ML20135H593

From kanterella
Jump to navigation Jump to search
Effluent & Waste Disposal Semiannual Rept,Jan-June 1985. Rev to Offsite Dose Calculation Manual Encl
ML20135H593
Person / Time
Site: Crane Constellation icon.png
Issue date: 06/30/1985
From:
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20135H590 List:
References
NUDOCS 8509240048
Download: ML20135H593 (75)


Text

utaa..a ~a

..e t t.

u a c un a, a u.s t a...u.. w n.

JANUARY 1, 1985 THROUGH JUNE 30, 1985 Supplcmantal Information Facility TMI-1 License DPR-50 1.

Regulatory Limits a.

Fission and activation gases:

b.

Iodines:

Ti1I Unit 1 Technical c.

Particulates, half-lives > 8 days:

Specifications, Appendix A d.

Liquid effluents:

2.

Maximum Permissible Concentrations Provide the MPCs used in determining allowable release rates or concentrations.

a.

Fissio., and activation gases:

b.

Iodines:

--10 CFR 20, Appendix B, Table II c.

Particulates, half-lives > 8 days:

d.

Liquid effluents:

3.

Average Energy Provide the average energy (E) of the radionuclide mixture in releases of fission and activation gases, if applicable.

ES=0.249 E6=0.514 4.

Measurements and 1.pproximations of Total Radioactivity Provide the methods used to measure or approximate the total radioactivity in effluents and the methods used to determine radionuclide compositica.

a.

Fission and activation gases: Gamma Spectroscopy, Liquid Scintillation b.

Iodines: Gamma Spectroscopy c.

Particulates: Gamma Spcctroscopy, Beta Spectroscopy, Gas Flow Proportional d.

Liquid effluents: Gamma Spectroscopy, Liquid Scintillation 5.

Batch Releases Provide the following information relating to batch releases of radioactive materials in liquid and gaseous effluents.

a.

Liquid Cuarter _

Oua r t e_r_

l.

Number of batch releases:

20 26

2. ' Total time period for batch releases: (min.)

5823 7688 3.

Maximum time period for a batch release. (=fn.)

407 657 4.

Average time period for batch releases: (min.)

291 236 5.

Minimum time period for a batch release: (min.)

135 80 6.

Average stream flow during periods of release of effluent into a flowing stream: (CFM) 6.54E6 5.04E6 b.

Gaseous 1.

Number of batch releases:

12 46 2.

Total time period fer batch releases: (min.)

18876 42172 3.

Maximum time period for a batch release: (min.)

10718 9558 4.

Average time period for batch releases: (min.)

1573 917 3.

Minimum time period for a batch release: (min.)

3 32 6.

Abnormal Releases 8509240048 850829 PDH ADOCK 05000289 a.

Liquid R

PDR l.

Number of releases ;

2.

Total activity releases:

N/A

'l/A i

b.

Gaseous 1.

Number of releases: 2.

Total activity released:

N/A N/A

TABLE 1A EFFLUENT AND WASTE DISPOSAL SD!IANNUAL REPORT (1985)

CASE 0US EFFLUENTS - SUID!ATION OF ALL RELEASES l

l Unit 4 Quarter Quarter

,Est.TotaM i

f i

ist 2nd

' Error.% I A. Fission & activation gases

1. Total release ci

)<1.00E-4, 1.24E1 2.5El

2. Average release rate for period DCi/sec

)

N/A 1.58E0 l3.Percentoftechnicalspecificationlimit

}

N/A j

B.

Iodines

1. Total iodine - 131 Ci

.! <1.00E-8

<1.00E-8 i

N/A

2. Average release rate for period f.pci/sec

)

N/A ff/A

3. Percent of technical specification limit l

l N/A N/A C.

Particulhtes i

1. Particulates with half-lives > 8 days Ci

} 4.11E-7 < <1.00E-4 2.5El

2. Average release rete for period pCi/sec I

5.28F-8 Pl/A l

3. Percent of technical spec'ification limit N/A 1 4. Gross alpha radioactivity

-l Ci 8.37E-6 )

N/A D.

Tritium

1. Total release l

Ci

! <1.00E-6, 4.71E-4 2.5El__;

i i 2. Average release rate for period

, LCi/sec N/A

} 5.99E-5 l l3.Percentoftechnicalspecificationlimit l

N/A 1

i Note: All less than (<) values are in pCi/cc.

  • % Tech ~ Spec limits:

Lis*ced on Dose Su==ary Table P

TABLE 1C EFFLUENT AND k'ASTE DISPOSAL SDilANNUAL REPORT (1985 )

GASEOUS EFFLUENTS - GROUND-LEVEL RELEASES Continuous Mode Batch Mode l

Unit J Quarter Quarter j Quarter Quarter

.li l

,I Nuclides Released kt 2nd i

ist 2nd 1.

Fission gases krypton-85 l Ci l<3.00E-6

<8.00E-6 l <8.00E-6 l1.24E1 I

krypton-85m f Ci l <5.00E-8

<5.00E-8 l <5.00E-8

<5.00E-8 krypton-87 l Ci l<8.00E-8

<8.00E-8

<8.00E-8 l<8.00E-8 I

krypton-88

! Ci

!<l.00E-7

<l.00E-7

<1.00E-7

' <l.00E-7 x non-133 l Ci l <8.00E-8

<8.00E-8 l<8.00E-8 l <8.00E-8 x:non-135 Ci l<5.00E-8

<5.00E-8

<5.00E-8

<5.00E-8 l

x non-135m

-Ci l <5.00E-7

<5.00E-7

<5.00E-7

<5.00E-7 l

l <3.00E-7

<3.00E-7

<3.00E-7

<3.00E-7 x*non-138 Ci Others (specify) l C1 Ci Ci unidentified

! Ci l

l Total for period l l l1.24E1 l

C1 2.

Iodines iodine-131 l Ci

!<l.00E-12 l<1.00E-12

<1.00E-8 l<1.00E-8 l

l iodine-133 l Ci

!<l.00E-10 l <1.00E-10 !<1.00E-8 l<1.00E-8 i

iodine-135 l Ci

!<1.00E-10

<1.00E-10 l <1.00E-8

!<1.00E-8 l

Total for period

! Ci l l l 3.

Particulates f

strontium-89

! Ci

! <l.00E-ll l <1.00E-11 !

l strontium-90

! Ci I 4.11E-7 l<1.00E-11 1 l

I cecium-134

! Ci

<1.00E-11 l <1.00E-ll !<1.00E-8 I<1.00E-8 I

cesium-137

! Ci i <1.00E-ll l <1.00E-ll !<1.00E-8 I<1.00E-8 bsrium '.anchanum-140 j

Ci j <l.00E-Il j<l.00E-11 !<l.00E-8 l<l.00E-8 l

Note:

All less chan values (<) are in LCi/cc.

TABLE 2A EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT (1985)

LIQUID EFFLUENTS-SU10!ATION OF ALL RELEASES Unit Quarter Quarter Est. Total 1st 2nd Error, %

A.

Fission and activation products 1.

Total release (not including tritium, gases, alpha)

C1 1.03E-3 2.51E-3 2.5El 2.

Average diluted concentration during period UCi/ml 1.38E-10 2.66E-10

. l3.

Percent of applicable limit J

B. Tritium 1.

Total release C1 2.53E-1 3.20E'-1 2.5El 2.

Average diluted. concentration pCi/mi during period 3.39E-8 3.39E-8 3.

Percent of applicable limit -

g C.

Dissolved and entrained gases 1.

Total release l

Ci l <l.00E-4 l <1.00E-4 l

2.5El l

li 2.

Average diluted concentration during period pCi/ml N/A N/A

p. Percent of applicable limit i

N/A i

N/A D.

Gross alpha radioactivity

f. Total Release Ci

! I I N/A l

%. Volume of waste released @rior to dilution) l liters l 5.63E6

.1 2.43E7 l

1.0E1 l

f. Volume of dilution water used during period. j litersd 7.46E9

! 9.44E9 1.0E1 j Note: 'All less than values.(<) are in pCi/ml.

  • % Tech. Spec. Limits:

Listed on Dose Summary Table.

TABLE 28 EFFLUENT AND WASTE DZSPOSAL SEMIANNUAL REPORT (1985 )

o LZQUID EFFLUENTS Continuous Mode Batch Mode Unit Quarter jQuarter Quarter Quarte r

,Nuclides Released 1st i

2nd 1st 2nd strontium-89 Ci

<5.00E-8

<5.00E-8

<5.00E-8

<5.00E-8 strontium-90 Ci l <5.00E-8 l<5.00E-8 1 1.16E-5 l 5.39E-5 l l cesium-134

<5.00E-7 l<5.00E-7 3.96E-5 l 1.02E-4 Ci cesium-137 Ci 9.69E-5 1.59E-4 7.53E-4 1.67E-3 iodine-131 l

Ci

. <1.00E-6

<1.00E-6 h1.00E-6

@l.00E-6 l cobalt-58 l<5.00F7

<5 00F 7

<5.00F 7 l<5.00F7 Ci cobalt-60 Ci

<5.00E-7

<5.00F-7 1.14E-4 2.17E-4 iron-59 Ci

<5.00E-7

<5.00E-7

<5.00E-7

' <5.00E-7 I zine-65 Ci

<5.00E-7 l<5.00E-7

<5.00F-7

!<5.00E-7 !

manganese-54 Ci

<5.00E-7 I<5.00E-7

'5.00F 7

<5.00F-7l chromium-51 Ci

{<5.00E-7

<5.00E-7

<5.00E-7

<5.00E-7 zirconium-niobium-95 l

C1

<5.00E-7

<5.00E-7

<5.00E-7 l<5.00E-7 molybdenum-99 l

Ci

<5.00E-7

<5.00E-7

<5.00E-7

<5.00E-7 technetium-99m I

Ci

<5.00E-7

<5.00E-7

<5.00E-7

, 5.00E-7 bariu=-lanthanum-140 l

Ci

<5.00E-7 l<5.00E-7

<5.00E-7

!<5.00E-7 cerium-141 l

Ci l<5.00E-7

!<5.00E-7

'5.00E-7

!<5.00E-7 I Other (specify) l l

I Iron-55 l

Ci l<1.00E-6

!<1.00E-6 I<1.00E-6 l1.98E-4I A ntimony-125 l

Ci l<5.00E-7 l<5.00E-7 l1.57E-5 l1.06E-4l l Phosphorus-32 I

Ci

!<l.00E-6 I<1.00E-6

'f<1. 00 E-6 !<1.00E-6' l

I I

i Total for period (above) i Ci

! 9.69E-5 1.59E-4

! 9.34E-4 2.35E-3 i xenon-133 Ci l<l.00E-4 I<1.00E-4

!<1.00E-4 kl.00E-4 i j<l.00E-4 j<1.00E-4 x1.00E-4 F1.00E-4' xenon-135 l

Ci

TABLE 3A EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT ( 1989 SOLID WASTE AND IRRADIATED FUEL SHIPMENTS A.

Solid waste shipped off-site for burial or disposal (not irradiated fuel)

UNIT I PER RRbR

1. Type of waste a.

Spent resins, filter sludges, m3 43.32 evaporator bottoms, etc.

C1 15.23 5%

b.

Dry' compressible waste, contaisinated

.m3 77.19 equipment, etc.

Ci 0.1621 5%

3 c.

Irradiated components, control rods, m

etc.

Ci N/A N/A m

178.96 d.

Other (describe)

Filter Cake Ci 0.1609 5%

2.

Estimate of major nuclide composition (by type of waste) a.

Cs-137 47.78 N1-63 18.39 H-3 16.92 Cs-134 12.67 b.

CS-13/

55.78 Ni-63 19.035 Cs-134 6.029 Sr-90 1.128 Co-60 14.56 c.

N/A t

I d.

Ni-63 48.54 i

C-14 25.77 H-3 14.03 Tc-99 3.733 t

3.

Solid Waste Disposition j

i Number of Shipments Mode of Transportation t

Destination a.

3 Shipments Tractor - Cask 14/190m

! Barnwell. South Carolina a.

3 Shipments Tractor - Flatbed

! Hanford. Washinaton b.

4 Shipments Tractor - Closed Van i Hanford. Washinaton b.

4 Shipments Tractor - Flatbed i Hanford, Washington d.

10 Sh1pments Tractor - Flatbed Hanford, Washington B.

Irradiated Fuel Shipments (Disposition) i e

6 Number of Shipments-l Mode of Transportation l

Destination j

F N/A i

i i

I

  • Shipped in 9 Steel Liners at 170 Cubic Feet Each.
    • Shipped in 22 Steel Boxes at 98 Cubic Feet Each & 76 Steel Drums at 7.5 Cubic Feet Each.

$** Shipped in 16 Steel Boxes at 98 Cubic Feet Each & 108 Steel Boxes at 44 Cubic Feet Each.

TABLE 1 UNIT I Quarter Dose Report

SUMMARY

OF MAXIMUM INDIVIDUAL DOSES FOR UNIT I FROM -

January 1, 1985 through March 31, 1985 1

_==

===--- = --

Estimated Location

% of Applicable Dose Age Dist Dir Applicable 10CFR50 App. 1 Effluent Organ (mrem)

Group (m)

(toward)

Limit Limits (mrem)

Quarterly Annual Quarterly Annual i

1) Liquid Total Body 1.79E-2 Adult Receptor 1 1.2 6.0E-1 1.5 3.0
2) Liquid Liver 2.70E-2 Teen Receptor 1 5.6E-1 2.8E-1 5.0 10.0

=

-__=.

l

3) Noble Gas Air Dose 0

5.0 10.0 (gamma-mrad)

'4) Noble Cas

' Air Dose 0

10,0 20.0 (beta-mrad)

5) Noble Gas Total Body 0

5.0

5) Noble Cas Skin 0

15.0

= -_

=

7) Iodine &

Bone 8.90E-7 Teen 2800 N

1.2E-5 5.9E-6 7,5 15,0 Particulates

_ _ _ -.---------.=--- _.

SUMMARY

OF MAXIMUM POPULATION DOSES FOR UNIT 1 FROM January 1, 1985 through March 31. 1985

--=

Estimated Applicable Population Dose Effluent Organ (person-re i

8) Liquid Total Body 6.5E-3
9) Liquid Bone 1.lE-2
10) Gaseous Total Body 8.9E-7
11) Caseous Bone 1.4E-5

INTERPRETATION OF DOSE

SUMMARY

TABLE The Dose Summary Table (Table 1) presents the maximum hypothetical doses to an individual and the general population resulting from the release of gaseous and liquid effluents from TMI-1 during the first quarter reporting period of 1985.

A.

Liquid (Individual)

The first two lines of Table 1 present the maximum hypothetical dose to an individual. Presented are the whole body and critical organ doses.

Calculations are performed on the four age groups and eight organs recommended in Regulatory Guide 1.109. The pathways considered for TMI are drinking water, consumption of fish, and standing on the shoreline influenced by TMI effluents. The latter two pathways are considered to be the primary recreational activities associated with the Susquehanna Ri' er in the vicinity v

of TMI.. The " receptor" would be that individual who consumes water from the Susquehanna River and fish residing in the plant discharge, while occupying an area of shoreline influenced by the plant discharge.

After calculating the doses to all age groups for all eight organs resulting from the three pathways described above, the Dose Summary Table presents the maximum whole body dose and affected age group along with the organ and associated age group that received the largest dose.

For the first quarter of 1985 the calculated maximum whole body dose received by anyone would have been 1.79E-2 mrem to an adult. Similarly, the maximum organ dose would have been 2.79E-2 mrem to the liver of a teen.

B.

Gaseous (Individual)

There are seven major pathways considered in the dose calculations for gaseous effluents. These are:

(1) plume, (2) inhalation, consumption of (3) cow milk, (4) goat milk, (5) vegetables, (6) meat, and (7) standing on contaminated ground.

Lines 3 and 4 present the maximum plume exposure at or beyond the site i

boundary. The notation of " air dose" is interpreted to mean that these doses are not to an individual, but are considered to be the maximum dose that would have occurred at or beyond the site boundary. The Dose Summary Table presents the distance in meters to the location in the affected se: tor (compass point) where the theoretical maximum plume cmosure occurred.

It should be noted that real-time meteorology was used in al. dose calculations for gaseous effluents.

With respect to the gaseous releases for the first quarter of 1985, the plume exposure at or beyond the site boundary would have been 0 mrad and 0 mead, gamma and beta dose respectively.

f

.n.,

w

.n-w

Lines 5 and 6 present the largest calculated dose to a receptor (individual) in the maximally affected sector (s). The location of the receptor is described by both distance (meters) and direction from the site.

Plume exposures to an individual, regardless of age, from gaseous effluents during the first quarter were 0 mrem and 0 mrem, whole body and skin, respectively.

The Iodines and Particulates section described in line 7 represents the maximum exposed organ' due to iodine and particulates. This does not include the whole body plume exposure which was separated out by line 5.

The doses presented in this section agsin reflect the maximum exposed organ for the appropriate age group.

The first quarter exposure due to the iodines and particulates would have resulted in a maximum dose of 8.90E-7 mrem to the bone of a teen residing 2800 meters from the site in the North sector. No other organ of any age group would have received a greater dose.

C.

Liquid and Gaseous (Population)

Lines 8 - 11 present the person-rem doses resulting from the liquid and gaseous effluents. These doses are summed over all pathways and the affected populations. Liquid person-rem is based upon the population encompassed within the region from the TMI outfall extending down to the Chesapeake Bay. The person-rem for gaseous effluents are based upon the 1980 population projections of the FSAR and consider the population out to a distance of 50 miles around TMI. Population doses are summed over all distances and sectors to give an aggregate dose.

Based upon the calculations performed for.the first quarter, liquid effluents resulted in a whole body population dose of 6.5E-3 person-rem with a maximum ^ critical organ population dose to the bone of 1.1E-2 person-rem.

