ML20127M392

From kanterella
Jump to navigation Jump to search
Rev 1 to Procedure 23A6999, Isolation Condenser & Passive Containment Condenser Test Requirements. Four Oversize Drawings Encl
ML20127M392
Person / Time
Site: 05200004
Issue date: 11/12/1991
From: Baylis G, Fitzsimmons G, Wilhelmi F
GENERAL ELECTRIC CO.
To:
Shared Package
ML20127M332 List:
References
23A6999, NUDOCS 9301280192
Download: ML20127M392 (124)


Text

~

p.

_ EIS IDENT: ISOL COND/PSCC TEST REQ!

3 .v O GE Nuclear Energy -23A6999. S!! NO.1_-

REV,1

. REVISIONSTATUS SIIEL7 DOCUMENT Ti1LE ISOLATION CONDENSER & PASSIVE CONTAINMENT CONDENSER TEST REOUIREMENTS LEGEND OR DESCRI!rMON OF GROUPS TYPE: ' TEST SPECIFICATION--

FMF: SBWR MPL m!M NO: B32-3030615-3030 -

REVISIONS C A PRELIMINARY ISSUE DMll5018 NOV 121991 1

LML TE WILilELMI sgp g g 1997 wnuRJA DMH5738 ,

CIIK BY l}$stfyL .All.Al'uim t '

FE'WILHELMI GW FITZSIMMONS t

7 O'f Ll.M

)

PRINTS TO MADEBY ' APPROVALS GENERAL ELECTRIC COMPANY . ;7

^

FH WILIIELMI 04/23/91 GW FTI2SIMMONS 11/12/91 fAfff0SNA 505 CllKD BY ISSUED FE WILIIELMI 11/12/91 GA BAYLis 11/12/91 CONT ON SHEIrf 2 1.:

o 9301280192 930118 PDR ADOCK 05200004 A- PDR ,

GE Nuclear Energy

. O(y 23A6999 SH NO. 2 REV 1 TAllLE OF CONTENTS SHEET NO.

1. SCOPE 4
2. APPLICA11LE DOCUMENTS 4 2.1 GE-Nuclear Energy Documents 4 2.2 Ansaldo Documents 4 2.3 Other Documents 5
3. DESCRIPTION AND GENERAL TEST REQUIREhfENTS 5 3.1 Introduction 5 3.2 Test Objectives - Passive Containment Condenser 5 3.3 Test Objectives -Isolation Condenser Tests 5 3.4 General Strategy and Description of Tests 6 3.5 Schedule Requirements 7 3.6 Test Plan and Procedures 7 3.7 Quality Assurance Requirements 7 3.8 Data Transmittal and Reporting Requirements 8
4. TEST FACILITYREQUIREhiENTS 8 4.1 Facility Requirements for the PCC 8 4.2 Facility Requirements for the IC 21 4.3 Data Recording Requirements (PCC and IC Tests) 25
5. PASSIVE CONTAINMENT CONDENSER TESTS 33 5.1 General Test Procedures 33 5.2 PCC Test Strategy 34 5.3 Data Processing / Analysis General Requirements 44
6. ISOLATION CONDENSER TESTS 45 6.1 General Test Procedures 45 6.2 Required Test Conditions 47 6.3 Data Processing / Analysis General Requirements 49 APPENDICES:

A. REFERENCE MATRIX OF PCC TEST CONDITIONS 52 11 REFERENCE MATRIX OF IC TEST CONDITIONS 58

GE Nuclear Energy

+- -

23A6999 SH NO. - 3 REV: }

LIST OF FIGUPIS

SHEET NO.

4-1 SCHEhiATIC OF PCC TEST FACILITY 13 4-2 REQUIRED DIhiENSIONS FOR PCC TEST POOL _14 .

4-3 LOCATION OF PCC WALL TEMPERATURE hfEASUREhfENTS 15' 4-4 PCC STRUCTURALINSTRUhfENTATION -16 ,

4-5 SCHEMATIC OFIC TEST FACILITY -26!

4-6 REQUIRED DIMENSIONS FOR IC TEST POOL 27.

4-7 IC STRUCTURAL INSTRUMENTATION - 28-6-1 BASIC IC TEST CYCLFS 50- .

6-2 REQUIRED IC INLET PRESSURE FOR TEST CONDITION NO.1 51 LIST OF TABLES 4 Required Thermal-Hydraulic Measurements-PCC Test 17-

+2 _ Required Structural Measurements-PCC Test 19-4-3 Required Thermal-Hydraulic Measurements-IC Test '29 4-4 _ Required Structural Measurements-IC Test -30 .

4-5 . Water Quality Requirements -32' N

4

, w ----r .-,a , , . - . , y

.. j

) GE Nuclear Energy 23A6999 SH NO. 4 REV 1 TEST SPECIFICATION FOR IC & PCC TESTS

1. SCOPE This document specifies the requirements for test; of full-scale prototypes of the isolation condenser (IC) and passive containment cooling (PCC) condenser designed for use in the Simplified lloiling Water Reactor (SBWR). The purpose of the tests is to confirm the thermal hydraulic and structural adequacy of the Ansaldo designed hardware for use in the SliWR.
2. APPLICABLE DOCUMENTS 2.1 GE-Nuclear Encrev Documents
a. Isolation Condenser System Piping and Instrumentation Diagram, Drawing Number 107E5154.
b. Isolation Condenser System Design Specification, Document Number 25A5013,
c. Isolation Condenser System Interlock Block Diagram, Drawing Number 137C9292.
d. Isolation Condenser System Process Flow Diagram, Drawing Number 107E6073.

e, Passive Containment Cooling System Piping and Instrumentation Diagram, Drawing Number 107E5KO.

f. Passive Containment Cooling System Design Specification, Document Number 25A5020.
g. Passive Containment Cooling System Process Flow Diagram, Drawing Number 107E6072.
h. SilWR Composite Design Specification, Document Number 23A6723.
i. Containment Configuration Data Book, Document Number 25A5044.

2.2 Ansaldo Documents

a. 1C H.X. Equipment Requirements Specification. Document Number SBW 5280 TNIXN014000.
b. PCC Equipment Requirements Epecification. Document Number SilW 5280 TNIXN015000.
c. Passive Containment Cooling and Isolation Condenser Prototype Structural Instrumentation, Documeni Number SBW 5280-TNIX-1115000.

l d. IC Pool Compartment A rcangement. Drawing Number SBW5280DMNX1103, i

l

{

GE Nuclear Energy

, (O" U

j 23A6999 SH No. 5 REV 1

c. IC Prototype General Arrangement. Drawing Number SBW5280DMNX1106.
f. PCC Pool Compartment Arrangement. Drawing Number SBW5280DMNX1102,
g. PCC Prototype General Arrangement. Drawing Number SBW5280DMNX1105.

2.3 Other Documents

a. "SBWR Design and Certification Program, Quality Assurance Plan", Report NEDG-31831, May 1990.
b. " Fluid Meters, Their Theory and Application", ASME, Sixth Edition,1971.
3. DESCRIITION AND GENERAL TEST REQUIREMENTS 3.1 Introduction. The tests specified in this document are part of the program to design and certify the SBWR. The IC system and the PCC system perform vital roles in removing heat from the reactor vessel and the containment during certain postulated operating and accident conditions.

Full-scale, prototypical condensers for these systems are to be tested at full pressure, temperature and flow conditions. The test facilities specified for this program are not representative of the SBWR systems of which these condensers will be a part. The specified tests are component " Design Qualification Tests" tests and therefore the test system per formance is not intended nor expected to be representative of the SBWR system performance.

3.2 Test Ohicetives- Passive Containment Cooline Condenser. The general objectives of the full-scale PCC test are as stated in the following paragraphs. The specific objectives described in Paragraph 5.1.1 provide additional details to the general objectives.

3.2.1 Thermal-Hydraulic. Confirm that the Ansaldo designed PCC meets the thermal hydraulic perfonnance requirements for use in the SBWR. Performance requirements are specified in Reference f. of Paragraph 2.1.

3.2.2 Structural. Confirm that the mechanical design of the Ansaldo PCC is adequate to assure the structural integrity of the unit for the expected SBWR lifetime process service conditions.

3.2.3 IC Test Modeling. Confirm, with half-unit PCC tests, that the test performance of a half unit IC is an adequate representation of the performance of a full-unit IC.

t 3.3 Test Ohicetives-Isolation Condenser Tests. The general objectives of the full-scale IC test are as stated in the following paragraphs. The specific objectives of Paragraph 6.1.1 provide additional details to the general objectives.

l 3.3.1 Thermal-Hvdraulic. Confirm that the Ansaldo designed IC meets the thermal-hydraulic performance requirements for use in the SBWR. Performance requirements are specified in Reference b. of Paragraph 2.1.

l l

I t

l

O GE Nuclear Energy

  • (j 23A6999 SilNo. 6 l REY }

3.3.2 Structmal. Confirm that the mechanical design of the Ansaldo ICis adequate to assure the structural integrity of the condenser for the SilWR lifetime process senice conditions expected between In Senice Inspections.

l 3.3.3 In Senice Inspection. Confirm the adequacy of proposed In Senice Inspection (ISI) j procedures and methods by performing NDE tests prior to testing and after thermal-hydraulic testing has been completed. (Test Requestor will provide NDE testing ofIC.)

3.3.4 I cak Detc etion Methods. Record reference data for use in evaluation of proposed methods for IC system leak / break detection. (See Paragraph 6.1.1.4) l 3,4 General Stratecy and Descriotion of Tests 1 1

3.4.1 Definitions. This specification uses the following definitions in referring to the various responsibilities related to the PCC and IC tests:

Test Requestor-The organization requesting the tests and specifying the requirements,i.e. the SBWR Design Team (GE lead).

Test Performer-The organization responsible for the test facility and performance of the tests, i.e. SIET.

Responsible Test Engineer - The engineer, representing the Test Requestor, responsible for supenising the preparations for testing and the test performance. For the PCC and IC tests this is an ENEA engineer.

3.4.2 PCC Tests. A full-scale unit (two modules) of the Ansaldo designed PCC as described by the

documents referenced in 2.2.h and 2.2.g will be tested to accomplish the objectives stated in Section 3.1, Most of the testing will be done at near-steady-state conditions covering the range of the process variables required for SIlWR. The condenser pool temperature for most tests will be the equilibrium (steady-state) value and the water levelin the pool will be maintained at the normal level (full). The inlet (dgwell) pressure, the steam flow rate and the flow rate of noncondensible gases in the inlet steam will be systematically varied. The tests will include sufficient pressure / temperature cycles (five times the number of cycles used for design) to confirm the structural integrity. Some testing will be done with a single module for use in validating the single module IC test.

3.4.3 IC Tests. One-half (single module) of a full-scale unit of the Ansaldo designed IC as described by the documents referenced in 2.2.a and 2.2.e will be tested to accomplish the objectives stated in Section 3.2. The majority of the tests will be slow transients simulating the thermal cycles defined in the IC design specification. It is planned to perform 1/3 of the expected lifetime thermal cycles. At the conclusion of the testing the condenser will be inspected, using the normal ISI procedures, to confirm that there is no excessive deformation, crack initiation or excessive crack growth rate.

Periods of steady-state operation at various conditions will be used to confirm the adequate capacity of the condenser and verify the expected thermal hydraulic characteristics.

(7 GE Nuclear Energy

( 23A6999 SH NO. 7 REY l 3.5 Schedule Rpquirements. The following key dates have been established for the test program:

Complete test facility modifications 10/15/92 Issue Test Plans and Procedures document 3/1/93 (approx.)

Complete testing program 6/30/94 Issue Final Test Report 7/31/94 3.6 Test Plan and Procedures. The tests shall be performed in accordance with a Test Plan and Procedures (TP&P) document to be prepared and issued by the Test Performer and approved by the Responsible Test Engineer. The TP&P shall be a traceable and retrievable document of test requirements consisting of the following parts:

a. Section 1 -Test Plan. Describe how the test is to be set up and performed to meet the quality assurance requirements, any special or unique safety or chemical hazard conditions associated with the test, and the test requirements specified in this document.
b. Section 2- Quality Assurance (QA) Plan. Determine the quality assurance requirements and describe how they are met, including instrumentation (calibration and accuracy), confirmation of test item identification, test record information (date, performer, results, corrective actions, etc.), certification of test personnel, satisfying of emironmental conditions, and establishment of test equipment conditions, data logging, data acquisition systems, and others needed to satisfy test requirements.
c. Section 3 -Test Procedures. Describe the specific procedures required to perform the test in accordance with test and quality assurance requirements.

3.6.1 Test Hold / Decision Points. The following hold / decision points shall be established for this program:

a. The Responsible Test Engineer will review and approve the Test Plan and Procedures before test initiation,
b. The Responsible Test Engineer (or his appointed representative) will review and approve the test setup, configuration, and planned test conditions prior to each test run.

! 3.7 Quality Assurance Reauirements 3.7.1 General Requirements. The organization performing the testing (also referred to herein as l the Test Performer) shall have a quality assurance program that is in compliance with the 6

documents referenced in Paragraph 2. The Test Performer shall provide copics of their quality i

assurance documents upon request of the Test Requestor for review and approval. All discrepancies shall be resolved prior to program start.

3.7.2 Audit Reauirements. The Test Requestor reserves the right to perform an audit to verify that I the Test Performer's quality assurance program is in place and being followed, l

1 i

GE Nuclear Energy.

9'. . 23Ati999 REVt}

SH No. 8 o

3.7.3 Noti 6 cation. The Test Performer has the responsibility to notify the Responsible Test -

j Engineer with documentation of; (a)iny changes in the test procedure, (b) any failure of the test - .I desice to meet performance requirements, (c) any revisions or modifications of the test device, and (d) the dates when tests are expected to be performed. Notification shall be provided at least five -

working days in advance, whenever possible.

3.7.4 Test Data / Records / Reports. The Test Perfonner's quality assurance personnel shall review all test data, records, and reports. All test records, analyses and verification records shall be organized by the Test Performer into a Design Record File (DRF).

3.8 Data Transmittal and Reoorting Recuirements 3.8.1 Data Transmittal. The Test Performer shall provide the Test Requestor with a copy of all test data, in a fortnat approved by the Responsible Test Engineer.

3.8.2 Reports. A brief Apparent Test Results (ATR) report will be prepared for each test, as defined by the Test Number in Appendices A and B, within one week following performance of the test. A Final Test Report (FTR) wdl contain the data, analysis and results of all tests and shall be transmitted to the Test Requestor per the schedule shown in Section 3.5.

-3.8.3 Desien Record File. The Test Performer shall submit the test DRF, or a copy, to the Test Requestor within 1 month after completion of the Final Test Report.

3.8.4 Disposition of Test Articles. The Test Performer shall remove the Prototype Condensers from the test facility following the conclusion of the Test Program and return this equipment to the Test Requestor.

4 TF5r FACILITYREQUIREMENTS 4.1 Facility Renuirements for the PCC

- 4.1.1 Principal Functions and Comnonents. The test facility must have a tank simulating the PCC -

pool in SBWR. A full-size PCC unit will be provided by the Test Requestor to be mounted inside this - _

tank. The facility must be able to supply steam, water and noncondensible gases in quantities and at -

conditions which are representative of those anticipated for the SBWR PCC. Thermal hydraulic and structural instrumentation will be installed for measuring the parameters ofinterest. The rate ofi

- heat transfer from the inlet gas (steam and noncondensibles) to the PCC pool will be determined.

The heat losses from the inlet gas supply lines to the surroundings shall be minimized and shall noti exceed 1 MWth.

The essential features of the PCC test facility are shown schematically in Figure 4-1. The principal '

components of this facility shall be:

-A supply of saturated steam.

A supply of noncondensible gases (air or nitrogen and helium).

Condensate drain tank.

, -,e _ , - -

.- , , 7.-, , -- r.__. .., , -, ,_ . - - 2.-. - -w e ,. + e

. GE Nuclear Energy:

O' 23A6999 REV=1 SH NO. 9 -

1

-- Noncondensible vent timk.

PCC pool tank.

Piping and valves.

4.1.2 Test Variables. The independent test variables shall be:

~

PCC inlet pressure.

Inlet steam flow rate.

Inlet noncondensibic flow rate.

The following variables need to be controlled:

Temperature of the inlet steam or steam / gas mixture.

PCC pool level (supply makeup to maintain constant level).

PCC pool temperature (maintain constant).

Condensate tank pressure (maintain equal to PCC inlet pressure).

Condensate tank level (control tank drain flow).

Vent tank level (control tank drain flow). ,

Dependent variables:

Vent tank pressure or PCC differential pressure.

Condensate flow rate (heat transfer rate).

4.1.3 Comnonent Reauirements.

4.1.3.1 Steam and Noncondensible Gas Supplies Saturated steam with quality greater than 99.8% +

shall be supplied to the PCC at a controllable flow rate for PCC inlet pressure m-the range 69 to 689 kPa gage (10 to 100 psig). Available continuous steam flow rate shall be at least 6.5 kg/s (14.3 lb/s) :

at 689 kPa (100 psig). It is desirable to have available a continuous steam flow rate of 9.-75 kg/s (21.5 lb/s) at 689 kPa gage (100 psig) (based on 20 MWth).. .

Noncondensible gases (air or nitrogen and helium) shall be supplied to the PCC at a controllable flow rate for PCC inlet pressure in the range of 69 to 689 kPa gage (10 to 100 psig). Steam / gas mixtures in the range of 0 to 50 noncondensible mass percent are required. Noncondensible mass percent is defined as 100 multiplied by the ratio of the noncondensible mass to the total mass.

The noncondensible gas supplies shall be sized such that the fo! lowing flow rates can be provided to:

the PCC:

Air (or nitrogen) 3000 Nm3/h at 69 to 689 kPa gage (1865 SCFM at 1.0 to 100 psig)'

Helium Sullicient to fill the PCC with helium at 689 kPa gage (100 psig) in 15 minutes.

, P,+, , - > -

--w .rtsr M u e e as

23A69(J9 Sit No. 10 REY l The flow rates of steam and noncondensibic gas shall be controlled using critical flow devices so the flow rates are independent of the PCC inlet pressure. The flow rates can be controlled either by variation of the stagnation pressure or the critical flow area or a combination. Provision shall be made to control the temperature of the steam or steam / gas mixture at the PCC inlet. For steam tests, the inlet steam shall be saturated, or with a specified superheat For tests with a steam / gas mixture, the temperature shall be controllable between saturated and 44 C (80 F) superheated.

4.1.3.2 PCC Pool Tank. The PCC pool tank shall be a rectangular elevated tank, open to the atmosphere for the purpose of containing the PCC and the water which cools it. The tank shall be covered, and shall have an opening of 2 m 2 (21.5 ft2) in the wall,250 mm (9.8 in) above the pool normal water level, for boil oft. The tank shall be large enough and have provisions for internally attaching, with prototypical mounting hardware, a complete full-scale two-module PCC unit, and prototypical inlet, vent and condensate drain piping. The pool shall be arranged such that both two-module and single-module PCC tests can be performed. Pool area for the single module test shall be reduced to provide approximately the same arca/ module as the two-module configuration.

The area of the opening for boil oft shall also be reduced by one-half for the single-module tests.

The pool depth shall be suflicient to submerge the PCC to a prototypical water level. The required dimensions of the pool are shown in Figure 4-2.

Systems shall be provided to fill the pool with highly puri6ed water prior to a test, to control the tank level and replace boil-off during a test, and to drain the pool for maintenance or modifications to the PCC. The makeup water system shall be sufTicient to maintain a constant poollevel at the maximum condensation rate for a period of at least 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. Pool boileff (no moisture carryover) with 15 MWth heat transfer was calculated to be approximately 6.9x10-3 m3/s (110 gpm). The makeup water shall be the same quality as the pool water. It shall be distributed in the pool such that nonprototypical flow patterns and temperature distributions are avoided.

The water quality requirements for the PCC pool tank are shown in Table 4-5.

4.1.3.3 Condensate Drain Tank. A tank shall be provided for collecting the water condensed and drained from the PCC. The condensate drain tank shall be a closed tank, normally pressurized above atmospheric and partially filled with water. The elevation between the PCC pool tank bottom and the condensate drain tank water level shall be adjustable between 2.0m (6.6ft) and 3.5m (11.5ft). The condensate from the PCC shall discharge to the drain tank beneath the water level. A line shall be provided to drain water from the tank during a test to maintain the water level at a controlled position. The tank and drain shall be sized such that flooding of the tank is prevented and good control of water level can be maintained during testing with the greatest expected condensate flow rate. The condensate flow rate for 15 MWth heat transfer at 689 kPa gage (100 psig) steam inlet pressure was calculated to be 8.2x10-3 m3 /s (130 gpm).

The condensate drain tank shall be provided with systems to fill the tank to a predetermined level, and to control that level during a test at a constant value by adjusting the rate of tank drain. The tank gas-space during testing shall be maintained at the same pressure as the PCC inlet flow. The method of equalizing pressure wi h the PCC inlet shall not divert flow from the PCC inlet line.

Figure 4-1 shows one method of controlling condensate tank pressure by injecting high pressure air into the tank and using a pressure control valve on the gas outlet line.

ps a GE Nuclear Energy 23A6999 SH No.1 I REY - 1 Venting of the gas space in the tank may be necessary for pressure control or if noncondencible gas is carried into the PCC drain.

4.1.3.4 Nonendensible Vent TartL Noncomiensible gases, separated % the PCC shall be vented to a closed tant The elevation of the highest expected water levelin the s e tank should be lower than the lowest expected water levelin the condensate drain tank. At s conditions the flow into the vent tar.k may include uncondensed steam, noncondensible gases a..u aquid condensate carried over from the PCC lower plenum. The vent line from the PCC shall terminate in the vent tank, The vent line discharge in the tank shall be trranged such that testing may be performed with discharge either suluncrged, as in SilWR or unsubmerged. Provision shall be made to drain water hom the bottom of the vent tank and to condense steam which may pass through the PCC vent without comtensing.

The vent tank shall be provided with systems to fill the tant to a predetermined level, and to maintain that level during a test. Provision shall be made to measure water flow rate from the vent tank drain,in the event that condensate from the PCC is carried over in the vent line.

The vent tank gas discharge pipe shall be provided with a system to control the tank pressure by throttling vent tank exhaust. Ibiring tests with no noncondensible inlet flow to the PCC it may be necessary to pressurize the vent tank by some means such as injecting air directly into the vent tank as suggested by l'igure 4-1. Although the system is shown to control vent tank pressure, the variable used for setting up the desired test conditions will be PCC inlet pressme.

4.1.3.5 hpine. The piping for the inlet gases, condensate drain and venting shall be as prototypical as is practical with respect to inside diameter, irreversible hydraulic losses and elevation dillerences.

The piping external to the PCC pool shall be thermally insulated as necessary to:

1. Minimi/c the heat losses to the surroundings
2. Erisme an accurate measur of the condensing capacity of the PCC.

Routing shall avoid nonprototypical opportunities for steam pocketing. The vent line shall include a gate valve or flanges for a blind orifice to provide capability to physically prevent venting of the PCC 4.l A Instrument Reanirements (PCC) 4.1 A.1 General Reouirements. All test instrumentation shall be provided by the Test Performer and shall be calibrated against standards traceable to the U. S. National Institute of Standards and Technology o, equiv; dent.

, 4.1.4.2 Thermal-flydraulic. The required thermal hydraulic measurements, the required accuracy

and the proposed digital sampling frequency for the PCC are listed in Table 4-1. The required accuracy in Table 4-1, is given as the "two standard deviation" level of a normally distributed error, i.e. there is a 95% probability that the error does not exceed the specified v;due.

\

Q'- GE Nuclear Energy s

23A6999 SH NO. 12 REV l Inside and outside tube wall temperature measurements are required on five tubes at nine axial positions on each tube. The preferred tubes for these measurements are A1, A5, R1, R5 and R8.

The location of these tubes in the tube bundle is illustrated in Figure 4-3. The axiallocations of the measurements are shown below:

Location Number 1 2 3 4 5 6 7 8 9 Distance llelow Tube Inlet (cm) 10 20 30 40 60 80 100 130 160 Thermocouples and lead wires shall be installed such that flow disturbances are minimized. If the number of measurements must be limited or reduced, the preference is to eliminate or reduce the number on tube Rl.

4.1.4.3 Structur;d. The required structural measurements for the PCC are listed in Tabic 4-2 and the numbered instrument positions identified in Figure 4-4. The positions are only indicative: the exact locations will be defined by Ansaldo after the stress analysis. See Reference 2.2.c. The two PCC condenser modules are referred to Ls "A" (single and dual module tests) and "11" (dual module tests only). Module 11is irstrumented in only a few positions for comparison with Module A and for confirmation of symmetrical performance. The types of structural measurement required for the ,

PCC are acceleration, displacement, strain, permanent strain and surface temperature.

Acceleration measurements will be made primarily for the purpose of evaluating vibration characteristics and detection of possible condensation / water hammer loads. Piezoelectric accelerometers are recommended for these measurements. The required temperature range is 10 to 177 C (50 to 350 F). The unfiltered signals shall be recorded in analog fann with a recorder having a bandwidth of 1 - 500 Hz.

r Linear displacement measurements are required at points specified in Table 4-2 with an accuracy of iO.2 mm (0.008 in).

Total strain on the surface shall be determined at the locations and directions specified in Table 4-2. In general, monodirectional strain gages should be used to determine the total strain. At some positions referred to in Table 4-2, multiple measurements are specified at the same position.

All strain gages shall be compensated for temperature variations in the range of 10 to 177 C (50 to 350 F) and shall be waterproof.

Permanent strain .; hall be measured at the locations and directions speciGed in Table 4-2, by surface scribe marks. The distance between scribe marks will be measured prior of testing, once during the test and at the end of the tests, to determine if there has been any permanent strain.

PCC external surface temperatures shall be measured at the locations shown in Table 4-2 and Figure 4-1 with an accuracy (2 std. dev.) of 3 C (5 F) or better. The temperature range is 10 to 177 C (50 to 350 F).

l l

. t.

BO6 TOFF 1 1 I 1 )i M AK EUP PCC POOL TANK h

/

m 2:

)( > DRAtN -

i-EkB M .,

ir 9r

@s t4 EATER P dL I VENT jg ii LINE N P ---

PCV CRITICAL CRITeCAL A;R

~ 3 FLOW FL OWT3 M P -- 3 i OEVtCE DEVICE - '

ecv  ;

DRAIN AtR f jgd/ LINE M I 1 -

~

CONDENSATE l

1A - c> , :n pc 2- <

VENT e I

STEAM TANK _

t "g i SUPPLY NON CONDENSABLE GAS SUPPLY L~~~  ! .b g

, t I

__J f

e ,5 l u

FIGURE +1. SCHEMATIC OF PCC TEST FACILITY

O GE Nuclear Energy

\

Q 23A6999 REV l sH uo. 14 W  ;

Ii L1 l <l t

C O O OPENING FOR POOL DOILOFF.

AREA = 2.0 m2 (21.5 ft2)

U

= D

' 67Fmin H

(26.4 in) o450 mm t W , (214.6 in)

/ o -

NWL ----

_:::_:::::::y:::-J H1 0 ' 2725 mmin) i (107.3

~[ -

(> 183 in) 860 mm j ll ) '

(33.9 in)

~

H1i g g - (9.8 in)

S $

5 E E E E E E

l

  • t v %d k n

n u

}

a 1

l FIGURE 4-2. REQUIRED DIMENSIONS FOR PCC TEST POOL

O GENuclearEnergy

. (j 23A6999 ncy 1 sH m, 15

\

O O O ^

O O O O O O 0 0 '

O O c O O O O O O O O O O O O O O O O O O O F O o OO o O o o O O O Oo O o O OoO COo H Oo O

O g O O '

O O O O Og Oo O o o -M N

ns N

O O O O O O Oo o o O O O "

O g O O O O O

'N O O OOh6 OoO O o

&' n8 O O O O O O T O o O o O o o "

O g O O O O O O O "

O O O O O Z O O o O o O o o O O

O O o O O O O O O

)

O O O O g O O O '

O 9 0 o O O O Oo Oo O O O Oo O o O O CC O OoOo O O O Oo 0

Oo O

Oo O

o  ;

0 o O O i 9 9 i 9 li' i i i!!l i\

!  : i  : ; i FIGURE 4-3. LOCATION OF PCC WALL TEMPERATURE MEASUREMENTS

l Ll! I t . -

r ;l. t (' 5 ,t  ; ,! l' it

. ~

O2 E

g @QM hG IE 5. E _

$ w _

. b 1

1

_ =

R E

)

3 2 9

1 D

" A

. _9 J*

l E

H n

p %4 R E

c 9 i -

P '

P ^

U q d N k

c. O D

X a E -

N T

i3 i1 _ C A O I

I t

r O T L

e 7, lI v Y A' A T't_Y i'

Z R L T o A N lL E i

M S

! 8 M

[

]

i g

1 U K

( - 1

]

5

[7 N ri I

"! L

^

A R

U 1

G U

R 1

5 2

-C 2 C P

' c 4

E. .

\ i A

L B

A 4-4 t

u T r

N E h'l \ -

' U I D R

~

ii T

E. U S G b I L

S T

I F

N-l E

M l

' U

- 5 ~ R I

  • T

~l 1

- 5 S l'

l

=- N I

O T

0 1 R.

E F

E R

. S R

.- F B E

[' '

B

, + '

., i%i t O

r M U

N E

T O

N

Q Q

GE Nuclear Energy 23A6999 sli NO. }7 REV'l Table 4-1. REQUIRED THERh!AL HYDRAULIC htEASUREh!ENTS-PCC TFST Accuracy Frequency (2 Std. (samples hicasurement Units Expected Range Dev.) per sec)

Pressures:

noncondensible gas inlet, kPa gage (psig) 0- 760 (0 110) 2%* 0.1 steam inlet, kPa gage (psig) 0- 760 (0-110) 2% 0.1 PCC inlet, kPa gage (psig)30-690 (5-100) 2% 0.1 condensate tank gas space, kPa gage (psig) 30- 690 (5-100) 2% 0.1 PCC upper plenum, kPa gage (psig)30-690 (5-100) 2% 0.1 PCC lower plenum, kPa gage (psig)30-690 (5-100) 2% 0.1 vent tank gas space, kPa gage (psig)30-690 (5-100) 2% 0.1 DilTerential pressures:

condensate tank / vent tank, kPa (psi) 0-30 (0-5) 2% 0.1 upper plenum / lower plenum, kPa (psi) 0-30 (0-5) 2% 1 condensate tank / upper plenum, kPa (psi) 0-30 (0-5) 2% 1 Flow rates:

steam inlet, kg/s (Ib/s) 0 -12 (0 - 25) 2% 0.1 noncondensibic inlet, kg/s (lb/s) 0 - 3 (0 - 5) 2% 0.1 condensate, kg/s (Ib/s) 0-12 (0- 25) 2% 0.1 vent line water, kg/s (Ib/s) 0 - 3 (0 - 5) 2% 0.1 vent line noncondensible gas, kg/s (Ib/s) 0 - 3 (0 - 5) 2% 0.1 vent line steam, kg/s (lb/s) 0-7 (0-15) 2% 0.1 pool makeup, 1/s (gpm) 0-13 (0- 200) 2% 0.1 Temperatures:

steam inlet, deg C (deg F) 100-177 (212-350) 3 (5) 0.1 noncondensible gas inlet, deg C (deg F) 100-177 (212- 350) 3 (5) 0.1 upper plenum, deg C (deg F) 100-171 (212- 340) 3 (5) 0.1 PCC inlet dry bulb, deg C (deg F) 100-171 (212- 340) 3 (5) 0.1 PCC inlet wet bulb deg C (deg F) 3 (5) 0.1 lower plenum, deg C (deg F)10-171 (50-340) 3 (5) 0.1 drain line, deg C (deg F)10-171 (50-340) 3 (5) 0.1 drain tank, deg C (deg F)10-171 (50-340) 3 (5) 0.1 vent line dry bulb, deg C (deg F)10-171 (50-340) 3 (5) 0.1 vent line wet bulb, deg C (deg F)10-171 (50-340) 3(5) 0.1 vent tank, deg C (deg F)10-171 (50-340) 3 (5) 0.1 PCC pool (6 places), deg C (deg F)10-100 (50-212) 3(5) 0.1 tube wall (inside & outside) deg C (deg F)82-171 (180- 340) 3 (5) 0.1 pool makeup water, deg C (deg F)10-100 (50-212) 3 (5) 0.1

- % means percent of full-scale

O GE Nuclear Energy 23A6W9 Sit NO. I8 RD' ' 1 Table 4-1. REQUIRED THERhtALIn'DRAULIC hiEASUREhiENTS-PCC TEST (Continued)

Accuracy Frequency (2 Std. (samples hicasurement Units Expected Range Dev.) per sec)

Water levels (collapsed):

PCC pool, m (ft) 3.5-5.0 (11.5-16.4) 0.03 (0.1) 0.1 drain tank. m (ft) 0 - 6.5 (0 - 21.2) 0.03 (0,1) 0.1 drain line m (ft) 0- 6.0 (0 -19.7) 0.03 (0.1) 0.1 vent tank, m (ft) 0 - 6.5 (0 - 21.3) 0.03 (0.1) 0.1 lower plenum m (ft) 0 - 3.0 (0 - 9.8) 0.03 (0.1) 0.1 Other (indirect) heat rejer ion rate, htWth 0-15 0.1 0.02 system heat losses, htWth 0 - 0.5 0.05 0.02 4

. 23A6999 SH NO. 19 REV ' 1 Table 4-2. REQUIRED STRUCTURAL h1EASUREh1ENTS-PCC TEST hiodule A Quantity Position No. of at each Total hicasurement/ Location Number Positions Position hicas. L)irect Notes Acceleration:

steam distributor 10 1 3 3 X,Y,Z mid-length of tube 5 5 2 10 X, Y upper header cover 11 1 3 3 X,Y,Z Displacement:

inlet /headerjunction 3 1 2 2 X,Z note 1 steam distributor 10 1 1 1 Z note 1 lower header support 12 '2 1 2 Y Total Strain:

inlet elbow 2 1 2 2 axial note 1 inlet /headerjunction 3 1 2 2 Z note 1 upper header /tubejunction 4 5 1 or 2 7 Z notes 1,4 tube / lower headerjunction 6 3 1 3 Z notes 1,3 lower header 7 2 2 4 X, Y note 1 lower header cover 9 1 2 2 Z, X note 1 upper header 1 2 4 8 X, Z notes 1,5 upper header cover 11 1 4 4 X, Z notes 1,5 upper header cover bolts 13 3 1 or 2 5 Y notes 1,6 lower header cover bolts 14 3 1 or 2 5 Y notes 1,6 drain / lower headerjunction 8 1 2 2 X, Z note I lower header supports 12 1 2 2 Z note 1 Permanent strain:

inlet /headerjunction 3 1 1 1 Z upper header /tubejunction 5 3 1 3 Z note 3 lower header /drainjunction 8 1 2 2 Z Temperature:

steam line 2 1 1 1 notes 1,2 j Instrument positions are illustrated on Figure 4-1.

l Notes:

! 1. The sampling interval shall be 15 sec. during steady-state.

2. Instrument elevation shall correspond to the normal water level of the pool.
3. Tubes c, e, f
4. Tubes / quantity: a/1, b/2, c/2, e/1, f/1
5. Two instrument inside, two outside
6. Three bolts at 120,2 with two instruments, I with one instrument.
7. One instrument inside, one outside.

l

Q Qj GE Nuclear Energy 23A6999 SH No. 20 REV 1 Table 4-2. REQUIRED STRUCTURAL hf EASUREhiENTS-PCC TEST (Continued) hiodule A (Continued)

Quantity Position No. of at each Total hicasurement/ Location Number Positions Position hicas. Direct Notes Temperature:

inlet /headerjunction 3 1 1 1 note 1 upper header /tubejunction 4 3 1 3 notes 1, 3 tubc/ lower headerjunction 6 3 1 3 notes 1, 3 lower header 7 2 1 2 note 1 lower header cover 9 1 1 1 note 1 upper header 1 2 2 4 notes 1, 7 upper header cover 11 1 2 2 notes 1,7 drain / lower headerjunction 8 1 1 1 note 1 Instrument positions are illustrated on Figure 4-4.

Notes:

1. The sampling interval shall be 15 sec. during steady-state.
2. Instrument chvation shall correspond to the normal water level of the pool.
3. Tubes c, e, f
4. Tubes / quantity: a/1, b/2, c/2, e/1, f/1
5. Two instrument inside, two outside
6. Three bolts at 120,2 with two instruments, I with one instrument.
7. One instrument inside, one outside.

hiodule B Quantity Position No. of at each Total hicasurement/ location Number Positions Position hicas. Direct Notes Temperature:

upper header /tubejunction 4B 3 1 3 notes 1,3 tube / lower headerjunction 6B 3 1 3 notes 1,3 lower header 7B 2 1 2 note 1 upper header 1B 2 1 2 Instrument positions are illustrated on Figure 4-4.

Notes:

1. The sampliag interval sha' he 15 sec. during steady-state.
2. hiodule B is used for dual module PCC tests only. Position numbers correspond to hiodule A positions with the same number without the letter suffix.
3. Tubes c,e and f.

GE Nuclocr Enorgy ns.Y 1 4.2 Facdity Requirements for the IC 4.2.1 hip.t.ipal Functions and Components. A schematic diagram illustrating the essential features  ;

of the facility tec uired for testing the IC is shown in Figure 4-5. The principal components of the test facility shall ac:

Simulated reactor pressure vessel (RPV).

Steam supply.

Supply of high pressure noncondensible gas (es' IC pool tank.

Piping and valves.

