ML20085M550
ML20085M550 | |
Person / Time | |
---|---|
Site: | Callaway |
Issue date: | 07/31/1986 |
From: | UNION ELECTRIC CO. |
To: | |
References | |
RTR-NUREG-1437 AR, NUDOCS 9111110168 | |
Download: ML20085M550 (568) | |
Text
{{#Wiki_filter:. CALLAWAY PLANT Eva uation o' Coo ing Water nta<e m3 acts on t7e Vissouri River' r-Section 316b PL 92 500 NPDES Permit No.: MO 0098001 p-w'% [(S,% _____7__ g .. , w a ,iC we D
,i' . ^%f', f x y .f,
- ' Q& J . ;;5- ;; gV q$* % ~ _./ ty*,,.
"% - & -l 'Qw ,J 'QM,/
i l Ii " a s uc ~ n- y?"2 E u m w w ;W m,~2w
\V'..
pf;D Rb ll
- , ,Y % a:-
s -- mm-u-l & .. J iT APM_ $liiB l . , ,, I t a ~ p;['- q $ - . : , l
%gp;:_..[ ;7 c
_;M. ~ 2=m s d N]j ,--h i :' p tg g ff
= ~f[N = }w~ = x .
I T' * ' f/l "iL
~ ~ =T.mm= '. ~.,__~ - W_ _ y .i .!!/ <t le
_ ../f c .! , ./// ' i"*-- _ j l UNION ELECTRIC COMPANY Environmental Services Department St. Louis, Missouri 9111110160 060731 PDR NUREG 1437 C PDR
I I I CALLAWAY PLANT Evaluation of Cooling Water Intake Impacts on the Missouri River Section 316(b) PL 92-500 NPDES Permit MO-0098001 . I I Submitted to: 1 The Missouri Department of Natural Resources Division of Environmental Quality i I Prepared by: UNION ELECTRIC COMPANY Environmental Services Department i St. Louis, Missouri July, 1986 5 I I
- B i il Ackn owledgemen t s i5
- y This report was prepared by the Environmental Services Departmen t of Union Electric Company. The following is an jg acknowledgement of the individual contributions to the preparation of
!E i the report: r, W. Lynn (Report Coordinator); i F. L. Putz (Project Coordinator, Impingement Study, Field Fisheries Study); l T. C. See (Entrainment Study Field Fisheries Study); D. J. Wambold (Project Supervisor, Quality Assurance Manager) . l Other contribu tions by: l !E C. A. Donne ly, D. T. Parks, and Union Electric Stenographic
- 3 Services (Secretarial Support);
j R. B. Kearns, Union Electric Engineering Computer Services i (Computer Programming Support); i Callaway Nuclear Operations (1mpingement Tests and ,' Operational Data); i } E. M. Reishus (Organiza tional Support) . i 4 1 I I I
-lii-I TABLE OF CONTENTS Section De sc rip t ion Page Acknculedgements 11 List of Tables viii List of Figures xi 1.0 Introduction 1-1 1.1 Rationale and Legal Requirements 1-1 1.2 Previous Studies 1-2 1.3 Study Elements 1-3 1.3.1 En t rainmen t 1-4 1.3.2 Impingement 1-4 1.3.3 Field Fisheries 1-5 1.4 Summa ry of Conclusions 1-5 1.5 Report Structure 1-7 2.0 Plant Description and Operations 2-1 2.1 Location 2-1 2.2 De sc rip tion 2-1 I 2.3 Intake St ructure Description and Operation 2-3 2.3.1 Intake St ructure Description 2-3 2.3.2 Intake Operation 2-11 '
2.3.3 Intake liydraulics and 2-14 River liydrology 2.3.4 Entrainment and Impingement 2-15 Conside ra tions 3.0 River and Site Characteristics 3-1 3.1 Physical and llydrological 3-1
-iv-TABLE OF CONTENTc (c on t ' d)
Section De sc rip t ion Pace 3.1.1 Introduction 3-1 3,?.2 Hyd rology 3-2 3.1.3 Logan Creek 3-5 3.1.4 Other Major Tributaries 3-5 3.2 Water Quality 3-5 3.3 River Ecology 3-8 3.3.1 Primary Productivity 3-8 3 g 3.3.2 Zooplankt on 3-10 3.3.3 Habitat Formers 3-12 3.3.4 Ma croinver tebra tes 3-13 3.3.5 Fish 3-17 3.3.6 Wildlife 3-20 4.0 Entratnment Study 4-1 8 4.1 Objectives 4-1 4.2 thterials and Methods 4-1 4.2.1 Collection Site Locations and Descriptions 4-1 4.2.2 Sampling Methods 4-3 4.2.3 Entrainment Ra te Calculations 4-6 4.3 Re sult s 4-8 4.3.1 Species Composition 4-11 Abundance and Densities 4.3.2 Larva Length Distribu tion 4-27 4.3.3 Ent rainment Re su lt s 4-27 4.4 Discussion 4-48 4.4.1 Taxon Composition Abundance and Densities 4-49 I I
-v-TAllLE OF CONTENTS (cont 'd)
Section De sc rip tion Page 4.4.2 Length Distritution 4-61 4.4.3 Entrainment 4-62 4.4.4 Summary and Conclusions 4-64
- 5.0 Impingement Study 5-1 5.1 Introduction 5-1 5.2 Obje c tives 5-2 5.3 niterials and Methods 5-2 5.3.1 Sample Collection 5-3 5.3.2 Sample Processing and 5-4 Analysis 5.3.3 Sample Documentation 5-5 5.3.4 Data Compilation and 5-5 Computations 5.4 Re su lt s 5-8 5.4.1 Sam Re sult s 5-8 5.4 l.1 . Wa ter withdrawal 5-8 5.4.1.2 Species Composition 5-8 5.4.1.3 Impingement Rates 5-1L 5.4.1.4 Impingement Weights 5-13 5.4.1.5 Length Ranges of 5-13 Impinged Fish 5.4.2 Projected Result s 5-14 5.4.2.1 Projected Total Annual 5-14 Imp ingemen t 5.4.2.2 Projected Species Composition 5-16 5.4.2.3 Projected Impingement Weights 5-16 I
5.5 Di scu s s ion 5-16
-vi-TABLE OF CONTENTS (c ont 'd) section De sc r i p t ion Page 5.5.1 Significan:e of Itapingement $-17 .* 5.1.1 n reatened or Endangered 5-17 Fish 5.5.1.2 Predatinant species 5-17 5.5.1.3 Other Species 5-18 5.5.1.4 Age Class of Fish Irnpinged 5-19 5.5.1.5 Field Fisheries Data 5-19 5.5.2 Intake Design, Construction 5-20 Capacity and Location 5.5.3 Summry and conclusions 5-21 6.0 6-1 I
Field Fisheries Study $ 6.1 Objectives 6-1 6.2 Materials and Methods 6-1 \ 6.2.1 Eleetrefishing Methods 6-1 6.2.2 Seining 6-4 6.2.3 Collection Site Locations 6-4 and Descriptions 6.3 Re suit s 6-6 h 6.3.1 Species Cornposition 6-6 6.3.0 Pflieger Taunal Composition 6-22 Analysis 6.3.3 Length-Frequency Distribu tion 6-25 6.3.4 Ca tch-Per-Unit-Ef f ort 6 25 6.3.5 Seasonal Trends 6-27 6.3.6 Spatial Distributions 6-29 6.4 Discu ssion 6-31 I I
-vii-Tg lE OF CONTENTS (eont'd)
Se c t i on, De sc r i p t i on Pare 6.4.1 Species Composition and 6-31 Abu ndanc e 6.4.2 Comparison by Pflieger Faunal Composition 6-33 6.4.3 Impingement Composition and Abundance 6-35 6.4.4 Intake Structure 1.ocation - rish involvement 6-36 6.5 Summary and Conclusions 6-37 7.0 Re f e renc es 7-1 A. Appendix At Operational Inf orma tion A-1 B. Appendix Bt Ent/.ainment Data B-1 C. Appendix C: Ittpingement Da ta C-1 D. Appendix Di Field Fisheries Data D-1 E. Appendix E Quality Assurance Program E-1 i
I -viti-LIST OF TAhllS Number Description ge; 2.1 Percent M Water Withdrawal by the Callaway 2-17 Plant Intake Structure during hiinimum and Mean Missouri River Flows I 3.1 Cornparison of Baseline, Construction, and Pre-operational Water Quality Monitoring Data from 3-7 I the Missouri River Hear the Callaway Plant. Values are in tog /l Unless Otherwise Indicated Taxon Frequencies for Icthyoplankton Collections, 4-12 I 4.1 Callaway May 1 - September 10, 1984 4.2 Taxon Frequencies, Mean Densities and Percent 4-13 I 4.3 Frequency of occurrence, Callaway 1984 Taxon Mean Lengths and Ranges, Callaway 1984 4-36 4.4 Taxon Mean Densities - Entrainment - Percent 4-37 Entrainment - Worst Ca se (Worst Ca se = Actual Densities with Record Lw Flow - 416.3 CMS - I During April - September Period of Record) 4.5 Icthyoplankton Taxa Collected from the 4-51 I Missouri River near the Callaway Nuc1 car Pwer Plant, June through September 1981 (f rom Camp, Dresser, and McKee 1982) 5.1 Monthly Volumes of Total Water Withdrawal 5-9 Versus Monthly Volumes Sampled f or Impingement a t the Callaway Pwer Plant, February 1985 I 5.2 through January 1986 Fish Species Sampled by Impingement at 5-10 I Callaway Power Plant, February 1985 through January 1986 5.3 Average rionthly Numbers and Weights per 10 5-12 I P1111on Callons of Circulating Water Screened at the Callaway Pwer Plant, February 1985 thrc;gh January 1986 5.4 Estimated Annual Impingement at the Callaway 5-15 Power Plant Based Upon Total Water Withdrawal. February 1985 through January 1986 6.1 Fish Species Collected by Electrofishing 6-7 at the Callaway Plant. February 1985 through January 1986 I I
-ix-LIST OF k ABl.ES (cont 'd)
Number De sc ript ion Pa g e 6.2 Fish Species Collected by E1cetrofishing 6-9 at Site 1 during the Callaway Plant Study, February 1985 through January 1986 6.3 Fish Species Collected by Electrofishing at 6-10 Site 2 during the Callaway Plant Study, February 1985 to January 1986 6.4 Fish Species Collected By Electrofishing at 6-11 Site 3 during the Callaway Plant Study, February 1985 through January 1986 6.5 Fish Species Collected by tiectrofishing at Site 6-12 4 during the Callaway Plant Study, February 1985 g through January 1986 5 6.6 Fish Species Collected by Electrofishing at 6-13 gI Site 5 during the Callaway Plant Study, February gI 1985 through January 1986 j 1 6.7 Fish Species Collecteu by Electrofishing during 6-15 l the Spring Season at all Sites during the Callaway ! Plant Study, February 1985 through January 1986 6.8 Fish Species Collected by Electrofishing during 6-16 the Sunnner Season at all Sites during the Callaway Plant Study, February 1985 through January 1986 6.9 Fish Species Collected by Electrofishing during 6-17 I the Fall Season at all Sites during the callaway Plant Study, February 1985 through January 1986 6.10 Fish Species Collected by Electrofishing during 6-18 the Winter Season at all Sites during the Callaway Plant Study, February 1985 through January 1986 6.11 Relative Abundance of Dotninant Species by 6-19 Season from Electrofishing Collections during the Callaway Plant Study, February 1985 through January 1986 6.12 Fish Species Collected by Seining at the Callaway 6-21 P la n t , February 1985 through January 1986 6.13 Pflieger Faunal Composition by Number of Species 6-23 f or All Electrofishing Collections Monthly, Seasonally and for the Year at the Callaway Plant, February 1985 through January 1986 I I
.x.
LIST OF TABLT.S (c ont 'd) Number De sc ri pt i on Pa g e 6.14 Pflieger Taunal Composition by Number of b-24 Specimens for All Electrofishing Collections Monthly Seasonally and for the Year at the Callaway Plant. February 1985 through January 1986 6.15 Ca tch-Per-Unit-Ef f or t for Electrofishing 6-26 Collections Monthly, Seasonally and for the Year by Site, and All Sites during the Callaway Plant Study February 1985 through January 1986 6.16 Seasonal Distribution of Species in 6-28 Electrofishing Collections during the Callaway Study, February 1985 through January 1986 6.17 Occurrence and Distribution of Species 6-30 in Electrofishing Collections during the Callaway Study, February 1985 through January 1986 6.18 Pflieger Faunal Composition by Number of 6-34 Specimens Collected during Field Fisheries Studies Conducted f or the Callaway Plant
-xi-1.1ST OF FIGifRES Number Description pa g 2.1 General Site 1.ocation, Callaway Plant 2-2 2.2 I
1.ocation of the Callaway Plant Water Intake Structure 2-4 2.3 Callaway Intake Structure - Plan View 2-$ 2.4 Callaway Intake St ructu re - Section View 2-6 2.5 Callaway Plant Intake St ructu re Wa t er Pump 2-8 3.1 Daily Dischstge Means and Ranges by Month, 3-3 liermann, Missouri 3.2 Stage-Discharge Ra ting Curve f or the Mi ssouri 3-4 River, Herrann, Missouri 4.1 Icthyoplankton Sampling Zones in the Mi escuri 4-2 River in the Vicinity of the callaway plant 4.2 Callaway St age Discharge Cu rve, 1984 4-9 4.3 River Discharge Comparisons Between Callaway 4-10 I 4.4 and Hermann Icthyoplankton Frequencies by Date - Zones 4-14 Indicated, All Taxon Combined, Callaway 1984 4.5 Icthyoplankton Frequencies by Date - Lifestage 4-16 Indicated, All Taxon Combined, Callaway 1984 4.6 Mean Zone Icthyoplankton Densities Compared, 4-17 For Each Date Sampled - By Dominant Taxa , Callaway 1984: Freshwater Dtum 4.7 Mean Zone Icthyoplankton Densities Compared, 4-18 I For Each Da te Sampled - By Dominant Taxa, Callaway 1984: Gizzard Shad 4.8 Mean :'one Ic thyoplankton Densities Compared, 4-19 I For Each Da te Sampled - By Dominant Taxa , Callaway 1984: Ca rp I 4.9 Mean Zone Icthyoplankton Densities Compared, For Each Da te Sampled - By Dominant Taxa, Callaway 1984: Minnow Family 4-20 4.10 Mean Zone Icthyoplankt on Densities Coinpared, 4-21 For Each Da te Sampled - By Dominant Taxa, Callaway 1984: Freshwater Drum Egg I
-xiii-1.IST OF FICl'RES (c out ' di Number De sc r i p t i on page 4.23 Mean Percent Entrainment Ra t e s - 3 Pump s 4-41 Running, For Lach Da te Saepled, Abundant Taxon, Ac tual Discharges. Callaway 1984 - Species:
Ca rp 4.24 Mean Percent Entrainment Rates - 3 Pumps 4-42 Running For Lach Date Sampled Abundant Taxon, Actual Discharges, Callaway 1984 - Species: Minnow Family 4.25 Mean Percent Entrainment Rates - 3 Pumps 4-43 Running, For Lach Date Sampled, Abundant Taxon, Actual Discharges, Callaway 1984 - Species: Freshwater Drum Egg 4.26 Mean Percent Entrainment Rates - 3 Pumps 4-44 Running, for Each Date Sampled, Abundant Taxon, Actual Discharges, Callaway 1984 - Species: Sucker Family 4.27 Mean Percent Entrainment Ra t e s - 3 Pump s 4-45 Running. For Cach Date Sacipled Abundant Taxon, Actual Discharges Callaway 1984 - Species: Celdeye 4.28 Mean Percent Entrainment Rates - 3 Pumps 4-46 Running, For Each Date Sampled, Abundant Taxon, Actual Discharges, Callaway 1984 - Species: Unidentified Egg 4.29 Ac tual and Worst Case Mean Percent 4-47 Entrainment Rates - For Each Date Sampled All Taxon, Callaway 1984 - Worst Ca se = Period of Record Low flow, April-September: 416.5 CMS 4.30 Wa ter Temperatures f or Fach Sample Date 4-53 in Each Zone - Fussouri River at Callaway, April-September 1984 4.31 Comparison of Paired Samples by Zene and 4-55 Replicate - All Samples that Contained Icthyoplankton, Callaway 1984 (Zone re North, Replicate = 1) 4.32 Comparison of Paired Samples by Zone and 4-56 Replicate - All Sampleu that Contained Icthyoplankton, Callaway 1984 (Zone = North, Replicate = 2) 4.33 Comparison of Paired Samples by Zone and 4-57 Replicate - All Samples that Contained Icthyoplankton, callaway 1984 (Zone = North, Replicate = 3)
LIST OF FIGURES (cont 'd) Number De sc r ipt i on Pare 4.34 Comparison of Paired Sample Volunies by Zone 4-58 and Replicate - All San.ples that Contained 1cthyoplankton, Callaway 1984 (Zone = North, Rep = 1) 4.35 Comparison of Faired Sample Volumes 4-59 by Zone and Replicate - All Samples that E Contained Icthyoplankton, Callaway 1984 g (Zone = North, Rep = 2) 4.36 Comparison of l' aired Sample Volumes 4-60 by Zone and Replicate - All Sampics that Contained Icthyoplankton, Callaway 1984 (Zone = North, Rep = 3) 6.1 Field Fisheries Electrofishing Collection Sites, 6-2 Mi ssouri River I I R I I I I I I I'
m i 1-1 l I l 1.0 Introduction 1.1 Rationale and 1.cgal Requirements In order to satisfy the requirements of the Federal Clean Water Act (PL 922500) and the Missouri Clean Water 1,aw (Chapter 204 RSMo (Supp. 1973)), Union Electric must assess the potential impacts of its callaway Plant intake facility on the Missouri River fish popu la t ion. This assessmert is required as part of the National Pollutant Discharge Elimination System (NPDES) permit issued by the Missouri Department of Natural Resources (DNR) on August 8, 1980 and reissued on November 22, 1965. This NPDES permit (MO-0098001) required Union Electric to submit a study program to monitor the effects of operation of the plant intake st ructure on the fish of the Hissouri River. This study was designed to insure utilization of best available intako technology (BAT) to achieve minimum adverse environmental impact on the aquatic ecosystem, as specified in Section 316(b) of the Clean Water Act. A Scope of Work for this study was submitted to the DSR on November 24, 1980 and was approved on December 10, 1980. The Scope of Work was modified in January, 1984, to take into considcration the results of two years of comprehensive aquatic study perf ormed in the vicinity of the Callaway intake (Camp, Dresser & McKee 1981, 1982). The two year aquatic monitoring ef fort was carried out to satisfy the requirements of the U. S. Nuclea r Regula tory Commission. 1 1
. l 1-2 l The Callaway 316(b) study was f ormulated based on inputs from the following sources:
o The requirements of Section C of the Callaway NPDES g pemit as issued by the Missouri DNR g o The Scope of Operational Fish Impingement and Entrainment Studies, Missouri River, Callaway Power Plant, which was reviewed and approved by the DNR o A field audit of the Scope of Work conducted by the DNR E in October,1980, at the Callaway Plant 5 o The 1977 316(b) " Guidance Document" (U.S. EPA 1977) o The 316(b) demonstration f or Union Electric Cottpany's Rush Island Power Plant (UE 1979b) 1.2 Previous Studien The Missouri River in the vicinity of the Callaway intake has I been extensively studied. These studies were done to assess the health of the aquatic environment prior to plant construction and to identify any impacts of construction. The baseline studies were perf ormed by Dames and Moore, Inc. from 1973-1975. These studies were a comprehensive analysis of the terrestrial and aquatic environment near the Callaway Plant (Union Electric Co. 1974, 1975, 1976). A construction period water quality monitoring program was carried out by Ryckman, Edgerley, Tomlinson and Assoc. (RETA: now Envirodyne Engineers) f rom June 1976 through November 1979 (Union Electric Co. , unpublished) .
~
Preoperational studies were performed on the aquatic ecosystem near Callaway by Camp, Dresser and McKee, Inc. (CDM) from June 1980 through !by 1982 (CDM 1981,1982). Union Electric Company's I I
l 1-3 I Environu;en tal Se rvices Depa rtment began sarapling adult fish and ichthyoplankton in Varch of 1983 in order to supplement pr ev i ou s l y collected data and ensure centinuity of previous studier with the present 316(b) demonstration. The result e of the adult fish portion of this program will be presented as part of the on30ing in-house biomonitoring study. Other reports dealing with the environmental impact s associated with the Callaway Plant inclu de t.he final Environmental i I Statement Related to the Operation of Callaway Plant. Unit No. 1 (U.S. Nuclear Regulatory Commission 1982); final Environmental Statement i Related to the Proposed Callaway Plant, Units 1 And 2 (U.S. Nu c l ea r Regu la t ory Cormiti s sion 19 7 5) ; Site Selection Study - phase 1, Proposed Nuclear Power Plant (Union Electric Co. 1971); site Selection Study - Phase II, Proposed Nuclear Power Plant (Union Electric Co. 1973); Callaway Plant, Environmental Report, Operating 1.icense Stage, Volumes I, II, and III (Union Elcetric Co. 19 79a ) . I 1.3 Study Element s I The Callaway 316(b) field studies conducted during 1984-1996 g consisted of three rajor component s: entrainment, impingement and l3 field fisheries. The entrainment study estimated density, composition, and spatial and temporal distribution of fish larvae and eggs in the Missouri River adjacent to the Callaway Plant intake. These estimates were then combined along with hydrological data to estimate numbers and percen age of icthyoplankton entrained by the intake, both with ac tual flows and with record low flows during the I I
1-4 I period of *prval fish occurrence. The impingement study involved counts and measurements of finpinged fish. These counts were combined with intake operating data to estimate total numbers of fish impinged and identify any compositionc1 or seasorial trends. The field fisheries survey involved sampling of adult fish populations adjacent to the intake to gain insight into the dynamics of these communities. I These data were used to compliment and augment the entrainment and impingement studies and thus help demonstrate best available technology and minimal adverse environmental impact relative to intake design and operation. 1.3.1 Entrainment I The entrainment study included weekly samples f or 26 I consecutive weeks f rom April through September 1984 Three paired subsurface hauls were made in each of three sones in the Missouri River between mile !!$.4 and 116. Intake withdrawal rates along with river discharge estimates were combined with icthyoplankton data to compute entrainment as a percentage of total river icthyoplankton transport. 1.3.2 Imp in g ea .i n t The implagement study consisted of weekly random-day collections of screen backwash water for an entire year (February 1985 through January 1986) . Each collection was approximately 24 hours in length. Intake screens were operated in their normal manner during the collection period. Each collection yielded numbers and weight by species of fish impinged. The impingement counts were then combined I
I 1-5 I with plant operating records to estimate total monthly and annual impingement rates. 1.3.3 I rield Fisheries The field fisheries study was designed to provide inf ormation on the composition and population dynamics of the fish population in the vicinity of the Callaway Plant f or assessing the significance of potential entrainrtent and impingement tropa c t s. The field fisheries study was conducted monthly for one year concurrent with impingement sampling. 1.4 Sutwary of Conclusionn I The Draft Section 316(b) Guidance Kinual defines low potential impact intakes as "those located in biologically unproductive areas having low flow or having historical data showing no effect or for which other considerations indicate low (adversa environmental) impact." The Callaway Plant intake structure is Jocated in a biologically unproductive area and is a low flow intake since the plant withdraws only nake-up water for a natural draf t coo 11ag tower system. The entrainment and impingement studies of the Callaway intake confirmed that it is located in biological umproductive area and has low adverse environmental impact. This I conclusion is based on the following considerations. The entrainment study sarnpled a total of 43,314 m8 of river water during the study. The larval entrainment study indicated that endangered, threatened, and rare fish species are not being entrained
i 1-6 by the Callaway intake. Those species of larvae collected during the I en t rait. *tudy are common to the Missouri River which was confirmed by the field fisheries study. Mean percentage entrainment estimates peaked at less than 0.15% of larval transport using actual discharge estimates on sampling days. Worst case entrainment estimates using historical record low f1ws for April through September f rom 1929 through 1980 did not exceed 0.75% of the larvae being transported in the Missouri River. The entrainment of icthyoplankton by the Cellaway intake structure should have minimal ef fects on the fish populations of the Missouri River. Impingement sampling at the Callaway intake collected a total of 13 species of fish and sampled 1,933,932,000 gallons of river water. The projected total annual impingement was estimated at 2410 fish weighing $9.5 kilograms (131.2 pounds) . Gizzard shad (92.7%) and freshwater drum (3.4%) accounted for 96.1% of individuals projected to be impinged annually. No other fish species were projected to be impinged in numbers greater than 18. Endangered, threatened, or rare fish species were not collected during the impingement study. The extremely low projected impingement rates can be attributed to the design, construction, capacity, and location of the Callaway intake structure. These low projected impingement rates for the Callaway intake structure reflect the use of the best technology available for minimizing impingement by a cooling water intake structure. The impingement study has shown that the impingement impact is not significant enough to adversely af fect the fish populations of the Missouri River. I I
m 1-7 L 1he field fisheries study f ound that the two daninant species in the electrofishing collections were gizzard shad and f reshwater drum. These two species accounted f or 46.1% of the total speciment- - projected to be impinged annually. The other species in impingement sampics were less dctninant in abundance which was consistent with their lower atundance f ound in the field fisheries study. Feeding, spawning, and nursery areas f or fish are limited in the area of the intake structu re. The lov impingement rates indicate that the intake structure wa s located and designed to minimize impingettent since the field fisheries study has shwn that fish do reside in the area. I The low projected impingement rates and the small percentage of larvae being entrained can be attriluted to the design, construction, capacity, and location of the callaway intake structure. l.osses are not of a suf ficient magnitude to significantly af f ect the fish populations of the Missouri River. The Callaway intake structure reflects a "best technology available f or minimizing adverse environmental impact" in cutpliance with Section 316(b) of the Federal Clean Water Act and the Missouri Clean Water Law. 1.5 P.eport St ruc ture This report deals first with the intake structure's location and operation specifica. A description of the Missouri River in the vicinity of the intake structure f ollows, including background inf orma tion on hyd rology , phyt oplankt on, rooplankton, macroinverte-brates, fish and wildli f e.
4 1-8 1 1 l The entrainment study is addressed next, followed by the impingement and the field fisheries sections. Fach of these three j sections describes its own particular objectives, noterials and methods, results, and discussions. Collection data and analysis are presented in the appendices. l 1 I i I
- I i I
- I I ,
I I I' 1 I I
!I } t 2-1 t 1 ! I l l 2.0 Plant Description and Operations ; i 2.1 Location i The Callaway plant site is located approximately 10 miles 1 } sou t hea st of ruiton, Missouri and approximately 60 miles west of the I i St. Louis metropolitan area as shown in Figure 2.1. The plant is !s located at latitude 38' 45' 42.3" N and longitude 91* 47' 52.4" W i which is approximately $ miles north of the Missouri River. f I The intake is located on the north shore of the Missouri River i at approximately river mile 115.4 at 38' 42'N latitude and 91* 44'W j longitude.
- 2.2 De sc rip t ion t
I The Callaway Plant site and peripheral lands include about 7230 acres. The plant site and security areas encompass less than 450 acres with most of the remaining 6780 acres being mnaged for outdoor recreation by the Missouri Department of Conservation. There are approximately 5300 acres open to public use. l
- The Callaway Plant generation system consists of one pressurized water reactor, four steam generators, one steam turbine generator and i
4 a heat dissipation system. The heat dissipation system consists of !I i , one natural draf t cooling tower; a three pump, bank-fit, mahe-up water intake; and a cooling towe! blowdown discharge. !I i !I 4 !I
.- + w = - nw.+ we. ww w w aw-=-=-w.=,. . . wwe- _,w,-,www-,+manymew=,--o-e-
F** er** 2-2 I I T V~"~ m-~ . . . , , p r :Trt~~~ k l ( v...=-- ,,n,,-- j _ _ ,.
