ML20210G501

From kanterella
Jump to navigation Jump to search
Radwaste & Environ Monitoring Annual Rept,1985
ML20210G501
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 12/31/1985
From:
TELEDYNE ISOTOPES
To:
Shared Package
ML20210G470 List:
References
NUDOCS 8604020512
Download: ML20210G501 (157)


Text

DRESDEN STATION F

4

) RADI0 ACTIVE WASTE AND ENVIRONMENTAL MONITORING I

! ~

ANNUAL REPORT 1985 l,

i i

i TELEDYNE-IS0 TOPES MIDWEST LABORATORY NORTHBROOK, ILLINOIS I MARCH 1986

, 8604020512 860204

( DR ADOCK O O

~

i ,

i DRESDEN NUCLEAR POWER STATION RADI0 ACTIVE WASTE AND ENVIRONMENTAL MONITORING ANNUAL REPORT 1985 MARCH 1986

TABLE OF CONTENTS Page INTRODUCTION ........................... 1

SUMMARY

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1. 0 EFFLUENTS 1.1 Gaseous Effluents to the Atmosphere ............. 3
1. 2 Liquids Released to Illinois River . . . . . . . . . . . . . . 3
2. 0 SOL ID R ADI0ACTI VE WASTE . . . . . . . . . . . . . .. ........ 3
3. 0 DOSE TO MAN 3.1 Gaseous Effluent Pathways .................. 3
3. 2 Liquid Effluent Pathways . . . . . . . . . . . . . . . . . . . 5
4. 0 SITE METEOROLOGY ......................... 5
5. 0 ENVIRONMENTAL MONITORING 5 5.1 Gamma Radiation ....................... 6
5. 2 Airborne I-131 and Particulate Radioactivity . . . . . . . . . 6
5. 3 Aquatic Radioactivity .................... 6
5. 4 Milk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5. 5 Special Collections ..................... 7
6. 0 ANALYTICAL PROCE DURES . . . . . . . . . . . . . . . . . . . . . . . 7
7. 0 M I LCH AN IMAL CE NS US . . . . . . . . . . . . . . . . . . . . . . . . 7
8. 0 NE ARE ST R ES I DE NT CE NS US . . . . . . . . . . . . . . . . . . . . . . 7 9.0 INTERLABORATORY COMPARISON PROGRAM RESULTS ............ 8 10.0 ERRATA .............................. 8 111

TABLE OF CONTENTS (continued)

Page APPENDIX I - DATA TABLES AND FIGURES . . . . . . . . . . . . . . . . . . 21 Station Releases Table 1.1-1 Gaseous Effluents .................. 22 Table 1.2-1 Li qui d Ef f l uents . . . . . . . . . . . . . . . . . . . 36 Table 2.0-1 Solid Waste Shipments ................ 46 Figure 3.1 Figure 3.1-4 Isodose and Concentration Contours . . . . . . . . . . 50 Table 3.1-1 Maximum Doses Resulting from Airborne Releases . . . . 54 Table 3.2-1 Maximum Doses Resulting from Liquid Effluent . . . .. 56 Environmental Monitoring Figure 5.0-1 Locations of Fixed Environmental' Radiological Stations and Outer Ring TLDs . . . . . . . . . . . . . 58 Figure 5.0-2 Inner Ring TLD and Near Station Water Sample Locations ...................... 59 Figure 5.0-3 Milk Sample and. Distant Water Sample Locations . . . . 60 Table 5.0-1 Standard Radiological Sampling Program . . . . . . . . 61 Table 5.0-2 Environmental Radiological Monitoring Program .... 62 Table 5.0 Table 5.0-6 Environmental Summary Tables . . . . . . . . . . . . . 70 Table 5.1-1 Gamma Radiation Measurements (TLD) . . . . . . . . . . 74 APPENDIX II - METEOROLOGICAL DATA ................... 77 APPENDIX III - ANALYTICAL PROCEDURES . . . . . . . . . . . . . . . . . . 106 APPENDIX IV - ERRATA . . . . . . . . . . . . . . . . . . . . . . . . . . 151 iv

INTRODUCTION The Dresden Station is located approximately twelve miles southwest of Joliet, Illinois, at the confluence of the Des Plaines and Kankakee Rivers where they form the Illinois River. This station uses three boiling water reactors (GE design) to generate electricity. Unit I began operating in 1960 and has a rated power output of 200 megawatts electrical (MWe). Units 2 and 3 began operating in 1970 and 1971, respectively,'each with a rated power output of 800 MWe. The General Electric Morris Operation Plant (GEMo) is located adjacent to Dresden.

Liquid effluents from Dresden are released to the Illinois River in controlled batches after radioassay of each batch. Gaseous effluents are released to the atmosphere af ter delay to permit decay of short half-life gases. Releases to the atmosphere are calculated on the basis of analyses of. daily grab samples of noble gases and continuously collected composite sanples of iodine and particulate matter. The results of effluent analyses are summarized on a monthly basis and reported semiannually to the Nuclear Regulatory Commission as required per Technical Specifications. Airborne concentrations of noble gases, I-131 and particulate radioactivity in off-site areas are calculated using effluent and meteorological data and data on isotopic composition of effluents.

Environmental monitoring is conducted by sampling at indicator and reference (background) locations in the vicinity of the Dresden plant to measure changes in radiation or radioactivity levels that may be attributable to plant oper-ation. If significant changes attributable to Dresden are measured, these changes are correlated with effluent releases. External gamma radiaton exposure from noble gases and I-131 in milk are the critical pathways at this site; however, a comprehensive environmental monitoring orogram is conducted which includes many other pathways of less importance.

1

SLNMARY Gaseous and liquid effluents for the period remained below the Technical Specification limits. Calculations of environmental concentrations based on effluent, Illinois River flow, and meterological data for the period indicate that consunption by the public of radioactive materials attributable to the plant are unlikely to exceed regulatory limits. Gamma radiation exposure from noble gases released to the atmosphere represented the critical pathway for-the period with a maximum individual dose estimated to be 0.044 mrem for the year, when a shielding and occupancy f actor of 0.7 is assumed. The assessment of radiation doses are performed in accordance with the Off-Site Dose Calcula-tion Manual (00CM). The results of analysis confirm that the station is operating in compliance with 10CFR50 Appendix I and 40 CFR 190.

2

4 1

1. 0 EFFLUENTS ~

1.1 Gaseous Effluents to the Atmosphere l'

Measured concentrations and isotopic composition of noble gases, radioiodine, and particulate radioactivity released to the atmos-t phere during the year, are listed in Table 1.1-1. A non-detectable amount of noble gases was released from Dresden Unit l and a total of 2.94E+03 curies of noble gases with a maximum release rate of 1.39E+02 pCi/sec was released from.Dresden thits 2 and 3.

A total of 0.062 curies of I-131 was released during the year.

A total of 0.094 curies of beta-gama emitters and '2.20E-04 curies of alpha emitters were released as airborne particulate matter with a maximum release rate of 4.12E-03 pCi/sec. Also, 4.85E+01 curies of tritium was released.

1. 2 Liquids Released to Illinois River A total of 1.12E+07 liters of radioactive liquid wastes containing i 2.03 curies (excluding tritium) were discharged from the station.

These wastes were released at a maximum quarterly average concentra-tion of 3.44E-09 pCi/ml f rom Units 2 and - 3 which is 3.8% of the Technical Specification release limits for unidentified radio-activity. However, this concentration is prior to dilution in the cooling pond and release to unrestricted area. This . added dilution I

is approximately a factor of one million. There was no discharge

, from Unit 1. During the same period, 7.45 curies of tritium and

. 2.01E-03 curies of alpha radioactivity were released. Quarterly 1 release estimates and principal radionuclides in liquid effluents j are given in Table 1.2-1.

2. 0 SOLID RA010 ACTIVE WASTE l Solid radioactive wastes were shipped to Richland, Washington and j Barnwell Nuclear- Center, South Carolina. The record of waste shipments

{ is summarized in Table 2.0-1.

3. 0 DOSE TO MAN 3.1 Gaseous Effluent Pathways Gamma Dose Rates G1mma air and whole body dose rates off-site were calculated based on measured release rates, isotopic composition of the noble gases, and meteorological data for the period (Table 3.1-1). Isodose
contours of whole body dose are shown in Figure 3.1-1 for the year.

Based on measured effluents and meteorological data, the maximum i dose to an individual would be 0.044 mrem for the year, with an occupancy or shielding factor of 0.7 included. The maximum gamma air dose was 0.086 mrad.

3 i

?

- . , _ , _ _ , . -,- . . . - . . , . , - , , _ - _ _ - ,mm...

Beta Air and Skin Rates The range of beta particles in air is relatively small (on the order of a few meters or less): consequently, plumes of gaseous effluents may be considered " infinite" for purpose of calculating the dose from beta radiation incident on the skin. However, the actual dose to sensitive skin tissues is difficult to calculate because this depends on the beta particle energies, thickness of inert skin, and clothing covering sensitive tissues. For purposeg of this report the skin is taken to have a thickness of 7.0 mg/cm c and an occupancy factor of 1.0 is used. The skin dose from beta and ganina radiation for the year was 0.121 mrem.

The air concentrations of radioactive noble gases at the off-site receptor locations are given in Figure 3.1-2. The maximum of f-site beta air dose for the year was 0.073 mrad.

Radioactive lodine The human thyroid exhibits a significant capacity to concentrate ingested or inhaled iodine, and the radiolodine, I-131, released during routine operation of the plant, may be made available to man thus resulting in a dose to the thyroid. The principal pathway of interest for this radionuclide is ingestion of radioiodine in milk Iy an infant. Calculations made in previous years indicate that contributions to doses from inhalation of I-131 and I-133, and I-133 in milk are negligible.

Iodine-131 Concentrations in Air The calculated concentration contours for I-131 in air are shown in Figure 3.1-3. Included in these calculations is an todine cloud depletion factor which accounts for the phenomenon of elemental iodine deposition on the ground. The maximum gff-site average concentration is estimated to be 2.66E-03 pCi/mJ for the year.

Dose to Infants Thyroid The hypothetical thyroid dose to an infant living near the plant via ingestion of milk was calculated. The radionuclide considered was I-131 and the source of milk was taken to be the nearest dairy f arm with the cows pastured from May to October. The maximum inf ants's thyroid dose was 0.51 mrem during the year (Table 3.1-1).

Concentrations of Particulates in Air Concentration contours of radioactive airborne particulates are shown in Figure 3.1-4. The maximum of f-site avera'! level is estimated to be 6.65E-04 pCi/m3, 4

Summary of Doses Table 3.1-1 summarizes the doses.resulting from releases of airborne radioactivity via the different exposure pathways.

3. 2 Liquid Effluent Pathways The three principal pathways through the aquatic environment for I I

potential doses to man from liquid waste are ingestion of potable water, eating aquatic foods, and exposure while walking on the shoreline. Not all of these pathways are applicable at a given I time or station but a reasonable approximation of the dose can be made by adjusting the dose formula for season of the year or type and degree of use of the aquatic envirorment. NRC* developed equations were used to calculate the doses to the whole body, lower l GI tract, thyroid, bone, and skin; specific parameters for use in i the equations are given in the Commonwealth Edison Of f-site Dose i Calculation Manual. The maximum whole body dose for the year was I 0.115 mrem and no organ dose exceeded 0.167 mrem.

4. 0 SITE METEOROLOGY l i

A summary of the site meteorological measurements taken during each I calendar quarter of the year is given in Appendix II. The data are presented as cumulative joint frequency distributions of 300' level wind I' direction and wind speed class by atmospheric stability class determined from the temperature difference between the 300' and 35' levels. Data recovery for all measurements on the tower was nearly 99.3%.

l

5. 0 ENVIRONMENTAL MONITORING l Table 5.0-1 provides an outline of the radiological environmental monia toring program as required in current Technical Specifications. This program went into effect in November 1977 and dif fers f rom previous programs in the number and types of analyses performed. Tables 5.0-3 to 5.0-6 summarize data f or the year.

Except f or tables of special interest, tables listing all data are no longer included in the annual report. All data tables are available .

I f or inspection at the Station or in the Corporate Of fices.

Specific findings for various environmcntal media are discussed below.

5

5.1 Gamma Radiation External radiation- dose - from on-site sources and noble gases re-leased to the atmosphere was measured at eight indicator and nine reference (background) locations using solid lithium fluoride thermoluminescent dosimeters (TLD). A comparison of the TLD results for reference stations with on-site and off-site indicator stations is included in Table 5.1-1. An additional 52 TLDs were installed at both five miles and the site boundary, beginning on June 1,1980.

Table 5.1-1 lists the results.

5. 2 Airborne I-131 and Particulate Radioactivity Concentrations of airborne I-131 and particulate radioactivity at monitoring locations are summarized in Tables 5.0-2 through 5.0-5.

Locations of the samlers are shown in Figure 5.0-1. Airborne I-131 remained below the LLD of 0.10 pCi/m3 throughout the year.

Gross beta concentrations ranged from 0.01 to 0.08 pCi/m3 for thq indicator locations with an average concentration of 0.02 pCi/mJ for the year. No radioactivity attributable to plant operation was detected in any sample. _

Air sagler D-06 was moved a small distance in 1985 to Will County Line Road. This minor move is unlikely to affect any measured results of radioactive levels at this location.

5. 3 Aquatic Radioactivity Cooling water samples were collected daily and composited for analysis weekly from the Unit 1 Inlet canal and thits 1 and 2/3 Discharge Canals. Analytical results did not indicate any measur-able radioactivity attributable to plant operation.

Surf ace water samples were collected weekly from the Illinois River at the EJ a E Railroad Bridge and composited monthly to analyze for gansna emitters. Cs-134 and Cs-137 levels were below the detec-4 tion limit of 10 pCi/1 and all other gamma emitters were below the detection limit of 20 pCi/1 in all samples collected during the year.

Well water samples were collected monthly beginning October 1980 and

- analyzed for gross alpha, gross beta, and tritium. The levels of

, activity detected were generally in the range to be expected in this medium in the environment and were 'not attributable to station

operation.

l Levels of gamma radioactivity in fish samples were measured and found in all cases but one to be below the lower limits of detection

of 0.1 pCi/g wet wei The detected level was 1 0.20 pCi/g wet weight,ght for the program.

f 6

-,--.-.--,-----,nnmnnnw-- ,, n__c ,w.,,_,,--,v--v_,,m_ n-_. _ - . _ . ,,,_w _ - _ _ _ _ -m.n_n~

l

! A sediment sample was analyzed by gamma spectroscopy. Gamma-emitters were below the limits of detection indicating the presence of no radioactivity due to station operation.

1 5.4 Milk Milk samples were collected weekly during the grazing season and monthly during the balance of the year from three farms: the Biros Farm (background location), located about 11.5 miles southwest; the Trotter Farm, located about 6.1 miles south; and the Clow Farm, about 5 miles northeast (background location). 1-131 was determined for each sample by chemical separation of I and beta counting.

l I-131 remained below the detection limits of 0.5 pCi/l during the grazing (period (May period November to October) and 5.0 pCi/l during the non-grazing to April).

5.5 Special Collections Service water contaminated by leaks in the LPCI heat exchanger was released into the cooling lake early in 1978. To monitor ef fects on the concentrations of radioactivity in the cooling canal a program was begun in October 1978 of collecting weekly grab samples of water at the Dresden Road and County Line Road crossings of the canal. Concentrations of both gross beta and gamma activities have not indicated the presence of detectable concentrations of radio-activity due to the station. Data are listed on Page 20.

6.0 ANALYTICAL PROCEDURES A summary of the procedures used for analyzing radioactivity in environ-mental samples is given in Appendix III.

7.0 MILCH ANIMAL CENSUS A census of milch animals was conducted within a five mile radius of the station. The survey was conducted by " door-to-door" canvas by A. Lewis on August 2, 1985.

There are no dairy farms within a five mile radius of the Dresden Nuclear Power Station.

8.0 NEAREST RESIDENT CENSUS The nearest resident census was conducted on August 2,1985. There were no changes since the previous census.

7 I J

- . - - . .- _ . . - - - . - . - . ~_ _ __= - - - - -. -

s i

i i .

9. 0 INTERLABORATORY COMPARISON PROGRAM RESULTS l

, Teledyne Isotopes Midwest Laboratory has participated in interlaboratory I cogarison (crosscheck) programs since the formulation of its quality I control program in December 1971. These programs are operated by agencies which supply environmental-type samples (e.g. , milk or water) containing concentrations of radionuclides known to the issuing agency  !

but not to participant laboratories. .The purpose of such a program j is to provide an independent check on the laboratory's analytical
procedures and to alert it to any possible problems. ,

f Participant laboratories measure the concentrations of specified radio-  !

nuclides and report them to the issuing agency. Several months later, l

the agency reports the known values to the participant laboratories and  !

! specifies control limits. Results consistently higher or lower than the '

1-known values or outside the control limits indicate a need to check the

! instruments or procedures used.  :

)

j The results in Table A-1 were obtained through participation in the '

environmental sample crosscheck program for milk, water, air filters, i and food samles during the period 1982 through 1985. This program has .!

been conducted by the U. S. Environmental Protection Agency Intercom-

, parison and Calibration Section, Quality Assurance Branch, Environmental j Monitoring and Support Laboratory, Las Vegas, Nevada.  ;

The results in Table A-2 were obtained for thermoluminescent dostmeters (TL0s) during the period 1976, 1977,1979,1980, and 1981 through  ;

j participation in the Second, Third, Fourth, and Fifth International '

Intercomparison of Environmental Dosimeters under the sponsorships j listed in Table A-2.

1 j 10.0 ERRATA

See Page 151, i i i

I J

I 1

i l

i

Table A-1. U.S. Environmental Protection Agency's crosscheck program, com-parison of EPA and Teledyne Isotopes Midwest Laboratory results for milk, water, air filters, and food samples, 1982 through 1985.a Concentration in pCi/lb Lab Sample Date TIML Result EPA Result Code Type Collected Analysis 12cc 130, n = 1d STW-270 Water Jan. 1982 Sr-89 24.3 2.0 21.015.0 Sr-90 9.410.5 12.011.5 l

STW-273 Water Jan. 1982 1-131 8.610.6 8.411.5 STW-275 Water Feb. 1982 H-3 15801147 18201342 STW-276 Water Feb. 1982 Cr-51 <61 0 Co-60 26.013.7 2015 Zn-65 <13 15t5 Ru-106 <46 2015 Cs-134 26.810.7 2215 Cs-137- '29.711.4 2315 STW-277 Water Mar. 1982 Ra-226 11.911.9 11.611.7 STW-278 Water Mar. 1982 Gros? a'pha 15.6fl.9 1915 Gross beta 19.210.4 1915 STW-280 Water Apr. 1982 H-3 2690180 28601360 STW-281 Water Apr. 1982 Gross alpha 75t7.9 85121 Gross beta 114.115.9 10615.3 Sr-89 17.411.8 2415 Sr-90 10.St0.6 1211.5 Ra-226 11.412.0 10.911.5 Co-60 <4.6 0 STW-284 Water May 1982 Gross alpha 31.516.5 27.517 Gross beta 25.9 3.4 29 5 STW-285 Water ibne 1982 H-3 197011408 18301340 STW-786 Water Jine 1982 Ra-226 12.611.5 13.413.5 Ra-228 11.112.5 8.712.3 STW-287 Water June 1982 1-131 6.510.3 4.410.7 STW-290 Water Aug. 1982 H-3 32101140 28901619 9

Table A-1. (continued)

Concentration in pCi/lb Lab Sample Date TIML Result EPA Result Code Type Collected Analysis 12cc 13 0, n = 1d STW-291 Water Aug. 1982 1-131 94.612.5 87115 STW-292 Water Sep t. 1982 Sr-89 22.713.8 24.518.7 Sr-90 10.910.3 14.512.6 STW-296 Water Oct. 1982 Co-60 20.011.0 2018.7 Zn-65 32.315.1 2418.7 Cs-134 15.311.5 19.018.7 Cs-137 21.011.7 20.018.7 STW-297 Water Oct. 1982 H-3 2470120 2560.612 STW-298 Water Oct. 1982 Gross alpha 32130 55124 Gross beta 81.716.1 8118.7 Sr-89 <2 0 Sr-90 14.110.9 17.212.6 Cs-134 <2 1.8 8.7 Cs-137 22.710.6 2018.7 Ra-226 13.610.3 12.513.2 Ra-228 3.911.0 3.610.9 STW-301 Water Nov. 1982 Gross alpha 12.0il.0 19.018.7 Gross beta 34.012.7 24.018.7 STW-302 Water Dec. 1982 1-131 40.010.0 37.0110 STW-303 Water Dec. 1982 H-3 1940120 19901345 STW-304 Water Dec. 1982 Ra-226 11.710.6 11.011.7 Ra-228 <3 0 STW-306 Water Jan. 1983 Sr-89 20.018.7 29.215 Sr-90 21.718.4 17.211.5 STW-307 Water Jan. 1983 Gross alpha 29.014.09 29.0113 Gross beta 29.310.6 31.018.7 STM-309 Milk Feb. 1983 Sr-89 3512.0 3718.7 Sr-90 13.710.6 18t2.6 1-131 55.713.2 55110.4 Cs-137 29tl.0 2618.7 Ba-140 <27 0 K-40 163715.8 15121131 10

l Table A-1. (continued)

Concentration in pCi/lb Lab Sample Date TIML Result EPA Result Code Type Collected Analysis 12cc 130, n=1d STW-310 Water Feb. 1983 H-3 2470180 25601612

! STW-311 Water March 1983 Ra-226 11.911.3 12.713.3 Ra-228 <2.7 0 STW-312 Water March 1983 Gross alpha 31.614.59 31113.4 Gross beta 27.012.0 2818.7 STW-313 Water April 1983 H-3 3240180 33301627 STW-316 Water May 1983 Gross alpha 9417 64f19.9 Gross beta 13315 149112.4 Sr-89 1911 2418.7 Sr-90 1211 1312.6 Ra-226 7.910.4 8.512.25 Co-60 3012 3018.7 Cs-134 2712 3318.7 Cs-137 2911 2718.7 STW-317 Water May 1983 Sr-89 59.712.1 5718.7 Sr-90 33.711.5 3813.3 STW-318f Water May 1983 Gross alpha 12.811.5 1118.7 Gross beta 49.413.9 5718.7 STM-320 Milk June 1983 Sr-89 2010 2518.7 Sr-90 1011 1612.6 I-131 3011 30110.4 Cs-137 5212 4718.7 K-40 1553157 14861129 STW-321 Water June 1983 H-3 1470189 15291583 STW-322 Water J;ne 1983 Ra-226 4.310.2 4.811.24 Ra-228 <2.5 0 Water July 1983 Gross alpha 311 718.7 STW-323 Gross beta 2110 2218.7 Water August 1983 1-131 13.310.6 14t10.4 STW-324 11 f

~

[

Table A-1. (continued)

Concentration in pCi/lb Lab Sample Date TIML Result EPA Result

Code Type Collected Analysis 12cc i3o, n=1d STAF-326 Air August 1983 Gross beta 4212 3618.7 Filter Sr-90 14t2 1012.6 Cs-137 1911 1518.7 STW-328 Water Sept. 1983 Gross alpha 2.310.6 518.7 Gross beta 10.711.2 918.7 STW-329 Water Sept. 1983 Ra-226 3.010.2 3.110.81 Ra-228 3.210.7 2.010.52 STW-331 Water Oct. 1983 H-3 1300130 12101570 ,

STW-335 Water Dec. 1983 1-131 19.6tl.9 20110.4 STW-336 Water Dec. 1983 H-3 2870 100 23891608 STAF-337 Air Nov. 1983 Gross alpha 18.010.2 1918.7 Filter Gross beta 58.611.2 5018.7 Sr-90 10.910.1 15t2.6

. Cs-137 30.112.5 2018.7 STW-339 Water Jan. 1984 Sr-89 47.211.9 3618.7 Sr-90 22.5 4.0 2412.6 STW-343 Water Feb. 1984 H-3 2487176 23831607 STM-347 Milk March 1984 I-131 5.311.1 611.6 STW-349 Water March 1984 Ra-226 4.010.2 4.111.06 Ra-228 3.6i0.3 2.010.52 STW-350 Water March 1984 Gross alpha 3.811.1 518.7 ,

Gross beta 24.222.0 2018.7 STW-354 Water April 1984 H-3 3560150 35081630 STW-355 Water April 1984 Gross alpha 21.014.1 35il5.2 f Gross beta 127.8i4.1 147112.7 Sr-89 29.312.0 2318.7 Sr-90 16.6io.7 2612.6

, Ra-226 4.011.0 4.011.04

Co-60 32.311.4 3018.7 Cs-134 33.613.1 3018.7 Cs-137 33.312.2 2618.7 12 j

h Table A-1. (continued)

Concentration in pCi/lb Sample Date TIML Result EPA Result Lab 13c, n=1d Code Type Collected Analysis 12cc Water May 1984 Gross alpha 3.010.6 318.7 STW-358 Gross beta 6.711.2 618.7 Milk June 1984 Sr-89 2113.1 25 8.7 STM-366 Sr-90 1312.0 1712.6 I-131 4615.3 43110.4 Cs-137 3814.0 3518.7 K-40 15771172 14961130 j Water July 1984 Gross alpha 5.111.1 618.7 STW-368 Gross beta 11.912.4 1318.7 STW-369 Water August 1984 I-131 34.315.0 34.0110.4 Water August 1984 H-3 30031253 28171617 STW-370 STF-371 Food July 1984 Sr-89 22.015.3 25.018.7 Sr-90 14.713.1 20.012.6 I-131 <172 39.0110.4 Cs-137 24.015.3 25.018.7 K-40 25031132 2605t226.0 Air August 1984 Gross alpha 15.311.2 1718.7 STAF-372 Filter Gross beta 56.010.0 5118.7 Sr-90 14.3tl.2 1812.4 '

Cs-137 21.012.0 1518.7 Water Sep t. 1984 Ra-226 '5.110.4 4.911.27 STW-375 Ra-228 2.210.1 2.310.60 Water Sept. 1984 Gross alpha 3.311.2 5.018.7 STW-377 Cross beta 12.7t2.3 16.018.7 Water Oct. 1984 H-3 28601312 28101356 STW-379 Oct. 1984 Cr-51 <36 4018.7  :

STW-380 Water Co-60 20,311.2 2018.7 Zn-65 15018.1 14718.7 Ru-106 <30 4718.7 Cs-134 31.317.0 3118.7 1

Cs-137 26.711.2 2418.7 r

13

Table A-1. (continued)

Concentration in pC1/lb Lab Sample Date TIML Result EPA Result Code Type Collected Analysis 12 e i3 , n=1d STM-382 Milk Oct. 1984 Sr-89 15.714.2 2218.7 Sr-90 12.711.2 1612.6 I-131 41.713.1 42110.4 Cs-137 31.316.1 3218.7 K-40 1447166 15171131 STW-384 Water Oct . 1984 Gross alpha 9.711.2 1418.7 (Blind) Saaple A Ra-226 3.310.2 3.010.8 Ra-228 3.411.6 2.110.5 Uranium nae 5110.4 Sample B Gross beta 48.315.0 6418.7 Sr-89 10.714.6 1118.7 Sr-90 7.311.2 1212.6 Co-60 16.311.2 1418.7 Cs-134 <2 218.7 Cs-137 16.7tl.2 1418.7 STAF-387 Air Nov. 1984 Gross alpha 18.711.2 1518.7 Filter Gross beta 59.015.3 5218.7 Sr-90 18.311.2 21t2.6 Cs-137 10.311.2 1018.7 STW-388 Water Dec. 1984 1-131 28.012.0 36110.4 STW-389 Water Dec. 1984 H-3 35831110 31821624 STW-391 Water Dec. 1984 Ra-226 8.411.7 8.6f2.2 Ra-228 3.110.2 4.111.1 STW-392 Water Jan. 1985 Sr-89 <3.0 3.018.7 Sr-90 27.3i5.2 30.012.6 STW-393 Water Jan. 1985 Gross alpha 3.311.2 518.7 Gross beta 17.3 3.0 1518.7 STS-395 Food Jan. 1985 Sr-89 25.316.4 34.0t5.0 Sr-90 27.018.8 26.011.5 I-131 38.012.0 35.016.0 Cs-137 32.712.4 29.015.0 K-40 14101212 13821120 i

14 l

i l Table A-1. (continued) 1 Concentration in pCi/lb Sample Date TIML Result EPA Result Lab 130, n=1d Code Type Collected Analysis 12cc l

Water Feb. 1985 Cr-51 <29 4818.7 l STW-397

' Co-60 21.313.0 2018.7 Zn-65 53.715.0 5518.7 i 2518.7

! Ru-106 <23 Cs-134 32.311.2 3518.7 i

i Cs-137 25.313.0 2518.7 Water Feb. 1985 H-3 38691319 37961634 STW-398 STM-400 Milk March 1985 l-131 7.312.4 9.010.9 STW-402 Water March 1985 Ra-226 4.610.6 5.011.3 i

Ra-228 <0. 8 9.012.3 l

Reanalysis Ra-228 9.010.4 i

STW-404 Water March 1985 Gross alpha 4.712.3 618.7 Gross beta 11.311.2 1518.7

/

STAF-405 Air March 1985 Gross alpha 9.3t1.0 10.018.7 l Gross beta 42.011.1 36.018.7 Filter Sr-90 13.311.0 15.012.6 Cs-137 6.311.0 6.018.7 STW-407 Water /pril 1985 I-131 8.010.0 7.511.3 Water April 1985 H-3 33991150 35591630 STW-408 STW-409 Water April 1985 (81ind) Gross alpha 29.711.8 32.015.0 Sample A Ra-226 4.410.2 4.110.6 Ra-228 f4Ae 6.210.9 Uranium nae 7.016.0 Sample B Gross beta 74.3111.8 72.015.0 Sr-89 12.317.6 10.0th.0 Sr-90 14.712.4 15.011.5 Co-60 14.712.4 15.015.0 Cs-134 12.012.0 15.015.0 Cs-137 14.012.0 12.015.0 15

.J

I Table A-1. (continued)

Concentration in pCi/lb Lab Sample Date TIML Result EPA Result Code Type Collected Analysis 12 c 13 , n = 1d STW-413 Water May 1985 Sr-89 36.0 12.4 39.015.0 Sr-90 14.314.2 15.011.5 STW-414 Water May 1985 Gross alpha 8.314.1 12.015.0 Gross beta 8.711.2 11.0t5.0 STW-416 Water June 1985 Cr-51 44.716.0 44.015.0 Co-60 14.311.2 14.015.0 Zn-65 50.317.0 47.015.0 Ru-106 55.315.8 62.015.0 Cs-134 32.711.2 35.015.0 Cs-137 22.712.4 20.015.0 STW-413 Water June 1985 H-3 24461132 24161351 STM-421 Milk June 1985 Sr-89 10.314.6 11.018.7 Sr-90 9.012.0 11.012.6 I-131 11.711.2 11.0110.4 Cs-137 12.711.2 11.018.7 K-40 1512162 15251132 STW-423 Water July 1985 Gross alpha 5.010.0 11.018.7 Gross beta 5.012.0 8.018.7 STW-425 Water August 1985 1-131 25.7 3.0 33.0110.4 STW-426 Water August 1985 H-3 4363183 44801776 ,

STAF-427 Air August 1985 Gross alpha 11.320.6 13.018.7 Filter Gross beta 46.011.0 44.018.7  !

