ML20138Q285
ML20138Q285 | |
Person / Time | |
---|---|
Issue date: | 11/07/1985 |
From: | NRC |
To: | |
Shared Package | |
ML20138Q140 | List: |
References | |
FOIA-85-481 PROC-851107-06, NUDOCS 8511180054 | |
Download: ML20138Q285 (800) | |
Text
{{#Wiki_filter:.v,..x...- .z. w .% .A . . . ~ ,. .> -x - + .n . . N . . .,N_
. - . - .N . ..u.. . . !- --a WELDING TECHNOI4GY AND CODES m . . NRC -
CONTENTS - VOLUME I l t
- 1. onJECTIVES - COURSE OUTLINE
- 2. BASE MATERIAL 1
i J 3. FUNDAMENTALS OF WELDING lI 4 WELDING CARSON AND 14W ALLOY STEEL i "" J, 5. POST WELD MEAT TREATHENT - i 6. WELDING TERMS / WELD JOINT DESIGN ~ _ i
- 7. MANUAL METAL ARC PROCESS l
i ! l, 8. SURMERGED ARC WELDING i ,3
- 9. GAS TUNGSTEN ARC WELDING
- 10. GAS METAL ARC WELDING
- 11. CEFECTS IN WELDS o
0511100054 051107
< PDR FOIA HANAUER05-401 PDR 4 ~
I 1762j i 3 h '
* ' ' ~ ~
.c.
_ _ . . . . . . .....y....m.o; . . . p._-
. . . . . ..u-- , . _ _ _. ,_ ,. . . _ _ . . , , . _ ,._ _ ;,.. . ,_ m ,. __, g g pu ~ -- OBJECTIVES GENERAL COURSE " WELDING TECHNOLOGY AND CODES" .
o ORTAIN PRACTICAL AND TECHNICAL UNDERSTANDING OF FABRICATION OF METALS IN NUCI. EAR CONSTRUCTION e UNDERSTAND THE INTENT OF ASME COCE REQUIREMENTS GOVERNING
, , ._. _. __ -- .u. ~ 1 t ~
.; NUCI. EAR CONSTRUCTION AND THE REASONS FOR THEIR EEISTENCE 4 4
- i f
t e UNDERSTAND THE METALLURGICAL BASIS FOR CODE REQUIREMENTS GOVERNING WELDING AND MEAT TREATIhG e GAIN FAMILIARITY WITE WELDING PROCESSES USED IN THE SHOP AND
- THE FIELD FOR NUCLEAR CONFIRUCTION t . .
J t I 1 . s 9
's - _ . - ' ~i.7 % ' ,, ,~ .7 1
_ -'s. _
._ . _ _ . . _ . . . i . , _ _. . w . . ,._ . 4J M .d ha am 9* ~! . #I .g ) ./ %
a
^?
i
.I 'J l
4 4 i 3 5 - thTERIAL.S OF CONSBUCTION i PRIt%RY ltTAL Paocess
; IhSICS CF l ITAL.LURGY l -
itATTREATENTS .. .. .
- .1 '
A., TesTirE OF IhTALS . . a.
.-e . .
e , ,, 4 - Fla.o SERVICE PROEss
,.3 -,'g . .l
- .j li ,
e
'#2 '1 - - .'l,
- s 1
J
- 1 .
c. a *
.i ~.1 Il. .
u.e, . O (< e at
.= y .... .- w e - ,,w.&we - * - , -e-
[ _.% .
.s_.__..___....,.__.... ~ . . _ _ _ m_.___;..__.__.............._eu.' .i i e 1 j . i 1
4 I m . d .
! Pres 3UtiZN b Saa 630 psiS03*F i .t g .} ' ~
I i e% . I T/ . , Ql cie. man i I I 1
- I.
i usa w. . , ,
' ' -Fed $$3 ; I a 9 j , , ,,
Radz N"* - '
; Generair kM I in I ,m um 9
1 i j . C .*.dt*2't
') ,J L i L. ~~ *
- I'.'33/ C40f,2:3l4 PG) _ _
'j FIGURE 1 g . Pr essurized, Water Reactor System ,;. , . . .
9 FIGURE 2 Boiling Water Reactor System _] 3 r, ? I sus 1,000 psi 546*F 1 i 1 i
- t p% r, 3 liair Osanwalizu futin 1 m ./
l1 Rects i1 g j, -- -. l-
;j
- CMdt:34ft
b*' f q . (f* l<1 . \* .
.;- _ - - . . . . .. . . _ . . .. . . . - u x l' c i} >. ,,1". . ..r . . k n.A .
A i
~ 'i , ,(
i 's . o "1 - -:.1
'. l 6 1, -
e e _ . . . - - _ . - 4 9
- .{ -
-]
Q p,we, c , r, .,
$!n 590 ;n 503'1 4
1 .A j #% bd i i Desintarge k J Q ' Ittkat
.; !!!I " 2,250 asi Id 650'T , .
f i hl:*2f - i
%d Gestats l4 ama m
- .,.a .
I Cdtt14ft J h (
- % 8,.,
FIGURE 1 Pressurized. Water Reactor System
~3 ,
3 4 4 . . 8 3, a* 1 1 i . a l l - . b
{ ' l.u _ '
. ,:. : " . .i>.& _- .xd. J. ..i . . i ~-- . . - -
i w
~' ]
EXAMPLES OF COMMON
- MATERIALS OF CONSTRUCTION 1 FERROUS METALS .
Carbon Steels - Least expensive
} ~I SA 516 Plate i
i SA 106 Pipe
..g .is SA 508 C1 1 Forgings ,
,; Low Alloy Steel - SA 302 Grade C - Plate [j SA 182 F22 - Flanges, Fittings h SA 193 GR B Bar Stock . . . . _ b
') <j ~. ...;
f9g Stainless Steel - SA 182 GR 304 - Forgings -, . - - - x
j SA 479 TP 304 - Bar -
c.i }j SA 312 TP 30!. - Pipe t NONFERROUS - Most comon Constructional material f 3:
- I 1 Inconel 600 Alloy a
~-l SB 166 Forgings & Bar Stock SB 167 Pipe & Tube - }
r SB 168 Plate 2 I [i .-- a , k li.
- ij 1
l - a
.j; -
i I__ _ . _ ~ ~ _ . . _ . . . _ . . _ _ .
- _;. 7 .,; -
.W_ . .. ,c.,._. . - . .. i M S' t ? , $. . . u- . .__ .. .
1 f. ~1 . 1 i s: 3 PROPERTIES COPfiONLY CONSIDERED t .
; IN MATERIAL SELECTION 1
4
.i
).1 MECHANICAL - Strength: Yield & Tensile
- )
3 i Ductility: Elongation & Reduction of Area n 4 . 71 Toughness: Charpy V. Notich. j Drop Weight i 1
.k a . .i PHYSICAL - ModulusofElasticity i Thermal Conductivity
- l
;fi Oensity i!
a ,.._ . - ,_, ~*- .
;i . _ . _ . _ . ' "~ ~
d - Corrosion Resistance
- )
u
~b
!1 OTHER - Cost Availability El i 1 Ease of Fabrication i
- o. m 4
I I i 1 -
.i i .
.-~ - .. : - . l - . D. 'n . u A. * -a.- -. -- . . . . .
G , - ). . m
/
t- , l
! Doctrode ,. . ugg M .a f ;r.
c.cfme v.e,r.d.
.j /\ " d
pjf m - W J."e',Gy w
.I I I I 9/3 . -l ; 5$V .<.a.
- . g
$*. . . . . m y Door !)
k 1 S 4 94 ,. , l :s ,,.m - - 4::i:% : ,
- l 43%.h _ Monan _f " ";
jf " * -
;j Pivot , '$,$3f3 ',
j,. g J ~ </ ?4.FliSi$EAirhi:isidi$;($!! ,g[^ 72
! / 3f,' - , o < ' ~ - - - '" // 4 - a - - -
1' Tut *mg Mechens.m i 1 Heroult Type of Base Electnc Art Fumace. It has a
- tilting mecharusm for pounng off refined metal. Top and elec.
traces are raised and swung out of the way for charging. h 1 4
, 2*
1 m ( i
. u.m _ ._ u . m . _ . . -- --- --- --- - - - - - - - - '-"~ ~
f* l a i ' A .
,.j ' .i 3
e
) .s ,, e-9 1 /] ,3 ,
L< PORT E xNucxLE MAIN KNUGXLZ dj """th$L 1n sumeArcar - __ .n s-WT/d - 4.] 4 kk ly
.._,_s ,.,_f- D-....- =="r=HEARTHE1Li4?%E444*E97 4 /# ,A BU#Sht rgo NI
__ _b N N / 8 b y f SLAG SLAG
.> POCKET PoGMET ' ~_Ws99 // ) .)
Ooen Hesqh Furnace (not drawn to scale) A both of metal is cames on its bes th. white f!ame is of eyed over the bath surface and
-, beat es reneeted from the reverberatory roof. Checker chambers (not shown) preheat the incoming air, and,the.metat is tapped from a hole in the s4oe et tne furnace at hearth level - -
(,:0. kk$p..:. 3 z g w.%;4{ m di
,P - % Front won .f. n.s..
- ).. Door kh5 W gock won 4.(?
\l ' ' ' 'pk i" I'; fjhh,E_ 00'h _fjgh, XkTop Hole lJ I f.8. ,'
'" ;j ; $ ..... .S .. ~Ej /
Removable l '. ' a:4a'@I;fS5;.4.H**ffDM
@s@j,4p hi$%g4 j#$. ^&8h. .[.ik!SS ,. ,f,5$S5'i iSid$h.]h':i56@i5.ji'"Nb 48 Topping Spout $$$ BET 2':.:d;: i.1_2@5$@iSR 6 ')*
i, Vertol Cross Section of a Modem Open Hearth Fumace Through the Tap Hole. i'.(i b 1 0-A f4 i i g e 4-
?;
9 g j ' EAsIc 0<YGEN STEEL lhKING HOT METAL CAR BLAST FURNACE CHARGING h,,s:: i y
, ,e ~$ SCRAP , ,, ,
gA
' - ~
a mQw te p4 r a yA pag ,r- e ,
*-/C . - , , , . . , . .o. ,, /
g q g . . o, . . ., o, m g io i c.c, ..
~
i # I....." ' b,h! CHARGING a 1' ka
. r. 7'tL c . . . :.
4 HOT METAL 3 wm ee a , .,, ,,,... .s HOPPER
.. , ..s.. c., Q a . %.
s .,
,.g -'" .'\R
,g : ~'
=., z
- . t \s r%
+! rest.o, s,.o. ,-.,m.hes
. io nut of..s.t e in , ...n. ory- \, s 3a Am -, .o ,, < v . . . ~2 on irua.oa. \ e ADDING % .::g.t- a. d,i on .. . ~,, . o. .= _
m ..: .sh :. - FLUX '
';;g c.'l_~.!p ,g:$n 1
- 3 n . .? i:... . .r' .4 .s.
r%. u .. ...;q,r; nr n a.a _ $ t
.. . 5. a Mo,'.n pg rom t .dd.d nort Procor%on of f,ot $*,
a . . , ,. , ro sa.e .ae pour.d e,om tr.asoort
- . or .. , g C
g 9% m.tc.sy to tr.new t.ea.. hoeas up to 250 toas- ' 6 Ig'* { BLOWING ;g.t.'. 37"; #4f-;p*' 1 [ d WITH OXYGEN LANCE 'i.3/sgj q OXYGEN
&g g-v . i .,e w a ,, i an.,-,.p.e.,ooi .co,. . e .,,-i.,, c.n..n ... .~,
WATER -
',3,. y r; _
WATER TAPPING -. aoa r ace to =~~ ~ - i! C ""'"" '"****'" COOLED COOLED THE STEEL c! HOOD LANCE (4 'i , an- c.cn.. ,,c ~ . ,
.so .,. ....,, ,
TAR BONDED d Tr **' "'""'"*" '" '"**' S'"' *
- 8*u'a 'ato rao'e s .ad D MATERIAL ** * "* W W "8" DOLEMITC JT (VY[ *3 Q,'f BRICK $ .
CHEMICAL l1 3 d ',.O-6 l }s M 2"" CONTENT i i $,p'%, s k e y #* , ADJUSTMENT l : 19.. . : f / l1 :N..,]f$2,.?e, j% RAMMED
. J TEEMING
'i MAGNESIA BRsen MA AL . 3 y a .39.g. ::.2:. . THE ln993 E
!
- e -- ,, - eno,- a o, euo
*55 '".a , c. ~ ... .., .a aow, Mooe conesets s.in is cm.n,r e systen. .,i.cn ,.mo es most fo,egn m.tte.
4%~g W:/.48fM
- M @7 i
i y. i , M Q
! . w -
w w u i.:. d
! l
- ~ - - - - - . . . . . . _ . . _ . ._. _ _, m . _ . , . _ __ ,_
q < l CLASSIFICATION OF ' DISCONTINUITIES ,
\
s Discontinuities are clas alfied by location and origin. 4 LOCATION O RICIN _ Surface Inhe rent ! Subsurface Proces sing
- Se rvice ,
i - A. Inherent discontinuities in the ingot are introduced into'the basic - a material as a result of its initial production from ore to raw components. 3 1. Shrinkage O * ]'f
. i * "* e'
- 2. Blowholes.
f . e
's
- 3. Inclusions y a
- 4. Segre gation \\>*
2 These discontinuities generally rise to the surface of the ingot and are j cropped off at the mill. .. , I
']
- 3. Processing defects fall into two groups: .
. .. _ w .
- 1. Those introduced during primary proecssing as rolling, forging, etc.
i
~
- 2. Those introduced during finishing processing as heat treating,'
j grinding, plating etc. . i
- C. Primary Processing - Rolled Steel b
- 1. Seams - Origin: Cracks and lowholes in the ingot.
l Lo cation: Surface of billets and bar stock.
/
l a ,
! l l
i )t I:.
- 2. Inclusions - Origin: Impurities in the ingot . .
Lo cation: Internal in the billet and bar stock . c /2 o
- e ! 1 l l .e } ,-e, ,.,w -, , , ,
'. ~ .. . .. - ~ , _ , :, . . . 2;_sja Pago Two u -
QLASSIFICATION OF DISCONTINUITIES _(continued) ,
- 3. Pipe Origin: Shri'nk cavity in the ingot.
t Logation: Crack down the center of bar stock. , i I 4 s
^ i 9
1 . p 3 n :. x .,g ' ;
)I ] -
i
) /, 2 ) .
s t l 4. Elaks - Origin: Cracks due to too rapid cooling after rolling. Location: Cluster of cracks grouped ar.iund center of
] t cross section of bar stock.
- i. -
/ ,/
I I
~ -
Bar Stock _ Machined
- 5. Cupping - Origin: -. Uneven temp. between surface an' d centor of stock during rolling.
Location: Internal {
/ l ] ,
i l I ~ 1 j 6. Lamination - Origin: Shrink, inclusions, blowholes etc. in I ingot when rolled into plate stock. Location: Internal, found best with UT.
* /
4 ,,' j
/ ,1 ,/ -
l t ,I ~ a. N_/ - IA . - l-r. side view top view , f
.a
^ . ; 1 . :.. a:5x. . . . . . ,. . . .::
Page Three
, CLASSIFICATION OF DISCONTINUITIES (continued) .,
D., Primary Processing . Forgings -
; 1. Laps - O,rigin: Poorly A111gned dios. i j Location: Surface.
1 l 9 q '
- l, . 'i . .i
- 2. Bursts - Origin: Temp. of metal too low for forging.
Lo cation: Inte rnal Ruptures '
.i 1
1 i h Y
+ - ;-- . . . *\. .; , y- -
3 __/
.j __/ _ _ _ ;~ ~ . -
i
- 3. Forging Crack - Origin: Forging with excessive pm saure.
Location: Surface. 1 z? ll ( 3 l r
^3 . Y &
i ; 4. Flake - Origin: . Cracks due to too rapid cooling of metal after forging.
, Location: Internal grouped about center of cross section.
f [ l l -
.c 9
e I
. i
? l l e 8
, . .- _ , - _ . ,. ~ ,_ , , _ _ . , .- , , . ~ y ,- . , y y - ,
- - . i. ~ . _ . - , . __ ._l . 3. .awv..u a.: 4L.L.L;..:.w *A 2752P s (
l l
, Burst: A subsurface defect in forgings due to the rupturing of the metal when ] it is forged at too low a temperature. ! ,i Cerrosion: Chemical or electrochemical oxidation of the surface of metal -
d which can result in loss of material or accumulation of deposits. 1 *
'j. Cracks, Fatigue: Progressive cracks which develop on the surface and
,a prcpagate inward by the repeated loading and unloading of.the part. j Cracks, Forging: Cracks developed in the forging operation due to forging at too low a temperature, resulting in ruptures of the steel. r Cracks, Quenching: Ruptures produced in the hardening of steel due to more rapid cooling and contracting of one portion of a part than occurs in adjacent ,] portions. Sizeable changes in cross-section and sharp fillets are problems. 3 Flakes: Internal ruptures found in ingots and large steel forgings. Associated with rapid cooling rates and often the presence of hydrogen. Hairline Seans: A discontinuity caused by & void or crack in -rol-led material-
-parallel to the axis of the material which although closed is not welded.
h Innerent Defects: Defects introduced into steel at the time'it originally 'i . solicifies from the molten state. ,
-i.
1 Laminations: Discontinuities in plate sheet or strip caused by pipe,
']
inclusions, segregation or blowholes from the original ingot; usually flat and parallel to the outside surface. lj l}7 Lap: A surface discontinuity due to folding over hot metal, fins or sharp corners during rolling or forging. They do not weld to the rest of the metal. O Magnetic Writing: A nonrelevant magnetic indication sometimes caused when the
- , surface of a magnetized part comes in contact with another piece of 3, ferromagnetic material.
L Non-Metallic Inclusion: An non-metal substance such as slag, oxides etc. ,j which are trapped within the molten metal as it solidifies. 1:; Pipe: A discontinuity found in the center of ingots or rolled products that l ]' l are caused by skrink cavities in the original ingot. lj Porosity:' A hole produced during solidification by gas, entrapped within the
- a a metal. -
e G lj < l! e [ I [.
~ ,,y- y. ,.
7 ,., = ,, y ..
- _ma
* - - --- -- m a-~.a~-~, m ,. .. .- . 5-- i + - ~ > .-v~.-*
- s'-- .-
/D *w I6 a
t
'j . :
2 T
'.1 .' I'EIDE@ ?
i
^ ;1 4
1 4 ATms h 6 i'blECULES 4 a CRYSTALS ii
)
- I ALLOYS i
a i HEATTREABBRS P + 9 I" . ~
)
v i c-l 1 l
~
i . I e
~ ~ - - - -+ - - <= - y.... . , , _,
a._.-_ ...._u_. - 05 i , 9 Atomic Weights and Atomic Numbers of all the Enown Elements (
-1 Elements Commonly Encountered by Elements Rarely Encountered by ; Metallurgista Metallurgista "* "* Element Symbol mate m ate Element Symbol 1 Wettht Number Wetsht Number
, ; Aluminem A1 26.98 13 Actintum Ac (227) 89
, Antimony Sb 121.75 51 Astattne At (211) 85 Arson Ar 39.95 18 Costum Co 132.91 55 a 1 Areente As 74.92 33 Dyeprostum Dy 182.50 46 j i
Bartum Ba 137.34 56 Erbium Er 167.26 88 i Beryntum 3e 9.01 4 Eurcpium Eu . 151.96 g3 Bismuth 31 203.58 23 Frascium Fr (223) 97 Boron B 10.81 5 Gado11atum Gd 157.25 84 i; Bromine Br 79.91 35 Galuum Ga 99.72 31 Cadstum cd 112.40 48 Botatum Bo 164.93 67
} '4 Caletum Ca 40.08 20 Promettdum Pm (145) 81 d Carbon C 12.01 6 ladtum la 114.82 49 Certum Ce 140.12 58 1ridium 1r 192.30 77 -] Erypton Er 83.80 36 'j Chlortae C1 35.45 17 57 'l Chromium Cr 52.00 34 Laathamaa la 138.91 t Cobalt Co 58.93 27 1stettum 1m 174.97 71 go (I; Columbtum Copper Cb Cu 92.91 S3.54 41 29 Neodymtum Neon Nd Ne 144.24 30.18 10 . Fluottae F 19.00 - 9 Osatum Os 190.30 78 ,l Germantum Ge 72.59 32 Polostum Po (210) 84 Gold Au 196.97 79 Fraseodymtum Pr 140.91.. 59 ,
i Rafatum Ef 178.49 72 Prc toscanium Pa . (231) 91 - - 5 Helium 3e 4.00 2 Rad an Rn (22Q 86 Eydrogen B 1.01 1 Rut totum Rb 45.47 37 beine 1 126.90 53 - ~ Rut sentum -- Ru -101.07 44
- ) 62 1ron Fe 55.85 36 Sataartum Sa 150.35
! had Pb 207.19 42 Se andtum Sc 44.96 21 O Littdem Lt 4.94 3 Strontsum Sr 87.82 38 9 Magnostum Mg 24.31 12 7 ochaettum Tc (99) 43 Manganese Mn 54.94 25 Tellurium To 127.00 52 3 Mercury Eg 300.50 80 Terbaum Tb 158.92 45
.' Molybdesam Mo 95.94 42 Thalliam T1 304.37 41 Nickel N1 58.71 38 '11malism Tm 168.93 09 g Nitrogen N 14.01 7 Zenon Xe 131.30 T,4 a Oxygen 0 16.00 8 Ytterbium Tb 173.04 70
, Palladium . Pd 106.40 46 Yttrium T 88.91 39 d Phosphorus P 30.97 15 r Platsman Pt 195.09 78 Man-made Elements Potasetum E 39.10 19 A , Radium Ra 226.05 48 Element Symbol ,"
d Rhentum Re 186.22 75
- 0 Rhodium Rh 102.91 45 Amer 1ctum Am (343) 95 Lj Selentum se 78.96 34 Berkettum ^ Bt (349) 97
# 8111 con St 28.00 14 Californium Cf (249) 98 Stiver Ag 47 Curium Cm n (245) 96 lf--; Sodium Na 107.87 22.99 11 Einsteinium Es (254) 99 , haitar S 32.06 16 Fermium Fm (25D 100 Tantaham Ta 180.95 73 14wrenetum Lu (258) 103
- l Thortum 'lin . 232.04 90 Mendelevium Md (256) 101
'tia Sn 118.99 80 Neptunium Np (237) 93 l ='
Titantom T1 47.90 22 Nobettum (*) No (254) 102 l Tungsten W 183.85 14 Plutontum Pu (24 3 94 l Uranium U 234.03 92 l Vanadium V 50.94 23 (*) thle name may be changed bocasseof an l Zinc 2n 65.37 30 error by the "dtecoverer". t
, Zirconium Zr 91.22 40 i e 'i
- J. -
I _-..~_..' __[_. "['~ .f Z,._.*1',__.___ _ ,, _ _ E .. i - .
' ~ ^ ^ ' ^ . -. .....a.-.. . . ..._ .a.w. ._ ... . _ _ _ _ _ .. -. ..l. ~
d, M /\ i
? )
f HYDROGEN i * ,'j N i . b 4 1 (
.' l. . G . . . . -
a - - - j
+' Proton 1 Nucleus L Electron HELIW .i
",j N Neutron
- ,, K
, .1 c / f 4 il - . .z inner Electron - - a Shell dl r l . .] q {g K . LITHIM " ,i - nu L l Nucleus J - Outer Electron fiI.j Shell
- L l
_ ,_ m... _ . . n. __ -- " - ---- ~ s "-"~,f^~ A SimpuSed Chart Showing the Numbers of Electrona la the Various abeus of the Elements
' A'""I" Kle. BELL Ele. SHELL ment "I*
N'* Symbol 1 2 3 EL M N O JP Q 3*
- meat ELM N O P Q 4 8 18 1 Symbol 1 2 3 4 8 8 7 1 1
4 1 E 1 - 82 To 1 8 18 18 8 II ! 2 Be 2 I I 8 I8 I8 ' 3 u 2 1 H 2e 2 3 18 14 4 4 Se 3 3 88 Ca 2 8 18 la 8 1 1
' 8 3 2 3 58 Ba 2 8 18 18 8- 2 8 C 2 4 87 La 2 8 18 18 9 3 7 N 3 8 88 Ce 2 8 18 19 9 2 "i 8 O 2 8 88 Pr . 2 8 la 23 9 3 '.]- 8 7 2 7 80 Nd 2 4 18 22' 8 3 10 Ne 3 8 81 Pm 2 8 13 23 8 2 gg g, g g gg y g 3 5
11 Na 3 4 1 83 Eu 3 8 18 35 8 3 13 Mg 2 8 3 H Gd 3 8 18 38 9 3 cj 13 Al 3 8 3 88 % 2 8 18 28 9 3 14 31 3 4 4 M Dy 3 8 18 28* 8 3
, 18 7 3 8 8 M Bo 38 18 38 8 3 ; 18 3 3 8 8 88 Er 3 8 18 30 8 3 11 C1 2 8 7 88 Tm 3 8 18 31 8 3 18 Ar 2 8 8 70 Tb 2 8 14 32 8 3 71 1m 3 8 18 32 8 3 13 E 2 8 8 1 72 Et 3 8 18 32 10 a 3 30 Ca 2 8 8 3 73 Ta 3 8 18 32 11 3 11 Sc 2 3 9 2 T4 W 2 8 la 32 -12
- 2 -
22 Ti 2 8 10 3 T5 Re 2 3 18 32 13 2 L; 23 7 2 2 11 2 18 Co 2 8 18 32 14 3 1 24 Cr 2 3 13* 1 77 1r 2 8 la 32 15 '3
.j 35 Ma 3 8 13 3 78 Pt 3 8 la ' 32 18 ] 28 Fe 2 4 14 3 79 Am 3 8 18 32 18*
2 1 ST Co 2 8 18 3 40 Eg 3 8 la 32 18 1 < t 38 Ni 2 8 18 2 81 T1 3 8 14 32 18 3 '; 38 Cu 2 8 18* 1 83 Pb 3 8 18 32 18 4 '. . I 30 Za
2 8 18 3 83 31 3 8 18 32 18 8 31 Ga 2 8 18 8 84 Po = 2 8 la 32 la 8 x oe S t u 4 o At 3 8 .= = , ;; ; ; ; ;; ; 88 .a 3 8 a= = 8 35 Br 3 8 la T 87 Fr 1 8 18 32 18 8 1 j " U I I II I 88 Ra 3 8 18 32 18 8 3 89 Ac 2 8 18 32 18 9 2 27 Rb 2 8 18 8 1 i 90 h 2 8 18 32 19 9 3 38 Sr 1 8 18 8 3 91 Pa 38 Y 3 8 18 32 30 9 3 l 2 8 18 9 3 92 U 3 8 18 32 21 9 2 40 2r 2 8 18 10 2 93 Np ,' 41 42 Cb Mo 2 8 18 2 8 18 13* 1 13 1 94 Pu 3
3 8 8 18 18 32 32 22 23 9 2 9 3 95 Am .3 8 la 32 34 8 2 'fi 43 Tc 2 8 18 13 3 98 Cm 2 8 18 32 35 44 9 2 Ru 2 8 18 18* 1 97 k 3 8 18 32 38 9 3 45 Rh 2 8 18 18 1 M Cf 3 8 18 32 38* 8 3
. 48 Pd 2 8 la 18* 98 Is 3 8 18 32 39 8 3 41 Ag 2 8 18 18 1 48 100 Fm 2 8 18 32 30 4 2 Ca 2 8 18 18 3 101 Md 49 in 2 8 18 32 31 8 1 I 2 8 18 18 3 102 No 3 8 18 32 32 8 3 c-50 Sn 2 8 18 18 4 51 103 Im 2 8 18 32 32 9 2 Sb 2 8 18 18 8 i
- Nota irregularity Mamum maakt of electrons allowed: E-shou 2 N-shou 32 L. shou 8 O-shou 80 M-aben 18 i -
i , . _ _ _ . - . - - - - ~
^ '
_ _ 7 , ]* ~ - - ._ . _]_. __ __ _ _ _
- - - ,-- 1. . ,,- ._____,_
a l
^
O
'04 Lithium Atom E Sodium Atom g .
O 3 i' ALKALI METALS i 2 Potassium Atom 3
' Elements with Similar Chemical Characteristics.
The outermost shell of each of the atoms shown has only one electron, while all of the inner shells are complete. As a result,*these elements have similar chemical properties. 8 . ii l @;=- @r1 lodine Bromina Atom Atom ll ' 1 ; b
.j on i En oh PA> , HALOGENS l
II ! Elements with Similar Chemical Characteristics. The outermost shell of each of the atoms shown has one electron . I short of completion, while all the inner shells are complete. There. fore, these elements have similar chemical properues. c l5 5
" ~ + - - --+ . ,,
l.~-.__u._ .. ~#% m ....--.u.s...._.=2.u._.% . . . _ . . . . , . .. . , . . . . , . . . . . ... ,. . . . . . . . . . . . . . + - PEnson Ca0UP e The IIcetoes leos Pertedle Table et Elesmente lCe 13.00esel. m OROUPI OAOUP 5 GROWP W COOUP IV GleDUP V Ca0UP VI { t GROUP Wat GeogP vgit I 88TP""9" a S.3800 M 3 3
- a mEtages tsvinget 4 s e a' stavn.3JWat monosa 1 e see 4.003 LI e.030 cAnson seTanoEn o -
se e.ela S Is.sl C 13. ell oEveEw rt.voeusse N 84.001 O 80.00 le r 30.e0 it la 43 , }.g 35 estett toDHfti "* - 84 IS le 6 ALW9EB8Wtd StJCose Pseperglomos 31 ese 30.383 Na 33.000 meg 34.34 eWLFUn !> At 30.00 el 33.00 CsitANusse P 30.e14 e 33.0e4 e le cl 39.453 le as at 33 AR0058 POTAM CAlttWet 33 34 SCA8eIWet TITAIEWtt St M At 30.e00 K M.las Ce 40.0e VANADSUtt CNIgoggggt uansnassagg 37 3e tV Oc 44.M TI 41.00 W SS.M ggggt cr St.Se les M.M CORALT SEICKEE. te Fe 55.e6 Ce 5e.03 Nt S8.11 se at COP SS 33
""**""= M 39 ce .PE.a.
- 3. .Es.ec OALI.
oo .nJuts .e n.. Ama sE121sIWes A. .r.tstC
.. se .. = n . =
S.hotersE. c is.t [5 , ERTF198 RW M 4e a a a p Er 03.00 pub 95.41 er et.e3
. TTTWWtt 320015U94 N'8 ^ -
teOLT9DEIPJtt u . 40 Y se.es TBCDIEffUtl
- Er 38.33 CD e3.38__ tee M.M RUT 9BEWitigt Res0DHftf PAS.LADtUte 4f Te l8el Ben. son.st ph ges.es Pe ses.4 de 4e to sILVEa cag gegWes 94 se 43 As set.st TWO AlrTtteDWT ce sta.ee to SH.83 em 800.00 TELLWMute 30pereg sh lat.TS Te 131.00 t tae.se et se se 1- ev.st to g; REsflNI CEWWIf SANWet (LAISTRASIDE 13 te is Xe lat.Se Ce 333.08 Se lat.34 RAFIWWtt TA88TALW88 798s00733r asIsleWtt is n to 95
- RAllt EARTIIsl III Ste.4e ta IM.e5 - er le3.et catsutt gagNWtt PLATn8Ute ne 188.33 os nos.3 3r age.3 Te se P ges.ee 000A et e3 BAESCWIIT TBALtJUtd LEAD e3 N et As see.cf IIe see.Se Tl 304.37 N000877W 908AI11598 AeTATINE
!, ett set.te M ate.M Po piel se et es At l388l 4
[' Tg manna FRABICIWat RAmeWtt et es - et et , ACTWWtitt TIIOMWet MAN.ttADE
}t ' Its l333l Fr l333l Re 3M.M Ae l337) Th 333.M PleDTACTiteW88 WRAfWUtt Pa l331l W 330.03 TAANs.WRANIUtt ELESSENTW ,f ' es.let
et te se VI t,AsfTstAI8mt eElste LAttTRAleges CE85Wed se - et 43 Peasennygggnt Mm00TtSUtt 03 N R 8.a 838.00 Ce 14s.83 PmoteETIWWtt SAasAletitt EUItortWat 6 Pr 80s.08 lid 144.34 GApotJpquet Pio l145l em Ste.35 Ee.Ill.se d $ et Gd 891.35 en TEIISIWel et M ! es se g Th 350.08 DTerhoeUWet Dy los.te 110 0608598 ERe5Wtt TNUtJWtf to TTTEntgUti 71
! i f' 8Be 384.03, Er let.3e> Tse let el Ltf7Efttftt M et se Th 373.04 Le 314.e1 1
,, Te ActsNet etsste 08 03 } j: Actuslutt TseoIWees el M es As l331) Th 333.00 PeorAcTsesWet UnaseWar IsEPTWesigli PLetceanput AtatssctUtt se I l Pe {338l U 3H.e3 ssPlast) cUmUtf M Pu(343l Ami l343) Ces l345l I es M i DEstEElJWII CAlJPOgssRpet lee let les EsseTEWWWtt FERlWUtf les IM ! enimi et,lm) Es13Ml r l3nt 90EllDESSTIW0t NOSEtJWtt I.AgrittleCTUtd ? 395
?
- = {3w) weiml L. l:wl i
. i' r
I
- l. i
- j. i
) i !
; q g i-i . .
f .
. . . . - -_,-.,._....._.__._._l , 19 1
1 J. oo ' o o ., i No + Cl = NoCl Reaction of Sodium and Chlorine Atoms. The tendency to fill outer electro'n rings la strong and forms a basis for understanding many chemical reactions. Here the NaC1 molecule represents a stable arrangement. i
'1 i
L . .. -
] o @ o oo g o oo o o @
4
.l i
No S 3 - _ No q l Sodium Sulfur sodium
- i. Reaction of Sodium with Sulfur. - -
(_ i Since sulfur has two electrons missing in the outermost shell, it has an affinity (; for the two outermost electrons of sodium (one per sodium atom). As sulfur cap- ,t tures these electrons of sodium, th 3 compound Nap is formed. , 1 e i . t
, . . ,~- _ _ _ _ , __ ,, _ _ _ _ _,
e w h b+. . ~ . . , e -g , % .c . es 'u, '4 h' , , , , . ,g ,, ,,4 , g,,,,g g,y,, I f$ l 0
~
i 1
. f' G ,.!