The test facility must supply steam, water and nonconde ible gases in quantities and at conditions which are cpresentative el those anticipated for the SIM.t IC.

4.2.2 Test Variabla. The independent test variables are:

Drain valve position (open or closed).

ICinic steam pressurc.

Noncondensible gas inlet flow rate.

Composition of noncondensible gas.

The following variables shall be controlled:

IC pool tank level (supply makeup to maintain constant level).

IC pool tank temperature.

1C pool water quality.

Steam supply vessel water level.

4.2.3 Gemimnent Requirements 4.2.3.1 Steam and Noncondensible Gases. Saturated dry steam (quality greater than 99.8%) shall be supplied to the IC at a controllable pressure in the range 0.48 to 9.48 MPa gage (70 to 1875 psig). Available continuous steam flow rate shall be at least 14.3 kg/s (31.6 lb/-) at 8.618 MPa gage (1250 psig) (based on 20 MWth).

Provision shall be made for injection of nonconcensible gases (nitrogen or air and helium) into the
IC steam supply at a controlled and measured rate. The noncondensible gases will be injected at steam pressures in the range 0.48 to 8.618 MPa gage (70 to 1250 psig). The gas supplies shall be sized such that the isolation Condenser can be filled with the gas at 8,618 MPa gage (1250 psig) in approximately 30 minutes.

The possible need to provide the capability to heat the noncondensible gases or the gas / steam l mixture shall be considered.

l 23A6999 'sH No. 22 nix 1 4.2.3.2 1C l'ool Tank. The IC pool tank shall be a rectangular elevated tank, open to the atmosphere, for the purgnise of containing the IC and the water which cools it. The tank shall be large enough and have prcnision for internally attaching, with prototypical mounting hardware, a f ull scale, single-module IC test unit (one-half of a full unit), and prototypical inlet, vent and comlensate drain piping.The upper steam header and upper steam pipe transition fitting shall be fixed so as to prevent sliding in the horizontal direction to simulate worst case support conditions.

The pool depth shall be sullicient to submerge the IC to a prototypical water level. The required dimensions for the IC test pool are shown on Figure 44L The pool shall be covered, and shall have an open area for venting pool boilofi.The open area of the vent shall be 1 m2 (10.8 ft2 ).

The IC Pool Tank shall be provided with systems to fill the pool with highly purified water prior to a test, to replace boiloff and maintain constant water level and temperature during a test. Systems shall be provided to cool the poolinventory between tests and to drain the pool for maintenance or inodifications to the 1C. The water quality requirements for the IC pool are shown in Table 4-5.

The makeup water system shall be sullicient to replace pool boiloll and water entrained with the steam and to maintain a constant poollevel at the maximum condensation rate for a period of at least 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. Pool boiloff (no carryover) with 20 MWth heat transfer was calculated to be approximately 9.3x10-3 rn 3/s (147 gpm). The makeup water shall be the same quality as the pool water. It shall be distiihuted in the pool such that non prototypical flow patterns and temperature distributions are avoided.

The pool cooling system shall provide for control of pool heatup and cooldown rates typical of SilWR to adequately simulate the design thermal cycles.

4.2.3.3 Sjmulated RPV A pressure vessel shall be prmided to simulate the icactor pressure vessel (Rl'V) and supply saturated stcain to the IC. The vessel shall be partially lilled with saturated water and the steam supply to the IC shall be taken from above the water level and the condensate from the IC shall be returned to the vessel below the water level. The vessel shall be heated with a source sufficient to maintain vessel pressure with maximum heat rejection by the IC.

4.2.3.4 Pinine and Valves. The piping for the IC inlet steam, condensate drain and venting shall be as prototypical as is practical with respect to inside diameter, irreversible hydraulic losses and elevation differences. The piping shall be thermally insulated and routing shall avoid nonprototypical opportunities for steam pocketing.

The condensate drain line shall have a valve for startup of the IC.The ndve shall meet the leakage (through the valve) and opening time requirements of SilWR IC valve (see document reference in l'aragraph 2.1 h.) A valve size as small as 102mm (4-inch) may be used provided the total IC loop irreversible hydraulic losses (piping, cibows, valves and condenser) do not exceed 6.3 psi at the maximum flow rate (Reference document 2.1 a, note 5). The ndre and operator shall be supplied by SIET. The condensate drain line shall include a loop seal of at least 0.5 m (20 inches) elevation at the return to the simulated RPV.

The condensate drain line shall have a bypass line around the drain udve. The hypass line shall include a smail valve (approximately 20mm ( 3/4-inch]) for simulating drain valve leakage.

ea imi i i

GE Nucicar Encrgy v 23Mi999 Rix 1 su No. 23 The steam supply pipe and the condensate return pipe shall be designed to produce a stress in bending which con esponds to the maximum allowable pipe bending stress of 1.5 Sm which is caused by combined mechanical, seismic, and thermal expansion loads at 8.618 MPa gage (1250 pug),302 C (575'F). Direction of deflection shall be selected to maximize the resultant stress on the piping and noules between the transition fittings and headers.

As an alternative, guides or lugs may be prosided at the lower end of thesc >ipes, at locations to be dc6ncd by Ansaldo. If this alternative is 3 elected, the Test Performer shall( eline the load and moment on the steam supply and condensate drain pipe connections that results from the test facility piping arrangement.

4.2.3.5 Vent I,ines. Vent lines shall be prmided on the IC from both the upper and lower plenum.

Each line shall be manually controlled by a normally-closed, fail closed solenoid valve arul s ball have a 12.7 mm (1/2-inch) flow restricting mince to limit the venting rate as in SilWR. Prmision shall be made for measuring the volume of gas vented from the IG.

It is expected that noncondensible gases injected into the inlet steam will separate in the IC and eventually fill the upper and/or lower IC plenum, and reduce the heat removal capability. The vent lines shall be used, as described in Paragraph 6.2.1, during tests to remove the noncondensible gases from the IC and restore capacity. The vent lines shall be actuated by manual o pening of the solenoid valves, it is desired to manually simulate the automatic venting scheme of the SilWR IC system during some tests (See Reference document 2.1.c.).

4.2.3.6 Elbow Flow Meters. Two horizontal cibows in both the steam supplyline and the condensate drain line shall be equipped for use as elbow flow meters. These devices represent the clhow meters used in the SilWR IC system and are not intended to be used for flow measurement in the IC tests. For the SilWR IC system, the elbow flow meters will provide a signal to indicate the occurrence of a break in the IC inlet or condensate drain lines.Their purpose in the SIET test is to provide a measurement of the "lC startup transient" operating signal and noise levels.

One elbow on each of the two lines shall be the same pipe diameter as used in the SilWR IC and the other shall have approximately half of the flow area of the SilWR IC cibow meters. Ninety-degree, long radius (R/d e 1.5), elbows shall be used and the pressure taps shall be in the outer and inner circumferences of the elbow midplane,45 degrees from the inlet end. The pressure tap holes shall be 6 mm (0.236 in) in diameter. There must be no burrs, wire edges or other irregularities on the inside of the pipe at the nipple connection or along the edge of the hole through the pipe wall.

The diameter of the hole should not decrease within a distance of 12 mm (0.472 in) from the inner surface of the pipe but may be increased within a lesser distance.

Where the pressure hole breaks through the inner surface of the pipe there must be no roughness, burrs nor wire edge. The edge of the hole may be left truly square or may be dulled (rounded) very slightly.

Connections to the pressure holes shouhl be made by nipples, couplings, or adapters welded to the outside of the pipe. It is important that no part of any such fitting projects beyond the inner surface of the pipe.

l l

F GE Nuclear Enorgy

( 23A6999 sis No. 24 REV 1 It is desirable that the velocity profile of the fluid stream entering the elbow be fairly uniform and free of swirls. The recommendations of the document referenced in Paragraph 2.3.b regarding straight lengths of pipe upstream and downstream of the elbows shall be followed as much as possible. Condensatic,n pots shall be used on the ; ressure tap lines if necessary to keep the line full of water.

4.2.4 Instrumentation Requirements (IC) 4.2.4.1 General Requirement.5. All test instrumentation shall be provided by the Test Performer and shall be calibrated against standards traceable to the U. S. National lustitute of Standards and Technology or equivalent.

4.2.4.2 Thermal-flydraulic. The required thermal hydraulic measurements, the required accuracy and the proposed digital sampling frequency for the IC are listed in Table 4-3. The required accuracy in Table 4-3,is given as the "two standard deviation" level of"normally" distributed error, i.e. there is a 95% probability that the error does not exceed the specified value.

Temperature, steam flow, condensate flow and pressure instruments shall be provided to monitor the heatup and cooldown rates of the coolant and the heat transfer from the condenser during the thermal cycle conditions to be tested.

Temperature measurements shall be made on the vertical section of steam pipe which connects to the steam header below pool water level. The purpose of this measurement is to detect condensate return valve or IC unit leakage when the IC is m the hot standby (fully pressurized) non operating mode with the condensate return valves closed. Six temperature elements shall be located on the outside of the steam pipe spaced at 0 lm (3.9-inch). The upper element shall be at the pool normal water level elevation.

4.2.4.3 Structur.al. The required structural measurements for the IC are listed in Table 4-4 and the numbered instrument positions identified in Figure 4-7. The positions are only indicative: die exact locations will be defined by Ansaldo after the stress analysis of the IC. See reference 2.2.c, The types of structural measurement required for the IC are acceleration, displacement, strain, surface temperature and surface scribe marks for measurement of permanent strain.

Acceleration measurements will be made primarily for the purpose of evaluating vibration characteristics and detection of possible condensation / water hammer loads. Piezoelectric accelerometers are recommended for these measurements. The required temperature range is 10 to 314'C (50 to 598 F).

Linear displacement measurement is required at points specified in Table 4-4 with an accuracy of

+0.2 mm (0.008 in).

l Total strain on the surface shall be determined at the locations and directions specified in Table 4-4. In general, monodirectional strain gage should be used to determine the total strain. At some l

positions referred to in Table 4-4, multiple measurements are specified at the same position. All strain gages shall be compensated for temperature variations in the range of 10 to 314 C (50 to

! 598 F) and shall be waterproof.

l

i f

. 23Afi999 SH NO. 25 nix 1 1 l

IC external surface temperatures shall be incasured at the locations shown in Table 4-4 and Figure i 4-7 with an accuracy (2 std. dev.) of 3*C (5*F) or better. The ternperature range is 10 to 314*C (50 i to 598 F).

Permanent straire shall be measured at the locations and directions specified in Table 4-1, by surface scribe marks. The distance between scribe marks will be measured prior of testing, once during the test and at the end of the tests, to determine if there has been any permanent strain.

4.3 I)ata Recording Requirements (PCC and IC Test 0 4.3.1 1)ata Acquisition. A digital data acquisition system, of adequate capacity to monitor and record all specified measurements, shall be supplied by the Test Perh>rmer.The rneasurements shall be recorded,in digital format, on rnagnetic tape or disk for later calculation and analysis of test results. Sampling frequency for each measurement shall be adjustable, Preliminary sampling frequency requirements are shown on Tables 4-1 through 4-4, but values may be changed prior to testmg.

The unlittered accelerometer signals shall be recorded in analog form with a recorder having a bandwidth of 1 - 500 lit.

Physical measurements such as scribe mark distances and other NI)E measurements not recordable in magnetic format will be recorded in writing on data sheets to be prepared by the Test Performer as part of the Test Plan and Procedures document.

4.3.2 Test ()hservations. Qualitative observations of test conditions such as leakage of steam or water, discoloration of materials, crosion or corrosion of parts, etc. shall be noted for each test.

These observations shall be recorded in a log book. The entries will be reviewed for appropriate action by the Responsible Test Engineer.

4 s

I GENuclear Energy -

23A6W9 mi w). 26  !

nty 1 l

b

.g

^

t b

a i

8, s

s

{; 4 a

b


H ->4 = -

I D

  1. wga $

j mm g A<

g ~ --

, . l, e

=

a x

h, e m

i e a

l u

( kg E-w_ -

o o .

, , .e , ,. .

u3 l

y- x .

3 m E

5f m2 m W 3N v' h M 3

i r .- D L Y >

9 E C om Zw w'

v'

, g-t g . +

^ D3 W 85 Eu O ~~

wA ga

& on e VM $G.

. k e .

5 =

w@  :

- 23

_ _ i 1I

_ a d-e3 e- -.+-s- , . sev , ,,-.a ,-r~,--<-+y-,,g.r.., ,, --.y, , - ,.,,.y ,--,,,.,w-.vv.+,- s,y,em. ,-pe ,---m 3-..g-- ,v ,,v-- y

p.

& GENuclearEnergy acy 1

__g 2 W Y f L1 h

O t

~

O O

y

- 0 i

H j 970 mm _ _

i 136.2 inches)  ;

903 mm

,' _J l D (35.8 inchest  !

1

- NWL } 352050h ,, l

? :::-

w_ :_- -:::::  : W ,

= 4802 mm - ,

(> 189 inches)  !

s 11.ao .

R E R z = -

- :i' c W

-E E

  • E .*

+l 0 H

j' Il

,r

_ _. 4

$l FIGURE 4-6.~ REQUIRED DIMENSIONS FOR IC TEST POOL ,

-rw, . ~ .. . , , - wr.v-ww+, .wc----..._ _w,in, wr--,-w .,v.4.-,,rvw-w ...-,-.-v er-. ,w,-- -,..vi,- ,.e.+,~= ..,,,,w..., e - e <. g

es GE Nuclear Energy nov 1 x

_ - _ \ _

il I, _ _

> = 0 J >

g2-N~

o  :

/

x 0

\\\\\

11

  • q qg .  ; p 4_ _ + u.(_i l L J ,

g

_ -a--I  : o m

_, -thp- .g

=~ .

C y

k .

I m

C

O GE NucIcar Enorgy V 23A6999 RD' ' l Sil NO. 29 Tabic 4-3. REQUIRED TilERhiAL IIYDRAULIC hiEASUREh1ENTS-IC TFST )

Accuracy Frequency (2 Std. (samples hicasurement Units Expected Range Dev.) per sec)

Pressures steam vessel, hfPa gage (psig) 0.4-10.34 (70 1500) 2%* 0.1 1C inlet, hf Pa gage (psig) 0.4-10.34 (70-1500) 2% 0.1 IC upper plenum, htPa gage (psig) 0.4 -10.34 (70 1500) 2% 0.1 Differential pressures:

IC inlet /IC vent line, kPa (psi) 0-69 (0 10) 2% 0.1 IC inlet /IC drain line, kPa (psi) 069(010) 2% 0.1 upper plenum / lower kPa (psi) 0-69 (0 10) 2% 0.1 plenum, cibow meter taps (4), kPa (psi) 0 - ? (0 ?) 2% 0.1 Flow rates:

steam inlet, Lg/s (Ib/s) 0-16 (0-35) 2% 0.1 noncondensible inlet, kg/s (lb/s) 0-0.3(00.5) 2% 0,1 IC pool makeup, 1/s (gpm) 0-11.4 (0-180) 5% 0.1 Temperatures:

IC mlet steam, deg C (deg F) 157-314 (315-598) 3 (5) 0.1 IC inlet pipe (6), (leak det.) deg C (deg F) 100 314 (212-598) 3(5) 0.1 drain line, deg C (deg F)10-314 (50-598) 3(5) 0.1 vent lines (2), deg C (deg F)10-314 (50 598) 3 (5) 0.1 steam vessel, deg C (deg F)65-314 (150-598) 3(5) 0.1 IC pool (12 places), deg C (deg F) 10 104 (50-220) 3(5) 0.1 pool makeup water, deg C (deg F) 10 104 (50-220) 3 (5) 0.1 pool outlet temperature, deg C (deg F) 10 104 (50-220) 3 (5) 0.1 tubes (3 @ 5 axial locations), deg C (deg F) 10-51, (50 598) 3 (5) 0.1 Water levels (collapsed):

l 1C pool, m (ft) 3.5 - 5.5 (11.5 - 18.0) 0.03 (0.1) 0.1 l simulated RPV, m (ft) later (later) 0.03 (0.1) 0.1 t drain line, m (ft) later (later) 0.03 (0.1) 0.1 vent lines (2), m (ft) later (later) 0.03 (0,1) 0.1 Other (indirect):

IC heat rejection rate, htWth 0-20 0.1 0.02 system heat loss, htWth 0-1 0.1 0.02

  • - % means percent of full-scale

23A6999 sii No. 30 REV l Table 44 REQUIRED STRUCTURAL hiEASUREhf ENTS-IC TEST Quantity Position No. of at each Total hicasurement/ Location Number Positions Position hicas. Dir. Notes Acceleration:

mid-length of tube 5 5 2 10 X,Y note 2 drain line curve 9 1 3 3 X,Y,Z lower header cover 16 1 1 1 Z upper header cover 2 1 3 3 X,Y,Z Displacement:

Steam distributor 1 1 1 1 Z note 1 drain / lower headerjunction 8 1 1 1 Z note 1 steam pipe lower zone 13 1 1 1 7, note 1 Total Strain:

inlet / upper headerjunction 3 1 6 6 X,Y,Z notes 1,3 upper header /*ubejunction 4 5 1 or 2 7 Z notes 1,2,8 mid-length of tube 5 3 1 3 circ. notes 1,4 tubc/ lower headerjunction 6 3 1 3 Z notes 1,4 lower header 7 2 2 4 X,Y note 1 lower header cover 16 1 2 2 X,Z note 1 upper header 15 2 4 8 X,Y notes 1,5 upper header cover 2 1 4 4 X,Z notes 1,5 drain / lower headerjunction F 1 4 4 X,Z note 1 drain line curve 9 1 2 2 Y note 1 drain line/ drain tube 10 1 4 4 X note 1 upper header cover bolts 11 3 2 or 1 5 Y notes 1,6 lower header cover bolts 14 3 2 or 1 5 Y notes 1,6 guard pipe / distributor 12 1 3 3 X,Z notes 1,7 support 17 1 2 2 X,45* note 1 upper header near support 18 1 4 4 X,Y notes 1,5 Instrument positions are illustrated on Figure 4 7.

Notes:

1. The sampling interval shall be 1 sec. during transients.1 minute during steady-state.
2. Tubes a, b, c, e, f.
3. Three instruments above normal water level, three below.
4. Tubes c, e, f.
5. Two instruments inside, two outside.
6. Three bolts at 120,2 with two instruments, I with one.

l 7. Two in Z direction, one in X.

8. Two instruments on tubes b and e, one on tubes a, e, f.

i

9. Near level of pool water.
10. One instrument inside, one outside.

(x GE Nuclear Energy _

23A6999 sHNo.31 utx 1 Table 4-1. REQUIRED STRUCTURAL. hilMSUREh1ENTS-IC TEST (Continued)

Quantity l'osition No. of at each Total hicasurement/l.ocation Number Positions l'osition hicas. Dir, Notes Permanent Strain:

inlet / upper headerjunction 3 1 3 3 Y,Z,45 note 9 condensmg tube bend 4 3 1 3 Z note 4 drain / lower headerjunction 8 1 1 1 Z Temperatut e:

guard pipe / distributor 12 1 1 1 note 1 inlet pipe / upper header 3 2 2 4 notes 1,5 upper header /tubejunction 4 3 1 3 notes 1,2 tube / lower headerjunction 6 3 1 3 notes 1,4 lower header 7 2 1 2 note 1 upper header 15 2 2 4 notes 1,2 drain line bend 9 1 1 1 note 1 upper header cover 2 1 2 2 notes 1,10 lower header cover 16 1 1 1 note 1 Instrument positions are illustrated on Figure 4-7.

l I

(^' GE Nucicar Enorgy

( 23A6999 Sil NO. 32 RIT ' 1 Table 4-5. WATER QUALITYREQUIREhtENTS Water Quality Parameter Requirement Chloride (ppb) < 20.0 Sulfate (pph) < 20.0 Silica (ppb a. SiO2) < 1000 Conductivity at 25 C (77*F), (micro S/cm) < 1.2 pH at 25'C (77 F) min - 5.6 max - 8.6 Corrosion Product hietals (ppb)

Fe insoluble

< 20.0 Solubic Cu Total < l .0 All Other Metals < 9.0 Sum < 30.0 l

l l

l

Q Q

GE Nuclear Enargy 23Ati999 Sit NO. 33 Rl'V l

5. PASSIVE CONTAINh1ENT CONDENSEll TESTS 5.1 General Test Procedures 5.1.1 Specific Test Objectives. The general objectives of the PCC test (Paragraph 3.1) can be accomplished by means of the following specific objectives.

5.1.1.1 Thermallivdraulic

a. hicasure the steady-state heat removal capability over the expected range of SliWit conditions:

inlet pressure concentration of noncondensible gases PCC dilferential pressure pool-side bulk average water temperature pool-side water level

b. Confirm that when a mixture of steam and noncondensible gases flows into the PCC, the uncondensed gases will be discharged from the vent line and the condensate will be discharged from the drain line.
c. Confirm that heat transfer and flow rates are stable and without large fluctuations.
d. Confirm that there is no (ondensation water hammer during the expected startup, shutdown and operating modes of the PCC.
c. hicasure the inside and outside wall temperatures at " typical" tube locations to:
i. Provide diagnostic information for the investigation of unexpected condenser performance.

ii. Confirm the understanding of tubeside performance gained from other test programs.

iii. Provide a fundamental data base for confirmation of TilACG simulation of poolside performance.

f. Establish PCC unit pressure losses with air flow only as a benchmark against which to compare in-plant PCC air flow performance.

I l

l

(~' GE Nuclear Energy x 23A6999 SH NO. 34 RD' ' l 5.1.1.2 Structural

a. Confirm that the stress levels at criticallocations on the PCC do not exceed design values for the following conditions:
1. Standby operation at normal containment pressure, temperature, gas content and relative humidity, ii. Pneumatic leak testing.

iii. Transition from operation at normal containment conditions to LOCA and severe accident conditions,

b. Confirm that cyclic loads at critical locations on the PCC, resulting from flow and/or condensation induced vibration, do not exceed design values during expected periods of PCC operation.
c. Demonstrate, by performing 5 times the expected number of pressure and thermal cycles that the PCC will successfully sunive 60 years of SilWR senice.

5.1.1.3 IC Test Modeline. Confirm, with PCC tests, that the test performance of a half unit ICis an adequate representation of the performance of a full unit IC.

5.2 PCC Test Strategy. The PCC tests will be a series of steady-state tests at specified steam flow rate, noncondensible flow rate, inlet gas temperature and inlet pressure (equivalent to drywell).

The condensate tank pressure wi!! he equal to the inlet }nessure and the vent tank pressure will be adjusted to obtain the specified PCC inlet pressure. The PCCi mal will be maintained at a const:mt level (full) and equilibrium hulk average temperature dming most tests. The PCC will be brought to the specified conditions and allowed to stabilize,i.e. reach a condition of steady-state heat transfer and allowed to operate for approximately 15 minutes at these conditions. Data will be recmded during pool heatup and for the period of steady operation.

Initial testing will be performed using a complete PCC unit (two modules). The performance of this unit will be tested over the expected range of SIlWR conditions. Following the performance tests, additional testing will be performed to complete the required structural testing.

After successful completion of these tests, one PCC module will be removed from the facility and

. the pool hafIled to reduce the effective size. The single module PCC will be tested at condit ons

! equivalent to some of the full PCC tests. The ';nupose of these tests is to accomplish the objective of Paragraph 5.1.1.3. Tests using helium and he ium/ air mixtures will also be done with the single module.

I 1

l l

I

23A6999 $11 NO. 35 RIT 1 The types of PCC tests which are considered to be necessary to achieve the objectives in Paragraph 5.1.1 are listed in Paragraph 5.2.1. Each of these test types is described in more detailin Paragraphs 5.2.2 through 5.2.9. It shouhl be noted that the procedures described in the paragraphs are proposals and not requirements. The Test Performer may elect to use alternative or modified procedures which accomplish the same objective. The actual test procedures will b art of the Test Plan and Procedures document described in Paragraph 3.6.

A reference matrix of the test conditions required for the PCC is provided in Appendix A. These test conditions are intended for use in designing the test facility and planning the test program but the actual test conditions will be specified in the Test Plan and Procedures document and rnay differ from those shown in Appendix A.

5.2.1 Types of Tests Reauired for the PCC. The types of tests to be performed with the PCC have been defined as follows:

A. Tests with two modules:

A.l.l. Steady state performance - saturated steam / air mixtures.

A.l.2. Steady state performance - superheated steam / air mixtures A.l.3. Steady state performance steam only A.2.1. Effect of pool water level- saturated steam A.2.2. Effect of pool water level- saturated steam / air mixtures A.3.1. Additional Structural Tests - simulated LOCA pressurization A.3.2. Additional Structural Tests simulated leak testing AA. Steady State - air only pressure loss measurement

11. Tests with one module:

11.1. Steady state performance - steam only I!.2. Effect oflow density noncondensibles 5.2.2 licscriotion of Test Troe A.1,1 liclinition: Two Modules, Steady State - Saturated Steam / Air General Test Procedure:

Set up selected constant values of air and steam flow rates (ma and ms respectively) according to procedures determined during shakedown testing. Adjust PCC inlet pressure to maximum value, Pi (max) using .ent tank discharge valve. Adjust inlet mixture temperature to saturated condition, Allow PCC pool water to heat up to steady state hulk average temperature. Trim valve settings to adjust inlet temperature and pressure to prescribed vidues.

O Q/

GE Nuclocr Enargy 23A6999 SH NO. 36 RET l Record data at approximately 5 inlet pressure values between Pi(max) and Pi(min) or until a specified PCC delta P limit is reached. The delta P limit will be approximately 14 kPa (2 psi), but will be specified by the Res >onsible Test Engineer prior to the test. Repeat for each selected value of ma and ms. (See sketch xlow.)

For a. = const. AP = 6P limit

m. = m.(max)

/

7.0

z. ,

kg/s Pi (min) n. = const. Pi(max) o o o o

a. = m. (min)

/

/

90 Pi, kPa g 690 4

_ -_ _-.-___-----.___-.__.______--_--_--.__-___-__--_-__--_-___----.__.--_-__._-_a

GE Nuclear Energy

( 23Ati999 RTV 1 Sil No. 37 Independent Variables:

1. Pool level - maintain constant at normal level (full).
2. Inlet gas temperature set at saturation value corresponding to the inlet pressure and gas mixture or the specified degrees of superheat above saturation.
3. Inlet steam flow rate, ms - see Test Conditions.
4. Inlet air flow rate, ma see Test Conditions.
5. Inlet pressure, Pi - see Test Conditions for range of values.

Test Conditionu See Reference Test hiatrix, Appendix A.

5.2.3 Descriotion of Test Tvoc A.I .2 Definition: Two hiodules, Steady State - Superheated Steam / Air General Test Procedure:

Procedure is the same as Tests A.I.l. Repeat three of the saturated t-st conditions from A.I.1, each at two values of superheat,i.e. six test conditions (each with 5 inlet pressure values). Test conditions to be repeated are 3,7, and 23. The superheat values are to be determined (TilD) by analysis prior to testing. The Test Requestor will provide the superheat valuer to the Test Performer.

Independent Variables:

Same as Tests A.I.l.

Test Conditions:

See Reference Test hiatrix, Appendix A.

5.2.4 Desciintion of Test True A.1.3 Definition: Two hiodules, Steady State - Steam Only When the PCC is tested with steam flow only, the performance can be affected by the presence of noncondensible gas trapped in the PCC tubes. Two conditions will be considered la Tests A.l.3: 1, No air in PCC tubes and,2. Air in PCC tubes.

General Test Procedure - No air in PCC tubes:

The spectacle flange in the vent line may or may not be closed for these tests. This will be decided on the basis of the shakedown tests.

23At 999 SH No. 38 ut:v 1 Purge all air from the system prior to start of testing. The condenser is now similar to the IC,i.e.

with steam flow rate as the independent variable, the inlet inessure will adjust to match the capacity of the PCC.

Operate the PCC at the same steam flow rates used in Test Conditions 1 - 30 (7 values) and record data. Inlet pressure should not be allowed to increase above 690 kPa (100 psig).

h . pendent Variables:

. Poollevel maintain constant at normallevel.

2. Inlet gas temperature - adjust as specified in the Test Conditions according to the measured PCC inlet pressure. Values of superheat to be determined (TilD) by analysis prior to testing.
3. Inlet steam flow rate - see Test Conditions.
4. Inlet air flow rate - no air flow for these tests.

Test Condition.3:

See Reference Test Matrix, Appendix A.

General Test Procedure - Air in PCC tubes:

Close spectacle flange on vent line. Purge all air from system with steam prior to start of test. Set up the sr cified saturated steam flow rate and stabilize operation (inlet pressure). lileed air slowly into inlet line to PCC at a metered rate and record data as inlet pressure increases. Cease testing when pressure stops increasing or approaches 690 kPa (100 psig).

Indcoendent Variables:

1. Pool level maintain constant at normal level (full).
2. Inlet gas temperature - adjust to the saturated temperature (or the specified superheat) of the steam at the initial (purged) pressure and maintain constant throughout the test.
3. Inlet steam flow rate - see Test Conditions.
4. Inlet air flow rate - adjust to a rate which will fill the condenser in approximately 15 to 30 minutes at the stabilized inlet pressure.

Test Conditions:

See Reference Test Matrix, Appendix A.

GE Nucbar Encrgy 23Ati999 Sit No. 39 RI'V ' }

5.2.5 Description of Test Tvue A.2

])chnition: Two Modules, Effect of Pool Water Level General Test Procedure:

These tests will demonstrate, for a limited set of conditions, the effect of pool water level decrease on the performance of the PCC. It is proposed to do this by recording data while slowly lowering pool water level either by allowing the water to boil away without refilling or by slowly draining.

When the low level is reached in the pool, ambient water will be slowly added to refill the pool, while continuing to record the data.

A.2.1 Saturated steam: Purge all air from the system and repeat Test Condition No. 41, allowing the pool water level to decrease to about 50% of normal level or until the inlet pressure reaches approximately 100 psig.

A.2.2 Saturated steam / air mixtures: Re-level to decrease to about 50% of normal > eat Test Conditions 15 and 30, allowing the pool w level or until the inlet pressure reaches approximately 100 psig. Start with the minimum values ofinlet pressure and maintain vent tank discharge valve position throughout the test.

Indcoendent Variables:

1. Pool level- begin test with normal level (full) and allow to decrease to 50% of normal. Slowly refill and end test with pool again at the normallevel.
2. Inlet gas temperature - adjust to saturation value corresponding to the inlet pressure and gas mixture.
3. Inlet steam flow rate, ms - see Test Conditions.
4. Inlet air flow rate, rna - see Test Conditions.
5. Inlet pressure, Pi- see Test Conditions. For Conditions 55 and 56 start at the minimum inlet pressure determined for Test Conditions 15 and 30 respectively.

Test Conditions:

See Reference Test Matrix, Appendix A.

5.2.6 Descriotion.nf Test Tvoe A.3 Dermition: Two Modules, Additional Structural Tests To confirm the PCC structural design adequacy for the SBWR design lifetime, the test program must include testing the PCC for at least five times the number of design basis pressure / temperature cycles. The performance test includes most of these conditions, except for the LOCA and the pneumatic leak testing.

. ( GE Nuclear Energy RD' ' l Definition: A.3.1. Simulated 1 OCA Pressutizations The design basis is two I.OCAs during the sixty year design life of the PCC. For the test,10 simulated LOCA cycles inust be performed.

General Test Procedure:

The PCC is to be rapidly pressurized with saturated steam to 379 kPa(g) (55 psig) and 151 C (303 F). The vent tank discharge vahc must be par tly open during pressurization to purge air from I the PCC tubes and permit heating.Tne total time penod for the pressurization and data recording is approximately 30 minutes. The flow rate of steam required to achieve these conditions can be determined either by shakedown testing or from previously run two-module tests. If the steam supplyis not large enough to maintain the required pressure with a steam onlyinlet flow to the PCC, air flow can be added. Pre adja' ment of the vent tank discharge valve position by " trial and error"inay be necessary.

Independent Wriables: i

1. Pool level - maintain constant at normal level (full).
2. Pool temperature start with pool at ambient temperature and allow to heat up in response to PCC performance.
3. Inlet gas temperature - adjust to saturated temperature at 379 kPa (g) (55 psig).
4. Inlet steam flow rate- to be determined.
5. Inlet air flow rate - no air flow for these tests unless it is required to achieve the final required pressure.

i Test Conditioru:

This procedure is to be performed a total of 10 times. The pressurization transient for the PCC must meet the following requirements:

PCC Inlet Pressure Required Time to Re ch Pressure (kPa (g) (psig) 0 (0) (start) 175 (25.4) < 2.3 sec 249 (36.1) < 32 set 261 (37.8) < 67 see 379 (55) < 30 min I

l

(

23ACh99 SilNO 4I suv 1 Lh tition: A.3.2. Simulated Pneutnatic leak Test Pressuritations.

The PCC design basis assuines that the unit will be pneuinatically lnessuriecd for leak testing f>0 tiines during its design life. F.ach leak test will consist of closing the inlet, vent and condensate lines and pressurizing the PCC with air to 758 LPa(g) (110 psig). The pressure will be rnaintained long enough to demonstrate that the PCC does not leak. For the structural test,it is requited to siinulate five times the number ofload cycles produced by these leak tests.

General Test Procedur

ccilled superheat) of the steam at the mitial (purged) pressure and maintain constant throug bout the test.

3. Inlet steam flow rate see Test Conditions.
4. Inlet air flow rate - adjust to a rate which will fill the condenser in approximately 15 to 30 minutes.

Test Conditions: See Reference Test hiatrix, Appendix A. 5.2.9 I)cscription of Test Type IL2 Jlefinition: Single Module - Effect of1.ow 1)ensity Noncondensih!cs General Test Procedure: Perform tests similar to the two module tests, A.l.3, part 2., except using helium and helium / air mixtures in place of air. Close spectacle flange on PCC vent line. Purge all air from system with steam prior to start of test. Set up saturated steam flow rate and stabilire operation (inlet pressure), lileed the noncondensible gas slowly into inlet line to PCC at a metered rate and record data as inlet pressure increases. Cease testing when pressure levels out or approaches 100 psig. ( 23Ati999 SH No. 44 nty I j Independent Variables:

1. Pool level maintain constant at normallevel (full).
2. Inlet gas temperature - adjust to the saturated temperature of the steam at the initial (purged) pressure and maintain constant throughout the test.
3. Inlet stearn flow rate - see Test Conditions.
4. Inlet air flow rate see Test Conditions.
5. Inlet helium flow rate - adjust to a rate which will fill the condenser in approximately 15 to 30 minutes.

Test Conditions: See Reference Test Matrix, Appendix A. 5.3 Data Processine/ Analysis General Renuirements. The processing and analysis of the recorded test data shall be done by the Test Performer in three steps which are described as " quick look", "presiew" and " full processing and analysis", Equipment and software necessary for the specified data processing shall be provided by the Test Performer. The Test Performer shall prepare a plan for verification of the accuracy of all data acquisition and data reduction software. Tlus plan shall be approved by the Test Requestor and verification shall be completed by the Test Performer prior to the start of testing. The objective of the " quick look"is to provide all of the information needed to proceed with the preparation for the next test. This shall consist primarily of verification that the objectives of the test run were achieved, identification of any instruments wiiich may have failed or performed incoricctly during the test, and reviewing structural data to insure the integrity of the condenser for the next test. The goalis to complete this phase of the data reduction within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> after the completion of a test. The " preview" phase has the purposes of providing representative results from the most significant measurements to be used in the " Apparent Test Results" report, specified in Section 3.7.2, and to aid in defining the details of the remainder of the analysis,it may be that the most convenient way to do this analysis is interactively with the data reduction computer. Time history plots of key parameters shall be prepared arid examined to determine time periods of significant interest for more detailed analysis. Summary plots and digital data tables of typical performance shall be prepared. Time periods and parameters of most significance shall be selected for processing during . the " full processing and analysis" phase. The " preview"is expected to be completed within 2 to 4 days following the test. The plots and tables for the Final Test Report, specified in Section 3.7.2, will be generated during the " full processing and analysis" phase to be com aleted within a aproximately two months after the test. The purpose of this phase is to organize the c ata in a form that provides an integrated 23A6999 sei No. 15 R1T l interpretation of the test results to show the performance of the condenser and demonstrate that the test objectives have been achieved. The following general data reduction software capabilities shall be available: Conversion of all recorded signals to digital values in engineering units. Units shall be as defined in the SilWR Composite Specification referenced in Paragraph 2.1.g. Print tables of digital values of recorded signals in engineering units for selected time periods. Calculate and prepare tables of mean, standard deviation, minimum and maximum value of all measurements (in engineering units) during a specified time period. Plot graphs of any selected test variable as a function of time (time history) for any selected test time window. lie able to plot groups of 1 to 6 test variables on a single graph. Spectral analysis for determination of the primary frequencies present in the accelerometer, strain gage, and possilly some pressure signals.

6. ISOIATION CONDENSER TESTS 6.1 General Test Procedures 6.1.1 Specific Test Objectives. The general objectives of the IC test (Paragraph 3.2) can be accomplished by means of the following specific objectives.

6.1.1.1 Thermal Liniraulic

a. Measure the steady-state heat removal capability over the expected range of the following SilWR conditions:

steam pressure concentration of noncondensible gases pool-side bulk average water temperature pool-side water level

h. Confirm that tube-side heat transfer and flow rates are stable and without large fluctuations.
c. Confirm that the vent line(s) and the venting strategy for purging noncondensible gases perform as required during IC operation.
d. Confirm that the condensate return line performs its function as required during steady state and transient operation and that water level oscillations and condensation induced flow oscillations do not impair heat removal capacity.