Sr-90 17.710.6 18.012.6 l Cs-137 10.310.6 8.018.7 i STW-429 Water Sept . 1985 Sr-89 15.710.6 20.018.7 Sr-90 7.010.0 7.012.6 I

STW-430 Water Sep t. 1985 Ra-226 8.210.3 8.912.3 Ra-228 4.110.3 4.611.2 {

STW-431 Water Sep t . 1985 Gross alpha 4.710.6 8.0t8.7 Gross beta 4.711.2 8.018.7 f

16

)

I i

Table A-1. (continued) i Concentration in pCi/lb Sample Date TIML Result EPA Result Lab 130, n=1d Code Type Cotiected Analysis 12cc Water Oct. 1985 Cr-51 <13 21.018.7 STW-433 Co-60 19.30.6 20.018.7 l

' Zn-65 19.710.6 19.018.7 Ru-106 <19 20.018.7 Cs-134 17.011.0 20.018.7

! Cs-137 19.311.2 20.018.7 Water Oct . 1985 H-3 1957150 19741598 STW-435 a Results obtained by Teledyne isotopes Midwest Laboratory as a participant in the environmental sample crosscheck program operated by the Intercom-parison and Calibration Section. Quality Assurance Branch, Environmental Monitoring arJ Support Laboratory, U.S. Environmental Protection Agency, b (EPA), Las Vegas, Nevada,All results are in pCi/1, except for elemental potassium (K) l in mg/1; air filter samples, which are in pCi/ filter; and food, which is in pCi/kg, c Unless otherwise indicated, the TIML results are given as the mean 12 standard deviations for three determinations.

d USEPA results are presented as the known values i control limits of 3a for n = 1.

e NA = Not analyzed.

f Analyzed but not reported to the EPA, 9 Results af ter calculations corrected (error in calculations when reported to EPA).

i t

17 f J

Table A-2. Crosscheck program results, thermoluminescent dosimeters (TLDs),

mR Teledyne Average 12o d Lab TLD Result Known (all Code Type Measurement 12o8 Value participants) 2nd International Intercomparisonb 115-2b CaF2:Mn Ganssa-Fleid 17.011.9 17.lc 16.417.7 Bulb Gansna-Lab 20.814.1 21.3c 18.817.6 3rd International Interconparisone 115-3e CaFg:Mn Gansna-Field 30.713.2 34.914.8f 31.513.0

- hlb

  • Gansna-Lab 89.616.4 91.7114.6f 86.2124.0 4th International Interconparison9 115-49 CaF2:Mn Gansna-Field 14.111.1 14.lil.4f 16.019.0 8ulb Gansna-Lab (Low) 9.311.3 12.212.4f 12.017.6 Gansna-Lab (High) 40.411.4 .45.819.2f 43.9113.2  ;

Sth International Interconparisonh 115-5Ah CaF2:Mn Gansna-Field 31.411.8 30.016.01 30.2114.6 Bulb Gasuna-Lab 77.415.8 75.217.61 75.8140.4 at beginning Gasuna-Lab 96.615.8 88.418.81 90.7131.2 at the end

Table A-2. (Continued) mR Teledyne Average i 20 d Lab TLD Result Known (all Code Type Measurement 120a Value participants) 115-5Bh LiF-100 Gama-Field 30.314.8 30.0161 30.2114.6 Chips Gamma-Lab 81.117.4 75.217.61 75.8140.4 at beginning Gama-Lab 85.4111.7 88.418.81 90.7131.2 at the end

_ a Lab result given is the mean 12 standard deviations of three determinations.

e b Second International Intercomparison of Environmental Dosimeters conducted in April of 1976 by the Health and Safety Laboratory (GASL), New York, New York, and the School of Public Health of the University of Texas, Houston, Texas.

c Value determined by sponsor of the intercomparison using continuously operated pressurized ion chamber.

d Mean 12 standard deviations of results obtained by all laboratories participating in the program.

e Third International Intercom arlson of Environmental Dosimeters conducted in summer of 1977 by Oak Ridge National Laboratory and the School of Public Health of the University of Texas, Houston, Texas.

f Value 12 standard deviations as determined by sponser of tha intercoimarison using continuously operated pressurized ion cisasLer.

9 Fourth International Intercom arison of Environmental Dosimeters conducted in summer of 1979 by.the School of Public Health of the University of Texas, Houston, Texas.

h Fifth International Intercomparison of Environmental Dosimeter conducted in fall of 1980 at Idaho Falls, Idaho and sponsored by the School of Public Health of the University of Texas, Houston, Texas and Environmental Measurements Laboratory, New York, New York, U.S. Department of Energy.

I Value determined by sponsor of the intercomparison using continuously operated pressurized ion charter.

L _

DRESDEN NUCLEAR POWER STATION Radioactivity in Water Samples from Dresden Cooling Lake (Weekly Collections)

(pCi/1)

Dresden Road County Line Road Dresden Road County Line Road Crossing 0-34A Crossing D-348 Crossing D-34A Crossing D-348 Collection Gross Gamma Gross Gamma Collection Gross Gamma Gross Gamma Date Beta Emitters Beta Emitters Date Beta Emitters Beta Emitters 01-06-85 5. 010.9 <10 3.510.6 <10 07-06-85 3.310.8 <10 3.610.8 <10 01-12-85 3.910.9 <10 5.110.6 <10 07-13-85 3.810.6 <10 4.110.8 <10 01-19-85 4.410.9 <10 4.510.6 <10 07-20-85 3.910.6 <10 3.410.6 <10 01-26-85 4.210.9 <10 5. 010. 9 <10 07-27-85 4.610.6 <10 3.910.8 <10 02-02-85 3.410.9 <10 3.410.9 <10 08-02-85 4.110.8 <10 3.410.7 <10 02-09-85 2.810.8 <10 3.510.9 <10 08-09-85 4.110.7 <10 3.910.7 <10 02-16-85 2.710.8 <10 3.510.9 <10 08-18-85 3.010.5 <10 3.010.7 <10 gg 02-23-85 2.910.9 <10 3.610.9 <10 08-24-85 3.510.5 <10 2 210.6 <10 03-02-85 3.410.8 <10 3.210.7 <10 08-31-85 3.810.5 <10 T. 410. 6 <10 03-09-85 4.110.8 <10 3.710.8 <10 09-07-85 4.310.8 <10 4.810.8 <10 03-16-85 4.111.1 <10 2.110.6 <10 09-14-85 4.510.8 <iG 4.410.8 <10 l 03-13-85 3.310.7 <10 4.410.8 <10 09-21-85 4.010.6 <10 4.110.8 <10 03-30-85 4.710.8 <10 3.710.8 <10 09-28-85 5.410.9 <10 3.60.8 <10 04-06-85 3.110.7 <10 3.310.7 <10 10-05-85 3.710.8 <10 4.110.8 <10 04-13-85 3. 010. 7 <10 4.410.8 <10 10-12-85 4.110.8 <10 3.910.8 '<10 04-20-85 4.210.8 <10 2.210.3 <10 10-19-85 4.410.9 <10 4.110.9 <10 04-27-85 4.210.8 <10 3. 310.8 <10 10-26-85 4.010.9 <10 3.810.9 <10 05-04-85 4.310.8 <10 5.410.9 <10 11-02-85 4.010.6 <10 4.010.8 <10 05-11-85 3.110.7 <10 2.810.7 <10 11-09-85 4.210.8 <10 3.7;10.8 <10 05-18-85 3.6 0.8 <10 3.710.8 <10 11-16-85 3.510.8 <10 5.110.9 <10 05-25-85 3.5 0.8 <10 2.710.7 <10 11-23-85 4.410.8 <10 4.110.8 <10 06-01-85 2.910.7 <10 3.510.8 <10 11-30-85 3.410.9 <10 2.810.8 <10 06-08-85 3. 6t0. 8 <10 1.410.6 <10 12-07-85 4.310.9 <10 4. 71 0. 9 <10 06-15-85 2.910.7 <10 3.410.8 <10 12-14-85 3.810.9 <10 3.810.9 <10 06-22-85 3.410.6 <10 2.310.6 <10 12-21-85 3.710.8 <10 4.610.8 <10 06-29-85 3.210.6 <10 3.6 0.6 <10 12-28-85 4.410.9 <10 4.510.9 <10

APPENDIX I DATA TABLES AND FIGURES i l 5 j l

i I

i 3

i l

t i i

i l t

l 21 I

! l

I

- - - - - - . _ . _ . _ . - - - - - - - _ _ . _ . - . . ~ ~ - . - . _ _ - . _ - - - - .-

TABLE 1.1-1 DRESDEN NUCLEAR POWEK STATION ETTLUENT AND WASTE DISPOSAL SDtIANNUAL REPORT JANUARY Through JUNE 19 L GASEOUS ETFLUENTS SUMMATION OT ALL RELEASES Docket Noe. 50-10, 50-237, 50-249 UNIT far OUARTER 7"dOUARTER

4. TISSION AND ACTIVATTOV citft
1. Total Raiana. Ci 7.97E+02 1.09E+03
2. Averman 1 1. .. nee. Far 9.,4ad uCi/see 1.03E+02 1.39E+02
3. Percent of Techatr=1 faae4ffe=efaa ff-fe T

. 10 DINES

1. Total Iodine-131 C1 1.68I-02 2.1&r-02
2. Aversee Release Raen for Pertad uC1/sec 2.16E-03 2.98I-03
3. Percent of Technical soeciftemefan tf-fe  ! * *

. PARTICULATES

1. Parefe tsene vfeh hair t* ..' 3m 4 .. Ci 2.59E-02 3.2&E-02
2. Aversee Release Rate for Pertad uC1/see 3.33E-03 4.12E-03
3. I *
  • Percent of Technical Soecificaeten timfe
4. Cross Aloha Radioactivity C1 1.95E-04 4.73E-06

. TRITIUM

1. Total Release C1 2.8&E+01 1.llE+01
2. Aversee Release Rate for Period uCi/see 3.66E00 1.AIE00
3. Percent of Technical Soecifiescion Limit  ! *
  • 1
  • Will be included in the Annual Report on Environmental Radioactivity Data 22

TABLE 1.1-1 (Continued)

DRESDEN NUC1. EAR POWER STATION EFTLUENT M.T, WASTE DISPOSAL SDi! ANNUAL REPORT Julv Through December 1985 CASECUS EFFLUENTS SD0'.ATION OF ALL RELEASES Docket Nu=bers: 50-10, 50-237. 50-249 UNIT 3rd OUARTER 4th0UARTER

4. FISSION AND ACTIVATION CACER *
1. Total Release Ci 6.92E+02 3.62E+02
2. Averste Relesse Race 'n- Pe-dna uCi/sec 8.71E+01 4.55E+01
3.  % *
  • Percent of Technical seecf**-$e'ne f. 4 - f
1. Total Iodine-131 C1 1.7&r-o? 4.35E-03
2. Averare Release Rate for Peried uCi/see 2.19E-03 5.47E-04
3. Percent of Technical Seecificsefen f.f-f*  % * *

. PARTIC' LATES

1. Parede~t,re= v e rb 521s-1fv,. MJ3. Ci 2,4sy-02 1.14E-q?
2. Averare Release Rate for Period uCi/see 3.0sE-03 1.44E-03
3. Percent of Technical Seeefficatten Lf-ft I *
  • 4 Gross Aloha Radioactivity C1 4.12E-06 1.66E-05
3. TRITIUM
1. Total Release Ci 7.72E00 1.24E00
2. Average Release Rate for_ Period uCi/sec 9.71E-01 1.56E-01
3. Percent of Technical Soecification Limit I * *
  • Will be included in the Annual Report on Environmental Radioactivity Data 23

i TABLE 1.1-1 (continued) '

URESDEN NUCLEAR POWER STATION UNIT 1 EFTtUENT AND WASTE DISPOSAL SEMIM*NUAL RIPORT JANUARY TH10UCH RNE 19 95 D-1 Chimne, CASECUS ETILUENTS '

C10UND LEVEL RELEASES SDG-ELETATED art FAKES II ELEVATED LMES Docket No.. 50-10 con usuv03 180DE MA't98 W M F JCLICES RELIASEDI UNIT I .lAgQUARTER l ggygqUARTER l 1st CUARTER 2nd OUARTER FISSION GASE3 L Ci l i L Ie-138 Ci i *

  • I f Xe-135m Ci i * '
  • i Kr-47 Ci *
  • I Kr-88 Ci *
  • i Kr-45m Ci ' *
  • i 7 Kr-65 I Ci *  !
  • 1 Ie-!35 Ci
  • 1
  • Ie-133 Ci *
  • f Otherst I ci u l Ci i TOTAL Ci i NONE i use ,

10 DINES I I-131 '

Ci *

  • i T-133
  • Ci
  • i I-135 8 ci *
  • i TOTAL 4 Ci i 1 MONE '

NONE PARTIC"LATES I l l' i Sr-99 Ci i 1.86E-06 2.00E-06 i Sr #O Ci i *

  • Cr-51 1 Ci i *
  • Mn-54 Ci ' 1.83E-07 'l e i ,
  • i Co-59 Ci l I i=

a

  • Te-59 Cf '

Co-60 Ci i 1.09E-05 1 2.39E-05 Zr 85 > Ci i *

  • Nb-95 Ci i * *

-Ru-103 '

Ci I *

  • Ar-110s ci i
  • 1
  • 1 i Sb-124 i Cf I * * 'I i

I-131 i Cf I *

  • ll 0 Cs-134 i ci i
  • 2 ??T 67 i Cs-136 I ci i
  • 1
  • 1 Cs-137 i ci 4 6.64E 66 1 7.61r-06 I I

Ba-140 i Ci I e i

  • h i 1 Ci i *
  • A -141 1 I I Co-I t.4 I ci i
  • t I i Zn-65 8 ci i
  • l
  • I i Ba-133 i Ci i
  • l
  • I i 8 ci a
  • l
  • Sh-125 I I Others; i Ci l l l Ci i e i Ci I '

i i Ci e i i i Ci i i l i TcTAL Ci i 1.9tE-05 1 3. 3 7t_m i Nose I vnvr

  • 5ee Table for MDL of Each Nuclide 24

TABLE 1.1-1 (continued) une. uc.c. .u,ui.aa PO'aEA STATION UNIT t EFFLUCiT AND 'a*ASTE DISPOSAL SEMIANNUAL REFORT Julv TEQUGH Dece=ber 19 85 D-1 Chi ev GASEOUS EFTLUCITS GROUND LEVEL RELEASES SE"J-ELEVATED RELEASES II ELETATED RELEASES Docket No. 50-10 COS"TISTOUS WODE m ATr st ver

!CLICES RELEASEDI UNIT l lIA. QUARTER l 431LQUARTER 3ri,, QUARTER l 4_th, QUARTER FISSION CASES " Ci l i

  • i
  • I Te-133 l Ci l
  • l
  • I Xe-135m '

Ci i

  • l
  • l r r -87 '

Ci i

  • l
  • i Kr-88 Ci i
  • l
  • I I Kr-85m Ci i
  • l Kr-45 Ci l l
  • l
  • I Te-135 Ci Xe-133 Ci l Others; C1 Ci 1 TOTAL Ci I Mnvr va"r l 1 i 10 DINES T-131 1 Ci i *
  • ll l I-133 Ci i h I-135 Ci i 1 Ci i 1 mer -m TOTAL 1

PARTICULATES 1 1 Sr-89 i Ci i L.89E-07 l

  • Sr c0 l Ci 1 1.41E-07 1 1.84E-07
  • * ' I Cr-51 I ci i 1 un-54 i Ci I 6.0;r no Q 3.89E-07 i Co-58 i ci i *  ! 2.37E-07 Fe-59 i Ci i
  • l Co-60 Ci 1 2.30E ni I 6.26E-06 Zr 35 Ci i
  • 1 Nb-95 Ci i
  • I " i Ru-103 I Ci l I ci i *  !

Ae-llOm *

  • I I Sb-124 i Ci i *
  • I I I-131 1 Ci i I i C9-134 Cf I
  • I Cs-136 Ci i 1 Cs-137 Ci I 6.32E-06 6 2.05E-06  !
  • i
  • 1
  • a-140 i Ci i
  • l i  !

Cc-141 4 ci I

  • I I Ce-144 i Ci i *
  • I Zn-65 I ci l l i Ci i *
  • l Ba-133 "

1 I

l

  • Sb-125 i Ci i l l Ochers: i Ci i l l Ci i C1 i i

Ci l i i Ci i TOTAL I Ci i 2.97E-05 l 9.32E-06 Nn'ir 4 'in'!r

  • See Table for MDL of Each Nuclide 25

TABLE 1.1-1 (Continued)

DRESDEN NUCLEAR FO*4R STATION TABLE OF MINIMUM DETECTABLE LEVELS FOR GASEOUS EFFLUENTS JAN-JUN, 1985 D-1 Chi =nev GASEQUS EFFLUENTS AVERAGE FLov 50.000~cfm

~Dockec No.- 50-10 MDL (uci/cc). I 0F TIME < MDL

1. FISSION CASES 100 i Ie-138 5.43E-08

'Ze-135m 2.37E-08 100 Kr-87 3.88E-08 100 Kr-88 6.47E-08 100 Kr-85m 1.86E-08 100 5.73E-08 100 Kr-85 1.89E-08 100 Ze-135 5.18E-08 100 Ie-133 Others:

2. 10 DINES I-131 3.80E-14 100 I-133 4.40E-14 100 I-135- .7.90E-14 100
3. PARTICULAIES' Sr-90 1.00E-15 100 Cr-51 1.60E-13 100 Mn-54 3.30E-14 96 Co-58 3.50E-14 100 Fe-59 5.30E-14 100 Co-60 8.70E-14 0 Zr-95' 3.10E-14 100 Nb-95 1.90E-14 100 Ru-103 1.90E-14 100 1.90E-14 100 Ag-110s 2.40E-14 100 Sb-124 2.00E-14 100 1-131 Cs-134 -1.60E-12 96 Cs-136 5.30E-14 100 Cs-137. 3.80E-14 0 Ba-140 6.70E-14 100 C4-141 4.70E-14 100 2.00E-13 100 Ce-144 5.90E-14 100 7 -us 2.60E-14 100 Ba-133 1.80E-14 100 Sb-125 100 Others: La-140 3.00E-14 26

TABLE 1.1-1 (continued)

DRESDEN NUCLEAR PO'a*ER STATION TABLE OF MINIMUM DETECTABLE LEVET.S FOR GASECUS EFFLUENTS JUL-DEC, 1985 D-t Chienev GASEOUS EFFLUENTS AVERAGE E1.0W 50.000 cf=

Docket No. 50-10 MDL (uC1/ce)  : OF TIME < MDL

1. FISSION GASES Ie-138 5.43E-08 100 Ie-135= 2.37E-08 100 Kr-87 3.88E-08 100 Kr-88 6.47E-08 100 Kr-85m 1.86E-08 100 Kr-85 5.73E-06 100 Ie-135 1.89E-08 100 Ie-133' 5.18E-08 100 Others:
2. IODINES I-131 3.80E-14 100 I-133 4.40E-14 100 I-135 7.90E-14 100
3. PARTICULATES Sr-89 1.10E-15 83 Sr-90 1.00E-15 0 Cr-51 1.60E-13 100 Ms-54 3.30E-14 91 Co-58 3.50E-14 99 Fe-59 5.30E-14 100 Co-60 .8.70E-14 23 Zr-95 3.10E-14 100 l Nb-95 1.90E-14 100 Ru-103 1.90E-14 100 Ag-110s 1.90E-14 100 Sb-124 2.40E-14 100 I-131 2.00E-14 100 Cs-134 1.60E-12 100 Cs-136 5.30E-14 100 Cs-137 3.80E-14 7 Ba-140 6.70E-14 100 Ce-141 4.70E-14 100 Ce-144 2.00E-13 100 Zn-65 5.90E-14 100 Ba-133 2.60E-14 100 Sb-125 1.80E-14 100 Others:

i 27

TABLE 1.1-1 (Continued)

DRESDEN NUO'IAR POWER STATION UNIT 2/3 ETTLLTIT AND WASTE DISPOSAL SDtIAn'UAL REPORT JANUARY TEROUO3 JUNE 19 85 2/3 Ch1=nev GASEQUS ETTLUENTS GROUND LEVEL RELEASES SDfI-ELEVATED RELIASES v1 ELEVATED RELEASES Decket Nos. 50-237. 50-249 CONTINt'0US MTE 'AM "r JCLIDES RELIASEDI UNIT l 1s t e_ QUARTER b QUARTIR l & QUARTER l S UARTER FISSION CASESi ci l N ( l 1 ci i 2.69E+02 1 4.18E+02 i i Xe-138 Ie-135= l Ci I 5.15E+01 '

4.99E+01 I (

1 Ci l

  • I Kr-47 s _ iorm ?
  • a _ vera, t tr-88 i Ci I Kr-85e i Ci a
  • 1_ ! arm ? i Kr-85 i Ci l 2.70E-02 l' 1_ car ny I Xe-135- I Ci I 4.60Et02 1 1 ;7 era,  !
  • 2 'irmt  !

Xe-133 i Ci i I Others: 1 Ci i i l

Ci i 11 Ci 4 7.81E+02 l' l.06E+03 NOST NONv TOTAL ICDI?ES i '

f I-131 Ci 1 1.53E-02 2.21E-02 i I-133 Ci I 9.42E-02 1.05E-01 I-135 ll Ci 1 1.64E-01 1.24E-01 i Ci a 2.74E-01 2.51E-01 NONE NohT TOTAL PARTIC'*LATES 1 Sr-89 i Ci 3.30E-03 4.92E-03 1 Sr c0 I ci 9.13E-05 7.05E-06 i Cr-51 1 C' I w 1 Ci I 9.93E-05 1.25E-0.  ! t

  • 2.72E nc I I Co-58 4 ci i Fe-59 I ci
  • 3.37E nm ( )

Co-60 Ci 4.05E-04 1.17E-03 ( )

  • 4
  • I Z -95 Ci Nb 05 Ci i
  • l
  • i
  • I Ru-103 Ci i 1 Ae-110- Ci i
  • 1 8.26E-06 I SS-124 i Cf I 1.95E-06 4
  • 77r n1

_ 1 2.81E-03 I I I ci i

  • I
  • I t Cs-134
  • Cs-136 I ci i
  • l 1 1 Cs-137 I ci i 8.21E-05 1 4.81E-05 l l Ba-140 i ci i 1.05E-02 1.*sE-02 I I Ce-141 1 Ci 1 2.61E-04 2.55E-04 I I
  • I I Cc-144 I Ci i
  • I f Zn 45 i Ci l
  • I i 5a-133 i Ci i l i Sb-125 i Ci i I Ci l I i Others:

i Ci t i i Ci i i Ci i i Ci a i i ci i 1.75E-02 2.38E-02 1 NONT 4 yn*:v TOTAL

  • $ee Table for MDL of Each Nuclide 28

IABLE 1.1-1 (continued) usu.sLE.N . NUCLEAR PC'JER STATION UNITE ETELUENT AND '.*ASTE DISPOSAL SDlIANNUAL REFORT Julv TIIRC M Dece=ber 19 85 2/3 Chi =nev CASEOUS EFELUEh75 GROUND LEVEL RILEASES SDil-ELEVATED RELEASES xx ELE 7ATED RELEASES Docket Nos. 50-237, 50-24

  • W" c0 m WOUS MDE "'S '

'CLIDES RELEASEDI UNIT l hf QUARTER l A g QUARTER h1 QUARTER l 4g QUARTER FISSION CASESI Ci l Xe-139 i Ci I ' t 'rd'-

Xe-135m I 'Ci I 7. 0 cEa t '.75741 1 53E+01 Kr-87 Ci i 1.51E00 4.32E-01 Kr-88 Ci i 6.66E00

  • Kr-85: Ci I 4.60E00 Kr-85 Ci i 2.12E-02 6.67E-03 Xe-135 Ci i 2.52EM 2 4.43E+01 Xe-133 L Ci 1 2.68E41 2.85EOO Otherst Ci i Ci TOTAL Ci 6.77E+n? 1.4IE+02 NONE NONE 10015TS I-131 Ci 1.67E-02 3.99E-03 l- ll I-133 Ci 8.10E-02 1.25E-02 I-135 Ci 1.33E-01 1.65E-02 Ci i 2.31E-01 3.30E-02 NONE NONE

~ TOTAL PARTICULATES I Sr-89 Ci 2.09E-03 '

3.14E-03 Sr 30 Ci 1.46E-05 2.07E-05 e a Cr-51 i Ci Mn-54 I Ci- 2.40E-05 5.38E-05 Co-58 Ci

  • 2.89E-06 Fe-50 Ci 8.IIE-06 Co-60 C1 3.13E-04 3.95E-04 Zr-95 Ci
  • i Nb 45 Ci '

Ru-103 Ci l l Ci *

  • I l At-ilOn I ci *
  • i Sb-124 I-131 i C1 2.llE-03 5.74E-04  !
  • I Cs-134 Ci
  • I Cs-136 Ci i 1 i

Cs-137 Ci I 4.61E-05 3.61E-05 Ea-140 Ci i 1.14E-02 2.93E-03 i Ce-141 C1 2.14E-04 4.99E-05 Ce-144 f Ci Zn-65 Ci Ba-!33 Ci i Sb-!25 Ci i Others: I Ci l i Ci i 1- Ci i i Ci i i Ci i 7.20E-01  ::0NE NONE 10TAL 4 Ci Q I 62E-02

  • See Table for MDL of Each Nuclide 29

.. =. . .. _-

TABLE 1.1-1 (continued) i DRESDEN NUCLEAR POWER STATION TABLE OF MINIMUM DETECTABLE LEVELS FOR CASEOUS EFFLUENTS 2/3 Chimney CASEQUS EFFLUENTS AVERAGE FLOW 1st Qtr.-287,000 Ecfm Docket Nos. 50-237, 50-249 2nd Qtr.-451.000 Kcfm i MDL (uC1/ce)  ! 0F TIME < MDL

1. FISSION GASES I 'Ie-138 1.65E-07 0 Ie-135m 6.67E-08 0 Kr-87 5.30E-08 90 Kr-88 8.97E-08 88 Kr-85m 2.73E-08 91 Kr-85 5.73E-08 0 i Ie-135 2.72E-08 0 Ie-133 6.65E-08 92 Others:

4

, 2. IODINES I-131' 3.80E-14 0-I-133 4.40E-14 0 I-133 7.90E-14 0

3. PARTICULATES 1

Sr-90 1.00E-15 0

Cr-51 1.60E-13 100 Mn-54 3.30E-14 0 Co-58 3.50E-14 92 Fe-59 5.30E-14 96 Co-60 8.70E-14 0 Zr-95 3.10E-14 100 Nb-95 1.90E-14 100 Ru-103 1.90E-14 100 Ag-110m 1.90E-14 96
Sb-124 2.40E-14 96 I-131 2.00E-14 0 Cs-134 1.60E-12 100 Cs-136 5.30E-14 100 Cs-137 3.80E-14 0

^

Ba-140 , 6.70E-14 0 5 4.70E-14 0

Ce-141 Ce-144 } 2.00E-13 100 100 Zn-65 5.90E-14

( 2.60E-14 100 1

Bai133' 1.80E-14 100 Sb-,12 5',

Ot'gersk La-140- 3.00E-14 100 8

l, 30 l

TABLE I.1-1 (continued)

DRESDEN NUCLEAR POWER STATION TABLE OF MINIMUM DETECTABLE LEVELS FOR GASEOUS EFFLUENTS 2/3 CHIMNEY GASEOUS EFFLUENTS AVERAGE FLOW 3RD QUARTER:263K cfm 4TH QUARTER:257K cfm Docket Nos. 50-237, 50-249 MDL (uCi/cc)  % OF TIME < MDL

1. FISSION GASES Ie-138 1.65E-07 53 6.67E-05 70 Ie-135s Kr-87 5.30E 97 8.97E-08 98 Kr-88 2.73E-08 86 Kr-85s 5.73E-06 0 Kr-85 2.72E-08 35 Ie-135 79 Ie-133 6.65E Others:
2. IODINES

!-131 3.80E-14 0 1-133 4.40E-14 0 I-135 7.90E-14 29

3. PARTICULATES 1.10E-15 0 Sr-89 1.00E-15 0 Sr-90 1.60E-13 100 Cr-51 3.30E-14 78

'Ps-54 3.50E-14 98 Co-58 5.30E-14 98 Fe-59 8.70E-14 5 Cc-60 3.10E 100 Zr-95 100 Nb-95 1.90E-14 1.90E-14 100 Ru-103 100 Ag-110s 1.90E-14 2.40E-14 100 Sb-124 27 I-131 2.00E-14 1.60E-12 100 Cs-134 100 Cs-136 5.30E-14 3.80E-14 54 Cs-137 10 Ba-140 6.70E-14 4.70E-14 59 Ce-141 100 Ce-144 2.00E-13 5.90E-14 100 Zn-65 100 Ba-133 2.60E-14 1.80E-14 100 Sb-125 3.00E-14 Detected but not reported.

Others: La -140 31

J TABLE 1.1-1 (Continued) i.

I DRESDEN NUCLEAR P0k'ER STATION UNIT 2/3

, EFTLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT JANUARY -THROUGH JUNE 19 85

- 7/3 VENT CASECUS ETTLUZhTS I GROUND LEVEL RELEASES 4

i Tr SEMI-ELEVATED RELIASES ELEVATED RELEASES Dockat Nos. 50-137,5gg g m er

' JCLI :ES RELEASEDI UNIT l 181QUARIER 2n19UAATEE l .LuQUARTER 2ndQUARTER l 1 4 FISSICN CASESi -

  • I Xe-138 '

Ci i Xe-135m i ci 1

  • 3
  • i Kr-47 Ci l
  • 1*.03E00 1 {

Kr-48 Ci i

  • 9.68E-01 Kr 25m Ci i * '

2.70E00 i Kr-45 i ci I Te-135 '

Ci i 1.57E+01 4 9.57E00

,' Xe-133 Ci I 6. 65 E-01 1.07E01 .

i Others: Ci s Ci -

TOTAL C1 1.64E+0L 2.50E+01 IIONE nun r.