- o. \
.o) ,
e i SG)lLN Uh) CH.ORINE (CL) I O x \ . We , 4 N
) (sO O . l- =
- ], esERey F,Em f '
SALT (M CL) t e REPRESENTATION OF THE " ENERGY FIEw" AROUND ATmS AND POGCUES f E 1 9 S
.I i .
I i ll .-- . . . . --.-__.n __ . - -
- .: . a. . . = . . ... .-. ..- . .. .. .. . .. -i . . . ;3 1
m iA I i J Z !
.4 $ '~4 DQ{ J ,e i
l i _/
" " ~
e w . . I ATOMS OR MOLECULES ARRANGING THEMSELVES IN A PATTERN 4 e e u I x, t
- l '! .
\ <! 1..
. . . . . __ __ _ _ . _. . . _ l
- - - - . . .. w. _.. ..
U i A - _. __--- -ym-- i
, .' ia-I 1
I O N I i i
\ w .a. -_z__
- a_._ y s-r .*
i. Body-Centered Cubic Lattice (b.c.c.) Among the metals having this crystal structure are iron (at temperatures be. Iow 1670*F and from 2552 to 2802*F)' chromium, lithium, molybdenum, and va- - - - - nadium. ._ _._ Ib A
?
Vf \ / f / gl 1
\ / / / / /
7 E
/
' -l / / ll 1 h !, // - p
; f i
j \< Face -Centered Cubic Lattice i* l4 I (r.c.c.) - ( Among the metals with this crystal -- structure are copper, nickel, aluminum, silver, gold, and iron at temperatures between 1670* and 2552*F. TWO COMMON CRYSTALLOGRAPHIC i ARRANGEMENTS (LATTICES) i I
.1 3 .
1
..x-.=..... - -. . .:. &L J.w.: u -
1 2L 1 . _ d . f t
' .i T
3 1
.2... ..v a i.r: 2 ..- . ,n .,.,. ,.. w. . ; ; .,. . .w..g. .r. .u,....,.,.< . ,.w,a c. :p g . p.: . i 6e.' 'I - .: C, '. .* .i.'
s 4. ., t . K y~ .s.- : >p
., ;e .
a-> e- ) %. b O.p;Mk.:. - . ...AM,
; . .:,, ;s:< ~ ., . ~!d 4' R.t*
n < ' p. C.?pri *v. '. i;. .- '
~
1 .. . ? v.y.\.rD.%. wz.\ r;.u. s,as ;,p:.y w,kW.@H - - 4.4; .
#[ M fay. Y **
- i.'N.:'. N..a*Eh.g.5'gd. ga A' %
..g - ,' ,)Q V' ..
a^'?1 1 : t *
.4 ._'f. ,:%. i.=Y%d, d,a .m .&;. 4; .Mjffd % r.,;. - l .03,r$'$ -:99 : .:i4 ',;. . v.-
(A) o 4 . c. . x 4 I (a) w t
, , .v ....,..,
9.; ,:g..,. .; - y 1-= . ,; ; gf. .;.fp;.,7 i. q,,w , ,, .3. - -. , .c. J .g . 7 ' % w.) J.'QJ.n .
. . ,41'y. ,g.-* -3 ? .r . -- ; . y,v i:x%. .- .rir " ' ..t .U$[.
4,r,, ..'. .:t.. vrf.j:'a. ?.T.s.t.5 .
.s y . -} ; , b. ,
u T Qi,r y,, ,gl. ~-y
.s n .W. .:i.
y
. gs. . t. y .H.. ,..* .,.. ..y, ..:y.g.y. f.*Q.; . )- .
s .,a
- 8 . .. . 4.
i,s s
, p s, ,s , . . j. , (
e ?g'-7, 9 , .+ v ,.:. 4, d
.u f 4 e. . p ,* *N (
a .,
. - .> > p,'.m.h.~ : . ,y'"".de7 . 1.j. y 39/.e W. 4. ''ii e' -:;;[,.,
si 4 (l,y A . "N ' h~ - l ,
.i . c .; af, ,F. ~CW, ; :.u: .-
s.'.,m.:.u., n .' :.s@. ,,f. S , p::
.: , - y. , , F ,: .;; ::.. ; . < ,i;;:. 4, e A g<)1, 1
- u. ..~ hj v l.
. t ', y'.,t.y
- h. .s. ,.s. . m ....;;f.; '>1,, qL 3- .'ny;;.. - p..f.4 3 .
(C) (D)
. . . . . . . . htion of crystallization by nuefection and dendritic grain growth. A, nu.
On, E grain growth, C. completion of crystaHiastion, and D, grain boundaries. b r
. -1 - ~ *A i
4
.A ? ?
(4 . 4q - c-i.-)
, . .l. - =
N e,1 . t( r.. T 4 6 l l,...,...,_,..,..
^
a2 _ . _. .u ._ _,, . _ , _. , . _ _. . _ , , _ . , . .,. . _ . . , ,.1,,, _ _,% mn 39
~
El4 -
- 1 I
.] -.l ,
4
-] o . ..]
1
. .i d 'l j l lAN IDE AL COOLING CURVE l A
o z w .J w .' w 22 s - 3
- 8 E
, 6 FREEZING - . . - ~ ] u Q
POINT aj 3r e CW m, _ e2 , i1 TIME : ,f
; Cooling Curve for a Pure Metal.
a xa ] As a pure liquid metal cools, heat is given off. At a certain temperature called the freet.
~'-
ing point, particles of solid metal begin to appear in the melt, and the temperature drop
- is arrested. After the metal has completely solidified,the temperature drops again. Just
- before freezing takes place, the metal often cools a little below the freezing point (super- < cooling). This favors nucleation, and solidification then proceeds.
- i
# o. -
- 2 .
4 i:1 N1 .
- e. w-+-+-e e we- e me.,e
.re. .
. . = . - . . . - . - .
_ - _-. .- . . = . .-. . . . . - Ad "h
- D
.k
- 11
.-i ,
i t
- s
'3 .
a . 1
- -. t\ \ \ \ \ \ ^\ \ \ \ .1 -
i~
!~ \ 'N ^\ \ \ 'T \ \' d \
N \ i !"" \ 3 7 ^i \ l \
\ \ \ \ \ '\= ,,. . = = = =
un ,. m - - ~ ~ (A) noe noo.miasc F.AI.n
,i .._.. -
M _ __
-1 -i 4 *j . .i ,
een ' 3 ; ==- i
,, t ~~^) ,.. 'i . N a f di Lj a .i N4, =s. . u ==gN ^ /'i "y
l.
, k-( l NA. = / / t' u.e.
c'"9 /
/
lb f l t ? I \ a, _...-- ;; =g.. + -
= i I j I i' s , c j-, , , . . .u . . a (si am .i-i = = a
- pescow cAsamune 1
A, time temperature coolics curve for cadmium-blemuth alloys. E, alloy disgram constructed from the coontig curves, a-l* i ,2 g O h
,,, , . _ , . , , . _., . - - -e- - - - - -
a- ..x_.- .
.- . . . . - . w. ...a.. 1 1
4 , I n.
. ,k t
J Liquid
] {'
1538 C l 2800 i isotia
.i Detto Iron 254i B'" 1394 C .
1 6
= .
l 4 .;::y._. 4 i ::J/ t, 7.-.* mo .....
. .+:: .~.v. .+v:v::. . , . .: f g _g;v.v? wm::- .?: . " -::.t.,: - -^ .'.v; ';. ."y . . . . . . . . . X- Z- g ,. 1674 u mn , w.m .,- 912 C ,
1 ,yNon-Mc9notic
,na. Iron +am. -
6 .L w TEM
,. ,u,_.w- (Alpho . sg_c Iron) a m. -;. . x f . - e,1418 --
770 C 3 . .
..e- w.w. y.y.y..:v.
1 , v.w.v. . . .w v.y. .w:v.: y:- .1 o ,
, e.w.v w.
e.w.w. . ..v.y.- .-
. v
- W .e.
, .- . .- ' . :W-ct .- e' ,'
W.w' v.v, v
.Y.* ,. . .Y.vW.v.
v.; w v.,.'w' .v.*'.v.v.v. ..v w. . v.. . v.. w.,.. ..: , ,:..v v ,e.v v, ,.:y . '. l c, .
- , . ,.:...v.w.:.v.v.y.v.;:-
- v. .v.v.
E
, v. w.v w .v v.v.w. e.v.v .w.v. ..v..v.v. .v.w..w..w..v.v w v.v..v . . . w.v.-
wv..:v.v.: v
.w.
c , v. v,,..w v.v..v.v,..v. v,..v.e.v. .,.v.. .. v. . . ..v.
.. ....,v.....w. . .w v.v.v.v. . w. v.v.y.v.v.v:v.v. v.w .v.v.v.w v.v ..
- v. .v...w.v..v.v.v.v. v...v.v.e .. .. .v..v. . v.v. , ...v.w.:.yg . ..
.v. ..... . . ...... v.v. . ... ..v:
w..
- v. .v.w.v .M.(c9netic Iron., . .v.
5 , w::::.::::::::::::;;.:
- v.A!pho ;;;;::.:::::y*:::::iron)::.e ^**^* . . . .':: ., v. .v.w.v.v. ,. ,v... .v.., . . . , .:. .:.v .. . . .. . b . . c. . .c. Y. .. . .'.^. .f'.,'.'. . . .....^,. . . .. ... ' ,,..,y,. , .. . . .w . .. . . .
v.v.wv.v:w.
.w.v w.v.v. .:.v.v.v. .v.v.
v .v.w.:.v . . :v v.v .w.v .
. .v.v.v:w.v.vw.v:y* . : -:v.v . v.^:.
w.yv..w. .v.v.
- v .w v.w.v.y:v .. v,e.-
e:
.v.w. .:. .v.w. . .v.v.v.v.v.w:: v.v. .v.v:v.w 4
v .v .v
.: w .v.e:a v v e.v.v.v v.wwv.v.w.w. ,: .v .e.ey.... ,-v.:.
w ..v.e. v. -.w. v.w .v.v .v.v v.w:.v v.w.v.v.v.v.w.v:w.w.
.w.v.:::.v:v.v. . . .w .v.v. . v:w . :v.: .e . e.y.:.v v.:
y.v.v.w:v. . .v.y/ A.y.
- w. y.:
.w.:.v.,- . . w.v.v.v. .v ,. , .w. .v. .w.v. w. .v. v.vv.y vv..v.v. , .v.v:v.:. .w :. ev.w wa.,.v.w.;lw.y.v.v. .v.v. ..v. v v.v.v v..:v.v.v .v.v.. ..v v. .v.we v.v.v.v. .w:v.v.v.v.v.v.v.v. .v.v.v.v.v.v.v.v. : e.
e,
,. . .:.vv. .v.w.v. .. v...:.w.v.
w:v v.v. . w
.y v , v. .v.v. .v,:.v..w.v.v e : w. .w
- v:w:v..y v v. v,v. . ...
.. .v v.,v.wv:w.v.v.v.v.
Temperer vee Room ,..v.,
- v :- ,y,y,.,,,,y Y y,W w wwv ^wvV, v.wv^v^v . .,..w ,w w.v.. Y- . . . . . . .,. . . . . . .,W,. v, . y^v^v^, ., .v.v., .v. .
y., . .i
- Time, Minutes
'i 1 . e c Changes in Pure Iron as It Cools from the Molten State to Room Temperature. f i N. '
! m . .. . m_ . _ . , , .3 24'
( 1 .
. l
, , i
- 1 y _ . u. # .e m-e .,,,,,,
i t 32o0;- - i
. = -__
3 ooc - r i
... - =--
up aoor 2e,\6.c - m - ~ _L-
, mova '3 , --
j s.7:c %. .. . 'g,l 2723 F -- uouso i A. 254tF # Ml.
'I --
m 2-8}4
. f :...;c}s.,.3.:< ...Q '--__ 'f: .f* .[:f., f;I' ,
l r,u .
- .M l@
'...K:"
2: is <!: 55.IN!:;4:4 :95:!.?
- N l} -
= 2coe
- .an;& h i i
-l p, ' 'Y:F? ";* ' 2.Il% l h
w
- i[ -
\ e g
r.:n. .?:.p.
- c. .;y-l l
i:!}i!.?. :.: l: !sf5 ' 'f:$- y
./l l r . e.
Q As1874 F .J .!. :3j.j;;;;;2j .j l g f?[
!* +:!$nji:?
k (IJ2!!f(( l l ' i ? .%.
; -. Y g4 gg p nldQQ4 -.a e.s..-... y d . . ,C...- :,/,
I* IFERe:TE E h0 r, A.r 0 . 'N'/. l { l j v s. . i t 3 a..a .. 4.- 'i agoo ,_ O.0 218.! O.77'd I 'i 1000;-
- 800 .
' '+**
- l u soo -
.) .
I. .j 300 : Ol/ i' O os i.o zo 3 4 - . :
;; l PER CENT CARBON ~ ,
5 s'! ,
- 1
.1
(%
- N' O 4
- O k
,.h l. 6' *M*'** -
* ' * * ' ' * ~ -T'****"*' - '''**T""'* ' ' ' ' ' ' * * * * ' - -#" '" ' ' ~ '
. 1-.
t _p.-4
.a..-.. . - . - .. . .. :-: . - . - w .- a.-.~- ), :
- 1 .
q i - a 1 4
. J =
l( 4 SoME REASONS FOR HEAT IREATING STEELS
.) -
zl 3, . l 1. IO REFINE GRAIN STRUCTLRES. l.
- 2. TOREDUCEFORMINGSTRESSES.
t t i { .. . .
, ,1 -- - ! 3. TO DEVEL.0PE A PARTICULAR GRAIN SIZE.
I o
.! t-i } .I i 14 . TOINCREASEHARDNESS.
1 i
.i 1 .. 5. TO DEVELOPE STRENGTH At0 TOUGif4ESS.
a . - I i
- 1 .
,.4 c.
?! 6. TO IMPROYE WCHINABILITY.
;f a
.1 . (/ p M .M a h3 iWW W 4 MM MT 4$ 7.2Wh h * *M MM=_ ****' "' . g. O ~ 4 4N#-9:.., -
. e w:- :.a. .. . .. .a. .,.._ w , . . . . - . . . . - .
ze t
'l .
j .
- 1
.j , 'i ]( CLASSICAL STEEL HEAT IREATMENT DEFINITIONS ,1e 4
i
! AUSTENITIZE: IE ACT OF HEATING THE STEEL TO A TEMPERATLRE IN ] !
TE AUSTBilTE PMSE FE-C PMSE DIAGRAM. ANNEAL: AUSTENITIZINGFOLLOWEDBYASLOWCOOL(I.E. FURNACE,
! PITETC.).
f I
,i NORMALIZE: AUSTENITIZING FOLLOWED BY AIR COOLING. . . . . .
i
-7 HARDB4ItG: AUSTB11TIZING FOLLOWED BY RAPID C00LIfG (QUENCHING). .{ .
i q l TEMPERING: HEATING A MRDENED PART TO A TEMPERATURE BELOW TE
'i. : LOWER CRITICAL (A.) ON TE FE-C DIAGRAM. 'j ~
STRESS REuEvita: HEATIfG A PART TO A TEMDERAT1.RE-BELOW THE LOWER '! CRITICAL (BELON TE TEMoER!fG TBPERATlRE ON A i HARDENED AfD TEMPERED PART). 9 tj
.t -
c 9 LI y v?i i.
\. .
s G
--.-m -- -- - -- . . - . - . _ . _
i .2 .;.u. .=._ : .i .a - .. : . .~ . . . . . . . . . . . .. .- . em , . ~ .
'% L L-I-
l-I' t 0.5 f.O 2 4 8 Seconde 16 32 63 12 5 250 Seeende Seconde Seconde Seconde Seconds Seconds S00 1000 ! Seconds Seconds Seconde Seconds Seconde ! i \\ \\ -
\\ \\ \1 ll l\
l >\
$i isothermal Transformation-1250*F Austenite Pearlite l l l )f I I IP l I ?
Isothermal Transformation-ll50*F Peorille '
)
I i' IQ ,. l Isothermal Transformation-lO50*F
~
h . Isothermal Transformation of 0.80% Carbon Steel. l' . Changea in microstructure are shown after the steel le rapidly cooled to 12lll0,1150, and 1050*F and held for varying times at these l temperatures. Note that the time at which transformation begins and ende le different for each temperature. :. I t t
. I.-
1 I , % Il i - , I , !-
m m_ < _ . _.._ .. .w...m_.__.... . . . . . . _ _ .
?/
i - (*
\
13 5 0 .. ..... . . . . . . . . . . . . ...... . . . . ..... . . . . . . " 1250 . Austenite , h ,)!$$^$It
, 8 A.. - ! E 115 0 - 485# , *Pt -
2 ; '; g :
,E, 1#. Pearlite a .
E1050
~ - ^
l* . t if - . s i; 950 - - 1 8 50 ' ' ' ' ' " ' ' '""
, Q2 05 1.0 5 10 10 0 1000 10,000 Time-Seconds j Transformation Times for Austenkte Decomposition. 'l These ti=es are for the te=peratures given in Fig.,14i9. CEves drawn throu;h'the poids
_j help to deter =ine sts.rting and co=pletion ti=e for trr.nsforms. tion at any te=percu.re.
'l s
E} e
.1 . ;f -
e >J d
- j i
( g" hv" 4 8 5 l .* * ., ,-.. -,- .;_
.c . .. .m_.-c,.- - .m- _ , . . . . . , ;, : , <:... _.
3L
}
1 - d
*c ** g . - l - - - A g
- = ' *
-Ldo,- -A-- I ' -
is
-l l no - I -
I i, m u anc - . e h,li+[ 1 A-C! FC g sac - 4 '. N'N
- 42 g eso s .. - N- a g ase - A '\*, - o l N .
s2 ano 3 ' p,
- i -
sr
, _, g,L._ _._,_. m.: L.1: J_ -_ __ _ _
I-u,,l lli. s-t piaoaAas see , .M nl f
~ l l 1 tnou Yy :an u , . .- t am,m. . _i ' 3 o.s i a s no io' so- so- W- io a tia< -srcowos I
4 h Isothermal transformation diagram for 1095 high carbon steel aus-i tenitized at 1625'F., (By permission: Atlas of isothermal Trans. formation Diagrams. U.S. Steel Corp.). a.
*e J
t 3 x . . I I - , i >.1 t [..e 1 4 .
] .c.
- m )i I e I3 i
- 4
-'l .
! ') - .
.~,- .. . ,. . - - - , . --,_; , . - . . , , , , . ,_.. .. , .
~ . . . . . ~ - . . . - ~ . - -. - - - - - - - - '.) ?s .a ] , 'i Properties of Quenched and Tempered Carbon Steels (1000 Series)ir Small Sizes , , (Approximately 1 in. diameter or thickness) -
ij
' )
Composition *, */. l l l Steel Corben Monsonese 1020 0.18 0.23 0.30-0.60 1035 0.32 0.38 0.60-0.90 I
, 1045 0.430.50 0.60 0.90 ,;
- *% me .. s.,i< , .oso m.
! has = ei.ms i =e w t ,, = ne . . = = = ,, = me me . . .e = - P 4 4ime i '6 * *
- 4 % ' i
't 6 t 6a 6P 6 i --
mean W f g , as , - as 1 ;~; iL, / ]! %waar enmasmus - i ,
. =- % , j . = % l t I e x.,
N .
==
g (8L_ _ =:g
* -- / R #
E
= =, , sc, x =!= = = t a =i=
I M-#ff ' x# ,# eix N jg x KA x N f l l= - t T gf F N' _ \ ,y
=( N g \ ^
( ,3 s
= =
3 -v ' g u - r g as l 3l a " ^
= _- ' . i-* -
4 \ t
~~ } t
[ . , , 8 4 I I I I 6 6 4 6 6 4 4
= 4 M M We BN 98N M 4N M Me W W IW 1 ems-e tasseseos f hasses tw F fuumme temeraert t temsmus tamarsang C ,a see sus e see se Me , as see as as tse as me 6 i 9 i 't i8 ' i P a *4~ 4 i l 't ii l' I P 4 "
i i i ., taas . 4 ie toes 1, es esseenes -- IIs g es essesses - - se i II x ,4 1 x a . = ' ' vg Ax
- , = ,
=
t
- m. Ae u
.= =' , %_ iu
_sy- =31 ,= =
, N =1 1 -1 = f 4 i f , N- I a . -
e i i N , 7f'u.7, e i I
i j f u a
- t i t IN 'y '
t I e IN e
' *f j
- f n m'I '
e i e
- NIA i t !
^' "$
j 1 3 jww
, ~
h'1 ie
~ ,.E m ._. \
m __-- --
,s 1, . . 1 . .i see me see age use see sees "
aus ,as ese ese ses sus ease ; f . teme==e tauseuess F Temene tamessses F
~ ... se :1020 g nched free seco F, si I loss frea 1550 Ps see t lods from 1500 F. "9--
i
}
l -
-. .w.s..c._.- u %- ,_.; -. *:m.
_ .m. :- .:-...s ..-- 1
; ,~~ .
h
. s *~
_ Example of acceptable microstructure l
. *w . ) ** ' / . .
_[~/.N 'x .7 / . l\ -( t N, -,
.jc' ~
s t .
/ ~' .
5 - ( .'b i - ! . , 4 4 . /
.t.-
r . .
\. . .. / .
g . h..
. ,\ ; N
( i ( .
--(- 2 % u- '. ~.- . .s . . .../
e
~ .. ( -
7-1 . ,s .
. ./
j = r
-e F
m t
.t . -
N . 4
/ g l - .f ./ , c ' - #y ..-- ~ ,
j r (
- e x-
; p
- 1. f.
\* ). - - \
- s . \ .
\
j* l r.slh i t ] .,, < *w -
-A j' .L / \ ,~ , ;a . ; ,- \,~ , - . -(y .J.
g -
) . ,i s \.
M..
\/ ~n'- . l/ <
l 4 y 1. .
\ . . /
e % ~ .4w .
.'M t e ... .d e b&md= **
,'# 4 l
..I 4
1 n; - 2-7,4 1 e ( V
.a .i 4
f
+
a e. - 8 O+ - . *ni Mb 4me':h m g64 g _ l f
.1,4' q 'J . ,; c -+-' ,. s .~. :*r 1 e k,. . r$ *g. g t,,ff C'o[:* C* /.f s Way.* +.'i . f ,,r i ~mQW .\-[* y',[\~,.g M ~ .u.J~fy , y. >) . \ ;4Y 4 ,,.
3,, , p, %-W,i. - , - As, .- - e...
?c '. .'4A ,Se , .' c h c . hM ,, ,6 p '
s' * 'W c'# T. g'te 6 h,~ -
^ ~ $t?fb- ; ? 'g, ;,.= ,4OefK 'Q' s }#
f[,g b- .
~ ,
_ +* 5,hh.)g:.r5 w%r ,, Q~. .jg
../ 1 . %g ga--
zy *~ 4 US.
. h,QG @4 ~r ?- -
bY.<4 mx
.; , s s g...=.:s.. .% W:;/;.p. . A .A >- g w .W. 'g~ . . "g, +ch Q ' F l g
- c
~ , ., ..s TEAEv,g,'..1% !D- nD f b5-K 4 M .;L W *P g X %
N?h f ..y . .
., f 5v!Y d ~
l
-c
(
^ -
v4 y . gW h((iy . soox M ru m ee,cx1 q ., M.s D '- - ,, va. glig ,f. e 4. ,
. y rg,j .' "M.
3,
. - ~. 1 x,;.. y'. ; . g . _.
B""...?$1
- . u =,-
4 If. jf "$ kY" .kr.;- wk wQ
.d*i e , ,"Esth?.
- i [. %>ek',"'IY.M-f' i
; ~ .+ r. . c.. . $N 6kWE .ec, .c.a .r v.,- '1*
Q W, ** A f(' , 3, r- b4 i.Vf' - w wW * -
,... 4.f. - *&?;' .w -
1 y u.
.m ~ . - v, w./~" we=.v. .,y.e. . ; . -
w.
. m -- ,., ; ., W * . J4 $J.;h.%*p ~
C-@ . 4) c-
% )..:C1, l ' - lci,5 W'CO'. Q:y?2 ~
gp w I i 14W-
~ ,*# MMMS* W d 56 5. Afs' '<Ks42,Wi ! .looox c' .^# ..?. ,M**. 'w- "
c j. k'F T.ff w.:
*e j s. ,,
nae . u -, .
$ yt{hh e c , _ . , . _ _ _ . . ---.*.-v *s ==-? --s *- - . - . . _* * = _ 2 ,.4 Pg r- +.+ . g y--.
. .= , , .
\
-- :- . - . x .,.a.~ .
! - - :.g , :- ( ~:;wwyp. %:u% k'.%w'W:i:.g'f4;;<G,, ssa-; 9 % ~~~y: . q@GEC'15$29T) r . ! l s- ~n, y y smQ4;p....t.;.w. yg .+w- , .. 452L
.+ 3.
m . h .. s ,2 pg. . a z
- 4. .u.- )
u w ..ihh,.c .s %k ,a @., C N Yse l dd@3.c$5.52 E -
/
k,'ibbkhIhb
% ~jtgxM .w Ah L-?.w-y;;,,..
e 1wx l l eg.:-
$N~ -
- x: ; . . . ~ '
iei d.~u.,J.:s.y a y.u.s.,k.a.W s
. . .$t.~.. ap%:,>.mg - ~ , # o e .e' 47.<t. C,%iS/ Rg& '- 5 $$i$d5Sy & -4 Dy.iY: 3 .W' s3 b E: ..
4 h ( f*. ..SA 299 -
, ~ ~
if . 16xt t ,. ,. .
.- s -
1 y.,
- 4'l 'A 5xx,
~ \ 4 . . . . / ;,ir cool v' . - ,qvg . f r
A, 1 '\% .f. o k Ae- . .: m.:.r stice; s g ):p
. p t .
s.*.
. .x %.p% .%,; . s .. y .y . \..>',n A,r-.3.4.g ,I 8 a
R. $. $ t. h Ni g7 - b Y w. , ..i g rph%.,. i-k hp-p , A d'd M g- IAs. O T ll _ 7,ET L3 S -r s 7t2 / ?~pe ei F '. 7 .a ^=1f.
<1 .I A " .'. 'M E,1 s =w w
cj .
, w . *:.v va ~ - w.
wa ' y c ?,;:?/ . y Obv
/ ,g, f . p 3.n.
g
.Z, LI ,
i s
'I .w:4: 4 a -6 .- s . . .. . . ,/ 4 4 twox .i* .
/,o r..a e b g g. g m W .. .- , .
.' %a $ <
2c'.. A .*d o ' M W l N ,y-y,...--. . ,u w 7 . 3 - ._. _ . ;. ,__p _- _ y. _. , . - , . ,_,_, . _
~ n ,a w w .; v ~ ~ ;.Q w:-.L ; . & -. :-- --
Yht 'h+hr-,: 4; +'s. f u .} g y, nt %fD -. l**
.'~ *
- i . . 'd yi 'O"J '.
Q. M . f s
- X .e; -
+ Q%,&M}R6Q'?.sgbN%j? :,Q;.
-h N 'h I ,,,i * . k, (. . -t,,,$. .#* 5 M N ' % , gD$ f , % 3.5.a., .s %-~kn. . -w ,
s
., . 4 j
M. g-F S j' '; V -
, 100X i F~ 5.4 . #rg' 'h%& ;y ' & ' QPhic . ,
N .
. . l 4 GiMM,.f. w iPidi.. . .p- , * **'"T ... y .l'q, 'si,k- -Q ?. . .4Q P AtK
- N 4 4 )J', af/&' :.; &' e f.s' h
- h. %
- s. '01
,, - 7/h 7 . ~ Y. -
SA 299 - , 4
-)$ 5 .' T' M- -
1600F
-~
i ,
,g ifr.,: h-- ~ , [$ f3 - ~ 3 ,. , 1 Hour 's g Y S' '[. 'f- ,f -
ai 500X- Water quench
,_5 G . ," s'f. ,*. m * } f,f*
s m' !.h y' w -;- g g u m . + > ... msp. . ,mm..hh h1h
? '
y&a.w.? b rhk $ *?
- g -
i ,# % i
-- - 7 y . - - - tous,m --- m asoj _._ _;
m .- . $ 5M.=N.. 7d ~ .. min.AsEl..D.h.Y..4a N T ,' M . M
** 9%+ w N *. m +se.e< + . -w. . %...**.=-e-- m F WJ.1C AN.Las g*ey M tr w ? {*4rtmaryW. **% , F I.11' C !:r d chh;:, I3i.Id::$.'"A q, r & . Ni ..,/ N f* ifs p% M1*'1fr, N '/ M* f.J.
aP"Elig w ' w'W ' --k M/
. w,m u s . m & m y--WA z [ e.,7 4zw k n&i *t .e x x .
l ..'amensesus w = e4.m .i+ -e+<p.4 - ag,wrJoe, miliza pumme - A
. .Y "W.: ' g:rg . -. ,;,. .m ~%';*4'* >% y ..,W 5,3.'ar.a.A6.4 4 - e ye v 4
OJ. _^^ ra n' ,i .? ' %. 4 -, F 4-
~ ' ' ' MMr . ' y , L.
p _ _=iMf;, , ,. J, :;'q*9m, 'y, . i
.e =';,
( ., . w n.6 . . 4. **-
";gpdjQ,v.c . u .- ..<. .h Mu ;g..g-pg -
i U. . . ,_. .- .. ... . :--. _ . .-_. ,- m..--- - , - _. . . . _ - _ ~ - . _ -
+
. ._ u.m _w: . .. . . . .
t
. _ _ ;J:re .c A._ au-~... : x 1. -. .
t e 1 - nm r~~ .- .:. y -- 1
.r E'qhgpf. ~Ws. ;, .9.'- ^u.:u~i.y.#y '- [n;cf%1p .~. .W~. n~,:sc.~. '- cy w.~92 \ -% ?.2'd.; '~ ' ?$,a l
S.Qs,L
. wc A.- :. .. I
- o.
2 * , .,N.
"p ; .. gJ . y! . g. . +r o$ %e,,,p';i . 27e -nt,e s.ii i .a , . .w, ?.c. , .s.' w.-4.. .;;$.K ., - . h .., .. bW * , ,1M$ ' -hg ~ 'l .,,' 4.QJ N- loox 7 , g. . ; .v. - . , . . . 1 i , s,c . ? .l9, gz gg" - , .-
kr
$3,'.., 3; ..,., . ' /.'
D . s kta . . ~. .. ..- u, .
<r h 2 'hh # 7..n.s.m4 s.y 3J. W d.2 Lp .
l
- W s ', , .+ ' 'ae Quench
[# :
} ! I afh t :- .# r ',w -
500X~
--1175F M y ,. .r. . . . . ., . .
1 (
.%y 19'5.3.N.?hw%%RA
- k. s. . ,.N,., . ., ,e.ww..,,,,,;
N - n..
- a. .. e....f..x
..t-..
- m. . 4;2,mp.c . m,jMh$,s,n' Mm s @.n ap* "4. .
b s.w.sw. .5-
=6,3c>
W.*4 3% Nital Etch
+
_u= ~qqs,=#y. p:g, t, u.:s
. V . M....,.u..Ih. ~ . . ...... . .'...k E 4.,' xm.1 * ' Acad: ,, - '
yda gg, ;.~~
. .i : . - , p. , c. m ,.g j
4.J d T. d td s # M,..s -h19 7 .h *$id $ % g ,
.AD$@m - .w x.'
- e Ws...
pE ' - .R.ww.M)*
. 1.b:. .s5f .h, .%%3.g,pe A,;ppy.y3 . Cu. ,s,-o. . .. . <
i
.. a. . ; : . ..q . .. n.,. . . , .a. g. '. th u .%q. 4.c.v,a.3. .;.n%.%...,., .,:s ,.a., .. : . ,. g, . . *: . nv .9+ m 1 v.m ~. : . .m. u ;
- i. m.w.c4-vnr a >~.' .
%:.v$uk.L'*j.2-&,:.%%-6:?xM:.u 1 M .$. i t.3.c 3 i =TJ,.Tyl;%M:;GfM'gtvp%54!?S 9?? Wk =
1 g . y v..v O R L . g% WEW,t$ &* $in .r -r m 5I'.$.Y)$
.w % W- w j
W Mte. w.s%w. w,.> t .e s.. . .
...r:
w s 4.i , ' g,.h.,.~';.',5'..
- w. ;.ei .i a.. .,r .
. ' ;' ..4 e. . N+s, .,w, ,.e.. .s.,:,.b_;w w.c... .. ...am. , %.r& t % .12. .U..%.?. -, .%. 3$?%e.w. ,. '~ ~ , .'$bY.$.$$5S{k,ir0~~d ;QM -d.5.ll. yNrE .t-e,9.5 ' e..-;
p ._ - p w e e p*w s,*
>-Q~ . - ~
. . . . . - - - - --.- - - - ,m .. . _.m .a. . w .,... . .. 9 .C . .f-. _ . .si
- c. v-m . 7, %. . . ~ . . . - ..
~ .. . v. > . . ~. . . /-M.&. , . , . e * .s X' ~,. . .- s . W. : .
- 4"\.*
.scs. . . S .3 ,,,7 ./ - -
f,, , * -
*; . ... .4 . <- ..o \
Q ,. ..- 2.e .-;
/. =. e .,k., .. - ,. . - 1 .
- 2 ,00F/d + N Cold->-.,.lled n.
wuam_w cg<e m ..w,. e e. ... . .m%,j. . . Mw .,m. q.,*.sy% -
.sge - w/- -
d - m - .
; y.y -__
on x.. .1- ep=-- ~ .- - X - a.
~3d , k ' M N #.. U -
i f y _
.r;, =8 -v -
s#gsgc*g 4 p. - y. .s . y , .,- - . c Ng,;,d7h.e. ',M.'S
- m cc %w gw. s~ ek 1' N ? g M ; -- M .C,;, ~ >h% _we 1 -in ,r. ,, .n. ,-p.. , , . ,/.r . '.. , , , .s.
r>
- -- .~ . .
l ,. * . " - - ,. , g M...'*- . , . *: ; .
%q#,,,,,...rp . ,;,5 cf. ,,,t 3 . # , . ...,s .e . a .a -- ..s .,.,,:n,... ,.. .u . .;n. . . .y.. Wc ..a 4 V..: 3. &. , %.. $. C.. '-
l i L. , ~ . . e ,s.158 ...
.e .- , , . _ . . .< w . r -..: : . . v -. _. . "~
- e. e n ~cv a,..c %w 1 .
