ML20083L661

From kanterella
Jump to navigation Jump to search
Apps A-E to Thermal Hydraulic Data Rept of PANTHERS-PCC Tests
ML20083L661
Person / Time
Site: 05200004
Issue date: 05/11/1995
From:
GENERAL ELECTRIC CO.
To:
Shared Package
ML20083L659 List:
References
NUDOCS 9505180553
Download: ML20083L661 (44)


Text

{{#Wiki_filter:._, 5

j. .-

SIET, Drcument . R:V . Appsndix pig) cf l , < Sezione Reattori innovativi- 00393RP95 O A. 1 10  ! i y 1 i

                                                                                                                                  .i 1
                                                                                                                                      )

i I

                                                                                                                                    )i 5

i r i i I

                                                                                                                                  ^'

f

                                                                                                                                  ')

APPENDIX A  ! INSTRUMENT LIST '  ; i v i i i r I I

                                                                                                                               +    t i

i i

                                                                                                                                  .l; i

t i,

                                                          ~

9505190553 950511 PDR ADOCK 05200004 l A PDR  ; I

SIET Docum;nt R2v Appendix P ga cf Sezione Reattori innovativl 00393RP95 0 A 2 10 L TABLE OF CONTENTS Tab. A1 - Transmitters and transducers instrument list for Test Condition T43_2 Tab. A2 - Fluid thermocouples instrumen' list for Test Condition T43_2 Tab. A3 - Brazed thermocouples instrument list foi Test Condition T43_2 Tab. A4 - Resistance thermometers instrument list for Test Cor.dition T43_2 i l 1 1 l l

u. d . N ) e e  ! V8 TMD024 DP 001 steam / gas rnirture inlet line 0 + 50 0.25 4570 _ g TMD162 DP 002 stearn/ gas mixture inlet line 0 + 50 0.25 4570

  • TMD163 DP 003 steam / gas rnixture inlet line 0 + 25 0.50 642 2 (f)

! TMD160 DP 004 steam / gas mixture inlet line 0 + 20 0.50 642 = TSD026 DP 005 upper header modu!e 1 - tube bundle +/ 34 0.50 725 2 -4 TSD027 DP 006 upper header module 1 - tube bundle +/- 34 0.50 725 5 upper header module 1 - tube bundle + /- 34 _ TSD029 TSDO31 DP 008 DP 009 upper header module 1 - tube bundle + /- 34 0.50 0.50 725 725 { { re.r'J34 DP 010 upper header module 1 - tube bundle +/- 34 0.50 725 TSD037 DP 011 upper header module 1 - tube bundle + /- 34 0.50 725 TSD036 DP 012 upper header module 1 - tube bundle + /- 34 0.50 725 TSD043 DP 013 upper header module 1 - tube bundle + /- 34 C.50 725 8 O TSD045 DP 014 upper header rnodule 1 - tube bundle +/- 34 0.50 725 TSD035 DP 015 upper header modu'e 2 - tube bundle + /- 34 0.50 725 D 3 TSD044 ']P 016 upper - lower header + /- 34 0.50 2537 $ TMD164 DP 017 lowar header rnodu!e 1 0 + 30 0.50 2355 TMD163 DP 018 lower header rnodule 2 0 + 30 0.50 2360 TMD152 DP 019 drain line 0 + 10 0.25 830 TMD020 DP 020 drain tir9 0 + to 0 25 835 o y T MD214 DP 021 lower header rnodule 1 0 + 100 0.50 3838 < TMD184 DP 022 lower header module 2 0 + 100 1.00 3848 TMD183 DP 023 vent line 0 + 60 0.50 968 TM0010 DP 024 condensate tank 0 + 70 0.50 5537 TMD003 DP 025 condensate tank 0 + 150 1.00 9519 g TSD045 DP 026 upper -lower header + /- 34 0.50 2547 >

  • TSD032 DP 027 upper header mocule 1 - tube bundle +/- 34 0.50 725 &

TMD156 DP 029 drain line 0 + 40 0.50 2865 TMDOM DP 030 vent line 0 + 100 0.25 7695 TMC~ DP 031 critical valve on air supply line 0 + 2500 1.00 0 TMD197 DP 032 critical valve on steam supply line O+7000 1.00 0 n TMD158 DP POO1 PCC pool O + 50 0.50 678 W $* TMD173 DP POO2 PCC pool O + 30 0.50 2260 TMD176 DP POO3 PCC poot 0 + 50 0.50 2256 TMD181 DP P004 PCC pool 0 + 35 0.50 2274 TMD169 DP P005 PCC pool O + 10 0.50 677 , TMD182 DP P006 PCC pool 0 + 35 ' O.50 2248 O ~ Tab. A1 - Transmitters and transducers instrument list for Test Condition T43_2

( .. - : . .. g g TMD175 DP P007 PCC pool O + 30 0.50 1540 "5 TMD161 DP P008 PCC pool O + 50 0.50 2260 S TMD172 DP P009 PCC pool O + 10 0.50 677 @ (f) PCC pool TMD194 DP P010 O + 10 0.50 1538 TM0028 F 1001 steam supply fine 0 + 700 0.50 0 2 -1 TMD007 F 1002 steam supply line 0 + 100 0.25 0 [ TMD171 F 1003 steam supply line 0 + 10 0.50 0 y TMD211 F 2001 air supply line 0 + 500 0.25 0 g TMD026 F 2002 air supply line 0 + 100 0.25 0 TMD208 F 3001 steam desuperheating line 0 + 100 0.25 0 TMOO25 F LOO 1 CT water discharging line 0 + 25 0.25 0 TMD177 F M001 fC pool make up line 0 + 25 0.50 0 O O o TMD191 F R001 Pool discharoing line O + 25 0.50 0 {$ O TMD027 F T001 vent tank discharging line 0+100 0.25 0 $ h TMD210 F T002 vent tank discharging line 0 + 10 0.25 0 3

                                                                                                        ~

TMD209 L1001 vent tank 0 + 50 0.25 2657 TMD174 L8002 vent tank 0 + 15 0.50 850 TMD151 L LOO 1 condensate tank 0 + 100 0.25 9091 TMD192 L LOO 2 condensate tank 0 + 25 0.50 2240 g g TMD012 L LOO 3 CT water discharging fine O + 50 1.00 4595 < TMD167 L 0001 catch tank 0 + 50 0.50 5015 TMD155 L 0002 catch tank 0 + 10 0.50 1100 TMD015 LP001 PCC pool O + 50 0.50 4205 TM0019 L 0001 IC pool O + 50 0.50 4340 m TMD009 L dOO2 IC pool O + 20 0.50 1715 > TMA0G7 P f001 steam supply line 100 + 20100 0.50 2450 & TMR070 P <2001 air supply line 100 + 3600 0.50 0 TMR045 P 4001 steam / gas mixture inlet line 100 + 1100 0.50 890 TMA008 P 4002 steam / gas mixture intet line 100.15 + 1300.15 0.50 2508 TMA010 P 5001 drain line 100.25 + 1100.25 0.50 1750 y TMA007 P 6001 vent line 100.15 + 1300.15 0.50 780 A $* TMR053 P 7001 steam bypass line 100 + 12100 0.50 1050 TMA014 P A001 upper header rnodule 1 99.4 + 1099.4 0.50 2143 TMA011 P 1001 vent tank 100.25 + 1100.25 0.50 542 TMA009 P LOO 1 condensate tank 100.15 + 1100.15 0.50 9651 TMA012 P T001 vent tank discharging line 100.25 + 1100.25 0 50 80 0 -+ Tab. A1 (Cont'd)

I a  ; 8 ( g s p mm TCK456 T-1001 Steam supply line (downstream orifice) K 2 1.6 50 + 400 10 g. TCK042 T-2001 Air supply line (downstream orifice) K 3 1.1 0 + 100 30 S TCK464 T-3001 Steam desuperheaGng line (water temperature) K 2 1.1 0 + 100 7 g g TCK033 T-4001 Steam-nir mixture supply line (downstream mixing point) K 3 1.1 20 + 200 20 h  % TCK031 T-4002 PCC Intet section (outside PCC pool) K 3 1.1 O + 180 20 I TCK400 T-4003 Octow steam distributor (inside PCC poo r) K 3 1.1 0 + 200 20 h TCKQ30 T-5001 Drain line funder Tee conjunction) K 3 1.1 0 + 180 30 k TCK039 T-5002 Drain line (CT intet section) K 3 1.1 0 + 180 30 TCK040 T-6001 Vent line (under Tee conjunction) K 3 1.1 0 + 180 30 TCK4G5 T-6002 Vent line (VT Inlet section) K 2 1.1 O + 180 30

                 , TCK4G1    T-7001                              Steam bypass fine (upstream valve)           K          2                1.G     50 + 400    10           -@

TCK395 T-9001 CT / PCC pressure equafizing line K 2 i.1 0 + 100 13 8 E TCK471 T-A001 PCC upper header module 1 (back side) K 3 1.1 0 + 200 165 k so h o PCC upper header module 1 (front side) 3 - TCK473 T-A002 K 1.1 0 + 200 165 ui TCK474 T-C001 PCC lower header modute 1 (back side) K 3 1.1 0 + 200 165 TCK475 T-C002 PCC tower header modute 1 (front side) K 3 1.1 0 + 200 165 TCK477 T-0001 PCC upper header module 2 (back side) K 3 1.1 0 + 200 165 o [ TCK479 T-F001 PCC tower header module 2 (back side) K 3 1.1 0 + 200 1G5 TCK051 T-1001 VT (clevation G10G mm) K 3 1.1 0 + 180 200 TCK052 T-1002 VT (elevation 3228 mm) K 3 1.1 0 + 180 200 TCK053 T-1003 VT (etevafion 570 mm) K 3 1.1 O + 180 200 d TCK046 T) LOO 1 CT (elevation 4040 mm) K 3 1.1 0 + 180 200 - y 3o TCK047 TI.OC2 CT (elevation 3545 mm) K 3 1.1 0 + 180 200 &

                                .                                                                                                                                             x TCK048 T-LOO 3                                    CT (elevation 1800 mm)                K          3                1.1      0 + 180   200 TCK049 T-LOO 4                                     CT (elevation 388 mm)                K          3                1.1      0 + 180   200 TCKO43 T-LOO 5                                    CT water discharging line             K          3                1.1      0 + 180    30 TCK398 T-M001                                      PCC pool make-up line                K          2                1.1      O + 100    30      m TCK500 T-N00 t                              PCC-lC pool tower connecting line           K          2                1.1      0 + 150    30               8 TCK054 T-OOO1                                      Catch tank inlet norrie              K          3                1.1      0 + 180    30 TCK044 T-H001                                    PCC pool discharging line              K          3                1.1      0 + 100    30 TCK055 T-T001                                 VT steam-gas discharging line             K          3                1.1      0 + 180    30               o o      -

Tab. A2- Fluid therm 0 couples instrument list for Test Condition T43_2 l ,

                                                                             ;                          i      < OTG               s       O5            ?