.. >. = .,,,,__ m, - - * ^ ^
t t sitv " " l ese ,r - ' - sit r, 5gggyy==~--- ff
,,,,, r _ - , , , , , , . -
_lsta tet , 9 M '-" g pg .. --n> f 9f****' 1., r f-b, L., .u .. . , , , , , .-..-...__
.~.1 o -. ./ .-, ), e ., , . . .L. v,.,- sg.sw ve- . ;;m - - - -
e**' . g, _ ,r --. ...;,- r ( , , , , . g e v ,,r ,,
**'^ #~ .:6 fee n l h....S**z .f s
x 't m-~ g r ... 4ab.
*+9.l tee ft ,t g* ge #9 --~. I - ) ,,, f -
u.... lTi ti de ~'* [I FIIN
. . , _ , , ,, 1,_-
t . m ,, _w_.. _ - ,
.- 't,-
r egsg = y R t. , t g **+ ' ges geg - L~_.
%% g_m,. e .-me ~
9
~~
g
.. .i%e_,,
- y.g..-...
-~j tiert --- -- - 4 y; gg g y -, . - a - - - .,,,, _ _ _ -- ' " \)1-- . , , , _ _ _ . n _- - ..g_-.
c;; -- - - -- ,,,,,,.._._ ie. g g gp -* - w %. 379 , ~ ~w.- .
' lit!**'"-~-'*"
- ,ggg .- .
70 0 00 40 y.apf _ - - - ' n unts I l g.=. w ,a
'N N' ' .v e . ~ ..--- o g> --- .ru e. . e . . .s.)'........ 8.i: r us. na, o ...o... . .. .o . p y_1. ..g n,.
ol.... o"no
~ .J
__ o - y;},;,,
,-f /. 7..
s o . - . .iu b.."u. -
,,,g,,, ..
_s . _ , _ __ ) ...,.o.,..
, o .u . . . . . ..... o --- ( , , o o ..u ,-, u e l n ."e.. ,i-.-.g , , ,,,, ,7, , .. ...:o .. o i , u e
- i l o f %o ;,n,g i..N 7 -
l c . n . . . '. i . L- - --- ,,,,$_ r , I O "
-/ - ;, ;. -o,0wr . . . o. "~~.0 4 %. ., .e .o. . .. ... .fi~i,~a..t . m .. ' ' * 'o'....r.~, ' ' " 'i L . . _ . .. .. . ,0, o r n e-u o ' ._ e .
[~ _ 4 o .....u o 0 ';-#' ' '" ~ l "" L, .._
'L . .., hr'r --y ;,,;/; .. m , . 4 o., -
pa r ,. 9,.t,..h. "'
. _I.' N
[.u.i [, 'E .. . . g L-f
,r._,, e d 511 E ! . . ,n i,,. ; .-;% oj - . . . . l .. .a o -. < . . , , . .. . . . , . .. o op o -"m. o .
i.. .. ., v s .m.. n . .. o. . io mo .c . ., ,
. 1 o <o,..... ... ..
s 2,. .J . jy
.- 3 - """..'.a. ...o ~~""...:.... /,,Q-, 4,..,. 8 , .>,m y;':Q...~< .J' j oi ... si y 1 -;,.; f. ~ . { : . .. -t , , .o. . . , , e " >o "01 ,6 oo. .....3 i -
ogot_ I s. c, ,, , l . ro
% ., q ,. ] v : - ' "; o <, .m > '5 "', ... L, , , . . .4m. . _ _ c.....,u g 'Q ."
o o on"- 0 . u .. -
,,a,... 0 .,.,, .m.0 .v .x. n. . . . . . . . .1-t) t e ...... r,;... ::,~c.
o l
- c. -
, ' r%.m . t '.. a t s' i <riy4.. .f. ., . . ~ ,q,s - ~~
31 I \ ry,m. V ,,,,,,,--% m o
,, g _ s io .o p
APEllTUllE CAllD
""IS Aho Avallable Oil l ___
Aperture Card (.'. LAT : 38 45'11 M"J ~ ( , LOHG: 91"4 7 ' W
. , , - ^, 4 .. .-
unt: 4,291.000 HETERS H 605 e900 hE TERS E UNION ELECIRIC CO. CALL AWAY PL AN T
, _ .n ;u.
{ ) litss0 Val STATE
\
l r cooRolHAILS: m ~. . . X 703,610 GENERAL St1E TOC AllON v 1,067,266 F igur e
?.)
I 2-3 l 2.3 Intake Structure Description and Operat ton 2.3.1 Intake St ruc tu re De sc ript ion The Callaway plant water intake structure is located on the north bank of the Missouri River at river alle (RM) 115.4 (Figure 2.2), about 3500 f eet upstream of the confluence of Lot;an Creek with the Missouri River. The intake structure is located within an opening of the Corps of Engineers' rock revetn.ent and breakwater between RM 115.34 and 115.45. The upstream river bank is set back slightly f rom the riverside face of the intake structure and the rock revetment. The dwnstream river bank is set back f rom the r oc k revetments, which allows placement of a low velocity fish escape opening on the d wnstream side of the intake. To protect the intake structure f rom barges, pipe pile clusters are installed on the upstream side. The main channel of the Missouri River flows directly in front of the intake structure as the channel follows the north shore of the river at this point. I The intake structure is r.nde of reinf orced concrete and is composed of a pump room section and an electrical equipment room section (see Appendix A). Plan and section views of the intake are shown in Figures 2.3 and 2.4, respectively. The floor of the intake structure is at elevation 486 feet above mean sea level (MSL). The operating level of the intake is at elevation 541.5 feet MSL, 2.5 feet above the 200 year flood elevation. I I I
7ta AJ i _ ._._ _ - u som ._ seus _ . uma _ sus __ j e ch SCAtE sast E S
\ Nn q f ~
k?e.f I / j; Ym: 94
.* . ~ - - > [ ; ~
w,7s , , ,f
%y ~
Creet C1LLALVAY Ca!.VTY '?p, Pt UD
' ', f W ' ~ ~ N'~ % , gg,,
_ , cono.oy mr.: Intde 4
,-: - -: z _ ;s / "5_._ n<h~-~ ' ,'~ ~~
L
~
gQ
;./ ;f9')'
l
, pass OSAGE COU.VTY Stoner / stand .Ne W- 'x, ( O-l \
h '// ft'g(- titZr:0
- d ' ' Misy %,
Ib ROAD (18151 FICA 110*l LEttysDf4f I;IGr At 40/ Ft tiltTai _ ~.
"- I- t iGil-tUit P']AD * * * * " StaD tt r0*,175
- . - _-- : .: .: , :::: LtiIf 5'kJdt D FAD CilAf.10 S h SIAIE EOUTE Figure 2.2 Location of the Callaway Plant Water Intake Structure.
M M M M M M M M M M M M M M M M M
2-5
/
I /
/ /
A -+- / I 7 l -
-.-y t
A g I c. [ 4 m f-E PUMPS g [l N
%./
I
%d i
V i w O
' I I '
g ( LADDERS
,{ l t
- r >
1 r-
' r' I TROUGH iSLOPE ', s 0 ? l l >
e u l l f( TRAVELING SCREENS l l l i l t, - c p
'o e ,o l l l l l !u m_.aut -21.
l ; , __ _ j_ f( FI G AT E TRASH RACK
,T r- - -9 r-y l l yQ M AIN GATES I ,i - i LA j , , . , ,
l l I ' 3% fr -4, i i
! ! !' 1 -
1 I 1
~
Wa 1 + ' Jl % al L. > dl l \'q PROVISION i Y ht 8 6 Ii , l FOR SAND i G AT ES g , j j j I d Xw,
/ -C ,/ / $~ w f, /
f
/
w!
~' /
l si E S: $I 3 5 si I al- a - 1 - Bl @ Eu E O 5 E I a a a m m z .
& & W & l 8'- 6" G 5 '- 0" 7 ' - 0"(fl 5'-0" 5- 3'-61 = .
- : : ; 7'- 0 " _' _ ' C" _ -
I l __ 4 1 ' - C _ l < rig. 2.4> Missouri river Ftow A 4-- UNION ELECTRIC CO. I RIVERSIDE CALLAWAY PL ANT INTAKE STRUCTURE SOALE 1': 10' PLAN Fiqure 2.3
2-6 PUMP P' q IN T AK E WAT E R Q M AIN q TRAVELING GATE LIFTS SCREENS N Q CAGED _f ' LADDER 3 1% I b (fl^ \ OPE R AT ING LEvFL Y r lj> ELEV $41'- 6 *
<f? .i e f =m J iI fhhh H lG H W AT g p miz2 uxty- *J[ W ';.'* i l ' ' ,
J.. i l j 66
{ -me- ,,
200 YR FLOOD Z an ELEV 539
~
4 1 H m ; % .an g
.4.
do
~ o - u
_ g, TRASH RACK
~ , bQ9 '.
N $ l
". ' i 4
- Q : .
E i
- y O g 6.
- d;z .
i , 5 H MISSOURI RIVER
~ ..i . s* ~ ~
3 I 4
\
l
,Hw . ,-- = V
- i. ; i
+ ~ * .--- . ~ ,e f -
7 i SAf D GATES ( 5'- C" HIGH )
), ..?-
ty ( FISH GATE - n H
, c-s .); ( . *. (
J i.'. : p E h, f,'. LOW WATER u ll .
.. N 6
t- i 30 YR. I day - i p /i\ ., E 5 ELEV. 4 95 1 g l m : a A 1 O_ L < dg S - N u,g
-)
etrv 48e s v. ,4. .1 . : r , a . ,- SuMe
. 1 , .- f. , ;g ,
i I I ' E UNION ELECTRIC CO. SECTION A-A CALL AWAY PL ANT SCALE 1"- 10 ' g (Refer to Fig. 2.3) INTAKE STRUCTURE 3 SECTION ALL ELEV M S.L-Figure 2.4
~ ~ 2-7 - Features of the three-bay, three pump intake st ructure are shown in Figures 2.3 and 2.4. Incoming water initially passes through a set of vertical trach racks designed to stop large objects and debris from entering the intake structure. The trash racks are constructed cf 0.5 inch bara placed 3 inches on center. Sand gates can be inserted s between the trash racks and stop gates. The sand gates minimir.e intake bay silt deposition. Intake stop gates are located between the nand gates and traveling screens. The stop gates provide intake bay isolation for mintenance pu rposes, k'ith a stop gate closed, an intake bay can be dewatered by portable dewatering purnps. These gates include a Limitorque operator equipped with a mnual handwheel. A fish escape stop is also used for dewatering. These ga tes operat e identically to the intake stop gates. A vertical traveling screen is located in each of the three pump bays. The traveling screens are a loop of screen panele that are driven over a pair of head sprockets and down through a boot. The screen pancis are constructed of 0.5 inch square mesh screen wire. The intake structure is constructed with fish escape openings in the side walle of the pump hays. These openings are directly in front of the traveling screens. The fish escape openings are 3 ft. vide and 10 ft. high, topping at 496 feet MSL (see Figure 2.4). The intake structure houses three Ingersoll-Kand pumps that provide raw Missouri River water to the Callaway water treatment plant. Figure 2.5 shows a typical pump and motor on the min floor
I' 2-8 I I I [INTAV,E MOTOR WATER PUMP OPER ATING ROOM _ w.MB E L 5 41' -G"
~
INTAKE WATER DIS C H G. ,
~ '~~
r , OEL 5 3 5'-0" m 4-- J MANIFOLD ROOM l T.O.G. EL 5:2'-10" E 531'-0" - - 3 HEAT EXOHANGER PL ATFORM EL 510'-c" E
~~
g HE ATER ROOM INTAKE . i n WATER E 500-O PUMP
.,s PUMP
- GAY b EL 486'-C" PEDESTAL PIN I
Figure 2.5 Callaway Plant Intako Structure Water Pump. I I
2-9 level. The comn2on discharge nanif old is one level down from the noin fl oor . These pumps are vertical three-stage centrifugal pumps. The [ impellers are enclosed; the firt.t stage inpeller has double suction L for thrust balance. Pump suction pressure is n'.5 poi and discharge pressure is 195 psi. The pump delivers about 14,000 gpm. The pump motor is 3-phase, 4160V and 60Hr. It develops LOSO lip and operates at 1185 rpm. The suction head bearings and all other bearings are water lubricated. A mounting flange (part of support head) suppor t s the { pump vertically. The pump driver is mounted on the support head. The driver is coupled to the upper shaf t by a rigid adjustable coupling. Stage casings contain the casing bearings which prevent unwanted radial puep shaf t motion. Lach casing encloses dif fusor passages. These passages convert fluid velocity to pressure. Two ten-inch f ree discharge valves control transient surge pressures of water being puc: ped from the Missouri River to the water treatment plant. Each valve is of the fixed-cone, discharge regulating type. The valves act as a continuously modulating by-pass ( to control the variables of system flow. Lach valve can handle 10 0 *.' of system regulation. Thus, the other valve remains on standby. The l valves are designed to dissipate fluid energy rapidly. Each discharge valve consists of a 45 degree cone attached to the unin body cylinder by four independent ribs. Flow through the valve is regulated by cleans of a moveable sleeve mounted on the valve body. Sleeve movement varies the size of the annular port. Thus, flow through the valve is directly proportional to the stroke of the sleeve. tovement of the sleeve is controlled ~oy two hydraulic oil
2 - 10 cylinders. 1he cylinders are attached to the downstream end of the upper weldment. The weldment functions as a transition piece between the 14" header pipe and the 10" valve. The kinetic energy of the water through the valve in rapidly dissipated by a drop pipe. Dissipation occut s due to friction and turbulence incurred by the drop pipe. I An electro-hydraulic control system maintains valve positions without drif t and closes the valves on an all-pump trip signal or loss of power to the servo-controller. The excess water frts the f ree discherge valves is diverted to the free discharge box on ti e dovntream side of intake structure. The excess water is discharged ths 3 ugh a pipe in the bottom of the free discharge box back into the river. The amount of water disch rged from the free discharge box is the amount of water which is not necessa.y to maintain system prassure. The intake structure has two types of systems to provide f reeze protection f or the intake. Electric boilers warm stilling basi , water and spray wash heaters warm screen wash water. Two Coates electric boilers provide shell ride boiler heat exchanger water. The shell side water vams incoming stilling basin water, which flows to the intake pump bays for f reeze protection. These boilers are designed for heatinj to 5000 KV. using a 3-phase, 60 Hz power system at 4160 volts. l I
2 - 11 2 Two horizontal shell, tube-type heat exchangers provide a heat ' i transf er interface between boiler and " stilling basin to pump" bay water. I Three in-line electric heaters warm screen wash water for f reeze protection. One heater is provided for each traveling screen. These heatet s are used when temperature requirements dictate. The heaters are 120V, single phase, 60 Itz and generate 200 MW of power. 2.3.2. Intake Operation i Two intake pumps will normally satisfy plant load requirement s. , i During periods of outages only one puu.p will be operated to provide
- water for essential plant services.
The f ollowing equipment is operated automatically to allow sequencing circuits to place the equipment in the proper configuration , upon intake pump starting and stopping: Stop gates and fish gates Intake pumps and respective hydraulii. discharge valves Desilting valves l Traveling screen wash valves Traveling screens operated in forward mode l Lube water pumps l Trash handling procedures involve both river currents and I mechanical systems. The larger trash or debris carried by the river. l which accumulates on the coarse trash rack, is carried away by the river currents and changes in river elevation. l
2 - 12 Traveling screens block debris and trash small enough to pass through the coarse trash rack and prevent it from entering the pump wells and consequently the pumps. Any debris larger than 1/2 inch square is collected on the trave' ling screens. Whenever accumulated debris on the screens produces a predetermined head differential across the screens, the screen wash systems operate automatically. The screen waeh systems also are operated via an automatic periodic timer on an eight-hour cycle to prevent the boot shaft at the lover end of the screens from " mucking in". The screen systems shut off automatically after a preset minimum period of ti a The heaviest periods of operation for the traveling screen I systems are in the fall and spring seasons. At these times debris in the river is at a maximum due to either shedding of leaves or rain and high water which wash out the backwater areas and streams along the 141ssouri River. During these periods the acreens may operate continuously to prevent trash buildup. A pump bay warming system and inline heating system provide traveling screen freeze protection and deicing of screen components. The warming system actually minimizes ice formation, while the in-line heaters loosen and knock ice already formed from the screens. Operator judgment is required to determine whether one or two 4 boilers should be placed in operation. However, formal system , alignment is for two trains of water warming, each train consisting of one boiler, one heat exchanger, and one recirculation pump. l 1 I
2 - 13 s Heavy ice buildup on the traveling screens may result in considerable damage to screens and baskcts. The in-line heaters are run automatically when f reezing or subf reezing temperatures are predicted. The heaters energize when intake bay water temperature is F 33*F. Normal system alignment is each in-line heater serving each respective screen. However, by proper valving, any heater can supply any or all screens. The Callaway intake structure has been designed f or low intake velocities. The maximum intake-water velocity at the screens is estimated to be 0.6 f t/s at the 1-day 30-year low Missouri River fic'w of 5500 cfs (at 495 f t. MSL). Maximum velocity at the screens during the minimum river navi Eation flow of 35,000 cf s (at 501 f t. MSL) will be about 0.3 ft/s. Each intake pump's stop and fish gates are normally open when the intake pump is operating. The gate positions are reversed when an intake pump is stopped. Intake pumps A and B include similar l circuits. However, to open the B fish gate, stop gates B and C must be open; to open the A fish gate, stop gates A and B must be open. These configurations prevent fish from being trapped in the bays, i The purpose of the f ree discharge valves is to maintain system pressure at 195 psig. Each valve is capable of 100% system regula tion; therefore, one valve is operated in automatic while the second valve remains on standby. The 195 psig setpoint is established with an instrument located near the annunciator panel. Tne valve
2 - 14 i control circuit compares setpoint with intake pump discharge header pressure and positions the free discharge valve as required to maintain this setpoint. 2.3.3 Intake Hydraulics and River Hydrology I The main channel of the Missouri River is adjacent to the north shoreline in the area of the Callaway intake. The intake structure is located along the river bank so that make-up water is drawn from the main channel perpendicular to the dominant flow field of the river. Flow fields in the main channel of tre river are turbulent due to the volume of water flowing, the velocity of the current, and changes in the river bottom contours. The area in the river from which the make-up water is drawn may be defined as the
" zone of influence" of the intake structure.
The physical presence of the intake structure, in addition to its water withdrawal, af fects the natural flow field of the river. The area behind the intake structure has been built up, forcing the river to flow around the front of the intake structure. This slight narrowing of the river forces the water along the north shore to pass in front of the intake and has increased the river current velocity there. A slow eddy current is caused by the downstream corner of the intake. Aside from this small zone of influence, there are no changes W in flow field resulting f rom intake structure configuration. At any given time the zone of influence is determined by the quantity of water withdrawn and the river flow. It can also be affected by the :ombination of intake water pumps which are operating. I
2 - 15 Due to these variables, the zone is not constant at all times and under all operating conditions. Since the intake withdrawal rate is [ small even during periods of low flow, the zone of influence is a
'small area near the bottom of the main channel of the river.
2,3.4 Entrainment and Impingement Consideratiens The design and construction of the intake structure includes several features designed to minimize or reduce impingement and _ entrainment. To minimize impingement, the size of the intake portion of the structure has been increased beyond the required design in order to reduce the velocities of intake water through the screens. Also, to minimize entrainment and impingement, the intake has been located so it protrudes into in the main river channel, and water is withdrawn f rom areas located away from shallow and slower moving water where the largest populations of aquatic organisms would be expected to occur. Water withdrawal by the intake occurs from the depths of g the main channel where few organisms inhabit. This gives buoyant or g _ semibu oyan t orgamisms a lesser chance of entrainment. In addition, the face of the intake has been aligned parallel to the river flow so , that the water is withdrawn perpendicular to the river flow. Thus, river currents tend to sweep river organisms past the intake structure. Finally , the deicing system at the intake structure and its spray nozzles have been located so that icing can be controlled at the-structure and any thermal attraction will be negligible. Thus, any heat dissipated at the intake structure will be mixed rapidly and reduced within the area of the intake s t ru c tu re . Also, a portion of the water pumped will be discharged immediately back to the river from
2 - 16 I the free discharge valves. This will immediately return some of the entrained organisms back into the river. The portion of river flow withdrawn by the intake st ructure is an important consideration for both impingement and entrainment. The percent of river flow withdrawn by the plant is minimal, as shown by Table 2.1. This low volume withdrawal helps minimize the number organisms exposed to any adverse ef fects caused by the operatica of the intake structure. I I I I I I I I I I I I
2-17 . w w 3 O O w 0 - 6 0- 0
^ 0 W w 54 a =< m v 9 mL @ N cc M O m O - - N N *= 6 .E 3 L M N O CC Ch N O c e a M a
cw W= m> N.
. O. O. O. . . . a. .O .
N O M c
& CT% C C O O O O O O O O -
U f5 .O a y k - ed C E wAa m =
% '3 @
L E - ~ f3 se o u m 4 0 s
.mN =
mM 3
& 3 1 co-N 6
0
>^
M
=
a O J =* m .a cc
- 6 %w O O O O O O O O O O O O M m f0 0 C U M N N O O O A CC Ch t.c - M 6 -
i - > A-W fa h v 0 CA > a=
*> 0 N
m M CO N A CC c CC N e=* em Ch M O cs CO O 4 7
*=
CC D O N D 4 D CC Ch D c O 4 4 A O m 4 mm c == m N 3 W OW L Ch to 3 E E
- 0 2 - en L
- f5 m 6 f) 4a 0 :
E O O 6 m 0 -
- 1. N 4
a fo
>C C
su M
,~
C g c Lal 7 A - C % : CC *=* fu 3 3 m
*C f3 O M E - 6 F.* 3 m -
g W
==
W w L b E O w :: 5- w O 6 A
".C C ^ @ D 2 %
se ~ 3~t se - > O @ - N O N N N O O 4 to 0 l 3
*E Q
v fe to a
.J 3 3% eg M
N. ch Ch. c d. ch M. N M. 4 M c 4 M O. C c C. N 5 O m. N O
==
c b c = .J 6 E N O O O O O O O O O O - > .a 0a 4 C ":" O -, 9 ed % U fG A E w % m B k- eu m M 37 O A *** C > 3
.% 3= 6 0 % 0 w 4 O 6 :n W 3 .h ae O %
W t I O V b : v6 7
% su y x % th &
L m .- 3 2
% u C 0 == Z >^ 9 g
m E .* m . O % ** O O O O O O O O O O O O C E V O O O O O O O O O O O - -= I ~ C-
"d hv 4 3 N
4 4 Ch N Q M N M d N O tw N N O N N 4 in N 4
==
N
==
N fe 3 a 0 E *a O % v1
= -d =e .
7 04 4 E 6 2 .a L O
- M L 3 O O 6 6 0 00 */;
a
- O 7 N Z 34 O 6
h C 6 6 4 h 6 4 L g g w 6 m a E o a 4 - N 9 3 4 - 2 G 4 5 E O O 6 V m t x = w 0 g g E = .O 6 6 > = - 2 L ,.4 > g f4 0 m a m 3 : : L y O g 9 A Z < E 9 '"': < m C Z O.
3-1 I 3.0 River and Site Characteristics 3.1 Physical and Hydrological 3.1.1 IntroJuction The Missouri River in the vicinity of the Callaway intake is typical of the lower Missouri. High turbidities of up to 6980 Jackson Turbidity Units (JTU) have led to this river being referred to as the
" Big Muddy". Strong currents, fluctuating water 1cvels, and shif ting, unstable substrates result in a low diversity of habitat types f or aquatic organisms. Few permanent islands, backwaters and side channels remain in the area due to man's activities of the la s t 150 years. Quiet water areas are restricted to areas behind dikes at normal river flows.
The lower Missouri River has been radically altered over the la st century and a half. Construction and maintenance of a 9 foot deep, 300 f oot wide navigation channel has resulted in drastic reductions in water surface area and island, chute and backwater habitats. Snag removal, dredging, installation of revetment, pile dikes, and rock dikes, and flow regulation froc main ctream reservoirs i have all contributed to these reductions. Since 1879, *.he 31 mile stretch between Hermann, Missouri and the Osage River has had a 41% reduction in water surface area and a 99% reduction in unconnected island surface area (Funk & Robinson 1974) . Reduction of islands, sandbars and chutes is most notable in areas like the area across f rom Portland, Missouri (Funk & Robinson 1974) . I I
3-2 Almost 1500 reservoirs occur in the Missouri River drainage above Sioux City. Iowa and they provide over 111 million acre feet of storage capacity. Flows are regulated from these dams to provide between 31,000 cubic feet per second (cfs) and 41,000 cf s at Kansas City, Missouri during the navigation season (Slizeski _e_t, t al.1982) . 3.1.2 Hydrology I The Missouri River flows southeasterly f rom Three Forks, Montana f or 2315 miles, draining about 529,000 square miles before joining the Mississippi River near St. Louis, Missouri. The nearest gauging stations to the Callaway intake are the U.S. Geological Survey stations at Hermann and Booneville, Missouri. At the Hermann station, 17 miles downstream of the intake, stream flow records have been kept since 1897. The average flow over an 86 year period (1897-1983) was 80,050 cfs. However, because of the channel alterations and flow regulation since 1952, flow records prior to 1952 may not be representative. Daily discharge means and ranges by month are presented in Figure 3.1. At Booneville, 82 miles upstream from the intake, stream flow records have been kept since 1925. Average flow f or a 58 year period (1925-1983) was 59,260 cf s. The Hermann gauge is closest to the Callaway intake. The only major tributary to the Missouri River between the site and Hermann is the Gasconade River (river mile 104.4). For these reasons, the Hermann data are presented as representative of flows and discharges at the Callaway intake. The stage discharge rating curve for Hermann : I is presented in Figure 3.2. I) 1
DAILY MEAN DISCHARGES FOR THE MISSOURI RIVER AT HERMANN NEANS AND RANGES BT NONTH FROM USGS DATA 1929-1980 6 700-600 D : I : 3 300-C : H : R . R : G : E 400-I : N : T 5 H 300-0 : U ; 5 . i R : N : D 200, C [ F . S :
, 100,2 N = = -= n _,
0 ' i .- i i i i i
, F A J R 0 0 E P U U C E B R N G T C R I E U 0 E U L S B M R T E B B B E Y R r
DOTTED LINE=MEAN DISCHARGE OP 79370 CFS SQUARES-RECORD LOW DISCHARGE FOR THAT MONTH STARS =MEAN DISCHARGE OF ALL DATS FOR THAT MONTH TRIANGLES-RECORD HIGH DISHARGE FOR THAT HONTH Figure 3.1 Daily Discharge Means and Ranges by Month, Hermann, Missouri.
3-4 I HERMANN STAGE DISCHARGE CURVE 1984 3 510-50Sf sai .
. I 5072
- 4 506,1 505- E 3l g
l * "j I G 503-N I 502-' i I 1
- 1 F 501- 1 E : 1 E :
T 500-g R i e m B 499-0 : V - ' E 498' ' M : S 497-4962 i I 495-4945
- a 493- =
492-491. 40000 80 BOO 120000 160000 200 BOO 240 BOO 280 BOO DISCHARGE IN CFS Figure 3.2 Stage Discharge Rating Curve for Missouri River, Hermann, Missouri.