Sr #%.3-~re n g-- % M~ 4 :;i.;i;>s
.% W' . i. . .a>~~..... .
g; s. - ;)p". W;rM.9) (w:n.;p. -G .n-- a (... -; ~ . :. . 2 ?. ., -a. sgS. . . , , .. .g'* ~ ., W --
' ' 1r . e . '* ;. W.L' 1. '.. . : . . ' s~r , r~ ", ;..',. e. ~
gq ., --) . . . .
..-r ,-- .
h . , . gn, a s.
'. .. '.. , '*--? *. l - . . w>r .. ...~ . , . . . ...... -
M.-.m-; 1 ,;%. ,.y.:.~C. t-g~~ 4: , e . ,x.w . .y ;, . .?. - . , .. * . ....'- . >- .- ,~. , w MW .
+ , min. 17007/.; 5 r.in. 1800F AI
!4
' Plc. 3a, TP304 - Recrystallization rehavior of 505 Cold-holle i l
l
' Tuising Strip (:* eat 2y.M ), Reheated - "Unut'7 "?~
!~ to Indicated Temceenturen. !>.:ini f'. cat h . l l l L - - _ _ _ _ . . ._ ___ 4.--
.. . ..a , _ _ . _ . - _ ...=. .__ _ ._ = .v_ = , _ _ - . = . _ghs ,l. . . . z.._ a. ., .t i } , MATERIAL TESTING -CHEMICAL ANALYSIS , -hETHODS ' -TENSION TEST - ' -SPECINEN -STRESS-STRAIN CURVE - -LETERMINATION CF PROPERTIES - . -VARIABLES AFFECTIhG TEhSILE -TEMPERATURE -ORIENTATICN -TEST DEPTH - -PRESTRAIA -STRAIN RATE -TOUGHNESS TESTS . -CHARPY V-h0TCH -SPECIMEh - -TRAhSITION CURVE . . . . -SHELFS AhD TRANSITICN -- - -DATA SCATTER t -VARIABLES AFFECTIhD CVN - -
l .
-h0TCH GECHETRY -- - -HEAT TREATMENT /MICR0 STRUCTURE -GRAIN SllE -CHEMISTRY -CRIENTATICh AhD DEPTH -PRESTRAlh -DRCP-kEIGHT TEST .! -5PECIMEN -CRITERIA Tt ' -CCMPACT TEh5ICN (PLANE STRAIN) -SPECIMEh _ _ -hARDhESS TESTS , -TYPES - -RELATICNSHIP TO OTHER PRGPERTIES -0THER TEST 5 (DESThUCTIVE) -CREEP ~l . -FATICUE f -CCRR0510k
{ -BEhD
._._ _ 1 _ m_. - ... .- ~-- - - ,4- " " " " " " " ^ l ~
i i
-1 . { 1
. MATERIAL SPECIFICATIGhS
-ASME SECTION II ~ -FERRITIC (IIA) -AUSTENITIC AND NCN FERRCUS -SPECIFICATICN C0hTRCL - * -SIZE /TCLERANCES -MELTIhG s -CHEMISTRY AND MECHANICALS -NDE -RETESTS -MARKIhG -REPORTIhG -SbPPLEMENTAL RECUIREhENTS - SECTI6N III -STRESS RELIEF i -TOUChNESS - RT/NLT .. -NLE - -REPORTING ; ~* ." FIELD CChCERf,S t
J
-IRRADIATICh DAMAGE -GENERAL AND LOCALIZED C0RRGSILh (IGA) -C0RRGSIGN FATIGUE
,l i -SThESS C0RROSION _
-TLBE "DENTIh0*
6
~ =~
3 i l' O
- - - - ~ ~ - s. m e- m - Meowne. e- a e
..-- ~._ __.- - - - ...-_..___,m__.. . _ . _ . . ._. . ~ ,~ . .. . J . -. ._.. c . : ..
T .,'-i-TA"- -
^
3 . 4
.-ii 1 . t'*
- s .
.4 ,.1 4
4
. ;J . .. :4 * ,
- q . -
1
'I-Ke 1 . .
i
- 80
.i I
i ,.
's. g l + $
- eo
.l > -e e-4;0.M1A ..
g - 30 0 t m
.. KB R
10 sL k 0 os o.e o.s 04 30
-1
,,; WAVELE.NCTH (anansemsi Spectrum of Mo at 35 kv (schematic). Line midths not to scale.
. -)j i ,
f r I !41 .j S
.-'J l ;. $
- 1 J
n1 - o s t C .. l '. O l pP4 JEI ..
,, #I **'
a L Ai. : ...:. 6 5 . n.. .a u. Q .: d.. G
. . . . ~ _ . .
ve . .
,k 1
JI . H b Ct . q q, d j ;. -
- 4
.I .r q , .,J .
A w , { c # *
- -- l . , 0 - --
4 i a c p
. : g _
l - 1 . s l5
. ~
l
. .::~~ $isadard Sescimea $ mail.bn Specimen. reorweenivaal to band 4#d on mm se em ee. mm en mm se mm f ..' Nomi - .nal Dia. . - . .mete' 0 SCO .. . 12 3_._. . 0.) 30 . . 4 00 U C Cage tragth 8 73 . . 0 25_0 . . 4 23 . 0 -f sc 0 113. . . 2 30.-
21 10 a 300 a 1.arin s )$ 0 a I Att , 23 0 a 0 ean e 160 m A44 a 0f05 0 to 0 0p4 10 0 s
? 0 50 0 00* 0 10
- 0 ott n in 0 009 0 to 8.Diamsese (Nose il 0 SOD e 12.9 e 039 a I.75 a 0.29a e 4 23 e 0186 a 4 00 a OIII a 2 to a f 0 010 0 23 0 007 C es 0 004 L !2 0 001 0 05 A Red of IWast. mee 0 002 0 05
,4
- 7. 90 'f. 6 T 9 ) A r .,
i A Length ef eudessd esdeon. mea lNees 21 27. es 2
- 97. 45 l 't. 32 7 30 7. le Nort 5-The redueed r demona.ent may have a Fedeel toper from the ends toward the eenere. enh the ends not more then I % larget a deemeier then the annus (feetradlegg g Neste 2 -If dressed, the leagth of the redveed emetane saay be arveewd se accommodate en esweeemenet of ens ese.eesrat page length Refe,eece marts for the mr n -
of ensagation sheead erwetheless he spoord at the end cated gape leegih Note 3.The gage leegth and $ltets shall be es shoes, bus the endo me) he of any form to At the heeders of the testeeg mechar en each a eas that the lead *A4ll be stiel tw F4 M If the ends are se held in = edge av et a deserehen af ges.tes. to me6e the tragin of W gr9 escon great enough le ellem the specimes to eteend ease th senes egeef to aos therds or saeve of the leagth ed the perps move 4. On the roved specisages en Figi 8 and 9. the ,sge Irngths are egust to fear ermri the seminal diameter le some prod et specd.caima ethee spes. mea. e si he pro-vadad enre fer, het weerts the 4.se.1 rete as mamiaiaod eeth a dimeewomal notavanses the clea6aisen eelves mei son he campstabar with thew ob.a.ned fewm L4 saand4ed 4 Nits $. Th *
.e .r oh.e e.e . see ,.e of the,r isecimen* imatner than e.e ,.e -.n.e ,s.n sm. r 0 .pr*.50 . em m rece.it 25e . .h.rmmi.o.diameter .t .ad ,,.ter that: . l.heberesirsnad m.
to es.es when the maierial m,,ndto.., Niets 6 Feve see of eercimens efete sted have diameters of appeesomenet O W. 0 IS7. 0 252. O len. end 0 II) en. the reaine baias se seemit saw calc.tatem of simi e j fine been.eener the eiereigneading erune.esammalstees are egualas etnie en u.2tas.o.10n.c.(Hoo.0 02 tat and at 0100 en 8. reapersevelp Thee. ehen the . e ap the .emper envite and. IRl, q with thmehmes,m relues.,e.idmgi..m 00 e assegas,(or e.ie ere estengthst me) he fe.mpeerd.et.a. end . , sesguilevely. rlisap fac9sen (The metroS.10. 6 eignesairas 24). p(90, thew b.e diamg.
.er,denot.v e,- r t,,r, ,
, nc. e s.sede,4 e sene. iu t so nes re. s,.e e . -
- :.4a. W.m m. c..e u . ean.a+ el s...s.a w on r ..-i s e s .de.d
?,
- i 8
4 84 . 8 . '0____ - -
,_ _ _ .m _
j
.._.n a . _ . , ._ _ ;_ pa _7 ,
c..j q._j.o_. . 1 0 DEFINITIONS . ) i _ Tensile Test ASTM E-3 I
)
j Proportional limit: i The greatest stress which a material is capable of sustaining without any deviation
]R from proportionality of stress to strain 3
1 (Hooke's law). . . 4) Yield strength: The stresslimiting specified at which a material deviation fromexhibits the a , proportionality of stress to strain. The deviation is expressed in terms of strain. l Yield point: , The first stress in a material, less than i
't the maximum attainable stress, at which an j increase in strain occurs without an ~l increase in stress. .
Tensile strength: The maximum tensile stress which a material
. is capable of sustaining.. Tensile strength is calculated from the maximum load during a _ __
l)a tension test carried to rupture and the original cross-sectional area of the specimen.- j (h Gage length: 1 The original length of the portion of the g specimen length over which strain or change in is determined. 9 Elongation: 9 The increase in gage length of a tension j/ test specimen, usually expressed as
- percentage of the original gage length.
a q Reduction of area: The difference between the original cross ! sectional area of a tension test specimen 9 and the area of its smallest cross section. The reduction of area is usually expressed as a percentage of the original *- cross-sectional area of the specimen. - '3 Necking:
-1 The localized reduction of the 4 4 cross-sectional area of a specimen which may occur during stretching. ,
Extensometer: A device for measuring linear strain. 1 P e e . _ . . _ - -= - -- -
-) ; ^
- w. . . . . - . -.... .. .
. - - . . . . . . . .= . . . . . . . . . .._--.-......~.-- .L = -
- y. . .
I 1 (.-
. ~ ,
s -
~ -~~- - . . . . . . . . . _ ;q .
2
- g. '-
~ . A n - '
- 9
, - ,t . r o a p 1 -
a _______.___,i i
; p !r .
1
,r 1 .
1 '
,r ,r .c en p v,i g l --
s. F C t (f) # , 9 9. r o>' ,f - t
. ,f r
- 1 .
.,., r i
Stroin o*-*m
~
om Specified Of fset . 1~
't., no. no Yleid seren.str.in Strength by oi.k...
s e Othet r., never=in.n.. Method. .r -
'J e
y.
..re t. 'l 41 ,
y *
.,m-(c.=
j'
- _.m_.. _m _
g. 7 aa . . . . .
. .. ; . . . , . .. . aa:. ..a 4 .- -. - ...... . , _. .. . . _ . ._ '} -
1 . g _ _ _ _ - 3- (
. r.
1 - 4
,l e .
I
,:I. l4C
- t
.e lo .-
I i . e a.
*=
lA . .-
- n l~13 ,
lF . 4; . I l l l, . StroIn f j 0 m ' MG. 28 ' Stress Strain Diegram Sho=Ing Yleid Point i Cereesponding with Top of Knee. - -
.~_ ~ ^ n. .
C R ---------- - --- ... _ I r . t ' t 4 l - q . 0 g e ,. I m 4
.) ~
t i m t s' t e l . i , .; I
- i .t
- I . e . .
e t .- Stroin 9 e' - 9 4 m
.l p- omsSpecified Extension Under Lood MG. 22 Yield Strength by the Entension Under land Methed. St '?., .
i I
_ _. _._. ._ _. _.... .;,_.,.X_- _4 .. . . .. . . . - . . . . - . _
- q 11 -
.:1 4 4 'l, -
3 3( l
.3 ..
1 ;
-J . . .i
- i t . .
3 80 - 70 - (.
. >60 - -
i b u . .. . . .
.i wE 50 '
- m. .
a 40 ~
.O T U- 30 ii A *o z N)%, r gf g n ,
1 IO O O I 2* 3 4 5 6 7 g e , go L
- GAGE LENGTH -INCHES ~ .
1' I a . . i,. h g -. , ,,.a, . u J
.f .
a
. . . . . . - . . _ . . , ~ . , . m_..>* _ . gg e e .s- __+e~-+ --o..,~e#~__:, . __ _ , --:._=
4a
. w w;. . .~. . . -~ - - - --
_. :._1_ _ ._ .-___._-----__-~----=_=<aL"*-= . i t a . a': *
,-t '
i ,) .] ( 1
.j (A .
i .
, CRNL-D#G 7!i- 3444R
!1 10 8.2 !j r it
-j 100 , ,1 '
TENSILE STRENGTH ,
% ) . . . 90 - . -
1 i n } 80 K _. 4 h
.j \ \
!] 70 YlELD STRENGTH , - -- 50 - s nj.. c.
\, ,
g go NTENS3.E SMENGA b 'n L - '- ' 40 7 50 .
+% x d:? $ W m w i (1 g \ m w
g
$ 40 ---- s " 30 N -TYPE 304 SWNLESS STEEL * ~ -9 Cr-lMp M00tFlED - '\ y
'[- 30 3 I
\ \s t
A
\, 20 A % - ( ..
] 20
\ $' MEN *% \
- 15
( i.
. . -1Q ~ ~~, -
- l. 10 N - 10
- r. . ..
h, , 0 i 0 200 400 600 800 1000 1200 1400 h(.' 0 10 0 2Q0 TEMPERATURE'F 300 400 500 SQO
- 7Qo 309 .
- TEMPERATURE *C.
O s
**++es -<.<*L+ -9*%~** Y' ' _*' , , ,
- p. ..=ee,.w,e*, ,
_..aa a: .. --- .. .. . . . . . -.
.x=i~ :
ia"- -
). . .i 4 .I, * -i ' '
- 1 72 8 -
~
1 l. _1 lengituo'inot i . 68 - . at 64 - { m -
. so j, - ,
1 . .
;5l .h 56 - *
- 2 W -
~!'. -
1 at 52 a.
. 7. . ; 48 -
i* -
. 46 , , , , ,,,
i
,t 1:1 3:1 5:t 7:1 , Forging rotio . . E#ect of forging reduction on longitudinal and transverse reduction of
,j
]. area.
- p. Tensile strength 118,000 pai. (C. Wella and R. F. JteAl, Trans..AS.if, vol. 41, -
755,1949.) _
? _ , ..ms e- ,
- 7. . - -
.~, q' . u: 4 , . Longitudinol N Tronsverse ' 2.. 70 4, , 4 y- . . r at 60 - ~ j y ,, - 3 e 50 - '/ I - i h 40 - #'"' - k1 5 "
% = 165,000;si d E 30 -
o, = us,ooops/
~
-{
- q .
20 i e e e e ,
~) 0 20 40 60 80 Angle, deg
- fr .' Relationship between reduction of area and angle between the longitudina direction in forging and the specimm axis.
41, p. 753,1949.) (C. Wells and R. F. Afchi, Trona. AS.4f, vol. ,in _ 6 s ( *. I' e [' e e __,,p ,s.%... .w. - ** t " L.,J "-- ** '~
e-
.,;.- ;GL r . = > " " ' '~' _...-..,_-._..->Mb~~i'-~
__ *~~' '
'.i. )
- t
~1 -l -
il r. .
.1, (.
3 .,
.i , -) - 'l.? -
3
-=
1900 "t 3 i I 3
+ . l . . l ' t.
1400 - - OUENCHED FROM 1800'F 1200 --
.f 1; 1000 - .. ! .p .. ~ ';; 's - .,t - + -
a'.',.l~'**~' C( ~-
.. CENTER ~~~ .?
Fn - 6
.7 800 -
NEAR SURFACE
.. s, 'I; 400 - .
f/4 T 1 N - 1
,t . - ..
a I I 4.j2000 100 l l 200 4
'. 300 400 -1 TIME, MINUTES ~ .
'3 . e 6
. .i COOLING CURVES FOR QUENCHING TREATMENT .-'I a
._.~ai-Q~ "~ ~ " " ' . ' " ' * ,a,. . < - . - . + . s..-----~. . _ _. _ _ . . ... . I 1
.~ .
- " c<
1 . .t 1 1-
.] .l .
4 :
) I I I I I I . .I i l , u o o o 3/4T 1/2T ' *
- 1/4T SURFACE LOCATION LOCATIOi! LOCATION LOCATION BOTTOM d a a H
, OF FORGING TOP OF ~
FORGING 3- 1/2" $ a 37" CORE BAR 1
'1 80 - D g _ , , ,,, ,,,, ,gm O
- p. ____
75'F ULTIMATE TENSILE STRENGTH -- - - E 70 - '
< z ,_ - 'w:
., w 60 - D " U "'" _g \ *I A UE
- 50 - O-O RADIAL ygoF 0.2% YlELD STRENGTH -
j X- =X TANGENTIAL O VENDOR TEST REPORT DATA e i I I I I I I I !!j 0 5 10 15 t
' 20 25 30 35 40 THICKNESS OF CLOSURE HEAD FORGING, INCHES **
9 TENSILE OF THE HEAT TREATED CLOSURE HEAD FORGING a .d, i 1,
.l s*
L'j n is s
* '8 e
e A __ . -- I
. :.... 4. -
- j. . - ~..
w - .- ---
,; _. .._. =. _ _ _ _ . .- ; n. .c. u . . . .-
1
- e t
i a ( . s t . . . I
=0 . .l I
O As STRAINED - O mwT 0 mono
. / / /
- ur.
, oy ,' .
k S
,s s , gf s *r*
a s0 *
*- -~~-
- es* ess' e# e9
,,,0 "
- 6 2
70 - t .. *** s g
..es*,,,,,,. .#
a** ( .s ' s o****#.p** na" vs /'
/* "
s'h# t
/ ,,,a* .n**., ,, # ,O / s o # - - O / -"" ~~ _ 0 4
30Q. /,,,,, " s '
=="""""" D ,,
l , , . . 40 t , . i 8 I 2 ,
% ITRAIN - ** '
YlELD STRINGTM AND ULTIMATJ TEN $tLE STRENGTH 6 4 h 0
..- g .
O 8 0 (. < . _ _ . . . ...- - . _ _ ._ ms. ___ . ~ . _ . . -
. . _ . - _ _ = . . _ _ . . _ - . _ _ . - _ - - _ _ . . _ _ . _ . .. . . . _ . . .~ .. a .u.. m c. ._ _ . ._. . . ,;s..~s.. . . . . . . . - . ...L . < - - - - - - - <
1, . . . - - 4 y .
- (< . .
t
; .s t
1 ' R . . t j . !
! 50 -
l 1 40 1 l i h_3o poem temp *'*# [i ]t ; j .' y 20 " ,i . 4 400*C i
. - ~ # . ;:.I jo0*C , /,
g7 f go*C f 3 (. -l ' - a
):j -
O -- - " 10.s 10'* l lj 10-a Stroin rote, sec" 10a f i . pcratures.. Effect of strain rate on the tensile strength of copper for tests at various tem-l (A. Nadai and 31. J. .Vanjoine, J. Appl. Slech., vol. 8, p. A82,1941.) si
~
r j e 'l . l L ( . f,
'i.
j . . J I r l . . _ _ _ _ , _ . . . . . . = . . . . . . , _ .,-
, . x l. . . - ~"- ~ ~ " '
t
. . .. .- - --~-
r-' 4"*' -- - ' g y~g.m_5- -z qw.a . : . _ 1-(= = += --"=_T-
~ ~w C T 3-+ s J 'S&i m ' G T " :.~,. =
RE Q
.1 -t
- 4 I
- b i .
. \
- -}
i 'q e 4 .i i ,5 . b1 , iI - i . . 1 i. ( . J 1 1-i 1 I! = 3,133" -
, . ~
] I e
-1.0025"- 1.0825" ;
- i. ,
1 45' e 394" + j - .. .
.010" R - -
T[ .di { j .3'6" '334"
,i "
y 1 5 GRIND OPPOSITE ' SIDES PARALLEL AND 908 1 0* 17 TO i-4 i i ADJACENT SIDER . TOLERANCE 2,001" ALL OVER i .4 CHARPY V NOTCH IMPACT TEST SPECIMEN + e 1 I .
.I - -
1 - 4 . t,
- 4 i
k f, . . Ch*
- s9, e
0 4
.s ee ~
_ _ _ _ * .., . _ ,7,.-. +7 w-em -'e e- -' T~ '"~7*^
#' " ' ~~
. . .. ..m . .... - - . ... ~ ^ - ' " - ~ "~~' ' " - " " ' - ' - - ~~ ~ ~ ~* ~
1 ' - I t ( i i 1 t .,
-{ - . .
i
, (h E 23 8-mm rod (0.3J5 ")
30*t 2* .
'i i
j STRIKING EDGE - i \0.25 mm roi('O.010") , I
\ . .--4 m. m ...(0.15. 7 *)
k T - Y. -
}
j SPECisEN 8 i a i A ' A
; h/#
Center of
\Q(.B2' 14nm df Strike (0.0391 ANVIL +-40 mm (l.574h \
i , s i
"1 ,
4 h i i , s 1 l . f f i C .. e 0
, _ _ _ , _ . . , , _ . -- ~ ~- ----- ' ' ' ' ' ~ ~ ~ ~
.__ [.n - _.[ .
m e. - u .-_c..-.
;g.li i s
1
- 1 n
11 . . . sj - t . l . 4
.) -
Ductility Fracture ' fransition l , fransition Shear
> tracture
- Brittle -
. = failure -
g in service Ductile .! S behavior - - -
.o o in service t > c . . :.. . -
( .t Easy crack i t i, . j initiotion _ . Difficult crack
,l - -15 f t-lb initiation and l
propogotion '! Temperature --* l} , Significance of regions of transition-temperature curve. 2 l 1 e . r 'i - 4 i g . 6 * *
. e n
,,+t- ~a.... .c m .. h :s . , ... -- ~ ~ -~~ - ~ ~ -~ -.~~
4 . -
. ,1 . .
- j i 1
-i !? . '.1 .
J{ 120 L I
. J g g g g 4 'i
- ) -
100 - s . _ 1 1 O i O '4 O n no - o
-4 O ; .0 . .. . .
i , y r '-~. .-~~ - . .I 1
-1 30 FT.LB ! AT 70*F i
1 20 - i .-
) @O -
l 3.. 0 ;O =O*O ' NDT I i ,
-W D +100 - +200 +300 - +400 + 5 00 * * +600 g
TEMPERATURE. 'F - f_,
.; CHARPY IMPACT ENERGY OF A516 70 CARBON ETEEL c-lY e . g 5 .
b
=} .
l~
/ . ~ .. .,- . - - . - , . . . - . _ _ ..._- : u s u ~ .. w . :. - - . . .- ?..
o
- l}' c.: . .u.~ --
i
- 1 s >
. s l(
i
.I i, -
a
~
Senkillea mild steel - 0.18 per cent C 60- 0.54 percent Mn
- 0.07 percent.Si
., ) 50 - ! Energy transition i . 40 -
T .
= -
A 30 - Chery
., g ,e,,,,e ,-
j - 2o - t ., ca;:= .r/ I ' ~ ' li 0 40 -20 0
. . . N. . icine..,.
i 20 40 60 80 10 0 120 14 0 Fracture transition - - -
! (' M -
s Q # . = 4 b'60 - '. "
? E t
- e "V "
ryhole 40 - e < e Sheer fracture. t per cent 20 - l
- F h - >Y f f f 9 I t 9
> 40 -20 0 20 40 60 80 100 120 14 0 14 - ' p -
Owetility trentition , , I 12 - 3 . *
}
- 10 -
E j j 8 - *
, =
g,7 3 ,f, . i . z s. - * - 1 ;
- 1. .
a v- " '
} *2-
- Loteros contraction 0 ' # > ' + r '"'
- f " # h
-elo 40 -20 0 20 40 60 80 100 120 14 0 160 Temo.*otvre..*F Transition-temperature curves based on energy abeorbed, fracture appear.
anee, and notch doetility. (H'. S. Pellini, ASTM Spec. Tech. Publ.158, p. 222, c f 1934.) , i
, "** .,. , - . 'F e > # ~
, , g'._,.. . .. <.E A'..o: .540s 0$ I. a' ,, ,,_ , , _ _ . _ ~.'----- -- - - ; -~ ~ ~ . . - - . . ~
t J r . s ' x ;i'c,",,*ag; . == - !
. Satcate lDJos m :165 sq m Lousta g
8 xN y morem h = namusa 300
>[ !osto s*ttneth= otte *J
- 89 a365 m. Lensa g
h I y u==ottate ( !
- Um40TCHED
*f
- l seten
' e res =st= a i6s .o ier m.-a e t
- 633 Q 1
i= .
..Me, &
N - -
}j pe0TCH %(* .7 -
y j, .
.}* SHARP .
- l
'l HOTCH l .
T g l E yh . p'dMr i 3 ' :: 1 3 l l TEST TEMPERATURE
- i; -Esect of She of Piece and Testing Temperature on En.
errytem Absorbed r e nr Specimens (28) [ u.a et inse.Bs e.s s C. s.e4s un.e.s4s si ~
! No -
sana Tnmemens Ca . h e sn semes sese eemesse 34.% e asCa.ese r eJos E.o. e.eth0. ele % P. e.seen 3.
~ ~Q_ .
80 ~ i i 4N- % 40 -' x N1F QUENCHED-AND I
.t l
20 5 4 f A W % NORMALIZED MMW AND 2 0
- 400 - 300 -200 -100 0 +100 +200 +300 +403 F TEST TEMPERATURE -Ifect of Heat Treatment on the Inw Temperature Impact Properties of a Chromism Molybdenum Nickel Steel (101) not Amatness 8.atS C. 8.fot We,0 04% at. e.ett% P, e tes% 3. 4.0m% At. .
e e18% AI wroces4.she sa a si A 14.04% es e Ca. e.es% Me. 8.73% We
-{ -
Thermal trentom. a to de tu, se) ,, j Geenahas
+ 1800 F. ame Tamme*uds maakwou C Esednes oliseeasmebed en se frees 188e F. tameered one haar as )SerenaHaae see Tampeme s ale essess fram tese F. esmeeems see bsee en lose F. Sashwou C Reesoame el es se -
,'i I ( li ~ ( . I l l-
" ~
3
#. g ",% . ' " ~ ~ ~ ;:'~ . _ . _L . :. ' ' .. :L. Tr: . _:* : . - : ^~: I$ ^ ' '? ' * ~~ . .l . .
4 l l
. \
i_ d i 120 j I i
. a TEMPERED MARTENSITE - < 3r -s i' ' '
100
- TEMPERED MARTENSITE + 8AIN!TE q 5 r- o- - - - - -+- -
1 't / l
- AM /
5 l - m l TEMPERED MARTENSITE 1 E t l + PEARLITE i EM 2 = m l I I ( -
; y ; - - . . -
t E r [ . :- ' -I-g __-_ b 23
/s g M i
,.i 0 ' '
" ' ' ' ( ' -100 - 50 0 4 +50 +100 +150 +200 +250 +300 +350 +400 F i; TEST TEMPERATURE 1 3-Effect of Microstructure on the Low Temperature Impact l! Properties of a Chromium-Molybdenum-Nickel Steel 8785) at a Tensile Strength of Approximately 125,000 psi (data fr(om Figures t
8,8 and 10 of (24)) l., Analssta e.24%e.s4% cuo. s.ess us, o.as5 si, e.e14% F. o.ols% 8. e.sas or. '.j . Mont Trentaneas: (% fa. rd)
. 0.84 % Ni Tempered Marsessite: water seen hed from Itse F teenpered at 1110 F
- jl Tempered Eartensite + Ea!r.ite: vn:r cuencl.ed from 1&40 F and held for
'~ See seconds; transferred to stJt pot at 750 F and held for Eve minutes: t water geenched tempered at 1995 to F room tesmperstores cooled la litsid altrogen sad Tempered Martenalte + Fearlitet mestealtised at 1840 F: transferred to salt
- pot at 1110 F and held for 115 anla g water esenched to roess tass-perstereg taanpered at list F
__-~ s g' . ?4 'i l.. . l_ _ _ ,_ ,_,..._,__. _ --._ _ - , , _ . _ . ._ , _ . . . _ . . _ _ , , , _ _ _ . _
..-.-- ... ,_ . ""^ ... - - .~ . . . . . =. . &' ' = '^'%* " %
ii ( ij . y t 4 1 i 2
.? .
. ;. 60 U 1
.! (. 50
- a
. FINES r ^ .i .
- 40 f
. .t , w 30 '
j E f . . ] g20 - , . l a
~ COARSENED ..3,.
( U j// - 0 ' l 400 -300 - 200 -100 0 +100 +200 +300 + 400 F l l1 TEST TEMPERATURE - i i -Efrect of Actual Grain 5!:e on the Low Temperature Im-1 : i ~J pact Properties of Normalized and Tempered Chromium.Molyb-denum Steel (4180) (101) l1 mar Amalade: 0.so% b. o.s1% Ms. e.as% st. e.011% P o.Sts% s, s.04 5 AI, 0.015% Alsos, 0.91% Cr,0.18% Mo. 0.92d5 Ni NeQuald.Eka Crsla 51ses f to 8 i Thermal Treatments (0.42 fa. ee) j- Coarsened beld s0 min at 1200 F, sceled to 1825 F. air soofed, taspered one
~- hour at 900 F. Rockwell C Enidsens 14 to 16 ..
Fines air cooled'from lets F. tempered one hour at 900 F. Rockwell C Hard.
', sens 19 to 11 . c l l
l ( c- .:
.. 1 . l l
e-e+c. we. m.um. se h m mm-- +- ----.p e.4 g. Es- -.4 .--
o
- ~~~
3., . . .s. , l -. . . .~. = . . . . , _. .. . -
, Ma= y c :. - t zy l b -
4i l 1, 4 . , 1 ('. e j- 70
. 'J ,
4 - CrMo #- a
$ gn j g - * - Cr.Mo Ni 1 pf. . .N. . / S**e ~ **i f.i * * *
- Cr.Mo Ni 2 N
E 50 -* * * ~ MO I -
/ / .,,~. . #*;* 4.. o .. /1 W /. y h
g
- Mo 2 * +- -,
i wq - A,,/
/
f.- f / (f 1, 1
,2 ,,
- /,// / ,
i ; a
./
i *
*/4 i
3 20 < t
= /!
j( C'. g20 1
, gj .! O - ,
gj -400 -300 -200 'j
-100 0 +100 +200 +300 +400 F e! TEST TEMPERATURE j ..-C0mparative Low Temperature Impact Properties of Nor-malized and Tempered Alloy Steels (101) i t . Bar Analso M e.
ald. Rockwd! *
". - C ,un at P s Al Al,O ghn B % % Cr Me NI Cm!n Hardness % % % % % % % % saae Cr-Me . . . . . . . . . 0.80 0.81 0.24 0.011 0.023 Ce-Me-Ni l . . . . 0.22 0.90 0.28 0.010 0.H8 0.015 0.91 0.18 0.024 7 se 8 0.028 C,041 0.011 0.58 0.27 0.60 88 to 22 Cr-Me-N13. . . . 9.21 0.89 0.48 0.014 c.027 0.065 0.048 0.88 0.12 0.31 8 96 to Se M e 1...... 0.90 0.18 0.28 0.011 ? se e i 0.023 as to 38 Me 3........... ..... 0.83 0.72 0.29 0.011 0.018 0.07 0.011 0.04 0.28 0.15 0.084 0.014 0.12 0.45 0.019 8 to 8 81 to es 7 to 8 91 to Se i
Thermal Treatseents f0.42 !a. og) Cr-Men air ooe! 3 from 1825 F, tempered on, hear at 1000 F All .there: air sooled freus 1600 F, sempered ese hour at 1000 F l ' ,g .., . t . (' I _
.i , '. . .. . . .. ....-_ ..-. . - : --: =. - - . . . . . - .. --- u r - =u 2% . $. : "'U '- b"tO' * ~ ~""'
l .
-4 i .
7 .
-t
- ,j
- b ld. , .
.'}. ,. . .
s *s b; j . .
- 3 .
1 - e l'A/ , , .
- !; .L---- Y ,
y- 6) .'
- a. . . n.L ..y .
i R0!!ing direction +
'. ] .
80 - ~ di o'g \0I o h
- i & 60 -
Ll -
$ \A\ -.l i al - -
04,ted n
.i _ _
40 - Y -2 '
..- 2 a li >
- Tr onSverst iC)' '
',9 p-cp 5
0 20 - 0- t i i
-80 -40 0 +40 l +80 +120 Temperofure,*F . .
1 EEect of specimen orientation on Charpy transition-temperature curves.
- ( '
d e e Y l O i
-i ( -
I - . -
.1 . . ,fa J , w- se- e-~~7-~~, . ,, , T r t '. *;' ** * .'*;. ..=-;'.- -- l - - * - ~: :e. - . , - . - - - ~ ~ - ~ ~ - - - - ~ ' - - - ~ '-l--" * '~'
- .,u.- . ...,~:. .-. . . .x - . - . . ......w,.. . - . - .. ~ . ... ..r . u .. - ?
1 h
.?
4 . (. . 4. 1
.) .
t * - 1 J 1600 -.-j l 1-
., I .
l d4 . A vs
'.s t 1400 e, '} ] QUENCHED FROM 1600'F .8
' l1200 .a .
.-.;3 .
1.
..' ,000 .
. y!: -- - - %
,4
- 2 ri*}i (p,.'- _
.i i- CENTER ~
a
.t 600 -
NEAR SURFACE j 400 - 1/4 T 4 _ 4 .. 1 1
; 200 I I O I 100 200 ' 300 400 TIME, MINUTES '
a 2" COOUNG CURVES FOR buENCHING TREATMENT
.i pm )
3! - i .
. , . _. . . _ _ - _ . :-._, m-.. . . . . . - = ...... . ,._ _ .. ... ... ~. .. . _ .. .. _ ._.
..-a. . . . .. a . ._ ___ ___
_3.-3. , .j;. > }L.. ._ _ _ n l a., :u .~.. . . .
= 7 ' 1. _
t
- ]
- j .