TCKOD5 TW-DC11e Tube 1 A elevation a. extemal wan K 0.5 1 0:210 0.5 TCK082 TW-D0t ti Tube 1 A eievation a. intemal wat K O.5 1 0:210 1.55 TCK079 TW-0012e Tube 1 A elevation b, extemal wall K 0.5 1.3 0:210 0.5 $ TCK070 TW 0012i Tube 1 A elevation b. intemal war K 0.5 1.4 0:210 1.55 $ @ 2 d TCK125 TW-0013e Tube 1 A elevationA. extemat wall K 0.5 1.1 0:210 0.5 TCK075 TW-0013i Tube 1 A etevation c. intemal wan K 0.5 1.5 0:210 1.55 TCK102 TW-0014e Tube 1 A elevation d. extemal wat K O.5 1.1 0:210 0.5 { TCK06S TW 00141 Tube 1 A elevation d. intemal wag K 0.5 1.1 0:210 1.55 TCK095 TW-0015e Tube 1 A elevation e. extemat was K 0.5 1.2 0 :210 0.5 TCK0G3 TW-0015i Tube 1 A clovaron e, intemal walt K 0.5 1.2 0:210 1.55 8 O TCK127 TW-001 Ge Tube 1 A clovation f. cxtemal wall K 0.5 1.2 0:210 0.5 g 8 TCK11G TW-0016i Tube 1 A elevation f. Intemal wall K 0.5 1.2 0 :210 1.55 $ h TCK12G TW-0017e Tube 1 A elevation g, extemal wn3 K 0.5 0.9 0!210 0.5 h TCK105 TW-0017i Tube 1 A elevation g. intemal wan K 0.5 0.9 0:210 1.55 TCK001 TW 0010e Tube 1 A elevation h. extemal waB K 0.5 0.G 0:210 0.5 TCK135 TW-0018i Tube 1 A elevation h. intemal waH K 0.5 0.4 0:210 1.55 .D 0

  • TCK076 TW-0019e Tube 1 A elevatbn I , extemat wat K O.5 0.5 0:210 0.5 c TCK119 TW-001Di Tube 1 A elevation i . intemat wan K 0.5 0.5 0:210 1.55 TCK05G TW-DU20e Tube 4A clovation a. extemal waB K 0.5 1 0:210 0.5 TCK097 TW.0020i Tube 4A elevation n. intemal wall K O.5 1 0 : 210 1.55 >

TCK000 TW 0021e Tube 4A elevation b. extemal wall K-- 0.5 2.1 0:210 0.5 se TCK099 TW-00d.,11 Tube 4 A elevation b. intemal waB K 0.5 1.9 0t210 1.55 d TW-0022e Tube 4A elevation c. extemat wa8 K 0.5 0.7 0:210 0.5 E TCK118 TCK100 TW-D022i Tube 4 A elevation c. intemal waN K O.5 0.6 0: 210 1.55 TCK071 TW-D023e Tube 4A elevation d. extemat was K 0.5 0.9 0:210 0.5 TW-0023i Tube 4 A elevation d. intemal was K 0.5 0.9 0:210 1.55 T TCK103 Cn TCK000 TW-0024e Tube 4A elevation e, extemal wall K O.5 1.1 0:210 0.5 $"' TCK101 TW-00241 Tube 4 A elevation e intemal war K 0.5 1.1 0:210 1.55 TCK132 TW-D025e Tube 4A elevation f. extemal wa9 K 0.5 0.8 0:210 0.5 TCK006 TW-00253 Tube 4A clevation f. Intemat was K O.5 00 0:210 1.55 o TCK129 TW-002Ge Tube 4A elevation g external wan K 0.5 1.3 0:210 0.5 Tab. A3- Brazed Thermocouple Instrument LIST for Test Condition T43 2

( Wit ' O g 1.2 0:210 1.55 g. Tube 4A elevation g. intemat wat K 0.5 TCK009 TW-0026i 0:210 0.5 S K 0.5 1.4 TCK065 TW.0027e Tube 4A elevation h. extemal wall K 05 1.4 0:210 1.55 [ m (f) TCK067 TW D027i Tube 4A elevation h intemat wall - Tube 4A e!evation t. extemal watt K 0.5 1.3 0:210 0.5 8 IT1 TCK069 TW-8028e K 0.5 1.3 0 :210 1.55 Io TCK083 TW-B028i Tube 4 A elevation 1. intemal wall K 0.5 0.8 0:210 05 8 TCK007 TW 0029e Tube 50 elevation a extemal wan K 0.5 0.8 0:210 1.55 g. TCK109 TW-002Di Tube 50 elevation a. intomat wall ~ K 0.5 1.5 0:210 0.5 TCK093 TW 0030e Tube 50 elevation b, extemal wan K 0.5 1.5 0:210 1.55 TCK108 TW-B030i Tube 50 etevation b.intemal war K 0.5 1 0:210 0.5 O TCK070 TW-DO31e Tube 50 elevauon c. extemat wnB O Tube 50 elevation c,intomat war K 0.5 1 0:210 1.55 8 so o n TCK134 TW-D031i TW-8032e Tube 50 elevation d. extemat war K 0.5 0.9 0:210 0.5 g y TCK110 TW-D032i Tube 50 elevation d. intomat wan K 0.5 0.9 0:210 1.55 ] Q

                                                                                                                            ~

TCK133 K 0.5 1.3 0:210 0.5 TCK112 TW-0032s Tube 50 elevation e, extemal wan K 0.5 1.3 0:210 1.55 TCK131 TW-0033i Tube 50 elevation c. intemat wan K 0.5 1.6 0:210 0.5 TCK057 TW-0034e Tube 50 etevation f. exlemal wan 2 1.55 0 Tube 50 elevation f. intemal war K 0.5 1.6 0:210 Q TCK058 TW-0034i 0.5 1.4 0:210 0.5 Tebe 50 etevation g, extemal wan K TCK077 TW-8035e 0.5 1.4 0:210 1.55 Tube 50 elevation 9 intemat wall K TCK107 TW-80353 0.5 1.6 0:210 0.5 Tube 50 elevation h. extemal wait K TCK0G1 TW-D036e K 0.5 1.2 0:210 t.55 y Tube 50 elevation h. intemal wait TCK114 TW-0036i K 0.5 1.4 C : 210 0.5 > $n. TCK115 TW-8077e Tube 50 elevation i . extemal wan K 0.5 1.44 0:210 1.55 E TCK117 TW-0037i Tube 50 elevation I Intemat wat 0.5 1.7 0:210 0.5 Tube 80 e!evation a. extemal wan K TCK006 TW-0038e K 0.5 1.1 0:210 1.55 TCK072 TW-8038i Tube 80 etevation a. intemal wall K 0.5 1.5 0:210 0.5 o TCK090 TW-0039e Tube 80 elevation b entemat wall " K 0.5 2.1 0:2to 1.55' TCK0G4 TW-0039i Tube 80 elevation b. Intemat wan 0.5 1,2 0:210 0.5 Tube 80 cievation c extemal wan K TCK092 TW-B040e 0.5 0:210 1.55 Tube 80 elevation c. intemal war K 1 TCK106 TW 0040i 0.5 o:210 0.5 Tubo 00 elevation d extemal waB K 1 TCK088 TW-0041 e o E K 0.5 0.9 0:210 1.55 TCK122 TW.00411 Tubo 80 ctevation d. intomat wan Tab. A3 (Cont'd) l

                                                 .                       )                    y K        0.5   1.1   0:210   0.5  g.

TCK111 TW-0042e Tube 80 elevation e. extemal waB Tube 80 elevat!on e. Intemal wan K 0.5 1.1 0 :210 1.55 5 TCK008 TW-00421 TCK091 TW B043e Tube 80 clevation f. extemal wat K 0.5 1.1 0:210 0.5 g g TCK062 TW-0043i Tube 80 elevation f.intomat won K 0.5 1.1 0:210 1.55 g  % TCK113 TW-B044e Tube 80 elevation g. extemal wan K 0.5 0.9 0:210 0.5 2- H TCKC59 TW-0044i Tube 80 elevation g. intemat wan K 0.5 0.9 0 : 210 1.5$ $ TCM128 TW-0045e Tube 80 elevation h. extemal war K 0.5 0.6 0:210 0.5 { T CK074 TW-DO45i Tube 80 elevation h. intemal wan K 0.5 0.5 0:210 1.55 { Tube 80 elevation 1, extemal won K 0.5 0.4 0:210 0.5 TCK084 TW-004Ge K 0.5 0.4 0:210 1.55 TCK130 TW-80464 Tube 80 efevation i . intemat wat 8 o 8 u 8 C I 3 3 w E N