IODINES 5 I-131 '

C1 1.66E n1 1.33E-03 1 ,

t

' I-133 4 ci i 9.71E-01 1.10E-02 i i

$ I-!35 C1 1.61E-02 2.05E-02 TOTAL Ci 2.73E 32 3.2SE-02 wavr unwy PARTICULATES 1 Sr-49 i ct 2.53E-04 6.15E-04 n Sr 80 i Ci' '

3.48E-06 6.37E-05 l Cr-51 1 Ci l' 3. 75 E-04 4. 47 E- 04 l

Mn-54 Ci i 4.17E-04 5.94E-04 Co-58 Ci i 1.82E-04 1.44E-04

, Te-59 Ci i 1.6&E-04 3.15E-04 Co 'O '

Ci 4 4.2&E-03 3.94E-03 e

  • 1 Zr 05 Ci 1

) W 35 I ci 4.60E-06 1 Ru-IO3 1 ci 1.26E-05 '

8.06E o6 i 7

i Ci i *

  • l Ar-!!Om '

j Sb-124 I Ci i 9.5CE-06 1.39E-05 -l I-131 i Ci 1 3.96E-04 3.28E-04 1

. Cs-134 Ci 1 3.01E-06 '

4.80E-07 i

' 2.71E-05 7.64E-06 i Cs-136 Ci i Cs-137 Ci 1 5.6iE-05 11 7.23E-05 1

!a-!40 Ci i 2.15E-03 1 1.96E-03 1

5. 65 E-05 5.25E-05 I l Ce-141 Ci 1
  • 1 Ce-144 I Ci i 1 Zn A5 I ci I 3. 87E-05 2.48E-05 t 8
  • 1 1

)92-133 Ci i -l Sb-125 Ci i

  • l Others: '

Ci l ii l Ci I  !

Ci t i T

Ci i Ci > i

]

+ TOTAL Ci 6 8.37E-03 6 8.59E-03 NONE yoyt i

  • ' *See Table for ICL of Each Nuclide 4
j. 32

. , - , ,n,- --..-n_ - . . . , ~ , , , , . . , _ - - - - . _ , - , , . - , , . - , - , . - , . . - . . .

TABLE 1.1-1 (continued) une.s0i.S NCCLEAA POWER STATION UNIT ? m Eml. TIT AND tJASTE DISPOSAL SDtIANNUAL REPORT J1*I.Y THRCUG11 DECE".3ER 19 85 2/3 VENT CASEQUS ETELUENTS GROUND LEVEL RELEASES II SDtI-ELEVATED RELEASES ELEVATED RELEASES Docket Nes. 50-237, 50-249 CO'."TINrot'S MODE 'A?tu w r TCI. IDES RELEASEDI UNI;l 1.a QUARTER A;,3 QUARTER 17sQUARTER l 1r.hQUARTER FISSION CASESI ci l I Xe-139 i Ci 8 *

  • I Xe-135m i Cf I *
  • i
  • I Kr-87 i Ci i
  • I Kr-89 i Ci I Kr-85m i ci i
  • 1.76E00 i Kr-85 Ci i Xe-135 Ci i 1.39E+01 1.92E+02 Xe-133 Ci i 1.09E00 2.68E+01 Others; ll Ci i i ci i TOTAL i Ci 4 ' _
  • n em i 2.21EM2 vm r i vnwr ICDINES I I I-131 l C' I 7 nir na 3.64E-04 T-133 i Ci I 3.64E n1 1.14E-03 I I-135 i Ci I 5. 4 t.E-03 1.02E-03 l TOTAL i Ci I 9.78E-01 2.52E-03 vcyr i vn..r .

'PARTICI1ATES 1 i I: l Sr-69 i Ci i 6.46E-05 3.76E-06 n l Sr 30 l Ci I 7 '*T nt 2.33E-06 ( l Cr-51 i Ci I 9.17E-04 1.ctr n l Mn-54 i Ci I 8.49E-04 c.sne-os l Co-58 I ci i 2.10E-04 4 o?r-ns Fe-59 i Ci l 4.38E-04 1.42E-04 Co A0 l Ci I 4.39E-03 2.70E-03 Zr 05 l ci i 1.62E-05

  • u Nb 45 l Cf i 1.95E-06 9.62E-07 Ru-103 I ci i 9.62E-06 2.40E-06 Ar-110m a ci i 1 ??E ^*

Sb-124 1 Ci i 2.7'E n* 1.79E-05 I-131 I ci i 1.42E-04 7.40E-05 Cs-134 Ci i Cs-136 Ci I 3.78E-06 3.47E-06 Cs-137 Ci 1 5.75E-05 4.99E-05 i Ba-140 i Ci i 1.03E-03 4 3.80E-04 i l Ce-141 I ci i 1.14E-05 4.35E-06 i i i e l l Ce-144 i Cf I 6.29E-06 Zn-65 i Ci i 2.98E-05 4 4.95E-06 i

  • l
  • l Ba-133 i Ci i Sb-125 l Ci I
  • i 1.47E-05 ( i Others: i Ci i i l i i Ci I ( i l Ci i i i I Ci i i C1 i i TOTAL C1 1 8.29E-03 I 4.?'e-01 I wn. r .. n . ,
  • 5ee Table for MDL of Each Nuclide 33

P k

4 w

TABLE 1.1-1 (continued)

DRESDEN NUCLEAR POWER STATION

~

TABLE OF MINIMUM DETECTABLE LEVELS FOR CASEOUS EFFLUENTS JAN-JUN, 1985 j 2/3 VENT GASEOUS EFFLUENTS AVERACE FLOW 220,000 cfm I OF TIME < MDL  !

MDL (uci/cc)

Docket Nos.' 50-237, 50-249

1. FISSION GASES Ia-138 1.31E-07' 100 Ze-135m 6.67E-08 100 Kr-87 8.47E-08 88
  • 1 Kr-88 1.46E-07 95 Kr-85m 2.73E-08 86 Kr-85 5.73E-08 100
Ze-135 4.33E-08 0 Ze-133 1.14E-07 0 ,

Others:

2. ' IODINES I-131 3.80E-14 0 I- 133 4.40E-14 0 I-135 7.90E-14 0 1

l 3. PARTICULATES t 1.00E-15 0 i Sr-90 1.60E-13 0

! Cr-51 I 3.30E-14 0 Mn-54 3.50E-14 0 Co-58 5.30E-14 0 f Fe-59 0 Co-60 i 8.70E-14 100 Zr-93 3.10E-14 1.90E 96 ,

Nb-95, 1.90E-14 0 i Ru-103 100 Ag-110m 1.90E-14 0

Sb-124 2.40E-14 0

+

I-131 2.00E-14 0 ,

Cs-134 1.60E-12 0

Cs-136 5.30E-14 0 Cs-137 3.80E-14 i

Ba-140 6.70E-14 Ce-141 4.70E-14 100 Ce-144 2.00E-13 0 Zn-65 5.90E-14 100

}'

Ba-133 2.60E-14 100 Sb-125 1.80E-14 100 Others: La-140 3.00E-14 1

4 i 34 1

._ . - - _ . - , . . , , . . - . - . _ _ - - _ ~ . - - - . . . - - ,_ ----- ,,_ - . _ . - - ~ _ - _ ,

TABLE 1.1-1 (continued)

DRESDEN NUCLEAR POWER STATION TABLE OF MINIMLM DETECTABLE LEVELS FOR GASEOUS EFFLUENTS JUIe-DEC , 1985 2/3 VE!;T CASEQUS EFFLUENTS AVERAGE FLOJ D-2: 110K cfm D-3: 110K cfm

. Docket Nos. 50-237, 50-249'(uci/ce)

MDL Z OF TIME < MDL 1.' FISSION GASES Ie- 138 1.31E-07 100 Ie-135m 6.67E-08 100 Kr-87 8.47E-08 100

Kr-88 1.46E-07 100 Kr-85m. 2.73E-08 96 Kr-85 5.73E-06 100 Ie-135 4.33E-08 42 '

Ie-133 1.14E-07 85 Others:

2. IODINES I-131 3.80E 6 I-133 4.40E-14' 9 I-135 7.90E-14 37
3. PARTICULATES Sr-89 1.10E-15 0 Sr-90 1.00E-15 0 Cr-51 1.60E-13 20 Mn-54 3.30E-14 0 co-58 3.50E-14 9 Fe-59 5.30E-14 17 Co-60 8.70E-14 0 Zr-95 3.10E-14 97 Nb-95 1.90E-14 94 Ru-103 1.90E-14 83 Ag-110m 1.90E-14 97 Sb-124' 2.40E-14 66 I-131 2.00E-14 14 Cs-134 1.60E-12 100

.Cs-136 5.30E-14 94 Cs-137 3.80E-14 3 Ba-140 6.70E-14 6 Ce-141 4.70E-14 74 Ce-144 2.00E-13 71 Za-65 5.90E-14 94 Ba-133 -2.60E-14 100 Sb-125 1.80E-14 94 Others: La-140 3.00E-14 Detected but not reported.

35

TABLE 1.2-1 DRESDEN NUCLEAR PC'*ER STATION ETTLUENT AND WASTE DISPOSAL SDd.IANNUAL REPORT JANUARY TEROUCH JUNE 19g LIQUID ETTL"ENTS SLT.ATION OF ALL RELEASES Docket Nos. 50-10, 50-237, 50-249 UNIT igQUARTER 7-dQUARTER L. FTSSION AND ACTTvATTON Po m'c-e

1. Termi Set.... (- - - *- ' - d - -s o. s' , C1 1.17E-01 1.79E00
2. Aversee Dfh..A cc--. 5. 4 3 s.-9 A uCi/mi 3.93E-10 7.44E-09
3. Pereene of Aee14- h!, e 4 4. T
t. TRITItN
1. Total Relen.e ci 1.14E00 L 61E00
2. Averare Diluted Cene. Dur e -,e. 4ra uCi/ml 1.21E-07 3. gAE r)8
3. Z *
  • Pereene of Atelicable tf-fe

. DISSOLVD AND ENT7.AIND GASES

1. Total Release Ci < st. <MDL
2. Averte Diluted Cone. Durine n.ried uC1/n1 < MDt < MDL
3. Percene of Aeelicable Li-te Z
  • I

. GROSS ALPHA RADICAC*I7ITY 1 Total Release Ci 6.74E-04 1,14E 11 VCLL I CE WAST! REL'ASED (erier e3 A* Mef ) liters 3.93E+06 5.43E+C6 VOLUME Of DILUTICN VATER 15ED IXTIT; FE'!T (807A liters l2.58E+10 6.15E+10 e

ve. .,- n r a ,. . - e n.. . . . ve, ,,

,,,e,- t-, .m m.,.. tie... 2.49E+11 l4.47E+11

  • Will be Included in the Annual Report on Envrion= ental Radioactivity Data 36

TABLE 1.2-1 (Continued)

DRESDEN NUCLEAR POWER STATION EFILUENT AND WASTE DISPOSAL SD".IANNUAL REFORT

_ JULY THROUCH DECEMBER 19_lj, LIQUID EFTLUENTS SL?.".ATION OF ALL RELEASES Docket Nos: 50-10, 50-237. 50-249 1

i UNIT 3rdOUARTER &t5CUARTER b

f

4. FTSSION AND AC*TVA*' N *""**
1. Torni Refetee faae da * . w a3.- -. ... . T s_. Ci 1.25E-01 1.70E-05
2. Averne D*t *.d e--- n. d-, n. 4 -a uC1/=1 2.60E-10 1.09E-11
3. Pereene ef .aerts-,st, +44 I e e
3. TRITTUM
1. Total Release Ci 6.7&E-01 2.29E-02 _
2. Averare Diluted Cene. n.2 re -, n . .4 uCi/mi 1.40E-09 6.72E 11
3. I *
  • Percent of Acelicable Ef-ir

'. DISSOLVED AND ENTRAINED CASES

! 1. Total Release Ci < vDt < et

2. Averre Diluted Conc. Durine Peried uC1/~1 <vDL < MDL i
3. Percent of Atelicable Li=it T *
  • GROSS ALPHA RADICAC IVI*Y 1 Total Release C1 1.93E-04 9.7?r-67 l

. VOLUME OT WASTE RELEASED (erior to dil 2-fer) liters 1.19E+06 4.60E+05

. votUxE cE ottmcN VmR tm mn rm m et, I ...oE.n u i t.n 1 37

TABLE 1.2-1 (Continued)

DRESDEN NUCLEAR POWER STATION EFFLUENT AND VASTE DISPOSAL SEMIANNUAL REPORT JANUART THROUGH JUNE' 19 85 RADVASTE LIQUID EFFLUENTS

1. Number of Batch Releases: 107
2. Total Time Period for Batch Releases: 120,193 min
3. Maxi =um Time Period for a Batch Release: 6,051 min.
4. Average Time Period for Batch Releases: 1,123 min.
5. Minimum Time Period for a Batch Release 5 min.
6. Average Stream Flow During Periods of Release of Effluent into a Flaving Stream: 4.04E05 Liters / min.

Docket Nos. 50-10, 50-237, 50-249 CONTINUOUS MODE BATCH MODE sv.1%s Paleased l Unit 1st QUARTER 2nd QUARTER l 1st QUARTER 2nd QUARTER I Sr-89 l Ci l l 1.86E-03 1.85E-03 I Sr-90 l Ci l l 4.21E-03 7.00E-03 l Ar-41 Ci l l

  • 2.32E-04 l Mn-54 l Ci I h 3.44E-03 7.31E-03 l Co-58 il Ci I 1.03E-04 2.73E-03 l Fe-59 i Ci - 1.20E-04 5.53E-03 l Co-60 Ci '

l 3.78E-02 4.42E-01 l Zn-65 Ci l l *

  • Ru-103 l Ci l l
  • 1.04E-04 Sb-122 l Ci l l l
  • 1.18E-02 Sb-124 l Ci l l l
  • l 2.04E-04 l I-131 l Ci l '

l 8.32E-04 1.65E-03 I-133 l Ci l ll l

  • 4'.0E-08 I-135 l Ci l l
  • 2.3E-08 Cs-134 l Ci l l 3.39E-03 8.51E-02 Cs-137 l Ci l l l! 6.36E-02 1.19E00 Ba-140 l Ci l l l 1.06E-05 1.68E-03 La-140 l Ci ! l 6.36E-04 3.59E-03 Ce-141 l Ci l ( l 4.60E-05 2.80E-03 Others: Cr-51 l Ci l l l 5.98E-04 2.29E-04 u-110- l Ci l l
  • 1.05E-05 l Ci l l l l Ci l l TotalFbe'riod l Ci l NONE l NONE 1.17E-01 1.79E00 (e-133 l Ci l l
  • l
  • I2-135 l Ci l l
  • l 1.19E-04
  • See Table for MQL of Each Nuclide 38

TABLE 1.2-1 (continued)

DRESDEN NUCLEAR POWER STATION EFTLUCiT AND WASTE DISPOSAL SEMIANNTfAL REPORT

_JrLY - THROUGH DECEMBER 19 85 RADVASTE , LIQUID EFFLUENTS

1. Number of Batch Releases: 7
2. Total Time Period for Batch Releases: 6.115 min.
3. Maximum Time Period for a Bacch Release: 2.295 min.

'4. Average Time Period for Batch Releases: 874 min.

5. Minimum Time Period for a Batch Release: 354 min.
6. Average Stream Tiov During Periods of Release of Effluent into a Flowing Stream: 6.06E+05 liters / min.

Docket Nos: 50-10, 50-237, 50-249 CONTINUOUS MODE BATCH MODE

.n a h Paleased lUnie 3rd QUARTER 4th QUARTER l3rd QUARTER 4th QUARTER Sr-89 Ci

  • No-Sr-90 Ci 1.79E-03 DISCFARGE Ar-41 Ci
  • Mn-54 l Ci 1.54E-03 Co-58 Ci 4.13E-05 I Fe-59 Ci l l

2.79E-02 Zn-65 Ci

  • Ru-103 Ci
  • Sb-122 Ci
  • Sb-124 Ci
  • Z-133 l Ci
  • 1-135 Ci
  • Cs-134 Ci l' 4.06F-03

. g-137 Ci 8.92E-02 I

Ba-140 Ci

  • La-140 i Ci 6.38E-05 Ce-141 Ci [ 6.50E-05 l Others; cr-51 Ci 1 1.77E-04 Te-99m Ci l 3.78E-05 C1 Ci TotalFNe'riod Ci NONE NONE 1.25E-01 Xe-133 Ci *

! Xe-135 Ci '

  • l Y
  • See Table for MDL of Each Nuclide 39

TABLE 1.2-1 (continued)

DRESDEN NUCLEAR POWER STATION Doc h

  • Nos. 50-13, TABLE OF MINIMUM DETECTABLE LEVELS 5 0- 2.' 7 , 50-249 FOR LIQUID EFFLUENTS JAN-JUN, 1985 TOTAL GALLONS RELEASED 2.04E+06 RADWASTE LIQUID EFFLUENTS MDL (uCi/nl)  % of Gallons < HDL 4.00E-08 0 Sr-89 9.00E-09 0 Sr-90 3.07E-08 94 Ar-41 6.60E-08 0 Mn-54 8.00E-08 0 co-58 1.10E-07 0 Fe-59 1.70E-07 0 Co- 60 1.3CE-07 100 2n-65 5.39E-08 90 Ru-103 7.01E-08 86 Sb-122 89 Sb-124 4.06E-08 0

I-131 8.70E-08 96 I-133 5.34E-08 9.15E-08 95 I-135 7.20E-08 0 Cs-134 0

Cs-137 8.90E-08 2.09E-07 0 Ba-140 2.30E-08 0 La-140 1.10E-07 0 Ce-141 7.70E-08 100 Xe-133 7.90E-08 94 Xe-135 40

TABLE 1.2-1 (continued)

DRESDEN NUCLEAR POWER STATION Docket Nos. 50-10' 50-237, 50-249 TABLE OF MINIMUM DETECTABLE LEVELS FOR LIQUID EFFLUENTS JUL-DEC, 1985 Rndvaste LIQUID EFFLUENTS TOTAL GALLONS RELEASED 1.36E+05 MDL (uCi/ml)  % of Gallons < MDL Sr-89 4.00E-08 100 Sr-90' 9.00E-09 0 Ar-41 3.07E-08 100 Mn-54 6.06E-08 14 Co-58 6.77E-08 78 Fe-59 8.90E-08 100 Co-60 1.35E-07 0 2n-65 1.10E-07 100 Ru-103 5.39E-08 100 Sb-122 7.01E-08 100 Sb-124 4.06E-08 100 I-131 7.42E-08 100 I-133 5.34E-08 100 I-135 9.15E-08 100 Cs-134 6.32E-08 0 Cs-137 8.90E-08 0 Ba-140 2'.09E-07 100 La-140 2.30E-08 78 Ce-141 1.00E-07 78 Xe-133 7.70E-08 100 Xe-135 6.26E-08_ 100 Cr-51 6.20E-07 78 Tc-99m 5.32E-08 78 Ce-144 4.0'5E-07 100 Kr-88 2.23E-07 100 Xe-133m 5.78E-07 100 Xe-138 1.89E-07 100 Kr-87 1.31E-07 100 Mo-99 4.92E-07 100 41

. = .. _ . . .

TABLE 1.2-1 (Continued)

DRESDEN NUCLEAR POWER STATION ETTLUENT AND WASTE DISPOSAL $DilANNUAL REPORT JANUARY THROUGH JUNE 19 85 LPCI LIQUID EFTLUENTS

1. Number of Batch Releases: 100
2. Total Time Period for Batch Releases: 124 min.
3. Maximum Time Period for a Batch Release: 1.24 min.
4. Average Time Period for Batch Releases: 1.24 min.
5. Minimum Time Period for a Batch Release: 1.24 min.
6. Average Stream Flow During Periods of Release of Effluent into a Flowing Stream: 2.67E06 liters / min.

Docket Nos. 50-237 C kNOUSMODE BATCH MODE n et w . p.T.. al Unit 1st QUARTER l2ndQUARTIR lst QUARTER l2nd QUARTER -l Sr-89 -

Ci l 1.45E-05 2.63E-06 Sr-90 Ci l l **

  • Ar-41 Ci l *
  • Mn-54 Ci 2.29E-05 2.68E-05 Co-58 Ci *
  • Fe-59 Ci
  • L
  • Co-60 l Ci l ~1.15E-04 1.21E-04 Zn-65 Ci l *
  • Ru-103 l Ci
  • l
  • Sb-122 Ci *
  • i Sb-124 Ci * ' *

)

I-131 Ci l *

  • l I-133 Ci l l * *~

I-135 Ci l '

1.64E-06

  • Cs-134 Ci '

Cs-137 l ci l l 1.32E-05 2.59E-05 Ci

  • Ba-140 *
  • e La-140 Ci l Ce-141 Ci !
  • l e Othern Ci l l Ci l Ci l 4

Ci l Total F b b d Ci NONE NONT 1.687-04 1.77E-04 Xe-133 i ci l *

  • Ie-135 Ci l * *
  • See Table for MDL of Each Nuclide 42

TABLE 1.2-1 (Continued)

DRESDEN NUCLEAR POWER STATION EFTLUEr AYD WASTE DISPOSAL SEMIANNUAL REPORT JULY THROUGH DECEMBER 19 85 tycr LIQUID EFTLUENTS

1. Number of Batch Releases: 81
2. . Total Ti=a Period for Batch Releases: 100 min.
3. Maxi =um Time Period for a Batch Release: 1.24 min.
4. Average Time Period for Batch Releases: 1.24 min.
5. Minimum Time Period for a Batch Release: 1.24 min
6. Average Stream Flow During Periods of Release of Effluent into a Flowing Stream: 3.10E+06 liters / min.

Docket Nos; 50-237, 50-249 CONTINUOUS MODE BATCH MODE Nr1%s F*1"W Unit 3rd QUARTER 4th QUARTER l 3rd QUARTER 4th QUARTER St-89 Ci -1_?ne-n6 l

  • Sr 1 Ci 4.10E-06
  • Ar-41 l' Ci *
  • Mn-54 C1 2.3aE-05 3.60E-06 Co-58 Ci '

Fe-59 Ci *

  • Co-60 C1 1.49E-04 3.0SE-05 Zn-65 l Ci *
  • Ru-103 Ci 'l
  • Sb-122 Ci
  • Sb-124 Ci
  • 7-131 Ci' '
  • I-133 Ci l *
  • I-135
  • Ci
  • Cs-134 l Ci *
  • Cs-137 Ci 5.47E-05 2. 60E- 06 Ba-140 l Ci
  • l
  • La-140 l Ci .
  • Ce-141 l Ci e
  • Others: Ci Ci l C1 Ci Total F fe'-fod Ci NONE NONE l 2._'E-04 3.70E-05 Xe-133 Ci l l
  • l
  • Xc-135 Ci l l
  • l *
  • See Table for MDL of Each Nuclide i

43

_ _ _ __.___j

TABLE 1.2-1 (continued)

DRESDEN NUCLEAR POWER STATION TABLE OF MINDiUM DETECTABLE LEVELS JAN-JUN, 1985 FOR LIQUID EFFLUENTS Docket Nos. 50-237, 50-249 LPCI LIQUID EFFLUENTS TOTAL GALLONS RELEASED 4.34E+05 MDL (uCi/ml)  % of Gallons < MDL Sr-89 4.00E-08 0 Sr-90 9.00E-09 100 Ar-41 3.07E-08 100 Mn-54 6.60E-08 0

.Co-58 8.00E-08 100 Fe-59 1.10E-07 100 Co-60 1.70E-07 0 Zn-65 1.30E-07 100 Ru-103 5.39E-08 100 Sb-122 7.01E-08 100 Sb-124 4.06E-08 100 I-131 8.70E-08 100 I-133 5.34E-08 100 I-135 9.15E-03 100 Cs-134 7.20E-08 9.2 Cs-137 8.90E-08 0 Ba-140 2.09E-07 100 La-140 2.30E-08 100 Ce-141 1.10E-07 100 Xe-133 7.70E-08 100 Xe-135 7.90E-08 100 44

TABLE 1.2-1-(continued)

DRESDEN NUCLEAR POWER STATION TABLE OF MINIMUM DETECTABLE LEVELS Docket Nos. 50-237, 50-249 FOR LIQUID EFFLUENTS JUL-DEC, .1985 LPCI LIQUID EFFLUENTS TOTAL GALLONS RELEASED 3.52E+0j, MDL (uci/ml)  % of Callons < MDL Sr-89 4.00E-08 81 Sr-90 9.00E-09 62 Ar-41 3.07E-08 100 Mn-54 1.90E-07 79 Co-58 1.93E-07 100 Fe-59 2.84E-07 100 Co-60 4.05E-07 15 Zn-65 2.94E 100 Ru-103 5.39E-08 100 Sb-122 7.01E-08 100 Sb-124 4.06E-08 100 I-131 2.39E-07 100 I-133 5.34E-08 100  ;

I-135 9.15E 100 Cs-134 2.01E-07 100 Cs-137 2.47E-07 17 '

Ba-140 2.09E-07 100 La-140 2.30E-08 100 Ce-141 3.85E-07 100 Xe-133 7.70E-08 100 Xe-135 2.27E-07 100 Ce- 144 1.59E 100 Kr-88 7.90E-07 100 Xe-133m 1.99E-06 100 Xe-138 6.38E-07 100 Cr-51 2.03E-06 100 Kr-87 3.86E-07 100 Mo-99 1.53E-06 100 45

TABLE 2.0-1 DRESDEN NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL SDtIANNUAL REPORT JANUARY THROUGH JUNE 19 85 SOLID WASTE AND IRRADIATED FUEL SHIPMENTS Docket Nos. 50-10, 50-237, 50-249 A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (NOT IRRADIATED FUEL)

1. Type of Waste Unit 6-month ceriod m3 6.88E+02
a. Scent resins. filter slud es, evaeorator bott:cs, etc. C1 1.30E+03 m3 5.65E+02
5. Dry ecceressible unste, cont:t::1: sted ecule. , etc. C1 2.18E+01 23
c. Inadiated ccroments, emtrol reds, etc. Ci

,3

d. Other (describe) Ci
2. Estimate of Major Nuclide Composition (by type of vaste)

T Ct 5 Co-60 52.8  : 6. 86EW2 Fe-55 37.0  : 4. R 1 rm ?

Mn-54 4.4 5.72E+01 Ce-137 3.1  : 4.01F+0i_

Other 2.7 3.51EM1

b. Co-60 64.0 I ' l.40E4 1 Fe-5~ 28.8 I' 6.28E00

~

Mn-54 4.3  : 9.37E-01 Ce-137 2.8 I ' 6.10E-01 Other 0.1 I' 2.18E-02

c. I
l'
d. Il
3. Solid Waste Disposition NUMBER OF SHIPMENTS MODE OF TRANSPORTATION DESTINATION 145 Motor Freight (Exclusive Use Only) Barnwell S.C 46 Mator Freight (Exclusive Use Only) Richland. VA.
1. IRRADIATED FUEL SHIPMENTS (Disposition)

NUMBER OF SHIPMENTS MODE OF TRANSPORTATION DESTINATION NONE 46

TABLE 2.0-1(continued)

DRESDEN NUCLEAR POWER STATION 1 EFFLUENT AND WASTE DISPOSAL SDiIANNUAL REPORT Jt'LY THROUGH DECEMBER 19 85 SOLID WASTE AND IRRADIATED FUEL SHIPMENTS

) Dockets Nos: 50-10. 50-237, 50-249 A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (NOT IRRADIATED FUEL)

1. Type of Waste Unit 6-month neriod m3 6 car +n?

a a. Seent resins, filter sludaes, evaporator bottoms, etc. C1 1.76E+03 j m3 3.5GE+02

, b. Dry cacaussible wuste ememinated equip. , etc. Ci 9.89E00 4

33 1.66E+01

c. Irradiated ccroonents, control rods, etc. Ci 6.32E+04 i m3 l d. Other (describe) C1
2. Estime.te of Major Nuclide Composition (by type of waste) t Ci a2 Co-60 52.8  % 9.29E+02 Fe-55 37.0  % 6.51E+02 Mn-54 4.4  % 7.74E+01 Cs-137 3.I  % 5.46E+01 j Other 2.7  % 4.75E+01
b. Co-60 64.0 I 6.33E00 1

Fe-55 28.8  % 2.85E00 Mn-54 4.3  % 4.25E-01 Cs-137 2.8  % 2.77E-01 Other 0.1  % 9.89E-03

c. Co-60 52.3  % 3.31E+04 Fe-55 41.2  % 2.60E+04 Ni-59 0.1 I 6.32E+01 Ni-63 6.3  % 3.98E+03 j Other 0.1  % 6.32E+01
d. I
3. Solid Waste Disposition NUMBER OF SHIPMENTS MODE OF TRANSPORTATION DESTINATION 125 MOTOR FREIGHT (EXCLUSIVE USE ONLY) BARNWELL, S.C.

27 RICHLAND, WA.

MOTOR FREIGHT (EXCLUSIVE USE~0NLY)

^

B. IRRADIATED FUEL SHIPMENTS (Disposition)

NUMBER OF SHIPMENTS MODE OF TRANSPORTATION DESTINATION 2

NONE 47 i

T 4

TABLE 2.0-1 (continued)

DRESDEN NUCLEAR POWER STATION' l

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT JANUARY THROUGH JUNE 19 85 ABNORMAL RELEASES Docket Nos. 50-10, 50-237, 50-249

A. LIQUID
1. Number of Releases: 2
2. Total Activity Released: 6.38E-02 Ci*

i i

i r B. GASEOUS i- 1. Number of Releases: 1 4

2. Total Activity Released: 3.40E-05 Ci**

1 i

l This is the maximum estimated total. For further information, refer to Deviation Variance Reports #12-3-85-33 and 12-3-85-34.

\

This is the maximum estimated total. For further information refer to l Deviation Variance Report #12-3-85-5. f

)

1 1

1 48

TABLE 2.0-1 (continued)

DRESDEN NUCLEAR POWER STATION EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT JULY THROUGH DECEMBER 19 85 ABNORMAL RELEASES DOCKET NOS. 50-10, 50-237, 50-249 A. LIQUID

1. Number of Releases: 0
2. Total Activity Released: 0 B. GASEOUS
1. Number of Releases: 1
2. Total Activity Released: 3.09E-03 Ci
  • This is the maximum estimated total.- For further information, refer to Deviation Variance Report # 12-8-85-101.

49

i Figure 3.1-1 , k Estimated Cumulative Gama Dose (mrem) l from the Dresden Station for the period January-December 1985.

~

Isopleth Lable3 25 Small figure - multiply by 10-3 Large figure - multiply by 10-4 y 15 -

w SCALE l , o 8 2 ,,Lg g O s t 3 l$43 Y kville

'n Plos held

/ .

i p .,

I K N O A L L ;,

.:.

  • s 3 )

s e gp Lockport us e 4

10 u se - 'WE'- ** '

/ l Len *C El , 25 r

  • t. , . ,. ,o l }

/

  • n a e,
  • t,

{4'*E

/$

/

j -

J je s

a=

5 w

L 1

,, httoa ,

,,,o /J ,i Sl' 100 i -

p Q) ,

x 1

r g , j " ' "

w,w.

o ist iis city I ton c- - - -

~, e Broid a Mor "

s G R U N D Y ' -

\

Gordaes e

10 SCALE o a 80 ,,

no ite 50 9 .,., io is to 8.' 38 '"

Figure 3.1-2

. ,;< 4 25 Estimated Total Concentration (pCi/m3) of l Noble Gases from the Dresden Station for the period January-December 1985, M

4o 7  ;

Isopleth labels Small figure - multiply by 10-I l

Large figure - multiply by 10-1 =

25 X *

~ 15

/ D f mm.