=i 4, .b *
".1, 'cl i I I I 1, I I I I i BOTTOM 1 OF FORGING TOP OF 1 e v o ' 1 FORGING 3'4T 1/2T 1/4T SURFACE LOCATION LOCATION LOCATION !.OCATION un a a {j - 160 - o ' a
-j 3- 1/2'* d x 37** CORE BAR ll -I * 'l .. . - g j120 - II +75'F +10*F Il ..._.~I'_" '3 j'(
g Il D RANGE OF VENDOR
'~ ~ ' " '
D j g - C U TEST REPORT DATA @ - \ u i ' O t b (3 40
+750F 3 -
1, . . U 0 - C- g O
+10'F *
- TANGENTIAL DIRECTION I I I
- I f f I I I 0 5 10 15 20 25 30 35 ,40 THICKNESS OF CLOSURE HEAD FORGING. INCHES ^
CHARPY. AT +10*F AND IMPACT
+75'F ENERGIES OF THE HEAT TREATED CLOSURE HEAD FORGING A ,e i . .j .
1 1
.. .__ .1-- ~~ ; ._ f,r -~.'~~TI-~*~ ~ ~ "
2 - ~~J ~ ~ ~~
* ' - - ~ ~ - ~
1_. -- , - - ---
,, . ,. .,. . , 7 U .
- dl', b) be J-4
- __.....-.......__.'m
. . -. _%..m - - d/t.a i a - 4'. *A , + - 4 , .w e., ..A tu #A- - - - - . . ~ . . . .
I . 1
.i a, .
a ij .
- -fi 4
'q .
c . .t y . . ,'4 4 i
~
so O t . O AS STRAINED
- s D
j O PWHT to - O AGED 4,
,': O . , N .
4
% j'
- t L , so -
- a. . 4 :. -
>g e 0 .,a.
t)
- a .
__Si - f ( 20 = 1 g o a o O u a y d h 0 2 4 , g
% PRESTRAIN j CHANGES IN 15 FT-L8 TRANSITION TEMPERATURE l
e i f
. */
e l P,
. . e 1
.i . O F t . f i _.....,..
-- .._ < . , . _. --.a., , .= - .-
~ -
e
. . - - . .~.... '
- = ~ -. : ... .". L+'t ~&""
1 I 1 . .l:) (L- s 'i DROP-WEIGH CRITERIA (E208) 1
/l I iM -DEVELOPED AT NRL IN iS50'S q . ,
'N -USES STANDARDIZED SPECIMEN AND FREE FALLING ENERGY OF 250-1200 FT. - LBS., . El kELD BEAD. AND STARTER c) *
- d -SUBJECT A SERIES OF SPECIMENS OF A 6IVEN MATERIAL TO A SINGLE IMPACT '
23 LOAD AT A SEQUENCE OF SELECTED TEMPERATURES TO DETERMINE THE MAXIMUM fi TEMPERATURE AT WHICH A SPECIMEN BREAKS
- 4l -RUN DUPLICATE AT LOWEST "NO-BREAK" TEMPERATURE
-DETERMINE NIL DUCTILITY TRAhSITION (hDT)
TEMPERATURE
+! . -THE MAXIlt0M TEMPERATURE WHERE A STANDARD DROP-WEIGHT SPECIMENS .] BREAKS ~ ~~ -h0T SENSITIVE TO ORIENTATION . - m- -
( a
'
- BREAK - A SPECIhEN IS CONSIDERED BROKEN IF FRACTURED TO ONE OR BOTH EDGES OF THE TENSION SURFACE. COMPLETE SEPARATION
- AT THE COMPRESSION SIDE OF THE SPECIMEN IS NOT RECUIRED FOR BREAK PERFORMANCE.
~i NO-BREAK - THE SPECIMEN DEVELOPS A VISIBLE CRACK IN THE CRACK-STARTER WELD BEAD THAT IS NOT PROPAGATED TO EITHER EDGE OF THE TENSION SURFACE. f: NO-TEST - THE TEST SHALL BE CONSIDERED NOT VALID IF THE . d WELD-DEPCSIT NOTCH IS NOT VISIBLY CRACKED AFTER "I COMPLETION OF A TEST. AND IF THE DROP-WEIGHT d SPECIMEN IS NOT DEFLECTED FULLY -TO CONTACT THE - ANVIL STOP AS EVIDENCED BY TRANSFER OF THE WAX-PENCIL LINES TO THE, MASKING TAPE ON THE ANVIL-DEFLECTION STOP. L" P' I .a,__ .
' R ~
1 ef A _ __ _ . .. :2. .::- .:~ -- - - --
. _&,s." ...:;.L.aG.-~~.-. a :'E G < ' .. . . . . . . .~. . . . . . .. .. - ~ --- - -~ ~~ ~ ~ ~ ' ' ~ ' "* ~ ~~ ~ ~ '
i, s (
},
e i - I
-il.9 ?
k . ' . .j . i d
.t. .'4t ' t, .1 ', n O
- ; 1.0"
,. )
1
.a ' - v . ' 2.0".
s 2 .04"- sj -
~... , , ,
1 .
. s
- -..y
.I (T c 2.5" r ' , 5.0" . t h"
.. i
-t NOTCHED WELD BEAD -mi le U16" MAX SURFACE GRIND u
-i fv (_q 4 , , .s2" {
- .075 2.02" J i f
, :a P-3 DROP WElGHT TEST SPECIMEN , dl . e _ 4"
'k 1
- I l
*s ~) - (w ..
5 6 4 4 l
- l. -
. g ** .
p 9M-D eM -rN 99 . . _ . . . _. - - - + - - 9 , . . . Mf'P' T$* ' '
,'_____;..,3.g_ -nca . .
e.. . . . . .
..._ _...m.. __. . -. ._ ..-. . .m ..
nj s ~ I l .;l 4 , 1 , .'.. 3, . 1 A .002 1 A .002 A F -1 002 g II A .002
.1 c &
ll JOAD LINE : 2Y L f .>- e --- -
.l A .002 * =
j MAX. R. 002 2.001" REF ff .
.g ' n a - =
20* TYP. y
.g 1 1
a: 7+ 4, u
, -h j _.
v_-__ 4 7 r 3, .s ._ L - - - - -
. w' may M : n k
9 E - - - -
.i . *C R +/ 8 - ! U l[ l DiA. / %
A!.001 D D!A. 1A .002 4
- 2. HOLES 1 A .001 l
SHARP AS POSSIBLE
.001" MAX. R.
1, COMPACT FRACTURE TEST SPECIMEN SPECIMEN TYPE . 2T 3T ~ ~ H = 2.400" 3.600" 8 = 2.000" 3.000" D = 1.000" 1.500" E = 1.100" 1.860" - F = 5.000" 7.500" G = .375" .800" i; I = .203" .375" ,j J = .068" .172" L = 2.250" l l t-3.250" l- v W = 4.000" 8.000" i T = .12G" .125" l 4
- i f
4
'*n- -
F' - ~~ ' ' ' ' ^"~
, , . , , ' .*d na.'. _D ' in.1 u ~ - . 21 - - - O e "*-
- _ . . _ _ .. _ . . . . . . - - - - - --- --- ~'~'~ ~' **
s.- *
~ ' * ~
l
.j:
h E 399 : - F0fL RESISTANCE
-].
STRAIN GAGE
- Opta 1
v() 30 b E
\ e, I ' Os t t0N At. . .
tN T E 3 R AL- W ACHINE D i aMrE EDGE d p C 1
,x . c, x x /.% .
206 -
, \,.. 2 g % .
g T2 -- - - k * - - 1 \ :.
's X'T.
- 500 OHW GAGES w Lg
's -. > ' "? P R 0Vf DE GREATER .\ #"% S E NSITIVIT Y THAN 120 OHW CAGES 70' L j l
110 '/ 40' \,
%_/
t; Nors-Gage details are given in the Annen. FIG. 3 DoeW CantDever Ofp-Is Dhplacement Gege sad Mehd of Mounting.
'h . ..
I t'
.? -
J e b t
. .au.-e- *-- a,.- * *ms+ =a .m- eee* } '*.w.e.-+ , *n' * " "
- a.,..sa-ekve --
. .. -- . a m.;- :a.i.;i ' -u. -
2ib;id. .' 1 s. _.b *
. ':s ims .s _ . -
.3
.i i'
HARDNESS TESTING . 4. ( -
,j HARDNESS: THE RESISTANCE OF A MATERIAL TO .n 7p DEFORMATION PARTICULARY PERMANENT -
d .Ji DEFORMATION. INDENTATION. OR SCRATCHING. d - j INDENTATION HARONESS: HARNESS AS' EVALUATED R F'OM' MEASUREMENTS OF 4 AREA OR DEPTH OF THE INDENTATION MADE BY PRESSING A INDENTER INTO THE SURFACE CF A U) MATERIAL UNDER SPECIFIED STATIC LOADING CONDITIONS. U BRINELL HARDNESS: MEASURES INDENTATION AREA ~ ASTM E10- 10MM BALL 3000 KG -- - [; 10 - 15 SECS
~
_7- ^ fj 3( ROCKWELL HARDNESS: ASTM E18 MEASURES' INDENTER DIAMOND CONICAL OR BALL INDENTER
- 4.
' i. VARIOUS LOADS BETWEEN 30 AND 150 KG 9 a
- KNGCP HARDNESS: MEASURE INDENTATION MAJOR DIMENSION UNDER S! MAGNIFICATION
./" RHOMBIC PYRAMIDAL DIAMOND INDENTER VERY LOAD LOADS. LESS THAN 500 GM.
~ ~'
VICKERS IIARDNESS: MEASURES INDENTATION DIAGONALS UNDER ASTM E92 MAGNIFICATION SOUARE PYRAMIDAL DIAMOND INDENTER
- VERY LOW LOADS. LESS THAN 120 KG. -
10 - 15 SECS i] - ASTM E140 STANDARD HARDNESS CONVERSION TABLES L (i. . .
.. _ .. - . . . ... . . a... _t u. .Th . sw., r .. 'Q.. . .' # '- . ..Q .' . e4 .' . . 41 J:4 44. . . . - - - -
d.i
.s -e -
s.%
'l . -1 i
m i l
'l Rockwell C hardness i .
12 25 31 38 43 47 52 260 l ., Nl' 240r
. .T^
8 4
- t.ec
-l 220 sc y.y l Nih ). 1 ' yk f' . b 18 0 l 9 8 c i f.
].160 " -
N -
=.=
E 140
~ rp N.1
- l ly ('
= 120 e
E f fi 10 0
/
it 80 'f 60 40 i 200 10 0 - 300 400 500 Brinell hardness number Relationship between tensile strength and hardness for quenched and-tempered, annealed, and normalized steels. (SAE Handbook.)
# 9 . .s G
i
?
( [ . g l . _.-..,=: - - - - - - - - - . -
. . .:. ~ 2, ia w - % :: - ' ' - - . =.a a . . . .. . . = G , - &~s W" L- - > ; x ar- * = ~.&- . ;:
l A
'l i, * . ., 4 f- -
1 (- < 1
- i ii 94 9 .i O 1 O AS STRAINED O 3 s2 - #
AT' o PWHT O / O AGED /
/ . so - * / .. a /
'; / xj .. . . / _ p . __ 88
.O 0 e! . .2-7 i}. . r ,z y / .s - / /
l
/ f M
d.i 86 -
@ s s' o /. / .
a]l s
/ /s / .3 o/
j
.i .4 _ /,,_o /
_o- "! D # b - 82 -
- O M I I l ,
o 0 2 4 . 6 , a c-
% STRAIN
.f ., RB HARDNESS VERSUS PRESTRAIN l
;l; C .
l ,j { .. l
'1 . , ~ . , . . , , .. .:-_.-. ...,-.. .,: - . - . - , ,- .: . ; . . . , . ; ,- - - - - -- - ..= - , .
_ . , y a r. 1.2 :s ._,,.....,.__m.,,
, . . _ :.,.._wem_, a,.;_; %, . ... . . _ . , , a .; . m .. .. . A _ . . ; . \
l i -
.;}i i .k * ;j -
4
- l -
M I f
-i i
i 1
'l; '
I' IEMPERATURE ~ Te STRESS o+ RUPTURE
.1 ~ 85 l .'-j '. .. l .
- se i
l
._ j INTERCEPT . . ..a ' ~~
e--
** STRAIN a - ~7_d
.L y W ISECONDARY~ REEP s I " I F1 A y K _ 8_ _LPRIMARY l
. -- I STRAIN Tf I* yCREEP '~ - - ~ ~ ~ ~I--- - '
I
.',i g" -.---+_o IS -- .T_RA IN i TIME '
i ,1 e TO . .1 I ELASTIC-PLASTICI g STRAIN (TIME I RUPTURE g 'i ' 0 NDE W " l
; O --
TIME
- . PRIMARY _ '_ SECONDARY TERTIARY J CREEP CREEP STAGE u
' R CREEP , . , . STAGE , ..., , . STAGE . . STRAIN HISTORY AND NDHENCLATURE ~'. ~
': ~- . . . . t DATA FROM THE STANDARD CREEP TEST - ,t , l . {' I C . . . 1 ll . 1i i; [ l _. _. ._.....z. ..=--~~w~
= = = - = ~~~ ""* '
. ice . ....u_.gga -n.g.y . - ____ _ _;. _ p _ _ _ _... y . _ _ _ . . . _ _ 3=.=..: . .i 4
1 . 4
~! F .,. ( .
2 c.; n . .
.3 t - , ,-- x . _ .- .t i L . .
a .
.) ,
s... ' s . a . 1~. 1.,, .
, e .- r .
m - m . 3 .. . w , . -- ae , - p-- _m . - -
.4 - .s a - .i . oe .,
g' ( s
. TEMP. = CONSTANT
' ') . t .
- .3 -
.4 .
- m
< j i - t - LOG (TIME-TO-RUPTURE) Li t 4 STRESS. RUPTURE DATA FROM CONSTANT li TEMPERATURE CREEP TESTS L: J - - t i c s l ', e i ! ( ', ,. l { C . . . t' l' l
.i
- m. y4 .--MW -- .%%aam . .b,& -
. "" S-. -
"' ' , -' v ~
e
, , ;. )1,,' N
- _ f-=. a m =n. . . -- . . . .. . . . . .- . :'..
-t' . . ~:. . ; __ ._~. :~.~.T .:: --* -~ ~ : . . .7 . ,
i y . 1 .- I
- j { !
1 _:\ . l{
.! J-Tensile strength l l )
- c. . _,
- 120 . . . .
.4 l ..l. i q - . ' - _[8@@ 3 . , !' ' I i
1 i a j - ; 100 . ___ i '
] AYleid g -
3
' 8' i .
strengin - - _-- l c 'E
.= 80 - ' . . d. . . ;I . I....
l 3
, ,' l .' Q .a a .
ffUnnotched j g -- .. . t' . .. ,
%. l .l, f__ , ' .l 5 60 -- _f .. ,_ !',.. . ,l l,! . L m . '# "8 T\
8 8 j \.
.b ., z.40 s.... " \' I r W K,'= 1 5 ,
i
. g. - +
W,. - L 20
; !l
- v. . ;._
ie 1 : N , K,=2 N K ,3_, 7%, v
.. I 3._ .
N 4 .
.I O 'i , l K, = 4 N .1 1 ,j % 1 10 1 02 1 03 10' 1 05 10' 10' 10' Cycles to Failure i
Here is h,ow a notch can reduce fatigue life in an SAE 4130 normalized steelin axla! loading. As Kf increases (or, . Es the notch becomes rnore " severe"). stress concentration at the notch tip increases and fatigue j strength drops. '
. m-I i
i L C 9 l e n
= '-
l e, . Ne ..' *
- ____ _%m . - p ' - wm. rem a.'d- e =s =
_ _y _--- % . we-
1 ;.. a. .m.c
. .w . . . . . .. e ; . . . . .. - .. . .
4 1 .
;d . .1 .
1 I. . Mj 4 *
.f(
i .
.1
%} ,1 - a v; i b i, .
.z ;: 60 t M
- i ElL c.1 o
- I o 50 ,
o
- ) a Mild steel
-4 . 1 ,
s N 40 A s , .
~ $b 5= \ N i > fatigue. limit. ~~ .-
j- ' ( .F_30
\l s % Al
-d. - ?. Numinum , alloy 20
- i a a.
O
= 10
_v O u O 5 10 10s 10 7 10s 10' Number of cycles to failure, N. .. y,Ilncal fatigtte curyes for ferroits and nonferrous metals. a
-t ,2-=
1 .
/
9 O I l r-- . l . 4
$ 98 a
lf j.- - --
--r-, ..._7_.7._,., 7.--_.
_ . , _ _ _ _ .----c ,___ . _.._.,.
, . , ~ . , ~ . . w :LWpu - - - - ~ ~ - - - ~ ~ -
t M
- d 1 -
t g4o '
- / .. 'i 830 /%
f_ RARE"-/ i _f
- 7. CASES /
I 120 " ),' -
.}
SO % RATIO k . ././.
] "' / . ?. ,/ g~ 21 I
g 7 46 u.1 4 l lkh k b J hhA s* ' diQp.t.i n Vii. Dh
}.[9 " wu W Y I ' @r a C N 70 I ".)h' NORMAL FOR > 6.4 G kW POLISHED i 5 . -*M SPECIMENS a +
xs M.'M ....y@$$
*$., 3 d - .a SO .&: .. - -
mi$4$hffA '...
$ taf o )k*.!'
I 9+. 3: .t. .-- " j' ,'& $$:'t..;*$-l '; .dit? r.Kg)p ...
- M.9 :
g gg 3
~
e mv mr
. i ..ISY:i ... , , . = , = = = = = = = < -.%
J si.). .tiw f.M v q
;.-l47[p 3.. .gf:. sal-g -g!p!)% %I:1".; C i Z ." h fi:W d.O .
NOTCHED $PECIMENS' ~Y g.8m M'., :! M ' M *%V T4V.~ Ct% ' *;,@ th .W
- t.M
.; 50 .M' au jy . %.A ~y6 Ap 1* .S= *o**~..'s.----"---'--- - = = -- ? - c.Q u;,.5,m . gyp?i;e_ $~ ...s 4 N .'2:Wl&ilb biW to , ~R, yL . 2 *t: G . Mx m..., -
_- .%%Ww .o.,y t *p%, ,, S to &&. .$Nn1l%$%1lWE302&g8'TCORRODING b}}.dq -$h sPEClutN ! 40 SO SO 80 0 82 0 140 00 0 ISO 200 220 240 too TENSILE STRENGTH - 1,000 Lt.PER S0.IN. rpeifmens. (From " Prevention of Fatigue of Metals " bv*- the staf of Ba
- Published by John Wiley & Sons, Inc New York.1941.)
1 1 t.. j i* s (-' - i( .. e _ . w . eg. eme- " * - * * " '
vj, ;- ,;
~ ^ '
3:.~'C .. ...i ._. . .T.'"7". ' .. t '.f_ . _ . . _ . "..... ..L. . . ;.;_; ~- - . ~2 ; ~_.. . 4 1
. j ,
i
, , WELDING FUNDA.ENTALS (Handout)
A. General Objective of Welding .
.i
- q --facilitate fabrication d
l .
<1 --permit modern product design B. Goal of Mfg. & Field Personnel i 'j C. Method- Controlled application of intense energy to surface of materials N
lj to be joined.
- 1. Energy Sources 4 .
-1 4
i 2. Melting Methods , l '
-- melting occurs when atoms obtain energy to break *away from home _ _
J
.s , location i;- *' -l
- c. c..r -
i '
~
Penetration of weld into material depends upon thermal 1 l condactivity I j 3. Diffusion i time and temp. and pressure can result in exchange of position of
?
atoms. D. The Welding Arc
- 1. Arc vs. Oxy-gas Weld are provides intense heat by concentration of power in small area
- - 10,000 F 3
oxygas - more diffuse - 6,000 F - 1 J j Desirable to quickly melt metal at edges, but not overheat entire
.-f part.
I l} ( t-t_ __ ~ _ . _ . . , _ . . . . . _ _ _ . . - . _ . . . . . . . _ . ~ . . _ . .
. s..>'. ~ . . . . . . m . -.w- . . ;h;O , -. ~. .. '. ~ .-- . . . ._ . - Other factors affecting heat source effectiveness.
3 i
-J J i ;1 . ~ , .,l
.il s.1 .
'q
- i 2. Are Physics
'l -- An are is a series of electrical discharges conducted through a 7I gaseous plasma , J.-
~i -- Plasma is ionized gas in state of near thermal equilibrium. Arc temperature
- plasma composition ' 'I ;j -- lower temp is easily ionized materials (work function) ..Qv .less power required to sustain.
current
-- energy losses J ~ Purpose of cathode is to generate electrons which made up the i ', welding current.
i ' i -- Arc voltage 1 Increased are gap gives increased V - more needed to sustain equilibrium. , _ E. Solidification
- 1. Freezing mechanism - castings j
.j --
very slow cooling ... l; -- gross segregation Final liquid to freeze high in impurities. Difference in 1 composition inside vs. out is segregation. 9 6 ,4 l l _ . . _ _ . _ ._ _ _,,.,. _ .. ... . _ _- . .,,,,.. ...y ., _ . _ . , . _ . . ,
,e . - -_ ._ - ~- / ._ _.j<. a :i..r dik ' ,} . ,,
l N .
.- 4 .j i
- 2. Freezing of Weld Bead
(, -- rapid freezing - less segregation 'j.. -- wei.1 pool constantly agitated
.-9 c 4 sjj F. Dilution ~
- 7
-- Wald not " pasted on" base metal. Arc heat and violent digging action H
li of arc plasma -
.3 j --
Calc. t B.M. ( A is filler, B is melted B.M. ) = B/A+B 9 1:s - "Weldability" often depends upon proper weld metal chemistry 1;
.j - some base metals cannot be welded autogeneously k} - Welding parameters affect dilution g
J . 1> d -
.) . .. . .
,5 --
...~~
.i 1
-. . . . ~;, .
G ) .j 1
.b Problem areas (dilution) >i l
Backing strap Cladding Cold a hot cracking due to carbone pickup, sulfur pickup i' G. Temperature Distribution in a Weld .
- 1. Transfer of are energy to plate I
- 2. Net Energy Input ,
- ,i (a) Total energy input c-f I = EI/V (joules / inch) where V = speed i
!l . Quality of energy per unit length from traveling heat source -; (. 'I V (power /spee d) t h 'i. t i c_%.. .._x,._ ______-- _. ,, - _ . . _ . _ .. . ..-- _ _ _ . . . _ - . . . . . . . . .
~
L. ..a. lLu. .?. .lO - -
- w. : . , :. ~ .
- j -- . _ . _ . .._ . . . _.. . . ._ . ..._ _
1 s
.1 .-t .
1
,1 -J '! (b) Net Energy Input equals EI x fl 1
T l fl = heat transfer efficiency
,f fl = .85 .90 except for TIG J 'j = Melting efficiency l Portion of Hnet used to melt metal -affected by - M.P. *!j - conductivity .
1
' - thickness .a; - joint -
4
.1 3. Temperature Distribution in HAZ i
I
. --Base metal issned. adj. to weld almost melted 4 --width of HAZ - 1/16,1/4 inch. --very .high tiemperature gradient . . . --variety of microstructures . ;
6 e g ; O 4 4 i i e h $ y % - 2** i + l-e
,f q l.
- h*M
'9 **W66 T* Q=.#" *W w qvuss- '
s eb a m. m-wn e . -
+ ,a ,..%. - . ~* 4.< ?
n.. J , *%
-w a .Ju E
- 4ws ~ . . . - - . . . .
4 JJ. 4
.A .
i e a i . r, 1 i i
.f .
4 .1
^
1 m+ =
.. s s
a.. l .,
,=
s:s - . 3
.) .
3 d, . _
'.',O #
i A l HOME j . I 4 LOCATION l I t 5
- l. s-f lR 4
l 1 1
) **' ~ ~
- L Mm , y e.~. .s
. L. , . .A 'n . ' ' ~ ~ -w. : _ _ _ _ 'Y * ' * * *
~ ' i . _ . . . . . . _ _ . .l.&- ..u ___- . .- _.
M
'2-O 4
L .
~
e_
~I l
- l 4
G l 1 ff-y .y o L COLD . v J m. ... .,n
~,, '- - 'l k.
WARM ' k . -
/4 - , MOLTEN ..b s 6
E i ! - t 4 t _ . . , . . , .. m-- _. . _ _ _ - , . . , , , ,
e
<-~~ ,a. % w. -w., ..-- x.. - - .~ _
I i 8 -s , i
.; M - . LEAD -
.g
-i -:r 1ww,,.
b GOLD - DIFFUSION r a e
,3..,....' ,<.. w ,. . , , > , u ". n .
- a. , > - .-
. .u - v. . . s . . - . . - .- .
[Y Y
*I 1 ~
l. 1 I
~
s l
<l .
i
? .8i A %
i 3 s
' 4!
- SAst MCTAL
\
t ir i - - 3 . q wCLD WELT IMETE".I. .
// / . ,;.3,- ,._ j ._ , ~j 4 i l ~ ~i I WELD WETALL3C0' l
A weld in progress. Mag h weld d
'i . _
4 e 1
. e , =E I .h 3 'I i
. ; __. . U .0SiiE i fA.. uma.:',. _ _ _ .-_E. . _ . . . _ ,
i
- P
? -l J l 3 ,
1, - 1 t 11 ,
.I
- (
gj .
- t
. i y .
j 4
~! . ')
l 200 A ) -- -
.) 7, 12.1 V , \ 'i -
i IB x 103 K 2420'W. '/j i \\ . 16
.1 . ,k 5 mm (02 in.) .-- j iu 15 q \, !3 g g 12 .k )
0 m WYW YU QW W l
' I.
r q
't t
L* i h I ,l t t
.y_. . ...~,. .- _ -ns r n .-~- 'e s - , ' ' ~ ^ * * ~ ~ ' ' ' * ,,,T- l J.
" 5.J, ( / f3 cc , , ,.
u.aws.4 L.s..a 3 <- :a.% G, e:.G. a . - a,-- cn _ .ww - - ---. - - . . . - . . . w.L.........
- I j
,- 3; - ' sy, s. . ] G -
($ J 4 i 4 g
.i .
i ', i
-) i .l- .- t
- 1
.1, j,
- ?h I I
ig i
- e. :!
..) ..j l .] .; m . .1
.{ . .:. E euen :
,at heaf geoemas " --'; < .. e a -:d _. - .... .- r
- ) :,
1 ye
.i l+ l lC N :,i % ;,t h :
r; . i eesses. fea : .saw. : een ; I s e,ses. 1 comannen eesses d Tg 26 - Arc posential bolts) desribution banneen eisconde and mort, d
-1 1
j . 5
- c=
4 4 l r l V 4 { a t I
" .e+-*__ ,e - m - ~ . .,,, . . . .
'-22_ __.us..__.._._32._amueve-.a t-,. # . , _ . - , _
* ^ '. - .u..; ..X. ' ' .2.. .. ..: s.;. . ..:.;. E. L v 1 _ - .+ _ . -. . - - .
g n // ' af 3
/
. 8, .
'I 1
4 .
..l 4
, .1
-[ .
a
- 1
.j -N .3 ~. Nl M j g 4 g>l_ <@
- ( ..
I 3 MN
=====
(! ! ,~~" ~ 1
~i .t------ .
'i f ( -
;1. ~
y
'.! ( ': -i- -=
d'9Y' f i Freezing of steelin a mold. (left) freezmg begun; (right) Mg nearly complete. 0 a 8 e 0
.. e .m
_ . _ _z : ._-.- . _ - - - -
6
- ~ w ,,,-,. . .. .w .s , ..u.r . x .. -. . . . . - . - . ,._u xr s s..ea eu x;2.:a.:...a-lau w.a.x_
a.;__ ::a.waa .
- ~
~
7 J., , 3 h gif c.
- n.
L
; L t. , t ,. ?.
t l ! 1, . 1,1
. p
.t i. p -l T E M PE R AT U RE h. i ji COM P OSI TOON OF j; g FIRST CRYSTAL ; ,
- t. F l .
l I s! I* (F COMPOSITION Or STecL ------- O7 i .: w f~ ' ll
! 6 C
'li
. .- . t_- # o
.l i I
*l C I ,
g CO MPO SITION ' OF LAST OROP OF 6 '
- C ll m LIQUID ;
y i 6 e
> [ . s .
i ji
<j'. . ^ .. er ;' ,
W ! . I' ~ 4 --- . . . . . . . . f 9
,! h i
I ,
g ,f. , ..- s
.. 'i:vh -;.. m ..u.to :es.La-a L'. . - - - - - - -~ ~ -- - - '~' ,~
o b -
.a. . ti '1 l 4 ,
I
.~ f I 2 ,?.
- t
'i .M v3 h . .1 , 'o .t i:3 ^
C -
~1 id .
y
-., N.,%'. . .-
STALL MucH L Quio . I w
,[
V~ , ' T.6 h .
, - - - - - NEARLY ALL SOLIO ~~
S} (: NOTE VERY SLtCHT DCPRC35 EON r]! ALL SOLID - 1 1 Four stages in soli 8ineation. Shaded area is melt; dound line is boundary of initial melt. 4 e i t 31 . _ q e,
.4
- 1 l$ ,
3
.I iI .9 N
e et
. . '4
- ).
e a e 4 l1 . ( 1., . _
. - ~ . . - -- . - . . . . . . .--;. . - =-- - - =0
.T; . .;. .; i ~r s., $.%2ati A sa. . n. & 1$-wik . n.-~ , *; '. , . ~ . . . . . - - . . . . , - .
1
- ... F e ,
s ,
&]h .h .
tj f
- ) L *~
?
o e IS 1 s; .
- \ )
- en f./.J i.
.__ \r/ .
k A * 'g p*, g SECTeON MM ,
\ - ~
y DIR ECTION OF WELDING . . . , _ - f stCitON NN ~
^ * - r --
- x. .
gr 1 . l BA C uilN G l
- * . Three views d crystals ivi a siriste-pass weld. >l:.,
a n..; b
.1, - .
4 , L 4 .&* m i k i I, V l. i e FM , (1 ,. . _ , , . . . _ _ _ _ -- . _ _ - .
es r- ,.
,e..<,,~,,. a.4. n-. A 'J. 4 m'.~i t . J; .,_,.a c,%,_ , ,,
S w =~. , , _ - .- ._- _ . . _ . . _
.1-CHU e - ,;j s .
l- 1
^
l , e t. .
.a y
1 W . a r. s.3
' b, - ,)
C. e., i 6-4: ,
.r. ' .
{f __ N I j
~.,
w . s y j
- stase e statt a
- , r ;.
.Two mases in the freenns of a !!!!et weld, shesing nar.
t river ~speces partly 511ed with shrmking liquid (shaded). Arrows
.g indicate the direction of shrinkage strenes, which are oppende to l J
the darecuoo of abruuase distoruons. i.t I - I< l l1 l ** l ak I ...s.- e.4 - - f.] t ut P N s . l' p a .
>}
a l r a- ,
.3, l *S.
1 . ~1 t -4
- t 2%,.- . . . - ~ . - _ . . - _ _ _.
i
.$ ,# , . . A5 , " ..,+~- g, d n sa.k s 4 > L. . w . . % . ,'o m, ; .____ _ .. -- - - . - ~ ~ - - . ~ ~ . . _ _ , . ,__ _ ,y_ _
l 11 .
.1 an a % )g ""
l4 : v ( = LO
+4 , .,4 l
( --
.E lt.
6 9 d*,, bQ f.$,
=4 .s A - -
3 1 l i .
- l .- _
b
. .y . . ,, - --
51 , . .
~
h,
~ N ~~ 'pos sis ts p .'C/+
- a. SITE or s\ / CaaCm 4 N I T I&*ic en
. s \'4 .1 a +
uI
?
se'T
.g 4
e. b i l
- O 4
1 M t
?.I ....- " ' *-m'e'-- ..w w w . w .-% . ,,,,_,, ,, ,,
~, .& : u .^ : . .. .a::a u. .a. . . . - . . .. .. _ _ _ . . _ , . _ _ _ _ _ _ ._ _. _
i
.'l (J .d (
3
- j
.] .}, =, .
3] 4..,
. .a 1
L-t k - 3
- .9 t ",
. , ,\ .
c * . p.
<r t . ...I j . . *-% ; , >g 1 ,. ;,
ut g ,' .'
;c j ,Q , .\ ~ ' +O *g
- n eu..
~: ? .s ee +
m .-r.~
.. a., - f,.s: * .. ry$. . ' - '.:%.D s ri'.. * .A' '.*. .t
["
- w .=. j*: .
e ,. .
?_'*:. .,% ._,,,'\*.. p / . -- ----
j.y,,- *
.- .-- .-_ e ,g g. . .. w -. ~ .~,x - .I_
c-9. t'
,.- .. ~' .. .e* ***
g e t* , , g' , e.a ap ***p W
.. gg cract in a restmned M** Hg d n ; .mm.e-,
developed in the leh
*g g: ; Loital*-2 m,Ac ly gebed in n
{ Specimen ged an base metal w a# # 1 ( i
':t '1 ,J :
e.
.s**
l v l l l ? - .. ~~- .s. .. _
~ . . . ... _. ... . .
3.tw.J L , .J ;e. ..z.<: . ..e . -. i -. _ _ _ . . ._ ._. . . _ . . _ _. .~ . . . m. - :
- . ,..s ia
.- )
y* . Ji . n . .
,i t J. .a "(4 . .' 71
'd - h 3 ;8 I e
.r 1
>p e N
.:N L .ky ,
4 kh 4
% CONSuwacLE f04 gas ELECTitODE Cmv5TALS EU'E'EI *
- GnowlNG LIStmATED ,
/ Mgmt , $ /MtmL GAS l // / . p ,.;e g**, A 5 50m 8CD -- - -
4
- s. ,, ,
Mtat -- -
. e - ' - f,- / ,
i'l [>~ .x.
* . ~
((. SAst WCTAL J t
/ Gas bubb!es may be IIberated dains the cryr.a!!izaden ,a of the weld melt, and may be entrapped in the growing cr>r.ah. *
{t Porosity is the result.
.'j 2
4
.F .I )
b
.i 4
a..; 9 e i d i: v e _p - - .
,g..Is % u a.e t.w.ms , -- a ; .w e .- . ~ %. . . , . _ - . _ _ . - . .s. . =9 p ~ =
s"
*.g I' , i %~-I
- k is
.1 a 1,
- 4 t.-
m.+ t I N
?
F A f
- c h-f;
- Tk 5
f5 1
*===ese*48.SeweG68 1 ssettesee 1
h
- Aufootwous etLP g gy.
R g.eg . ,$
,g 'g* toos oiswvio=;
q ALL SASC 48tTAL i *
.1 j ,l- -
c .....ess - rj e6estsees
;i p mg. .-
vs '4 _ _ ?. i
<w = / .s A - ,
l.J i
@fplgd- .spb -.
so s o 6uvio= ont pan? Pettta utta. o=t Pant east utta6
. - e ee6:e eve = a.e.. . 'h,/, *
- Ny s, . .) .