Gaseous effluents resulted in a whole body population dose of 8.9E-7 person-rem with a maximum critical organ population dose to the bone of 1.4E-5 person-rem.

TABLE 2 UNIT 1 Quarter Dose Report SUtttARY OF MAXIMUM INDIVIDUAL DOSES FOR UNIT I FROM April 1, 1985 through June 30, 1985

= = - - - -

___-==

' Estimated-Location

% of Applicable Dose Age Dist Dir Applicable 10CFR50 App. I Effluent Organ -

(arem)

Croup (m)

(toward)

Limit Limits (arem)

Quarterly Annual Quarterly Annual

1) Liquid Total Body 3.19E-2 Adult Receptor 1 2.lE0 1.lE0 1.5 3.0

' 2) Liquid Liver 4.93E-2 Teen Receptor 1 9.9E-1 4.9E-1 5.0 10.0

==

- _ = = _.

=

2413 NNE 1.1E-4 5.5E-5 5.0 10.0

3) N:ble Gas Air Dose 5.48E-6 (gamma-mrad) 2413 NNE 6.2E-3 3.lE-3 10,0 20.0

') Noble Gas Air Dose 6.21E-4

+

(beta-mrad) 5,0 5.7E-5

5) Noble Cas Total Body 2.83E-6 All 3000 NNE 15.0
5) Noble Gas Skin 3.40E-4 All 3000 NNE 2.3E-3

_ _ _ _ _ _ _ = - - - -

, 7) Iodine &

Total Body 7.32E-8 Child 3000 NNE 9.8 E-7 4.9E-7 7.5 15.0 j

Particulates I

~2::

2___

SUMMARY

OF MAXIMUM POPULATION DOSES FOR UNIT I FROM April 1, 1985 through June 30,-1965

- - - - - - - - = =

Estimated Applicable Population Dose Effluent Organ (person-rea)

8) Liquid Total Body 1.3E-2
9) Liquid Bone 3.2E-2
10) Caseous Total Body 5.4E-5

~

11) Caseous Skin 8.4E-3 l

i INTERPRETATION OF DOSE SUPMARY TABLE The Dose Summary Table (Table 2) presents the maximum hypothetical doses to an individual and the general population resulting from the release of gaseous and liquid effluents from TMI-1 during the second quarter reporting period of 1985.

4 A.

Liquid (Individual)

The first two lines of Table 1 present the maximum hypothetical dose to an individual. Presented are the whole body and critical organ doses.

Calculations are performed on the four age groups and eight organs recommended in Regulatory Guide 1.109. The pathways considered for TMI are drinking water, consumption of fish, and standing on the shoreline influenced by TMI effluents. The latter two pathways are considered to be the primary l'

recreational activities associated with the Susquehanna River in the vicinity of TMI. The " receptor" would be that individual who consumes water from the Susquehanna River and fish residing in the plant discharge, while occupying an area of shoreline influenced by the plant discharge.

After calculating the doses to all age groups for all eight organs resulting from the three pathways described above, the Dose Summary Table presents the maximum whole body dose and affected age group along with the organ and associated age group that received the largest dose.

For the second quarter of 1985 the calculated maximum whole body dose received by anyone would have been 3.19E-2 mrem to an adult. Similarly, the maximum organ dose would have been 4.93E-2 mrem to the liver of a teen.

{

B.

Gaseous (Individual) j There are seven major pathways considered in the dose calculations for gaseous effluents. These are:

(1) plume, (2) inhalation, consumption of (3) cow milk, (4) goat milk, (5) vegetables, (6) meat, and (7) standing on contaminated I

ground.

Lines 3 and 4 present the maximum plume exposure at or beyond the site boundary. The notation of " air dose" is interpreted to mean that these doses are not to an individual, but are considered to be the maximum dose that would have occurred at or beyond the site boundary. The Dose Summary Table presents i

the distance in meters to the location in the affected sector (compass point) 1

. here the theoretical maximum plume exposure occurred.

It should be noted that.

w l

real-time meteorology was used in all dose calculations.for gaseous effluents.

c i

With respect to the gaseous releases for the second quarter of 1985, the maximum gamma " air dose" at or beyond the site boundary would have been 5.48E ;

mrad'in the NNE sector at a distance of 2413 meters. The maximum beta " air

~

dose" was 6.21E-4 mrad in the NNE sector at a distance of 2413 meters, i

0001R 1-

. Lines 5 and 6 present the largest calculated dose to a receptor (individual) in the maximally affected sector (s). The location of the receptor is described by both distance (meters) and direction from the site.

Plume exposures to an individual, regardless of age, from gaseous effluents during the first quarter were 2.83E-6 mrem and 3.40E-4 mrem, whole body and skin, respectively.

The Iodines and Particulates section described in line 7 represents the maximun exposed organ due to iodine and particulates. This does not include the whole body plume exposure which was separated out by line 5.

The doses presented in this section again reflect the maximum exposed organ for the appropriate age group.

The second quarter exposure due to the icdines and particulates would have resulted in a maximum dose of 7.32E-8 mrem to the total body of a child residing 3000 meters from the site in the NNE sector.

No other organ of any age group would have received a greater dose.

C.

Liquid and Gaseous (Population)

Lines 8 - 11 present the person-rem doses resulting from the liquid and gaseous effluents. These doses are summed over all pathways and the affected populations. Liquid person-rem is based upon the population encompassed within the region from the TMI outfall extending down to the Chesapeake Bay. The person-rem for gaseous effluents are based upon the 1980 population projections of the FSAR and consider the population out to a distance of 50 miles around TMI. Population doses are summed over all distances and sectors to give an aggregate dose.

Based upon the calculations performed for the second quarter, liquid effluents resulted in a whole body population dose of 1.3E-2 person-rem with a maximum critical organ population dose to the bone of 3.2E-2 person-rem.

Gaseous effluents resulted in a whole body population dose of 5.4E-5 person-rem with a maximum critical organ population dose to the Skin of 8.4E-3 person-rem.

1985 Unit I lst Quarter Joint Frequency Tables SifE. TMSEC MILE 85L9.

LSel f. LPelf I se/e9/SS 30 et SITE. TeenEE plLE ISLS.

pes t, umg7 I se/89/GS 59.88 HOURE AT E ACH Wiht 5*EES Apsa DIPEC1800e HOWS $ A1 EAC,4 Wiset EPEED Ah5 DlWECTIOt6 PERJ0G Cf #ECOAD =

85810181-99955824 PERIOD OF REC 080 =

86018501-96455124 STASILITV Ct. A55.

A ST/BZ 5t aalt liv CL ASS.

9 ST/DZ E.L.E V A13 0#e -...............EED.5PleSA SP S

.............IREC18 0.pe. S i l M.. A...L AP5E. 37 t SSA EL Ev8180as -...............S. PEE.D. 5P I SSA

.....................i.f08A.....L. AP5E. 37 tSSA D8pECTf00eiD WIhD SPEEDef*s48 te lhD Wfhe SPEESIMPHI wthe

.O t#EC11088

.5 4-7 l-S-12 15..88 10-24 2.4 TOTAL DIRECis04

..5 4-7 e.t2. 15.te.18 24

  • 24 TOTAL t-to 5

5 4

5 S

IS h

8 8

9 9

8 8

3 DodE S

I O

O e

e I

.NeeE S

S S

S S

S S

het S

e S

8 8

9 9

NE 9

I O

9 8

8 I

E. fee 8

8 8

8 8

e a

EJet S

S S

S S

S I

E 2

i S

S S

S 5

E I

l 8

9 0

8 3

ESE 2

4 2

S S

e e

E5E 5

5 8

0 0

8 E

SE 3

4 5

1 8

8 Is SE S

I S

S S

S I

SSE 4

2 2

S S

S e

55L 8

I 8

8 8

8 3

5 4

3 7

8 8

e 34 5

5 0

4 S

S S

7 55W I

4 35 2

8 8

28 55W 3

e S

8 8

8 2

SW 8

9 9

5 8

8 25 SW 8

s 4

S S

S IS WSW 8

3 5

5 S

S si wSW 9

2 2

2 S

S S

w 4

4 12 5

8 a

27 w

?

6 7

9 4

8 25 W8eW I

4 16 5

2 2

53 wesh 2

1 8

9 0

8 29 NW l

ll 18 le i

8 55 Nw I

S 9

12 S

2 29 888W 8

86 14 32 e

heek i

4 2

S I

S II

.......................................................46 T

2tt ES 94 47 s

..O'.AL..........................................2 5

.......__2SS 10 Tat 5

........................ 25 58 57 le 5

854 PE9'ODS C# C AL n f **00#51 2

PERIODS Of CAL 98HOLR$8-2 VA4 f acte DIRC0110N 12 vari ASiE DIREC' LOD 6 3

H0045 OF nl551ac catA 56 N0095 0F NISSING CATAi SS s

E I T E. To-4EE plLE 15L 3.

useJT. tAf f I S!1E. TeetEE MILE 15L3-LA!T. Uself a 50/80/95 89.99 3e/38/89 89 88 H3ults A1 EACM Wissa SPEE3 Apeg BiltEttlase pe0URS AT EAC*4 WI'eD SPEEC A#e9 DIftEC IOPe PERIOS Cr PECO80 =

09088 04-00855124 PERIOD OF RELOsta =

86818338-05855124 STA8fL UT CLA55.

O et/t2 51At:L il y CL ASS i C

DT/B2 EL E V AIIO8e.

SPEED.5PISSA

.......E n= essa


----- --, ; ;;a f SEC180se. 31100A-----------------------SA tA 5 LAPEE.311S EtE.A1:0h................SPEEc.5PiaSA s m Cv

....................i o s n =. A

En;nea W ahD SPEEo'n *>

a:41%

.5 42

..i2

5.... 24

,,4

,0,At D r.Ecu 0.e

.5 47

.. 2.i5... 24 S..

24 20iat "e------

i S

S Ss 8

  • =eE T2 as S

S S

e 2,

,,e S,

aE n

e 8

8 9

e 28 S.

S.

2 tac n

set

.e ii S

i 9

22 t,,E 2

t i4 2

2 i

i 44 E

S 2

ESE e

2n sa 2

8 e

4s ESE 2,

S,.

O I

S 5

SE 7

Pi 7

i e

S-55 SE o

i e

S 9

2 SSE 4

83 er S

9 e

si 55t 5

3 2e

S 5

8 e

37

,8 2,

,8

.e

,.e

.a 2

5 5

55W 2

i7 s

2 8

9 27 5 5,,

SW e

5 es i

9 9

24

,5,0,,

e S

8 5W 5

n i.

2 2

8 2

5 e

4.2 5

W S

5 5

iS ss s3 7

8 O

s 6

5 7

I I

14 WreW 4

9 54 SS 30 12 337 g,.w e

a 5

6 3

14 W

4 25 54 55 25 6

827 8

i

,ew 8,

,i 2,

n, 2,2

.'..........................._. 5

  • W 2

24 2

e i

S s2 S

....g..._g..........g.....

.'O'AL_ _ _.. 5 24s 2sS

e
  • E,8,1,0,,25 or,, At n e.eotpr$ 3

_yr 7s_ _37

?

2 FERICD5 OF C at mh04 95 8 2

bopf ABL E DI A~ OllCN S

MOU#5 C' pl558% patA--

SE HOURS OF f1355.AC DaiA 56

1985 Unit 1 Ist Quarter Joint Frequency Tables ElfE. TseEE #5 f L E 15L s.

uniti uself I SS/SSfSo SS. S SITE. feSiEE fille 15Ls.

uself uself I SSiSS/Ss 80.18 woup5 A' EACAs vlMc $ PEES Ases sipECT:0N e.0unt AT EACH WINS EMES mass alwCilose PE*los OF mEcces.

Ose:S 8:.Se#55324 PEnfos OF mECons.

See SiSi-SSS55:24 51ASILliv CLASE.

E Sv t?

SiASILlw CLASS, F

STpDZ e

EL E w A T IO.N...............SPEE D 5.P I SSA

.........i pEC T J 0es. s.i.s SSA.....L. AP5E. S? g g8..A S

ELEva*10.Ns.............. $. 8E.E.S. 5P I SSA..

.........S..I'IE.C18 0h : 3 81 S..SA..... 5E.311SSA LAP Wik0 58EES'f4Peet WIhD SPEESIMee' wika blNS Sip

--.tCi t one 35 4-7 S-12 15..18... 24 24 10.'AL

.Si pEC.18 0se 18-

..5 47 S-12 55-18 88-24

  • 24 101AL 3-8e 7

8 II O

8 8

2s N

d 5

S S

S S

7 88'E 5

7 I

S S

S 35 Ned 2

3 S

S S

S 2

NE 6

5 S

S S

S gl h[

l S

S S

S S

I esc 5

5 3

S S

S g

ENE 7

8 8

8 8

8 7

E S

s e

I 2

8 IS E

9 9

8 8

9 9

IS ESE S

12 e

2 8

8 25 ESC S

I S

S S

S IS SE 4

17 8

8 8

8 21 SE 82 i

e S

8 9

14 SSE S

S 2

S S

S SSE 5

8 8

8 8

8 t

5 3

le 7

t S

8 25 5

8 2

S S

S S

tl SSW 12 IS 6

8 3S SSW 4

5 0

S S

S S

58 7

18 12 8

8 8

57 SW 7

4 e

S 8

9 12 W5W 4

28 14 I

8 9

og b5w 2

8 2

S S

S 12 W

8 28 55 et i

9 37 h

2 5

8 8

8 8

5 WNW 2

12 16 IS 2

3 42 WNW 5

8 8

8 8

3 5

Nb 4

15 29 8

7 5

55 kW 4

S 2

8 8

e is 8*W 2

6 h **

4 6

8 8

8 12

............................... 2 2

i e

it

..'............................. 2 101AL 77 Ig5 828 58 15 9

4 1

......................................,58

. 37AL SS 45 S

S S

S 158 PERIODS O' CA.fvHoun5:

2 PE# lots OF Eat.M8H3b*53.

2 waal ASLE DIPE Ilope 22 vamI AstE 3ss,LL Ices 12 NOU#5 0F *el55 f teC 3A1 A.

SG eOURS OF f9155thG DATA.

56 Site. THpEE alLE ISLB.

Uself. Uhlf I 88/88/89 SG.fi 581E, T,eEE ttitE ISLS UN8*. uM11 l 88/98/99 88.95 1

i hours AT EAC.4 Wiset SPEED AND SipEC180h PEPLOS OF RECOR3 =

85818888-88835824 eCup5 AT EACas WipsS SPEED Aass SIDECTIose STAstLit? CLASS:

C ST/DZ l'Eplot or DECO *D =

88818ses-88835424 E L E v A1 !.ON SPEEC,5PISSA DipECT

............................ ION:SiteSA L AP5E 9115SA SS ASIL IT Y CLASS-ALL 31/32 EL E.V A1 :Ose.

SPEE9 SPI NA SilBEC11(Ds.8 8 8 SSA LAP 5E.3TISSA WI**D SPEEstrupsti Wiht WINS SPEES874Ptol SlpEC1 15 4-7 S-12 IS-IS 19-24

  • 24 10fAL vlND

......80N DipEE180ee I-5 4-7 S-12 IS-IS IS-24

  • 24 101AL N

2 2

4 S

S S

4 8 esse 2

S S

S S

S 2

N SG 54 IS S

S S

98 8E S

2 S

S S

S 2

neset 29 2S I

S S

S 47 EME 4

2 S

S S

S s

NL IS 97 8

8 9

9 3E E

6 I

S S

S S

7 EseE 26 IS 4

8 I

S 48 ESE S

2 8

8 8

8 le E

45 22 IS 5

5 I

SS S

S S

S S

ESE 48 45 IS S

S S

ISS SE S

55E is S

S S

S S

16 SE 54 46 82 2

8 8

34 5

65 7

8 8

S S

22 SSE 28 28 15 8

8 8

74 55b 7

s S

8 8

9 15 5

57 48 SS 4

S S

888 SW 5

3 S

S S

S S

55v 29 95 27 5

0 8

115 WSW 7

2 1

8 8

8 le Se, 26 45 45 7

8 8

IIS U

G S

S S

S 12 v5w IF 48 38 8

2 S

114 UHW 5

S S

S S

s v

se 54 le2 SE I4 le 284 NW 6

5 3

S S

S g

wNw 28 28 87 SS 54 le 562 8eew 4

4 S

S S

S S

Nw 28 GS 77 77 46 8

288 e paw el 57 49 58 Il l

ISS I

s total 48 2

S S

S 145

...................'82

,.n AL 42 627 558 552 Ili 54 2 84 FERIOD5 Cr catetsHOJISI 2

W A881 A9t E g g met t lose IS pee 1095 CT C AtrirHotdt5s,

2 HOL*5 0F #91551%C JatA 56 va#f ASLE DIREC1108e IIG

-soup 5 05 'll 55 588C B A t A.

56 e

e e

e

.e e

6 g

3 8

l l l 8

l l l e.

.e e

S e

t y

g agnh m - g-q m

-.NNNme mmq-m-,p-y, s. N,Noggek-cGe.c.Sec @ e II g

4g

.ne

...e

.Nmm,NNs e

., g

-e

-e e

e 3

m.o

.O. e

.=e 2

m.

c.

2 e

e, 5

s e

-a

.e a

e e

=

5 eu

.e N,s essmenemesmessee,s e,.

N.e.. GeeesteGSGGG G G G S.e e.,

p e

u.ma e

gas a

g, e

4 a

ae g

s 4

e e

.a 4

.e e

e e

e e

e 4G.e

,e G S G G G e t e c e e N o - e N. e.e l.e

..Sete.eGGGGGG-OSes-.

e Ne N.

e E

e e.