SCALE

!c --

uitts

'IE Y ville _

e b um

'*d' -

+ , . jl)

  • 3

~

15 j w

l $

Loc port 9

  • T ** w 'd

/

E N D A L L ;' l us e e

n  ;

Q

' 7.5

/ ) N

,)yf. l- 4 25 l  %>E . a ;r

+,

1 40 g' 0

.=

. 3 ~

W

., ~ %x R cm ,

l L L d / %tto ,, 10 25[ g , _ _

a r so '* Sl '

e 15 g e C'io Mo"'s ,, u s 5:

j 0,5 . } , g

,,te w A / , .T *,

. .s / 'g Ml 1 se  :(g 3 y i W.ime ton

' ~

, 'Ftb *> A I

10 '#

"  ;;, , Braid '

y,, ,

G N D Y .ieraenne IS s

,i - -. .

Gordnei a t ese.

south g V #,o Wilmington. N F

. 5

/ ett a SCALE

o. s io is to uitts 51

'O 's to s.s so su L . _? _

Figure 3.1-3 i Estimated Total Concentration (pCi/m3) of ,l Iodine from the Dresden Station for the period January-December 1985. >

M 25 g'15;

, i Isopleth Labels Small figure - multiply by 10-4 7[ 1 7

Large figure - multiply by 10-4 -% ja I j ',*

w e e

, -5

/ .

SCALE l ' ' untts

/ p .... ,

Promfeid y a '

  • t ..

q , w[

1' '#' '

d i

f A 5i x

  • 25t ~ i K E D L L ,

J

, un a/ s I wm i 2 2.5 us sa 8"'y"**

f <

l ,

2 10 t% pe jed J.' ,.,(/

~

c.,

/_ c 5 o g g 2.5 y 3.5 j / i ej I ,,

= ,

%,,an

,.e / e'* Si il h u.. c ;s -.  % _,,*..s.

~

g,

.' *. j

,Y h No d ]M ett ,,3 City p

l [

J a l

Q

.h. tan t' ~ ~ ~ * * ~

s*,, O'0' I Moron y 'o G 0 '<<

g,,_ .. .

2 N

Gardnei

/ v

  1. ,o South Wilmingtoni K A N iL L 17 SCALE 52 0 io is ao uitts
j. 9. .s __

so is ao as so nu

l. . .-. - :1 ._ _. _-.

Figure 3.1-4 ,

e o;i Estimated Total Concentration (pCi/m3) or 50 Particulate Matter from the Dresden Station g 20 for the period January-December 1985* 20 Isopleth Labels Small figure - multiply by 10-5 30 Large figure - multiply by 10-5 l P,

e

/

10 SCALE

?. e ,

" E I i

9 TY kvttle $ l

  • = " W Plainf.ete

,q '

+ 7 5

e , , < c. -

, z,dfLk ,

.s.

4 3

us s t- eD q b l '~ 20 L7n!, ,x D

/ 8 e, ,

['I i

% iN o ,

N [ ,

\ L L 3-e wtton d j = '

s E f t- o

,,4 T r ~i  :

l4._e

- N

! , s. t , \

1 Morris

  • ha l

' gam 0 '

  • 7

= p . _. :m e

+o < . .. s Ee

,3 f ,

, gra,d.

Morm '

'or ,

O Y -,

3 L._.  %

Gardned South 3 s 4*,o W,im,ngem, g 4 N e

. _ . . 8( L 87 SCALE 53

' '8 to . t e ,

o 9 _ . .

's to ,, , , , ,

b d '9

L 4

TABLE 3.1-1 10CFR50 PROGRAM : LISTING OF USER SPECIFICATIONS 15:31:22 27-FEB-86 i- ARE YOU REQUESTING AN ANNJAL REPORT? (DEFAULT =NO) :

Y 1

DRESDEN UNIT ONE '

[ -

MAXIMUM DOEEI RESULTING FROM AIRBORNE RELEASES PERIOD OF RELEASE - 1/ 1/95 TO 12/31/85 CALCULATED 02/27/86 e

IST 2ND 3RD 4TH ANNUAL TYPE QUARTER QUARTER DUARTER QUARTER 1/85- 3/85 4/85- 6/85 7/85- 9/85 10/85-12/85 i GAMMA AIR 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0 00E-01 (MRAD) ( ) ( ) ( ) ( ) ( )

PETA AIR 0.00E-01 0.00E-01 0.00E-01 0.00E -0.00E-01 (MRAD)

TOT. D0DY

(

0.00E-01

) ( ) ( ) ( )' ( )

0.00E-01 0.005-01 0.00E-01 0.00E-01 (MREM) ( )- ( ) ( ) ( ) ( )

SKIN 0.00E-01 0 00E-01 0.00E-01 0.00E-01 0.00E-01 (MREM) ( ) ( ) ( ) ( ) ( )

-ORGAN 1.98E-06 2.13E-06 1.24E-06 4.23E-07 5.76E-06 (MREM) (N ) (N ) (N ). (N ) (N )

+

' LIVER LIVER LIVER BONE LIVER THIS IS A REPORT FOR THE CALENDAR YEAR 1985 1

A COMFLIANCE STATUS - 10 CFR 50 APP. I

' -------------- % OF APP I. --------------

QTRLY 1ST OTR 2ND OTR 3RD OTR 4TH QTR-YRLY  % OF OBJ 1/05- 4/85- 7/85- 10/85- OBJ APP.I 3/85 6/85 9/85 12/85

! GAMMA AIR (MRAD) 5.0 00.00 00.00 00.00 00.00 10.0 00.00

! BETA AIR (MRAD) 10.0. 00.00 00.00 00.00 00.00 20.0 00.00 F TOT. BODY (MREM) 2.5 00.00 00.00 00.00 .00.00 5.0 00.00

~ SKIN (MREM) 7.5 00.00 00.00 00.00 00.00 15.0 00.00 i 1'

ORGAN (MREM) 7.5 0.00 0.00 0.00 0.00 15.0 0.00 LIVER LIVER LIVER BONE LIVER RESULTS BASED UPON ODCM REVISION 10

  • UPDATE DM002 t

OCTOBER 1905 i

1 54

TABLE 3.1-1 (continued)

LRESDEN UNIT TUO / TSRf6 nAXIriUh DOSES RESULTING FRO

  • AIR 30RNE RELEASES PERI 30 0F RELEASE - 1/ 1/95 TO 12/31/S5 CALCULATED 02.'27/86 IST 2ND 3RD 4TH ANNUAL

. TYPE QUARTER QUARTER QUARTER 00ARTER 1/85- 3/95 4/05- 5/85 7/85- 9/S5 10/35-12/95 GAMMA AIR 2.i!E-02 2.35E-02 2.14E-22 2.00E-02 S.63E-02 (MRADt (NE ) (NE ) tNE ) (NNE ) (NE )

FETA AIR 5.63E-03 7.91E-03 5.SEE-07 5.37E-02 7.32E-02

( F R A!! ? (Nt Z l (NNI ' LNNE ) (NNE ) -(NNE )

10T. FODY- 1.05E-02 1.29E-02 1.13E-02 8.00E-03 4 37E ( "f.E ru (NE (NE 1 (NE i (NNE > (NE )

SNIN 2.07E-02 2 42E-02 2.11E-02 5.48E-02 1.21E-01

( r'R Eh : ( N N E. 1 (NNE i (NNE > (NNE * (NNE i DR3AN 4.20E-01 7.39E-03 7.58E-32 8.84E-03 5 12E-01

( h ret' ) (NNE ? (NNE *

(NNE (NNE ) (NNE )

THYROID THYROID THYROID THYROID THYROID THIS IS A REPORT FOR THE CALENDAR YEAR 1925 COMPLIANCE STATU3 - 10 CFF 50 AFP. I


 % OF AFF !. --------------

OTRLY IST OTR 2ND OTE 3RD OTR 4TH OTR YRLY *

. OF

.0DJ 1/S5- 4/85- 7/05- 10/95- OBJ AFP.I 3/S5 6/85 9/05 12/S5 GAMMA AIR (.9 RAD) 5.0 0.42 0.49 0.43 0.40 10.0' O.96 PETA AIR (MFAL) 10.0 0.96 0.09 0.06 0.54 20.0 0.37 70!. BDDY ( r.;E M ) 2.5 0.43 0.51 C.0 0.35 5.0 0.37 ELIN (nREM; 7.5 0.20 0.32 0.28 0.73 15.0 0.01 0;GAN (d En> 7.5 5.60 0.10 1.01 0.12 15.0 3 41 THYROID THYPOID THiROID THYROID THYROID RESULTS BASED UPON ODCM REVISION 10 UPDATE Dt1002 OCTOBER 1905 55

TABLE 3.2-1 DRESDEN UNIT ONE MAXINUM DOSES (MREM) RESULTING FROM LIQUIL EFFLUENTS PERIOD OF RELEASE - 1/ 1/S5 TO 12/31/85 CALCULATED 02/27/86

  • 1ST 2ND 3RD 4TH ANNUAL LOSE TYPE QUARTER QUARTER QUARTER QUARTER 1/05- 3/85 4/35- 6/85 7/35- 9/85 10/05-12/85 TOTAL 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 E0PY INTERNAL 0.00E-01 0.00E-01 0.00E-01 0.00E-01 0.00E-01 ORGAN
  • THIS IS A REPORT FOR THE CALENDAR YEAR 1995 COMPLIANCE STATUS - 10 CFR 50 APP. I

1 0F APP I. --------------

QTRLY iST OTR 2ND OTR 3RD OTR 4TH OTR YRLY  % OF OBJ 1/85- 4/85- 7/95- 10/85- OBJ APP.I 3/85 6/85 9/85 12/85 TOTAL PODY (NREM) 1.5 00.00 00.00 .00.00 00.00 3.0 00.00 C.3 I T . ORGAN (MREM) 5.0 00.00 00.00 00.00 00.00 10.0 00.00 RESULTS BASEP UPON ODCM REVISION 10 UPDATE DM002 OCTOBER 1985 56

TABLE 3.2-1 (continued)

PRES!EN UNIT TL'0/7/{gg MA%IMun DJSES (MREM) RESULTING FROM LIQUID EFFLUENTS FERIOD OF RELEASE - 1, 1/S$ TO 12/31/85 CALCULATED 02/27/86 8 IST 2ND 3RD 4TP ANNUAL 30SE TYPE -00ARTER DUARTER OUARTER QUM.T ER 1/05- 3/E5 4/05- 6/35 7/85- 9/85 10/85-12/G5 TCTAL 3.23E-32 7.?7E-02 3.27E-03 00Dr 1.54E-07 1.15E-01 INTERNAL 4.5SE-02 1.16E-0! 4.74E-03 3R3 Aft 1. 07E-0 7 1.67E-01 LIVEP 'IVER LIVER LIVER LIVER THIE I'? A REPORT FOR THE CALENDAR 1 EAR 1985 C0t'PLIANCE STATUS - 10 CFR 50 APP. I


.. OF APP I. --------------

QTRLf IST OTR 2ND OTR 3RD 9TR 4TH GTR YRLY  % OF OBJ 1/85- 4/05- 7/05- 10/95- OBJ 3/85 AFF.I 6/05 9/S5 12/95 TOTAL B0rY inREN's 1.5 2.15 5.31 0.22 0.00 3.0 CRIT. ORGAN (MREM) 5.0 3.34 0.?: 2.32 0.09 0.00 10.0 1.67 LIVER LIVER LIVER LIVER LIVER RESULIS BASED UPON ODCM REVISION 10 UPDATE DM002 OCTOBER 1985 I

57

DRESDEN NUCLEAR POWER STATION Figure 5.0-1 MARC'd 1935 I

r)i >+  %..W 12 m ., m .2 EUf5 / //9 m .2 215.'

-  : 2f( # =# **

  • 13 .=* A." ' *

==

/.1Cm.,*2+2 8" l....

.e 2 14 2 ._,3,'

a 2o5 2 w

jL l 80 213 11 - ,,8 4 es ao ,

2o 2 222 2 222.i._10 *7 1 '

    1. g. sw an.2 **,,, * ,

Morris g,;.

210 2 208-1 2co-0 aio , a2 jd 17 g Ill.113 2es.i .

9M h s .?

Coal City * "

44,,

6 s

l o s so w..

2c con,.ter.

. ,, DRESDEN ST ATION UNITS 1. 2 & 3 1

' FIXED AIR SAMPLING AND TLD SITES AND OUTER RING TLD LOCATIONS l

58 i

DRESDEN NUCLEAR POWER STATION Figure 5.0-2

. 1 I, , =.

I I

+ =

t

=

/

3, cacoMew 5 s8 ica.:

2 twt 1192 101 1 9 Se se N 101 2 m r

% /

+ss I Cemetery Rod Towpath Road

t Dg 28 g Cresden Island Lock i et and Dam

- eve'pw ^

  • 0 27 eff t'f 2a,& 35 D.20 e .

Dia' h Dresden Nuclear X e u>r

s. ,5 5, Power Station S,+\

8' D 18 e i

'4 (V l \

=I e ,,s.z ]

, h , , .s., 106 ti h. ,1,, m t ,

iD Coose W .*O ' Lane Q Cat! Ins 5

! .. 44 Acad C J'II'I f Praine tes.i Yacht 4 si.e. O D.33 m . b Cia

) "

h cen.r s o.et/c Co. ?c,.,

{ f,j i

a c

c i s

pd o i.: i u.

o i  : =ao-.ie<.

ORESDEN STATION UNITS 1. 2 & 3 INNER RING TLD LOCATIONS AND NEAR STATION WATEA l SMPLE LCCATIONS 59

DRESDEN NUCLEAR POWER STATION Figure 5.0-3 4

m :H isas

I_.

E J V"~

E J u.s

  1. M L v.s ..

x g .e l._

f5A D.24*

e -

E s N

.... / D.34

  • D.23 h
  1. "j,e*' O.22 _A&B D 31 Morris

,. *D.26 j J

, m.its f 3 tJ

  • D 25 Coal cuy M+

,*+,,

9/,,,

l c s io u....

Y " ~ *'" ORESDEN STATION l

UNITS 1. 2 & 3 MILE SAMPLE LOCATIONS AND HORE DI5? ANT WATER SAMPLE LOCAI!CNS l

60

4 Standard Radiological Sampling Program Media TABLE 5.0-1 e w. w, .

%; %; . t.;, ou 2, 2

$ el d E d' .g '

X t; .5i El .

  • ul E; 5, $! 't-t ';;;; ;; g. ; ,

Loc.

Code Type a Location Description :E' d! O E & dl % ,*! f D-01 Onsite Station 1.(Behind house at Dam) X X

D-02 Onsite Station 2 (Behind Station) X X-D-03 Onsite Station 3 (In-coming Road) X X D-04' Collins Road X X 4

D-05 Bennitt Fann X X

D-06 Will County Road X X D-07 Clay Products (In-coming Road) X X D-08 Prairie Park X X
D-09 C Coal.C1ty X X D-10 Goose Lake Village X 'X D-11 C Morris X X D-12 C Lisbon X X-D-13 C Minooka X X D-14 Channahon X X D-15 C Joliet Brandon Road X .X .

l D-16 C Elwood X jX  :

0-17 C Wilmington X X  !

i I i 18 C Inlet Canal X D-19 Discharge Canal X!

D-20 Discharge Canal Xl D-21 Illinois River at EJ&E RR Bridge X  ! X D-22 Illinois River at Morris (Morris Water Works) .X D-23 Thorsen Well - GE X'

D-24 C Clow Dairy Farm X 4 0-25 Biros Dairy Farmb X D-26 C Trotter Dairy l' ann X, 0-27 Dresden Lock & Dam X D-28 Dresden Pool of Illinois River X D-29 Sanitary Lagoon - GE X ,

D-30 Evaporator Pond - GE X ,

D-31 Goose Lake Corp. of Eng. - GE X D-32 D-33 L. A.W. Well - GE Pond West of MFRP - GE X;l X

D-34 Evaporation Pond - GE Xli ,

D-34A Dresden Cooling ' Lake at i Dresden Road Crossing XI D-34B Dresden Cooling Lake at County Line Road Crossing X [

a Control (background) locations are indicated by a "C" in this column. All b

other locations are indicator.

Effective May 14, 1983, Corbin Dairy Farm was replaced by Biros Dairy Fann,!

11.5 mi Southwest of DNPS .

! 61

  • -, -y w .-m -_.,.-----.--.....-.,,..,e,... , - - _ . - - -,.u--.__. -

Rev. 1, 09-06-85 DRESDEN STATION TABLE 5.0-2 ENVIRONMENTAL RADIOLOGIAL MONITORING PROGRAM, SAMPLING LOCATIONS

1. AIR SAMPLERS Distance Direction Site Codea Location (miles) (*)

'D-01 a. On-site Station No. 1 0.6 300 0-02 . b. On-site Station No. 2 0.3 50 0-03 c. On-site Station No. 3 0.4 180 0-04 d. Collins Road 0.9 260 0-05 e. Bennitt Farm 0.9 60 0-06 f. Will County Road 1.4 132 D-07 g. Clay Products 2.0 180 0-08 h. Prairie Park 4.0 230 0-09(C) 1. Coal City 7.5 190 0-10 j. Goose Lake Village 3.8 210 0-11 k. Morris 8.0 250 D-12 (C) 1. Lisbon 10.0 310 0-13 m. Minooka 4.5 5 0-14 n. Channahon 3.5 40 0-15 (C) o. Joliet 12.5 60 0-16 (C) p. Elmwood 8.0 80 0-17 (C) q. Wilmington 8.0 130

2. TLDs
a. Same as No. 1.
b. Special TLD Samplers Distance Direction Revised Site Codeb Previous Site Code (miles) (*)

D-101 1,2 Same 1.0 4 0-102 1,2 Same 1.3 25 D-106 1,2 0-105 1,2 0.9 105 D-109 1,2 Same 0.8 .175 0-110 1,2 Same 0.6 211 0-112a 1,2 0-111 1,2 0.8 240 0-112b 1,2 0-112 1,2 0.9 258 a

Control (reference) locations are denoted by a "C" after site code. All other locations are indicators, b

Effective October 1, 1985.

62

Rev. 1, 09-06-85 DRESDEN STATION TABLE 5.0-2 (continued)

ENVIRONMENTAL RADIOLOGIAL MONIT0 KING PROGRAM, SAMPLING LOCATIONS

2. TLDs
b. Special TLD Samplers (continued)

Distance Direction Re' vised Site Codeb Previous Site Code (miles) (*)

0-113 1,2 Same 0.9 277 0-115 1,2 0-114 1,2 0.8 309 0-116 1,2 0-115 1,2 1.0 341 0-201 1,2 Same 4.5 0 0-202 1,2 Same 5.0 20 0-203 1,2 Same 4.5 42 0-204 1,2 Same 5.0 65 0-205 1,2 Same 4.2 90 0-206 1,2 Same 3.5 118 0-207 1,2 Same 4.5 135 0-208 1,2 Same 5.0 156 0-209 1,2 Same 5.0 180 0-210 1,2 Same 4.8 200 0-211 1,2 Same 5.0 225 0-212 1,2 Same 4.8 240 0-213 1,2 Same 4.5 260 0-214 1,2 Same 4.5 290 0-215 1,2 Same 5.1 310 0-216 1,2 Same 4.8 340

3. MILX Olstance Ofrection Site Codea Location (miles) (*)

0-24 a. Clow Farm 5.0 45 0-25(C) b. Biros Farm 11.5 206 0-26 (C) c. Trotter's Dairy 6.1 190 a

Control (reference) locations are denoted by a "C" after site code. All other locations are indicators, b

Effective October 1, 1985.

63

Rev. 1,'09-06-85 DRESDEN STATION TABLE 5.0-2 (continued)

ENVIRONMENTAL RADIOLOGIAL MONITORING PROGRAM, SAMPLING LOCATIONS

4. WELL WATER Distance Direction Site Code Location (miles) (*)

0-35 'a. Dresden Lock a Dam 0.5 270 0-23a b. Thorsen Well

5. SURFACE WATER Distance Direction Site Code Location (miles) (*)

0-21 a. Illinois River at EJaE 1.0 270 Railroad Bridge D-34A b. Cooling Lake, Dresden 2.6 185 Road Crossing

'D-34B c. Cooling Lake, County 3.0 160 Line Crossing D-22a d. Illinois River at Morris 8.0 270 Water Works D-31a e. Goose Lake - Corps of 2.0 185 Engineers D-33a f. West Pond west of Midwest 0.8 180 Fuel Reprocessing Plant

6. COOLING WATER Distance Direction Site Code Location (miles) (*)

0-18 a. Inlet - Unit 1 At Station

b. Discharge At Station 0-19 Unit 1 D-20 Unit 2/3
7. FISH Distance Direction Site Code Location (miles) _

(*)

D-28 Dresden Pool at Illinois 0.5 270 River a

Location shared with General Electric.

64

Rev. 1, 09-06-85 DRESDEN STATION TABLE 5.0-2 (continued)

ENVIRONMENTAL RADIOLOGIAL MONITORING PROGRAM, SAMPLING LOCATIONS

8. BOTTOM SEDIMENTS Distance Direction
Site Code Location (miles) (*)

0-27 Dresden Lock and Dam 0.5 270

9. TEMPERATURE CHARTS Distance Direction Site Code Location (miles) (*)

0-21 Illinois River at EJ&E 1.0 270 Railroad Bridge 65

n -- . - - _ -..

DRESOEN STATION TABLE 5.0-2 (continued)

ENVIRONMENTAL R ADIOLOGICAL MONITORING PROGRAM, SAMPLE COLLECTION AND ANALYSES Loc ation Collection Type of Frequency Sa*ple Media Coad Site Frequency Analysis of Analysts Remarks

1. Airoorne a. Onstte and Near Field Continuous Gross beta Weekly 01 all samles.

Particulates operation Gamma isotope if gross beta in a sample D-1 Onsite No. I f or a week exceeds SX the average concentration of the D-2 Onsite No. 2 preceding calendar quarter f or the sample D-3 Onsite No. 3 location.

~D-4C Collins Road D-5C Bennitt Fars Non-routine Reporting Levelsb D-6C Will County Line Road Cs-13410. Es-137 20 pC1/m3

b. Far Field Continaous Filter Weekly hon-routine Reporting Leve'$b operation exchange D-7C Clay Products for t.o Same as la when analyses are made.

D-SC Pratrie Park veeks

, D-9C (C) Coal City m D-10C Goose Lake Village D-11C Morris D-12 (C) Lisbon D-13c Minooka D-140 Channahon D-15C (C) Joliet D-16 (C) Elwood D-17 (C) .timington

2. Airborne S m as 1. Continuous 1-131 Biweekly Bi eekly = Every two weeks. On all Iocine operation sam les.

for two weeks hon-routine Reporting Levei 0.9 pC1/m3-

3. Air Sagling Same as 1. -- Test and Weekly On all samlers.

Train Maintenance

  • Control (reference) locations are denoted by a "C' in this co1 van. All other locations are indicators.

'"***'*******'**"C*'*"#*'***"

c " Analytical Cost 49d data shared with Geera'l Electrte.

t !. f- l !!I[Iij ;[;i i[ i+[' ii[i*  ![-II[ -

t; ; !LI:(7iIjj[Ii ;Ii iL !:h.te

~

~.~

c

a. e

. r -

iu-a t qa eec -

sro l

.- ef rir a

- C e 1 ah . 1/ /

l. t y 1 * .
b  ;

sr . e o 'r a F- s 1

- n otA t t e 5 le 7 s i e e J v 3

- k r

a m

ta s . a cdnc ono s 0

.s 5

e t

g 1

C 5

R e l osc cia Dse L et D

L n ;1 _

~

i P ede Lti L t 0/ _

ASE r t s r 61

~ l l yt t

. hs smr.sop , . .

sss o

p e

4 0 3

C s

~

alf e t ee rl s at wl r nl ieoo c

al cc yy l

eee l r p'

mmmn aaa e

10 O

- G s3 0

le m

saoa t ut r shhl tt sss it u

4 31 s -

S eqm , l nn lll o - 1 E s os l oo lll r 1 a 1 amm dCn aaa - 3L s M o. ae y oi nn nn n 1 -

L A Trbt %OO &OO u IB

- a O

n 4

0 s , -

yt yyy s

A' cs y r ny o C

el ua l

r e y ly lrrr eee l l t

a cn c

_ h tt t t l I

rrr -

T eA r n t i C r a e n s ia d E Ff u e e uub n L o Q w M OQ( i t

0 e C

t a r

E na s s L at P f i e o n .

os y c W el a 1 - 1 tABa ssi ita

- e v pa yn i

w 3

1 3

1 s st oot c -

3

i n
  • A TA G

a 1

- rrr GGT f o

t 2 U n

G r T

c O e .

S ( R n h h -

~ P oy g t

% c ly u ly o _

E O

2 3

- G 3~

itn ce e. -

e

o r r

+

yep r e

t t

C ' c t

!,e t e 'e n .l t i

l H f C l e e < c t eci e _

C T or t eyt r - r s -

eac o E.

h N

C CF O

u WPO MwtA h p G

u n

m A u T .* t L c A c .

~ .

C I

m a s

- G D i .

C h L d t

. 0 y n l r a n c

? i i i A e s al r

- :t t g g D cl oe C" t

c

- i m S n n mr s L.

  • e 4 i i r af a 'r l

- T N

n o

R r

e R

r e

F

.st et e

nn ee d s se a

y bra

.l E

O R

W i t

a c

I n

n G

t u

orc l t CST r

Oi ec rn dt e ern t ae er U

N L o

n ouG nq E g e h u drt o al r ed a h - n

. , . t 4ed

- l e

'e 2,2,2,2,2,2,2,2,2,2 1111111111  ?, 2, 11

))

CC sar nca o n

~ .

d C

o 12690223S6

a. t 16

((

C i rs t e

. 00001111I1 01 456 53 a vt 11111111I1 22 222 32 cos DDD30DD0D0 0 DD0 DD

- - c

! nc c _

- )io o et "

caa nr et a

.- a ret t r eea _

s- e f cd V

e t s

e en r ol

( ca - _

e c l l ei D t< i a t _

- tm T L

wi s r a y t r!

_ S res o.n

- - 2 5

6 C1 A 3bC _

n cN

- ,!' 4i{ ,1 I!ll'tIl;tfa f {.jt) lli lj;'ili i 4, i

~i DRE5 DEN STATION TABLE 5.0-1 (continued)

ENViduid4 ENTAL RAJ10 LOGICAL MONITORING PRUGRAM, $ AMPLE COLLECTION AND ANALYST 5 Locatten Collection Type of Frequenc y Sagle Media Cocea site Frequency Analysis of Analysts Remaras

7. Surf ace Water D-21 Illinois River at EXE weekly Gama Isot Montnly un montnly composite of weekly samples.

Railroad Bridge D-34A Cooling teke, Dresden Weekly Gross Beta Weekly On all samples.

Road Crossing Gamma Isot D-343 Cooling Lake, County Weekly Gross seta weekly On all samples.

Line Crossing Gamm. Isot D-22d Illinois River at 0;arterly Gross Beta Quarterly On all sample;.

Nrris Water Works Tritium D-318 Goose take - Corps Quarterly Gross deta Quarterly on all samples.

of Engineers Trtttum D-3Jd West Pond west of Quarterly Gross Beta. Vaarterly un all samples.

Midwest Fuel Trittum Reprocessing Plant cn See footnote "c."

E. Caoling ater 0-15 Inlet, Unit ho. 1 Wekly bross beta weekly on all samples. Provioed of station D-19-1 Discharge, Unit ho. I personnel.

D-20-2,3 Otscharge, Unit No. 2

9. F i s't D-28 Dresden Pool of 5estannually Gamma Is;t Sem t annually On edible portions only.

Illinois River hon-routtne deporting LevelsD Mn-54 3:104 ; Fe-591:10 4: Co-So Js10 4-Co-bo 2:104 ; in-os 2slu4 ; C5-lJ4 1 10 3; Cs-lJ7 laluJ pct /kg .et weignt.

10. Batton D-27 Dresden Lock and Dari Annually Game isot Annually Sec t wnt s
11. Temperature 0-21 EXE Hallroad Bridge Monthly -- -- Delivered to station personnel.

Charts 8

3 Control (ref erence) locations are dencted by a "C" in this column. All otner locations are tnoicators.

C A,ers;* comentration over calendar quarter.

H-3 2:104 , Mn-54 l=103 , Fe-59 4x102 Co-581:10 3, Co-60 3:10 2, 2n-65 3a102 , Zr-No-n 4:10 ,2 g.131 2 Cs-134 Ju, Cs-137 :x), da-La-140 2:102 pci/1

, Analytical cata and cost shared with General Electric.

DRESCEN STATICM TABLE 5.3-2 (continuea)

E%v!40NMENTAL RADIOLOGICAL MONITORING PROGR AM, SAMPLE COLLECTICN AND ANALYSES (continuec)

Location Collection Type of Frequency Sample Media Coce Site Frequency Analysis of Analyses Eemarks

12. Dairy Censas a. Site boundary to 2 miles, -- a. Enumeration by a door- Annually During grating season, to-door or equivalent counting technique.
b. 2 miles to 5 milcs -- b. Enumeration by using Annually During gra:Ing season.

referenced information from county ag*1 cultural agents or other reliable sources.

l

c. At dairies itsted in Item 5. -- c. Inquire as to feeding Annually During gearing season.

practices:

ch (1) Pasture only.

ua (2) Feed and chop only.

(3) Pasture and feed; if both, ask farmer to estimate fraction of food from pasture:

<25%, 25-50%, 50-75%,

or >15%.

13. ber est In all 16 sectors Annually
  1. estcence Censos

TABLE 5.0-3 EN'.'!ECWNTAL RADIOLOGICAL MONITORING PROGRAM QL,ARTERLY SutNARY Name of Facility Drescen Nuclear Power Station Docket No. 50-10. 50-237. 50-549 Location of Facility Grundy. Illinois Reporting Period 1st Quarter 1985 (Count y, 5t ate)

Indicator . Location with Highest Control l Sample Type and Locations Quarterly Mean Locations Nuiter of Type Number of Mean* Mean Meana Non-routtre (Un:ts) Analyses LLD Range Location Range Range Results Air Particulates Gross Beta 73 0.01 0.026 (72/73) D-02. Onsite 2 0.031 (13/13) None 0

(pct /m3) (0.006-0.081) 0.3 at 9 50' (0.017-0.081) l

'Airecrne Zodire I-131 34 0.10 (LLD - - sone 0 I t (pct /m3)

.Garra Bxwound Garra Dose 17 3.0 12.4 (8/8) D-14, Channahon 16.2 (1/1) 12.4 (9/9) 0 y , (TLDs) (al/Otr.) ( 7.4-15. 3 ) 3.5 at 9 40* -

(9.7-16.2)  ;

Milk I-131 9 5.0 <LLD - - f.one 0 (pct /1) l l Cooling Water Gross Beta 39 1.0 4.6 (26/26) ' D-20-2/3, Discnarge ' 5.4 (13/13) 3.8 (13/13) ' O (pct /1) (1.1-28.4) Canal at Station (1.9-28.4)  !

