ML20203C299

From kanterella
Jump to navigation Jump to search
Test Plan 76, Model 660 Series Source Projector Hypothetical Accident Conditions
ML20203C299
Person / Time
Site: 07109033
Issue date: 02/17/1998
From:
AMERSHAM CORP.
To:
Shared Package
ML20203C288 List:
References
76, NUDOCS 9802250141
Download: ML20203C299 (63)


Text

{{#Wiki_filter:. I 1 TEST PLAN #76 Model 330 Series Source Projector ll Hypothetical Accident Conditions as of Tuesday, February 17,1998 l $k kDo$k o!!$9033 C PDR

i e SENTINEL Test Plan M6 Amersham Corporation February 17,1998 Durhngton, Massact.usetts Pagei Amersham Test Plan #76 1.0 Tra nsport Pac ka ge Dese ript10n................................................................................ 2

1. I Cu n e n t P ac k a g e...........................................................................................
1. 2 De s i g n C h a n g e.........................................................................................

2.0 Purpose....................................................................................................................4 3.0 Sys te m Fallu res a nd O rle n la ilo ns............................................................................ 5 4.0 Const ructlon and Conditlon of Test SpecImeus...................................................... 5 5.0 Ma t e rial a nd Fa u lpmeni List................................................................................... 9 6.0 Te s t P roud u re......................................................................................................... 1 0 6.1 Role s and Re sponsibilitie s............................................................................. 10 6.2 Test Specimen Preparation and inspection..................................................... I 1 6.3 30 foot Free Drop Test (10 CFR 71.73(c)(l))............................................... 12 6.3. I 30. foot Free D rop Se tup....................................................................... 12 6.3.2 Orientation for the 30-foot Free Drop: Specimen A.............................. I3 6.3.3 Orientation for the 30-foot Free Dr( p: Specimen B............................. 14 6.3.4 30-foot Free Drop Test Assessment...................................................... 15 6.4 Puneture Test ( 10 CFR 71.73(c)(3))............................................................... I 6 6.4.1 Pu nc tu re Te st Se t u p.............................................................................. 16 6.4.2 Orientation for the Puncture Test: Specimen A................................... 17 6.4.3 Orientation for the Puncture Test: Specimen B..................................... I 8 6.4.4 Punctu re Test Asse ssment...................................................................., 19 6.5 I nte rmediate Te st inspec tion.......................................................................... 19 6.6 Thermal Test ( 10 CFR 71.7 3(c)(4))............................................................... 20

6. 6.1 The rm al Te st...........................................................................

6.6.2 The rmal Te st Asse ssme nt..................................................................... 2 2 6.7 Fi n al Te st i nspe c t ion...................................................................................... 2 3 6.8 Final A s se s s me n t.................................................................................. l J

~ SENTINEL Test Plan #76 Amersham Corporation February 17.1990 Duriington. Massachusetta Pageil 7.0 W o r k s h ee t s ~............................,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,_ i I I l i 1

. _. ~. -. - --.~_-_- SENTINEL Test Plan #76 Amersham Corporation February 17.1998 Burlington, Massachusetts Page ll1 Figure 1: Side View of a Model 660 Series Projector....................................................... 2 Figure 2 Side Vicw of a Model 660 Series Projector with Shield Collar......................... 4 Figure 3: Orientation for the 30-foot Free Drop: Specimen A........................................ 13 Figure 4: Orientation for the 30 foot Free Drop: Specimen II........................................ 14 Figure 5: Oricniatlon for the Puneture Test: Speeimen A................................................ I7 Figurc 6: Orientation for the Puncture Test: Specimen 11................................................ I 8

SENTINEL Test Plan #76 Amorsham Corporation December 17,1997 Burlington, Massachusetts Page 1 of 34 Amersham Test Plan #76 l This document describes additional package design testing for Sentinel Model 660 Series projectors to meet NitC requirements for Type ll(U) packages under flypothetical Accident Conditions (10 CFit 'l.73). The test plan also covers the criteria stated in I AEA, Safety Series 6 (1985, an amendec.990). Testing under Normal Transport Conditions (10 CFR 71.71) is described in Amersham Test Plan #75. The Model 660 Series includes these models: 660,660A,66011,660E,660AE, and 66011E. t itefer to Appendix A for descriptive drawings of these models. Reference Certi0cate of Compliance 9033. Test Plan #75 and and this plan evaluate the perfonnance of the Model 660 Series projector with a design modiGcation in w hich a stainless steel collar is embedded into the foam over the connecting rods and the source-tube exit portion of the shield. Installation of the collar as a retrofit component requires removal of the rear end plate that holds the lock assembly. Test Plan #14 showed the possibility of unacceptable levels of radiation if the projector is moved after being subjected to the thermal test described in Test Plan #74. Such a disruption may cause movement of the source from its ideal shicided position, as happened aller the Test Plan #74 thermal test. The shield was able to move within the projector because the foam had been burned off, llecause the source wire was still engaged in the lock assembly w hen the shield moved, the source was pulled from the center of the shield w hich provides maximum shielding. The displacement resulted in elevated radiation levels. The collar will limit movement of the shield as a result of thermal testing, thereby minimizing movement of the source and enabling the package to meet acceptable radiation levels. This document outlines the testing scenario, justifies the package orientations, and provides test worksheets to record key steps in the testing sequence.

l SENTINEL. Test Plan #76 Amersham Corporation December 17,1997 Burlington Macsachusetts Page 2 of 34 I 1.0 Transport Package Description 4 1.1 Current Package The current Model 660 Series projector consists of a source tube enclosed in a depleted-uranium shield, an end plate with a lock assembly (front end plate), a second end plate with a i storage-plug assembly (rear end-plate), four steel connecting rods, a sheet metal shell and foam packing material (Figure 1). b L Carrying Handle j c:}

a

( Rear End-Plate j - Plunger End-Plate l 1 Lock Attachment Screw-p M - ~Cobrivct#B6C_~_~ _~ ~ ~ ~ l ]

=

Lock i -t ~ l -4 / Assembly Depleted-Uranism-- s, [ =

lDi Cover i

I Front End-Plate - Shield NV ',t G I J -g Lock ,, V __ - i i // i 4: j p7 Assembly I N i Source Tu /, l Selector Shipping Plug l / N - - 'l,'- 9.1 $t Meta i fMC_Z]CodnMoi B6C_- ~_ ~_ ( Polyurethane - L_J 9,----- 4 (;1 j Foam i Figure I: Side l'iew ofa Afodel 660 Series Projector The shield consists of a 1/2 inch outside diameter source tube with its mid section set in depleted uranium. One end of the source tube is inserted into a 1/2 inch hole in the lock assembly at the rear end plate. The other end of the shield's source tube is inserted into another 1/2 inch hole in the shipping plug at the front end-plate. Both 1/2-inch holes allow enough radial clearance for a slip fitting attachment. There is approximately 1/8 inch axial clearance at the front end for assembly. The source is contained in a special form, encapsulated capsule assembly which is attached to the source wire assembly. This source wire assembly is secured in the package by the lock assembly. The lock assembly, in turn, is attached to the rear end-plate by four # 10 stainless steel screws. There are two versions of the lock assembly used on the Model 660 series projectors. The size, material and location of the end plate screws are identical on both versions. The shield, end-plates and the sheet metal shell are connected by four 3/8 inch thick steel rods w hich are threaded at each end to accept 1/4 inch screws securing the end-plates to the rods. [

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burhngton, Massachusetts Page 3 of 34 A polyurethane foam is used to fill the space around the shield and fill the void within the sheet metal shell. 'The foam acts as an impact absorber. The depleted uranium shield provides the primary radiation protection for the Model 660 Series projector. 'the shield accomplishes thin by limiting the transmission of gamma rays to a dose level at or below 200 mlUhr at the package surface and limiting the dose level at or below 10 mIUhr at one meter from the surface of the package. A fracture of the shield could compromise this protection. The location of the source relative to its stored position in the shield is an important safety element, as displacement from its stored position could elevate the dose at the surface of th - package above regulatory limits. Four factors are involved in maintaining the location ofI.c source: Attachment of the source wire to the lock assembly Position of the lock assembly relative to the shield Position of the source tube relative to the rear end plate Position of the shield relative to the rear end plate and lock assembly A change in any of these factors could cause movement of the source from its stored position. 1.2 Design Change Figure 2 is a cutaway of a Model 660 Series projector with the design change. The stainless steel collar wraps over the two upper connecting rods and under the end of the shield. 'lhe collar will cradle the shield if the source tube slips from the rear end plate and the packing foam burns off.

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Durlington, Massachusotts Page 4 of 34 .. -. - - u ..-..m--.s.-.. - - 1 Stainless I Depleted R'f%~ hh*'))Qu }\\ Uranium / Shield i'- i 1/4 inch gap x'g,k h / b .F Rear End-Plate h,96%(uw(([YlU,f y T [ c bQ3D. c e. Figare 2: Side l'iew ofa Ati: M 660 Series Projector with Shield Collar One requirement of Test Plan #76 is the use of shields heavier than those used in the typical Model 660 Series projector (see Package Weight on page 8). The weight is added with the use of supplemental lead and by enlarging the shield in the source-tube-exit portion of the shield. As a result, the collars used in Test Plan #76 specimens will be slightly larger than the collars to be used for production and retronts. The gap between the shield and the collar remains constant at 1/4 inch for both the test specimen collar and the production and retront version. The collars used for production and retront will limit shield movement to the same degree as collars used in Test Plan #76 test units. The design change also includes the use of stainless steel end plate screws instead of carbon steel screws. These end plate fasteners were successfully tested in Test Plans #73 and #74. 2,0 Purpose The purpose of this plan, which was developed in accordance with Amersham SOP.E005, is to test and evaluate modi 0 cations to the Model 660 Seiles projectors so that the Type 11 transport package requirements of 10 CFR 73 are met, The flypothetical Accident Conditions tests (10 CFR 71.73) to be performed are the 30-foot free drop, puncture test, and thennal test. The crush test (10 CFR 71.73(c)(2)) is not performed because the radioactive contents are special form radioactive material, The immersion test and all other conditions speciDed in 10 CFR 71 will be separately evaluated in accordance with Amersham Work Instruction Wi-E08,

SENTINEL Test Plan #70 Amersham Corporation December 17,199/ Durlington, Massachusetts Page 5 of 34 i 3.0 System Failures and Orientations The possible system failures tested in this plan result in the movement of the source from its stored position. Two package orientations are specified in this plan: Orientation A targsts the bottom edge of the rear end plate to buckle the plate and disrupt the connection between the source tube and the end. plate. The bottom edge of the plate provides the second largest unobstructed surface aren for rapid deceleration upon impact. (Orientation 11 provides the largest.) It also allows the shield to move in the drop direction with the ibcus of damage on the connection hetween the lock assen bly and the source tube, in previous testing, this orientation has proven to be the most damaging to the Model 660 Series package. Orientation 11, the nonnal transpon position, impacts on the surface of the shell feet.1he shell feet quickly depress and allow the bottom edges of the end plates to hit. This orientation provides the largest unob.o.ructed impact surface for rapid deceleration of the package upon impact. Each end-plate provides a rigid stiocture w hich limits deformation and directs the shock load to the connections between the source tube and the front and rear end plates. The orientation also allows the greatest degree of shield movement in the drop direction. 'Ihe momentum of the shield toward the bottom of the package may cause both ends of the source tube to shear or bend. Otiier orientations that were considered but rejected include: Any top edge of the package would not provide as much shock loading as the ori-entations selected because of smaller impact surfaces, energy absorption provided by the handle assembly, and a limited space for the shield to move because of the tapered design at the top of the package. llecause the surfaces are curved, impacting the projector sides provides very small + impact points compared to the selected impact surfaces. Attacking a side also limits shield movement because the shield almost touches the sides of the package. Attacks on the shipping plug and lock assembly were used in Test Plan #70, and these components performed without a problem. Source-tube damage was less with these orientations than with selected orientations. 4.0 Construction and Condition of Test Specimens The test specimens will be the Model 66011 units built for the Normal Transport Conditions tests in Test Plan #75. These units were constructed in accordance with Amersham Drawing TP75 Rev. A (Drawing TP75). With the exception of the shield colbr and stainless steel end. plate screws, the units specified in Drawing TP75 are in accordance with the NRC-approved design.

