ML20150B216

From kanterella
Jump to navigation Jump to search
Informs of Installation Completion of ATWS Mitigation Sys Actuation Circuitry (AMSAC) for Unit 2.Changes to FSAR Scheduled for Submittal in Nov 1988 After Unit 1 AMSAC Installation Completion.Proposed Changes Encl
ML20150B216
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 06/29/1988
From: Bailey J
GEORGIA POWER CO.
To:
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
References
GN-1453, NUDOCS 8807110396
Download: ML20150B216 (59)


Text

--

ve a

Georgia Power Company Post offee Don 282 Waynesboro, Georgia 3083o Telephone 404 554 99G1 404 724 8114 Southern Company Services. Inc Fbst Office Box 2625 B.rmingnam. Alabama 35202 Vogtle Project Tee 205 870 e "

June 29, 1988 U. S. Nuclear Regulatory Comission ATTN:

Document Control Desk File:

X7BC35 Washington, D. C.

20555 Log: GN-1453

Reference:

SL-2724, dated July 30, 1987 PLANT V0GTLE - UNITS 1 AND 2 NP.C 00CKETS 50-424, 50-425 OPERATING LICENSE NPF-68, CONSTRUCTION PERMIT CPPR-109 FSAR CHANGES FOR AMSAC Gentlemen:

In the referenced letter Georgia Power Company oade a commitment to install the ATWS (Anticipated Transient Without Scram) Mitigation System Actuation Circuitry (AMSAC) during the first refueling outage i

for Unit 1 and prior to OL for Unit 2.

The letter also made a i

cocrnitment to update the FSAR to reflect this design modification.

l The installation of the Unit 2 AMSAC system has been completed.

Since the FSAR is applicable to both units and must reflect the as-built condition of Unit 1,

the FSAR changes are scheduled for submittal in November 1988, after the Unit 1 AMSAC installation is completed during the refueling outage.

l In order to provide your staff with timely information to facilitate the Unit 2 licensing review, a copy of the proposed FSAR change is attached.

Should you have any questions concerning this proposed FSAR change r please inquire.

Sincerely,

.k-J. A. Bailey Project Licensing Manager JAB /sem Attachment xc:

NRC Regional Administrator J. E. Joiner, Esquire NRC Resident Inspector J. B. Hopkins (2)

{gph P. D. Rice G. Bockhold, Jr.

L. T. Gucwa R. J. Goddard, Esquire d

h R. A. Thomas R. W. McManus B. W. Churchill, Esquire Vogtle Project File 8807110396 080629 ADOCK O 4 4 pR m

LIST OF CHANGED FSAR' PAGES T1.3.2-1 (Sht 6 of 6)

T9.5.1-1 (Sht 15 of 38)

T1.C!2 (Sht 15'of 15)

T9.5.1-1 (Sht 32 of 38).

T3.2.2-1-(Sht 83 of 97)

F10.2.2.-3

.F7.2.1-1 (Sht 1 of 20)

T14.2.)-1(Sht.6of6)

F7.2.1-1 (Tht 7 of 20) 14.2.-8-1195 F7.2.1-1 (Sht 15 of 20) 15.8-l' F7.2.1-1 (Sht 16 of 20) 15.8-2 F7.3.7-1 (Sht 1 of 12)

F7.3.7-1 (Sht 5 of 12)

F7.3.7-1 (Sht 11 of 12) 7-vi 7-x11 7.7.1-22 i

T7.7.1-1 (Sht 2 of 2)

F7.7.1-14 (New) 7.7.2-10 9A.1.26-4 9A.1. 71-4 9A.1.74-2 9A.1.74-4 9A.1. 81-3 9A.1.89-3 9A.1.90-3

4 i

TABLE 1.3.2-1 (SHEET 6 OF 6) 1 rSAR h

Chap te r/Seg3 M Reason for chance 8

Deseted position switches on drain 9.3.3 Consideration or socked closed valves and line isosation valves and incorpora ted soministrative control insures their proper locked closed valves positionang The applicable piping codes or 3.8 To consistently test piping in accordanco standards have been used for the with the piping codes or standards hydrostatic testing or oef added piping in lists of American Concrete lastitute (ACI) 318-71 stevi sed ttw auxi l ia ry feedwa te r 10.3s.9 To redance or eliainate-the potential lines to feed directly into each for cracksng problems steam generator Ocdtsced the volume of the diesel

9. 5. 's lo provide dieses ruel ole supply resol os 8 storage tanks Consistent with the qssantity reqasired ror design basis accident safety-tu related loads O

lS 5 i

Addad an m8 ternate centrifugal 6.3 lo prevent ptmp deadheading should k

l charging pump minirlow system reactor coolant system (RCS) pressure to rose following isolation of the normal 3,

minirlow lines W

4 s

e-*

      • INSERT A ***

i 4

o 4

3 O.

b CD

TABLE 1.6-2 (S!!EET 15 OP 15) 1 Westinghouse FSAR Topical Revision Section Submitted Review Reoort No.

T il le

,)lumbe r Pererence

$p_f.he 90RQ Status WCAP-9292 Dynamic Fracture Totghness Rev 0 5.2 3/17/78 U

or ASME SA508 Class 2a, ASMC SA533 Crade A Class 2 Base, Heat Affected Zone Material, and Appe4 cable Weld Metals WCAP-9401-Verification Testing and Rev 0 4.2 3/79 A

P-A( P)

Analyses of the 11 x 17 WCAP-9402 Optielred fuel Assembly WCAP-9600( P)

Report on Small Break Rev 0 5.4 6/79 A

WCAP-9601 Accidents for Westinghouse MSSS Systee

      • INSERT B ***

r:

O T

S

  • c3 (n>

1 lc a

4 w

e.

(P) - Proprietary b.

I.egend for the review status code letters:

A - IIRC review complete; 80RC acceptance letter lasped.

AE - IeRC accepted as part of the Westinghouse [CCS evaluation model only; does not constitute acceptance for any purpose other than for ECCS analyses.

4 1

8-Subeltted to IIRC as background Information; not undergoing fermal NRC revlev.

O-On file with IIRC: older gene ration report with current validity; not actively under formai IIRC review.

U-Actively under formal NRC revics.

3

TABLE 3.2.2-1 (SHEET 83 OF 97)

(d)

(r)

(g)

(J)

(a)

(b)

(c) vice (e)

Codes and Principal til Enviros.-

Principal System Location Sou rce o r Qua l i ty Ss re ty Se i smic Standa rd s Construc- (h)

Safety mentas (k) and Commonents Unit 1 Unit 2 _}uoolv Gropo fdaA Ca teeo ry De s iena to r t i on Code Q-L i st Re l a t njf De s i ona t y r omogsgj, POST-ACC10E81T N018tTORIleG SYSTEM Mote p 1

1.

Safety-related W,8 NA I

1 J

mrg y

Y portions 1.

2.

Ilonsofety-W,8 NA 6

1 J

mfg N

N related, sel sstic Category 1 portions 4

3.

Other portions W,8 NA 6

2 J

mfg N

N plast! AUXILIARY COesTROL 80ARDS 1.

Safety-related W,8 NA 1

1 J

mfg Y

- Y Note s portions 2.

Isonsa fe ty-W,8 NA 6

2 J

mrg N

N related portions SAf ETY-RELATED SYSTEMS SYPASS/INOPERA8tE STATUS Veo TRIP /Mosta TORING 88001CAllNG LICHTS tg 1.

Trip monitoring W

NA 6

I J

mfg N

N tights e

2.

Al e other W,8 NA 1

1 J

mrg Y

Y

  • n portions (n>

IesCoRE INSTRUMEatiAT1000

  • A i

1.

All portions W

8tA 6

1 J

sig N

N i

TURSIIIE PROTECT 1000 SYSTEM 1.

All portions S

8tA 6

2 J

mrg N

18 8

TIMtelleE SUPERylSORY INSTRUME81 TAT 8088 1

Ala portions S

8tA 6

2 J

mfg N

N ELECTRONYORAULIC COSITROL SYSTEM t)

D

i. enc panes S

NA 6

2 J

mfg N

N l30 f

2.

All other S

NA 6

2 J

mfg N

88 portions s.s O

l r

      • INSERT C ***

w

\\

co m

?

i i

D4 SERE A Addition of AMSAC 7.7/15.8 The AINS (Anticipa Ad Transient Withcut Scram) Mitigation System Actuation cirulitry (AtEAC) provides a backup to the Reactor Trip Systan (RIS) and ESF Actuation Systen (ESTAS) fer initiating turbina. trip and auxiliary feedwater, and isolation of the steam generator blowdown and sar:ple lines.

INSERP B WCAP-10850P-A AMSAC Ceneric Rev. 1 7.7/15.8 6/85 A

Design Package Insmr e AMEAC 1.

nonsafety-W NA 6

1 J

mfg N

N related portim 2.

safety-related W

NA 1

1 J

mfg N

Y output isolatim

{

device l

i l

[

l VEGP-FSAR-7 TABLE OF CONTENTS (Continued) 7.6.6.4 Isolation of Reactor Coolant Pump Thermal Barrier Cooling Water 7.6.6.5 Isolation of ACCW to the Auxiliary Steam Condensate Return Liquid Process Radiation Monitor 7.6.6.6 Electric Steam Boiler Isolation 7.6.6.7 Analysis 7.6.7 Interlocks for Reactor Coolant System Pressure Control During Low-Temperature Operations i

7.6.7.1 Analysis of Interlock

{

7.6.7.2 Pressurizer Pressure Relief System 1

7.7. Control Systems Not Required for Safety 7.7.1 Description of Control Systems Not Required for Safety 7.7.1.1 Reactor Control System j

7.7.1.2 Rod Control System 7.7.1.3 Plant Control Signals for Monitoring and i

Indicating 7.7.1.4 Plant Control System Interlocks 7.7.1.5 Pressurizer Pressure Control 7.7.1.6 Pressurizer Water Level Control 7.7.1.7 Steam Generator Water Level Control i

7.7.1.8 Steam Dump Control 7.7.1.9 Incore Instrumentation 7.7.1.10 Boron Concentration Measurement System s

7.7.l.11 ATWS Ni tigation Sy s t em AcAntion Cic cJ cy (A A1S AC )

7.7.2 Analysis of Control Systems Not Required for safety 7.7.2.1 Separation of Protection and Control System 7.7.2.2 Response Considerations of Reactivity 7.7.2.3 Step-Load Changes Without Steam Dump 7.7.2.4 Loading and Unloading 7.7.2.5 Load Rejection Furnished by Steam Dump System 7.7.2.6 Turbine-Generator Trip Without Reactor Trip 7.7.2.7 Core Cooling Monitor 7.7.2.8 Reactor Vessel Level Instrumentation System 7.7.2.9 Control Systems Failure Analysis

7. 7. 2.10

/1T W S M itigad i on C ir cwtry (AME)

S ste m S c f% tion y

7-vi

l VEGP-FSAR-7 LIST OF FIGURES (Continued) l 7.7.1-5 Block Diagram of Pressurizer Level Control System 7.7.1-6 Block Diagram of Steam Generator Water Level Control 4

System 7.7.1-7 Block Diagram of Main Feedwater Pump Speed Control System 7.7.1-8 Block Diagram of Steam Dump Control System 7.7.1-9 Basic Flux-Mapping System 7.7.1-10 Process Schematic for the Boron Concentration Measurement System 7.7.1-11 Boron Concentration Measurement Unit 7.7.1-12 Source Detector Assembly 7.7.1-13 Boron Concentration Measurement System Linearity Curve over Normal Plant Operating Range of Boron Concentrations

+

7.7.2-1 Simplified Block Diagram Rod Control System 1

7.7.2-2 Control Bank D Partial Simplified Schematic Diagram 6

Power Cabinets 1BD and 2BD 7.7,l-14 AMSM Ach%n Logic Sqstem A r ch aedui e.