GE NucIcar Energy nix 1

c. hicasure the heat loss from the IC when it is in the standby inode, with the condensate drain valves closed.
f. hicasure the " drain time" for the IC upper plenum during the IC startup transient.

6.1.1.2 Structural

a. Demonstrate, using, when possible, prototypical NDE testing methods, that a specified fraction of the required IC thermal cycles, together with unexpected load cycling, results in no excessive deformation, crack initiation or excessive crack growt a rate. (The Test Requestor will provide the NDE testing oflC.)
b. Confirm that the stress levels at criticallocations on the IC do not exceed design values for the following conditions:
i. Reactor heatup from a cold condition to saturation temperature at reactor operating pressure (IC hot standby) and subsequent couldown, with the IC condensate return valves closed (i.e., IC does not operate).

ii. Isolation condenser startup and operation following a rapid increase from reactor normal operating pressure, and subsequent shutdown of the IC and return to standby at a reduced pressure. iii. Periods ofIC operation (on the order of two hours) with constant steam conditions inside the tubes and low temperature (ambient rising to 100*C (212 F)) water on the outside,

c. Confirm that cyclic stress levels at critical locations on the IC, resulting from flow and/or condensation induced vibration, do not exceed design values during expected periods ofIC operation.

6.1.1.3 In Service Inspectitu. Confirm the adequacy of proposed in Senice Inspection (ISI) procedures and methods by performing NDE tests prior to thermal hydraulic testing and after testing has been completed. 6.1.1 A 1.cak Detection hiethods. Record reference data for use in evaluation of proposed methods for IC system leak / break detection,

a. hicasure and record the dynamic differential pressure signal from cibow flow meters in the steam supply and condensate return lines during the IC startup transient and at standby and normal operating conditions.
b. hicasure the temperature distribution in the IC inlet pipe with a simulated leak in the IC or IC condensate drain line.

o . 23A6999 SH NO. 47 REV'I 6.2 Renuired Test Conditions. The IC tests will essentially be representative of the cyclic duty expected of the isolation condenser as used in the SilWR. The test will include cycles equivalent to approximately one-third of the design lifetime of the IC, i.e. 20 years of operation. Each isolation condenser test will consist of a cycle corresponding to one of five basic types. The five cycle types are described below and illustrated m Figure 41. During one Type I cycle, early in the testing, determine the system heat losses and measure inlet pipe temperature distribution with condensate drain valve bypass line open. A reference matrix of test conditions for the IC is presented in Appendix II.This matrix is intended for use in designing the test facility and planning the test program but the final test conditions will be specified in the Test Plan and Proced ures document and may differ from those shown in Appendix II. 6.2.1 Description ofliasic Test Cycles initial Conditions for All Cycle Troes: The condensate drain valve is closed and the IC is filled with water. The IC pool shall be full and the initial water temperature at the specified value. Troe 1 " Normal"IC Operation:

1. Ileat up and pressurire with steam from ambient to pressure P1 at a rate of approximately 56 C (100 F) per hour.
2. Allow the system to stabilire at P1 and then open condensate drain valve.
3. As condensation reduces the inlet pressure, increase the inlet steam flow rate as necessary to stabilize the condenser inlet pressure at P2 If the specified value of P2 cannot be sustained at the maximum steam flow rate (20 MW), then perform the test at the maximum sustainable pressure below P2.
4. Continue steady condenser operation at these conditions for a period of time, T2.
5. At the end of the time period, T2, depressurire and cool down the system at approximately

$6 C (100 F) per hour. Tvoc 2 " Normal"IC Ooeration + Performance Data:

1. Ileat up and pressurize with steam from ambient to pressure P1 at a rate of approximately 56'C (100 F) per hour.
2. Allow the system to stabiliic at P1 and then open condensate drain valve.
3. As condensation reduces the inlet pressure, increase the inlet steam flow rate as necessary to stabilize the condenser inlet pressure at P2 If the specified value of F2 cannot be sustained at

- 23A6999 suNo.48 ncy 1 the maximum steam flow rate (20 htW), then perform the test at the maximum sustainable pressure below P2.

4. Continue steady condenser operatmn at these conditions for a period of time, T2.
5. Reduce the inlet pressure to P3, at approximately 56 C (100'F) per hour and stabillie.
6. hiaintain condenser operation at pressme P3 for a time period T3,long enough to record steady-state performance data.
7. At the end of the time period T3, depressurire and cool down the system at approximately 56 C (100 F) per hour.

Tvoc 3 " Normal" IC Oucration + Noncondensible Gas Effects:

1. Ileat up and pressurire with steam from ambient to pressure P1 at a rate of approximately 56 C (100 F) per hour.
2. Allow the system to stabilire at P1 and then open condensate drain vahc.
3. As condensation reduces the inlet pressure, increase the inlet steam flow rate as necessary to stabilire the condenser inlet pressure at P2. If the speci6ed value of P2 cannot he sustained at the maximum steam flow rate (20 htW), then perform the test at the maximum sustainable pressure below P2.

4, Continue steady condenser operation at these conditions for a period of time,T2.

5. Reduce the inlet pressure to P3, at approxin,ately 56 C (100 F) per hour and stabilize.

I'

6. Ilegin injection of noncondensible gas at known rate, hiaintain steam flow rate and allow inlet pressure to increase to a maximum or to PV (which ever is lower).
7. Open the vent valve and bleed off the noncondensible gas until the pressure stops decreasing or to P3. Close the vent valve.
8. Depressurize and cool down the system at approximately 56'C (100 F) per hour.

Tvoc 4 - Reactor licatup/Cooldown without ICfferation: 1 Ileat up and pressurire with steam from ambient to pressure P1 at a rate of approximately 56 C (100 F) per hour,

2. Depressurire and cool down the system at approximately 56 C (100 F) per hour. The condensate drain valve is not opened during this cycle.

+ 23A6999 SH NO. 49 m1 Tme 5-Simulate ATWS Evm:

1. Heat up and pressurize with steam from ambient to pressure P1 at a rate of approximately 56*C (100*F) per hour.
2. Allow the system to stabilize at P1 and then increase pressure rapidly (approximately 0.5 minutes) to P2 and open condensate drain valve.
3. As condensation reduces the inlet pressure, increase the inlet steam flow rate as necessary to stabilize the condenser inlet pressure at P3. If the specified value af P3 cannot be sustained at the maximum steam flow rate (20 MW), then perform the test at the maximum sustainable pressure below P3.
4. Continue steady condenser operation at these conditions for a period of time, T3.
5. At the end of the time period, T3, depressurize and cool down the system at approximately 56 C (100 F) p'r hour.

6.2.2 Data Recording. The duration of each cycle will be in the range of 7 to 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and therefore it will not be necessary to record all data at high sample rates throughout each test. It may be desirable to record some data at very low sample rates and some at high rates for only certain time periods of the test. 6.3 Data Processinc/ Analysis General Reouirements. The general requirements for data processing and analysis for the IC are the same as those specified for the PCC in Paragraph 5.3. I ( i l I t I l l-

s. .

Q GE Nuclear Energy nEv 1 TYPE 1 TYPE 4 JL JL P1 - P1 - ! - P2 E. T7 i L / \\  ! f /\ TIM E, T ~ TIME,T TYPE 2 TYPE 5 P2 - A h P1 - P1 - l l - P2 -! i - P3 T3 ul f b ui 7 sg 0 - P3 $ h T3 ,, g h E D E A g a \ TIM E. T TIME, T KEY: TYPE 3 (NONCONDENSIBLE GAS) m STABILIZE PRESSURE AND TEMPER ATURES e OPEN ORAIN VALVE ~ X OPEN VENT VALV E l T2 l .- - P2 _ py AT PRESSURE PV uI f $ P3 - B &g  % E 9 . . ~ y TIMi, T FIGURE 6-1. BASIC IC TFST Q'CLES ~,. Ah }. 10 ~ C) en 9.5 ru- $ - :t 2 - W A _ 2 9 @  ! 2 [ m S A N _II - _C 8.5 , ~ ' I I I I I I I I l I I I I I l t t l l f N h 1 1 1 6 8 10- 12' 14 16 18 20 22 ~$ Initial Pool 'lemperature, Deg. C E 5 E FIGURE 6-2. REQUIRED IC INLET PRESSURE FORTEST CONDITION NO. I 1 O GE Nuclear Energy Q 23A6999 REV'l SilNo. 52 Appendix A - RFFERENCE MATRIX OF PCC TEST CONDITIONS PART A. TESTS WITH TWO MODULES: Test True A.1.1. Stradv State Performance - Saturated Steam / Air Mixtures Test Conditions (See Par. 5.2.2.): Test Condition Steam Flow Air Flow Range ofInlet Pressure Superheat Number kg/s (Ib/s) kg/s (lb/s) kPa g (psig) deg. C (deg. F) 1 0.45 (1.0) 0.014 (0.030) 193- 689 (28-100) 0 (0) 2 1.4 (3.0) 0.014 (0.030) 207- 689 (30-100) 0(0) 3 2.5 (5.5) 0.027 (0.060) 207- 689 (30-100) 0(0) 4 3.6 (8.0) 0.027 (0.060) 207- 689 (30-100) 0 (0) 5 4.5 (10.0) 0.027 (0.060) 207- 689 (30-100) 0 (0) 6 5.7 (12.5) 0.027 (0.060) 207- 689 (30-100) 0 (0) 7 7.0 (15.4) 0.027 (0.060) 207- 689 (30-100) 0 (0) 8 1.4 (3.0) 0.073 (0.16) 193-689 (28-100) 0 (0) 9 4.5 (10.0) 0.073 (0.16) 207-689 (30-100) 0 (0) 10 5.7 (12.5) 0.073 (0.16) 207- 689 (30-100) 0 (0) 11 7.0 (15.4) 0.073 (0.16) 207- 689 (30-100) 0 (0) 12 0.45 (l.0) 0.14 (0.31) 138-434 (20-63) 0 (0) 13 2.5 (5.5) 0.14 (0.31) 193-552 (28-80) 0(0) 14 3.6 (8.0) 0.14 (0.31) 193- 689 (28-100) 0 (0) 15 4.5 (10.0) 0.14 (0.31) 193 689 (28-100) 0 (0) 16 7.0 (15.4) 0.14 (0.31) 200-689 (29-100) 0 (0) 17 2.5 (5.5) 0.36 (0.79) 172-503 (25- 73) 0 (0) 18 4.5 (l0.0) 0.36 (0.79) 186-538 (27-78) 0 (0) 19 5.7 (12.5) 0.36 (0.79) 193-552 (28-80) 0 (0) 20 4.5 (10.0) 0.59 (l.29) 179-510 (26-74) 0(0) 21 7.0 (l5.4) 0.59 (1.29) 186 5'i8 (27-78) 0 (0) 22 1.4 (3.0) 0.83 (1.83) 97- 352 (14 -51) 0 (0) 23 4.5 (l0.0) 0.83 (l.83) 159-483 (23-70) 0 (0) 24 5.7 (12.5) 0.83 (1,83) 165-496 (24-72) 0 (0) 1 25 7.0 (15.4) 0.83 (1.83) 179- 510 (26-74) 0 (0) l s, . 23A6999 Sit No. 53 REv 1 Test Tvoc A 1.1 (Continued) Test Coralition Steam Flow Air Flow Range ofInlet Pressure Superheat Number kg/s (Ib/s) kg/s (lb/s) kPa g (psig) deg. C (deg. F) 26 2.5 (5.5) 1.08 (2.37) 124-400 (l8-58) 0 (0) 27 3.6 (8.0) 1.08 (2.37) 138-434 (20-63) 0 (0) 28 4.5 (l0.0) 1.08 (2.37) 152-455 (22-66) 0 (0) 29 5.7 (12.5) 1.08 (2.37) 159-483 (23-70) 0 (0) 30 7.0 (15.4) 1.08 (2.37) 165-496 (24-72) 0 (0) Test Duration: it should be possible to do one air flow / steam flow combination at approximately 5 values ofinlet pressure in one test day. Total estimated time for Tests A.l.1 is 30 test days. Test Tvoc A,1.2. Steadv State Performance Satu rbeated Steam / Air Mixtures Test Conditions (See Para. 5.2.3): Test Condition Steam Flow Air Flow Range of Inlet Pressure Superheat Number kg/s (Ib/s) kg/s (lb/s) kPa g (psig) deg C (deg. F) 31 2.5 (5.5) 0.027 (0.060) 207-689 (30-100) TilD 32 2.5 (5.5) 0.027 (0.060) 207-689 (30-100) TilD 33 7.0 (l5.4) 0.027 (0.060) 207- 689 (30-100) TilD 34 7.0 (l5.4) 0.027 (0.060) 207-689 (30-100) TilD 35 4.5(l0.0) 0.83 (l.83) 159-483 (23-70) TilD 36 4.5 (10.0) 0.83 (1.83) 159-483 (23-70) TIID Test Duration: Estimated time to complete Tests A.l.2 is six test days. GE Nuclear Energy ~ - ~ , 23A6999 - SH No. 54. REV-}- Test Troe A 1.3. Steady State Performance-Steam Oniv. Test Conditions - No air in PCC tubes (See Para. 5.2.4): Test ., Condition Steam Flow ^ Air Flow Superheat j Number - kg/s (lb/s) kg/s (lb/s) deg. C (deg. F) i 37 0.45 (1.0) 0(0) 0 (0) 38 1.4(3.0) 0 (0) 0 (0) . 39 2.5 (5.5) 0 (0) 0 (0) - 40 3.6 (8.0) 0 (0) 0 (0) 41 4.5 (10.0) 0 (0) 0 (0) 42 5.7 (12.5) 0 (0) 0(0) 43 7.0 (15.4) 0 (0) 0 (0) 44 1.4 (3.0) 0 (0) TBD ' 45 1.4 (3.0) 0 (0) TBD 46 1.4 (3.0) 0 (0) TBD 47 4.5 (10.0) 0 (0) TBD-48 4.5 (10.0) 0(0) TBD 49 4.5 (10.0) 0 (0) TBD Test Duration: These tests are estimated to require four test days for completion. Test Conditions - Air in PCC Tubes (See Para. 5.2.4): Test Condition Steam Flow . Air Flow - Superheat Number kg/s (lb/s) kg/s (lb/s) - deg. C (deg. F) 50- 1.4 (3.0) very low 0 (0) 51 4.5 (10.0) very low . 0 (0) ~ 52 1.4(3.0) very low TilD; 53 4.5 (10.0) very low . -TBD Test Duration: These tests are estimated to require two test days for completion. s . , , . . ~ . . , , . ~ . . . _ . . _ - _ _ _ _ _ . . _ _ _ _ _ _.mm _ .. 23A6999 511 NO. 55 REV'l Test Tyne A.2.1, Effect of Pool Water i evel- Saturated Steam Test Tvoc A.2.2 EITect of Pool Water I.evel- Saturated Steam / Air Mixtures Test Conditions: Test Condition Steam Flow Air Flow Range ofInlet Pressure Superheat Number kg/s (Ib/s) kg/s (Ib/s) kPa g (psig) deg. C (deg. F) 54 4.5 (10.0) 0 (0) (dependent variable) 0 (0) 55 4.5 (10.0) 0.14 (0.31) (start at minimum) 0 (0) 5C 7.0 (15.4) 1.08 (2.37) (start at minimum) 0 (0) Test Duration: These tests are estimated to require four test days for completion. Test Tyne A,3.1. Additional Structural Tests- Simulated I.OCA Pressuriration. See Paracraph 5.2.6. Test Tyne A.3.2. Additional Structural Tests- Simulated I cak Testine. See Paracranh 5.2.6. Test True A.4. Steady State Pressure 1.osses. Air-Only, See Paracraph 5.2.7. 4 .

GE Nuclear Energy f 23A6W9 Sit No. 56 RLY l PART 11. TESTS WITH ONE MODULE

Test Tyne Ill . Steady State Performance - Steam Oniv Test Conditions - No Air in PCC Tubes: Test Condition Steam Flow Air Flow Superheat Number kg/s (Ib/s) kg/s (lb/s) deg. C (deg. F) 66 (37) 0.23 (0.5) 0 (0) 0 (0) 67 (38) 0.68 (1.5) 0 (0) 0(0) 68 (39) 1.3 (2.8) 0(0) 0 (0) 69 (40) 1.8 (4.0) 0 (0) 0(0) 70 (41) 2.3 (5.0) 0(0) 0 (0) 71 (42) 2.8 (6.3) 0 (0) 0 (0) 72 (43) 3.5 (7.7) 0 (0) 0 (0) Test Duration: These tests are estimated to require one test day for completion. Test Conditions - Air in PCC Tubes: Test Condition Steam Flow Air Flow Superheat Number kg/s (Ib/s) kg/s (lb/s) deg. C (deg. F) 73 (44) 0.68 (1.5) very low 0 (0) 74 (45) 2.3 (5.0) very low 0 (0) Test Duration: These tests are estimated to require one test day for completion. s . C "i. 23A6999 REV - 1 SH No. 57 Test Tmc IL2 Effect ofInw Density Noncondensibles Test Conditions: Test Condition Steam Flow Helium Flow Air Flow Superheat Number kg/s (lb/s) kg/s (lb/s) kg/s (Ib/s) deg. C (deg. F) 75 0.68 (1.5 very low 0 (0) 0 (0) 76 2.3 (5.0) very low 0 (0) 0 (0) 77 0.68 (1.5 very low 3.4 X He flow 0 (0) 78 2.3 (5.0) very low 3.4 X He flow 0 (0) Test Duration: These tests should be achievable in two test days. GE Nuclear Energy _ ,g REV l Appendix 11 - REFERENCE MATRIX OF IC TEST CONDITIONS Each isolation condenser test will consist of one of the basic IC test cycles defined in Paragraph 6.2. Inlet Pressure, P2 Inlet Pressure, P3 Initial Test No. Inlet Pool Cond. of Cycle Pressure, P1 Temp. No. Cycles Type MPag (psig) MPag (psig) T2,h MPag (psig) T3, h Deg C (F) Notes 1 3 1 9.480 (1375) 8.618 (1250) 2 < 21 (70) 1,2,9 2 ') ') 2 0.5 8.618 (1250) 8.618 (1250) 7.920 (1150) < 32 (90) 1 3 2 2 8.618 (1250) 8.618 (1250) 2 7.240 (1050) 0.5 < 32 (90) 1 4 2 2 8.618 (1250) 8.618 (1250) 2 6.21 (900) 0.5 < 32 (90) 1 5 2 2 8.618 (1250) 8.618 (1250) 2 5.52 (800) 0.5 < 32 (90) 1 6 2 2 8.618 (l250) 8.618 (l250) 2 4.83 (700) 0.5 < 32 (90) 1 7 2 2 8.618 (1250) 8.618 (1250) 2 4.14 (600) 0.5 < 32 (90) 1 8 0 ') 2 0.5 8.618 (1250) 8.618 (1250) 3.45 (500) < 32 (90) 1 9 2 2 8.618 (1250) 8.618 (1250) 2 2.76 (400) 0.5 < 32 (90) 1 10 2 2 8.618 (1250) 8.618 (1250) 2 2.07 (300) 0.5 < 32 (90) 1 11 2 2 8.618 (1250) 8.61S (1250) 2 1.38 (200) 0.5 < 32 (90) 1 12 1 3 8.618 (1250) 8.618 (1250) 2 0.48 (70) < 32 (90) 1,4 13 1 3 8.618 (1250) 8.618 (1250) 2 2.07 (300) < 32 (90) 1,4 14 3 3 8.618 (1250) 8.618 (1250) 2 4.83 (700) < 32 (90) 1,5 15 1 3 8.618 (1250) 8.618 (1250) 2 7.24 (1050) < 32 (90) 1,4 16 16 1 8.618 (1250) 8.618 (1250) 2 < 32 (90) 1,6,7 17 85 4 8.618 (1250) < 32 (9P' 18 1 5 8.618 (1250) 9.480 (1375) 8.618 (1250) 2 < 32 (90) 1,8 Notes:

1. If the specified pressure, P2, cannot be sustained with maximum steam flow rate (20 MW), then perform the test at the maximum sustainable pressure below P2.
2. The inlet pressure Pl, can be reduced in accordance with Figure 6-2 if the initial pool temperature is less than 17 C (62 F).
3. Time period, T3, is approximate. Conditions at P3 should be maintained long enough to record steady-state condenser performance data.
4. Inject air and vent from bottom vent. Ilegin venting at 7.653 MPag (1110 psig) or when j pressure peaks.

I ., I GE Nuclear Energy ' O) ( V 23A6999 SHNO. 59 ncy 1 FINAL Notes (Continued):

5. Three tests as follows:

inject air and vent from the bottom vent inject air and vent from the top vent first then bottom vent inject air / helium mixture and vent from top vent first then bottom vent. Begin venting all tests at 7.653 MPag (1110 psig) or when pressure peaks.

6. Total number of cycles for test conditions 1 through 16 shall be 45. Number of cycles of Test Condition 16 can be adjusted to maintain this totalif other conditions are repeated, added or deleted.
7. For one test, after time T2, continue to run at pressure P2 without pool refill until poollevel decreases to mid-height of condenser tubes.
8. This test cycle should be donc at the end of the test series.
9. On the first cycle (or very early in the test), determine system heat losses at pressure P1 and tcmperatures in the IC inlet pipe with the condensate drain valve closed. Then open the -

condensate drain valve bypass line slightly and record heat losses and temperature distribution. Repeat by further opening the bypass line valve and recording data until there is litde change in IC inlet pipe temperature. ( , . , 1 & GENuclearEnergy Engineenny Calculation Sheet - n u- _ _ - xa , . sonna .LhrJ 1 <w f. e F1 N LMof av Pav snur or Yn fl . Y r' orbid 4 &I. 6f oe) qar-t397 f (q ue) nr-If e ? 'I~c k. I O ry ow oe Gwp dt,J Eg <ri d(3

1. vc6 - V , e <w E ,p. a << n t A L k v i < r ~fSL 4<S EG Le<J ~ ~

G e, < cat  %, -t ,u l Onn h ," --l1 S T ho

n. n. V i . <w , v c L.Lv Lp . f S e l-1 E,q w , A ug u 4 1990.

( P c,. v . L( pavioLh

s. w Maiu' ~ ~ JV J-l G < udL), n Lnp vadk tv.nndw.,& G m f A 1 " ,19 m i Jf A.n c k + 75 c 6 ,< ,1 9 1 1

( .a tt ..x.\c J ) f

3. v cv; - K v k+. Lpenn+%

A. ~ 5 + J os r{ VC6s' &Q ueXL Gyambl S lw L~ y E , n ck, PF P % n ,i't92-- ( m ti cm . L J ) m.,.. 4 Proceeding of The International Conference on 7 g . . Multiphase Mows '91-Tsukuba September 24 - 27. 1991 7 ' Tsububa. Japan i CONDENSATION IN A NATURAL CIRCULATION LOOP WITH NONCONDENSABLE GASES PART I - HEAT TRANSFER Knren M. Vierow G. E. Nuclear Energy , ,, 3 San Jose. C A D,rJ25, US A, y c 4, 4' , ' ~* nnd

  • Virgil E. Schrock Department of Nuclear Engineering University of California, Berkeley

' Berkeley. CA 94720, US A ABSTRACT equilibrium dictates that the interface temperature (saturation temperature at the vapor partial pressure) The reduction of condensation heat transfer due is then lower than in the bulk, For condensation of to the presence of a noncondensable gas in the vapor is pure vapor, the thermal resistance of the draining a critical consideration in the design of heat exchangers condensate film controls the condensation rate for where such gases are present. Heat transfer coefficients condensation of pure vapor. With 'noncondensable may be so greatly diminished that the exchanger fails gas present, there is a significant, additional thermal to perform its required function. The present paper resistance on the vapor gas side associated with the deals with the effect that a noncondensable gas has composition boundary layer. upon the condensation within a natural circu'ation This same physical picture is expected to apply to loop. A vertical natural circulation loop was usea with the present problem of condensation inside vertical the condenser section at the upper part of the heat exchanger tubes. However Sparrow's problem downflow side. Steam injected into a lower plenum resulted in self-similar boundary layers and a uniform flowed up the adiabatic side of the loop and the interface temperature. The present problem is clearly condensate formed on the downflow side drained back nonsimilar. The tube wall temperature varies axially, ' to the plenum. Local heat transfer coefficients were the vapor-gas composition varies axially as well as measured for ranges of gas content and steam flowrate. radially, and the interfacial shear imposed by the The experimental results have been correlated as a vapor gas flow has a significant effect upon the hquid correction factor to a heat transfer coefficient calculated film thickness, particularly near the entrance of the from Nusselt theory. When applied to the theoretical condenser tube. value, the correlation provides a local heat transfer The need for the present study results from a coefficient which includes effects of the lack of full understanding of .the heat transfer noncondensable gas and interfacial shear on mechanisms involved when noncondensable effects condensation. and gas-film shear are significant. Earlier experimental studies of forced flow condensation under such c nditions have been conducted, however, only INTRODUCTION , length averaged data are available. Local data and Earlier work by Sparrow and others [1,21 clarified analysis are needed for a' full understanding of the the basic role played by the noncondensable gas Phenomena involved, through the study of laminar film condensation on a The present work [3] was carried out in support vertical wall, adjacent to a large body of vapor-gas at a of the Simplified Boiling. Water Reactor (SBWR) uniform ambient state. The gas is carried toward the which is an advanced light water reactor being condensing surface by the flowing vapor. It developed by an international team led by the General. accumulates there until the diffusion of gas back into Electric Co., with support from the US Department of the vapor gas mixture balances the convective flow Energy, the Electric Power Research Itistitute, and other toward the interface. At steady state, the vapor partial participants. In this design, an isolation condenser pressure at the condensing surface is therefore lower may be called upon to remove heat from the than in the bulk mixture. Thermodynamic containment by condensing vapor from a steam- ~ 183 - W - .- . =. - . - - - - . - . _ - - - - - - - . .- - . -_ i nitrogen mixture; The pas mixture would flow by_ with the condensate and noncondensable with a e natural circulation from the drywell to the isolation partial pressure which maintains tube total pressure at-condenser. Successful design of the condenser requires nearly the loop pressure. -f knowledge of the local heat transfer coefficient.- - Another ' distinguishing; feature- of internal condensation is the~ presence of interfacial shear. The THEORY gas phase has a higher velocity than the condensate film, producing interfacial shear which in the case of The physical situation inside a vertical tube is downflow, tends to decrease the liquid film thickness shown schematically in Figure L - Axial variations of and reduce the film Reynolds number for transition the cross section average temperature and species from laminar to turbulent film flow. The thermal-concentration for the internal flow case introduce resistance of the hquid film is reduced by this thinning , additional phenomena not considered in previous effect and also by turbulence when it is present. These studies. In contrast to the natural convection case, the concepts have been employed in the present work to i bulk vapor saturation temperature decreases with develop a suitable _ correlation form. Theorectical- j distance along the condenser tube and the bulk analysis along these lines is being pursued in a follow.  ; noncondensable concentration -increases. This on program at the University of California, Berkeley. produces axial variations in the conditions driving heat and mass transfer. A plausible detailed physical EXPERIMENTAL DESCRIPTION description is as follows. ' Steam begins to condense from the gas mixture A natural circulation loop, with a vertical at the inlet. As steam is drawn to the cooling surface, condenser tube 22 mm 1.D. and 2.1 m in length,- the gas mixture experiences a force similar to suction provided the experimental data for calculation of through a permeable wall. Noncondensable gas localized heat transfer coefficients. The closed loop concentration at the film interface becomes higher consisted of a lower plenum, an adiabatic vertical riser, than in the central core and a gas vapor boundary layer the condenser leg, and an adiabatic downco'ner develops adjacent to the liquid boundary layer, returning to the plenum. The entire system was . Between the annular gas boundary layer and tube insulated, with connections to the plenum for the I centerline, the steam concentration is constant. steam supply line and condensate drain line. As part , However the cross-section average of noncondensable of the startup procedures, the closed loop was brought gas concentration increases with distance along the down to a vacuum and then given an initial charge of ', tube axis as the boundary layer thickens. At some axial noncondensable gas (air). The quantity of air remained location, the boundary layer bridges the tube so that fixed throughout a test run, enabling determination of there is no longer a central core of inlet composition. noncondensable concentrations in the loop. Steam Resistance to heat transfer increases with the was then injected into the lower plenum where it composition boundary layer thickness. mixed well with the air, Upon condensing in the test {- With steam continuing to condense, but at section, the condensate (and the air) returned tc, the ~ ) diminishing rates, a fully developed composition lower plenum via the downcomer. Condensate was > distribution may not be achieved in the gas phase, removed at a rate to maintain a coastant liquid level Downstream from the point of complete condensation, in the plenum as measured using a sight _ glass. j' ' the-gaseous mixture contains steam in equilibrium Recirculating air mixed with t'te incoming steam in the lower plenum.

Fitted with an annular ooling jacket, the- I

% condenser tube was cooled by aingle phase heat ' I transfer to cooling water. The coobnt flow rate was i P maintained so'as to provide essentiahy complete steam Interface ' l 9 condensation on the. primary side, yet obtain an Tj(z) J U(r.z) accurate determination of the' secondary-side 3

  • " E Maj(z)

Il M2(r2) I centerline e system was insuunwnted with pressure transducers and thermocouples m the lower _ plenum Wall TC (z) l add at the top of the loop. Coolant and test section M8c(2) outer wall temperatur_e profiles were measured for Tw(z) ~  ; ,, Ve(z) local determination of heat transfer parameters. U(r,z) When at a steady state, the condensate drainage rate was measured. The coolant flow rate, as measured

  • g M Ma(r.z) through an orifice flow meter, and the steam inlet flow

^ ~L rate were continuously monitored to prevent l E (Z) l deviations from the approach to steady state . conditions. The rate of steam supply was determined j by the electric power supplied to *he boiler and the heat Figure 1 Developing Boundary Layers of vaporization at the system pressure. Using flow I - 184 - { l ., n~.-. . - , - . . - . . - - . , _ . - - . - . - - . . ~ - - . - . - e- =s a measurements, in conjunction with heat loss data, before undergoing rapid change to nearly 1,0 and 0.0

t. . heat balances were performed to ensure that all energy respectively, at the end of the condensation zone.

in the system could be accounted for. The data have been correlated as a correction 1 A steady state _was deemed to exist when signals factor to the local heat transfer coefficient based on

e. from all instrumentation had been' constant- for a Nusselt theory, i.e., liquid thermal - conductivity

,e 3- period of at least ten minutes._ The operating pressure divided 'by the local liquid film thickness. The and temperatures were determined by the ability of the "Nusselt' film thickness was calculated from s- system to circulate the gas mixture and remove heat in 1n i the test section. A process sensitive to changes in r 3gy 3 6= (1)

1- steam and cochng water flow rates and plenum water Md ' 8 d y  ;

level, the approach to a steady state was observed to be 1 very gradual. As described in Part 11 of this paper, where r is the film flowrate per unit circumference. .3 oscillations occurred with higher air concentrations This equation is for laminar film flow in the absence of

1 and prevented attainment of a steady state. The

- operating parameters were as below: interfacial shear. It was confirmed that the film was always laminar in the present experiments, The Parameter Operating Range correction factor is defined as the ratio of the local-Heater power input 6 49kW experimental condensation heat transfer coefficient to vapor flow rate 5 9 - 25 kg/hr the local theoretical Nusselt value. Correlated in 30 432 kPa terms of the bulk local air mass fraction and steam air il System pressure Reynolds number, Re m, this factor is based on the data

, System temperature 72 - 146 C

.I Inlet air mass fraction 0.0 - 0 14 from runs without temperature inversions. The result Coolant inlet temperature 9 -12 C is a  ; 17 23 C , Coolant outlet temperature Coolant flow rate 364 -1432 kg/hr f = (1 + 2.68x104 Rem us )(1 JC Mah (2) a 3 For this range of conditions, the condensing length where M, is the bulk air mass fraction and . varied from 0.4 to 1.25 m. C = 10, b-1.0 for Ma< 0.063 RESULTS AND DISCUSSIONS C = 0.93S, b = 0.13 for 0.063 < Ma < 0.60 C = 1.0, b = 0.22 . for Ma > 0.60. For test runs in which a steady state was achieved, two types of tube wall temperature profiles The experimental results are shown in the form of the were observed, The majority showed a momatonically correlation in Figure 2.- The data scatter may be due in i decreasing temperature along the condensing length. Part to the relatively large uncertainty in the air mass Cases with a low air content revealed an anomolous _ fraction. temperature profile which increased from the tube The correction - factor accounts . for two entrance before decreasing, herein referred to as a Some conjecture is competing effects. First, the Rem factos introduces the " temperature inversion' effect of gas flow causing interfacial shear which ' ! provided in reference 3 for this behavior but it remains - enhances condensation rates This is the first bracketed . to be adequately explained A thermosyphon mode of ' term m, Equation 2. It tends to unity as Rem tends to I operation was considered,-but this would appear to zero. The interfacial shear is predominant near the violate flooding limits for countercurrent flow in the tube entrance where Rem is maximum .and downcomer. A similar, although less pronouncedi _ i , noncondensable mass fractions are minimum. The effect was observed in low head forced convection tests second bracketed term, which accounts for the presence at Toshiba (4] in Japan. of noncondensable gas, ranges from unity for Ma = 0 to From the majcrity of the runs, data were used to zero for Ma =1. { obtain local condensatioa heat transfer coefficients. To A preliminary version of the correlation has obtain the air mass fraction at the condenser entrance, been used in the TRAC G code at C. E. Nuclear Energy the air holdup in the condenser and downcomer was found from approximate calculations. This amount of

  • to analyze the Toshiba tube-average data. This res air was subtracted from the known loop air inventory in underpredicting the data by as much as 304 and the remainder was assumed to be uniformly distributed within the remaining system-volume. CONCLUSIONS The axial profiles of the primary-side and secondary- Condensation of steam in a natural circulation side fluid temperatures, bulk air mass fraction, I P was' experimentally studied to ' investigate the

~ condensate flow rate, and bulk gas-vapor mixture Rem, effects of a nuncundensable gas _ on - condenser among other parameter < were obtained. From a high performance. Steady-state operating conditions - value at the inlet, the heat flux decreased as an depended strongly on att content and inlet steam flow i exponential-or as a power function of distance from rate. Local heat transfer coefficients decreased as bulk ! the entran'ce. The air mass fraction gradually air mass fraction increased and increased with mixture increased, and the mixture Rem gradually decreased, b - 185 - 9 I . . 3 L 1 aY? l- l q .=,....,,.,.. 7

v;.1 p

3 - . . ., , , g. .. ...l , . > .;j. g.. ,-.m i i i ei 0 01 61 i Local Air Mass Fracton Figure 2 Correlation of Heat Transfer Degradation Factor Note: fi = 1 + 2.SSx105Re ml15 l Reynolds number A localized correlation has been developed which accounts for the effects of heat transfer degradation due to noncondensable gas mass fraction and condensation rate enhancement due to interfacial shear (gas-vapor Reynolds number effect). For low air contents, a temperature inversion phenomenon occurred which indicated low heat fluxes and heat transfer coefficients at the test section 1 i inlet. However the locally reduced heat transfer rates did not prevent complete steam condensation. Further work is needed to clarify the temperature inversion phenomon, REFERENCES

1. Sparrow, E. M., S. H. Lin, " Condensation Heat Transfer in the Presence of a Noncondensable Gas", i Journal of Heat Transfer, Aug.1964, pp. 430-436.
2. Minkowycz, W. J., E. M. Sparrow, ,

" Condensation Heat Transfer in the Presence of Noncondensables, Interfacial Resistance, Superheating, Variable Properties, and Diffusion", Int. J. Heat Mass Transfer,1966, Vol. 9, pp.1125-1144.

3. Vierow, K. M.," Behavior of Steam-Air Systems Condensing in Cocurrent Vertical Downflow", M.S.

thesis, U. of CA at Berkeley, Aug.1990.

4. Nagasaka, H., Private Communicanon, October 1990. ,

- 186 - e 6 0 Proceeding of The Internationaj Conference on . Multiphase flows '91-Tsukuba Sept e niher 21 - 27. 1991. hukuba. Japan i CONDENSATION IN A NATURAL CIRCULATION LOOP WITH NONCONDENSABLE G ASES PART 11 - FLOW INSTABILITY K. hl. Vierow G. E. Nuclear Energy ,y7 jy ( ,. ty ~r-San Jose, C A 0/,125, US A and5 Virgil E. Schrock -- Department of Nuclear Engineering University of California, Berkeley

  • Berkeley, CA DC20. US A ABSTRACT transfer inside tubes [1] and of pressure losses in the condensing tube with vertical downflow [2]. However The flow stability in a natural circulation flow the need exists for data on these phenomena as they path with condensation heat transfer is influenced by effect the stability of a natural circulation flow circuit I

the presence of noncondensables. For a closed loop, a and an for understanding of the basic mechanisms at noncondensable inventory which is large enough to work, inhibit heat removal can prevent adequate circulation l and cause an unstable flow situation. The present THEORY paper deals with the effect that a noncondensable gas has upon the flow stability in a condensation driven In the case of a loop driven by condensation heat natural circulation loop. In the experimental system, removal, the forces causing circulation are primarily steam is injected into a lower plenum and the " pumping" of vapor into the heat transfer section condensation occurs in the top most part of the by conder.sation, and gravity which allows the downflow side of the loop. Condensate and the condensate to drain out of the condenser and provides noncondensable gas return to the plenum via the the force to return noncondensable gas to the plenum. _ downcomer. Experimental results have revealed Startmg with a system pressurized but with no flow, characteristics of the instabilities for the loop, initiation of cooling produces condensation in the heat including time constants, pressure oscillations, and transfer zone locally which tends to reduce the steam conditions for recovery from unstable behavior < partial pressure. The low pressure region acts as a pump, drawing steam into the condenser tube in an INTRODUCTION effort to equilibrate the pressure within the loop. As the vapor drawn into the condenser forms condensate The forces driving flow in a natural circulation it drains back to the plenum and natural circulation is flow circuit are relatively weak, and precautions are established. In the final steady state, the pressure drop necessary to ensure that they are sufficient to promote in the riser must be balanced by pressure rise on the steady operation of the system. The circulation is

  • downflow side just as in single phase - natural inherently susceptible to instabilities and is therefore circulation, less reliable than that driven by a pump. The onset of The case of mixtures of noncondensable gas and instability and characteristics of unstable behavior are steam are considered in the current analysis. Heat peculiar to the loop geometry and to the physical transfer aspects of the current study are discussed in phenomena involved. Due to the complexity of the detail in Part ! (1). The air and vapor are well mixed in many phenomena and their interactions, loop stability the loop lower plenum and a uniform mixture flows is not well-understood in many situations. through the insulated riser leg, without change in The current study addresses these concerns composition, to the condenser entrance. As through an experimental study of a thermal hydraulic condensation proceeds, the noncondensable gas loop with condensation driven flow in the presence of accumulates at the interface of the condensate film.

a noncondensable gas. Investigations have been The local bulk air concentration increases with performed on the separate effects of condensation heat distance from the inlet because the steam is condensed - 187 -- - . - - . ~ .- - . . . -- .-. .