SENTINEL Test Plan #70 Arrorsham Corporation December 17,1997 Burhngton, Massachusetts Page 6 of 34 Drawing TP75, specifies the Model 660 Series in its worst-case transport condition, that is, w ith supplemental lead added to the shield. 'lhe added weight induces higher loads during dynamic testing. l'or the 30-foot free drop and the puncture tests, the test temperature of specimen must be at or below -40 C at the time of each test, a minimum temperature required by l AliA, Safety Series 6 (1085, as amended 1990).1he low temperature represents the worst case environment l condition for the pachage. Table I lists the differences betw een the test specimens and other 660 Series models. l Table it Model 660 Series Va:lations ca ute p ri ra r i 75 Shell Material Stainless steel Models 660AE,660111! r.nd 660E have w ires and connectors attached to ends plates for automatic actuation. Models 660,660A and 660D do not have actuator w ires and connectors. Lock Assembly Posilok" 'lhe Models 660 and 660E use a non Posilok lock assembly. All other models feature the Posilok lock assembly, Actuator Wires No actuator wires and Models 660AE,660DE and 660E have wires and connectors and Connectors connectors attached to ends plates for automatic r,ctuation. Models 660,660A and 6600 do not have actuator wires ar* connectors. Shield Capacity 140 Curie 'the following models have 120 Curie c spacity shields: 660,660A,660AE and 660il. The following models have 140-Curie capacity shleids: 660D and 660DE. Dody Width Standard width Some Model 660s and Model 660Es have a narrow body ($ 1/4 inches) design (4 3/4 inches u ide). All other models only use the standard width body ($ 1/4 inches). Source Tube Titanium Prior to 1980, the Models 660,660A,660AE and 660E were 6 Material manufactured with zircaloy source tubes. All other units have titanium source tubes. Use of Lead Supplementallead Prior to June 1992, some units in the Model 660 Series had added lead added to supplement the shielding.1he maximum amount oflead added was three pounds. The amount was also limited by a maximum shield weight of 40 pounds and a maximum package weight of 56 pounds. Nqf

_. _ - -... ~. -. ~.. - - - l SENTINEL. Test Plan #76 Amersham Corporation December 17,1997 Buriingtm, Massachusetts Page 7 of 34 i ? Table 1: Model 660 Series Variations (Continued) t Feature n I 660 Series Models Weight 54 pounds minimum Over the last five years, the average package weight has been approximately 50 pounds, Earlier in the product history, the average weight was approximately 53 pounda. End plate Stainless steel screws Standard Model 660 Series projectors have comraercial fasteners MS 51959 81 carpon steel end-plate screws. I Shield collar collar suppons the The collar, w hich is the subject of these tests, has not been source tube used on any Model 660 Series projectors. l 1 The first six differences listed in Table I do not affect test specimen perfonnance for the following reasons: Shell Materials: The shell thiekness is 1/16 inch for the carbon steel and stainless steel versions. The likelihood of a crach or brittle flaw increases with the thickness - of the section and is a problem in sections greater than 1/8 inch. Additionally, the temperature for transition from duc'i!c to brittle failure is lower for the thinner sec-tions. The thicker carbon steel end-plates will ach the ductile to-brittle transition wmperature long before the shell does. The end plates are structural members, while the shcIl is not structurally significant. Lock Style: Damage to the posilok lock assembly used on the test specimen would scpresent damage to any Model 660 Series lock assembly, including the non Posilok style assemblies used on the Model 560 and the Model 660E. The internal components of both lock assemblies are protected by the same lock assembly cover and practically the same selector ring. The cover and selector ring must be signiGeantly damaged before an impact can disrupt the internal components' securement of the source. Because of the strength of the cover and the selector ring, damage to the source securement is more likely to occur from the failure of the lock assembly screws. All models use the same type and size screws in the same locations. Actuator Wires and Connectors: The additional parts used for automatic actua-tion provide no structural support. Shield Capacity: The lower-capacity shields are either lighter than or the same weight as the shield used on the Model 6600, making the 6600 the worst case for shield failures ofinterest in these tests. Body Width: The end-plates and shells of the narrow body versions of the Model 660 and the Model 660E would provide smaller impact surfaces than the standard-width plates and shell used in the test specimen. The smaller impact surfaces would result in greater surface deformation and less deceleration on impact. As a result there would be less transfer ofimpact forces that could affect the integrity of the source securement. i m,,-,-.- ._m___,_ .,.m_. .~- ,__,r_.---,,-r

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burhngton, Massachusetts Page 8 of 34 Source Tube Material: The Model 660 Series projectors have been manufactured with titanium source tubes exclusively since 1980. Because this represents our cur-rent manufacturing methods and because the majority of Model 660 Series units currently in use have titanium source tub,:s, the test specimens will be manufac-tured with titanium scoxe tubes. Based en an evaluation of the damage caused by the tests, we will assess the implications for previously fabricated packages w hich utilized zircaloy. Note that although listed on the descriptive drawings, stains : steel source tubes have never been used in the fabrication of Model 660 Series unns, nor do we intend to use them in future fabrication. The other differences listed in Table 1 are made for the following reasons: Supplemental Lead: Prior to June 1992, supplemental lead was used in the pro-duction of Model 660 Series projectors with the depleted uranium shield. Although the addition of supplemental lead is no longer a production technique, the test spec-imens will be fabricated with the supplemental lead to ensure the maximum device mass. Package Weight: Because of more efUcient casting and the elimination of supple-mental lead shielding, the average weight of Model 660 units produced in the last Ove years is three pounds less than the average weight for units produced in the ear-ly years of the series history. Two steps will be taken to build test specimens that will weigh at least 54 pounds: lleavier depleted-uranium shields will be fabricated. Supplemental lead will be added to the shield. + The TP75 will be consistent with current manufacturing procedures and will represent the heavier units in the Model 660 population. Ninety-seven percent of all 660 units produced weigh 54 pounds or less. End-plate screws: Stainless steel end-plate screws are new to the Model 660 Se-ries, and were evaluated in Test Plans #73 and #74. The tests proved that the stain-less steel screws were effective in keeping the end-plates attached. Shield Collar: The shield collar is new to the Model 660 Series. Frojectors with the design change are being evaluated in this test. The collar is a rbg formed from 1.5-inch wide stainless steel sh, et metal that holds the shield in place during ther-mal testing. The collar uses the two upper connecting rods as hanger supports and cradles the source-tube-exit portion of the shield.

t m SENTINEL Test Plan #76 Amersham Corporation Deceinber 17,1997 Burlington, Massachusetts Page 9 of 34 5.0 Material and Equinment List The test worksheets in Section 7,0 list the Ley materials and equipment speciDed in 10 CFR 71 and the necessary measurement instruments. When video recording is speci6ed in the following tests, select video cameras with the highest shiitter speed practical to record testing. Additional materials and equipment may be used to facilitate the tests.

-.- - - ~.... -... - - - SENTINEL Test Plan #76 Amersham Corpotation - December 17,1997 Burlington, Massachusetts Page 10 of 34 6.0 Test Procedure-Two units are tested in parallel with the same sequence but with different package orientations. The tests have the following sequence:

1. Test snecimen preparation and inspection
2. 30-foot free drop (10 CFR 71.73(c)(1))
3. Puncture test (10 CFR 71.73(c)(3))

4. Intermediate test inspection

5. Thermal test (10 CFR 71.73(c)(4))
6. Final test inspection 6.1 Roles and Responsibilities The responsibilities of the grouna identified in this plan are:

Engineering executes the tests according to the test plan and summarizes the test results. Engineering also provides technical input to assist Regulatory AfTairs and Quality Assurance as needed. Regulatory Affairs monitors the tests and reviews test reports for compliance with regulatory requirements. Quality Assurance oversees test execution and test report generation to ensure compliance with 10 CFR 71, other regulatory requirements and the Amersham Quality Assurance Program. Engineering, Regulatory Affairs and Quality Assurance arejointly responsibie for assessing test and specimen conditions relative to 10 CFR 71. Quality Control, a function that reports directly to Quality Assurance, is responsi-ble for measuring and recording test and specimen data throughout the test cycle. The managers directly responsible for Engineering, Regulatory Affairs and Quality Assurance will identify and document personnel who are qualified to represent their departments in carrying out this test plan. = _,.,

-4 SENTINEL Test Plan #78 - Amersham Corporation December 17,1997 Burlington, Massachusetts Page 11 of 34 6.2 - Test Specimen Preparation and Inspection To prepare the test units:

1. Select the units tested under Amersham Test Plan #75.

2. Inspect the test units to ensure that they match the units described on the Test Plan #75 worksheets and attached damage assessments.

3. Confirm that the source location was measured using tool IIT10142, Rev.

A, and/or an alternate method. If used, the oitemate method should be doc-umented andjustified. 4. Confirm that a radiation profile was performed and recorded in accordance with Amersham Work Instruction Wi-Q09 at the conclusion oftest l Pl'n #75.

5. Prepare the packages for transport, d..

i i-a i 1 u e

%J--++ -, - - - - - -

  • -h-42 4 4* M-e---45 Aw-i-.-a M+=a--

--+--'.. 4 -Js-u SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Pago 12 of 34 6.3 30-foot Free Drop Test (10 CFR 71.73(c)(1)) The first flypothetical Accident Conditions test is the 30 foot free drop as described in 10 CFR 71.73(c)(1). This drop compounds any damage caused in the three Normal Transport Conditions tests in Test Plan #75. Use Checklist 1: 30-foot Free Drop on page 26 to ensure that the test sequence is iollowed. Date and initial all action items, and record required data on the worksheet. Figure 3 illustrates the orientation for Specimen A. Figure 4 shows the orientation foi Specimen D. The orientations are the same as those for the four foot free drop in Test Plan #75 except the package is raised 30 feet above the drop surface. This test requires that test specimens be at or below -40' C at the time of the drop. Follow the Worksheet instructions for measuring and recording the specimen temperature before and aner the drop. 6.3.1 30-foot Free Drop Setup To set up a package for the 30-foot drop test: 1. Use the drop surface specified in Drawing AT10122, Rev B. 2. Measure and record the weight of test specimen.

3. Measure and record the specimen's internal and surface temperature, and ensure that the package is at or below 40 C.

4. Place the specimen on the drop surface and position it according to the ap - propriate orientation: Refer to Figure 3 for Specimen A. Refer to Figure 4 for Specimen B.

5. Align the selected center-of-gravity marker as shown in the referenced drawing.

6. Raise the package so that the impact target is 30 to 32 feet above the drop surface. 1

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Page 13 of 34 6.3.2 Orientation for the 30-foot Free Drop: Specimen A The four foot drop setup for Specimen A (Figure 3) targets the bottom edge of the rear end. plate, as described in " System Failures and Orientations" on page 5. Make sure the center of gravity is directly over the point ofimpact. Center of-Gravity _ q.hf7d R, } Impact Surface: l Bottom Edge of the I l Rear End-Plate l 30 to 32 feet I t l l, Drop Surface s yg Drawing AT10122, Figure 3: Orientationfor the 30-foot Free Drop: Specimen A

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Page 14 of 34 6.3.3 Orientation for the 30-foot Free Drop: Specimen B The impact points are the bottom surface of the shell shown in Figure 4 and described in " System Failures and Orientations" on page 5. Align the center of gravity marker on the sides of the packages with the middle of the drop surface. [ h ~ / 7'fh j~p)(f3 /+y Center-of-Giavity (.// Marker [C -{'

c l

Impact Surface; i Bottom edges of _ l Shell Feet U 5 \\, ~ j Drop Surface M Drawing AT10122, Rev B Figure 4: Orientationfor the 30-foot Free Drop: Specimen B 4 I t i i {

-...-... -. - -. - - _. ~. _. - -... - - -...... - ~ -..... -..,. ~ 1 SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Page 15 of 34 6.3.4 30-foot Free Drop Test Assessment Upon completion of the test, Engineering, Regulatory Affairs and Quality Assurance team I members willjointly perform the following tasks: Review the test execution to ensure that the test was performed in accordance with - 10 CFR 71. Make a preliminary evaluation of the specimen relative to the requirements of 10 CFR 71. Assess the damage to the specimen to decide v.hether testing of that spec!;nen is to continue. Evaluate the condition of the specimen to determine what changes are necessary in package orientation in 'he puncture test to achieve maximum damage.