3-5 Temperatures in the vicinity of the Callaway intake on days when icthyoplankton samples were collected are presented in 6 Section 4.4.1, 3.1.3 Logan Creek Logan Creek is a small tributary to the Missouri River which enters just downstream of the Callaway intake at river mile 114.9. It is intermittent during droughts and is essentially a backwater at high Missouri River elevations. 3.1.4 Other Fujor Tributaries L Upstream of the intake, the closest major tributary is the Osage River at river mila 130. Osage River flow is largely dependent on discharges from Bagnell Dac at Lake of the Ozarks. Osage River i discharge ranges f rom 373 cf s to 216,000 cfs with an average of 9937 cfs for the period 1937-1983 measured at St. Th oma s , Mi s s ou ri . - Downstream of the intake, the closest major tributary is the Gasconade River. Flows at Jerome, Missouri range from 254 cf s to 136,000 cfs, with an average of 2485 cfs for the periods 1903-1905 and 1922-1983. 3.2 Water Quality The Missouri River in the vicinity of the Callaway intake structure is a swif tly flowing, turbulent river with a high level of suspended sedimerc. The river experiences heavy silt loading from erosion and ruFof f during storms. The Missouri River has become less
l 3-6 w l turbid since 1945, when the Rivers and Harbors Act authorized major navigation, bank stabilization and reservoir construction projects. However, the Missouri is still a highly turbid river characterized by 1 l periodic heavy silt loading, swif t currents, shif ting and unstable substrates, and greatly fluctuating water levels. The water quality of the Missouri River near the Callaway intake is influenced by agricultural runof f, industrial and municipal discharges (CDM 1981, 1982). Fluctuations in the river's flow have been shown to influence the chemical constituents of the river. Increased river ficvs (volume) cause lower levels of dissolved solids, chloride, BOD and sulf ate due to dilution (CDM 1981). High flows were found to be associated with higher levels of total suspended solids, turbidity, total metals, nitrate, ammonia nitrogen, COD, and coliform bacteria (CDM 1981). Cold vinter water temperatures were found to be associated with decreased levels of sulf ate, phosphorus, nitrogen, su spended solids, and coliform bacteria (CDM 1981). A summary of water quality monitoring data f rom the Missouri River near the Callaway Plant is given in Table 3.1. E All of the water quality parameters analyzed by CDM at the Callawny Plant were similar to the data reported for the Cooper Nuclear Plant (Missouri RM 532.5); most parameters were within the ranges reported for the Cooper Plant (Todd 1980, pp.36-40). I I I
3-1 e r l @ m . .,,,
,.,1 N O
K. } es . Q N l OO 'I
-. c-- -rm - - :.r*.,-
- O t fd r ** CO Co l .l t._ e. , ._9. 4,. ca
~ + c N N. . ,2eoe-- ~ o m == m. . =
m c f. o, :; ; , ). t .
- o. m.J.=. =.= .* - p e ,*p o, o. g o. o, o. o
** G et n .s. .-. er. e. e e e.'o=. :N. e ** .**. N. e. ~s - * - .
ad [ 6,C. 4
,.p- , @ @ C t.s e =.= N. .n o m m. .o nc? C er et e c, e.
e - roN e- C. N.N.m.e cN e o o e. ;: c: :- o l Q m'
== N - **aro m .= m O v o o o o. c.o e o 5 e v v .c. ==
O Q I < -- o. C. o o. . 0 g O O
> k -e O. -
o I j
,, t se . . . . . . . e. e. . . e. .. e. N. . e.
e o ,e o o N. e. g .ee,,,eq Q M ! e., .g .! ois e,e, e e - cs m m e o um e c o .n c o - - N-e e N m a2 N m Ne N ." OMM - N v telP N w .O s.e W O oCc *d*
- 4* 0 ": W oeu -l u ag i
i u n ,a twno- o o,ec eo ec eo cc *~ eo ec eo ec cm c oc'c eo eo eo pc acoc n o, o c o o rn cs weA Q C e e e c,e in e in cm ec e e e e ea cn 0 - =*
'q t D 0 C a %H O ' C I CC 3 4' Q v
of T^ C" U EO cm
,w g .m -
C O CO O cw5.-
- g g' e we e ese " O Wh CH 3 e w o. ar o Ne - - - ~ - c - =- H - Ow COh w e eooN
- a; N. o. .ri a .
- ~. c. m c. o o. o. o. m c-C- -= * ,d * +. I QQQ e *N . m. ~. e - o - e
- o. NN.c N. c .ca .c e ~ e E c o. o. o, o. o-o. o. o, ,. O
,*i .C m -m.e. .a.) .
wm. c . m. a. . . . =c m. na . e. . o. r- W ..
.f- I U p ga *l& N e - . N .'t - == -- - N~o O' .g -^ w n e o e m -. .- N e mC , o- C .= a c. = = =
- o. .es Na +
8.o c. o.o.,q ,. " - o. e' ew v .m e e- .e e oo o. o. . d .C O ~ o =
- c. o.
e 3. o ZU 4M c' o. o. , o, o. .o 9w - ~ g;': Z,. c m = Ce b@ 0 w OC0 % oom ' e e . . e. o. . . c. m. o. e. e. - 4CC o* eg ewam-g-eemeNwmoe
. . . . e-g mE og ======
- a p .---e Ne 1Mm -cao ,.,,
e -o e L m* E - N m e m, me - , t 0 *=4 $ e 4"
' ~
C >N % " g q C.4 CD D': E c,4 s e,c o,.ce
.e m e e,eo c..e e e e e e =e ee e~ os - e.oe-.c c e ~ eeeer e ~~~u ce- e e. ~e g o, *e.c O ,,4 -
C C "' o %
.O y c OH C ,a **i W e4 ,,'
h ~ e ap 8' O . OO O o D @ pm w~o a 3 5 u s-6 es o 8u o o. e am e -N- ce > es M @ gWm@ g oe o 8emeo o. o. N o.o.o.o.-=.Q.e
,o e N. * .g C g
Q .e~.g .S e @ cm o m* e. e. e. er , g g D mZ ,y =9 . N. . N. 4 N. e. . 4 . . A. m. cs N. e. . . G. o. w. e. Q. . o. c m-cC _. c. o. c. o oC'C.o. d > c n co~o-Neceomeceo-o*. e---e '
"' ~N N e C' " " O' o - o.o ,E2 exO 0 C. ".M" C -
- 8" OC0 .= c " " *
- e"s -N 'ee -
O. o' o* C-o
+ - - . o.* C O Q .E,, *H
- o. o o. e. o. =. c o o.
- o. 3 5 sC , o 3
* > ~ C -
0E - x-CO ~ e
~ ' .n p .
9 9 9 9 9 as as at 3 f "b'* . m. . . @ m. . . o. 0% =O. . N
. ... ...:. ~e,ei,o es~ o -c . ~o oc e w -., ==,o-c, CD oe d.
sH, Le-4 N 3. E
- e O CO ay , ,m es g 3 m Q CB e[- - .N r e -* -
g - C & v'n C w
.* 0 c- u. #h m F"% M a e9 e 8 f e9 P 88% M M f'% f"9 #89 m P8%8f 4 M8 cces m W89 m i g
W CD E- N N N . c c's f'% P'% f"t W"I P9 e9e e eNcNN e e e e"% e'9c,.c N e e c e m e"t W8% = 0 01 3 , o n CO I C*W s v N' o u *~ e
** U II $ ~ ~~. ~-
9 a@ O. QC m u nG & U '" O .s e o 1 *~", 3- U CCh -
-s, s> -: --
voc w ,
-:: -s o g .y 0O *5 -E%% r.s -o eH . * *
- k,,a 6EM o 3 v b > gg a.J e 9w w* c e O h v. -ee3- .s. t .= .o., u, ,o ,
y o U .v _c , .#. - C Q
-oes = v vv 3 9 -i --- C -v *W ,= :m ew - w j --Q-s M V W o 9-== E = =- oe- O,,. * 'J 0" w ***
e4
.t ,
b m
-u - - ,-e *=a o3 * * - .. x I s-we-u w3C u.
es 5 at =
. . .c.e.:
3 v w e
== &
y --
= .-* e e. c c= o-E wg $ . J. Q 9l * :2 *1 e .#.
wee o o n -
*1 . '3 -ta 32 .e g4 : m me e u- a .h a , gy . " ' ,- , e :--o -- . ., w o .,, e. %.-
e:r u
-y o. o o. . = e,,. s, , c -= gc o 2,
s: - s vi n : - J, ., .o. .e.
, .==
O 5 oeoo:
-----u
- t. -. s, e .. 3 , .e.9
-3 o - -_. _. - .o,: .; _u . 4,. e.
2, ea y d
.e. .::
s "J .- s,, l
, gaowzeevv-co-wow-=e3cz=u- z u w w w - = c ~g w-q ;
b i : ' l
I 3-8 3.3 River Ecology This section discusses the historical data concerning primary productivity, zooplankton, habitat formers, macroinvertebrates, fish and other wildlife. 3.3.1 Prima ry Productivity Phytoplankton are microscopic, photosynthetic algae that are capable of rapid reproduction. It is their ability to t rasf orm radiant solar energy into protoplasm that places the phytoplankton and periphyton (the attached algal form) at the bottom of the food chain. Phytoplankton of the lower Missouri River characteristically occur in low densities and are dominated numerically by diatoms (Berner 1951; Damann 1951; Williams 1966; Stern and Stern 1972; Union Electric Company 1974; University of Missouri-Rolla 1974). The paucity of phytoplankton in the Missouri River is caused by excessive turbidity, high current velocity, and the lack of adjoining lentic (lake-like) waters (Berner 1951) . The harsh conditions of the Missouri River are illustrated by their ef fects on plankton populations entering f rom tributary rivers. Damann (1951) reports that plankters entering the Missouri River f rom tributaries did not multiply. A reduction in tributary phytoplankton populations after entering the Missouri River was also noted by Ballentine, et al. (1970). Berner (1951) had earlier suggested that, in the absence of backwater areas, plankton production was autogenic, with little contribu tion f rom tribu taries. Ballentine, et al. (1970) su pported 1 I'
3-9 the suggestions of others that the tussouri River phytoplankton community originates in lentic waters. , Crowth of rooted aquatic macrophytes and periphycon is limited in the Missouri River because of high turbidity, shif ting substrates, and water level fluctuations. For this reason, phytoplankton populations contribute most of the primary production in the lower Missouri River. Algae are generally considered to be the base (primary producers) of aquatic food web, although in many rivers (such as the Missouri), allochthonous organic natter may be the main energy s ou rc e , i Centric diatoms were the most abundant phytoplankters in the bussouri River near the Callaway Plant (Camp Dresser and McKee, Inc. (CDM) 1981, pp. 2-9) . Stephanodiscus astrea, Microsphina potamos and Cyclotella atomus were the three most abundant and persistent centric species collected f rom the Missouri River (CDM 1981, pp. 2-9) . All three are eutrophic species commonly found in turbid, lotic systems (Lowe 1974, pp. 86, 188 and 296; Taylor, et al. 19 80, p. 2 7) . Two pennate diatoms, Frag 11 aria capucina and F crotonensis, were the dominant species in May 1981 when river flow and turbidity were at maximum observed levels (CDM 1981, pp. 2-9). Both of these species are associated with eutrophic water and F. capucina, the most abundant species, is a tychoplanktonic diatom that was probably flushed out of tributaries by the increased volume of flow (Lowe 1974, pp. 135 and 139).
l 3 - 10 l l The colonial green algae, Dictyosophaerium pulchellum, was prevalent during the late summer and early fall (CDM 1981, pp. 2-9) in ' the Missouri River near the Callaway Plant. Species of the flagella ted chrysophyte, Ochromonas, were most abundant during January and February (CDM 1981, pp. 2-9) . The phytoplankton community of the Missouri River is generally tolerant of cutrophic conditions and heavy organic loading with occasional exceptions derived from relatively unpolluted tribu tary sources (CDM 1981, pp. 2-9) . E The phytoplankton species collected during the Camp, Dresser & McKee study in the Missouri River near the Callaway Plant (CDM 1981, pp. 2-9) were similar to those reported in previous studies (Union Electric Company 1974, Table 2.3.2-1; Table 2-1). Analysis of variance and Student-Neuman-Keuls multiple range tests were run on density, evenness and total phytoplankton abundance as well as the densities of selected major algae groups and taxa (CDM 1981, pp. 2-11). The results of these statistical comparisons support the hypothesis that the phytoplankton of the Missouri River near the Callaway Plant were not spatially patchy, but rather were reasonably homogeneous (CDM 1981, pp. 2-11) . 3.3.2 Zooplankton Zooplankton are microscopic animals that obtain their nutrition by consuming other zooplankton, primary producers (phytoplankton and bacteria) and detritus. Like phytoplankton, zooplankton are important food items for larger aquatic organisms such as larval fish. Because of the flowing water environment, many I I
3 - 11 zooplankton found in rivers are primarily littoral or epibenthic rather than truly planktonic. Typical riverine zooplankton organisms l include protozoans, rotifiers, cladocerans and copepods (Hynes 1970,
- p. 99).
l The zooplankton community of the Missouri River near the Callaway Plant was comprised of 68 taxa, which included 38 Rotifera, 18 Cladocera, 16 Copepoda and one Tardigrada (CDM 1981, pp. 3-6). R airers constitued 84.5 percent of the total zooplankton density while cladocerans, copepods, and tardigrads represented 2.4, 13.1 and less than 0.1 percent, respectively. The only zooplanktera which represented 5 percent or more of the annual mean total zooplankton density were the rotifers Brachionus angularis, B. calyciflorus, B. quadridentatus, and Keratella sp. Copepod nauplii also comprised 7.7 percent of the total composite. This type of zooplankton community was to be expected since rotifers commonly dominate in large rivers (Berner 1951, p. 6; Hynes 1970, p. 99; and University of Missouri-Rolla 1974, p. 463) and Brachionus and Keratella are among the t ru ly planktonic rotifer taxa which nearly always dominate large river zooplankton (Williams 1966, p. 88; Hynes 1970, p. 99). Mean total zooplankton density for all locations for all sampling dates was 14 organisms / liter, which is low for a large midwestern river. This was not unusual since the paucity of zooplankton in the Misscari River has been well documented (Berner 1951, p. 4; Hynes 1970, p. 98; University of Missouri-Rolla 1974, p. 560; and Repsys 1979, p. 58) . Monthly mean zooplankton density was variable but was generally highest from late spring through summer and
3 - 12 i lowest in winter. The seasonal distribution of the five dominant taxa I followed a similar pattern, which indicated that most pulses in total zooplankton densities were related to a pulse in one or more of the dominant taxa. This seasonal distribution of zooplankton in the hiissouri River was typical for large midwestern rivers. Zooplankton populations in the Fitssissippi, Ohio and Illinois Rivers were fnund to be minimal in vinter and increased in abundance f rom spring through summer (University of Missouri-Rolla 1974, p. 467 and pp. 504-508). The results of the Camp, Dresser McKee study (CDM 1981) were very similar to previous zooplankton studies conducted on the Fiissouri River near the Callaway Plant (Union Electric Company 1974, pp. 21-23; 1975, pp. 16 and 19; and 1976, pp. 33-36). In each of the previous studies rotif ers dominated the zooplankton community, and maximum densities (50-70 organisms / liter) usually occurred in late summer when flow and turbidity were low and diatom abundance was high. tiinimum densities occurred in winter months and were usually less than 10 organisms / liter. 3.3.3 Habitat Formers Habitat formers are plants or animals characterized by a relatively sessile life sts' which function as 1) a living or formerly living substrate for the attachment of epibiota; 2) a food source for shellfish, invertebrates and fish; and 3) sites for spawning, nursery, and cover for shellfish, invertebrates and fish. Organisms that may qualify as habitat formers are attached algae, f reshwater sponges, freshwater hydra, bryozoans and rooted i I
3 - 13 " vegetation, in the opinion of the University of Missouri-Rolla (University of Missouri-Rolla 1974, p. 553), there is no true periphyton in the lower Missouri River during flood years. They f ound that structure rocks and pilings showed no growth, because of frequent I abrupt vater level fluctuations, scouring, covering of structure I surf aces by transported sediments, and low levels of light l penetration. They surmised that their periphyton measurements were 1 for potential periphyton growth under optimum conditions which occur rarely, if at all, in the lower Missouri River (University of Mi ssou ri-Rolla 19 74, pp. 553-554) . Rooted aquatic vegetation is usually f our.d in slow moving or standing wa ters. Pa st studies (Union Electric Company 19 74, p. 24, CDM 1981, p. 7-7) stated that no vascular hydrophytes were observed in the Missouri River near the Callaway site. Berner (1947) also reported a complete absence of rooted aquatic plants in the channels, chutes, and backwaters of the Missouri River. He attributed their absence to turbidity, water level fluctuations, and the instability of the fine river substrates. 3.3.4 Ma c roinve r t ebra te s Macroinvertebrates (benthos) are the group of aquatic organisms that inhabit bottom sediments and consist of the la rval stages of many types of aquatic insects, worms (oligocha e t e s) , clams (pelecypods), snails (gastropods) and a variety of other invertebrate animals. Many benthic organisms are predators on other aquatic b macroinvertebrates as well as fish larvae, while others utilize I
3 - 14 detritus, algae or other material. They serve as an important sou rce of food for many types of fish. One hundred benthic macroinvertebrate taxa distributed among 72 genera and 32 families were identified from 144 Ponar grab samples collected at four locations in the Missouri River near the Callaway Plant (CDM 1981, pp. 4-7) . Oligochaeta and Chironomidae comprised the majority of the benthos and were represented by 20 and 33 taxa, respectively. 011gochaeta was composed of 9 species of Naididae and 11 species of Tubificidae. Other aquatie insects comprised 23 genera I within 21 families. Turbellaria represented a significant portion of the benthos at two locations. Other miscellaneous taxa collected were isopods, amphipods, sphaerid clams, and the asiatic clam (Corbicula manilensis). I There are few published accounts of the Missouri River benthos in the immediate vicinity of the Callaway Plant and, until the study by Berner (1951), there had been no published or unpublished data concerning the benthic organisms of the Missouri River (University of Kissouri-Rolla 1974, p. 477) . Berner collected Petersen dredge samples f rom the lower Missouri River at 11 sites from the river mouth to the Iowa state line between April and November 1945. Only 750 benthic organisms were f ound in a total of 130 samples for an estimated density of approximately 29 organisms /m2 . In decreasing order of abundance, chironomids represented 35%, oligochaetes 20%, and Trichoptera 16%. The extremely low productivity (estimated as 0.4 pounds of benthos per acre) of the sampled habitats were attributed to high turbidity caused by high current velocity, shif ting substrates, I
3 - 15 ~ siltation, fluctuating water levels, and the absence of aquatic vegetation (Berner 1951, p. 10). The University of Missouri-Rolla conducted a baseline study of l the Missouri River in 1973 (University of Missouri-Rolla, 1974). Five locations (from RM 132.5 near Bonnot's Mill to RM 101.4 near Gasconade) were established near the preser.t site of the Callaway Plant. The mean number of benthic organisms reported f rom these locations was 173 individuals /m2 . These samples were composed of 011gochaeta (87%), Ephemeroptera (6%), Chironomidae (4%) and Trichoptera (1%). The study ascribed the paucity of benthos to channelization, high turbidity, swif t currents and shif ting substrates (University of Missouri-kolla, 1974, pp 554, 560). Recent studies of the Missouri River adjacent to the Callaway Plant have reached similar conclusions regarding the benthos of the Missouri River, exclusive of dike and revetment habicats (Union Electric Company 1974, 1975, 1976). Mean densities ranged from 486 to 2 1,320 organisms /m and mean biomass values ranged from 827 to 2,483 mg/m2 . In each_ investigation, Oligochaeta (mostly Tubificidae) represented more than 75 percent of the total ~oenthos. Chironomidae were the second most abundant taxa, followed by Ephemeroptera and Trichoptera. Channeliza tion, floods, swift currents, high turbidity F and shif ting substrates were found to be the major factors contributing to low species diversities, abundance, and bioma ss (Union Electric Company 1974, p. 28; 1975 p 34; and 1976, p 88).
3 - 16 I ! A total of 127 taxa were identified in the drifting I I macroinvertebrate samples collected from June 1980 through May 1981 from the Missouri near the Callaway Plant (CD!! 1981, p. 423) . The number of taxa per location ranged from a low of 85 to a high of 103. Mean spatial densities ranged f rom 97 organisms /100m3 to 156 8 organisms /100m . llydropsyche orris was the most abundant species collected at each location. Mean annual densities of this organism ranged from 18 to 38 individuals /100m8 . Of the 127 drif ting macroinvertebrate taxa collected, 88 were aquatic insects. Chironomidae was the most diverse family of aquatic insects present, comprising 35 taxa. Mayflies wera the second most diverse group of insects, representing 14 taxa distributed among 7 families. A third diverse group of organisms were the Polycheeta. Thirteen species of naiad worms, 7 species of tubtficid worms, and I unidentified species of enchaetraeid worm were collected. The highest number of taxa (57) was collected in March, and the lowest number of taxa (26)- was f ound in July. There is very little data available concerning the macroinvertebrate drif t assemblage of the lower Missouri River (CDM 1981, pp. 4-39). Berner (1951) calculated that about 64 million drifting organisms, weighing abr 200 kilograms, passed under the Boonville, Missouri River bridge in a 24 hour period in 1946 (Berner 19 51, p. 8) . Of 381 drifting organisms collected in the lower Missouri River between May and November 1945, Chironomidae comprised 48%, Plecoptera 9%, Ephemeroptera 12% and Trichoptera 12% (Berner 1951, p. 8). An intensive drift survey conducted near Fort Calhoun I
l 3 - 17 i Station (RM 646) from 1973 through 1977 f ound Hydropsychidae (37%) Chironomidae (24%) and Ephemeroptera (14%) the most abundant groups ) I (Carter 1977, p.158) . Union Electric Company (1975) collected drift samples near the Callaway Plant in June and September 1974. Species composition in drift samples varied greatly from that observed in grab sampics collected during the same investigation. The most abundant organisms collected were stenonema sp., Hexagenia sp. , Chaoborus sp. and Polypedilum sp. All of these organisms, except Hexagenia sp., were common or abundant in similar seasonal samples, llowever, drift densities (about 5 organisms /100m8 ) were one-tenth of the ainimum drif t density of 50 organisms /100m 3f ound in the CDM (1981) investigation. 3.3.5 Fi sh The abundance and diversity of fish in the Callaway Plant area of the Hissouri River are determined by the physical habitats present, water quality, and the populations of organisms in other portions of the food web. Many larval fish species feed on plankton as f ry, but feed on aquatic insects or other fish as adults. Adult fish may act as primary consumers by feeding on phytoplankton; secondary consumers by feeding on zooplankton or benthic organisms; or tertiary consumers by feeding strictly on other species of fish. Funk and Robinson (1974) did an extensive literature review and found that 63 species of fish have becn collected from the Missouri River. They did not include species that were collected only
3 - 18 in the mouth of tributary streams and were believed to be more characteristic of the tributary than the main river. They summarized their literature study by stating that the fish populatten of the river has become dominated by a few species adapted to survival in the swift, turbid stream and that diversity of the population has declined as habitat has become less varied and diverse. Spectacularly large specimens of lake sturgeon and paddlefish have not been taken for many years. The lake sturgeon has virtually disappeared, the paddlefish has declined drastically and the blue catfish now makes up only a small part of the total population. Crapp ., sunfish, black bass and saugers, which once made up a considerable portion of the population, now are seldom taken. The exotic carp increased dramatically soon after introduction, apparently at the expense of the native buf faloes and carpsuckers, and has remained dominant, The flathead catfish may be declining in the river at present; the channel catfish is the only major species besides the carp which seems to be increasing in I abundance. These changes have paralleled the physical changes in the river and, while proof of a cause and ef fect relationship is lacking, the circumstantial evidence of a direct relationship between decreased diversity in the habitat and decreased diversity in the fish population is very strong. A study of the fish populations in the Missouri River near the Callaway Plant was conducted from June 1980 through May 1981 by Camp, ( Dresser 6 McKee (1981). A total of 2950 fish comprising 43 taxa was collected in the Missouri River by all sampling methods during this study. Electroshocking in the Missouri River was by far the most i I
3 - 19 ef f ective sampling method for both total numbers and diversity. Fifty seven percent of the total catch (1670 fish) and 32 species were collected by this method. Ca tch-per-ef f ort ranged f rom a low of 0.09 fish /minu te in August to a high of 3.39 fish / minute during Fuy, e . rage catch-per-ef f ort for the year was 0.95 fish / minute. Although catch-per-ef f ort wa s generally low, the rates are typical of tne lower Missouri River. In 1979, catch-per-ef f ort at Cooper Nuclear Station (RM 532.5) averaged approximately 0.6 fish / minute (King 1980, p. 110). During previous studies for the Callaway Plant, high water greatly hampered electroshocking effectiveness and the method was discontinued (Union Electric Company 1975, p. 24). Seining accounted for a total of 603 fish comprising 15 taxa, many of which were not readily collected by other sampling methods (CDM 1981, pp. 5-9). Two species, the emerald shiner (Notropis atherinoides) and the red shiner (Ji, lutrensis), comprised 72 percent of the specimens from seine collections. Gill netting accounted for 13 percent of the total catch (387 fish), comprising 18 species'. This gear type was almost singly selective for one species, the shovelnose sturgeon (Scaphithynchus platorynchus) . Trap netting was the Icast effective technique employed during the Camp, Dresser & McKee study (1981).' Less than 10 percent of the total catch (290 fish) was taken by this method. Trap nets captured 23 species but appeared to be most selective for catfish species and freshwater drum (Aplodinotus g ru nnien s) . Ten fish species were collected during the Camp. Dresser 6 McKee study (1981) which were not reported f rom previous river
3 - 20 I collections near the Callaway Plant (Union Electric Company 1976, pp. I
'3-76). The most notable of these were the rainbow smelt (Osmerus /
mordax), an exotic species, and the sicklefin chub (Hybopsis meeki), presently listed as rare in Missouri (Nordstrom, g al.1977; p. 28) . Other uncommon species collected were blue sucker (Cveleptus elongatus), stonecat (Noturus flavus) and walleye (gizostedion vitreum). Although species composition has differed from previous studies near the Callaway Plant, major components of the river's fi a community have remained similar (CDM 1981, pp. 5-21). Differences in species composition generally did not include species associated with big river systems but were primarily limited to species in other faunal classifications. Despite rigorous sampling eff orts in the Missouri River near Callaway, fish population densities were very low, primarily due to the harsh environment of the lower river caused by high turbidity, strong currents and the pat. city of spawning and/or preferred backwater areas (CDM 1981, pp. 5-41). 5 3.3.6 Wildlife Resident vertebrate wildlife populations in the vicinity of the Callaway intake area are limited since much of the adjacent lands are used for agricultural row crops and the river is channelized. The forest margins along the river banks, backwaters behind dikes, sandbars, forested islands and pastures are the major areas for resident vertebrate wildlife. Beaver, turkey , raccoon, rabbit and small duck populations (mallards, wood ducks, etc.) have been observed near the Callaway intake. During low river elevations Canada geese have used the large sandbar downstream of the intake on the south s'.de I
3 - 21 s of the river. Fall and spring bird utigrants have been observed in the vicinity of the intake. Resting areas for these migrating birds l- include dike fields during normal or low water elevations, bac kwa t e r areas formed in fields and lowlands during and af ter flooding, or old side channels of the river. The immediate vicinity of intake and discharge does not contain vegetation or habitat which would attract or hold large numbers of migratory waterfowl or resident vertebrate vildlife. B I E B I
4-1 4.0 Entrainment Study 4.1 Objectives I L Objectives of the entrainment study were to document the density, composition and spatial and temporal distribution of icthyoplankton in the Missouri River in the vicinity of the Callaway Plant. These data were used to calculate estimates of actual- and worst-case entrair. ment by the plant, i Entrainment estimates are expressed as percent entrainment relative to icthyoplankton transport. Percent entrainment estimates help demoastrate that best available technology (BAT) was used to design the intake to minimize adverse enviroumental impact to the i aquatic ecosystem. 4.2 Materials and Methode 1 4.2.1 Collection Site Locations and Descriptions Three parallel zones which encompassed the entire width of the river between RM 116 and the '.ntake (RM 115.4) (Figure 4.1) were sampled weekly f rom April 1, 1984 through September 23, 1984. All three zones shavn in Figure 4.1 were bounded on the upstream (west) end by an imagtnary line perpendicular to the shore at the 116 mile marker and on the downstream end by an in.aginary line perpendicular to the shore at the downstream edge of the intake (RM 115.4). Zones were designated as B2, B1 and B3 because these were the designations used in preoperational studies (CDM 1981, 1982). Throughout the remainder i
<-2 l v:!
ig i!