! (2.3-11.0)  !

Su-f ace Water Gama Spec. 3 (pCi/1) i f i

+

Cs-134 10 (LLD - -

kone 0  !

Cs-137 j 10 <LLD -

. Nane 0 Other Gamas i 20 (LLD - -

Ncne 0 I I

  • Mean and raage cased on detectable sessurennts only. Fractions indicated la parentheses.

ill lllI IjlJ ,

e f n ois tt r ol e,ou c rs 0 0 0 o 0 0 O 0 0 0 0 0 O' 0 n - e unR N o.r

'f

) )

s )0 3) n loring oa e e e 9 .

/3 11

/

n 91 e 35 e e en e e e e e e t t an naea n ( - n 11 n n n n r. n n n ocMR o o 6 o ( - o o o o o o o o oN N N h 4 N N N N N s n 5 Co 9. 0 N 9

4 8

9 L 11 1(

1. 2 5(

5 1 0 r )

5 e 3 t 1) )

, r /4 ) 3) 7 a e 33 1 ' 19 3 u ng 10 / /

4 2 Q t an ( 1 36

- s ea 0 - ( - -

0 d e~ MR 2 -

. 12 - - - - . - - -

5 n ( -

_ M 2 h

g 20 1

7 7

  • L . n 0. 0 8. 4 S C 1

iHae 0 4

1 9( s Y - o hM [0 e t 0 s 9 5 ic t y m r n e r lal a o h e r U

A . P ne 2 F

ei gt t.

r e

et t0 ra U c g i r e at r Q N n t a n it6 nS a i au o it n9 c p M t t cQ i s - n . - - - -

U e r o t n et tst a - - - - - n a o L a O Bm D i G c p c O c e o , , 9 ,l a d R D R L 2 5 9n e P 0 00 1 a t

- - C a 4 G. D 0 D

- f ic 1 n d D. R n ie 5 O )) i T t 54 E I a s 63 ) ) s L N t ) rs / 0 )7 6) n S O S io e on 4 a 28 io 4 M n t oa e L

r e l i

t t

a at ng ct an (60 6

- D

/4 81

( -

a

/

62 D D D D D D D D D t

c L t 25 L L a A w l S iaea 80 L 5 t ( - t L L

L L L L L L L C o I dcMR 10 < < 5 < ( (

L L L L L t r I P ,

no 3. 2 ( ( ( < ( < F G

C r yt

. y IL 0. 0 31 1. 3 0( 1( 9(

L a c n .

O e n u y .

I u o l 5 D

A lcu r c n G ( o1 R N s= -

L n b t A e 5 nD T e 1 0 eL h s .D 0 1 0 0 0 mL e 1 1 2 1 1 2 e W r L

L 0 0 3

/

5 1 0 0 0 0 1 0 rr 0'

D 1 1 2 0 0 0 ue sb 3 y li ' ao I t et

% i l 5 mc O 5 7 0 9 3 3 E y i 6 3 1 3 3 1 e t c f l -

i a dos s b l F n e a s s ay t ars .

a a t a c f ey s e a c m c. cM a o e s e m c. m e F

n pWl y n a

t B

e D

o S

t e p s 4 7 a

G S

e p

4 7 a

G S

e p G a t ;

e0 f o TNA 3 3 r 3 3 4 7 d O i s a s a r 3 3 r 5 t s 1 1 s

1 1 e a 1 1 e a 1 1 e n e a 3 n 3  :

vs - - h - - - - e=

a c N L c

G o

r 1

I G

a 1

I G

c r

G s

C C s t O

G wC s C

s h

t O

G mC 5 C

5 O

h t

dD eL

! :l lfill . I sL

) a

. bl s ar s i

e e nt t er gp t

a n uc a nA i o/ r r ) e) a e

)

s l

u c

o r

gN e e t my r - -

l et c) I) k(

t a

t a e ir m yr p i. i3 3 c ) '.) w)1 w cc dr tn em a) l i  ; e ne aTU So S (

r/

al PC n/

r1 oC Bs aL D

C l

i gt ni ic e/

ct aC

/

i mi

/ ac ne c tD C oC a v k D l p f p oi r(

h p s(

t c eo ir( ir( m(T l(

i e t( FN I* , ? Ai Gi H! ti 5*

% tt i

fj! lij E

c

  • 3 _

w" l

Il1 i l' l )l i

- s

. n l#

e  ;!l f n ois tt rul

- eou Q 0 0 0 0 0 0 . 0 brs me unP No N

i l n s ))

9 5

)

3) 16 o oa e ring t t an e

n e

c

'91 4

e r

/

38 11 e

n e

r e

e naea o o 1 o ( - o c 5

ocMR Co N N

9. 0 N 5 M s  %

9 4

8 9

L 21 1(

6.

7(

3 5 1

- ii e' ,,

0 r ))

li I t: < ' l 5 e 35 t 13 )

, r /0 ) 3) 7 a e 3 1 16 3 u ng 10 / / -

Y 2 Q t an - 1 38 (8

R - s ea -  : - - 11 - -

A 0 d r

e n

MR 61 ( -

M 5 20 6 5 ._

. "U 3 g -

iHane 0. 0 4 6. 3 .

._ S Y

0 1

- d hM 0( 1 7( s e -

L li

' s .

0 e io

. 5 it y

. F E r wl n l e

t -

T e r c a n R P ne o* n e A . ot 2* 0 a r U o g r 0 s6 C a Q N n it a n e5 n p in2 au o i t t o m_ M t t cQ i i9 - l 9 - ei - n A e r o t s l l t i

n

, R k o L a nt oi na G c p c Om Cm It d O o e o S e

. R D R L 3 9 ,

t P 2 4 8t a 00 00 1 a

_. G - - - ic 5 N D D D d I n n r

- 0 P o ,-i i

O i ))

5 T t 95 s a

_- 63

! )

E N t is ) rs /0 ) 6

)

6) n o -

L O S o e on 9 S 28 i -

B M n t t oa e 60 /4 / t r i a aing ( - D 81 D 68 D D D c A L e  ! t ctan 7 L ( - L a T 21 L L L A w  ! S aea 30 0, - r C

I P o  !

idcMR no 20 L

(

7. 3 L

(

0 t

t s

t

< F G

O r yt

, y IL 0.

0(

0 31 1(

0.

7(

4 .

L a d n y C n u I le u o l

n D c r C o

. A u G (

P 's s t

L n I '

n -

A e e T d 1 0 m 4 s D 0 1 0 5 0 e e L r

_ M r L 0 0 3 0 1 0 0 u r

S 1 1 M $

a

-

  • y ,,

! t f

P -

i W

E l 9 2 7 9 9 3 e -

6 3 1 3 3 ty ic f

  • a dos iD n e s & ,

l i F ars a t c

c f ey a e a c. v e a o ecl t s t e a t

- pma e o e p e F ' no yun B D E S 4 7 G

d f TNA 3 3 r o i s 1 a 1 s a 1 1 e n t s 3 3 s - - - n o e a o 1 m 1 o r s 5 .

rco N L G

r I

G a

I G

r G

e C C t

O d e

. III i! s 3' ,

.i .jf a ,

) D

~ s d r

_ e e nt q t n uO n a i e/ r r a

- ) d rR e e s l

u o e r ,.

c) er t t -

. l et Z) k( a a d spt i3 3 c ) 'w ) W) n yn tm em a) 1 l 1 a -

, S aTL

(

r/

ai n/

ri Ss D

/

gu n

e/

ci I PC p

oC tp ai iC i C aC a k c l c f c d r( r(

wil o(

l ( r( M

. i i o u -

f ,i '

iA =A G M C S

j i yru i j!)
i:}ll! 4li]iI lii)13114(j j1 ,i}1j!' I,ii}!}4  !!!, }!i^

I P

L

- . . ~ . - - - - - ~ , - . . ~. r vc >

0 @ t e

  • e4 L 1~

9P O 3 'O 3 O 3 I O O O 'J O O '

ole if 4 D F

  • ) C E 3} .

m m w ~m (

C 76 e M.e %. f

    • OO9 9-  % '%e e%@

m~

u - C c,t . . . m . . . . . .C .

o.e M 9 c C C **

  • C s-e 75 . C C C C C h t f4 .OJOu * *1

'at -

  • e r

J tt ** .N 4 7 -* w 4w D e.*

s . . .- . * . . -- .- _ _ . , y a mu

.s. MO ^

. L %J = *t -.

N 9 & M e me e o =** et M J C cet a.* O n-  % ,y a en c -e .% *  % O. .s.e

  • T 4 44 p9 O D *=* 4 5 .M- 76 4 0 S 9 w 4

'{ D C 1p 3. Y MM w.e *

  • 9 o *.s c mO e"t @ O of ris e * .

c 3. w.-

O N 4. N N, e o

O= -I9 O N t O ve 1J ee D- e U C s e

.6' Q O G

[

s D - +-@ A C E.7 b 8~ - +4 ,

6~ ti L & 9 -O C )

Y C e w C

'(

  • 4 Q o.* N* 9 O 9 O* * -

J O *- L fL 0 b >

  • Fs J -* J *s 9 J J C -ea al C 4A ] N C CN q '

T a- a3 J O ** W *a O b o w

%w u2 Q

==+

b i e ab e w+ 6 3 0 9 oS 6 C l U O9 -p + e.

}

tr W O J 9 Ce Q me C 9 b ** i

$ u 3G

'e')

v c1 3 b O J-eE- ** e4 A

L 8 3

e 4

3 m a ***) * - 23 e @ e y

ft N

  • 3 ** + 13 e4
  • 9 OO *-4 D* M -s 9 N'33 3 9 e t e s .u.

gg A O  ?"3 Q **) ty

    • C gI n - - e- - - y. -s .~. .- ~,.,a. . . . _ . _ _

e C

sn 6.**

+> N V A mg e %O = ^ C w

  • 9 - m k # '% O- ^ *F O e <3  :

.2 4 O D GC *D + N *F *-

- C ** ** O9 10 N'%O %k  % "O'*  % M

.tG g-g L

@ e.

- 48

=>

dag -C e> p 9 C (ps  %-a

- t

/*3 O e e) 7 O f$ m C3 44 4

  1. .J ..a N tO J 4.J J J ..A 9 -

t 5 e- A - 9 w9 'O O .J '*'t J e a _J .A J <- $ J L u

    • +

Q ik U V T. - E C O NO O

  • V LPt
  • M e v -Jn* v v v v O V m N

-S = M +-* J *3 et e.* N. N

  • I

"} L h o Ow M =.e W% O e .

.s as O C hn  !

") 6. 3 **

  • I

-= ~% ;s

!*) L 'J

')

eO l t

t) 3 3 O 4

Y # # e

- ----~ g o e Co t t 4 0 J e-* r1

  • 7
  • e

,.ee ea la O n+ O L e a .J. m. 3.- eO e L g '

L ,.s O CJ M in --* O O O O O O 1 te' "J  % e e4 N * ** N 7

F A e

dl e o.e ,

  • ed MU a3 L

e-

. ?' '

  • e- h ' 9'l (D & M et  % 4 eos  % e N M 9.e% s** **)

M eh W **G

  • al rp O en e4 W "r *% 5 w e y as at ** F.

43 L g . .

e q y v w $h 4 1A 9 u F w dB O $ - 6J tA 6J  % II ed **

ta. 1 9 v O @ ta .3 n J

  • C C "fJ O -11 e4 89 N v1 *f N wO*

T2 e.- O F- C1 P"1 M L M 9 L @

O e 4 ~* as -4 ea 9 ee ** e 9 ** -* & C

+, e m t=1 e e e c e e c 0e p sep y

O L

e* *=e O e4

  • pe e4 em 98 6 6 L 4J %J Q LJ La 3 O C3

'I O U3 M .5 w $ tS L1 (e J g +- - - -. ..n -- . ~ . ~ , , .,n,n..

aA J m

e a-* .

6

@ Qb e

c Ce 1 3 $b e4 n

  • at O% b L ^ 9 '

- -r3 u -e e+ i g.a U 3

.*m.

o

>+a=%

o.

es%l, g

.e 45 a

3, 49 w

3 6 e tj k 5

Q e- *M M V d"9 $= S "% C Sp I L M t- ed 6 W@ 9 a* ** *a th 9 9 P.- J b % C% 'ta e -N Ch N W  %

V1 ~- 9e k e 3 ** C n= a 'v. e C {

ft ep oe# 89 3 aJ

  • ta et e > &J dl > ,g G OO *^F- W 6& - et & 4a C el

,L L e

f' -

np -

tJ a

b 3

d e

X ].

it [

i

't *C ' .S *T *A

  • 6.3 7

4L k Y

e f

5 i

73  !

i\

m-py tr ,.Wm.e-pwwea-'-'->4Ww--W. W**"*Y"We'*"-""'"*W

TABLE 5.1-1 GAMMA RADIAT10N' AS MEASURED BY THERMOLLHINESCENT DOS! METERS (TLDs)

STANDARD RADIOLOGICAL MONITORING PROGRAM 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Date Placed: 12-31-84 03-30-85 06-29-85 10-05-85 Date Removed: 03-30-85 06-29-85 10-05-85 12-28-85 Days in the Field: 89 91 98 84 Location Average mR/Qtr.

On-Site Indicator Locations D-01 On-Si te 1 16.011.5 14.210.6 13.610.4 14.310.7 D-02 On-Site 2 10.912.3 14.410.9 14.010.5 14.611.3 0-03 On-Site 3 11.711.4 12.510.3 13.010.7 17.411.0

  • D-04 Collins Road 15.311.4 14.110.8 14.610.9 14.910.8 Mean i s.d. 13.512.6 13.810.9 13.810.7 15.311.4 Off-Site Indicator Locations
  • D-05 Benni tt Farm 12.211.4 14.710.8 13.610.8 15.211.0
  • D-06 Pheasant Trail 11.311.6 13.210.6 14.110.7 14.710.5
  • D-07 Clay Products 14.0t1.4 13.5t1.3 13.410.7 13.310.8
  • D-08 Prairie Park 7.412.4 13.510.7 13.510.4 14.710.8 Mean i s.d. 11.212.8 13.710.7 13.610.3 14.510.8 Background Locations
  • D-09 Coal City 10.111.4 11.110.9 10.110.5 13.511.1
  • D-10 Goose Lake Village 11.212.6 13.012.5 13.610.8 22.311.2
  • D-11 Morris 15.611.4 10.610.5 13.811.0 17.610.1 0-12 Lisbon 9.711.4 12.010.2 12.410.8 15.710.7
  • D-13 Minooka 11.311.5 12.412.4 11.610.5 15.310.8
  • D-14 Channahon 16.211.5 11.810.7 14.510.8 14.711.7
  • D-15 Joliet Brandon Rd. 10.511.6 11.711.1 13.210.8 14.21 0.4 D-16 Elmwood 11.721.5 11.410.5 13.810.9 14.812.6 D-17 Wilmington 15.011.4 12.810.7 13.410.9 14.710.6 Mean i s.d. 12.412.5 11.910.8 12.9tl.4 15.912.7
  • Locations shared by Dresden and G.E.

74

i TABLE 5.1-1 (continued)

~

GAMMA RADIATION AS MEASURED BY THERM 0 LUMINESCENT 00SIMtTERS (TLDs) {

SPECIAL PROGRAM INNER RING, NEAR SITE BOUNDARY, INDICATOR LOCATIONS 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Date Placed: 12-31-84 03-30-85 06-29-85 10-05-85 Date Removed: 03-30-85 06-29-85 10-05-85 12-28-85 Days in the Field: 89 91 98 84 Previous Revised Location Location Code Codea Average mR/ Quarter 0-101-1 Same 11.911.4 15.910.8 14.611.1 17.411.5 0-101-2 Same 13.511.5 11.711.0 14.311.8 17.511.1 0-102-1 Same 18.111.1 15.211.0 13.410.5 b 0-102-2 Same 16.311.7 14.010.8 16.311.2 18.011.1 0-105-1 106-1 15.511.4 14.010.9 14.810.3 b 0-105-2 106-2 13.311.4 10.510.3 13.310.7 16.012.4 0-109-1 Same 14.811 7 12.910.1 14.310.5 20.911.2 D-109-2 Same 15.511.4 12.311.7 14.910.2 18.512.7 0-110-1 Same 11.211.4 12.310.4 11.410.2 22.912.6 0-110-2 Same 12.111.5 11.510.4 13.210.5 19.111.7 0-111-1 112a-1 13.811.9 12.310.8 15.811.1 21.912.4 0-111-2 112a-2 14.011.5 N0c 17.110.7 21.011.4 0-112-1 112b-1 12.411.1 11.410.5 12.010.6 19.711.0 I

0-112-2 112b-2 11.911.5 10.110.5 13.010.3 15.511.5 0-113-1 Same 14.211.4 14.710.2 14.311.3 24.611.5 0-113-2 Same 14.011.4 14.310.2' 19.212.3 22.110.8 0-114-1 115-1 17.511.4 13.410.4 12.510.8 15.912.4 0-114-2 115-2 17.111.5 11.610.5 14.010.6 20. 711.2 0-115-1 116-1 14.011.5 13.413.0 15.110.1 22.413.5 0-115-2 116-2 14.512.1 11.610.9 16.211.0 21.512.2 Mean i s.d. 14.311.9 12.811.6 14.511.8 19.812.7 i

a Effective 3rd quarter 1985.

C Unreliable results, TLDs damaged (white). <

NO = No data; TLDs lost in the field.  !

75

_~ __ - - . - - -

TABLE 5.1-1 (continued)

GAMMA RADIATION AS MEASURED BY THERMOLUMINISCENT 00SIMETERS (TLDs)

SPECIAL PROGRAM OUTER RING, NEAR 5 MILE RADIUS, INDICATOR LOCATIONS 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Da'.e Placed: 12-31-84 03-30-85 06-29-85 10-05-85 Date Removed: 03-30-85 06-29-85 10-05-85 12-28-85 Days in the Field: 89 91 98 84 Location Average mR/ Quarter 0-201-1 15.311.8 14.811.0 15.511.0 18.513.1 0-201-2 14.711.4 14.610.7 16.410.9 15.010.8 D-202-1 12.211.6 13.211.1 14.010.8 16.211.7 0-202-2 12.911.5 13.112.7 14.010.4 16.212.4 0-203-1 18.911.5 11.210.4 11.710.9 17.312.9 0-203-2 18.511.7 11.511.1 14.410.6 14. 011.2 D-204-1 15.211.5 12.410.7 12.310.7 16.210.6 0-204-2 12.211.4 11.110.7 13.810.8 13.210.2 0-205-1 13.511.5 11.410.5 12.610.6 15.211.6 0-205-2 11.911.5 11.610.9 15.211.6 13.613.8 0-206-1 16.411.6 11.410.3 12.710.6 21.810.5 0-206-2 15.611.7 14.110.4 13.410.5 19.210.1 0-207-1 15.811.4 13.010.4 13.710.4 15.510.6 0-207-2 15.111.6 11.610.5 13.610.5 12.810.4 0-208-1 11.911.4 11.310.6 12.611.0 16.910.6 0-208-2 11.911.4 10.6t0.5 11.610.5 15.510.4 0-209-1 12.911.4 11.512.1 11.010.3 19.710.4 0-209 11.511.5 10.510.5 10.410.7 14.310.4 0-210-1 15.3 1.6 13.710.8 12.910.5 17.811.4 0-210-2 14.811.6 11.810.5 9.113.1 16.211.1 0-211-1 N0a 11.911.0 13.410.7 17.612.2 0-211-2 13.511.4 12.311.0 11.211.2 16.910.5 0-212-1 13.811.6 12.5 0.6 15.310.6 21.611.9 0-212-2 14.411.4 12.010.7 11.6 0.7 19.711.9 0-213-1 13.411.5 11.610.6 11.610.7 15.711.0 0-213-2 15.711.4 11.210.5 10.010.5 13.612.7 0-214-1 15.011.4 14.210.2 17.310.1 17.011.6 0-214-2 15.511.4 14.510.9 14.410.5 16.111.9 0-215-1 14.811.4 13.310.5 15.110.7 18.911.0 0-215-2 14.211.7 13.611.0 12.210.5 17.912.6 0-216-1 13.111.4 11.911.0 15.9199 17.813.9 0-216-2 14.3tl.6 13.710.9 ND 16.611.2 Mean i s.d. 14.311.8 12.411.2 13.212.0 16.712.3 ND = No data; TL0s damaged and therefore not read.

b NO = No data; TLD lost in the field.

76

APPENDIX 11 METEOROLOGICAL DATA 77

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - JANUARY-MARCH 1985 STABILITY CLASS - EXTREMELY UNSTABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

LIRECTION 9-3 4- 7 G-12 13-18 19-24 GT 24 TOTAL N O O O O O O O NNE O O O O O O O NE O O O O O O O ENE O O O O O O O E O O O O O O O ESE .O O 0 0 0 'O O SE O O O O O O O SSE O 0 0 o O O O S O O O O O O O S$W O O O O O O O SW O O O O O O -

0 WSW O O O O O O O W G O O O O O O WNW O O O 1 2 0 3 NW O O O O O O O NNW O O O O O O O VARIABLE O O O O O O O TOTA ~ O O O 1 2 0 3 HOURC. OF CALM IN THIS STABILITY CLASS - O HOURS OF MISGING WIND MEASUREMENTS IN THIS STABILITY CLASS - 0 HOURS OF MISClNG STABILITY ftEASUREMENTS IN ALL STABILITY CLASSES - O 78

c DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - JANUARY-MARCH 1985 STABILITY CLASS - MODERATELY UNSTABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 8-12 13-18 19-24 OT 24 TOTAL N O 2 0 1 O O 3 NNE O O 1 2 O O 3 NE O O 1 O O O 1 ENE O O 2 3 0 0 5 E O O O O O O O ESE O O O 1 S O 4 SE O O O O O O O SSE O O O O O O O S O O O O O O O SSW O O O O O O O SW O O O O O O O WSw 0 0 0 0 0 0 0 W O O O O O O O WNW O O 3 2 1 0 6 NW G O O 1 1 0 2 NNW O 1 0 2 1 0 4 VARIABLE O O O O O O O TOTAL 0 3 7 15 6 0 31 HOURS OF CALM IN THIS STABILITY CLASS - O HOURS OF MISSING WIND MEASUREMENTS IN THIS OTABILITY CLASS - 2 HOURS OF MISSING STABILITY MEASilREMCNTS IN ALL STABILITY CLASSES - O 79

$ 6 y

F

^

DRESDPN NUCLEAR POWER STATION PERj0D Oc RECORD - JANUARY-MARCH 1985 STABILITY CLASS .SLIGHTLY UNSTABLE (DELTA T 300-35 FT)

< WINDS MEASURED AT 300 FEET t

I WIND '

WIND SPEED (IN MPH) l DIRECTION. .9-3 4- 7 8-12 13-18 19-24 GT 24 TOTAL N O O 1 1 O O 2 NNE O 1 1 0 1 0 3 s

NE O O O O O O O ENE O O 2 2 O O 4  ;

E O O 1 O O O 1 ESE 'O O 1 2 3 0 4 I SE O O O O O O O t

SSE O O O O O O O

S O O 1 3 1 1 6 SSW O O O O 2 1 , 3 SW O O O O 2 0 2 WSW O O 1 2 0 1 4 W O 1 1 .1 O O 3 WNW '- 0 1 2 4 1 0 8 s

i  !

3 NW O 5 3 1 3 0 12 l NNW O O 1 1 1 0 3 VARIABLE O O O O O O O 1

h t TOTAL O 3 15 17 12 3 55 i HOURS-OF CALM IN THIS STABILITY CLASS - O HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O ,

', i HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - 0 I

80

,  ?

F

- . , _ . . _ _ _ - _ _ . _ _ _ _ , _ . _ _ , _ _ _ _ _ . . , . _ . _ . _ . . _ _ . . _ _ . . . _ _ ., - _ . _ . ,_.m- . , _ - . . _ . . -_

f 4

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - JANUARY-MARCH 1985 STABILITY CLASS.- NEUTRAL (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET

WIND WIND SPEED (IN MPH) .!

l DIRECTION .9-3 4- 7 8-12 13-18 19-24 GT 24 TOTAL N 4 2 17 15 12 7 57 i

$ NNE O 3 6 13 11 0 33 NE O 3' 7 9 5 5 29 ,

ENE 1 7 28 12 11 0 59 E 1 8 20 24 7 13 73 ESE 1 4 13 17 10 2 47 SE 1 7 15 22 5 0- 50 SSE 1 5 10 14 4 .O 34 S 1 3 22 14 6 2 48 SSW O 5 10 29 14 1 59 SW O O 14 15' 18 14 61 l

WSW 1 7 6 22 7 12 55 '

W O 4 13 30. 34 22 103 >

WNW 1 13 13 47 72 28 174 NW 2 10 34 43 27 15 131 1

NNW 2 5 19 27 17- 29 90 i

4

. VARIABLE O O O O O O O a

TOTAL 16 86 247 353 260 149 1111 HOURS OF CALM IN THIS STABILITY CLASS - O HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O

)

81

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - JANUARY-MARCH 1985 STABILITY CLASS - SLIGHTLY STABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 S-12 13-18 19-24 GT 24 TOTAL N 2 2 21 11 O O 36 NNE . 1 5 8 9 0 1 24 NE O 3 11 3 0 0 17 ENE 2 2 1 6 0 0 11

, E 3- 4 3 6. 4 0 20 ESE 1 2 2 2 O O 7 SE 1 1 11 6 1 0 20 SSE 1 3 7 13 5 O 29 S O 1 10 34 16 21 82 SSW O 1 9 44 21 13 SS SW O 3 11 31 16 5 66 WSW O 1 5 24 20 4 54 W 1 2 12 18 31 9 73 WNW O 2 17 47 36 7 109 NW 1 4 15 39 23 6 88 NNW O 1 10 21 2 1 35 VARIABLE O O O O O O O TOTAL 13 37 153 314 175 67 759.

HOURS OF CALM IN THIS' STABILITY CLASS - O HOURS OF .9ISSING WIND MEASUREMENTS IN THIS S TABILITY CLASS - O

' HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O 82

- ... - . - . . _ _ . .. . . . . . . .~ . - ..

t

, DRESDEN NUCLEAR POWER STATION

' PERIOD OF RECORD . JANUARY-MARCH 1985 '

STABILITY CLASS'- MODERATELY STABLE' (DELTA T 300-35 FT)  !

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 8-12 13-18 19-24 GT 24

. TOTAL l

N- 0 0 2 5 i 1 0 8 NNE O O -3 O 1 O 4 NE 2 0 2 O O O 4, 1 ENE 1 0 1 O O O 2 E O O O O O O O ESE O O 1 O O O 1 r

SE O O 3 '3 -O O 6 SSE O 1 1 2 0

.O 4 S' O O 4 1 1 0 6 i

SSW O O 2 1 2 0 5 SW O 2 3 10 7 0 22 j WSW O 5 1 8 3 0 17

, W O 6 2 7 3 0 18 WNW O 2 1- S 11 0 22

.. NW O 1 10 14 1

4 0 29 NNW 1 1 3 11 O O 16 VARIABLE O O O O O O O '

3 TOTAL 4 14 43 71 32 8 0 164

.l HOURS OF CALM IN THIS STABILITY CLASS - O HOURS Or M.ISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS _OF MISSING STABILITY MEASUREMENTS IN ALL ?! ABILITY CLASSES - O 4

i 83

l 1

DRESDEN NUCLEAR POWER STATION .

PERIOD OF. RECORD - JANUARY-MARCH. 19G5 STABILITY CLASS - EXTREMELY STABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND .

WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 8-12 13-18 19-24 GT 24 TOTAL N O 1 1 O O O 2

'l NNE O 1 O O O O 1 r NE O O O O O O O ENE O O O O O O O

(

E O O O O O O O ESE O O O O O O O SE O O O O O O O SSE O O O O O O O 4

S O O O O .O O O SSW O O O O 1 0 1 SW O 1 2 2 6 0 11 WSW O O 6 3 1 0 10 W O O 1 1 O O 2 WNW O O O O 1 0 1 NW O 1 O O O O 1 NNW O O 1 3 2 0 6 VARIABLE O O O O O O O TOTAL 0 4 11 9 11 0 35 HOURS OF CALM IN THIS STABILITY CLASS - O HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABIL'ITY CLASSES - O i

84

s

[-

i

! l 1 DRESDEN NUCLEAR POWER STATION

{ PERIOD OF RECORD - APRIL-DUNE j . 19$5 ,

l' STABILITY CLASS - EXTREMELY UNSTABLE (DELTA T'3OO-35 FT) '

1 WINDS' MEASURED AT 300 FEET >

i t I- WIND

{; WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 S-12 13-18 19-24 GT 24 TOTAL ,

j N O 2 4 4 l'

O O 10- .

NNE O 2 2 1 O O 5 f

. NE 1 4 19 10 4

(-

6 2 42 '

A 3-ENE' O 3 13 1' O l

O 17 'i 1

E O 2 7 1- 0 0 10 ESE 1 0 1 O '

O O 2 SE 1 2 3 0 0 0 6 SSE O 5 3 1 O O 9 S 1 1 O O O O 2 ,

SSW O .O 'O O O O O

[ SW O O_ 3- 2 O- O 5 i WSW O 2 3 2 1 0 'S W O O O O l O 1 1- t WNW O o 3 2- 6 i

0 1 1'  !

NW O O 9 9 3  !

0 21 l NNW O O 2 2 O O 4 VARIABLE O O O O O O O  !

I TOTAL 4 23 72 35 16  !

3 153 1 l

HOURS OF' CALM IN THIS STABILITY CLASS - 0 HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O

- HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O 85 '

i i

r m--e m . ,, .,++,v-e-,c-- .._ _ w=-r._ _ - - - - . - - - - ~ + - - - - - - - - - - - - - - - - - * -

. _=.

DRESDEN NUCLEAR POWER STATION PERIOD'OF RECORD - APRIL-JUNE 1985 STABILITY CLASS - MODERATELY UNSTABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND _ WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 S-12 13-18 19-24 OT 24 TOTAL

.N O .2 O O 2 0 4 NNE O 2 3 2 O O 7 NE O 1 5 6 3 1 16 ENE O 2 S 2 O O 12 E O 1 2 3 O O 6 ESE O 1 O O O O 1

.i SE O O 1 1 O O 2 1

SSE O 1 7 3 3 0 14 S 1 O O O O O 1 SSW 1 1 0 1 1 2 6 SW 1 0 .O 4 3 O S 4

WSW O 4 2 3 1 0 10 W O O 1 4 1 0 6 WNW 0 1 2 4 3 0 10 hw 0 1 4 4 5 0 14 1

NNW O .5 2 2 O O 9 VARIABLE O O O O O O O TOTAL 3 22 37 Sy 22 3 126 HOURS OF CALM IN THIS STABILITY CLASS - O

- HOURS 0:3 MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O 86

l' I

1 J

f.