  • I b

out of the circulating gas phase. A sharp increase in air -EXPERIMENTAL DESCRIPTION s: concentration occurs at the end of the condensing it region Downstream of the condensation rone there The test loop and ranges of patameters are st eusts a low-velocity gas mixture containing steam at a described in Part I of the paper. Procedures were ir partial pressure corresponding to saturation at the developed to start the natural circulation (3) Prior to jr cooling water inlet temperature. operation, the now circuit was isolated from the steam t! Gravity is the only driving force for steady state supply line' and charged with a known a quantity of air, a natural circulation. - Due to a density orders of The steady-state operating pressure for the given steam p1 magnitude higher than that of the gas phase, the supply flow rate and noncondensable inventory was s I condensed IIquid drains as a film down the tube wall esumated based on prior experience, Steam now to the s: and into the lower plenum. The film near the tube loop was begun when the boiler vessel had nearly c! inlet is very th n and experiences a strong interfacial reached the expected loop steady-state pressure. The 5; shear force from the high-velocity incoming gas steam loop was then allowed to approach the final expected mixture. Downstream, the situation is reversed. The pressure before secondary-side coolant flow was  ; e liquid film is much thicker and may be draining at a initiated. Care was taken not to exceed the expected o velocity higher than that of the gas core. In this case, steady state pressure. At this point, condensation pi the liquid exerts interfacial shear on the gas phase and began and circulation of the gas steam mixture about v contributes to the pressure increase with distance from the loop was initiated. The circulation caused a o the condenser inlet. The higher density of the cool air redistribution of the air in the loop with accumulation 5 containing little steam, as compared with the steam air in the condensing zone and in the downcomer. The li mixture in the riser, alsa contributes to the pressure approach to steady state occurred slowly because of the tE buildup with distance along the downcomer, strong dependence of the overall process on the gas a Several potential obstacles to successful distribution within the loop.  ; I operation exist in a condensation driven natural t circulation loop with noncondensable gases, The RESULTS AND DISCUSSION 'l above-mentioned accumulation of noncondensable A total of 35 runs were made. Figure 1 shows i. gases is perhaps the most effective obstacle. For a the test conditions in terms of heat input to the boiler a relatively high air concentration at the condenser in!ct, and loop air inventory. The results fall into four  ; on the order of 10 % by mass, sufficient general categories: c noncondensable is present to shut down the heat L Temperature inversions 1 removal process and stall the circulation. With a 2. No temperature inversion s constant rate of energy input (steam injection), the 3. Oscillation in approach to steady state loop pressure will tend to rise thereby tending to 4. Sustained oscillations i restore heat rejection at the condenser. During a The phenomenon of temperature inversions was i period of stall the entire condenser may be cooled to discussed in Part I of the paper. They occurred at low t the temperature of the incoming cooling water. Thus values of air inventory with an increasing range as i when condensation starts again, the transient heat power input increased. In the second category the ' I removal rate may exceed the energy input rate. This condenser wall temperature profiles were normal. for c can rapidly accumulate gas in the condenser and t. reduce the loop pressure with the result that the now m may stall again. Such an oscillatory condition was , , , , , observed in some of the experiments. ie . The turbulent shear of the gas phase also influences circulation. Cases with larger steam supply '5 o flow rates produce high gas mixture Reynolds numbers and can sweep noncondensable out of the _[ "' , condenser, With better venting and a liquid film s , , , , , , - thinned by interfacial shear, the natural circulation  ! 1 may be less likely to be interrupted. Conversely, Ien i situations with low steam supply now rates are more i a .. . . . . likely to experience flow instabilities. Gravitational j eo - effects in the gas phase are potential flow inhibitors j * + when the noncondensable has a molecular weight i oo s * * * * **

  • 1-lower than that of the steam. Such effects may be . reme-- e significant in nuclear power reactors where light gases . m. w, .w . i-- ..a :i such as hydrogen can be produced in water-metal g a o.w... an...m. ni.arsw.
  • reactions. The light gases may be able to accumulate at . .. . o....~. u. v .a cr.. . t the top of the now loop and form a " gas plug". Low ee 1 <

molecular weight effects were not investigated in the oo 20 ao so ao ic o no "o this experimental study. " *"""* FIGURE 1 STE ADY.si ATE OPERATING MOoE - 188 - s

  • 4' both categories 1 and 2 the starturtransient proceeded m smoothly with no oscillations. Beyond an air  ! i i inventory of about 33x10 3 kg the system was m _

are - " *"C""* susceptible to oscillatory behavior. The threshold air g ere inventory appeared to increase with increasing heat a I p . to input. The mass fraction of air in the mixture entering 8m the condenser at the threshold of oscillitions was m _ ur- approximately 0,10, although data reduction am procedures allowed determination of this value only at g ee + l /a5 steady state. From considerations discussed above, it [ f l

he seems evident that the air mass fraction a; the  : wo I rly condenscr entrance varies with time durmg the I l

- he f m ed startup period. Five runs displayed oscillations Three of these i / { . s q 'as on ed j i eventually reached steady state In the other two runs oscillations continued until the time averaged pressure reached the safe limit of the loop (-500 kPa) at M M3 '

  1. ,'\l M 8\

1 'l \ ' k rut a , which time the power to the boiler was turned eff. In one of the latter cases the system began an approach to

  • s

'q, \kdl\ ';= ' on steady state without oscillations. At a certain point the e e hquid level in the plenum was inadvertently allowed " g , l**j**caad y, y y to rise 1 to 2 cm. This seemed to trigger oscillations  % , ,as . and sustain the rise in system time averaged pressure. The oscillations were most evident in measured ncome a Tmnnatume osciu.aTioNs temperatures in the loop and condenser. Temperatures in the plenum and at the condenser .vs ! inlet began oscillating with a 60 s period and an .ler amplitude of about 3 C. Forty minutes later, as the ur pressure neared the operating limit, the signature had i changed markedly; the period had increased to about i 125 s. Oscillations in condenser tube wall and cooling water temperatures showed similar escillatory periods and further revealed the oscillation in instantaneous CONCLUSIONS heat removal rate. An example of these results is seen as  ; in Figure 2. In this case the cutlet cooling water Oscillations and instabilities in natural iw I temperature fell to the level of the entering water circulation flow and heat transfer rates were studied as indicating that condensation was stopped completely experimentally in a condensation driven heat transfer I he for about 40 s or about one third of the period. When loop. At high concentrations of noncondensable gas,

or circulation was again iniated, the condenser surface the loop exhibited unsteady operation and an inability temperature rose rapidly (about 85 C in 10 sh The to remove energy at the heat input rate. At a gas water outlet temperature suddenly rose by about 30 C, content threshold range, these oscillations caused a indicating an instantaneous heat rate about three times temporary excursion and then subsided en route to the power to the boiler. steady-state operation. At higher air content, the a For the runs that eventually reached steady system was not able to overcome the oscillations. Tube state, the initial trend of system pressure with time wall temperature oscillations became very large and appeared to be approaching steady sta% At a certain showed no indication of damping out.

point oscillations begm and they were accompanied by Such unsteady operation is of concern to heat rising time-averaged system pressure. After reaching a exchanger designers. These flow instabilities may maximum pressure the oscillations died away and the render equipment incapable of performing its duties. system experienced smoothly declining pressure as , The harsher operating conditions rnay also result in steady state was approached. system pressure and temperature limits being exceeded The details of these complex oscillations are and in material problems such as thermal stresses _ g expected to depend upon details of the loop such as - plenum volume, condenser, riser and downcomer REFERENCES dimenciens, etc. They c'epend upon the interplay of several transport processes, most particularly the 1 Vierow, K. M., V. E. Schrock, " Condensation in spatial distributica of the noncondensable gas within a Natural Circulation Loop with Noncondensable the system. No quantitative analysis has been Gases Part I -Heat Transfer", Intl. Conf. On Multiphase developed so far for these phenomena, Flows,91 Tsukuba, Sept.,1991. / - 189 - ,d- t ) .c e;- l..

2.  ;

Kreidin, B. L, et al, " Experimental Investigation 4 a of Hydraulic Resistance with Condensation of Steam l Down. flow inside a Vertical Tube",- Thermal . f Engineering,1954. _Vol. 31 (1), pp. 2124. a:

3. Vierow, K. M , " Behavior of Steam Air Systems  ;

Condensing in Cocurrent Vertical Downflow", M.S. thesis, U. of CA at Berkeley, Aug.1990. 5 i , l' E i l t 1 l k P ., l -1 I l l i - 190 - i I .. . - , , . .~.. ,- .y .~, - .m F e r 7 . Status of UCB Condensation Experiment Joseph Kuhn Prof. V. E. Schrock & Prof. P. E. Peterson Presentation at the Six SBWR. Working Group Meeting San Jose Caliafornia,. November 12, 1992 6 ~ .. - 4 .- 3 i 1-ivare: Lt. tics J% - u niwce'- o ^s (B erkeleY'!- k Fn o m,i erino e t c- 'g i t:"I - ,~. ." (' N12 clear .f.,.nerirlai # f l A L y Wet bulb probe XP3 j To other DP6 l expenment A TT V11 V12 . 120 psig WM II i V10X ll steam

    1. '# vi7 V18 I [l V3kV4X V5X V6k O hr, !l .

II s eon 3 'E 3 ' i[ ll XP1 g - l-l -- [ V20 XP2 Vwi. V1,9 V1 V2 V7l[ V8][ **sMu + Ii separator V13 @YV14 V15.Y t-ii 100 psig g i,* ll  ; , air supply V16 )[ g, b ,,, -- Cylinder l l __ v2.s C )(  ; "'"**"" - t Key V26 __ Cooling --D4- HX resson p - Pressure gauge tower M V4 < W XP - Pressure transduces 23 ^ 'f T - Thermocouple V27- HX HX - Heat exchanger > X i i --D4-- V22. DP - D/P transducer V21 V28 Y-Condensate drain - Fgiure 2-1 General Skematic Drawing of. Experimental Appartus' . . _ . .. ~ . . . - - . . . . . - - - . - - . . - - .-. .- . . . - . - _ Steam >I ~} I~'" . \ . . @} Condensing tube . ( 00 .5.08 cm)- m WT-0.165 cm e 6 Cond. tube packing gland > / c[ 4 - -- c a- 3 ---i> Cooling water outlet (1/2" . ) x Jacket packing gland t i _j t I - 1 8 i I Sch 80 3"pt'astic cooling Jacket . l1,i Wall thickness-0.81 cm I i 1D-7.27 cm i I I I I I i a 1 I i :: Ave. gap between cond. tube lI I. 'l & jacket - 1.095 cm , 5 ll = i I

ll N y g i I I I I I I I I I .

40' Movable probe v1 I I i i l i I i l I i I i 1 1 I , $V  % -c A-- Cooling water inlet .,,. n _. . 9

  • V L' 4 To Sept rator I.

Figure 2-1 General Sketch of Test Section Steam inlet Therinocouole Local!QD 3( TC Taoe & Soacer Location Tube Cooling Cooling Axial Tape Spacer Wall jacket water Pos.(cm) Pos. Pos. Cout** 0.0 (cW e 3 W1 Cl* 4.0 )SO - 14.0 W2 C2 17.0  :/; 28.0 W3 C3* 30.4 _ ',l - 40.0 44.6 42.? W4 C4 59.2 W5 CS* 61.5 ~ ' W6 C6 79.8 77.5 i. 99.6 17.3 W7 C7* - 115.0 121.3 119 W8 C8 142.8 W9 C9* 145.1 _ 160.0 W10 C10 171.5 169.3 195.0 201.5 199.3 W11 C11 .j,.

__ 227 225.0 W12 C12 235.8 3

Cin 241.8

  • : Two thermocouples on opposite sides
    • Four thermocouples on cooling water outlet Figure 2-2 Sketch of Thermocouple, TC Tape and Spacer Locations

r 2.5 mm Viton sealing s* ring dia. - 2.61 mm 3.0 mm y V ^ 10.95 mm

1.0 mm Sch 80 3" CPVC pipe 1/16" hole for '

/ thermocouple 2.0 mm 1/4" Threaded + + Nylon Screw (Spacer) 88.9 mm 8.1 mm + p I t i I i i I I 8 i i I i i I I I I I I I I i i 1 1 1 1 1 I I i i I i i i i I I I i I I i i i I I I i i i i I I i i A I ( See Figure 2-3-1 &2-3-2 for ) detailed tape and spacer locations Figure 2-3 Sketch of Cooling Jacket r i Steam inlet Tube packing gland d ' Axial Location Thermocouple inserted ( cm ) in cooling water 0'0 --D" ^ n " "* ** i ,- - ,, outlet , 4.0 - - - -7,C " - - - ' - U" g f f <- - -Jacket packing gland 17.0 ---- O "' - - '-' ~~ '~-- 30.4 ---- C * - - 0 ---- 44.6 - - - - C r -*- -- --'- 0.02" 00 SS sheathed 7 61.5 O -* --- ' _y J tyoe thermocoupi. embeed @ - - - on condens!.47 tube 79.8 ---- O -n. -- - -- ---- 1/16" oD SS sheathed 99.6 - - - - C- + -- '- d[- - - T type thermocouple ernbeded on plastic Jacket 121.3 - - - - O -' --- - -- ---- 14 5.1 - - - - O + ---" 0 ---- 171. 5 - - - - C* ' --- -- '- ---- 2 01. 5 - - - - 0 '* - - - -- <- ---- 23 5.8 - - - J ) * - - - -9f ~ 2 41. 8 -  ! - --- /g - Minlet"9****' E[ 4 ,. Figure 2-3 Location of Thermocouple l 1

c. .

i 0.7 mm V A 0.58 mm 4 _, 50.8 mm m g58 mm 1.65 m4 I I I I gn -1 I-i E , I l . s i d V ll al 1l Io i l i I I I I I I _ l ( 5ee Fig. 2-4-1 for detailed sketch of ) thermocouple location and grove length Figure 2-4 Condensing Tube r ~ & GENuclearEnergy EngineeringCalculationSheet ) m-m c r. ww. m.mws=- wp. .g, ,.,u_ we ww &me<p.a __%wwwm--. SUHJfC1 _ . _ . . _ _ _ _ . _ _ _ _ . _ _ _ . __ HY If b SW L T OF

3. IlI T

'~ b $ cbh v4 b yt-p.e ri vv e d 3 4. A EHu% fA/,,,#r4~4k6%~ cm 5%-- % J u nd,;,~ ~L Fav)Cun%_ @ AHi,4 " PLD 1 6 , rf. 6i Ang u , mn /LAj%6 s c E r); q h.uy nu. < p ewnkgyu:M)

s. PuhGu % L wyw u. tm o e% o

< u m 4 u ,o ~ _ smA 'l. 71 T T - Id u g nw b.. g-e n %I" A. "S W %KJ w. 1%vma% o3 nrr" r1. 6L y, 1991. ( A H .. J,~ I) .

5 I!j!f !!l
!i {!!>

y g g _ nl o n io r i o en eh t nc o s ie at s n yngT 2 9 C a f c n e leo o r 9 1 i rA e Ga e tC dmT r c I .e u t e ees b n eM yWlci l t r b ut s m EoJ _ o ut l eNn e l a Cs a af v rn o ea I hos nS a c t tt N e me ne i Mes 2 1 G , aM e mu th r c t a t apsa S es Da M .  ;  ! : ,i . 2 CONDENSATION EXPERIMENTS

  • SPECIFICATIONS:
  • ANNULAR GEOMETRY (STEAM Allt MIXTUllE FLOWING WITillN INNER TUllL)

' CONDENSING TUBE ID=1.6 INCIIES(46.0 mm) dCONDENSING tulle OD=2.0 INCHES (50.8 mm) " WATER J ACKET ID=2.5 INCHES (62.7 mm)

  • MIXTURE INLET CONDITION RANGES:

' TEMPERATURE: 100"C< TINLET <145 C

  • PRESSURE: 0.1 MPa < PINI ET < 0.4 MPa

' FLOW RATE: 2.0 gm/ cec < M INLET < 13.0 gm/sec

  • AIR MASS FRAC.: 0.1< W NLET I < 0.35

13 elation i Valve V - I co,lmg Water OutM - P . . )( INwdown . e T Valve - e e (~ 3 e a i e i e lf ' . . Test I I . Conderar Steam Generator

  • To Atmhere To Wam

/ . , i . 1 Isolation P T Valve T Rotameter ~~ 3 __ )( < T v s level j k gh Coolmg Water Intet "'se n,,onw *&v y Valve W < Pressure Gauge .{@ ]l{ caters f-' F 3 n@ U W7 J level . T Ra67- aThermomupk a Protie l % / ._ /\ i s J GauE' I qP DesignatesPressureTransducer Separator y - N Drunn V ~ / T_ Makeup Water Line HGURE 2 - p, msg Schematicof Experimental Apparatus Regulatus \j Air How Control 9 Valve /\ H <; Pressure Catige G3 a . t Inlet of Alt / Steam Mixture i I Cmling Water Outlet m ii L  : ji jl 9, / n ll ll l 30 5 cm ll Il ' FIGURE 2 - If: 11 Il a ll ll 30.5 cm I I dl  :  : Cooling water / thermocouple Il l l .5cm Center line Il, ll u thermocouple  ; I; c' N *>- jl ll 2.54 m LN !t_

  1. z /

[ u ,1 30.5 cm !! _ il _ l One thermocouple each on ll ll n the inside and the outside 30.5 cm ll ll tube wall ,1 1, p li li~ o il 30.5 cm ll I Ii P 'I~ ~ I  ; ' Il; ll l x3 cm o 11 e ll. . . t_ i - Cmling Water Inlet i I i l l I '. . .' T Noncondcnsable Gas / Steam Mixture r / / . s j Wall Thermocouples lp Iron /Constantan Center I.me .p.  ; 7 /,- Thermocouple , =4 M.  ; //. di p f

\

\i ~ x$ _\ T . / . b p) Sheathed f " f'; Thermocouple Gas Sampling Point ' 's Iron /Constantan ,7 , , /p , : v  : N Coolant Flow j/ \ Stainless Steel 301 pipe K / ~jCondenser Tube 62.7 mm ID # Stainless Steel 304 46.0 mm ID,50.8 mm OD FIGURE 3 DETAIL OF THE TEST SECTION INSTRUNIENTATION & GENuclearEnergy Engineering Calculation Sheet O - ~ _ . - . ..p4.,m,_.__,,,,_,g ,,,_,,.9 . , _ g suuncr _ _ _ __._ _ __ _ _ _ . _ _ _ _ ay KhV on t T __ or 'b F3 *- 2 p (y $ f /N f f $ / p W ns A. F< Cty mJ m.ci r m. d d i m A&g c-~., ( To kr qnm h) b.s.( (r E

s. rcu tj c-1 a:at% a1 ,i.n1 .

( cal ~ ch) ) c 1 <eu.>e-i u%k as) , I9 sI Lc.11a.d.)) O. T r our-' vil d,3 1941 ( a. N , c.hab E 1 ci ve> \ ~Mk ts 't , t 1 9 I [ciiA.chJh l 1 l l kIb $I fl. N' L ) 4 The 1st JSME/ASME Joint International Conference on Nuclear Engineering November 4 - 7, 1991 Keio Plaza Hotel Tokyo, .. apan Vol.1 Sponsored by: The Japan Society of Mechanical Engineers The American Society of Mechanical Engineers Participation by: Atomic Energy Society of Japan The American Nuclear Society in cooperation with: Japan Atomic Industrial Forum The Federation of Electric Power Companies The Japan Electrical Manufacturers' Association 1 t> 1 HE AT REMOVAL TESTS Of ISOLATION CONDENSER APPLl[D AS A PASSIVL CONT AINMLNT COOLING SYSTLM

e. or aus , 6.).e.co. a 6et-i .ro .. bn -ra hvt )4 e f I I. 0 f f e L f t:n } , IF Si II 4 f ir r l t a l i t t i-.

11 > sie s ov i t a t t: 16. t ' - t u , t<kotasa . J Al D 1<l ki-41  % ,, ( + 7 ist ki 4.1 7 58 - sl . l di I[ , 9at it !aff' it 't i E lI '.I I O ( I te.i f f ,  !, f'1i , i ei; I/r Ia> ote.

t. f its te a< 1: e i<le t oil rs kt f la
a;i s t h 4 f !! /t 1 Ies la e o i<b- feart<r ires' ri l he inhialir b ti n traocient e,rrt*

ei;t- l'+i fr a lort Ir: w ti '+ red as a tr<sinite l e* + 6 ise t'ataineent r ilir4 14 ! I l l l i li p I/I f t B C t l'I lff11Of4 n' bid i iII \ - I !' iT'!f fCII' tysle9 (I2 \j. lbf 96)Df 8 l' f f' f f- I t' A ff4 ie t f8 irIl' ' Il!F ld 18 ti l 4 41 I( 41 f t 4 '> tis l Gt if4!dts>rh d ', f t te

4. 0 I[ tit 51 ll 4h lt'

's Ibf a: u s u l a t i:in of 1. r: - r i r d i t n ille fus, r < m f i t t- l it o $ ) ii t a s , b i t, ' e I/r al t :.f t s s <4s r

  • t) fre Fli el gi l i - e t, l i e h Ila b! ties' i- a ti i s i ),

iftsaf) r o f t a i t* e r ti t t o Ste i ilt nl. itwide l/( lut e t 't ! d o f 11 # D'i i d l 1, l I: l' i o } u e l t' Ibi l/ $f f f ( f 8 # 1' t I 4 Ile l/f b ) & 14 4 4F ll $ l a T 8- 1I Vf f1j L i 41 tenttfor tot <k i t. ir 11 i ,l.  : tdet**'e j art' $r 4le test 'aci lit, Im us ior or the not-t d e fi n a l i t #an tractit r sovidt is n man fi t t i p fi e tl f a t o f i. lif e s t- Il4 s i ' e. s ti l;') lif a s fr on .t t' Iurvs * .I-hI gr jr l;g, it* 0+1 I-u1 I ilfOft I- ( .'s k 9 it & f t' 0 d L 1 i l' d l) 1Ilti (f p # hg ll is ( ;3 g 31 Ile l ./ i }11* C 1 T- fa ' l. a t l 4 Fif h8 iI I4' Il1l), IIC li 1 i f ( f- l 1 f f 8 d f ' t: (I 6 1 r (l d ) ){dte rs Ll*l toir fe-Ibfb s,ite t at ! t'+ ll :s t<at t. " val caporst) ai d *#e) waa!! re sis te dr q lit. La$e rr 'sali) t 6 te 5 ( Al ed I l' e i' t f a l 18 ' l- I) 8l8 f i8 $ IIfkl nD}bf ft, 'l f ( f a l' f a l l 51 f! A f ) j /I dehi(!, } ha h0M1 f f Si* h d l i i ' 't 1 1 l i ' rr 1ffId ufdef ()e l t 4' )

  • O't i I O j t iii( f h ht Ba;d ah! r. i p i l a f i t' t L 1! iI ?(atf( s'n atal)Fis torata e <

s,p >s , >' ' h is 1 k a l i t f i! te h5fI/ . ! t et , i i a, 418 , m. e I % I)!11:[( l l b b 'r.fq--H k ar , j i. : L d ' l I ta (in siie i 1 a t:1 olil1ie 5 a i at af al Iori e it ' ~~ [.JO nL- ' - s a r -<lli g a f 'i dot a r Le a t r esi'i a l it Eisilif) and 54W rd ji

  • emu < the p e r f e r . in , er s.fei) inte.s. m pp, ...--..m__L_._ M 1i ~)

'**It} dristh rore . I i lt r h)nt# 8 (L!t5) in ,, 21 ]4S ] wr1 ] - i m as au i i t. . .a ar fenct s orier no . ! .y 1r A i elant art t ri e si t i l th A 1 I'( f 1 itrves an innr s p-ms l k j MN i , i+ wu twu I wm j r.. m om - [s[ g a mt J,,.sl er. c n t . o .o t < t u i u f o, ii a o 'I "o a,d i, .uitos, it< ni ir, m re ocio. . h /=- JJg.,_q g yj % ,,, m .,.. m ,~, 4. o ~ ,, n i, yltrator .%,..oi ef . . m ....e, ,,,ma ., % 1 7 gl a ' t i i t. . I f t ', affrets ite lik of>tra and p li v4 - V $5Yt ' fi l l ) , @ I l 1 (' ii r( Q La i I 9' 8 d l4 (eE b l' a t , I!' r 3fe4 Ft k V II II F lr 9 t !st O T. I l 1 I a ! l i>  !' f sw I O h li r 4 k i f ( { r, y p 4 , jp g l,4 l ) l i f h t % 4 l U 8 I 4 ('Ir Iif } ><$! I'Datal 18 r fi= f t d D i t r elif3ti +, c t " f a l Jii "*its, s t a r , f i.

  • itat l i< mas 11, e,4 ( tim tiv.

I I '!1). Fasei or t i i t. i, i v 1 ) 1: t.s t<en na;i,' .) sr' 1, r ' i li hl b h [d j b il al iti  ! ! o li Ii i d e ate te i ' I ' "r fedarel tv 3l s, stilt it< l i :! n a t e d,f .i b F D '- r i e r s i ( rt of Mbh!) M .; ; i r y e3iei a41! f 39 I I/C b fUf 9 C09I'9# 0TC 2M , , a - = tlY$l t %i i E I ItS$ 4' I . % kII I l11 l'  ! I ! d ' !'I 3 lI 4 [I l= ( b & I ki t hh$ I' 0 't ibI Ib O b I h did l Ii I O hb I' d fi - -- F.

  • a m . a . . r , , , m. a u , - ,., - .,u. - .,d , , , . ." m o, - m Mp g, mm1 ,,,m.i

-e ... ,_ ,4- ,, s,, m .. m ., m , m,,m., ~ ,. . . . . m m, m . am ,, $tttj) 1,1414 t4 it i 'f51LI! f 't il afe 1:r t ?I118 gpp !! e t f-f t.-[ 4001 9til tf I h r t i! (15 l ti bl $sl* ti k t J I'. th 3412d113 cf tte trelisirat $ siri 1/ t+at rad fr s t. i t t e $ 6 t i g t ia N) IN96wr8 is**1sall aftet Jtia. 11, itsstort ir s k .i I /i 6>ntre is 01 ir H d re st s al <aratsin ar1 te t131n i t, het traftfit gg in uh<r it .o tom uteers,+ . d ifferi m . Iris de r r ain t io < taruo,niim m. o tie s t eu r + cf ,, 3 qhalie1 iIf 918 3$ h 0 'j I'I* f 1 d 4 f.1 I ! ! ( F. A fi $iittf4 h ! I f '. I ! l . !- )o dif f t e r f( d a f I f f 9 s t l f 01 l y ff'$ df)DO I l' / 4 I ggta

t. 5/l Ilfot gt 0<nq: f! d o r s i t l e sms 441 4 ) tie ar d l/C }lS1 I M lLllt M lllll 8 4 l ll it et sgt firii"otal iont titi ste' t to 1/ la a t satt i st ri r a al i+rforsan o der r ah t dte ti tt< a' c o e u i a- _ eLi h u_i t ' u I_. I'.__'? h D free it, ti im r ,( i %ostLle pne i t- 1/ talot. l ti f e ' ) b s i g r. cti 5-! It* li 5f f di l'6 t) 'os 1 yy

<_\ gressere 'r, 4 ostant et rei.lati i el o r d i s t6 3t le tak in l a. a . i de J ti e n k. tt. is ng i 4 rs l [oll tu!*n ' v ' ' t aw' ide J. It* e n t e r a i t t r ti t it Itirr n i t s. t le idi e t i t al it a t.! ' te ist$sse 6 i III. 1 ea(}  ! !: _ ! $ a l - L ) d f ,i y I l t It \fthI[], 60 ff Ol 'IFt b't' ?f' 801 '. I A f b I 8 T' II {pgg G!ll r ie bta j t t- t4 t54 1: ' If S'fe i G { 14 I lthf 1IC L. n 0 4 l r 1 - 418 F f. O f Ri t iif 4- lide l: 1 T'40f05 1tC }/* ie 1! S t r n s l tfafia4 f pg gj 9 94 l. f o6t fe ilit, it.eti ' ' +ts < ! ni 8 t o. *- ton a se nt it, , c u o r o- t ors sireals. 11 In it. .n t so ta r t u m is. ol it t niruti $+ irrhte voite>> ge,g. twi 35 imetia at or too enin 6 t + 4e lioes it fi..

d. 3 0 lle t<ftd C 0 % Hi Saltf I) $fRhil) ' hlI l It' I' I f9 0 d l/i . If d h 5 0 '~ h FEh' *II tIO ' EI IS I I* p{

Ibe !l StROOf1h off I/ l[.e i blI hf tI j[ 9lJr t he o l g f' l l h t ik , e 8 4'roftt Ifd' F I' r ratr feos  ; i;*- t. 4' 'tt ' pg 11< ea is e ai e tt io! o'.l' ' r I/6 ah Iff 5 25 it, der.e ation i I tre i .rfive-1 +e Joe i, it< ard riirt r<' l .4 t t i a l tra s. ** : o ' 4; t i 's. ,e $ b ( r l' i l- [ tbl e i t I' I( l' d' l () I3 !8 tj f t I( hj) b 9 4 0 - f 8.l f!j( l' $ 3 t l f- g .4 4 a (uh4I lf 0 10 h l I! I LIL ! % I It I i i t i. l . sim!d la Lieul4ttm It !iti tt< o!'sa' 1/' t ut e, 1t+ e4usulatim t is n i, n d e r t or . j i trian im atinn ud tia. of f e r ! Ni t r otn to is tai diff<t<t- Staid 14 <0sf>tl, sir + i' ' ' al- < n f i ma i n it s t1 i resi ot t34 ir <-stmt.tjor. F<r uit d t 1 et r I f N It' (lpgl 4 44iL bio 40 } l i' s hf4 MI. I l' tr; ten 1 a. ats ,L inan dir- 1, frne t/h. ettr. A ranact a elect ., n < r im ni ir1 ,u ,o i. m i 4 6 ud uti.r or Q

  • mat e

._7 .wn Lc itt ak is the p: vt (+) t+t m *t ^ ,t i . e l i t o . a tait l 't t, l e a p  ;) p r ritwt A I. . - -s tog g stscre ar .3drnt for I /; I c r i o r a ti n t e. ' u r i t. g li 5 smg e ysq , , ,o . , , o- m . i.,. ,,. ,m , 4 u . , , ,. .mt ,- om . . . t o . , u o .. , e mm an , ,. r i - 4 - _ .. m . ~ i t.<>i.e - i neter . t.tants 1: l ik. After 1/ ' 1/C- 4 sarts o, m .s , .o -.,m.m m - ,. ,,, o . = io n. , I -..= { A }.- E  % h'* A .Ls , tait at j i 4 t rop 1 gas ui 1 e hier a l i. i I/t  ; ,,{ e q u j g, m ... m.< -, o,, m m,o,,m- um " a ih m co r e. i,ei ;, i ofie. m . ffm. ,n m er i /,. n  ! w_pp.,  ! O up- - _. r m te n, Sidor e.a!at. io. ,rtl>iotiliti ..f in 3 11 a 1/s  ; p . - *.5i inility fm-w u d : n tre riferi of $ 3 5 ti e it- { Y y7w Q m ggg g I( r4'1ii I if f':f*' ' f. d i l, $ 1 I l t (53 f ):'$ i h t. g d t- l[) , f, _' ..._..p'). *M ?le 1/ f rent r+emol O r t f r i t e .t h e e e ns des igned. H. 3/400 lt* erali s urp u s t i it+ lit trits are lin C/W nonm 4 ,r l i ,, p i, r,3;o ie ite stes, .w. in n . ,1 i r m fet _ , ,h 1 I I '[ (- k' h g tii it i larifs t hi titr=r-t sortiu ei d ni>. It i g t o r, . g i! ie th te niia str , osia t , , i e . .r .m u..,ul*' . Sett i Itih i f A i d e- l/( l ii t 8 i. IU bIifB ihe l/{ s35 f-i the hi

  • m' r.

rre te rforeance 'i > li4 5. tieniat ior at asei t e ii '. r-t m *d., ' i A TTt s .t 1, 3 <t o d il) It trenide d 316 int ( a;4rit; Q) thogg ii it i t. w i l > t : .i i r.4 tits o! i a i s .i ! . t 1 e rai- ._j H, i a sling 14: i. 3 . !Lis t il e r h ais sitt  !!+ s'aitte i ts' a- b_ ~N" 1/400, ti.-o f i'> tvat faci l1 ! 3 itisi ar4 tre 6tia>> [ is ga sini< t

  • 31 tr41sfar tist it+ tt <* s ts I u, r ili ,,

, h itto Lottafilth (Ir l' i l f i- ( 8 ' f' 54 iflbf #Ci b 3I iFI 10t I a f' x l Oleggg  ! fa tuj gj i oy5ies Irr f tre p si4r,<. u; st : ,,, u nt>ii ai;> , t,5t 'u i=. . - i L i o no ,, t i1 .iI (, e f- b d ! I c t' 't a1 1 T 4' 5f.J d . r1i I' {l ' h te ng t ,i l & int. a r. itt tresorte i i i 5 i .si!.t gas. nos, r. Its f or cr q 46. - ti .t o sa. i e , st 7 lMOOU Cf ! !h I&$l bN hty 9 snong g 1 976 $6- *vu '-=-o_ x a s,,msnemn _ _ . . , _ _ - - - - - - -_-- . - - - - - . - . - - - - ~ . _ . . - - . - - - - - - - . ..-- <0ta to't.4 **'. ai! 'i4 ai ? l/b att ist-i p oieti t . t i. t r 1 61 6 , ti t rosi o .+it t< f. / C atl ) i. 1 - >! .<. i o >> ort, Wri s , el  ; ta s . < <. idl i o . firs fie. .aie are riserred t. , rinvii>. o tr81 ;* *is- 't 1"11 I" t 64*a lati. rvit.> itat tLr f ac i litt a vid h fril hirrt. it '<en nFI, in sie 1t' iti ltri'ar*>> 8 1/ t r e s i" d ' ' ' . ut , ,- t r i r a i tirvatito and $raird 1 51 5 !