                                                                                               >   E

! 9: X m i$. o 2. Tab. A3 (Cont'd) l

gbgig{

                                                                 ^

u t SQ d Sna%M6e31Ea'tfddLiPd.P.fsiitg [DJsiifet ddd6 maadHRMingsMRB) $iT@$'e aMdddna!!E mM8@ io 1610 5420 3120 PT-100 45 0.45 0 + 150 $ TR003 T-P001 3120 PT-100 4.5 0.45 0 + 150 @ (f} TR009 T-P002 1610 4625 TRO11 T-P003 50 3745 2695 PT-100 4.5 0.45 0 + 150 h h 3745 2G95 PT-100 4.5 0.45 0 + 150 TRO13 T-P004 720 T-P005 720 3745 2495 PT 100 4.5 0.45 0 + 150 y TRO14 4.5 0.45 0 + 150 TR0t 6 T-POOG 720 3745 2195 PT-100 f._ 3745 1795 PT 100 4.5 0.45 0 + 150 TRO19 T-P007 720 3745 1195 PT-100 4.5 0.45 0 + 150 TRO21 T-P008 720 3745 2G95 PT-100 4.5 0.45 0 + 150 o O TR022 T P000 000 1000 3745 2G95 PT-100 4.5 0.45 0 150 TD023 T P010 TR025 T-P011 1080 3745 2495 PT-100 4.5 0.45 0 + 150 ] l TR089 T-P012 1080 3745 2105 PT-100 4.5 0.45 0+150 $ 3 3745 1795 PT-100 4.5 0.45 0 + 150 TR028 T-P013 1080 1080 3745 1195 PT-100 4.5 0.45 0+ 150 TR037 T-P014 T-P015 12GO 3745 2695 PT-100 4.5 0.45 0 + 150 o TR038 3745 2G95 PT-100 4.5 0.45 0 + 150 TR039 T P016 1G10 3745 SG50 PT-100 4.5 0.45 0 + 150 TR101 T-P017 1910 5025 PT-100 4.5 0.45 0 + 150 TR041 T-P018 1910 3745 TR042 T P019 1910 3745 3810 PT-100 4.5 0.45 0 + 150 $ PT-100 4.5 0.45 0 + 150 $ TR043 T-P020 1910 3745 3220 s. 0 + 150 M 1910 3745 2G95 PT-100 4.5 0.45 TR044 T-P021 1910 3745 2495 PT-100 4.5 0.45 0+150 TRO45 T-P022 3745 2195 PT-100 4.5 0.45 0 + 150 TR046 T-P023 1910 TR047 T-P024 1910 3743 1795 PT-100 4.5 0.45 0+150 , 2 to 4.5 0.45 0 + 150

  • T-P025 1910 3745 1195 PT-100 TR090 3745 8GO PT-100 4.5 0.45 0 + 150 TR049 T-P026 1910 1910 3745 400 PT-100 4.5 0 45 0+150 TR050 T-P027 50 PT 100 4.5 0.45 0+150 g a o TROS) T-P020 1910 3745 Tab. A4- Resistance thermometers instrument list for Test Condition T43_2

_w- .w +. ,m- e e -

                                                                                                             -w  e--w   : ye e
                    'P,last;'Clids  &mMEistijFmVt1Lr]i:liti6nlifn131s"t o                   '       "-'is      <

D et MuistiRp_{ritME& MCilitifatid$

  ' SIETg6dd                        3 h      II dl. ., 4       $ hWMdfi
  • fm Y i m (mm)k$35 ,

3 '.m dh #M I d 5 TR053 T-P029 2725 3745 2G95 PT-100 4.5 0.45 0+150 k @ TR058 T-P030 3540 3745 2695 PT-100 4.5 0.45 0+150 TR059 T-P031 3840 3745 2695 PT-100 4.5 0.45 0 + 150 2 d TR060 T-P032 12GO 2400 ~ 2G95 PT-100 4.5 0.45 0 + 150 $ 6 TROG2 T-P033 1260 2400 2495 PT-100 4.5 0.45 0+150 {-_ TR064 T-P034 1260 2400 2195 PT-100 4.5 0.45 0+150 TR065 T-P035 1200 2480 1795 PT-100 4.5 0.45 0 + 150 TR099 T P03G 1260 2400 1195 PT-100 4.5 0.45 0 + 150 O h

                                                                                                                                         $ n TR071              T-P037         1610       2480           5G50          PT-100          4.5             0.45         0 + 150    g y TR100              T-P038         1G10       2400            5025         PT 100           4.5            0.45          0 + 150        k TR097              T P039         1610       2400            2G95         PT-100           4.5            0.45          0 + 150 TR076              T-PO40         1610       2480            2595         PT-100           4.5            0.45          0 + 150 TR079              T-PO41         1610       2400            2495         PT-100           4.5            0.45          0 + 150   o TR080              T-PO42         1610       2400            2395          PT-100          4.5             0.45         0 + 150 TR081              T-PO43         1610       2400            2195          PT-100          4.5             0.45         0 + 150 TR002              T-PO44         1610       2480            1995          PT-100          4.5             0.45         0 + 150        g TR004              T-PO45         1610       2480            1795          PT-100          4.5             0.45         0 + 150    > E a

TR005 'T-PO4G 1610 2480 1495 PT-100 4.5 0.45 0 + 150 gi' TR086 T-PO47 1610 2480 1195 PT-100 4.5 0.45 0 + 150 TR102 T-PO49 1610 1960 2G35 PT-100 4.5 0.45 0 + 150 TR092 T-POSO 1910 1960 2695 PT-100 4.5 0.45 0+150 g g'D TR093 T-P051 2725 1960 2695 PT-100 4.5 0.45 0 + 150 TR094 T-P052 3540 1960 2695 PT-100 4.5 0.45 0+150 TR096 T-P053 3840 1960 2695 PT-100 4.5 0.45 0+150 o + Tab. A4 (Cont'd)

... e Document R:V Appendix P;g3 ef SIET 0 B 1 7 Sezione Reattori innovativi 00393RP95 APPENDlX B MODIFIED INSTRUMENTS

[-- D:cumint Riv Appendix P g) cf , SIET 00393RP95 0 8 2 7 Sezione Reattori innovativi TABLE OF CONTENTS Tab. B1 - Modification on thermocoupfes during PANTHERS-PCC testing , Tab. B2 - Modification on pressure instruments during PCC testing, referred to " Instrument List" of Appendix A

                 .             -           . .        ~-             -.                             -             .-.            .             - . . .                 ,.
     .r. s:
                                                                         - D:cumint                 Rsv             Appendix --           P:gi -          cf                 l SIET -

Sezione Reattori innovativi 00393RP95 0 B 3 7 f INSTRUMENT REPLACEMENT NEW MEASUREMENT l TEST NUMBER ' n.r r.nc.mstrumennsus..too.ndix A)  !

   .                      143.2
                     '                                                             T4001 (TCK539): T-4002 (TCK026)             T T002 (TCK035)                               {

T01_f i T4001 (TCK460): T4002 (TCK026) T T002 (TCK035) - T02_1:T02_2:702_3 T 4001 (TCK539): T-4002 (TCK026) T T002 (TCK035) l T03_1 l T-4001 (TCK539): T4002 (TCK026) - T T002 (TCK035) T04_1 l T4001 (TCK539). T4002 (TCK026) T T002 (TCK035) - T05_1 T4001 (TCK539): T 4002 (TCK026) T T002 (TCK035) f T06.1 Ll T4001 (TCK539): T-4002 (TCK026) T-T002 (TCK035) T07.1  ; T-4001 (TCK539): T 4002 (TCK026) - T T002 (TCK035) T08_1:T08.2  ! T09 1. T09_6; T09. 7: T09_8 T-4001 (TCK034) T 4001 (TCK460): T 4002 (TCK026) T-T002 (TCK035) , T09_9:T09_10 T4001 (TCK539): T 4002 (TCK026) ~ T-T002 (TCK035) ' l T10_2 ' T 4001 (TCK539): T-4002 (TCK026) T T002 (TCK035) 711_1 T-4001 (TCK539): T-4002 (TCK026) T.T002 (TCK035)  : T12_1 T 4001 (TCK542): T 4002 (TCK026) T-T002 (TCK035) T13.,1: T13.2: T13_3: T13,4:T13_5'  ;; T4001 (TCK539): T-4002 (TCK026) T-T002 (TCK035) T14_1 l T4001 (TCK460): T-4002 (TCK026) T-T002 (TCK035) T15_1:T15_2:T15_3;T15.4:T15_5:T15.6;T15 7 T4001 (TCK542):T 4002 (TCK026) T T002 (TCK035) l T16_1: T 16.2: T16_3: T16_5: T16_6: T16 7  ! T 4001 (TCK460): T-4002 (TCK026) T T002 (TCK035) T17_1:T17_2:T17_3;T17_4:T17 5-T T002 (TCK035) f T18_1: T18.2; T18_3: T18_4: T18_5: T18_6 T-4001 (TCK460): T 4002 (TCK026) ' T-4001 (TCK460):T 4002 (TCK026) T T002 (TCK035) T19_1: T19.2: T19_3: T19_4: T19_5 - T4001 (TCK539): T-4002 (TCK026) ~ T.T002 (TCK035) T20_1 -  ; T-4001 (TCK539): T 4002 (TCK026) T T002 (TCK035) T21 1 T22.1: T22_2: T22_3: T22_4:T22.,5 T-4001 (TCK460): T 4002 (TCK026) - T T002 (TCK035) .l T23.1: T23_2, T23_3 T4001 (TCK029) l T23_4:T23_ST23_6 T-4001 (TCK460): T-4002 UCK026) - T T002 (TCK035) ] T4001 (TCK539); T 4002 (TCK026) T T002 (TCK035) l T24_1 T25_1:T25,2; T25_3: T25_4; T25.5 T 4001 (TCK542): T4002 (TCK026) T.T002 (TCK035) [ T351:T35.2:T35 3:T35_4:T35 5;T35_6 T-4001 (TCK460): T 4002 (TCK026) T T002 (TCK035) ' I T36_1: T36_2; T36. 3: T36_4:T36.5 T-4001 (TCK542); T 4002 (TCK026) T T002 (TCK035) T37_1 T-4001 (TCK460): T-4002 (TCK026) T T002 (TCK035) { T4001 (TCK460): T-4002 (TCK026) T.T002 (TCK035)  ; T38_1 j T39_1 T-4001 (TCK029) - T41_1 T4001 (TCK029) f T42_1 T4001 (TCK029) T4001 (TCK542): T 4002 (TCK026) T T002 (TCK035) T44_1 T4001 (TCK542):T 4002 (TCK026) T.T002 (TCK035) , T45_1 T4001 (TCK542): T-4002 (TCK026) T-T002 (TCK035) { T46_1 .f T-4001 (TCK460): T-4002 UCK026) T T002 (TCK035) T47_1 T4001 (TCK460): T4002 (TCK026) T.T002 (TCK035) { T48_1 T4005 (TCK460): T4002 (TCK026) T T002 (TCK035) { T49_1 T4001 (TCK534):T-4002 (TCK026) T T002 (TCK035) ' T50 T51 T4001 (TCK542):T4002 (TCK026) T T002 (TCK035) T-4001 (TCK534):T-4002 (TCK026) T T002 (TCK035) i TS2