1 7-xii

'W 5

6

?

=

si i u

a l l

3

?

l 0

l n

l!!ill!lll!!

%)

E c

3R il a

i:

e

~

u 3

Y l, if 4 !8 lll !

{!

k I!i il)!.ifi!D i

I ul 1:#.j!!no!

n!

P '

y !! l ;;

I l ir O

e l

!!!!!j: : i I,, !j l

5 it 'l

.a i ili i

li I !!

t i ll i i II 1 "ll !![,t!j-{il i

i I!il l "

il I'

! ll!!! ;!

I l,l'!:

l i;j3;jl ssill!! 11 e!!!'!! !! il!'fl j!

I i ll ii,

li 1

2' i

i Ii!!!

j' r

i s lI s

IM

  1. 1!!! !' A 4 !!!!!!!!!s !ali it,iti is d

i iiie

.a i

9 9 m! i. iii n, l-

.l

!I

!i in!I I

i 11 11 ti t!i'1i!inI!'l I!

Ili

!i

!! lii!!!iII!i !I!!!!!!

ji t 1

!!! hl li

! h!i i'

a lI llo-e-t>$s-*ees iigiill

l

~~C-1 55 I

sija,d !

3

~g 5, Y-_

c si us 1 a

a p LI 3

l lt.(i'i lo 2

G n

i 23 e

n

+

3 j

l 3

a a

T-A i;

A g

?

  • J_

a:

l

[F tj}

9 2

07

fh2J

\\

  • ei l

& s,i d

E i

u

~

mm r ;

~

il 1

[!gs

/,

!!i!!!@@ j Lt v

  1. 4

~i a

~

Ek!M 3

l}-E q

3 I!

fi

$ I!!

tW z

5 a

t ; /, #.

_g e 4

d l\\, \\![W h

9 g-g

-sl0 D

i

![an-r

!iNrrk' GF W.

!t?

I?

n 2)f= < il I,z

%g.

a f&

aA.

'8

\\t e

z h$

fini Y

V

&~xt ies &cr f*@f-in$*,

kei

-k

.Pfr i

Il l,F/5 &*~k pl$v !Pg#ij" 1 11-@fr rII ifl" f

b efr a

up e

h w :,l

!Pr M

al ie#t-natt i

i

-r M f

di:_.a s>$ #fr iij

(~.

'P i$[4 Mp 2

4M

  • fs

?cA, gt t

A

l l

Howeanon fu xuxo 2_2ai

$/off

-l i

abM a s u[a s e

si no x__

cA t>

e up a

p 7

hh S "' ' E ^

  1. ew.,

N uors ey u

P= ll AMSAc e

(SHf.T.T OI 1

Low PEROwATRA PLew Lee #s 400#2 bo4PJ keep 4 f.

1 I

.d, E

M i '

h} 1 i

A.I.

~

, A*g y.

g C*20 d_ ; s t,

<3 l

thott 3) i e m su ma a n ADp b4 l

1

}

p 5 T 4

(C-HT *ia)

\\

NOTm1 NOT ELLOut OAMT "

i

\\*

l. Twt StOuw06MT M AMe% StoCM Ce sTSOb COM%ntTt os Two CONTh%% CN Twe CONTtob SCARO, CMS POR W ACM Tth)M.%4PPbit9 R4 QTwet%.
  1. 1.TWO ComPUTet nNPUT% Att CONNSCTto To Tutt CitCat? INotviOWAL #49 SMM TRALN.

O

1. TWO Pttul%% INS STAtut kn4MT% Att CONNSCTED TO Tung CitCunT, IMOtytOuAb FOR S ACM TRAIN.
4. T**E MEO.NOANT MAbeUA4. SW CONTptCL CCN&#$TS CF TWO f

,g TOOMM N Cb W N CACM T

5, Mesurc ATim iM T64 MAW CONT 8tCb MOOM ag MtccAto 4.

tut LM C nut 4 4,,4..- tom.t b% ARE F'

PT.

...Ts..

=

gm9 9, e

.M

---,-,.,,,,.-,-.,-.--,--,s me-,,

w a

,, e m m

,,.,,-----ww_

,,w w-

~

.f C

5 g

9i 3

CA

?

i! L j,l i 4

p !$

,l;! (gi gllllIf'l sj 4 s

q em E1 Ihlti lij1 ll l.h

=

/ @'

I j l

~

a q

W t

'IIllJI,'

"< 0

  • N y

X*

{W

!!rr lill

IIllLa li!P i

5

\\

W S

j!!

4

!=

1 I

-l gil

\\s I5i i

'I

/

91

[i (i. glil 4

l4 II l t

,ji =$j l

}p f

s f

l i

a i

T:

I

.hl---- h" {'

l lli-Jiiji l;,

l 5i N;j--== 0 I

i 1:

I flI fI fI

~

l

}!-

J_

i 1

II 8

i-j g

-O

.__C ii 1,I ll;!

i' 0

--C

,af l

e j

I

(

l l!j Q

m. i,

I!!!

I W

'llt g?s IIII

.fj 1[2 air lin llll i

1 l

l l

I 1

fu bi fra rad foa. xco,<A o.2.-z31 -2 f / sf L

\\

  1. Y
  1. Y
  • tGP dDee W %'

"hhf*

m gn.mvm

. = + _

_ y -+ -~

,3y,in i

_ a,.m.ar (NOTE tt) l U' l

,_._.n

=-

~

s-

\\

mm. a.,,=

i=.

L.

)

s i

i I

--=

~4. -

l l

i t3

..E..,

l g

4-

@- 4.i )

i

..e h

akE.

"* N N

>me 6. A.,sp

      • '==m as, LA

,,,Legg 0-- N 3W 4l

()g ()

W

r. us ta.pt e Me 4.

H4

==

,y

  • - y

~,

. em 2

... - - - m,...,,

. = =

==.

=

"J 043 tasPt3 e 4 el 7W8948 Mtvit rt t g

ad a.,tes aves i t, e tsaatim me w

(**f t e )

Laat et g FM 4L litan agang il.

Tel

'.t

' 8,'

.v.

)

Ho0rfruTiod M XI AA 0 2 -2 31 -!

f. 2 o/ 2 8EN13:

i.

m, fu,,.,,. C.,, ras,,,,,,,,

m o,

, i: o ~...,

a.. s

... n.

G. r

..... -.. u

i. = ca f

,=.u.

M. ii 3.

sustut tw plMS M dusO* Tit STW-. cum.u

i. an,r=

4~

susema. SW 0405BIM aC1Left3 A4#88 IN COfflER. 8E338 3.

CPO4/94/71861CAflGI IN GBfflEL 111M38.

. Pud > llPWieflas LJest fit 03nTEa. ?"Ut.

f.

udhly inaak Ptut lad 31 WLW.

8.

18@c vitRMt. A38 (Act Pust.

9.

M fuel 4 PEED clarttik 15 ftpH'JL.

fastmerfartos ausf agf ass 2.&m W433 GNmLAcht, 10.. M pur TTANT last M EAW as$ M3JDCEB (F Tk888 M MsA Unse st1tt AEA Stiftf5 376 riseM OEEllesCW OIEE M 1884 ear, IF W. iety am ging g neufsul STAAflee flag sEthitilWerf5 74R fle S ST f7Ss.

it.

MA Lpa, age stant eqJef g 3A.m set (um, g gwary M ac1Lafstne sig

'E Mn2 5*L M" #o"?:s-

$~.

~ T*i 444C 1144? 11t>J%.JT to e'l CuNC 4 inde tllhAnsT. Its s.4wAL Au Alb) AR fr ftQ Aca t't tuf f. i IIE Ns584 hAtim Oevice4 Aas etov. ego s 4444.it AutAC c,Evita i Tut is Avaesi Asty s400 WATER bTA E T Ct t.CQ t T4.

d r

I

N e

5 d

E'g E

ym a

9,g

~A D

  • 8 i

~4

'lll1I

, lig k+5A i.ibl!lf l. I!! i.l,1,+y

!i;,jj

~

JX' bl

!b ti I

Il'ji "g

d i d

.. e' i

i s

_&,,j y 1

1 r %

p,,y{

2 e

thg 8#

0

.A__

i i l

!lI I

l lt

!j/

i s

i i

l h

i i [1 !!

ij

.- g

.ll!

!lg?l-

-T 1[

_ _ _6';

(
D- @

-li!

1 lii 1

l

. u I,I ;d jil>,,so h!!~

I 4

I

__'!i' r

g

- !!i h f

s w

2I

.tih!\\

' Nk~

s 11 n

2

<~d

. ra ise

-~

n%

3, c v:j 1

[9 es 4-

  1. s FB-ip ryg t

7 i

h=

x>-o-j;'

J,,(l;j;E.k

"',1[c s

S3 h I

eu

.i m

i 8

)

g 664 lltij fjgE t

i9 1, i

.gr -

{

ll 56l ~

~

I i,R c i!!

i

~P 3

w

!!I

~

ji O

-$ll 1:!l

.i Ill

-= qiG

l.-

11 Ii i

m

Mobit icA rio a fo/t-XG A A o 2-240 -1 f /of3 Y

=

i (M

I C.

e. m sNem"*se m-wi Em*s i=.ad.il me n te.e.,n,,

i== e m.= i n n

i

, 4 s =., i=,e..

nn u....._

=

- j TEsit %.

E**W

- g g.g,,,

o nr as =

um ====u.i==

y yp

- i

=m i

um se.m =ss memu j

g, gg

)

4mean iWIP P.S.

1

-uns a w w f

l

_ leNGE TRIP P.S.

t i'

I I

I I l

ll ll[ ji i

i t ;,

() w-wa w

f esassa M

Isle,

tra i'k'1l l 133 mnn!

  • 22"%,*I?r*3,=>

=

I I

1 I w"M l no".n I

,,4-6 ma n,e

,,,f.....,___

leuma

,; ass i

N4*f I *dh kh

{

I I

I i

l

- -- - - - ---- - ------ - - - - l

1 j

i I

gn p,p(cA f*/ 00

/CA-NNO

~Y

~

/ 2 of 3 1

MMl pf pr eness s

_%y gegyneaive

---r---.

l TURBINE RUN%CK n

me

,.. s es..nen.<s j

),

i

~1.

1 "1.