  • I a 5tt ni l't. I*at btLet it 11(. .

edial diffe tict, 7 t. e s t a li : f it* ttat f or illt, in t's. sas f l> o W eard ir osfi t int. oti , satir i/m ir vM ost. lit itirt; of ite fatilit) is a f- Ila $1+ns *s l' 84- L' :It " l* it) dittfitL- , it< f h or hatt is 51-e i. in itr.l. '11 im at foW 4 iiteve5 IL- 6t<~e '-t in Ita'ani!) , 1t e ri are it ut lite 6 < <tieri. i to 1/t los  !!ft ' li a t t r hi s t e r it: . { 1< l/t s t e os b>a tisuiatstr a . o h w a n t e ils i f i,no litt fr s 1/b introst a lity 1 i ! ): t'ai* i*: 'a'. *nnitior 4 u t r= s te n lire treat. 's retort l i sa it: e in 1/ U f- 3 i IM! IU'i- )d'4 I l ' 3 * f II* b""I l- f 'It 0'8048I I' (mb i t l' 1 lIr8 6 8 t' f i ' it - III i iTi ge ts  ! fe t t r a. ' i l a r it!' a if foli">'4id IM < 'afu'

  • It f tre i!! siqv e t.s a to b/l. s tel (4) >1<48 lift It T ma4 4dut> ti f!t 5 r e s r. ad a tI i ut i k *t' i t' p) to p/, !b to l e s r. nic tu t < f e t o H f a u J "O tl' iuf' ' nlR st fell ' <s )

' f: b.'t' 5 ti. i .i f a i l'f fellcai t sr si i s t r i r. s i d t f a t 6 % . lLr tr4haufs il t th 't<taal-'el',' ) M la ior of Il i 3 ,w t- iv>t rieg:rint and 6ts u aid!of en flo* rair r 'ta' *isol,is t 't! +4i! lito 5 t nt !s in ,u t, anothr s k eid fa misuint, e-b!!la oJl ft,s - e ;- m i i rit'<dat it' tc lh ih air ai i a < f s-tit L* i su t tM f ir e rate si 11. irst somt! P I/19 4 f- + fAh Jh!rl l 8 h di 18 f'i nl A L I f ei 8 I'~ di: I 'l $4 11 ili F t 4 f+ f l' t r n t e l O r I f: f Ift b f i l f li r lb fIon e4ft r draepare thra ort 'L4 ><of lit <. Ito t*  ! ertiatso:n' I bLti af rub )Its is C! j u s t e d t' ) t. 9 -i i i k'ISI lliC* l l i t; gijpSr l! g g l4 f f I d- 1976b lb3 1016 ! dLd I f . 'E 8 f. I f f- t . l f t' f l A r 8 9 8'l f f L us h Mb $ li f f It d! fCI'sel (1906lefl, b 8' ( R u t e- At (L 48 4 !b la a t L ' l n '- f

  • c t i 'a i
  • k l i t a l l' h fife ( t Ob $ ) b t e e $ f 8' t. o u f t' .4 s 1.r< tr<ot 4e 'n 10-irry es416 n aisted eith Snut s oit o in additsor t> 1/f vurirr 4 enti t i e to ite s t ;, t e j titt, steds ehd b i t r o t e t. S ug g 1) t s' r <
  • f i c a t i r r :sl the h at t r si i f i r d4 t r addt i 1 2h Ibf i )4 } M iIl#LC) FI80db IL I I S I h I I' I t I 6 h t' i . 4 'bFFltid it 1 !. 0- e a i ti l [i fi t e 4 4 l I t' O , In f C aft uDd jji i(, phr"O A*jofal*L 1'=1l10( f t l i f:I g g g g]) ggage trg( t p a gi g { s= g 6 tilD { e t ; e t t'ij f tsi (6  ?* lbf l= ir I thttf

*tik telf (! eterIly s j j t> 61 ils h ii r op t i  !.b r C h t f 41 e t'F I/I f i sti S h i it d # A I' I I. i l t s $ f 0 5 41 J l ) I 119 14 8 1l8 uld(Op dirf( tI( : l t F b8 ) 4td b.) In i I I 15 dl' f i f t l l' f l ii t t i l (( t bl.a . I f (- t;e<ttivally lasted i, avoid s ti ne i otdsnsstion O su th v. i t r o e . r esses m i t t- s i r ,. .. (J f T E P.*E R AT U R E kil is s is v in t ro se full tr.rts froe ih I.!- [mP) FRESSUPE m-p o e of t h- t m. t, a e r. i i si<o ior in e rJ. f t' .( r__ t t1 }/ nd ;t t to U r s p -l n <tir41 'G~ EffERENTIAL WEW) i siew)aie ki n -RE l ne r n,J lon+ r 'i+ a': i s t f . n tn > . Inwrt tte e = STE AM DM'/ I"It il4 a f ,. a t t t u ed . 114 *~ivret att e t a l .1 Tl ID OUT[R INNER l' i,- e 1,- !n iLe kin e r, eis< trirai t.

  • 4 i t r ;6 J-

. M.l _. - 1 '1*it61:1 11 tieuikte its stent v r e , r .s t i e in fit [N ,- I - T .Ty - m ,1,nra n .. r . t oica m .n n i/n to  ? $7[ AM M[iob'__j_,[ta ~ ~ " q- 'tf: lied o , of d s t r as Jr t og he a t tbar#r, i *'{" ~., , i' ' i I m,ogs,-  ! i s j([T ) - L + C' r i j g ite 1, , t [3 ;t,13 t,ai g,,,, 1 L' .s ieuiais to (til triabi a u t t, . L /( .A fl '~ A m DP ' 'la c selurr anc til s' ion < are sinied to . *li H+ti nr. t t re r linn 4sro,, tot ti >H (it o u ' ,3 i <o ' st n 6 l D -~ 7 ' D e s i t ir en vr! i aiu ti t o r i r u. t a l si oi v e l >"or' l  ; ' ' *i in ftil l' J i \/r i in all i t. . . inves 4rr > ise-19 . ; ;i j s . vo.rg<m. .( I I - J,q-I d m91o

c. i g t i, ,

T - "_ 0 - - u t . g t ' _h- ta i t l e to iiri 13o. 1 tLe b rii.+tni p- 1 w i T , ttis <ft.cg Q 9. , , , , l i t+ r N '+-+ rb fois >.si im-4i nr.s 5 o r i ci t > m mi it Leisti ,j { gg / -** "*^ s>ne let. tt' ottil itt" act 'unt tc u t) - 9 m -,- ,1, m . m m , m ,. m o.. m if e4.0 sine ist. t -r i e i t :1 >+Li l>re ) ~ ~ - w s,un-~- - n Tuel y s !a a i u.e -m,_ mmmo ,, m IS I IC l' 4 f t' d I tri h194 t' a t il g l li 61 4 9 !tdh g , d + I" Wh4 fb li adjo( l Ii' ibiIlai r.' 4 Fig 3 Geometry and D. mews d I Aa .i o+ tie, mf in . , , t=., is .>, .. 9 i 4 i 4 . --.-Cedhe@M*nN'8'**M. __._ e ... peer, 7 t. effeiti++ ea'4 r * - i v e r- it !!dt0 s- I t. c telt 0 ti ' . as t+ot Iot it'i' US I"6+r c o r. i . [ .! s, i S e ro gi 1" ' e e" + i I'tresure

  • 0 05 ( MDa l
I caf "' 'b" '
  • I' ri i S t, ti e,m teli

'>&u il *005 I Psi ,- ', l a t i o t, fat '[ f 5 ' ' t t ',1 101 il J e' IOf Ibl9 Q "- k,i Q 2 Pu t t g 19 ptfi , ' Ifvids if- $ 18 o t ' 1 Its6i9r vi l' 518 fotbf' L , e i I d e f f fl et art Stestf*! h e t f '.18 ! l fi t 1ial !ft ft ah 8 e}'o J -e f3 IU6B letted (r - " Q* O > $ ' 'C iated f ri s fl= differef: ' i f 't* i' ' 41 Iret66ft at g) 01 'M (M t, a t t r a t . I p tv et pre ti, gra At  !!. ,niei hr' st 4 -'-' s i l t- the t & d

  • 61 p ti of le t a I a t e .i t trar>ftf fvp II, ft seo rtIa r a t e f 4t e t e n i r t s t u fi t f s'ai  !* ' i f I's 8e e slivt 1._....,L_._. a I

afd 45.7 D g(_ 8/p A-Zp(f (,(Q l f l fig lh? d' dl1e-Iid ' : f- tl8 lbI 4' 94i l 1. 1 !di I .' f 16l8 f fur' ) } (3(') ((p() 4) Z) l f a. i teasir3 ? t ie. e: fnt f ' ,!f.te  ! < is.a! <t n'o TIM [(gec) der p is i s, e'n.fel A I re t t f e t u 'a 1'  !' l'l.'s 8 !r' ifi' il fstolette it s.+!, ' i i 1/ tite je e fig 4 hPV Water level Ch0hQt l i nc. ) lie n te its r .: i t, c .s e t.  !'( 'I ere> tli h u t & #' l t p ra tiv I-tl'e ' f eatsf ! t.  ;  !!# e4;e, t. si i e ni o re at se,si . i . . ., i s . r , ofs si ore fi e li es!tri  !'. ti ita intse' ttai tf *voi k ro o fi t l ) , t 16 l,se r ,si . . a t r ic : 3 o. , < r .- $ 1 t! ! i i t.  ? :n ii  ! s a li t . o te a ve r t ie 1of, t,eisfn tavy O s t t r-i < e s , f ,i l ves t Int tt4 li4: Itootie r i ,. , il hi k t hi l t h A hl' Ol!J t p.l bh lesiar a it ite s i e av ar= r,it: ri! 5 alir liris , f!<e titir el inir t 6# f f es 4tht*d  !! P !I. f 11 r : fr f. isfl lIf< si f j Il4 't *I l'# t. i uff t r. y 4 83 a *I fts511 8 21ff ! lre d l( (( It. t vir ,rol , t- o i lie, et, ff. .ettnj gr.tgi,,  !?< e s i i r ,5 l sn!,e ff nr r ,+ ni trott ie,t N! r, sir 0, 0414 gg <l tre tulsifra>>' i' t!I ik o'd4Lt' 1 ( I4'ifp iaf'ivi i Poh'hf' *^* *dfi'd fr'8 'D ' ' '~af IL D 1 If/ tte sentier t ot a ', fist , - r. In 't. c. inri 1 r. tra ioi< sti as test tep, i ts o.te i, , e It ottair ren' 1/( t u t1t ilfe renttai protarre se , uf.i < i. ! , e n t s ti, te et , al asyfa at 4 ;, o - tat i' tot intitt 'or r a t. ta l l s

f. ' .5 t i! mater si 'La i if.. I P' s lfga i fe s al !ff Lair is f. Ifs 'ff '8 f$ f ifiF8 )afI thl !rf*$ 't 4 h t sa tif l33 iF l ,' b abd nr. fa i s' n d Ibdte IL f}f 1 il6 F l.b E!'fa  !/ .i i i t! 6' f. P 9 9 U f Il r a (W[0, fpf {l 4e f -s l ei f t 5 98 i t-it, o ,, i n,or,i , t ,a!.o <

ef i i i i . air ,, i, s. i . +, at . ,, . . i i . ,i t e d a, i c The i el 4it ; '.i. 4s I,-e roi. . . ini :, l !>s t - 1 it r h t r a fi c e fe 16 51 h ta t tit H ( 1 tr 4 o'i'l 1 ' 't*4* **

  • tali ' i fit.L(a). *

!s a. o, la a i : e.,r 1' ctt4i is i.ri- afi4 ' on es t lea ti it it; tesi, '/i fit c v .. o + tin l' A. 1+ sl+ r a t ur e p3t us i t'r is . eviiy the - n I. r s a t , a r -f e it , f as t n of (i ut ii itet as - 4 4 i lt, si r ;oraett s.iis. 16 , ester  ! ft ni.  ; y j.; e _ > ' 1 r, 7!3 utqt_ I '  ! i=redicted 1, sit e ri Isli ' ti 'taif the s ' , ,.13 +t.. . fi, i<r 6; ;!t letter than i s, , m o m,.. m _ . , ,_ _., . . . . n, ..... _, , . - . .e - _ m, , . 0, . m , ,ei4 , i n il e , i  :.1, s i Jr4 s .f. As it ,14; i i i ,, t i e gte64 of I ens i , ri e relfa l I6 ke ri ihr t' k oorruplrs t. Ir <eoos.t , ni1 > a;na, s( , ite iv!.Ir 6iti<r s)i i ri,6 ate r, s t ai , l > tt, >t+oe fIes fa!< -I t r ad i e fi t ove i is at , sere t,ni4 x c r is t ti t i: s i s. t ut it, n 1, t,/ n! me , i,  !!. t iram a g e. r a rti  % lI 'I I I* I '  !  ! 'I *i I b'.r5 , k f I4 f 3fi( , 4 f If8 f.I fr t(fi j 4, I i fI '(lI .' 4 , 'i e, i I h L-I' i r, gris.f,s. itn. fai4 s I f i i. a. am airy., to, i' .t to, n.iai . .c,rs e. Ji>!ritwi to .' !!4 30"I he rt Ebi Iiie d ir l/ ' l' a l/  % ia$ Ih3 }r4 h & g. t i Ih fL ai It et t lj;e n' SS f , t it) .fitiAl't fft # IeI - s .t ' lei! i at sinni  !, t , niri j i.r r it. [e,ss e le r l i, r 1ie i Le f ti e tal' I t.t er>4 f 11 i di I . i l' l h jh t !r af 91l8'i 11 4* I SJB h. e j i lJ ef f l I4 f f ( ' $ <;r'4 ' t 'I . 1 ' '!f $ ' I 1I t O I -i I ' D' F w lle ! /t is tull I:1. I' l*te i et i I - if at ' fi - e is, ieA5 I i ,; I l* ka/5 ,t  ? It ,A ?8 4' , i fE II 01 ,a s lI T ej l , $jb ) f q l g,(1 - fg I f fhk $ g ! .' [ lD f L l ' [, , O f [ d' l g,g i 4 $ r5t  % q ll .$ (. j 0 j j{ f ) 'f . @f $--V e,4, int is*. i. > , i r tf. t  !!,e< n ir.,,or< i iev .ei-  !  !.f- ;r, s in s .; i .> t' ya >  ; I s,ai ,ei e. A f t .. t iIe s 4 4 ' > a#, =i 1;t, .i ,a  ! ,r*  : T. 1e, it. i meo I .i 1 ; i r iit: W<  ; i e - !4 .s vid, tt, 1ra'iori 'a!' *a e' ' ori ver 1 >tri4 a it tt- - n,5+e, a r r. s'ert c!! tre r 7 9isut,i ile  ;- es' . ea ns i at > e is te i 3 f i ir i f a s l- nt. a,

  • 9 Iff I f. g $ I .) si i l. r  ; j. j\g'[' {, j $d ( ( f $l4 I ,5 I l l. g) g f r l i- 1 j { 4 6 sr 945  %. ( i '  ?

h if a f l3 I h 9[ Nf II f A Ie Iri *Ki l i ) ii it L g i l I5 dsri ti: t 'st. r mi fi  !,  ;- r J , i= '  ! a i . r, ' i' q ea jfUf8  % I' i S h si I d 1dij ' ! bI k * %4 . ' i<!'  ? I i 3 I 4f r9 I><a # $' 4%( , ) !< J 6f) 5 -4 ! (' f 4 44 i Y t e,5f )i , *f ,f ' s } ' i P , t 9 '4 se 1' eat, . It is .L...! tre *t - 1 .. t ati , ' t, ' i r', ' + i  !..e e4 a n hi I  ! d! kl % f. I g ' ll [! 8 ) i !O f.  ! t i h !f L$ ) - 'f' 1I1 4 i f I  ! l l ' i rrotai! i t i u.  ! i i t :i fa .as 1; i ;> > s i. .,  := a. .c.i e i l ; e- l  ; 1e t s t i 5 - t I, r a !y v  !( j t i 4 5 i 6 .-E a p 'I %t f 4' 1t $ -iC i 4 '5 IId \.l3(* ft jf i , a 4 6 L i( [ $. 7 , - _ _a a. _ , _ - - _ . - . - , . ._ .- _ _ _-_.a 9 I!e $4 %1 fC$(lI$, hi $1 b( F, l I' ( $' t l [f1ia# l( ) {b8 8k b' $6L hP1 i  ! ' t-  !!' I kWf6t I !I 4 ii# ld 54 f t i f:dtfhelIDI fAlt. ilf Ill0 k r ) f: i l d t I til e f f}'+4 t*bnh 61f 94. tit ift 48 Lf a 2( 1Ule 9f b l F l1 Gab at it' e t u !'r E&Il ( 3 l 0 6; l 8 t t d tp ttC G( elO f f d t ( L d4 L ' t}( 64 (! I L' I li f i i o f l1 lE -f i f* 11i f f 'f 5 %d fIi-6st i t ti f6tt, +4ual 1 ite s ts ne Soill> flr s tale ( , ) llett s'th L fiirit , it*,r 4' . u i l s t e As it-ifEt, 96E 131I Fi Ild' t I< t Iilt en6 if ' t ' ' I t- ' I I' ' I lli #" ' I! dl II' (i f iF it ' Iiiuil s a tt e f < r' 45 feelisf fit a l b, rilrulateg s< f . 4 6er. fils sirfu 4. ) $6 tr's'en s it as la a 41 og*ef t.i 1 3 tio 3h 9414 &5 694ll 46 1 I I et D h I( l 9 .4 % a I 4 ( s f $ 1 b i 9 f' I !_ s " id. _ i ' [ , _ f ' .f. _ I '. f, l [i.1 kl.Uj _ !.$ i. e, I tre test retvit (1t: 5 ens re f le r t e ' la th I'_t i , ( _.! M C ,iiso sf seali n ii n, i f. l e : . i. . ii> of 3. a e5 Tre 1, tai ' 4 oi << s.4 1 < <. i 4 - it> .o 't. c' t' 7 es lefre dias < tot of lif .ert,<41 1914 if***f'* el r itt. (a n eat - r-t ide i r : 1 ' <a t . f - re-e tLe denigt 1" . ti t :f . tes itr %sali frisitr8 s i ti s'*Its ' tii 4f- lini's') ' Fe it sat 'f' dF! { l 8- i l 5 4 4 I d t l e' 10 ff 3l410 1 1. r vt i11I( tif 8' 1: fi 8 9 ny t i tt ' ' f-  !, !6v' I F b' 9 5 II' TF t re :l a t e d tttr sti sia I: c ft-ttdertitis ras v i i. t tai teo1 fee,o* rite 36 ft t si ! c! hitt fr' l i f- . > Irnee, l e t l i f. e t todel ou als.st Sase a t. 1arie i' stis5ufi f'f 't' 9e fjes rnis i f -i b u 4 b 8' l l 9I' I . 6, l. d 4 7 Il C [ff $( fI Iei1 !dI t ] f. l . kI 6 -  !! Id 'l I E I h !I4!I III O ~8 hl , 6 [' t j ) , l( l H f ,) ${hjj4 i {l4  ! !rf8rdtib I l'8 I44 tJ f hI'f- I'l l4fI iH bff D'  ! + *II d! k I[ # Il CI' i! t) Vfikl'~8l l l 4 !I BI i ' INfj 14' !bb I IlhkI lOf it l4 f /b f ! !1'.0, Bik 14 i1 i( tb. i t !) b M I U8 ens, i nit <fe at it, 111til file suef.. teter+r tis '1 9h tt. m .i > I. a i tr .. f t e t s r a. s$!df D h .! lbI f L lf Dt f 4 l 1 l ' f' ) $ b d tsl { a j fed d }l$ ( 3- f8 e CII( li t i bi&b l/\ s14 ? i If 6f18 I I k k) lifit el r i. f f e j a t t o r. f f ) . I e i ri f a <tifra l a t s r 11 e r ! .i o lo I att lir titft t'f 6' ft *4't' ht'r' It* I t' t' L 1 ,,,sia.a in.a. s a.. f a i f , tiene rlc, ran of i n t,ai .sm.i a: at1;i> .a esiiew' u m f- .($4 AJ/t, H. to h t f . If C I; f f 8- l # 1 i t. f I f(j g r t s j ll al Fi 48 ' 3) I8 4I I i' 4Ili*  !< il ' I L 'a t i  ! i 4 ki /F F t d el I l' t fM10 t al ('<bdff5*d t i t f' t ).2I 6 I ;fLFC 'i tIf' 4FL 8 ' *I'#h I I' 0 8 8' 0 5 0 " ' d t o t-c length, ehert ons tealle r that lie toSi nainf traitfatuft distfitu' i in Ils tola a t f t as ritelts 5 Li st it l' i g. f ( 81 Ti l5 isille d the etixt- ' o f r' 1' ! L L J' t th' 6d' t'tt  : ' t i l ? " I' di ibhl IL 8F

  • Uf l a t i b ti r f106 f fi tie til $ 1 f e n g f s 3 ): 0 : l ], ief f, If: 0 t h l f' f1swf' Itd 1i' It4 # L p d f ei n 4 ; f Ie

'" s I fi f th' $ 3 0 l l < f' 618 nt l l, e fele I db f si I/ I!l' 545 '51I41f' Al fOllf8%. l b' its it sat t<et flua ,i t !D as fros t u t= . f t. l k t e s i- s fatore de o' ' i se leirLt fre str ilIfor i fi T 108 E H 91 (agi i l- 1. d l t i t L 1h ! ! ta l 6' tb!1 b l ! P I # 1I 4!E'6 I  ! ( I2 'E lI '8 I l t b' 10%Ik-Iif.blu) , 9a t h .. y ! l ii t,4 fIif( A !rg;g TdtLr0 }f.!e , lti$ D i. h I8 i 40A' I l'  ! ' !. f' ctfb !d,0f IL ILO bltof $4h 8= f. ( j B h { ( ) {f, J.p h7 kt/3k (. ) b5lff I b8 F ul b f t I Mfd bI I f 4-f i L $db E i E l U I' * ~ ~ ' L ' !dlI) d ' 4 C l f I' ' 1 l4f54 f et l t ff d1f f Of f f. C f' l e I $14' fi lbF4 f 4 I i! L<Ul4 7 5df- lI4 I'fI!b I  ! I' I Gk8 I t l i W Ib f' k II I I I- E' EI O Ia ' s of int. It* torrosiondant i <rof t<at flui 1 n- - h>lr 'l'* 15 o! 5 t is' 6 la'f'r thd I'>d i.te, t 3 Nos,lt e,hl en 119 kh/s2 1ris . a et: 'iasiter. olii t aus ' i t i s 'i h t sitt t!. rof-5 g a J' ll40 llg {pt t If b U k b -) 41 ': 9$ f6 . b) $ h (t ( {q 4 l jl[ L3lJr (If M ded$9 IClh d! 4 k I$ Ie i t Intl > i n e- tr the erasofitt i frof of tfe e itit te$i, if i t. , fit , e: . r r a t g r- en .f a t t r ' 8 . stem r(seitirs (fos the stfy statt t e e s.c r o t u f , (fie tuftt i* o t ti in inar 4 , to it. S t e ns si lr i t ) I ' 4 'l + e f 1 :v e r i t. e t h i ft I/f t ul 0 t t i f t h a' h l . Iba ft 10 i tt6 5 5 6 ( ldit d9itL ht'a% ' CI'halsi i _ . _ _ . _ _ _ . - . _ . _ _ _ _ ._ _ . - _ . . . - .- .- - h gsg ' - . cog s _h .3*'- h .g ot p ,"3 1- = O O! - L- = 0 0 pts ry t r ett Ptot t 46 4-1 l l - , h i -  ? G s S l m i 1 _ - - . . _ - - - ;a I 'M: B o.' 40 ?N 4:. W: 390 4: a~ 390 & C D d ' ' ~ l u w t a mw .. i i t w t e c t , > nvptRt.T WE m) T E'#E m 4 E t * *f"""  ; t z., r we.me : , m - ge~. .,y s , seer e au we me~ n l 1 -\ i .g ,a =v4 ,s.m - l 9 e e ggg f (d l } hj (> rI e d f f i l' I I ( k I k he Y k ' !" Ob I'b ' g{

  • N

~~ -. . Logitontal piste. the derradstion trtid of thit .PiM

  • o 3 MPc'I iest re sults oss sanilar to Marri's atalttis ai d j, 70 C

~~

  • siirtti, s i l di r . Itin so i r ot al l) do t' 'h

.o ,%. g n ligtir frt66Dre 3D 1be liL'. (,g. p p g g l

y -

i, n,; ae e,., sui ~t r. .m . i u , ,* o e m ,,,,, e ,om nion o r n,d in. a , r ena u a u s a m n, j, o 90 . - + also s em e n . Ite ostrali distadataob r oeil i t sett le r fairl) agreed ettt tir Im ai ,a!ue becauto the t-61 , y gr , r- o f i, t o s o u rmdtr as !

  • s i t in IP0 (* 2 4! > 'NU) 88 yngggg

{ t e i g t. t stere the pas stature f le s nas bot full) ( hunt s "o g r ( -. _ . _ . _ - - - - _ . . ~ - - - - on e le t+ d. Ihr iarts r d i f f e r e so . 1 e t t e e t. tle laI - *ish h x _.c oi ow tw coa a ,i d o, . r a u d e r r a d a i o.a - f f i i .-ia . h a o t i- a& I'q i W oi u ried for bitter oltrefeh lar1681 l'"SU'e su du jg,,g, tbe 4 IfeetIle legt t f h t; h l q r 10 t h e- fl a f f e r e' b ' C l r' qr frhi fqO w ? Wrwo We ver$ A 8104- bLtle t he f IIeel6te b4 a t t r n r: & I O r B r' e # t u f. through Nff;get PO'9 6 I'restgre about 3/4 el total t uld lelyth in l i: r e 6ttaa tett, total 19 h t' leb#th S a f. l' *

  • d ' d t i' t'#0%' b' a l I"'

kf4l)lh birbor f a t ts ren n ea n' r at im

l. h 33, _ . _ _ - - . .

i ( g [ '( e' t1) A ttalser <onsideration of 1/( bent hat vai o u x' ina ian i m den n in u.uiaie at ua n . n ,

2. fl e 6

ng  % 9 Y i \ hydrapllt h y $ 18 9 r e 6 [ulik e I4baWlbf Ibvido bk N N 4 <,tt i N e in du r i tt tw a eas scenarirrd. l ei , i Q) 1h realisinary i n d e t t r ii h a :1 ' h a t h 6 t' ah y g, g , d e - * ** l

- r!ste beat rl 3+a al (stority udder the Orelff!f If *hhtV 9  ; .s p*DY Wo, w SMt%m h T[$T lLDC AL ) lht.

b np e T[$TGEW) . ( fi g 6i 39 t r vpa,cn' ,, ,,,ig .ea u,,d greasure ll o of 1/ l,o se r u - - Spotr m m tvel + - QOf f W ($907 de.t) rea1i#ed l) u6IhI t l' f' I I ( 8I thbe $ iib $NIEe (gp4 f Mm x4 os cae oi oe di""" *" 'a" "" " I"" oc nor .. onau t ic ,o , ,' o i ae. 4 wr .b)$1 $g / Flot #4) i ti r e tiene ce,tdie ri n a l i or f.e l a k t o r i t. the 4lthert [ r ; [ e 7 m tn n CDeffdie M ved $ A lh destyr e ns rir e to ILc l an e tsa r file c ot im 9p N trogen CoveMrcMrs sation on a u reiral I bte sia ratlit h sh ar 5 $0ar s t o si on ite tinid-airo ine r f ere due to th . , , seall :.tcos selor6t> design rin d ittluded tte ease gg N a ri r e . the 0 4 t r oge n t os rrti t ut iot i t, t li e Lulk effect at t h e. liquid fils suffet. lh t, n .iid i : i o n d. .e n to BOD es en Als a t unifore. tbsle (5) lh obtatord local tral r e c o v 'i l degradat4M q g , steas vfli4st) dirrianes saiall), lh t i t- ditan t t r e as riallicient d u s- t<1 h i t r i. i t o l '. r i t, r cr d r o n :14 061- 7,,; r e y o r: trlos ti M se. tte produai it.< enne i ri l' u l k tion inside i c r t i c .i l r ul e saa eutb silde r tLan gg r< 6 t r i,r c o ( t.p re ti t r a l i o n e au s t< f t h e- r ed u t t is.n tf Lulk t i ri t it.r ntefrant othdsh6atiUU' ter b trepratur<, ih n r e tbc he at t r ansf e r degradation (0) lia treol of he a t ri s m n l degradatiot *as (gg9 on, , . i i .u ed fro. He roi.o it im al toi rio of .i.ii., w M a r r m. ' s calo o of forn d imits n% tte nitr,sen renseini n test to tLat of smte ntt o c o n d e r, s .i t i o n or a Lorir"tial Flate abd Sa* gg i t> b i at [l $8 Irf 9 fut' ihlrM0( t ho rt the huli hlighljy a n lde r, 74g { __ .a. . e u .. . m , 4 , . 4 1, m_ m ,. m s m ,, t j r t t. , b i li r e lhe CValualfd dOffOd a l I L)f F orII (f a t b t Al his l % l A l l(;% (g g, g g SAL loi a l 4alue, Ihe f'r!fifIP0I i +4ld I'0 t h f i' r ' ' ()gpg forated ibto analysts t oo- L/'m = 1-r),rit tru l e n t Iigure 7 thnel t h e' t h t il l t' e d dO f f a lal :4'h ( UcI" LF 4 ' travit) dratch i n ri litf h i t 14 9 gg, f i t i e- e t , en9Faribf ibe M FIad4lIrn 8; 'IIEfINI Ore

  • ll ' IhblJ t e;r 5 # fI%el 4, qInhi dirled Ly f46 a r t t e's abaslytth. Startoo k araitsis IWA
  • tons of ( lu: A. i ti n g ggg results terronta ite steas imdentatiof drFrada> lt ' = i ns s s u L oi,i-ter nt f e. l i t s i , $ t , gggg, tiob for toth blaphant (y) a r. d connetite air rub- hk
  • irisary (< !atFret \.ss . p,

_ _. u o m . m .a u ~ , , m . _ m - m_ - m,, a r e ti t o r d i fi g to the i r e h e r. t te>t i o t, d i t i M . Ile h/'

  • heith>= f f t aakt C De f f f ( i'ee1 < It4ibed ih tI( ). e Ie5Ib bII 'I' df f r 4 d e 16 i r. "ii'l Ah ! 'i sec out silder ttan tii s t er o oi ~ r. d . i n t & to th
  • h ist F"**

t h e- svens fleo effett, Atit war- M arrr e' a r. a l > $ s t i i - 262 e . I y m eli1.Lt#1bl5 ) 1 tin test g> t c t r a s ens a J o i si t study t> t t o t e r .t n i a t t s e e f ort r ie i+ err 4 I si al si t a i-1 . l b ). e64o6 L.t rol !!.t' rat (essat>, li s t a l i l e d, ato l! ri t i ! a  !: rstratire. 10e l e f t i t t s a t e r r l-s e r roetahies eete ite J e t a re Att sar leser (Oslot). Teloku ller' fat F. sir risiat>, it( , Itr h63' Iin t r e r F1 ser l'e-uy. i ii - (tdr }le tr ( f etr t t ei si ) . Itw, I Le n 6ttino fl4ctris t e s ,. i r,stans, i t. r . aid ite it6 rote llo'trer leerr f'elar), 11'. Tic sotturn erst t< titrest titif as t ret latt t 'r i r+ e r s t e r t if 1tC l' #or t t i A fi i f & fff I C l 1 I t, I d 1 8 ' O 6 6 1 ' ' f. > , I t s t. h s are ;arti<ulari) dse to a r.5creti ar! ne,lrtinern e f ti r Jes en At"si- f r-n o t treints ter,rtot tio test i rt t r es, 6!If H L f5 1, 4 a r a t o IL n , ll . I skaan.h. ar d Ot'+ art. J,, i t .i  ! <- s e l o i s i t t I l e r. r T e r s ( i r: t s l i s e r 1 olifer ei?I innsist ha f s t > leatures, t rt - Ftrasurr nessel

1. r j iisina (onf., konnlulu. li n e a s i . Jui) i19t*).
2. e-(nr.qi gg, p,j. a rgt p .j j i r r , J , p, , ,
  • s i e l. l i c i ti tte pe) te lestoned Safets. f < r f o ; a s t. r o a r, t ti reits, herl. f r. r .  !* . it .. AA. ( l !R 9 L 1 Lune nr. Jl. .i F i Laspor. C.I.
  • A b P e k- A f4 Ad-vertel StellifirJ F o t i l ti g h a i r t hea^ tor,* Irv lt 1 Ir l i v e l 'ec t n i r t fi Saf e t) <fh<nt teneratiari 1: e. r le ortors, Sr a t t ir , h as t i t r i-.n . 11.151. 'a>

s t aui 4 )rt?!nti,h.. Antashts.h. a tul l o ! i s s t S t. f o t. e betroese Jrst < f t wl a t ici for14nner Ai-liird as a 14thive Contaire.pt ,. l i r. r $ 3 n i s s , 'It' l[ fM-l, T i lt r o , b.  ! I k il i ';atr<e, f.' , M i r k r. e><i, b.J ai d ', 4 t d ) . " . , I' i e 'I 'i f, v e r t s i ' fi i O !? j f f $ 41 i t f- 1r lI8 [' r e % f L '

  • Of- . r .l# 0 t a t l e s and l ii t t t f a < i a l krsistdr. *,'

II ' ). li f a t Ma>6 Irannfor, l i' .18 / 9 10 (l'f7). J ' ' Lafi.J . A r it i , 6 . . D i n a s 4 . ll , a n .1 A a r a t a k a . li . .  !*hluetafn 4 i lantihe 1 ti l a l l S t U t IU -I I nr h) S l' 8 I I f ' f S 4 9. f

  • fDf fl hl5l 1l[if d (bb.* l rif t . Akh blF-

8tt,, sen Irancisrc. Lalifornia. ;;.471. hov. i } 'a t4i ' I

  • 4 f. I & ,',I.

t h I' il (I i, I' , ) , h r #g 1, 4 8 % (t a f <1 8't!ut I r a r. s f i f , " I r e n t i r e - t .ill, 11.7 , l: l , 2 4 2 18 (tw 3), k II4'a.H. 91 ) a ) E1 t 1. A dhd hondroni,' , (. r a n i t ) ~ L! r' llf l I tjg l' t r. d f r L e t i t n ..t 4 %g r1iral l]a!r 'letiricnl totatioon for Far m er ir has) and l u r- "I fIl4),' lt shth %8lliDh41 fis di I r dt S f( r t I~' )b$ (- f )([ M n , Ibk,ll}, ll,kEl flNyl), 450tr a)r2,b.J, Abd 51 a r r 's . l . 9. ' I ondf t m alit i f 4 f' l f 4 t' Jf 1 he l l's 4. 4 h., r.l h hiihlehhIhl*5, '

  • f f a ' i a l keristaner. surrrtratira. nar:able rf'lirti<n, 3 n .' IiIfn6a h,~ lft. 'i i si t Moss I ,

4bI f' r , }' f~ , j l { - l l ,j j , ,( l ,# qj y P s

263- 1 L

The 1st JSME/ASME Joint International Conference on  ! Nuclear Engineering November 4 '7, 1991 Keio Plaza Hotel Tokyo, ,. apan Vol.1 Sponsored by: The Japan Society of Alechanical Engineers The American Society of Alechanical Engineers Participation by: Atomic Energy Society of Japan The American Nuclear Society In cooperation with: Japan Atomic Industrial Forum The Federation of Electric Power Companies The Japan Electrical Alanufacturers' Association - - - - - . - _ - - - - _ - - ~ _ - - - - . - - _ - - - - . - d b? SYST[M RESPONSE TEST OF ISOLATION CONDENSLR APPUED AS A PAS $lVL CONTAINMENT COOLING SYST[.M Belich! WWOh!, Hide o fW.MAKA and 'loshimi 10!$tA150 loshlba Ccrporation, hurlear frg10eerir<g laboratoly 4 1, l'k t shima-c ho, Kawasaki- ku, hawasak i 210, JAIAN 141 ki Mil-h!40 laa (044) D M 6 t,3 i s t %1 art a train steam line break, whlet is the dialgn basis t acrident for the 1/C as a pCCS. This paper de als with the esperlinental roults of the syr. tom interaction performance of IN!TI AL CONDITlDNb AND TE ST pkcCf Dt' lit $ tt+ 1solat ion corderaer (1/C) as a passive con-tstreerst coollt g system (pCCS). The hittert n . The lest facility diagrath is showri iri Fig. uhtirag test clurified that steam and r.itrof on 1 The main features of the 1/C 1est isellity aisture vers well separated in the 1/C water ticx were described it the ref. [1]. The initial , and filtrof e n s ent irig enethant neri was cor.firine d to be condit10n is summarited in 7tble 1. The condition e quate. The 7f,0 mm submergente dif ference corresponds to the 1/C initiation, che hour after i be t we e n t he tilt rogen vet,t line and the inain hori- WA , in the case of tnain steam lir+ break. These tontal u.rt line, bhich trevents the nitrogen vent conditions were determined from the ar,alysis from tte horirontal vett line, was found to t>e results DJ. As for the initial D/h nitrogen amquie. The systtm rekponse test demonstrated concebtration, nitrogen in the lower WW stayed that it;c in g ressure decrear,ed gr adually one hour during a blowdown period is conservatively dis-afttr tLe 1/c actuation. Thoagh the vacuum break- tributed uniformly in D/h at the start of 1/C er ope r+ d intermittently aftet that, 1/C heat operation. The assurted hitrogen conceritration la renval rate still mcreame the decay heat. These very conservative since the concertration a r our< d two ot4ervat tora concluded t hat 1/C was al tlicable the 1/C suction lihe in the upper b/W is expected as a PN 5 to be quite low, compared with otter location in D/W because of steam flow from the t>reak r,nd the delreskurization valve. t hD T milm kPV has the heat source vessel fri this system. Steam was produced by supplying elect ri-As mt ht loned already th the f!rst report of cal power to the vessel. The heater power can be it.a s s t udy h } , t he t wlation rendenser (1/C) has controlled in the system response ttst, simulating t+ e r, cou lde r e d as one of the mobt promisir.K decay heat, while the nitrogen ventir.g test was pau s s e catainmrtt coaling system (ICCS). lo conducted under constant poker conditions in order ea s ti tre applicability of the I/C as a pCCS, a in ritmplif) the situatiots. full scale teht facility wss consttucted and the D/W is cotracted to both RTV arid 1/C. pure M r,.dation of heat transfer due to non- steam f4ows from kpv to D/h. Inside the D/W, the mrkraabte gas was itvestigated, since nitrogen nitrogen is contained, which plays an importart is contained in pCV. In the first report, the role in the a) stem behaviour of 1/C. The nitrogen 8ain fiatures of the ravly built 1/C test facility partial pressure in D/W is 0.0; HPa and the pres-wie described, and from the steady state 1/C heat sure fraction is about (L The steam and nitrogen rmra al pe r f ormant e tests, the heat removal degra- mixture are absorbed b) 1/C f r om 0/W, ht ien due to t lt tor < n, inside the vertical tubes S/C is a r it rogen purging space. 6/C air urde r the forced convective flow conditions, was space is filleu htth dense nitropn after the 8% r e t Though l'C's favorable heat removal initial IDCA transient. The S/C bater tempera-CMabilit) was confire d under the steady state ture is 336 K and the steam rattial pre ss ure in U Nittoa, the adequary of the nitrotan ventitg its att space is only 0.003 MPa. N utit from ITr to the suppressit+ W bot (5/C), 1/C and I/C pool configurations are the same bettir.g cr.alarte rist ion and system response beta- as in the previous report. The I/C pool bater %f caused t'y the 6) stem lhteraction ef fect of tre Littoien pa flow tave not t.een clarified yet. 'tutte ! Init1nt emit t lom Wh then aims, this pper reports a ritrofen _, , Mt cor.f t t ma t t on t es t and u system interaction m mt i im i sn j m l l'c'"1i ttst'  % i.E LJ 0M-In t he tit rege n vent ir.q confirmation test. pIins 1Et!"MW.LM.]. a tisi h1L _M.I .W _4_ ' Ib echanism of r.1troget truaport f im the m M y.-U Q 4 C; n - ~b w ----"; T C d _ p' a' D *e l l ( P."* ) to the kuppression chn ber (S/C) was N N, M I M W T P M T TT ' ' Ilfated lhe system reMporte tMit Einulated 1 2ti5 - 2 A___i____ _w nh . - - . - .------,------l , +-.--.- - - , , - - - - *. - +-l- '- -li' I i). Nm Nvt - p sa1661 bere tl+Le'.1 ( [ ) and the tt+ts hert start- pg 1/C o sd. Thf se artlota we r e at t orilished almost sitirl' () ' Tse utn T 3 taneouhly. 1hese i tor edure s are t.urtt.t ri d in flg. dw sta y . %,g I' h' Dnsmatiap ,m ,,, hs o * .cw f-t The s ac uum tirrake r , which t enra c t s D/6 ar.d to g 7 g Sec, operied *Ltn S/C Freshurt. steetded the 0/h pressure. 1 he v a ^ u utti t;ttaker operated only in the g MAwJ unt g - s) sten r espor re test. 'taj tr moatut t n t nis ut,td it; the tant are also tes r I . [ - theh n 1:) s ) n t'o l ti ih lig, 1