W .-
- ] .
rs s o Luvio= TMett pants FILLem utfag 1, ont ennt east utta
'i ,' Dilution is welding. 'I -
- 1 .
- 1, ,
..,f . .; ?f ;j ^' ] .I t
1 e
- 44 t
i1 ..+ iI ^
.;. . . ..r : . . - - . . . . . ~ . . - . . .~ . -. . .u...
ap.
. < C7 S J: ~ * . 1 l ' .1
. ?<
'1 ~l -4_. <~, ..t .'j 1 i -l .( ! .4 ~
ip e ~I,1.W"%p7-.7_*dA%6Mdfg ' W>9 x
- f. ~ ~ ' ~
T
.}
- s '
! *E # 6 T -l1 ;:1 a. @; L( :' 3 a
[m. - .
. . ~ .s .a ,. } ] .
bt. 1
.m *E N A3m. .O Welding condetsons: 800 amp. 26 v. 27.4 ipm._ , ,
i _
, .4 _
W- '
's * *.=
Q-
'\ . a 5% - ~ys w . -<3.Q * ; '. . .
r-. " .- Ca. .g f.'j . * } h. * ,..+
** ** [ f. ..N u- r(( . '. _ , ou ,/ ,., ~ .&... y.. .,,. . -
f,~. a- } s-
* "-~-%
g' '.'.=, - ' Ti k$N. .N.':[ .
;k. ..Su& h.??.. '- .. .'d - ~
gif $$ ' 4 ' *=~ TN$$5%,. Wi?$'h_ t
Welding conditions: 125 amp. 26 v. 4 ipm. ! F c. 3.39 Effect of Trave 1 Speed on Bead. Weld Sire. Both Welds e Deposited with Energy Input ofE,000 Joulen ,er Incl Much -
.; Higher Travel Speed Used for Bead 5howc sn Uppei Ma ro: raph ! Than for the Ioweri Thus a Greater Part of the Ene.n. Input i l per Unit Inch Was Used in Forming the Bead and Less % as Used I for Heating the Plate. - Note difference in Weld. Metal Penetra- i' l4 tion (p). Jackson and Goodwin.88 i ' c
.4 .
k L l k
- - - - - - - - _ _ . ~
# i 'i .. - t... [ . ..j 7
d % ri
.)
l 1 . I)
'l '
A e
.?)
l g I i..
"i .-. pr - !
S; n, 1f s D 4 e
?,) . - .=** ^. .u. -. .e. .s,- - . . = , ... er * .i lly e.e
- r J . er . '..
n> g..\
,3 , ? .. > .~. .- j .'. .a.de ll
( , ::
.: .\ / ' w, :..:,* .9 i .s t-9 .. ,C,. f - * *Q < ./,*.' . ~
c] . fl. 0 Nfk i
, l Wf i n. i . . . .The temperature in a ridld ueel plate at an Inc. ant during welding.
1 9 9 i ' 1** I i, !h e .
/- e
- .]s
- w i!
i l - l l I i-l I l i l . _. . . . . - . . . . . . - .m.,r,,,..--- _.,_._.g.-.
m . _ . . _ _ .
. . . . .vs . . .. ~ ~. -- - -. - - - .- - - - - -- - - ' = - - ~ ~ - * - - - - ' ' l I
9 )
.) ' * .f , .I ~.i if; ,i d *
- (2 f 1 ) y
.1 \.Y .
3
.--e 'e -- 4 .1I .-l m . . , - i ..; I > \
p.) e
, es< e . . - - '.78 e
L i, ',
"o . . . t 4,j .......es.e*s.... ... .......... ............. . . .. . l ..t y
e.
- r. _. I t*
F "Ffe I t I [ r r r , r r [ [ t r i t t
] [ t f I J I T T r I r l l l l l l l l l l l l l l l l l l l l '
l l i l l l l,I .I l t . < ! t t . . t < tl t t t t t t t t t t t < t -
,,.a . , - - ---
l
- e. . .
......... _ .. e....._....-._..a....... -- . -- -
- e. ..es '
,3 ..- . .;4 ~ . - . .. - :c r- e ~~-
{
; j .
Distribution of maximum temperatures in welding a
.i seal place.
4 4 f t I
- 4 9
+ e e
- e. --
I I , ,l
' 4 i e ,
L* o a t .
;f f.- w i
l f h ! e ' I r lh L i n,- ++ ee4 pp = = _ - ^ *- * * * + . , , - ,.a-.**h -
*=.a es - e... P= _6**mm e e ,. , , , , _ _ _ , ,
- P 1 .C i -i ~
!;] WELD ZONE MICR0STRUCIURES IN A514 TYPE F LOW-ALLO ! hl 4,7%)th. "MACROGRAPH X7.5 ETCHANT - PICRAL .h,., ;'. # ' " ,' '
- MAG. < UPPER R0W X200 LOWER R0W X500 . g,,g,, gyp,y -Y , - _
WELD METAL C0ARSENED
.i) TRANSITION BA5E
- 4 -
[.; L t
~'
REUNED SPHER 0l0llE0 l ), l h ,1 . k
^ ^ - - - -
.._. . - - i ' . . _, _ _ . . . . , _ _ _ _ _ . _. .__m t
ii; ' i WELDING CARBON AND LOW ALLOY S'~ICLS 'I i 23
; A. Review - Have covered to date
- s J1 - Properties of steel 4:
.._4
~ 'e.i - Metallurgy d *
] - Heat treating 4
?1 - The high intensity welding arc it 4
1
- Weld metal dilution and 4 solidification - Temperature distribution in the ;4
.n weld, zone - sharp thermal gradients, resulting in a
. Varieth of structures in the HAr ;a , , 'C y - .; ..., ,- (Slide 3-13 )
Objective - Stay out of trouble q Li B. Cold Cracking 1 74 -
;j , 1. Background
.) r
; - most important defect for steels . in NSS
- t
- Other defects related to ,
1 i t dimensions skill / technique ,i
- ) -
weld procedure
>j (undercut, slag,
- ) e
- .)! porosity)
!It
- i r; -
ri
- y li' .
T. . u . L.- _ _ _ _ . _
.. . . . ~ . -- - ~
_;. . u.. .- . - - . .. - - - - - --- -- --L "';-" ' '" "
)
t M t - High quality steel usually a . i precludes lamellar tearing g' ! _ - Under right conditions cold i
- f
'; cracks can form in most of the .f ,
9 carbon / low alloy steels in NSS a time range for formation - temp.
'P]
s, o lower than 100 F after welding
?Y d to 3 day delay b
Ia - Transgranular vs. integranular 14 Unlike hot cracking, which o
- occurs either just as the material is freezing, or at an
,q g interme'diate temperature upon .a, ~
cooling, cold cracking can either occur as soon as the j material has cooled to beneath 400 or 500 F, or it can remain uncracked for a period of several hours, or a couple of
).
days, at which time cracks will
- i s then initiate.
~j - ,.1 The latter problem, called delayed cold cracking, used to l; be .a problem in welding armour i ,
1
, plate in the Second World War,
's (Stainless filler used), and as ( i * . li . r! 'i t s a..m _, _.._.- -
..L u . . . . _ - . ._ _ _. . _ . . _ _ _ . - __. __ _ , ; ..-,.I
- d. .
1 l 1 l j recently as 25 years ago was
]
i
, imperfectly understood with \i
- ,1 - respect to its occurrence in p1 l:j suir.arines manufactured from
;1 ] HY-80 steel.
(:t a - Types,of cold cracking (Slide 3-6) 3
- 2. Consecuences of cold cracking .
[f - Orientation vs. detection by NDE N
- .} - Stress raiser l) *
- 3. , Requirements for Cold Cracking
- (Slide 3-7) . ..
k_ . _
- In order to have cold cracking in ca'rbon and low alloy steel -4 weldments, we need these conditions:
4
.: t Presence of hydrogen Tensile stress 't i
Susceptible material 2
-4 condition s
Low temperature
'i -
t _ Each are needed, but the influence of hydrogen is most important l , i - All weldments have one to three of these conditions. Most of ,j the time it is easy to preclude cracking - follow rules
- I j; =
1 i
~ ~ ~ ~ ,-. - ..._. ,_,. ,._
L' u:.
~ .. . . - . . . . . . . . . . . - ~ ~ ~. = a.
i i
- a ~
- 2 -
4 4. Condition #1 - Stress (! l
- I g 's - The first requirements for cold A
N-si cracking to occur is the
.)
il
; formation of tensile stresses ~ .;.1 ,3 w .y that can approach the yield V . . ,: point o,f the material.'
q l})j - Stress can occur in the n
.r..
longitudinal, transverse, and in h - q,.; the thickness direestion W,] Sources of stress are: 1,:l! system pressure k t.he.r. mal gradients 1
- N s'
.- PiPe . " 'f ,
- s. e.
f.. p expansion / contraction
- d. .
- r. , -
residual stress
;.j CH #1 - distorted '}...
fillet
.6 OH #2 - Atom expansion 4
Slide 3 Transverse s expansion
- Free Expansion - Restrained Slide 3 i .
Iongitudinal shrink e i i 4 i . stress
- I i !
Yield point biaxial Ij ,' _ stress l i e l'
~~*'*" ' ~ ~ ' , , , , _ . , ,-.
-' ' ' - - ., c._ . ', _ _ ,1 .
I. i
.]
- I i l A
*5 .
Triaxial YS in thick (5 plate . el '
' 3, '
A
. welds - nozzles) ?} ' (OH #3) .I -l Yield point stresses will be -
j .! Ms
.]
built up in any structure having
- 9) - longitudinal. welds approximately il, e ' two feet long providing it is gj N
not allowed to distort. C} Weld shrinkage forces result in b} either of two effects. 41 (a) The part'is allowed "to y u distort,. or, (b) if restrained _ ____
] in a fN5re, or is self ~ ~
restrained due to the
- l. configuration of the pieces, c,1 high tensile forces will be exerted in th area of the weld.
Maxistaa tensile force may be in the center of the weld, at the t. edge of the weld, or 1/4 or 1/2
-1 inch on-each side of the weld. .ij It is clear that when we are 1
welding pressure vessels, that
- i yield point tensile stress will
+
exist in the as welded structure i prur to post weld heat treatment { m -m e ^- "" "^"
.a... . .-. . .. : . . . . . . ~ . . . - . .., a.- . ..-..n'~. -4 ~ '.t . l i .q t- - Tnese fcrees can c suse cracking- , _ . of the weld or heat affected zone, providing the other parameters required to cause - .~
hydrogen cracking are present.
- h. - SignificAnt stress not easily a.
'?
duplicated in* lab. PQ test N:;,
- plate does not duplicate b ~
t conditions of nomsle weld (not a intention) b!. I
;n..
- i. .
- Special restraint test weld s., ,
(Slide 3-12)* -
- 5. Conditicin #2 - nydrogen
*1
- s
+ - Some hydrogen present in most l
4 ,f welds. *de know how to prevent !.}
,(
hydrogen cracking - but
- s procedures must be followed s
. (Slide 3-10)
L; -
- - - Purpose of this slide is to show
'i that hydrogen from the welding
. operation can diffuse into steel
' '. under certain conditiens and cause a loss in strength.
- 14
. - Tne green curve shows that plain
+ !, . carbon steel retains only 40 t
- l '
percent of its original stress s i !I - Li r i 3-
. - -. - ~ ~ . -- . - -- '~~I -
4
.j .
s
'I i
l rupture strength after being
, , exposed in a pure hydrogen atmosphere at 1000 F and 900 ] Psi.
h -
- Hydrogen embrittles steel by Jj - . .u diffusing into the crystalline ..] ;(i lattice at high temperature - As can be seen, the addition of ,' d chromium and molybdenum retard e
q _ the diffusion of hydrogen
.I (Slide 3-11) - Three ~additEoNal points relate ~ ~ . ny,. r . , . . to .'the' presence of hydrogen in steel base material, not bu necessarily relatef to weldings ' (1) The amount of hydrogen that will diffuse into the steel lj varies with the partial pressure 't of the hydrogen present (2) 1 H greater solubility in metal t . , .at high temp than lov ( f)*
l special steel mill procedures like vacuum degassing reduces
!}
y H in material 2 (Slide 3-12) t ..
~
i , O i-( me +
~;-- J. ~ .~. ' . .
r' ~ ~ ' - ~ ' ' ~ " ~~ ' ' ' '
.} - ~ ,.j . -( "his shows the effect of a
{_ hydrogen on welding of steel n used in NSS pressure vessels
- 1 -
.l - This slide shows a 10 x 10 x . 3-3/4 inch thick test plate with a modified circular patch test j joint 3 - This is a test program conducted ; a few years ago to show the 1
i relationship, between hydrogen in welding, residual stresses, and
- ~
welding parameters (preheat and [ c r. .-
; . _ posthead) - The weld joint design is such i
that welding of the 1-1/2 inch deep groove will provide yield point stress having triaxial components.
- In addition, the thickness of the plate is sufficient to keep i ,- .. . it from bowing as a result of the shrinkage strains.
strain is not accommodated by l i L . distortion - is unrelieved (Slide 3-13) 5 ! \, This slide shows a crack in the a, l . .
- heat affected sone on the right
- hand side of the specimen.
J, l.
%,4e9,-m 4 - h mPW2*M" ' khn 26ouk N#
~~ ; ~ " ~ '
- .~~.'.
~' ~ ~' ~ . . _ . . . . .. .- ~i .- J T .. . . - - .
m, 4
- This crack started at the weld fusion line in the coarse grain j portion of the heat affected .: zone, and tails out and downward )
1 at a 45 degree angle for a
-1 ., length of approximately 3/4 inch. . :1 'l - .) Note that the weld metal, being ! tougher than the base material .1 in this particu.lar case, did not i
{ Crack. . t
'] -
However this is,not always the
' ~ ~
case, and in s etimes the weld 3 .. ~; . i i ,
. metal will crack and the base -l '
, material will not (Slide 3-14) Near the center of the left hand side of the weld joint it can be seen that a crack originated at the juncture between two weld 4
-i beads in the heat affected zone, and moved vertically downward a short distance, also it moved vertically upward a short -
distance and finally tailed off
, into the weld metal and stopped.
- /
.f I .
4 I Ii
- ~ ' ' .~ . . . - - .- . -- - - - - .. .. - . ~ - <- . ~
l
. I i
(Slide 3-15) - H cracks (Cont. )
- Source of Hydrogen in weld /HA':
(OH #4) Solubility H -
, L,1 quid / Solid t -
Constant rejection -
}
rapidly falling temp ,
. k, 9 - supersaturation l
(Slide 3-16) i Source H - Weld atmos 2 4
,. g Flux, MMA coating j , _: . ..,j. . wire, rust , ob - .. w Amt. retained of ; welding conditions Hydrogen is present I' in a molecular form in moisture or in the ; binding ingred'.ents i
l used in fluxes. The heat of the welding are causes it
- to transform to the
; , atomic state. ,
During welding, atomic hydrogen is i available in the e 0 0
... , , . . - . . . . _ . , ,w. -4.+, - + . w-* * - - -
- _ . , . . . _ . . - -.-J_. . . - _ . _ . . a. . _- .. --.L -
i f shielding environment over the molten. puddle, and it diffuses into the - molten steel. J Molten steel has the
! ability to absorb large quantities of g hydrogen.
i
- (Slide 1-18) - Integranular crack
- Hydrogen cracking in the weld =
y ll ~ heat,affesteid zone may be- ._ _ .i .,
. ..-e,,, ~ .: ;integranular, that is between ~
I
~. the grain boundaries of the .! material, trar.sgranular, that is proceeding across the grains irrespective of the grain
! boundary path, or a combination
-] of the two.
', - However, when welding is done
- under high levels cf hydrogen, usually an uncontrolled
, procedure, where we get the I -
,; classical underbead cracking, L (' the defect proceeds straight Ii *
- t
. across the grains.
I l ! ~ . . . .._ . .. . .. ._ . _ _ - _
. ~ ~
i 4
- This 500X mag slide shows I
intergranular hot cracking t:..dar
; relatively low icvels of .[ hydrogen, due to a relatively 1 'j i small amount of moisture in the material, or slightly '} insufficient preheat
.' l - This is the result of scanning
'l electron microscopy at 500X 1
magnification ti
.I 6. - condition #3 - Susceptible Materials 1 - -.r Cond (Microstructure)
T
- - Factors Affecting Weld 1
Microstructure e (Slide 3-19)
't - A while ago we discussed the requirements for hydrogen cracking being (1) the presence i ; of tensile stresses which we have discussed, (2) the . 'h - -
presence of hydrogen, which we have discussed. i t .
- Next we need to discuss c. '1 , formation of a susceptible . material conditon.
4
- i
'. .l . Y f .
.h I
. ~ .' . 't ' :l' . . . : . '. . :.; . r =' :' ' _& ~ t&_ .-~ ~ :~: ... ' ' ' ~ - Material is susceptible to i
hydrogen cracking when a hard .; matensitic microstructure is i present in the heat affected zone of the low allow stee'l base o
- material.
1
'l ; - (OH #5) - The ability to form this martensitic microstructure is dependent upon its ability to harden, which in turn is ~ _ _
t dependent upon (1) the steel , j , composition, (its ability to
't,i' - , harden) (2) the cooling rate i
after welding, and (3 ) the tempering softening effect of subsequent weld passes.
, (Slide 3-20) - (1) ability to harden
'l j - We stated that one factor i contributing to hydrogen ,, cracking in the heat affected .s . 7 zone of a weld is the formation c-of a hard brittle martensitic 'l microstructure.
. r
- k. -
. \
l l ,1 , _. . . - - _ - _ . _ . . - _ _ _ . . _ J
. . .- . - _. .- - .. - . ~ . ~ . . - - -... . . - - a-...-.-...~. . .c. s. AYaL l
- i 5
4 i ,
- The ability to form this 1 ). microstructure is dependent upon
.0
.j the chemical composition. Mild a 'd vs. low alloy steel.
3 4 1 . - (2) The cooling rate after
-) . .
4 welding determines the type of microstructure and mechanical
- properties.
- The cooling rate of the weld and d its heat affected zone depends -
'if -f .J upon the thermal gradient l.) . . . . .
,.. . ,} Present. , . . ~..--
2 '
.- We must remember that the r] temperature of the t.rc is '1 o .! aprpoxiantely 10,000 F, the a ,
f temperature of the molten steel is 3,000 to 3,500 F, it l freezes at approximately
}
J 9 2,700 F, and the surrounding 1 1 base material, when preheated, is someplace between room 4 temperature and 300 or 400 F. t
- Since the heat source is moving rapidly along the groove, thermal gradients are high E
I hI e g 1 l e
~.
t .m..m.... ---*-
u.: am.- .$
. . . . . . .. ~ - - .. .~ a . a w.;- '
i
~
'; (Slide 3-21)
- The cooling rate can be reduced 4
by (1) increasing the weld heat e '.j input,' that is, putting more
, power, increasing the size and
._; heat in the weld pool, i 1 1 therefore, increasing the amount , i 1
; of time it will take to cool, t (2) increasing the preheat of the base material, slightly i ! . reducing the thermal gradient '. } ' ~
between the hot weld metal and _ 3V __i the base material, and (3) r - 3
.l modifying the geometry factors $ - Hovever, geometry factors are usually an uncontrollable variable. - obviously the mass effect ~
associated with welding on thin plate, for instance 1/4 inch thick, will be significantly less than the mass cooling
- - effect resulting from welding on c-s three inch thick material.
C
- j: .
l -t ' i i i t _- - _ _ _ w _____
^ ~
l e, _ u p h m. J _ - .. _ _ . . . . _ . . . .___ .. . . .. - . , _ __ z .m l l When welding thin plate, there ! I is no thickness component to l permit draining the heat froct the molten pool in the downward
. l direct. ion. .
7 (Slide 3-22) - Wald Heat Input We discussed weld heat input as
- I a critical factor affecting the cooling rate of the weld, which in turn affects the weld microstructure.
- ~~ ~
This is an over simplified
.}~ , _ _ - formula showing that the weld , t, heat input, as ceasured in watt-seconds per inch, is a direct function of the welding current, and the welding voltage, and is inversely proportional to the weld travel speed.
i Therefore, increasing the l 1 welding current without changing i the . travel speed will result in
.c a bigger veld puddle, reducing the thermal gradient and therefore reducing the cooling rate of the weld in the heat
- affected zone.
i t
, 5ye %..w .. ' -
d . __ - *-
*^ -
M 4 43 e 1 e, ve -+ *
. ~. . . _ _ . - . . . - . . z. - -- . - . . ~ . A.A: l':'.a.
(Slide 3-23) - Cooling Rate in oF/sec vs. Heat Input
- Normal heat input for automatic ,
welding in relatively thin half inch plate *shows a cooling rate of approximately 10 F per second. i
) - If this was thicker plate, the cooling rate would be much higher. The cooling rate of 30 Fl. per second are common. - Cooling rate also of thermal . ~ . ~- \
_ cond of material (Slide 3-24) - TTT Diag
- This slide has a mistake in it. - The green line is supposed to
! read fast cooling, and the yellow lines is supposed to read slow cooling. _They _are reversed. ,,
- This diagram shows that with a fast cooling rate in the .
temperature range of 1600 F to *~ l 800 F, as shown by the green ! . line, the material transforms to a hard martensitic structure, shown earlier to be little i; resistant to hydrogen cracking. 'i f'
. . . - . . . ~ . J .. . . _ . , & abe h.;4 t - However, if a higher weld heat input, a higher degree of preheat, or a change to welding ,
on thinner plate causes a decrease in the cooling rate as shown on the yellow line, the slow cooling rate pers t,$ the gradual formation of a more i stable microstructure consisting of ferrite End pearlite, indicated at the bottom of .the _ _ yellow line as a ferritic structure.
- Fast cooling rate causes a i, martensitic brittle structure, slow cooling rate permits the formation of a softer transformation product identified as ferrite
_Another factor affecting the cooling rate of the weld and heat affected zone is preheat - One of the minor effects of ^~ preheat is to reduce the shrinkage stresses present. i
.w I
e b _ -
, ;u y:. $d& ~ - . . . . ~ . ~ . . . - . .. w - . z . . .. : - _. f ,_.g
- e. .... t ~O '
~
l 1 (Slide 3-26) Preheat slows Weld l;; Cooling Rate
.3 .{ - Increased weld preheat, from ~
Ji '
- 100 F to 400 F. slightly I ,. .
slows the cooling rate of th j weld heat affected zone by i reducing the thermal gradients and keeps the material above the critical temperature of 400 F. p
- It is above this temperature , that. hydrogeYs siill more easily - - ~..
i j r . diffuire from the crystalline
' ~ .a. -
lattice in the weld and heat affected zone into the atmosphere
.1 (Slide 3-27) Effect Temperature -
Diffusion Rate 4
- It can be seen that at room ]: ;.
tecperature hydrogen does not }.t diffuse effectively from steel. However, simply a slight increase to 300 F, which is i the preheat used on many low 4 alloy steels of 80,000 tensile strength used in pressure vessel L. constructiori, the diffusion rate 'i
, of hydrogen is significantly . . higher. .
4 l f
- ~ .
t . , . -
. - - . ._ . . . . . . -- . . - - . . . . . .-- h r A.c. - .. M:= e i
I I (Slide 3-28) - Preheat Reduces s. Thermal Gradient
. ~ - In addition to permitting -
hydrogen to diffuse above 300 F, a preheat in this range reduces the thermal gradient in
!i the critical 1600 F to 800 or 'l 1000 F range as shown three or i
i four slides back
- i
- This reduction of thermal gradient pre'cliides formation of - -
the brittle martensitic structure, by allowinag a slower ecoling rate resulting in the
- i for=ation of a softer
- 1
, microstructure.
i
- (Slide 3-29) Preheat Methods
'j j
- Preheat may be either local,
- j that is, heating a band having a width of approximately six* times the vessel thickness that includes the entire weld area, '
- .c - or in a furnace.
4 - It is usually impractical to l i
- n. (
i place the entire part in the l
\ , furnace for preheating and this . I it li technique is not normally = l l! -
employed. l j l - . _ . . . __ I
.w . . .. ... . . . . . .- - . ~.- - . ' i::-- aUs: h :5. ~ -.. u%lD-u . ) . . l - I w ,i q_ (Slide 3-30) ?
'i - Local preheat may be done with: ,o
,) -
Gas torches and gas b
.] manifold systmes; j . .
Electric Inductions
- electric Resistance;
' -l 4 Gas or Electric 1 Radiant Heating i (Slide 3-31) .
- I -
A semi-circular gas manifold
-- system' used foY preheating a' - - ~~ j __ .7.
c weld between a stiffener and a e pressure vessel shell ~: ~f l (Slide 3-32) 1 .].1 - This slide shows a natural gas
.d manifold placed under a noz=le , attachment weld.
f - This circular manifold completely covers the weld area e
.) ~ ~l ** >t.
Ehe structures seen are i stiffeners temporarily placed inside the shell to prevent q . distortion As we have previously discussed, . i ( the use of such extreme i'
., stiffening devices will prevent .
\ e I..
- r. - ,
_y..,_,.,
.. _ . . . . ~ . -.~;.. ..e..b . AZi =- ~ .<.a: u i t
- t
.i .
i
;, distortion of the nozzle to 4
- -J shell attachment weld, but will I
.i J -
significantly increase the 1
.1 3 residual stresses present upon i
i cooling of the weld to room temperature since the tensile I
; strains resulting from cooling ..:} of the hot material to room temperature must all be l accommodated within the we.'d and ;i . ! the heat affe'ct'e'd zone. - -
- 7. -
. . s:
i'J ,. (Slide 3-33) - Electric Resistance 1.3 - cj - This electric sesistance heating
!j equipment is powered by a manual
- l metal are welding power supply.
It is intended to fit around a
.f %
circle seam having a diameter of
. approximately seven feet and
.s .1
..j effectively preheats the .a mhterial to a tenperature of'250 to 300 F.
,; (Slide 3-34) - Amt Preheat Neede'd [] r. Following factors must be considered in selecting the 1 I
; i preheat temperature l
9 I n .
~w .-. _- - - - ~ ~ - - . --
a - _-
.. .., . . . . . .. ... . --. . . . ,. ...: .. .= -. .. w. =:M:. . - . :.:~ .d.w.ac. a:.: ;
i l l 1
- l
.j Sometimes fabrication codes t a r .
dictate preheat temperatures. 1
,] -
The ASME Boiler and Pressure a vessel code provides suggestions. il - Important factors include
.i 'l -i 1. Cargon and alloy 1
content of the base
- 2. material
,i This relates to the e "i compositional effects - ~ . ..,. g on forming a hard . s.. - microstructure as
- 1. -
JJ
,; earlier discussed.
s:
;! 2. Amount of hydrogen
- 1 .
1 q present i ^]4 3. Weld heat input ie This affects the l _. j . cooling rate and a 19 tendency for l formation of a hard i microstructure.
- 4. Thickness - mass
=~
( effect on cooling rate l i !~
- 5. Restraint - relates
- i. . ,
's to the amount of ; , tensile strain k
t
-e. .-w -- . . . ~ . - = -. - - m ( v,. . . . - - ._ --
,. . . . . . ~ , ... . s.. . . . - . -. , . . ...:-. 2.... . a- ., uaw .ba;a . u-- .ha, .ia Y
4 i g imposed on the weld
. - {.
and heat affected d 'i i i , zone.
.1 .; 6. Interpass time 1
interval
'I ; This relates to the 1 :
e i amount of time _s-between veld passes
- ?
l where diffusable
; hy.d.ro. gen is permitted ;gh to escape into the 1 -
4 atmosphere
- - (Slide 3-35) - Thick Nozzles Mav .
j Crack Under certain conditions, no 1 mitter what is done, the effects
.1 4' of restraint, presence of 4 ,4 gs hydrogen, susceptible material,
. -i 5 j etc., hydrogen cracking may.. still occur unless the part is maintained at the preheat ,
, . temperature until the entire x-subassembly is placed in a , furnace for intermeidate post il L weld heat treatments to allow +
further hydrogen diffusion. .
. . . .a-- .,-~ . . . ~ ..2- . . an ew ..M.c . ; .. .~ eMuw a .
I
.t - It is always acceptable to hold l a welded component at a I temperature of approxir.ately i
,i o i i 400 F for foyr hours after the '
] completion of welding, to permit 3
j diffusable hydrogen to escape, i l before it has cooled beneath the t critical temperature range of
]
300 F to 400 F. i
- This is known as post heating, , . and its. purpose is to allow j hydrogen to escape before temp.
drops and it causes cracking in
.i
[, th heat affected zone (Slide 3-36) - Postheating 1 - Summarizes the posd heating operation and its purpose. !)
- ') C. Other effects
- 1. Hot cracking
- 2. Filler Metal strength / base metal strength
- 3. Effept of welding on notch toughness ,_
+ , (OH #6) . Preheat on T-1 ,("
- i . .
e
, ses .L -- **4'**
M- - * * - *-
+. --e -
w.=e== A
. .= . ~. -: ;
[ U.S. ATOMIC ENERGY COMMISSION ** 3 o ,,
,, f t REGULATORY GUIDE ~
DIRECTORATE OF REGULATORY STANDARDS REGULATORY GUIDE 1.50 - 1 CONTROL OF PREHEAT TEMPERATURE FOR WELDING OF LOW. ALLOY STEEL
.)
A. INTRODUCTION desirability of supplementary requirements to assure adequate control of welding variables in the production General Design Criterion 1. " Quality Standuds and welding of low. alloy steels. The assurance of satisfactory
, Records," of Appendix A to 10 CFR Part 50," General welds in low alloy steels can be increased significantly Design Criteria for Nuclear Power Plants," requires that and,in particular, the propensity for cracks (cold cracks) 7i structures, systems, and components important to safety or rehest cracks forming in underbead areas and j be design:d, fabricated, erected, and tested to quality ' heat affected zones (HAZ) can be minimized by standards commensurate with the importance of the maintaining proper preheat temperatures on the base safety function to be performed. Appendix B to 10 CFR metals concurrent with controls on other welding Part 50, " Quality Assurance Criteria for Nuclear Power variables.
Plants and Fuel ReFocessing Plants," requires that ' measures be established to assure control of materials Cold crackine can occur when the steelis hardened; and of special processes such as welding,and that proper i.e., undergoes a phase transformation to martensite in process monitoring be performed. This guide describes the HAZ and/or weld metal..The martensite exhibits an acceptable method of irnplementing these brittle fracture tendencies, and it may not be able to - - requirements with regard to the control of welding for withstand rapid . cooling and the volume change
-, low-alloy steel components during initial fabrication. associated with the phase transformation without the j His guide applies to light. water. cooled reactors. The occurrence of local cracking. .nis susaptibility to
- Advisory Committee on Reactor Safeguards has been cracking increases with higher stresses, such as those 2
1 ( consulted concerning this guide and has concurred in the regulatory position. experienced with in:reased thickness of the part being welded, and slso in:reases with a decrease in welding 4 energy input. In order to avoid or minimize the effects N l B. DISCUSSION of hardenine associated with phase transformauon, a The American Society of Mechanical Engineers loneer coobne time is needed for the weld; in other Boiler and Pressure Vessel Code (ASME B&PV Code), words, the preheat temperature should be maintained hich enough to achieve an acceptable condition of the Section 111, , Nuclear Power Piant Components,"8 phase transformation. -- specifies certain requirements associated with manu-d;a facturing Code Class 1,2, and 3 components. It is generally recognized that atomic hydrogen Procedure Qualification absorption and diffusion into and through the region being welded have an important influence on the Section III requires adherence to Section IX, ten :ncy to form cracks. The level of hydrogen in weld
" Welding Qualifications,"1 of the ASME B&PV Code, filke metal is low enough to preclude adverse effects in
- j including the requirements governing procedure the welds, but greater quantities of hydrogen can be
.i qualifications for welds. Review of the requirements of present in the weld region from the disso:iation of
- , Section IX for procedure qualifications and the moisture in hygroscopic welding fluxes or due to 3 fabrication requirements of Section 11! indicates the adsorption on metal surfaces if the welding fluxes and surfaces hsve not. been properly dried before weld ,,
' Copies may be obtained from American Society of deposition. Embrittlement of metalin the weld area due l l Mechanical Engineers. United Erwineering Center. 345 East 47th to the presence of hydrogen genera!!y occurs at lower !
Street, New York. N.Y.10017. '._ temperatures and may be prevented by prolonging the 1
- l. '
( USAEC REGULATORY GUIDES Caeies of whs,.hed wisse me, tie sanoiase by reoussi wid.aseme ww f ore emmated is the ua. Asemis energy C . nesh.neten. of. 20645 Regulatory Gviens are issued to esecretse sad make evenahas to the putshe Avvention: oorector of Reguistory stenamrds. Cornmens and susesstions ter seethods sesseist>le to tre AEC Replatory staff of lanp6ementeeg speerf ac parts of lassrowerrents la thses puestas are encouraged and should be sent to the Secretary
' the Conunasion's rapistions, to esiineste techmqves veed try the stsPf in of the Comm.meon. Us. Aeom.c Eneryv Commesaen. twenhension, or. 20546, ! , meaustarg .osofee prosaems or posteleted estedens. or to provise guidanse to Aftention: Chief.Pvtiles Prossedags suff.
ThO ="T*,'5I.N"ME"eEE"T.l".Yef.ren"* *"'fr'".*n'"e"t "'*"
.vi E }
i
\(' "" :l::" ".'"L_ .,".7J:T '.l":;'t,",' sl',',:"'lll' """"'" "
m ih The pies -e ===s in == fwi. eire =n t e evie oar i.-- ur a - , .f d pi . .e r f . . _ . t. - - 1'*::"*r.".*e?.".'.o";:::r.
.o r at.i e ,t r.
P..o':"':"."' A,trer.se"fes - - esmnenes and as ref ames new inferneteen se esportense. 5. hacennels and Plant ,ressetaan ICL Generes s
_ . . __ _. . ~ _ . . - . . _ _ _ . . . . .. a .m .. ._. , - ..u . u . ..a - L . l time the weldrnent is maintained at preheating C. REGULATORY POSITION temperature or by performine a tsost. weld heat treatment. Prolonred time at tircheatine can prevent or
.j interrupt local hardening and assist i.a reducine adwrse Weld fabrication' for low. alloy steel components '
effects of a potential hydrogen gradiert. This gradient should comply with the fabrication requirements specified in Section III and Section IX of the ASME would disappear by means of diffusion of the hydrogen B&PV Code supplemented by the following: 7; before the weldment is retumed to room temperature. nerefore, the muumum preheat temperature should be 1. The procedure qualification should require that: 1 established to assure a desirable cooling rate for the a. A muumum preheat and a maximum interpass weld, and this temperature should be maintained untila temperature be specified. posi. weld heat treatment has been achieved.