I t*9 tee ov en ts.es a.was weansene

.~ ~

at4/)

ar O/4) o.est i) 9.ser i)

O-0-

[

caks

/=

l g,g d:.a'*A,,3:3

.L T. --

e uu

g. g. y 3

l

,[

l k$

T I I D-+n*4i H H i uses r a roso p,a-( h ah l

. w + 1..

s m'"

I I

Q(o.:.

su.

is arme men ll I

Ossafgetas amasum c ert en at ing pep essant 1

e l

e..a

<= man

= oneens PGlidiT AWSM 7, e gg

<,,a /

(&

, wmm 4DA G

9

,,n-_,,

, -,. -. _., - -,,,,.,,,.,.,, - - -w.

,,e

,,,,-,--c e,----,--em,

M6btficA rad fu.

Xh AA O2 -2 40 -q g 3 of 3 b

F M

g

=.T..'a.r d 2.! T r e r i t.

3-N 8 88804 U f.f M Q

- igrg r y = =.m

' l1. 2llll!,a"J'A L*..,,,,=-

m.

MF DE m

' "1=* "JEdill ".' :#::

J Y"e*2 EM,g.ngr, 0.:.ad=kN

' = =

itiM P a g iptm.,-

' Kwams. mum.,

' r utf m,yna,8.

5 me EL mi=== ===.==

m, 1; ' WE A'w'sn '(idM it '

't' tO 5

%NN.3 4W ia rv.. i tia'ri?*8 " ',ia n a a g.u

..c,......

3S 5 &hh$$

s.

s E'

AUTO out rN AUTO ZTAST SIG.

CLOSG ortu STEAM GENG A ATOR

=

"0 3 Lod LO.V L 6 tt L y,,g.q)

~

$-MS 3450 TYP Mas 4 retDNArt A puMo l5$$

GPA*NG hstuA4 TuA4oNE DA*VEM Tate Q TO Auro I -yOf. ote Lo t, *Ps - IS latPU T T > C L% G m

m

17p, n

MAIM f660 NAitK PWMP 4

V NOTE:

TUADING DRI/EM T!tIP is u*

1.

8 13 OL - ud 0021*PS-IS

,vs str-e)

$C C (D c>ct r f*,w Toen esare s g,pyg rw Aura,$rse.r

  • G MAL

,,g,, gg,,3 gue,r To cLcss srw aiseo yas on s~ g noerg. ynasy a-y my, PgO ;

GLAC404]T $TCMAL Susa:La g.

stGM bC*vr* v'uto sur res erw CCS TArLg 2 t.SAMPLG ISCL ATsON VALVG

,sArsir tes,tcCr:oa_

}

t N V-9454 SHown!. OrnLA teLVES

. *~

p.1, zy,,,,,,r re ora,,

LocrsO ra rnets I s***oLan.

St-6

'04 fb Pt!"" &*sen vsLuis At Th S U L A TE D.

3. INPror SoGArnL PAOM ALACM MTrNGNU$t SOLID STATC dElef 40erC CONTCet.

PA O TEC TIOlv, pg,yu ugs MCo

4. itswa s woTCn : HALL 40 ontLO one OPEM POL *ToOM UMTol vaste os OpG at FULLY 0964 TO ALLoev Co4Lorr

'3PC P, 8 MS-9458, OPE N (P)

(NERGERE y LyA}u-sq TMM vnLK

..u...

...n.

,ga,,,,, o J

Open Valet opcP 4.VALv6 Leste o ano TAQLt I est t - **

  • 9 AS 8 DettCT PASCita to:grierk VLV Av ro 4.

a benoores vsNtoc TA6 No, por ruv anTosTART StG (Tsus OwG.)

og.guggcn g Ref O MIG G.

Clost

~

Pe so o t4CS oss *W% b m

soleNoto v

Ceasa vales apCP ym,g.,zl ** * *' 2 D 8D GPc?, o ris -94st, CLO$$ W $

$=Ht-94Si yp

""' '"* ' ' ' ' k

'U'"*^U'D*'"'***'**"*"',

Trale n T^n's t TRAIM VALVt

    • A M D 2 4.

SOL ML1f ZOL VLV

$6 dLDd t.dena QMCS rcAoM A wano a vntu s e

,.av.gss,,. us. gu, 0-nf-7609 2 1 00r.7aAf f

$ ~ Mer M A A

SM3 3452 A

i 9454 9454

~

naam wm nwa v

& p 6 c.c w M & v +'

1M50861471 AEw.X voorts AUXILIARY FEEDWATER stecrnnc assee narseso rtant ACTUATION LOGIC DIAGRAM M. btT O

usar i ame usar a FICURE 7.3.7-1 (SHEET 1 OF 12)

  • m e

e e

O k

a

H0biftMTtod FoL

/KSO Alt / 7 -l f l of f AUX FW Aur0 START SIG.

l STEAM GENEAA TOR NOTE &

n LON LOW L6ML F

-(#W4/2f-O MAIM FE6DWAT6A PUMP terrosner TUAAINE DAIVEN TALP f yo -,.w. g m w p 1

1 3 0 6 K 4 O O 2, 9 P,s. 1 5 More G M

h4AIW FEED WATER PUMP

-I TUkBIME DRIV 6N TMfP Huch-I IRos-M4 00tPS-IS LQweItt-Q nors a lhFiff10Satt 4 15L ACK OUT STGHAL

)

SAFETY ZH,JECTION HOTGJ

' e n

G1-h 1

9 S

^%

9 4

% 9 s m 4

E ON PO kl l

Tl $o.e

~

}

  1. 5 e

.a 4

8 v.7. 8' h

w E 4 j

('*..s3 e -

m; g

w.

y y

w m y_

7 r

f> v g

s 6

h o

9

2 y a.7 y,/.AITE0 '

t'y T

C E.

N.

O5 y

e Eg,f g

7 9

D h

,t 7

'i

.? b..q.-. g3x.:

4 w? v O

s,,.

do

,o d a 1,? :

0 o$

4?g o wo am n

94 b

.a N<

su 4.: D G7 o

e o' j

" b 6-q) *4 *1 o

O o w 4

8 4

Yf Tdk U

=

,J y

2 o,

Ol

'# 4 "o i o 5h t

6 4 'T' 5

s". r1 o ?'?uJyLQ' &"

M *J, d

a o

0**

. ', ~r' ~

H. 2 5* w w

6..

fu 2o.3.c 2,760.go q;,a.%,> g [=..

14ww 4

9. 2. se k

L.

wI

t. t' 7 c.3 ** 6e s.

w

=

s.

O su

_ g 8o d

n y,, *.

v 4y

~ 2 u2 4 W **

x*

3 *I

{

u g

Y 1

J 32 1 s

..?"

jLJ 2
{;0 g

'4

  • W 4

V0 w

t

>00 >Ovi$" 6

  • E

. y l*# w ]

a,

.r uv 2b O 4 E

I

$v-tr.

]*

l }.. y

i. D.3 G

A *i 4 i.i 5 A

'e g i

-+

v EU s ).g f

8 4 4 Ig 9

=

w

  • > ft
  • t gt $* (M o in e Y @', o

-r!

3

'SO t

i o

'- =

b> h. :'.: 3((.F D y A

4 o

hD oc e

5, s, >

3,

{

o

,, T ' '" Y t,

[2 E I l$ -b

~ D.

T U

U g af

Qr s i_

4 bi S S 9 "i i l gird m.

6

.h.

D

"{J o

W

%s v

y I

9 g

T h

  • ~

I t

e;'

7' J

Q o

L, cg b-g M

)

-o

~

~,q J

Y

- h y *f

"*,I

)

S,*

5 e

4 T

D 3

0 g

tC 0

s.

4 E'

w a

1 3l 4

I I

C OQ 1

--y.

D 1 4 2

-3a w

  1. 2 {** o

{d w w d

I 2*

2 w

w MJ

  • u$.:j.
,.s I ? f* S t e o et, 6

g y$

$ ( ? *" I (,,* *

~54 II $ $

]9

!?

' (* 2 4N e'$ [ *)T [.I.}O I) b

's @

w49 0O J

A I

w'
  • etp y W*

2h 2$

v yu y I

3 4

'A.

go%*

kT I si sw 3 O'f 'e z 700 [ D ;j jg,g7

<Q ko t[

Y k

d s he

$2

'3 '2 e%

J-k g'

D, 4 v-e-

O.Y

% Y Rk V

u l

l

h. 0 4,'$ ' ! I

b5 h

.D r) 96 y

de, f, l, y 'c e

. ~

m 2

l I

?

s p

O fl

[ ')

i i

h-7 nn s

kI l

f A

t I

=

3 I

'j

__ J 6

~ ^

,I l

En r g ? I

,t t

S.

I' I< I.

1111 gE

- C,.

d

~w B

g n,

O g

= a2

-S T

y

~ U w..

C a

0 Q

3 s' O

+.,

++,"J g V 4 y

==

.' =,

3

=

A4 o,

8

")

w w g O

< u?

7 C 8-4 y o

'd Y,

g w

y.J g.. o.

o,, w O.

v. O s.

4

  • U v

'I

', 4*O 7' %-.c O

e> 1 k e

tr

  1. '. 3 O 41 ey
n. s' s,

7 WI c;i{[C o

ia ;

., J, w..} ; q g a -

t.

., f

~*

rte [.

W w ww g g g

A g ].,[. z, >s}q :

w w to t

a 3

y 'c.". t 1 1 2 e

3 4 4 t.

o EE E 5 3'

D' o-4 :.

C " l' o.

u

,$ I' o u

.o..

v t '.* e i

,:-,a w e'

t' (

y e e g y M'

  • G' 2 E 4 8,4 a e t a t I

3'

v. V s, t,
t. 2 < <* <e <3

'- s

- o 4 4 4 3' ?

t' A

o

?

a y

n

.. l,2,1 O 4 A 4 cq,,, 3 'o *-s d 0 Ed(o ?

, ~

. - u. 8.

g.e t. e

  • e I

.?.a s

e e

. y== g

.h

  • Q 6

j S$$ y 1

e y,

O k

.h) a' ?

' kb p

4

(

k R G5c

s w

w j

4 v

c-U.. w W 0 d

00'64

/40 btl'IC4R0 Al AA

/ K 6~d^l /2 0 - 2.

f. /ofl TUR.Rs OAlYEbl AQY1

_ ara g e m s w u 6td N K.f*tJMr*.

,q wrx i,,,JKn. -...r f5NN Jen.

1 1so

~T'h, Swl Gem wr z

t. v t. '

',1 %

)

T

.a LOW L.Okl

~r g M 8

^

E ggy.

PF hp e

G

,_,___.._,..__,____,._m_

E i

=

h i

A I

b.

O p4' g

8 v =

Y 2 7 WO o e.g I

ter

??i Q

{ a:*.*.

C E w+

g As 6-q G

Q b

T E

9 0,$

w 4

-t

/

g.J 8 8 '

=. p"f ga, of e

O W

1 o

3 MU u

( @1 -

e-w y

2" G

N atI hk

%a g g 32at oOww t3 D

< 2 ad e

b.