DRESDEN NUCLEAR POWER STATION ,

i PERIOD OF RECORD - APRIL-JL*NE 1985 l :- STABILITY CLASS - SLIGHTLY UNSTABLE (DELTA T 3OO-35'FT) *

! WINDS MEASURED AT 300 FEET ,

1 WIND WIND SPEED (IN MPH) .

DIRECTION .9-3 4,7 S-12 13-18 19-24 GT 24 TOTAL i N 1 0 'O O 1 0 ~2 j i

I NNE O 3 ~4 O O O 7 I:

! NE O 1 8 3 2 1 15  !

I l ENE ,

1 2 9 4 O O 16 l

' l E O- 1 2 2 O O 5  !

ESE O 3 0 1 O O 4 J l,

-SE O 2 3 2 2 0 9 ,

i i*

f SSE O -2 5 1 4 0 12 l

[

j. S O O O 1 8 1 10- .!

1 4 5 SSW O 2 0 11 2 2 17 l SW O 2 2 2 3 '1 10 WSW O 3 6 5 '3 4 21-W 1 1 5 4 4 4 19

l. WNW 1 4 3 4 4 3 16  !

t NW O 5 8 0 2 0 15  !

I NNW O O 3 2 2 0- 7 h VARIABLE O O O O O O O f

i,

~ TOT L 4 31 SS 4' '7 16 188 r f

t HOURS OF CALM IN THIS STABILITY CLASS -

O [

HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - 0 l i

HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O  ;

I i

i P-g r- 87

  • l
e I

r

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - APRIL-JUNE 1985 STABILITY CLASS - NEUTRAL (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)  ;

DIRECTION .9-3 4- 7 S-12 13-18 19-24 GT 24 TOTAL N 1 4 10 18 2 1 36 NNE 1 7 23 9. 5 6 51 NE 2 5 28 41 14 10 100 ,

ENE 1 7 17 27 0 0 52 E 2 9 13 8 0 0 32 ESE 1 9 6 1 O O 17 ,

SE 1 10 5 6 1 1 24 SSE 3 7 4 7 8 1 30

.S 2 5 7 15 29 14 72 SSW O 5 5 17 28 26 81 SW O 4~ 13 24 29 18 88 l

WSW 2 4 5 14 9 7 41 W 1 6 19 20 '13 10 69 '

-WNW 2 7 11 7 13 14 54 NW 1 7 13 5 8 0 34 NNW 1- 3 8 6 6 2 26 VARIABLE O O O O O O O TOTAL 21 99 187 225 165 110 807 HOURS OF CALM IN THIS STABILITY CLASS - O .

HOURS Oc NISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS OFEMISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O 88

DRESDEN NUCLEAR POWER STATION PERIOD.0F RECORD - APRIL-JUNE 1985 STABILITY CLASS - SLIGHTLY STABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3. 4- 7 8-12 13-18 19-24 GT 24 TOTAL N 1 1 4 2 O O 8 NNE' O 2 16 12 1 0 -31 NE 3 6 20 21 9 0 59 ENE 1 8 27 4 0 0 40-E ~O 5 21 15 0 0 41 ESE 1 2 12 10 1 'O 26 SE- 0 4 9 9 -2 0 23' SSE O S S 5 2 4 27

.S O 3 14 27 39 8 91 SSW O 3 12 23 39 13- 90 SW O O .5 24 28 6 63 WSW 1 2- 15 9 8 3 38 W O 6 15 24 1 0 46 WNW 'O 2 8 20' 14 6 50 NW 1 3~ 12 22 7 0 45 NNW O O. 1 7 1 0 9 VARIABLE O O O O O O O TOTAL 8 55 197 233 152 40 687 HOURS OF CALM IN THIS STABILITY CLASS - O HOURS OF MISSINO WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS OF-MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O 89

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - APRIL-JUNE 1985 STABILITY CLASS - MODERATELY STABLE (DELTA T 300 L35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH) 4 DIRECTION .9-3 4- 7 8-12 13-18 19-24 GT 24 TOTAL N O O 2 1 O O 3 NNE O 1 4 2 O O 7 NE O- 0 4 7 1 0 12 ENE O 2 4 2 O O O E O 3 6 1 O O 10 ESE 1 2 2 4 0 0 9 SE O 2 2 3 0 0 7 SSE 1 1 5 3 0 0 10

-S. O 2 10 6 0 0 10 SSW 1 1 3 4 3 0 12 SW 3 1 2 11 6 0 23' WSW O 1 8 10 1 0 20 W O 5 9 4 2 0 20.

WNW O O 2 5 1 O e NW O 1 2 6 1 0 10 NNW O O 1 1 O O 2 l VARIABLE O O O O O O O TOTAL 6 22 66 70 15 0 179 HOURS OF CALM IN THIS STABILITY CLASS - O HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O

, HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - 0 l

l 90 i

I

__ - , , . - _ . _ . - _ _ - _ _ _ _ - - _ , . , _ _ _ _ . - . _ _ _ . . _ _ - . _ __ .a

. . ., - . - - . .-. --.. . . - - ..~.-- . .--. _. .. . - - _ . . - . . - . .

4 I

i DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - APRIL-JUNE 1985 j . STABILITY CLASS - EXTREMELY STABLE (DELTA T 300-35 FT) >

l WINDS MEASURED AT 300 FEET 4

WIND WIND SPEE'D (IN MPH)

_ . DIRECTION .9-3 4- 7 S-12 13-18 19-24 GT 24 TOTAL Y N .O O~' O O O O O ,

4

! NNE O O 1 0 ~O O 1  ;

l' . l NE O O O 2 O O 2 l 0

r

.ENE O 1 O O O O 1 ,

b E 1 1 1 O O O 3 i

ESE O O O O O O O SE v 0 1 1 O O 2 f SSE O O 1 4 0 0 5 '

4

S O O O 1 .O O 1 A

SSW O O O O 2 0 2 g SW O. O O 2 3 0 5

! WSW O 1 1 3 O O. 5 .

W O 1 4 2 2 O' 9 i WNW O O 1 3 O O 4 I t

a j NW O 1 3 0 0 0 4 NNW O O O O O O O 1

j VARIABLE O O O O O O O p TOTAL 1 5 13 18 7 0 44 '

HOURS-OF CALM IN THIS STABILITY CLASS -

~

O IN THIS STABILITY CLASS - 0 f.HOURSOFMISSINGWINDMEASUREMENTS 1

HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O i

t 1

i 91 k s 4

_ . _ _ . . _ , . . . _ . _ _ _ - _ . _ _ . _ _ _ _ _ . _ _ . . , . _ . _ _ . _ . _ . . . . _ _ . . , . , . , . _ . _ _ _ . = , . . _ . . . - . . _ -_.-._-.~.-.___J

9 DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - JULY-SEPTEMBER 1985 STABILITY CLASS - EXTREMELY UNSTABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND DIRECTION WIND SPEED (IN MPH)

.9-3 4- 7 8-12 13-18 19-24 GT 24 TOTAL N O 5 6 8 0 0 19 NNE O 4 13 1 O O 18 NE O 4 7 1 O O 12 ENE O 8 15 10 0 0 33 E O 3 3 0 0 0 6 ESE 1 1 3 3 0 0 8 SE O 5 5 1 O O 11 SSE O 2 4 3 0 O' 9 S O 1 6 7 O O 14 SSW O O 7 11 2 0 20 SW 1 4 10 3 C O 24 WSW O 3 1 8 1 0 13 W 1 2 5 5 O O 13 WNW O 2 3 6 0 0 11 NW 1 2 5 3 O O 11 NNW O 4 13 8 0 0 25 VARIABLE O O O O O O O TOTAL 4 50 106 78 9 0 247 HOURS-OF CALM IN THIS STABILITY CLASS - O HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS OF MISSING STADILITY MEASUREMENTS IN ALL STABILITY CLASSES - 2

b DRESDEN- NUCLEAR POWER STATION PERIOD OF RECORD - JULY-SEPTEMBER 1985 STABILITY CLASS - MODERATELY UNSTABLE (DELTA T-3OO-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)~ ,

- DIRECTION .9-3 4 8-12 13 19-24 GT'24 TOTAL N O 3 1 1 O O 5

- NNE .1 3 2 1 O O 7 NE' 'O 2 2 1 O. O 5 ENE O 4 3 5 O O 12 l,

E 1 2 3 0 0 0 6 -

ESE 1 10 6 1 O O 18 SE O 7 4 0 0 0 11 SSE O 2 5 2 O O 9 S O 3 6 9 1 1 20

'SSW O' 4 13- 16 -4 0 37 SW O 7 10 5- 3 O 25 WSW O 5 S- 4 O O 17 W 1 3 3 4 O O 11 WNW 2 5 0 2' O O 9 NW O 2 2 2 O O 6 NNW 1 1 2 O O O 4 r

( VARIABLE O O O O O O O i

P t

TOTAL 7 63 70 53 8 1 202 L HOURS OF CALM IN THIS STABILITY CLASS - O

t. HOURS'OF MISSING WIND MEASUREMENTS-IN THIS STABILITY CLASS - 0 l

-HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - 2  :

L 93 4ws-e,-e-sm---w-,- ,,-,-----r* * * . - . - **- ---m-- ----=~e---,= -r.en-s--*e----,w-ww4 ,-r--s,---r---v-e+ me- ---m-- - -

.m--= - + . - - - - - - - - - - - - - -

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - JULY-SEPTEMBER 1985 STABILITY CLASS - SLIGHTLY UNSTABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 .8-12 13-18 19-24 OT 24 TOTAL N O O 1 2 O O 3 i

NNE O 2 3 2 O O 7 NE 1 3 1 1 O O 6 ENE 2 7 3 0 0 0 12 E 1 6 2 2 O O 11 ESE 1 8 4 0 0 0 13 i SE 2 3 2 1 0 8 CSE 2 1 4 2 O O 9 l S 2 4 5 1 1 .O 13 4 SSW O 6 11 18 3 0 38 SW 1 4 8 4 1 0 18 WSW 2 10 11 3 0 0 26 W 4 7 6 2 3 0 22 WNW 1 2 2- 1 O O 6 NW 1 1 2 3 0 0 7 NNW 1 0 2 0 1 0 4 VARIABLE O O O O O O O TOTAL 21 64 .67 42 9 0 203 HOURS OF CALM IN THIS STABILITY CLASS - O HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS OF MISSING STABILITY MEASUREMENTS.IN ALL STABILITY CLASSES - 2 94

. ~, . - . _ _ .- - . _ _ ..

5 DRESDEN NUCLEAR POWER STATION i , PERIOD OF RECORD JULY-SEPTEMBER 1985 STABILITY CLASS - NEUTRAL (DELTA T 300-35 FT)

.4 WINDS MEASURED AT.300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 .8-12 13-18' 19-24 GT.24 TOTAL N 2 2' 7 7 1 0 19 -

NNE O 10 11 21 'O O 42 NE 'l 7. 21 13 0 0 42

!. ENE O 10 38 7- 0 0 55 E O 6 19 4 O O 29 I' ESE 2 ~4 13 1~ O O 20 e

! SE O 6 8 1 O O 15 i SSE 1 9 16 14 0 1 41 i S 2 5 25 36 14 1 83 i

4 SSW O 9 29 45 21 0 104 .

. SW 2 6 20 12 8 2 50 r .

WSW 2 9 8 4 0 1 24

W

+

5 16 11 23. 8 3 66 WNW 1 9 9 6 0 0 25 l

i. NW 2 8 11 5 1 0 27 i

NNW- 2 7 6 2- 0 0 17 i

c ,

. VARIABLE O O O O O O O  !

TOTAL 22 123 252 201 53 8 659

' HOURS OF CALM'IN THIS STABILITY CLASS - 0 l HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - 12 HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - 2 i

l 1

95 4

1 9

-~ ,r, ,,,s ,+ ,a - ,, ..w,w,n, , - - , , - , , , , - - , , - - , , , , , - - , - - - , , , - - ,,w,, , - - , , - .--.-,,---,,,.,,-,n_,,.-,------w----

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - JULY-SEPTEMBER 1985 STABILITY CLASS - SLIGHTLY STABLE (DELT.A T 300-35 FT)

WINDS MEASURED AT 300 FEET ,

WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 8-12 13-18 '19-24 OT 24 TOTAL N 2. 2 3 3 0 0 10 NNE O 3 6 10 1 0 20  :

NE O 3 13 11 2 0 29 ,

ENE 3 9 14 2 O O 28 E O 9 27 16 6 0 58 ESE 2 4 25 12 O O 43 SE O 4 14 9 0 0 27 SSE O 8 16 15~ 3 0 42 S 1 7 7 32 23 1 71 SSW 1 8 22 56 16 0- 103 SW ~2 9 26 21 6 2 66 WSW 1 9 15 7 2 0 34 4

W 2 7 16 8 3 0 36 WNW 1 8 11 7 0 1 28 NW 1 3 18 8 0 0 30 NNW O 4 4 3 0 0 11 VARIABLE O O- 0 0 0 0 0 TOTAL 16 97 237 220 62 4 636 HOURS OF CALM IN THIG STABILITY CLASS - O HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - 12 HOURS OF MISSINO STABILITY ~ MEASUREMENTS IN ALL STABILITY CLASSES - 2 l

96

.. . ._ . - - . . .-_.. - . . . . - . . . . . . . - - -- - - - = . . .

b 4

^

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - JULY-SEPTEMBER 1985 STABILITY CLASS - MODERATELY STABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH) '

DIRECTION .9-3 4- 7 8-12 13-18 19-24 GT 24 TdTAL N. 2 i O 2 O O 5 NNE O 5 3 1 1 0 -10 NE- 0 1 4 9 2 0 16 ENE O 6 4 -2 O O 12 E 1 1 2 O O O. ~4 ESE O 1 S 1 O O 7 SE O 1 6 6 O O 13 SSE O 4 10 2 O O 16

-S 2 4 3 4 5 O' -18  !

l l SSW 1 1 2: 13 4 0 21 SW O 8 14 4 O O 26 WSW O 5 11 1 O O 17 W 1 7 10 1 O O 19 WNW O 5 1 O O O 6 NW O 4 7 0 0 0 11 NNW O 3 0 0 0 0 3 +

VARIABLE O O O O O O O ,

TOTAL 7 57 82 46 12 0 204 r

HOURS OF CALM'IN THIS STABILITY CLASS - O

. HOURS'OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS'OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - 2 '

i <

i I

97

~- -

. , . _ - . , , . - _ , . , , , , , , _ _ - , , , . . - , . - - . , . - - - , , , , , ,_,..,,-n--  %-,, ,- ,,- u  %., -

., DRESDEN NUCLEAR POWER STATION FERIOD OF RECORD - JULY-SEPTEMBER 1985 STABILITY CLASS - EXTREMELY STABLE (DELTA T SOO-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 G-12 13-18 19-24 GT 24 TOTAL N- 0 1 O O O O 1

'NNE O O O O O O O NE O O O O O O O ENE- 0 2 O- 0 0 0 2 E O O O O O O O ESE- 0 0 0 0. O O O SE O 1 3 2 O O 6 SSE O O O 1 O O 1 S O 1 O O O O 1 SSW O 1 0 2 1 0 4 SW O 1 1 1 2 0 5 WSW O 3 0 0 0 0 3 W O 2 O O O O 2 WNW O 1 1 O O O 2 NW O 1 1 O O O 2 i NNW O 1 0 1 O O 2 VARIABLE O 'O O O O O O TOTAL -0 15 6 7 3 0 31 HOURS OF CALM IN THIS STABILITY CLASS - O O

HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS -

1 2

HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES -

98

[

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - OCTOBER-DECEMBER 1985 STABILITY CLASS - EXTREMELY UNSTABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET

-WIND WIND SPEED (IN MPH)

DIRECTION .9 4- 7 6-12 13-18 19-24 GT 24 TOTAL N O O 1 O O O- 1 NNE O 1 3 0 0 0 4 NE O O O 1 O O 1 ENE O O 2 3 0 0 5 E O 0 0 2 O O 2 ESE O O O O O O O l SE O O O O O O O l

! SSE- 0 0 0 0 0 0 0 S O O O O O O O

) SSW O O O O O O O 1-(

). SW O O O O O O O 1

t WSW O O O O O O O l W O O 3 6 O O 9 WNW O O 1 12 2 0 15 NW O -O 1- 1 4 O 6 NNW. O 'O O O 1 0 1 VARIABLE O O O O O O O TOTAL 0 1 11 25 7 0 44

-HOURS OF' CALM IN THIS STABILITY CLASS - 0 HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O HOURS OF MISSING STABILIT l MEASUREMENTS IN ALL STABILITY CLASSES - O 99 l:

f.

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - OCTOBER-DECEMBER 1985 STABILITY CLASS - MODERA TELY UNSTABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 S-12 13-18 19-24 GT 24 TOTAL N 2 1 3 0 0 0 6 NNE 1 1 2 O O O 4 NE O 2 1 1 O O 4 ENE O 1 'O 2 O O' 3 E O O O 4 0 0 4 ESE O O O O O O O SE O 'O O O O O O SSE O O O 3 0 0 3 S 1 0 4 8 2 0 15 SSW O O 1 3 0 0 4 SW O O 1 1 O O 2 WSW O O 1 3 0 0 4 W O O 1 5 6 0 12 WNW O 1 0 11 6 4 22 NW O O O 4 6 1 11 NNW O 1 0 2 1 0 4 VARIABLE O O O 0 0 0 0 TOTAL 4 7 14 47 21 5 98 HOURS OF CALM IN THIS STABILITY CLASS - O

!!OURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - 4 HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - 0 100

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - OCTOBER-DECEMBER 1935 STABILITY CLASS - SLIGHTLY UNSTABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 8-12 13-18 19-24 GT 24 TOTAL

, N 1 1 4 O. O O 6 NNE O- 3 1 O O O 4 2 3 NE 1 O O. O O

'ENE O 1 2 1 O O 4 i E O 5 4 2 O O 11

-ESE O 1 0 1 O O 2 .

SE 1 0 2 O O O- 3 t

-SSE O 2 2 2 O O 6 ,

I SL O 2 6 2 4 0 14 1

SSW O 1 1 4 1 0 7

!- SW 1 0 2 1 2 0 6 WSW O 1 1 3 0 0 5 i

I W O 3 2 6 7 0 18 WNW O O 1 4 5 . :2 12

! NW O O 1 8 4 0 13 NNW O O O. 3 1 0 4

!. VARIABLE O O O O O O O 4

TOTAL 5 21 29 37 24 2 118

) HOURS OF' CALM IN THIS STABILITY CLASS - O HOURS OF. MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - 5

HOURS OF MISSING. STABILITY MEASUREMENTS IN ALL STADILITY CLASSES - O i

l 101

[

h DRESDEN NUCLEAR POWER STATION l PERIOD OF RECORD - OCTOBER-DECEMBER 1985 STABILITY CLASS - NEUTRAL (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION . 9-3 4- 7 8-12 13-18 19-24 OT 24 -TOTAL

_________ _____ _____ _____ _____ _____ _= _____

N 3 5 23 17 0 2 50 NNE 2 14 31 16 1 0 64 NE 4 24 38 23 11 0 100 ENE 2 15 52 49 1 0 119 E 5 21 50 51 11 2 140 ESE 4 10 28 19 8 O 69 SE 2 8 16 12 2 0 40 SSE 1 11 11 21 4 4 52 S 5 9 16 50 15 16 111 SSW 1 4 16 24 18 13 76 SW . O G 14 18 16 10 66 WSW 3 11 8 18 25 14 79 W 1 11 15 50 28 28 133 WNW 1 6 18 67 50 17 159 NW O 7 29 47 11 1 95 l

l NNW 4 8 26 31 10 7 86 VARIABLE O O O O O O O TOTAL 38 172 391- 513 211 114 1439

. HOURS OF CALM IN THIS STABILITY CLASS - O HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - 55 HOURS OF-MISSING STABILITY MEASUREMENTS'IN ALL STABILITY CLASSES - O f

102

- ~ . . .. -. . - - -. - -. . ._- ~ = ..- - . . - . _ - - -

h DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - OCTOBER-DECEMBER ~ 1985 2

STABILITY CLASS - SLIGHTLY STABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET i.

WIND WIND SPEED (IN MPH) .

DIRECTION .9-3 4- 7 8 13-18 19-24 GT 24 TOTAL N 1 1 4 8 0 15.

NNE 1 1 5 4 0 0 11 i .- NE O 4. 6 4 0 0 14 ENE-- 1 4 8 3 0 0 16 E O 3 2 1 O O 6

  • t-

' ESE -1 -2 2 5 0 0 10 l, SE O 5 6 7 0 0 18

+

SSE 0 4 6 7 0 0 17 -

S O 2 10 '12 1- 6 31 SSW- 0- 3 13 13 8 2 39 SW O 6' 13 9 '2 3 33 WSW 1- ~4 4 11 7 1 2G W O 2 12 15 10 0 39 WNW O O 2 17 2 0 21 NWl O 2 5 2 1 0' 10 I NNW O 1 5 9 0 0 15.

+

- VARIABLE O O O O O O O f

TOTAL 5 44 103 127 32 12 323 L f HOURS OF CALM IN.THIS STABILITY CLASS - 0 4~ HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - 6 HOURS OF MISSINO STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O i

d i

103 '

t

--ry,.,. y , w., - + - . .m c-. woe-- ,,,---,--,w,,-,,-*-,-,,-,n

, - , , . , --y.----e---v,,-< ---==~----t--,'-v- ---***w '*

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD -- OCTOBER-DECEMBER 1985 4

STABILITY CLASS - MODERATELY STABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3. 4- 7 8-12 13-18 19-24 GT 24 TOTAL N O O O O O O O NNE O O O O O O O NE O O 2 O O O 2  ;

ENE O O 11 O O O 11 E O O O O O O O ESE O O O O O O O SE O O O O O O O SSE O O O 2 O O 2 S O O 1 7 0 0 8 s

SSW O 1 3 11 7 0 22 SW O 2 5 8 0 0 15 4

WSW O 1 4 11 O O 16 W O 1 3 1 O O 5 i

WNW 1 2 0 3 O O 6 i NW O O 2 2 O O 4 NNW O O O 1 O O 1 VARIABLE O O O O O O O TOTAL 1 7 31 .46 7 0 92

-HOURS OF CALM IN THIS STABILITY CLASS - O '

HOURS OF MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O S

HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABILITY CLASSES - O 104

DRESDEN NUCLEAR POWER STATION PERIOD OF RECORD - OCTOBER-DECEMBER 1985 '

STABILITY CLASS - EXTREMELY STABLE (DELTA T 300-35 FT)

WINDS MEASURED AT 300 FEET WIND WIND SPEED (IN MPH)

DIRECTION .9-3 4- 7 8-12 13-18 19-24 GT 24 TOTAL. .

N O O O O O O O NNE O O O O O O O NE O O O O O O O f

ENE O O O O O O O E O O O O O O O ,

ESE O O O O O O O SE O O O O O O O SSE O O O O O O O S O O O O 1 0 1 SSW O O O O 8 0 8 SW O O 1 4 2 0 7 )

WSW O O 1 1 O O 2 W O O O O O O O WNW O 3 0 0 0 0 3 NW O 1 0 2 O. O 3 NNW O O O O d' O O VARIABLE O O O O O O O t

i j' TOTAL 0 4 2 7 11 0 24 k

HOURS OF CALM IN THIS STABILITY CLASS - 0 l HOURS OF-MISSING WIND MEASUREMENTS IN THIS STABILITY CLASS - O

! HOURS OF MISSING STABILITY MEASUREMENTS IN ALL STABIL.ITY CLASSES - O i i

l 105

i

J

'1 f

i

(

l' APPENDIX III ANALYTICAL PROCEDURES k

b b

s I

h 9

106 1

ANALYTICAL PROCEDURES MANUAL TELEDYNE ISOTOPES MIDWEST LABORATORY PREPARED FOR COMMONWEALTH EDIS0N COMPANY t

Note: Tnese procedures are taken from the complete Procedures Manual. Only procedures applicable to the CECO Radiological Environmental Monitoring

-Programs are included in this manual.

Compiled by: . h .i B.brob I Lab Supervisor Approved by: _ / /Z/M

" ,/L.G.Huabner General Manager Revision 0, 11 February 1977 Revision 1, 23 May 1978 Revision 2, 22 May 1981-

-Revision 3, 15 June 1983 Revision-4, 1 June 1984 Revision 5,.7 February 1985 (This information, or any portion thereof, shall not be reproduced in any.

manner or distributed to any third party without the written permission of Teledyne_ Isotopes Midwest Laboratory).

107

8 TABLE OF CONTENTS SECTION I SAMPLE PREPARATION 1.1 Fish- .

2' 1.2 Bottom Sediments and Soil 3 1.3 Drinking (clear) Water (EPA Method 900.0) 4 SECTIONS II, III, VIII ANALYSES 2.1 Airborne Particulates (Gross alpha and/or Beta) -

5 2.2.2 Gross Alpha and/or Gross Beta Activity in Dissolved Solids 6 3.1 Airborne Particulates - Gamma Spectroscopic Analysis by Germanium Detector 8 3.2 Airborne Iodine - Gamma Spectroscopic Analysis by Germanium Dectector 9 3.3 Water.- Gamma Spectroscopic Analysis by Germanium Detector 10 3.4 Soil and Rottom Sediments - Gamma Spectroscopic Analysis by Germanium Detector 11 3.5 Fish and Wilflife - Gamma Spectroscopic Analysis by Germanium Detector 12 3.6 Ambient Radiation (TLD), Efficiency Calibration 13 3.7 Procedure for Preparation and Readout of TLD chips 15 3.8 Tritium in Water 17 3.9 Iodine-131 in Milk by Ion Exchange on Anion Exchange Column 19 8.1 Strontium-89 and Strontium-90 in Milk by Ion Exchange 23 8.4 Strontium-89 and Strontium-90 in Water Samples 32 8.6 Strontium-89 and Strontium-90 in Milk (Ash), Vegetation, Fish, Wildlife, Soil, and Bottom Sediment Samples - Sodium Carbonate Fusion 37 108

, - . . . - . - . . - - . . - . . - _ . . . - . ~. . .- - - - -

Rev. 4, 6-01-84

)-

SECTION 1.0 SAMPLE PREPARATION Different classes of samples require different preparations. In general, food products are prepared as for home use, while others are dried and ashed as received.

t 109

Rev. 4, 6-01-84 /p// /'

Approved by: ( b ////[//2fL L'.G( Huebner 1.1 Fish

1. Wash the fish.

(

2. Fillet cnd place the flesh immediately (to prevent moisture loss) in a 500 cc plastic container. Add a few cc of formaldehyde. Seal and record wet weight.

NOTE: If bones are to be analyzed,. boil remaining fish in water for about I hour. Clean the bones. Air dry, weigh and record as wet weicht. Dry at 125' C. Record dry weight. Ash at 800*

C, cool, weigh, and record the ash weight. Grind to a homogeneous sample. The sample is ready for analysis.

3. Gamma scan fillet without delay or store in a freezer.
4. After gamma spectroscopic analysis is completed transfer the sample to a drying pan and dry at 125' C.
5. Cool, weigh, and record dry weight.
6. Ash by gradually increasing the temperature to 450* C. If consider .

able amounts of carbon remain after overnight ashing, the sample should be brushed and placed back in the muffle furnace until ashing is completed. Record ash weight. The sample is now ready for analysis.

NOTE: If there is sufficient quantity, use surplus flesh for drying and - ashing, instead of waiting for gamma scanning to be completed.

110

r. _

Rev. 6, 6-01-84 .,/ '

& PL(/

Approued by: j tifiy/(

! L.7. Huebner 1.2 Bottom Sediments and Soil

- 1. Air dry the entire sample. Grind or pulverize the sample and sieve through a #20 mesh screen.

2. For gamma-spectroscopic analysis, seal 500 cc of the ground sample in a Marinelli beaker. Record dry weight.
3. Seal the remaining sample (up to 1 kg) in a plastic container and save for other analyses or for possible future rechecking.

s l

111

Rev . 4, 6-01-84 /[f , / / - /

Approved by: ( F # m /dfy L.g. Huebner 1.3 Drinking (clear) water (EPA Method 900.0)

A representative sample must be collected from a free-flowing source

.of drinking water, and should be large enough so tnat adequate aliquots can be taken to obtain the required sensitivity.

It is recommended that s'amples be preserved at the time of collec-tion by adding enough IN HNO3 to the sample to bring it to pH 2 (15 mi 1N HNO3 per lit'iir of sample is usually sufficient) ~-

If samples are to be collected without preservation, they should be brought to the laboratory within 5 days, then preserved and held in the original container for a minimum of 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> before analysis or transfer of the sample.

The container choice should be plastic over glass to prevent loss due to breakage during transportation and handling.

If the sample was not acidified at the time of collection, use the following procedure:

Procedure

1. Remove 100 ml of sample for tritium analysis, ir required.

NOTE: Water should not be acidified for tritium analysis. If samples are acidified in the field, an additional aliquot should be collected.

2. Add 15 ml of IN HNO3 per liter of sample in the original container.
3. Hold the sample in the original container for a minimum of 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> before analysis or transfer of the sample.
4. When taking an aliquot for analysis, take acid addition into account. For example:

Sample volume Volume of aliquot to be analyzed reauired 200 ml 203 ml 400 ml 406 ml 600 ml 609 ml 800 ml 812 nl 1000 ml 1015 ml 2000 ml 2030 ml 3000 ml 3045 ml 3500 ml 3552 ml For other volumes, adjust aliquots correspondingly, at the rate of 1.5 ml per 100 ml of sample.

112

T Rev. 4, 6-01-54 f;ff // /

Approved by: Y -/dC///////(

!..Gt Huebner 2.1 Airborne Particulates 2.1.1. Gross Alpha and/or Gross Beta Activity Procedure

1. Store the sample for 5 days from the day of collection to allow for decay of short-lived radon and thoron daughters.
2. Place a 47 m filter on a stainless steel planchet and count the sample in a proportional counter.
3. Calculate the activity in pCi/m3 using computer program AIRPAT.

Calculations Gross alpha (beta) concentration:

E A .2 b b (pCi/m3 ) = I B x C x 2.22 B x C x 2.22 Where:

A = net alpha (beta) count rate (cpm)

B = efficiency for counting alpha (beta) activity (cpm /dp.a)

C = volume of sample (m3)

Esb = counting error of sample plus background Eb = counting error of background 113

f: :: :

2' Rev. 4, 6-01-84 /I/ / / //

Approved by: rd kQ/ftz/,L L.G' Huebner 2.2.2 Gross Alpha and/or Gross Beta Activity in Dissolved Solids (see note)

Principle of Method 1

Water samples containing suspended matter ~are filtered through a membrane-filter and the filtrate is analyzed. The filtered water sample is evapor-ated and the residue is transferred to. a tared planchet for counting gross alpha and/or gross beta activity.