~. -~ SENTINEL Test Plan #76 Amersham Corporation Deceanber 17,1997 Burlington, Massachusetts Page 16 of 34 6.4-Puncture Test (10 CFR 71.73(c)(3)) The 30-foot free drop is followed by the puncture test per 10 CFR 71.73(c)(3), in which the package is dropped from a height of at least 40 inches onto the puncture billet specified in Drawing CT10119, Rev. C. The billet is to lm bolted to the drop surface used in the free drop tests (Figure 5). Use Checklist 2: Puncture Test on page 29 to ensure that test sequence is followed. Date and initial all action items, and record required data. 6.4.1 Puncture Test Setup - There are two different package orientations for the puncture test. Each orientation assures that the package lands on the component or assembly of interest. NOTE: Because each test is designed to add to damage inflicted on a specific component or assembly in the preceding test, it is important that each specimen maintain its identity throughout the ba!!ery oftests and that the setup instructions specific to the specimen are strictlyfollowed. This test requires that the test specimens be at or below -40 C at the time of the test. The worksheet calls for measuring and recording the specimen temperature before and after the test. This test uses the 12 inch high puncture billet (Drawing CT10119, Rev. C). The billet meets the minimum height (8 inches) required in 10 CFR 71.73(c)(3). The specimen has no projections or overhanging members longer than 8 inches which could act as impact absorbers, thus allowing the billet to cause the maximum da.nage to the specimen, To set up a package for the poncture test:

1. Measure and record the weight of the package.
2. Measure and record the specimen's internal and surface temperature, and ensure that the package is at or below -40' C.
3. Position the unit according to the appropriate orientation:

For Specimen A, refer to Figure 5 on Page 17. For Specimen B, refer to Figure 6 on Page 18. 4. Check the alignment of the specified center-of-gravity marker with the tar-geted point ofimpact.

5. Raise the package so that there is 40 to 42 inches between the package and the top of the puncture billet.

~. ~- SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Page 17 of 34 6.4.2 Orientation for the Puncture Test: Specimen A 4 The puncture test setup for Specimen A (Figure 5) targets the bottom edge of the rear end-plate, as described in " System Failures and Orientations" on page 5. Make sure the center of gravity is directly over the point ofimpact. Center of Gravity ge Marker 7y., N.:f l V /" ! Impact Surface: l Bottom Edge of j Rear End-Plate 40 to 42 inches I F Puncture Billet Drawing CT10119 Rev.C 3 Drop Surface Drawing AT10122 Figure 5: Orienta!..>nfor the Puncture Test: Specimen A

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burhngton, Massachusetts Page 18 of 34 6.4.3 Orientation for the Puncture Test: Specimen B The objective of the Specimen B orientation (Figure 6) is to puncture the shell and move the shield. The impact area is the bottom of the package, the largest flat surface on the shell. This surface will yield the greatest deceleration, while the momentum of the shield continues ' downward. Align the center of gravity marker on the side of the package with the center of the puncture billet. " ( ) D N,( it)) Center of-Gravity f Marker 3 ' h' .j l Impact Surface: l Bottom of the Package l 40 to 42 inches Between the end plates l-U Puncture Billet Drawing CT10119 Rev.C g 5 I ' E ) Drop Surface Drawing AT10122 Rev.B _ =. _ Figure 6: Orientationfor the Puncture Test: Specimen B

SENTINEL Test Plan #70 Amersham Corporation December 17,1997 Burlington. Massachusetts Page 19 of 34 6.4.4 Puncture Test Assessment Upon completion of the test, Engineering, Regulatory AITairs and Quality Assurance team members willjointly perform the following tasks: Review the test execution to ensure that the test was performed in accordance with 10 CFR 71.73. Make a preliminary evaluation of the specimen relative to the requirements of 10 CFR 71.73. Assess the damage to the specimen to decide whether testing of that specimen is to continue. Evaluate the condition of the specimen to detennine whether the thermal test should be performed with the specimen. Evaluate the condition of the specimen to determine the package orientation for the thermal test to achieve maximum damage. As part of the evaluation, measure the weight of the specimen. 6.5 Intermediate Test inspection Perform an intermediate test inspection af ter the puncture test. 1. Measure and record any damage to the test specimen.

2. If possible, measure and record the source location using tool BT10142, Rev. A, and/or an alternate method. Document andjustify the alternate method used.
3. If a source can be installed without affecting the integrity of the test spec-imen, profile the package using an active source in accordance with Am-ersham Work Instruction Wl-Q09.
4. Assess the significance of any change in radiation at the surface or at one meter from the package.

e SENTINEL Test Plan #76 Amorsham Corporation December 17,1997 Burhngton, Massechusetts Page 20 cf 34 6.6 Thermal Test (10 CFR 71.73(c)(4)) The final requirement is the thermal test specified in 10 CFR 71.73(c)(4). To ensure sufficient heat input to the test specimens, each specimen will be pre-heated to a temperature of at least 800 C and held to at least that tempe:ature for 30 minutes. This test condition provides heat input in excess of the requirements specified in 10 CFR 71.73(cv4), which does not include a pre-heat condition. The pre-heat condition assures equivalent heat input regardless of emissivity and absorptivity coefficients. The test environment is a vented electric oven operating greater than 800 C. There will be sufficient air flow to allow combustion. Air will be forced into the oven at a minimum rate of 9.6 cubic feet per minute to ensure suflicient oxygen to fully combust all package materials that are capable of burning. This rate is based on the following analysis: 1. The only combustible material in the TP75 is the polyurethane foam.

2. The chemical composition of polyurethane is [C 11 NOi3]n.

26 33

3. The products of combustion are carbon dioxide (CO ) and water (110) 2 2

and the molecular weights of the component materials are: C a l2 11 = 1 O = 16 N = 14 4. The maximum mass of the polyurethane in a TP75 is 988 grams. The max-imum amounts of carbon and hydrogen present in the polyurethane are computed as follows: polyurethane C26 1133 N Og hiolecular Weight (26x12) (33xi)+ (1x14)+ (13x16) + 567-312 + 33 & 14 + 208 Percent by Mass 55.0 % 5.8% 2.5% 36.7 % 988 g - 543g + 57g + 25g + 363g

5. The amount of oxygen required to fully combust the carbon to carbon di-oxide is computed a: follows:

Carbon Dioxide C 02 Molecular (lx12) (2x16) Weight + 44 = 12 + 32 For a given mass of carbon,32/12 = 2.67 times that mass of oxygen is required to fully combust the carbon to carbon dioxide. For a TP75 containing 543 grams of carbon, full combustion would require 1450 grams of oxygen.

SENTINEL Test Plaa #76 Amersham Cuporation _ December 17,1997 . Burlington, Massachusetts Page 21 of 34 4

6. The amount of oxygen required to fully conven the hydrogen te water is computed as follows:

i Water 112 0 Molecular (2x1) + 16 Weight 18 = 2+ 16 For a given mass of hydrogen,16/2 = 8 times that mi.ss of oxygen is required to fully convert the hydrogen to water For a TP75 with 57 grams of hydrogen, full combustion would require 456 grams of oxygen.

7. The sum of these oxygen requirements (1450g + 456 g)less the oxygen supplied by the polyurethane (-363 g) equals 1543 grams of oxygen to as-sure sufficient oxygen to burn the polyurethane foam, At standard condi.

l tions, the composition of air is 23.2% oxygen by mass. Therefore,6650 grams of air are required,

8. The volume of air is computed at a density of 1.225 grams / liter to be 192 eubic fect:

3 3 6650g/1,225g/l = 54301 = 5.43m =19211 9. A 50% safety factor is added and the volume is distributed over the 30-minute test period to determine e minimum air flow rate of 9.6 cubic feet per minute: 3 3 (192 ft )(1.5)/ 30 min. = 9.611/ min. The air will be introduced as compassed air passing through a flowmeter and into the oven via metal tubing. A sufficient length of tubing will be inside the oven to ensure sufficient pre. heating. The temperature of the package's exterior surface closest to the air entry point will be - monitored throughout the test ta ensure that the package remains above 800* C, If the specimen is burning when it is removed, the unit is allowed to extinguish by ittelf and then cool naturally. The final evaluation of the package is performed when the specimen reaches embient temperature.-

1. Avallone, Eugene A., and Theodore Baumeister III, Editors, Afarks' Standard Handbookfor AfechardcolEngineers, Ninth Edition (New York: McGraw-Hill Book Company,1987), page 4 27

^

SENTINEL Test Plan #76 Amersham Corporation December 17.1997 Burlington, Massachusetts Page 22 of 34 6.6.1 Thermal Test 4 To perform the thermal test: 1. Bring the oven temperature above 800' C.

2. Attach thermocouples to the package's internal and external measurement locations, and inside the oven.

3. place the package in the oven and close the door. 4. When the internal temperature of the package goes above 800 C, start air j flow and start a 30-minute timer.

5. Measure and record the oven temperature, test specimen internal and ex-ternal temperaturc.a, and the air flow rate. Record whether there is any combustion.

6. Monitor the specimen's internal and external temperatures, and the oven temperature throughout the 30-minute test period to ensure that all temper-atures remain above 800* C. 7. Monitor the airflow rate throughout the test period to ensure that it remains 3 above 9.6 ft / minute. 8. At the end of the 30 minutes, repeat Step 5. 9. Remove the test specimea from the oven.

10. Allow the package to self-extinguish and cool.

I 1. Measure and record the source location using tool BT10142, Rev. A, or us-ing an alternate method if damage to the specimen precludes use of the tool. Document andjustify the at:ernate method used. 6.6.2 Thermal Test Assessment Upon completion of the test, Engineering, Regulatory Affairs and Quality Assurance team members willjointly perform the following task: F Review the test execution to ensure that the test was performed in accordance with + 10 CFR 71. m

SENTINEL Test Plan #76 Amersha.n Corporation December 17,1997 Burlington, Massachusetts Page 23 of 34 6.7 Final Test inspection Perform the following inspections aller completion of the thennal test:

1. Measure and record any damage to the test specimen.

2. Profile the package using an active source in accordance with Amersham - Work Instruction Wi-Q09,

3. Assess the significance of any change in radiation at one meter from the package.

4. Determine whether it is necessary to dismantle the test specimen for in-spection of hidden component damage or failure, )

5. If you decide to proceed with the inspection, record and photograph the process of removing any component.

6. Measure and record any damage or failure found in the process of dismantling the test specimen. 6.8 Final Assessment Engineering, Regulatory Affairs, and Quality Assurance team members will make a final assessment of the test specimen, and jointly determine whether the specimen meets the requirements of 10 CFR 71.73. l

.... ~. -.., -.. -.. - - ~.. _ -- - SENTINEL Test Plan #76 Arnersham Corporation December 17,1997 } Burlington, Massachusetts Page 24 of 34 7.0 Worksheets Use the following worksheets for executing these tests. There are two worksheets for each test: p an equipment list and a test procedure checklist. Use the test equipment list to record the serial number ofeach measurement device used. Attach - a copy of the relevant inspection report or calibration certificate aller you have verined the t j range and accuracy of the equipment. Quality Control will initial each step on the checklist as it is executed and record data as required. The Engineering, Regulatory Affairs and Quality Assurance representatives must 1 - witness all testing to ensure the testing is performed in accordance with this test plan and 10 CFR 71. 4 Make copies of the forms for additional attempts. Maintain records of all attempts, i E 1 i-4 t r l w 9 0 m. .g., sw r v c--

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Page 25 of 34 Equipment List 1: 30 foot Free Drop Enter the Model and Attach inspection Report or Description Serial Number Calibration Certificate Drop Surface, Drawing AT10122, Rev. B Weight Scale Thermometer hermocouple flexible probe Hermocouple surface probe Record any additional tools used to facilitate the test and attach the appropriate inspection report or calibration certificate. Verified by: Signature Date Engincering Regulatoiy Affairs Quality Assurance

O SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Pago 26 of 34 Checklist 1: 30-foot Free Drop Test Location: Attempt Number: Step Specimen A Specimet: B

1. Record the serial number of the test specimen,
2. Measure and record test specimen's weight.

Record the specimen's weight: Note the instrument used:

3. Immerse the test specimen in dry ice as needed to bring specimen temperature below -40" C.

Steps I through 3 witnessed by: Engineering Regulatory AfTairs Quality Assurance l

4. Measure the ambient temperature, i

I Record ambient temperature: l Note the instrument used:

5. Attach the test specimen to the release mechanism.
6. Begin video recording of test so that the impact is recorded.
7. Measure the temperature of the specimen. Ensure that the specimen is below -40* C.