.d. e.e e

4

.. e O

i e,

a e.

.e n,

.al eeN S SG G. =G N -> h.nc e e e

.O. s G G S S G - 4 4 N M S N m m G,. N w

me

.o c,a go e

e es.

.O. e e

e e

.e e

e.

e m.

e ue-e e

2 e

e

-e E e 3 2 ue.e J 2 taf e e Ne..Nch..c9m,.kS-c.

NN-

. O,.e W.

N e GSW-me-Nm c N. N-m e.e CB.

e

=

..N

,e

.e

- m. N-.e No 2.a e

.e.

m

.e - o e

-em.

ee g,.-GNegsm.,a, N

h Z

e. e.

s p

A Z

U-*

e

e. 4

.G4

'3 h.

4 9 an.g e e n e -N..c. N-N N = - --

s J

e.z.,.. -, G, c N N T M,. N m h N,e 9, 5e.2

.e,.

ae

- - - fe gie e

e

.N N

e tE A e.

-O e-

-e2

.e ad

,e m

4 ee e

e-

,p 4

.e.

e at

m..e O c k m em e. = h ts.a GN Nb e.s,a m m

m m e - S N. - - S - en.4 N M N - N.n e.e a

ee 4

e ins e

-e 4

_a

.e.e N.

d w.

ze

,e o ra a

.s

=

e e

. O e

.==Q

.ns 4 -e e g.. o w

e-J e.

. C e.d.

s ad e

.su-

.s.

e. u.u @
  • s od e t

. as w n/t 4

C ut

.e y-

. e Wu.e

. u.t d

.e nd w.,

e e

y g w

gu

.. nc U D gne

.e mer

-s a

.o a

wp S.

.O 2e P. i 8.>.O..see

. m.s D

.

  • w 8

wk c

we*

Z O s.

e o.

e O s.4I ca

.o e

i sa y4 2-.

e,+. e.

==e 2

.e s c.e.d

... - e d d

o. s. - u a.

D.*

ueW Q-4

-ue

<.- g Ub

==a i.

B334A.O.w.o2)P.*.Ea3

.e.a zu.

i.#.f 2w w n 2

w p,,..e a i 1e. -. g a Cf a d.D.e 3 taf.

nog a.

tai lef D D D

.AdWW6AWD3272.O w4h.

t 4 es E,e 26 43W 2 32.

n. 2 K z ande.#.4.a.d eg e

tal E d w-a.

-.x Ewww @ @ @ @i(t

  1. B

.CD

.g y

d AdQ.

.4 e

.kB1

+

Lowe e

C C N Q 3

- o-a u %

l

-w I

l C

au 8

8 e

S l

d e -c,N.2 N,a A.., m _ El :.e :

S

$.e n,C

$.e l

s. N. N ea e,....... N - l 3 :.

e,o em

. c s

.e m

s

.-e E 5 S 5

.e o.e c.

.e o.

s

.e s

e N....................

3.

8-w.

~.......e...........

e

.e

-e u

u e

W W

4.

e s.,

s.

s.

e

.....ee...............

a e

i.

N..eaneo a

...N-.N.

.e.

3 N.

5

.a e

e e

..........-e

-e

-e

..N

......N-ccNon..e..e w.

n n.

w w~

5 m

me SR e,s

-.h m.

-e e

-e

-e 5o u s. a-N. -.. N.a - -, N - e N N - - o -.

5a u.-

3.e.g.=

No--=N,c.m-**

...c 2

z

.N.

g~w

-l i

-l*

'-ma:R:

-aa.t e.

5 W -. 3.T l -

-an.W e

,N

,N m

tes s 5 a.-. o *.....a -. - N - N N. N - -..e tes.

< a

.o e.

3.=x

  • i N..a N..., c. =, N c, - m..

R i..z.

-NN...

w w

c

.-e

. uh.2

-e

-.=

s. m

<%.e m...-NN,.c

,co...

N.m.

1 m..-eN.N

,e.e...

a

.ce a

a as d,w.g.

6n d

.3e w

. za

,, o S:

l 'c;f lE;V w

a w

8*.

.. w #.

.au-

  • e w

.,y.

e

.u.-..

.u

,o e

ud c

=

Wus.

Boc w

a i

e

. hoc w

-e t

B05:

$l l

,*B IB 6:

6:

l

  1. "ga

,og O_.

,u n.

.z. u.

..s.a

+

\\

.s ua-a.a.

z.-.

.a.,

a..

i o-..

o e

.u zwww#a## Taial o,..

.n a

.YWw sw.

a,f w>...

w

- e r.e

>We wf

  1. w.

W u

,a w

'/ww L. # 3.e##2 z,,.

w

=<w w

.o no.

t

.s.

a.x w

o.

e

I

\\

I i

1 R-i s.

.i I

si.

S 3

g:*...gggggggtea:;g:

.~.

g::

g:

3 :5 ji

.#.:29338288R USACES.:.:;

s

-- -~

45 i::

a I

.i.

~:

w

2..:................ !. !

M I

w 4

en....: e:

3 I

_3,:

.? !.

g

~ -..........,n-~~.s.

e.......ee.......:..

I 4.:

Ig g:

5 :l g:..a........-.e ~~..-.::.

8 !I. n:

.7.:..... -....,~gg....

r g E.l

2:

- 3::

e:

l.,s.is!!..~,.~~,.e.e---~:.

.!~ -

3. :.~..g..~;:~~.anssaassam W;:

l s

as.i,n ~4:

g w

5 m h.,. 3 w

~.~.

~

8 s.g:-

2.,8 2~,3333..~.~...

=

g

...,......g....,~.

g a:

..,* g g y.,.,.,....,~..

1:

a I

..g:

?.: g

=

-~

.:t

:;;W g

w c..

3

-..s.@ga.

a e

w-w yd.,:

:"y*

8: :

r.V u.

hoc r.

va.

( B:5:

5:

asB I" 4 oo

.w.e.:s -

"2 Ed '

3::

.. IWwwwWo 5.,a,i,n:s.s:8.

b"*

-.8. :.. 5..:

-w.

=e w

cr a:::

> r. :,w ww$

ss

..s.en

=

x a.e:: sa:

ge. w,

w.

3

m u,

e:

ywwwg.. > m g> > >E,=,I e:$

w 2

w.

W WWW c

mo

.-.. 8 i

o w 3

..w

.s

~7 uu

-m t

c mu 3

3

. i I

W:OEIRENTER33EEENI 5 b

-f Wi"*"**IIISII*

mm 3 6 E. :

5:

i t: y; g..............ee : :.

I-6 a

o.

s a 5 y;

c:......

i i i ::.

g si k}

,,_e.ee.....e==e.et-!

E

.ie.neen.e.eae =e..!..!

I 7I 2;

I !!

3. *i O, a t e.-.........

e-- *::e::

-i V.3 8:

rI3:

5 11 y..I.;..

=

=--* '-'

I si jig 2:.-...~-es: : s-!:!

!5 e:-...

5 i

itaig':

i l~~

d "i?5!K ':

s gangi,

as :-a t:sx**-cisi.

5 5553 gis ~;; --~~- -*--'-*'i:j 2

! !~ -

3 8

.:s

g wk. :..,~...... =g.a s:g:...

<E=

gI 3:

{'ga:

1:-- ----

......=~;tet***'-

C:"YE

- {.a3 K.

W

.t:1

. g:.

~

w

-w-w a
: 7. 7?

w id :

w.,

o.

,.- w -

.w.#

w c

w.

:b""

Wd _!

(-

3:..,.5 I.5 :

: B**

i it'5 B;5:.

6:

i !$5*

. (.

2-n-.

w.

z-e g::

zw.

w yw o-a v

w

... I g

.s:,1vww ms.s's,s,I 3.

>>g gg.o w.

w

- >. zw3:.,jv.wwg..2>

yWW 3

o.4.s r.w.

s:
9 w

W w.

E r'

,i,'

,i!i 2

8 5

8 8

8 8

A.

8 8

S.

A.

S L ISSS25SSSg334 g4 5 4 8

0 S

S L.24E524SS5StS8i41 8 T

T -

I 0

/

A-I

/

l A1 S..

O-5 i

1 Ie I

2s52.2-3-

0 T.-

B

/ O T.

8 s

O S. -

0 8

I E-

/ 0 T-S 4.SSSS8SSSS8SgS8S3 8 8

G T E-3 C

P.-

2-8 T 5-4 S3S8ISS8SSSS94IS 5*

A-C P-2-

M A-L.

M L-I S

I A-4 SSSS9SSS38SSS4S9 4 -

S A-S S-2 4 S8SiIS38SSSSe8SS.3" 5

N S-t S-2-

2I 8

e A

I -

e-8 s

8 A

l -

I.

S

9. -

8 SSSS9SSS88SIi328 S-D B-i-

2.

E4 1 -

E4 8 08SS2S18iSSI67lS 8"

E2 Nl I

P8 0g -.

I E2 es i

1 1i 5*

T S2 8-P P8 Oe 8

2 1n 5

~

ssa 5 T S2 I

5 8

t8 Cs 3

T.p 1.

10 s5 E.a 2.SSSS:SSS882I5223 2 e

s5 CE~3 e

s

- 5" e

2.19SI822753S5SS7S.6"

. ;8 RE s

1 b e5 1

w 2I i8 mE 49D E S.

- - S W.2i E

8 I

P 8

H2/

S 4

f 43s P S-S 8

8 C8T 2

l e2/

S 4

W A5SA D a

E' SN 7.

ISSSe2SS8O8I8182 8 A58A D 7 5I1I5245l33IS545 6 "

e C31 2

8 Sl 4.

- 2 E1 S8 I

6 8 S1 4 1

6" T8 w

e I

r

. A8 P-

- - e A3 P-

- " 5 A T8 I

W l

e S 5. -

- - 5 A 85~

5 85SSSSIS022I22I2 4 - p 1

e L R D-5.OSSSSISS8?13828S $ R 8 S T

t

- - L A S S r

s U E-1-

- - Oh5 L R D~

- 5 " t p. E s.

A a

O.

E-

- - HO 5 u E

g 3 -

u N

8 -

- - r I G.

1 o.

E-

.

  • eO p

sQ E

D.5-

- - 3T m

p-

" sIG t

t pS -

- - LCf E

g S-nTP d

e g

OS -

- - AE5 L

n6 -

.

CA

  • - C&5 o5 -

AE5 j

b s EL -

l; e

n cA -

(* 5 t

NC -

- - fSr EL -

Il a1 Di t

- - C E

mC p

rv%-

Er E

T g

e.

p I

s e

o;0-9 5 LO 4

5?p -

p -

F1-yn T

3t -

S3 8S e

1.t 3 -

O-

"5L3 St?-

s1 L 0A5 1

lI-DI -

e CS ci nr E

  • Oia-3C A

3I9 8

  • T -

hT -

0A5 w

L"lI4 Sv-wE-E E E E w b w w*T - RR0 0!a-lC.

A eu T

aAE-a.

M48 SES 5 5 Nbc 0 EA0 E

fSv-WE.

8 e

E E W h w WF.E

  • e*b NEEESS5SSWww8M T

p.Nh8[EESS555vVWFp h SES EW5 8kN O*rAe 8

uD ea l#.-

I CtL-l 1

PWe T

eAE-e e

q S

PsE-d O.N Pbe T

I gI L-es S

aSE-rd F o i

t r ne 2

i P 0

5 o

8 J e 0

s 0

S A-S 1 a 5

S-A.

e 0

S-L SS8SSSS473273G68 1 -

8 S.

SSIISS8S332I54S8.2-tl

/

I -

A-1 1I 8 S-l i e 8

T-T -

/

l -

A-O-

0 i-T-

8 o

9. -

l nR

/ c T -

8 e

O-D..

p T-U 8

a E-

/ O c

8 T S-4 SS8SSS9S8SSSSI88 I -

8 I

E.

4.SSSSSS9S9S0S1S88,.

2-8 T E.

5i C

.P.

P.

2-A-

C 8f M

A L.

M L-9i I

I 1 c B

A-4.SS8SSS9S8eSSOS88 S-B e

4.eSSSSS8S8e3S2I28.s S

S-2-

A-p N

S-D S.

2 N

0 S

A 1 -

S-8 8 -

I -

A 8

1

~

r

8. -

8 SS8SSS8S8iSSII28 S-3 3.

E4 9

3. -

8.SSSSSS8S9OOS8228 4

o e-I E4 1 -

E2 F

P8 O.d 8 -

I p

E2 N-t 4

1 -

P8 O. set T S2 T.P 5

4 I

2 I.

T S2 T.P 5

l N e8 Ci 2

M 8

L s5 EB 2.SS8SSI8852i4SS23 5 -

ps D8 Ct s

M.& 2.SSSSSS8S8ilS2Sa8,-

5 U N5

. i8 N.E

?.

I I8

.E 4

w 2I E - -

T 49S P 6-

.. 8

- W ZJ

.E

.S H2/4DD.S P

S.

I e,2 /

.S 4

T 4

N C81 2

C8T 2

U A53A 0, 7.gS8SS4282Is3I32S.2-W A5DA 3 7 SSS3SS8S8eOSSSS8,-

e E5 S

3 e

5 E1 S1 9 Sg 4.

5 t8 B

v 8

S3 4-P.v s -

.s T5

, A9 P

-.t i

. A8 1

A A 5.

5 CS-A 5.gSSGSS252ISSII83 5.e S s 5.SSIISS2S3IISSIS2.,.R 1

u 4

O s 1

8.

l L

e u A S b E.-

-Q0ND L p D-I.

l -

E 5 u E-4s.2 I

a=

e1C 60 eD. P.-

.r1N 1

o.

E.

.. 81Th s

e 1G E

S w

P.

tCI E

-t S..

.. f L

RS

-. a F. 5 L

s5

. tCt OS l

. At5 CA CRs j

o5.

-. Cs5 if l

EL I!

e cA

.rSn EL E

PC.

O E.

DL

-. FOf E

O N-EF t

e.

4 FyN.

Te.

E. O Ov 0 O-5 sO e

f F

8 p

I H

o 'I;C-3 5

i8 eI -

- L.1s0As e,

0S SI -

SL1.

NT.

0A5 eT.

DIA sC

. A. 3 ! a.

8LT.

s 1l*

E ISV wE.

E E E E w W w w.T mal 2Sv.

wE.

E E E E w w w w

,.Rpu 3I&

IC.

e O.EA0 t

rtN SES 5w5 eus s

s R.nppEEESS55Svwwpp SAE e

e IR. n p. E sNEEES555SewwNN

,o EAo e

SC5 5w5 ewe.

.PVe ee ee aAC.

- T I

ETL I

e l

e PvM S

PSE.

D-i E1L S

P5E.

D-l;

i,'

l' 4

5 8

5 9

0 A

6 S

9 9

0 S

L. 3 S 3 y S 5 S S S s 2 4 y g 4 S. 3 _.

A A_

/

1 O

4_

S S

S __

9 1

T 0 N 3.

s.

L 5 E S I 0 e 0 6 : 5 S 5 S 5 c. 6 _. 0

/

/ D A2 I2s2255S5S1 4

E i.

T.

4 "E

P.

2 9S8gS8SSSSSSgSSS g WN 0

i.

T -

3 O-s.

i

s..

8

?.

S.

4

/ O T-A.

S J

E.

S T 5

4 8SSS4S89SSS3eS.e S S

L.

C e

2-3 3

E a_

4 p

A.

2 8S9eS8SSSSSSggSS.8 L_

S S-a M

S-S A_

4 8SSI5S88SSS82G.8._d A

1 S

e S

S.

2-2-

8 -

I M

3 lS_

8. -

8 8S8eS8SSSSSSg8SS g.

A E4

0. -

t2 N.

8 i_

I P9 OeH S

s, __

f s2 I

E4 S 8SS95288 SS2e6,9 l

2 T.f 5_

I E2 H_)

P8 0.W I-l2 7

f 4

M e8 C.i u s9 E.D

, 38 RE 12 8S9SS8 SSSS2SSS2 5 n

  • 5-e T

E2 2

.r I -

es SS w

2I - E C.D 2 8SSf 8547 BSSS25 5 s i

NS H2/4DD.P S.

(

f E

. - S e

4 IS

=.E 3 -

II3521 7

l S

W 2s._E s

C8T P

S-1 8

2 T

H2/49e.S n

A3DA D 7 8S9SS86S252iSe42 7 E8 I

IS.J W CI1 N -

4 8

6 S.W 4-2 2

A50A D 7 8ii54428sS2eS2.2 3 15 76 e

. A8 P-S.i r

E9 se I382I2lI3 0

. 1 S

S.W 2

F5.

4-9

. 5 A T5L:

S 5 4.

5 8Si2S45S328t2 88 5R T

t

. 2O A

. ASLe.

3 L e D-r 5 b E.

1.

8 3 ass p s A S..

. 5 a a

8 0=

E-5 457SS22SsS748377 9 9 s

P-

- *0 e

u s5,S.

- #8G up s.

8 IB1IaI 4

v a E

u E

1 -

e Q

E.

8 C#c t

- - - 1N j

0=

L

  1. 5 -

4

. PO s

. - tCs N

i C5 -

a.

. sic

. - AEs E

et ft Ep E.S.

i s

. f 'E

- - C#s L

RS l s EL l

li I

OS

[

RC,-

bi At5

- - FBs M

CA Cs5 E

- - O EL fs a

'e fen.

N..

EF E

IC

.. foe 4

Tg O t 0.-

D O.

6 StO i8 DI M

Oi0 n

1 C

fv+

N-

- - D8 yi DL' h-Er

- tO85 C!a.

iC-O-

.. bLo cr E

- A

!8#

1 t1 DI-

.. DS Iiv t

wE.