  • T53 T-4001 (TCK534); T-4002 (TCK026) T T002 (TCK035) l T-4001 (TCK545): T4002 (TCK026) T T002 (TCK035); T 2002 (TCK543) {

T54 T55 T4001 (TCK460);T 4002 (TCK026) T T002 (TCK035) .I T T002 (TCK035) I T56 T4001 (TCK534):T 4002 (TCK026) T T002 (TCK035):T 2002 (TCK543) l T75 T-4001 (TCK545): T-4002 (TCK026) T76 T 4001 (TCK545): T 4002 (TCK026) T-T002 (TCK035):T 2002 (TCK543) T77 T4001 (TCK545): T 4002 (TCK026). T T002 (TCK035): T 2002 (TCK543) -l T/D T4001 (TCK545): T 4002 (TCK026) T-T002 (TCK035): T-2002 (TCK543) ' { SLP06 / 07 / 08 /10 /11/12 /13 /14 /15 /16 T-4001 (TCK460); T4002 (TCK026) T.T002 (TCK035) Note an th. rnodifications refer to T43.2 test instrument list, reported in Appendir A Tab. 81 - Modification on thermocouples during PANTHERS PCC testing I 1

         , - - ,     -_ .             _                                                                      _                                                               i

j '

                                                                                                           - i                                                                                                                              l{

gw E C0hy~ < o3dE f)%d ( g a N {#@h{3 ,~ @$$2"

           ]

T D N E S TE

                                                                                                                                                                                                                                                     )             )       )      )

M E ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 1

                                                                                                                                                                   )       )

1

                                                                                                                                                                                 )      )

1

                                                                                                                                                                                                )

1

                                                                                                                                                                                                        )         )

1

                                                                                                                                                                                                                                )

1

                                                                                                                                                                                                                                      )

1

                                                                                                                                                                                                                                               )

1 1

                                                                                                                                                                                                                                                            )

1 1 1 1 E U 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 12 2 2 12 2 2 2 2 2 2( 2( 2( 2 ( R Q 2 2 ( 2 ( 2 ( 2 ( 2 ( 2 ( 2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( U E ( S R A E TO M N A i x d n e p T N p E A M E ) ) ) ) fo R ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 8

                                                                                                                                                                    )       )

9

                                                                                                                                                                                  )

9

                                                                                                                                                                                         )

9

                                                                                                                                                                                                 )

8

                                                                                                                                                                                                         )

8

                                                                                                                                                                                                                  )

9

                                                                                                                                                                                                                                 )

9

                                                                                                                                                                                                                                       )

9

                                                                                                                                                                                                                                                )

8

                                                                                                                                                                                                                                                      )

8 9 8 9 9 "t U )

8) 8 8 9 8 8 9 3 8 8 9 8 S

8 9 8 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 ( 1 ( 1 ( 1 ( ( 1 1 ( ( 1 1 ( 1 ( 1 ( 1 ( 1 ( ( 1 1 ( 1 ( s A 1 ( 1( 1 ( 1 ( ( ( ( ( ( ( ( ( ( ( ( ( ( iL E t M n e W E m N u r t s n _

                                                                                                                                                                                                                                                                                                            *I T                                                                                                                                                                                                                                                                                                         t o     -

O d _ N E e r T L ) ) ) ) ) ) r N B ) ) ) ) ) ) 5

                                                                             )

5

                                                                                                      )

5

                                                                                                           )

5

                                                                                                                    )

5

                                                                                                                            )

5

                                                                                                                                     )

5

                                                                                                                                             )

5

                                                                                                                                                            )

5 5 5 5 5 5 5 e E A 5 5 1 5 1 5 1 5 1 1 1 1 1 1 1 1 ( 1 1 ( ( 1 1 ( 1 ( 1 ( 1 ( ( 1 fe M ll 1 ( ( ( ( ( ( ( ( ( ( ( ( r U A , R V g T A S n _ it N s I t e _ C _ C - P E g G N inr A N u R O ) ) ) d T I ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 0 0 T ) ) ) ) ) ) ) ) ) )

7) 8) 6 0 6) 8 9 6 9 6 6 s _

N ) ) ) ) 7 5 6 8 8 7 9 9 6 9 9 6 6 6 8 1 6( ( ( ( ( ( ( 1 1 - 5( 5( 7( 7( ( E A 5 6 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( t n MR I ( ( e _ U A m R V u T r S t s N I n i e r u s s e r T p T N N E n E M ) ) ) ) o M E ) ) ) ) ) ) ) 1

                                                                                                        )

2

                                                                                                              )

2(

                                                                                                                     )

1

                                                                                                                              )

2

                                                                                                                                       )

2

                                                                                                                                               )

1

                                                                                                                                                               )

2

                                                                                                                                                                       )

2 2 2 2 ( 2 ( 2) ( n U C 1 ( 1 ( 1 ( 1 ( 1 ( 1 ( ( ( ( ( ( ( ( ( ( ( o R A i t T L a S P ic N E I f R i d o M 2 B b. a T 7 6 6 5 8 5 1 1 3 T T T G: 5 5; 5 5 5 5: 5 R _ _ _ _ _ _ _ _ E ) 5 7 8 9 2 5 5 6 2 2 3 3 B ET 1 T 1 T 1 T T 1 T V T T T M U O N 8 4 5 4: 4: 4; 4: 5 e 4;_4:_ 4:_ N e 9 3 5 7 B 9 2 5 5 6 T e 0 1 1 1 1 1 2 2 3 3 S s T T T T T T T T T T E ( 7; 3; 3: 3 3:_ T 3 _ _ 3:_3 7_3;_3;_3; 2 3 3_ :_3:_ 5 5 6 2 9 3 5 6 6 7 8 9 2 3 3 0 1 1 1 1 1 1 2 2 0 T T T T T1 T T T T T T T T 2: 2 6: 0. 1 2 2; 2;

                                                                                                                                                                   . 6._2;_2; 2:                                   2: T.

2 5 2: 2; 2: 2 8_ 9 9 3 S 6. 1 6 7 8 _ 9 2 3 2 2 3 2 5 5 5 2 3 3 T T T T T T1 1 1 1 C 0 0 0 1 I T T T T T T T T T T T 1 1: 1, 9; 2 1 1 1:, 5 1 1: 1: S: 1: 1: 1: 1. 1 1: 1; 4: 6 1 _ 1: 1: 1: 1 1 1 1 1 1 2_1 _ 1 2.. 1 34_ 1_ 1 5 1 _ . 1 3 9 9 0 _ _ _ . 1

2. 3 3 . 4 5 6 6 7 8 9
                                                                                                                                                                                                      )      1    , 2 3   _

3 3 4 5 5 6 7 8 9 0 1_ 2 3 4 0 1

                    'T T T T 7 T 0     0 0 0                      p7      0 0T T0 T0 T T 1T                    1       1       1 T T 1

T T T T T1 T T 1 1 1 1 1 1 2 2 2 2I T T 2 2 2 2 3 3 3 3 3 4 4 4 T T T T T T T T T T T T lf fl lll l!l l

s Document Rav Appendix P ga cf SIET Sezione R::ttori innovativi 00393RP95 0 B 5 7 O

    $W W $

2 W yD O O O O O O O O O O g O P E E E E O O O s S E E E E E E E E E E - E E E E E E E E E

  • e bb 2e <

LI D .d V U c

                                                                                                    =

H Z k H o, W W 2 N 4 W C 3 E E G E S S E E E E E E E f f E E E E E ~ ,

                                                                                                                                           ,g 0 0 : 0 0 0 0 0 0 0 $ 0 0 d                                 E E 0        0           $

{2 d 4 - 4 C g C) 3 y a E Z g C SM

                                                                                                    .%                                       C Q

I H O y

  • O g D Z wJ o H

E E E E E E E E E E E E E E E b so c c c c c c c c c c c = 2 D 4 c c e e

  • b E > D H 4 1 m T 2

O .E-M M M W O U W <$ G. o U m 2 4M C 4 , C e 3 3w S ES E E E E E E E =

                                               = E E      E E       -
                                                          = - E = = = =

E E E E E E t,Sy a yg - - - - - - - - - - - - - 3R 8 a 4# E E 9@ dx 2

     =                                                                                          ma                                           n OO                                           .c gg*                                           c) w MQ                                            U N'

e m" a 8 H 2 W h b O 3 a 4 E C W2 W 2 NC o gu n E E E n n - e n E E E n n n E n z=zE

                                                                         - n  -

ga g c O m b b o

                                                                                                                                             'a=

c. W p =a 8 y Z- y e m sO 5

                                                                                                      &                                      2 C                        N'E 8

ea . Q"h M 22 N b bb O Q q<  % N N

                                                                                                 =S w

8g a . S e i A AA i Y  % 6 $$ ex N O NN 00 g hO

                                                                                                 . b                   2       22 y    n                                                                                    b, "                  b       bb mW                                                                            e bNg              H    m        mm                   <

2

  • e O  %

Z N N N  ! W O oO i a z Z m k. g 2 i dd p * ' 3 W o U O. . O. O. . m w - E *  %

                                                                                     'M
                                                                                                 %                CL   N bbb N N N Rye              w    O000
8: 2222 m N =

O - o t; bbbb N 2 O O NNNN O " 2 *Q 7 2 3 O. O. O. O.