=

o w

5 3 '=.w *w. $ f "-

O' o.

w Ng N

w5 A.

r ---

oE, I'o ihM 's st o 20 3 2-s.

3w 5 >k w

x<

we n

h 4 af 4?

574040$T7 h

.Sh 4,34.

--owit34 '7g

(

l" 3 '

o" g

I I. " "

t ge5.a2%=#2>

=4 0,

  • O o

@ (%

8

  • ws o 5a g roo uto L

O, 20 2 <,

  • - } j. ot2y2qqo g

C y

o

=. o.

v g L yh3 S g ( 4 Q w e k 3.g,

+4 9I p

4 4w d g

'l k

s 4 4 Y O

-R

_,e a.

  • e =

02 Y 0 E

?$

{

a t

eo

$4 2

E 67 M { '22d.

GG d

I.

o a y !"

  • v

.i!

I g

o h,

T OI o

3c-

.u-1' w.4., '

i 8

2 *,

  • =

e e

r3 52 D

D' t

i t-I k cbb 4

O

[

1111.

3' L

s re 1D Q*

Aal'

$%9 2

-w.

2 m

b ob s44

%^wt Sa a v

p 2"

triSithy

< < c' 2. k k b '

' 3 'a g o o ed 38252?IO3$

(aO4O*CEA*

i O

g g'

U*

i O

0 14 1

. ?'

w 2

a

')

$u{

,7

'4 4

{

Y i-7

.O

,2'2 o

hi y"

w 2

m' a.9.

(

e s

4 0

T d.;'. a 1 5,5 a

.....--. J... b 5

1

  • 's5 i k*

n b.,3.S t$ f. 6 E

E s

312 h.

oo o w

o. O 42

(" gC Ch w W Y D

{i L7 g 9 a 2 3\\ L 4" 4 k

Uk V O oO h

)

I T y uM\\ 1 4

V q q 2 s)

-4. we $

C O g

2 Q

ooO g Q q

) *

  • O 2

u O

s y

i w

g'*

"! o e oTg L

y T w 94 q g'

f V to W

o. o 9

V A.

1 y

  • S

- 9 g - t o, te

-a

. 2 wo 9

g o% v Ie c O

4m %m

  • 9 o

D' o t U m

}D $ w% y*D.

g vv

=

M e

c. ( '4 '

. D

~

4 0

,J

. n.

0.

y es W

I y - w9 9

g % 9 9 A

- ? ; ; *EEDk9

$ 2O hy$5 e

=

g" N

ert

.?tft' i

g 9e Tg

(*h "

I O

b 23

-~

7 S..-8 a= g *a *. % s,

6: :;.;5Z t

w-b t

a o

8 3 ;, s58: *e 2

ta. s

< ~ a r2 W

,s'<tu 2

1 s

ro g R <q,t c 1 3-<-

!;t " i,s.

er o

.s %

m a 4 e,

u w

o a c.

e. w W y,g x, a i<

1 ag s t

[

d he s

=

e <

%' { %

Q.

e

Mooincarna 104 t x rhai s1-i

f. /o f /

A U TO PSDB I, IIS -513 O C Ch/TL. kM (M) [

GMCB 1 HS-SI30 A A U TO (M )

l

=

M AlN F W PUMP TR./PPED (gyg pg 7. p f__

I-13 0G - k 4 - 001 M A iN F W PUMP TK,iPPEO(sgs yj7.yp-"

1 - 13 06 - k.4 -00 2

$TM G Ehl. W rii. L VL.

Nors?

Abb AV ^

" a

'o N * "

UMo*~BM s o s e a a w c' c W)g sse e LOC A AC TUA TIOh! L OAD diQ.

l SAFE TY IblJEC TION s f 6 l ^* * '

E SP LOAD SEQUENCER QM ALh*CK OUT 4/GNAL l

' ' ~

wg-

,.-,.,--,,_,an...,,,-,

-,,_.,,--,-m,n.-.-.w.ws._,,m.-ra--w,v,,-,-e-,,- -,,,, - -

J 4

VEGP-FSAR-7 permits location of the electronic console remote from the detector.

E.

System characteristics are listed in table 7.7.1-2.

Add new s e c. kn 2 7././/

se 7.7.1-22

kMd N e %/ d e CY! o n 7.7.1.11 A%S Mitication Systen Actuation Circuitry (AMSAC) Description 7.7.1.11.1 System Descriction n o n - 6 /4.5 5 /[.

The AIWS (Anticipated Transient Withotr; Scram) Mitigation Syst m Actuation Cirolitry (AMSAC) provides a backup to the Reactor Trip Systa (RIS) and ESF Actuation System (ESFAS) for initiat turbine trip and auxiliary feedsater flow in the event of an anticipated lent (e.g., in the cmplete loss of rain feedsater). The AMSAC is ent of ard diverse frm the Reactor Trip System and the ESF Actuation Systs with the exception of the final actuation i

l devices and is classified as control v W It is a highly-reliable, micrtpro-r-based, sirgle train system powered by a non-class lE source.

The AMSAC meets the applicable requimments of Part 50.62 of Title 10 of the Code of Federal Rcquiations and the quality assurance requirenents of tmC Ceneric I.etter 85-06.

No other stardards 'ea=.tly apply to the A N C.

The AMSAC continuously monitors main feedwater flow, which is an anticipatory indication of a loss of heat sink, and initiates certain functions when the flow drops below a predetermined betpoint in three of the four main festaater lines for a delayed amount of time (dependent on turbine load). These initiated functions are the tripping of the turbine, the initiation of auxiliary feedwater, and isolaticn of the steam generator blowdown and sample lines.

The AMSAC is designed to be highly reliable, resistant to ina.:vertent actuation, and easily maintained. Reliability is assured thrcogh the use of internal redundancy and contirual self-testing by the syste. Inadvertent actuations are minimized through the use of internal redundancy ard majority voting at the cutput stage of the syste. The time delay en the low main feedwater flow and the coincidence logic used also minimize inadvertent actuationu.

The AEAC autmatically perfoms its actuaticos when above a preselected power level, determined using turbine impulse chamber pmssure, and renains amed sufficiently long after that pressure drgs below the setpoint to ensure that its function will be perfomad in the event of a turbine trip.

7.7.1.11.2 Ecuitrent Descriction The AMSAC consists of a single train of equignent located in a seismically c

qualified cabinet.

The design of the AMSAC is based cn the infustry standard Intel cultibus femat, which pemits the use of various readily available, widely used microprocessor cards on a ecmon data bus for various functions.

The AEAC consists of the following:

1.

Systen Hardware The systan hardware omsists of two primary systats: the Actuation Icgic Systen (AIS) and the Test / Maintenance Systern (T/E).

Actuation Iocic systen The AIS monitors the analog and digital inputs, performs the functional logic required, pzwides actuatico outputs to trip the turbine and initiate auxiliary feedwater flow, and provides status information to the Test / Maintenance System. The AIS ocnsists of three grtups of input / output (I/0) milles, three actuaticm logic prpers (AIPs), two majority voting modules, and two output relay panels. The I/O modules provide signal conditicning, isolaticn, and test features for interfacing the AIS and T/2. Omiitioned signals are sent to three identical AIPs for analog-to-digital mnversico, setpoint emparison, and coincidence icgic perfomance. Each of the AIPs perform identical logic calculations using the same irputs and derive hycri:mit actuaticn deands, which are then sent to the majority voting modules. The majority voting modules perfom a two-out-of-three vote cm the AIP demand signals. These modules drive the

relays providirg cutpats to the existing turbine trip ard auxiliary

^

feedwater initiaticn cizatits. A sirplified block diagram of the NEAC AIS architecture is presented in Figure 7.7.1-14.

'Ibst/Maintenanm System'

'Ihe 'Ibst/ Maintenance System provides the AMSAC with autcrnated and manual testing as well as a maintenance mode. Autanated twting is the continuously performed self-da: king dare by the systen during normal operaticn. AIS status is mmitored by the T/MS and sent to the plant ocmputer and the rain ocotrol board. Manual testing of the system by the maintenance staff can be perfonM an-line to provide assurance that the AIS system is fully operaticnal. 'Ibe maintenance mode perrits the maintenance staff, under administrative control, to modify channel 1

setpoints, channel status and timer values, and initiate channel l

Calibraticn.

'Ihe T/MS ocmsists of a test / maintenance pr-er, a digital-to-analog calversicm board, a memory board, expansion boards, a self-health board, i

digital cutput modules, a test / maintenance panel, and a portable termind/ printer.

2.

Feedwater Flow Sensing

)

'Iha AWAC utilizes the feedwater flow signal as measured with the four

{

differential pressure-type flow transmittars, one for each of the main feedwater lines shown in Figure 7.2.1-1 (sheet 7).

3.

'Ibrbine Inpulse Pressure

'Ibe AEAC dco utilizes the turbine inpulse pressure signal as measured with two pressure transmitters located in the steam supply line near the turbine shown in Figure 7.2.1-1 (sheet 16).

4.

Equipnent Actuaticn The output relay panels provide oxponent actuaticn signals through isolation relays, Wich then drive the final actuation circuitry shown in Figure 7.2.1-1 (sheets 15 and 16) for initiaticn of auxiliary feedwater and for tuitne trip.

7.7.1.11.3 RInctior Al Perfor-ance Recuirunents.

)

Analyses have shown that the mest limiting ATWS event is a loss of feednter event without a reactor trip. AMSAC perfoms the mitigativa actuations of autenatically initiating auxiliary feedwater, tripping the turbine, and isolating the steam genurator blowdown and sarpliry lines. These are initiated in ortier to ensure a <wwxiary heat sink following an anticipated transient (ANS Cbnditicn II) without a reactor trip, in order to limit core damage following an anticipated transient without a reactor trip, and to ensure that 1

the energy generated in the core is ocmpatible with the design limits to protect the reactor coolant pressurs br W* by maintainirg the reactor coolant pressure to within ASME Stress IEvel C.

7.7.1.11.4 AMSAC InterlecPs A single interlock, designated as C-20, la prr3rided to allow for the autenatic aming ard blockirg of the AMSAC (see Table 7.7.1-1). The systen is blocked at sufficiently low reactor power levels when the ar:ticos taken by the AMSAC following an ATWS need not be outcnatically initiated. Turbino impulso charber pressure in a two-cut-of-two logic scheme is used for this pemissive. Turbine impulse charber pressure above the setpoint will autenatically defeat any block, i.e., will arm the A EAC.

Drgping below this setpoint will autenatically block the AEAC. Receval of the C-20 permissive is rutaatically delayed for a prioetemined time. The crerating status of the AMSAC is displayed cn the main ocotrol beard.

7.7.1.11.5 Trip Systen The feedwater flew and tuxbine impilse etwber pressure inputs are used by the 1

i

REAC to detarmine trip demard. Signal ccmditioning is perfomed on the transmitter output and ured t,y each of the AIPs to derive a ccrponent actuation demard. If three of th6, four feed, lines have e. low flow at a power level greater than the C-20 perm.issive, then a trip demnd signal is generated. This signal drives output relays' for perfonning the r-u_ry mitigativo actions.