</
( e g 2g; 11 l l i-
'l ;, =1; ;
e E g ~ ~ -' " / l, ,f Y
.93 /! !! ,-
li 3 g
'I $ l1/ N : .5 b
[ 0 @ I) ? $$$e 5 l
'b' d,, \
e
> .. n s s a c l
g
..... g g f' /h u
y 0 ll a 0 l % 4 5 !!@ &
\
- c e ;! -
, ([i)4/ [s\.
ii !I E I
** . b e
i d& e
, a y - s.7s e -
b I '. . -
- //.yyyj 9i~ , '
- 4 oi ., s - a
. ..... . .. ......\ , y "
g g
... , p/.;! ,g / , 'x , \.. g ' q I s vix. =
r w ! y e. \ 4 C . 6 l+ , \\ E ei
.l i
z ,, s' / is 43
-\ -
p g3 I 3 l / i .v 4 .
\, ~g .
cx 3 t ! I
}
22 5
\E ! 'e, s'2 5
m
- if e, - s. 3 Li; .*J 0. 1lq'[ u 3
7, s.
\
s sli' 4' - e
,,)s c,
N. s F/ ./ a. uj i e l k/ ,
's:;~./)'l) I I
4-3 g_ of the document these same zones will be referred to as north (B2), middle (BI) and south (B3) zones. l The north zone (B2 in Figure 4.1) is the zone closent to the j j intake and will be considered representative of the " zone of influence". Samples were collected along a path parallel to the bank
- i and the face of the intake. The downstream portion of each haul put the boat as close to the face of the intake as possible without
- colliding (2-3 meters).
4 The middle zone (B1 in Figure 4.1) was the geometric center of the river on the sample day. The path for this haul was parallel and equidistant between the paths for the other two zones. The south zone (B3 in Figure 4.1) was parallel to the south shore and just off the ends of the wing dikes under normal flows. During high flow conditions, such as those experienced of ten in 1984, this zone shif ted south so that hauls were taken over the tops of the dikes. The three zones were situated to divide the eurface of the ) river into thirds on a sampling day and the south and middle zones i shif ted somewhat because of this. The north zone was consistently the same relative to the intake and north shore regardless of stage. i I 4.2.2 Sampling Methods f Paired 0.5 meter diameter conical nets with No. 0 "Nitex" mesh (0.570 micron openings) were mounted on f rames to simultaneously L sample on each side of a 18 foot boat. Each net was fitted inside 4 t e, ., . ,-m ..
, -- -- , , - , m., ..,-,,_.---m,. -- ,,~,-. --,,-%,rww-,-----vr------,----e------= --e-*---- '
4-4 I vith a calibrated model 2030 General Oceanics flown.ater. The starboard net had an identical flowmeter on the outside. Inside meters were used to calculate the volume of water sampled and readings were compared with the outside meter to check f or net clogging or back-flushing. Nets had a 27 in, deep cylindrical section of Nitex sewn in at I the mouth to reduce back-flow. Nets were made by Ernest Case Company and cod end collection buckets were WILDC0 47-F64 1-liter plastic with 583 micron steel mesh screen. Each of the two net hoops were velded to 10 f oot long box steel arms with holes for pivot pins spaced at 6" intervals. Pivot pins held each net on the end of a midship box steel cross bar so that each net could be pivoted in and out of the water at the beginning and end of a collection (haul). Nets were deployed and retrieved simultaneously on both sides of the boat and all meters were read between hauls. Hauls were made with the boat moving downstream, with the engine at about 1100 rpm, between the 116 mile marker and the downstream corner of the intake at E river mile 115.4. Three consecutive hauls were made in each of the 3 cones on each sample day for a total of 18 discrete samples per day and 4o8 total samples during the 26 week sample period. Af ter each haul, nets were carefully rinsed f rom the outside of the net by swishing in the river and use of a pump with hose attached before being brought aboard. Net contents were rinsed with squirt bottles into a flat pan and then placed in a discretely labeled I
j 4-5 16 oz, polethylene sample jar. Each jar was turked with a discrete sample (ID) number and a label was placed inside the jar. This label included ID number, plant, date, zone, side of boat (L or R), replicate number (in that zone for that day, 1-3), number of jars used for that sample, and the collector's name. Samples were preserved in I the field with 10% formaldehyde. I Field data was recorded on data sheets which included the I following information for each sample collected: 1D, date, plant, zone, net number, side / replicate, flow meter ID numbe.r, start and finish flowmeter readings, number of jars used for the sample, start time, stop time, river stage, water temperature, outside flowmeter ID numbers and start and finish readings, and any remarks. Samples were stataed, rinsed and all visible icthyoplankton were separated from detritus at the laboratory in St., Louis. Rose Bengal was used to stain eb;;* and larvae and an illuminated magnifier was used to make them more easilf visible. Processing sheets were filled out in the lab f or each sample and included the following: sample ID, number of jars, start date, completion date, initials of sorter, different taxon sorted and number of each, number of eggs, and general comments. Taxa that were distinctly different from a sample were sorted into separate petri dishes or jars, marked with the sample ID and designation (name or number) and preserved for further identification and measurement in a 75% alcohol, 20% water and 5% glycerine solution.
4-6 I All larvae and eggs were identified to the lowest possible taxon and measured to the nearest 0.1 mm using a dissecting microscope fitted with an ocular micrometer and polarizing filters. Specimens were placed into the following life stages: egg, prolarva (yolk sac), larva (yolk absorbed but fin compliments incomplete), and juvenile (full compliment of fin arrays). All specimens were kept for future reference. Specimens were identified with the aid of keys by May ar.d Gasaway 1967; Taber 1969; Hogue, g al.1976; and Auer 1982. Bench processing eheets were filled out with the following information ID, jar number, species code, lif e stage, size, sorter, identifier, confirmer, disposition of specimen, completion date, and remarks. 4.2.3 Entrainment Rate C+;eulations
'ntraitunent rates were calculated by the following method.
The volume of water sampled on each haul in each net was calculated by converting flow meter counts to distance traveled and multiplying by the area of the net mouth opening. Percent entrainment was calculated using a slight modification I of the methods in Mathematical Methods to Evaluate Entrainment of Aquatic Organisms by Power Plants (U.S. Fish and Wildlife Service 1977) where: E I I
4-7 ~
% mortality rnean number of larvae entrained (assuming 100% = per unit tirne mortality of mean number of larvae drif ting X 100 entrained with the river per unit time larvae) l Let Cz = ucan concentration of larvae per m 8 f or each zone (north, south and middle) calculated f rom all six samples in the respective zone for that date.
Cr = mean concentration of larvae per m3 for the entire river I cross section (average of all 18 samples for that date). Cp = mean concentration of larvae in the intake water in m' I (mean concentration in north tone on a date). Qr = river flow (discharge) in m8 per second for that date, I calculated by using Hermann discharge for that day minus Casconade discharge (USGS data) for that day. Qp = mean flow through intake (m8 /sec) for that day, from l 3 operating data. The mean number of larvae and egge per second passing the intake ist CrQr The mean number being withdrawn is: CpQp The % entrainment rate (same as mortality rate assuming 100% mortality of entrained organimus) is: X 100 Cr Qr l Volume of water sampled for density calculations were measured using a pr General Oceanics flovmeter with a standard rotor. dif ference in count x rotor Distance in meters = constant (22,873) 999999 Volume of water filtered in m' = 3.14 X net diameter in m 2 sma mnWd b nn
4-8 l number of larvae and eggs in sample
= larvae and egg v alurae sampled in m density /m 8 Worst-case entrainment calculations were based on a maximum intake withdrawal rate with three pumps runnit.g, icthyoplankton density in the zone of influence with a transport rate using average densities of all rones, and the record low river flow for the period of record during the time of icthyoplankton presence.
To calculate entrainment estimates. Gasconade River discharges I at Jerome, Missouri were subtracted f rom liermann discharges for that day. The stage discharge rating curve for Callaway based on these adjusted discharges and actual stage measurements at the intake are presented in Figure 4.2. The discharge estimates for liermann and Callaway for the entrainment sampling period of 1984 are compared in Figure 4. 3. 4.3 Re su lt s The Callaway icthyoplankton sampling program was conducted weekly from April 2, 1984 through September 24, 1984. The sampling period included the entire period in which fish eggs and larvae were likely to exist. Eggs and larvae were first collected on May 1 and none were collected a!ter September 10. Density values are expressed as number per 100 m3 . The mean quantity of water filtered on a given day was 1666 m3 (range 1028 m3 to 2155 m 3
) with a total of 43314 m3 I sampled during the entire 26 vecks. Each of the 468 individual sampSs filtered a mean quantity of 92.6 m3 with a range of 33 m to 161 m3 .
I I I1
i i 4-9 Figure 4. 2 CALLAWAY STAGE DISCHARGE CURVE 1984 524-- e
- e 523- * '
F>22 ' , 521-' ,
- g 520 9 519 S 516'
- T :
A : G 517-- E : g
! 516-N :
F 515 E : E : T 514. A ! B 513-
- O
~
V : E 512-M 3 5 511-L : 5105 509{
- n' 506j 507 506 5052 60 BOO 90 BOO 120 BOO 150 BOO 180 BOO 210 BOO 240 BOO 270 BOO DISCHARGE IN CFS
1 rigure 4.3 RIVER DISCHARGE COMPARISONS BETWEEN CALLAWAY AND HERMANN FROM USGS DATA 300000-275000-' I 2500002 - 1 l 2250002 ' C l u 8 I C 2000002 F E _ j I75000-P g c C L C 1500002 ' S C D N 1250002 ^ D 1000002 750002 500002 _,_ _, , , ,_ _, , , 25 MAR 84 14APR84 04 MAT 84 24MAf84 13JU484 03JUL84 23JUL84 124UG84 OISEF84 215EF84 DATE SQUARES =HERMAMM DISCHARGE (FROM t. 9 GS 19341 STARS =CALLAMAT DISCHARGE-tHERr'REN MINUS GASCCNAGEl i
i 4 - 11 i 4.3.1 Species Composition Abundance and Densities A total of 3541 fish and 195 eggs were sampled representing at , least 26 taxa (Table 4.1) . Four taxa comprised over 85% of the total taxa sampled. These predominant taxa were: f reshwater drum (54.12%), gizzard shad (15.44%), carp (8.78%), and other minnows (6.69%). No specimens of rare, threatened, or endangered species listed for l Missouri Waters (Missouri Department of Conservation 1977), or included on the U.S. Fish and Wildlife Service List of Endangered or e Threatened Wildlife (U.S. Dept. of the Interior 1975) were found at the callaway Plant. Because some specimens were identified only to the genus or family level or were unidentified, the possibility does ' exist that sane rare species were included in the collection. The lack of rare fish (with the exception of the sicklefin chub) in adult , fish samples in this-study and previous studies in the same area makes the presence of rare eggs or larvae unlikely. Number collected, mean--density per 100 m and percent frequency- - of' occurrence in the 244 samples that contained icthyoplankton are I shown in Table 4.2. ' I . l Total specimen frequencies for all taxon combined by date with l zones compared are shown in Figure 4.4. L . Mean density values by zone on each sampling date for all taxon combined and for the 5 most abundant taxon are presented in Figure 4.14 and Figures 4.6 through 4.10, respectively, r I-r,,,m-n,--.m-,-
< , , . ---...,.,-,,...,-,.,~.n~...-.-~ . - . _ , . - . . . . , - - . . - , _ - . , , _ . - _ , , . _ _ . . - , .
Table 4.1 Taxon Frequencies for Icthyoplankton Collections callaway May 1 - September 10, 1984 Common Scientific Fercent Name Name Number Of Total Unidentified Egg Unidentified Egg 55 1.47 U sidentified Yolk Sac Larva Unidentified Prolarva 23 0.62 Unidentified Larva Unidentified Larva 4 0.11 Unidentified Juvenile Unidentified Juvenile 1 0.03 Damaged Larva Damaged Larva 1 0.03 Paddlefish Polyodon spathula 1 0.03 Shortnose Gar Lepisosteus platostomus 1 0.03 Cizzard Shad Dorosoma cepedianum 577 15.44 Coldeye H1odon alosoides 105 2.81 Goldeye or Mooneye H1odon species 1 0.03 Carp Cyprinus carpio 328 8.78 Epeckled Chub Hybopsis aestivalis 1 0.03 Minnow Family Cyprinidae 250 6.69 Buf falo Species Socker Family Ictiobus species Catostomidae 4 0.11 y 118 3.16 - Sea Bass Family Percichthyidus 5 " 0.13 31uegtLi Lepomis macrochirus 5 0.13 White Crappie Pomoxis annularis 5 0.13 Spotted Bass Micropterus punctulatus 1 0.03 Sunfish Species Lepomis species 28 0.75 Crappie Species Pomoxis species 28 0.75 Sunfish Family Centrarchidae 27 0.72 Sauger Stizostedion canadense 2 0.05 Perch Family Percidae 3 C.98 Freshwater Drum Aplodinotus grunniens 2022 55.12 Freshwater Drum Egg Aplodinotus grunniens Egg 140 3.75 3736 m M M M M M M M M M M M M M m m m C#3 m
4-13 Table 4.2 I Taxon Frequencies, Mean Densities and Percent Frequency of occurrence Callaway 1984 Mean Percent Density Frequency Per 100 of Taxon Number Cubic Metern Occ u r renc e Freshwater Drum 2022 22.69 37 I Gizzard Shad Carp Minnow Family 577 328 250 5.43 4.$6 23 24 46 32 34 Freshwater Drum Egg I Sucker Family Goldeye 140 118 105 1.86 1.95 5.36 30 29 9 Unidentified Egg 55 1.70 17 I Sunfish Species Crappie Species Sunfish Family 28 28 27 1.68 2.22 1.05 10 9 2 I Unidentified Yolk Sac Larva Sea Bass Family 23 5 1 14 0.97 1 1 Bluegill 5 1.34 1 White Crappie 5 2.09 1 Unidentified Larva 4 1.75 1 Buffalo Species 4 1.10 <1 Q Ferch Farnily 3 0.95 <1 5 Sauger 2 1.27 <1 Unidentified Juvenile 1 1.50 <1 Damaged Larva I Paddlefish Shortnose Gar 1 1 1 0.87 0 90 1.77
<1 <1 <1 Goldeye or Mooneye 1 1.88 <1 I Speckled Chub Spotted Bass 1
1 0.72 0.96
<1 Q
Total 3736 70.97 -- I I I I I
Figure 4.4 ICTHYOPLANKTON FREQUENCIES BY DATE ZCNES INDICATED Att TarCN CCMSIMED CALLRMRT 1984 FRE00ENCY 22CC - 20CD - ' 1800 - 1000 - + l 1400 - 6 s e 1200 - [ 1000 - eco - 600 - 400 - ,
- r. e ,
203 ~ r j 0 m mm N E M __ .. [ 50104 50784 51484 52284 52934 60434 61184 61834 S2584 70284 7C384 71684 72384 72084 8060'4 81354 828e4 8273'4 90494 slos'4 CATE [ LEGENDe ZONE R MIDDLE M NORTM G SCUTH f e m m M W m W W W M M M M M M M M M m
4 - 15 I The entire raw data base for the study is presented in Appendi,4 B. Specimen f requencien by date with life stages indicated are presented in Figure 4.5. A total of 2022 f reshwater drum were co'lected with a mean density of 22.7/100 m3 (Table 4.2) and a range of 0.6 to 157 per 100 3
- m. Most of the drum sampled were juveniles (Figure 4.15) which would probably not be as susceptibic to ent rainment as larvac. For the purposes of estimates, all drum sampled were considered as "entrainable".
Drum first appeared in the samples on June 4 and were not sampled af ter August 27. Drum densitico peaked in mid-July at an average density of 128/100 m . Drum appeared in 90 of the 244 samples that contained icthyoplankton for a percent occurrence of 37%. Drum densities compared between zones show the south zone and north zone (zone of influence) both having the highest mean densities on a date. Middle zone densities peaked at almost half of the other zone densities (Figure 4.6). A total of 577 (Table 4.1) gizzard shad were collected with a mean density of 5.43/100 m3 (Table 4.2) and a range of 0.6 to 24 per 3 100 m . Shad were collected in 113 of the 244 samples that contained icthyoplanktoi, for a 45 percent occurrence. Gizzard shad were collected f rom May 14 through August 6 (Figu re 4. 7) . Mean zone densities peaked at 14/100 m3 in the south I zone during late June. There were lesser peaks in the north zone (zone of influence) during mid-June and late June as well as early
y._ I 4-16 s, I e i I I
- =
[ '" 4 $ E E
, w q ,( $ f ,j .. g ,
g Ej s s m. L s E
. a l' >
db 5 M5 mg
- ~
gl c! z Wm//w/w/wwmA e l
$m*g '/A i .- .
I, N p;m 4 "g a E55g E
%o E g 51 Nd M ~ -:g g- c; .
I g~g a 5 h 5a
~
z" ' 3 O i, e p Z -$ e 8 O
- 2 3 u,
g g g 0 $
- 5' E 8
a
}8v." E CD E
E
=
E E_i-w .- , i. i- i- .. i. ,- ,. .. g O O O h o h C - - .o ~ ea a e e a : I
lI g 4-17 l3 i a I f' l m i a_ m
.:3<
ip % U 2 E , ' of@ 5a o , E
)
l v2 ;
-4 h.
mn R H,_,-n E, r WW M
- *""pe N *W Z
N *I E ~~~ #$
- E ~~~~~~
i N O b,8 .k" ht z E== =
-e,_e".~...**'"~.~..~..~"- , E m
C1E ' . .,* * . . a o W bSEE ae
- .. .. , -... .. _ ...., ~ .. ~ .. -( ee ,~ ~ . . . " = s:,
ztp
- l , EE v .* e iI .,, t ,~
._1 w <48 *=. '
1 k , 5
.I g ,g Ox >g w ,
a
- > o,
- -w i 6 1
'k- w =
u-
- . ~
e M i g
- E i Z -R w
S o I
- N c3 1 M ,
.h 94 e
- I, E
- g =
- U * "k 4 e C
D ,
- t71
[ A s 's i 6 A' $ $ i~ i, i a o ? ENENNS kMS 88 O h ODEMU E
- I
T I 4-18
- I / / : g o -l5 < i, 8 80 ~
N i .*e C , " es, f* # E Eil ( 3 g f"....,,, e
". r 4 + , ~ .e , / ... ,
o *
~
e U ,,/'/
- f
@ r.:'.** % % ,, "- -(g 4 da HE . -e *- ' t "s~' .% , ' ,,****= ... N o.. % E E cn - ' ,m ..,, .g 5 w g 51 a .
a ..
.- a a
s2
~m*
y E A
**p. 9.. 'g6 F8 ,5 II o g oog som ,, ~e =a o
m g v$ e ass
=5 ~:
g es:= N .... " .. s >
- w, -4 e
w g e a e" ~? ,
= !
ag p " p '... ,
< r " = < ~R E 0m py ... - < - u y +. * .,.. ' ' \ ," 4'%g g
c" a
.,N. -(. w E
5
.. *** tb g
C N e b Z g% s s _= 4 5 a g O .
.
- g-g g
N C W J t Z A
//
l
.iE n
I Cu , ! 2 [ t 9 i 'E w G
@ E l
w l .E g 5
- 5 W
. . . . .j , . .
2 D E ID W C AWC == C O (J D tDa tJ E I
y , , - - , - - - - - - - - - - - , - - - - - - - - - - - , - - - - - - , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - , - - - - - 4-19 1 L
'Y I s 5
5 I 'e v
"". *,/ e' ,o* }?./a* * ^ a t ' MIm. ~ ..~,,.
g.,*** 1 g
*...,, s , , 4 .. _ .. 2~, . , e w
4 g
.t n .. i E .._.. i n ..
1y s
-{a }
e M.IT B / i i
+
i s-J 95y e
/ ;s.' .h k Oi.
s* 1 it r, e E
\ tt , e Qw p G v w
4 E w g 5 l' *6 $ o g $h $- W h.4 E E
$ sl , '*'
5 8 t ! E a\ s a a
'3 8 w
- e '@
8 a
* /. '
s A w b
/ S ~
s' se . sw
.s n s *.
o b h b WV'
't a .a %
4 4 a 5 l@ u .E U t3
.x E .Ez Ib gC 4 b
1
, s 3 h
- gQ%Dd wwC ## y, - v z i
I
I e b I B
' ~
t i e E 6 m
=
a M 4 L a l b 4
- s a
a: E - Y
~
5 g e l O ' y e Y 4 Z g
-h k dg Q a b E m- );, e a m E ZE M5- \t -( m 5
V E ona ,,ex il:: , a " o e 5 E g ZEEh y E g or .g e H SEh xas Z Ey* ^p o f,a m 8 e 8 W e a I
<*m E E E .eN Ae 4E o </,e l m o ~ ~
E e l W
>$ E 5g um .. ~ .. ... ..,,-.. .7" , .E n .m m
e l M " C .. ~ ... ... - A' d; E z; ." N ... % ,'" *
,s, g 5 5 o
g
.g $ .. % ***. 5 % m N ., s -
g N. % g 4 \ % %g E M %.\g 's % r e
# -R e % g*.= . Q .'/ > /* =
o // a E
$ / 4 5 ~
E w 4 tr
. . . . . . . . . . . . . . ,. . . . . . . . .-e .. . . .. -oo mm._m m g
I
5 s ~ 4-21 bat W W EL-L
-W W
em 9 48 m C , o N .- E
- g I ! 4 6 g rv ::
rv
- 1 Q**'*'.
g s v* a: b n O f y e u l0Ws M.f ~'*',, +i l l E s a F5 i s y E ev _ O I &c'M'"'8
>= '" (*N,'N**., p 3
er O pw
-p :" g u t. **h=,, N *h Mh hw K , g- %
m e* .4 O pe ' I fw (*A.s
- er 5
- r 45 Z o-tou o e,*,,Y %
s ca q w w O ;~5 /g \ s ~
- w a-- .,. s m E w l w wcc M t'E ?
*'q == wn y2 T. k". C /.. #,,* , *'a t*
e
< *$5 , / 4" -d *s JW s E ?~
Lco ',,,/* s,
,3=
O_
>@w ** / .. *,,, u ! e-e iE 4g =
9*,, ' }m(4 l ~v w O p 8 f e=
- ..,,,,,' , ",- (es E c ~
O C= g - h_ Z m s s r* E D w V s > C & N % Ek
>=y s
jmO e-e % p g M s s s
% W s
O g T* H s ,2
* * -g
- o e e a e + e ._e a e c & a -~
y J i i d d i A & & J J o i u 3 mormwc Awc -oo upm-u I CD
+
k
4 - 22 I July. liiddle zone 'snuities were consistently lower with the only I peak in mid-July (ligure 4.7). Carp were the third most abundant taxon with a total of 328 and 3 a mean density of 4.6/100 m with a range of 0.7 to 25.7 per 100 m . Most of the fish identified as carp were juveniles since the minnow family is difficult to identify to species when the specimens are la rvae . These juvenile carp were also considered "entrainable" even though some were probably capable of avoiding the intake. Carp were collected in 79 of the 244 sampics when larvae or eggs were present f or a 32% occurrence. Carp were sampled from thy 22 throut,h August 6 and peaked during July (Figure 4.8). Mean zone densities were highest during mid-July in the middle I zone. An earlier but lower peak was seen in the first part of July in the north zone and a smaller peak in the south rone simultaneously with the middle zone peak (Figure 4.8). Minnoi species that were identified only to f amily made up 6.7 percent of the total taxon with a total of 250 specimens (Table 4.1). The mean density of minnow species (other than those identified as carp) was 1.9/100 m with a sample range of 0.6 to 21 per 100 m . l Unidentified minnow species were collected in 83 of the 244 sampics that contained icthyoplankton for a 34% occurrence. Unidentified minnows were collected from thy 22 through September 10 with peaks during late to mid-June (Figure 4.9). I I
J _ 4- 23 inclusion of more than one species makes these peaks difficult to interpret. ~ Zone mean densities by date peaked in the north zone on June 8
~
at almout 14/100 m3 with a lesser peak in the south zone at the same time of 6.4/100 m . 'the peak in the middle zone was later in early July and slightly higher than the south zone peak (Figure 4.9). 1 The fifth most abundant taxon was freshwater drum eggs with a total of 140 specimenu (Table 4.1) and a mean density of 1.9/100 m (Table 4.2) with a sample range of 0.6 to 6 per 100 m .3Drum eggs were collected in 74 of the 244 sampics that contained icthyoplankton for a 30% occurrence. Drum eggs were collected from K1y 14 through Sept ember 10 and peaked in density'during mid-June and again in mid-August (Figure 4.10). Zone densities were highest in the north zone during mid-June and peaked again at a much Icser density in mid-August (Figu re 4.10) . Unidentified sucker species ranked sixth in abundance with a total of 118 specimens at a mean density of 1.9/100 m and a sample range of 0.7 t o 8 per 100 m .3 Catastomids are dif ficult to identify as adults due to errors in fact interpretation and omiasion in classification (11ubbs, 1930) and lack of interspecific dif ferences in meristic features such as scale and fin ray counts (Robins and Raincy. 1956). Because larval fish identification relies on meristic differences, suckers were identified only to family in this study.
4 - 24 I 1.iterature exists to discern buffaloes from redhorses but there are I contradictions. Unidentified suckers were collected May 7 through September 4 and occurred in 72 of 244 samples for a 29% occurrence. Zone mean densitics peaked in the south zone during mid-July in I the north zone in early July and in the middle zone in mid-August (Figure 4.11). Again, as with unidentified minnows, the probable combination of several species complicates and lengthens the density and occurrence plots. Goldeye were the seventh most abundent taxon with a total of 105 (Table 4.1) specimens and a mean density of 5.3/100 m3 (Table 4.2) with a sample range of 0.8 to 19 per 100 m3 . Goldeye were collected in only 22 of 244 ichtyoplankton containing samples for a 9% occurrence. Goldeye were collected from May 22 through June 4 or for only 3 weeks which accounts for the relatively high density '. Figure 4.12). Goldeye mean density peaked in the north tone on thy 22 at over 14/100 m 3 and were below 2/100 3m in the other two zones for the entire period of occurrence (Figure 4.12). Unidentified eggs made up the eighth most abundant taxon with 3 55 specimens and a mean density of 1.7/100 m with a sample range of
- 0. 7 t o 6 per 100 m . Unidentified eggs were collected in 41 samples that contained icthyoplankton for a 17% occurrence.
I I
I 4-25 o 53 d w 40 e O P O
. a i
1 E
% . R S
a o s i t* w ,e***,e9 1 % g
. R 3 N N < e4 O 9
tP ,f
,*p# .
p 6 m a .,q,.,...... ....... ... ......* * * * * * * * * * * * * * * * * * * * *
* * * . . .
- m a. -g N
y 8D 5
**.6 .) s. .o.*.*
- M w t* *,****" . e a
- gg a
G y .. w.. aoe ~ . . . , * * - .-. . n
- == $ **** % *
- g W E >. .. ,**~ . .. ,* - ...,'%.. . -
Ja 8g
,, ,.%. -4 a-gg < N 4 mgw ,- .
e,.g #
*A ,a Eg wy wego. m r' .. .,
m 80
~ e hku y'*,.,..*****"*../ j 4 xe 2
w , g g x C * % . 4,, . . . . . *. . ,!; . . . . * * ' m 'R e-m y w
- r . *.... ,, s...;.. .,
w CD
- e. .4 .E9 l W 8 .
aw i / S ~
,M. "
D t
\.. e '%
b b a E y C . . . . . . ~ * * ,, , . . . * '8I,, N
* . ...e* ,,,e s .**
k 4....** " $~ c .." % . ** % .... E i N ....~s $ m n m 0 Y E
.e u u. . .~ % ' N .e 3 6 'f' i- 7, 4' m N a .f f- a g na O
g u 9, N
.l * *" d g a go --u ,
OWC E. wc I
- - - - - - _ __ ___ N~ _ _ _ ~%.. _
l' I 4-26
- a es -Q E'
/ s l : i e P i g d 8 o o l E m , R gra i ~
I U a ' l : = E
- 2 ' -4 s 8 o l l 5
- o / .
I e 4 1
/ g 'E 1
E. a D5 m-
/ .
E s ZE e b wa , - w og ww Z2~ o:E ,/
/ l q
e
.E E
N by
+
c O w o l H Ed / I, E8 0 E M 5a / 5 ~ e E Z Ed / ' E $
< *5 * $s cA W / l E ~ %8 / e E
5 l g 7 .