                   ," i   N, " ,*~,                                               $ 3 *.-        =d               f    GOOO m   . m . s . Ja a           a      's           W   m
                 . m .        ~ .     ,      O -   N n ,                                          D                    a m a m m m W mm m                     g         J J                         ,

w w v w w w M N b 5 E E w, w H w w H H + H w H n w H H k tn m m k J z , L_

                                                                                                                                                                                         +
                                                                                                                                                                                          +

IMST!WMENT R ANGE VARfATION (5) P-4002 (TMA008.101.14 + 1301.14 kPa); P-5001 UMA010.101.14 + 1101.14 kPa); P-6001 (TMA007.101.14 + 1301.14 kPa); P-LOO 1 (TMA009,101.3 + 1101.3 kPa); P-1001 UMA011.101.14 + 1101.14 kPa); P-T001 (TMA012,101.14 + 1101.14 kPa); P-T002 (TMD151,100 + 800 kPa); F-3001 (TMD208, O + 25 kPa); y F-2002 UMD026, O + 50 kPa); DP-007 UMD233, O + 10 kPa); DP-022 (TMD234, O + 50 kPa)

  • g m (6) P-4002 (iMA008.101.14 + 1301.14 kPa); P-5001 (TMA010,101.14 + 1101.14 kPa); P 6001 (TMA007,101.14 + 1301.14 kPa); P-LOO 1 (TMA009,101.3 + 1101.3 kPa); :1
                                                                                                                                                                                    -1 P f001 (TMA011.101.14 + 1101.14 kPa); P-T001 (TMA012,101.14 + 1101.14 kPa); P-T002 (TMD151.100 + 800 kPa); F-3001 (TMD208. 0 + 25 kPa)                                    {

R (7) P-4002 (TMA008,101.14 + 1301.14 kPa); P-5001 UMA010.101.14 + 1101.14 kPa); P-6001 (TMA007,101.14 + 1301.14 kPa); P-LOO 1 UMA009,101.3 + 1101.3 kPa); P-1001 (TMA011.101.14 + 1101.14 kPa); P-T001 (TMA012,101.14+1101.14 kPa); P-T002 (TMD151,100 + B00 kPa); F-3001 UMD208, O + 5 kPa); F-2002 UMD026. 0 + 50 kPa); DP-007 (TMD233. 0 + 10 kPa); DP-022 (TMC234, O + 50 kPa) 8 o w O (C) P-4002 (',MA008,101.14 + 1301.14 kPa); P-5001 (TMA010.101.14 + 1101.14 kPa); P-6001 (TMA007,101.14 + 1301.14 kPa); P-LOO 1 (TMA009.101.3 + 1101.3 kPa'; 8 O P-t001 (TMA011.101.14 + 1101.14 kPa); P-T001 (TMA012,101.14+1101.14 kPa); P-T002 UMD151,100 + 800 kPa); F-3001 (TMD208. 0 + 25 kPa); F-2002 (TMD026. 0 + 5 kPa); ] l DP-007 (TMD233. 0 + 10 kPa); DP-022 (TMD234, O + 50 kPa) g 3 (9) P-4002 (TMA000.101.14 + 1301.14 kPa); P-5001 (TMA010.101.14 + 1101.14 kPa); P-6001 (TMA007,101.14 + 1301.14 kPa); P-LOO 1 (TMA009,101.3 + 1101.3 kPa); P-1001 (TMA011,101.14 + 1101.14 kPa); P-T001 FMA012.101.14+1101.14 kPa); P-T002 (TMD151,100 + 800 kPa); F-3001 (TMD208. 0 + 25 kPa); F-2002 (TMD026, O + 100 kPa); D U DP-007 (TMD233, O + 10 kPas; DP-022 (TMD234. 0 + 50 kPa) E (10) F-3001 (TMD208. 0 + 25 kPa) t V G $ (11) P-4002 (TMA008,101.14% 1301.14 kPa); P-5001 (TMA010,101.14 + 1101.14 kPa); P-6001 (TMA007,101.14 + 1301.14 kPa); P-LOO 1 (TMA009,101.3 + 1101.3 kPa); P-1001 (TMA011.101.14 '1101.14 kPa); P-T001 UMA012,101.14+1101.14 kPa); P-T002 (TMD151,100 + 800 kPa); F-3001 FMD208. 0 + 25 kPa); F-2002 (TMD026, O + 5 kPa) $ (12) P-4002 UMA005.101.14 + 1301.14 kPa); P-5001 FMA010,101.14 + 1101.14 kPa); P-6001 (TMA007.101.14 + 1301.14 kPa); P-LOO 1 (TMA009,101.3 + 1101.3 kPa); P-1001 (TM A011,101.14 + 1101.14 kPa); P T001 UMA012,101.14+1101.14 kPa); P-T002 (TMD151.100 + 800 kPa); F 3001 (TMD208, O + 25 kPa); F-2002 (TMD026. 0 + 5 kPa); y P-2002 (TMOOGS. 100 + 4100 kPa); P-4001 (TMR164,100 + 2100 kPa) F-2003 (TMD236. 0 + 25 kPa); DP-007 UMD233, O + 10 kPa); DP-022 (TMD234. 0 + 50 kPa) e (13) P-4002 (TMA008,101.14 + 1301.14 kPa); P-5001 (TMA010.101.14 + 1101.14 kPa); P-6001 (TMA007.101.14 + 1301.14 kPa); P-LOO 1 UMA009,101.3 + 1101.3 kPa); P-1001 (TMA011,101.14 + 1101.14 kPa); P-T001 (TMA012,101.14+1101.14 kPa); P-T002 (TMD151,100 + 800 kPa); F-3001 (TMD208. 0 + 25 kPa); F-2002 (TMD026, O + 50 kPa); P-2002 (TMD008,100 + 2G00 kPa); F-2003 (TMD236. 0 + 25 kPa); DP-007 (TMD233, O + 10 kPa); DP 022 (TMD234, O + 50 kPa) y o Tab. 8,2 - Modification on pressure instruments during PCC testing, referred to " Instrument List

  • of Appendix A

(

D: cum:nt RIV Appendix Pr.g ] cf SIET Sezione Reattori innovativi 00393RP95 0 B 7 7 S < S .M

               +                                                                              D
           ..o                                                                                 C E&                                                                                   CL o.

Ss < n e o s eb

                                                                                              '.o y
           +                                                                                  "3 et
          - u.
              ?                                                                               -

C o .. (D

          " o.E                                                                                E
              .=

2 m

              ".                                                                              .C_

bo e- m' S 88 40 m c) asE $ N S Yu SEo " c5

          ,v 8. *+

C 4 LL o W m oX

  • C"~ $
           +g o                                                                               o
          *8s
          ". m b O

CL. 8*N - cn "bh

          ~                                             8"
                                                                                              .6 25 8 a..o" ,            g                        g                                     u
          $5E bsh 5

a b S N h "b 2 $ k E ago. e ~ e

          '. 4 -               a                        !!                                    ~~E E .                  U                        N                                      g3
          $Eo                  M                        o
          *Ss                  R                        s                                      a" n eb                 -                        t                                      n 5 9 ~8
          ;5
                               $                        g                                      !L) b                        u
           .;g w+..                 8 o

X 8 C k N N O g ' c.E o. N w z

  • o o r0
            . O" m             o. .               s     3                                      o Eg"                  $                  b b
                                                  ~     ~

y bsa BE @ E m 2 o b(s s5 A A

          "bg                  60s                                   o 8"o                   e                 9.

sse

                                                           .         m                         $

c 8b - b m m-a"? 8 s F-H. - n. m" u" u Ooo 8 o N D. 8 n os ss2 i M

o. q u -

u' mx HHH

o. .
  • a $

d

          -
  • m 34 oo AUS ooo E

a J9A so coo 5 88#

          -   -8 b*b m

s22 bbb h s s uJ oe m t

           ,*-*                                   nnn
          ".-+             d   25                 888        s a

R 54g 5.. d o. oo ayy H

                                                      .      m o
          ". ? "
          = .: m.

5 #Ng or e u H z eae c5

                           <c                                a   me 8Oo o ggo H

9 o"o oo o ms s w a O o" o" sss Z H oa ss ets C bb t C a bbb

                                                  ~~~

5 - be

          @-g 8 m          9
                           =;

m~5 58 die E 888 ete d g 55

                                                                 +v 3

agg o o u. e. e c. a. A ,a g w w~ EEE ESE EE

a ccc = cce = en

D:cument R;v Appendix P;ge cf SIET Sezione Reanort innovativi 00393RP95 0 C 1 8 APPENDIX C FACILITY CHARACTERIZATION TESTS

                         .,                           .        _ ._ _-                                       .-~m                      ..__-      ,   . _ _ . . .
' fg - "     s ..

i ;. > '-u-Dscument - RIV _ Appendix - P ga _cf-SIET. Sezione Reattori innovatM 00393RP95 0 C- 2- 8

                                                                                                                                                                        ?
                                                                                                                                                                         +

t I TABLE' OF CONTENTS 1.; i l C1. SHAKEDOWN TESTS I C2. COLD SHAKEDOWN TESTS

                                ' C2.1 ' C01 Test .-

C2.2 CO2 Test C2.3 C03 Test' '! C2.4 C04 Test  ; C3. HOT SHAKEDOWN TESTS . I i. C3.1 H02 Test - C3.2 H04 Test j C3.3 H05 Test -l t i l i l

                                                                                                                                                                       .i ,

I l 0 1

      <; : s.

cf D: cum:nt - Riv Appendix . Pig 2 :

                                  . SIET Sezione Reattori innovativi       00393RP95           0           -C-            3-                     8
                                                                                                                                                           .I l

C1. . SHAKEDOWN TESTS ' , The PANTHERS-PCC plant has been characterized by two kinds of pre-operational tests: cold and L

               . hot tests.-

- The cold shakedown tests were performed with water and air at ambient conditions. The fluid operating conditions in the hot shakedown tests were similar to test matrix conditions. e C2. COLD SHAKEDOWN TESTS Four cold shakedown tests have been performed in the period from July 93 to May 94. 1 C2.1 CD1 Test The objective of the test was to verify the PCC and IC pool support structure when both the pools ' , were at the maximum gravitational load (full of cold water at the normal level of 4.4 m). The analysis : of the test results show that the pool structure deformation at fullload are below the allowable value. C2.2 CO2 Test - l Obtectives:  ! l a) verify the pool level control system; l b) verify the adequacy of the lower 8' connecting line in terms of pressure drops; c) functional of make-up and discharging line Gilflo flow meters. I 1 Besults: i a) four tests were performed at different make up flowrates: 1,3,6 and 9 kg/s. i Since the controller parameters were optimized the level control system worked well for each of the above mentioned conditions;  ; b) the level difference between the PCC and IC pool was within the error specified for level measurement at the maximum make up flowrate. This means that the pool connecting 8' line is well sized for minimize the hydraulic resistance; c)- the make-up and discharging flow meter devices have been checkedMEing the tests. The only problem detected was some osci!!ations in the flow meter of the pool discharging line around 6 kg/s. These oscillations were due to the presence of air in the 4" discharging line. The measure r c , , . , -m , _ _