7.7.1.13.6 Isolation Devices

/1M-Cart $ if AMSAC is '.rvigerdent of the Reactor Trip aid Engineered Safety Features Actuation Systems. The AMSAC feedwater flow inputs are -.61"grede signals frtn the pr m control cabinets. No isolatico into AEAC is rmhi for these inputs. The AEAC turbine imp 21se chahr preswre inputs azu made dcunstream of Class 1E isolatien devices which are located within the prrea== protection cabincts. These isolatico devices ensure that the existing protection system continues to meet all a;plicable safety criteria by providing isolation.

B2fferig of the AM3AC outputs fran the safety related final actuaticn device circuits is achieved throxjh qualified relays. A credible fault occurring in the ncn-safety-related AMSAC will not propagate through and degrade the RTS and ESFAS.

7.7.1.11.7 AMAC Diversity fran the Peactor Protection Systers Equipnent diverse fran the RIS ard ESFAS is used in the AEAC to prevent ccrron i

mode failures that might affect the AEAC and the RTS or E5FAS. The AMSAC is a digital, micruptrea==,r-hanai systan with the excepticn of the analog feedvater ficv ard turbine inpulse pressure transmitter inputs, whereas the reactor trip system utilizes an analog based proucticn systen. Also where similiar l

ccrponents are utilized for the same function in both AMSAC ard the reactor trip systen, the mycists used in AEAC are provided fran a different manufacturer.

02 mon mode failure of identical -prists in the analog porticn of the RTS that results in the inability to generate a reactor trip signal will not irpact i

the ability of the digital A EAC to generate the om,mamar'/ mitigative actuatiers. Similarly, a postulated ocenan mode failure affecting analog cu p ants in ESFAS, affecting its ability to initiate auxiliary feedwater,

will not impact the ability of the digital based AMSAC to autmatically initiata auxiliary feedwater.

7.7.1.11.8 Power Sucolv j

i The AMSAC power supply is a ncn-class 1E vital bus, which is independent frm the RIS power supplies, and is backed by battaries which are iniependent frtn the existirrJ battaries which supply the RIS.

l 7.7.1.11.9 Enviromental Variations MEAC equircent is not designed as safety related eq.11pment; therefore, it is i

not required to be qualified as safety related equipnent. The AMSAC equipment is located in a omtrolled envitwmiait such that variatims in the atient conditions are minimized. No AMSAC equipnent is located inside containment.

The transmitters (fea3 water flow arri turbine impulse dader pressurs) that supply the input into MEAC are located cutside ocntainment and the turbine building, respectively and are qualified for the envituwit in whid they are located.

7.7.1.11.10 Setnoints l

i The AMSAC makes use of two setpoints in the coincidence logic in order to determine if mitigative functicos are required. Feedwater flow in each main feedwater line is sensed to datemine if a loss of secW' heat sink is iminent. The low flow setpoint is selected in such a manner that a true lowerirg of the flow will be detected by the systan. 7he nomal small variaticns in feedwater flow will not result in a spurious AMSAC signal.

The C-20 permissive setpoint is selected in order to be omsistent with ANS investigaticos showing that the mitigative actions performed by the AMSAC need not be autcznatically actuated below a certain power level. The maxinum allowable value of the C-20 permissive.wtpoint is defined by these inma lgaticos.

TV soid inadvertant AMSAC actuaticn cm the loss of one main feedwater purp, a time delay unit is required on the low main feedwater flow channels to adjust

-- ~ ~

.i G s

.,.,_ x

-u s-

--cu-

~

.c.,. ~ n

~

~.u,

_ e

_=u.

w w,,.

- -. A a_

_y

, _ um -K..

~

m

'.1, ~2m*i l m

u M

the AMsAc actuation response ti m. 24 dalay unit is designed such e.at e.e delay ti:na 1.s dependant cm turbine power. 2ds will ensure the reac*wr protmetico system vill provide the first trip signals.

To ensure that the MEAc runins armed sufficiently 1 cry to pamit its functien 1

in the event of a turbine trip, the C-20 permissive is maintained for a preset time delay, aftar the turbine irpulse cha.h pressura drops balcw the l

setpoint.

D'A setpoints ard the capability for their :Dodificaticn in the AMSAC are u.ter ad:sinistrative centrol.

e l

l l

l

d T

VECP-FSAR-7 TABLE 7. 7.1-1 ( SHEET 2 OF 2 )

l Designation Derivation Function C-7 1/1 time derivative (absolute Makes steam dump value) of turbine impulse valves available for chamber pressure (decrease either tripping or only) above setpoint modulation

)

i C-9 Any condenser pressure above Blocks steam dump to setpoint or all circulation condenser water pump breakers open C-ll 1/1 bank D control rod Blocks automatic rod position above setpoint withdrawal C-16 Reduce limit in coolant Stops automatic temperature above normal turbine loading until setpoint condition clears P-4 Reactor trip Blocks steam dump control via load Tavg controller Makes steam dump valves available for either tripping or modulation l

Absence of P-4 Blocks steam dump j

control via plant trip Tavg controller l

\\

l I

i INSD E C-20 *

'No-of-two 6 Arms AMRAct & WM MW inpulse chamber AMSAC (genarutad b AMSACI 888 pressure above setpoint Section 7.7) not part of control s@ (AoA tla33 IE)

i l

l l

Analog / Digi *-',

inputs t

t t

l 1f [

Digital Y l Digital 1I l Digital Ana Anal Ana Sign Sign j

lonine Conditioning Conditioning

-F i

l ALP e1 4 r ALP #2 ALP e3 i

r i

A/D A/D A/D l

Conversion Conversion Conversion PROM. RAM PROM. RAM PROM RAM

{

CPU CPU CPU

  • er I T 1 Tr I T Tr I T l

8 1

8 1

1 l

r 4

v v

O tt ff Maprity (2/3)

Mejority (2/."s)

Voter "A" Voter *B" I

I e

output n iav.

4 ACTUATION LOGIC SYSTEM ARCHITECTURE j

l Figure 7.7.1-14

VEGP-FSAR-7 coolant pump is operating.

The narrow range instrument also measures the reactor core and internals pressure drop and therefore provides an indication of the relative void content or density of the circulating fluid, when-only one reactor coolant pump is operating.

When more than one reactor coolant pump is operating, the narrow range instrument reading will be off scale.

i The wide range RVLIS instrument provides an indication of reactor core, internals, and outlet nozzle pressure drop for any combination of operating reactor coolant pumps.

Comparison of the measured pressure drop with the normal, single-phase pressure drop provides an approximate indication of the relative void content or density of the circulating fluid.

The wide range instrument monitors vessel level on a continuous basis.

Details of the seismic and environmental qualification can be found in sections 3.10 and 3.11.

I 7.7.2.9 Control Systems Failure Analysis An analysis has been performed on VEGP to confirm that the l3 consequences of a random initiating failure in a control system or its supporting systems will not cause plant conditions more severe than those bounded by the chapter 15 analysis-(multiple independent failures are excluded).

The analysis addressed l3 the consequences of control system failures due to the following:

i e

Loss of any single instrument.

e Break of any single instrument line.

e Loss of power to a single inverter.

f e

Loss of power to a protection set, e

Loss of power to a control group.

Adct n ew s e ch o 7', '7. I?. l c) 4 i

i 7.7.2-10 Amend. 3 1/84

7.7.2.10 A2HS h.itication Systen Actuation Ciralitry (AMSAC) Analysis 7.7.2.10.1 Safety Classificaticrt/Safetv-Related Interfagg The AMSAC is not safety related and therefore need not r.aet the requirements of IEEE 273-1971. The AMSAC has been inplemented such that the Reactor Trip Systam and the ESF Actuation System contirus to meet all applicable safety-related critaria. The AMSAC is indeperdent of the RIS ard ESFAS. Its isolation povided between the RIS and the MEAC and betwen the ESTAS ard the MEAC by the isolator modules ard the isolaticn relays ensures that the applicable cafety-rulated criteria are met for the RIS and the ESTAS.

7.7.2.10.2 Redurdancy Syst e redundancy has not been provided. Since MtSAC is a backup non-safety related system to the redundant RPS, redundancy is not required. Tb ensure high systan reliability, porticms of the MEAC have been implemented as internally redundant, such that a single failure of an irput channel or AIP will neither actuata nor prevent actuaticn of the AMSAC.

7.7.2.10.3 Diversity Diverse equipnent has been selected in order that ocmacn cause failures affectirq both the RIS and the NEAC or both the ISTAS and the AMSAC will not render these systes incperabla simultaneously. A more detailed d h aion of

the diversity between the RIS and the NEAC ard between the ESTAS ard the ASC is presented in Sectico 7.7.1.11.7 7.7.2.10.4 Electrical Indemnden

'Ihe AMSAC is electrically irdepeu-M of the RIS and ESTAS fran the process control cabinets up to the final actuaticut devices.

Isolation devices are provided to isolate the nczi-safety AEAC circuitry fran the safety-related

.c actuation circuits of the auxiliary feedwater system as d4='W in 7.7.1.11.6.

7.7.2.10.5 Rivsical Seoaration frun the RTS and ESFAS i

AMSAC needs to be and is physically separated frczn the existing protection system hardware. 'Ihe NEAC outputs are provided frun separate relay panels within the cabinets. 'Ihe two trains are separated (in accordance with Peg.

Guide 1.75, Rev. 2) within the NEAC cabinet by a ocrobinaticn of metz.1 barriers, ccrduit and distance.

7.7.2.10.6 p1vi - s tal O mlification Equipnent related to the AEAC is qualified to operate under conditions resulting frun anticipated cperational <mwrences for the respective equipnent locaticn. 'Ihe AEAC equipaent, with the excepticn of the isolation devices located cutside ocntainment in a mild enviru1 ment, is not designated as safety related equipwnt and therefore is not required to be qualified as safety Iv. lated per the requirments of IEEE Standard 279-1971, "IEEE Standard for Criteria for Protection Systes for Nuclear Power Generating Staticos".

7.7.2.10.7 Seismic Om11ficaticx1 It is requh that cnly the isolaticzi devices ocuply with seismic qualificaticn. 'Ihe AEAC cutput isolaticn device is qualified in accordance with a rwuua that was developed to implement the requirements of IEEE Standard 344-1975, "IIII Standard for Seismic Qualification of Class lE Electrical Equipnent for Nuclear Power Generating Stations".

4 8

7.7.2.10.8 2st. Maintenance, ard Surveillance Ouality Assurance NRC Generic Imtter 85-06, "Quality Assurance Guidance for AIWS Equi rent that I

is not Safety Palated," requires qeality assurance procedures comensurate with the non-safety-related classificaticn of tM AEAC. The quality controls for the NGC are, at a mininum, cmsistent with existing plant procedures or practices for ncn-safety-related equipnent.

Design of tJw AEAC followed prMwes relating to equipnent procurement, h~nt cx:ntrol, and specificaticn of systan acrtenents, uaterials and services.

In addition, specificaticos also define quality assurance practices tw limpections, examinations, storage, shipping and tests as appropriate to a specific item or service.