M (p E E W W wWW 7

- R80 Dt-T-

nu T

RAE-d 9

SE5 5W5 3 8AMEEES555Ebhhkh 1

w.i OA5 0

t*3 OiA

!' C -

eD l

ETL-a Ifm E

5Sv WE-E E E E W w w S

PGE.

Rpu u

T

  1. AE P-eEe SES Sw5 Nw*.0 Eao.

s t

qs I

ETt j NNhgEESS5SSWWW d.1 Pys P

ed S

PSE D-ro Fi r t e nP i

4 oe 8

O 8

J s 9

a 8

8' 1 e A-8 5

S-A-

l 0

S-L I8 855S S71IS S 20 6 4 4 -

t e O

S.

iR 9

I -

1III222 /

8 s-L 58S24G5722 26I7S 4 T

0-1 - A.

1 s -

n 0 N

3. -

8 t.

T

/ O 1 -

U c 4

O.

8 N S.

I E-4-

/ O i-T i

9 f

5-2 SS8S8SS8S89S8SS8 8.

E.

2 SSeega8eSeetg2eS,.

S I

5f C

4 S T 5

8i E

A-P C

A L-9 c E

A-4 1 e 8

p L.

j p

A-4 SS8S2SS8S88S;: 48 8-S A

S O

S-2-

2 SSgg,gggSS88gSgS.,.

4 N

S-D S.

A t -

D-S.

N t

9 ro 8

3,.

1 -

A 3.

1.

9.SS8SI2S8S88S,558.1 3.

F I

E2 E4 S

3.tNN S,S3gg,8ggeSe8gSgS.S~

8 I.

1 E

P0

~

E2 0 W S,

f S2 p

2 t

.t 0

l 1

S2 s

3S Ci a

T I,

2 D NS ED 1 -

3 e

2 SS8SSSS822628a58 IS mE 4

N s8 C

C 2, g8gg,ggg83 S8,S:. -

4 w*jD e

U t8 w

2g - E -.

8 p E t.

1 49S P 8

. 8 E

N2/

S 4

3 P f 8

H2/4 B !. S t

f 9

C11 2

L A5EA D 7 3SS2S4S7 97 e 7 85b 2 :.-

4 f

2 4

I 7.

A C81 El S N

[.8883'885'88282#.5-A5D*

C YM S I

- 3 t

EI S N 1 -

i W S A l

4

. - 6 AS P TS ' w ES

. S A

AS a 8

B s 5 6ie322s2s22I3sI

  • y. R I

C5 D

S.5 A

L p

. t _ V A 3.S.R 9 5 5_2t824SS7GI'

' 38 U

'A S u I

o=

E C>E 4

o L

p E

h E.

OND 5 u e

P.

8!G l a 1

E NO e

. i d

E D

S.

t1 v

"lE P

e t

R5 tC E

D.5

.. 'L 'C f O5.

l AE5 e

L 35 -

f CA

.. Ce5 f

0A 05 -

. - AE5 EL i8

.. C#5 s

t

  • C

. rD1

1 EL t

C E

PE -

.. FDc e

WvN.

N.

t8

.. 0

[

H (iO.

O

.he t3 F7N.

M.

Ef e

T l:

CI J

O1o 0-

. 5;c DL1 eT.

.cs5 v

p

. DS

n.

D:-

v 0!A lC.

.;.ls*

D L NT.

.t. CA5 E

dV.

bE.

e,~ 3 f

g

- t

, W v w..

.eao 3Ia.

l e'

E r AIte IC.

g

.E F.

E' h b b T

nae D pmggEr'5h55gWhagh.

5 5,5

tac, 4. D w AEEES555S w w W, *#

.10 pn 1

E ISv WE.

e wg i ;

pga eEN 5E5 5WS N I

EaL ta e

1 HAE.

S e sE r

Pv g

e 3

E?t 5

P5E p_

'1

. i.
'j4.

~

S a., e - e - e m - - * - - o m - - -. m,.

S

.s 4

~.

2.-,..

4,.o,eu-,-~.c~-me..

a

-2 Q.

,c.,

s

---N-

-.m.

s o M

G.,

oe

- e.

EP 4.,

-E

,,eeeeeeeknessenes.,3

~ O m

u L,

~.,

g-w 8, N.., G e e e e e e e e e e e e e e s. e W

.E.

4.,

4 e

O.A

e..

a, e

.e 4

O E

e.

4

~.,...eeeeeeeeeeeses t e

e, a

m 2

e.

N e. 8 eeeeee e e ee e e-eN e,

4 g.

O e.

E e.

e m.

O.

i 4

W e..eeeeeeeeeeeeNees.Ns

=,

O Q,

p 1

e. -Se g e-e as se e,Ne m. -

,E

.e

- w e

w g -,

-T

=

p

,a n

2.

v.-

  • .s

.7 2

aO ~.See==~ete--eSe-e Se, 5a w

L w

u.-

x wie u.ee-oc~e nc..

o.

. 2 an..

~.

., e

~-.w r

.a e,

m.w 2 s a

g o -,

ua.a e.

a<.a n

e-ee-.---wous-me,.a.

- 1 s =*

3:

5 h E.:o..,m e. ---~ - e - e - n :

-,E, w

a, Rz v w

..a.

s t.2

.... e-See~eme-ee c.

L

=#

a W

,. 3,.

. ce.

a.

-,...--c..--~

e.e-

- e 2

a

m..

..g w,

e a

r,.

.Yn

.a o

f--

.4 w.

1..

.3.0

y. Q.

a,c.

w w.

.t-a.

v e A QW

. I, w g.

W Q

.ew.2-T.

E w e,

,,, a.e.

g#

d

~

w.

b w

tw

. wet E

w W e.

.. was w.

o w.

w tu.

r.

/s y "*

w a. Q.

gur Q.

O,

. e. rso

,s

.w m

. s, c.o g.,, > 4 2.

,c C b Q a.

Ze

a. #

w o

k O.= 0 Q.

.e.O Q =

C=e.

-s

..s.--e e

G-.

[ "e'"

W

-3D.

3w.

W W w w 3 3

~- a 3

8.*.

S*

g3,2.-. G, 2 2.7

.=.e s C-.

- Q.'

' w '. O * #

R%g.

Z of 2 g i., A

@3 ZZ WWw@de#@pJ3JZ7,eg 4

zar

-,--g tow,.

EDI w

3we w

. fw,

  1. 2,2 w w g i J

3 eg a

a., 4 4 / w f I W W W,t.4 ) J J 4 Z. n. w.

  1. ws w

'm7 w..s,

.A7 A O a.

u u ea e

, a.

~

z I

i 4

a "T

S

.-~--~e-cos.ece.c!~!

g:a**~--=~*-**=~a-ioi e~

s o-

-~.m.

=

o

=

- 5

o.,,,

o,.

c

-5 e

s

,QC I;

W:

=. >

~, e eeeeeeeeeeeee:e.

E-w.

G,,, 2.:

; * * * * * * * * * * * * * * *
  • l, * :.

u

- c.

t 4

s a.,

a

~...eeeeeeeeeeeeele.

?

3.:

                                • . =:

m a

l 1

3:.

4:

?;

u e

C O

Q,

@ p

-.-estee.See -~- e.:e.:

e.

w 5.:

!.,.eeeeeee mene~ee,~.,

r. [ ' : t l* :

3

.:i :

x r.

5i

" : a ~,, c e e - e --. - a, - o, ~ ~.

f 5

v,-

3

~~,.w

.o.

i, r:a 2 : a = * * * * *

  • a - a * - a - :,, :,

w..

~~.t e..

e.

- 2 s..

.e

- 1 s.

5 W E<!. *.--e~~~t~~,~~~--,:,:

5 0

.:,;.:..e~ e.~

.ee --e:..:

u 8

w 8.

-.3

.e

., ~

t.

,,,, ~ - -...,.., ~ e e - -. :, :

  • a
  • uo, e.

g

.l. : = * * * - -

  • e n e s e e - e e.:

I dS n.

.~,

w.

w

-f.

5n

,96w

.r.

.- i w

a.

_o

.t-u.e

.i s v -

5a.

.c-,

Ba s

w ww

. w,-

we r

e v.

. v a.,.

Ed

'.. E E E"a w

:s ac

'2'y

. 6:.

5.,

"B I

n.:.5.:

5:

u-

..m a

--. =~.

.ed

.a as-,

1-.

n _a.,

ze.

e 2

. o

,e oe

- o, a,.

.3 u-..

-u

.o, e,.

..e. w w

.W.

-.z L WwW

  1. .2m a. z f wy, W,., L,1, r. i.... -._o.r.,o

> =

't.

,#w 22,el.o==.

t., we..

r=

  1. w

..w.

e a.,,,,,,,,,

am.

a.

2 j

ij

'{,

3 4

e 1

3, 4

s I

A Ae s

5 e

e 5

8 A S222425i774y7243 4 5

L 0

A 68s57y6y45g2gg97 f

L

. g.

5

/

33i235It55p3Sg35 3

3 1.

T 9

3 1.

1 N

D..

O.

1 O

N D.

0 t

r T

f O

e E.

1 I

o I

E.

s T

5.

4 S88Se8Seaeeaee98 e.

s T S

4 8Sseea8eeagSg3ag g.

C P-2

+

C P.

2 E

A.

p E

a

+

i L.

R L

I D

A D

S8eS88eeeeea8S88 8 4 -

a.

8. 8Seaee8aeeae3 82 4

D S

2-N S

D S

2 N

S.

9-A I.-

A l

9 I

D D.

1 -

D D

8 E

e 088S98eaaeee8e88 8 E

N l

se gSee9i9ee E

N s3433.y.

P Ot s -

y.

E M - -

3 1

3-P D.p l

e T

S I.P p

T E

I T

3 t

1 -

I 1. r N 3 Ci i

N 0 E.i e.

U I

pE 1 -

N (D 2 898S88eee3128e887 -

U f

Ds E.D 2.eSI767eee6781 8

914. 7.

p W

Zg -

V 2i E

G 1

2 22 5

Dg.E e-E t

P g

e i

- - e e

I T

DD P I

H /

S M

r P'

C T

Da S s

N C L

A Ds g i

7 -3i8*2*a3i2233;38 U A e

D 7 2083S4 4 6e!g 4 2St 9,.

E e h 2

E le e.N 4.s1 1I1 t?

t g.I 4-18If1. 3 0.I r

T l

W 7

6 W

l L3 a

A P-

. s5, LP.

a FS-u D 5

- - S A AS.

. 5 s sq L R D-1 2'2'2'S 628248f2 3

- R T

a 5 3

2I U A

L p

D.

- - eI753Ssl25496649 3R i

5 v E-e -

e 1

0 E

- - HO 1

I'

= f2

. 7 U a OhC 5 U E.

8 -

d 0

P

. 3 Cht l

M P-a E

b n E

D S-e

.. s1H0

- - 1'IG G

a2 L

  1. 5 -

tT P E

5 S

.. - 1 N 1

-- - tC3 L

mS T

I o5 -

.. tC+

- - aE5 l

oS.

g M

CA i

.. aI5

- tR5 r

CA EL -

y n E

~

I1

. C"S t

PC.-

EL

~ - rD1 il ci E

F E

P-NDn e

- ' O E

~

n r e

Fyp -

h-Er 8

FrN 0vo-0-

N OvC.

O e

s u

T' SLC H

LF il -

D8 -

iD 8Ll -

N:-

. - SLO DB T

fl EI -

- L-OA5 D

- - O8 g

08e-IC-

- A*lI9 0JA NT.

Ll e s E'

f9w-WE-

. L-D*s a

IC-WMMEESS55Sbb E E h

h A - IIe sR E

1eV-WE-

-0 EA1

  1. AE-p-

rd E

E E W W

w WT -

NEK SE5 R*v SES 5W5 W

N T

P5E-D-

Sw5 hW N - 1 I

E+L.

l hNN[EES55SSbbbN'#'

sc E*O

- P*H i

S P5E-f-

t r n e iPo J es 3

a d

1 e

l t l i

4 8

e i e AS l

nR S

a..

S S

L.Se5S324eIg436444 2 U

5 e.

4 e

A o

1 1

8 1

TI 8

S.

L. 32eS37 252g 4 37 4I3 6.

c 3

1

. 1

/

A 8g t

5 i 1

P q

D..

TO 3

T D..

O T

8 f

/ O N

8 e

I E

/ O P

9 i T

S T S

2 S3e88e9eSeeS3S3a S.

4 0

I E.

1 c

C 3

T S.

24 9eeS8SS3eeS8e33e.3 e

t p

p A

C P.

L.

E A

L l

S B

I A

4.

a 2 ISS88S8See8S8S8e I

S D

A r

D 2 SSSg8sS3SaS8SSSe 3 4

o N

D s.

F A

'l 91.

N a

S g

A t

0 i

8 E

i s

E e

18 9SS89S8a3s833S88 3

D D..

f E

P O.4 I

E N'e 8. SSeS88SeSeS8SeSe. 4 1.

t f

S CP 3 I

P 0.P* -.

f T

M 1

T S

5 8

8.

e S

I 1

.r e

I 1

L N

tS 7 3eS08S3ee4843S22 S N D C.e I

p E 8

i W al.E I

U d ED 2.S3SS83SSSeS8SSSI 1

R.E i

E 1.

t CE P S.

.. S W

2I t

4 r

SA S T

CD.S e

e

.P S.

a I

e

. e S C t

/

t

(

A 9

7 2SS28I2SiG2723Ie t

N c T

i 4

l S

U A DA D E

S.I e.N 7.S8eS82SS34222IS?.0 4

1.

S.I N

2 E

t W

l IS.W A

P ES 8

T

. 8 S'

A a

P

. t

?

C 5.

3 s

.. D 3 3t332I2IeSI25 2 9 8,.

D 5 II L p 35 D

a E

L p D.

32e32t2S0s2I52I 2.0ND t.4.R 4

A S u E

0.

t I

O.

U a S u E.

t.

4tO.

d

?.

E

. OfD s S.P 0=

e

.f E

NO n*

H P.

'n 1 hG pE L

E D.S.

LC' 8

oS.

RS

.. AEs L

9

.tCt cA I

OS.

.CRs

.aE5 EL T

CA It I

E NC EL

.Cp5

.TJe E

gl r

t P

E PC

. Fan s

rYN N.

E Ew O

oTO.

0 Stt S

r TN e

N

.D9 N

IO1O II S1 tf T

O.

.StO DLT.

N1

.O8s T

1l DI

.Ds b L. l1 a, OlA.

lC A

0Ll NT.

l Oa5 Isw bE E E E E W W W E

  • 4i 0IA IC.

. a Is*

RAE R

e N SES 5W5 NbN EA-E D N*eMEEESS55SbWWNN 0.PwH 4AE.

!Bb.

bE.

E E E E W W W w.*

.RnL

?

ETL I

R.

eEN SE5 SW5 NWN.O.EaO 1

1

=

5 PSE.

ID N9NEEES55SSWWWNN T

PvM 1

E1i.

5 P5E

ATTACHMENT I.

REVISION 5 TO THE TMI-1 0FF-SITE DOSE CALCULATION MANUAL (0DCM)

Revision 5 to the TMI-1 ODCM, 9100-PLN-4200.01, was effective and issued March 11, 1985, which was during the January 1 through June 30, 1985 period for the attached Semi-Annual Effluent Report.

The changes made in the Revision were administrative and will provide more explicit directions for implementation of the procedure. The Environmental Section of the ODCM had some station codes added and modified. The definition of Ri was modified to include additional guidance on the treatment of fodine released from the condensor off-gas air ejector per NUREG 0017, which gives a PF for elemental iodine as zero. Therefore, iodine from the condensor off-gas air ejector causes only an inhalation dose from the organic iodine.

The following is a list of the page by page revisions, and copies of these pages are included for your reference.

Pages 6, 7 and 8 Titles marked with margin bars were underlined.

Page 9 Under Rj, Table 4-2.2a was changed to Table 4-2.2.

Under Rj, a paragraph was inserted which describes how calculations are performed for releases from the off-gas air ejector.

Page 10 Add as reference NUREG 0017.

Page 12 Correct notation from Ci/m3 to Ci/m3, Page 50 Addition of Station Code M1-1 with its Distance and Azimuth.

Page 51 Change Table 3, Station Code G15-1 notation from (F) to (R, F).

Page 53 Change Table 7, Station Code E6-1, M15-2 and H1-2 by deleting prefix characters and adding (FPF) to each item.

Change Table 7, Station Code DI-3 by adding (FPF) to this item.

Page 54 Add heavy dividing line between Table 9 and Table 10 data.

Page 55 Add to Table 12, Station Code M1-1 and its applicable sample medium, map number, distance, azimuth and description.

i

ATTACHMENT I Revision 5 3.3 Alternative Oose Calculation Methodoloav for Liould Effluents As an alternative, models in, or based upon, those presented in Regulatory Guide 1.109 (Rev.1) may be used to make a comprehensive dose assessment.

Default parameter values from Reg. Guide 1.109 (Rev.1) and/or actual site specific data would be used where applicable.

4.0 DOSE ASSESSMENT (GASEOUS EFFLUENTS) 4.1 Gaseous Effluents - 10 CFR 20 Limits 4.1.1 Noble Gases For noble gases, the following equations apply for total body and skin dose rate at the unrestricted area boundary:

4.1.1.1 Total Body Dose Ratetb " E (K ) x (X/Q) x (Qt) (eq. 4.1.1.1) i i

where:

Dose Rateth = average total body dose rate in current year (mrem / year).

Kg =

total body dose factor due to gamma emissions for each identified noble gas radionuclide, in mrem /yr per uC1/m3 f rom Table 2-1.

X/Q = average annual dispersion value at the site boundary for worst case sector, in sec/m3 Values are obtained from Table B-1 for releases from station vent, and Table B-2 for all others.