/ ! =$ - / .
m HE / l .E e E U" 5 6
./ i . ~ ~
M / 8 E o Z -
- 5 5 p
$ / / { 2 5
g Z / ! .5z 5
< / '
s M !
/ , - / e m / l 'E / . N 4 / l : E e . ./, ., .. .. .g . .. . . .. 3 .. ,; . .. . .
- a. . . . . E 3
,7 mmmmwe a.w e -oo voo-o e a
i 4 - 27 l Unidentified eggs were collected f r om May 1 through Sept ember 4 l with three mjor peaks (Figure 4.13) . Mean zone dennities were highest in the middle zone during late hay but were collected more i often and at greater densities in the other two zones. The bouth rone had the greatest average density over the entire sample period followed by the north zone (Figure 4.14)
- The remaining 18 taxa mde up the other 5% of t'
- e total taxon.
- Thene include unidentified prolarvac (23), larvae (4), atid juveniles (1) (Table 4.1).
Mean zone densitiss of all taxa combined are presented in Figure 4.14 'Ihe peak of densities in mid-July is largely due to the mny juvenile f reshwater drum that were sampled. 4.3.2 Larva Length Dist ribu t ion Analysis of length distribution of major taxa provide an , indication of spawning period and/or locality (Fig. 4.15-4.20). Length data f or all taxon are presented in Appendix B.2. Mean lengths and ranges of all taxa are presented in Table 4.3. 4.3.3 Entrainment Re su lt s Estima ted tocan entrainn.ent rates are presented in several ways. The mean of rates calculated from each sample that contained icthyoplankton is presented by taxon and totaled in Table 4.4 This table also includes the means for density, entrainment, and percent entrainment of a transport rate. Taxon that were not collected in the zone of influence (north zone) did not have entrainment esti ntes I 4
~- _ _
4-28 l E
. b .n.
e
.Y "* O..gj l ;
rv
~
w
. R o 1,. E Q g*s f k . .. e ,
C. g
.t y *. . .. . .. .. .. e g
x g b 4 .* 6 ry " e q . o Q *6*6 a P e c,,)
' ~ . . % .* %. . * % .'%. * % 'e d g (f) . w..* % ..N.. % e h a
8 M, a * % ... T *.. %.. , g fe e e .- , 4
- 3 (O s / :: EO.
3 li,/ Zg = E Me on i 4g a
~ . . -
gS - a w b O l-h e e e a E w paE WC / .E4 W2 ge 9 a as #7 F m c7 W
< ,u"d*a g # ,fe P y "E {3 e / /
4 4( =~ C, o n-m
*2 /'/ +
m AC e bg A P Ow /8
/ 8*
I
< w sme ., .h, es. . ./ I O E . e g .
i
/
- D.-Q. ,i ;i o
. .., /E A 7' ' <v ~
Q N ,,,,..
/
w
,,.. ...
- 5 2: -....,,-----.. e Ec
...'**~...==.. ****=m,,':sme ,g A .... a; .. e M ........
7 . tb
- _ j:
e, N g a
. 'i' c .
e e a F m " e d.
- e. + p m 7
.f. ' g %.
I d g - .
$ W N ~ n - . ' ~ - . ' ~ e' av m
k ****we a. w e o. g, E E
--s. - , _ , . _ , ""---,.u., '%
._ m_, _ _ A n .--.----2 ,,-r u- 21- ---.n 1k-1=om .. -- n -- -,_,, _. - 4 I
I 4-29 E a'N r l-S
.. s i g I a w t 2 .e R
E M 2 4 $. g . a i - - kk TP
= n o e IU o ,!
- o
-0~* f a
(f) i < I wP tg a
" ,8,,
h . Z o e e : g~
*"' " ~ ~ a m. ae one* W g 5*
I m"o Qd ,,
=~~ m,.e-e.ra r,u . . ::c . . .p 1
y w 3 2 s' ..s i g 4 h I lo;S: e- w,'?
. w E-a lie ,4 ~ N,, 5 b
o w w ng < / g 5
./<*' 5_
I Z !".! .. - AU g -g E $ 4$ +
/\* '
L 5= om ,, Y$ % ~$ s
?
E- % :P $ O
>==4 s'*'%.y F> 0 1
M I , m a 5 Z i O /.*j ', .a C B INZ s (\ .< i E r s g
'O I w<lE l I ~$
3 -
*t A $
i w e u o
.g E
E I "3 m m S S ..$. R S .$. E 2 .i, R $. .,,8 S R .,. R $
,g
- s
.e CWC Lwc -QQ UDC-U E I
l' i ! 0 1 1 0 0 1 0 9 E S L E I 0 8 I N E Y C U J N J E U / T Q 0
~
E 7 R _ F D E A M V HAL T 0 1 R M A TI D f 1 0 9 L G RE 6 N I I NSR I H E W H T G I I S E N E S E I L 97 R F M
=
p 0 5 L A V R A C! A EIH P t O L R P S 0 3 T 1 S _ N A N E I M A
,gg, 0 3
G A T S E O 7 . F D I L 5 1 4
-pg, 0 2
e r u g i 0 1 F T C N E U Q
- i . !
E. P G F G 6 0 7 0 l lfl
4-31
'S 3
e. I Imm e W lOg Z 1 E 2 3 D G* lMZ e I m$ s Ce>: 1:
=d Z-Q ! 5 mm -
I d5E! om - = 1=- l Z E ) l~ 0 a 0 I:o:s A 5 I-e Ia
=
l ; .. ... . ..
! $ $ $ 4 $ E E E E l
I
<-n r.
I I g s I E m , U d Ud \
' !4 G
Z , Ea D , N Cf g s N' % g Zs E Z;eg dsii 5E m s- I au E
- o. N\\\\ g N E m a
$ \\\\\\\\\\\\ 'T $
b 8 hh\\ D h\\ M M h\\\ *h I 5 1
- ANNN ;
e I
- . . .. . . . ., .i = = - ~
e e ge U
~
I I
~ 4-33 s e-
% ~
L
\ Z L
lD e. b
- 5-4 IO Z ya M
p l C' j1 BM Z c E: o E lwy-PM$ EE g O EroE =t
~
g AZ ex BM ~5ai, e5_ x
~
b M Yn5 ed; g I M-v;o
- - c 3 ,J M >= Cf E cE U3 E-lZ<Z -
i
- w c,
0 ICQ _-i_ - ----_._-- 3 O "NMD CD m __ N m W 1"T C L4 l3 O 3 .;.
.,. .j. .i. 3 4 6' "
l h. h E u m I I
n --s o - - s w--+., A n. ~,--. x-
<-u y
I If I p 3' m M ev e
=
t N Y Z 4 M , I C N c' 9 kk w M : c:: ho l d e I m$ $
- r e $ l *=s S EE OE -
- z; e- E b 55 !-
sa M s d~E84 "!! 2 E a= a = d c:Q := c a tr)
,-u=m yy 9
z
<l W _ .u
~ Z u 2 5 g
~ =
o
& qxE, . , g Q ~-- 'r='"2+= - ._ _ __ - _ _ . -- -. .,
E cn ew
* >= *r . . g. .g. 4, .g. g.
O -to
.~
5 E I.L. I I 1
Figure 4.20 DOMINANT SPECIES WITH L LENGTH S ICATED FREQUENCIES 1 AXON =GOLDETE f!1EQUENCY 50 - I ,: 9 ti5 2 40 - 35 . 5 30 - A r t.n
~ ! 3 20 -- ,, -a , . e j ~
15 - 10 -
~ <<
12 13 14 O 9 10 11 8 LENGlil IN f1H M F00tonyn I ltnRVH LIFESinCE
Table 4.3 Taxon Mean Lengths and Rar ges callaway 1984 Mean Length Minimum Maximum Or Diameter Size Size fiumber In HM Taxon 2.6 114.0 2022 30.13 Freshwater Drum 21.14 3.6 54.0 Gizzard Shad 577 148.0 42.51 8.3 328 30.0 Carp 8.71 4.1 Minnow Family 250 2.5 1.50 1.3 Freshwater Drum Egg 140 31.0 118 6.79 2.5 Sucker Family 7.2 14.0 105 10.96 Goldeye 2.30 1.0 8.0 Unidentified Egg 55 22.0 28 8.90 3.7 Sunfish Specles 4.3 24.0 28 10.72 Crapple Species 3.2 18.8 27 6.44 7.8 Sunfish Family 2.3 23 3.98 32.0 Unidentified Yolk Sac Larva 19.82 7.5 i Sea Bass Family 5 32.0 w 5 21.08 11.4
- Bluegi11 17.0 29.0 5 23.00 11.4 White Crapple 4.9 4 8.37 Unidentified Larva 19.2 22.6 4 20.77 Buffalo Specles 5.5 7.8 i 3 6.67 Perch Family 6.0 6.8 !
2 6.40 20.0 Sauge r 20.00 20.0 Unidentified Juvenile 1 3.00 3.0 3.0 Damaged Larva 1 7.6 7.6 7.60 Paddlefish 1 48.0 48.0 48.00 Shortnose Car 1 10.5 10.5 10.50 Goldeye or Mooneye 1 46.00 46.0 46.0 I 61.0 Speckled Chub 61.00 61.0 1 Spotted Bass 3736 M M N & W M M N M W W M M & W W W M O __ 4
rw- - , w Table-4.4' Taxon Mean Densities - Entrainment - Percent Entrainment - Worst Case (Worst Case = Actual Densities. With. Record Low Flow - 416.3 CMS During April-September Period of Record) l l Mean Worst Ca se Number Mean Mean Entrainment Percent Percent l Taxon Sampled Density /100 Cubic M Fish /Sec Entrainment Entrainment 2022 22.69 0.65 0.08 0.46 Freshwater Drum 0.05 5.43' O.15 0.44 l Cizzard Shad 577 Ca rp 328 4.56 0.12 0.06 0.44' l 0.05 0.49 Minnow Family 250 3.24 0.10-Freshwater Drum Egg 140 1.86 0.06 0.10 0.49 Sucker Family 118- 1.95 0.06 0.05 0.48 Coldeye 105 5.38 0.21 0.08 0.64 Unidentified Egg 55 1.70 0.04 0.06 0.42 Sunfish Species 28 1.68 0.06 0.05 0.53 2.22 0.08 0.06 0.61 Crappie Species 28 Sunfish Family 27 1.05 0.03 0.08 0.53 i'
' Unidenti fled Yolk Sac La rva 23 1.14 0.03 0.06 0.39. tj Sea Bass Family 5 0.97 0.03 0.05 0.47 Bluegill 5 1.34 0.04 0.09 0.48 White Crappie 5 2.09 . . .
Unidentified Larva 4 1.75 0.06 0.05 0.53 Buffalo Species 4 1.11 0.03 0.05 0.40 Perch Family 3 0.95 . . . Sauger 2 1.27 . . . Unidentified Juvenile 1 1.50 0.04 0.04 0.42 Damaged Larva 1 0.87 0.02 0.14 0.42 Paddlefish 1 0.90 . . . 1.77 0.05 0.04 0.42 Shortnose Car 1 Coldeye or Mooneye 1 1.88 . . . Speckled Chub l- 0.72 . . . Spotted Bass l' O.96 0.03 0.07 0.42 3736
I 4 - 38 ! calculated. Entrainment and percent entrainment for these six taxon would be similar to species adjacent to then, c. Table 4.4. Mean entrainment rates for each taxon did not exceed 0.65 fish /second (Table 4.4) . The range of species entrainment rates calculated f rom individual samples ranged from 0.021 to 4.03 fish /second (freshwater drum). I Mean transport rates for each taxon ranged from 34 fish /second to 786 fish /second. Individual sample ranges were f rom 13.5 fish /second to 5366 fish /second (f reshwater drum) . I Mean percent entrainment tates for each taxon ranged from a low of 0.04 percent to a high of 0.14 percent. The individual taxon plots show the same pattern of low early summer percent entrainment with highest levels in late summer. I Mean percent entrainment for each of the 8 most abundant taxon by date are presented in Figure 4.21 through 4.28. Mean percent _ entrainment for each date with all taxon combined are presented in Figure 4.29. Froshwater drum and etinnow species show the greatest range of percent entrainment values with means by date (Figure 4.21 and 4.24) just as with the means of all samples (Table 4.4) . Gizzard shad and carp show virtually identical patterns and ranges ,(Figure 4.22 and 4.23). Freshwater drum eggs showed a f airly steady increase thorough out the season (Figure 4.25) while sucker species showed erratic ups and downs (Figure 4.26) . I
w __ _ rigure 4.21 MEAN PERCENT ENTRAINMENT RATES--3 PUMPS RUNNING FOR ERCH Dn1E SRMPLED -RSUtJDnNT T6KON--ACTURL DISEHRRGES' CALLR4RT 1984 SPEClf S= f fiESitHaiEft DTtUM
?
O.t4- / f O .13-- *
/
0.12.- / e N I 8 0.11-r'
/
A M 0.10i *
/
u I 0.09-
./ .t.
S
,! I 0.00- /
{ /.~...Nj e /
; 0. 0 7- N, /
N. f T N 0.06- 'N, :
~~. [ , N * ,
N *s, S 0.05-
- s. ,e s
0 s / .,%. : n p 0.04-T N,."' O.03-0.02-b h b h 4 25RUGeq b 02JbN84 08 'bNey ig,eUN84 20JUN64 26JbN84 02Jbl84 08Jbt84 14ML8120JUL84 26J l84 OlR c84 07a G6413R cey ggg Ge PCI EN111RINMElit =NOAfff FONE DEttSITy x ILRNi H!!HDRAWL/ipansegNT X 100
aA w- -,w-, u a. s I 4-40 E I
. ..~ % s 8 e
b s ~~.* % e N.% - = , N'N E O , Z N. 'N ',
-a E
z / a 5 Z ,'l .. D Z -d- 8 4...,... ~ g , anw E a c 9 l Di y : C LM / , E 5 .' $ t O ., / -R si 5 18 i 8 E 5 l IC #s , E w* s. E :
=
M4C =E - R, e - M p m s*. W z
>0 4 Z w-=C . Ee l -a g --
E-eh~ 2 e- : m
- g Z E$T {-
E E Eaea: 21 5 5 [ -$ E i E ze m i
/ : w e
5 E I a =
,e Cams W 4E ,e*,,
- E s
a Ao
- E 5
#',, -k E R$ ,,N 8 E
E 5 Ze E N s % .,, N , , C) 5 m % -e E b a . m s f E
< + x M \
2 \, b
. -e Q
i m - c) -E g C C C C C C C C C C C H l C&. I wz-cc-zrwz- cm Lwcuwz- -cezcLCc-l l I I l
Figure 4.23 MEAN PERCEg,ENTIggpj,ENJn,,fy,Ey,gunt,, , , 0 CaVRctP CALLDi!RI 1984 SPECIES =EARP 0.13 0.122 [ i l 1 i
. /
E 0.11, N , f 1 A / ; 0.IOi [
- N H ,f 5 *
/
T 0. 09-; f R 1" 1 i S * "s P 0.082 g'% ,1 b l 4 C a E It N 0. 0 7,. fa
/
T * \. n . / - R 0.06-N f y S
- P # '
0 <-~~--.J
'\ .
R 0.052 y' 'N f
~ /
I
\ , /
i / N 0.D4-,
/
N'%,'% /
. , ,. ~ -* "
3 3 3 s
' E 3 - 5 s 3 3 ,
- g - g g g 17JUN84 23JUN84 29JUN84 OSJUtB'l llJUt8'l 17)Ut04 23JUL8tl 293UL84 04 RUG 84 12MA184 18MRT84 24 tint 8tl 30t*0Y8tl OS JUf48tl f lJUt184 001E PCT ENinnitiMENietionTH ZONE DENSlyy x PtnNT WITHORDWL/ThANTORT
- 100
I 4-4 5
=
E-S
+ \
8 3 i . g y a 3 0 . ; Z
~
i Z s\s E Z .8 D N'.' E Z ~ 8 40 \, - 8 E 28
- g- E E a DE @ g CEo ,,\ , 5
,1 - ~
CO .s d I! N's. E i l 1u ..N 5 W Nz$ .*, N*., , e E b
< $$$ e'N ..
- 2w 5 b!
Zi? Mc e: N 7/ .s g 2 a 5 I 4 e u0
- f o a
~bta k'. ,' a E E
N,'N
-it* =
E- s E g Z8 1 E 3 M ,D .
- i. o w b5 Z g
,b 'k" b / O Mw :
o ./ c x ? ? -
% / .E 2 4 ./ c o < / : a N e .a 5 2 ! E , .i N k *w . m I
p o o o e o e o e o o o o o ( wz-cc-zzwz- cm Awcuwz- -cezmooc-I il
4
. FOR EACH DniE SRMPLED-RBUNDANT TAXON- nCTURL DISCHARGES CHLLRHRT 1984 SPECIES = FRESHWATER OBUM EGG ,9 % .,
0.14I ,!
/
0.13- / F t O.I2-
/
E / N j T fl 0.11-
,I H
- I N f M 0.10-- .f E
N / 1
- 0. 09 --
R S
- ^
! P 0.08-
- I
- A E
e f J w E 0. 0 7-- N / 7
/
e T 0.06-
./
lf n N S P 0.05- /
/*
i 0 R T 0.04- 4'/' O.03i
- 0. 02--
ItlHAT84 2tiH016tl 03JUN84 13JUN84 23JUN8'l 03JUL84 133UL84 233UL84 02AUG84 12AUGB4 22AUG84 OfSEP84 ffSEP64 DATE PCT ENIORINMENI=HORTH ZONE DENSlif X FLANT WiiHDARWL/THANSPORT K 100
4-44 I I I
- b a
o O
'8 m Z .R " g Z 8 Z a ~
D Z g g to
* ... N '8 e
x
.,...'N B a_wn 4e e
N E DE /- g s CL M . ? E a / t O a g laa % , - ... E a n a e
.. - s I- u n e_
to
- Ma ,a ... - ...e' 7 ~
E HB s g a < 555 -? 5 C*m e ' ,.* s oe ' H 8g-0 gg = g 9 z - Z ger 1
-a :
M ENb N h 21,w zwth .x w p ' / . . . .- -Rm E E <g ~ E cd a . . . 'f .. , 5 %W - e,. , O
. x C
v g ss z. 7 1 s a MS 4
-5~
5
=
t,,) , c \ - m x - s 5 e
'~.s -
Z e E < s N 5 2 o a e _E m s 7.
.,. y. . , .
c T M N = @ O N @ m y M C o o o o o o o e o o o Le D W2*Cc=2Ewzw am Lwcuw2> pcc1mooc> CD w k I
4-45 Y O k'N = o r
%.\ % 'k Q 9 Z
Z
\..s,N ~4 z
Z .'N 2 O N, ,
% 's _E o,.
8 M 4e
.N 5 E
2y 's, N., E E BDE 's s -E y a e 54M5 N,N. y N N $ N I.$-
*s'N-s E o
E e [ y s in - Na %.N Ho w f ~E
- e E
< "Es j 2 Z :~d t -
EE - p!EV =m l E z h j M M eeS : I'h* 5 2 a"h !',. Z- i -E =
~$ l % E =
a : m - p D Zg i '5" i C4. : E c 1 - w b5 ,5 E Ze , fE E MS 1 l, .E 5 o - a Z- !, t*= - m 6 l '5 4 j &
! w Z j ;E < [E M !' [2 2 l-
{,
.,. .,. ,. 1 A .,e e = " Q N e o N . 3 S 8 8 8 8 8 8 8 8 w 5 d 5 a i d d d d d & wz-ce-zzwz- em tweuwz- -eexmuec-a 01 .c4
g . . _ . _ l 4-46 I s Jc B
\., e g -=
0 g, R
~
g \ - Z \, -o 8
\ k D \
A C: a 8
,'N 8 m %,*.s a - %e B ~ -0 4e N ,
E m CE N*%,'% -g E m E A .M. ,s ~ -
.J $ Y l8 E
- d, o
;- U cc Y 8 'I 5 Ma w E E- E '\ s E < 55C i ? 5 E-:- R z 'g F C W
M E,
-z-Elia \, .E -o m @
rza cOa. ~ = w G a o _ F m a *
=, z mm - o g
- E
~Fd ' . .E $ l g
Zg '
-Et i M= 0 E -W rw .
Wa c 'C
= E ME 5 5 0 , 5 E n EQ 'k .E E
4 - 5
< E 5 M 5 2 ,
m . =, m - 5
$' E' $ $ '$ $ $ $ '$' $' $ $' $" .E 8
a i d d 5 5 5 d d i d i d & E O wzwce=zzwz* ce mwcuwzr reczmoocw
'e4 k
I
unums N m ..r- v w w ACTUAL AND WORST CASE MEAN PERCENT ENTRAINAENT RATES FOR EREH DRVE SAMPLED--RLL TarCN--CALL AWAY 1984 NORST CME = PERIOD OF RECORD LOW FLOW RPRIL-SEPTEf0ER-486.5 CMS ENTP3 0.9 -
- li 0.8 ~ it
- r o., Il :'\.
- 1 :
l l \ i t
- 1 l \ i \
I i .I . 0.6 i l \ o.,= !
! \"-- 'l \ \
h
/
l \.h., #,'ss
'N t i \ -i \., yj \, . . -/
0.4 2 -
\.$1 / -4 0.3 2 0.2 J l
0.0 2 ,_ _,_ , , _ _,_ , , _ 24RPR84 04 MAT 84 14MAY84 24MRY84 03JUN84 13JUN8V, 23JUM84 03JUL84 13JUL84 23NL84 0290G84 129UG84 2240G84 OISEP84 11SEP84 DATE SOLID LINE= ACTUAL--DRSHED LINE=WcitST CASE PCT ENTRAINMENT NORTH ZONE DENSITY X PLANT WITHDRAWL/ TRANSPORT X 100 1
4 - 48 l Goldeye showed the most limited range of percent entrainment I rates of any of the top 8 taxon (Figure 4.27) while unidentified eggs showed a similar pattern to freshwater drum eggs (Figure 4.28). I When all taxon are combined to plot mean percent entrainment, the same increase through the season is shown with the greatest change during aid to late July (Figure 4.29). 4.4 Discu s sion The Callaway intake shows best available technology to minimize adverse environmental impact in both design and operation. The entrainment estimates made in this study are, if anything, overstated because of the assumption that all icthyoplankton sampled in the north zone an entrained. Estimates made are probably higher then they would actually be I for the following reasons:
- 1. Estimates are based on three pumps operating. With the cancellation of Unit 2, all three pumps have not been used nor will they be used in the future. Actual entrainment would probably be two-thirds of the estimates.
I
- 2. The intake face is parallel to a consistently strong current with bar racks that work as louvres perpendicular to the current. This design serves to deflect passive larvae drif ting into the screens just as it does to deflect debris.
I I I
'I 4 - 49
- 3. The deep opening of the intake withdrawal reduces entrainment of buoyant larvae and eggs.
- 4. A large majority of the icthyoplankton sampled were juveniles (Figure. 4.5) . Juveniles have a full fin compliment and are thus capable of deliberate swimming and avoiding the intake.
- 5. Some of the eggs and larvae that pass through the screens are probably returned to the river alive through the f ree discharge valve (see operational description, p. 2-10).
The icthyoplankton sampling program appears to have encompassed the entire period of icthyoplankton occurrence throughout the year since samples collected in April and late September contained no eggs or larvae. 5 Samples collected were representative of what was entrained. The average volume sampled on a day was over 23% of the total intake withdrawal rate during the 45 minutes of total sample time. With all three pumps running the intake would withdraw 7156 m8 of water during a 45 minute period. The 18 samples collected on a date took approximately 45 minutes total with an average total volume of 1666 m' or 23% of the plant withdrawal. 4.4.1 Taxon Abundance and Densities The relative abundance of principal taxa at Callaway agrees with previous studies done by CDM (1982) in the same area. GLzza rd shad and f reshwa ter drum dominated the 1981 samples collected by CDM I I
4 - 50 I (Table 4.5) just as with this study. Other studies done on the middle Missourt by King (1977,1980) and Harrow and Schlesinger (1981) found drum most abundant followed by catostomids and carp (King 1977, p. 47, and 1980, p. 121; Harrow and Schlesinger 1981, p. 298) . Peak densities of all larvae occurred during June and J* '.y in this study and in othera on the Missouri (King 1977, p. 47. Harrow and Schlesinger 1981, p. 294, and CDM 1982, p. 102). There is some disagreement between the present study and that done by CDM during 1980-81 but the mandated monthly sampling program required by the Nuclear Regulatory Commission was probably inadequate to detect peaks of abundance. The dominant taxa collected in this study are typical of the I lower Missouri River (King 1980, p. 121; Harrow and Schlesinger 1981,
- p. 298) and generally paralleled adult fish populations in the i
immediate vicinity (See Section 6, this report). Low densities of taxon such as Morone sp. , sunfish, crappie, sauger, paddlefish, etc. are attributed to these species neither being common in the Missouri River nor having larvae that are generally subject to drift. Game species did not contribute appreciably to the assemblage even though some, such as juvenile and adult catfish were relatively common in the vicinity. The clumped schooling behavior of larval catfishes in backwater areas may have kept them from being part of the larval drif t. Extremely low densities of catfish were collected by CDM (1982) at Callaway (0.1% of total) and also by Union Electric at Rush Island on the Mississippi River (1 fisn, 0.1% of total) (Union I I
4-51 Table 4.5 Icthyoplankton taxa Collected f rom the Missouri River near the Callaway Nuclear Power Plant, June through September 1991 Taxon Percent of Sc ie n t i f ic Name Cosson Name Number Total Scaphithynchus platorynchus Shovelnose sturgeon 1 <0.1 Polyodon spathula Paddlefish 1 <0.1 Lepisosteus up. Gars 4 <0.1 1.orosoma cepedianum Gizzard shad 2528 33 3 Hi_odon alosoides Goldeye 216 2.8 Holdon tergisus Mooneye 11 0.1 Osmerus mordax Rainbow smelt 1 <0.1 Cyprinidae Minnows (other than carp) 994 13.1 Cyprinus carpio Carp 335 4.4 Catostomidae Suckers 9 0.1 1ctiobinae Buf f aloe s/ Car psuc ke r s 1194 15.7 Ictaluridae Ca t fishe s 6 <0.1 Ictalurus g netatus Channel catfish 3 <0.1 Pylodictus olivaris Flathead catfish 2 <0.1 Morone sp. Temperate basses 21 0.3 Le pom is s p . Sunfishes 80 1.1 Lepomis sacrochirus Bluegill 3 <0.1 Micropterus sp. Black basses 1 <0.1 Pomoxis sp. Crappies 41 0.5 Pomoxis annularis White crappie 1 <0.1 Etheostomatinae Darters 13 0.2 Aplodinotus grunniens Freshwater den - eggs 329 4.3
- larvae 1667 21.9 Unidentified * - eggs 105 1.4 - larvae 30 0.4 TOTAL NUMBER 7596
- Comprised primarily of unidentifted eggs and damaged larvae.
(fros Camp, Dresser , and McKee 1982)
I, 4 - 52 ) Electric 1979b , p. 4-10) . Freshwater drum peak densities peaked with I!! carp densities as in the King, and Harrow and Schlesinger studies but the 1981 CDM study showed a peak that was largely gizzard shad. When density of larvae were compared with water temperature I (Figure 4.30) and discharge (Figure 4.3) no correlation (least squares) was found f or either. The July peak in abundance of all/ taxa, particularly juvenile drum and carp, can probably be attributed to the rapid fall in discharge from a stage where the river was out of its banks. It is probable that these juveniles were occupying flooded habitat such as riparian vegetation and the sudden fall in river stage flushed them out into the river. It is likely that this was a behavioral response of juvenile fish that are capable of deliberate swimming as much as a physical displacement of them. Previous falls in discharge seen in Figure 4.3 did not re st.lt in the flush of fish probably because these juveniles were not present c1(se enough upstream at that time to show up in samples. E If juveniles are excluded, larvae peaked in mid to late June just as in the CDM study (1982, p. 101), the King study (1977, p. 47) and the study done by Harrow and Schlesinger (1981, p. 257). A June peak density was also seen in the Mississippi River in the vicinity of the Rush Island Plant. Temporal distribution of larvae and eggs agrees fairly well with other studies with larvae appearing in May and peaking in June and July (King, 1977, CDM 1981, p. 47; Harrow and Schlesinger 1981, p. 257). Peaks in this study were related to freshwater drum just as I I
w 4-53 ] Figure 4.30 TER TEMPERATURES FOR EACH SAMPLE DATE IN EACH ZONE MISSOURI RIVER RT CRLLRWAY RPRIL-SEPTEMBER 1984 j 5 l 3 2Si
~
E 242 -,
- [
l . g ,E **j M G P 204 IE
~
R : R T : 2 BU10: R E
~
1 I N 16i . D : E G : ' R 142 E :
~
E S 3 C 12-; 10- f': 82.