Reagents Lucite: 0.5 mg/ml in acetone Nitric acid,-HNO 3: 3N Nitric acid, HNO3 : concentrated Apparatus Filters; Millipore, membrane Type AA, 0.8 p

Filtration equipment

?

Planchets (Standard 2" x 1/8" Beckman planchet)

Proportional counter i Procedure 4

1. Filter a volume of sample containing not more than 100 mg of dissolved solids for alpha assay, or not more than 200 mg of dissolved solids for beta assay.

Note: For gross alpha and gross beta assay in the same sample limit amount of solids to 100 mg.

2. Wash the non-filterable solids on the filter. (Save the filters with suspended matter for separate analyses. See Section 2.2.1).
3. Evaporate the filtrate to NEAR dryness on a hot plate. Add 25 ml concentrated HNO3 and evaporate to NEAR dryness.

Note: For analysis of total residue (for clear water) proceed as described above but do not fiter the water. Measure out the  !

appropriate amount and proceed with step 3.

i t

6 114

o ,

f Rev. 4, 6-01-84 L

I

Section 2.2.2.(continued)
  • 4. With-distilled water and a few drops of 3N HNO 3, transfer

.the residue to a 50 ml beaker. Evaporate 70 NEAR dryness.

5. Transfer quantitatively the residue to a TARED Pt.M.0HET, usiiig l- an eye dropper.
6. .Wash the beaker with distilled water and combine the washing and the residue in the planchet. Evaporate to dryness.
7. Bake in muffle furnace at 500* C for 45 min., cool and weigh.
8. Add a few drops (6-7 drops) of lucite solution and dry under the infrared lamp for 10-20 minutes.
9. Store-the sample in a desiccator until it is to be counted.
10. Count the gro ss alpha and/or the gross beta activity in a low background proportional counter.
11. Calculate the activity in pCi/l using computer program OWATAB. ,

l Calculations:

Gross alpha (beta) concentration:

2 2 E A E3b + b (pCi/ liter) = 1 B x C x D x 2.22 B x C x 0 x 2.22 I

Where:

A = net alpha (beta) count rate (cpm)

B = efficiency for counting alpha (beta) activity (cpm /dpm)

C = volume of sample (liters)

D = correction factor for self-absorption in the sample Esb = counting error of sample plus background Eb = counting error of background

Reference:

Radioassay Procedures for Environmental Samples, U.S. Department of Health, Education and Welfare. Environmental Health Series,

! January 1967.

l l

l 115

. . ~

l Rev. 4, 6-01-84 / <.*/ 7 Approved by: ,t[' /C//,/d//f L.((..Huebner 3.1 Airborne Particulates - Gamma Spe'ctroscopic Analyses by Germanium Detector

1. Put the air filter in a filter cup container.
2. Place the filter cup inside~the shield on the detector.
3. Count long enough to meet the LLO requirements.
4. Store the spectra on the disc.
5. After. storing, calculate gamma activities using computer and corres-ponding calibrated geometry.
6. Return the filters to the original envelopes for storage or further analyses.

116

m Rev. 4, 6-01 I ' //

Approved by: A_ 6//M/t//[

k.q/ Huebner 3.2 Airborne Iodine Gamma Spectroscopic Analysis by Germanium Detector NOTE: Because of the short -half-life of I-131, count the samples as soon as possible after receipt'and no later than 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />.

1. Load the charcoal cartridges in a specially designed _ holder or

-transfer charcoal from each cartridge to individual plastic bags.

Seal the bags.

2. Label each bag with corresponding project ID, locations ID, and date of collection.
3. Place the bags in a standard geometry container, cap the ' container-and secure the cap with a tape.
4. Place the holder or container on the-detector and count for a period of time that will meet the required Lower Limit of Detection (LLD).

Calculation:

A A1 = I-131 activity (pCi/ sample)= (at counting time) (1) 2.22 x B Where:

A= net count rate of I-131 in the 0.36 MeV peak (cpm)

B= efficiency for the I-131 in 0.36'MeV peak (cpm /dpm)

Correction for Equilibrium (assuming constant concentration over the sampling period) and Decay:

1 N C = (2)

F (1-e-At2 )

Where:

C = equilibrium concentration of'I-131 (pCi/m3)

Al = activity of I-131 at the time of counting (pCi/ sample) e= the base of the natural logarithm = 2.71828 A= 0.693/ half life (days)=0.693/8.04 = 0.0862/ day t 1= elapsed time between the end of sampling and mid-counting point (in days) t 2= duration of collection (in days)

F= m3/ day 117

Rev. 40 6-01-84 1 Approved by: [,[/.. //M//h L.fM fidebner 3.3 Water - Gama Spectroscopic Analyses by Germanium Detector Procedure

1. Measure 3.5 liters of water into a Marinelli beaker.
2. Place the beaker inside the shield on the detector.
3. Count long enough to meet LLD requirements.
4. Store the spectrum on a disc.
5. After storing, calculate gamma activities, using computer program and corresponding calibrated geometry.
6. Transfer the sample back to the original container for further' analyses.

118

y . - . . -.

^ -

Rev. 40 6-01-86 [

Approved by: Mb.f/(/($gzbC 7

J .. li.G/ Huebner

~

i- 3.4 Soil and Bottom Sediments - Gamma Spectroscopic Analyses by Germanium Detector . ,

Procedure i

1. Transfer the portion of the ground sample set aside for gamma scan-

!~ ning into a 500 ml Marinelli container.

2. Record the dry weight.

8 2 3. Place the container inside the shield on the detector.

4. Count the gamma activity long enough to meet the LLD requirements.

i

5. Store the spectrum on a disc.
6. After storing, calculate gamma activities using computer and corres-ponding calibrated geometry.
. 7. Transfer the sample back to the original container for further analyses.

i 1

L f

8 e

i l

i i

I 119

Rev. 40 6-01-84j')

Approved by: ,( ; . /(/U/////-

//

L.G/ H0 ebner 3.5 Fish and Wildlife - Gamma Spectroscopic Analyses by Ge(Li) Detector Procedure
1. Transfer a portion of the clean wet flesh of fish or animal into a 500 ml Marinelli container,
2. Record wet weight.
3. Add a few cc of formaldehyde and seal the container.
4. Place the container inside the shield on the detector.
5. Count long enough to meet the LLD requirements.
6. Store the spectrum on a disc.
7. After storing, calculate gamma activities using computer and corres-ponding calibrated geometry.
8. Transfer the sample back to the original container for further analyses.

I 120

n i Rev. 4, 6-01-84 -

A Approved by: # f'//

g.f //((t.///t/L L'.G/ Huebner 3.6 Ambient Gama Radiation A. Thermoluminescent Dosimeters (TLD) - Licht Response (Efficiency)

Harshaw Lithium Fluoride TLD-100 chips,1/8" x 1/8" x 0.035".

Procedure

1. Rinse the chips with warm trichloroethylene followed by the methanol rinse. Dry.
2. Place the chips in a platinum crucible.
3. Anneal for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> at 400*C.
4. Cool quickly by placing the crucible on a metal plate.
5. Anneal for 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> at 100*C.

Note: Avoid exposing the chips to the fluorescent light.

6. Seal 5 chips each in black plastic.
7. Mount the packs on the turntable.

~

8. Position the Ra-226 needle in the middle of the turntable and start rotation (appr. 60 revolutions per minute). Record the time.
9. Irradiate the chips for 2-6 hrs.
10. Remove the packages from the turntable. Return the Ra-226 needle to the lead container. Record the time.
11. Take the chips out of the plastic bag and place them in the vial.
12. Postanneal the chips for 10 minutes at 100*C.
13. Read each chip in the TLD Reader (For test procedure see

" Performance Test Procedure for TLD Reader").

14. Calculate mean + one siama deviation of five chips.
15. Calculate light response of TLD's (correction f actor) by the following equation:

121

Rev. 4, 6-01-84 Section 3.6 (continued)

Calculations A

=

C.F.-(nanocoulombs/mR) B Where:

C.F = ccrrection factor (efficiency) to be applied in calculating exposure of field TLDs A = Net reading in nanocculombs B = known exposure to TLDs The exposure to the TLDs (B) is calculated as follows:

'mR/hr = 8400 x mg Ra-226 r2 For our setup use the following parameters:

Ra-226 = 0.0933 + 1.5%

r = 19.6 cm Thus:

mR/hr = 8400 x 0.0933 = 2.040 384.16 The total exposure (B) is equal to:

B (mR) = 2.040 x hours of exposure to the Ra-226 needle.

122

i Rev.4,6-01-88//

Approved by: en J[ude/u/_

f tl.g. Huebner 3.7 Procedure for Preparation and Readout of TLD Chips Materials Harshaw Lithium Fluoride TLD-100 chips,1/8" x 1/8" x 0.035".

Black plastic bags or boxes Plastic sealer Vacuum needle (for handling the chips)

TLD reader Note: Never handle the chips with bare hands. Use plastic-covered forceps, or vacuum needle. Handle them gently, e.g. do not drop them into the vial or on the table. They chip off easily, resul-ting in efficiency change.

Procedure

1. Rinse the chips with warm trichloroethylene followed by the methanol rinse. Dry.
2. Place the chips in a platinum crucible.
3. Anneal for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> at 400*C.
4. Cool quickly by placing the crucible on a metal plate.
5. Anneal for 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> at 100*C.
6. Seal 3 to 5 chips (depending on the specifications) in black plastic or plastic boxes.
7. Label and send out by U.S. Mail.
8. Upon arrival at the lab, store TLDs in the big shield until readout day. Do not store longer than a few days.
9. Connect chips reader one day prior to readout.
10. Turn on gas for a few minutes before readout. Adjust to the mark.
11. Set parameter on the 2000P as follows:

HV - 470 V (It is 970 V, internal volts = 500).

Readout time: 20" T1 - 140' C (Preset)

T2 - 250* C (Preset)

Rise time: -12*/sec (Preset)

Preheat - 100* C (Preset)

Start reading - 90* C 123

Rev. 6, 6-91-84 Section 3.7 (continued)

12. Prepare the chips as fol' lows (do this before proceeding to the next step). .

12.1 Turn on small muffler furnace or drying oven and adjust to 100*C. Use class thermometer. Muffler's indicator is not accurate. Let furnace stabilize.

12.2 Unpack the chips (under reduced incandescent light) and gently place them in the glass vials marked with appropriate location numbers.

12.3 Place the vials in the furnace. Preanneal for 10 min. at 100*C.

13. Open the drawer and read the standard. It should read 5.70+0.04.

Adjust HV, if needed. .Take 3 readings after final adjustment.

Record.

14. Close the drawer.
15. Check bkg. It should read about 0.7-0.8 in 20". If it is higher, adjust the knob in the back of 2000 P (on left side when facing the instrument).

Note: Adjust bka as low as possible but do not let the needle hit zero. The instrument will not record below zero.

16. Make 10 bkg readings (no chip in). Record. Read (do not record) at least 2 dummies to stabilize the temperature.
17. Place the chip in, wait until temperature goes down to 90* C and press " read" button, Make sure the chip is in the cavity of the heatino plate.
18. After readout is completed, record the reading, open the drawer, and place next chip.
19. Repeat Steps 17 and 18. until all chips are read out.

Note: If reading will last longer than 1.5-2.0 hrs., check the standard and bkg about every 2.0 hrs.

20. After readout is completed, turn off the gas.
21. For calculations, use computer program 0GTLD. PUB.

124

~ '

Rev. 40 6-01-84 Approved by: , _ j [/fd[dQ t.(f. Huebner i

t

! 3.8. Tritium in Water (Dirct Method)

Principle of Method The water sample is purified by distillation, and portion of the distil-late is transferred to a counting vial containing a scintillation fluid.

The contents of tne vial are then mixed and counted in a liquid scintilla-tion counter, i

Reaoents ,

Scintillation medium, insta-gel scintillator Tritium standard solution Apparatus

!' Condenser Distillation flask, 250-ml capacity Liquid scintillation counter  :

Liquid scintillation counting vials Procedure

1. Distill a 30 ml aliquot of the sample in a 250-ml distillation flask. Add a boiling chip to the flask. Connect a side arm adapter and a condenser to the outlet of the flask. Place'a  :

glass vial at the outlet of the condenser. Heat the sample.to  !

100 - 150' C to distill, just to dryness. Collect the distil-  :

t late for tritium analysis.

2. Dispense 13 ml of the distillate to a low potassium glass vial. l
3. Prepare background and standard trit'ium-water solutions for -

l counting, using the same amount as the sample. Use low tritium l background distilled water for these preparations (distillate

! of most deep well water sources is acceptable, but each source should be checked for tritium activity before using).

4. Dark-adapt all samples, backorounds, and standards. Add 10 mi of insta-gel scintillator. Count the samples, backgrounds and f standards. Count samples containing less than 200 pCi/l for 300 minutes and samples containing more than 200 pCi/l' for 200 minutes.

l

! I j 125

Rev. 4, 6-01-84

!. Section 3.8 (continued)

5. Counting efficiency:

Eff = com of Standard-cpm of background dpm Standard

6. Sample Concentration:

A pC1/ml =

2.22 x E x V x e-At Where:

A = net count rate (cpm)

-E = efficiency (cpm /dpm)

V = volume (ml)

A = 0.693 = 0.05652 12.26 t = elapsed time from the time of collection to the counting time (in years)

7. Calculate tritium activity using computer program H3.

1 I

M

Rev. 4, 6-01-84 /n) / / /.

Approved by: 4 f, /MJul L 4..Gf Huebner 3.9 Iodine-131 in Milk by Ion Exchange on Anion Exchange Column After samples have been treated to convert all iodine in the sample to a common oxidation state, the iodine is isolated by solvent extraction or a combination of ion exchange and solvent extraction steps.

Iodine, as the iodide, is concentrated by adsorption on an anion ex-changed column. Following a Nacl wash, the iodine is eluted with sodium hypochlorite. Iodine in the iodate form is reduced to 12 and the elemental iodine extracted into CCl4 , back-extracted into water then finally precipitated as palladium iodide.

Chemical recovery of the added carrier is determined gravimetrically from t the PdI2 precipitate. 1-131 is determined by beta counting the PdI2-Reagents Anion exchange resin, Dowex 1-X8 (50-100 mesh)chlorideform.

Carbon tetrachlorice, CCl4 - reagent grade.

Hydrochloric acid, hcl, IN,.

. Hydrochloric acid, hcl, 3N,.

H2O - HNO 3 - HN20H HCL wash solution: 50 ml H2 0; 10 ml IM - NH20H-hcl;

~

10 ml conc. HNO3 -

Hydroxylamine hydrochloride, NH2 0H hcl - 1 M,.

Nitric acid, HNO3 - concentrated.

Palladium chloride, PdI 2, 20 mg Pd++/ml. (1.2 g PdCl 2/100 ml 6N hcl).

Sodium bisulfite, NaHS03 .1 M, Sodium chloride, Nacl - 2M_

Sodium hypochlorite, Na0Cl - 5% (Clorox).

127

Rev. 4, 6-01-84 Section 3.9 (continued)

Special Apparatus Chromatographic column, 20 mm x 150 m (Reliance Glass Cat.#R2725T).

' Vacuum filter holder, 2.5 cm2 filter area Filter paper, Whatman #42, 21 mm Mylar Polyester gummed tape, 1 1/2", Scotch #853 Drying oven A. Ion Exchange Procedure

1. Set up an ion exchange column of 20 mm diameter and 150 mm length.
2. Pour 23 ml of a slurry of Dowex 1-X8, Cl- form (50-100 mesh) into the column and wash down sides with water. Add 2 ml of I carrier to 2 liters milk, stir for 20 minutes.
3. Pass the sample through the ion exchange column at a flow rate of 20 ml/ min. Save the effluent for other analyses and label it l " iodine effluent".
4. Wash column with 500 ml of hot distilled water for milk samples or 200 ml of distilled water for water samples. Discard wash.
5. Wash column with 100 ml of 2 M Nacl at a flow rate of 4 ml/ min.

~

Discard wash.

6. Drain the solution from the column.
7. Measure 50 ml 5% sodium hypochlorite in a graduated cylinder.

Add sodium hypochlorite to column in 10-20 ml increments, stirring resin as needed to eliminate gas bubbles and maintain l flow rate of 2 ml/nin. Collect eluate in 250-m1 beaker and L discard the resin.

l B. Iodine Extraction Procedure

1. Acidify the eluate from step 7 using concentrated HNO3 to make the sample 2-3 N in HNO 3 , and transfer to 250 ml separatory funnel. (Add the acid slowly with stirring until the vigorous ,

reaction subsides.) Volume of concetrated HNO3 required will depend on eluate volume as follows):

l l

128

Rev. 40 6-01-84 section 3.9 (continued)

B.

Iodine Extraction Procedure (continued) eluate volume concentrated HNO3 (ml) (ml) 50-60 10 60-70 12 70-80 14 80-90 16

2. dd 50 ml of CCl4 and 10 ml of 1 M hydroxylamine hydrochloride (freshly prepared). Extract fodine into organic phase (about 2 minutes equilibratian). Draw off the organic phase (lower phase) into another separatory funnel.
3. Add 25 ml of CC14 and 5 ml of 1 M hydroxylamine hydrochloride to the first separatory funnel and again equilibrate for 2 minutes. Combine the organic phases. Discard the aqueous phase (Upper phase) if no other analyses are required. If Pu, U or Sr is required on the same sample aliquot, submit the aqueous phase and data sheet to the approprate laboratory section.
4. Add 20 ml H2 0-HNO 3 -NH 0H hcl wash solution to the separa-2 tory funnel containing the CCl4. Equilibrate 2 minutes.

Allow phases to separate and transfer CCl4 (lower phase) to a clean separatory funnel. Discard the wash solution.

5. Add 25 ml H2 O and 10 drops of 1 M sodium bisulfite (freshly prepared) to the separato'ry funhel containing the CC1. 4 Eouilibrate for 2 minutes. Discard the organic phase (lower phase). Drain aqueous phase (upper phase) into a 100-m1 beaker..

Proceed to the Precipitation of PdI2*

C. Precipitation of Palladium Iodide CAUTION: AMMONIUM HYDROXIDE INTERFERES WITH THIS PROCEDURE

1. Add 10 ml of 3 N hcl to the aqueous phase from the iodine extraction procediire in step 5.
^ 2. Place the beaker on a stirrer-hot plate. Using the magnetic stirrer, boil and stir the sample until it evaporates to 30 ml or 3 begins to turn yellow.
3. Add 1.0 ml of 20 mg Pd++/ml palladium chloride per liter of milk used dropwise, to the solution.

0 r

129

Rev. 40 6-01-64 Section 3.9 (continued)

C. Precipitation of Palladium Iodide (continued)

4. -Turn the heat off, but continue to stir the sample until it cools to room temperature. Place the beaker in a stainless steel tray and put in the refrigerator overnight.

~

5. Weigh a clean 21 mm Whatman #42 filter which has been stored over silica gel in a desiccator. i
6. Place the weighed filter in the filter holder. Filter the sample and wash the residue with water and then with absolute alcohol.
7. Remove filter from filter holder and place it on a stainless steel planchet.
8. Dry under the lamp for 20 minutes.
9. Cut a 1 1/2" strip of polyester tape and lay it on a clean surface, gummed side up. Place the filter, precipitate side up, in the center of the tape.

l'0. Cut a 1 1/2" wide piece of rylar. Using a spatula to press it in place, put it directly over the precipitate and seal the edges to the polyester tape. Trim to about.5 m from the edge ,

of the filter with scissors.

11. Mount the sample on the plastic disc and write the sample number on the back side of the disc.
12. Count the sample on a proportional beta counter.

Calculations Calculate the sample activity using computer program 1131.

Reference:

" Determination of 1-131 by Beta-Gamma coincidence Counting of PdI 2". Radiological Science Laboratory. Division of Laboratories and Research, New York State Department of Health, March 1975, Revised February 1977.

130

. Rev. 4, 6-01-84 // p Approved by: W ' Y Y 7 W J J) 4 E.G/ Huebner Section 8.1 8.1 Strontium-89 and Strontium-90 in Milk by Ion Exchance l

Principle of Method

' A citrate complex of yttrium, strontium, and barium carriers at the pH l

of milk is added to the milk sample. The mixture is then passed succes-sively through cation- and anion-exchange resin columns. Strontium, barium, and ' calcium are absorbed on the cation-exchange resin, and the yttrium carrier with the yttrium 90 daughter of strontium 90 is retained on the anion-excharige resin.

The yttrium is el.uted from the anion resin with hydrochloric acid and precipitated as the oxalate. Lanthanum 140, which may be a contaminant, is removed by dissolving yttrium oxalate in concentrated nitric acid and extracting yttrium from the solution into an equal volume of pre-equili--

bated tributyl phosphate. The lanthanum 140 remains in the concentrated nitric acid to be discarded. Yttrium is re-extracted from the organic phase with dilute nitric acid and precipitated as the oxalate. The precipitate is weighed to determine recovery of yttrium carrier, then counted for yttrium 90 activity.

I Strontium, barium, and calcium are eluted from the cation-exchange resin l with sodium chloride solution. Following dilution of the eluate, the alkaline earths are precipitated as carbonates. The carbonates are then l converted to nitrates, and strontium and barium nitrate are precipi-l tated. The nitrate precipitate is dissolved, and barium is precipitated as the chromate, purified as the chloride, and then counted to determine 4 the barium 140. From' the supernate, strontium is precipitated as the nitrate, dissolved in water, and reprecipitated as strontium nitrate.

The nitrate is converted to the carbonate, which is filtered, weighed to determine strontium carrier recovery, and counted for " total radio-strontium".

i The concentration of strontium-89 is calculated as the difference between the activity for " total radiostrontium" and the activity due to strontium-90.

l Reagents l

Ammonium acetate buffer: pH 5.0 Ammonium hydroxide, NH 4 0H: concentrated (15N) i Ammonium oxalate, (NH 4 )2 C0 2 4.H2 0: IN Anion-exchange resin: Dowex 1-X8 (CI- form, 50-100 mesh)

Carrier solutions:

Ba+2 as barium nitrate, Ba(NO3 )2: 20 mg Ba+2 per ml Sr+2 as strontium nitrate, Sr(NO3 )2: 20 mg Sr+2 per ml Y+3 as yttrium nitrate, Y(NO3 ): 10 mg Y+3 per ml Cation-exchange resin: Dowex 50W-X8 (Na+ form, 50-100 mesh)

Citrate solution: 3N (pH 6.5) l 131

Rev. 40 6-01-84 ,

Section 8.1 (Continued)

Diethyl ether, (C H25 )2: anhydrous I Ethyl alcohol, C H 250H: absolute (100%), 95%

Hydrochloric acid, hcl: concentrated (12N, 6N*, 2N*)

Hydrochloric acid-diethyl ether, hcl-(C25 H )2 0 :5.1 v/v Nitric acid, HNO 3: fuming (90%), concentrated (16N)*,14N, 6N, 0.1 N*

0xalic acid, H C224 0 .2H2 :2N_*

0 Sodium carbonate, Na2 CO3 :3N, 0.1 N Sodium chloride, Nacl:4N Sodium chromate, Na2Cr04:3N  :

Tri-n-butyl phosphate (TBP), (C 4Hg)3 P04 : pre-equilibrated with 14N HNO3*  !

  • Starred reagents are used only in processing the anion column effluent to i determine strontium-90 concentration (Part A).

Apparatus Ion-exchance system: The apparatus for this system is illustrated in Figure 8.1-1. It consists of three glass components connected one above the other for gravity flow. At the top is a graduated, 1-liter glass separatory funnel which serves as the reservoir.

Below it is connected a 250 ml glass column, 5 cm in diameter and 25 cm long, which services as the cation . column. Below this is connected the anion column, a 30-ml glass column, 1.9 cm in dia- {

meter and 10.5 cm long. Both columns have extra coarse, fritted t glass disks at the bottom.

Five milliliters of distilled water are placed in the 30-ml column, and 15 ml Dowex 1 resin are poured into it. The cation column is filled by adding 170 ml Dowex 50W resin in the same way.

Millipore filtering apparatus (Pyrex Hydrosol Microanalysis Filter i Holder)

Millipore Type OH membrane filter,1.5-p pore size, 2.5-cm diameter low-background beta counter.

v s

132

Rev. 40 6-01-84 r

-f \

RESERVOIR 4 . .

-utta class!

/ ,

-sepasarcar rummatl 1 L

. . . . . . .s ll l ,e 0-i~T'. / aso-se. eLass cotuaanj

, -2 : \,witu pa'Ttto etAss oesnt CATION RESIN ,6; :

P;:-

? .: - j 1

ll l u u /

So-est eLAas coLwashi -

  1. ,\ 9nt.e asettra stass oisal

{

..'(, 1 ANION ME$1M 9,ty.:-

d I -

1

}

h F t

  • i J i I

l J i l  !

i  !

i i i

I i

O r

Figure a :. Ion-exchat:ge system i

131

g Rev. 40 6-01-84 Section 8.1 - Part A Part A. Strontium-90 Procedure

1. Place 1 liter of milk into the graduated reservoir. Pipette 1.0 mi each of yttrium, strontium, and barium carrier solutions swirl to mix _ and dissolve the into 10 ml of citrate solution:Transfer barium citrate which forms. this mixture quantita-tively to the milk with 5 ml of distilled water, and mix well.
2. Open the stopcocks of the reservior, anion column, and cation column, in that order. NOTE THE TIME. Control the flow rate at ~10 milliliters per minute (ml/ min) with the anion column stop-cock. Check occasionally by collecting effluent for 1 minute in a graduated cylinder. Stop flow when just enough milk remains in the columns to cover resin. NOTE THE TIME.

Discard the effluent milk. RECORD THE MIDPOINT OF THE ELUTION PERIOD AS THE BEGINNING 0F YTTRIUM 90 DECAY.

3. Replace the milk reservoir with a separatory funnel containing 300 ml of warm distilled water, and let the water flow through the columns at approximately 10 ml/ min to displace the milk.

Stop the flow when just enough water remains in the columns to cover the resin. Discar i the effluent water.

4. Separate the columns.

In order to collect eluate for " total radio-strontium", barium, and calcium determinations, and to regenerate the cation column for subsequent use, follow Step 5, Part B,

5. Gradually. add 75-100 ml of 2N hcl to the anion col.um. Control the effluent flow at 2 ml/5iin. '

Collect eluate in a 250-m1 centrifuge bottle.

6. -Add 5 ml of 2N oxalic acid to the eluate and adjust the pH to 1.5with6N,NHiOHusingapHmeter.
7. Stir and heat to near boiling in a water bath (approx. 20 min).
8. Cool in an ice bath and centrifuge. Decant and discard the supernatant. Proceed as in (a) or (b) depending on whether Ba-La-140 is absent or present from the gamma analysis of the sample.

(a) If fresh fission products are known to be absent:

Dissolve the ppt in 10 ml of HNO 3 , filter solution through Whatman No. 541 p;per into a 40 ml centrifuge tube. Wash paper, collecting the washing in tube and continue as in Step A-9.

132

Rev. 4o 6-01-84 Section 8.1 - Part A (Continued)

(b) If fresh fission products are present:

Dissolve the ppt in 10 ml of HNO 3 , transfer the solution to a 60 mi separatory funnel, washing the tube with addi-

, tional 10 ml of HNO3 . Add 10 ml of _e quilibrated TBR, shake 2-3 min, and when separated drain and discard the lower acid ' phase. Add 15 ml of 14N HNO3 to'the separa-tory funnel, shake 2-3 min, drain and discard the lower acid phase. Repeat the 14N HNO3 treatment to remove eight lanthanide elements and La-140. Add 15 ml of H 2O to the separator and shake. Orain the lower phase into a 125-ml centrifuge ' tube. Repeat the wash, using 15 ml of 0.1N,HNO3 , adding it to the centrifuge tube.

I

9. Add 5 ml of 2N oxalic acid to the purified yttrium solution from (a) or (b7. ' Adjust to a pH of 1.5 with NH 0H, 4 using a pH meter.

l 10. Digest the solution in a hot H O 2 bath for 10 min. with occa-sional stirring. Cool in an ice bath -(20 min).

l Wash

11. Filter on a weighed Whatman No. 42 (2.1 cm) filter paper.

with H20, ethyl alcohol and ether and dry at room tempera-ture and weigh.

12. Mount and count in a proportional counter.
13. If analysis for Sr-89 is not required, disregard Section

~

8.1-Part B. Use the computer program SR8990 to calculate (Sr-90) activity.

133

Rev. 4, 6-01-34 Section 8.1 - Part B Part B Total Radiostrontium (Sr-89 separation)

Procedure Continue following columns separation (Step A-4).

5. Connect 1 1 separator funnel containing i l of 4N Nacl to the cation column. Allow the solution to flow at 70 ml/ min to elute,the alkali metal and alkaline earth ions and to recharge the column. Collect 11 of eluate-into a 21 beaker, but leave the resin covered with 2-3 ml of solution.
6. Wash the column with 500 ml of I'20 or more to remove excess NaC1. Discard the wash.
7. Remove 20 ml of the Nacl eluate into a small bottle for the determination of stable calcium. (See section 6.1).
8. Dilute the eluate to 1500 ml with distilled water.
9. Heat the solution to 85*-90* C (near boiling on a hot plate) and add, with constant stirring, 100 ml of 3N Na2CO3. Stir gently while on hot plate to prevent bumpi'ng. Let stand overnight.
10. Decant most of the supernate. Transfer the precipitate to a 250 ml centrifuge bottle.
11. Wash the precipitate twice with 50 ml portions of H 20. Dry it in an oven at 110* C for 1-2 hours.

Dissolve the ppt slowly with vigorous stirring in 10 ml of 6N 12.

HNO3 (with magnetic stirrer). Filter through Whatman No. 54T paper into a 40 ml centrifuge tube. Rinse the bottle with little 6N HNO3 and pour the washings through the paper. To the filtrate, add slowly 30 ml of 21N HNO3 (fuming). Stir well and cool in an ice bath. CentriTuge and discard super-natant.

13. Carefully add 30 ml of conc. HNO3 to the precipitate. Heat in a H 20 bath with stirring for about 30 minutes. Cool the solution in an ice water bath for about 5 minutes. Centrifuge and discard supernatant.
14. Repeat step No. 13.