Record the specimen's internal temperature: Note the instrument used: Record the specimen's surface temperature. Note the instrument used:

8. Lill and orient the test specimen as shown in the referenced figure Figure 3 on Figure 4 on for the specimen.

Page 13 Page 14

9. Inspect the orientation setup and verify the drop height.
10. Photograph the setup in at least two perpendicular planes.

l 3

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Page 27 of 34 Checklist 1: 30-foot Free Drop (Continued) Test locationt Attempt Number: Step Specimen A Specimen B Steps 4 through 10 witnessed by: Engineering Regulatory AfTairs Quality Assurance

11. Release the test specimen.
12. Measure the surface temperature of the test specimen.

Record the surface temperature: Note the instrument useu.

13. Measure and record the test specimen's weight.

Record the specimen's weight: Note the instrument used:

14. Pause the video recorder. Ensure that the point ofimpact and orientation specified in the plan have been achieved and recorded.
15. Record damage to test specimen on a separate sheet and attach.

Steps 11 through 15 witnessed by: Engineering Regulatory AfTairs Quality Assurance

16. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach.

Determine what changes are necessary in package orientation for the puncture test to achieve maximum damage. Test Data Accepted by(Signature): Date: Engineering: Regulatory Affairs: l Quality Assurance: 1

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Page 28 of 34 Equipment List 2: Puncture Test Enter the Model and Attach Inspection Report or Description Serial Number Calibration Certincate Drop Surface, Drawing AT10122, Rev. 8 Puncture Billet, Drawing CT10119, Rev. C Weight Scale Thermameter Themiocouple Dexible probe Thermocouple surface probe Record any additional tools used to facilitate the test and attach the appropriate inspect!cn report or calibration certiGcate. Verined by: Signature Date Engineering Regulatory AITairs Quality Assurance

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Page 29 of 34 Checklist 2: Puncture Test Test Location: Attempt Number: Step Specimen A Specimen B

1. Record the serial number of the test specimen.
2. Immerse the test specimen in dry ice as need to bring the specimen's temperature below -40" C, Steps I and 2 witnessed by:

Engineering Regulatory Affairs i Quality Assurance

3. Measure the weight of the specimen.

Record the specimen's weight: Note instrur:ent used:

4. Measure the ambient temperature.

Record ambient temperature: Note the instrument used:

5. Attach the test specimen to the release mechanism.
6. Begin video recording of test so that the impact is recorded.
7. Measure the surface temperature of the specimen. Ensure that the specimen is below

-40' C. Record the specimen surface temperature: Note the instrument used:

8. Lill and orient the test specimen as shown in the referenced figure Figure 5 on Figure 6 on for the specimen.

Page 17 Page 18

9. Inspect the orientation setup and verify drop height.
10. Photograph the setup in at least two perpendicular planes.

Steps 3 through 10 witnessed by: Engineering Regulatory AITairs Quality Assurance

11. Release the test specimen.

(

0 0 SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington. Massachusetts Page 30 of 34 Checklist 2: Puncture Test (Continued) Test Location: Attempt Number: Step Specimen A Specimen B

12. Measure the surface temperature of the test specimen.

Record the surface temperature: Note the instrument used:

13. Measure and record the test specimen's weight.

Record the specimen's weight: Note the instrument used:

14. Pause the video recorder. Ensure that the point ofimpact and orientation specified in the plan have been achieved and recorded.
15. Record damage to test specimen on a separate sheet and attach.

Steps 11 through 15 witnessed by: Engineering Regulatory Affairs Quality Assurance

16. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach.

Determine the package orientation for the thermal test that will achieve maximum damage. Test Data Accepted by (Signature): Date: Engineering: Regulatory Affairs: Quality Assurance:

e SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burhngton, Massachusetts Page 31 of 34 Equipment List 3: Thermal Test Enter the Model and Attach inspection Report or Description Serial Number Calibration Certi6cate Air Flowmeter Thermocouple (internal) Thermocouple (external) Thermocouple (oven) Temperature recorder Record any additional tools used to facilitate the test and attach the appropriate irspection report or calibration certificate. Verified by: Signature Date Engineering Regulatory AfTairs Quality Assurance

O SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burhngton, Massachusetts Pago 32 of 34 Checklist 3: Thermal Test Test Locationt Attempt Number: Step Specimen A Specimen I4

1. Record the serial number of the test specimen.
2. Pre-heat the oven to a temperature above 800* C.
3. Attach the thermocouples the specimen's interrf. and external measuring points.
4. place the package in the oven and close the oven d[r.

Record the dat. and time that the package is placed in oven.

5. When the specimen's internal temperature exceeds 800* C, start the air Oow into the oven. Recuid the time.

Steps I through 5 witnessed by: Engineering Regulatory AlTairs Quality Assurance

6. Measure the oven temperature, the specimen's internal and external temperatures and the air How rate.

Record the oven temperature: ( Note instrument used: Record the specimen's internal temperature: Note instrument used: Record the specimen's external temperature: Note instrument used: Record airdow rate: Note instrument used:

7. Monitor the internal and external temperatures of the specimen and the oven temperature throeg,hout the 30-minute period to ensure that they are above 800* C,
8. Monitor the airdow throughout the 30-minute period to ensure a 3

rate of at least 9.6 ft / min.

9. At the end of the 30-minute period, repeat step 6 using the same measurement devices.

Record the oven temperature:

6 SENTINEL Test Plan #76 Amersnam Corporation December 17,1997 Burlington, Massachusetts Page 33 of 34 Checklist 3: Thermal Test (Continued) Test lAcation: Attempt Number: Step Specimen A Specimen B Record the specimen's internal temperature: Record the specimen's external temperature: Record intake air flow velocity: Steps 6 through 9 witnessed by: Engineering Regulatory Affairs Quality Assurance .g

10. Remove test specimen from the oven.

] Record time the specimen is removed. Describe combustion when door is opened to remove specimen. NOTE: If specimen continues to burn, let it self-extinguish and cool naturally,

11. Measure the ambient temperature.

Record the ambient temperature: Note the instrument used:

11. Photograph the test specimen and any subsequent damage
13. Record damage to test specimen on a separate sheet and attach.
14. Measure and record the source location using tool BT10142, Rev.

A, and/or an alternate method. Document and justify the alternate method used. Steps 10 through 14 witnessed by: Engineering Regulatory AITairs Quality Assurance

15. Engineering. Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach.

I

SENTINEL Test Plan #76 Amersham Corporation December 17,1997 Burlington, Massachusetts Page 34 o' 34 Checklist 3: Thermal Test (Continued) Test location: Attempt Number: Step Specimen A Specimen B Test Data Accepted by(Signature): Date: Engineering: Regulatory AITairs: Quality Assurance: l l l

SENTINEL Test Plan #76 Amersham Corporation February 17,1998 Burlington, Massachusetts Appendix A Appendix A: Drawings Test Specimen TP75,Rev.A Model 660 Gamma Ray Projector Shipping Container Descriptive Assembly C66025, Rev. F (3 sheets) Model 660 Gamma Ray Projector Shipping Container Descriptive Assembly C66025, Rev. [1(4 sheets) Model 660 Gamma Ray Projector Shipping Container De Ariptive Assembly C66030, Rev. D (3 sheets) Model 660 Gamma Ray Projector Shipping Container Descriptive Assembly C66030, Rev. A (3 sheets) Model 660 Gamma Ray Projector Shipping Container Descriptive Assembly C66030, Rev. -(4 sheets)

e y..___ ...._d__ ___[,,_,,_._____ ,_,____,__j___ es t L". I r u y s g l, a e k l i]t l 5e r ta .. #.J p,,4 y n 6 9, o (u i, e = ll 8 N }. ),:7,,- () fl ! E* l. / s th I ,F s ii,., a,,,,, i o 4 e- '4 i .. M,.:,. U, l;t.... t ., f, i c.1 v t., 1 r o t - .t J I..**.,..- eg { Q

i. i t (

!m A g gl p' i.M{ j o [S} :cl3.l f [ 4 W > '. k. 1l f. u i x n I r g j j. p >s5,, __. p .e (.) w f h !! N .}..l..f g r p N fE ^ %p g (j g g(( 's 3 m, r.

a. <...

pJ gp ( 'WL.. - - (l + V w -E)$ "h g k IT g r., p -l f g g 4.1 r e J'-~__s', ,g d " N 6 (e dn cf r }, / g it' L; y \\ p n n [{dW y g, pp. N r p.g

e.. y e

s

g..

,, - g b N'hg E s. D 'E 6 'd IIh _ I y, yfb Nho 5 ? 5 p F .h* V59 ug yp-s %5 ^ yf 5 e' }, $ 1 {f 64e jyQqf9>>. u A s, s gu ! lb, atl U n i v d [.y 4P F, in Na c c:

.awan a

u U .e ,i pp m 1 fy~ M' N y py d 'x-> 5. I f.

u. <is nr r

({s(d h-h li lh g ~. h iE E Ele $g. p 5tc r/ [ g i l, i g y j. ; p j g y j er t 1 .___7-~1T_7[=A g g. g, N r,t.hr'g $[g i r L. pgrig c*eg$3 ign s M j ?'

. e g H

r e 3 3 {. o M r s { h, 3 i 2, " j V " ' ' r { a' i

  1. Em e

[3 s Kl!). $rg))2 i r t'; r reg"). i k y ? k f. @ rp psy EE I f8E4 T l' 5 5! s qui 3 o v i hra .:. ::.,:. n : : : : m :: T 3 i n u m ,4

l [ j i i ^ * ~. D J (6 t T ) T 2 t P i. S 1 Y f 3 rD \\) t s L P O 9 o "FE t N ~- w :A k c \\ ? y YAE 3 2 ue

p. "

~ g\\ A 5 O C R S 2 - c mt 6 o ~ M O S 0 AMCA 6 h s =- wGE Ti 6 UZ E RM E wCt V S D E p 5 I ~ L-r RT W((G.- G m,'"p4 0PP 5 M t c c e NW EH; l 4 t[ tQ/,\\. R E D= d LS C A "li o E S DM g' P D E ~.O D g" M ~ o l r l

h l* @

m'- y" r p ,\\ j* / ( N i2 j) O~ ] $t / r ' g1 fk / 1 o lj 75 (i M t a S t i w E E N T v v TIW %)2 U)L C t AG Y h*' e ~ - 2 .G L r o P (J A E r AU cwt i E O S E ,S .C C DA-KS ct NGW L a N( O nc n ) XE E P 2 u e l O E T r I op %Sc L Ss n sL C" f L S ~ / ( EW/ /j - ~ A N E A I T hb)\\ ' o E O "~' E c A O T' S hub ( C T E i i, ' (%, /p)' R' V lE I J. 'i D Ud I C / Y t T P CE O / GL I i / g c I C &RC CE RPI# yL DUC j x I AOT . / S r Y RS E '\\ G i ) I F3 N i \\ & C T T \\- 5 / ( Cu / \\ 9 C o S C I B j RL R c UE / / ) E L / 3 GE { 1 TE / A S T q /- 1 j W N:S I )' i B r f / / i S

i. M D

N)Y O 0 u ( e: 2 M. 6 L 1 / u / ii1 t NO A AL / / R '/ h n~ [l. s L i C Y b E A HA ./ / R S 1 ) 3 / LF T. E S DR3 SM S.t E / -/ 7' E A J A U S. ~ 9 R G B E - T C L i 1 4w / T D H U L ga E L$ A L // L ( P 3 PIE' o l 5 5m ./ t E EHE DS1 t / G A T Pe / / I' '/ R h O G L Yc M Y T l LTm ./ E /S / E W H0c S 6 / L [(L x A / /^ r_ T O E . ( / "B T / e N "m E / E l 'C C / l 'C F T L E E A R 3 b GM .l'; y 4 r TE 1 I{C _/ i ,'1 A E AC W9 1 I / / R E E S t .E 77 AR En Sv

.___.---gw[h a "l. pg,, [ J t s b N lI W 3-h, W (h) fan v{d g ?.I L ~ ..h s, ~, si d m A l (t us ' n