- b. He welding procedure be qualified at the
, minimum preheat temperature.
In addition to the minimum preheat temperature, a 1, maximum interpass temperature should be soecified. If
- ) the weld r. etal should transform at too high a 2. For production welds, the preheat temperature
] should be maintained until a post. weld heat treatment temperature, the required mecharucal properties for the has been performed. ] metal may not be met. He maximum interpass
]j temperature varies for different steels, as does the mmimum preheat temperatures, and shuuld be selected
- 3. Production welding should be monitored to verify that the limits on prehest and interpass temperatures are
.j ' on the basis of such influencing factors as the chemical maintained. .a composition of the steel. .1 , ,
Production Welds 4. In the event that regulatory positions C.I.,C.2.and C.3. above are not met, the weld is subject to rejection. .', ne procedure qualification by itself does not assure However, the soundness of the weld may be verified by j that the production welds will be made within the an acceptable examinatiori procedure. - - 1 specified preheat temperature range. To assure that the - a , , welds will be acceptable, the metal temperature should be monitored during the welding process and through post. weld heat treatment.
'Does not apply to weld repairs after inital fabrication.
m N 1 h,
)4 1 . )
A* .E li t ? pi [- l* c l l I i l i A, l t t' 1.50 2
. . .. . ~ . _ _ . _ _ _ . _ . . . . _ _ __
. . . . - -. . --. .:. . . - ~ . i .=L Aa-::- L,-~ - -----G-'a""""*'--"-'^"" ~
1 J
- t. *l f
--- 1,
-~ A e e 8
.i r cj 13 s- .c . a.
11 C - s
.i g<
g l- - C ~ t i
- H fi -Streu perpendicular to the surface can be high ordinarily only in thick plates.
4 ,+ d J1 I^ I5 ..l .I .-9 e
?
c i' 1 T s t G
..-m.-e--- ew-,-, - * -
u_ .__**-****u -- +C "*
- e .'*
< .. . . . . . . . . . . , = . ., .. .. _ _ ..
N
.. _ u u.;_ x , w.
4 , .- _ _ _ ; , _ ;;,, . ._ _: , . _ _ _ . _ _ , , , , _ ._ .
+
f
.*h i.
1 I
~ . i '.,8 9
N
- ..l d 4 3
-1 t,*C ; 17
. Liquid -} 1500- '#
3 e h/g,, ; 3 -------{t 3, i
~k resimum , 1300- e * ' .1 gomperature , a 41 e Austenit.
i
~t e 8 ' .4 - e 110 0-s 8
e I a e , L' 2 -j goon -42 I I 4# i 3 t--**--- ~ ~ -{ 3 A- 723 C(1333'F) 4 ' 700m . . - -g4 j ,
^=
u! rbrit. + CeJ.n,J. -
! I I !., s00- ! ,iii i a . .i
_i I s '88 : e 3 8 e s A '
'th 43 03 .0 2h O.30% C steel T-M' base metal y tros - carbon disgram \ \-
s 1
'C 900 700 1700 1500 1300 1100 500 7 3090 : 30 2370 2010 1650 1290. 930 - Relation bermen the peak temperatures experd by varcus repons en a &d, and how these T;;
[ correlate with the sorM:arbon phase degram. f i;: 2 1
.4 e 4 ' (
_w_ . . . . - , . . - . . - -
. --p,. - . . - . _ ._ ,. . _ _w. - .% .w,_ . _ . _ . _ _ _ . _
.. ~ ~ . . . . . . , . . .= . :; . al. . .__ .
w u a .. a.. . . ... ,.- .. . . - . . ; ._ : . . . . l; ,j ' :(
+
l. t [J .
~ .j. , 3 1 .
- .2 Hydrogen.cu.cm.per 100q. of iron d 5 10 15 20 25 30 '
2l00 ' i 4
-3500 , , alafmos .~
4.
- ', 3, 1600 l/ A j g, f- - -
s e--- / 1 a. l * .-* g-n .4 -2500 e J. - t
- E g i
l /
/ /,B -% A' t
N laf.ns. ' si ti g / 5- $
~
f 1100 , / F s 'l il s / .- qu 13 E a / -{' .i - . E r' -" -- E 1( ! t / / : -1500 5 h j ff0stmos. , 9 600 ,
/ / A-l t / ,g100cfmas. J.
a':1 l
, / / l. -503 j goo a / /- 4 11 0 0.00075 0D015 0.00225 0DJ3 Hydrogen,per cent ;j Solubuity of Hydrogen in Iron.
l'q i, . 4, . n . e
/
r q,+w.-m. -m.= =~+y.-v .q -. . . . _ ., , , ,
. . . . ~. .. . . . . . .. - ~ _ a.:. .. . .. , ,: w' ~.
w
..u..~.
s
, ...a. . ., y .i ;a C'-
1
.+ , .y a ., e ..i .
s .a
- 4
. . .,i t j weiding heat input 47 unn. , .* 50 - 3 --;r9 l j
- e
.,j . 40 -
g, .,,,,;,,, base metal Heat affected zone 200'F preheat 30 - oj .. . il
- q R -
Jj j20 - 13. .u
- vi 10 -
Hest-affected rone
, ,'j 500*F preheat a ,
ej 200 150 100 -50 0 50 100 150 'u w Test temperature. *F
.i 'v EMeet ofpreheat temperature on the Charpy V notch toughness of f)
+4
the heat aHectedzone Q00rf)in 0.5-in. thick ASTM A514 or A517 steel z,
- 1 l5
+
'Ve o.
- .s i
{'h
;t N-1 - -
c 1 ( ( l. y . i,, i 3 4
- - - - - ~ . - . - - - - ..
[_ , ,_. __ _. .
; ,......-_.__m.x - ~_._ . .. __. .s - -m .
_2 . . _ . . , ,_ _ _ _ .,_ ,.._ , ,. ,
.i 1 .. .a r-s.ri- -3 -
C .me-I
= .
e .
)
-I
- 1
- i e . .. . i
- 1
-j
+ f
.4e ,
a Ij ' r q u -'1
.2 -
+-3 C c > d, S 8 . I k ,
.!. , C ., . \
F] , i S
,i( .
-:er
-kfN Pc'Pendicular to the surface an be high ordinaruy af
- ocly in thick jdstas.
%0
[ '. i- - h-4 33 ?Y l
~ ' ~
k . m ?'.} m ' ;i ~ i ,s.3 . f A
'k .i .6 .
a i k
------ - ._ -- s , ,, ,
g- -- w v-,, - m - -w--. .w----7 T w ur-,y ur 7 M h ---e -c7we -w , - wr-e- w +- T c-- w - - w -we-
- _ . . . _...'...__a-. . .._...-_-a......_..,_.. .._.._.._.m.;_.
1 Jj J:, f l l
- t -
o .
.) 2 i
Hydrogern.cu.cm.per 200g. cf Iron
-l 5 lo 15 20 25 30
- 1 2iM ' ' ' ' *
'I i -3500 j 4 . ,i ] .a/s/ mas. .)g , '4 ,$33 ! l ,# A. j - l, t/ / J 7_i_ _ /
s l g "d.4 d a. 4___. -2500 - ci + .E
. b' .it ;s1100 y
j
, l latmos. / . / ,_ _ ,g .$s . .=
J g? _ al a , / - t;
; }< , f / E
__ E # a 1 e -s -- - :; 1
](,(- ~
8 ,1 / /
~ . -1500[ ./. .
I h,'0 atmas. I i. g; 600 ,'f ,
,/l g-r' i / s I l {b I / .[100stmas. .
q
- goo l/
I / /
/ l- -sn i
0 0 0:315 DDC15 0.00225 023 Hydrogen,per cent 5: Solubility of Hydrogen In Iron.
*1 d
a . . . -- g - J 'Il .
.h '
l g j(b ,
- 1
'4
a- . ' '. -^* .* * * * *MM.~%,,_...'~."**Mn- = , . . , - _, _
__e_j,, _- __ ,
. _ _ . _ ;. _ . _ _ . _.. _w.m L.. ,_,,,[_,_., - ~ . . . . - _ ._ _ . _ ._..__ _
1 , :. . - 1
.r .;, . l . a. .
vir l l I
'5
{ T,4
^^
l hTh
- i. Liquid 1.
is00- . '4*4,, l i . - - - - .
. ---{. i s,,.. g li '
efealmem l 8500- e v i
*F ' ,
l e Austenite 1 . e 1100< e l
-'t e I e e .a .i 2* -l 9003 - -42 ,
[ 3 , . - ---- - - -{ 3 # A - 723'C 18 333' F) I 4 J, L _ ',. 70 0a . , - 44 l t
.: -] . , .s .i ; .
,j , . Aa ,e e 500- N Ferrite + Cornentite .a .t : 8 . e
-j g i e .$ 8. .:38' '~ a l I 8 s, a. l .d[((- g A Y e 'etd '
03 YA 2.0 34 4.0 43 Ig to' g ' . ,1
- 0.30%C steel -
tese snetel ,] ) g lron -carbon disgram -] \* I.9 ,.f. 900 700 jl "C 1700 !!00 1300 1100 500 14 *F 3090 :*30 2370 2010 1650 1290. 930 (L l .j , '-) Aelation between the pean semperatures esperered by varous eurons in a weld. aruf how these [".. cwielare with the erbon phase d.agrant r d.
- a
- t . ..
- ]
l4.') [ .' L1 - j . l f.y t.. l: .s c,L . e
"'**'[', ~ ,5 E e
,_...._._...- . . m . 4 . -J . _A $A .. .. . . u . __ _ . . . O.u. _. . a. wo . _ . -
t,.q :#
+ .
7,. .' , a
~
.'] .. i 1
. e
'/,
,j . .- j a
- f
.2 ,.3 4 Welding heat input . 47 UAn. ,
g
~: w -
- I l.
~i g 40 i
aw . 1 base metal Hest-effected zone
; . 200*F prehest . 't 4 30 -
j _1 . _ .
- ) } ~.c w:
-1 jzo -
td 10 - Heat.stfected zone
'. ; SOC *F preh ut 1 .i e
.'lj 200 150 100 50 0 50 100 150 oj Test temperature. *F
.1
',.,I l %- ' EWect ofpreheat temperature on he C1wpy V. notch toughness of ,- ' he heat aMettedzone CM00*f)in 0.54n. nick ASTM ASN ora 517 steel
.1 .t
'.T t I ,t [ ',} r, ,'!,rc f. ' .:1 > ..'s ' f4 , 4.*
^
i l i
. _ . _ _2-. . . . .._. - . . - , . . ~ . ...v- - - - - --r - - - - r.--- --- -- - -- =i- - . - - -. - . + - - -
. , - . . ix.- . ~ n .. 3 4 :. E K L M L E = i~~ ' ' ' ';
=N " ~^
{ 143 h' ' O . WELDING METALLURGY W l .1 pitENEATING AND POST HEATING i! , i, metil at the start of welding in some cases can determine whether the .
! or slightly above. Allowance sometimes should be made for coolir.g of
, weld will be sound or will contain cracks. While for many years the ' the part upon removal from the furnace. Weldments of alloy steel for en,t-
- y question of prehenting was resolved mainly on the basis of whether its ical applications sometimes are preheated in a fixture equipped with benent was judged to be needed to insure a sound joint, we no longer can electrical resistance heating elements. While the welding is performed, the ;
! trtat the application of preheat from this single point of view. With some heated fixture also prevents the interpass temperature from dropping too o i of the newer alloy steels, preheating can be harmful to the final properties low.When the weldment is preheated in a furnace or with a torch, allow. !, cf the joint if applied without regard to other thermal considerations, , ance must be made for cooling, and welding should be disconimued when-it For a number of reasons, both mechaaM and metallurgical in nature, ' ,1 ever the part cools to the minimma safe temperature. There are occasions ; wo must pay close attention to (a) tbc initial temperature of the base when too high preheating may be as harmful as too low; for example, a y met:I-which would he the preheat temperature if elevated any amount complicated part without internal support may collapse. Escessive preheat ' thove ambient temperature, (b) the temperature of the base metal during may thwart the welder's ability to produce a sound weld. In some alloy deposition of multiple beads-which is' called the laterpass temperature. steels, excessive preheat may promote hot cracking by increasing the [ and (c) any kind of thermal cycling or treatment applied after the welding [{, amount of segregation of residual elements in the weld deposit. Some of !. operation-which is the partweld treatment. The latter, incidently, might the newer quenched and tempered alloy steels when preheated without <l r.lso entail treatment at subzero temperatures along with treatment at i regard for cooling rate during welding may develop unfavorable micro-
- elev
- ted or high temperatures. The wchling metallurgist must be particu- ~% sisuctures in the heat-affected zones adjacent to welds.
3 larly vigilant on the matter of preheating and postweld treatment. Even '- Preheating may be applied to a weldment for (a) the prevention of though the metallurgical properties of the steel being welded may obviously cold cracks, (b) reduction of hardness in heat-allected zones, (c) redoc-require either or both safeguards, the welder usually.regards preheat as - tion of residual stresses, and (d) reduction of distortion. In comparing C inconvenient and uncomfortable, while the weldment manufacturer some-i
, preheating and postweld heat treatment, we can say that postweld treet-times looks upon the postweld heat treatment as an unnecessary expeme ment cannot remedy cracks' that occur during welding; however, a,t can ,i l] becxse the beneficial results cannot be clearly seen in the product. % soften hardened zones and reduce shrinkage stresses. Postweld heat treat-l!
I.
) ment usually means heating the weldment to a relatively high temperature,
'l PREHEADMC
- 4 N" I*PProximately 1100 F or above after all or part of the weld ng is com-Preheating involves raising the temperature of the base metal above p ' 'pleted. Preheating, on the other hand, means heatmg the part to a relatively low temperature before welding is begun. Rarely is it practicable to weld
[ , }; the temperature of the surroundings before welding. The entire part to be wrlded may be preheated or, if local preheat is called for, only the vicinity k' joints at the temperature of heat treatment. However, joining by brazing frequently is performed in a furnace at the temperature required for heat
}
of the joint to be welded is heated. Postweld heating-that is, heating l { treatment. ' l: thm wildment immediately after it is completed-under certain circum- . Regardless of other cliects, it is a universal rule that preheating [ st:nces may be substituted for preheating. The requisite preheat temper-Iowers the cooling rate after welding. For a given set of welding conditions [ stur:s depend upon the composition of the steel, the rigidity of the base (current, welding speed, etc.) cooling rates will be faster for a weld made ' met:1 members to be joined, and the welding process. Proper preheat temperatures very from 100 to 1200 F. without preheat than with preheat. The higher the preheating temperature, , the slower will be the cooling rates after the weld is completed.11esides i Correct temperature determination is an important part of preheatinC p reducing the temperature gradient, which is a principal factor governing [' technique. The temperature can be measured or estimated by many i methode. Surface thermometers or thermocouples, colored ch.ill s that cooling rate, preheating lowers the thermal conductivity of irun, wluch . p!
- change color at known temperatures, pellets that mek at known temper-ht Itm I' is only half its conductivity at room temperature. l.ow ilwsm.d {,
j- conductivity results in slow withdrawal of heat from the welded zone, and ,; atures, and the boiling of water droplets are just a few of the practical correspondingly slow cooling rates. Further, an increase in base metal j l methods. The best method of insuring that the preheat temperature is cor-F rect ixvolves the use of a furnace or an oven held at the correct temperature temperature generally increases the superheating of the wcld pud lie in arc ,p-
, welding. As a result, be. ads deposited in preheated joints tend to be poore
{- [ '; i I j . . l .
,/a, ,. -. . -,- -. -m_ ;_. . . . .a .
___..,__u..w... . .
.x . a._ ~ ,
S & '
- 144 WELDING METAltilitGY PRENEATING AND POST HEAltN3 MS e j ..
V !j Auld and to cahibit Batter or more concave surfaces than beads deposited PAfYfNTING COLD CRACKING [ The dependence of the austenite-martensite transformation upon I' without preheat. Reduction in cooling rate by prehenting increases the time spent by temperature partly accounts for the valuable effect of pecheating at 200 I the heat-allected rone in the temperature range 10001200 F and therefore - to 400 F to prevent cracking in hardenable slects during wclding. liard I< !l promotes the transformation of mustenite to pentlite instead of to marten-rones may be formed even with preheat at 200-400 F, but at the preheat [',
- sits. The prehested weld joint is less likely to have hard zones than the temperature so listic austenile changes to martensite that cracks do not weld joint made without preheat. form. During cooling from the preheat temperature to room temperature, additional martensite forms from the retained austenite, liowever, the rate I
{2 (( of cooling is slow, structure stresses and stresses due to temperature gradi-ents are lower, and it is found by experience that cracking does not occur. An equally valuable influence of preheating in preventing cold cracking is the effect of temperature upon the solubility and diffusion rate of hydrogen
, (
in steel. The roic of hydrogen in causing cold cracks and the remedial l, $ effect of preheat will be discussed in detail in Chapter 13. For the moment, !: I we will direct attention to the innuence of preheat upon phase transforma- r e ...-_ .._ -__
...__..e ,, tion. Now, suppose that the preheat temperature C in Fig.145 is above , { a ..... ____.._....._. .......a the highest temperature at which martensite can form. Obviously, austenite t) 3' . . . _ . . . . . . . . _ . . . . _ . . . . . . . . . . '
cannot change to martensite no matter what cooling rate prevails, so long f:
- - as the preheat temperature is maintained. Nevertheless, any sustenite W
,,,,, that reaches the vicinity of the preheat temperature may require a long time for complete transformation to products other than martensite. For a
- i. Fig.145-Preheat seinperature in relation to the I.T curve. The steel containing 0.1% C,5% Cr and 0.5% Mo, or one containing 0 4%
doued lines represcan the different preheating temperneures.
, C,2% Ni,1% Cr and 0.3% Mo, as examples, a week may be required v Despite the slower cooling rate provided by preheating, the steel to be W. ' for complete transformation of austenite at 950 F or 750 F, respectively. [
- welded may yet fail to transform to pearlite during cooling. If the preheating For this reason, rapid cooling from the preheat temperature sometimes is .
l temperature is relatively low B in Fig.145, contrasted with room temper- not advisable for the higher-carbon and the alloy stects. With many l~ ctxre A, the heat-affected rene close to the weld may transform to mar- ateels, preheating above the maximum temperature for the mustenite to l' t:nsite. It appears to be a characteristic of martensite formation in the - transform to murtensite is sufficient to prevent zones of martensite nest , I higher-carbon eteels (0.6% C or over), which we are safe in assuming , to the weld, regardless of coolipg rates from the preheating temperature, j cpplica to lower-carbon steels, that the percentage of austenite that trans- provided the preheating temperature is maintained throughout the period l forms to martensite increases as the temperature decreases, assuming the of welding. [ critical cooling rate is being exceeded. In Fig.145, M is the highest temper- flefore discussing the effect of preheating on residual stresses, Ict us cture at which sustenite changea to mantensite during cooling. Ilowever, consolidate the discussion to this point. We know that hard innes anme- , ct temperature M only a small percentage of austenite may change to times occur in the heat-affected areas of welded medium-carbon and l ' m rtensite. The small percentage of matterisite appears instantly as sum high-carbon steels, and we know that if there is a hard zone, cold cracking , cs M is reached in cooling, but little more martensite is formed if the may occur during the last stages of cooling. It seems logical to deduce i temperature is held at M. Lowering the temperature to B causes further , that shrinkage stresses, augmented by the expansion when austenile trans- [ transformation of austenite to martensite, the reaction again stopping when forms to martensite, cracks the martensitic zon , which is both hard and a critical percentage of austenile has changed to martensite. During further lacking in ductility. Preheating to a lower temperature, 200-400 F, which cooling to room temperature A, nearly all the remaining sustenite changes is adequate for the lower-carbon and low-alloy steels, may either prevent , to martensite. , austenite from trrasforming to martensite by reducing the cooling' rate, or i L l . i
u_..~ : - c , _ _ , I y f% . , i 144 WftDfNG METAtttfAGY PREHEATNG AN) POST HEATWG 14 b , may cause the austenite to change very slowly to martensite, both actions pearlite, even the Anest pearlite, will be capable of more deformation with- , preventing cracking. Preheating to higher temperatures, 600-800 F. out cracking than zones containing martensite. All available evidence which often is necessary for slects containing more than 0.30% carbon, shows that a given steel exhibiting bainite is more ductile and tougher prevents the formation of mantensite during welding, providing: (1) the than the same steci in the martensitic condition. Dainite is about 5 to 30 l
- Itnckwell C units soher than martensite, the bainite formed at higher l r.tcel is held at the preheat temperature for a suaicient period of time *
(fler welding. to allow transformation to proceed to a solter structure, , temperatures being soker but not necessarily more ductile than beinite h lj j' or (2) cooling from the preheat temperature is sulliciently slow to allow l formed at temperatures just above the martensite temperature M, Fig.145. p' It is true that martensite, if reheated to the temperature at which bainite n - transformation to a structure other than martensite. Because the critical cooling rate and the location of the M. point. l forms on cooling, may become as ductile or more ductile than bainite. In [ which are the guidelines for martensite formation, are controlled mainly' the welding of hardenable steels, however, it is a question of preheating' R ,i by the composition of the steel, a number of methods of calculating the or not preheating. If hard martensite forms without preheat, there is a ?
. likelihood of cracking in medium-carbon stects. No amount of postweld need for preheat using the analysis of the steel have been devised. The v:rious formulas proposed usually consider Arst the carbon content and reheating will heal these cracks. However, if the composition of the steel is designed for welding, that is, containing a relatively low carbon content y then the alloying elements which promote hardenability, and attempt to ,
L tr:nslate these factors into an " equivalent carbon content." A typical and a combination of alloying elements that allows transformation from n, l mustenite to bainite or martensite at a high temperature, then preheat may [' j formula of this kind is given below: g be n'winirabic. As will be explained in Chapter 15, if the cooling rate is ,f l ' Equi t % Ma % Ni % Cr % Cu % Mo I too slow, the imsformation of austenite proceeds to upper bainitic " .- 13 4
- structures that have poo.c: notch toughness. ; 6 15 5 I
- i, content l ,
' , REDUCING RESIDUAL STRESSES g The preheat temperatures suggested for several ranges of equivalent ,
- Ahhough there is esse # ally no difference in the nature of stresses ;
ii carbon content are: A from external loads and residual stresses, it was mentioned briery in ( Sussessed Preheat Temperature [!L Chapter 11 that externalloads are not simply additive to internal (residual) 4 ,
- i Equivalent Casbon Content stresses by superposition. Even though most works on the theory of [,
Optional fI Up to 0A5% , l elasticity in metals make use of the principle of superposition, this principle l oAs to c.som 200 - 40n P , does not account for the distribution of stresses actually found in a wekl. i_ 1 ,' Above 0'60% 400 'J00 P ment under load. It is strongly sospected that external loads applied to
. a welded structure containing residual stresses produce highly localized i'
! Of course, the need for the suggested preheat will depend upon the ' , yiciding', so that a small amount of localized plastic How quickly relieves welding process applied. Processes which regularly involve large amounts
- residual stresses in a general area. However, if a stress raiser is present, I of heat input, such as onyecetylene welding, have no need for preheat any enternal load will produce higher stresses at the tip of the flaw than in because the temperature gradient across the heat-affected iones is not
{ any other nearby area. This is the situation where stress distribution, rate e J very steep. Consequently, the cooling rate in this area is relatively slow. of load application, and temperature challenge the properties of the steel. l i The proponents of formulas for preheat usually have arc welding in mind, it is imperative that localized overstress at the tip of the flaw be reduced j where the temperature gradients are strep and the cooling rates can be through plastic flow rather than promote a low-energy catastrophic frac-vrry high. The need for preheat also is dependent upon the composition
' ture. Preheating for welding aids in promoting notch toughness in the ,
of the steel. The formula given above is intended for carbon ami alloy weldment. This can be a very helpful attribute both during the welding ., steels containing not more than 0.5% C,1.5% Ma, 3.5% Ni,1% C6 i operation, and later in service. The increased toughness is credited to a 1% Cu, and 0.5% Mo. reduction in residual stresses and other factors to be disenwd. To un lcr- '; i' The products other than martensite to which mustenite transforms in I stand the action of preheat on residual stresses, let us return to ghe bar {_ preheated welds may be p9arlite or bainitc. Heat-affected zones containing i e }
..._- _ . a. .. . ._._.4 . ~ . . _ . _ :_ _;, u a._ . ,
m_ ,_. _...
. _m_.._.,_
O /T p^ f% . gg ;' pngyggyng Augposyuggync 1ds WELDtNG METALLURGY 8 1 r the steel. At rapid rates of strain the yield stress is higher than at low I
] analogy, Figs.126 to 119, that was found to be helpful in Chapter 11. rates. Since high rates of heating prevail in some processes of wekling, {:
q Imtssd of maintaining the rigid jaws of our idealized press at room such as spot welding, the temperature at which the stress drops to zero f temperature, as we did in Chapter II, we shall preheat the jaw-frame may be nearly 1500 F or so. Cooling rates in welding, generally speaking, ri membly as well as the har, Fig.146, at four temperatures: no preheat are slower than hensing rates. Therefore, no great effect from high strain R, end t;t 200, (dK), and 1200 F preheats. At all timea alter pocheating. the rates, beyond the usual increase of yield strength with falling temperature, y, 4 j ws of the press shall remain the same distance apart. The bar alone wdl need be expected. Er.ception is taken, of course, to special cooling rates them be heated to 1700 F and cooled again under complete restraint.
- coouna :
induced by quenching or some form of artificially retarded cooling. $
?'
L ncavine - Returning to Fig.146(a), we observe that the bar is practically frec g from stress above 1200 F. When the bar starts to cool from 1700 F Fig. fl o I @ 146(b), it promptly reachts the tensile yield stress, which is very low n H no enencar l l ls.oentncar above 1200 F, and yicids; that is, its diameter is reduced while its length b, l 1 lj f remains unchanged and equal to the distance between the fixed jaws. At j l l l l l _ 1200 F and below, the yield strength thes and the shrinkage stress like-d ];
, l " wise rises. This stress is close to the yield strength at all temperatures and 6~
w I @ is at the yield strength when the bar has cooled to room temperature. 8 l l aoo r encncar "l l l aoo r@earncar 8 The effect of preheating press and bar to 200 F is illustrated in P e Figs.146(c) and (d). Events are practically the same as with no preheat; ( ,, g - w] I the bar ends the cycle with the tensile shrinkage stress up to the yield
> l q
h ; l- @ l strength at 200 F. Preheating to 600 F, Figs.146(e) and (I), reduces the stress cycle on heating and cooling, since the maximum compressive stress t j l soo r.caturav ", l lnoo r emncat 5 l ; .r on heating and the tensile shrinkage stress on cooling to 600 F will un-a l l L l 1 l = - r l 2 y ' doubtedly be lower than at the 200 F preheat due to the lower yictd H [ g "l l l g h strength at 600 F, When the press and bar are preheat'ed to 1200 F, the stresses are .i
- l l l ,
lisoo r encnc a, entremely small at all temperatures. The bar is completely restrained dur-l l f l lisoo r runtav , ing heating from 1200 to 1700 F and therefore is upset. On cooling back l t l l to 1200 F the upset is removed completely. Preheating to 1200 F, there- ] l iEo doo
~
soo - sooo noo aooo sh sEco . fore, has completely prevented abrinkage stresses. But, it may be objected,' i I vawra savuac. 't vrwr(natune. *r do not the shrinkage stresses appear if now the bar is cooled back to room ' f Fig.146-Stress-teenperature curves for bars under coinplete rentraine : temperature? It is true that if now the bar alone is cooled to room temper-
' during heniins and coolins. sture, tensile stresses would appear in it. Ilut when both press and har l l together are uniforndy cooled to room temperature, they contract together, , ,
l Thiring heating without preheat, the stress in the bar, Fig.144fa), and no shrinkage stresses occur i rises to the yield stress in compression as it did in Fig.12WI.I. ami the In the examples given in Fig.146, the therinal respome of the bar ' . bar upsets while remaining at the yield stress thnmghout further lwaliny. and press is analogous to that of the welded zone and the irsu.,ining e W3 know from Fig.128 that the yield strength of steel determined in a ' portion of a weldment. Had the preheating becu local instead of total .' I test lasting a few minutes drops to nearly zero at temperatures above (torch or induction coil preheat instead of furnace preheat), it is obvious ' 1200 F. Consequently, by the time the bar in Fig.146(a) has reached that the cooling of the preheated region to the temperature of the rest of f 1200 F the stress in it has dropped to nearly zero. The rate at which l the part would create shrinkage stresses that could be greater or smaller . the baris heated will determine to some cutent the temperature at which i than the stresses caused by welding alone, depending upo'n circumstances. [ the attess becomes zero. Rapid heating has the effect of rapidly straining ,, l I -- . _ _ _ - ~ ----u--- __m%_ ,__ _
n _ _ _ , . m_ _ __ _ ,
- 1
!i A ,
WELDMG MEfAllURGY PRENEATNG AND POST NEAfiNG 151
\ 150 jj will be wider. It n y b well to point out that th: depth of heat-aNected ,- 1 i If shrinkage stresses must be kept at a minimum, any application of local zones in base metals welded with diferent initial temperatures will rank h preheat niust he studied in this light. b
' In addition to reducing shrinkage stresses, preheating to the higher in the same manner regardless of the method of comparison. p~ .l l temperttures, above 600 F, reduces overall distortion (upset) appreciablyand reduces the yield""*strength
- of the[
p of the material relieves shrinkage stresses which, if forced to occur solely i . g ! in the highly heated zone in the immediate vicinity of the weld, might lead e ., j,,,,,,,,,,,,, 4.s . . 13 hot cracks in the weld metal or in the base metal close to the wekt.
/. A f Need we restrict preheating to temperatures below 1200F7 Practical gg,{,,g, ;;
j u ,. prohlims make higher preheat temperatures uncommon in weldmg pro- y (X / y , , ,,,,,, , cedures. Temperatures in excess of 1200 F if applied locally require con-sider:ble heat input to maintain because of conduction into the surround. g\/ *
/ m'=ar p
ing colder base metal. A special heat source to provide the preheat must 1 he crranged that will not interfere with the welding operation. If preheat ({ L r.bove 1200 F is applied to the entire weldment, the operation virtually re- ' ~
. / e ? ___ 2 quires a furnace large enough to encompass the entire article, and ti a welder's comfort during the joining operation certainly must be considered, j j; l i li Also, the filler metal may reach a somewhat higher temperature than g Pis.147-InAmers of prehee:Ing on hem-ageciec mones.
tasual during deposition inm the highly preheated joint and thus become [' (A) and (B) Base metal best-aNected aona is wider:cd by prebestins. ton Suid for proper manipulation. Additional problems of a metallurgical (C) Bend I cooled so roosn temperature before ben.12 wu depossied. suure can arise, such as the formation of heavy oxides which may inter- g 0"'Y * ""*ll tu$lan of bad I wu renned by it~ be. of ben.t 2. fere with the coalescence of base metal and filler metal. In general, many "**I*"*' **d M *P it A larse Pad ',
- 1 of the factors which enter into a welding operation favor application of ,
gi , , , , Ad L
- the lowest acceptable preheat. p (E) After smalt head I had cooled below the ca.iical semperature ranse.larse bend 2 raised k completely above ibe c.iiical and renned Nevertheless, high preheat temperatures enest certain cRects deserv- j the stains.
l- Ing of attention and study, and'there are conditions, such as in mukilayer t nevec cooled below the critical be arev bend 2 w.. t , j welding, under which we unwittingly make use of higher preheat temper. ['"n ad' ciures. One effect of higher preheat is to widen the heat-alicceed zone in the base metal. As illustrated in Fig.147, a weld joint made with no la making these comparisons, some of the afrects of preheat are !l. l l' easily tnessured, for caample, the rate of cooling in the heat-allected zone , preheat (A) has heat-affected zones which can be delineated by the
' meermont limits of the region which was heated above the entical range at a Ased point. Other effects, such as residual stresses, are rather abstruse i (above the Ac, temperature, which might be approximately 1550 F for and is may be necessary to resort to extreme simpliscation (as we did in the eteel in this example). If the same welding operation is performed. Fig.146) to analyze them. Some cifects of higher preheat are rather com-j but with the base metal prehested to 1000 F, the width of the heat-altected plex, particularly if metallurgical phenomena are involved. The influence j.
rones will be increased appreciably as shown in Fig.147 (11). IIcre the of preheat on grain size is one of these more complicated effects. Since hett of welding is required to increase the base metal temperature only grain size undergoes greater change in multilayer 'vekling, which is an by an additional 550 degrees to bring the steel above its entical range. i area where we often deal with higher preheat temper stures unsuspectingly, i we will delay a discussion of the relationship between preheat and grain 1 Obviously, a fixed welding heat input will be more effective m ramun the base metal temperature a mere 550 degrees instead of the 1475 size until the subject of multilayer welding and interpass temperature is degreca as required in the case of base metal at room temperature (no reviewed, and at that time make use of the additional illustratione in pre, heat).Thus the heat-affected zones of the joint in preheated base metal i pig,14,, .
- . ) ..
-- - - - ~. .. . . .._ . . _ _ _ , ,. __ _ _ _ ,
il l! A
- PREHEAllNG AN) 90$T NEAllN 153 h.;
]i;' WELDING METAL 10ACY r,
-l152 . y, . ,
specimen of substantial size containing a notch which is placed in lll lwAOVEMENT IN NOTCH TOUGNNE55 beveled faces of the joint before welding. As shown in Fig.148, the [ !lj specimen after welding has a cracklike notch on each side of the weld. ( Much research has been conducted in an effort to evaluate the bene-t i Ats of preheating. Ahlmogh we can predict with some degree of confidence Test plates of this kind have been welded at various levels of preheat };' !i the effect of preheating on cracking occutrence, the hardness of heat- temperature and with various classes of electrodes. The toughness of this %
"weldment** has been evaluated (a) by examining the weld metal for p d effect:d renes, and the level of residual stresses, other benefits accompany cracking catension from the notch immediately after welding each bend, R ii preheati g which are not well understood. For example, when arc welding , mild steel with cellulosic covered electrodes, preheated specimens display upon completion of the joint, and after holding at room temperature a ;-H week or so, (b) by making notched-bar impact tests on the weld metal f
]i superior results over nonpreheated specimens when tested for notch and the base metal, and (c) by bending specimens longiitudinally as a ., j toughness. Several investigators have emplored this area using a plate beam until fracture occurred. The impact and bend testing has been p l l' perfonned at progressively lower temperatures to establish transition p j' temperatures. E j
. One investigator using this testing procedure found that nonpreheated specimens of ASTM A212 steel welded with E7010 electrodes cracked i:
S g s'
)
spontaneously on standing. Specimens preheated to 400 F, however, dis- '. played a transition temperature in bending of -80 F. When E7016 elec-trodes were substituted in the nonpreheated specimens, a transition tem-
[ ' perature of +20 F was observed. It was concluded that the benefits of Preheating mild steels for welding were only slightly less than those of \ ,,.