4' , D cum:nt R;v Appendix Paga cf SIET Sezione Rea: tort innovativt 00393RP95 0 C 4 8 has been stabilized sligtly increasing the fluid back pressure downstream the Gilflo by means of . a throttling valve. C2.3 C03 Test Obiectives'. a) determine the hydraulic resistance of the PCC riser, PCC tube bundle, vent line, vent tank and vent discharging line at different air flowrates; b) verify the air compressors C002 and C003 capability and the adeguacy of the VT pressure control system (PIC 4002). Results. a) the analysis of the test results showed the DP values across the PCC riser, tube bundle, vent line and vent tank kept always below the overall instruments error at the maximum air flowrate. The hydraulic resistance of these components and pipes were therefore considered negligible; b) the performance of compressors C002 and C003 has been measured. The maximum total air flowrate was 0.92 kg/s at 1.8 MPa. The PCC pressure control system (PIC 4002) has been checked in the range of test matrix conditions. The pressure oscillations in steady state conditons have been within 7 /. of pressure average value. C3. HOT SHAKEDOWN TESTS Three hot shakedown tests have been performed in the period from December 93 to July 94. C3.1 H02 Test Obiectives: a) measure the condensate tank (CT) heat losses at different fluid temperature; b) evaluate the amount of steam by-passed into CT through the equalizipgJne, connecting the mixture supply line to CT. i a

p - t, ( , 4 j ??:-:  :* D curnent. .Rzv l Appendix P;gs cf. SIET : Sezione Reattori innovativl 00393RP95 0 C 5 8. w

                                        ' Test conditions:
                                        -- To meet the above mentioned objectives, the test has been performed in two different steps:

a)' In the first one the CT was pressurized with steam at four different pressure values: 0.26; . 0.41; 0.59 and 0.79 MPa; . b) - ' the second part of the test was performed with an air / steam mixture, and the CT filled with cold ' water up to its normal water level; two different air mass fraction of the inlet mixture have been tested. Test results: a) the results of the test analysis are summrized in the following table:

                                                                                                                 .Tcond
                                                               . T (*C)       Tr (*C)       Tin (*C)                                       W - (kW)

P (MPa) g/s - AP (Pa) At (s) 169.3 10.5 171.3 2.37 6102 4320 4.85 0.7858

                                                                 ~ 157.9        10.5          159.8      2.11         3404      '2700        4.40 0.5872 144.3          12           146.0     .1.18         6048       .5580       3.86 0.4083 0.2579         128.4          12           129.8      1.37'        5017     -6120         2.98 j

where: P average pressure in the Condensate Tank (P-LOO 1) T average temperature in the Condensate Tank (T LOO 1; T LOO 2; T-LOO 3; T LOO 4) 1 Tr average room temperature Tin average Condensate Tank infet temperature (T-9001) .. (0 *^ condensate water draining from the wall - Gw = g

  • At AP CT level variation (L LOO 3)

A inlet cross section total area of the CT 4* draining tubes (2 tubes in.parallef) At tv,m interval , i g gravity acceteration

                                                                                                                                                         'l u

i

i

 .w. i                                                                                                                                                                                       .{
    . :4 -           .e.
                                                                                              . D:cument           Ray        Appendix . Peg 2                   - .of                         f SIET Sezione Reattort innovativi                       00393RP95:              O            C             6                    8                         .j i

W = r. h g] (P) Condensate %k heatlosses ^ hg;. latent heat at the Condensate Tank pressure (P) ' ,

                                                                                                                                                                                                   )
       ~

Figure C1 shows the CT heat losses behaviour versus inner-cuter temperature difference;  ; 8 b) the experimental data have showed that the quantity of steam by passed and condensed in CT depend on heat losses and on air mass fraction in the inlet mixture. Due to the very small rate of ( condensation in the CT, the fluid temperature in the CT upper pienum decreased very slowly vs . time as shown in Figure C1. In any case the by-passed steam flowrate was negligible if compared with the ' steam flowrate .; values at the PCC inlet, as reported in the test matrix. t

                                                                                                                                                                                                 -1
                                                                                                                                                                                               \ 'h C3.2 H04 Test i

Objectives: -{ a) determine the heat losses of the vent line and vent tank; j b) confirm the plant stability to perform test type A.1.3 (steady state test with steam only); i

                                                                                                                                                                                                 -f Results:                                                                                                                                                 ;
                                                                                                                                                                                                 ~i a) the test has beeen performed at the following steady-state conditions:                                                                               t Vent Tank pressure                            0.4     MPa                                                             ll Vent Tank temperature'                        143     'C Room temperature                              25      'C                                                             .j inlet saturated steam flowrate                6.7     kg/s                                                            .'

During the test time the totalincrease of Vent Tanklevel was of 3.9 mm . A conservative . calculation of the steam condensed in the Vent Tank. due to the heat losses in the vent line and Vent Tank, was made considering the levelin the cylindrical part of the tank. Since the tank diameter is 1.7 m ,3.9 mm of level incease correspond to 8.85 liters. The density of water at the measured temperature of 143 *C was 923 kg/m3; therefore the total mass condensed during the test time of 22 minutes was 8.17 kg equivalent to a condensation rate of 6.2 g/s . [ The specific heat of evaporation at the measured temperature is 2133 kJ/kg so that a f conservative value of the heat losses in the Vent Tank and vent line at the test condition was: l ~

                                                                                                                                                                                                  't 4

i

e e SIET D: cum:nt R;v App ndix Pigs cf Sezione Reattori innovativi 00393RP95 0 C 7 8 W = 2133 6.2 E-3 = 13.2 kW b) the performance of the test facility has been measured. The maximum steam flowrate in steady state conditions was 6.7 kg/s at 0.4 MPa and 153 *C, equivalent to 10 'C of superheating. When the steady state conditions were reached the stability of the plant was maintened for 15 minutes and allinstrument signals were measured and recorded.The PCC inlet pressure and temperature oscillations have been within 2% of the corresponding average values. Test shakedown H04 has been repeated at different steam flowrates following the same pre-test check list and test procedeure. For this test, named H04_1 the plant has been modified adding a 4* by-pass line to the VT discharging line in order to reach a lower PCC inlet pressure; a new PCC pool vent line (1 m OD) has been also installed to discharge steam directly to the atmosphere to avoid overpressure inside the pool. The objectives of this test was: a) confirm the plant capability to run test type A.1.3 (steady state steam only) at different steam flowrate: 1.0; 2.5; 4.0; 5.5 and 6.6 kg/s or maximum available; b) check the mass balance across the heat exchanger (Fsteam - Fcond) The results of the experimental data are summarized as follows: l r Pressure Temperature Steam r team s superheating (kg/s) (kPa) ('C) ('C) 5.40 361 148 2.4 6.65 415 152 7.1 , 3.98 297 142 8.8 2.56 226 133 8.9 l 1.36 170 127 11.5  ; l 6.65 394 150 7.0  ; 1 l

e . Dzcum;nt Rav Appendix P ga of SIET Sezione Reattori innovativi 00393RP95 0 C 8 8 C3.3 H05 Test The objective of test H05 was to corfirm the plant capability to run tests type A.1.1: steady-state tests with a mixture of saturated steam and air. The results of the experimental data are summarized in the following table: intet Pressure inlet temperature r team s Iair (kg/s) (kg/s) (kPa) (kPa) 5.05 0.0 297 141 5.07 0.163 335 144 417 5.09 0.163 151 5.08 0.162 534 160 , 5.05 0.162 655 167 5.04 0.162 784 173 Test shakedown H05 has been repeated at different steam and air flowrates following the same test procedure. For this test. named H05_1, the plant has been modif:eo adding a 4' by pass line to the ' VT discharging line in order to reach a lower PCC inlet pressurr, a new PCC pool vent line (1 m OD) has been also installed to discharge steam directly to the atmosphere to avoid overpressure inside the pool. The objectives of this test was to confirm the plant capability to run test type A.1.1 and A.1.2 (steady state tests with a mixture of saturated or supereated steam and air) at the maximum steam flowrate (6.6 kg/s) and at two different air flowrate : 0.9 and 0.1 kg/s, The results ci the experimental data are summarized as follows: inlet Pressure inlet temperature r team s fair (kg/s) (kg/s) (kPa) (kPa) 6.53 0.9 503 156 6.16 0.066 323 144

 ** e e

SIET D: cum;nt R2v Appendix P gs cf Sezione Reattori innovativi 00393RP95- 0 D 1 12 8 APPENDIX D ERROR ANALYSIS

m

 ,:A :;,'
                                              . Docwnent        Riv          Appendix   P;gt '   of.

SIET l

             . Sezione Reattort innovatM . 00333RP95         0              D         2      12       l r

P

                                                                                                    ~

l 5 LIST OF CONTENTS  ; i D1. INTRODUCTION  ; i D2. TEMPERATURE MEASUREMENT UNCERTAINTY  : D2.1 Thermocouples j D2.2 Resistance thermorneters i D3. PRESSURE MEASUREMENT UNCERTAINTY l D2.1 Instrument and acquisition card error D2.2 Hydraulic connection error , l I D4. LEVEL MEASUREMENT UNCERTAINTY D5. FL'OWRATE MEASUREMENT UNCERTAINTY l D6. SUPERHEATED STEAM MEASUREMENT UNCERTAINTY D7. HEAT REJECTION RATE MEASUREMENT UNCERTAINTY j i 1 i h

                                                                                                        'I
                                                                                                         =t

?: D cument RIV Appendix P;g3 cf SIET Sezione Reattori innovativi 00393RP95 0 D 3 12 D1. INTRODUCTION The uncertainty (a) of the directly measured physical quantities (absolute and differential pressure, temperature) is defined in a conservative way as: A= (d, + d, + d, + d,)" (D1) where: Ai = assigned accuracy rating of the instrument for absolute and differential pressure; ANSI Standard accuracy for thermocouples: UNI 7937 Standard accuracy for resistance thermometers. og = acquisition card A/D converter and amplification maximum error , l 6; = cold junction maximum error (only for thermocoupfes)

                   =      connection wire maximum error (only for thermocouples)

Aw The uncertainty of the derived quantities (flowrate, level, etc.) is calculated using the following error propagation formula: 0.5 r 32

                                                   .[

AY = * ( AX,)2 (D2)

                                                    ,. , , o              .

where: Y = Y(X;) derived quantity depending on iX variables, with i = 1,2, ..., n AXj uncertainty of the X; quantity. 1 D2. TEMPERATURE MEASUREMENT UNCERTAINTY l Pool water temperatures were measured by means of resistance thermometers (RTDs) type PT100 All other temperatures were measured by means of sheathed Cromel-Alumel thermocouples type K. l D2.1 Thermocouples With referenc6 to formula (D1) the following terms are considered for thermocouples uncertainty calculation: i l

se ( , SIET D: cum:nt R r,v Appendix P gi cf Sezione .%: tori innovativl 00393RP95 0 D 4 12 a) calibration error With reference to UNI 7938 Standard the accuracy for ANSI Special thermocouples type K is: 1.1*C or

  • 0.4 % full scale whichever is greater.