1 A ccrputer software verification program and a firware validation program have been implemented cm:nensurate with the nco-safety-related classification of the AEAC to ensure that tha system design requirements implemented with the use of software have been properly inplementra and to ensure ccupliance with the system functicnal, performance and interface requirunants.

System testing is ocupletad prior to the installaticn ard cperation of the AMSAC, as part of the normal factory acceptance testirg and the validation program.

Periodic testing is performed both autmatically through use of the systan autenatic self-checking capability, arri manually, under administrative control via the AEAC test / maintenance panel.

7.7.2.10.9. Power Sucolv Power to the AEAC is frun a battery-backed, ncn <. lass 1E vital bus irdependent of the power stgplies for the RIS and ESTAS. The staticn battery supplyiry power to the AMSAC is independent of those used for the RIS M TAS. The AEAC is an energize-to-actuate system < apable of perfornirq ic.s mitigative functicos with a loss of offsite power.

7.7.2.10.10 Testability at Power The A EAC is testable at power. This testing is done via the systen

test / maintenance panel. The capability of the AMSAC to perform its mitigative actuations is byna W at a system level while in the test mode. Tbtal system testing is performed as a set of three sequential, partial, overlapping tests.

The first of the tests checks the analog input portions of the NEAC in order to verify accuracy.

Each of the analog input mcdules is checked separately.

The second test checks each of the AIPs to verify that the appropriate coincidence logic is sent to the majority votar. Each ALP is tested separately. The last test exercises the majority votar ard the integrity of the aswiated output relays. The majorit.y voter and acanciated cutput relays are tasted by exarcising all possible irput orbinations to the majority voter. The integrity of each of the output relays is checked by confirmirq cmtinuity of the relay coils without cperatirg the relays. The capability to individually cperate the output Islays, confirm integrity of the acwiated field wirirg, and cperata the cou=cyoraling isolation relays ard final actuation devices at plant shutdown is provided.

7.7.2.10.11 Inadvertent Actuation 9

The AMSAC has been designed such that the frequency of inadvertent actuaticos is minimized. This high ruliability is ensured through use of three redunimt AIPs ard a majority votirq module. A single failure in any of these mcdules will not result in a spurious MEAC actuaticn.

In addition, a three-out-of-fcur low feedwater flow coincidence logic and a time delay (that is dependent cn turbine load) have been selected to further minimize the potential for inadvertent actuaticns.

7.7.2.10.12 MEAC Bypase 7.7.2.10.12.1 Maintenance B e taam The AMSAC is blocked at the systen level charirg maintenance, repair, calibration or test. Wille the systma is blocked, the bypass acniition is ocntinuously indicated in the main Maul roan.

7.7.2.10.12.2 Oceratim Byrv.=ama The AMSAC has been designed to allow for operational bypa==a= with the

in::lusion of the C-20 pamissive. Above the C-20 setpoint, the N EAC is autcnatically unblocked (i.e., amed); below the setpoint, the system is autmatically blocked. The operatirq status of the AMSAC is continuously inlicated in the main cmtrol roca via an annunciator window.

7.7.2.10.12.3 Indication of Bvnasses hhenever the nitigative capabilities of the AMSAC are bypmori or deliberately rendered inoperable, this condition is continuously iniicated in the main control roca. In ackiiticn to the operatirg bypass, any manual maintenance bypass is iniicated via the AEAC general warnity sent to the main control run.

7.7.2.10.12.4 Means for Bveassina A permanently installed system bypass selector switch is provided to bypass the system. This is a two-position selector switch with "lGMAL" and "BYPASS" positions. At no time is it ra'acun to use any temporary means, strh as installing jtmpers or pulling fuses, to bypass the system.

7.7.2.10.13 Oroletion of Miticative Actions once Initiated The AMSAC mitigative acticos go to ocupletien as 1crg as the coincidence logic is satisfied and the time delay requirenants are met.

If the flow in the feedwater lines is re-initiated before the timer expires and increases to above the low flow setpoint, then the coincidence logic will no lcrger be satisfied and the actuation signal rif orpaws.

If the coincidence logic conditions are maintained for the duration of the time delay, than the mitigative actions go to cupleticn. The auxiliary feedwater initiacion signal is latched in at the wpent, actuatirq devices and the turbine trip is latched at the turbine electro-hydraulic centrol system.

Deliberate operator action is then necessary to terminate atrdliary feedwater flow, clear the turbine trip signal using the main ocotrol boarti turbine trip reset switch, ard prma=1 with the recpening of the turbine stcp valves.

7, 7, 2,10, /4 Manal Initiation Manual initiaticn of the AMSAC is not provided. The capability to initiate the AMSAC mitigative functions marmally, i.e., initiate auxiliary feedwater, trip the turbine, and isolate steam generator blou$own and sa:plirq lines, exists at the main contzel boazt1 irdeperdent of AMSAC.

i

7. 7. 2. /o. /5-Infomation paadcut The AEAC has been designed such that the cperating and maintenance staffs have accurate, ocmplete and timely infomatico pertinent to the status of the AEAC. A systan level general warning alann is indicated in the control reczn.

Diagnostic capability exists t.un the test / maintenance panel to determine the l

cause of any unanticipated !_-Wility or deviation.

R G ' k r.!.

VEGP-FSAR-9A HY5230C - S/G feedwater isolation valve solenoid. '

t HY5230D - S/G feedwater isolation valve solenoid.

HYS230G -

S/G feedwater isolation valve solenoid.

HYS230H - S/G feedwater isolation valve solenoid.

HYS230J - S/G feedwater isolation valve solenoid.

HYS230K - S/G feedwater isolation valve solenoid.

PSV3001 - S/G 1 code safety valve.

PSV3002 - S/G 1 code safety valve.

PSV3003 - S/G 1 code safety valve.

PSV3004 - S/G 1 code safety valve.

24(

PSV3005 - S/G 1 code safety valve.

PSV3034 - S/G 4 code safety valve.

PSV3035 - S/G 4 code st.fety valve.

PV3000 - S/G 1 atmospheric dump valve.

PV3030 - S/G 4 atmospheric dump valve.

i HV3036A - S/G 4 main steam isolation valve.

HV3036B - S/G 4 main steam isolation valve.

HV3006A - S/G 1 main steam isolation velve.

HV3006B - S/G 1 main steam isolation valve.

HVl975 - Auxiliary coinponent cooling water r[ turn isolation.

i HVl979 - Auxiliary component cooling water supply isolation.

HV5137 - Auxiliary feedwater pump A to S/G 4 valve.

HV5139 - Auxiliary feedwater pump A to S/G 1 valve.

Train A safe shutdown cables.

\\

Mgg

[

Amend. 15 3/85 9A.1.26-4 Amend. 24 6/86

\\

n v (l r3 ! rT '

VEOP-FSAR-9A l

Train A motor driven auxiliary feed water pu~p m.

1-1302-P4-003 may start due to a fire in this fire area.

The turbine driven auxiliary feedwater pump n.

1-1302-P4-001 may start due to fire camage to EV-5106 circuits in this fire area.

4 Automatic starting of the Train A motor-driven d!

auxiliary feedwater pump 1-1302-P4-003 may bbdI n #

\\^ r occur due to fire damage to steam generator 1 and 4 level transmitter circuit in this fire

area, p.

Automatic starting of the Train B motor-driven auxiliary feedwater pump 1-1302-P4-002 may occur due to fire damage to steam generator 2

]

and 3 level transmitter circuits in chis fire 1

$bN56cr(h 3

-/

q.

Automatic starting of the turbine-driven 15 auxiliary feedwater pump 1-1302-P4-001 may occur due to fire damage to steam generator level transmitter circuit in this fire area, i

Safety injection actuation may occur due to r.

fire damage to this fire area. pressurized pressure circuits in Safety injection actuation may occur due to s.

fire damage to steam line pressure circuits in this fire area.

t.

Safety injection actuation may occur due to fire damage to the manual actuation switch circuits in this fire area.

Safety injection actuation may occur due,.to u.

fire damage to solid state protection' cabinet 1-1605-QS-SPA 125-V de power feeder circuits in this fire area.

Containment spray actuation may occur due to v.

fire damage to the containment pressure circuits in this fire area.

x.

Containment spray actuation may occur due to fire damage to the manual actuation switch circuitr in this fire area.

Amend. 15 3/85 9A.1.71-4 Amend. 24 6/86

e -

V (v r

Odlut i s, -

VEGP-FSAR-9A F.

Sealed Penetrations Seals meet or exceed fire barrier ratings.

G.

Fire Dampers 1

Dampers meet or exceed fire barrier ratings.

H.

Safe Shutdown Components 1-1539-A7-001 - Control building auxiliary relay room ESF cooler.

1-1816-U3-001 - Auxiliary relay panel 1ACPARI.

1-1816-U3-002 - Auxiliary relay panel 1ACPAR2.

p-

)N$6RTh 1-1816-U3-017 - Auxiliary relay panel 1ACPAR8.

a 4

Train A safe shutdown cables.

24 15 I.

Safety-Related Equipment No major equipment other than safe shutdown equipment.

J.

Nonsafety-Related Equipment Normal relay cabinets.

K.

Combustible Loading 1.

Zone No. 85 Fixed combustible quantities Cable insulation (equivalent hypalon value) 86,920 lb Charcoal 0 lb Cellulosic materials O lb' Oil / grease O lb Plastics O lb Rubber goods 0 lb Heat release Fixed combustibles 695,360,210 Btu Transient combustibles 800,000 Btu Combustible loading 253,241 Btu /ft i

8 Amend. 15 3/85 9A.1.74-2 Amend. 24 6/86

)

i

VECP-FSAR-9A l

L.

Evaluation of Safe Shutdown Capability 1.

For a fire in this area, use safe shutdown Train B.

2.

Special operational and design considerations:

None.

3.

Spurious actuation considerations:

Pressurizer PORV PV-0455A may open and it may a.

not be possible to close block valve HV-8000A due to a fire in this area.

b.

It may not be possible to close either letdown isolation valve LV-0459 or LV-0460 due to a j

fire in this fire area, 1

Pressurizer spray valves PV-0455B and PV-0455C c.

24 may open due to a fire in this fire area.

l d.

Pressurizer auxi'iary spray valve HV-8145 may open due to a fire in this fire area.

Main steam atmospheric dump valve PV-3000 may e.

open due to a fire in this fire area.

f.

Main steam atmospheric dump valve PV-3030 may open due to a fire in this fire area, CVCS volume control tank outlet valve LV-0112B g.

may close due to fire in this fire area.

h.

CVCS charging pump common miniflow valve HV-8110 may close due to a fire in this fire area.

i.

Train A motor driven auxiliary feed water pump' l-1302-P4-003 may start due to a firn in this fire area.

j.

The turbine driven auxiliary feedwater pump 1-1302-P4-001 may start due to fire damage to Lsar H HV-5106pcircuits in this fire area.

J k.

Reactor vessel head letdown path valves HV-8095A, HV-8096A, snd HV-0442A may all open due to a fire in this fire area.

Amend. 15 3/85 9A.l.74-4 Amend. 24 6/86

-~

V64 hMMl 1 \\'(~.