  • O y'\\

s M***j [N $1 ,t (( k R f d g s f E !il h i - - ? - /e,,j @lw'(j@a p) l( 3+s@h.'.c~,f pl }gg @u a -a \\ ly 1 q( _ _ L ]t s 1 i; s e s og i s '0 s c e .o a e t s ,g y 3, L 4, Q l l Oy ~I N sil a a~ wr c i. s-4 '4 l'J U Q;g %g# 0% i ki t .i [ u ,h c sa u,R aE sa n o O' e$. Yi R }3{s gg 2 Cf "8 t 6 s // MB8 un a. "E I J 7 pcc qE b ~/ h u, a .~ , f ~5 ffllll// w' x s m Nf-y\\ N \\r }y. \\' iu n 3 .~ e J (D< a m y 3.a o Ns. g x d _lk?_,5 t/&> V $N

/A a o

/ -Al m/ h=:j ymsssz a /5 4 d \\ \\ z .: y I ti ^ 43 <e G ta 9% W td q,e s 3 a o.n a, 8 3* a m Rg L@u h r n e us b cs - g 3 Y' a E [s@u,; Sid d 5h v t OSc a,. - ,r c 2.n ,,. m f ~ _]

4-__.a_-__4_J m4 a. is A4 4- ..aaea-.a. A .m Jm.-_i 3a. 4-a L 4J14 a m e p% e.. _s__,a_ 1a- -.m_ _i,__4 a-._-.A,_.__h_-a24 ._M____a--i* m4 ghl 5Y n,e$h g p'd l

n. u..d-e %-

A,sy el m I n i. %p.P t m 1 w ~~ 13 . It l st ate a d, i e ee I ge fyg ~9 g s[ / a is t e )4' Y }E in l hg u 7

o n

i , w n% p q r2 t s. ,y ga 3 e: g, s i Q 9% v 9,j g s i a2 o e wy%ri 1-._ _, w - us g N-if m n m bRE n .) c .IS .! I NkF ( 9 4 ( a.h,3 t-m g >N ! $ _ N +E, <( n ro <i 48 7 J3;h h7< 4 ti t m 1 k1 ; i O vs .sgsac Q i ta a \\gg:sa?h N e a n dadanos \\. 3 0 = a o-p; H-R ega ON ,s 2 [ 1e wN,nuu .~ s $23C w g \\ (O s v.- k s N' m, N4 h ,dd-sN.s y D s I \\ d at \\ s \\ h

  • M T N

\\ \\ b-pK m3 y, a j .S i54 \\ j i 3 m \\1 f le u n sa s,.g A 3-2 x y o 2 b.J Df/ b n M e$ b s ^to-M us

![+ l; , ii ,i ti e t iI;I

  • }

r; 7 i O i f C I T l C )6 E M (O } NE E V 4 M-L m ~~ F w;; \\ S E1 Y:NM 0 ,\\ ~ =. ArE 5 q OS C @\\s )E DW x J = PTS 2-e _tl N G AOS 0 -c WCA ~ H 6 o 7 (a A TO AGE 6 r L e = - gP = A C Gr V L OmU g V e L- = GMM y, .I4 j i r aU " >T c W *M E Ei S e:- E s DS 3 Or tS C r g I G e i m F t, S C n a a lE pC s.e = L M

  1. 5=

M r O a 7-e 3 g = C = 6 s!l $ W' 3,d i* 1. 1 i i ;,j 1 c _4 I y gs / o i*aj1i p3 5 c l r i (; m e W eni n d w S c g E i T )0 d g ~Q n %)2 g )u-N su A Y 2D L E C ~ P (3 g L A 7 e L K M w (i C ) DA.O 3 d L t A NG n O E e E D CE P e 2 L C E i Tym A 3 O L s L S 4 C s s E ( A N EE A N S H ( T c s ~ ~ s m 'l i1s/ n-EP E V s 3 D UM TI c / I Y /.- i G LA = J I OO C Es -/ N = i ACE s= RPP Ci R= x DUc i = r. AO- / \\ / s F \\ ) y RS E \\ (4 n S n F4 g (i s b i c 5 i C S r a 0 r, L r Eu Bs / 0 c w 8 i RL Ur E GE 4 TE / T j NS o S T-7 it U n . / / C4 i E0 o. M E M L i N2 o C, U D )Y U N1 u I / O P{ E NO ~ N / A AL / i C Y W )'t L / jL S R HA R S L UF T. c / 1a E A A E OR* SM i i / 9 R G T A U w tM 2-C L n / l 7g U O i L t A e s / 2 P T Lt PIE / 1 r u / i E EHr o G / / DSS x / / A / R / O t Lc T Lc / S E G Ho / u Se 1 j_ aa t / = ( ~. r f N ~- wE t E . 'N' = r '= ~ _=_ N T cn N B / Tc E U E T sc M F L

x C

E +. E R4 EA C ' QLp u: ' lg / )/ /, ~ G T 7 e Ar i P / / / CE u A E E s R C NmE O E m l T R IE tE \\\\ j r~ yl iS t: RSS m g,.(. r\\n. / g, w L) c =

,i,i j

i 4'

3 Lo !' M o-u I hl hna I f' f ',' {<! I.. t was 92 ~ i s $"gi gI C 4, o f>p:@ R i a \\ f $ 5 E l M C-4'%g =ew a lu m s O@ l#" rlk O ~$I N o ...i g /(43_ g\\\\3 a t-1 l 7__. o , / [ / ' j, -4 L.L J t 1 .'.#\\ / t, 7 ~ x g [ri_! NAI-i I if-a- n ,#H d si 8 e s kb h DW $ p' as 2 153 6 85 S$35 OM [n2 ] n'a Di (E 9e 156 Ifs seh 's,R si a ga g:4 m-- m m o n m b i5 we 19 6% 5 N xp y? . w w a tw-h_ wa m n U -] gf-. f, Ng l {x U .. I.' I i : ;IT r J +. - 7svg g re usi-xxxxxxxxxx x x1 7 ~ xxxx3 J J lus Ef_ 9 \\. ( m ) \\ ? I w g a w u m-> M M 5 gi Sy k6 3' S l9 b]s 1s 9^h' i ds SB 9 25 @- !!3 W 5 s .i o

I\\ll! l Il{l l' .c i M E e E l ) L M 6a w-( 1' Y s s I k nr \\ L QE B M i-s i / E fNM / 2 g DSm h "' 3,, FGS g m C A E 5 C s / 2 i ED 6 o AO S 0 r OT VCA 6 ~% H> uT: (S'w ; A c @ y ~ V 6 e e R A6E A L E D G *L V ' c u r Eu F t-G E '4 ~ PT 0PP p W:*5*Ou2 e T 6I E' 5 N v' C 3 S 0 6HIR g G D p*1 b A R. "~ cS C t. 8- . P e S w D R" ~O D as$. B H D E O O E. '^ [l Ce-C" ~M D r rd ,f s9 - T" R = e L / O O i[ s g \\' 14 f g g4 e-f // / 53 } /. n o t S a <r H t g 7 i. SI I a E e g N A N n y)E T )0 s 1 SW E g, Y M A 2D 5 )2 D ,g L L E s N Ar E O I ~ P (1 L C ) E p L K M,(T L CL .O DA 3 S R NG t g O RE E D C E P U B 2 t O E 1 Tym OA o Ls 1 C s> SL / ( s E A< N E E A S N H I /' ^ l' ' '( c T. s E t t T / / + I D UM .s V c / / E f I Y G LA I c j cec g - / T J OO r a_ GR= RPF CE / s DUc AO7 ya . / PS 5 w / ) \\ (4 ?w r S n m F 8 C B r \\ Eu ( / 0 L \\ u. Bs 2 R 8 / Gw p / UE 1 4 TE / S N 1 / / n n T 3 / 7 / f Cd 0 / / Eu 0 M N O -g, E M' L / Nr 6 G U D )Y / E / I NO Nt l lE A'~ AL / / / E } W L C i R HA R jL 5 // ./ 5 UF T. c i g S L / 7" e A A E - A U DRe SM w ' R G T iMr t C L s / y3 U O ~ A L // 2 P T d 3-e ( P30 u a / 1 / l E E EME o G / . /,'- DSS R / / ,l/ /. A o R t O Le T Lc /S E j H0 / 6 / y j._ ' r< S /. [(D v .N'N /- / "E u n T E / s ec N uE

  • -'C l-E L

T F e M E C r EA E C R. 4 A, )/e y; )N j / l/ T r G P ibI A. n tS f v'Y/_&[s EsE A E / C_ nC s 's I t oE N .i - .TsR\\,\\ ( I E g-

q[

f R<pS t-n g* \\ n g s a t

) *. ~[ ) e p,hih- ,t-gl' .y 'th i h ge-m n e - -t x A N lp yl p< M.1DS I m , e e y o E tij 6

  • O f

~ f[ i G 9 (Ti 3; 9 [ } "$[ U f.I k 'f ' ~ ~~ Y t ' [. ; bU

a

? p;/T i .,i

l s..

\\ m; r ' f,j f, -h. y. S,__s i d

  • I g

Q> a' a t / y G L

  • ,,)

t, DI, [ e6 k,i l J ,g p p ..s .k. .. k (C a* . ];. 3 k x d k s,, .h) g + ~ s = .t g a4 qQ- , 1..: [..7g. l* l*(), 4, ^ i '1 d l ' v S .n [ t I 4 I s. I k + 4 i ? l. 1 g til ( i P b w w O ..t.. U i s g 9 7 s-s cr t: / g!.*4h a cc ~ _ w + <o a 2., N, 6 U b 6 I yg%g M i l' g' r o N N g,I a s N Pd ,j g ls j. x mm h g. m i t a ~p-z -se l r' O 3 ,.. u -. '. _q y. %%f yner k '~~ ...-'\\.\\ \\ \\_\\ bl/ u\\ \\ \\ \\\\f y) f ) .,7 p. c LJJ ~ 2 m eg i a D M a. a ... =:: ~

. ~... _ _ ~.- -....- ~.- ---_.._~_._.7_-,_._--~-_, . ; - -., n. ) y %ji@ ? , y I c ( c6 ust s l h 3 $ , q, %s; - -~ ~ a e ' h,' [,' b t g 0 u i m y j ~ [gh, I Q / _ s 2 I l-J i .-.,....-4 -j ~~ j l y g 5 / 9 / nig! s m g Y c'$ u di ,n U..1, : ,w..I 4 i j h I d "It j l\\ l d C K g m n w .4 b.s t a_ s, y @h J il a li ' 3 d:# ( o a q'- L 'l g tr ] O06"g 1* { b 4 a? H R ug 8Rg 02 g g a l d S moh 3 m m a @a $,q n 8 s ml"9 \\ \\ ( =rt m I; s_ \\.\\ e tu N l~ b U 4 \\ 4 $ 3RG -lM F \\ m g \\sN s s N \\ g \\ g s. \\ 5 \\ \\ o \\ g W 3 \\\\\\ t d.i s ~ k aa lW p m l'I uJ k -- my_J

gs ; ,n. ,,...,m gg c;;;ga ggcy l'.ds END PL/JE-RES. p D ' %:n \\ Sn e n ? . --- a - (CCRS.h

  • C2*c?O)

/ c-macun suuvre (2) ! (wucciemh WueeEP) j W TT37L) d-37 %C. JO \\ '} l / ca nov (2) 'y ca.,ya w w toc n (;w,7.g.) \\s x$ 7 I d / \\g i h JLEEW g ( m a 5 0) i i ceuony;cnymus f \\h

ur tc-ms-a-z)

( I s\\ a - l / j$ scacrm 8a0<

)

ay,,, De 5r sn ) /h t-kg conhec7 / t' $/ f/'/, i $\\ 3 h, Y J GN ) fx^ <7/;N, e,:,_1_ @. ~_ _ _ _, _ sgg

:' r Q ) _

- g$ R -=-M Q k ^l' i f ~ gp/ w ~(q s' g g ^ m,m-sm./ W r_ jj I sr u. s n.) 4 /7# u/h / % 1 }/ / wrm L%rnE / / &(f e 8 / Ahh-MTM u65 on ~ => / <eacou e,re; <;-sirr.,n> (ponr.su.) l 4 co m e% ton SP w s CABLE AS$Y ' ( " 4 " * " *'ESIO / LOCK ASSEMBLY \\ s ~ '~~~~~~ T I LDC W & 9LtDE 79&JEL E60 CAvvA PAYfrM ^ ^ (1/4

