !CJ - t -: 7 r-j t 9 cy 3 1 e g ig3 w u ,.w,o su m i 4 $, ;. E p 3 U 's ' 0. w 3 0 3.! 0 v> i {e n5i ! - : 35 D $ S,, ",,,- :.o U d w' $! 1 !8 E C
- d
! 8 62 i ' 3 > v i I.' . c l 3 ) I }M t { i 7 Q S :oi l l'
- i i
Cs I I I I n ~m r-1 l g r- .i l fl f I u M 7, w u q l p 6-I
- 6 a.A
' LL 1. 4 kk k ( - T (k j a ,A, I ,3 e l i 6 i+c' l ii} l so i= l I i f l I ^ l i l: l w = 3y 2 3 NS ; + 7 g, -J M.4- - l i G i l I s s(e i y C < i l lc !<e - it e l l $l l 1 i+ ; 2 a i ,....e _' ir e i l2 l _l'. .f _.. p _i.5 4 + > ^ I d, _.4,, _ 9.. _4 i ' 7._m _.t m _p ,_...a a
- i !
e-i . i e, % ..J .s n h t i $ I 'l j ' e,, l'.!! ; l y.l. j ! I i ltE ; W I !gJ ( 6 l l !$ ! i,! l ! ;
- fi !
i - i. + . l.:1 o A1 ,t u n,1 ie ".' l 23 gj f,,
- . g..'J... $. 4.,T,.., _.
.,_.g.4,._,<__'...,.'T, . q _t.__,_,_!...._. 1.k 2 .I ..T. *, 2, y,, c. -0 0 o /; i 1 ',a , "[ j f,
- t. C y (*~
l g* ?.,. 7 8 l o r,,i,! ,0 l ra t.'.,' i l ". s. u io g R ( h, 4a. } l' 3 I Y ! lN I l,l I.,) ' i.', i, U h l I 3 n g g j ,o i.
- y
[%
- O I 'W 4
j s e s s, l C* e g a 4p .e .+ w_ .meen.e.....e- -e. I h I i i '.. :.... s._._.L._.i f I ' _ h. _ il l [ i i I . l' l l 4 { 3 1 3 i I i h l> l l ll lf I l 9( l d3. i + g l ~ .,. n.., n o u m,. /w Ju J., 4, o,' 9., ik.h C L j b. i t G i',3 ,i w .g t
- R e;..s '..oe M3 9 e a w?' d o
g >s.o I. a 6-e o
- i
'r n 4 4 4 ,.g_ .+s b. .i l ._.l As j t I B g e t e g 6 1 dgj,ty _ f i ,i i i ,, 1 i t ck k e 'J-S mN - l' !.J U t s i < r m s : -)w %n. l d l k 'e q u"" *e' s,3 l x. 1 _1 l I,, 'I I I i l l. ll I 1 l %"delj:4I f j >- r w l o : o o v e l, dib li ~ lal l e+ 4 t ;L i 4 i e9 r i n .c bh2 l
- d E f", k -
l - $$%4 N j oi rgAne -[ B j e ! m l e, So, j "9 % e e: w al : e y. m y. = I A p e; - 1 { l n m : w! 3 m o i -- l k 6, aE l l' 1 I i i l xlxlx l a i ' l u5 F 'W l 1 l x X l x 3 $,5 ! l i l l I 1 l 1 I b k i h 8 ; e l n .i o li koo ._,._ _.m_ . 1 2_g D G E U d gw$_ E I q l 3 2' 0 t Y
- y
><,? e _. A (t,_ p _.. .m_. N _< 992 B y r EGm e e aet a 'r
- yy
,4 $ E e,,5 2 1. 3 2, S y i ld - e l$.3 0, :d I, & b 0:1550 'E2da I tie a c e f
- n
$ssD t h h 5 ': f, 35, ($ 3 'i ia 3 eru m 3 55h 4MNs Il \\l ',i!y'g$e,',j!!fil !I/ l t l! Il!' i i \\, i : a ' l I i; ii .n u_ g-. :n eg i -.L a - p. g Q.- A - __m h f '0 (:- 0 0 "3 t l' 1 $ 4 1 s t u a d[ 1 1a-3 wL V i b u, y S. r'j
- O c 3 m, e. e, 3
4 -.E,.,. P,. S ' i e $".' 'k'ye e I ge -l { p, I! lo e %3
- s n.j 3
v. Q g. k V g ( b <-i .p.s_._. L.u-_ q g. r e_.9.g,__3..___.g ]. % > s _.J _'O 4. e, M- _ 4 ,, _ 1 g d e U-w' ' s gi a w d ' ' J, s 3 3 ) f1 i i ~ h 1 ,i 1 i... i 4 s t i b h* I ls E' l l!lA h .I !!!j 7 ! l 'I 7 sa ee l s r !? < i' n ,( T], 5. j.y I b_N d..$.34.n _b _.l e (_t._3..Ed $.4,' j._ M__;u a a n o.Q ._ ) E
- <2w33+