VEGP-FSAR-9A IVI13134B

- Liquid plasma display.

l-1605-QS-SPA - Solid state protection panal-A.

1-1605-QS-SPB - Solid state protection panel-B.

1-1605-QS-SPC - Solid state protection panel-C.

1-1605-QS-SPD - Solid state protection panal-D..

1 - 1816-U3 -001 Flect rical auxiliary board QEAB.

Train B safe shutdown cables.

I.

Safety-Related Equipment No major equipment other than safe shutdown equipment. '

2 J.

Nonsafety-Related Equipment 15 No major equipment.

K.

Combustible Loading 1.

Zone No. 105 Fixed combustible quantities Cable insulation (equivalent hypalon value)

Charcoal 27,050 lb O lb Cellulosic materials 3,000 lb Oil / grease Plastics O lb 750 lb Rubber goods 0 1b Heat release Fixed combustibles 249,586,750 Btu Transient combustibles 24,400,000 Btu Combustible loading 65,531 Btu /ft 8

Fire severity (wood equivalent) 49 min Amend. 15 3/85 9A.1.81-3 Amend, 24 6/86

irisemmuMmmMs

() '

VEGP-FSAR-9A 3.

Spurious actuation considerations:

a.

Train B motor driven auxiliary feedwater pump 1-1302-P4-002 may start due to a fire in this area.

b.

The turbine driven auxiliary feedwater pump

- jgggy H 1-1302-P4-001 may start due to fire damage to HV-5106 circuits in this fire area.

M.

Fire Detection' Early warning fire detectors are installed within the following zone:

Zone 121 N.

Fire Suppression 1

Automatic Zone 121 - No cone coverage.

7 Manual 15 24 Hose stations (with portable extinguishers) are conveniently located to each area.

Any location can be reached with at least one effective water stream.

Independent Seismic Category 1 dry standpipe system p ovides alternate source of water for post-SSE fire fighting.

O.

Radioactive Materials None.

P.

Ventilation Smoke can be removed using the normal ventilati6n system in a once-through only mode of operation.

For areas isolated by fire dampers, smoke may be removed by portable fans using flexible tubes to direct the smoke to an area capable of being ventilated or directly to outside.

Amend. 15 3/85 Amend. 24 6/86 9A.1.89-3 Amend. 28 11/86

VEGP-FSAR-9A b.

Automatic starting of the Train B motor driven auxiliary feedwater pump 1-1302-P4-002 may occur due to fire damage to steam generator No. 2 and No. 3 level transmitter circuits in this fire area, c.

Pressurizer PORV PV-0455A and both pressuriser spray valves PV-0455B and PV-0455C may open due to fire damage to PT-0455/PT-0457 circuits in l

this fire area.

d.

Main steam atmospheric dump valve PV-3010 may open due to a fire in this fire area.

Main steam atmospheric dump valve PV-3020 may e.

open due to a fire in this fire area.

f.

CVCS volume control tank outlet valve LV-0112C may close due to a fire in this fire area.

g.

CVCS Train A charging pump miniflow valve HV-8111A may close due to a fire in this fire I

area.

h.

Train A charging path containment isolation valve HV-8105 may close due to a fire in this fire area, i.

Train A RHR system vent valve HV-10465 may open due to a fire in this fire area.

j.

Train B RHR system vent valve HV-10466 may open due to fire in this fire area, k.

Train B motor driven auxiliary feedwater pump 1-1302-P4-002 may start due to a fire in this fire area.

3.

The turbine driven auxiliary feedwater pump 1-1302-P4-001 may start due to fire damage in HV-51_0_6 circuits in this fire area.

pgg f

Automatic starting of the Train A motor driven m.

l'n s c r f b -

auxiliary feedwater pump 1-1302-P4-003 may

\\

occur due to fire damage to steam generator No. 1 and No. 4leveltransmittercircuitshn i

this fire area.

[nserI [ ~ N Adtomatic starting of the turbine driven

~

n.

auxiliary feedwater pump 1-1302-P4-001 may occur due to fire damage to steam generator

~b geri G -

level transmitter circuitg in this fire area.

~

Amend. 15 3/85 Amend. 24 6/86 9A.1.90-3 Amend. 35 3/88 m

o O

TABLE 9.5.1-1 (SiiEET 15 OF 38)

Power Hot / Cold C.R.

IAre tocation lag Ignamber De sc rip t ioj}

SSD TfsN TRX/CHL Shutdowyn isolation f_l C Igg Fire zone 128 m ilsom,ee.uaL.,s m 1s, 1-1302-P81-002 AFW pump '3" S

S Soth Yes IAFBA 155 1-1302-P8t-003 AFW pump "A" A

A Soth Ves 1Ates 1%

1-1302-V4-001 Condensate storage tank 1 A, 8 88/A Soth N/A 1AFSO 1578 28 1-1302-V4-002 Condensate storage tank 2 A,

8 al/A Soth st/A 1AFSO 1578 FV-Sl54 Arw pump a sintriow valve a

a moth Yes 1 Area 155 FT-5154 AtW pump a veive a

2 soth yea 1ArmA 155 FV-SISS ATW puse A minirlow valve A

A Soth Yes IATES 1%

FT-5155 ATW pump A volve A

1 Both Yes IAfas 1%

HV-5114 AFW pump B suction valve S

S Seth Yes 1Af8A 155 h

h, HV-5119 AfW pump A suctlen volve' A

A

Soth, Yes IAfga 1%

MV-5132 AfW pump a to s/G 2 valve e

a Soth Yes ICStAo 99

  • g h

HV-5134 ATW pump S to $/G 3 velve S

S Soth Yes ICSLAD 99 HV-5137 AFW pump A to S/C 4 vesve A

A Soth Yes IA8tAE 39A b

HV-5139 AfW pump A to s/C 1 volve A

A Soth Yes IASLAE 39A 24 LT-SIO1 CST 1 level B

2 Both 10 0 (22) 1AFSO 1578 LT-S toes CST 2 level B

2 toth sto (22) 1AraO 1578 LT-5111 CST 1 level A

1 Soth

$10 (22) 1AF80 1578 LT-5116 Csr 2 sovel A

1 Seth 30 0 (22) 1AFSO 1578 HV-5106 st a to ATW ump turbine II/A8*8 C

88/A Ile 1AF 157A 28 f1-0510

$ 6 Los; $ VcehdCahes flse Aegtuk)

N Ys,)

fpg g 39p o

fk fAe6t))

f-f 05tl Yb Lap I Q ) %Nel All N

N*

NO LABLA E 29A h h h pr es2o

'>]G L t, A Fred dr< fle f"\\

M

[Wt Alo sc BLAN BL A>l, h M

Uck No JGLAn y*

(Ampsc 9& LAs A ftrb&el flu {dsss>4C)

Ml UVU F T-on l

& A P*

s.

Spurious setuot don concero onIy.

b I b.na h t' R wG ( W h Nhf I LB U ni f T - cS g.

N(.s Euf tt

\\

uuu

-- fr-un, 16 tue 3feedd et.,pe) ly/#')

N iM No farA pt bib kp '4 Feuli i% (Awak nyA N

Hu4 A*

tAdlRE 3%

Slb k M fkk.4ecik bhek))

nj$

H IM No HMAE 39A y,

Fr-wio

)), FT-ch'1I f

x A

A

9 e

TABLE 9.5.1-1 (SilEET 32 OF 38)

Power Hot / Cold C.R.

Iire location f ee Numbe r Qgicription SSD IP.M 1RN/CHL Shutdown Isolation L3rg Aree F i re zog 1-1604-QS-PSI Process protection set 4 (28)

A 1

Both N/A IC81.1 A 105 1-1604-QS-PS2 Process protection set II (28) 8 2

Both N/A 3CBLIA 105 1-1604-QS-PS3 Process protect son set Ia (28)

A 1

Soth N/A iCBt A 305 1-1604-QS-PS4 Process p htection set 8V (28) 8 4

80th N/A ICBLIA IUS 1-1604-QS-PPI Bar protection channel I (28)

A 1

Both N/A 3CBLIA 105 1-1604-05-PP2 80P protection channel 18 (28) 8 2

Both N/A ICBLIA 105 0

1-1604-QS-PP3 BOP protection channel 815 (28)

A 3

Both h/A ICBLIA 105 1-1604-Q5-PP4 90P protection channel IV (28) 8 4

Soth N/A IC8LIA 105 1UI-13134A Liquid plases display (28)

A 1

80th N/A IC8LIA 105 108-131348 Liguld plasias display (28) 8 2

toth al/A IC8LIA 105 h

1-1623-05-006A Display processing Unit A A

1 Both Yes IC8 TAC 91 s

1-1623-05-0068 Display processing Unit 8 8

2 Sogh Yes 1C812E 1338

1 M

1-1605-P5-SOA Shutdown penet IACPSDA A

A (30)

Both N/A IC8 LAC 103 1-1605-PS-SOS Shutdown panes IACPSOb 8

8 (30) 80th N/A 3C8LAL 98 b

1-1605-C5-AS:

Alternate shutdown indicating 8

2 Both Yes IC8L2E 1338 panel 28 1-1605-QS-SPA Solid state protection panel-A A

A,B,C,D Both N/A 3CSLIA 105 1-1605-QS-SPs solid state protection penol-e 8

A,S.C,D, 80th N/A IC8LIA 105 1-1605-05-sPC Solid state protection panel-C A

3 (30)

Cold N/A IC8LIA 105 1-1605-OS-SPD Solid state protectlen panel-D 8

4 (30)

Cold N/A SC8LIA 105 g

3-1606-56-002 Reactor trip switchgear A,

8 A,

8 HOT Yes 1CBLBA 69 1-1601-U3-T03 Terminatf orrcabanet 1ACP103 A

A Both N/A IC8tAK 95 ggg 1-1601-U3-T04 Termination cabinet 18CPT04 8

8 Both N/A IC8L28 320

$yj 1-1601-U3-T10 Termination cat inet leCPJ10 8

8 (30)

Both N/A 3C8L28 120 bbb 1-1601-U3-T15 Termina tion cabinet 1AcFil5 A

A 30)

Both N/A IC8LAK 95 f24

)

unu WeW y

-US l-Il%- GS-IknS AMMC (b d Nld )

N N*T LCBild lof b

'a

==m MSO 1

on

r v7s - i r7 l

INSERTS i

l 1

E)

Automatic starting of the Train 8 motor driven auxiliary feedwater pump 1-1302-P4-002 may occur due to fire damage to steam generator 1 and 4 level transmitter circuits or to the feedwater flow transmitters associated with 3 out of 4 steam generator loops in this fire area.

G)

...or to the feedwater flow transmitters associated with 3 out of 4 steam generator loops...

H)

..or AMSAC autostart...