  • 1/2 rr4T Geta pcx SHIPP.:1G CC.WAnER 01L HAPDEH%)

Tj m **? ~ . CESCmpir2 ASSEvey u-b.' $ ^ lC 66)?C h M' S M r- -. x r= 2 :. tc -* M

~. g ~ DEPLETED tAANIUM ECCACIin END PLATES (lN STCDEO POSIT CN '[ tow C ^ R 9 CN STPAGE TLOE ~ M "_ 5000.CE I GA. (.120) o, GECEPTACLE SHIELD - RET STL- ~2~ pyma A 1EE SMT5 CAST HANCX.E A

  • m2 r1/;T W Mn3(6)

(ALUM. ALLOY) SEEL-Om m x r4TP. ~ l di) i / / i s LOCK ASSY \\ M / r

  • TUBC-FFF (SEE SU 2)

\\ l S HELL - )SEE S uT 3 ] D60 T .T.) EPLATE (2}- \\ N \\ (STEEL) 5 !N// U///H/H //L 3i \\ x \\ \\ / / T ? f, t00' / ){ / / V,'3 h / / f +_. {) -k-___==.=--m [ $" ) f ( fi l i ggj;, j TPOL CCriNfCR ~~ ~ f ASSY \\ .mpE D G) (5EE W 2) U N ,,, / H y _ __. - a c;3m_ / f / y SOURCE IDETnd hO ' o f,i,' I .d / I .#E O /'l LASEL f '<// / / // / r / // /\\r / e \\ / R 6 / L g7 gg,mg / / 7 reg /(Skit 5) \\ /_m gyg 6 ( 0% STAi t. sT) 1 / - CCMM a ] REF. 54 3 / r,cr o M =? i ~ CDNNECTING PCDS@) 12L4 STEEL PlGID 4.-. sToRAsc ptuG Assy pcuuermANE vocEt seo ca ne cua:a ::: SulPP.9G CChi;3E0 i D m. eW g"**

fa-ROAM; D EN5 f-f RE;NICRCEMETTT

-*^ '20 c, .N DEscmpruc Asswety ] Sum--arv g,,,,, g j g n SEE 94 3 TOTAL WEIGHT-93 LBS 3lbs-p g 66030 {3! /M s.e s:~.n. i _. ,- m 1,

h. go l {J o .d 5 F ej rr ni h, 'd ih {1'/f h 5 a t o-i c g .el y g p a LE q <E Qt 2 ,sm !n n e 65x s e l Eg $ f' / gj 3 7 8 f L 2 / s,. 3> 3 ? u s m m - 3 ,'s y n.; a F s) a sm fh s-R [, L ' ' ' T - ' __',d[f-) 'J *. h N I L-n 93 g 's 1 = 0 a1 a O 0,,; g '[.- 4 'n 3 4 o. i s 2 5 ,x ce w,12 nia o ,/ C 1 &O O 3 5t L U 3 u, o 0 xI g' ~fl. it tJ 4 4,'8 h u h 6-o n. o ag [f A w e=:= mwx*Nvel 9 A W g '9 e E y t J

', b

'j k i P5 -llild ) U S A \\s r- 'N 4 hf3 k;E \\ ._.1 N mgg N 3 Q 8 a~ l ;I E ] a r.t g .i n I b, - '1 33$RE ?, ,'i (I l q n a e r4 Hf >' ' J '.: Q IL.) Q ^ h023Rd 2 risa 0 i'i i o 9 !{ $ F.u M 8 h=8 2 H 25 W P; i a4ano g a N 6-p. U Q s s gp% 4 g&&G q A a s e-s -i r \\ O e s h s N' M [r{S. r s ~ h 3 -a 9 3 s n b3 I sQ 3 n re4 w 3 s.; ,ii y ll e i ? t 3 Nlq r ,i l i 1 32 s m. w e 1 c / ne i a $ i k (1) W -QEl_y Gw,

p- . s,l> w /,Lg. M _.. - __ V u. '1I II Si / - @, / 1,5 no ~ c e U Ri ~ ea c fSx[_._N( 'i y I j,la h w ,, y;. s a i .e

p. 5 i{d y ' f:G G 's

~, 0 m f'. 5 'j I r _. s --8 4 i,l gg\\ A 4.5 p l4 L g = I> z'.- 3.%yr,Q*_",.)l 1 \\1 g 2 \\> - -{ O g f ( s-(r s Q I.<. ' t A. a g i i s h l ~ ~ - " ' .N g ! dl ,/ 0; Q _) N i .9.w a-a o c s g m Q gO %Q

I igd Ll w

%f ((@) 'Ns a g ,,Ln as Tr uw '3 Is 37 gr E 0 '. $ @ A{, d " g,k oH S [A hs d 'sji ga sg 4 E ra h,. ~ h L '.s/ <x m m s l s, ,\\ t x g.g e N ,V v ', N 7 i <t s a N N '"c r VA. L lk f 1/Yh /) NN o x'sxxx m% u ~x x x r a J >9 \\ \\ 5 A=> / h= D: a. / a } 99d L 5 ]lR 2 a s s4 B ys 3-w. ns sg s sp g.9 2 k Nd SE n as go c 99 ,L - c m g

g \\ g72 Kn, 1

  • gt c

i y rs. s

  1. 1' g

7 5 i ui C o ~ } $a u l g 8t ~. 'g x\\ e[ i a r lh - ' ' _ T. I T t ';i P l -4f~ i Y 3 ,[ p ik,q i t Q t ys s _- 11

  • MW W

) + u, A..r! qt; 4 d$r ( .e g. 9 \\ -' t r* k i .[ ~k* q~' d Q'_ = a e Uh (> 'N Q.i N _{- 1z N i y N-~\\ vs A o 3' 5} 8 '? J ;t. h 3 c74 ( it 11 E 't 4 n $ $ (( R E m1 4 'e E, i i O vs p J " 's: d L.) Q .g2g i 3 9 s > ? es a ii G $ '^i a) IM a \\ 5

  • E' Qa m -

a t ra \\ \\ 1 wo f ta 6-t- U y. N q t330 '3 in \\ g s s. s g g - * * ~ ~ ~ ~ .3 h ,s 's s.s .n g !2 v._ { ( $ s qs em s se 1, E g?e i a =w w s w 3 \\0 g e{?j*U s i 1 s -e f r% %e .i g 1 i 3 +4 'i }. p .t h b -f s,_ i {I < a g 2 z t< S,' *S m h n s. da v- _ -,. O US N 4 U

l f, h

==w ' fj h. 22) a9 qi f(,- ? uk / [, p-4 e

e. O

~ wD .n nb 0 . t,'g g"r'[0-f, (f n 4., (- o8 de ._ ;H ll J '"" w = 's t g "dd. S' i~ I yk. ah w

it/

%h J w'.

T I

mia w \\ i i ... n f f ~ '. l ,u m w I l 9 1. .,w a j!k p sg b~ g$ N 2 M, a t pp 3y e m 7 4., um QL s,M q w a I-d$ $l f{'j$ )l: ylNN

gr.;

xy g .!hl

. [1,jg.'N x ii

_1 x s .u % x s e ?$ N \\ (. N d d p8 e s 3 ss U ~y f W N ^ t s I i3 fB ,\\ p,x ~i ysyq 3 e n a 23e A., s g ~ s ... r y g .'[ }8* ts ' ss g ' (. s [I da$ E) S S N s N d l' N . )\\\\ 's t s, s \\ 8 , s n (ii h, d3 ',\\ N ( s ,/ ( 5 l 4 N. R

x N
p 2,5 L. -. >Nm sea A_.,

..= 4 f 3 5 i. I N R$ 'i $A. ~N... 'a i k*

n,{', ep 'f .g yp- -- r i- ~ ff x O'-- 1 t h k 'h '8 d!Fs

y. I Wf r, fi a a _\\

ds gm n> m - ~ n / Cx(5 N[ j h ljiiYf' 'f'0h ~i/ 'd~.d-g' h N R[N e$ g.j-y fdFQyog w' N !;.X/>4'i.g(g..X3?yn)g.. jpq ;g1j 4 i. / = j, . - -., _..... p(' p, 1._3__. \\ o '. ;y ]..h {.. ; Q N ' 'if ~ [m - .,. /. ^ ' 'y' o,, 1 m 2 y-... i ,../ - N y 3 'V r a 'b.. 3. . l %.G t fd . fi L,I' IE t ft f lH . d. st, ,2 Q w. m a< a su 5 s a .c $,e sal h5 55 i O O 3 s-a4j m sg . v> J yS. g e.ig .u;j 3c eI m-e i- ,.u n, L,, 9,.a G k- .N E . u &' p-s -? g x a, r w W., % m' W f,.; L,, Y,

BX46,

,s n g]+ u .l Q. 4,. 7 -[ (f) g,_ o. <r . )..,. l ..- - # A Y, 2 i m W S " ip; *i.... hk M Cdh. xw bxr.-P' ,. u '/ % - -raw m 1 %.v . m.u. vu '.l. '%=.s!$ 0 $$ N ' ' { ] '.. R E Q .i.:a j [', gl 8,. b h% 8 n=: spB pa a V N $'g .6g Eg P u 8 e W J

- + - ~ TI %RsIM w#4 - L f i . bh$ t s i ik o ~ $ I 'h h ci r 1 g [@k._(u. e e. e n e p. I p U g m 1 y. ~,. 6 ' ' ',~ 'h nl,.' I; m ~ r%. { . fi, I 4

v. /

9

c. w

$-f -/n / ' h[ y g +?4.r., ' ?;%

  • A, ' g. '.

g, p n.. ^ O l ;*!! ! * } ? ;>:.. .ya,I I I-1 I e fl s = 3 q.4 t-y 'j ' ., se,* d ja ' g 'e r_ E, wy.. O e h e Y. 2 E ~, 1 .to 'v@' e Z 0 d. t 4 W19 t 2' N . 4::' < 3,, ,9 ,.g.r. j e.,,,

  • j.

u <g 3%K%.l;' ?y: r l b..

., b. n.: N y n.r.t.$ p _ %

Q f. -' *. . r* cg. Qi,q..

) ;..q 5

u 9 1e, sW =._.# s, yP o s m. n . px 's m i\\ ,g i s m 3 9 .3 .e / .%.. e..'. ~ n 4 Ao s i i ~P l J l ? ~*y l .9 ~ 4 Y

'y a d,,n)- i i i th. Ot. [ ~ ~{ .M .r, g: / S ~. 4 ,. m h

  1. +.

/ I' l g. ,e a 3 __m 6 .?b, y _j _ _._ s g / rF' ...c y.. _, / - 1_ '. s_ j- 'f q . [t 'z. 'i a 7*. - A e!,.', '^ .yyag 1, *-fD y l .W. N .g a a r tq1 $) {- a g ;y.) $ gg; 91' k'n L.Fr. L ' s-c. dg. ht + !;ylj i h,ag =- w ,._. u.,..r,. . ~. .J i. b. ,R n l l ' a-qgi na a g .*E S. E ( 8 . o.55@,7a t h f' ( g%. .a -g

  • 1'

.s \\ \\ l MN

s t.