Qg =

Release rate of radionuclide, i, in uCi/sec.

4.1.1.2 Skin Dose Rate k " E (li + I I M ) X (X/Q) X (Qt)

(eq. 4.1.1.2) i s

i where:

Dose Rate k =

average skin dose rate in current year (mrem / year) s

0126k re

ATTACHMENT f I

Revision 5 Lg -

skin dose factor due to beta emissions for each identified noble gas radionuclide, in mres/yr per uC1/m3 from Table 2-1.

Mt=

air dose factor due to gamma emissions for each identified noble gas radionuclide, in mrad /yr per uC1/m3 from Table 2-1.

1.1 = mrem skin dose per mrad air dose. Converts air dose to skin dose.

Og =

release rate of radionuclide, 1, in uC1/sec.

4.1.2 Todines and Particulates i

For lodine and particulate isotopes, the following equation applies:

Dose Raterp = I Pj Dy Qj (eq 4.1.2)

I where:

Dose Rate gp =

average organ dose rate in the current year (arem/ year).

Pt=

dose parameter for radionuclides other than noble gases for the inhalation pathway, in mrem /yr per uC1/m3, and for the food and ground plane pathways, in m2 - mres/yr per uC1/sec from Table 2-2.

The dose factors are based on the critical individual organ and most restrictive age group.

l Dy =

the annual average atmospheric dispersion parameter, for the worst-case sector, for estimating the dose to the critical receptor; X/Q for the inhalation pathway, in sec/m3, and 0/Q for the food and ground plane pathways, in m-2 For H-3, only X/Q's are used for all pathways.

Dispersion factors may be read or interpolated from Table B-1 ( Appendix B) for station vent releases and Table B-2 ( Appendix B) for all other releases.

Qt =

release rate of radionuclide, 1, in uti/sec.

4.2 Gaseous Ef fluents - 10 CFR 50 Aooendix I 4.2.1 Noble Gases l

The air dose in an unrestricted area due to noble gases i

released in gaseous effluents from the site is determined j

using the following expressions:

)

l l 0126k re

~

_~

ATTACHMENT I Revision 5 Oose r = (3.17E-8) x I (Mj) x (X/Q) x Qi (eg. 4.2.1.1) i and Dose 8 = (3.17E-8) x I (Nj) x (X/Q) x Qi (eq. 4.2.1.2) 1 where:

Doser =

mrad gamma dose during any specified time period.

Ooseg =

mrad beta dose during any specified time period.

Mi=

air dose factor due to gamma emissions for each identified noble gas radionuclide, in mrad /yr per uC1/m3, from Table 2-1.

Ni=

air dose factor due to beta emissions for each identified noble gas radionuclide, in mrad /yr per uC1/m3, from Table 2-1.

X/Q =

the annual average relative concentration, for the worst-case sector, for any area at or beyond the unrestricted area boundary, in sec/m3 Values may be read or interpolated from Table 8-1 (Appendix 8) for releases from the station vent and Table B-2 (Appendix 8) for all other releases.

Qi =

release of noble gas radionuclide, i, in uC1, over the

~

specified time period.

3.17E-8 =

inverse of the number of seconds in a year.

4.2.2 Iodines and Particulates The dose to an individual from radiolodines and radioactive materials in particulate form with half-lives greater than 8 days in gaseous effluents released from the site to an unrestricted area is determined by solving the following expression:

00se = (3.17E-8) x I Ri Oy Qi (eg. 4.2.2) o i

i where:

Doseo=

dose to an individual from radiciodines and radionuclides in particulate form, with half-lives greater than 8 days, in mrem, i

during any desired time period. 0126k re

.. - \\

~~

ATTACHMENT I Revision 5 i

Rj =

the dose factor for each identified radionuclide, 1, in, mrem /yr per uC1/m3 for the inhalation pathway and m2. mrem /yr per uC1/sec for other pathways, from Table 4-2.2.

Since there is minimal or no elemental iodine released from the condensor off-gas air ejector (see NUREG 0017) all Iodine Rj values in Table 4-2.2 for all pathways, except the inhalation pathway, are considered to be zero when performing dose calculations for releases from the condensor off-gas air ejector.

Only calcuate the dose due to the inhalation pathway for condensor of f-gas air ejector lodines.

Oy =

the annual average atmospheric dispersion parameter, for the worst-case sector, for estimating the dose to an individual ht the critical location; X/Q, in sec/m, for the inhalation pathway, and D/Q, in m-2, for other pathways.

In the case of H-3 only X/Q's are used for all pathways.

Dispersion factors may be read or interpolated from Table B-1 (Appendix 8) for station vent releases and Table B-2 (Appendix B) for all other releases.

Qt =

release of radioiodines, and radioactive materials in particulate form in gaseous effluents, i, with half-lives greater than 8 days.

in uC1, cumulative over the specified time period.

3.17E-8 = inverse of the number of-seconds in a year.

4.2.3 Alternative Calculational Methodolooies As an alternative to the methods described above, the models in/cr based upon, those presented in Regulatory Guide 1.109 (Rev. 1) may be used to make a comprehensive dose assessment.

Default parameter values from Reg.

Guide 1.109 (Rev.1) and/or actual site specific data can be used where applicable.

Dispersion parameter values for such analyses may be drawn from Table 8-1 and B-2 or may be computed from site meteorological data for the specified time period using acceptable models such as b

those presented in Regulatory Guide 1.111.

i

l 1

i l 0126k re

ATTACHMENT I Revision 5 References Boegli, J.S., W.L. Britz, R.R. 8ellamy, and R.L. Waterfield, " Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants".

NUREG-0133. October 1978.

" Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR 50, Appendix I".

U.S.

l NRC Regulatory Guide 1.109 (Rev 1).

October 1977.

" Evaluation of the Three Mile Island Nuclear Station Unit I to Demonstrate Conformance to the Design Objectives of 10 CFR 50. Appendix I"... Nuclear Safety Associates. May 1976.

Technical Specification for the Three Nile Island Nuclear Generating Station Unit 1. Appendment No. 72, Operating License No. OPR-50, Docket No. 50-289.

August 1981.

NUREG -0017, P8-251 718, " Calculation of Releases of Radioactive Materials in Gaseous and Liquid Ef fluents from PWR."

i i

i I

l 1

l 0126k re l

ATTACHMENT I Table 2-2 Revision 5 DOSE PARAMETERS FOR RADIO 10 DINES AND RADI0 ACTIVE PARTICULATE. GASEQUS. EFFLUENTS

  • Pg Pg l

Pi Pg Inhalation Pathwa Food & Ground Pathways l

Radio-Inhalation Pathway Food & Ground Pathways Radio-(mrem /yrperpCi/mg)

(m2. mrem /yr per pCi/sec) l nuclide (mrem /yr per pCi/m )

(m2 mrem /yr per pCi/sec d

l nucilde l

H-3 6.5E+02 2.4E+03 l

Cd-115m 7.0E404 4.8E+07 Cr-51 3.6E+02 1.1E+07 l

Sn-126 1.2E+06 1.1E+09 Mn-54 2.5E+04 1.1E+09 l

Sb-125 1.5E404 1.1E+09 Fe-59 2.4E+04 7.0E+08 l

Te-127m 3.8E+04 7.4E+10 Co-58 1.1E+04 5.7E+08 l

Te-129m 3.2E+04 1.3E+09 Co 60 3.2E+04 4.6E+09 l

Te-132 1.0E+03 7.2E+07 ZN 65 6.3E+04 1.7E+10 l

Cs-134 7.0E+05 5.3E+10 Rb 86 1.9E+05 1.6E+10 l

Cs-136 1.3E+05 5.4E+09 Sr 89 4.0E+05 1.0E+10 1

Cs-137 6.1E+05 4.7E+10 Sr 90 4.1E+07 9.5E+10 l

Ba-140 5.6E+04 2.4E+08 Y-91 7.0E+04 1.9E+09 l

Ce-141 2.2E+04 8.7E+07 Zr 95 2.2Et04 3.5E+08 l

Ce-144 1.5E+05 6.5E+G8 Nb 95' 1.3E+04 3.6E+08 l

Np-239 2.5E+04 2.5E+06 i

MO 99 2.6E+02 3.3E+08 l

I-131 1.5E+07 1.1E+12**

l Ru 103 1.6E+04 3.4E+10 l

I-133 3.6E+06 9.6E+09**

Ru 106 1.6E+05 4.4E+11 l

Unident.

4.1E+01 9.5E+10 Ag 110m 3.3E+04 1.5E+10 l

I I

  • The listed dose parameters are for radionuclides that may be detected in gaseous effluents. Additional dose parameters or tsotopes not included in Table 2-2 may be calculated using the methodology described in NUREG-0133.
    • These values may be further reduced by a factor as large as 2.0 to allow for the half-year growing season and a second factor as large as 2.0, to allow for 50% of the iodine effluent in organic form.

These reductions conform to Reg. Guide 1.109 (Rev. 1). 0126k re l

~ ~ ~

ATTACHMENT I Revision 5 i

Table 2 TMINS REMP STATION LOCATIONS-DIRECT RADIATION (TLD) (CCNT'OL NUREG Station Code Distance Azimuth M1-1 0.1 mile 245

  • M9-1 8.6 242 N8-1 7.8 260 P8-1 8.0 292 Q9-1 8.5 308 R9-1 8.1 340 C20-1 19.6 47 015-1 10.9 63 F25-1 21.1 113 G15-1 14.4 124 H15-1 13.2 157 J15-1 12.6 180 K15-1 12.7 204 L15-1 11.7 225 M15-1 11.9 237 N15-2 10.4 274 N15-1 13.2 276 P15-1 12.2 300 Q15-1 13.5 305 Q15-2 11.5 310 R15-1 11.2 330 Al-4 0.4 2

81-2 0.4 26 B1-3 0.5 15 Cl-2 0.3 45 El-4 0.2 90 G1-3 0.3-124 H1-9 0.3 148 Ji-3 0.3 185 K1-5 0.2 202 Ki-4 0.2 208 N1-3 0.1 270 Q1-2 0.2 325 F1-2 0.2 102 0126k re

~

ATTACHMENT I Revision 5 Table 3 TMINS REMP STATION LOCATIONS-SURFACE WATER (CONT'0)

NUREG Station Code Distance Azimuth N1-2A (R) 0.1 270' J1-2 (R) 0.5 188 J2-1 (R) 1.5 182 A3-2 (R) 2.5 355 H3-2 (R) 2.3 165 H5-2 (R,F) 4.1 160 Q9-1 (R,F) 8.5 308 G15-1 (R,F) 14.4 124 G15-2 (F) 13.6 128 G15-3 (F) 14.8 124 J15-2 (F) 14.7 178 F15-1 (R) 12.6 122 (R) = Raw Water (F) = Finished Water Table 4 TMINS REMP STATION LOCATIONS-AOUATIC SEDIMENT NUREG Station Code Distance Azimuth Al-3 0.7 mi.

O' G1-1 0.3 137 KI-3 0.8 202 J2-1 1.5 182 K2-2 1.1 197 L1-3 0.5 225 0126k re

.~.

ATTACHMENT I Revision 5 Table 7 TMINS REMP STATION LOCATIONS-FOOD PRODUCTS NUREG Station Code Distance Arimuth 02-1 (FPL) 1.1 mi.

65*

G2-1 (FPL) 1.6 130 A9-2 (FPL) 9.3 357 P3-1 (FPL) 2.6 293 A15-1 (FPL) 10.5 10 El-3 (FPL) 0.7 90 E2-1 (FPL) 1.1 80 H1-2 (FPL) 0.9 150 E6-1 (FPF) 5.9 100 M15-2 (FPF) 13.6 253 H1-2 (FPF) 0.9 150 01-3 (FPF) 0.5 65 FPL = Broad Leaf Vegetation or Vegetables FPF = Fruits Table 8 TMINS REMP STATION LOCATIONS-SOIL NUREG Station Code Station Code Distance Azimuth TM-S-1C1 A3-3 2.5 mi.

354*

IFl A9-1 9.2 0

IF2 A9-2 9.3 357 481 02-1 1.1 65 SA1 El-2 0.4 90 l

581 E2-1 1.1 80

'782 G2-2 1.3 133 783

'G2-3 1.6 132 l

7C1 G3-1 2.8 131 7F1 G10-1 9.8 127 l

15G1 Q15-1 13.5 305 0126k re l

ATTACHMENT I Revision 5 Table 9 TMINS REMP STATION LOCATIONS-EFFLUENT WATER NUREG Station Code Distance Azimuth Ki-1 0.2 mi.

200*

l Table 10 TMINS REMP STATION LOCATIONS-PRECIPITATION NUREG j

Station Code Distance Azimuth El-2 0.4 mi.

90*

H3-1 2.3 159 G10-1 9.8 127 Q15-1 13.5 305 A3-1 2.6 358 Table 11 TMINS REMP STATION LOCATIONS-CRYOGENIC AIR SAMPLE NUREG Station Code Distance Azimuth A3-1 2.6 mi.

358' El-2 0.4 90 H3-1 2.3 159 M2-1 1.3 253 0126k re

ATTACHMENT I Table 12 Revision 5 RADIOLOGICAL EWIRDISENTAL MONIT0e11NG PROGRAM SAMPLE LOCATION Sample Station Map Medium Code Nisber Distance Arimuth Description 0.4 mi 0*

N of site North Weather Station TRI AP.AI,ID A1-1 1

ID Al-4 0.4 2

NofReaclorBuildingonW.FenceadjacenttoNWeather Station TRI ID B1-1 2

0.7 25 NNE of site on light, pole in middle of North Bridge TPI ID B1-2 0.4 26 NME of Reactor Building at Top of Dike TMI ID BI-3 0.5 15 NME of Reactor Building on W fence adjacent to 5 end of N Bridge TMI ID C1-2 0.3 45 NE of Reactor Building at Top of Dike TMI ID Dl-1 3

0.3 71 ENE of site on top of dike, east fence TMI ID El-1 4

0.2 95 E of site on top of dike, east fence TMI ID El-4 0.2 90 E of Reactor Building at Top of Dike TMI ID F1-2 0.2 102 ESE of Reactor Building at top of Dike michsay within Interim Solid Waste Staging Facility TRI ID Gl-3 0.3 124 SE of Reactor Building at top of Dike TMI 10 HI-1 5

0.4 167 SSE IMI ID H1-9 0.3 148 SSE of Reactor Building at Top of Dike TMI ID JI-1 6

0.8 184 5 IMI ID J1-3 0.3 185 5 of Reactor Building on wooden post by old 5. Gate Guard Building TRI EW K1-1 7

0.2 200 On site, RML-l station discharge ID KI-2 8

0.4 195 SSW TMI ID KI-5 0.2 202 SSW of Reactor Building on fence behind W rehouse #3 TMI ID KI-4 0.2 208 SSW of Reactor Building on fence behind W rehouse #2 TMI ID L1-1 9

0.1 221 SW of site, west of mechanical draft towers on dike TMI ID M1-1 0.1 245 W5W of Reactor Building on SE corner of Unit 2 Screenhouse Fence TMI.

ID N1-1 10 0.4 270 W of site on Shelley Island ID N1-3 0.1 270 W of Reactor Building on fence adjacent to screenhouse entrance gate TMI SW N1-2A 11 0.1 270 on site, station intakes (Units 1 & 2)

ID PI-I 12 0.4 293 nelW of site on Shelley Island ID Q1-1 13 0.5 317 NW of site on Shelley Island ID Q1-2 0.2 325 IN of Reactor Building on fence behind Warehouse #1 TMI ID R1-1 14 0.2 340 NNW of site at gate in fence on W side of TMI, north boat dock AQS A1-2 15 0.7 1

N of site at North tip of TMI AQS Al-3 16 0.7 0

N of site at north tip of TMI ID Cl-1 17 0.6 35 NE of site on Route 441 N.

ID D1-2 18 0.5 65 ENE of site on Laurel Road AP.AI RW.ID.CR,5 El-2 19 0.4 90 E of site on N side of Observation Center ID F1-1 20 0.5 117 ESE of site on light pole on Route 441 N.

AQS GI-1 21 0.3

!37 SE of site ID GI-2 22 0.6 143 SE of site on Route 441 5.

SW Ji-2 23 0.5 188 5 of site below discharge pipe AQs K1-3 24 0.8 202 SSW of site 0126k re I

ATTACHMENT II REVISION 4 TO THE TMI-1 PROCESS CONTROL PROGRAM (PCP)

Revision 4 to the TMI-1 PCP, OP1104-281, was effective and issued April 9, 1985, which was during the January 1 through June 30, 1985 period for the attached Semi-Annual Effluent Report. The PCP has been upgraded to include changes in the current Hittman Process Control Program and to begin to segregate Class A unstable from Class B test solidifications to aid the procedure user in the performance of the test solidifications.

The following is a listing of revisions by Section. A copy of the PCP is included for your reference.

1.

Section 1.0 Purpose a.

Page 1.0, 2nd Paragraph The current revision for the Hittman Topical Report has been upgraded to Revision 2.

2.

Section 2.0 Collection and Analysis of Samples a.

Page 2.0, Step 2.1.1 The waste streams in 2.1.1 have been changed to identify those which are specific to TMI-1.

b.

Page 3.0, Step 2.2.2.la This step has been revised to exclude the analysis for major constituents and total solids which are not required in any PCP calculations.

c.

Page 4.0, Step 2.2.2.lb The requirement for percent oil has been deleted since none'is present in this waste stream.

d.

Page 4.0, Step 2.2.3.2 This step has been rewritten to clarify what analysis are required for the various waste streams.

e.

Page 5.0, Step 2.2.3.5 The recirculation of the waste tank has been increased from one to three times to ensure proper mixing.

3.

Section 3.0 Test Solidification and Acceptance Criteria a.