i = u p ec-4 n de e 1 - so i t
- n w **
t w ci n
- e. s-I '
,s g w 3 3 , a i I I i gu.a t1}i;' i ! i 2. 2 3 a; g ; i l i l J ' A a a s: I m l g
- s. s a
g a g !$ Cd y i l! l!l'.ljd I j d} l I !! iI i l i ! l !$ l i i I% ld 4 l l I l I i ; a l .I l e. e + ~3... i lj d% 'd f l s$ I I l M f 8 f~B,; / l j J,i !' {. x.if Y g i{ j a 3 <i i 1 b l !l l t.N...q. y') q[b ! !.N l ! h !_l g.,.. y __._ -. b I .7....__.__ 7._ .ql 1, l.'11 i *e i ' lI !( gf 1 i i , i i .T 5 8 i i 1 c I l 'o I i ! i .. _ _ 9. _ __... L 7... F[.. ..'..a $ E'.. p..l _.,41 . b.,,, e. .i. ... a . ; _.. ~. _ I< ne l
- l t i u g i
o l
- l S,
l I i t. 1 La it 2 ?'. . j 33 i 1, &{ .!j i k s E Es
- l
.a a p s y C J-d li I Ijr. ~) I i i > l f. j
- d. d g
l l ! i. 'E ! I ! !$ Rx I T y 3 .1. y i e t l' j ll,, l,>j.q.... f i _l .iii jl l l . 't _ j j I j t i i I w l l'l! I j 3 l i I i i s..--_ l lN, 0 Os TO fJ 'I r4 r) ) M N I I;3 y M y =p. 9I h Si 'O !E lb9 d 3., d,d,o ? ' o . 6 s % 0; o - ol o o o; o g j O! O i g f .a IN 94 o
- e. ;
o ~,:. o N .:c - o ..a c l oo r
- f l~
R l l l ~ ~ w s u me 2 l ;.. I i,, a i L_- + y. .t-E'g9 ll7 l! i l la l -E '[ Il ! l 1 I eli II ' o d> i 5 i ih( j j i i l-f l: lI i 1 Ile 9 co 4 }a m@l l1.I!Illj a o l8 I d 4 I 1 l I i I 4 i g L &2 & i i i Ch [ j l l i I l i J. H i H I l o l l l I lgl ll li, { ll l' t il 2 7. l.jl I $s?EU i e I j 6-I I i o o o a 4 l g3e I 1 i i t j w, s ,I I we e t> =g d =H 3k u.[ w.1-V
- s..
A e n a.. e, n 13 us + i r l l d l l I'. x X
- ,i i
x, l , Q. h - l l 1 ' I, I I l i lf{ ] oN I! l !l *E'e t f _._ 4._[,.. gi- ! u. 0 b 4 T 3 s_g_e.4_.e y uw..%m e _v m m te 3 er.m y t .- 2 ,la c. ' y., 5 N N-s_ s._ ._,.. e - x u 7.r -> s A - l4.i ares w a y x.s u hi e y ( c y e s. s p u c3 s w uw g3- = ~ ' 2 *, c'g5ea 5 y '$, D E d E
- M ? b, "; "; E 9 " E h, 5 5 E U % E af d > 8 k L i
..A
- 7 fj n !6 i*
"I 'y a v us. 6 .3 ~ Q p Uk 9 [ 'Y i a
- i i h
i d j l 4 Q* {< { d, n w* o. a,, l 0 _,, l iVEit .3 Co l =>! 2 9 i; e. = e v y 3 = m e
- IQ __
I a l 4 _n Y d Q, 9, i + t.,i t_.l 4 j 3 "r 11 - 4 E e s 3. a u s :, g r, g 1, 3 i, s, t, a . + v.. s,i co u e e w tu 4 . %a e y r-f L se. a wg-t i,,. n e. t t 0 c-a. t.. is e :: . %3 . d g k a.; s. } g:', C d u s s s u E
- E. J k C 2 h i e-
- to E 1 8i l f s u. ~. i 2i j$. T h e l # p'g.g._{_t_J g P p 44 _f .y. i g. g-, p. o st w .A 5 1_;g s___ g'=__,L.u_p,1.. p.q.4g < m_,g._. g ____ L r >c ._j We tt as t ; e > c, !Plrd$J!ssFse' e i q 2 :: i y e- 0 ;i w( $ n uass3g - R,~l ylI &,.i g e t c c i I i-o j a 1 l l l c. a _l. ' u' k h', t,l1 <3$l I f . 3 Ly3 I r{3
- a, i
l IaB Ee' da_E i ,,3.,...__ p,._f_. 4 5 p., 1 m ,7 E d b N j M W y t' ',.s-s
- 5 Gl E s' Be C
C C d o. 3' L.:i ! s! islF 13, h l j Ly4 ia e u Ib 56
- c i !