I 134

7 Rev. 4, 6-01-84 Section 8.1 - Part B (Continued)

15. Dissolve the ppt. in 10 ml. of H O 2 and 5 ml. of NH AC 4 buffer and heat in a water bath: Adjust pH to 5.5 using a pH meter and add immediately 1 ml. of 3N_ Na2 C r04 and mix well. Digest in' a water bath for 5 min., centrifuge and decant the super-natant into another 40 ml. centrifuge tube,
16. Heat the supernate in a water bath. Adjust the pH to 8-8,5 with NH4 0H. With continuous stirring, cautiously add 5 ml of 3N Na2CO3 solution. Heat gently for 10 minutes. Centri-fuge and decant the supernate. Wash the strontium carbonate

. precipitate with 0.1 N Na2003 . Centrifuge again, and decant

.the s_upernate.

17. Dissolve the carbonate precipitate in 5 ml of 6N HNO3. With continuous stirring, cautiously add 30 ml of fiiming HNO3 to the solution. (Stirring the solution longer helps in the precipitation of the strontium nitrate.) Cool in ice bath, centrifuge and decant the supernate.
18. Dissolve the strontium nitrate precipitate in 3 ml of H 2O ar.d 5 ml of 6N HNO3 . Add cautiously, with continuous stirring, 20 ml of Tuming HNO3 . Cool in an ice bath, centrifuge and discard supernatant. RECORD TIME AS BEGINNING 0F Y-90 INGROWTH.
19. Dissolve the precipitate in 10 ml of Hg0. Heat in a water bath. Adjust the pH to 8-8,5. With continuous stirring, add 5 ml of 3 N Na2003 solution. Heat gently for 10 minutes.
20. Cool and filter on a weighed No. 42 Whatman (2.1 cm) filter paper. Wash thoroughly with water and alcohol.
21. Dry the precipitate in an oven at 105* C or under the lamp for 30 minutes. Cool and weigh.
22. Mount and count without delay in a proportional counter as total strontlum.
23. Calculate Sr-89 and Sr-90 activitylpCi/l) using computer program SR8990.

135

Rev. 4, 6-01-84 Section 8.1 (Continued)

Calculations Part A.

Strontium 90 concentration (pCi/ liter) = BxCx0 ExF Where:

A = net beta count rate of yttrium 90 (cpm)

B = recovery of yttrium carrier C = counter efficiency for counting yttrium-90 or yttrium oxalate mounted on a 2.1-cm diameter membrane filter (cpm /pCi)

D E= = sample volume Correction (liters)t factor e -^ for yttrium-90 decay, where t is the time from midpoint of the elution time of milk (Step A-2) to the time of counting.

F = Correction factor 1-e-At for the degree of equilibrium attained during the yttrium-90 ingrowth period, where t is the time from collection of the milk sample to the time of passage through the column (Step A-2)

Part B.

Strontium 89 concentration (pCi/ liter) = BxC - F (GxH + IxJ)

Where:

A = net beta count rate of " Total radiostrontium" (cpm)

B = counter efficiency for counting strontium-89 as strontium oxalate mounted on a 2.1-cm diameter membrane filter (cpm /pCi)

C = correction f actor e At for strontium-89 decay, where t is the time from sample collection to the time of counting D = recovery of strontium carrier E = volume of milk sample (liters)

F = strontium 90 concentration (pCi/ liter) from Part A G = self-absorption factor for strontium-90 as strontium oxalate mounted on a 2.1-cm diameter filter, obtained from a self-absorption curve prepared by plotting the fraction of'a standard activity absorbed against density thickness of the sample (mg/cm2 )

H = counter efficiency for counting strontium-90 as strontium oxalate mounted on a 2.1-cm diameter membrane filter (cpm /oCi)

I = counter efficiency for counting yttrium-90 as yttrium oxalate mounted on a 2.1-cm diameter membrane filter (cpm /pCi) 136

Rev. 4, 6-06-84 Section 8.1 (Continued)

J= correction factor 1-e-A t for yttrium-90 ingrowth, where it is the time from the last decantation of the nitric acid (Step

-B-18).

Reference:

Radioassay Procedures for Environmenta) Samples U.S. Depart-ment of Health, Education and Welfare. Environmental Health Series, January 1967.

137

Approved by: 2 yML/a[///L E Gi riueoner Section 8.4 8.4 Strontium 89 and Strontium 90 in Water Samples A. Principle of Method The acidified sample of clear water with stable strontium, barium and calcium carriers is treated with oxalic acid at a pH of 3.0 to precipitate insoluble oxalates. The oxalates are dissolved in-nitric acid and strontium nitrate is separated from calcium as a precipitate in 70% nitric acid. The residue is purified by adding iron and rare earth carriers and precipitating them as hydroxides.

After a second strontium nitrate precipitation from 70% nitric acid, the nitrates are dissolved in water and with added yttrium carrier, are stored for ingrowth of yttrium-90. The strontium is again precipitated and separated from 70% nitric acid with the yttrium nitrate being in the supernate. Each fraction is precipitated separately as an oxalate and collected on No. 42 (2.1 cm) Whatman filter or planchet for counting either total radiostrontium or yttrium-90 or both.

Reacents Acetic acid, CH C00H:

3 1.5N, Ammonium acetate, NH4232C H 0 : 3N Ammonium acetate buffer: pH 5.0 Ammonium hydroxide, NH 4 0H: concentrated (15 N), 6 N, 1 N Ammonium oxalate, (NH 4 )2C0 2 4.H2 0: 0.5% w/v Carrier solutions:

Ba+2 as barium nitrate, Ba(NO3 )2: 20 mg Ba+2 per ml Ca+2 as cal.cium nitrate, Ca(NO3 )2 4H2 0: 40 mg Ca+2 per ml Sr+2 as strontium nitrate, Sr(N02 ): 20 mg Sr+3 per ml Y+3 as yttrium nitrate, Y(NO3 )3: 10 mg Y+3 per ml Hydrochloric acid, hcl: concentrated (12 N), 0.5 N_

Hydrogen peroxide, H22 0 : 30% solution Nitric. acid, HNO 3: fuming -(90%), concentrated ( 16 N_) , 6 N , 3N C 0 . 2H 20: Saturated at room temperature 0xalic acid, H 222 Scavenger solutions: 20 mg Fe+3 per ml, 10 mg each Ce+3 and Zr+4 per ml Fe+ as ferric chloride, FeCl 3 .6H2 O Ce+3 as cerous nitrate, Ce(NO3)3 6H 2O Zr+4 as zirconyl chloride, Zr0Cl 2.8H 20 Sodium Carbonate, Na2 CO3 :3N, 0.1N Sodium Chromate, Na2 Cr04 :3t!

Apparatus Analytical balance low background beta counter

~

Medium - porosity filter stick pH meter 138

Rev. 40 6-01-84 Section 8.4 A Fart A. Strontium 89 Procedure

1. Filter 1 liter of an acidified water sample using millipore filter paper.
2. Digest the filter paper with the residue with concentrated nitric acid (HNO 3 ) until all the organic matter is removed.
3. Evaporate to dryness and dissolve the residue with hot water and filter using No. 541 Whatman filter paper.
4. Combine the filtrates in a 2 liter beaker.
5. Add 1 ml of strontium carrier solution, 1 ml barium carrier solu-tion, and if necessary, 1 ml of calcium carrier solution. (Improved precipitation may be obtained by adding calcium to soft waters.)

Stir thoroughly and while stirring add 125 ml of ssturated oxalic acid solution.

6. Using a pH meter, adjust the pH to 3.0 with 15 N NH 0H, - 4 and allow the precipitate to settle for 5-6 hours.
7. Decant most of the supernate- (liquid) and transfer the precipitate to a 250 ml centrifuge bottle. Wash the precipitate and the beaker wall with 0.5% ammonium oxalate and centrifuge. D'iscard the super-nate.
8. Dissolve the precipitate with 10 ml of 6 N HNO3 and transfer to a 250 ml beaker. Then use 20 ml of 16 N RR03 to rinse the centri- '

fuge tube and combine it to the solutlon in the 250 ml beaker.

9. Evaporate the solution to dryness. Cool; then add 50 ml 16 N_ HNO3 and repeat the acid addition and evaporation until the residue is colorless.
10. Transfer the residue to a 40-ml centrifuge tube, rinsing with a minimum volume of 16 N HNO3 . Cool in a refrigerator overnight.

Centrifuge at 1500-1800 rpm for 10 minutes, and discard the super-nate.

11.- Dissolve the precipitate in 5 ml of 6N HNO3 and then add 30 ml of fuming nitric acid. Centrifuge, and df5 card the supernate.

12. Dissolve the nitrate precipitate in about 10 ml of distilled water.

Add 1 ml of scavenger solution. Adjust the pH of the mixture to 7 with 6 N HN 40H. Heat, stir, and filter through a Whatman No. 541 filter. Discard the mixed hydroxide precipitate.

Ul@

l Rev. 4, 6-01-84 Section 8.4 A (continued)

Part A. Strontium 89 Procedure (continued)

13. To the filtrate, add 5 ml of ammonium ~ acetate buffer. Adjust the pH with 3N HNO 3 or NH4 0H to pH 5.5. (Note: the pH of the solution at this point is critical.) Add dropwise with stirring 1 ml of 3N Na2 C r04 solution. Heat in-a water bath.
14. Cool and centrifuge. Decant the supernate into another centrifuge tube. Save the precipitate for Ba analysis if needed.
15. Heat the supernate in a water bath. Adjust the pH to 8-8.5 with NH4 0H. With continuous stirring, cautiously add 5 ml of 3N Na2003 -

solution. Heat gently for 10 minutes. Cool, centrifuge, and decant the supernate. Wash the precipitate with 0.1N Na2CO 3 . Centri-fuge again and decant the supernate.

16. Dissolve the precipitate in no more than 4 ml of 3N HNO 3. Then add 20-30 ml of fuming HNO 3 , cool in a. water bath, aiid centrifuge.

Decant and discard the supernate.

17. Repeat step 16. Then, RECORD THE TIME AND DATE AS THE BEGINNING OF YTTRIUM 90 INGROWTH. If no immediate count of total radiostrontium is desired add to .the precipitate 1 ml of yttrium carrier solution and 4 ml of 6N HNO3 and store 7-14 days to allow the yttrium 90 to grow in.
18. To determine tot al radiostrontium, dissolve the precipitate in 10 ml of- water. Heat in water bath. Adjust the pH to 8-8.5. With continuous stirring add 5 ml of 3N Na2CO3 solution. Heat gently for 10 minutes.
19. Cool and filter on a weighed No. 42 (2.1 cm) Whatman filter paper.

Wash thoroughly with water and alcohol.

20. Dry the precipitate under the lamp for 30 min. Cool and weigh.
21. Mount and count without delay its beta activity as " total radio-strontium" in a proportional counter.

140

xev. 4, e-el-ce Section 8.4 Part B. Strontium 90 Procedure

1. After counting total radiostrontium dissolve the precipitate on the filter in 6 N HNO3 and transfer the solution to a 40 ml centrifuge tube. The total volume of dissolution and rinsing should be about 4 ml.
2. Add 1 ml of yttrium carrier solution and store until 7 to 14 days have elapsed since step 17 was completed.
3. Heat the equilibrated strontium-yttrium sample in a water bath at approximately 90*C. Adjust the pH to 8 with NH 40H, stirring continuously.
4. Cool to room temperature in a cold water bath and centrifuge for 5 minutes. Record the hour and date of decantation as the end of the yttrium-90 ingrowth and the beginning of it: decay in the yttrium fraction.
5. Dissolve by adding about 4 drops of hcl with stirring. Add 15-20 ml of water. Heat in a water bath and adjust the pH to 8 with NH 0H,.

4 stirring continuously.

6. Cool to room temperature in a cold water bath and centrifuge for 5 minutes.
7. Repeat steps 5 and 6.
8. Add 3 drops of hcl to dissolve the precipitate, then add 20 ml of water. Filter using No. 541 filter paper. Heat in a water bath at approximately 90* C. Add 1 ml of saturated oxalic acid solution dropwise with vigorous stirring. Adjust to a pH of 2-3 with NH 0H.

4 Allow.the precipitate to digest for about an hour.

9. Cool to room temperature in a cold water bath. Centrifuge for 10 minutes and decant most of the supernate. Filter by suction on a weighed fitter paper. Wash the precipitate with water and alcohol.
10. Dry the precipitate under the lamp for 30 minutes. Cool and weigh.

Mount and count without delay in a proportional counter.

11. Calculate Sr-89 and Sr-90 activity in pCi/l using the computer program for Sr-89,90.

141

Rev. 4, 6-01-84 Section 8.4 (continued)

Part.B. Strontium 90 Calculations For formulas used refer to Section 8.1.

Reference:

Radioassay Procedures for Environmental Samples U.S.

Department of Health, Eduction and Welfare. Environ-mental Health Series, January 1967.

i o

t 142 I

Rev. 4, 6-01-34 7a / A Approved by: 'f+/U2/Q L.G./ Huebner Section 8.6 l

8.6 Strontium-89 and Strontium-90 in Milk ( Ash), Veaetation, Fish, Wildlife, Soil and Bottom Sediment Samples - Sodium Carbonate Fusion.

1 Principle of Method Strontium is separated' from calcium, other fission products,and other natural radioactive elements. Fuming nitric acid separations remove the '

calcium and most of the other interfering ions. Radium, lead, and barium

! are removed with barium chromate. Traces of- other fission products are sca. venged with yttrium hydroxide. After the Sr-90 and Y-90 equilibrium i has been attained, the Y-90 is precipitated as the hydroxide and con-verted to the oxalate for counting. Strontium is precipitated as the carbonate and counted for total activity. Strontium-89 activity is computed as the difference between the total radiostrontium and the strontium-90 (as yttrium-90) activity. '

Reaaents

,i l'

Ammonium acetate buffer, (NH4 )2.Ac:pH = 5.0, 6,M Ammonium hydroxide, NH 0H:6N_ 4 Carrier Solutions-

! Ba+2 Ba(No3 2:20 mg/ml of Ba+2 Fe+3,Fe(NO33, Sr+2,Sr(NO scavenger:5mgm1ofFe+3 Y+3,,Y(NO )3 2:20 3 3:10 mg/ml mg/ml of Y+3of Sr Ethyl alcohol, C H 25 0H: absolute-Hydrochloric acid, hcl:12N (co'nc.)

Nitric acid, HNO 3: 16N (conc.), 6N, 3N, fuming Oxalic acid, H 224C 0 : saturated Potassium nitrate, KN0 :3powdered Sodium carbonate, Na2 C03 : powdered, 3N, 0.IN Sodium chromate, Na2C r04:3N ,

j Sodium hydroxide, NaOH:pe1Tets i

! Apparatus 4

. Teflon filter holder, or filter funnel and sample mount rings and discs ,

  • Magnetic stirrers with Teflon-Coated magnet bars Mylar film-

. Glass fiber-filters Fisher filtrator Brinkman dispenser - pipettor

I L

4 I

- _- _ - _ .__ __ _ _143 _ . _ _ _ . . . _ _ _ _ __ __ __

Pev. 4, 6-01-64 Section 8.6 A Part A. Sample Preparation - Sodium Carbonate Fusion Procedure

1. Weich out 3 g of ashed sample or silted soil and set aside.
2. Sift into a 250 ml nickel crucible enough Na2003 to very lightly cover the bottom.
3. Add 30 g of Na0H pellets and 5 g of KN03 -
4. Add the weighed ash sample and tap the crucible gently to shake the ash down among the pellets.
5. Sift from 10 to 20 grams of Na2CO3 cver.the ash so it is completely-covered.
6. Place in a muffle furnace at 600*C for 20 to 30 minutes to melt and fuse the mixture.

NOTE: If carbon materials remain floating on the surf ace of the melt, cautiously add a few grains of KNO3 and heat for another 5 to 10 minutes.

Decomposition of organic matter is complete when no further reaction is noticed on addition of KNO3 -

7. Using a long-handled tongs, remove the crucible from the muffle furnace and immediately, but very cautiously, cool in an ice bath until the melt is completely solidified and cool enough to handle without gloves.

NOTE: It is very important that no moisture come in contact with the melt at this time. One drop of water in the crucible could render the melt very difficult, if not impossible, to remove.

8. Transfer the melt to a 250 ml centrifuge bottle using distilled water and stir until completely dispersed.

NOTE: Rotating the crucible in the palm of one's hand and very gently applying press. ire should be sufficient to loosen the melt from the sides of the crucible.

9. Add 2 ml of strontium and 1 ml of barium carriers.
10. Bring to a gentle boil, cool, centrifuge and discard the supernatant.

(

144

Section 8.6 A (continued)

Part A. Samole Preparation - Sodium Carbonate Fusion Procedure (continued)

11. To the residue add 50 ml 3N Na2CO3 as a wash, swirl and disperse the residue, heat for 10 minutes in a hot water bath, centrifuge and discard the supernatant.
12. Repeat step (11) three times to put the precipitate in a suitable form for further analysis.
13. Dissolve the precipitate in 50 ml of concentrated HNO 3 , transfer I to a 250 ml beaker, and take to dryness on a hot plate.

NOTE: Evaporation may be done rapidly at first, and then very slowly to prevent spattering.

A fclly-like substance may form at this point, due to hydrated silicic acid formed from the soluble silicates and will be removed in the following steps.

14. Bake the remaining residue for at least I hour at 120* to 130' C, cool', moisten the salts with 5 ml of HNO3 and allow to stand at room temperature for 10 minutes. Then place on a hot plate, bring to a boil and add 45 ml of boiling water. DISPERSE ANY REMINING RESIDUE WITH A GLASS STIRRING R0D AND FILTER IMMEDIATELY into a 250 ml beaker. Use Whatman No. 541 hardened filter paper.

NOTE: To separate the silicic acid the hydrated acid must be changed to a less hydrated and less soluble acid by baking at 100* to 130*C.

It is important at this point that evaporation be to com-plete dryness. (There should no longer be a smell of acid).

Addition of 5 ml of HNO3 converts any' metal oxides which may have been formed back to nitrates so they will be dissolved and not removed with tne silicates.

Filtering must be done immediately as some of the silicates

}

will tend to go back into solution. Also, due to this fact, removal of silicates by dehydration is not 100% efficient and the process must be repeated at least once and more often if necessary.

15. Evaporate and repeat step (14) at least once, and again as often as r.ecessary.

145

Rev. 40 6-01-84

'Section 8.6 A'(continued) f Part A. Sample Preparation - Sodium Carbonate Fusion Pr <,<. .elor et (cont inuovi)

16. Evaporate the solution in a beaker to dryness on a hot plate.

Cool, then add 40 ml of concentrated HNO3 and evaporate to 20-25 ml. Then add another 40 ml HNO3 and repeat the proceaure. .

NOTE: The liquid portion of the sample at this point will be yellow. Should the color toward the end of the first ,

evaporation be red-brown, or black, add more nitric acid and '

repeat the above procedure as of ten as necessary to obtain a clear yellow solution.

The dark samples described above have been known to explode if evaporated to dryness without adding additional portions of nitric acid. These Samples should be handled in a hood with the window down as far as possible to prevent possible personal injury to the operator.

This step is to destroy any remaining organic materials.

The darker colored solutions contain large amounts of organic matter.

17. Complete the analyses as described under Determination.

References:

-The basis for this procedure was presented by J.J. Bolan in the Public Health Service Manual, titled " Chemical Analysis of Environmental Radionuclides, Determination of radio-strontium in food" (1.11.3.A(8.65)). Modifications to this procedure were made by the North Dakota State Department of Health.

[

k t

5 I +

146 ,

Rev. 4, 6-01-84 Section 8.6 B Part B, Determination I. Strontium - 89 Procedure

1. Transfer the solution to a 40 ml conical, heavy-duty centrifuge tube using a minimum of conc. HNO 3 . Cool the centrifuge tube in an ice bath for 'about 10 minutes. Centrifuge and discard the supernatant.

NOTE: The precipitate consists of calcium, strontium and barium-radium nitrates. The supernatant contains part of the sample's calcium and phosphate content. .

2. Add 30 nl of conc. HNO3 to the precipitate. Heat in a hot water bath with stirring for about 10 minutes. Cool the solution in an~ ice bath with stirring for about 5 minutes. Centrifuge and discard the supernatant.

NOTE: Additional calcium is removed from the sample. Nitrate precipitations with 70% HNO3 will afford a partial decontamination from soluble calcium while strontium, barium, and radium are completely precipitated.

The separation of calcium is best at 60% HNO 3 , however at 60% the precipitation of strontium is not complete.

Therefore, it is common practice to precipitate Sr(NO3 )2 with 70% HNO3 which is the concentration of commercially available 16 _N HNO3 -

Most of the other fission products, induced activities and actinides are soluble in concentrated HNO3 affording a good " gross" decontamination step from.a wide spectrum of radionuclides. The precipitation -is usually repeated several times.

3. Repeat step (2) two more times.
4. Dissolve the nitrate precipitate in about 10 ml distilled water.

Add 1 ml of scavenger solution. Adjust the pH~of the mixture to 7 with 6 N NH 40H. Heat, stir, and filter through a Whatman No.

'541 filter 7 Discard the mixed hydroxide precipitate.

147 i

Rev. 4, 6-ul-34 I

Section 8.6 Part B Determination I. Strontium-89 Procedure (continued)

5. To the filtrate add 5 ml of ammonium acetate buffer (pH 5.0).

Adjust the pH to 5.5 with 3N MNO3 or 6N NH 40H. (Note: The pH of the solution at this point is critical. Barium chromate  :

i' will not precipitate completely in more acidic solution and  !

strontium will partially precipitate in more basic solutions.)

Add dropwise with stirring 1 ml of 3N Na2Cr04 solution. Heat in a-water bath to about 90*C .and centrifuge. Decant the super-

nate into another centrifuge tube. Save the precipitate for Ba analysis if needed.

Heat the supernate in a water bath.

~

6. Adjust the pH to 8-8.5 with NH4 0H. With continuous stirring, cautiously add 5 ml of 3ti .

Na2CO3 solution. Heat gently for 10 minutes. Centrifuge, and '

when completeness of precipitation has been verified by adding a ,

few drops of Na2 003 , centrifuge and decant the supernate. i Wash the strontium carbonate precipitate with 0.1N Na200 3- ~

t

. Centrifuge again, and decant the supernate.

i i 7. Dissolve the carbonate precipitate in 5 ml 6N HNO 3. With continuous stirring, cautiously add 20 ml fuming HNO3 to the

. solution. (Stirring the solution longer helps in the precipita- ,

tion of. strontium' nitrate). Cool in an ice bath, centrifuge and decant the supernate. ,

?

8. Dissolve the strontium nitrate precipitate in 3 ml H 2O and 5 ml 6N HNO3 . Add cautiously, with continuous stirring, 20 mi fiiming HNO3 . Cool in ice bath, centrifuge and discard super-natant. RECORD TIME AS BEGINNING OF Y-90 INGROWTH.  !
9. Dissolve the precipitate in 10 ml of H 20. Heat in a water bath. Adjust the pH to 8-8.5. With continuous stirring, add 5 ml of 3N Na2CO3 solution. Heat gently for 10 minutes.
10. Cool and filter on a weighed No. 42 (2.1 cm) Whatman filter paper. Wash thoroughly with water and alcohol.

l- 11. Dry the precipitate under the lamp for 30 minutes. Cool and I weigh.

12. Mount and count without delay. in a proportional counter as total -

radiostrontium.  !

i f

I r

l 148 )

t

}

Rev. 4, 6-01-84 Section 8.6 Part B Determination II. Strontium-90 Procedure

1. After counting . total radiostrontium, dissolve the strontium carbonate precipitate on the filter in 6N HNO3 and transfer the solution to a 40 ml centrifuge tube. The total volume of dissolution and rinsing should be about 4 ml.
2. Add 1 ml of yttrium carrier solution. and store until 7 to 14 days have elapsed since Step B-I-8 was completed.
3. Heat the equilibrated strontium-yttrium sample in a water bath at approximately 90* C. Adjust the pH to 8 with NH 0H, 4 stirring continuously.
4. Cool to room temperature in a cold water bath and centrifuge for 5 minutes. Discard the supernate, record the time and date of the decantation as the end of the yttrium-90 ingrowth and the beginning of its decay in the yttrium fraction.
5. Dissolve precipitate by adding about 4 drops of hcl with stirring. Add 15-20 ml of water. Heat in a water bath and adjust the pH to 8 with NH4 0H, stirring continuously.
6. Cool to room temperature in a cold water bath and centrifuge for 5 minutes. Discard supernate.
7. Repeat steps 5 and 6.
8. Add 3 drops of hcl to dissolve the precipitate, then add 20 ml of water. Filter the solution using No. 541 Whatman hardened filter paper. Heat in a water bath at approximately 90* C.

Add 1 ml of saturated oxalic acid solution dropwise with vigorous stirring. Adjust to a pH of 2-3 with NH 40H. Allow the precipitate to digest for about an hour.

9. Cool to room temperature in a cold water bath. Centrifuge for 10 minutes and decant most of the supernate. Filter by suction on a weighed filter paper. Wash the precipitate with water and absolute ethyl alcohol.

~

10. Dry the precipitate under the lamp for 30 minutes. Cool and weigh. Mount and count without delay in a proportional counter as Y-90 (Sr-90).
11. Calculate Sr-89 and Sr-90 activity using the computer program for Sr-89,-90.

t 149

Rev. 4, 6-01-84 I

m Section'8.6 B-(continued)

Part B Determination II. Strontium-90

-Calculations

a. Strontium-90 concentration (pCi/g) = BxCxD ExF Where:

A = net beta count rate of yttrium-90 (cpm)

B = recovery of strontium carrier-C = efficiency for counting yttrium-90 as yttrium oxalate (cpm /pC1)

D=samplesize(ingramsgforyttrium-90 E = correction factor e-A decay,wheretisthe-time from decantation of the strontium supernate (Step B-II-4) to the time of counting (Step B-11-10)

F = correction factor 1 - e-At for the degree of' equilibrium attained during the yttrium-90 ingrowth period, where t is the time from strontium separation (Step B-I-8) to the time of strontium removal (Step B-II-4).

b. Strontium-89 concentration (pCi/g) = B C

-F(GxH.+IxJ)

Where:

A = net beta count rate of " total radiostrontium": (cpm)

B = coun_ter efficiency for counting strontium-89 as strontium oxalate mounted on a 2.1 cm diameter membrane filter (cpm /pCi)

C = correction factor e At for strontium-89 decay, where t is the time from sample collection to the time of counting

.D = recovery of strontium carrier E = sample size (in grams)

F = strontium-90 concentration'(pCi/g)

G = self-absorption factor for strontium-90 as strontium oxalate mounted on a 2.1 cm diameter membrane filter H = counter efficiency for counting strontium-90 as strontium oxalate mounted on a 2.1 cm diameter membrane filter (cpm /pCi)

I = counter efficiency for counting yttrium-90 as yttrium oxalate mounted on a 2.1 cm diameter membrane filter (cpm /pCi).

J = correction factor 1 - e-At for yttrium-90 ingrowth, where t is the time from the last decantation of the nitric acid supernate from the strontium nitrate precipitate to the time of counting (Step B-I-8).

References:

Radioassay Procedures for Environmental Samples.

U.S. Department of Health, Education and Welfare En'ironmental v Health Series, January 1967. HASL Procedure Manual- edited by John H. Harley, 1972.

150

l

?

APPENDIX IV ERRATA Y

151

T ABLE 5.01 DRE5 DEN 51 ANDAR0 R ADIOLOGICAL HON 110 RING PROGRAM Non-Routine Sample Media Collection Site' Type of Analysis Frequency Reporting Levels h C

1. Air Monitoring (a) Onsite and near Field *l. Filter - gross beta 1. Weekly C5-134 10, Cs-137 20 pCl/m3 (1) Onsite Station i 1 2. Charcoal - I-131 2. Bi-weekly d 0.9 pC1/m3 (2) Onsite Station i 2 (3) Onsite Station # 3 *3. $smpling Train -
  • (4) Collins Road lest and Maintenance 3. Weekly
  • (5) Bennitt Fare
  • (6) Pheasant Traft (b) Far Field
  • (l) Clay Products *l. Filter Exchange 1. Weekly Same as Ita)
  • (2) Prairie Park i *(3) [ cal City 2. Charcoal Eschange 2. Bt-weekly when analyset g *(4) Goose Lake Village on *(5) Morris *3. Sampling Train - 3. Weekly are made N (6) Lisbon Tegt and Itaintenance
  • (71 tilnook a
  • (8) Channahon
  • 19) Joliet (10) Elmwood (11) Wilmington
2. TLD *5ame as 1 Gansna Radiation Quarterly 8
3. Fish Dresden Pool of Ganssa isotopic Seel-annually Mn-54 3:104 .Fe-59 1:10 Illinois River C0-58 2AIO4 .Co-60 1:10 4 Zn-65 2a104 Cs-134 1:103 Cs-137 (alOS pCl/Kg wet welght
4. Milk fa) Clow Fars 1-131 1. Weekly - 1-131 3 pCl/l _

Gra:Ing (b) Biros Farm 1esson - Cs-134 60 pct /I May to Oct (c) Trotter Farm C5-137 70 pCl/l

2. Monthly -

Now to Apr Ba-La-140 300 pCl/l

5. Surface Water Illinois River at Capena Isotopte 1. Monthly .(See footnote e)

[J&E RR Bridge Analysts of Weekly Composites

g- ,,

w..  ;,g- (= -

,+- ryw,m-,_y 1 TABLE 5.0-1 (continued)

DRESDEN STANDAAD RADIOLOGICAL MDNiiCRING PROGRAM Mba-Routine Sample Medle Collection $lte Type of Analysis Frequency Reporting Levels b

6. Coollag Waterf (a) Inlet Gross Beta 1. Weekly (See footnote e)

(1) Unit 1 U 1 (2) Unit 2

7. Sedleent (e) Dresden Lock and Das Games Isetopic Annually
8. Temperature Charts EJ E RR Seldge Given ta'statten Meathly personnel
9. Dairy Ceases (a) Site temodery te (a) Eaumerstles by a Aamuelly, during I alles door-to-door or . graalag seassa equivalent counting technique w

$ (b) 2 elles to 5 elles (b) Enumeretten by estag referenced informatten from county agricultural agents or other rolle61e searces.

(c) At dalries listed in flee 4. (c) Ingulre as to feeding practices.

(1) pastere only (2) feed and chop only (3) pastore and feed; if both, ask former to estlante fractlen of feed from pastere:

a 251 25-505 50-155 3 755

10. Nearest Resident Census Amamelly
  • Analytical costs shared with G. E.
  • Additional Informellom giving the distance and direction of ladividual sampling locations may be b fou8d la Appendis Ill of the 1918 Annual Report, e Average concentratloa over calender quarter.

A gamme isotopic analysis shall be performed whenever the gross beta concentration in a sample enceeds by five times (Sal the average concentratloa of the preceding coleadar quarter for the d sample locetten.

,Bi-weetl5shallmeanthatthefr ncy is once every other week.

H 3 2 10 , Mn-54 1:103, re-59 4a Co-581:103 , Co 603: 102 , In-65 Sa102, Zr-Nb-95 g 4:102,1-131 2. Cs-134 30, Cs-137 50, Ba-La-1401:102 pCl/I.

Provided by station personnel,

.. . . . .