Page 6.0,1st Note This note has been revised to tie the verbage of the procedure to the calculation sheets attached to the procedure.

ATTACHf1ENT II b.

Pag; 6.0, Step _3.1.1 Waste conditioning for concentrated waste has been changed to reflect the changes in the Hittnen procedure "STD-P-05-003, Rev. 3".

c.

Page 6.0, Step 3.1.2 This step has been revised to reflect the use of NaOH as a conditioning agent only for Class A unstable resin solidifications per Hittman procedure "STD-P-05-004, Rev. 5".

d.

Page 8.0, Step 3.2.3 This step _ has been revised to incorporate the changes made in Hittman procedure "STD-P-05-004, Rev. 5" to include the use of calcium hydroxide for Class B solidifications.

e.

Page 8.0, Step 3.2.4 This step has been revised to incorporate the changes made in Hittman procedure "STD-P-05-001 Rev. 4" tn include the use of calcium hydroxide for Class B solidifications, f.

Page 8.0, Note Guidance has been added to prefill a liner with oil and concentrated waste then mixed to provide a sample for the test

~

solidification, i

g.

Page 9.0, Table 1 Table 1 has-been revised to update the waste / binder ratios for all Class A unstable and Class B solidifications, h.

Page 10, Steps 3.2.7 and 3.2.9 These steps have been revised to update the instructions to perform the test solidification as a result of Hittman procedure changes.

i.

Page 13, Sample Analysis i '

This table has been updated as a-result of Hittman procedure changes.

4.

Attachment Sheets a.

Page 15.0 thru 22.0, Attachments 1 and 2 These Test Solidification Data and Calculation Sheets for Boric

~ Acid have been upgraded as a resul t of "STP-P-05-003, Rev. 3".

Lb.

Page 27.0 thru 34.0, Attachments 4 and 5 The Test Solidification. Data and Calculation ~ Sheets for Used Precoat have been segregated by Class A unstable and Class R solidifications as a result of "STD-P-05-001, 'Rev. 4".

a w

-w-

-m-v - -,

~

ATTACHitENT Il 4

c.

Page 35.0 thru 42.0, Attachment 6 and 7 The Test Solidification Data and Calculation Sheets for Bead Resin have been separated into Class A unstable and_ Class B solidifications as a result of "STP-P-05-004, Rev. 5".

d.

Page 36.0, Figure 1 This figure used as part of the Boric Acid test solidification calculations has been added as a result of "STP-P-05-003, Rev. 3".

e

ATTACHMENT II 1104-28I Revision 4 04/09/85 IMPORTANT TO SAFETY CONTROLLED COPYFdi ENVIRONMENTAL IMPACT RELATED USE IN UNITI ONLY THREE MILE ISLAND NUCLEAR STATION UNIT NO. 1 OPERATING PROCEDURE 1104-28I CONTROL RCFDM WASTE SOLIDIFICATION PROCESS CONTROL PROGRAM WORKING COPY Incontainer Solidification Table of Effective Pages Page Revision

,Page Revision Page Revisien

  • Page Revision 1.0 4

31.0 4

2.0 4

32.0 4

3.0 4

33.0 4

4.0 4

34.0 4

5.C 4

35.0 4

6.0 4

36.0 4

7.0 4

37.0 4

8.0 4

38.0 4

9.0 4

39.0 4

10.0 4

40.0 4

11.0 4

41.0 4

12.0 4

42.0 4

13.0 4

43.0 4

14.0 4

15.0 4

16.0 4

17.0 4

18.0 4

19.0 4

20.0 4

21.0 4

22.0 4

23.0 14 24.0 4

25.0 4

26.0 4

27.0 4

1 28.0 4

29.0 4

30.0 4

1 Y_%

Y9Af A

signature Date h4-85

(}

Signature Date Document 10: 02127

~

ATTACHMENT II 1104-28I Revision 4

~ ~

THREE MILE ISLAND NUCLEAR STATION UNIT NO. 1 OPERATING PROCEDURE 1104-28I NASTE SOLIDIFICATION PROCESS CONTROL PROGRAM Incontainer Solidification 1.0 PURPOSE The purpose of the Process Control Program (PCP) for incontainer solidi-fication is to provide a program.which will assure a solidified product with no free liquid prior to transportation for disposal and which meets the requirements of 10 CFR 61.56, Waste Characteristics.

The program consists of three major steps, which are:

a.

Collecting and analyzing samples; b.

Solidifying test samples; c.

Verify acceptance or rejection of test sample prior to full scale' solidification.

~

The PCP's for each waste steam included in this procedure are based on laboratory testing, the results of which are included in " Topical Report Cement Solidified Waste to meet the stability requirements of 10 CFR 61" o

(STD-R-05-007, Rev. 2) prepared by Hittman. These PCP's ar's valid for all liner types using electric or hydraulic mixing heads provided by Hittman.

2.0 COLLECTION AND ANALYSIS OF SAMPLES 2.1 General Requirements 2.1.1 As required by the Radiological Effluent Technical Specifications for PWR's and BWR's the PCP shall be used to verify the solidification of at least one representa-tive test specimen from at least every tenth batch of each type of wet radioactive waste (e.g., evaporator bottoms, oily waste, resin and precoat sludge).

1.0

--ATTACHMENT TI- -- -

1104-28I Revision 4 2.1.2 For the purpose of the PCP a batch is defined as that quantity of waste required to fill a disposable liner to the waste level indicator.

2.1.3 IP any test specimen falls to solidify, solidification of the batch under test shall be suspended until such time as additional test specimens can be,obtained, alternative solidification parameters can be determined in accordance with the Process Control Program, and a subsequent test verifies solidification. Solidification of the batch may then be resumed using the alternate solidification 1

parameters determined.

2.1.4 If the initial test specimen from a batch of waste fails

.to verify solidification then representative test spect-mens shall be collected from each consecutive batch of i

{

the same type of waste until the three (3) consecutive initial test' specimens demonstrate solidifications. The Process Control Program shall be modified as requires to assure solidification of ' subsequent batches of waste.

2.1.5 For high activity wastes, such as spent resin or used 4

precoat, where handling of samples could result in i

personnel radiation exposures which are inconsistent with l

. the ALARA principle, representative non-radioactive samples will be tested. These samples should be as close I

to the actual waste and chemical properties as possible.

Typical unexpended mixed bed resin shall be used to 2.0 J

l y

-c

,----.c.-y_.

RTTACHFiEn 11~~- ~

1104-28I Revision 4 simulate the spent bead resin and the appropriate mix of anion to cation powdered resin shall be used to simulate used precoat.

2.1.6 All Chemicals used to condition or solidify waste or simulated waste in solidification tests shall be the actual chemicals used in. full sc, ale, solidification.

2.2 Collection of Samples 2.2.1 Radiological Protection 2.2.1.1 Comply with applicable Radiation Work Permits.

2.2.1.2 Test samples which use actual waste shall be disposed of by placing in the disposal liner.

2.2.1.3 A Test Solidification Data Sheet will be maintained for-each test sample solidified. Each Data Sheet will contain pertinent' information on the test sample and the o

liner numbers'of wastes solidified based on each test sample.

2.2.2 Test Solidification Data Sheet The Test Solidification Data Sheet will contain pertinent information on the characteristics of the test sample solidified so as to verify solidification of subsequent batches of similar wastes without retesting.

2.2.2.1 a.

The test sample data for concentrated waste will include, but not necessarily be limited to, the type of waste solidified, pH volume and or weight of sample, and amount of oil in sample as is applicable for the various waste streams.

3.0

ATTACHMENT II 1104-28f Revision 4 b.

The test sample data for spent resin and used j

precoat will include, but not necessarily be limited to, the type of waste solidified, and volume of

~

sample.

c.

The test sample data for other waste streams will include, but not necessarily-be limited to, the type of waste solidified, volume of sample, amount of oil in sample, pH and the ratio of sample volume to the final volume of the solidified product.

2.2.2.2 The Test Solidification Data Sheet will include the Liner Number, Batch Volume, and Date Solidified, for each batch solidified based on sample described.

2.2.3 Collection of Samples 2.2.3.1 Concentrated waste shall be kept heated or reheated to 100*F prior to testing.

NOTE:

If the concentrated waste had previously been neutra- :

lized prior to solidification to prevent boric acid precipitation the sample may be tested at ambient temperatures.

2.2.3.2 Sufficient sample shall be taken for botn gamma scan and l

chemistry analysis as required. A gama scan shall be run on each sample. Concentrated waste shall be analyzed f

for boron and pH.

Resin samples only require a pH analy-l sis of the slutce water. Since oily waste utilizes con-l centrated waste, only a pH analysis is required when sam-l Dies are mixed. These samples (except for resin) shall be retained for the test solidification. Applicable 4.0 t

ATTACHfiENT II 1104-28I Revision 4 information shall be used on the test solidification data " "

sheets.

NOTE:

Additional analysts maybe requested as deemed neces- :

sary by Radwaste Operations Engineering.

2.2.3.3 Samples should be drawn at least six hours prior to the planned full scale waste'solidif1'ation to allow adequate c

time to complete the required testing and vertftcation of solidification for Class A unstable waste. 28 hours3.240741e-4 days <br />0.00778 hours <br />4.62963e-5 weeks <br />1.0654e-5 months <br /> should be allowed, if practical, for Class A stable.

Class B and C wastes.

~

2.2.3.~4 The tank containing the waste to be solidified should be mixed by recirculating the tank contents for at least three volume changes prior to sampling to assure a representative sample.

2.2.3.5 If the contents of more than one tank are to be solldt-fied in the same liner then representative samples of each tank should be drawn. These samples should be of such size that when mixed together they form samples of standard size as prescribed in Section 2.2.3.2.

If the contents of a particular tank represents X percent of the total waste quantity to be' solidified then the sample of that tank should be of such size to represent X percent of the composite samples.

i i

I I

5.0

ATTACHMENT TI 1104-28I Revision 4 3.0 TEST SOLIDIFICATION AND ACCEPTANCE CRITERIA NOTE:

Information supplied by this procedure shall be in-cluded on the test solidification data sheet (Attach- :

I ments I through 7) for the particular waste stream to :

to be processed. A sequential sample number shall be :

used to identify the test. The. calculation sheet provided shall be used to determine the quantities of :

additives for performing full scale solidification.

3.1 Waste conditioning 3.1.1 For concentrated waste prior to solidification, the pH of the sample should be adjusted to a range of 7.4 to 9.2 (for 4 to 10 wt% boric acid) or > 11.5 (for 10 to 20 wt1 boric acid) with 50 wt.1 sodium hydroxide (NaOH). The quantity of NaOH added shall be recorde'd.

NOTE:

If foaming is apparent during the solidification testing the sample should be treated with an anti-foaming agent. The quantity of anti-foaming agent requi. red shall be recorded.

If a floating oil film is present in quantities 4

greater than 1 percent by volume, the oli should be broken up with Maysol or other emulsification agent.

a The quantity of emulsification agent added shall be

~~

recorded.

3.1.2 For bead or powdered resin, prior to solidification the pH of the sample should be adjusted to a range of 5 to 8.

The quantity of NaOH used shall be recorded. This is required for Class A unstable waste only.

3.1.3 If waste oil is to be solidified, an emulsifier shall be added to pretreat the waste sample as follows:

4

=

'l l

6.0

ATTACHMENT II 1104-28I Revision 4 i

a.

Allow one sample to. stand undisturbed until the water /otl interface is clearly discernible and determine the percent by volume of the oil. If this volume is greater than 40 percent add a sufficient auantity of concentrated waste to reduce the percent of oil by volume to less tDan.40 percent. Use the Test Solidification Data Sheet to determine the quantity of 11guld to add. When the correct oil to total volume is reached, measure and record the pH (pH paper may be used if a measurement cannot be

~

made with a meter because of oil fouling).

b.

Prior to the test sample solidification, the waste oll is treated with a predetermined quantity of emulsifier. For this application, Maysol 776 is used at'a ratto of 1 part emulsifier to 5.1 parts oil by volume. The emulsifier has a density of one.

a 3.2 Test Solidification j

NOTE:

Contact the Quality Controls Group to inform them of :

i the Test Solidification and if they care to witness l

the test.

l 3.2.1 Any sample to be solidtft.d shall be pretreated as specified in Section 3.1.

3.2.2 Test solidification should be conducted using a 1000 ml.

disposal beaker or siellar size container. Mixing should be accomplished by. stirring with a rigid stirrer untti a homogenous mixture is obtained, but in no case for less than two (2) minutes.

7.0

~

ATTACH?iENT II 1104-28!

Revision 4 3.2.3 For the test solidification of resin, measure into a atxing vessel the appropriate ratios of waste and water based on the waste classification chosen. Measure out the required quantities of cement and Metso beads or Calcium Hydroxide as shown in Table 1.

3.2.4 For the test solidification of used,orecoat, measure into a mixing vessel the appropriate ratios of waste and water i

based on the waste classification. Measure out the

.l required quantities of cement and Metso beads or Calcium Hydroxide as shown.,in Table 1.

3.2.5 For the test solidification of Concentrated Waste, measure into two mixing vessels 400 al. of pH adjusted.

waste each. Record,the volume and weight on Attachment 1 or 2.

Using Figure 1 and the % solids from the data sheets weigh'and record the required amount of cement.

Weigh out the required amount of metso beads and record on the data sheet.

.3.2.6 For the test solidification of Waste 011 and Concentrated Waste measure the appropriate of ratios of waste and Maysol No. 776 Into a mixing vessel as shown in Table 1.

Stir mixture for no less than 5 minutes. Measure out the required quantities of cement and metso beads.

l NOTE:

This sample may be obtained directly from the solldt- :

fication liner where a 40% oil - 60% concentra-1 ted waste mixture has been added and mixed for 10 i

minutes with the internal atxer.

I 1

i 8.0 i

~

ATTACHMEtlT II 1104-28I Revision 4 SOLIDIFICATION RATIOS Table 1 CLASS A UNSTABLE Waste Water Cement Metso Maysol Ca(OH )

EC-3 2

Bead Resin 240 gm 90 ml 189 gm 19 gm Used Precoat 300 gm 90 ml 223 gm 22 gm 447.3 gm 51.1'gm 27.5 gm Maste 011 and Conc. Waste 350 m1*

CLASS A STABLE. B AND C 11.5 gm 2.1 gm Bead Resin 240 gm 84.3 gm 178.2 gm 10 gm Used Precoat 382 gm 151 ml 444 gm 447.4 gm 51.8 gm 27.5 gm Waste 011 and Conc. Haste 3,50 m1*

  • The 350 m1 is divided as follows: 210 ml C.W., 140 ml Oil n

de 9.0

ATTALw1ENT TI ~~

1104-28I Revision 4 3.2.7 For Clas: A unstable wastes slowly add the cement while mixing. When added six for 2 minutes, then slowly add the metso beads while mixing.

3.2.8 After two (2) minutes of mixing and a homogeneous mixture is obtained allow the waste to stand for a minimum of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

3.2.9 For Class A stable. Class 8 and C waste, slowly add the cement while mixing. When added mix for 2 minutes.

Then slowly add the metso beads (if used) while mixing then mix for an additional 2 minutes.

In the case of bead resin, six the EC-3 and water together thoroughly. Add 4

s this solution to the resin. If calcium hydroxide is i

being used, slowly add to the waste two (2) grams at a time. Mix for three (3) minutes between additions until all the additive is used. Then add the cement and mix for two (2) additional minutes.

~

3.2.10 Allow the sample to cure for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at 120* 35'F.

NOTE:

If at any time during the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> cure time the sample meets the acceptance criteria, the liner solidification may proceed.

1 3.3 Solidification Acceptability The following criteria define an acceptable solidification process and process parameters.

3.3.1 The sample solidification is considered acceptable if there is not visual or drainable free water.

I 4

10.0

ATTACHMENT II 1104-28I Revision 4 3.3.2 The sample solidification is considered acceptable if upon visual inspection the waste tppears that it would hold its shape if removed from the beaker and it resists penetration by a rigid stick.

3.4 Solidification Unacceptability 3.4.1 If the waste falls any of the criteria set forth in Section 3.'3 the solidification will be termed unacceptable and a new set of solidification parameters will need to be established under the procedures in Section 3.5.

3.4.2 If the test solidification is unacceptable then the same test procedure must be followed on each subsequent bate.h i

of the same type of waste until three consecutive test samples are solidified.

a 3.5 Alternate Solidification Parameters 3.5.1 If a test sample for Class A unstable waste fall to

~

provide acceptable solidification of waste the following procedures should be followed.

1.

Mix equal volumes of dry cement and water to ensure that the problem is not a bad batch of cement.

2.

Add additional 50 wt.% NaOH to raise the pH above 8 but less than 9.2 for borated wastes.

3.

If the waste (other than waste oil) is only partially solidified, use lower waste to cement and Metso ratios. Using the recommended quantities of cement and Metso Beads, reduce the waste sample to l

11.0 l

\\

ATTACHMENT II 1104-28I Revision 4 325 mi and continue reducing the sample volume by 25 ml. until the acceptability criteria of Section 3.3 are met.

4.

If the waste oil mixture is only partially solidified try using lower waste to cement ratios.

Reduce the quantity ~of waste-by 25 mi. and the emulsifier by 1 ml., (This will result in a slightly higher concentration of emulsifier in the waste) and proceed with the test solidification. Continue with simi.,lar reductions until a satisfactory product is achieved.

3.5.2 If the test sample fails to provide acceptable solidification of waste following the actions of Section 3.5.1 the following sample analysis should be performed.