2- \\.s w NF 4. \\ q FRG _ ks ,.g O \\',\\ )s :

  • \\

,, {. N, k., y v.y ; 6 v.. g d. ~ r,:. e ,1 J%c \\ gi i- ,4 ,.ia

  • 4; 1

+ ..) s. 3.,,.. i g -l - l,,p ^ g g L.._J l1 'h I e -W l g U unusuh

S[NT8Nfl Tast Plan W 76 Amort. ham Corporation February 17,1998 Durhngton. Massachusetts Appendix 0 Appendix B: Selected Fasteners The stainless steel screw selected for the end-plate fasteners is $1959 81 as specified in Military Standard $ 1959, a copy of w hich is included in this appendix. The item is highlighled on page 2 of the specification. 'the toughness s ersus temperature curve below shows the consistent toughness of stainless iteel over a wide range of temperatures, I he con e is excerpted from ()eutschman, Aaron I), Walter J. Michels, and Charles IL Wilson, Machine Dcugn Theorr and /'ractice (New York: Macmillan Publishing Co., Inc. 1975). pape 136 Low tempet stuto of fects As the ternperature is lowered, there is an incicase in )ield strength, tenule strength. elastic modulus and hardneu and a decrease m ductihty for metals such as aluminum and alummum allo >s, mckel alloys, austenitic stcels. lead, a nd coppe Car bon a nd low alloy Stcels t end Io bet ome embottied at much higher temperatures than the aforementioned metah limbottlement is measured by low of toughnen over a small temperature range (for esample, see Section 3 21) when tested by the Charpy or liod inachines l he itanution lemperature is taken to be that for w hu h the impact energy is reduced by 50",, of its ducide salue. ligure 041 shon some average val e (ur ves ul toughnew (energy in foot. pound 0 sersus temperature for a sanct) i o i ro ei u, irs t gg F) CYe - b h Alst 134 L L [ pg 901 % I ~ C u te.n 54csd . ?. n...i. H4o.lbsy $1

  • N s Ns K t

Alst 34T E ( _/ os" ' Pd v,uise o e / .'*D ~ creat non ~d I-d I ._1 m - 130 - -700 -im o no an rn, I t r'4** 8 t W't I f 6 uris 3 43 loughnen versus teraperature tot se,erel n,etah 0 Note die sharp drop in toughnen that takes plate mittori a narrow teniperature range [l f om V M l aires (4pgn of Mm huir llenun 4th ed Ihr Matnuttan Cornpany. New Yoth.19M )

O ,m mer- $305 6 _. b}g[g'. g b ~ Z "_ N 1_..L_.. qMgg A--.gggg- / + p. p. _rmu Of

  • *im A.

.fi, .n.. .i!*,_ pure env.c nyec ggyyc gg tenett Pts geca di

  • an "ania it:
Hit
Mit
ll:t
l',n

.t8, .336 . : 19 .J13 mea skarp .It . so s. Il.i . ls e. (f y a stes estattte men s.te.ep .e .e .e ne .n 0,e - e., an e. ,u, e...,.,n t n o gf m, see saticut.wwsteevt eius y *,

Uj
!N' j

.4 ..n ...e . es.in.,nt.,,. .4 ..n - ..e ..n ..e, ..n L ei.sein.e.u un,o. i i r= .ein ein 709 e90 tto 3,3to ._..tej elIIPLjl*11tf 91e t WC f. Lt11' LI1. U

  • er

'e'* o ec,. teit,s.te _ ree* e .e 3 ji} }fp


(-'-. _ _ h._ __ _ -.F. _

y - - - + - - - ifn n n ,/4 n n ei. ~' ]t 1/n6 .i/s 4 16

  • e se e

it 80 49 4 Il il 46 4/8 t/s .)9 9 le JI se 80 20 33 eO f J/* "e' Y e. t/e $l ). de 1.$3 i Ia' al 60 (*.

      • e I.1/e

,.9r %. $ lia le $l e J.O 1 1/3 .0 11 18 3.)/4 1/14 n u _.e. A i n' s 3.Us .u3.. $5' mN" 3.1/2 0 88* 3*3/8 .3/33 u y l ugth of s us u So.e4..e ..r e u en,.. e......o n o u o e. s e.... Lead Pet.de 6te telet14t.4 by obe ettees ersee suneu ladle.tet In Sere.1.essi ee.este sereagen.threed Stenderde f or Fedetel SereLees, heeneet m.84. 60 000 98

n. ime 16., 66.A.ll.i W3.. n e e l e n)., r a

30 k Steel.Certeelem.Ree.elling is s.teerd.s.ee.e..t'le Fed, 8td f sh ieemi If 1, y,,H&f.1&h e .ue.l e us, er eti

i. ee s teren I

steel. t.eunced se steerdance ehhue t.u. ind.Inte ete n s. Mu He a y 44 I 3. (f tusint testim;i 6 uwe ensee in eeure with k 6 a sielde e.ntseg de reewared one ent wmber shell se tel.aeud 6, hie. e es*, .c) ,y. 1 W ee rer a field serpath er $nese nr.eesitter et 3.o aan. 8 teie r e e e e.e cs 64 n e =

  • N eerstees uses a wguts: 4 4 tutor

=st*Msu nda.nine 1i s. a . I ' <I the.skende eh.).e mit.t.ntale,4. se escordene.sth ser...tmena supe I J. Igs.ig): !!lg ei n.ee up the relto!.shall.ee.f orm tieb kites.*4,l.. ethe.r s ee ei.e st ud. 3;, I, S. .u le e are se snehue desh ..ber. 'I l s. t essi al 4 e.inest. 4 teus.et tne as n ber. r se the ensu e.n.e O, tu.mi gare n Ser e e. 7 Tites the esei iu... usue E -l y iiini. es eu....u ehell be of the s.eus se ertese e..e en.<e e.rteen, ohn e en 4.r4 use s .re...e e.e.nesu u te r. t, d I s e t,e n. u. s R e e, t. n 18 s. t. e e a. ] 1,.$, 3n.es mer.e.in.4en.4 n.

6. n. 4eri u 6ees, g,.,, $,y, e e.,

n e e a en u. oe Nl[li ABY $i All0A80 --- I "l l I ' ' C.e SCR Df,td ACHiesg4LAT ocup(TtRsWPtn P( Ag t t., C R OS S. "' u 83 R(Ct94EO,COpm064004 mettsfiset STitt. g W p f i t UNC.tA 9, % (,l j .nno, e.< s.,.n. u n n e..ne ne,,ns u s mv s o' lg 3 w e.e. m.es w m m,uu,,s,s e tr.s n ep,;::.672.I to-.a-.e

' t.. tve s t.ge S30S N./ ... a ........, b H e

e. int un

.f!:. .l(L Mit. . !4. ii ...u.. n. .c._

.o.c
m.,

i e.. ___ i...c gg . on eiwn.

ltn iln
llil
!'n

...u.,, .n. .. n a " " " " ' "

l!!
li
tn.

oi as n.,,.,.,m .n, .e< .n. ..n .no

f w, ktas M icut.vwet.cv
usa.

"j;

!ll
{jj

'. lll.

ll}

. o.v....m.n n .e.9 .066 3 4.tn.v t.ct,. tab paa .ste .. ). y ~ I, .l.1.vu It. Alt! Stat.cf. Lea 6 6 5.

l. 00 3.6 0

..l.a .,,oo L L t.C,1 felet..se ...h .et. e e....un.or f. s h.ve.. e. __ r. si .,6 e r 3/. e H+ 4 8. i $t , yj $/4. ..U.,,,,, M y

  • I*

0 .1 .) 1 1p ,3 / * .un n n 1,g. N

3.._

- - it - -- -- - -m - s qi. ~'s + !4

t.

7 t i n, t .h n m.= 1 *kt U., l. b 6$ /4. e--- i n n a it g ..u. ,,f n

n..

n, i,. y a >un 2 ud

i..

au.pt1)..' 8 es.

    • h.d4h.50 0 m.a.f.ht.rer.'. mea..t.th.tred,v,est.e i ees.

c 4 c e 4....d,. .r. e.l.k u. a.a.iner,se.e..n...o. eet. 4 by the etc.ee .i h n n.eit.re.8 al to.e., s.s.o.e.ll.e t.,. w r,e...t...is. 8 rn o c..,.to 600 .e. e r u e.i., i.e..... en e sc i i..n.r e.. i.i iwn O l t st 1 r 1, I 3 l e ef I l8 s'g li ,. i s I I I i i. a Milli AtY 51 ANDA10 f!! 'A S C8ttw.W ACHIN t* f LAT COU.titASUNK titAD,tt', CROSS-l i'I*j .m.u..CO 7,.y..rm. MS BI 959 m Ge s" .,,,,... n,,,,.. r -.,,.. n m.. -..,.,.,u,,,..... m,,.....,,,,, ._.s..._... oo.m.n.,

0 amnEI&lln_mu 7 'N"' 6.r. ii.!.. o...T ....n.,... .u...,.... 4..,.............s. m .o,i,., b,....i m....w oi.i 1,...,..,n...u., i.u. 1. .n.

u..

n,f.,.4 i..I4 6.. u..n o..,.,.,.,i..4...m.6.;.i g..y.....i

4. 4.

..).. 4...

6...

...y........i.4 .4.. .;...e,..,4...r.. .o 3 u. 4..;i.. 4...n......... i n. o.... o....., 6.. ...ieu i. i 4 .,s. C 803 8 kS,B M.t t 0 F p a s t WL'WS 8 8 4 l pty cabCtLLED c.co.LL89 frcy nm.. l un 0. I usel .nien .n n..).,m I = m i. .. 6.a., .. 6.

6.,

ean e i. -.4 ....,i..... e i n...., e.. n-e.- i ...., -.....n.. I$. i. 6 aC .i o .... i.... o..

i. r.

ein.l4 cl. ri ...i...... .t n ...,....u. ea c. it n 6, v4 lul c4 H. e n M c6.s il n ( 3,. s a, rs t a n.,t it.4 a, us e n n e el. c,.. u ou c. f teu (4 6 4 3.f tn (86 (8 4 It C6. 1 M (S.a f 76 .l ( Ctht cl.f 6 31 39 c.t t 00 T Citt (30 gg

c4s, c6.,
s. a..' u...e ti.40 it 8

cple n.: $ ) c., ca.,

m. e..i........

il 6 Cit.10 cl.it P.,1..e.,e.. cH){ C6.,1

b. 8.s

......t C. C3 )1 cl.Il 9 ft 29 ($917 (6 ,) ).I

g i6 (198 co n
u. ls

.. e.,

m. 8.,t o.....e. t 40 to (4.J.

f6 14 34 at g. cpl ( 4. 5

p. 6..l.c...

C40ll (4.nl

s. S.,1...

l ( St4 (84 t ).1 fl.l

h. 8.pl......t il II 4.n C6.)6
h. s.3.)n... u c4En (6 14
h. 6.plu
b. S.,1..

.t 436 c l.6 g 42 n (6839 C6 30

p. P.,l..

..t d (Ht C let ($833 c6 23

9. R.,8......t De. s.

l... ( 18 6 Cl.0 ..t 3 II (4824 c6 14 n

  • d C l.,

C a. 6.I3,.e....t _ y tests (6 34 p. m.. S.. l....e u.. C a.3 0 C 4 10 . i..... u u un. n.n com n.n (SR M c4 30 D. 8.)l......t 3 f ). ) C).ll he S.,l... D. S.,se.....t cn 1 o.o e.,.s.., i n..... e. t n coin c 6. it W. E.,3. C48 64 C4 34 Ente Cl.14 .,1 n......t w C4. M c4. to i

b. D Y

Call C5.l6

s. e el......t ena cl.

Ilu...o c4 n.s c.a. n n. e. n e....e y n....n..... u. _ o c ..o c o... c6..:

n. e.,s so s e.

o rest c4.s is (4 : i 4

h. 9.p).......

L f69. 4 (4 4.4 19 18 t.44 c... la 6 F b S.,3.ee... C. C4. C pl (4. 1 (45.4 14 9 C6..$ S.,l... ..t Q i.l 38 f.. ( 6 il 3. %/ f6 1 ll c.1 C4.1 le .4 M 8 (4.4 jf of n 0 e 3) ll c... 6 g C. 8 C4. 9 le 9 19 3. 46 C6,0 4

p. S..)...

40 n c *l C6 8 43 t kl0 c.40 Il it c4.6 4) (446 W. 6..l......t t .0 c4*l1 t e.', '.,

5. R.19......t ce t co.1 44 p

8 3 36 19 c401 C4.

p. p.4$,.....t l

3 N R8 C4.$ C48 l c4. ,I $) S cast Co.g

p. 6. 0...

3) 3 taals es.' O 4 c4.,4 81 89 c4.e ) cuts co.- i .. a.,lu. n I l ,,I

p. B.,i..

4, $4 44 cemil CA.,3 er C s,3 ca. g 9 a co.H 6 c4. n 1 C C4. i. g JR CSi 4

p. S.,1 u.....

I C4.13 sq,' l 2 c.830 C4 30

h. 8.13...

.t gl ,8 nl4 a.4,$ C4.,4 Il C. 8% C4 33 co.,s i u... u r C4.u cug4

n.. 49 j ' l n

l C4 16

al'l C6h cl.)

5 8.pl....... H

n. e.t,o.. e uu co.io m e.,n.u.e.u.

.. u cut ci.4 i o i s.e st 4: .st20 Ca.go

m. ee,t.

[{" I tiel cs.$ s.... g tekst ca.3 t .u. C686 n.6 g p (I X e 31 se se teste ca. 34

m. p.,1. u... e.