  • IMTI ST LLKt lT5

~ i f.e heat loss test was condutttd pr u r to @) t!t (taih test. After the prestrabtd 0 F ro f itt t.t a l , ta (7 tendititr4 were a001sted, total syritem componetits, , MI L i t.c l u d i ts the piritg volun+s , he r e isola'ed 1:) (losing the tittam st:J pl y t ti valves. Vittout ' Q) u- su;-f l)lf 4 heat f rom an etternal source, the _tyste m pressure glad a ily decreased dae to the heat I ta s o to ita environmett. Aftt-r that, the f. li hoater N & ha sul tlled to corf}+f4 ate ti.e Ltat loss. h t.e n t he sists+ pitssure could be held constant, that post r has evaluated as the total heat lon6. 1his - N- r4 heat loss trat was tried teveral tiltss, cora l de r - (!) . I ,V ing the dif f erehte in weather c0nditions, amb i t h t .I. tempotature and prebrat conditions. Though smaji ~ sariante has noticed within the 1 th rangt, the ,g% catrall heat loss bas detrimihed as 24 6W in thlb tystem tent facility. 1his htat l o r. B ban about 3M of t h& initial decay heat it the sy6 ton test. , sir i Mt18 lutr aintatim

  • au s nit t I'm'Cr

lb, t h M t tim r m Willd h mM t1 IM 1+ a t loss ar,d tte simulated decay heat. Ah for ttnpriatutt 15 beld 213 K of t he atmos [ h t le the 0/h and FFV hoat loss, enth sessel was srpa-tall!stil0L t i ti pe r a t u r t h f a t f l y Ud'hb ut t d b) t he f.ame way . E a ttt li lt :allrat ior [ t oce dut e , all tmn po- The [101t4 tenistance was a l tiu adjusted to t a als it.h t hall) abaisted t) clos t nr t he (on" t>o f or e the test. In this test, the pipitig raslat-f d 011!.E ValVth hid) t he p! 0 $0 r iti d (oridi t ion bd k anCP ha5 adjukted I-y cCntrolling th0 dlkmettr Of ' sti arota l) It hlirt d Att ha lurgtd from moft i t.e inserted orifice. Com n6r15, t U t } t $/f,1 y ( Attif sll) sMil)ltg

i. t r e for alw t IMi n . In Elt, 373 k het battr w f ilit d !!om tte hot water tahl. After clostra st7 y,th tiMT]Na 1FST kist 115 t h. ilt saast, the alt ti act mda further derasu d I\ F uj pl) I r4 OlM t ! It'al PGue r 10 the heater aid it u r tr ol_J eaDit< t_RSitrc Art 3trmrzhM.td tm m { ti -tut ited. Alttr air hah blown out, the 1% fitat of all, t he f utidam(nt41 nit rogen sort  ;

dir It 11a50 \ alit h a t, closed knd D/h vclume han b0haVlDurb, that ik, how nitt0 gen Is t raf.sf ef rid  ; ti s at an d to tie tratlal sttam lattlal pressure f r om 1/ C t o S.T , is theriom riologicall) discutsed, in,;p Ml a j t) su;;l>ing tt.e steam from the bot-1; I af i t.f thlh per100 the strady atatt cohde ft - M MRif araf er .DRM.SLl$ Tim purt h .. t u t tr rt alin d in lec ty supplying puie steam $ttam is prodaced b> t he elect rical heate r, 5 ) tu- g tn rt tta h i g h41 pr e u ur e corid t t ion. 1 t.e 1/C lattig the dera) beat in the Rh and it is traft-6 rg t ut ta l l Lt- t a l) 0 h it h kO[ t O[en. In this bay, portOd to D!h . Ih D/4, transported pure htfam F r\ , ! 4 uni l>( } rtEhurts bere talsed 10 the t0t rain 0d fil t rof en and t he altaar nit rogon IDiktufe inr.re et o.3 Mia. is absorbed ty 1/C. The nitrogen ehttring D:'u is s T se initiall) filled with 330 K tertera- reflected ty the rapid 1/C entrafme inter ball tute water up to the S'C top from the cold water temperature reduction as shown iti the Folrit A in Il laa. Aftet' thdt, nitif f en has ht{<lled f rom the flg, 2, l'igure 6 Rh0WS tie D/W l(Eperature trace $'t { fip b blie dralnir4 ha te l , Untll thO air space in b/h. Ah nitroget is tratsported to I/C. DT Tearbid the drtirid Condition. t on pria t u re f.erotbe s h j gt e r , This 18 du to ite Aftet t art component f reu uro oct,ditten fr i t tr4 t h transfer from D/h to 1/C, and dae to the g is ncud tre tru critdd initial condition, tre nitror< n sedimentat ion to the tow t,ottom g io1Vi s < tnt +t11rf OdCh tor'{0n0f.1 & tatted to Ott0, Wf f 6M t _1 M!._ o[_Id ._.,I ( al._,} f aN f t r Aftri g a 1r;10.s iltst t b- t,or 1 F rita l s e t.t lu.e salse, hittrFr0 ontof td into the 1/C t ut+ , 1/C trat g it c: r, tug <r au e w, *n nn+1 ( f) au re m al capabillt) is d(graded, due to r it ruen { t ean a rittr4en w o uptl u d to e m so ttat DJw accumulation. since DJw pressure is de termined t) g tcthi P!t t hu!( li C MC L1Qht! I. ) C.013 (M A ) . lhC In hnd out flow rate I>&Iahie, thL U'h pres 8dr# teritaptnditg tr the suhr 0!g( Me of the toriter.tal to start (d to increase, due to the outlet ste# [j[v. lhon, t t.e Isl \ I4 000n00110( val \ eb k0re flDh rat 0 deCl0&Eirg 10 l'C (l Viri p in lig 3). m &eua i . 5 , tre 1 sti a s qplyu4 valve m Nil.rotet tst ay;curJLM l>C p rt i nre cle ra 1

  • 1 and 19; P w=l/ t or nec t u r vals e *n ir tren accord 1r4 10 D3 pressure incre en

( pe ra d i 4 i. !inally. tu n!ttco n is tt lira Du+ t o t he 1/C t o L' dnfierenttal pta sure 10 266 risane, t r e r.i t t ort r, s t r>t 11rie wat er Jo el gas Ul f eat 1,1109] .( Al'aM1111. r emuy I/W d .e t (l o!! 1 C in lif . 4 ). 1re sent I he hat l' r e l' b u t e lh t+ 1 d c o rd t ar; t fer a relatase]) johrer , bler t e 1 f t. t j t u r , tid h i t r t (t h it pur ged f rt ti I/( period, t+thunt liC thrt Cohdt r:Le t he [o b S t e hlh , to 5-( 1rtarnatter,tly via the nitrop h va tt lihe, t'oh uhdet t he r:it r op r ac c urt al a t i r,r t urd i t t oh . allt tta h rtrortal l ir+ l a r.ot r l t-a r i d tr gh. b l.t h nest f.ltrofen is str.ttd to $/C, riltrop r. out the te st 1 ri l t- vt r.t a r y j+rloj cor ..u e $ , g.a r t ial prehsure lh fiC dinthlat.es ar.d 1/C ht at w'ill utOJt f. , M lh t*( brd t ) hant e}6l3ed in t .Il k rfN.Lal ( apabl } ll y relDstrh. IG pr e hlbr e tab te s t ean ' l o i r.t p tri lag. 4), come to derrease (001ht i tr; lig. 3). Thsh, the t:i t r c rt r. s e ht lir+ 16 costre't with ntter (lett,t i i t, fir. 41. 1 tie toh pe ak I ra tture t imir g a l ti n t t oir+ 1da s *lth t 1.16 r+ 1 t r og e n r e f,1 erdirg prmj l i t ,) 's ar$ 41 1he abwt qualltatist explehalich clariftt6 t t,a t , r.) S t em 14 ha v iour c an be de t e r n< t hed 19 tte O ttt i+ J ' *y [a] hittor*h be t.a v i ou r t th 1/C and thht hitrorch ard s t e arn rah he bell H parated i t, the 1K bater box E Q (q d l] ar1 that the se ptated r,ltrugeh rah t.e well purp d n pq !ac pratt iffu t jt u trt fqttutr@ M..it M jtwr O t I b i t f r p.t re. 3t r:L ] Se .. .. s @n t tif ra e effttt  % 5 -" d i T E a.is 1b many Ilvar e t $bo*n a geome t rical cor.f igur at iori be tweth twtimi hitrcret s e r.1 l i t,e tuteerperite and the horirchtal rag 1: ; r v r i ,a < t e n i . e n t g e , seht line f.ubt+rrerice. The nittoten sent r4 ha-51ours, f r om 1/C to 5/C, ar e thought to be thflu- $9 fm o h o e'l Iy I be dI f f e re-flee It t H eh the hor!!Oht41 p- ifM seht i,ubme rgence and ht t rogers veht autnergt hee, [_ _.d rW t'b e ' tiraute thlm differthre prevehts direct stram dl*tharge s ia the horirontal ter,t pipe. Th& h/C j a ,-_ > - - g , p* p - water level ib 1400 fam above the higr+st herirotr g se I x tal veht hole. Throughout the itbt, the horireh-p t it l vent b ubite r p hr** was t ont larit , bhile the A Lit:yeh vort line submttgeree wak sarled at three values, 400, t40 and W 3 mm. A n o r d ir.g l y , the submerp hte di f f e r e rg e s tjetome 1000, 750 ard !00 ffim 7Ns, ~ O s s?~~ $ t 4S e JO ljfute 7 $hosh t he [i/b' 30 3 $/C pr etEur c 8 in te em s thrst tenth. An expected, hitrop h s e r.t ir g Speed 'Ir ' 11 M4 A/ t r < i im r , t hflwntt s t he 1.i/ h tiaxin.wn pr essure and its r(atte , ir f time A li i it rogtri \t ht tuleergerde becomes a ,lD) H allir, Dh N ak t rer,sule car t>e held lower afd j the t imiht f or iW peak pre r,sure became shor t t r. / 11rutt 6 h uaAar i r t s t ht: tiubatt p lu e effects 5 - j / oh the u ht t+t aviour a. If this figure, both , s / [ fJg Vent Line talt r Llen veht lir+ ba ter 14 b el ord hOll!Uhth) \ e rit lif+ vatel it:yel Art shub0. Ih the fl[ure tho / e 7 I i j@3 ro wo ur. m 8 .O n t w o / /u m

  • ggMMM i

h.,,oi e o ist a~nn h u, eko he n - t. rko wee g n yrNTLINr Na &L M. T iur twl N -- M  % v ggygb 7 iig i siit: g.i sitt 110. mt I"a i /It a l t*Li " " " l d n tNO' -* W as

u ln; flot watoe ese t

{ j gg i kl ' f[ih'rd ; _. n r1 - ?shsf EN 3.. }' ( y e 4 .9 . W1 -_ L l I I 4 i _ ._ J 3

  • i k' i i

a a w .,p i k. p 4 - - --i-l) $/C l~4%~?  %;;% c C -., 1 Ig I. b i 'a 5 $.I"'"C - ast tM 7./ E FM (m ee t r t ( al re int tu betwetn tbc fil t r n r e n %tht l i h f- ,. a w r g r h t e a rvi the horl/"htal 5801 1I00 " I"~ f M " i1g I, Iretr b/d tes; era ero m - - - - . - _ . - - - - - - - - - - ~ _ . - - - - - , - - _ - - - - - - - - - = _ - _ - _ _ - - , . - - - - --_._$- M i p ., o tra. N2 vent line f- i t

  • submer 9eh&e n0d W

e IM _h yw, - :+++- p to vent Lir,e per L Wel ( Ifb e k 8S *i ' ptt + H2 vent fine a 0 e . Hot Vent Line Woter Level - 1/c I* fFIT75 f., i  ?$s b& k C.y ' 3 h77'T' (, i .. fh k er l '* * * ' - .- _._ 19 L:W' 'i ~ i fit MM JhM j . {' [ (g. f4 rerP ' f~ af' i *g .Fr f o r-tM b ' ,N2 vem !.ve I I "' h k j' f unco': n is te grgg y a . _ . - - - - ed , f Hor rore # $7CML' es , i. 76 #m i ., r s ., o es , g, ._ rs . h e, varit br4 1 WI,

  • pc I f tW isee s knibom

- a 3 vs COOmm f .._ ._ g f v ' riv f, d ' lA ~ th + n w ,rrNm en. - ' M .a mn womm - u'*"" 5 ~~$ 3?[] t Nm is n_ - to a SO r T') 4 W' T* l ' b *O f} .w a.. e , a nut wi ab flr e Nitregeh 4- e h t line a ract i I r' iam' ' ' iressore tior!7ontal s c ri t line mater level hu. Istti r.i s<#t iin. i. o + r g , r . < 4 e f ,' r > 1 1 1 t ts I ti t.r r r f 1 til 11r e s c r r e *, on] tP tte eliva110f3 bi ----g----------+ ne,+ . o io 1 ar y n p.m i fna l ift le r 17 +1 ai sent tip nna tt e filt t 0r tf; se nt  !"~ l" ] , th "pW,.,g@g, .j .rm.s m i. m m atn:c sa++r ir na in , o- -

er
u. ,

7 m, .,inic .m sa .- n , x n . . ,a , u, n t, r. a m u. ser.u nt n o w rrom u u, , m w %. a. v a ' s . . <. t a t .1 rrra tus nrure. a the yp r 14ttrrtsr sert A ru r rt rJ e decitan a, the n n t r ege ri ,J } iir rd on the ot he r tand. m t i ra ett 'o: e as io.rer tra t 114 ?. t a l '4et is n01 cl{ated its tLoke te*t ai E!' b his. *b EMiGc j! "Nu N ah hDhT c fi l c; " " ' ' ' Oh ep*et. A1?? ..t n i t s w it e r l es el gm a C w r,, as ite

  • i'*2

_ ~4 -

b. > r i l o r, T "" { ' "'

Il!Ifpaf sint I 1 rte fi at M r f i' fi' O + c ! 0 A A r fl , = . , l 44 ) 4 t tiI { .I 1 1 Ih h t } } d i i s i r e d h 1 $ b b 4!('I . *"L 36 t- 3 Ig h t Lt n l t r [ f e r h uh%e r f 0 fir e ht ((M S %d i l t t' , f f r-i t n ce r < e u t ran> ri r red ere r ar t dl> to s/r. r .: J b ,. g ,- o m e a 1. s, i n m r. ta4v imr s . r. m m. tat 4e . . . . _ . . - . , differort : 1. Ite M a l l a 611 C450- T ht' 4h ni t t ere n h I i M ' ? M*gg. g . h. i n n u .m t . - r ine s u o ewa rut w, o tu 5 H.qym%g

  • mres ,f., r

<<H y- van ! u> n t ta e w; tot. stu t maes 2 WE +-- ,o .u m ru i,W NTnrTm. Ta E " ) n t s .; f e *!trt!!) t i l' t c ! . [? :1 1h ',e r!t ! f,( t en e ra p a t { ' ' , t f f e r t gW { PX- "' u tra n trinely d ' w n i t t nh t- r aw , the i t, i t i a l ( n ,, t'j ' riiru,' ; ar t ic i i r ss re f rm 'I r.<f 0.10 in IT *j m f, j v. t - t e rt . Jnitin! D 'h t<tal frettare (i.314 ,, %v rw ur inn ui :- . r i t t uer m"" " +- 6 IT N h r b tr m[ [,[t$ "i c $. b T N euN _ _ m. m m m - m m b_Ym.me,mm.m rC_ - ,.m_ .! si r t ir y p+ r t o : t .. 5 c. t.& m. long r , s t i t t- -- ~t 1 *

  • tI6 lurier l e l ri %5i f ( 1h ted5 e, ( ( F j .i r t d

.rl 4( e i sc . Inittol i's n i t r m n %nrentration erto t If n6  !% !I ( l 0 I ' (' i- s k ( d $ I I, f I f, . f'dII IIi *' -l i Ith[ \t Tt d ts P 't U j (' i l eiir l f; II4 26o I r e s.et.t t es t case ( F ig. 9 t ti)) . Due to the dense t r,e ril t r og e r, l ump is8 ritruen including in O/0, sedimentation ma) occur and the abrupt D/F temper-ature e t sie does not appear in the lower vol un e _ ~__ ' filg. 9tt)l. It can be concluded that t!.e nitro- m h, " b /l gi n vt nt nettanism c o nc el. t . mettioned in the I rt t edit g chapter , is also applicable in the dens? g j/ - $ f)l' 0 I@fYhi l 4 U. nit rogen concent tation range / g@gg toe . p ^- - *m~, Mrn~~t--et- _ m L11 I Lt 1.1, p IJ s;  ![ M MIM h! 51%5f TE ST , 1 followirg the nitregen sent test, the 6ystem t' !r ternaticn test was cen10cted in order to evalu- ** ate 1/C s) stem performance as PCCS and to provloe m the data taSe for the analytical code verifica- 9 ^ 'T .i . g,8 W * "' * "" ticn. lest praedures were similar to that of the *# f u n+ r test, t ut the RIV t> eater power s imula te d tt e dicay htat and the test were tun with longer As the LE A event, the u.a l n steam lire rig 11 hltrt ren accumulation in r/r tac in+ . Lrtak ( M'.i b ) was simulated and the test was start-ed from the t itte one hour af ter LOCA. The decay heat curse used was the May Vitt curve Dj. The deray heat power was simulated by S/C, the 1/C h(at removal capability evercones the the orte lciop controller 10!C), which included a decay heat and D/W pressure decreases. M o r ep r oce s s o r . The initial heater power, consid- Figure 11 shows the 1/C tube bulk ter;>t ra-tring tie iriitial decay power fraction and the tute distribution along the flow direction until Mat loss, was 94 kW. 10,000 stconds conducted under the sitme test lie vacuum treaker (V/0) operated in this conditions. The bulk ttsperatures are measured by sptrm test. When 1/C teat rtmoval ability over- iriserting the protse with six thermocouples. From cae tr+ decay heat and the S/C pressure exceeded this, the oserall nitrogtn reumulatiot behaviors tre D/h pits s ur e by 0.0035 Mla, V/f cp(r;ed and was in 1/C tubes could be clarified. From the six cl aed when this difference diminished to 0.0014 tem;4rature signals in the axial direction, tte Mi ,s . burh valse openir.g and closing procedates low tempt rature Ia)er goes up f rom the bottom to stre done automatically. the top. This low temperature alftos t colncides ite running time in the system tot .a. with the dense nitrogen layer interfttee a t;d the finall) de te rn ined up to f,0,000 raconds, which was ef ficient condensation may complete above this au :,t !? houts. Arterface. After the nitrogen vent 11De is LVEl m f g figure 10 shows the Div pres- choked, about half portion of 1/C tube nay con-

n. r c transient. D/h pressure once increases a rid tribute to the e f ficient conder.sation.

tuo its ruxin am about one hour af ter 1/C actua. The top 1/C inner surface temperature shows tu n and decreases gradually af ter that time. Tne the saturated temperature corresponding to the untum t ressure in 0.32 Mla, which is kept within system pressure throughout itJ test period, as t r.+ debtgn linit with sufficient margin. 0/W Indicated in Fig. 10 Therefore, I/C tube top region is filled with the almost part sttam, after 1p u u re decrgasir,grateisalmost constant, at the DN pressure reduction. These D/W pressure dout 1 x 10- Mla/ste rate. Final DN Fressure i s a r. 10. as 0 0' 5 4 Mi a. t+ ha v io u r s are quite similar to those for the ite rcabon f or the singot DN pressure rise nitrogen vent test in Figs. : through 5, M diately af ter the 1/C actuation is that the Though the test time was 00,000 seconds, f it t: rxn accumulates i ti the !/C tube, in spite of considering the monotonous reduction of the decay Litraen ser. ting to S/C. However, after the heat, it can be concluded that the PCV pressure ent ah nitt' gen in 1/W etntinues to t>e vented to will te held lower than the design pressure within 3 days. 40 4 Wii OWNm g k 35 Q-tu w C ~ 125r w e ' h{ y = E, ,,, b f3" %c 3 100 - .u.n fcn...... g a, y 25 a ' ju i h 75-20 0 10000 2COJO ynD 400C0 SMO 600D0 10000 2MO NW O N N TIME (seel TM W) Fig. 12 1/r tut e i r.ne r ter t en eraturn 18 10 SR pre m ic t.ith D/W pressure and V/B Signetsi f rONJ heel -269- J - l e ~ s/C Ng Partid Presus 4,_..... _'\ , ,. 4 ' 200 .- vacu de61 4 33 - ---......_ ,. 175 - g tota d2 - , . . . (, ACKN g y k . i$o et a n* 1 Japa .a i i 12 5 ] y a mm .,,, cc,,e

c. IODCO 20000 yJato 4rt10 tWD WIO I2S Co rp-o
  • u re T IME (sec ) 125 .

trle Crep, sig 1, s:tr:stn inrtini irc .ure in s/r The i i O ~ 10000 2rIOD 37DO 40000 SOIO WIO Ch@ wlah fg t t en t be htv lWIL itLM 1he nitrogen M ( S" I of t t t at h f t r f r on. 5 / C t o D/ W , due to the encuum breas- it t-r (p;ntr r, in nut let-d by the gradual $/C nitrogen F i s t t, t one r D/* ten +crature jg prtial prusure dteresse tri flg. 13. The nitro- ti on lattial pressure in this figure la (sttmated by t! c dif ference betbun the total $/C pressure shich inplies that the nitregen, tiaratorted from fu atM tre steam partial pressure. Systtm re- 5/C, teMs to stay in the lower L/W due to its o.n MM. .t fintLUtD10Lif f 0L1 heavy density. This effect makes the ni t rog.s ti L si nr n tahaviouts are itifluenced by the v ac uten p breaket (Y/I ) (te n i r.g . V/I first oletis at about transfer rate it,to 1/C be stmaller. )R _ heat._Itmon L iepatl111y After pC\ t' pn 1, % 0 heron 1s. M t he v/II openitg t in+ , 5/C pressure decreases, it is clear that the I/C heat 7 prt uurt decreases, while p/W pres. sore n r.c r e a s e s , Ste t+ a t Tre til openin is displa)ed by the arrown in Fig. removal rate osercomes the decay bcat. Wst removal rate at the maxleum pressore condition is it estimated tiy the steady state 1/C heat remosal l After the Iriitial V/P opening, it ope ra, test results. The D/W conditions at the manimum utt) a l na t cyriltally. 10th in bu ause the p/W prts-Sura decreases almost c ons t ant l y . V/l ope ning Iressure condition are p t 0.032 MFa and hat 0.03 kg/s, e s t in,a t ed from the decay he a t curse. g , g, interal is akat 'O to 30 peutes ( 1, %0 e,e c onds ) and wh til ()(atirg t rit e r val is a short as from figs. 10 and 12, the nit rogen conct ntration 7. a%t , seconds, w h icl; laplies that the transfer (I'N2! p total ) absorted by 1/C is estimated to be da ni t rqe n am mnt to D/h 16 gery small. about 0.02. 1/C heat removal test data in these $3 conditions are already obtained h] . In that p 1 ra = inttrmittent t /li opening can t,t also case, obtained 1/C heat removal power was 00 Us . bi cliarl) ret terd in it.e water level alttals for the further, from the degradation curve in D} , the 2. Ot nittoo n and horinntal sent lines (Itg. 11), degradation coef ficient value in thic condition is R khi n t /l npet s , bott. tre S!C-D/W prenure dif fer-tour,hly estimated as 0.9, the 1/C heat removal s3 enre and the S T l/C pressure dif ference deerenes t y G. c;l Misi, w hle b it recognittd an tt+ dif f er- rate can be toghly calculated to be about 00 W. er from thtse results, it is clear that the 3. $ ential pir u ure spikr t lurther. V J t; tie n i r.f can al t,o be nion t t o r ed t.s s t em respor.se test data in consistent with the in t.) tt e 0. . t emi t r at ure traces shown in Fig. 15. steady state 1/C heat removal tent data. [;l Ni The intermitt nt t e n pe r a t u re redrtion (orresponds to t he ni t twn lun M g.nir4 dowr such Character-nstic signal propagstes to the loser drywell, CONUll'SIONS 4 (1) The 1/C nit tor.en s enting. test conc i tstr s that stea:n and nit rogen are well separated in 1/C bater box and that separated nitrogen la vented to -53 - 5/C. The nitrogen ventirig meetanism adequac) is CUf'f A rme d j y v,,, tm, we.sr L e+ h2 - gnMgt rr ' r "T Na / (2) f rom the nitrogen vent line sute rgenet effect test, about 750 mm subtnergt nee differerce a between the nitrogen vent line and main horizcntal h) [ w ves tmewrer ieve: / \0Bt 1100 SA/ cause more f avorable u nting charar N I"a .... ._. -~~ hee.u N... VW Lr, teristics. l LDce e 0 ( 18 The syst*m r e spont.e test sho.s that 0 ICxXO 20dco accco 4cx1D 'iXD3 GIID nitrogen is started to be vented to S'r throWB I I '" I the nit t' gen s erding line right after the test-Wsn e r , DT pressure inct e ase s slight ly . Aftre ric :4 water lesri in ine titrep: sont 1 ;, . 5' an tre ns rir ta; si m t iw that, as enough riit rcren in D'b is sented to and the dera) heat dec M &s(: s , }/C ht g t r emM al l l I m 1 .'<

  • rate oserecets t t.e decay Laat. The t in t r y is about the bout after tiie test. KV t.ressure

, decreases gradually, in spite of the i n t e r b,i t t e rit s ac u un, t.reau r ope n t r y , and is k at t within tre de s i r.fi linits. face tre abose otsatsations, 11 tan t+

  • totally judrs:d ttat 1/C is a(( lit at ie as fir $.

ACAN% LI MIMIN1h

if.ls itst progrMi was a joitti study be twot t, Jaf arit se elect ric power cortfantes and IT}( Fah rs, Ca r.t r a l l l M t r ic Con t ar
y , Hi t ac hi I t d . arid lostlita (c tl+ r a t ion . 114e participatirg power coropanies were T r e Japar Atorrie l'r,ser Con; 4r y. TohDku llet .

t r ic l owe r Con i ar.y . Inc. The lok)o fltctric lower 3 Cw;nty, I rie . , C hubu 1.lt e t r ic twe r ( unpar ) , Inr.,

T he IN uriku lite t r ic lowe r Coni ar y , Inc. and the churobu ilutric lower ton pa r:y , t rie . ite authors f

wit h to u;.ress tholt api tt elat t ori to the n+n t4 r s ra f the power c on.pa rile s for hellful di sc ue s t or.s . 1Laran at e part ieularly due to Mr. Sur uk i st,d Mr. lehlmura of t i,e Japan Atomic lower C on g.ar y t r,r our t.ou t t he it s t p r og r am - tr tMi *e:1.AT VF L L (oll ug f;t d In t i , m p frer.sure, Mia I r. Sitrtron lartla! prot 6ure, MFa 1 s lone raturr, K hat i nle t h t t att flow rate to 1/C, kg/s i I ElliklVi s

1. 'uganaba, H . , Ka t ch , M . , hwada , k. and Yok3bo-rt, 5., " Heat F eniova l Test of Isolation C ori-dt r,str Applied as a last.lve Dintainment Coollt.g
5) stem." pr v e ed t r.r s of ist JSMI-ASME Int.

Cor f . Oti Nm lear I ng10ecrir:g (! CONE 1), N o v e rn - bo r , 19 91, 10 k y o. . O t or.a r i , J . , Aral K., Olkawa, H. and barasaka, H-, ~t valt ation of lansive Con tis i Nne r:t (ocling

5) S t eni l e r f c tn.ance for Sim[11fted pkk," proc.

e f Ah5 Winte r Mee t t rig, hoven 4be r , 1989, p. 4 71. 3 Slifer, I; . C . , " Loss cf Coolant Accident 4 1m trency C r; t e Cool t r.g Madels for Gtneral Llectric l o l l i t;g hater Reactors, Al pendix C, NIN IDM9, Airal, 1971 c i e= 6 = > l The 1st JSMF;/ASME Joint International Conference on Nuclear Engineering November 4 - 7, 1991 Keio P aza Hotel To (yo, ,; apan Vol.1 Sponsored by: The Japan Society of Mechanical Engineers The American Society of Mechanical Engineers Participation by: Atomic Energy Society of Japan The American Nuclear Society In cooperation with: Japan Atomic Industrial Forum The Federation of Electric Power Companies The Japan Electrical Manufacturers' Association

  • o, b3 OPilMl2 AT10N STUDY ON SBWR ISOL ATION CONDENS[R Hf AT HLMOVAL PERFORMANCE H.Oikawa, F . Mal atd H.!Nuaka Huc] en Er;e t gy Gr oup, Toshita Corprat ion I IC , & fhi'5Witin-cho inmerku. Y N oha:'vi 235, hpisn I horw t F 1- 4$ 7 %- 2M 7 Fa c t ifM } se l f. ) -45 7 % ?174

. .. ., tn sa 14 c ir . 3 o. t r,a t ut2 m a i s. es s ( [( ?pp t 7- d ;! I t J At i t fa ti t ) ^O f is '*s  ; j a

  • 7 c, j , e :p p d L8htt t t t y I' t. r, # ,

t ' il . if- L E P I IC LuF l A e!! f..; r r,a i ' g - .. p ( gg;ygp, a v r,p j' Vt? ) 10 4<  ! 6ft v t. i - t 49 4 }! _'1 P i r g (MFPiVe " f; t 4 j f f. ? Ly Tjo  ;,) ' !' 5 vK, L (- I' d

  • T ^ f I Y2 f: $ i9 { l & T t' i  :{6Iht 58 *,,ata ! e J,v*O? I Wid f t!W T;" f i-  ?. 3 f.?;F a t s ggt i t Lt i i P4it ii $! , !I I # #r ?
  • v it r e i ,t '

4i , 3F 5 6' I~ 1 t- 9 , & bilgPt /W {;&ff f+ ' ^ d ,4 ( tC (se  ; P i f- t Q t -J ! 4 s e t a ( t t T1 V,;

i. 1( J g u t a j ,i '

sn,+ 15 -3 f,4a ? i c: 1 T.S ilf ht di i ! 8IiS ! l' t I.t d I ' i ja Efe ;s t l ' t yag g, a t y p 1 "s ;p,g 7 BPF f fl* eE'.ti Cf FttAP Ab3 wn s 4 p !, A ; ;, iF, f ' e  ; j 0 LF iaI ~. 6< QS9 Vef.t . i s.  ? d! 'J 3 F f f J." ? ! t .irywt i ; '.)W- L n '1 t> ! - cl a f 4 3 m ; ' *t e [ '. 9F_ie P a [ 1.. ' ( f. r ; - G 3 ; t i ._ f he taate t I g( r s

  • d * 'A g- wn, * . L,gt i

t d i t i Q h t ,1, Ut' 4 .g g ff, [ , vy ';7a a F: .'a, 3 iO e'J)  ? *Of i IW B f' 4 V6 T 614, DVt!. "eF e * !einJ. F- p , ! a J l 4' f,8 V 1 C 7 Ye* WC " If(b4tl 7oI ; f ; *JMt *?4 * ! s. 4, n r 3 L , ,f g43, t i. . t je t  ?  ;;q.pf,rq p e a r

  • g; t.
  • af

' + ts e ' f t. r, g, *y. f- 5 P. fa l f ! ! , I

  • 4 h E dJt L'l (Vib' t * !
  • e t- I . [>W ra f < 1 .

r !.! .tf / t v ie ' ; 6 .*' vs. f4 i64i Le e-{ I I .! fi tat! lei U I- i M . f. 3 t L E e l . t. Jif v!.

8. rs" iv > ' y ar.a ; , $r wef* l,4 : W "1 ; e7, }st; . 1, !o'  :.y * /h. AA n
1. *, e- e ! f +- ' '

N - .' ( )t , O f fi i 2 L 'l, I i f:J

  • J r .h j + ]

kA  ! E F -, Ltd' t. " T c a , tdi5  ; r l a ' A ~ r t. * ! o Y/F .s ; i ,{+ip 1., t ; r, g i f.t 4' 3 f4 1 L *. +- t , t 1 y , t

eRw a t ft nn w+4 *IJ! th0 I I n! C l i e"t ( J F AU ! , P

 ! ! .i: Fi-Ige: '. ) c 1 t. rw T. ] P y F t &~ . i 1e ti f .- ~ t i, " s*f d T F 1 w$ ' 3 g, 3 ,gie * ,,g J. } ;' ?k Fi4; ;w fi .4 ! M : GtP70 'f y r r i .f d , p 1; "4 tfg r ,, t . . e 01< rN 1e 9iJn ( (3.,,$ f f kiV 6;, ; ;W [ t g s 5,,, g 4: tt 3 g. i ?3e v6r' ;the [t?vi301 hiyhtI je* r,7

  • l 4 t f j t f.t

& 4.! ( '. .j t' T, !f d l 5 O il d f 7%e [ t O ', f .1 ! ! . .] [ef4 1 f> ;,,j, 1 4 lf2 < 7,. 7: & ' }ai ji 74, a p 21 i 'y l{ 'i I t- " t i J 4 t t* 3 1. y hi [ , M t ; ty af.] J_ }" d_ t t. 7 tdt + 2 g t

4 [f( ;[* , f,g ] j j y '$( p [ ] ,i *I l 6F 5 I I'h F 4 ~1

' 6f \M'

  • gil D- t ? W  ; !' ($ )

v 4.  ?!.e feLet 4 .

  • A f # f i ri e
  • 1 G ; I t- 0 . !. 7 , Le Cl'f'
t. f f ( " ' f Fty j t F I ;f fi IP t iDV($1 L Jnt 0 t ' 4. t I ts!.F f e !