'l =5a x l i m A l l i i 4 I r b I I l
- l I
i i l' l l l i e o . l t i j ! f J .._.L.. I I i I j l I e 4 l; .c La l I' i i i I 1 i l p /4 i e t I i e f l ^ M h I 6 g }b 4' I W ~'. r ~~ O'~+~T~~~ ~ " ~ '~~ lC t,I , l q --.. -~ ' T ( rA e$1 i i i l / > :s i 1 l ,. i e l i I l i . -....a... . a _. I --.x -_._ ii E* i I I! ! l i j [ l I j"r 1 i. > i' l l i ju ig.i- + i i lI !$ { ! I. ki 3 l l i .r i I i e, 4 1 I t } A i k* ) s I i i t l l B l i j i l i i i i ' i + 6 , r. ,A n, I ~_ l q.. l 1 t l i i 6 ? I I I l l i I ! !l l i t l i _.i. _. _.J .,-.y b I !l l h co b rJ i i t J $1 0 0 9 o d, d, ,I
- a. l l
. 0, o t i v c ,e e >i, o eo o o. t o l i ( , l ei M t M 4: iN 1 I i .l' 4_ e 8 +. l t i h I l 41 c h . I j i I M I t-t i hg I c i - 1 i s.* t j p4 5 . ~.. i l t I _4 a n 0 a i, i wi a, 5, g 3i c t l 'i,- n! ql I i o fI dgt i ~9 ;. i i(I P l,,!a 16 1 ! d. i i ]< i ' I , a i o O )
- i h
il i
- ._s _
L. [Q. H \\ t. C l *~ l l l \\ l 'W l l-l t i N h h ;d' IIg s 't fkl f,a 43f j 3-3 i, ~ -v--- .r I A et j j i E 7. l' i i l l t' r e l 1, l' I t l s i i i h l I i I ! j ll l 1 I l J.i nl l -.y f'L..'[.. d l,..y. y.
- s. - -. _- - w,.
!l w s Ii e =I., ,( -- I q
- to !
v > sa f 5 $ i f V. d5 5 , b' d l l t. i, I ll 'i s o .t < s s a m ,e l l l ! f $b II lI l p, ie e 1
- i
' i l ). ;a j i : i 4 I i i i fr f4 06 d Ik t l j I. I 2 o (* d i J t, i c e p. 1 l . i i .i - a..s;, +., _- y +.4 p t
- i ie li se
. s . p D d u .. f. g d, f. ' a/ 4 t L l i. 6 '2 ~> l'A I' j { li rl W e9*t C L A L g, !)$ 6 i .u _H. 't -a' g1 Y", 1 i i 3 C a !,l l I if,.G i I I i u' _s. 7, 4 5 ,s.,i s e se e:+;+ , 2. j e' c f - 3 1 1 , i g' I i jk l l I 8 i w ! t' i 3 i i l L-lL :$ Q :> 5 I '9 b l 'E ,lt i i x i ! !Fdt l. 1 3~ 5 [ y, f i, ' ' l " - - +-- 6 n y r,.r-m' gg b, l l,
- h. l s 5
d I i I .t s s;. E o-u.
- lw I
.i - . i i 3 , I I a g i = t i j p l 6-0 U Sa' '[ .I I g y i. d gg
- i. i.
.I. I. i ! ' D I I i '
- If A
i i ; l l l O-l l l i t i I ' O' l f X,. l l 5^ m I t i 1 I, D l I I I ' i [ l ' l 's i. l l I I ! lf 4 lI n. .js j w i i s c i = a 3 l -r> i c., L.:_. _4 4 L6.x, i e 3 4 m 3 L._ _ __l l
- 4. ::
_u L l l A j?iR j l ,v i e.i 2 [ a i i ( i gy I r l ! , d e9 ?* ? I g l t i w n I [ O _.'._..._....J.v._._.-._g-.&} i '_.4..-,. _..i I: i. j l Ea t . -. e _ p. -.i. e *.. _t t.,. r .e. 4j.j 1-) i I i. s. a s i f S.., g o i e i + 0 } f l' I I4 i k 4. 4 l'. I ~ ~' a ; - Ql L t i t .? ] l a w e i e i i l._... 2 ... _. a. e. .,, g-eeg ,m,,._ n 5 *cw* .I .i "3 i i ! ; 1
- l 6 I i i
x - 3 C* ) L 7( eu i I I e 1 s i l 'E ' d.* g% it I ; ' i ! i i R _-}}