The waste should fall within the acceptable range.

de 1

i

)

12.0

- ~ -

ATTACHMENT II 1104-28I Revision 4 SAMPLE ANALYSIS Concentrated Waste pH 7.4 to 9.2 (4 to 10 WT1 Boric Acid)

> 11.5 (10 to 20 WT1 Boric Acid)

Detergents No appreciable-foaming during agitation i

011 (floating)

< 1 percent by volume Bead and Used Precoat Resin pH

>5 Detergents No appreciable foaming during agitation Oil (floating)

< 1 percent by volume Waste Oil Mixed with Concentrated Waste pH

>5 Percent Boric Acid i 14 (prior to mixing) ppe as Baron i 24000 (prior to mixing)

Oil i 40 percent by volume Detergents No appreciable foaming during agitation 13.0 1

ATTACHMENT II 1104-28I Revision 4 3.5.3 For Class A stable. Class B and C waste test samples that fall to solidify, Contact Radwaste Operations Engineering for resolution.

e I

a M e

i 14.0

ATTACHMENT II 1104-281 Revision 4 ATTACHNENT 1 CLASS A UNSTABLE AND STABLE, CLASS B AND C TEST SOLIDIFICATION j

DATA SHEET FOR 4 TO 10 NT% BORIC ACID Liner No.:

Sample No.:

Date:

I.

PRECONDITIONING Weight Percent of Boric Acid (in decimal form)

(1) i Weight of Untreated Sample', gms:

(2)

Weight of 50% NaOH Added to Adjust pH, ges:

(3)

Weight of Anti-foam Added, ges:

(4)

Wei,ght of Emulsifier Added, gas:

(5)

II. OETERMINATION OF' PERCENT SOLIDS OF SAMPLE Weight of Untreated Sample (2) x Percent Boric Acid (1) gm * (6)

Weight of 50% NaOH (3) x 0.5 gm (7)

Weight of Solids in Treated Sample, gas:

(4) + (5) + (6) + (7):

(

)+(

)+(

)+(

)=

gms (8)

Percent Solids in Treated Sample:

100 x (8) + [(2) + (3) +'(4) + (5)]:

100 x ( ) 4- [(

)+(

)+(

)+(

)] -

(9)

~~

III. DETERMINATION OF WATER IN SAMPLE FOR SOLIDIFICATION:

Volume of Sample to be Solidified, ml (10)

Weight of SaWple to be Solidified, gms (11)

Weight of Water in 50% NaOH Used to Adjust pH, gms:

(11)

("355 x (3)] x 0.5:

( )

i

( 356 x ( )] x 0.5:

(12)

Weight of Water in Sample to be Solified, ges:

((11) - (12)] x (1 - (1)] + (12):

((

)-(

)] x (1 - (

)] + (

)=

(13) 15.0

= -.

ATTACHMENT II 1104-281 Revision 4 ATTACHMENT 1 (Cont'd)

IV. DETERMINATION OF QUANTITY OF PORTLAND TYPE I CEMENT AND METSO BEADS TO USE FOR SAMPLE SOLIDIFICATION, ges:

Using Figure I, find the % solids in sample (9), and DETERMINE the Water /Coment Ratio:

(14)

Weight of Cement to Use, ges:

(13)

(

)

(15)

(14,

(

)

Weight of Metto Beads to use, gas:

(15) x 0.15 -

(16)

Additional batches solidified based on this sample solidification:

Liner Waste Liner Waste Liner Waste No.

Vol.

Date No.

Vol.

Date No.

Vol.

Oate 2.

5.

8.

3.

6.

9.

4.

7.

10.

V.

SAMPLE INSPECTION Sample cured for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> ' at 120*F g 5'F:

Vertfled By Date,

Sample contains "No Free Liquid":

Vertfled 8y Date Sample is a " Free Standing Monolith":

Verifted 8y Date FOOTNOTES

'It is not necessary to cure at 120*F for Class A Unstable Waste.

If Class A Stable, Class 8 or C wastes are qualtfled in less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, note the total hours cured.

16.0

+m----

--y

+

c-w--

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 1 (Cont'd)

SOLIDIFICATION CALCULATION SHEET FOR 4 TO 10 WEIGHT PERCENT 80RIC ACID Volume of Untreated Waste to Add to Liner, ft*:

500 Max. Treated Haste Vol.

Item 3 + Item 4 + Item 5 + 500 x

from So11fication Data Tables 500 ft" (1)

(

) +(

) + (

) + 500 x i

Volume of Additive's to Add to Liner, Gallons:

i Item 3 x.0097 x (1) -

gallons (2) gallons (3)

Item 4 x 1.04 x (1) gallons (4)

Item 5 x 1.04 x (1) 4 Volume of Treated Waste to be Solidified', ft' (2) + (3) + (4)

(1) +

7.48

(

)+(

) +(

)

ft' (5)

(

)+

7.48 Cement Quantity for Full Scale Solidification, 1bs:

1,,

Item 15 x 0.156 x (5) -

Ibs (6)

ASMS Quantity for Full Scale Solidification, lbs:

(6) x.15 -

(Ibs)

(7)

FOOTNOTES

'The volume of treated waste to be solidified in a single 11ner cannot exceed the maximum waste volume listed on the attached Solidification Data Tables.

17.0

ATTACHMENT II 1104-281 Revision 4 ATTACHMENT 1 (Cont'd)

SOLIDIFICATION DATA TABLES FOR 4 TO 10 WEIGHT PERCENT BORIC ACID HN-100 HN-100 LVM Series l' Series 2' Series 3 S

Series 3" HN-100TVA Usable Liner Vol. (cu. ft.)

143 143 143 143 160.0 125.0 Max.-Treated Maste Vol. (cu. ft.)

89.4 87.3 105.8 105.8 118.4 92.5 Max. Solidified Waste 120.9 117.9 143 143 160.0 125.0 Vol. (cu. ft.)

Max. Rad. Level 12 12 12 3

12 10 R/hr Cohtact

' For less than A quantitles of LSA waste, use data for Series 3 cask.

  • For less than A quantities of LSA waste.

a 1

de 9

i 18.0 i

l

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 2 CLASS A UNSTABLE AND STABLE, CLASS B AND C TEST SOLIDIFICATION DATA SHEET FOR > 10 TO 20 WT% BORIC ACID Liner No.:

Sample No.:

Date:

I.

PRECONDITIONING Weight Percent of Boric Acid (in decimal form)

(1)

(2)

Weight of Untr'eated Sample, gms:

(3)

Weight of 50% NaOH Added to Adjust pH, gms:

(4)

Weight of Anti-foam Added, gms:

" Weight of Emulsifier Added, gms:

(5)

II. DETERMINATION OF PERCENT SOLIDS OF SAMPLE Weight of Untreated Sample (2) x Percent Boric Acid (1) gm (6)

Weight of 50% NaOH (3) x 0.5 gm (7)

Weight of Solids in Treated Sample, gms:

(4) + (5) + (6) + 0):

gms (8)

(

)+(

)+(

)+(

)

Percent Solids in Treated Sample:

100 x (8) + [(2) + (3) + (4) + (5)]:

100 x ( ) + [(

)+(

)+(

)+( )).

1 (9)

III. DETERMINATION OF WATER IN SAMPLE FOR SOLIDIFICATION:

Volume of Sample to be Solidified, el (10)

Weight of Sample to be Solidified, gms (11)

Weight of Water in 50% NaOH Used to Adjust pH, gms:

(11) t T65 x (3)) x 0.5:

( )

(W x ( )] x 0.5:

(12)

Weight of Water in Sample to be Sollfled, ges:

[(11) - (12)] x [1 - (1)] + (12):

[(

)-(

)] x [1 - ( )] + (

)=

(13) 19.0

ATTACHfiENT II 1104-28I Revision 4 ATTACHMENT 2 (Cont'd)

IV. DETERMINATION OF QUANTITY OF PORTLAND TYPE I CEMENT AND METSO BEADS TO USE FOR SAMPLE SOLIDIFICATION, gms:

Using Figure I, find the % solids in sample (9), and DETERMINE (14) the Water / Cement Ratio:

Weight of Cement to Use, gms:

(13)

(

)

(15)

(

)

(14)

Weight of Metso Beads to use, gms:

(16)

(15) x 0.15 -

Additional batches solidified based on this sample solidification:

Liner Waste Liner Waste Liner Waste No.

Vol.

Date No.

Vol.

Date No.

Vol.

Dati 2.

5.

8.

3.

6.

9.

4.

7.

10.

V.

SAMPLE INSPECTION Sample cured for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> ' at 120*F 5*F:

verified By Date,

Sample contains "No Free Liquid":

Vertfled By Date Sample is a " Free Standing Monolith":

Verified By Date FOOTNOTES

'It is not necessary to cure at 120*F for Class A Unstable Waste.

If Class A Stable, Class B or C wastes are qualified in less tnan 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, note the total hours cured.

20.0 l

l

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 2 (Cont'd)

SOLIDIFICATION CALCULATION SHEET FOR > 10 TO 20 WEIGHT PERCENT BORIC A Volume of Untreated Waste to Add to Liner, ft':

Max. Treated Waste Vol.

500 Item 3 + Item 4 + Item 5 + 500 x

from Solification Data Tables 500 ft*

(1)

( ) +(

) + (

) + 500 x Volume of Additives to Add to Liner, Gallons:

gallons (2)

Item 3 x.0097 x (1) gallons (3)

Item 4 x 1.04 x (1) gallons (4)

Item 5 x 1.04 x (1)

Volume of Treated Waste to be Solidtfled', ft' (3) + (4)

(2)

+

(1) +

7.48

(

) +(

) +(

)

ft*

(5) 7.48

(

) +

Cement Quantity for Full Scale Solidification, 1bs:

Item 15 x 0.156 x (5) -

lbs (6)

ASMS Quantity for Full Scale Solidtftcation, 1bs:

(6) x.15 -

(Ibs)

-(7)

FOOTNOTES

'The volume of treated waste to be solidified in a single liner cannot exceed the maximum waste volume listed on the attached Solidification Data Tables.

21.0 1

ATTACHf1ENT II 1104-281 Revision 4 ATTACHMENT 2 (Cont'd)

SOLIDIFICATION DATA TABLES FOR > 10 TO 20 WEIGHT PERCENT BORIC ACID HN-100 HN-100 LVM Series l' Series 2' Series 3 S'

Series 3*

HN-100TVA Usable Liner Vol. (cu. ft.)

143 143 143 143 160.0 125.0 Max. Treated Waste.

Vol. (cu. ft.)

83.4 81.4 102.8 102.8 115.0 89.9 Max. Solidified Waste 116 113.2 143 143 160.0 125.0 Vol. (cu. ft.)

Max. Rad. Level 12 12 12 3

12 10 R/hr Contact

' For less than As quantities of LSA waste, use data for Series 3 cask.

  • For less than As quantitles of LSA waste.

M de 22.0

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 3 CLASS A UNSTABLE AND STABLE, CLASS 8 OR C TEST SOLIDIFICATION DATA SHEET FOR WASTE OIL Liner No.:

Sample No.:

Date. -

I.

SAMPLE PREPARATION (3.2.6)

Sample Volume, ml. :

(1) 011 Volume, el:

(2)

Percent 011 by Volume:

(3)

Quantity of Water Removed or Added to Obtain 40% 011 by Volume:

(4).

pH:

(5)

Qu'antity of Emulsifier Added, m1:

(6)

Grams of Portland Type I Cement:

(7)

Grams of Anhydrous Sodlum Metasilicate (ASMS):

(8)

Additional batches solidified based on this sample solidification:

Liner Waste Liner Waste Liner Waste No.

Vol.

Date No.

Vol.

Date No.

Vol.

Date 2.

5.

8.

3.

6.

9.

4.

7.

10.

II. SAMPLE INSPECTION Test So11difications Performed by:

Date Sample cured for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />' at 120* 1 'F:

5 Vertfled 8y Date Sample Contains "No Free Liquid":

Verified By Date 23.0

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 3 (Cont'd)

III. PARAMETERS FOR FULL SCALE SOLIDIFICATION Quantity of Maysol 776:

(6) ml Maysol 776 (9) from above x 0.0214 - gallons Emulsifier per ft' waste (including water).

Quantity of Portland Type 1 Cement:

(7)

(10) gas cement from above x 0.1784 = lbs cement per ft' waste (including water).

Quantity of Anhydrous Sodium Metas11tcate:

(8)

(11) gms ASMS from above x 0.1784 =

10s. ASMS per ft' waste (including water).

FOOTNOTES:

1 If the sample is qualified in less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> cure time, note the total hours cured. Class A Unstable wastes may,be cured at room tempera-ture for 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

~

9 4

5 24.0

ATTACHMENT II 1104-28I Revision 4 ATTACEMENT 3 (Cont'd)

CLASS A STABLE AND UNSTABLE, CLASS B AND C WASTE SOLIDIFICATION CALCULATION SHEET FOR OILY WASTE Volume of waste' (including water) to be solidified', ft':

(1)

Emulsifier Ratio, gallons /ft':

(Item 9, Part III)

(2)

Cement Ratio, lbs/ft':

(Item 10, Part III)

(3)

ASMS Ratto, lbs/ft*:

(Itsm 11. Part III)

(4)

Quantity of Emulsifier to be aaded:

(1) x (2) -

gallons (5)

Waste Volume (ft')

gallons /ft' Quantity of Portland Type I Cement to be added:

(1) x (3) -

Ibs (6)

Waste Volume (ft')

lbs/ft' Quantity of ASMS to be added:

lbs (7)

.( 1 ) - x (4)

Hasta Volume (ft')

lus/ft*

FOOTNOTES:

-1 For the purpose of this PCP, the volume of waste is considered as the volume of oil plus the volume of water necessary for solidt,ficatIon.

2 The volume of waste to be solidified cannot exceed the maximum volumes listed on the Class A Stable and Unstable, Class B and C Solidification Data Sheets.

25.0 l

ATTACHfiENT ZI 1104-28I Revision 4 ATTACHMENT 3 (Cont'd)

SOLIDIFICATION DATA TABLES FOR OILY WASTE HN-100 Series 1 Series 2 Series 3 LVM 1005 Usable Liner Volume, (ft')

143 143 143 160 143 Max. Waste Volume (otl and water), ft' 86.4 84.3 101.0 113.0 101.0 Max. Solidified Volume, ft' 122.3 119.4 143.0 160.0 143.0 Maysol 776 Added at Maximum Waste Volume (gallons) 50.8 49.6 59.4 66.5 59.4 Portland Type I Cement Added at Maximum Waste Volume lbs 6891.8 6724.4 8056.5 9014.2 8056.5 1

94 lb bags 73.3 71.5 85.7 95.9 85.7 ASMS Added at Maximum Waste Volume Ibs 794.6 775.2 928.8 1039.2 928.8 100 lb ba9s 8.0 7.8 9.3 10.4 9.3 0

Maximum Rad Level R/hr Contact 12 12 12 12 3

  1. m 26.0 i

,, _ _, - ~ -

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 4 CLASS A UNSTABLE TEST SOLIDIFICATION DATA SHEET FOR USED PREC0AT Liner No.:

Sample No.:

Date:

I.

SAMPLE PREPARATION (3.2.4)

(1)

Sample Volume, ml.:

pH':

Volume NaOH solution used to adjust pH. mi s' 2 )

(3)

Quantity of 011 T.:

(4)

Quantity of Emmulsifier, (207. by volume of oil) al':

(5)

Quantity of Anti-Foaming agent, st:

Quantity of Cement Added:

Cement Ratio * (#/ft' Waste)

Sample gas Sample (6)

Quantity of Additive Added:

Additive Ratio' (#/ft' Waste)

Sample gms Sample (7)

Product Acceptable: Sample Yes No (If no refer to Section 3.5 and proceed as directed)

Additional batches solidified based on this sample solidtfication:

Liner Maste Liner Maste i

Liner Waste No.

Vol.

Date No.

Vol.

Date No.

Vol.

Date 2.

5.

8.

3.

6.

9.

4, 7,

10.

II. SAMPLE INSPECTION Test Solidification Performed by:

Date Sample Contains "No Free Liquid":

Verified By Date 27.0

ATTACHMENT II 1104-281 Revision 4

'~ '-

ATTACHMENT 4 (Cont'd)

FOOTNOTES 1

If pH adjust is required to bring the pH > 5.0, note chemical used, quantity.used and pH after adjustment.

2 The cement-to-waste ratio is 48.7 pounds of cement per cubic foot of settled powdered resin.

If a quantity of cement is used for the test solidification that is different from the quantity listed, multiply the gms by 0.218 to obtain the correct pounds of cement per cubic foot of settled powdered resin.

3 The additive-to-waste ratto is 4.9 pounds additive per cubic foot of settled powdered resin.

If alternate additive ratios are used see the multiplier in Note 2 to obtain the correct pounds of additive per cubic foot of powdered resin.

4 The following table shows the minimum mix ratto for a 390 gas sample size of 5 to 27 dry weignt percent powdered resin:

Minimum Slurry Concentration, Cement Additive Cement Additive Dry Weight Percent (gms)

(gms)

(lb/ft')

(Ib/ft')

5 - 12 429 42.4 93.5 9.4 13 - 21 351 35.1 76.6 7.7 22 - 27 234 23.4 51.0 5.1 t N de 28.0

e

=

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 4 (Cont'd)

SOLIDIFICATION CALCULATION SHEET FOR USED PREC0AT Waste Volume to be Solidified';

(1)

Cement Ratto, #/ft*: Sample (2)

Item 6 - Attacnment 4 Data Sheet Additive Ratto, #/ft*: Sample (3)

Item 7 - Attacnment 4 Data Sheet

~

Cement Quantity *

(1) x (2) -

Ibs.

(6)

Waste volume ID/ft' Additive Quantity

  • i (1) x (3) -

Ibs.