E a '. ( f- '50 f.03! j'u! AF ri ( f " 'litirati , ;, t e I tr i . a t ' the r. ' r. n n t s t ; ( aas verf . tie ;tu . FWF s 'i Art ' ,e) i . ~ .atei sta c ;, j t ;,p ,fb 3+ up,rj 4 )p3e 9 31 ('t Y 1 ! } A E fl i V t- pJ,"+tgg;;e a

  • 4.1.. / t 1 dE 1:1 n '! ' [ ' t !a t tu. ) t y:,t a 3 ~ ra,ye;8 - 1._ '; F, A lf lf; f(' " Ji "3 PiL' M e f t i re f 4" I: + 1' t. ! ( ! v e es c g iffp,t3y, e, inn t!. :a t er r Je n b ut u m g, ,1 gny,p ;37, 3 g y p g p,y

;7g ge)p;y37 7g ' P f. I .hCt a; p y - 37; g 7 ,, i

  • fC ,;*1 4

~.  ;(s *M r a i t t a ,7- 1 r is s ;t e ard ' ;m at ' ' 5 ; rc e 1. o- It-e .A r. e a., n1 th ra ina "+ 2 ta;" * wt* 17 11;* t eet facialty in,31ficat 4- , s  : r: a g;3 7 7 3., p ; , t,y4v; , , , rWW d e s i r. g4: .,3 g g gp, ;f hi ~ ' '+ L , my ifaei L Wr Pt i( Ti P

  • j1:

?f ;E r i t. f. P 5 '^ L.16 1 t- 8 ' d; 'i t t f. 6 OfA i t !V li V A'Miye1P ( h l' MM f1F 4f( # fg1 + yipw * , L,- ;s t g a r, 1Lt j;1i;w^ ' [. . , n t p , # f I f.0 Th *' lI "43J i J %' u; f:1

  • M l t L;; t. J :.v e r 9 ta h;t t. _ , n)

.As H 9 '. J n + v r m ;t au

  • rir , ,

v e r; t i e r + .ri t ; ta.ver L 111 2 o t e, "s i 'a i fs, treve f *. a .r .,, ;, f j L 131 !a 9 kP; :t? A T ,' 7- .t t 3,. ? L) 4 li s 't Ve! i ll.c Y e Vr ja 'Ap lif it

p. ' n .ff, q t 1 I,1 J !it ! VeLt i ., tt* 6

'E- # ( _ p417 ; t' I -' IAM l A' ' " EIr tdt [ o ", i .i t , { T. t V0FS41 El\ '

  • hff(7 E the 7;r " . n .) + L p a t , ( 33i
  • 1  : l { tee v I t>

,'E ;ferne o- - -  :, p +. ; , t ; , n ' f e *! it 'It I s f 41 ' F. ~ as WO 15 f! d Tea"

  • O f0 w r. +  ?

t ELI. f 71.O MI(3I '  ; t. j.0 4( e ,- V Jg J.e> } f - ] r j L g * - 7) 9 g (. '. t D F,i ^A , f,; - ; 18 i * ? t Py! p: f' , 'E 3 ' .? anj '+ . Jy ALyq';A: s,~*~- pc y 'M - w; s g.c r L' a:, ' 4 w i- ( ; ' .u  ! 57 *- bf\ ty t 9v i! ( . eyP:r' )F S IJ fu,hy t, . M , h;;;; _;, f w 1;; t'i , ,a;,  ;, p 3  : g r W ! 4. F r ia #' i e e m;y,, e !r,+ t*4 cA, it ! e- P A g, - L e ,; g c ,, 1^1% a g, f; 'eg  ;,, ,. 's Itd- '4.n ~ t t 35 y , + . W 'I $. 1, , 4 1*- J t ! sa , '4 iit j A I E 3 :* ICX d I 'I e d' CI [ gp ;,3n ,; t ., *^T ' I'+ 8L [ I OI OI 6 It' E g} 4 F( } } g( t gyp } ' g j .ra %4I. A <.g v-  %: < u vu in 12: . tu  ; , g .- g , iV' y .f , ,' ' t ,

e 4: wS'O! p y y ? , ,. n 4. T g

j,_ I 4 *Id~$t6! . I. 6, 'M +l e ge _ py E 'a Y* P i - N3 - ~ k $ _f M $ 1 I- g ' 4 , at ! - + /k, (1! Ilf.* .Ihd' g k 6( ,{! ( fjf Il 1. Nlb ' r s ..,, o .+.a * , t1+2 /w. J > . , . - - i 1 ei t  ? - ii #s ! . o r 1"t t i j $ i l , ,+4 y sr.in

f. , 3:- '4 F .) E a -.s t-3 , f , [ g f f.I /* . , t 7 , t' i r .,P c '
  • 4 i

V

g. . ,

, . , . v 1 e6 , 1 p # 4 , g y i d- 38 a 1 l e E4 y ) $1 3 4 ~~ i a , f,i .r . tra 1 +

  • t .a ,

[v : f a ....

  • 6 S

-' j t jti I .I * / ,/ * .p +7 1< f (,,.. , < = < ' 4 9 1i 9 'I d .I 4 ,) l 6 e 'p3 , g 6 4 f # I k i ' f- /i 1 -. 's ! , , .  ;.- a. , , 7,ff, g, e ~al -i s * *

  • 9 5 I

, ,, g i 4 f ' ]4 a 4 5 h'h I r i d - i e 4 ,It i e' A' * ... 'E 1./.. /...A . e A i '{ + 4 84* a *- ' 6 S ' F t , e } }, , , 3y4* 9 ' I t t , , , .d , J e t  ; . ;. , ,, 3 , , *' ' '

  • I~ 'I* ,

' .l.  ; ,,tt. ,, ,3, ;o, 4 V 8 - * ' I " ' 'I esi i ..r t ci 1. .  : i jr ,f f n !Jfh *= '* '

  • l'i fr f- < p; ,, ; ; , , ,:.,, cy,

* ' ' ' ~5 .62 I CII ~; .irr v+' . di * ' t;T s t '. *( ' '

  • l ', _; a s e, , , s es+ > +

l ' *

  • I t' f -

* !

  • d , , i'. ,r. t , e,. i st;a, t; <

I, jgg 9 ,f g; 9 * ' g e9 g g b ' -. lg d g-. 3 . { [ t gj ( 6d, [

i. . t .1 .1 *i,ina b ir1 are

?I f > ' l i ', It ]. f f 3 I a I-$ 1 s [t i i 1 l \ t i 1 in e J . L # } ( 8 I ';h, '@ $' e- f*, t 8  ! y 4 g y 3s j a5. E so i _,: Y f . * ',i te j < ,, . { a a ,1. et . s. --, - - . - ,.-._-__ ~ . , 31 , , , 7 /m. s., ' f4 we d ' e' 3r p..d' ,e ' I a t,g f e- - . ~ . , l . , , f c'p; ._f;! >o.i f_-s

r. . . ,m .

i 1 -...t__0,0 s -.

r. .

4 a_ . .x , m , , , o , . . .,-  % g .[ j . 4 r % 3 ; ut 4 4 4W L4 iV3i MIon . He~. Wa N S ?(. AM , q {t g - I1 4 4 r1e j' I . 1 $i9F> * ' af u II l l . m ec ' we ny > f. e 4 a.! J &'. u $:rE ==;= .,r.9 - , ,. ,r, , , . , . i * . .

  • I ! t sr py h.. i c p[ ?pN

-].- t a-m g. +,. .%  ! c y- est > g , , , , , .,,, \ ,.7,,;, * , b. " ' b ' ' ** ' ' '3 o i ., , ny .- 3, ,? ,

  • i t + 1:.se

- .sw e.1 4 s i 1,.r, i, ::#ct v, p, g 4 e F :1. , 2 " elm D k. N N J l W ,(9 7 (;$ 4{ g l 4!'%a 4

n. ..i ~ > .

v ue , , a s n, , >- n i (2. I3 9 Ek.'bb t - # , b g 't.Nd .'. 4dI At I * *Ie }I a v'b k i I ' E fI D E- 2h !pli yg it .t N' .. , , , , sis l1 4 [J q  % . , . t1. i lh + , + r 'i-l, r. q - pp i i i , .n !l i $, i u v~ i \  ? ,, , . s. ~ ' * -V t..' l e, t. 4 r ,,, f ' I l L J Ta v $I i7 4 _l ) b . . b f

  • W . d! +.' d e -j [Nll' (f Vf b /t *. V S Y O D\ '

e , os I i i 274 l Fwsw=4m.a.dmeme.e.m .24.,m . --_- - h.shE-Mm dka-__.4- A-- A Jem A_A-eWAM-eEi-.-54,-e.--- -.meM.4.-h-- a.usk . p* n ,, . ~* 7-, 6 k ..g }  !. r I o$y A seg i ~ j ' ~ - 5;Et - .,a , v v - n w, 81) b 6 9tf 'I m, - 4 = s. . / r>  % {#- y Ai'TY k 1 . --- tte.e 6 sm ) e_ ;;(t ~ 1 p.ti 4 h * -*==' . .e . W g., ..  ; t o., 5 vs *  ! 1((I - hm *W 3 : ** a 7 L *-

  • 4 m A g

1 W eg g. i

  • Oh
  • 4 h hbf I m ***
  • g# 'A
  • g4 9.e i-- gl o,,

{*++* .. u, n,. t. - - , p i.R ( l t, i e j; 1 t e.. ? g , tel / w ggl hg 3 f h(f1 tef m pf tWe if al4'OM W.e , / ' l h4 i t e.e t ' F* * $ g l,g4 j t 1 k- ; t y a f . s. . s i 6 t- F- eE "ei' im n ' "

c. ru t. . e - vtr

#* rut d Irf.It-J .64.4 7 L . -** ] mj .&-n.. + ;. .~ .J.o.,. L * .N l.is.. _&aM.L& G ,1 6 r was 1 Ttr i e * 'J t ! .1 l '. L 4 is t 'Iutt 33 i ', 3t!ve IK12 IN AC 04rlabialloli '. I i J . % 1 l / 34 e w (r , i t =3 p e 1 t t . *' ni o f"I t e t ;" a t a s i t: a sva4 i a l i t- 4 ' h-  ! L d' I!3'EI#I k ! #5 "$ ' I"*  ! *ht ' A d 3 it ' - itF. s k. L . #~-  !* 4 &if4 /p t4 ,  !} t h it 'W i t . ( J s t' d '" P .14!If )" h , lt i : ( f M ... t O 'fa"v1 iV !!w tV, F . 't s i ta ' 1 ? J ' <

  • r a"

' & .' e .

  • 1e ei

. 11L .t r + 1 1- + t it a;e ova 23tf '?& v t !

  • I f cJ ~!.F  ! y t :

p - C ; i a i e- ) a-- ac: e P { f- t ' F f f t at ; *4it Iea r to - e ;r a e ; ? J +4 ' t' 1 f.4 l{ {O-6'  ? t 4! f4 *y f f f h'; 4 3+. +r <- ' e l '.: t.F; 4 Of s k[, je f;r jj ,+3 . f ~i. ! ' FI*J" #1D f.' i3 h.'I.i ~ c q; t- : *!d* li' ' ' ' Li '.tp 1s + Y+ ; i f L ( l/ +74 ut a ; ' ?r r t/c [( "S { ; $ _' res* r mit e ~ 4 .! e: .te

  • w tir r!< e a r ti f e r
  • i.r e:

L.- r,cr w * <st 1. $ .e i t. i t- t , .J . ,L Se l e i; ? .; r 1. - .E { 1 'rs e fa- , w h i t- b 9 3 ru l a n g % l4 F

  • j ) , i' h I,[ " hd N 7
  • ff* 7&9j tM, I rt i . >

4 ]4 1 (-l 4 } ',

  • N"? 4

,e ?f* +- } }!4F6 ele 'r 2 It ) i J . t +- 4 F'. 6 f I if 3 'It i.I ht a t 4 . ') 7 ( ^ & i^ ' f i II i t!A09. T4F, #. WI i4 e ? '.. s h t i f'  %; , +!.4 4 7 s '. ) t. i f ' 6,1-i  :. ; .4 e 1+

s. IC ?- *If t.g.3. hr ors ,f .4 .

'0 .. O ' 4 +b t"i "*'

  • I F F I
  • I *" f ' '8 I L

j $-- e NO 4h LY a *IA * 'd 4 ; L e *.I. e A 4 k 414 d. t l' ' # 'N d [, f.( [/ j7kM3Wi b " NhiSat;* PhE I I 1 *' 1/ F* 8f 'f fI t, n ts ' ett tienito3 i t. m L ALi w u w,e u .m u m " m sa r i c s. : e .i v*. # n 1 ! 7 O-m k . "M i , u . i - n. m rm u m t u w- ..}; { ! O F F -a T C f1M -~V( 3 '. 1P s- ' " F U' I*1 jg' ** JWR j i 4 F 'ti,74 %f a I.1 t '" <* 'I f * * 'J ICI "Pl lite *. tLe D'W t i; I "# I N  ? I e er vW IO I*t Y -6. Id ' . Ti t e h' et II"IO"If ' letr f* E f tM " +a la

  • i i t 46 J T t i i f' t I. + 41 i t'F NA.

4:*ie + 1 ( 1166tisfi bid Fr 14 al'eI t h re f 7 0.:s t' . 7 f'. t l b' 3*~i* * 'I II ' i I EIUI # if' i t t s' FAEF hh3 0 M( b l 88 si e .e r 6'iGr a Fw 1F n !,

  • t 6- s e ', f . 7 14t-  ?

tranrfts t u te .wr m - s J >_ t 2 I i si v. [ a n : w- m t in . iv tt+ int lo. c r et eam Wsfh .t 6.gN1f4 r a Lt t bt C .) t'! w % 1 i < ,2 a 8 N i

  • t I t. W'st n t f.t' bi%

I $IC# UIl U *

  • A' 8
  • e 4 C t5 f m r*
  • eh ) 1 i' f f s,.1 P , -n:re '

I II*F9 10 Si j i 1 j +p ti e'IEbbUE .at 't ri 4 ' I C U V' , mee c 4 ee. m a. u i t r e.u au I!C#FdIC UA 3 'bW " "i I I "I E I ' M* JO' e t ht 6d 40 ( f t"  !# I * * *t4- e s t r.

  • S l e-? a . J + f t , ar t ? .t' V O T' !

I50'I A d' $U

  • CI
  • b5 '

2' I I '

  • E
  • t, i e 3 4 f 2 e' A L .3 IbI bI e .J - (< ! ly,
  • f i- .

}; / ',' t .AI t Mii l A!' iF l ' i4IE' # f  ? t( /W a f. .] t h e. YS' IUI -' I I "" I I3 w ." !eae, dr i ) ,i ! b II I I bI3 I ' O*

  • e* [. "4- ;e 1 _' f. ! ' . fi t 3  !, $ hi } f t' i% d u {& II C IICEful* I S' I" I1 #

hItIf  ! e ?M t I kNI ' ' *^ .W 6:. ? S t* ' * 'At * ' ~ I't ir

  • 1 t. ' eit> ? . ' f .e *? ' * *I#0^

.e ! . t t .1 # IIt *t !.T I I ht I f. ~ 63I%3A l' 41 e i .,l T 4 1U. 'I* h t' 8 ' 10 ? * ! ( ! y'  ; ;, p p 3: r *'lta9FF *E 8* t r. ' s y*, dI E I 2* I tJ At t t i j $'a a g 3p; *( 1 4, e f r i u t e a t 6 e- 4s e.de= -

  • I
  • 3 , ice . 5 .he as 'b.eb .hb. I's 4**

'4 df'e !4 EN a IB'b' 'b 'i k! t' d f- -2.w * '  ? iT iL L' l E* p .ws '!+ [1 & 9 F if e ~18 f . f; 1 1 l e?

  • It'st_ r t< _

8 . ;aie  ! . t- .s ; e

  • t-6 2 {

E' 3 i ju O3i'Y4 4  % Af y( ' # .} t' ? . N .J & 4f' A ,L$Qyb 14- t' It [ . #i i hJ' 6 't Wd* t 6 oIW 8 ? 2 t' " ^^ * ' * ' ?Ji I.P s A rg 8f A f i t' 4t ; t l  !* V f" r 4 i .1

  • Il .

(,. I ) I t- <n f ! & l  : ' **i ' , fr s 47 ,,s# a #k , $ [ 9 a e' k k h id *f' Nk. b !, j ShkI I '4 3Y ' 2' ' .!

  • 1,4 . e i f'. 7 ..e

*T4* a,  ; (s  : d i' e. i - 275 - a a f ----_._____a_--*_ .mmes-m-----sum - - . - ' 1 e O w j +4 _le ut2 1 , es e e vt , ' e . ;; e I' tf 4 ',. [ t r  : r. * *s t 11!,*, ; vs n.i. t 1 41 i .- I f a- - , t. . - . - in. ' [ ' ' /e iI J. Wr . ff ' O 3 t. m Jet a l , s __-a t,  ; r+iv.te 4 .!!c+i . t+'w, h i 'f! i V;y /) I * ^) I I Cil A l'(* i 4 . Si # l I'l6-pe^ i  !. tt. ' + -s e . . ja, .- { i e g,9* t ' )i' * $ %I t a; h! '!8 . 4 t E & j$ 0 m 7' i + * *. e.;;r4 ;o. . 4=, .t . 4? , j s i * * -tn+tus t ti ' t

t. , 9
ii, , ., r w.r o .c 23i- un
  • v r a gg.

i  ; terr.to r .t [ i t f- r i 4 e' .t -  ! 4 ){i *{ s 9 i t [ 58 al: ': 1 ,,e q 4 S- AN Y%* f h* 4 4 ) ' ] ~ s ** e , 3 '1' -[t , <v,

  • i i .-,

I ~f jf J4> { -i 4 ] ta !'5', . }- 9 * ?19 a: Pf4  !- c1E 1It1 ( i4 .J u 4

  • o; 2v, vi:' fr r a -o . , 2, 6...-... . . . - - - - - . -

.ff 4 l4 6 . ', # 4 s qi 4 g'  %* i a ) J

  • e' r' ad ' . ' - mi e? 34 J't 9*{* * +

,t si e a e ;t t ee e sif + ,e r.' 4 tJ6- ar6 *> f gi 4 <( - {, qtg le rtn gr et,(ut e trigh t,1(+f i t [jdiO 18'f GO) t 28. 'Ti ) # a i4' & '+ t I.< 4 'D*' i ?t [t y ) ., f 1 9 ., [ [ * * *m n' 3 i it f.F a t . :ar ve t' i ^ i

i. - t n .ni a. o ,1. t

, - i, ^ ,~4 n . . 1 ..e., ,e si. c . ^ #p ' #

  • I4' i r'avU dL I 13'a i .(_\ti a a  ! [

< ,. - .: ~ + ~ u 1 51 , s W5 Y t 'l, t- J'd -4? r i jv .J N ' LI i 6 t ,,. it vr '4- f. I or .6 o IO <f . 1,1 ?se eter ft >  ;;<, :s * * 'y . 11. t4 ;i.7ea e, t ' itIi} %8 4 _2 6' f . '/ . 1g* g) 4( ) .t g' a.), ff Y  ? al 4 1< e,I ae o- 1$ l{!i _ F.ur. .i 1 0 me e t' 9 ' 3 i + e L! e_t- r -a s .s f - e. 2 I i . 4 P ' 6 -i it'.i 7' i ' , " + gp { 6t.' s I w2' *- . t' e t 4 ie ! e h t. e 1t5 .) 2 i j I ~ F 14 h( I h t' ta '.f Ie i f 1 I( ^~ * " * ~ , Ii ;. r ..t v ;ue e *'s (, , t4= 4 ab > =4 4== I b 4Is b 4 en.*. e6 e e ee4 F g 4.t,i L ug Ir'm Fessure t'itofaent (tabe ten;rh 18 m) *' 'l ' *** l' " 'a'+ + !'

  • s w i  ! + ma , ' e t , r 1.- . . r .- , ,1 g7 t-  ;+-'.. e 4! & t. ,+ 6

- - ~ . - - - - - - - . y F-k ' b . -

p. - l\ j y _

i 9  : f.- i'i rr.  :. u* e. wi i /m '.4 , -e 3 Fr 4 -- . - i. I6; I a. E 9 /d v 1 1 e t 4 1t" yo. , , a .. 4u - ,o un < i zc a i:i i .o .i w { , b 'a! a0! 4 g - e , b f i 4 A .$ t I s 4 4 } 4 I ~ o,t 1 i W li aw il 9-- 4h . . ' . :4 ' T  !.i . 3 } t gf. k i" k8 i \, e i , , . .< . t , . a .. r c i 'r 6s 1: ' . s , e- r 2 } t , ,

t. e.7c4 m m . , , . , , , ,-
e. s, .  ; m . , . . . , , , , , . . . i i. ..

 ; l \ t * + ' i r , ,t I ,W II . a. x .,i , elf 1 N >{ g i .,4 ' + y , t " , , p 1 9 i 2 e~ i s. ' 1. l  !  ! e 4 ] w. v - (; a 1 e a m $. = 4 t- , F95 An e ron-condenMabiJ gits conceritraten (1.strtiuton + w ( T + 3'DZ s.1 - l 9 6-4 1 i s_- .- - _ _ - - - __ - . s __-e..- am.-Ahe-ihhehA4,he-Wm.A A Aw- 'u-ii.,.gawA.Ah_aa-ae.--+->-__. T..& 24h.#smmN6.,_ 4e..w.ae--.4~ 4a.,e NM.w-D..- Aa.Nmas se.a-,4.-em. ,how.m.,_,s. a.a.4 w wn- - m ~.*-~ ~ - n3- w .-,- 4 0 0 -~ {Q .,

  • qy _

_..~._a_.._..__ __9 ~~ 'dt IUP l i F O[ MAlbl t!!iPFl.L'_,h'hl - 'i m{ p . j t 1( ata j i b l N1 Vtfl , if ' ~~ f J, yltd t , u f I h j . H-L , ,, 9# 1

  • N l h '-

'f[ *c a atto. is'f. . _ . _ _ _ i \- -.2 , 1 M L, 6 .- u 7,A I i___._ _ D di4

  • i g;- g.g ; Pgf f a g _.

r $p, T H/ l. (s) tiV1 (t) lin C 4 fia N D a n, 1 D' , ' - - - - I r" If I r. _.______.------ 'Y ( 'I E PI'{ M,illdl {d )I'I hl $. '> U./I i [ h - * ( Cl (c 0 f f. J,4 i i 1 aio co i e

  • L ._

-J g . If f i L fi il N1 ._._..J . .,_ j w . l - I u 1 (1 l Ih * [,I -. . _ r N k hw sx 1 -- - s! 4 v[ fat l7i* i x i , m

  • ll . _ . _ . _ '_ _ _ _ . _

4 :, t t f >i w SNIU db l DJl. ( *., ) Hi 7DCU llM( (s) (ii O 4 fit t h 2I h h fli 1 tf ,- - , - - - - - - , q i: , 1m e l l i - , m <. m o t sum [ t s u o : 4 l a ro nu - lUD{ 90liCV ..._ ! l m-__., .-_ __ _ 1;I l si ta t .. ^{ , { .__ ? ,_ _ _ ' . - . _ _ . . _ _ . _ . _ _ . _ c, ll?4 ,.; i g N. 'b tw i -'.-.~_ _ * \ k - l I .+. . v.- I sis; t.i: ,a - ta W  ; a su o> 7:oc sm n. ove m t u . net o. 3 1 i ) e 1.t r o Fig 7 Non ccMensaDie gas concenua90n vananon in IC tutie hg 6 Waw level Dansient inude venting knes l 4 1 z ._ 9 { - . 1 I I 1 iI. ., e !l / e I e ,t j [ t $ 1( Is --- , j om S/L {CQ iy ,. . I j i L_ ]

t. r i
  • 1 ?f. t -

- m M .q * '" l l N x i N N / 2 v( t w. I; 2 9tt - N x N'h 4 l I 7 c.. ~ , ".a l -

&( ..-

,,I i 2 e 1. W ( '-s. ;et t - 'N- N N N.- s . N~ ~~~ e ' 7 t '~ - , 27!5 U UJ 'A o !WO 40);3 55000 56D00 37C00 590:0  !,905 7"

Ist (S) ItML b)

(P i/tt t < >rn t rJ t o ne iinnuur D/W K) V/O conr'ec ted to tre upper D/W 10" if . , - ~, i l ti w(UPPtH) -- D e W ( UP Pt k ) i t i 1 D ' W (M d >L4 l ) 1 D/4(M8L'%f)l 1 1--- - K TUM INLt f j - ---- TC TUHf -M--_4 rT{ 1/ L - --- y )05 e.s' n,.e u - a ~> , iJ / O e 10+ --, ,, w i s a-g , E  % %m _, , .. . . . p Pd%~ I  ?  %  %-__ s 13/ t 0,- j so. 1 -. 10-i 1 l b., N . 17 .' # 55000 570JU 43]u0 55300 56000 51000 58300 590LO 4;> j T.t*L (s) TIME (s) , 1 F V / H canontel to tre annul ar D/W (d) V/f3 c onnected to tre upper D/W l 1 Fig 8 The ettoct of V/8 location on the pressure transient < I t.m , wy a .. 1, - w ea a t hg. cf a :ne eutow mons anm , uta m ' i" dE d "e i ~' "eP9

  • i n u t' 8 ? deCred80. Vent line frCVides *1gher Vf t i r.g d f i-i tn.?

+ waver * - .- f

  • r y *pr V,3 y',evat Dn HOWeVer, the S M erJenTe Shc 1,1 be deer en.'j.  ;*

e 4 ne , ,

w. n 'n ~;snjansstic to frevent the an' "'iensed e' eam -J18:narge l J13 rns 'm
  • C/W, TJiOk1y ;i / 2 HJ #ej  ;
  • _ tt i e d P o [ ly *, 3 *. l} The F2V +3>

*be ' ens {t{ve T.se a t tePvval jd g ! d dla t f 3.303 l d r )w s y t i , r e s a t. t i z A t and by a s*'r* cirru,*a

  • nan. ^n k salle ass

.iek r e S ti "i " ".e 3 e e 3 -., :. O niiTd' hdL ine Ieturn frCF t! P S/C the 0

  • r % gh he ;;*

d e r. 9 '. iUt ht _a

  • I e ' i 3~.'JI7 iAL '

-isHe* LY CN* O30 b9 IIO * ' ~ su a m m n far

  • te a nn u a r tsw uwer enan *te
  • u - o. *t ,- t re .eg e r ; /d, ,:a n te Steam h; Gly lit". and officiene 31r c e .5 j

prev r

  • Con WM are ' W M F -- h '- 4CCJlar te'.1 Le* ween V/B and sac ir R 'hr +

[ ,w ..e r nm '- r ear Nn ly i ne, and %e f mco is t .a teween 'm 4n4 9 m. .u . - , , . , , e.. t- A RMYE 4, 7; C i' V !ep!OSSJ: 74tl~n V31Ve /W Eryweli m o.h, .5 o . ~ r ti,..: -. ,e h43., E;;'s EPergenry a re C J i i ng FY. M 'N" we _so . k.J a a s,.1 e, d. +u .6 y, ._ a- ,..P .i e ;. ,. r .- 6,3 $ @ e. S .A 6 g , ,f,. T.' CS CrdVity DrlVen C2rf - A in2J 5YSIF" ' -$ 11 d t* ' f"' C m-M"'l ta r I ar.ilyns w i r.; %A; rrh, .c e a a ' :ws. ~ 'SA 83 ## Le IP n e r. - r :s r.s f e r * ** I H. 4- ran te - ~ e * '

  • FC' E a 8 31" d UN ' #"
  • e: d od 4 *Lo rijtnx. *n2t* ~ I[

, W , - . t ,....f.d., 9... . W m_.. .1.. .e . ]. y t rev trima:v :nt airrere wsm W *** " ** '* ""** c r.t a s c..r e p r u s A .. sf +- 3 :- .A r a. :e  %;d ' - 3 3- - -i " 3 ,1 *  ;;er b b"IIE*38 .d,,~ y . e -1 , a . es .. . > t , ,..d, , i: .>sgiretui:n ~.3"rer " t, [ "g T[{ M'f b[ 53] $ y[ l - - _ _ . -- _ _ . _ _ _ _ _ _ _ _ _ _ _ _ . . - ______-m- ___ e e

  • 04 e

m 3

7. y e } h E 'll

* ' .i r l '. 6 l. i .i'. m, ,R, aji p.;L ity l <&y .s f e i y , [ + r f .r me r,r e 41.1 ' - ' Fr , " . ' F ' ,34,  ! f ; , 4 .~ 4 , + . 3 3 4 r; a t t , " ,,' e,+ val i fc 6 t :I a a* i 1- A; { a "1 -1 A d f-ins 1V9 , -**1-**< . r , e.+,a + t s. p 7 ey5 na j 3t i' s t

  • A , W i- f  ?;u ' L r,1,

+ 5 <y {, Y-E -5 . " , 8 eT t= t.' , -". S ( f' 3 s e3 $* # Eig 5 {' 3 {$ $ d k')h9iYd - a i e, ..a , , - ., i. Wt .a V e- r . N. *' sA' rF; M -3 '; ; 4 ) , 2m '_ u t e '. H ; rm HAl Ei! , < M ,a 'J).Ei'*k 41); .S? .i t e 1. : 1' , tes , Aa a gs t  ; t o. +- 40000 - 1'15

  • i di *Eoa .-i'- i- J f i J's t '

' 1 d *? ' . ! n-> . yr sf L . ,p . w it re ea ; t-: c , ir - f  ? .1 I T

  • s' f G.1 f  ;,3 L r f et er 'e e iFe F 13 -'e f J ]

'!s t 51 ~f ATl' Frt t ay, i), u e s e i .~ r. ).3 i+t4, > 4h- b( Na e a b M6 y b k Yb '& 'i:1 v.$ 1 si J t 1 : 4 ". ."; e- E i s+ 9 e h ^ e t 's r . 1. 4 41 i < s  ;.1 i itt!a:,4j P e s t ts t ance , " Int fi e.t t Mi S ? ! d ?' $ f E r . 10, r . i x. 4 t .+ e 7 ' 40000 yas y. 4Jh tc 19'.1 Jas upper e ct e.1 t of ce is l l l I 1 1 ~ i.* The 1st JSME/ASME Joint International Conference on Nuclear Engineering November 4 - 7, 1991 Keio Plaza Hotel Tokyo, ; apan Vol.1 Sponsored by: The Japan Society of Alechanical Engineers The American Society of llechanical Engineers Participation by: Atomic Energy Society of Japan The American Nuclear Society In cooperation with: Japan Atomic Industrial Forum The Federation of Electric Power Companies The Japan Electrical Alanufacturers' Association b4 ANALYTICAL STUDY ON DRYWELL COOLER HEAT REMOVAL PERf 0RM ANCE AS A PASSIVE CONT AINMENT COOLING SYSTEM

t. o.; ca e 1, . w n a -

' tat. , n yr i era ; at"fr* I), lH Fati F e in d 5 4 r 1 - E W , > 8 m A f- M K 1, 3 y 3- 2 AE 1 3- - -4; .* r. P a r. + ; ri6e:El-44-294 .F!' *  ; ftg; eer; - +tr, T T. 9 II' A r.rF rata ABSTPACT T4" lea 4 . e ! Je '* 1 T 4 - .r i r.1 e r. _ - , 3 74 i ., -, fs te n ter s et e !is . .Lt. . t r; -f , , a is;  ; ...: ..; [ ; y 7.r. d the ?+at v: w .- L a r.g e t .. t 4 - , a .. - F.a t 4cally % .-le n e . t l e gat ver.t 2 - . r. r r 'a + 1;*r. +* ,.r3t .i , + at ,  ; :r- +a:e re4See t  % rree y. . f .. ' i f e r- ;3 ;) a ,, .$ n er r e: 1.;te ear a - e=;rts the e a r- - 7.- - w it s i 7 , : ,i -o ' av re 3: a ; yt i ra l 9 ay - r 2c re vnr tre :: r y- ; * +4 .9-ry.* ;e1 *ea' r** va; 3+ f r s n a r. ; < L a t. r e l e .a s e

  • t r. r '. -; :. a r+  ; .;e r ies ' e 1 :'

e- ,a : . 'f.! tt  ! *: f E"'1FAtt I I d' : d I 'Dr { r 3 5 u ! . Z d t . a i V t- ? iI 't t.* t a n * ! .t- ' *** fdr EfB ** 3; i- ) ^ e P4" I 'ted" S u !.p } y lif e S Jj }; t F t e d *= 4 f.-- - , *- e ,r. t-s r- ge 8 - { re3 7,

  • g ' + * , '}, r g t!c .; g3 P . } y,
  • y ;e
  • f. 4, ,d* F A P. !,. t e, e_

 % 3 7 -)

  • I 53 h

a '* 1 I .: i JA L0 *

  • F s- 13r; w .J t ,

 ; 't ' t Lt -j e; 4 yM NI 3 )t4 U E %).' b4 -3 r 'j' 's 6' d I. '3 %I rIf 5 dfi IO .i I f I [2 I( 1"* 3 N: e a( , ,* 9 s " + rf- .-)e I'P. Q&5 L t* s I L t' I C - 4

  • l 1 * ' t- d 51. t , !4a e ., - 1 t an v  ;; 4 5 sx r. 41. u r ?uree, is t.1 ' -

s a +- w3*. .- t

  • 1*
  • i- + Jb 1** A dE l'I A O I ? I I Y f^ &I I i - " ' h *J I' f '*

~ ' '

7.. s
a. r t T r J. .s ') ! tLe . *?+~ , !y .

# 'L+ .J 9 11 & 11 C' D e h "(

  • 8 'l A $ ', t- t

. T *! ;M } .. ! Q .i T.1 f. - a v 4 + 1 INTRODUCTION C o.  ! mje r t al e s itx e 1at i va + a74 i 1 +** j 3 i y *fI 'I*- 1I h * *%5 P lt' ' 5 3 I & # s

  • E 1I e t *
  • 6- J r - .,_ * *

, ( , 4 t> ' J '~ " ,, ONY*ILL 1/C t $1 ATION Fv et (!ner S hy n - ti . t] J *. ~

  • g ._

oer t *. Ita - a='a '7M..% 3 ., i A>, a . . m .. . e.va.tJ L stt au pA UNEl . ^ ~ r , e - r <.". iS' s+ GDc3 c .s a )a_ P e T. ' Mw AD - , , c , y. r , - pf wL- "c acw -:*r; F am pq lg,>j +q u Nt -, g .r:  : e e r.- 4 symtsw, 9,cs cc,mm_t - i- , i e ' r - j . as Vmt uNr . . ~ ~ , . c,-AMeta t . . , , e. i sumtsso w[ f. f bg:,.uc i 1 2 1 3_]3 .tVENr m e . ygg . i >; - . 6 1 F < .s .tr d 3 (n i 1 '! . ' m*t . i k ,  ? Ir ' 281 s 4 =. . . e . . I g 8 f / 43g 6 3 m& @dS -4 4M D 8.44..&O "4 e f I / A q g ' Wa- fit M E l' ' < ..r( ' 't =  :( re '* -- P 1 i y' t ' T. e t' . e a 4 i .a  ! ' ' t + rpe ft - + 2 e e-  ; r. ts t?* rea r + , .re .y  ? < eli ' i i i" 'I ).. A y y 8 76-.1 T t >3 *:l ( ). 1 6 ~ A L! AF /APf T{ % .' I% l 4 r, f -'13; 4+. ' m +T i i  ! 8 "l . t:

  • s e

) w! 6 a*5 " 1 t i +-[' , t- , i4 ta 'I : 'f*  ? 9 , F9 4 1" y $ A } _ hjf f 4 e a f 4 ' R s  ? m . .' {n ra , , 3 :- , - 2

  • e- , a 1 i +

lf " , l. + 1 9 4 d e $11  ? %' I P i 1- 1 r n . I g. a g n + t 4 Ir g , n . . 3 i ). ,

  • 5
  • t . -. ,
  • 2 . p- . c st . ". sy~ t , s ' t. + se r + a tt 1 x

- P; e . It 4 4 { *' s.Fu we t s es p., 'is 1-  ;. p _, /. . . ~., . . . - - . , _ e ~ **~~%., *J f* I de , ~ , 3 7 III" U.[u/ , 6, or m ,mt. -r .r- i. , - , [j a (:-- g t cw ,

v. , , . , . . .. ,

_.-m  % ~~ g. _ ,

4. . m

's ?VV un ~ , , t ,, 3 , ... y a e_ . l - -- n#< mso hp . - ,  ! l 1 M ' .a l l ., p X  ? u + , t - J. 1  ! ._. -. --T. , - sg s tr gi + , , ~ DM ---  ! - . _.] j - l j s meu < L..w>""l p .g e r-j t ., ,./ # '" j l I . . I E , , . r., , Eg he ' - . g .d n I 6 a , _ M 4 f O y i , , .a 6 \ , 4 -~4 ,r__~ , , ^ Y ,f , s a l -- -'-/ / q 'N i l 'In s, / ,, , , 4 l , i [J * - 7 ,/ , i- , n , . l  !;

4. %d 7.n r" .3, m

LU . lI ..g p. h . * ' ' , . 3, ._JR-- - i i li i e I ji 3  % I .s r *< , r 4 i , .. , d J 4 j I t ,__ , i )[kN '  :, ,l ..2 / L, ,7l ./- ~ . ' . - a ',/ r / + t p n i a A us y _ , . . - - . -- - ~ . ~ - -- -- - .-- _ .. . ~. -.- - - _ . - _ . - ~ . l l - s t e a rn l ir-e ara aegrades as n;l wrea inr w tr+ t a s Tr4 u r.rM 4 " 5te@% lit e r; eat ab, A, .ti affee ,tu i m reif<mance, ?be 31" ) *r t f 01 Ti 3 M e . e . tqat remrydj fr: tu A"te?$ t he !! . p rfirrtetre, i trerefore.