I clat cl.1 c.

6. e. i.,e..u e

c..)s 3 ces 6

m. e.. u..

s. se cenas e tsee es.s

s. tin.....

O

m. s. e, s.. u not cs..

une ca.w y .. e.,n.. u.

n. e.

cno n.u g, ..(i [ $9 se con ca. n.. ...,iu.....,i....... na 1 c i. n. m. cu u c.. g n.li eu 1 i, 4 i..... n con c.. n n. en,i 3 u...i. 4...... i g-E iAtY $iA HA H c,, I,,, '$$tw, usati>4E *ut com,,puum.1m wtaa,ee., oioes, I ,--,1, MS 51959 3 e t= u t b r ,, m e,., n,,,,,,,,,,., q, > prm.,..,,,n ~.sm o. ,,,,,,,,..,4 ..s.va en ow t .. " ~..... OD 3:. 672.I m

e 4- ......u.., ~ $305 u.a n u,.n.au 1.lt.< 8Lt*kfAelu ! !..I. lli. n#'f l. W b l

6.... u,....a., u. i. m.

c.n n., ,c. c..u n.. -'.nn n mn .nion .,innt.un.l mn .nnol.mna l 6., o 4.. 6........I,n......

o. n...

5...

u...

n u m c n.. c. u o.! u,6.n .,(i n...,,, c.... .o 6: .i ...i...... o..

n. 4. 6 0.. 6

,i o. , e. n c...eu.6 u.. n. en c ....t n... n c.. ,1 4 o.o n,.. n n n.a n u n... m 6.., u n wi o tr .., n.... ci ci 6 u. si cl... cio., 6n ... 4 0 6: 103 3 Si p ro

c. 6.

o 6 .6 c o.6, n p 1 o 4 0 ,t. I L. e... n d'! 6 l c o. o o..t is c-tilth ltlt:.1

  • " t," ' " "

i 4,,4 c o.. 6 in n no a n c U:i. U:;. ""t"""" .a. n n u en 6.n ...4.in..... n a..n n 0. n, o.. n.....t..... e n 6..nJ.. c6.l.6 ni n in u n i, no c l. .... t...... a t=.. n I.i 6 6...t.i....... e ci 6... c.lo. no.li c ....t...........i........

n. n 6. n.

n.l42.6 .... t,...... n c,... ilo..a. <i 6.. s,. c .6 .... e 6 c c c,.. no n,6.n n o. c u 6.n. ci 6.... ...i.,i....... 4 cl.... ...., a n... n 6. o.., n. n n , to. H i.. n.

m. n.

n.n o t...u.t l O 4. n c. O 6 34 <10 2 6e 39 to 4 oal .pl f. 68 cin.3 to no 94 cl 66.a el 6 36

1. 3 c

c o. 4 clo.16 ...e.lu....t ew it 63 c l.. it ci,6. H. dI n e..n g Ol6t M c,0 30 n o. go ...1,ue.nt 6 n 6.. u un m n n 6 ci o. n no.n .l w n..h..... n c H 6.. I

c. 4 43 n o..

cle.). ....ts......e (10.s.6

r. io. n.

6 4.6 ...s.,1....e.t c H 6. el cil6..ee pg 33: t. t. Ci 6 c H.46 lo. .e,1......t 4"i.03 C l o..l c 6. $6 w (6 6..n n.n.ot y n F3 Jti ( l 6.40 cl0443 40 68 .. I.1.. e.e., ul6 4, lie 95 .I c u n.. n u 6.. ig6 y ugo .i c,un no.u o me n .i. own n o.o ...., n.... n m u o c616.ll c446.ll ....gl.e..e.t S cap.s. ti c4.6. ]. .l.yt.a..... c l ok.e - c6' 4 .3 3 col 6.% 16 ll6 t$ c6l 6 13 .. pl c4 4.6 66 95 i3 H. - c6' i.t 347 u o 6 c4' 66 6 4 e6 6 id 13 4 49 c ti H e4 6.f u 61 f e u 4 i ... i. n.. e o. to 6.. n .II) n u e.n.n u. y 6 c6 6.: 6 ,6..! a c616.a. c 16 9 e l e...u t 11 Of c6 .,3....... r cei6.s. . 60 c6 i6 can.a etl6.so N 4 9.il... ..t g l

c. 6.a c4 6 38

....pl......t 1). 9 u n.1. cei6 30 s1 co'6 18 e n 6.n. 4 Il c. 6.; c4 6. j 8 + C .t.i l c4 6 3 c4 6 34 l 810 99 ..I:... .t c4 6. c4 6 4 u.... e u on u.6.n ca. all 100 c6 6.n.

6. s.e...i.[e.... n @
    • o n

c4 o. o 6.- 4 4a c6 I f1 c.16.sl e.' t 4 mi,.n.nt ign y n u

4..

c.,6.g. o,6. -6.6 .... u... n ni m u n.n u n. n u L n o i

c. 6u y[

ne.... g u..,6 cn6.ro o con.n u69 c o u.p cent.it

s. eel.umut its 13 H HU4 c6 6. a 18 yn, 3:

cai6.. N:6.ta t c6s6 00 c6 64 Nsels....... T ,g- .. e i s cent a il n ...i. i n...n I

c. i u n, in nos c68 m o u,6.o h

r 6 n. I.in. n c4 u.d.,e t. coun u 6.n 4.: n u on u it I c' 8 *.n.3 .i m io. en 6. u .. e.ie n...n cu o.n cu 6. n ca

6. u unun _ a s

nn n n coun u 4.n E ,la 1:lt!.!.! " " t.i '.". ".. ". ll',6n l .c.. . n.6,, n n 3

s...

,,I, ] ei.........u y.... u.. 6,.s m en. l't l .I I I t.ei l Hilli Att $f ANDARD t 'i I,',',',. c.,, 'gw, unc>,.c-fut catsettnase< eco, av, (noss. '4 nrcusta coviosos mersteso sitti.. m c nnn l le, l, UNC-tA iTI J UlDJU l, n [fy or T iiii5. m ui n..<.u.i

  • m e

lli { nwe.,o.s.de m v umun.onu... a n n i n . a mn ""- ne***'~"~ -' ~e. OO,7, tit'l .c.-* n c v, s c,ovownt a.nbao omet u.* nt 14/* H40 \\

\\.L 10 r SENiltWL Test Plan W.'O Amers. ham Cof peration february 17,1998 Burlington, Massachusetts Appendix C Appendix C: Referenced Materials 'the following is an excefpt from Avallone, Eugene A., and 'lheodore llaumeistef !!!, IMitors, MarAs ' Sfandard Handbookfor Mechanical Engineers, Nintil EMition (New Yof k: McGraw llill llook Company,1987), page 4 27. 4 g g appreenmate lavorononcurve Locus for Air l'or the elements C and it, the equations of complete com. bestion are ~ o il to il 100 i n no 175 200 Ill A '/' __ C + O, = CO, 11,+ r,0,= II,0 7a g gistje lie lit 120 124 lig II) 137 14) 149 l3 th 4 }} lb. 44 lb I lb + 16 lb = lB lb 61) 641 479 611 606 194 18) nel ll$ 148 lor a combustible compound, as Cile. the equation may be f 9, p0 211 m0 lli 150 311 a00 421 41)

  • retten H6 164 Ill 184 191 Ill 2 10 261 100

'~# f' s He sot 491 410 del 417 186 141 luo j Taking. as a hanis. I molecule of CH. and making a balance of the atoms on the two sides of the equation, er is seen that .,9,. w esa w ei*d y,, 9,, py, to throrthng A throtthng process in e cycle of p,,i,oni al.an introduces a loss of tRKienc y if T, is the CH. 4 20, = CO, + 2H,0 errnieralv't (0'resgending to the back pressure, the loss of ses.lable enerf y is the product of To and the increase of 16 lb + 64 lb = 44 lb + 16 lb ( enuopy during the throtthng process lhe following essmple lhe coefhcients in the combusbon equation give the combin j ,poitrates the cakulation in thJ case of ammonia pasung ing volumes of the gaseous components lhus. in the last equa-intough the espansion salve of a teltigetalirig machine lion i It' of Cll. requires for mmt,ustion 2 ft' of osygen and g..e the Iquid ammonia as a temperalves of 70'f pasics the resulong gaseous products of combusuon are i It' of CO, g, gs she.al.e inio the brine soit in ehick the semyeaivre is 20 des and 2 f t'of 14,0 The coeRicients muhiphed by the correspond-og ise, me e a 48 il ge a The in bal enthalpy of the Iquid amnw gI fg gg g r convenieritty referred to I lb of the fuel in the combushon of .... n,,.170 t and therefore the Ensi enihairy is an e a,4m= p 1, ni i s,. t to l..hence a, = 0101 The iniust entropy is s CH., for esample. I lb of CH. requires 64/16 = 4 lb of onyten . O pe The 6aal eninty as an + ( a,4m/ Tal. 0144 + 0101 x for complete combustion and abe products are 44/16 = 21% i in. 0 Jao r,. 70 e 460 = 480. hence etw has of refrigersung Ib of CO, and 16/16 = 2 25 lb of 11,0 e ni a 4 0 x to 260 - 0 llel = 19 Bau e Ai, poqui,od for Combustion The composition of sit is appro imately 0 212 0, and 0168 N on a pound basis.or 0 21 i 0, and 0 79 N, by volume f or esact analyses, it may be net. COMSU$floN casary 60metimes to take account of the water vapor mised girisian t s Chisier. "I nergy. Combustion and i nvironme nt,a with the air, but ordinarily this may be neglected. McGre. Ihn, leti Ompbell."Themodymanuc Aastyus of Comte The minimum amount of sit required for the combustion of see Inginair W. icy,1979 Giusman."Combustert? Acadenuc press. I lb of a fuel as the quantity of osygen requiredat found from N. VoitL ltH t stebvre70as brbine Combuusan " McGra*-lidt, the combustion equauon dmded by 0 232. Likewise, the min-Ne Ved 191) Sitchlow. *C.imbusten f undamenists? McGrs Ha No. Ved itea wilt.ame et al.,"f undamental Aspuu of Sohd imum volume of air required for the combustion of I ft' of a hopeliani Amscur Arverne. Lis. Oct 1969 Baus thermody. fuel gas a ne volume of ongen divided by 0.21, l'or esample, uma iaW ype informsica needed 6n this area u found in Otuskke el in the combustion of CH. the ait required per pound of CH. is al. The.madrnamic and thermophysical properties of Combusima 4/0 212 = 17.24 lb and the volume of air O't cubic foot of haduu? House, and lpST tramlation. Gardan. N AS A Tuhn. cal CH. is 2/0 21 = 9 52 ft'.Ordmardy, more air is provided than Paper 1% leH. *J AN AF 1hermachemical Tables? NSR DS NBS. is required fx complete cnmbusbon let a denote the mine D. tut mum amount required and as the quantity of sit admitted. F uela f or special properties of various fuels, see Sec,7. la then s - 1 is the eieni confhcwet general, fuels may be classed under three heads (1) gaseous Prodsets of Combustion 1he products arising from the fueh.12) hquid f uels, and (3) sohd fuels-complete tombusuon of a fuel are CO,. H,0, and, if sulphur lhe combutable elements that characterne fuels are car. is present.SO, Accompanymg these are the nitrogen brought bon. hydrogen, and. in some cases, sulphur T he complete com. in with the sit and the osygen in the etcess of air. Herge I,e S bushon of carton gives, as a product.carten dioside. CO,. the products of complete combustion are principally CO,. H O. Combustion of hyd. ogen gases water, H,0 N,. and O, l he reman of CO i.dems 6.compteu e tmeima In i Combustson of Caseous and Uqv6d Fuela simple cakulations the rescuon of ruirogen wi.h on) gen to form notious ocides. often termed NO,, such as tutric oside Combusuon t quenons The appronimate molecular weights (NO). turogen swroside (NO,1. etc.is neglected in prachte. of the impartant elements and compounds entering sato ecm-ar. automobile engine is run at a lower compression reno to bushon cakulaims are eb FO. formabon The seduced ;cituhon is tag t.:.a 1 l Materul C it, 0, N, CO CD, H,0 Cif. C,it. C,lt.O $ NO NO SO Molecular esight il 2 H 28 28 44 il 16 25 46 )! 10 46 64 l}}