All thermocouples in PANTHERS-PCC test facility, except T-1001 and T 7001, have a calibration range less than 210 *C and therefore their accuracy is 21.1 *C. Thermocouples T-1001 and T-7001 have a calibration range of 400 *C and therefore an accuracy of 1.6 *C. b) acquisition card error

            .According to the DAS manual, the acquisition card error is 0.3 *C.

c) coldjunction error According to the DAS manual, the cold junction error is 0.4 *C. d) connection wire error According to ANSI ASTM E 230-77 Standard, the error introduced by the connection wires is 21,1 *C The uncertainty of temperature measurements is therefore: 22 *C for thermocouple T 1001 and T-7001 i 1.6 *C for all other thermocouples D2.2 Resistance thermometers a) calibration error According to UNI 7937 Standard, the resistance thermometers used in PANTHERS-PCC testing were in class Gl. The instrument accuracy reported in the Standard is: 0.15 *C 0.002 ITI where l T I is the absolute value of temperature in 'C. Considering a conservative temperature in operating conditions of 120 *C, the calibration error of these instruments is 0.39 *C.

y v. [6 - 4.K. -, SIET Docum:nt Rsv Appendix P ga c'f . Sezione Reattort innovativi 00393RP95 0 D 5 12 b) acquisition card error. m_

                . According to the DAS manual, the acquisition card error is 0.4 *C, The uncertanty of all the resistance thermometers is therefore 2 0.56 *C .

D3. PRESSURE MEASUREMENT UNCERTAINTY Pressure and differential pressure quantities are calculated as : P=P+B where: P=. pressure or differential pressure to be measured P= i directly measured value by instrument B= static pressure due to the presence of cold water inside the hydraulic connections The B value is calculated as: B=pgH where: p= density of cold water inside the hydraulic connection lines g= gravity acceleration H= pressure laps elevation difference (for DP measurements) or pressure tap-instrument elevation difference ( for P measurements); H values are reported in Table A1 of Appendix A. With reference to formula (D2), the uncertair ty AP of pressure measurements is calculated as: AP = h(AP )* + ( AB)* where: i APg = instrument and acquisition card error AB = hydraulic connection elevation difference measurement error The uncertainty of all ihe pressure measurement instruments is reported in Table D1. l l

r? Document ruv Appendix Pcg) cf SIET Sezione Reattori innovativi 00393RP95 0 D 6 12 D3.1 instrument and acquisition card error a) overallinstrument error The pressure measurement instruments are calibrated in SIET laboratory; one of the fo!!owing overall instrument errors is assigned to each instrument: 0.25 '4 full scale 0.5 % full scale _ 1 *4 full scale The overall instrument error takes into account the cal;bration error and the effect of the environmental conditions and instrument mounting. The overallinstrument error values are reported in Table A1 of Appendix A. b) acquisition card error According to the DAS manual, the acquisition card error for pressure transmitters and transducers is 0.15 % full scale. D3.2 Hydraulic connection error Using the formula (C2) for B value uncertainty calculation and considering the following maximum errors: Ap = 3 kg/s Ag = 0.01 m/s2 AH = 0.005 m the hydraulic connection elevation difference error is calculated as: H AB = 966l 1 + 2.57 ' 1000 i Hs with AB in (kPa) and H in [m] .

&. '1 '[ z g . 3.4,; Document . Rsv Appendix P;g3 cf SIET -

                        . Sezione Reattori innovativl          00393RP95               0                  D-        7          12
                                                                                                                                         -i D4.            LEVEL MEASUREMENT UNCERTAINTY Levels are calculated as:

L = DP / (pg . g) -  ! i I where:-  ! t L = liquid level (m) DP = differential pressure measured (Pa)-  : 3 ' p; = ' liquid density at measured temperature - (kg/m ) g = gravity acceleration (m/s2) , t

                ' With reference to formula (D2) the uncertainty of level measurements, ol, is calculated as:                             -l
                                                                 ' a(DP)' * ' Apf *DP'            ' Ag
  • DP '*

h u Pt *8, u Ps'*8 > < Po*E' s l where: t A (DP) uncertainty of differential pressure measurement [Pa) pi = 900 kg/m 3 density of hot water in PCC pool, condensate tank, vent tank and catch tank pi = 990 kg/m3 density of cold waterin IC pool apl =2 kg/m3 maximum error on density measurement l g , 9.81 m/s2 gravity acceleration , Ag = 0.01 m/s2 - maximum error on gravity acceleration .j i i The result of uncertainty calculation in level measurements is summarized in Table D2.

                                                                                                                                            )

D5. FLOWRATE MEASUREMENTS UNCERTAINTY  ; Flowrates are calculated as:  ; F = a

  • c * /p
  • DP .

where: _ i i

   .          -    ,4-.        -- __ + ---          - -      -                          - - , -                  r3

W

   ,, 3 D cum:nt            RIV            Appendix       P:ga        cf SIET Sezione Reattort innovativi        00393RP95             0                D             8         12 a =       calculated or calibrated flux coefficient         (m2) t'     =  compressibility coefficient (E = 1 for liquid) p      =  fluid density                                     (kg/m3)

DP = measured pressure drop (Pa) With reference to formula (D2) the uncertainty of flowrate measurements, AF, referred to the F value is calculated as: 2 s2

                                                  ' Aa 2 gg        <g

__ _3p '_l. A(DP) _AF - + _ + + F a) a e g 2p, g2 DP , For each test this error would be calculated for the different flowrate values. However it can be demonstrated that it never exceeds 2 % of the measured values for all the flowrates, measured by means of orifice plates or venturi nozzles. For the actual uncertainty calculation AF/F = 2 % is assumed for all the flowrates, in the case of GILFLO measurement devices and specifically for the outlet condensate the calibration shows that a good estimate of the error is: AF = 2 % of the measured value for F 2 2 kg/s AF = 0.2 - 0.08 F for F < 2 kg/s D6. SUPERHEATED STEAM MEASUREMENT UNCERTAINTY Two cases were considered: first case: steam only tests in this case saturation temperature at the measured pressure if t, ticulated by a computer routine. The error in superheating temperature is due to uncertainty of pressure and temperature measurement, and used routine. Considering the pressure uncertainties reported in Table D1, the superheating temperature uncertainty never exceeds 2 'C; l 1 Second case: air steam mixture tests In this case the steam partial pressure is calculated. This value is then IJsqd to calculate the saturation l temperature. 1

m - , 0

      ' ; ;;&.                                                                                                                 l cf
                                   ' SIET                       Document .         Rav        . Appendix PJg3
                        . Sezione Reattort innovativi           00393RP95            0            .D      9         12         ;

p i . . Considering an uncertainty of 2 % of the measured value for air and steam flowrate.s, the uncertainty in  ; pressure measurements as reported in Table Di and the test conditions, the uncertainty of superheating  ! t= neverexceeds 2.5 *C. l D7. . HEAT REJECTION RATE MEASUREMENT UNCERTAINTY-For the steam only tests, the heat rejection rate is calculated as: _ W = ( Fsteam

  • hsteam ) + ( F;;q . hg;q ) - (cF ond hc ond ) = Wsteam + Wiiq - Wcond (r .

With reference to formula (D2) the uncertainty, AW, is calculated as: j r

                                                          -0$

AW, AW = W2i ,

                                      , s.:

s .W; , , where: _i e 32-05  : AWi, " r ^5.s+ 20h t W,

                                       .y F,4        s h, j .

The uncertainty of specific is considered in all cases equal to: , b = 0.01 h if the condensate flowrate is greater or equal to 2 kg/s then: I AF

                             - = 0. 02                                  for all flowrate measurements                         .j i

If the condensate flowrate is less than 2 kg/s then: C0"d - 0.08 with Fcond n

                                        =                                              i [kg/s)

Fcond Fcond The results of the uncertainty calculation are reported in Table 7,1 for each test.

                 - For the air-steam mixture tests, the heat rejection rate is calculated as:

i

SIET D cument RI,v Appendix P;ga cf Sezione Fleattort innovatM 00393RP95 0 D 10 12 W = ( Fsteam . h steam ) + ( F;q . hg;q ) + (Fair . hair ) - (Fcond hcond ) +

                       + Fout
  • I( hair out X r-out ai )+ hsteam-out . (1 Xair-out))

from which: W= Wsteam + Wg q + Wair - Wcond- Wout where: Fout = Vent Tank outlet flowrate Xair-out = air quality at Vent Tank outlet section hair-out = air specific enthalpy at Vent Tank outlet section hsteam-out = steam specific enthalpy at Vent Tank outlet section With reference to formula D2 and considering: S = 0.01 in all cases b

                $ = 0.02                           for all flowrate measurements except condensate outlet flowrate F

AFC "d = 0.02 if condensate outlet flowrate is equal or greater than 2 kg/s F,,no AFc ,y 0.2 if condensate outlet flowrate is less than 2 kg/s

                                - 0.08 Fcond    Fcond AX
                - = 0. 045 X

we obtain the results summarized for each test in Table 7.1. Note that the large uncertainty on the air quality at the Vent Tank outlet section particularly effects the heat rejection rate uncertainty in tests with low efficiency.