  • N t te de s an tos.s a: _ t w r>

s9 ?  ;-.- r f e r r a r,: e 3 for tre 04 - let and tr e Iy fcr tr e I#^ 2 h4 w e i f' e nis 1 y Z e j. U5i57 4 E -e 3 t t> Ftt 1F.a t e t M I ".d i-

de, T8A:4p ; .1; L a rm
  • r u _ d alg.

t y .i r a a : a- - erafr 4-u -at4 rest trar.2h r % :<ta-utiu has teen !f The W as a n a t .a id r a r ;;i st i:<r (4:9 witt l '% TrA; a re ,y3 2 3, t am t the t*e tass ne ETS and ;C^" TertcrrNr::e Ma g t analytical ccettlets l a-~. te r 4 m a ' s t a . r+ ;' in a laty n a;e , t e r t . 2_ (;r t rie E tsWh F"C5 analysis are j j Jte$tried u. Tarle 1. In the a f,a l y t4 s , c t:e (5 f .~r te st ex tanp r FCOS F EMOMANCE ANALYSIS eit s a a s s me d to te a nvai16tle, ree d or tr4 a te n e s - .nte e m ;te! E r nt as fcjt fl i n g l e f Allurir e S S J ry't i Cfs 7te I/C 15 2 5 5 A '1 t C te ' M M' a r. 4631yfes. i I a L A ; fa r,t fAE trPIFA hydrawl t v-f;u a - r - - :yne no ana a r. - rinted initiat1Uin cf creraticn the r 1F+ l i three f' a n . IDr ravre the 0/W aftes cw the Aeg r ry: a f. are s for tre ht. ^M at e; ;rriar '+4 rr4! tytrediac m de l of t uovta n armlyris, the s3% r.e a t t :4Lr fo r *.. ,  ;;1ere te1 ty i - w eir;+ gas nw. e X ' f 4 T'gf f 19 654d*Od A? ttot !EI tte I/Ce 3 LUUmare l TI A 7 ji ' 4 i ' k d-1F0 .' d y a f ; . tie $ !g( ?Tgee-

> r. .

cf the orce rt ive s ti tre ar a.ys a we tc . ~+ - s ty ir < 1yur s : a l c a l a t i: ra . Ta tc t.e c .q :cw n nw tre I /W : Liet & tM '" ao FZ5 *uW m = au s ae an im.a; gas in it A - 'r <-c an t r o

  • e .1 r e2 e: :, f ga:1r ra+4, st m e: L a .,e seen UKJ1E Tre N AC r al zet, ra farar." i
  • l 14.fee rajrt A 4- 4 G i . De rar * ' . - fa , uni +5e results of these trerrai-tydraa)2e

-:q anents are * :vessel wn a ar.1 Fag.4 til t r e prie ty L < ; o i n%* 1

  • Ors a .- t tat tre ran:- reartc p res%re t tr ee-d tne s act e ; VELIEL

+ ras e ere .e  ; re j a rt ed

  • y D A:  ;: - veese; are scdeled with owaai a leve;s, fcos radial 6pr;y inA: + +te cr%r * -

r, nert wit h seveS e r.d a cht-t rence m ;ys s a r ht t at i re at transfer at' cre ataratta. r,( ' t c t , , e IFAC. t+Clf ~M 2 t a" ?: ;teshre i n ? O r {.< I d t E I 4"tC v- ,r3M' '" . % t&S tm* -r *w r eat t r ar. ster m "SAunal F il E : t innt r'r" .1 Idiidl Jihy I h ' t') S 4 & b 'i f =: "t* -

u.
  • t :. a: V e S '$ E l DCrufit5 tw: #

ard l 4 u 'v 1 l/ -  ; .h M it it qqf, i n t i,e 21 and t h*- errt a wa'.1 exts s tetween F tr qs e i g *.t 9 '1 ! o !*i en c aer ' e* Tu - aer s e tr t e at + + < s o;$ r e s si t - c Wi e r .** raA hr.ieFings d wit* ar d 4, . ay e r

a.'or

4e: 5 tre r e c e x:- r.an pe r find a31r, tevel: . tra m n '4:w an91de the rr e5 3 mate the c i r c L l a t a c r. ef :: / w 4 5 - :; p re s s i c - c rmh t . The m er t -- rt t i e r. .  : ,o t h t r.e W mL r-14* i ev6 5 6 aml ' in , - : t. . s

p. . inalat <

and tLe otod ar regten cf L/W W vaeha Fua  ?> I EI" ClW' '3FYIbEI? "It h SAA C6 ** u-,c wat 13 ra y , -r- a , *ltb ^ I I n .2- ;. fter, t a 3 c :: t T.e N #3El' red t hat 'f4 fluid f

  • c. w in the nxial CI' ~iFP t'-r p- e
  • a +44 , ae: whter 15 - na

-m ;nar uveia 6 ara 7 2r Fag 4 -

  • ana : 14 :ect :n _

4- er & re te . D : r .c a t , i L C u r n r e s et' tne u~ r. 11 and .it h aitsCair H M1er sre . The M erent, - rw +- ;r w rartial 1:**eure, I"acter epre is tr e d e le d 4 f: V: 4

  • r* - v rtves f t : rr Le t est niU 5 : t a irm .t valver, :r,the H V cell ite t ren Fir e.

** :v .cale re3 m uur t.r e a n e t , safety

s. ' 31 < ;r r?. c i wpressur2zatact revied usir g

. 1 r w w cA cr t t t e r . in u;ws ard M CS 7 46 tion Hre arr r w- - c, t - wa, c e st tur e P IT E ond VALVE ::"Ferents (safety valves and 'UE a + b:t-i 4 ui m ie + wa t r <- in 3e M ~"

f. ge are te sMn ir Fig,4(li) . M

 !+:!.rr* * ' + DW f;r tre__:g aris a p : rut s are amd t: mt tre narizcria. vert , main ceam . re '" ver ;u p t ) . a 'e 6 .er an) tre > a3;ng v I-F i r +

  • K "* * *_ rh heat excur,pr 10

 ?-, + rx. vi- ai r a IN ' W112 e . "N nWI U IU m, e n y f 2r

  • a o # St e (3r n r 'e l

**C*I AI IE S 4 I I " m il s Ne zeie m fim

  • r!

ir- 1:~ be ni eX r, w iea ur mg eigh f: A rs t te - te

  • rre wate r F.c . as 0 41 r alet'nne:ted v3 at 'rese t fyly .me a t2 e t gt* :t;is. W * ' ee e 6ena M an-i tre ncn-tr< grer Ein ;eli uve. < -"pected ?
  • te rx is c r. w n s i t l e gas ver t F trg M. Even i r.

t 10 - wrrie si-r pt mL G eve l 1 *

  • the V g e r f e nr arm +

analysis, the steam + Le 4 O a n t '. " 17: a s % d%-d t r te S qfil ie d j og . .4V A A l d! 1(f the ur hi Free . */W. T r: a a n e; T i e n leads tt a b 'trF vezest w atirg r*e [ e*ervatsue teat es+ transtet Mate Ja deu ic ant.cn enoed ry 4r 06 ' nu r at . . Wr,$ ate l i r,e ftNe l ? - O : *- # n a i t- i e g43. 7t& ^0 3 the IJ f: t tu 1 ^ ara *M

  • n Mr are dttferent ft:m g4 ,

as > c e riq 4i0t. The n r.de n s at e ed tite

c eneM en +s _he P FT cel +.

te frr 'Be C - .; e : - ^ r.e : t e 1 tc the tre _rvi C2 WM tt at * . - A; - a* 1 te dec r ti e " * - o e t r e' ( '. im i, ' I- .c e r 3C' 0 06 0 08 010 ne m e+ t tr M - rw e r.t %P .v 4 0 02 0 04 * - lE: '*[- + y ,  : _ L *: tat:*b p % g', 1dhk p  ; s .~ , *m v ., t e tw ~ we b b hI aed*d5C3 . g ( ,. g y +s  ! 6- i

  • 1 h 41+ '$>

*L 1.- -at 283- -- , 1 - _ - - - . _ . . . _ _ . . _ - - . T a * .e P4 3. t u.a l yt i 41 Or...ti t i on s ANALYS!$ FE$ ULT pu e 9 -+ ry a l 1.w,1 IBC MWtr i t. o re sult s cf tre ;/W s les pe r 'i t rna r.c e  ! r,3y "ca. % : ve ANst (104) enslysis are s r.c w n . 1;gs 1 t::agn 14, a r.a t r.:se I i m; f i g ., r ni et tre 1/; t e r f e rrte n e er.alysis a r e: r z e r e r.t e d e v.c 3 me * .* rd Fty.15. p r. r3 7 t.e 2 + $ r c r.s e s to the di re.am.- ' s ra- < r ' " D/w a r.1 Li p (s*wle mair. r:t earr lir e t. s e ait i OC A ace sh:wn .n F49.5, when y a; 1 r. e _, _,1. I s_ , ...a , ); e c. 3 f t t.e L /w coc le s acts as t 'r e 10 2. Trere are five tJ5e = F0V pressure Pl a 'haracteristic J hases in the n-- a r e _ , i n m rs M 4 t r. w Mcw M: V ;; / ? 3"TCT805- If i t'* fif51 Ih59" IC - 4 8*; "15 t 'T * .:y. F ue ra m 1 MF a I!W Fress te r ar a d'.y r* e r s increasira, d as it t r.e trv ei! 7erri at a e 'r t r e a r. flow, until the h: .r ta. ve n t give haa t ee.n j . ,} } r t 9 ' "*APl+i Ilt5?2rk 4 Pl 4 O l e a g e '.1. T r.W D f W [46 K p26.?ssare _. . 33 Mio. .; 4 ; t e s = . f. i,q rtatuto 30f'F The sectnd F r.o se (4 ~ , Mc us) lasts E1" u r.t i 1 ihe FFV pre sear * :a r r c 3 r..: t + c . ai en;g ( ' lin'. i ' e :' t.10 htd1 lb  !" FA1uf t0 Cawbt the GN! 11 70;? " Af t fI C lv A r ir.g 7E E' piJe,

  • o L.W fr($$wge

_ I ' + Ae thu h'ttrSnthi . v e r.1 ' r; t er wr;Za as $41

  • i Vd1Ve3 g g a :ia a l l y de;teafe? And bgr N
  • 4.r'* C c ri s t a r.:

17- aftet arcond 10 se r r n is . ita Irv :;(: ;ra canee a Tu& mt Tru ster Ana ;tt r', / unit t empe r a ry pressare in:resse e r. *r* ; 4.. ine S/; ' r;  ; .u . ,w- . r;' . pressure keers ir. reasing, d ., e t te e + :gy and I. -

  • ia; wp a t ,. t e 1 'r v. ass is pat s ry tne er ..rs r.sitle u* a c.d steam ts .n Or r at u-t.O- # r -t 3 Fixture vent flew t r.t :m y *he trrir 'ni w :. p ag .

w + beat :ar3:er Area r ' / a r. i t After the 30 -~ S

  • t a. i t
  • at 3 se t ra s , tre i w oi  !. Temrematare 31.'F M TS water  ; rde n se s tre tee A r- tr e r e s :-
  • c

-r ,, ' ,g ,3 # '",t ' ' e .- ' r" - vessel a.n d , c on segant ly r:st h _!x F P, JTessore ord Rmg 4 tre F'"i pressure k ee;:. dea.:asana. 7ne tritj pase R eg 3 ' last s about 1 haar. RegA1,g? rg 'N Rfd, ** d- I 04 Leve!, DW i - B4 eae GDCS Junctcc to DW -ppy.-- -pg 5C . J- ~ . - (Leve! 6. Reg 3) Love E 4 i'- r _ 03 ' Levo s I  %. . ,,. _S C._ f 3 Love 4 HWoota' { v ., i w Ancu a 02 - Leve 3 - - b / S -p c Ti s*P- N*d*O* of W c teve> 2 , , w ._ .c w

  • 01 '

Cnaene, / tuvs 1 , Cente f"~] eo10 ' 10' 10' 'O' 10' 10' 10' e._ . Tre (secon0% _r-. .

  • u2ir at - f:r primary - t.itnrer vesai (4 trg, 7-leve;i (1) Log tee sca e Hea1 Eschanger T he 1.... ...I HeatSao na N- L. ,J N 4 / nW N  : / {C S'eam Supoiy Lre  %

\ \ , 03 - J#c.e te {_ #% (Lesee 7,H m 3 y~ ww .-i [ m I 02 cono -we Lre ,,,, " l*~ y t I Jecto,- to ,\ Nmonce-s;b = 0t , hyg " 8 f Gd8 V *N LP' Jat on to .~i l nne- t H#g h *-C=" D W Cua-e- --^- 00 0 10000 20000 30000 40000 50000 60000 twas en concease, T.<ne acco w * # I ~

  • EU i 3 Jurcton to t ILt*W '1 fvg 3;

~ r;s 4 n' 5 s. e .- n c. m r -c d 4 - N4 se - 2E4 L h_. .. . _ . . . - _ _ _ _ _ _ _ _ - i e' . t t t 3 g g. .. 3 o t ,- .f t a ?A (4 f

  • 6 I g i a f4 y ,, ,

r+ a e , , .- . i i, - F- . + geq 3, t e. ;r+ = .- . 4 I t ,I. JtS , I+- 6 }- } *4'a I *

  • F
  • 6-t, t71 ' ~ f;
  • p t-( f e
  • I 1 I T d I' h (

1 E' ], S'

  • I

.'l f [t " . ~ j *I h _E $f l' ~' * .y  ! .k ie  ? e te?* f ar- d. ; 54 . =  ?'ei y :, ' I <- 8 +- *

  • a

 !. + ' '* " + + e

  • a .a.,i ' i t 4  : r e <.  ; tr+

a * * * ,+ r. , i+ . t. h ,or 6 + ;e~ a ,, *r .r. y ,, 8 f '*- If~ *A4 I3*f *I 1' a  ! t J;j- '. 3; f ' t 24[ .h : . f' , ..t Pa m' . 3;2; .y i , **+ - , . < j 3r 14:'3y (3 t jr ? " *h; ,t- iC! J+ t ?. S G ? 7 t-- 44 s e ! 3 J +' P-4 4 , ,, '~3, .4 MO. f 6 .] s Iy. "f .' h A I JeI i , ,(+- *  ; 9 . t- It Itt '3' s m t Af*e: 4 7? 1l i( g. (;f vyfp P ' 'N e " "' % t 7 ' 8 O j' # # 3e { 9 b 4 ,h a t-[ f i $4i { h. d' f *. "k' I. l [4 1 1 4 +rt4.'* b* If ,g. r_ g 4 ) n f, f+' p $-  % )y' ' 4 - h J: 4 1 .:3: , r .t;e...y ex ' .r.  ? .; i* r 5 ia T? u. * . + *e ~ '" ' tio* . , t, 6, , s. .; , .. r

f. F  ; - i ., w i. . 4- e , , . , , ; ;y, + < -

rw .t+ J .2 + h. 4

  • A# . IL. ,  ;;y 3 e e_ -3 ; i i . ] J+ '

f., . >n er i u te ., 3 . f > h s' e ys - 2 + 'J A 13 8 '.d'- p I y I 'I g, 9 l , g i e }"1 & D 0 *M Ig . ' 5- . m . . . a.3 ,t ... . . u r - 4 o  ; ie h u 'T s ' .d.i) . A ^ o .! , , , p, *f r , W  ! . za sr < + + < s i ay ! cat. . - r .,. ry 7 37 . _ g; . . t  ;* ' Wl * *

  • 1 h  ! : .Lt- O + 1w , ry [,  ; g. ,  ! 'e
  • rr i . .  ? ^ '
  • 1it'  ; < s e. r i t+ 4 +! ' ' i/
d.
  • f y i I f- t 1 3 +3 g  ? , 6 c,'I.( hG

 ;- t * .t: .; . w.rp. ,, . , . ,.  ;,, . < r t.# 1W. , , . 3 3 ,. . + < i- .- i 1 e-h } Ie  :( , ,. 3, 4 ( .r 4 + t f .< 4E"f r **' ? " a + +- r!' I'? , e < z, e *  ; r :t. ry '*- .p ,7  : 3 3 t 1 I 4 1 s.+w 1" r *? ..--%r.- - I - gN#-i g .J p d' F44%W 1% { Th P3 .. t. ' g*%.4.J >1 n i m CE .i 4 1 .b

t. .\

s 4 Of - 4 3 j < =o4 \ m - ow r.m.n \. s p m - / L t}g l . C2 ' \ \ 'Mdi&W_uJh_@_g - cc/ \_A A- w e_. . C '" u TY 2 30300 43:00 50000 600D0 0 100 0 20;N 33^D 40000 5C000 60.00 ice a T re reci - ;:. .t. ^ , ,, , g , t - . - te + l I c-Pt 1---- pe P1f H,..ti Rrr rn ai S I  ; Dece Heat J 10 - 2 (~ .lll L ...nu._. _ , ,? l a. : " ;l 'PI i  ! - 1 - j , g kI l . i -4 g 'B i h,E h 4 C' I[y ,\d y

s. [ ., j. H

= r t a. I{. d .,u.s. .a ? i c4 -1 > i. ,, l t  ; F+] _ f ftTf. t WW ' > .I ~ p \v r b s ,,l\ i Hex reav g, l ;l qk , g. h' ;ANAwa - .-wwe ~A A N ,i ue ct , , e ,i ,m , +<~ ,"~m, 3,m y- - c - r.m e 9 . 4 v w - a vV v- b ', ', [mp c, 1m e s e-4  : .: i 2n , ^% f - - - - . , - .-- m- 4m- - .-m,._ . 8,  ; & p-. r . r u t on 'f t r.c 's ) t a l t d I'I t ester t h r < s "; " the pttinJte 10 the t'idJle f;tt1 iriM Iine P I'V water levei (*3thet the elevali Ct cf the t ut e I ", , 2.0  ? the ' L f t a t. 4 s A.C in ;e:t iN.. a Ui increhsts, That gesglis in jegge16ng t t t- Ttet I* t r:e w 3 '. e t kee{ s 5[41110, t; t fit I/W ! ! uri the le T V tefEval Inte erj e slign pres =ute rist ;r. (t+ l/W. Vie p I t t won er The!O th*: Char.i$rs C a t. Cagse a Jer;DJA: 40_" S e ~- n .13 &ni ^" $ e t' W,  !. e r.s vi ; r Jr 63

  • twn it !Le heat It5.V41 rate, It e*'old te fac t e j 17.81 a taa., E' s i rn a l a r gas pressare dastritet. arj The GAS JteS5Wie in '*e h e e '. CA Lan)*r tutt C SC-its AS CLA v ? 1e t + r. 21 ? g , tra elevati; n l tt Ol y L'e La vi c t in tre beat e x c h a n "Te r tute OS?

2 tLe ript.  ??e ' : p p --_ f ' a ' tf The t ut

  • La? Leen e x to. Se 3 t i. the Leve t e t- n OLServe0 a r. t he large 3: ale 1/C t d- 5 * ,1 Afti utec*-ri '

c h 5 - * ? 4- a r r i x '. te. As t ?.e fhxture ficws AS the gas v e n t A r;g ttraugh the gas ven lire fM ri-s 1" w n Ar **s tats, 00Ltinues, the got fta 19 1 r- the OfW itc Ms gral#, DO '!e s t e n" is e2ng t t n de

  • s e -i .

'tus, at t f d. '?ct cf the *Ae, the beat reecvel rate ar/rea*es and f i r. e l ' y '8 1* tu pag'.ial e veI C One s t he de : a y r+ a t } : s a _ ., +- tot  ? *!t J. ; r - 1er s at ;e gat exceeL *. '= n o e l ., e n t l y , the teat ter; val Iate at the In the 11f10 ph a w rie : * . ned at ve, 't+ exit Of t he n;e t .ri ier s il le g a s ve n lire .= ; l J a# 1 t y t ut e r ;' ' ' te cnes sN l l, d;e tt the O c n 91 de r et;;e Mat ' tau fer wytentic' ad the decrease ir. stean the S!f water, as S t.o w n an Fig.

  • fl i r c c tr+ E/a t e m; e r a t u r e . ! f.

tne ridale [citi # cf t he t uf e, the pressure tectres aln;st ttc same as the S/C go? [re== rc S h =.

  • 1ettry tehavier a r. d It fre55dre. The rJ 4 9 Ve t* . ne, thereftre, strpI

_au=es t' f un:* 1' ing 4 th15 pr.a S e . h ve r t hele 3 3, 'he se*e t+ n s v 1' r - r

  • Le he at temcval 4te. Ccrjen54tle gaa Otes rc' 3

' = n s i ~.W r t: 1  ? .s t ' tis IM.ev;cr is c a .a se d ty exchanger tut + a r t urr #lete in tie test - e * * . - ! .. .ing F at he r a gas fres!ure decrease 5 b Tr e* r.r a s - * : e a

  • ficw rate to tLa Leat f l e d10 t e d i r. the Tr i d d l e pcrti_r Cf the t abe , as er !an'er t te detern ne 1 ty the fressure 1 f i t: t e
  • e t + '. w e the L/W and b 2. Te g elat ively sh w5 in I19.9. Tha rea5:0 is crr$1dered te t o: ttat 4 w

larga t r e a o b l e- d . f f e r o r. c e clears tne tre gas ventirg tbntilen is r a in t a ir.e d ty t rie nsir 4 963 t r' ' .ine, t kws t r+ g a s d1wn the nir- Condensate tiom .ine. In tri? analysis, the _ dhi tr{ ! ver t r4 45 rer! val Inte. F ' w e v e.1, nde' ente ficw line is pen tc the G5c; ; ; paa

  • at ! n.eters atgve f. h e p:01 tcttom. As the ~ ^

st c4 se a  ; gM J r e t u t o de r t e a se it tra 'ew fic. and i te: [rt'*wle '* 1 f f e r e r +- t+ g ir s t de:1 ease.

nt in ues, the CC5 p m water level x: t uses a '. 4 Pr , 't : F . 4 '. e r enttr! :nt the e Kit cf the ' c n aer.S at e f l; w . rie = - odred at tre r'r- LA 31t le at a ss *<n

.  ?!e , ' r .? t5re serands after the !reak. Figare *' s t.c . > - . Wn? J ie 935 Jartial ' hat the gas-steam Fixtare as verted t r. r car + e Tt< nien54tr flow l i rie tc the Z

  • p: sp en wit!

c ' r. d e r. S e j water _ (]n **;$ f2ggge, 7 pg3it;yg vel: City f*eans tr+ vafft g es + t the 7^.g; 4 ' -* p a c e- .) The addit 1 nal r:r-20nienellle ga? discharge fr:n the s fav;Iat;o tr i t e c t W r. s a t e fl:. .anc *is s % - 4 t he- ' /W - l e. r eat remrsu; t 3 ' rate. T h t- ei f e r' t.e c c N S +2ceatle wLen ' he f.e a ' ' 'fi ' 4-renavol rate rm : N 3 a lr a st the same as ete deca / f.e d t . In

  • 1*'p l a e 3 that t r.e elesata

* , at which he M- . 2 j l *ew :. ler c orm n s a t e ficw line c c e r.e : + 2 + t he t -,( ) 5  % 'E Fc ', St:ald te de s a g r.e 1 te higher ? !.an t r e -n , n i ' ll t sa:tlen ele vat le n cf the GDOS ar3ecti e pip ., in  : hi k )) i 4 1  ! / the case where the cen dema t e flow line car.nects tc E ) , l the I:2 pas. telc w the 2 02 s a:* e elevaties and *- 4 ) j the exo et t r.e ~ naensate !!;. 1;re is kept [ H s of re r -)e n, +he icv preasures d es ;i 0 1 i I d b iIkI. - ux:eatle de rease e vt r. after 40J^ rer:nas, as shew a 1 ' 00 L 200 4 30000 T me gecy 40000 50000 60000 2':*n in Fig.13. Figure 14 9 rws that the Dit ter;+rature - " ~ ' - E' ~ r i st 3 ty l e r i n t he t i .wn

  • n ; nase and nee;3 aa 3 O c r e t a r, az;wnj 3 2 5, K . Tr_*

e 1s f urt her t e lc w 're saturat w t empe r a t a r e - 'X 4 i p e, j W . - 2 ' i t \ \ 60 ' c e W 40 =g 0 p j g D $ w 0 f E E f 20 I 2 ' h f I- O v- l a L n.d=s _x . -a.:. 4 0 '000" 20000 30000 4 0C # 50000 00000 0 Tme sse 10000 20003 30000 40000 50000 50000 0 Tee (seci , r a I 4,. ia; , e ex1 ef ^ h Il % 1 ". E'

  • e,

*y 286-L v- . - . -_r:_ _ _ - -l="-----' ' ~ ~ ~ ~ - g  !' r - t t , se resa'ts, tre ' rw ;e2 5 : : v <-

  • t: CONCLUSION d*. t f f 6- - a V *. I'~"~ ff~" ( IFa* fEF k&1

[v # *'"$f 'A  ; e *i 4' bf' 8E# il*ICI 8 9 * ' .'.e ra; 9 ' e d It" V4+  ;* If: 1"3 J- 4* t t I. Ldf + = h r I i e ., p

  • e fl }te5 _re  : t '. J -- 4

*'r a

  • a* ** i "* d i+ +-- ' " 's Ich ,
  • _ . le
- tta= & 1 -i t , a 11 ,- ' h A '.' '!
  • f . .=4' ] = a + b r +-

, d* e . .t. F.J i

f. :TT I! "' tTf f e 3i ! t::* VA. te  ; I . '.

g** *+-] t?3 * ?e 1a1* .t! 5 e ! ai a # 3 f I r e- e it.e ; tei e * + +* :t, ifif* 4ftet * *  ; s te ;

  • it tte (;) " !. e #

'W " ;t : 4 a- trt s.- e ya- s - se r t; ; t*e t'e ( a  ; f' T l't 'tI4)iy, e [ l' t* f

  • e.!! Ie*l1I if 6 ~CI y
  • L I".
  • i } ! t- F 1JTt

"+ 's 2 4- f A~ T3. t d . ! f .: fa t-

  • m if 'a } I s. " I t.

5 f. '_ d !  ? 1 f-! * & 3e d;

  • F +- f" .1 ; 7

> Od" + p4 'i 7.e - , der *;t;e -v. .in - D **4 gpVv] L 1.s *1e!Ie1 t* ' + _ UV i r. tt, t ,, 3 1 *'t42r T a vert + [tTit ., at + !1 f- .W ,el -

r. c .

s J r :r 1 !

  • ass s ,- r ' . .r '

r a-( : ; r. 4 s t 19 ' e' * *+ a. tue: 3 d '

  • f t d? LM. s F t 3 t"

 !, _ + ( t *

  • r JI )+* t 3i e ( ,eVs 4
Lie tv -; ;;tt n r.1 *m g * #

/ t ; *

  • c r.  ;: 'te t i. r e . + ri .e a '

t.rt. t?e an? ; re3* :e =*c.: o tet.

(Lav , e--.11 t t !m i t. ' +. : r . t ge n .

v ' it :. k r. ; f 1 ** i41 !Le - 11s r. s d

  • t.  ! ', . i. ii .  ; e q .3 3 a *

'. e ' arl 1, - , . t p: a: ?ys e .s e. ' + + 0 100M 20030 32000 4 C ?O ^; LCD00 TOC 00 tti T:.e a;a;if. a . ,

  • 4 Ts e ned e: ;,, . + < --r- r: ,

l' - ; + 11 :. t e n c e , a:e :eerTry t 'c a;;;y *rA . r* ', . , e , ,-!(,,- ,e; i r e:ge 4

  • t I l '-- ' +' T -

350 r- ABBEEVIATION

i, .t j : e. s . a idi e

' * ~-I Y "' 3C EJ tre: w"" ' re ' 7 I t: " ,:. _ C r a '; i  ; 2 ynt e r t , ~

s;;at tt!

\ 3' p~ A; ts t s l a r. 43 r'., {1 t - .: 3E5 t _.4 +st'+ w^ e Vt: ? s e i

i T/ 1:;rary t a i r.

i p' '~

  • hii Fet: i'r e s ' c t ti e i

.c. a t r e .1 . , Wste Fei- .I  ; Ly ; t s . - r C.wre: p' 's .E _ ,rer

  • r.

b ': a , ~ e.s n e r ~ e nne RETERENCES EOe 9 .', (i s,) ,V s ,m- &wyiV q,.v.-nowb a b'b ewn h M V brwV (2nie V swV i e l.N? I _ < 3- ..ar . A - .e: }' r. W;*e! Ied: * ' t 3 "Mr

  • Li 5 l 1t5 ,,

i -- } F tt&tL!e ,, - : i .. 04 s -r, x. ._ et a "UA:-EF M a r .. a l F 4 .si +F A: -- t ," UFI i CF-493', . , F . , - n. c r ' l () ' ,;a aws, H. ir m . 6 Fa* r

  • l [ 4 y -

2 r - 2 - + 4 i  :. j * "A ~ s I " l e T. A; f 6 -s

vL-A

.j, mm wt f /[ . , .e i - . Lnd~ L t. u 6 'e \  ; i * * s  !. s .; in * - o l m . ) I Ft I r - s n , r - l l nq w J -. , -.A q g 4, f,%e A g+. dww,Y s( g**Ue*$ V %6^% wi Sw-5 #)%% G. Jwnrd$ cs A e A.'d L' J n I ~~ it i s C l 1: :e .U 1 5 I S t. ut l l t l - y 4: .. . .. - .. .- . , _ . - . . . . _ . ._ - ._ .s ,,m--- . t . . . . . . . 4 , 8 SIET Document Rev. Chock Pago of . Soz. Renttori Innovativi 0094RI91 C 23 24 lil AM C) g V P(t p u . j& 1Aw PCC w =_ .-  ; _y _ _ _ _ _ . . . . + 4 EM30f 8f5Ah! CA5t$ ' '8 iJhLLM C'W +t1109 / h ., ,} [y 4} f ' ( h .I " {i / f' , I , i "/ r roat f A* i L C Vl3 s, (f!CVi! 0,.  ? %i ) 7%( h ' W To  !  ! 6 R; u .:= W.I air-.POR UNE

-+-

b'. '5 mi i )

nks

,s" % ',. < s . J- .. d'+- c- o I Q) CT ennussst = vtus tw (----) \ _ gecvn 1B5 m3 " A i, - p t cu. 4- ,7 9Cvil I tcvit  ! . H+  ! I. I' l i . ,l wivtu taNn o,,,,  %, f f 4. 4 m2- .) wi 1 y ,*vi  ; o

< staiMit e.c j i a tM x '"

I s:ran %s tCV/1 5uppt y C l - 0< ',gl 1 l O - -d' t." - ----..-i

l

-sc.I - Schematic of PCC test facility - l SI_E. T I == l*= .. - I -  ! 44flFli_f 1 l l l

25. 06.92 l P/_ f VE_ rJT L t u E. l 1

e .b llU $O y '$a"QN 80 ${hW [2. Ed 40 Tt O O.f. <'! b Thy'iHEQ3.Pcc Et.EloTi 0 01 i e ,k.i: -l ' . " . ' . * . - ..' Z 7 31401 - ,l . . _ *"* 2ON .n C q q i ., l lQ ., 1 ' .l s l le , fj,0 ,U D 0 .' I, , . T* I'*L t _01.. 25 1 _. _ _ **: l:,': / *.in. '.,.; .*f.;i .;'j ,x .  ?~+ ,U,- . t . . , y, t ,/; i.? ..;wpi'4'. , . . . l -.n+.*-;** .. Sic @'h.*W.  ;; i v ,.g .., u ---a 6, 5 -J ' ,3., _ _ 72928 . i , ( ._1 - o i 5 - 2; y 41153 l ,. I ,n::;.b...... :n;w ':y n y a s.1 - i i , l $' 7f4018 l f e .. t, >. yEnr taNr , j 9 mg J -- ' ^ 7.9545 , T + ,p h._-- E V 9453 p e 44 3 f \. l ep -'~ k,,277578 . ( == i '/ ' I fyF '// l Ch yAaa e .va , l'N 'An.d.. ...c.. w. a.c. e .e.s. v..,s . . ys. .:y. . e.,. "s p 9.? bt. Tank '//T L:: , f ll A . y & = 4700 ns ') 1 x Hi - 465o m. .,d5  :.' Vi = 44,4 ni ybi fl -;d$i/c;: ' 'l:W. ' l f.4.c.o. ... . g: . . .c. " .:w. ...a l > ';a.V'.*;l/ ,y . a:c:: o h %B : idB t = Vww WETd)EtL 3 .5dP9fu n io d f oc u V wr v! afh @s) , J,366 m3 Vsaqu- PS P - 2145 d Y 'm fJ d., = 7111 d l J ' -- 7144 746o = CUO * + ,u 1& n l INJ clu s <. 4096o fl(r. 5 4 ' S+ ' ON' -' A L O N b E M.$ t. T =. bhanN LIN E 4".:n 4o y 6 " .sm 40

1. E. \X./ Q. ELE'/oii D d4 <3 > P 6 N T uE R 5. P(c. E*A/6 Tion 1

'[.' ' 4Y5 g f,110}

  • TjN10} l

'O h  ! [ Q a l l b= 0 o _'< . . t: = 3.f./s.. LJti , *, .af l !l _ af- . = .,;.. /  ! 3 ' '"fififj?.9,W: [ l ll ., Njfj[.';:,"l. -I 7g _ _7 034og t ,;- 7 ,803 4 y nst. s- e ,6. ~ , ",, g 3 7 J [ T' "~ ..Y -~T 'cMclH20 Ti l' r i; .: x

r. _I, 1 7 2oo53 ,

8

  • y/ y '4 c43

__  ? P153 1 ,;.......y.,....m::. ::w?? - . 5 - .e s hI Ii lon0en.SMe drain unK - (T . ii l'l , ,'; ':d ' bi a 40$$ mm f y u --- : ___ - - -- - 4 6ce mm \ 4 y, Hi  : u lb l I. Vey . 3.90 m 5 fN myyy'th - ,r * ,v.e.e,G.:4 e. V ot.ta. . 3.BB d A. .. .vu. s v,u. ..,.

a.  :. 4
g. w c,. c.r.a

,~.7, . t*:: . 4 ~~Y,ner e #.My a h cs da :ci m t - %5 ..w. , nme,s *: ; :; ; Vtond tss% G-b(.5 Pomes (n'3) '/Ter wo

1130.6 m3

/ Toi c.si a 400 i rn!' .. 3 / T oT c.u r = 12'10, 7 rn y ~/ idt 1 a s s.rnuixt - 6 40.25 rx 3 F > &. 4 1 1 23/C6l12 .$ l "tT PGd. TEST OODL b i H E N.51 O AJ O _.1569 _1560 - , .,r o l o - M Q O -F - C O O p,N8 N h.

  • i-g o _ ._. L C eco 9 $

i i i 5+50 l765 O e  :-r i @ 'E 25o 2; - go _y4, C .Q., +. ._p" e o I O o T o o T U1 9 . c I ,N 2 + (+- -4 i l { a'c i r l Toxcu cuccay 175 m 5 Poo u aus 29.84. nd //u a G aeau vv 01.1 nd poo' h d M. 92 n, houzon Beaaine L u c. E n2 mo d" \* NWL 4. 4 m Fie. 5 -- - - . - . - . . - . . . - - = . - . - . . . . . . . _ . .... i* O  :

+-

=.--} -_ .-~ , ~ . ~ _ -".-_' l It P.001,-.T. Ale ( p 1' 1I Y/ i l s, tooup il ,, tas l T Aser ' j m = _ . = ' .. m- . v3& ; .h. , ,, .' , DAAM (M MImpeu PCV  !!s. ' 's k U 10 MU

hd  : ,. .

*

  • s*'n \ Ub 4 --

~ h 'g V155ft o cAs va um 8'N Mik PWL151Att - - ==esAs h ,. , y, O

  • PROT 0fYPE.AL ,

. DaAm VAtyt *

  • MM .

+ V4 ' ORAM : W  : j, (

I" l-l m

g Of$UP(MATNG he m \W fy FX - CRCMAti0N PUMP 1 (PD 101/1071 o -r - ELETTar.AL 4.AfD EN 1811 ,P PRDtATU tt tti i6 ., 0 --.--cI "  :  : V2 W)  ? ~ O db MY STIAM Y, q ;3,,,,,, ,_i _ . .- Fis. 8 --schematic or it test racility SW f. .. .5 l E_I 1(_ h 5. T . POOL Di M FtJ.siO U 24/ c/*2 - 85o A12 'Q .g.. , j o D W N t-m 5 A,- 3_ X ._j - i i \ 8. , G i x k0 o W m W o , j - - -d / 'Z)l -m n1 9 W 2, ' g i o d i M  ? .J 4 s& el 3 s \ 90s 176 0 1:28 k@00  ! gb O I O 8: V- NwL - Jo ar 7 . . _ . _ 4 7 1 g, ( S +) o O I m oi  ! o. D O: 0; LO' I'

q. ,

9: g: ~ ~ '~ Fw 9 o, .- wi ,, / \ I _1_. oTat., C6P6( lTy %m p ,7g;9g5 gf 3 wm Ett ccPt.4iTy 74.4 m g,1 4g T M I: PANTIIERS -PCC . PIPING GENERAL DATA length Volume Weighs Pipe Matenal Size Cross Section Line 2 (mm) (dml) (kg) (cm ) DRAIN LINE 82.2 4M3 %7 73.2 - first length ( ) A 312 TP 3(W 4" Sch 40 7478 143,3 247.7 6" Sch 40 186.4 - common length ( ) VENT LINE 137.2 i 322.7 3036 32.27 - first length (*) 8* Sch 40 i 746.4 WM).5 l 10" Sch 40 508.7 14293 . - common length (**) STEAM LlhTi 1542 75.93 122.6 10" Sch 40 508.7 - first length (+) 1886 93.46 129.1 10" Sch 40 508.7 - second length (++) = = * = = = - third length (+++) 12150 619.7 766.3 10" Sch 40 508.7 DOWNCOMER LINE 10 05 47.1 122.0 3" Sch 40 47.7 VACUUM ' BREAKER LINE 1797 83.31 262.0 10" Sch 80 463.5 Cr / DT LINE

t. ___- I '

r F TANK GENERAL DATA T4 S. d : PArmIERS-PCC Weight Scalmg Fxtor Total ifeight Volume Inside Diameter Thkkness (kg) (*) Tank Matenal (mm) (mm) (dm3 ) (mm) i 3850 1100 1:168 7 4616 A 240 TP 3G4 1055 CONDENSA~m DRAIN TANK 4450 1 : lee 6228 16250 1876 12 A 240 TP 304 DRYWELL TANK 14400 3800 1:IM 12 6676 A 240 TP 304 1700 WETWELL TANK (*) on respect to the SBWR reference volumes (see doc. SIET00lf>4R191 Rev C) ( ___ i 1 ). e l 4 i i (*) between the ANS ALDO drain line nozzle and the TEE junction (6") (**) betseen the TEE junction and the CT inlet drain nozzle (6") (*) between the ANS ALDO vent line end (8*) and the TEE jur. coon (10") (") between the TEE junction (10") and the WT intet vent nozzle (10") (+) between the DT outlet air stetm mixture nozzle (10") and the main steam line connection flange (10") (++) between the connection flange (10') and the ANSALDO steam linc extension end (10") (+++) later (between the air vapor mixture point + 6" and the main steam line connection flange .10"-) ) i i s l l OVERSIZE DOCUMENT PAGE PULLED l SEE APERTURE CARDS NUMBER OF OVERSIZE PAGES FILMED ON APERTURE CARDS f 1%o\3%o)12.-of-oL) } i APERTURE CARD /HARD COPY AVAILABLE FROM RECORDS AND REPORTS MANAGEMENT BRANCH l t 1}}