(7)

Waste Volume Ib/ft"

~

Quantity of Mater to be added:

8 gallons (8)

(1) x Waste Volume gal /ft' Divide the Quantity of Water to be added (8) by the supply flowrate (9) to determine how long water should be pumped to the disposal liner or use a preseasured quantity of water.

(8) +

gal / min (9) -

minutes (10)

Quantities of additional additives that must be added to th'e liner are l

found by multiplying the volume of the additive used in the test solidt-fication, in m1, by 0.0249 and then by the volume of waste to be solidt-fled. Volumes of additional additives are taken from items 2, 4, and 5 on Attachment 4 Data Sheet.

e1 x 0.0249 Xz (1) -

gallons *

(11)

Item 2, 4, or 5 FOOTNOTES:

1 The quantity of waste to be solidified in a single liner can not exceed the maximum waste volume listed on the Class A Unstable Waste Solidifica-tion Data Table.

2 6 and 7 define the recommended quantity of cement and additive respec-tively that must be mixed with the waste to assure solidification.

i 29.0

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 4 (Cont'd) 3 For decanted powdered resin, add 2.02 gallons of water per cubic foot of settled waste and 2.36 gallons of water per cubic foot of dewatered powdered resin.

4 Reduce the quantity of waste in the liner by 1 ft for every 10 gallons 8

of additional additive.

I l

O

' et g

e l

1 30.0

t ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 4 (Cont'd)

SOLIDIFICATION DATA TABLE FOR USED PRECCAT HN-600' HN-200 Usable Liner Volume, ft*

65 60 Max. Solidified Waste Vol. ft*

65 60 Max. Dewatered or 8

8 Decanted Maste Vol., ft' 42.4,

39.2 Cement added at Max. Waste Vol.: pounds 2063 1910

I ft' bags 22 20 1/4

. ater Added at Max Waste W

Volume: gallons Dewatered 100*

93 j

Decanted 86 79 Anhydrous Sodium Metastilcate Added at Max. Waste Vol.: Pounds 206 191 100 bags 2

2 Max. Radiation Level R/hr Contact of Liner 100 800 i

FOOTNOTIS:

g 1

Values shown for regular and grappable. Multiply all values by 0.922 for stackable or 0.893 for the grappat,le/stackable liners. See Footnote 4.

2 Based on 18" maximum depth of filter sludge in the liner,16-3/4 inches in the stackable or grappable/stackable.

3 8ased on 31 1/2" maximum depth of filter sludge in the liner.

4 For dewatered powdered resin, use 100 gallons of additional water for all sizes of HN-600 liners.

31.0

-c ATTACHMENT II 1104-281 Revision 4

'- ~~

ATTACHMENT 5 CLASS A-STA8LE. CLASS 8 AND C TEST SOLIDIFICATION DATA SHEET FOR USED PREC0AT 4

Liner No.:

Sanole No.:

Date:

1.

SAMPLE PREPARATION (1)

Sample Volume. m1:

Initial pH:

Quantity of 011'. %

. Grams Ca(OH): to raise pH to 1 11.0, gn:

(2) 8 Grass Portland Type I Cement added, ge:

(3) i II. SAMPLE INSPECTION Test Solidtftcation Performed by:

Date Sample cured for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />' at 120' 35'F:

Vertfted By Date Sample Contains "No Free Liquid":

Vertfted By Date Sample is " Free Standing Monolith":

Vertfted By Date III. PARAMETERS FOR FULL SCALE SOLIDIFICATION:

Quantity of (Ca OH)::

(2) gm Ca(OH): from above (4) x 0.172 -

Ib Ca(OH) per ft' decanted /dewatered powdered restn.

Quantity of Cement:

(3) gm Cement from above (5) x 0.172 =

lb Portland Type I Cement per ft' decanted /dowatered powdered resin.

FOOTNOTES I

Must be 11% of waste volume.

2 If the sample is quellfled in less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> cure time note the total hours cured.

32.0

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 5 (Cont'd)

WASTE SOLIDIFICATION CALCULATION SHEET FOR USED PREC0AT (1)

Waste Volume to be Solidified':

Ca(OH): Ratio; #/ft*:

(Item 4. Attachment 5 (2)

Data Sheet)

Cement Ratto; */ft*:

(Item 5. Attachment 5 (3)

Data sheet)

Quantity of Water to be Added:

  • gal /ft' -

gallons (4)

(1) x Quantity of Calcium Hydroxide (Ca(OH):) to be added:

(1) x (2) -

Ibs (5)

Waste Volume, Ib/ft' Quantity of Cement (Portland Type I) to be added:

(1) x (3) -

Ibs

( 6')

Waste Volume Ib/ft' 1

The volume of waste, either dewatered or decanted settled solids, to be solidified in a liner cannot exceed the maximum settled waste volume listed on th.e Class B Waste Solidification Data Table.

2 For decanted powdered resin, add 2.75 galicas'of water per cubic foot of settled waste, and 3.12 gallons of water per cubic foot of dewatered a

waste.

s I

33.0 i

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 5 (Cont'd)

NASTE SOLIDIFICATION DATA TABLE FOR USED PREC0AT HN-600' HN-200 Usable Liner volume, ft' 65 60 Max. Solidified Waste Vol. ft' 65 60 Max. Settled Waste Vol., ft' 36.58 33.7'

~

Water Added at Max.

Haste Volume: gallons Dewatered

!14*

105 Decanted 100

'93 Ca(OH): Added Footnote (5)

Footnote (5)

Cement Added at Max'.

I Waste Vol.: Pounds 2787 2574 1 ft' bags-29.7 27.4 Max. Radiation Level R/hr Contact of Liner 100 800 9,

FOOTNOTES:

1 Values shown for plain and grappable liner. Multiply all values by 0.922 for stackable or 0.893 for the stackable/grappable liners. See Footnote 4.

2 Based on 15 inches of settled powdered resin in the liner, 14 inches for stackable and stackable/grappable.

3 Based on 28 1/2 inches of settled powdered resin in the liner.

4 For dewatered powdered resin use 114 gallons of additional water for all sizes of HN-600 liners.

5 To be calculated for each solidification.

34.0

ATTACHMENT II 1104-28I Revision 4

~

ATTACHMENT 6 CLASS A UNSTABLE TEST SOLIDIFICATION DATA SHEET FOR BEAD RESIN Liner No.:

Sample No.:

Date:

I.

SAMPLE PREPARATION (3.2.3)

Sample Volume, ml:

(1)

Sample pH:

Volume NaOH solution used to adjust pH. ml:

(2)

Quantity of 011 %:

(3)

Quantity of emulsifier (201 by volume of oll), al:

(4)

Quantity of anti-foaming agent, ml:

( 5')

Temperature at Solidification, 'F:

Quantity of Cement Added:

Cement Radio' (lbs/ft' Waste)

Sample gms Sample (6)

Quantity of Additive Added:

Additive Ratio * (Ibs/ft' Waste)

Sample gms Sample (7)

Product Acceptable: Sample A Yes No Additional batches solidified based on this sample solidification:

Liner Waste Liner Waste Liner Maste No.

Vol.

Date No.

Vol.

Date No.

Vol.

Date 2.

S.

8.

3.

6.

9.

4.

7.

10.

II. SAMPLE INSPECTION Test So11difications Performed by:

Date Sample Contains "No Free Liquid":

Verified 8y Date 35.0

ATTACHMENT II 1104-28I Revision 4

"~

ATTACHMENT 6 (Cont'd)

FOOTNOTES:

1 The cement ratio is defined as the pounds of cement required to solidify one cubic foot of dewatered waste. The ratio in this PCP is 39.3 lbs/ft'.

2 The additive ratio is defined as the pounds of additive required to solidify one cubic foot of dewatered waste. The ratio in this PCP is 3.93 lbs/ft'.

1 e

t I

1 ese e

e e

4 36.0

ATTACHMENT II 1104-28I Revision 4 ATTACHMENT 6 (Cont'd)

-~

J NASTE SOLIDIFICATION CALCULATION SHEET FOR BEAD RESIN (1)

Waste Volume', ft*:

(2)

Cement Ratio; lbs/ft*: Sample Item 6 Data Sheet Additive:

(3)

Additive Ratto, Ibs/ft': Sample

~ '

Item 7 Data Sheet 2

Cement Quantity (1) x (2) -

Ibs.

(4)

Haste Volume Additive Quantity *

(1) x (3) -

lbs.

(5)

Waste Volume Quantity of Water to be Added in Gallons:

(1) x 2.25 -

gallons (6)

Waste Volume Quantitles of additional additives that must be added to the liner are found by multiplying the volume of the additive used in the test solidification, in m1. by 0.0249 and then by the volume of waste to

'be solidified. Volumes of additional additives are taken from*1tems 2, 4, and 5 on the Data Sheet.

ml x 0.0249 x (1) -

gallons' Ites 2, 4, or 5 Data Sheet FOOTNOTES:

1 The quantity of dewatered waste to solidified in a single liner cannot exceed the maximum viste volume Itsted on the attached Solldtftcation Data Tables.

2 (4) and (5) define the recommended quantity of cement and additive respectively that must be mixed with the waste to assure solidification.

3 Reduce the quantity of water in the liner by 1 ft' for every 10 gallons of additional additives.

37.0

ATTACHMENT II 1104 281 Revision 4 ATTACMMENT 6 (Cont'd)

$0L10!FICATION DATA TABLES FOR SEAD RESIN

- =.....................

ggi:

For the Recommences amount of cement and Asettive.

4 M-100 No.600*

Series 1 Sertas 2 Cartan 1 M

M i

1 1

e usinle Liner 143.0 143.0 143.0 143.0 59.5 19.6 64.6

$7.7 64.6 vol me (cu. ft.)

Ma2. Dewatered Weste vol. (cu. ft.)

105.0 102.3 110.0 110.0 44.J -

48.3 52.4 46.8 52.4 Mai. Solidtfied Weste Vol. (cu. ft.)

129.5 126.2 143.0 143.0 59.5 59.6 64.6 57.7 64.6 Cement Addes at Max. Waste Vol.

Wetgnt (1bs.)

4126.1 4020.8 4320.7 4320.7 1896.6 1899.6 2059.0 1839.0 2059.0 volume (Dags) 43.8 42.8 46.0 46.0 20.2 20.2

.21.9 19.6 21.9 Annyorous Sodium Metas111cate Added at Max. Weste Vol.

205.9 143.9 205.9 We19mt (its.)

412.6 402.1 432.1 432.1 189.6 190.0 volume (Dags) 4.1 4.0 4.3 4.3 1.9 1.9 2.1 1.4 2.1 Water Adeed to Men.

Waste vol. (Gallons) 236.2 230.2 247.3 247.3 108.6 104.8 117.9 105.3 117.9 Mas. Radiation Level

,R/hr Contact 12 12 12 3

800 100 100 100 100

= M -640 $tackable G = M-640 Grappa51e

$+G = M 600 Stacka01e/Grappdele R-

= M-600 Re9ular

.9 e e

38.0 i

l

ATTACHMENT II 1104-28I Revision 4

' ~ - -

ATTACHMENT 7 CLASS A STABLE, CLASS 8 AND C TEST SOLIDIFICATION OATA SHEET FOR BEAD RESIN Liner No.:

Sample No.:

Date:

  • ~
  • 1.

SAMPLE PREPARATION (1)

Sample Volume, ml:

(2) 4 height of EC-3 gms:

(3)

Weight of Water, gms:

(4)

Quanti.ty of 011, %:

(5)

Weight of Emulsifier (201 by volume of oil) ges:

(6)

Weight'of Anti-foam agent, ges:

(7)

Initial.pH:

Weight of Ca (OH): to raise pH to 1 11.5', ges:

~(8)

(9)

Final pH:

(10)

Weight of Portland Type I Cement, ges:

~

Additional batches solidified based on this sample solidification:

1 Liner Maste Liner Waste Liner Maste No.

Vol.

Date No.

Vol.

Date No.

Vol.

Date 2.

S.

8.

3.

6.

9.

4.

7.

10.

II. SAMPLE INSPECTION Sample cured for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />

  • at 120' g 5*F:

Vertfted By Date 39.0 o

ATTACHMENT II

'1104-281 Revision 4 ATTACHMENT 7 (Cont'd)

CLASS A STABLE, CLASS B AND C TEST SOLIDIFICATION DATA SHEET FOR BEAD RESIN Sample contains "No Free Liquid":

Vertfied By Oate Sample is a " Free Standing Honolith":

Vertftec By Date III. PARAMETERS FOR FULL SCALE SOLIOIFICATION:

Quantity of EC-3:

(2) x 0.0210 -

galfons EC-3 per ft' of dewatered resin (11)

Quantity of Water:

(3) x 0.0249 -

gallons water per ft*

of dewatered resin (12)

Quantity of Emulsifier:

(5) x 0.0249 -

gallons water per ft*

of dewatered resin (13) 4

~

Quantity of Anti-foam Agent:

(6) x 0.0249 -

gallons anti-foam per ft' of dewatered resin (14)

Quantity of Calcium Hydroxide:

(8) x 0.2082 -

Ibs cement per ft' of dewatered resin (15)

Quantity of Portland Type I Cement:

(10) x 0.2082 -

Ib5 CA(OH): per ft' of dewatered resin (16)

FOOTNOTES 1

Added in accordance with Section 3.2.9.

l 2

If the sample is quallfled in less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> cure time, note the total hours cured.

40.0

ATTACHMENT II 1104-281 Revision 4 ATTACHMENT 7 (Cont'd)

NASTE SOLIDIFICATION CALCULATION SHEET FOR BEAD RESIN Volume Dewatered Resin to be So11dified':

ft*

(1)

Quantity of EC-3:

gallons (2)

(1) x Item 11 Attachment 7 Data Sheet Quantity of Water:

gallons (3)

(1) x Item 12 Attacnment 7 Data Sheet Quantity of Emulsifier *:

gallons (4)

(1) x Item 13 Attachment 7 Data Sheet Quantity of Anti-Foam Agent *:

gallons (5)

(1) x Item 14 Attachment 7 Data Sheet Quantity of Calclus Hydroxide:

pounds (6)

(1) x Item 15 Attachment 7 Data Sheet Quantity of Portland Type ! Cement:

pounds (7)

~~

(1) x

=

Item 16 Attachment 7 Data Sheet 1

The volume of dewatered bead resin to be sollfted cannot exceed the maximum waste volume listed on the Class A Stable, Class 5 and C Test So11dification Data Sheet for Read Resin.

1 2

Reduce the quantity of waste in the liner by I ft for every 10 gallons 8

of emulsifier plus anti-foam agent added to the liner.

~

1 41.0

,_~ --- _-.

~-

ATTACHMENT II 1104-201 Revision 4 ATTACMM8NT 7 (Cont'd)

SOLIO!FICATION DATA TASLES FOR 8(A0 Et$1N M-100 M-600888 tarias 1 Carian 2 tariet 1 g

M 200 1

C

$tG e

Usable Liner 143.0 143.0 143.0 143.0 59.5 59.6 64.6 57.7 64.6 volume (cu. f t.)

Mas. Sensetered 108.8 106.0 114.4 122.4 47.6 47.7 51.7 46.2 51.7 Westa volume (cu. f t.)

Man. Solidified 136.0 132.5 143 153.0 59.5 59.6 64.6 57.7 64.6 Weste volume (cu. f t.)

C;(OM)s aseed 4L Mem. Weste Volumets:

Weight (Its.)

327.5 319.1 344.4 364.4 143.3 143.6 155.6 139.1 155.6 volume (tags) 6.6 6.4 6.9 7.4 2.9 2.9 3.1 2.8 3.1 Portland Type !

Cement Added ct Mez. Weste Vol.'88 Weight (195.)

4036.5 3932.6 4243.9 4541.0 1766.0 1769.7 1918.1 1714.0 1919.1 Volumme (tegs) 42.9 41.8 45.1 48.3 18.8 18.8 20.4 18.2 20.4 Water Agend to 228.5 222.6 257.0 240.2 100.0 100.2 108.6 97.0 108.6 Man. Waste vol. (Gallons)

EC-3 Added to Mas.

4.8 4.7 5.1 5.4 2.1 2.1 2.3 2.0 2.3 Weste Ve. (Gallons)

Mai. Rad. Level 12 12 12 3

800 100 100 100 100 R/hr Centact (1) *5 = M -640 5tactable G e M -644 Grappetle 5+4 = M -600 5tacksele - Grappeele R = M-608 Regular dB e l

l 42.0

t 2

4 i

-.~.......,

1 o

ig.

_* ** *

  • f

~ ~ "~

" ***" "*~**'

* "k

=C

g

<a o g

. 3. __.

n 3, g, U

-..l q

D-X l

i 6-.

i.

i <

.N..UEII.L t

\\...

f*1WP erW ? M.

l ARTTleTMn 1

1..

f g

J

=

g g._

1 I

..6 I

[

... 4....

i j

{....

J.

l

~.. _

..g 0.9

...p.

y..

i 4.__. _.._. _. i __ _.

4 9

1

_ __ (.._ _.A

\\

\\*

k O

1

_ _,..e_.

1

,4

&e t

);

g p_...

i i

l s._ _

. j.....T'..

i.

...._.4,_.

u

. _4 4

\\

_..i i

i I

1 t

g g

.=

o u

.7...

...._i.._._..

g

...w q. _ _

+

..r-_--=

S 85

._..i.,._.......-- -.!

3 I*

4 _.

x

.e

- _g
1

.7._....

1 9...

q.

P

=

j g.

s3 1

,.i..._.

=

na

\\---

1 W

.4 l

3

...m j

1

\\

l 4

1 i

I

.L...

l O.8

. _. s I

/

i i

t i

i D

10 13 20 23 I solids of pE Adjusted e ste J

r,


_,,--n-.--,n,


.,,,,---n--,,r.,.,


_,--,---,,,,.---,--.-en,

.,,, - - - - - - - - - -.