'5 6
O b h h $ i g 2SMAR84 24RPR84 24MAY84 23JUN84 23JUL84 22 RUG 84 21SEP84 DATE
4 - 54 during the 1978 Union Electric study on the Mississippi River (1979b,
- p. 4-98) . Spatial ccraparisons made in this study show, with the exception of carp (Figure 4.8) and unidentified eggs (Figure 4.13),
the middle zone with the lowest overall densities (Figure 4.14). The north and south zones were generally equivalent in densities with the north zone being lighter on same dates during mid-May and mid-June (Figure 4.14) . The north zone includes the channel where the swif test and deepest water is found. Higher densities in this zone agree with the previous studies at Callaway (CDM 1982, p. 103). Harrow and Schlesinger (1981 p. 294) reported highest densities at maximum river depth. King f ound, however, that highest densities were along the filling bank in high flow years and along the cutting bank in low flow years (1980, p.123) . The north zone at Callaway is along the cutting I bank , bu t 1984 would be considered a high flow year so there is disagrement between these two studies. The occasions when there were significant dif ferences between mean zone densities in the north and south zones were only 4 of the 26 dates (Figure 4.14) . These dates were May 22, June 11 and 16, and July 9,1984 (Figure 4.14) . The paired sample emparisons for the north zone show the close correlation in icthyoplankton densities (Figure 4.31-4.33) from one side of the boat to the other. In spite of slight differences in volumes sampled f rcm one side to the other (4.34-4.36) the densities per 100 m8 are very close for organisms that display a random patchy distribution like larval fish. I I I
g 4-55 5 1 I - f e I a
+ ? ~
n M 4 t 10 _E E
.h t IgM i -a Q <
N o m I Iz 4 3 gg s -f m o ,,......-**'"". " t 4 I z$ Neo -
- c.~.*-..
g
~g b . _ .. . .. . .. . ... . .... . . ,- . . . . , ?
4,
+
lCQUE M ed *
~ S$d Eg e- 't W
Sog .J I h5 e ug-vax i
/
i -R 8 n
<E$$.
CQ "= 4 g x w CS -a M E o
\ E ~
a E b . 1 eJCfs t o
\s t
s G 5 w
\. [? " , t%o z \. e ?
o .5 I rf)
~ \ s % /
4 :
/
I.hgo %
/
E 5 a o ,
\ ~.
e l ~." E 'd ' .y.
. c e .c g g a e c ,e ? a e .a . . o, -# i y
e 2 - a
- $ :a. S - = m a
IW c) Q CD
,,,z uwe -o v3.-u =w-wc* +
E% I
rigure 4.32 COMPARISON OF PAIRED SAMPLES BY ZONE AND REPLICATE ALL S UPLES Thai CONTAINED ICTHTOPLANKTON CALLAHAY 198tt - YONE HORIH REPLIERTE=2 lt 0~ 130; 1202 110-
- Y f I . :
S 100- , H [ I P 90i [ E : n ; 80- ~ ! I : 0 0 70- [ ? E C I w U o 60-' 8 C Sol i n .i E =0-lR 301 l S -
. e 20- .. '
l ; 10 7 ,/ /
+=; -~ - 's / ,. ... .. ,. ,. .,. ... OISEr84 13JrJL84 23JUL84 02 RUG 84 120UG84 22nerP1 033UL84 ItgM A y 0'3 2t! HAT 8t1 03JUN8tl 13JUN84 23JUNBtl DATE -L +-+-*8 LEGENDS SIDE M em W W W W m m m m m mm m M M M M
,---r" __ . ~ , , - -' - ~
] 4-57
.;. m t
5 h e
\ 8 & E e !: % '
i 4 i O
- n. s I
A h \ % -
@ i g
g \ o
- E ~ & ([:
- g., :
4
.(e @ {,
N a y A . .. s Oi t4 ot
...~.......,a%.. t a
1 e . ..
... , g "
PES g . , AGE - .g g se ..",? ? 0358t o w , 3 $~E / , E t' 4 mEs ) -R 2 S$5 1 8 ' ya 1"8 Y
/ E E o"
gsce W a/ E 2 a s,'s - 5 MEo ,'s,'
,E S a $ LE As J
s .- 'ao w .I E o '$ i K o '\* VJ
.Ez e
4 k t 4 a
$ -Ez C o o , $ :E n * [a ,; E e ,3- e . 'A e e
i
.g' ' 'b,. '\'
O ' f. . O o g
- g $
C e g # u W w-e: '"' _oo use-" gg wc0 7 0
.H 4
Figure 4.34 COMPARISON OF PAIRED ptL SAMPLES THAT CCf4T SAMPLE VOLUMES BY ZONE AND REPLICATE As.8E0 ICTHTCT1AMMIC'8 CALLRHAT 1984 20NC='4CM T H fitP.I 1202 - A
\
p 1 iD-] ;
~/g . ~ ,
e' V 100i L U [ M *- ' E 90i 4 S
/ / \' I * 'v' A
n / / u P BO-
,1 \ f --i ,5 h =
E o I 70j I \/
'/
a a
/ V C
U B 60 , I : N *
/
i Si/ E R S r0' 2 302 20i , .,_ , 23JUL84 02AIN84 12W% 14 23JUN84 03Jr818 13JULB4 24MAYB4 03 jut 3B4 13JurtS4 14MAf84 DATE LEGENU, SIDE eL +-M H l l M M M M M M M M M M M M M W m Wl M M M i (
4-59 f E m O H o - 5m
~
h . a a w M Cd 4 g O l 2
/ / e M n
.Z -s O 7'
- s. a l
=
CQ h g, m
~ 'a D' g o N ME*= n Y' '
- w
- e o :b ..,' s m
W' are" 8o O g,_ , ' ,s -
;: -a- N
- B*
w3=y \.,* s w
+- a . ,
m o O ~ auh
- WE o~ ./ W O
&M s' Cn at '. "Rm 2a % N Q* *.,
c.x3 d a g w .,****. *% O
/ .... ,.. ,,... ., ? / -g ** m 2 o o */..
w
- ,'s,' g % s -E < N* % K M
C E O % ar
<w m O h b o
Y e th e b e s ~ w e o o u.
. . = .o= o.
MOMDEN DEEbdWO -E WD@MW EWWWE@ U W D
+
k
. ~ . . . _ .
4-60 I I E
- E b
C %' D nr O tv a u N / E a Z s a I 4 _$a M ' Z l ,, w o
-km E N l g
E . E i* CQ R a P.N.'~.. e b **, em -
. ..' E 2 5 "$
p o: a y:
-(- ~,
o w*= , O ._ gi b veo . "u4 M Wda / N A E$h y a=o~ ,g'", m
). ~ ~.. . _ .....N .. , % ' ~ ,,
c . ~ .. g
- f* .
l tra
. .# " " . . . .p, oE "'... E $
md f .. '..,- -(g m g g3 n
',..' E ,,. yh t
E s O - ....,- ..... ,- .. ,, m Z 'k r O D e e
.h
< 5
=
a , %m e O 5 U 3 e e 2 e o e a a
.e. . = .s.
n s m a. a,' a' n aa u 9 wasomw meruswo -= vo.-v rw-we. m n l 0 W D Ch ri IA.
4 - 61 4.4.2 1,engt h Dist ribu tion The dearth of prolarvae that were sampled (Figure 4.5) inlicate that no tajor spawning or nursery areas are immediately upstream of the intake. The average hatching size of f reshwater drum is 3.2mm (Swedberg and Walberg, 1970). This size was collected during the study, but not in very grea t numbers (Fig. 4.15) . This indicates either that newly hatched drum nre not susceptibic to drift or that the drum larvae caught were hatched at some distance upstream. The latter is more likely due to the pelagic spawning habits of drum. Gizzard shad hatching sizes range f rom 3.3 to 3.5eun (Auer 1982,
- p. 70), and some of these sizes were collected (Fig. 4.16). Just as with drum, the majority of the shad sampled vere juveniles which indicates hatching upstream.
Carp hatching sizes range from 3.0 to 3.5mm (Auer 1982, p. 194), and none this small were sampled. Unidentified minnows were sampled as small as 4.lmm (Table 4.3), some of which may have been carp. The demersal adhesive eggs of carp are less likely to drif t than are f reshwater drum eggs. Unidentified minnow species sampled were mostly larvae and prolarvae (Fig. 4.16) . This is largely due to the fact that prolarvae and larvae are more dif ficult to identify than are juveniles, so unidentifiable specittens tended to be small.
4 - 62 Unidentified suckers collected ranged f rom 2.5 to 31.0mm in length. 11atching sizes f or suckers range f rom 5 to 10mm (Auer 1982, gl E '
- p. 345). tbny of the suckers collected were prolarvac (Fig. 4.19),
which indicates spawning ocr.urred closer upstream than for the previously discussed taxon. tbny of these were probably river carpsuckers which are the most common catostomid adjacent to the plant. Goldeye hatch at f rom 7.3 to 7.6mm (Battle and Sprules 1960) which includes sizes captured at Callaway. Most of those sampled were prolarv o (Fig. 4.20) . The goldeye size and duration of occurrence in the sampics indicated those that were sampled hatched nearby and then ) were either not present in larger sizes or not vulnerable to the sampling methods used. . All remaining taxon lengths are presented in Appendix B.2. 1 Overall, the dearth of prolarvae indicates that there are no major 1 spawning or nursery areas immediately upstream of the Callaway intake 4 f or the taxon collected. 4.4.3 Entrainment The entrainment of icthyoplankton through the Callaway Plant will have minimal ef fects on the fish populations of the Missouri River. This conclusion is based on the low estimated percentage of larvae entrained of less than 0.2% of those being transported (Ff.g. 4.29). Worst case percent entrainment did not exceed 0.75% (Fig. 4.29). I I
4 - 63 Table 4.4 shws that those taxon sampled in the gtcatest L numbers did not necessarily show the highest percent entrainment estimates. 1his can be attributed to several f actors including a higher density for that taxon in the north zone on a sampling day than in the other two zones. Those species that have missing values for entrainment estimates in Table 4.4 are those that were not sampled in the north j zone (zone of influence) and were thus not included in calculation of l the density that was entrained f rom that zone. These taxon were sampled in extremely low numbers in any of the zones (a maximum of 4), but would not be considered less entrainable than similar sizes of species that were sampled in the north zone. The trend of increasing entrainment percentages f rom July through August is exaggerated on the expanded scales of the individual 1 taxon figures (Fig. 4.21-4.28). The trend, however, is still present in the less sensitive scale of all the taxon combined percent entrainment figure (Fig. 4.29). This is due to increasing densities of specimens (particularly juvenilea) late in the season and decreasing discharges. These two factors resulted in an increase in percentage entrainment estimates even though many of the fish sampled were juveniles (Fig. 4.4) and probably less susceptible to entraincient i than eggs or larvae. The worst case percentage entrainment estin.ates show a
- decreasing trend through the season (Fig. 4.29) probably because of l i decreasing densities and using a constant discharge for this l l
t
4 - 64 I c alcula t ion. The worst case discharge used in the calculations probably is indeed a worst case discharge as it is the record low flow f or the months when fish eggs and larvae are present from 1929 through 1980. 4.4.4 Summa ry and Conclusions The Callaway entrainment study sampling period encompassed the entire season of larvae and egg presence in the Missouri River during 1984. The most abundant taxon sampled were freshwater drum, gizzard shad, carp, minnow species, freshwater drum eggs, cuckers, goldeye and unidentified eggs. No rare, threatened, or endangered species were I identified. Icthroplankton were first collected on May 1,1984, and were not collected after September 10, 1984. The north zone, the zone of influence, generally had the highest egg and larvae densities.. The middle zone generally had the lowest densities, while the south zone was intermediate. Mean percent entrainment rates for dominant taxon show the saae increasing trend throughout the season due to the same factors previously mentioned (Fig. 4.21-4.28). Freshwater drum and freshwater drum eggs shcued the widest rangen (Fig. 4.21 and 4.25) due to wide ranging densities. Gizzard shad and carp showed almost identical patterns due to being sampled in almost identical densities simultaneously even though gizzard shad adults are more abundant near the intake (see Field I I
4 - 65
- Tisheries section of this report) and they have a higher reproductive s
potential. The goldeye percentage entrainment pattern (Fig. 4.27) is very limited because goldeye were only collected on three occasions. Mean percentage entrainment estimates peaked at less than 0.151 ~ using actual discharge estimates on sampling days and did not exceed 0.75% using record low flows for April-September 1929-1980. The low percent entrainment estimates are tne result of low percentage of water withdrawal by the plant and relatively low densities of icthyoplankton. I These low entrainment percentages indeed reflect that best available technology was used in intake design and operation. This best available technology results in minimum adverse impacts to the aquatic environment due to entrainment. I I I I I I I k I
5-1 5.0 Impincement study i 5.1 Introduction Impingement is the physical blocking of large organisms by a barrier, generally some type of screen system in a cooling water intake and involves the collision of an organism with a portion of the structure (U.S. EPA 1977, p. 18). I Fish are the primary organisms subject to impingement in the Missouri River. Gizzard shsd (Dorosoma cepedianum) and freshwater drum (Aplodinotus grunniens) are the principal species of fish typically impinged at water intake structures on the Missouri River. This predominance in impingement collecticns may reflect these species' physiological condition, their overall abundance or, for shad, their susceptibility to impingement. Other species of fish usually take up a small percentage of the total number of fish impinged in the Missouri luver (Equitable Environmental Health 1976). Life stages of fish most susceptible to impingement are young-of-the-year fish and one year old fish. Adult fish are sometimes susceptible during spwning or migration runs, periods of weakened condition (poet spawning periods, parasitic or bacterial infections) Or perieda of cold water temperatures. I susceptibility of juvenile and adult fish depends on a number of factors including fish swimming ability; attraction or avoidance behavior; river currents, velocities and direction of flow relative to the intake structure; intake velocities, volume and alignment relative I l I
5-2 to the tiver; nearby habitats; and presence of various intake devices to reduce impingement. The impacts are highly site-specific. Therefore, adequate physical and biological data are needed to determine impingement effects. This section examines potential effects on adult fish in the I vicinity of the Qillaway Plant caused by impingement by the intake structure. 5.2 Objectives An impingement study was initiated to quantify the effects of I the Callaway intake structure on the various species and life stages of fish during commercial operation of the Callaway plant. The study I, involved inonitoring of fish impingement on the intake screens and recording of pump flow rates to ascertain the impingement rate. This progra.n extended frcnn February 1785 through January 1986. It provided inf ormation on species composition, impingement rates, numbers and weights per species, and length-f requency distributions of impinged fish. 5.3 Ma terials and Methods The 1985-86 impingement study employed methods and procedures recommended by U.S. EPA, Region VII. TM Callaway impingement study plan was approved by the Missouri Department of Natural Resources. I I I I.
5-3 5.3,1 Sample Collection _ impingement samples were collected f rom the screen wash by means of a collection basket system which was located on the downstream sic'c of the intake structure. During sampling periods, manually operated gates in the screen wash troughs diverted the screen backwash flow into a pipe which emptied directly into a collection basket. The collection basket was constructed of 1/2" square screen mesh identical to that used on the plant's traveling screens. The basket theref ore retained all caterial st rained and washed f rom the screens. Impingement samples were taken by diverting the screen wash flow to the collection basket f or a twenty-f our hour period. Sample collection was usually conducted from 8:00 a.m. to 8:00 a.m. During this period the screens were operated in their normal modes. The screens were washed before the 24-hour sampling period began and immediately bef ore the sampling period ended. This assured that only fish impinged during the 24-hour tests were collected, plant personnel maintained operating logs that recorded the number of intake water pumps in operation during each sampling period. Total plant withdrawal f or each sampling period was developed f rom this operating data. At the end of the 24-hour collection period, diversion of the screen wash flow was stopped and the collection was processed. This procedure was repeated once each week on a random-day basis during the one year testing period. I
5-4 5.3.2 Sample Processing and Analysis Fish were separated from any trash or debris which collected in the impingement basket during sampling. The samples were processed in the field except during the winter season, when frozen samples were returned to the St. Louis laboratory for analysis. Fish were sorted and identified to species. Those species I occurring in large numbers were sorted into length ranges of 0-100 mm, t 101-150 mm, and then in 50 mm increments thereafter. Fish were weighed and measured to the nearest gram and millimeter, respectively. When five or more fish of the same species were in the same length range, five were weighed and measured while the remainder were included only in the total count for the length range. Identifications were made with taxonomic keys published by Pflieger (1975) and Clay (1975). Identifications were made in the field except difficult to identify specimens, which were returned to the St. Louis laboratory for identification. The scales used for weighing were Accuweigh, Universal Dial Scales, model M-800, 800 grams x 1 gram, and model M-1250, 12 kilograms x 50 grams. Fish were measured for total length on a 100 centimeter measuring board divided into millimeter increments. Scales and measuring boards were calibrated and calibration records were filed for quality assurance. I I I
5-5 l 5.3.3 sample Docceentation
!engths, weights, numberr, and species of fish collected were recorded on field work sheets. Other data recorded on the work sheet were the date, the plant code, the code for each specico, and any remarks concerning the condition of the fish (e.g. alive, scale loss, disea sed) .
Data recorded by plant personnel included the date, the times the collection period began and ended, river temperature at the intake, mode of screen operation, number of Antake pumps operating, river elevation, distharge temperature, duration of operation of electric boilers for deicing, and water temperature rise caused by the electric deicing boilers. 5.3.4 Data compilation and computations Automatic data processing was used to compile the sample data and to perform computations. The field work sheets were designed to facilitete direct computer coding of data. The coded data was verified for accuracy after coding. The verified data from each sample collection was then combined to form a complete impinge:nent data set. Computerized data compilations were prepared in various forms. For each impingement sample , the compilations included: the fish's common and scientific names, the total of each species collected and totals per 10 million gallons (MC) of intake water sampled, the total weight of each species and the total weights per 10 MG of intake water
$-6 sc.mpl e d . Compilations were also prepared for all species combined f or each impingement sample . Theoc included: the total number of fish collected and total per 10 MG of intake water sampled, the total weight of fish collected and the total weight per 10 MC of intake water sampled. I Compilations for all impingement collections combined were prepared detailing each species collected by common r. ate, scientific name, total numbers, relative abundance, total weight, and relative weight. Also determined were the total number and weight of all species sampled during the study period.
The monthly average numbet 2nd monthly average weight per 10 I million gallons of intake water pumped were calculated for euch species comprising at least 4% of the total collected, and also for all less dominant species combined. A monthly total number and a monthly to,41 weight per 10 million gallons of intake pump water f or all species combined were also calculated. Monthly length-frequency distributions were calculated f or each species collected in total numbers of ten or more. Monthly and annual estimates of the number, weight, relative I abundance and the relative weight of impinged fish were calculated. These estimates were made two different ways. One set of estimates was based on total intake pump water flow and impingement totals for the month. This method estimated the annual impingement rate based on average monthly impingement rates. The second set was estimated based on daily impingement ra t e s. I I o
i 1 5-7 i l j Data analysis required computations of various impingement f rates and weights per unit flow. Impingement sample number s and 1I
- weights were grouped first by species and then by total numbers of l fish collected. Each of these values were then divided by the intake t
l pump water flow (in units of 10 million gallons) during the collection 1 period. This yicided impingement rates (number /10 million gallons) and weights (g/10 million gallons) for individual sampics both by
- ha species and for all species combined.
i A similar procedure was followed to develop estimates of i monthly and annual impingement rates and weights. In these
- computations the first step was to sum the numbero and weights of impinged fish sampled during a month. The monthly sums were then divided by the volume of intake pump water flow sampled during the month to yield a monthly average impingement rate (number /10 million 1
gallons) and weight (g/10 million gallons). These monthly averages were then multiplied by the total monthly circulating water flow to l i 1 ig derive the estimated monthly impingement rate and weight. These l 4 3 I q computations were done f or each individual species and the total j numbe.r of all fish impinged. j f This process was repeated using the number of days sampled and the number of days in a month rather than the amount of intake pump flow sampled and total monthly intake pump water flow. Total estimated annual impingement rates and weights were obtained by summing monthly rates and weights in both cases. I I I
5-8 5.4 Results This section presents the impingement sample collection data and the estimates of toonthly annual impingement rates and weights. 5.4.1 Satopling Result s Impingement sampling results are presented for each sampling period and on a monthly basis. Results are presented for water flow satapled, species composition,19,1 ingement rates, impingement weights, and length ranges of impinged fish. 5.4.1.1 Water Withdrawal The amount and percentage of the water withdrawal flow sampled during the iropingement collections is tabulated in Table 5.1 on a monthly and annual basis. The amount of water withdrawal sampled represents 14.13% of the total water withdrawn by the callaway plant during the study period. 5.4.1.2 species composition l Thirteen species of fish representing nine families and only 301 specimens were collected during the 51 sample collections, Table 5.2. Gizzard shad (275. 91.4%) and f reshwater drum (12, 4.0%) l l accounted for 95.4% of the total specimens. Other species that were collected in numbers of greater than one were channel catfish (Ictalurus punctatus) (3,1.0%) and blue catfish (Ictalurus furcatus) (2, 0.7%). I I
jlll 6 8 9 % % % % % % % % % % % %7 3 1 A) 8 4 7 6 1 8 7 3 5 9 9
/% '3 8 3 2 2 4 3 3 3 4 0 2 1 y B( . . . . .
r 1 9 3 6 3 6 3 3 3 3 7 7 4 a 1 1 1 1 1 1 I 1 1 I 1 1 u n a J s eh mg uu ) l o l or a Vh g t ( y
- l 5 t h8 n t9 l e n1 o
am we 0 0 0 0 0 0 0 0 0 0 0 0 0 My a g 0 0 0 0 0 0 0 0 0 0 0 0 0 sa r r n di 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, uu h p 0 6 6 0 6 8 0 0 4 6 6 0 2 s r t m 4 7 9 8 7 6 6 8 2 7 7 8 3 rb ee iI 2, 9, 2, 2, 7 9, 1 2, 8, 9, 2, 8, 9, W r , , 2 5 3 VF 5 2 1 3 9 5 7 1 6 1 ro 3 2 2 0 3 0 6 6 6 0 9 1 2 3 l at ef t 1 1 1 2 1 2 1 1 1 1 1 9, wn ad 1 1 a a rl W le dP p 5 h m t r a E i e S L B Wwo . A rP B T e t y
- i. a Wwa l l al t a )
oC l T a e g f h ( ot t st n ea ra 0 0 m el 0 0 0 0 0 0 0 0 0 0 0 ut t P 0 0 0 0 0 0 0 0 0 0 0 0 0 l n oe a Wy 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, _ 0, V m b 0 0 0 0 0 0 0 0 0 0 8 0 8 e l 6 2 0 2 0 2 2 0 2 0 2 2 0 yg al 9, 9, 2, 9, 4, 9, 9, 6, 9, 0, 9, 9, 6, l n t a hi ow 8 9 4 7 0 4 9 8 5 9 4 9 4 9 0 9 4 6 5 4 2 9 4 4 8 t p T a 2 nm oI d r 1
, 2, 9 2, 0, 2, 2, 2, 2, 7 1 2 6, M
r o h i t 1 1 1 1 1 1 1 1 1 13 1 f W d .
- e. A m
a S d o 5 i 8 6 r 9 8 e 1 9 P 1
, r g y e r r ,
n r b r e e y
- a t m e b b r l u h l s e b m m a l p r c i e y u t o e e u a ni b r r y n l g p t v c n t p a u u u e o e a a e a c o S F M A M J J A S O N D J T j : li! ! if\fiflll ,fllr
1 l l TABLE 5.2 ! l Fish Species Sampled by Impingement at the Callaway Fower Plant February 1985 through January 1986 Relative Total Relative Common Name Scientific Name Number Abundance WL. (G) Weight ! I Shovelnose Sturgeon Scaphithynchus platorynchus 1 0.3 61.0 0.7 j j Shortnose Gar Lepisosteus platostomus 1 0.3 229.0 2.7 i Gizzard Shad Dorosoma cepedianum 275 91.4 2293.8 27.4 Goldeye Iliodon alosoides 1 0.3 20.0 G.2
- River Carpsucker Carpiodes carpic 1 0.3 825.0 9.9 l Smallmouth Buffalo Ictiobus bubalus 1 0.3 3550.0 42.4 j j
Blue Catfish Ictalurus furcatus 2 0.7 283.0 3.4 [ Black Bullhead Ictalurus melas 1 0.3 12.0 0.1 l l Channel Catfish Ictalurus punctatus 3 1.0 10.0 0.1 ! Flathead Catfish Pylodictis clivaris 1 0.3 2.0 LT 0.1 , l Green Sunfish Lepomis cyanellus 1 0.3 4.0 LT 0.1 vi j j Walleye Stizostedion vitreum 1 0.3 22.0 0.3 [, [ l Freshwater Drum Aplodinotus grunniens 12 4.0 1060.0 12.7 o [ Total 301 8371.8 i i l i i
- i l l' i; LT = Less Than
! L a 1 i l i t i 1 I i ; . i, I M M M M M M M M j
. 5 - 11 l The total weight of all fish collected was 8372 grams, i + Smallmouth buf f alo (Ic tiobus bubalus) (42.4%), gizzard shad (27.4%), f reshwater drum (12.7%), river carpsucker (Carpiodes carpio) (9.9%) i accounted for 92.4% of the total weight. Shortnose gar (Lepisosteus pla t os t omu s) (2.7%) and blue catfish (3.4%) made up 6.1% of the total weight. The other seven species accounted for 1.5% of the total weight collected. Threatened, endangered, or rare fish species were not collected during impingeraent sampling (U.S. Dept. of Interior 1975, Missouri Department of Conservation 1977). The results of the individual sample collections are presented in Appendix C.l. 5.4.1.3 Impingement Rates Impingement rates f or individual samples are presented in Appendix C.I. Impingement rates during the study ranged from 0 fish per 10 million gallons (31 impingement tests) to 39.7 fish per 10 million gallons on Tebruary 15, 1985. Monthly rates varied from 0.0 fish per 10 million gallons during four months to 15.6 fish per 10 million gallons in February 1985, as summarized in Table 5.3. During the taximum impingement month, gizzatd shad accounted f or 15.5 of 15.6 fish per 10 million gallons. Gizzard shad was the dominant species impinged except during Pay and August when other species were impinged at the rate of 0.1 fish per 10 million gallons. I I l _ _ mm
- - - - . ~ . . - . - . - - . - . . - . - - - - - - - - - - . - - - -- - - - - - - - . - - . .