f -,.. SIET D;cumint R2v Appendix Pcg) cf Secone Reattori innovativi 00393RP95 0 0 11 12 Table D1 - Pressure measurements uncertainty (referred to T43 2 conditions) Plant Code Uncertainty (kPa) Plant code Uncertainty (kPa) DP001 0.21 L-QOO2 0.13 DP002 0.21 L-P001 0.30 DP003 0.14 F-1001 3.6 DP004 0.12 F 1002 0.29 DP017 0.18 F-1003 0.05 DP018 0.18 F-3001 0.29 DP019 0.04 F 2001 1.46 DP020- 0.04 F-2002 0.29 DP021 0.54 F-LOO 1 0.07 DP022 1.02 F T001 0.29 DP023 0.32 F-T002 0.03 DP024 0.41 F-M001 0.13 DP025 1.55 F-R001 0.13 DP029 0.23 DP-P001 0.15 DP030 0.38 DP-P002 0.18 DP031 25 DP-P003 0.27 DP032 71 DP P004 0.20 P-1001 105 DP-P005 0.07 P-7001 63 DP-P006 0.20 P-2001 19 DP-P007 0.17 P-4001 5.7 DP-P008 0.27 P-4002 6.8 DP-P009 0.07 P-A001 5.7 DP-P010 0.09 P-5001 5.7 P-6001 6.8 P-LOO 1 5.7 DP005 0.36 P-1001 5.7 DP006 0.3G P-T001 5.7 DP008 0.36 L-LOO 1 0.41 DP009 0.36 L-LOO 2 0.16 DP010 0.36 L-1001 0.18 DP011 0.36 i l L-1002 0.10 DP012 0.36 L-0001 0.31 DP013 0.36 i L-OOO2 0.08 DP,026 0.37 l L-QOO1 0.30 DP015 0.36 L-LOO 3 0.59 DP027 0.36 DP016 0.37 k l

y-4, . '. D;cument RIv Appendix P ga cf SIET Sezione Reattori innovativi 00393RP95 0 D 12 12 Table D2 Level measurements uncertainty (referred to T78 conditions) Plant Code Uncertainty (m) L-LOO 2 0.019 L-1001 0.024 L-1002 0.012 L-0001 0.037 L-0002 0.009 L-0001 0.036 L-OOO2 0.015 L-P001 0.032 I i l l l l I

C ., 3:... Document RIV Appendix P ga cf SIET Sezione Reattori innovativi 00393RP95 0 E 1 7 APPENDIX E DATA RECORDS 1 I i a

t .a . 's - SIET Document R;v Appendix P;g) cf Sezione Reattort Innovauvi 00393RP95 0 E 2 7 LIST OF CONTENTS E1. DATA RECORDS E2. DATA TAPES l 1 l 1 l I 1 l l

( ,e n i Document Rev Appendix Page of SIET Sezione Reattori innovativi 00393RP95 g 0 E 3 7 E1. Data Records Thermal-hydraulic data of all PANTHERS-PCC tests were digitally acquired and stored on hard disk for the entire duration of tests. Data were stored on two separate hard disks: one for directly acquired quantities and one for derived quantities. At the end of each test day, a copy of all files acquired that day along with configuration files. cpecifying the used data reduction constants and subroutines, was made on floppy disks. At the end of the test program, all data was collected and stored on 4 mm 120 Mbyte tapes using a Colorado Memory Systems *Trakker 250' backup device. E.1 Data tapes Data tapes contain thermal-hydraulic data and configuration files of all the tests run including shakedown and failed tests. They can be read using the same dsvice described above for storage. Data files are arranged in directories. Each directory contains all data and configuration files of a single test. The directories are named in the following way:

1) Shakedown tests are named with a first character: "C" for cold shakedown tests and "H" for hot shakedown tests. The first character is followed by the test number as reported in the TP&P document (e.g.H02).
2) Simulated LOCA pressurization tests are named with five characters: the first three are *SLP' and the following two are a progressive number (e.g. SLP07).
3) All other tests are named with six characters: the first is a "T*, the following two are the test number as referred in the test matrix, the fourth is an underscore and the final two are a progressive number (e.g.

T16_06). The progressive number in the directory names is chronological and has no reference to the pressure at which the test was run. Each di ectory contains the following files: a) file ofinstrument zeros This file contains values recorded prior to the start of tests for each testing day for comparison to the theoreticalinstrument zeros. The file name is composed of eight characters. The first two are "ZA'16 flowed by the date expressed as

                   " day-month-year"; the extension of the file is *ZER".

Example: ZA171194.ZER

f

s s ' ,* .

SIET D cument R ,v Appendix P g) cf Sezione Reattort innovativi OO393RP95 0 E 4 7 b) file of historical thermal-hydraulic directly acquired quantities This file contains the values of selected directly acquired thermal hydraulic quantities during the entire testing day, at the frequency of 1 sample each 30 seconds. The file name is composed of eight characters. The first six indicate the date expressed as " day-month-year"; then follow the letters "TH'. The extension of the file is 'STO*. Example: 171194TH.STO c) file of historical thermal-hydraulic derived quantities As above, this file contains values of selected derived quantities throughout the whole testing day at the frequency of 1 sample each 30 seconds. The file name is the same as above except for the letters *EL' instead of "TH". Example: 171194EL.STO d) files of the directly acquired thermal-hydraulic quantities This is a group of files containing all the directly acquired thermal-hydraulic quantities. The DAS used for the directly acquired thermal-hydraulic quantity, records the data in a file with the extension *DTA". When the file reaches 256 bytes, the DAS automatically records the data in a new file with the extension *DTB" and so on in alphabetical order. The number of these files found in the data tapes depends only on the duration of the test. The file name is composed of eight characters.The first three are *SLP" for LOCA simulation tests er "T" followed by the test number for all other tests. Then follow the letters "TH" and a progressive number. Example: SLP07TH.DTA or T16TH06.DTA c) file of the derived thermal-hydraulic quantities This file contains all the derived thermal-hydraulic values of the test. The file name is again composed as above except for the letters "EL" instead of "TH". The extension is

                          'DAT".

Example: SLP07EL.DAT or T16ELO6.DAT 1 f) file of constants used for calculation of derived quantities l I l I This file contains the data reduction constants. The file name is the same as above except for the extension ' CST". Example: SLP07EL. CST or T1CELOS. CST l

6M !i) ;

SIET Docmnent .Rsv Appendix P g3 cf Sezione Reattort innovativi 00393RP95 0 E 5 7 1 I g)l file of configuration usedin derived quantity calculations This file contains the enabled data reduction subroutines and their input and output channels. The file name is the same as above except for the extension "CFG". Example: SLP07EL.CFG or T16ELO6.CFG -

i h) ' files of fast acquired thermal-hydraulic quantities  !

This is a group of files containing the values of selected quantities for which the sampling frequency 'l, e requested is one sampie per second. The first file of this group has the extension "DTA", the second ;

                               'DTB" and so on as already explained in case d).                                                                l The file name is the same as in case d) except for the letters "TF* instead of "TH'.

Example: SLP07TF.DTA or T16TF06.DTA l For shakedown tests, a standard method of naming data files was not yet adopted. For tests run before 2 August 1994,'and specifically: T43_2, T09_1, T09_6. T09_7, T09_8, T42_1, T41_1, T40_1, T39_1, T23_1, T23_2, T23_3 -I The files type a) and h) of above do not exist because the storage of these files was not yet introduced.  ; All files are in ASCl! format. The separator character is not the same for all files. Specifically: , t

                                    ,      for the files indicated abovo as a), b), d) f), g) and h);
                                  *;*      for the files indicated above as c), and e).                                                        -

i The first 4 lines in the data files indicate, for each column, the measurement name, the measurement unit .  ! and the channel number. The measurement names in files type a), b), c) and h) are the plant codes. In files type c) and e), instead, the measurement names have the following meanings: f F steam ~ Inlet steam finwrate (before de-superheating) F-lig De superheating water flowrate F-cond Outlet condensate flowrate i Fm Pool make up water flowrate i F-r Pool water discharge flowrate X-airout Air quality at Vent Tank outlet l_ Tavg pool PCC pool water average temperature f Tavg LCT Condensate Tank average temperature  ! r t

QA\ ' y

  • D cum:nt RIV Appendix Pig) cf SIET Sezione Reattori innovativi 00393RP95 0 E 6 7 LCT-L2 Condensate Tank water level Lvent 11 Vent Tank level Lvent-12 Vent Tank level Leatch-02 Catch Tank level Lpool-Q1 IC pool water Icvel Lpool-Q2 IC pool water level Lpool-P1 PCC pool waterlevel H-steam inlet steam specific enthalpy (before de-superheating)

H-air Inlet air specific enthalpy H-cond Outlet condensate specific enthalpy H-m Pool make-up water specific enthalpy H-r Pool discharge water specific enthalpy Ppvap-out Vent Tank outlet steam partial pressure Hsteam-out Vent Tank outlet steam specific er.thalpy Hair-out Vent Tank outlet air specific enthalpy H-5 Condensate specific enthalpy at the PCC outlet section Wsteam Steam inlet power Wair Air inlet power W-lig De superheating water inlet power W-cond Condensate outlet power W-out Vent Tank outlet power W-exc Heat rejection rate Fin-tot Totalinlet flowrate Fout-tot Total outlet flowrate Fair out Vent Tank outlet air flowrate Fsteam-out Vent Tank outlet steam flowrate Xair-in Air quality at the PCC inlet section Diff Flot Total inlet-outlet flowrate difference in percentage Diff Fair Inlet-outlet air flowrate difference in percentage P 4002 PCC inlet pressure T-4002 PCC inlet temperature Fsteam-true inlet steam flowrate + de superheating water flowrate T-surr Inlet steam superheating (referred to steam partial pressure) F-Hel Inlet helium flowrate F-Totgas Inlet helium + air flowrate

   %A) D SIET                          D cum:nt          R;v    Appendix         P;g2          cf Sezione RZ tt;rt innovatM            00393RP95            0        E               7           7 in the case of data files for directly acquired thermal-hydraulic quantities and fast acquired quantities I

composed of more than one file (DTA, DTB and so on) only the file with extension "DTA" has this heading that is, though, valid also for all other files of the same group. Data from shakedown tests C01 and CO2 are available only as printouts. Data from the following resistance thermometers were stored in the thermal-mechanical data files and therefore they are not included in the thermal-hydraulic data tapes: T-P001, T-P002, T-P009, T-P015. T-P031 T-P037. T-P038, T PO48, T-PO49. T-P050, T-P051, T-P052 T-P053. 1 i}}