I)

FT0510 - S/G Loop 1 Feedwater Flow (AMSAC)

FT0511 - S/G Loop 1 Feedwater Flow (AMSAC)

FT0540 - S/G Loop 4 Feedwater Flow (AMSAC)

FT0541 - S/G Loop 4 Feedwater Flow (AMSAC)

J)

FT0520 - S/G Loop 2 Feedwater Flow (AMSAC)

FT0521 - S/G Loop 2 Feedwater Flow (AMSAC)

FT0530 - S/G Loop 3 Feedwater Flow (AMSAC)

PT0531 - S/G Loop 3 Feedwater Flow (AMSAC) u, w m

__-.w.

g _

L

e bI M. (. '. 'f.*

.4.. 49 4 L

TO.

b ro.

....u.-.,.,

k uu.

a m,C v

-4 u

.a

.. a.,

HE r0

-&. J

....u,..

see tn c /,.

,1

_.D

'f'";:.'.

7::"t.,

u......

~. * -

cu

" ;:::~'

sa...

.u

.. A aa

u. =..J

/s/2, n

u..

.a

=

__m U-rO

,,.i 2.".,*e rSM r

l l.. rO

. n...,.c. eme u..

,n m,,ca

_g

!.S r0.

m-

t..u.c i

--& p_3~~

un..u.,u.

- r0 m 10

...n.

., v, ru..

u.

v

u..u".

....a w.

-EED

.u.s."*

r0

..u.~~

c.u.

v. - a ur. es,s
u. u... n s u y

+u. u, ne uau s u, O

s..a.e.,

4u,

..,..o t rO

}-

9".,,,

,.' I

.... o. t..a rus...au o g' d

m

l.". *:~~

-?.;'.!.~.*::4 e..

pg u.,. : rO aa.

v-....

~

... =..

~,,.,7, r.1.

.....v.

bA.*.

..a g

V: a.

8'*****.)

ene. *w...

t g

.a.......,

o a.se

,E v

..D 9 4

. ne

. g.es 1

.e e%

C

~

9...o....e

't

--O m..,..

s.u.

a q

e.

yyg e -sus m

9 se

  • . a.. **. 4 p ie
  • ,g

., e r... r se I=

-u. n,..e. s

.. =.

v

.....n.e...u..

..u,

..u.

..c..

u.. g 5

.*u.~~.*.u.=*.*

.e,."..u.".'.o..

  • ~

~-

.*~~~s

~. -

1. I E

w a n r.* m r e-W i (i c.xt+d *1 ; a..'.:.,L.11~.";.'.' ?'.".77. '.". i

.. ". =.c.....

~

n A e. In 1

c-p

<y f, 2 e f 2.

.a =,. = #.. "..~.~ **

g_-

......~..u.u,...e."...

u

.....-..o...

.o

. *';,'7t.

u....,a agn..,

u

.....c..

r' -;.r..
r.t.e.
r.3

.. u. u...

u.. u.s.,........ ~ -

,,=

a. r......e. -

g

. u n

z,,a..ur vs. s.a C

a a

7:::':".ca.~.,H'D-n i;

g l'*

..":IL':.' F-aD-E, L*J**n" ? ".".2. HID-p.,..,a.,.,..n

.T.,'t.L. e.t,7.., x..$.g,, _p... 3,.

f,* ! i

.o C

.a.-...

n a.a. a.n..e e,4

o. ~...,..

o.

-u e

,o-p

. es....r u

......u.a.

...l.

. A

~

9. G E.;.' *In-3-mara F_E K,. sic-W.,.e.

L uK 5

.u. u

kh R
#7.';'? '.*A*rGD-
  1. u"'t;;'A N h

4

,yootfuAnod pon lxs'ud 205-l

~

/, / af 2 co a d oivares (s.g )

t4 Y OC 4YS TEM _.

(#C 24 V AC. 6044 ENC ltSV D.C. LOS4 l

h SPEED BELOW 75 % W.

k--- m i A

AATGD SPt80 O

Q J

REACTOA 1880 nFAWn &

e orM.60VM MMutt.

n 3

M artyggma M*

.?

0 034tc GENGAA10AJAt?4I530 ne nota]

=w

)

/s ~,

'*El C '" W "QF k)

SACK-UP 55tREPND TAIP(

b-- h ~R _ _ _

}

oonetc.

sH

~

BorH SP660 4tGHAL LOSS o.oa (c.

f QMCS, HANMNITCN n

MAtitA VAIM N t

QMcs MAN 04NorcM l

l MAarka Rese7P) y caost rArn Exc tesy oc into sus (tun Osc Enemozco l

l l

l

,_p.,.,,__

m.,ww.,wr,.. -, _

Bo bt f c,4 71od t'o /L

/ x Sbdto 5 -j

/

,o. a o 1 2.

C0 0 R b t M Ay gi

( q. S j A Qh*CB Lowen w wsytaMems 7

O musesa. A#.64as(uo4 J

g 10wsA THaust stG. inte TEtTW h QMcs uma vnent samme.

M1LORS F4 64ag( 4(os sb---

4 uma rnnuarsne. rair rustF--

Q

, -- -,,. n c l

. cac)testse.

4 F?t*.

am me, rw enreM PM RS GON N = 64,08,( 6440 f---

GEN,.CIACdif. ANA. OPEN f--

~

MECM.TAIA3Mf...NO PAEts. W A

.6 4 0 Q t

4 I

e 9

.m.

6 VEGP-FSAR-14 TABLE 14.2.1-1 (SHEET 6 OF 6)

Test Abstract Title FSAR Paragraph Thermal expansion 14.2.8.1.103 Power conversion and ECCS dynamics 14.2.8.1.104 Remote shutdown 14.2.8.1.105 Reactor trip system and ESFAS 14.2.8.1.106 response time Extraction steam 14.2.8.1.107'8' Condensate and feedwater chemical 14.2.8.1.108'1' injection system Proteus computer 14.2.8.1.109 Equipment building HVAC and 14.2.8.1.110 piping penetration (test deleted) l Steam generator blowdown 14.2.8.1.111 processing system Main turbine system preoperational 14.2.8.1.112 test 125-V de, Class 1E minimum load 14.2.8.1.113 voltage verification

__y

\\ H. 2 v.

1. IV\\

l Tne notes below identify how the test abstracts are being imp'emented on Unit 2.

These notes also identify where acceptance tests will be used on Unit 2 instead of a precperational test as identified in chapter 14 and other chapters of the FSAR.

(1)

This test abstract will be performed on Unit 2 via preoperational test (s) on the safety-related portions and acceptance tests (s) on the nonsafety related portions.

(2)

This test abstract will be performed as an acceptance test on Unit 2.

Any safety-related item (s) in this test abstract will be performed in another preoperational test.

(3)

This test abstract will be performed as an acceptance test on Unit 2.

- - Nr tOS (M i c. j s. J ' l t ;in, t colt <' :n'"i E D"d Amend. 10 9/84 Miliga i lc n M tem A< l ua f.en Grcn;h r e Amend. 15 3/85 Amend. 35 3/88 V ' A.l < ' n, ',. )

=

c.

VEGP-FSAR-14 3.

To verify that the voltage available to 125-Vdc Class 1E inverters and power-operated valves exceeds the design mimimum.

B.

Prerequisites 1.

Required construction occeptance testing is complete.

2.

The 125-Vdc Class 1E inverters and power-operated valves are operable.

3.

Required load test devices are available.

C.

Test Method 1.

Each 125-Vdc Cl. ass 1E inverter will be loaded to its design capacity and the voltage drop from the battery to the inverter input measured.

2.

Each 125-Vdc Class 1E power-operated valve will be operated and the voltage drop from the battery to the motor or solenoid measured.

3.

The minimum available voltage at each 125-dc Class 1E inverter and power-operated valve will be determined from the measured voltage drops and the battery minimum voltage limit.

D.

Acceptance Criteria 1.

The minimum available input voltage for the 125-Vdc Class 1E inverters equals or exceeds 105 Vdc (paragraph 8.3.2.1.1).

2.

The minimum available input voltage for the 125-Vdc Class 1E power-operated valves equals or exceeds 100 Vd1 (paragraph 8.3.2.1.1).

> insen t 1.

14.2.8.2 Startup Test Procedures i

The following are the test abstracts for each startup test listed in table 14.2.1-2.

)

l i

Amend. 15 3/85 Ametid. 16 4/85 Amend. 17 7/85 Amend. 22 2/86 14.2.8-119b Amend. 34 8/87

o.. '.. -

i i

Insert'1 New Test Abstract 14.2.8.'1.11 ATWS (Anticipated Trip Without Scam)

Mitigation System Actuation Circuitry (AMSAC) 4 A.

Objectives 1.

Demonstrate the capability of the AMSAC processing system 4.

to perform the required logic and timing functions.

2.

Demonstrate that the AMSAC system produces the required output signals in response to specific input signals.

B.

Prarequisites i

1.

7300 Process Protection and Control System is calibrated and available to the extent necessary to provide the required input signals to the AMSAC sys+em.

C.

Test Method l

1 1.

Internal AMSAC tasting will be accomplished to verify 7

input, output, setpoint, timer, and logic functions.

1.

Overall tests will be accomplished to verify correct AMSAC output trip and actuation signals are generated i

in response to specified input signal levels.

4 D.

Acceptance Criteria 1.

The AMSAC processing system performed the required logic and timing functions.

I 2.

The AMSAC system produced the required output signals f

in response to specified input signals.

l I

i i

I i

I

.-6 VEGP-FSAR-15 15.8 ANTICIPATED TPANSIENTS WITHOUT TRIP facts of anticipated transients with failure to scram i

not cons in the design basis of the plant, Ana as

(,

shown that the ood of such a hypotheti ont is negligibly small.

Furt e,

anal the consequences of a hypothetical f ailure to ser wing anticipated transients has shown o significan e damage would l result, system.

pre'ssures would be limite captable i

values no failure of the reactor coolant system

(_

/\\

.TAlS2 RT l

The worst common mode failure which is postulated to occur is the failure to scram the reactor after an anticipated transient has occurred.

A i

series of generic studies ct ** on Anticipated Transients Without Scram i

(ATWS) showed acceptable consequences would result provided that the l

turbine trips and auxiliary feedwater flow is initiated in a timely manner.

The effects of ATWS events are not considered as part of the design basis for transients analyzed in Chapter 15.

The final NRC ATWS rule canrequires that Westinghouse designed plants install ATWS Mitigation System Circuitry (AMSAC) to initiate a turbine trip and actuate 1 auxiliary feedwater flow independent of the Reactor Protection System.

The Vogtle AMSAC design is described in Section 7567 l Y.

\\

{.

(

15.8-1 r

> +

1 VEGP-FSAR-15 REFERENCE i

1.

"Westinghouse Anticipated Transients Without Trip Analysis," WCAP-8330, August 1974.

[*

, T. M., *Ams Subnittal,* % Istter NS-99.-2182

\\

to S. H. Hanauer of the NRC, % un, Ab 3.

ANS Final mie - Code of m W 10 QR 50.62 aM IW Womatim Packznge, "Raduction of Risk h j

Anticipated Translants Without scrum (ANS) E'zants tw

(

ught-Wateled Nuclear Ptwar Plants."

I I

+

i l

15.8-2

~

.__....---._-._~..._,.,...~...._.-_.___-m__.-,_.m._..,

...r.-.._,,,,.,_,.-._.-m.-...-~_.._..

..,._m,.~_..

..