, 5-12 l TAHLr. 5.5 Av or age M snt hly Numt> cts and we a 9ht s pos 10 M411 son callons , of car culat ano Water sc reened at trio Ca!!away Power riant. re,trimry 1985 thrcuch January 1966 No. Per Wt. Igrats) Por . 10.000,000 cal. 30.000,000 cql2 feervery 1985 g l C4ssard shed 15.5 115.9 , Frestwater drum 0.0 0.0 j Other erectes 0.1 0.) Totals 15.6 116.2 I March 190$ l Gissard shed 1.0 5.0 Freshwater drum 0.2 2.5 i Other specnes 0.1 1.9 Totalt 1.3 10.1 Arril 1984 I C4ssard shad 2.4 10.3 freshwater drum 0.0 0.0 Other spccaos 0.1 297.7 i Totals 2.5 303.0 fin y 1.995 , Cissard shed 0.0 0.0 Freshwater drum 0.0 0.0 Other spectos 0.1 0,1 Totals 0.1 0.7 Jaen 1995 Gassard shed 0.0 0.0 Froshwster drum 0.0 0.0 other species 0.0 0.0 i Totals 0.0 0.0 July 1995 Cissard shed 0.0 0.0 Freshwater drum 0.0 0.0 Other species 0.0 0,0 Totals 6.0 0.0 Arjost 199% Cissard shad 0.0 0.0 Treshwater drum 0.0 0.0 Other species 0.1 0.1 Totals 0.1 0.1 , scrtember 1995 Cassard shed 0.0 0.0 rreshwater Drum 0.0 0.0 Other spectos 0.0 0.0 Totals 0.0 0.0 Oeterer 1985 Cissard shed 0.0 0.0 Freshwater drum 0.0 0.0 Other species 0,0 __g 0 Totals 0.0 0.0 November 199$ W C14:ard shad 0.2 10.1 Fre&hwater drum 0.0 0.0 Other species 0.0 0.0 Totals 0.2 10.1 De ccercr 19 85 Cissard shed 0.4 11.3 Freshwater drum 0.3
- 25.0 Ot her species 01 $8.4 Totals 0.9 94.7 J.,verv 19e1 Gassard shed 0.6 9.7 Freshwater drum 0.1 25.4 Cthat srectes 0.2 14.1 j Totals 1.0 49.2 ter the year Gissard shad 1.4 11.9 Fres hwater drum 0.1 5.5 Otter sr.ectes 0,1 25.9 Totals 1.6 43.3
5 - 13 Frcan the middle of tiny through the middle of November 1985 (28 impingetrent tests), there were no fish collected during the impingement tests except on August 30 when one flathead catfish was e collected. Thus, the majority of impingement occurred from late fail througl. .he spring. 5.4.1.4 Impingement Weights Impingement weights f or individ'Ja1 collections are presented in Appendix C.1. Impingement weights for individual collections ranged from 0 grams per 10 million gallons for 31 of the impingement tests to 882.4 grams per 10 million gallons on ^pril 13, 1985. Monthly average impingement weights ranged f rom 0 grams per 10 million gallons during four tuonths to 303.0 grams per 10 million gallons in April 1985 as sutamarized in Table 5.3. April 1985 was the month of highest impingement by weight. This was caused by the collection of a smallmouth buffalo that weighed 3550 grams. This specimen appeared to have been dead greater than 24 hours, and therefore may have been dead prior to impingement. I Gir:ard shad's highest impingement by weight was in February 1985 when 115.9 grams per 10 million gallons were impinged. 5.4.1.5 Length Ranges of Impinged Fish Monthly length-frequency distributions were compiled for those fish specit-s contributing more than 10 specimens to the impingement collectivns during the study. The percentage of fish in each length
$ - 14 range was computed for each month. 1,ength ranges were compiled for girzard shad and freshwater drum and are presented in Appendix C.2.
The length-f requency distributions for gizzard shad indicated I. that 98% of the 275 specimens collected were less than 150 can in length. This length corresponds approximately to age class one. 1 Seven of the twelve freshwater drum were 150 nrn or less which also corresponds approximately to age class one. All of the freshwater drum collected were less than 300 cru so they were approximately age four or less. 5.4.2 Projected Result s Monthly and annual projected impingement results are presented for total numbers of all species and for individual species. The projections based on the number of fish impinged per 10 million gall-ans resulted in higher impingement rates than the rates per day and are presented in Table 5.4 Estimates based on rates per day are included in Appendix C.3. 5.4.2.1 Projected Total Annual Impingement The total annual impingemect for all species of fish was projected to be 2410 fish per year with a total weight of 59,525 grams. This projection of total annual impingement is viewed as a conservative estimate of the annual impingement that would be expected during the life of the Callaway plant. This is because the plant operated at a higher than expected capacity factor and normal river conditions occurred during the impingement study. The total annual I I
TABLE 5.4 Estimated Annual Impingement at the Callaway Power Plant Based Upon Total Water Withdrawal, February 1985 through January 1986 Relative Total Relative Number Abundance Wt. (G) Weight _ Common Name Scientific Name 0.2 356.9 0.6 Shovelnose Sturgeon Scaphirhynchus platorynchus 5.9 2.2 Lepisosteus platostomus 5.8 0.2 1326.0 Shortnose Gar 17993.9 30.2 Dorosoma cepedianum 2234.6 92.7 Gizzard Shad 0.2 115.8 0.2 Hiodon alosoides 5.8 Goldeye 4827.0 8.1 Carpiodes carpio 5.9 0.2 River Carpsucker Ictiobus bubalus 7.5 0.3 26545.4 44.6 Smallmouth Buffalo 1653.0 2.8 Blue Catfish I ct a l u rus furcatus 11.6 0.5 Ictalurus melas 6.1 0.3 73.8 0.1 Black Bullhead 58.6
- LT 0.1 Channel Catfish Ictalurus punctatus 17.7 0.7 7.5 0.3 15.0 LT 0.1 Flatt'ead Catfish Pylodictis olivaris 0.3 33.4 LT 0.1 sn Lepomis cyanellus 8.3 Green Sunfish 0.4 223.6 0.4 i Stizostedion vitreum 10.2 Walleye 6302.5 10.6 '"
Aplodinotus grunniens 83.0 3.4 Freshwater Drum Total 2409.9 59524.9 l l
- I/T = Less Tiban i
5 - 16 impingerven t projections are presented in Table 5.4 and the projected monthly totals are presented in Appendix C.4 5.4.2.2 Projected Species composition E The two species of fish that were predominant in the actual impingement data remained predominant in the impingement projections. Gizzard shad (2235, 92.7%) and freshwater drum (83, 3.4%) accounted for 96.1% of the individuals projected to be impinged annually. Only three other fish species were projected to be impinged in numbers of 10 or more. They were channel catfish (18, 0.7%), blue catfish (12, 0.5%), and walleye (10, 0.4%). 5.4.2.3 projected Impingement Weights Gizzard shad (17,994 g, 30.2%), smallmouth buf f alo (26.545 g, 44.6%), and f reshwater drum (6303 g, 10.6%) accounted for 85.4% of the projected total annual impingement weight of 59,525 grams. Shortnose gar (1326 g, 2.2%), river carpsucker (4827 g, 8.1%), and blue catfish (1653 g, 2.8%) accounted for 13.1% of the projected total annual weight of impinged fish. The seven other fish species accounted for only 1.5% or approximately 887 g of the projected total annual weight of impinged fish. 5.5 Discussion This section will examine the significance of the Callaway intake impingement and the factors which influence impingement. The intake vill impinge fish whenever there is water withdrawal. Whether this impingement causes adverse environmental impact must be evaluated I
5 - 17 5 in respect to the results of the impingement study conducted for the Callaway intake structure, and with those results compared to the fish populations of the Missouri River. 5.5.1 significance of Ittpingemeni The significance of the plant's impingement will be addressed through discussion of threatened and/or endangered species, preeminant species, other species, size class of fish impinged and the field fisheries data. The magnitude of any adverse environmental impact f rom impingement by the Callaway plant intake is difficult to quantitatively determine f rom the data. However, the significance of the impingement losses and thr3 adverse environmental impact, if any, can be assessed from the relative magnitude. 5.5.1.1 Threatened or Endangered Fish No fish of threatened or endangered status listed for Plssouri waters (Mo. Dept. of Con. 1977) or included on the U.S. Fish and Wildlif e Service List of Endangered or Threatened Wildlife (U.S. Dept. of Interior 1975) were collected during the impingement study at the Callaway Plant. 5.5.1.2 Predominant species The impingement samples and the projected estimates indLe ated the predominance of two fish species, gizzard shad and freshwater d rum. Projected results showed that 2235 gizzard shad and 83 f reshwater drum could be expected to be impinged aanually by the Callaway Plant's intake structure. These species are numerically
abundant in the Missouri River. Shad are an important forage species l and their populatione have demonstrated resiliency and impressive compensatory potential. Of the gizzard shad impinged, 98% were age class one or less. Young gizzard shad naturally suf fer a high mortality rate according to Bodola (1966) who estimated that of 100.000 age I fishe6, only 5,534 age II fishes and 435 age III su rvive . The annual impinget ent of freshwater drum was 83 specimens weighing 6,303 grams (13.9 pounds) . All the freshwater drum impinged wore less than 300 nun in length and 58% were age class one or less. These impingement rates of gizzard shad and freshwater drum by the Callaway intake are considered an insignificant adverse impact when taking into account the abundance of these species in the Missouri River, the age class of impinged fish, natural mortality and compensatory potential . Thus, there is no impact of consequence to the fish populations in the vicinity of the Callaway intake structure. 5.5.1.3 other Species Eleven other species of fish were impinged during the impingement tests. Table 5.2. None of these species are considered unique and all are common components of fish collections made from the Missouri River. The projected results showed that each of these species are estimated to be impinged at eighteen specimens or less per year. These eleveu other fish species are not unique to the Missouri River, and therefore, hold ne special significance by their presence at Callaway. It is thus unlikely that the annual impingement of 18 specimens or less of any species of fish that is not threatened or endangered would have a significant adverse environmental impact. I I'
5 - 19 \ 5.5.1.4 Age Cla ss of,_ Fish Impinged The fish which were impinged showed in almost all cases that the majority of specimens were immature or age class one. Table 5.2, Appendix C.1, Appendix C.2. Tnis fact la important in several respects. First, natural mortality and natural compensatory potential make these losses less significant. The second is that the older and more mature age classes are not being impinged. The field fisheries data have shown older age classes of fish to be present; therefore, same other mechanism such as intake design, location, capacity or construction must be the reason for their absence in impingement sample s. 5.5.1.5 Field Fisheries Data The field fisheries data f rom electrofishing illustrate the abundance of gizzard shad and f reshwater drum in the vicinity of the Callaway Plant intake structure. Gizzard shad was the most abundant fish collected by electrofishing, making up 26.9% of the fish collected by this method. Freshwater drum ranked second in relative abundance making up 24.4% of the fish collected by electrofishing. Freshwater drum's relative abundance of 18.1% was the second highest abundance of the various species collected by seining. The setning and electrofishing data exemplify the predominance of the freshwater drum population, and the electrofishing data exemplify the predominance of the gizzard shad population in the Kissouri River. Feeding, spawning, and nursery areas for fish are limited in the area of the intake structure. Fish involvement with the intake
E 5 - 20 basically entails fish migrating around the structure. The low I' impingement rates indicate that the intake structure was located and ' designed to minimize impingement since the field fisheries study has shown that fish do reside in the area. 5.5.2 Intake Design, Constru,etion capacity and Location The extremely low projected annual impingement rates of 2,410 fish with a total veight of 59,525 grams (131.2 pounds) can be attributed to the design, construction, capacity and location of the Callaway Plant intake structure. The Callaway Plant was designed with a natural draf t cooling tower system rather than with a once through cooling system. This minimizes water usage to make-up water to replenish the cooling system and thus has reduced water usage more than 90% as compared to a once through cooling system. This water usage reduction minimizes water withdrawal and consequently impingement. To further minimize impingement the intake was located so it protrudes into the river's main channel and withdrews water from the bottom of the swif t main channel of the Missouri River where few fish can inhabit. The size of the intake portion of the structure was increased beyond the required design in order to reduce the velocities of intake water through the screens which also minimizes impingement. The maximum velocity at the screens during the minimum navigational flow of 35,000 cf a vill be about 0.3 f t/s. This velocity will allow the majority of fish from becoming impinged unless they are lethargic, diseased, or in a stressed condition. Also, to lessen entrapment and minimize impingement, fish gates are located between the screenwells. This allows a fish that has entered the intake through the bar racks I
p f 5 - 21
.![ 2 .;iv [ ~ ' ff. to exit the screenwells by way of the fish. gates to avoid entrapment
%M.
?3w >. ( '.e. ' - and poss le impingement.
f' ' x.[ , % The Callaway intake has used many of the features recommer.ded W;i 18 44
+Ql,:- .,# Q .jr -
the " Development Document for Best Technology Available for the X b;M%r: 1 ,fN8 C (([F O Location, Design, Construction and Capacity of Cooling Water Intake ou ;.S . 't ;"
.: h Structures for Minimizing Adverse Environmental Impact" (U.S. EPA '"76). The low projected impingement rates f or the 'milaway intake reflect the use of the best technology available f or the location, ,
design, construction and capacity of a cooling water intake structure.
- 5.5.3 Summary and Conclusions A total of 1,933,932,000 gallons or 14.13% of the total flow '
withdrawn by the Callaway intake f rom February 1985 through January 1986 was sampled for impinget.ent impact. The sampling indicated a predatainance of two species, gizzard shad (91.4%) and freshwater drum (4. 0":) . Thirteen species of fish representing nine families sud 301 apecimens welghing 8.4 kilograms were collected during the 51 -
.ngement sample collections.
The sampling data and water withdrawal d. .s ira combined to project the total annual 1mpingement rates (nute - 10 million gallons of water withdrawn) and weights (grams per 10 million gallons of water withdrawn). The total annual impingement was estimated at 2410 fish weighing 59.5 kilograms (131.2 pounds) . Gizzard shad (2235, 92.7%) and freshwater drum (83, 3.4%) accounted for 96.1% of the individuals projected to be impinged annually. No other species were projected to be impinged in numbers greater than 18. l
E 5 - 22 The length ranges of the fish collected during the impingement sampling indicated a strong predominance of immature fish. The intake is not impinging mature adults in quantities large enough to produce a sigrificant adverse impact. This is especially true for gizzard shad, where more than 98% of those individuals impinged were in age class one or below. The impingement of immature fish in relatively low numbers as predicted at Callaway may be of f set by natural compensatory potential since immature fish are subject to large natural losses bef ore reaching maturity. Threatened, endangered, or rare fish species were not collected during the impingement study. Impingement of gizzard shad and f reshwater drum by the Callaway I intake are considered an insignificant adverse impact when considering the abundance of these species in the Missouri River, the age class of impinged fish, natural mortality and compensatory potential. The other eleven smcies of fish were each impinged in very low numbers (18 specimens or less) and are species common +o the Missouri River. It is thus highly unlikely that impingement ot these fish would have a significant adverse environmental impact. The fielo fisheries data shows the abundance of gizzard shad and f reshwater drum in the vicinity of the Callaway Plant intake s t ru c tu re . Feeding, spawning, and nursery areas for fish are limited in the area of the intake structure. The low impingement rates indicate that the intake structure was located and designed to I I
7 .. 5 - 23 minimize impingement since the field fisheries study has shown that fish do reside in the area. 3
- The extremely low projected annual impingement rates of 2410 fish with a total weight of 59.5 kilograms (131.2 pounds) can be attributed to the design, construction, capacity, and location of the Callaway intake structure. These low projected impingement rates for the Callaway intake structure reflect the use of the bect technology available for minimizing impingement by a cooling water intake struc tu re. The magnitude of the . impact by the Callawaj intake is difficult to accurately determine. However, the relative significance of the intake's impingement can be shown. The impingement study has -shown that-the impingement impact is not significant enough to adversely affect the fish populations of the Missourt River.
( l
6-1 6.0 Field Fisheries Study 6.1 Objectives The objectives of the field fisheries study were to provide inf ormation on the aquatic ecosystem of the Missouri River in the vicinity of the Callaway Plant intake. These data were used to help intet pret data and support conclusions of the entrainment and impingement studies. Population dynamics (such as species composition and relative, spatial and temporal abundance) of adult and juvenile fish were compared with thoce same parameters for the larval, adult, and juvenile fish collected during entrainment and impingement studies. 6.2 Ma terials and Methods I Adult and juvenile fish were sampled monthly by electrcfishing at five shoreline sites upstreas, at, downstream, and across the river f rom the Callaway intake (Figure 6.1). Shoreline seining was conducted when and where possible within these sites to sample small adults and juveniles that are not as effectively collected by electrofishing. I 6.2.1 Electrofishing Methods Electrofishing was done with a 20 f oot aluminum boat equipped with a gasoline powered 5000 watt generator. A Cor f elt WP-15 control box was used 40 rectify and control outpu ts. Alternating currents of 220 volts were adjusted for maximum amperage of up to 14 amps, depending on existing water conditions. I I
O 1/2 t y4 , CI
!1 g_. _ + _ . - s 3 w pC N0 J SCAT"E' " " " - "Het'5 L 0 $f.f l ,;
94 m .. ( %s --) . {
,8 i %1'.ssasi , ,e j
[og, 'N h .u r- , j
* ""- %,3 k FPek f* ~\ **
9A CALL All'AY COUNTY has PURTLAtID
- T. 'N ~ 3 _
Conowof tauclear Plant A ~. ( NE DCQ ~ Y'C" "N.
./',-, s,s._ intoke and Discharge p>- ,3/. t 4 -w _ ptTw %% ~.-:2., 115 ., ,y/ /*
3J$Y! / "l y,' wx kjY _t ' o
. L 's'/ /'- / ,
w~1 ~% p' OSAGE COUNTY
'O 5IOner /sfond 'f ' yL'ttG 5 ' 1' ,/
4:-f 1E 04f!D si x , 4 ~s. "9leSSouff
+
fit / h r 100 - ROAD (LASSITICAliott Dr.zos , ,' N - sicmeAny tilonar xmx rtttirrist
"%Q 'q,{
LiGli DUIT E0?.D n _ -- n ...- :. WIICROVE D tGAD
' ' + > 5fsD I!IfMII$
- int e,mit t en t CilAfdOIS .
h STATE Route Figure 6.1 Field Fisheries Electrofishing Collection Sites, Missouri River. g g g g M M M M M E E E E E E
6-3 All fish sampled were identified to species, veighed to the nearest gram and measured for total length to the nearert millimeter. Abundant species such as gizzard shad and freshwater drum were subsampled by grouping them into 50mm length groups and recording lengths and weights for 5 individuals within a group while the rest were counted. Identifications were made with the help of taxonomic keys by Clay (1975), Pflieger (1975), Smith (1979), and Trautman i (1981). All fish collected on the south shore (sites 4 and 5) were released immediately af ter being weighed and measured. Those fish that were large enough were tagged with a Floy FD-68-BC anchor tag. Some fish collected on the north shore (sites 1, 2 and 3) were kept for radiological analysis as part of the Callaway radiological monitoring program mandated by the Nuclear Regulatory Commission. This program was often conducted concurrectly with adu'.t fish sampling carried out for this study. Specifications require collection of these samples from the north shore. Any fish from sites 1, 2 or 3 that were not needed for radiological analysis were released. Fish that were large enough were tagged with the same type of Floy tags as those on the south shore. The fish tags are labeled with discrete numbers and inf ormation on where to return the tag when a tagged fish is caught by a commercial or sport fisherman. Information from tag returns and fish recaptured by UE personnel provides valuable information on growth, condition and movements of fish in big rivers. Union Electric has tagging programs instituted near several other power plants on the Osage, Mississippi and Missouri Rivers. Results and discussion of the I
6-4 Callaway tagging program will not be included in this report. Data from tag returns and recaptures from all plants are still being analyzed. All data were kept discrete as to collection, date and gear type. Water temperature and Missouri Rivei discharge at Hermann were recorded for each collection day. A zone was considered to be sampled , when one complate pass had been made down the shoreline and around any discernable off shore structure or habitat that could be effectively shocked (generally less than six feet deep). This offshore structure might include the tip of a ving dike, a notch in a dike, a sand bar or a ledge. Habitat shocked r.pht icelude pilings, snags, drif t niles, l or submerged trees. Total snocking time within a zone was recorded so l that catch-per-unit-effort (CPUE) calculations could be made. Il l 1 6.2.2 Seining l Monthly shoreline seining was conducted in areas with suitable l depths and firm substrates. A 30 foot by 6 foot, 1/4" mesh bag seine was used. Hauls were made downstream, keeping the net perpendicular I: to the bank. Distance moved down the bank was recorded. All fish collected during a seine haul were preserved with formalin and labeled for processing back at the lab. Distance seined, site location, depths, substrates and other pertinent p rameters were recorded. 6.2.3 Col]- 'on Sity Locations and Descriptions I Five co!1 action sites were sampled during the field fisheries study. Figure 6.1 illustrates the collecting site locations. The ; l l I I
6-5 collection sites' locations corresponded to some of the collection sites sampled during the Callaway preoperational studies (Camp, Dresser & McKee 1981, 1982). Collection sites 1, 2, and 3 were near shore sites located on the north shore of the Missouri River. Site 1 is located from dike 122.2 (River mile 116.2) downstream to the upstream side of the Callaway intake. The shcreline of site 1 is riprapped with a narrow band of mature trees (cottonwood, willow, silver maple) lining the bank area. Substrates at this site were usually riprap. The main channel of the river is located just off-shore from site 1. The water depth of site 1 dror ' sharply from the narrow band of shallow water along the straight riprapped shoreline, i Site 2 is located from the downstream side of intake downstream to dike I?!.58 and encompasses the immediate discharge area. A retaining wall for a barge unloading area and eddy currents are characteristic of this site which Fas a mud and fine sand substrate. The shoreline is steep and water depths of 15 feet or greater exist just off-shore. I Site 3 extends from the downstream side of dike 121.58 to dike 121.0. This site has dike fields whic'.i provide quiet water areas during low flows. When river elevations breach the dikes, flows become turbulent and swif t. The bank area is lined with mature trees of willow and silver maple. Subst.ates are varied and include fine sand, silt, and mud. The collecting area for this site depends on river elevation. During low flows the riprapped portions of the dike fields must be sampled because access to inside the dike fields is I.
- - - - - ~___- ___- _ _ _
6-6 limited by low water levels. Median flows allow access to the dike fields and' large areas for collection. During above median flows only the shoreline is capable of being sampled. I Sites 4 and 5 were near shore sites located on the south shore of the Missouri River. Site 4 encompasses the area of three L-head dikes from dike 122.1 downstream to approximately river mile 115.4. The substrates at this site were sand, silt and mud. When river elevations are low, large areas of quiescent water is present. But when the dikes are breached, turbulent and swif t flows exist. Water depths are variable within the dike fields. Deep water is present within the eddy portions of the dike fields, and shallow water exists along the banks and upstream side of the dikes. The banks are lined with trees with mature specimens on the high banks and new growth on the low banks. Site 5 begins directly across tt.e river from the intake structure at the start of a tree line anc ends at the upstream side of dike 121.2. Water depths are shallow because this site is a sand flat and extends into a chute behind an island. A small short dike is present just upstream of the chute. Vegetation on the banks is similar to what exists at site 4. Snags and stranded drift characterize the habitat of the chute. Water flow is swif t and the substrates are sand, silt and mud. 6.3 Re sult s - 6.3.1 Species Composition The collection by all fish sampling methodologies represented 2805 specimens comprising 14 families and 41 species. Table 6.1 I I
g g g g g M M M M tam. im M M M M M M M. M Fish Species Collected by Electrofishing at the Callaway Plant, February 1985 through January 1986 Relative Total Relative Common Name Scientific Name Numbe r Abundance WT.(G) Weight Chest nu t lemprey Icthyomyzon castaneus 28 1.5 663.0 0.1 Shovelnose Sturgeon Jeaphirhynchus platorynchus *LT 0.1 638.0 1 0.1 Paddlefish Polyodon spathula 1 LT 0.1 3200.0 0.6 Longnose Car Lepisosteus osseus 49 2.5 25057.0 5.0 Shortnose Gar Lepisosteus platostomus 163 8.5 59156.0 American Eel 11.8 Anguilla rostrata 1 LT 0.1 480.0 LT 0.1 Gizzard Shad Dorosoma cepedianum 518 26.9 75666.6 15.1 Goldeye liiodon alosoides 322 16.7 35855.0 7.2 Mooneye liiodon tergisus 4 0.2 366.0 LT 0.1 Ca rp Cyprinus carpio 113 5.9 127834.0 25.5 Gra ss Ca rp Ctenopharyngodon idella 1 LT 0.1 4850.0 1.0 Emerald Shiner Notropis atherinoides 0.1 5.0 2 LT 0.1 River Carpsucker Carpiodes carpio 85 4.4 38982.0 7.8 Quillback Carpiodes cyprinus I LT 0.1 23.0 LT 0.1 liighfin Carpsucker Carpiodes velifer 1 LT 0.1 1000.0 0.2 Smallmouth Buf f alo Ictiobus bubalus 11 7537.0 bigmouth Buffalo 0.6 1.5 Ictiobus cyprinellus 8 0.4 11286.0 2.3 es Golden Redhorse Moxost oma eryt h ru rum 4 767.0 0.2 0.2 i Shorthead Redhorse Moxostoma macrolepidotum 4576.0 11 0.6 0.9 Blue Ca tfish Ictalu rus fu rca tus 10 0.5 6051.0 1.2 Black Bullhead Ictalurus melas 0.1 2 604.0 0.1 Yellow Bullhead Ictalurus natalis LT 0.1 1 136.0 LT 0.1 Channel Ca t fish Ictalurus puncta tus 19 1.0 10875.0 2.2 Flathead Catfish Pylodictis olivarin 10 0.5 6191.0 1.2 White Bass Morone chrysops 40 2.1 7777.0 1.6 Creen Sunfish Lepomis cyane11us 4 0.2 385.0 LT 0.1 Wa rmou t h Lepomis gulosus 2 0.1 366.0 LT 0.1 Bluegill Lepomis macrochirus 16 0.8 1472.0 0.3 La rgemou t h na ss Micropterus salmoides 3 0.2 2378.0 0.5 Spot ted Bass Micropterus punctula tus 1 LT 0.1 192.0 LT 0.1 White Crappie Pomoxis annularis 14 0.7 3886.0 0.8 Black Crapple Pomoxi s nigromacula tus 4 0.2 416.0 LT 0.1 Sauger St izostedion canadense 5 0.3 1501.0 0.3 Freshwater Drum Aplodinotus grunniens 469 24.4 60960.6 12.2
*LT = Less Than TOTAL 1924 501134.2
I 6-8 i presents the electrofishing results by species for all collection I sites and all sampling dates. In the total of 1924 specimens, 14 f amilies and 34 species were represented. As shown on Table 6.1, the dominant species f rom all electrofishing collections were gizzard shad (26.9% relative abundance), f reshwater drum (24.4%), goldeye (16.7%), shortnose gar (8.5%), and carp (5.9%) . Tables 6.2 throuFh 6.6 present tne absolute and relative abundance by species of electrofishing results for each site over the entire study. The results presented in these tables are summarized in the f ollowing table which groups north and south shore sites. Summary of Electrofishing Results by Site site North Shore South Shore 1 2 3 4 5 Families 12 10 11 10 12 Species 24 17 24 19 19 Specimens 681 231 356 299 357 I The most specimens (681) were collected from site 1, also sites 1 and 3 had the highest number of species (24). The lowest number of specimens were collected from site 2 but this was caused by the limited collection area of this site. Relative abundance of the dominant species for each site from electrofishing collections during the study is summarized in the table below. I I
Table 6.2 Fish Species Collected by Electrofishing at Site 1 during the Callaway Plant Study Febtuary 1985 through January 1986 Relative Total Relative Common Name Scientific Nan.e Number Abundance WT.(G) Weight Chestnut Lamprey Icthyemyzon castaneus 5 0.7 89.0 *LT 0.4
,engnose Gar Lepisosteus osseus 11 1.6 2449.0 1.9 'bw'. nose Gar Lepisosteus pla tost ceus 56 8.2 20033.0 15.6 American Eel Anguilla rostrata 1 0.1 480.0 0.4 Gizzard Shad Dorosoma cepedianum 131 19.2 110'5.8 8.6 Goldeye liiodon alosoides 121 17.8 111?2.0 8.8 Mooneye Iliodon te rgisu s 3 0.4 286.0 0.2 Carp Cyprinus carpio 22 3.2 32819.0 25.5 River Carpsucker Carpiodes carpio 9 1.3 5103.0 4.0 Ilighfin Carpsucker Ca rpiodes veli f er 1 0.1 1000.0 0.8 Smallmouth Bu f falo Ictiobus bubalus 1 0.1 718.0 0.6 Bigmouth Buf f alo Ictiobus cyprinellus 1 0.1 2375.0 1.8 Shorthead Redhorse Moxostoma macrolepidotum 1 0.1 475.0 0.4 Blue Catfish Ic talu ru s fu rca tu s 3 0.4 819.0 0.6 es Black Bullhead Ictalurus melas 1 0.1 552.0 0.4 4 Channel Catfish Ic talurus punctatus 7 1.0 1825.0 1.4 Fla thead Ca t fish Pylodictis olivaris 6 0.9 3340.0 2.6 Whi t e Ba ss Morone chrysops 14 2.1 2051.0 1.6 bluegill Lepouls macrochirus 5 0.7 308.0 0.2 Largemouth Bass Micropterus salmoides 2 0.3 1428.0 1.1 Spot ted Bass Micropterus punctula tus 1 0.1 192.0 0.1 White Crappie Pomoxis annularis 3 0.4 1117.0 0.9 Sauget Stizostedian canadense 3 0.4 1124.0 0.9 Freshwater Drum Aplodinotus grunniens 273 40.1 27731.6 21.6 *LT = Less Than Total 681 128612.4
Table 6.3 Fish Species Collected by Electrafishing at Site 2 during the Callaway Plant Study , Feltuary 1985 through January 1986 Relative Total Rela tive Number Abundance WT.(G) Weight Common Name Scientific Name 1cthyomyzon castaneus 1 0.4 36.0 *LT 0.1 Chestnut Lamprey 3248.0 5.1 Lepisosteus osseus 6 2.6 Longnose Car 30 13.0 10911.0 17.2 Shortnose Gar Lepisosteus platostomus Dorosoma cepedianum 55 23.8 3930.0 6.2 Gizzard Shad 9.1 2757.0 4.4 liiodon alosoides 21 Gcideye 15.2 28526.0 45.1
/ Cyprinus carpio 35 rp 2951.0 4.7 Carpiodes carpio 18 7.8 alver Carpsucker 900.0 1.4 1ctiobus bubalus 1 0.4 Smallmouth Buffalo 1 0.4 1300.0 2.1 Bigmouth Buffalo Ictiobus cyprinellus Moxostoma eryt hrutum 2 0.9 545.0 0.9 Colden Redhorse 0.4 32.0 LT 0.1 Black Bullhead Ictalurus melas 1 888.0 1.4 Morone chrysops 4 1.7 White Ba ss 0.4 47.0 LT 0.1 Green Sunfish Lepomis cyanellus 1 Bluegill Lepomis macrochirus 2 0.9 186.0 0.3 i'-
0.4 950.0 1.5 Largemouth Ba ss Micropterus salmoides 1 1.1 2 0.9 717.0 White Crapple Pomoxis annularis 5368.0 8.5 Freshwater Drum Aplodinotus grunniens _,jl0 21.6 TOTAL 231 63312.0
*LT = Less Than l
l M M M M M M M M M m m m W m m M M M M
3 Table 6.4 Fish Species Collected by Electrofishing at Site 3 during the Callavay Plant Study, February 1985 through January 1986 Relative Total Relative Number Abundance WT.(G) Weight Common Name Scientific Name 7 2.0 271.0 0.3 Chestnut Lamprey Icthyomyzon castaneus 12 3.4 3927.0 3.7 Longnose Car Lepisosteus osseus 17.1 i Lepisosteus platostomue 34 9.6 9462.0 Shortnose Gar 101 28.4 18172.6 8.9 Gizza rd Shad Dorosoma cepedlanum 4.1 33 9.3 4369.0 Coldeye Hiodon alosoides 25635.0 24.2 Cyprinus carpio 31 8.7 Carp 0.3 1.0 *LT 0.1 Emerald Shiner Notropis atherinoides 1 13255.0 12.5 Carpiodes carpio 27 7.6 River Carpsacker 0.3 23.0 LT 0.1 Quillback Carpiodes cyprinus 1 1.3 6 1.7 1376.J Smallmouth Buf falo Ictiobus bubalus 7611.0 7.2 Ictiobus cyprinellus 6 1. 7 Bigmouth Buf f slo 2 0.6 222.0 0.2 Colden Redhorsc Mexostoma erythrurum 1.4 Moxostoma macrolepidotum 4 1.1 1508.0 Shorthead Ecdhorse 0.3 403.0 0.4 7 , Blue Ca tfish Ictalurus fur 2atus 1 136.0 0.1 -
)
", Ictalurus natalis 1 0.3 "' Yellow Bullhead 6 1.7 4355.0 4.1 l Channel Catfish Ictalurus punctatus 1.3 Morone chryeops 9 2.5 1367.0 White Bass 2 0.6 224.0 0.2 Green Sunfish Lepomis cyanellus 2 0.6 366.0 0.3 Warmou th Lepomis gulosus Lepomis macrochirus 6 1.7 597.0 0.6 aluegill 0.3 210.0 0.2 White Crappie Pomoxis annularis 1 230.0 0.2 Pomcxis nigromaculatus 3 0.8 Black Crappie 0.6 377.0 0.4 2 Sauger Stizestedion canadente 11909.0 11.2 Aplodinctus grunniens 58 16.3 Freshwater Drum TOTAL 356 106006.6
*LT = Less Than i ..