E,'ic . E*Jtr'o"[o'Es'"r s moa to =noiao- stress-relief heat treatment. No particular metallurgical change could be g n t U.NsN Yr'v*rn'$tI"oYa'r"' singled out to give major credit for the better performance of preheated test ;1 ' l y plates. However, certain findings suggested that 1rcheating lowers the t V,, ' d residual stresses at the tip of the Raw where cracking begins during testing. Also, preheating appears to over-age the metal at the tip of the flaw
~
t
- i after the thermal cycle of welding has produced some strain-age hardening. .
ll
,' These factors, stress-relief and over aging, appear to be the principal ones !
c x}h ,,.. ' involved in the mechanisms by which preheating improves notch toughness. ;' Q I l
; WELDfNG AT LOW AM8 TENT TEWERATuaES ;,
liefore leaving the subject of preheating, attention should be turned ~ C/ , , for a moment to welding at low ambient temperatures, Circumstances oft $n arise during winter when the workpieces to be joined ate at a very low f ,e g
's, ]/ / - temperature. Naturally, the question should be examined as to whether completely satisfactory results will be obtained by r.pplying the selected process with a regular procedure. Of course, in addition to the metal- ) }"
~
, I.,
lurgical ellects of welding at a low ambient temperature. there sie other
,/ '., { , , ' t ' ' ' "- aspects of the joining operation that can aficct weld quahty under these i conditions: welder discomfort, equipment malfunction, and weather-cifects l
(wind, frost, etc.) are just a few of the items that duerve consider tion. Most metallurgical di8iculties which develop during welding at lo i- Fig.*les-Welded test specimen containins Anw-like nosch adjacent , to weld (after McGendy). *e. , 1-a 4 ..
. . e
hw n - .. . - ~ ._ , _- _ _.s . _ , m' & *
.D '
i' MfHEAffNG AND POST HEAffNG
'155 !.
WELDING METALLUAGY :,
' 454 .: . : ;?
i f.1 1, approsimately 300 to 600 F. Of course, further consi.leration of the . n ambient temperatures are caused by the increased rate of cooling of the type of alloy steel and its weldsbility, and the kind of joint to be made Iweld metal and the heat affected zones of the base metal. Cracking is the idefect most likely to be encountered, although porosity has been observed , migld indicate a higher or a lower minimum interpass te.nperature to be hE
. desirabic.
J 0o occur unexpectedly. Some dilEculty may arise with slag entrapment Interpass temperature, in addition ta innuencing crack.~ng susceptibility dhecase of the tendency for the molten slag on the weld pool to chill
,'on the very cold groove faces of tix joint. A further effect of the rapid of hardenable steels, residual stress, and distortion, also ha1 an effect upon f[
grain size. This clicct can be very important in many commonly used W { cooling, even when cracking does not occur, is lower ductility and tough-l: ness la the welded joint. The extent to which ductility and toughness is products made of welded carbon steel. In Fig.147(c) small bead 2 has IE' raised a small part of bead I above the critical thus refinirg the grain size
;' lowered will depend upon the composition of the steel and the welding of that region; bend I had been allowed to cool to ro.im temperature [
procedurs. Many steels have suRicient latitude in toughness to offer ade- before bead 2 was deposited. In Fig.- 147(d) bend 2 was deposited soon I. qxta properties even when welded at a very low temperature. However, j after bend I;in fact, bend I was at 1000 F when bend 2. was deposited. h
- ) when a question exists on the capability of a steel, the practical solutions ! As a result, more of bead I was heated above the critical than in Fig. E
- i. t3 the problems are to (1) employ a welding procedure that provides 147(c). In Fig.147(f) bend 2 was deposited immediately after bend 1 o high heat input to the joint, or (2) preheat the joint area to a safe.so- which has not cooled down below the critical, say 1700 F The grain size
, ' wekt temperature. All considered. prehenting usually is the easier to apply. ' of bend I therefore was not refined by being reheated stuve the critical. ;. i However, where circumstances preclude preheating, much can be done We see that the time between beads aficcts the catcat to which the ! in devising a welding procedure that compensales for a low base metal grain size is refined. Depositing beads one immediately after the other temperature. Low-hydrogen, mineral-covered electrodes often are em- may result in no grain refinement of the weld metal. Allowing previous , played, cod in some cases, these alone in a regular procedure represent an - . bends to cool to room temperature before depositing the next bend will adequat2 provision to prevent cracking. In special cases, an austenitic , yteld less grain refinement than depositing the next bend while the preced-Cr-Ni Aller metal can be deposited to ensure a sound, tough weld metal. Ing one is hot but below the critical. The significance of rerming sucessive i There does not seem to be any real lower limit to the base metal temper- . weld beads as completely as possible is reflected in notch-impact value, y s h' sture at which welding can be performed providing suitable precautions
' l. Tensile values are little, if any, affected by the degree to which successive
! are embodied in the welding procedure. i beads are refined. High degree of. grain refinement always is favorable i
. for high notch-impact value of weld metal, particularly at low temperatures. , ! i, U MULTI-LAYER WELDING AND INTERl' ASS TEMPERATURE Comparing bare with covered electrodes on the t, asis of degree '
- 4 ' of grain refinement of weld metal, we find that bare electrodes usually While preheating may properly control conditions for the initial . deposit at lower arc energies t'pn covered (amp X volts
- . arc voltage is l I
deposition of weld metal, the temperature of the weld joint and surround- I ,usually*about 18 for bare,25-35 for covered); as a reselt the covered Irg wddment members during the deposition of successive beads may be ' electrode produces a wider heat-affected zone (region heated to at least equally me important. Therefore, the perminihic range of Interpa.rs armper- the critical) ihan bare electrodes. Furthermore, the sing f.om a covered I f atur3 also shmdd be stipulated. Usually the minimum of this range corres- electrode reduces the cooling rate of the weld bead so that the heads are . ponds with the minimum preheat temperature unless a change in con- ! at higher interpass temperatures than beads from bare electrodes when ditions has been brought about by the deposiehm of the inisint head. For the next bend is deposited. In addition, the bare electrode met.d gencrully l ! example, a joint in alloy steel may be prehealed to only 200 F because has lower carbon and manganese contents than metal deposited by covered j the initial pass or root bend is to be deposited by the gas tungsten-arc ' electrodes. The higher critical ranges associated with the lower C and Mn I process. However, the remainder .of the joint is to be completed wnh contents also favor small heat-affected zones in beads from bare elecinxies, 117010 covered electrodes. Considering that the degree of restraint at the although the hi;h nitrogen content of bare electrode metal (0.10-0.15% ' joirt may he significantly higher during succcuive passes, and that the N,) offsets the effect somewhat. Whether the difference in inclu ica con- 1 weldiIg is not being performed with a low-hydrogen electrode, it would i tent between the two types of weld metal affects the critic'al range through {' be well under these circumstances to specify an interpass temperature of .. i 4 l ,
1 a w: . ..a . a. . ~ ; a. .. . ._.u w .w.. . .. a. w. . __ . . . .. ._ . . . , - t WEtD0NG METALLURGY O pygygAggna Ang pogg ygggang
/""% .
hp 156 157 l
. h
_y l the nuclesting influence of inclusions is doubtful. coursened by the heavy bend 7 that may be necessary to create the desired S It 13 a rule that the smaller the initial grain size the smaller is the grain-refining effect. :
'grais size after reheating above the critical and cooling below it again.
- Circums ances sometimes arise in the making of a multi-layer weld [
. Smill heads generally enhibit smaller dendrites than large beads, because when the operation must be suspended prematurely, perhaps overnight be- h l'the dendrites cannot grow so far in a small bend as in a large. Also, u ! cause of problems in scheduling qualified welders. When she steel is being y Usmhl1 head cools more rapidly, which accentuates the nucleati ng effect of '
wekled with an interpass temperature above a specified minimum, ques- F !kttemptlyg to undercool below the equilibrium freezing range. Since the lions naturally are asked about the cliects of interrupting the normal I i smill bend has smaller grains to sent with, it will have finer grains, after welding procedure. For example, can the weldment be permitted to cool I i:being rehested above the critical, than the large bead. In addition,~ the to room temperature, or must the minimum interpass temperature be f L hert-effected zone created by the second bend will estend to a greater dis- maintained'l This is a difficult question to answer when the steel is one [ tance through the small bend than through the large bend. However, the l which also requires a postweld heat treatment immediately after welding. 1 small bend cools more rapidly than the large and may not'be at so high The matter of interrupted welding and heat treating procedures in the l aa inertpass temperature when the second bend is deposited. fabrication of chromium-molybdenum steel piping was studied by the
, a AWS Committee on Piping and Tubing some time ago, and their recom- w t ; / mendations are contained in the Committee Report identified as D10.8,
! \ J
\ s sf f i / ~
IVelding of Chromium-Molybdenum Steel Piping fSection 6). Their report defines the important metallurgical and mechanical factors to be considered I q \ * / in the thermal cycles when fabricating a tubular weldment of hardenable j
/ steel, and presents these general recommendations:
{V.,
, / 1. *Ilse heat cycle may be safely laterrupeed for the nominst . cleromium-molybdenoun stades of less thes 2.5% chromium, g
[I , welded under normal conditions of fabrication and erection ua-las low-hydrogen electrodes. ! Fig.149-I.imits of heat aRected,rsoes produced by last head 2. *Ik b % @ g k @ h W M & m i e k deponted. molybdenum stades of 2.3% or more chromium in well thick- \ 1 i It is often desirable in a multi-Inyer vecid to eliminate all coarse - nesses under one inch. provided sher are welded under con. ! orolled procedures unins low-hydrosen electrodes. In wait thick- j ! E"IJs structure in the heated base metal. After the first six beads i in nesses one inch and over, k is recommended shat these grades Fig.149 have been deposited there w.ll i be coarse grain structure n gge k Wy d h w w im. f bIsa metal only close to heads 5 and 6, assuming that the succeseive beads . ruption or, alternatively. that the weld joint be given a abort / .
- I have r;ised the temperature of the coarse znne created by the precedmg time tempe, ins treatment at 1200 so 1300 F before interruption bend r,bove the critical range. If the size of the last bend and the temper- of the cycle.
ature of the joint as a whole are such that the limit of the zone heated 3. For well Ihickness under I in., where an interrupsed procedure f' above the critical by bend 7 is A.A. the coarse zones from beads 5 and is followed. she weld deposis prior to inserruption should never be less ihan n the wait thickness or two layers, whichever is 6 will not be refined, and the joint will not have the highest notch-impact F ver pipe, a minimum, such as M in weld value. There will be coarse structure at the notch represented by the toe a,reate of the weld. Therefore, the last bead should be deposited with sufficient energy (taking into accoimt preheat, the time interval between beads 5 and , The Committee report emphasized, however, that specific F.h om. >
- 6 and 7, and the size of the bead *l) to spread the critical zone to 1111. A ditions deserved consideration in deciding upon the manner in whn.h the ,
welding would be interrupted, and that the above general recommenda- '
! common characteristic of weld metal, related to its low carbon content, is .. that it is not so likely to become coarse grained; i.e., develop a Widman- tions should not be applied indiscriminately. i l stXtlen structure. The structure of bends 5 and 6 will not be significantly i la oxygen cutting medium-carbon steels, it may b'c necena{y to , 'l ..
.w z.; _ - . ..a, - . . . .. . ~ w ,. a .: x , a. w.. .. , ._ w. . , w_ - - . ~ . a L...-.
l , c. O /"S , h 3 158 WELDING htETAllWlGY PitENEAUNG AN) POST NEAUNG 159s,{
- j
, f y a
b
~ prevent cracks. Either preheating or posthenting is resorted to. Instead ing anneal. While the effects of diRerent heat treatments are overlapping, f of preheating the entire plate it is customary to precede the cutting torch that is, two different treatments may be used to accomplish the same p ; by a preheating flame which preheats the line of the cut to the desired purpose, each has been developed to serve a specific purpose primarily. 6 ; estent. The effects of preheating in this operation are identical with those The selection of the proper heat treatment requires the consideration of p a number of factors including type of steel, conditions of stress arising E discussed earlier in this section. from welding, microstructure in the heat-affected zones, and propenies [,
When postheating is resorted to, a large multi-tip torch follows directly behind the cutting torch. The posthenting tbrch does not affect heating required in the material to perform satisfactorily in service. L 3 rates la front of the cutting torch, which often are inconsequential escept for tool steels and similar materials. The posthenting torch, however, pre- [( vents rapid cooling by maintalmng the cut at a high temperature for some ' in the AWS Definitiont-Welding and Curtins, stress-relief heat l time. By increasing the heat input of the operation, posthenting reduces treatment is the uniform heating of a structure to a suitable temperature . the cooling rate and,if adequate, prevents hard zones of martensite. Any below the critical raege of the base metal, followed by uniform cooling. other effect of posthenting is immaterial. Indeed, there is no essential dif-A note also appears which states that terms such as annealing and normal-ferenc3 between pnatheat and preheat, provided the posthenting is applied iting are misnomers for this application. To be sure, shrinkage stresses, or, > before the part has cooled to room temperature; if the part has cooled, as they are called, residual stresses due to welding are relieved by an- ! mist nsite may have formed with accompanying cracks, which post- nealing and normalizing, but these treauneotr 'avolve changes in grain b heating is helpless to correct, structure and particularly dimensional changes that may be injurious to the part. Heat treatment within the critical range is usually undesirable. Cosi-POSTWELD HEAT TREATMENTS sequently, stress-relief heat treatment is performed below the critical > range in most cases. Postweld heating of an enfire weldment, or only a localized portion, . The decision to stress relieve a weldment often is guided by for L may be done to achieve one or more of the following: fo, , decided by) the requirements of the ASAfE Eailer and Pres 3 R'H* 8""** Code. The rules published under this code define the conditions of material, l l 1 hnPrm Toushnese composition, thickness, and end use under which the welded vessel must i L Increses Streasth i be given a postweld heat treatment. The ASME rules have been adopted i jq 4. hnprove Corrosion Resimance by many municipalities, states, foreign countries, and insurers who are f
' 3 R*"*'* C*'d ** concerned with public safety. Consequently, these rules have been used by I A variety of thermal treatments have been developed to accomplish : many engineers for guidance in planning the fabrication of noncode i these changes and have been termed (1) stress. relief heat treatment, (2) weldments. [
The temperatures used for stress-relief heat treatment may be in the [ nnncoling. (3) normalizing, (4) hardening. (5) quenching and temper-i- ing, (6) sustemperint, and (~1) martempering. The use of these terms range of 900 to 1250 F, which is below the critical range on heating of' alw:ys has been quite loose, and for this reason misumierstandings have the plain carbon and low-alloy steels joined by welding. , ] arisen. Nevertheless, each of these terms has a fairly definite meaning as The time at temperature in stress relieving carbon steel is customarily i we shall soon point out. In genersl, the difference in the heat-treating one hour per inch t,f thickness, although longer times are required at
- oper:;tions are in the temperatures employed and/or the method of cool- 1000 F than at il00 F for the same degree of stress relief. Stress relief l
ing. Temperatures for stress-relief heat treatment are below the critical ' is often required for preheated parts. With complicated structures, or with I range of the steel, wheress temperatures for annealing, normalizing, and steels having a pronounced tendency toward cracking, it is often essential j i h:rdening are always above the critical range. There is perhaps one es- that the wekled part be placed at once in the stress-relieving furnace with < ception to Jhis; a softening treatment is sometimes carried out just below . out cooling from the preheat temperature. . the critical range, and it is ref9rred to as a sub-critical anneal, or a temper- Although the strcgs,-relief treatment is espected only to schese stresses, ? h , l i ,
Q LE Eat -
. lA A -- YL L&L- L' O* ~ ~" ' ~ ' ~
Y C m MATM AM MT MAIM ' ' m ,
% %I M
WELDMG METALLURGY , , 160 l h. have yet to develop practical formulas for calculating the quantitative im-sad not necessarily to produce any changes in the microstructure of the lateel, the general effects of a stress. relict heat treatment are as follows: P"*"C'.of these factors in terms of brittle failure possibility. Therefore, y the decisen to relieve stresses an a weldment by heat treatment generally g I. Recovery is based upon espeilence and is only guided by the data from tests which [
- 2. Relemanion attempt to evaluate notch toughness, notch acuteness, residual stress level, A'
,l ! 3. Temperias or deswins (removal of hard zones) and so forth, f Dimensional stability is a weldment feature which is directly affected f, ! 4. Recrysealtissilon t
- s. sphaoidizine by any stresses locked up in the structure. If a weldment, for example an 7 engine base, is machined in the as-welded condition, the machining oper- V.
,l The Arnt effect is universal; the second effect ,is ach.ieved when the ation removes metal which is under residual stress, thus creating redis- T" ser:ss-relief heat treatment is conducted at a sufficiently high temperature tribution of stress and causing distortion. The machinist cannot be certain ' i for ca adequate length of time; the third effect is obtained only if hard he is machining to the correct dimensions because the weldment continues ,; i sones have formed as a result of welding and the last two effects have to distort as he removes metal. Relief of stresses in the weldment prior > mizor signincance for welding. to machining allows the unit to remain stable in form so that dimensions Wilded structures have residual stresses near the y.ield strength once, machined remain Amed. To what low level must the stresses be re- -
' whether or not there was enternal restraint donog wekling. This fact lieved to achieve dimensional stability? The permissible stress level de- j l
was poixted out in Chapter 11. These stresses can cause a number of pends primarily upon the amount of metal to be removed, its location
- difficulties in a weldment. The likelihood that any of these difficulu,es wdl with respect to the areas of residual stress and reaction stress, and the
- occur is dependent, of course, upon the combmat, ion of steel composition, h ind in h Anal dimh % m fmW h pi. lr 'i l welding process, weldment design, service conditions, etc. Relief of stresses, lative sis have bem developd ud a w m dW p
- , however, can result in the following improvements
- expe,;e,ee, I, Minimised suscepiihiliry to tracture development particularly . Many metals and alloys are susceptible to stress-corrosion cracking under conditions which call for hish notch toushaese , " ,
- Steel is not an enception. This type of corrosion failure has been termed b
' " caustic embrittlement" in carbon steel. A description of the conditions i ly. 2. Improved dimensional stabiliiy
- 3. Increa, ; reeimance to cormeion, especially areu-corrosion which promote stress-corrosion cracking was given in Chapter 6. Either a :
j 1, stacklad . change in the nature of the corrosive environment or a reduction of the j
- stress will eliminate stress-corrosion cracking. Often, the high-level residual 1' How important is it that residual stresses and reaction stresses be stresses in the vicinity of weld joints.are responsible for exceeding the 5 l! removed from weldments? Is it necessary to reduce these stresses to zero, threshold of cracking conditions., and a reduction in these stresses akme lI and is this stress-free condition actually possible to achieve in a weldment? .by stress-relief heat treatment is sufficient to avoid the difficulty.
- I These cre just a few of the questions that can be asked about this matter Often there exists cold work in a weldment of which the engineer is !
Ii of stress relieving. We know from our study of the mechanical properties mg aware. This condition may have been produced by some unenpected I! of metxis in Chapter 6 that under conditions of multianial stress, high operation, like cold bending or hammering into alignment, or possibly by a , 2 f ..(fhnr rateplastically). of loading (impact),and low temperature, more subtle action such as permanent deformation at a relatively low Instead, they tend to fracture in a brittle mannermetals with do mg easily deform temperature by shrinkage stresses. Permanent deformation below 850 or e l . very little deformation. Weldments contain multianial stresses in the vicin- 1000 F is accompanied by slip lines in the microstructure. The slip planes 1 I ity of cs-welded joints from the shrinkage which occurs as a result of , represent planes in the grains of steel which have moved over each other I' welding. These stresses are the Erst major facior which should be con-(see Chapter 6). Slip due to permanent deformation at higher temperatures l sidered when analyzing the likelihood of brittle fracture. The other factors occurs m the same way but the slipped planes instantaneously straighten I include theinherent toughness of the steel, the occurrence of notches in the out and lose all traces of curvature involved in the slip. I weldment design, the nature of additional stresses developed by service - b lords, and l'he temperatures at which the service loads are imposed. We , let us imagine that..the welded structure that we are'almut to, stress j 1 *e g l 1 -
.a de -l2 0.3G:. ...L2 .u = ~. ~.- -._.. . + - -
t I 1 , l 1, ! l j WHY 1 - POST WELD HEAT TREAT (PWKr)
'1 1 > 1 - To reduce stresses from Welding ! 2 - Drive hydrogen from the Weld i
- i j 3 - Temper Base Material Heat Affected Zone (.HAZ)
,i 4 - Condition the Weld Metal . .
i
.4 ;.(
h
.5 i
e m -
.t r
I 4 M *
'}- 'I / 'y. .i. .:
_ , . - - ~ , . . _ , . _ .
- -. : a: = =..:.w.c;=: = -- 2. 3 . .e .- . . - . . ~ - .. .~ .
1 - t i 1 i
.I h
1 4s.
-Center of art
- j ]
I I I I I I I I I I I I I I I I I 1 l )0.8 - 540 ac~ N 5 - 3000 T [ Energy irewt 100 000 #inl Ng - 4 o -- - i~ sO - es *c j o y W '[ m@y , ,2QOO,,'F 20,0 y _ -
'3000 ., f-q g as60'.y - = ~u s 3 c j ooO ,y.go.c . l ,0.4 -
s so .c _
'i l 204 ~
IEnergy ired 50 000 J/n l
' ' ' ' ' ' ' ' ' 8 i e i i #
, i5 0 0.4 G8 12 1.6 24 2.4 2.6 3.2 16 Distance behind are center line - in. f i
+ -
A
~
j -
.t I
t1 ,- . l ' s l id l I l~ ~ ~ - - -
. _ _ _ _ _ , .::=:- .:= _
-p d . . _ ..L. a . .,.x .: _L jh M: ':. b-w-~'L - ' ' ~ ~ ~ ~ ,,,,,# w v. ?F i .
g
.2800 ,! g Liquid -
i
~ .N l l %
Maximum temperature 2514' (f [ --" i l l y i - g 'N
' ~ ~ '
l Austenite 2 -- - - u2 lI 1674 l yo.25 c l 3 ..__ _ 3 ,e .
/
4 - i-- Il - - - l-j4 l 1335 Il 5 I . . I i l Ferrite . Li I ond ll[
- 1. - ' l l l Comentite .{ l I I
l,l .y i, , , , jl 0.5 1.0 -: l h",8',, 1I l l Iron-Corbon degram ( (0.25 C Il 300C I
/ f .
i i k ll\g
,. Fusion line 2500 7 - -- -- ~~
{
~.
k Coorsened zone 1 { ,\. x Refined zone 2 2000 -- L - - j g, Transition zone 3 ,' Weld metal 3
/No apparent structuralchange (zone 4) ig isoo -- - ] * ~ ~
1
, Marimum temperatures attained in a butt weld and relanonship with oron carbon phase diagram :co0 ---- ---~
l 333 ._ ._ _._
.7 .
s ,
) ,
0 1. . .. . Tne Typical time temperature cune for a point
', ( in th'e heat.affected zo'ne of a weld v ^ - ~ w xaw_ . r , m ... :: :- - -. : ,.r. _ - ..,:.
Ll1L.1sl?EcL '. .c:,.:2 a a- x .. ,.-.- . - _ _ . -_. .- . .~.
. l > l - \
4 4 h i {
-i
- 1
/ - '
- l '#
f . . . . . . . . . . _ . larytudnef s and earmose (0 *weast onomonwaNwdf.
- ~
p spasms h a buer med - i
- f 1 -
A N
/ f ,
A
/ l . I Dutortion in a RIlet 4d.
4 inumes in a siler wuM i 4 _ _
.{
b v* . k iu . t ' l II t t Ie 8 i
~ , . _ _ - - . . . - - . %- . . _. - . . . _ _ - - .
I
$..W a.* .. . t
- .a -[ .m _ p.7.'-U
- L. =-r - r as . !.-sg -L_-% j f h::-.4 l- t . f ,:. .:.,; .,y.-
,..z--
- p. y.;- ._ f , '. :s .. .. .T
-i . p. P h.m : . ;. , .r . g .- . ,
rw 's g . h j i: .,. 1 2._,:; &. . . : .. 1: . i. i.. . : .:. . .E.+. .j t . t. . : =. ;.,.r._k. , i
- --- j W . -
ann e- : . _p-i l.. :r, :. r. .. .-d : 7
, , ,n . , , yy . r. ;. _.. . :._ A.i. j :.- ... . . . . p_ .__ .m F W M *=4 .....i , . . . .... , .., . .r. ..; y mmn . h. *2 . .... j ...--
ccg www ._
- :.- 7 .-_: ~~ : ! i
..?-
____-."! ..l
- . L .-- . .t ; e
_.._.~""".2--:
. .- .. . .: .J-.r..---J. r . .t . . . .. . . . .:_ . ,'. ... = - . . -.1=.-_ . , , '._ __ o.! ',
IN lhe he .n e . .
...r_4._'_.__-._.
t
. . .. _ . . , n . . . . e e e .. . . ._ _. . . . . . -. 3 _.. . .... . . . . - .
Ooo _-_. ee ._ _ . . < _. . ._.. . p..,_-.._._.....-....
. _ . . r o e4 s4 e4 et ....._.1.._ . .._._. . . . _ . . . .. _.._ _ .-_.a.___. , . ~ _ . ... -
g g g _..._...I . . . ..
-- . _. . . p+_. _ _.- _.. p .f
_ - _ . -. . . _. , . . . .. - - . _ . ...f...-.. 4
.._ . _._ . . . . . - + . _ 'L_ . . _ _ i 9-.
- f. _
.. _. L. .. .. .._.. . . .i. - . _~ . _ . . . . . . . . _ _ . .,j.- .. _____i_......_ . . _. g l .p _.__
l _ _ _ _
. _ . . . , 1.. . L- . ; .. . -j
_.__.6- - _ _._ _ _ ,q. , l ;
-f _f ,
r
^
_ __. 4-_ - .- u,
- a. .
. . ~ - , _ .
_.4_ .p _= . _ _., n g3 n
. ._ _ .._ . _ . _...e.___._ . _..__ ___ __ ....._._4. .l. m . _- . _ -. - _. =- ,- - .s-. - - ...... . . . y . . . .
S 4 .._. -- , H- ! _..] 6 - - ._
. . . . . . .. ... .. '_ W . . _ . . . . ._ _ . . . . . . . j . .. _4. . . . . . .. . .._. 4 __. .. . _ ._+ ........_ . . _.....4.._ ....l ._
auf 9.
. ,g . _ _ . . _._..j_.__._,.- . _ , _ . . . . _ . . _ .g .a . . Z . . . . . . l .-
[
- 2 _i . . +
- g. p -g o. _O s a
.( . w .. .i.._-
l
- 4 I
+ . p; i_ . .L l 4 ....=!.,.._. - .. .
I i s. y s 1 .
. .lt.
I. . . I , 1 J.L--h - E m: . v. i .- _=y.1 c .+ "-. .-Q p.:.: :1 -
- .-t = r 9-: - t .i_- -f .- l - - m -i- H:: :: .- J t
. . fr ..a.ib.. m f%. 7 i-ify=- _'. y. j' *~ _ _%:W :. -}.%_i} O. l. Y .w.......c '~.::-] - .- = t {' . . .. . 2_. r. .: . .:
f . . . .- . . _ g . n. ._. . :-
. _.. l:. .. - l . , . .._L. u. .-. . .
E
... . .. .. ... .. . ..s1--... . _a . . :. .. t.. .. -. ... ....s. - ._
I
. . . . .t. . ... .,_. . -... . .. __ . .._. .. __-. ._.._.._..4- .. _._ .... . . . .___. .[ . . . . . . _.__.4. . . . . . ...._..._...e. .; .... _. _. .. . . -_. _ . . . _ . _ .. . . . .. i ... . . . ,. . . . ._ . . . .. .. __.J.. . . _ _ _ _ _ . . , _ _. . . , i
_ - -_ _.._.1._._._...... ._ . .. . s-. _ - _--. s~. _. . . . ... .. ... .. . . . . . __._.t.___.,q__. n ..._..._ . . ._. . . . . . _ . .- _ -
. . . _ - w. _.. _. _, - __ _
- - _. p. -
p -_ n..
..y_ ._ u_ _ _ . . . . . ._. . t . _ . . _ . ... . _ . . . . . . e, . . .... . .6 ... _..... . i
_ . .a - -.6._ -,. . . . ........-..6... . ._... .. _. .. . _=
....p.___.. . . . . . ...s.. .s. ..p... .. ]..
p.
}... . . . - - - -_.
_ _. _ _ . .. i ..4.. n. _ 6-- j .-. .. v, __.. r .f, ._ . p._
. . . . . . . . . . . .. . . . . .a.... .. . . ... _. .. t - -- - - - - - - . . . . . . . .. . . . . . . ,.. .. . . . . . ..... 1 ._ . .. .. i . ... . ...... i..... g. . .. s . . _ .- .. A _... . ...s.. . . . .. . ... t .,.._ \ ._ . . . . . , , .. ,, . _- .
s
. e .. .. .. . g . . _ . ,e-. . s .....r.---- -t- - k. .... . . ..p. . . _ - . . - .. .. .
e t - --
. , .. . . . ,3 .
- g. . . .
. . . } ..
O O O O e to v f1 O M O'
. IlsM SS38.1.s . . . . . . a.*8-D-* . w- ,_g. ..g . . . . +7*-%-'*
- Y . -
, g , s '.s. ., f tk s
' ~ - - -^ - - - - -
_ _ . - m '.Y:
. , u;.T. . . .. ., . .ua ,;._1. m_._ .: . . . __ .___.._-_.... - - _ ] .l .
Stress relieving temperature *F l 800 900 1000 110 0 I200 1300
'i g p 700 $ g\, OTime At Stress Rolleving Temp.s Ih ~ .j 40 @ s4h } 50 s4h
- ks,@%
-i - 60 -$ $ (%D.
70
.s g,g D-d 100 _ $ 315 370 430 480 540 595 650 705 Stress relieving ' temperature, *C ,:l w r Stress relieving temperature , *F (time et temp.,4 h)
- ( o
,! j 7 70000 10 0 MO 600 700 900 110 0 1300 % @ 70000 pel Yield Strength Steel .; y)60000 @ 50000 *j 30000 . 50000 -- .. ,'
- is 40000 .
T'/i m e* 30000 --
,' \,
[]20000 ' n
< 10000 s ,X 0
l Yih 38 150 260 370 480 595 705 Stress relieving temperature ,*C (time et temp.,4 h) .,. -Ernect of temperature arad time on areu relef
'1. .i ,.,-
i U l .
- i. - - . .
is$$ ~ E C'. .smE e 50.Y.~ ~ M u O L --a: ~ O. N -
. _ .x *i-t = . * - - ~~ ~~- ' * - ~ - - * * * * ' ' '
I i.
! h -
i 3 Applied Stress r No Fail
~}
1 1 1 I 4 1
! Time To Failure ,l Low Hydrogen 1, . . . . . .f _
1 .. 3 t i, I-j s. h-3
- i .
I t Applied I Stress . _ 1 s L* r Time To Failure High Hydrogen lt .
! (. .i -l l'
t Delayed Hydrogen Failures l lI
-___-- - ~ ~ ~ "- -r . : ' ~ : . , ._ . . _ . . . . . , . , ' , ~ ~ ~ * ..,;~.__,..,,.__-__,__ _ _ _ _ - _ , , , . _ _ , . . , .
tm. . : . . !d;. .u.'.u . a .a;.:;u - .. ..: .. . . .. . i l
+_ i l
l Diffuslen coefficient'of hydrogen In' Iron elleys. Temperenne.'F 70 100 2tc de MM) 1.*00 2stX)
-8 / . i i i i / i 3
Liquid iron
*7 - d k,-
I
.g A A j j gg .
f
- i ,,
1 ,,, ,
,4.
i N i
, Austentic sesets -12 \
Ferrite 13 Leur purity O 20 70 100 200 400 700 1535 T-,s. c - - l~ l I
- E l
h 1 1 l e
.m .e . - - + - - . a _ -- - - ,,wu . , , _ . . . _ . . , , , _ _ _ , , , ,
x-. .. l u% e d&M= .: :ch...' . . , .. - i 4
.l .; 130 a
o120 g *\ Tensae Strength 11 0 N N IN j ' { iOO ' N
\ \'
54 90 -y.eid Strength --y
. > BO ,,
E TO g
* ' ' '*' ~
l E 60 - 70 0 - - 1- F / M' 3 m 50 7 60 g
'.iongoi.on t . 3- ,30 g
t '
,, 4 0 -
20% 503
?, ! A 30 IOw[ 40 E .i 20 0 *# 30 -
g AS itSO 1250 1350
.; weided Stress Relieving Treotment 'F , Relationship between mechanical properties and stress relieving treatment. Room temperature mechanicalproperties of 3 Cr-% Mo (0.03 C max) weld ; metal as affected by various stren relieving heat treat-ments.
l t ' . _ t j 4 L' i L I
, _ _ _ _ . - . . , _ --~~_-
7 ;~~-.. . - . .
. ...a:L3.l u>.'GDR.:aa1.;1:ll. a .:. . ... _ . = . - -- -
l ( 4
. ASME i
SECTION III - SUBSECTION NB 4620 . L'i Time and Temperature per Table NB 4622.1 Rate of Heating and Cooling maximum 1 U 400 F/Hr./ Thickness 0
- over 4" - 100 F/Hr. Maximum f
Temperature Differential during Heating and Cooling * - 1 1 Furnace: 250 F Maximum'in any 15 Ft.
~{ Local: " ... to avoid hamful t'hemal gradients".
i Furnaces to be temperature surveyed and calibrated or by the
' ql use of Attached Thermocouples i - Local Heating to be circumferential Band IT on each side of Weld.
t e 8 &* 4 l
- . k
..ul;d diiUIE a52,.4:duli.u .acc. __ , , , ,_ _ . , _ ,_ ,_, , __
a +' .'
, t Telde NS-4622.1 1 SECTION III. DIVISION I - SUBSECTION NB 1983 Edition i TABLE N8-4622.1-1 MANDATORY REQUIREMENTS FOR POSTWELD HEAT TREATMENT OF WELDS' Minimum Holding Time at Temperature , p.No. Holdmg for Weld Thickness (Nominal)
' Temperature i (QW.420 i Sect. lx) Range'P % in. or less Over % in. to 2 in. Over 2 in. to 5 in. Over 5 in. 2 hr plus 2 hr plus 15 min each 15 min each 1, 3 1100-1250 30 min 1 hr;in, additionaf additional inch over inch over ( 2 in. 2 in. . . }i S k p'n '{g 4 1 hr 1in. I hr in, 15 min each additional
. 4 1100-1250 30 min inch over I-j 5 in.
j iq 1' S N ple i r 5, 6
- 15 mm each encept P-No. 6 Gr. 4 1250-1400 30 mm I hr 'in. I hr ivi. additiorGI _ _
{, inch over
-1 6, Gr. 4 1100-1150 5 in.
~j . 5 he plus 15 min ta:N 7 1300-1400 33 rmn I hr lin. I he m a::! t':ma' inch ove-
- )I 4
5 m.
.j i 94, Gr.1 1100-1250 5 he plus 30 min 1 hr/in. I he i m. 15 min ea:h 'i 95, Gr.1 . 1100-1175 additiona6 mch over S m.
t 10F, Gr. 6 1100-1250 5 he plus 30 men 1 hr/in. I hr / m. 15 min ea:h
] additional r 101,Gr.9 1300-1400 mCh over 5 in.
1 11 A, Gr. 4 1000-1050 30 min I helm. I hr! n. I r.r m.
,i P Nos. 8,34,42. 43,45 ! and hard surfacing on , .1 P.No. I base meta! c-whose reported PWHT neither required nor prohicited cartion content is I not more than 0.30%
- i. ~
NOTES: { [
' (1) Esemptions to the me* tory reewirements of tNs Table are defined in facie N S 4622.7.
s~ (2) A 1 temperatures are metal temperatures. i l l: [ i I l + . - . . . - . . . - _ _ ., ,_.
- - - - - . - - - - . - _ . _ . _ , . __ . , . . .~, _, , . . _ , _ . _ _ , _ _ , _ _ . , . , _ , , , , , , . , , . _ , , . _ _ , _ . _ _ , _ , ,
- a. _'.14a A,Os 4.md.m Ad1 42O,4.,. Ih i - LA,*1 m A A. $w.' _4 4 ,..%. ._ _ . w% ...u w
.t I 3 .i ( -
i
-i g 'b 'e ~
d i l Slow Down Heating Rate i 1 ' to allow
;j. , temperature to . 4 equalize i ,m ,i - . -
i 85 - i ' I f i ! 8 I i* l , - I I g I
-s ,
i t I
.I Faster Rate i Slower
, ..; Rate a 4 e me E g .. ,- Time I
. F = I r
t e
- I -
. , m e
i .
'I
(
. .ee e =w --s ' * * * * , ,, . , . . . . _ , , ..- - .
_ _ _ _ __ __ . _ . . _a____ __ _ _ _
;;. ~a.L e.. yL. : ;. .. n
- x. .a
.i , .. -. n i
t
!. I
- WELD JowT PREPARATION .f )
-l D~ l
- l4 5 l 4 2 I
@A N
'1
/ Ui - / Q 1
GROOVE WELD
'{!
i 1. ROOT OPENING (RO): The separation between the member to be joined at the 4 root of the joint. 1
- 2. ROOT FACE (RF): Groove feceindjacent to the root of the }oint.
, 3. GROOVE FACE: The surface of e enember included in the groove. ,
k 4. BEVEL ANGLE (A): The angle formed between the prepared surface of a member
-l and a plane perpendicular to the surface of the member. ' I
- 5. GROOVE ANGLE (A): The totalincluded engle of the groove between parte _
l to be joined by a groove wold. j
- 6. SIZE OF WELDIS): The joint penetration (depth of chamforing plus root penetration when specified).
< 7. PLATE THICKNESS (T)- Thickness of plate wolded.
1 (A I 4
- s
@V .
- i 1 j
FILLET WELD
- 1. THROAT OF A FfLLET WELD: The shortest distence from the root of the fillet weld to its face.
- 2. LEG OF A FILLET WELD: The distance from the root of the joirrt to the toe of the fillet weld.
- 3. ROOT OF WELD: Deepest point of useful penetration in a filiet weld.
- 4. TOE OF A WELD: The junction between the fece of a weld and the base metal. *~~
- 5. FACE OF WELD: The esposed surface of a_ weld on the side from which the welding was done.
- 6. DEPTH OF FUSION: The' distence that fusion entends into the base metal.
, 7. Sill OF WELD (S): Lag length of the fillet.
N #
+ re s e -ee - - - - ' " ' " " ' * * * * * *
- 1 . u.a -x::20.r. . w. . ~.
. . 2. : .; . 2.z~.. . a .. . : -~ ..
- 2. -
(- -- -
;~ Groove weld made j after welding other side Root of weld, g a \ , s .i i
I I (a) Backing Weld . i Groove weld made j before welding other side Face 1 '{( reinforcement j i D y t ( \ ,,
\ / \ /
Face \ reinforcement o l (b) Back weld
- Single V-groove weld with (a) backing weld '
l and(b) back weld.
. .t .
!I
- L - : x .. - . - . - --r._._-.. =.-=:=_. = _ - . _ _ - _ -
! l l1 ;f'-
t' . 9:.u~. kd ;gpi t: i b, Vyr .
. yr ;' .l. .- I ; it:
E.[6L r p. r
.!i-. j ! 8 ,
t +
?- / I. . ., . / _ .v ac oc
- _
- 9. o a
- .- O
. r O. _
8
. e.
2 .v ng 8e
-.=t
_ . 4 _ . g - n u: .. i n e p
/ [ t o . o o
r
/' c y , , d a . .n n
_ .. s. a
- c. .v e
s _. - . m i u
. ' . d a . r o
e v q o
. . - o, c o r
o
- . o o,
N - _ g e, l
] t g
n s
. a a s.n p e . v t
i . o
/ .o A o r - g e,
_ l
- g / n /
a l e v e
. B en e *4 o , # o 7'
_- t
/ =,'H; - , ,{ .e 1
l: l'!
..I .i o;eo a, ;1 !j;. . , .,i:ii ;l ', ;! :. .
~ ~ i. _ . _ -_. _ _ . . . . , 1.~.._ ___ .. _ . . .--- -.. . .- ---
7
~
D D ;
- t. .
-+- t.
(; Depth of fusion Fus6 ort face
- + = Depth of fusion s ,. , ,ti Fusion face \ / 'fI
\, / b r [ Depth of fusion /; , iJ \, [.
l - _v.. v e
\ T '
Arc wekl x Bond line (Fusion zone Indicated by shading) l! b Bond line - ii ii j.
-Depth of lusion .
Dond line
-"i 9m\
i - - i t > j i ' l ' !, Braicd or soldered joint e
/ Bond line Fusion face 1 Surfacing arc wcld , -Bond line l Bond line e i 1 1 s i D h of fusion ji , , i , ,
l Fusion face Wrnial pay depisis ; ltesistance spit wcld ' pp* -
-~ _
o d K=9=E:7 ] N.; j ny ,s li 7
) =_c z
(:
\' la. 3 i. .A_ __,- , \
Friction wcld Bond line Fl. ash or upset weld Bond une
- Fusion face, bond line, depth offusion and fusion zone.
l ,
. .. . i
< s .,, , , . .
_. ....t . Ria J.'s'2"e.; , . a. . , m3 . .u :. i . .. ' a .' .~w_2 , ._ . . . - - .
,,_ . % ~- - -- * .._. _ _ - .
r I , - s Leg i , , Actwas tercat aid $ste etteCtree throat .i
< b
- f. 'g % <6 I *
! Concavity s Ltg
- 8
; % ,,, 3 e %
s.----- i e .
/ - / ~j (a) 1 Theores. cal throat Convenety ---Leg ano sete .. t .o.,
A Ns 1 1 %g
' i s II .L e. .no ..,e Effectivein cat # ,l 'N
,. l 's p
- u. -- -
1 7ineo,et. ..to...t l' j (b) 4 sir. . 1 N %g
- o i -
z.....- n , F Size
=
(c) \'. G Fillet weld nomenclature: (a) concave fillet weld, < . (s . 4
, (b) convex fillet weld and (c) unequal leg fillet weld. .
e m
- - _ - __ , _ _ :- - .. - - ~ ~ ~ - I
_3 .
~
p . , .;-',, t
.c.u- -
- a. . c. L:2.WL. - ., . . a);. 4.1,--.. l .- .,2 a ;c _ . . . . . . . _ . .s -e .
't } .
s 1
.< = ,
a
' We
- l ,
;~ ~e -
[ _ ,_. , Q 'C Dead
)
Q g. .id ~ ~ 1; i 4 t i Calculation of dilution in weld bead from cross ~
- sectionalarea. Dilution = B/(A + B). ]6 .l I
i
* ~
l . . + 4 l fs o i
. . + . * * * - - . ** w o.eamgego, _- .
U .. .wh1 2 . SIS.. .. . .m ..*e=
.. .t ~ 4 . . . . . . . . . . . . . ' . . _ . . . . . _. *Ie. .d. _asI..
_ _ _ ..14 4 1 4
!(
i-4 1 1 l Joint penetration (effe~ctive throat) _ _7_ i 0 i 5 i a o l
=- 'u Joint penetration.
(eff.ective throat) . _ 1 - -
; s / a
( -
\
g /
/ \ / \ / / ; \
- . g /
i \
\ # \ f \ / -
1 r i \ / Joint penetration and effective throat in a~ ~ ~ ~ groove weld. . f b s i l .
,, '1.., '
m
,. .:=.a . . {; g. ,.: :a.wawa.- - - ~ .. .. .. . , ~- -j -
p #* ,, C
.I , .l' / .
i/
, fi '/,e , .1 , ' i -- i *)
N, f
-i -
- Root aurrace m
.t Root of wegg 1 - De of were J 4 )
Face reinforcem face or ,,qg . j Nk _ m3
' ) ,e,,, q 1 .j R ;., , - ~} - \s /
s ,j ', ',' i
' L . ..
wro s- - 4 k 4 **:$ N I f f A -- Fa l l 7 fg..g. l
~., l '
he l4 i 2 Toe of w ,gg i
\
i r L Face, root andtoe of weldin gr
.u andfaceandrootreinforcementinooveandfillet groove weldi. " ^ " ".. - t y '
- - ~"_ ,...
,\ ' \ ,____s.-~"^, -~ _,
g
~ ' - _ . - . . - - - - --.*gr'..
- 4
,ee
l- >-
.-. .sX a!CJ:%.s r u a u- - -- --s -- ~ ~ ~
i
)
1 (
~ .{ . .i gg.nz ,P, x-N .g 'gkh -
s n <. p,4 . j .
)
1 _ Heat-affected zone a fg Weld metal area
;, t i
Heat-affected zone and weld metal area in a groove weld. m.
'I .
s s ,,C ll i i
. ~ . . _ ~ - - . . . , , . . . . . , . . . _ . . . . , . . , _ , . . .
- . L , e;dih i:. 22 ::... ...w._.a. ..-v-. .- .. .. .
1
* ~ /C 't e , Tg ~
_ _ sty $ ' (SA) Single square groove utid (5B) Single bevel groove weld i
-6 "Y '. .i ,
f
' ./ '. ,!
nj -
~'
(SC-1) Single V groove weld ($C 2) Single-V groove weld (with backing)
;( - . f . 'f -
(SD) Single J groove weld (SE) Single U-groove weld
, s p@'
9 T. , g (5G) Single flare V. groove weld l (SF) Single flare bevel groove weld l i
- 1 1
s I t-- --_- -
_ . . . . a c. .w i.lS. u_: '. . . .2 .3.. u . .. . ...:..-=. . . . j ,
, //
t
~ @ l , yM -
l
-j .
(6A) Double. square. groove weld (6B) Double. bevel groove weld 4
% 9 ,
+
- s. :- ,
e
~ ~
l (6C) Double.V. groove weld (6D) Double.J. groove weld 3
!( '
. \ ,f 1
.\ ,.
(6E) Double.U groove weld l ' l l f l l l l . c (6G) Double.114re.V. grieve weld (6F) Double. flare hevel grimeve meld iD . 1
}
l -
,,--.-.__.-m._,, . - ,.w r --.*e --y+--+--w-*m----w--v---+- + v7----en-+-n--, e ----------w-----e y -- --r- -----er -r *1-4 - *-- --- - - ---m--v---- - - - -
- m m.ome . ..
e.,....=. __ = _ _
.m. - . =. . = .m .
I I
,1 . . /
s
' ^ .I ' .A. _A. ,
j \l
;j .- ( + .
l l .
- o. ..
1 - , 'j.
}. .t _ _ - - - - - - __
a, - t g-p 1 , / / u . . v^- -
\ .. .. / .
s i . . _
.r,_, . ,c l- /
Y ! .i _ -+. -
+ -
o . i
! N ,_, ,_ ' ,/ - / ,_, . - / ,_, . ,_
- , m / ... / .
- . \>
l
!, .\!J . .
{i f l, (c)
,(a) Complete fusion and (b) incomplete fusinn in common types of weldjoints. (c) Mc thru in a '
square buttjoint. - l
- l
, s p. . = . W eg e. --g_
g
--mi--=y,eog_
ms m m.29, e .
-- < - - - , , w -e--n+--. -, , - -.mw-, w- -,va.--,-,,.w,- - ,
-. : .. :.4_M.hig; ;. a .w =g g_ __ = ___. w.. __ _ __ ., __ _ - . . . 13 -
i Electrode- o>acc'm~ Or wcto / ,
- l
!i-Weld metal / ,
5 0 1,
~
p~
// -
- d. Axis..is of Hor.izontal Flat s I
1 n
?.% N-j .; . /. ~ /j N
l N Vertical TN Overhead ~ Groove welds - - <a.
'}
DIRECTION
? OF WELO -I 6 / \
1 . a ~ l _L, ...
- l. Flat
' '- Horizontal 's p - , x s qN- - s N .-
Down j Vertical i Up Overhead
]
Fillet welds ( . Usual welding positions for making groove
' ~
(- " welds (top ) andfillet welds (bottom _
). .
,I i i
- _ . - - -=:= 4. ;_ : - ;- . = = -_- :. _ _ _ _ _
- . %, l :. li .5ssiO. *! Ea. - *?' . 1. J > .4 . . . ' - - ~ ~ ~ ~ - - - - - .--........._.___-___-_--._ _ _ -- -- . . . ,, . / i-f' * * ~ ~ - - - . . . . .
1 A - TEST .05tTH)N 10 ' t &* l Ol)
- . -_ e _, . ,s.
i( l M . I M.' 15 Waec het (1tl*3 Depos,g
% ' moteteier near j_ ,l ll t ~
l V .
, l l t j P.e er tube vorment l I og not roisies 8WmG *-esne- ' We4 horisontal (115'k 4 /--d f J.
1S* 15* 15' iS' e e i
%-- h 4 ) ,,. % Q ,s -
1 3
- 1&*
6 SS* ,,,_ y l l J
- ( .
() J - a J _ l C - TEST POSITION SG ij % or auge hermontal fesa. (gis L Wee. het, w, % Restretson em0 . Test wes. (
,.s \ ', # d 5' 18' 45': S* t 'g% \~ }
h,3 i e 0-TEST POSITION 40 E-TEST POSmON 80R(T.N.or Y Cennections!
, ..o - <., , , , .n. e. ,e.e - .
ar
}( I Positions of test pipe or tubing for groove welds. .
I I I, I i
- _x. s.;ai;'jqfq..U,. .- . . ., , Jh:.;.; .7...._.,-. - g. ;,-3.; _ , _
i Root penetration- -Joint penetration l (effective throat) ,
}- -T*'
7 7 .
.., (17A 1)
Root penetration . Joint penetration (effective throat) I 1
- n .I '\ s j u /
l o \/ Y - l c p 1 l I .
~ ' ] (17A*23 Jo.nt waetrai.on 4 -[- for groove meio j l k i
- } Root penetration ,
Joint penetration l C' 7 for groove weld I I f - Root penetration ( 17 A-4 ) Joint penettation ' I i e (effective snroat), Effective tnroat. E. 4 e of point = E,+ E, i e I ., /
~ E, '.*
E, l
~
l Jomt peaetratron i.t,.ci... m,oaii 1
. Root penetration, joint penetration and effective .-
1 throatfor common types of weldjoints. 1 1 t
- - ~ ~ * ~ - ~ ~ - * ,-; *~ . - . 3yy- r--, . ~ ~ - -- ~
s-ur-r - ~ =?- ; ~ t ~ v~~ - ,.
..- - a.n . . . . . . . . . . . . .L . .._. _ . : . . _ . . . _ . . . . . .
i jjb I,(c IJ '_ i !lL l1i Illi
- j. 1 I [ t l' /6 l S. 1 if i i k
('(jjli ",j[jij
- 1 1 1 f3fjJ 111.l
' d!!}'.
j (' s l- W '(l '
~
ih !"{ j ( l 2 d I 1,!y I p'\ j j%.! M'i
'I l'i'
(. I s } f I ftho.14 I ' e.
- s 3 [ -]';pj v>
j 1 s v i h j' '\ i . i ff'[Ir\ ls 'ipli 3 I EN r 8 (( 4 I > < bl i - z x x2 n i e i usi ,i a[! 4
! l I ,f l fli l ql fil' L! N-s I! I s
[I! 1 I '$
!] < > >< n ((I I # 8 ] !
g)l!' pgg}.%~j .il < 1 =5
~
N ., Ij. j " j e 2 ey a !! o 4 :4jllll fa j j;If l
- i. I > Lli ! 11 a j
!- j s /
I u r,l 40 I , g
. , ) , a ..llt it'ar t: 0 i 1d 1 , ' i' s >'
I
;l}i 71!II j{ g Jill
- s'l.!!( '{ 11 il I,! ?
>'L 1
n\
\\i II i-l- = _
f =l= 1 1 g o
,1 s i lf 1
[: r).,q.y d T
,[ ,R p ! j
_7 ili 2 1, - s , ,- u i . < ,- g i ,
. .r .
u., 3 l(
)
- i i 'Y f l-l!! ll} ('
l m It' . d d
'n 1 i:l
! a M: ' Ijj p i
% l I l! ; ~.=sd s s i i yJ h
1 a
, "y " <a a i:
I it
!!j lI ,1 a h yl h i i ,! N n!r. !!! ,(9, Q l If npi v- >p, p, io: I '";,i 1 i s l
Q j , s >
} { 'ji n
2 3 d >a
- i i l
. J 1 1 o d 3 t . i 1 i' I I ' ' 1 '
513 ' \ l
~[ . {l II ! .
1 [
,a ' '
2jiji l l lIj I,g!ji l i}n, il c , l j5,1 - a p
>i o c
y> g
=
s l " c p !, ,6, ,
; e e
{ > i
- b!<
, s , ', , A ,, I 'h 'i j' i s 3 2 a n ( ll3 (\ .( l . l= n i ,,i 1
I;,1 l s i;pI ;p i,,o!.? u 1 a , E ll
.% 1 i 1M hik i 3j il[I 3 :!L k ;lf !! j
- a . ; .:2. J.,.._1h .
.~ .:. .n s.-- . .r.-_- _ - . . - :.- ~*~ '~^ '~ ' ~ ~
1 I
, [7 i
k . CERTIFICATION MANUAL FOR WELDING lNSPECTORS Groove 4 i Squae Scarf
- V 8evel U J I*'" I*'* -
0 V bevel _ _ . . . . _ _ _ _ _ _ _V_ _ _. __V_ _ __ _ __ _ _ __J _ _ _ . __T I__ _ _1/_ _ 1 1 l __ N_ _ h %
- i i
- Plug Spot Flenge Beck .
Filist or or Seem or Surfacing . slot propction backing Edge Corner j i l1 . A __g g _ _U__
; m __ .j 1
O _ _ m- m . _ l_ _ _ . _ L_ U_ __
- d. ,
9 ( _ _ 7__ _l l _a_ _ __ _ _ _ _ . _ _ i V
,{ 'Used for brazed joints only 'l : ) Basic weld symbols gg "8 Contour Weld Field ! all weld Melt thru or
- aroveul "' '
material l Flush Convas Concave
> I*I !j $/ f - -
n [g .
*F \ \ \
v 5 8 ( 4 - i
'/
- Insert M or MR and add note in tait 2
~
1 c Supplementary symbols . t
/
0 e h* ',w w M ' * .~ i' E * + 47 . .E ' + '
*h * ' " * " ' * * - " - ' " -*
1 , _ _ , . _ . . - - - - - .
-._.,---c, - - . - - - - - - , -- - - - - - - - . - - - - - , - - - - - - - "~ ---- -- - ' = = = ' ' - - ' ~ - - ~
,. ;.La . ...idhadd ' ; ..;,. i.u,'. ; ~.... J, .
(.
,- / ^
j q _._
/
1 . 1 , ,/,N f
- l DESIRED SECTION OR E L E VA TION (A) WELD END VIEW f
\/ .i . -
, .1 . ..
.. N/
y .(y '
,- _ f ,a ,- -1 a (.
i c _ ( .
! DESIRED S E CT ION OR WELD END VIEW ELEVATION (B) ! \/ / ^ -A N/ . v 3, s / _ / O j A /
1 n
- / _
DESIRED SECTION OR (C) WELD END VI E W E L E V AT ION 1 1 Application of V-groove weldmg symbolsfor 1 (a) arrow side, (b) other side and (c) both sides. . j . - . l r l t 1 \ _ .._=;..
==My+k%:&2&= ', ~ - . .1 = . . . . .
i ,' O 4 - D q 6 ry (3V~ i s ,
\ / ; g / p q .., *k , h', % f - ; / \
l l \
~ -
k ,0. M
<s* .i a / -
43 N
, a Nr a / , 9 / .t / s, N
I I \ s u a - < s-
.h .
O [ ysoy
- 4 i $\f ~ e 4
l
- 5w
~
D is-
- 7: -s \ l -
c
'k ' 'k k i
s_i
.)
DESIRED WELD { SYMBOL ,L l Designation ofgroove angle ofgroove welds. - p l \ L_. . _ 7.-= g- = ..,
- -; . _ _ : :_ : _ ._rz::::::1 ==.=__:
. ~ ..:..:.a. a >.:.=-... x:,. ... L .u , a . -. :.:.: .- - - : . . - ...- _ . . -- ~. .. . ..--... . - . . -
20 i
' /
1 N .
!(
_ + Mv h- k- l 9 i MLk 4 3 s P
-j - ,{ / \( *I. 4 i e s .!. ,r' Y/ ~
p .- - ;. . .>-.-. 7\\\ '
+ r .k -
'- ,- g
- .L \*/ /
1(
-( -.2 % / / / /\ \ ]; Y )( F y 4-V l .
l: ! i+ i 2 /
/I\\
4 1 m
* %/ 4 f. -
t
&1 4 yy , - - --t--o - / N -
h z ,
,y M y I s
( DESIRED WELD SYMBOL
. Designation ofroot opening ofgroove welds. **gh- * ' ~ - - **' -" %www = -n.=ww-. --
.: . 2 5 b,b MU.3v K ..'.u..aaa. , a : . _ . - . . . - . . - . . - . ~ . ,.~..
_ _ . . . . . . . - - - . . . . - . . - . - - - - l
, i 2/ . ; (1/21 1/2 g g ,
t "i (. ' L,,, l
,, - Desired weld Symbol l
d (1/4) [ ~
-7/8 (7/8)\ '
c, i 2,i
' II 1//
8 t h 11/8 i!'p I I , i NI Desired weld L 1/4 Symbol
) (1/2) N /
_ ;-1n <1aVN \ , 4 f t. n ~ m _
-f IC} Desired weld <1/2 ~
Symth - - - 1 V cm / /N
- \ ((- i/
t .
-4 I /I\ )4 t 'f'.
L3/4
} } .
to) o u ,,d d - !! /\ 4 \/ 5 4 I i , (E) Daid "d -
-- symeol (3/4) -l s ; i 1 ' =-
i [ -
} } '( 'l 3/4 (F) onred w sym w i.I f
i s Examples of typical groove welds showing the corresponding symbols and demonsions
,L 9 a4 i
h t i
~~._. C~~~'..,. . - _ _ , _ , . . ..I_..__,__. _ , . , , , , , , _ -
.;.a-.l2 .u:. J D u 'L. .c; w ::. .. . w.- , , _ _ __ ~) ') , ~
j 1[M \* r f 4 g6/ g ,# b j m q g g
. i ,
(A) ,' Effective throat 6 / Effective throat _ hh,b
,7 i / f
- J 9L h k yhm k 9 g j o / .
^; i l\
, ft ~
l 7 MecWe Woat
.j t
(B) f" 3,
- 16 /
Effective throat
, u
[ pp O \ Note Y 7 verlap i
, a \ 11 g
(C) E6 3 " {7 7 Effective throat 5
- -- Effective throat . _
p
" t / / X i
- 4 -34 7 4 + 4]IlU
'i Effective 5_ d O/ Note _l i throat 32 overlap 4 (D) Desired weld Symbol { Designation of size of groove welds with specVied root penetration; (a and b)partialpenetration and . l l
- (c and d) completepenetration.
k
- . ----..--_==-u__. _
- . .Y$lubi.' . s i-.s:..a,-. au. z. .. - . ' ...--us.h .. ..
j - -- - ..,. . . - . . . . . - . . . . . . . . . . . . .
"7- ' WELD DEPO $1TED FLUSH /
wlTH B ASE WETAL A\ . J. \/ 5 V t j (a)t M
.: REINFORCEWENT REMOVED BY CHIPPING 7 - : >i lc :i y r ~
I i
.fn. } )\
(b) g
' 1 G
FINISHED TO $WOOTM CONVER j CONTOUR BY GRINDING - g
-t.
i G
.r 1 l -
t l:', ' t l I ,1 N
- 2. . m 1( :
I (c) GROOVE WELD WADE BEFORE A WELDING OTHER S K
\ ,/ y .
o (d) Z- B ACK WEl.0 GROOVE WELD WADE AFTER A WELDING OTHER 51 Y \/ [ .
,; 48AcxiNG wELo .j (e) .
p Application of welding synibols to groove welds' - l l using (a) arrow-side flush-contour symbol, (b) other- _ ( sideflush-contour symbol, (c) both-sides convex- contour ( and grind symbols, (d) back weld symbol and (e) backing V' weldsymbol. . l' ? l-! l1 1 -- - .
?, ti.':.;'t-$-$&Nb2bNN.:'L.:'~k: &.. . - :. __ .;;;L. ~._ _. .; a )' -- - - - . . . . - - - . . . - _ . __
0 _ i ( [i- f
/ iv I I 4 l 1 l j (A) ~ -f O - i ,
t\ l l l l n (8) --i
- f
- 1 1
i t8
/p / *\
k/ I I I l-1 (O)
* =
k
) 't ~ ~
g - (k X }} [ ORIENTATION II ( 1 (D) I 4 W I I Wi l l SHOWN ON DR AWIN G I m _ i ', (E) i , , 4
, 2 4' g ~6* +
V24 s - - O i .
, / -
j: (F) DESIRED WELD SYMBOL . j 1 Application of dimensions to fillet weld symbols. (a) size ofsinglefillet, (b) size of unequalleg single
^
fillet, (c) size of equal doublefillets, (d) size of unequal 3(- double fillets, (e) continuous fillet and (f). Length of . 1 fillet. - u_. _.. . __: = := -
,..s .w $ - ...d . 4h .. . .. .. u .._; .a__. < J.-..: a u-,
- t. .
g,,f
*V 'i s s I l .
i; I [ Desired weld 5/% Symbol j, ' (A) Size of single-fillet weld Y - Sn N
,,y. . /.'"/
s, I I
.] L j
Desired weld 1% syme
.i '
o (B) Size of equal double fillet welds l ' in ( l .'"I 1/< ? U2 ---- ' -
] .
N
} I I j
Desir d werd '% symbos . . - N (C) Size of unequal double-fillet welds-
. 1/4 -.
(1/4 m ta) Orientation jl E l l shown on drawing Desired weld ID Symbol
\ (D) Size of fi!!et weld having unequallegs V % I / I Desired weld j - syrnbar l; (E) Continuous fillet we'd hi aj / .-6 --* # / s i! Desired weld Symbol lI g- (F) Length of fillet weld -
,n { Examples of typical fillet welds showinD the corresponding symbols and dimensions t { i
-l 1 _. _. . _ _ _ _ . --~ ~ ,~___ _'__"~_.'~..~~~._-~~~_~_~.
. :~:::: ~~~ ~_
i ~~ ::' :2 :.22. *^'L.'22: ::~ _
- . . T . . .- . . ... ^~ ^~~: ~ " '^ ~
. 'i
{. j - _ .
~
JOINT "A" N
/
N f.
/ ~
1 I J O IN T "8"
.1 j -s o iN T A- . .
i \
/ / ,1 (<
f
\.. } 8 / l / /
t ,_ l 1 NN/ N / , f
.i soiNT s / - /
l ; i L DESIRED S E CTION OR ELEVATION
.: WELD END VIEW
- i Application of welding symbols for both-sides l} fillet welding (a) onejoint and (b) twojoints. '
i e a 1 1 1 7- _ -
, .sl ;GM s *A'js). sm. v~,.%s.s. .s a s. 4 M me . . .-.- ~ ..
148
, . 2) 1 Recommended Proportions of Grooves for Arc Welding (AWS)*
p -lj--A- - r-' c-Ey j r i ll 1
\p j
{'~ , , li '",@" - q r3- -, t ., . .. .. ,
-- -s .. m. , , %,...... s. . . . .~ , .. .m. , ; ,,,,, , , ,, , ,o _ - ; ,. ; An . . . 4 5 . . -
l w-( . ., i ., . . . . .;~ - m..
. r.v.o.. 2o* ...; ,,,,,,,,,,,,,;,,,,,,,,,,p,,, ..... i-u., .m. n. ... ...w ,, o .. . . . .. . .. . Square grooves Single-V grooves i
ms 1 i n ao. pa ae. 45**.im D l y
. An .. 55' m.e an . . . .. 45' w a .
i 1 Fv.o.. 25+m.n F.v.c.... 20' e - . '
.. F ... 4 2* m 9 \ . ,
ff '
, m., *'"'"8 \ / ! _;,, g P tion Ag. s, in, s. m. m I,3 . An . . 45* . .. j mn .. . y me I 3, - ==
5ac..ae
. an . . 35 ,n ... .. . i mm ' ' l *
(- F v.o.. 25* m* . .[ min . . . i men
.. a ,.m .n. ])..-',. f .n'..A m..- . .-..- '4,.3 i ... - '
f ,,.. . .a - i.44 '
= a' ** =
Single-bevel grooves
** 'ad = ~ *a 'd .c.w e,.m . ..,--.,w,.. ,,,,,,, ,,,,. ,,,,,,,,, ,,,,,
Single-J groove i Singte-U groove r.e.'cl . ' Y* e r.v'o[. F
'. N "a . . 3 2* m.n .
J 6C' 45* .a *-. . 3' 3"
" g \.
I, I J
/ ,
lv c.. , l ,
'e l / \
a ""- L ) 4 mo e- i .. . ,,,.. . , 3 . _ 4,, 3 e -{ _ _;,
..ww ,, o.n. . .. ... .u 6 ,,,.. -._ ! ' " ' ' A mu .
m." Double-V groove Double-bevel groove i i .comerm t.,n ;.a ---4 - """ d me.
%,.on Anp . -C* 20* Double-U groeve N ..adeg m b.,h .ide.
i an . .. . 35
- m.n r.v.o.. . 25* mm %.h g <
. Combination U and V groons ~ ' N_ __" .. . . ~ _ .e - ~.
I ?. \- j s. / [ q no i q . , - . !i , 'I \ 1 i \ h
! L.i .
I i i m. H .5== ~. -
=, , ]' dim-J[k,_hm..
s _J , . -_ ~ m.. e.. u . A m...- A m.-- . , e.n- ..i
,., . - ,.n, . . . . . *08'8" b"'8= Single-V groove s . . Single-V groove . . Squore groove .
Double-J groove (for reduced metal ceposit) (modified) (modified) Fig. 2. Jtecominended proportions of proos. for butt Minas made be sAdelded s.ctal.ere, pas matar-are, pas tungste,i-ere, Jtus-cored are and pas zeidi g (ssrept pressure pas speldant).Dt e sdons IAsi app 4 to pas metal-ere s 2 ding only are noted. S.cti
*Repr.sv.e 1ses, p.e dsJbytaneough p.rmi t.s f. romF.We.l.
SJB. r C ru ding Bandbook. tor. n jotat SLrta.n d lga. Eal.S.R. Chaps.rcta a 1A.s.e
- e. 3.on th le.an f .1. W.1 ding W.tding Soesety.
2.nabook. ! =.'a= .- . - - . - - -_ -_._Ji.
L a . : ,:2 n.t'A -u:s w L
.. =~.n = <_.-... _ . _. - - . . . . ..~ ,-
C'PM-r~'2:=m *".s -:a.%
-: :-:-: p: .---, _ ;.m- mn---- -- .-
Rzccntur.wrn Paoronnoxs or Gnoovrs ron Axc Wrtmisc (AWS) Y 149 J f.=-dec. em"
\
5 ( m I"E" , m
*R . k.. Backine ! I t l - g.,,,.' { ""P ' "s E*d1 .1 - , ,
i ..n .oe.e . s. . s. .. - , e- - l welded frse one mee I"3 1: All . . 45* min...i en.. .. i men Il ""' "** ' ~_ Y'
,' f - ws i man i e F.V.O.. 20* mm ...i ma.. . inn g ,,,4$ n. .. d F . .. 12* men ...y an.. .. imin F.v.0... 20' mm F. .. s 2* mm .] D elded free one or to*n s des Walded from one made taided from one or Doth sides Single-V grooves Single-U groove mu i Th.chaess 8.e.
im. .......o s.n sF .
"""""=.s % /s' ,"
i = i..... i -e-wewed free been e. des i
+ j i ( ;,, ,,,,
l
-{ mo. I 1 -
i , t kir j d ee { 35*
- l l- i .e,.h[m, m ; -,n . , .
Ati .. . 55' min *4 me. .it... 3 5* an i I 3s _. g e.. F.v.o .. 25' an f man m, F v.0.. 25' aa D,,,,,}}