Table 6.5 Fish Species Collected by Electrofishing at Site 4 during the Callaway Plant Study, February 1985 through January 1936 Relative Total Relative Common Name Scientific Name Number Abundance WT.(G) WeigE*_ Chestnut lamptey Icthyomyzon castaneus 2 0.7 38.0 *LT 0.1 Longnose Car Lepisosteus osseus 11 3.7 9351.0 10.6 Shortnose Gar Lepisosteus platostomus 29 9.7 13213.0 15.0 Gizza rd Shad Dorosama cepedianum 104 34.8 16765.4 19 .0 Goldeye Iliodon alosoides 58 19.4 6374.0 7.2 Ca rp Cyprinus carpio 11 3.7 11679.0 13.2 Emerald Shiner Notropis atherinoides 1 0.3 4.0 *LT 0.1 River Carpsucker Carpiodes carpio 15 5.0 12006.0 13.6 Smallmouth Buffalo Ictiobu s bubalus 1 0.3 518.0 0.6 Shorthead Redhorse Moxostoma macrolepidotum 3 1.0 872.0 1.0 Blue Catfish Ictalurus furcatus 4 1.3 3368.0 3.8 Channel Cat fich Ictalurus punctatus 4 1.3 2975.0 3.4 Flathead Catfish Pylodictis olivaris 3 1.0 1C51.0 1.2 White Bass Morone chrysops 8 2.7 2338.0 2.7 T Green Sunfish Lepomis cyanellus 1 0.3 114.0 0.1 - Bluegill Leponis macrochirus 2 1.0 381.0 0.4 White Crappie Pomoxis annularis 5 1.7 1116.0 1.3 Black Crappie Pomoxis nigromaculatus 1 0.3 186.0 0.2 Freshwater Drun Aplodinotus grunniens 35 11.7 5817.0 6.6 OLT = Less Than TOTAL 299 88166.4 i
gu-- a i , > t i Table 6.6 Fish Species Collected by Electrofishing at Site 5 during the Callaway Plant Study, ' February 1985 th ough January 1986 Relativ2 Total Relative Number Abundance WT.(G) Weight Common Name Scientific dame 13 3.6 229.0 0.2 Chestnut Lamprey Icthyomyzon castanens Scaphirbynchus platorynchus 1 0.3 638.0 0.6 Shovelnoe." Sturgeon 3200.0 2.8 Polyodon spathula 1 0.3 Paddlefish 9 2.5 6084.0 5.3 : Longnose car Lepisosteus osseus 14 3.9 5537.0 4.8 Shortnose car Lepisosteus platostomus 22.4 Dorosoma cepedianum 127 35.6 25772.8 Gizzard Shac 89 24.9 11083.0 9.6 Coldeye Iliodon alcsoidas 30.0 *LT 0.1 Iliadon tergisus 1 0.3 Mooneye 14 3.9 29175.0 25.4 Carp Cyprinus carpio 4850.0 4.2 Ctenopharyngodon idella 1 0.3 Gra ss Ca rp 16 4.5 5667.0 4.9 River Carosucker Carpiodes carpio 3.5 2 0.6 4025.0 Smallmouth Buf falo Ictiobus bubalua 1721.0 1.5 , Moxostoma macrolspidotum 3 0.8 l Shorthead Redhorse 2 0.6 1461.0 1.3 e Blue Cat fish Ictalurus feccatus 1.5 C 2 0.6 1720.0 Channel Catfish Ictalurus punctatus 1.6 i 1 0.3 1800.0 Flathend Catfish Pylodictis olivarie 1.0 Morone chryseps 5 1.4 1133.0 White Bass 0.8 726.0 0.6 Panoxis annularis 3 White Crapple 14.8 10135.0 8.8 Aplodinotus grunniens 53 Freshwater Drum TOTAL 357 115036.8
*LT = Less Than
6 - 14 I Relative Abundance of Dominant Species By Site from Electrofishing Site North Shore South Shore 3 4 5 I 1 2 Shortnos %r 8.2 13.0 9.6 9.7
- Gizzard Shad 19.2 23.8 28.4 34.8 35.6 Goldeye 17.8 9.1 9.3 19.4 24,9 Carp
- 15.2 8.7 *
- River Carpsucker
- 7.8 7.6 5.0
- Freshwater Drum 40.1 21.6 16.3 11.7 14.8
- Species was not a dominant component of collections.
Gizzard shad, goldeye, and f reshwater drum were ubiquitous and were the dominant species collected at all sites. Gizzard abad and goldeye were more dominant on the south shore, whereas f reshwater drum and shortnose gar were more dominant on the north shore. Ca rp was a dominant species at sites 2 and 3. River carpsucker exhibited that it was a dominant species at sites 2, 3, and 4 Data on absolute and relative abundance from electrofishing collections f or all rites monthly are presented in Appendix D.1 and for each site monthly in Appendix D.2. Tables 6.7 through 6.10 show the seasonal species composition and abundance in collections from all electrofishing collection sites for the fall, vinter, apring and summer. This seasonal data is summarized ' for the dominant species in Table 6.11. This table illustrates the seasonal variability in species composition by showing the seasonal relative abundance of dominant species. Gizzard shad, goldeye, and freshwater drum were dominant during all seasons. Shortnose gar and I
M M M M MM M M M M M M M M M M M M Table 6./ Fish Species Collected by Electrofishing during the Spring Season At All Sites during the Callaway Plant Study, February 1985 through January 1986 Relative Total Relative Abundance WT.(G) Weight Scientific Name Number Common Name 13 1.4 205.0 0.1 Chestnut le.mprey Icthyomyzon castaneus 1.4 9 1.0 1996.0 Longnose Car Lepisosteus osseus 15.0 Lepisosteus platostomus 56 6.0 22095.0 l Shortnose Car 194 21.0 17390.8 11.8 Cinzard Shad Dorosoma cepedianum 13.2 202 21.8 19483.0 Coldeye 111oden alosoides *UT 0.1 Hiodon tergisus 1 0.1 116.0 Mooneye 57 6.2 35272.0 23.9 Carp Cyprinus carpio 1.0 LT 0.1 Notropis atherinoides 1 0.1 Emerald Shiner 28 3.0 4267.0 2.9 Ri rer Carpsucker Carplodes carpio 23.0 LT 0.1 Carpiodes cyprinus 1 0.1 Quillback 6 0.6 1312.0 0.9 Smallmouth Buf falo Ic tiobus bubalus 2511.0 1.7 l Icciobus cyprinellus 4 0.4 l Bismouth Buffalo Moxostoma macrolepidotum 2 0.2 629.0 0.4 Shorthead Redhorse 2 0.2 1461.0 1.0 f Blue Catfish Ictalurus furcatus 2 0.2 604.0 0.4 r-Black Bullhead Ictalurus melas 136.0 LT 0.1 Ictalurus natalis 1 0.1 Yellow Bullhead 8 0.9 2146.0 1.5 Channel Catfish Ictalurus punctatus Pylodictis olivaris 1 0.1 437.0 0.3 Fla thead Ca t fish 22 2.4 3311.0 2.2 White nass Morone chrysops Lepomis cyanellus 4 0.4 365.0 0.3 Green Sunfish 2 0.2 366.0 r.2 Warmouth Lepomis gulosus 12 1.3 1186.0 0.8 Bluegill Lepomis macrochirus 1.6 Micropterus salmoides 3 0.3 2378.0 La rgemou t h Ba ss 1.0 2667.0 1.8 Pomoxis annularis 9 White Crappie 0.2 27.0 LT 0.1 Pomoxls nigromaculatus 2 Black Crappie 0.1 32.0 LT 0.1 Sauger Stizostedion canadense 1 18.2 283 30.6 26862.6 Freshwater Drum Aplodinotus grunniens TOTAL 926 147299.4
*LT = Less Than s .
E _
. ? ,
Table 6.8 Fish Species Collected by Electrofishing during the Summer Season At All Sites during the Callaway Plant Study, February 1985 through January 1986 Relative Total Relative Common Name Scientific Name Number Abundance WT.(G) Weight Chestnut Lamprey Icthyomyzon castaneus 2 0.6 27.0 *LT 0.1 Shovelnose Sturgeon Scaphithynchus platorynchus 1 0.3 638.0 0.4 Longnose Gar Lepiso_teus osseus 21 6.5 9614.0 6.8 Shortnose Car Lepisosteus platestomus 89 27.5 30986.0 21.8 American Eel Anguilla rostrata 1 0.3 480.0 0.3 Gizzard Shad Dorosoma cepedianum 28 8.6 6142.0 4.3 Coldeye Ilioden alosoides 50 15.4 7800.0 5.5 Carp Cyprinus carpio 28 8.6 44671.0 31.5 River Carpsucker Carpiodes carpio 21 6.5 16221.0 11.4 Smallmouth Buf falo Ictiobus bubalus 1 0.3 750.0 0.5 Blue Catfish Ic talu rus furcatus 2 0.6 1466.0 1.0 Channel Catfish Ictalurus punctatus 6 1.9 5021.0 3.5 Flathead Catfish Py).odictis ivaris 7 2.2 5030.0 3.5 T White Ba ss Ibrone chrysops 9 2.8 2256.0 1.6 ; Bluegill Lepr-nis macrochirus 4 1.2 286.0 0.2 Spotted Bass Micropterus punctulatus 1 0.3 192.0 0.1 White Crapple Pomoxis annularis 4 1.2 982.0 0.7 Slack Crappie Pomoxis nigromaculatus 1 0.3 186.0 0.1 Freshwater Drum Aplodinotus grunniens 48 14.8 9080.0 6.4
*LT = Less Than TOTAL 324 141828.0 1
l g g g g g M M E U E E
M M M M M M M M M M M M M M M M M M Table 6.9 Fish Species Collected by Electrofishing during the Fall Season At All Sites during the Callaway Plant Study, February 1985 through January 1986 Rela t ive Total Relative Number Abundance WT.(G) Weight Commoa Name Scientific Name 13 2.3 431.0 0.2 Cheetnut Lamprey Ichthyomyzon castaneus 1.6 0.2 3200.0 Paddlefish Polyodon spathula 1 13449.0 6.8 Lepisosteus osseus 19 3.4 Longnose Gar 18 3.2 6075.0 3.1 Shortnose Car Lepisosteus pla tostor.as 49539.8 25.2 Dorosoma cepedf anum 242 43.1 Gizzard Shad 60 10.7 7866.0 4.0 ] Goldeye Iliodon aloso'Mes 218.0 0.1 Iliodon tergisus 2 0.4 Mooneye 26 4.6 44541.0 22.6 Carp Cyprinus carpio 4850.0 2.5 Ctenopharfngodon idella 1 0.2 Grass Ca rp 17426.0 8.9 Carpiodes carpio 34 6.1 River Carpsucker 4 0.7 5475.0 2.8 Smallmouth Buffalo Icticbus bubalus 8775.0 4.5 Ictiobus cyprinellus 4 0.7 l Bigmuuth Buf falo 4 0.7 767.0 0.4 Golden Redhorse Moxostoma erythrurum 0.8 i Moxostoma macrolepidotum 3 0.5 1500.0 f Shorthead Redhorse 6 1.1 3124.0 1.6 Blue Catfish Ictalurus fu rca tu s 3708.0 1.9 Ictalurus puncta tus 5 0.9 Cha,nel Catfish 0.2 300.0 0.2 1 Flathead Catfish Pyladictis olivaris Morone chrysops 7 1.2 1476.0 0.7 White Bass 1 0.2 237.0 0.1 White Crappie Pomoxis annularis 203.0 0.1 Pomoxis nigromacula tus 1 0.2 Black Crappie 4 0.7 1469.0 0.7 Sauger Stizostedion canadense 22204.0 11.3 Aplodinotus grunniens 105 18.7 Freshwa ter Drum TOTAL 561 196833.8
EU m Table 6.10 Fish Species Collected by Electrofishing during the Winter Season At All Sites during the Callaway Plant Study, February 1985 through January 1986 Relative Total Relative Number Abundance WT.(G) Weight f Common Name Scientific Name ! 47.8 2594.0 17.1 l Dorosoma cepadianum 54 Cizzard Shad 10 8.8 706.0 4.7 Goldeye Iliodon alosoides 32.0 0.2 liiodon tergists 1 0.9 Mooneye 2 1.8 3350.0 22.1 Carp Cyprinus carpio *LT 0.1 Notropis atherinoldes 1 0.9 4.0 Emerald Shiner 2 1.8 1068.0 7.0 River Carpsucker Carpiodes carpio 1000.0 6.6 Carpiodes velifer 1 0.9 liighfin Carpsucker 6 5.3 2447.0 16.1 Shorthead Redhorse Moxostoma macrolepidotum 2.8 1 0.9 424.0 Fla thead Catfish Pylodictis olivaris 734.0 4.8 Morone chrysops 2 1.8 White Bass 33 29.2 2814.0 18.5 Freshwater Drum Aplodinotus grunniens 113 15173.0 TOTAL cn
*LT = Less Than a w
CD l ~- -- ; y y ;
Table 6.11 Relative Abundance of Dcminant Species by Season from Electrofishing Collections During the Callaway Plant StuJ ,fFebruary 1985 through January 1986 All Sites Spring Summer Fa ll Winter Common Name Scientific Name Lepisosteus platestomus 6.0% 27.5% Shortnose Car 21.0% 8.6% 43.1% 47.8% Gizzard Shad Dorosoma cepedianum 8.8% 21.8% 15.4% 10.7% Goldeye Iliodon alosoides *
- Cyprinus carpio 6.2% 8.6%
Ca rp 30.6% 14.8% 18.7% 29.2%. Fceshwater Drum Aplodinotus grunniens *
- Lepisoteus osseus
- 6.5%
Longnose Car
- 6.5% 6.1%
- River Carpsucker Carpiodes carpio * *
- 5.3%
Shorthead Redhorse Moxostoma macrolepidotum y'
- Species was not a dominant component of collections. ~
l l I
6 - 20 carp were dominant species during the spring and suramer seasons. Longnose gar was a dominant species in the summer and shorthead redhorse in the winter. In the summer and fall seasons, river carpsucker was a dominant species in the electrofishing collections. Seasonal species composition for each electrofishing collection site are presented in Appendix D.3. Appendix D.4 provides data concerning each species collected in electrofishing collections for each site and all sites by showing the total number collected, mean total length, length range, mean weight, weight range, percent total biomass collected, and percent occurrence in the collections. Seining collection data showing numbers and relative abundance for each species during the study are presented in Table 6.lL Seining produced chub, shiner and minnow species that were not present in the electrofishinr, collections, thus providing further documentation of the fish populations in the vicinity of the Callaway intake structure. Sampling by seining collected a total of 881 specimens representing 8 families and 17 species. The dominant species f rom the seining collections were channel catfish (63.5% relative abundance), f reshwater drum (18.1%) and river carpsucker (9.1%) . The specimens of these species were all young of the year and this shows the high fecundity and compensatory potential of these species. Seining was scheduled to be conducted monthly but because of I inclement weather and high river elevations, sampling was only accomplished on July 24, 1985. Electrofishing was not conducted in December 1985 because of adverse river conditions. I I
6 - 21
~
Table 6.12 Fish Species Collected by Seining at the ]. Callaway Plant , February 1985 through January 1986 Number Number Relative Common Name Scientific Kgme Site 1 Site 5 Total Abundance Gizzard Shad Dorosoma cepedianum 5 6 11 1.3 Goldeye Hiodc.n alosoides 5 1 6 *LT 0.1 Silver Chub Hybopsis storerians 11 16 27 3.1 Hybopsis aestivalis 6 6 LT 0.1 1SpeckledChub Sicklefin Chub Hybopsis meeki 2 2 LT 0.1 Flathead Chub Hybopsis gracilis 2 2 LT 0.1 Pimephales notatus 1 17 18 2.0 Phenacobius mirabilis LT 0.1 iBlentnosetiinnow Suckermouth Minnow Emerald Shiner Notropis atherinoides 1 2 1 2 LT 0.1 Sand Shiner Notropis stramineus 2 2 LT 0.1 80 9.1 Carpsucker Carpiodes carpio 80 1 River Channel Catfish Ictalurus punctatus 127 432 559 63.5 Yellow Bullhead Ictalurus natalis 1 1 LT 0.1 Morone chrysops 1 2 3 LT 0.1 Micropterus punctulatus LT 0.1 I White Bluegill Bass Spotted Bass Lepomis macrochirus 1 1 1 1 LT 0.1 Freshwater Drum glodinotus grunniens 50 109 159 18.1
-Total 210 671 881 I c '.T o Less *.han I
6 - 22 No fish of threatened or endangered status for Missouri waters (Mo. Dept. of Con. 1977), or included on the U.S. Fish and Wildlife Service List of Endangered and Threatened Wildlife (U.S. Dept. of Interior 1975) were collected during the study. Two sicklefin chubs (11ybopsis meeki) were collected by seining on the south shore during the study. The sicklefin chub is considered rare by the state of Missouri. 6.3.2 Pflieger Faunal Composition Analyets I Pflieger faunal composition analysis is a method of characterizing and analyzing the fish populations according to the habitat requirements of the various species. Faunal composition may be based on the number of species or the number of specimens within each faunal grou p. The Pflieger faunal composition percentages for all electrofishing collections monthly, seasonally and for the year by number of species and by number of specimens are presented in Tables 6.13 and 6.14, respectively. For all sites 50.0% of the species were wide ranging, 29.4% Big River, 5.9% Ozark and Prairie, and 2.9% each fell into Lowland, Ozark-Lowland and Ozark-Prairic faunal groups. The faunal composition percentage by number of specimens at all sites for I the year were 52.7% Big River, 41.8% Wide Ranging, and 4.5% Prairie. All other faunal groups combined made up 1.1% of the specimens. Appendix D.5 contains the Pflieger faunal composition percentages by the number of species and by the number of specimens tor each electrofishing collection site by the month, season, and year. I I I'
M "E E ~l 1J J-I Table 6.13 Pf11eger Faunal Composition by Number of Species 'for All Electroffshing Collections Monthly, Seasonally, and for the Year at the Calls my Plant, February 1985 through January 1986 Ozark Oza rk ide
. Not Big Lowland Prairie Ranging D2 fined Otark Loeland Prairie 31ste 33.3 0.0 11.1 33.3 0.0 Februa ry 1985 11.1 0.0 Ii.1 55,6 0.0 0.0 0.0 5.6 33.3 0.0 5.6 th ren 1985 0.0 63.6 0.0 1985 0.0 4.5 9.1 22.7 b.0 April 9.1 18.1 0.0 0.0 72.7 0.3 May 1985 0.0 0.0 0.0 9.1 36.4 0.0 0.0 54.5 0.0 .Iune 1985 0.0 0.0 6.3 37.5 6.3 0.0 50.0 0.0 1985 0.0 July 0.0 6.7 33.3 0.0 0.0 60.0 0.0 Au gust 1985 0.0 0.0 7.1 35.7 0.0 0.0 57.1 0.0 September 1985 0.0 5.9 41.2 0.0 5.9 41.2 0.0 October 1985 5.9 0.0 54.5 0.0 0.0 0.0 9.1 27.3 0.0 9.1 r.ovember 1985 20.0 40.0 0.0 0.0 0.0 0.0 40.0 0.0 Janua ry 1986 O 3.7 7.4 25.9 0.0 3.7 59.3 0.0 i Spring season 0.0 57.9 0.0 U 5.3 31.6 5.3 0.0 Summer Season 0.0 0.o 50.0 0.0 36.4 0.0 4.5 Fall Season 4.5 0.0 4.5 36.4 0.0 9.1 0.0 9.1 36.4 0.0 9.1 Winter Season 2.9 5.9 29.4 2.9 2.9 50.0 0.0 For The Year 5.9
Table 6.14 Pflieger Faunal Composition by Number of Specimens for All Electrofishing Collections Monthly, Seasonally, and for the Year at the Calleway Plant. February 1985 through January 1986 Big .Ozark Oza rk Wide- Not
- Ozark Lowland Pra irie River Lowland Prairie Ranging Defined February 1985 1.2 0.0 2.3 51.2 0.0 5.8 39.5 0.0 March 1985 0.0 0.0 4.2 80.1 0.0 0.4 15.2 0.0' April 1985 0.0 0.5 2.4 46.1 0.0 0.e M.9 0.0 May 1985 0.0 0.0 1.0 32.0 0.0 0." 67. : 0.0 June 1985 0.0 0.0 7.2 59.0 0.0 0.0 33.8 0. T July 1985 0.0 0.0 5.6 62.2 1.1 0.0 31.1 0.0 Augu s t 1985 0.0 0.0 6.3 66.2 0.0 0.0 29.5 0.0 September 1985 0.0 0.0 8.5 46.0 0.0 0.0 45.5 0.0 October 1985 1.4 0.0 4.5 24.3 0.0 0.7 69.2 0.0 November 1985 0.0 0.0 4.4 62 2 0.0 2.2 31.1 0.0 January 1986 0.0 0.0 0.0 7.4 0.0 3.7 88.9 0.0 Spring Season 0.0 0.2 3.1 61.2 0.0 0.2 35.2 0.0 61.4 ^
Summer season 0.0 0.0 6.5 0.3 0.0 31.8 0.0 Fa ll Searan 0.7 0.C 6.1 36.0 0.0 0.5 5t> . 7 0.0 Winter Season 0.9 0.0 1.8 40.7 0.0 5.3 51.3 0.0 For The Year 0.3 0.1 4.5 52.7 *LT 0.2 0.6 41.8 0.0
*l.T = less than M M M M M M M M M M M M M
6 - 25 6.3.3 Len c t h-Fr e qu enc y Distribution Length-f requency distribu tions f or 18 dif f erent species of fish collected by electrofishing are given in Appendix D.6. These tables show the length-f requency distributions f or each season and f or the year for each species. The length-f requency distributions are in 50 millimeter (mm) increments f or f reshwater drum and gizzard shad, but are in 20 mm increments for other species. These length-f requency distributions provide inf ormation on the size distributions of fish occurring at the collection sites in the vicinity of the Callaway intake structure during the study. 6.3.4 Catch-Per-Unit-Effort Table 6.15 presents catch-per-unit-effort (CPUE) figures for the electrofishing collections. CPUE was calculated as a number of fish per standardized effort (fish per minute sampled) for each collection site and for all sites by month, season and the year. The CPUE ranged from 0.0 CPUE at site 1 and 2 in January 1986 to 6.0 CPUE at site 1 in April 1985. Site 4 CPUE of 0.96 was the lowest catch rate of the five sites during the study. Site 2 had the highest cpl!E (2.41) during the study. The spring season CPUE of 2.27 was the highest seasonal average and the winter season CPUE of 0.51 was the lowest. The CPUE at all sites for the year was 1.36 fish per minute. I
Table 6.15 Ca tch-Per-Unit-Ef fort for Electroffshing Co lections Monthly, Seasonally, and for the Year By Site, and All Sites during the Caliaway Plant Study, February 1985 through January 1986 t ALL COLLECTION SITE SITES 1 2 3 4 5 February 1985 0.742 0.625 1.789 0.737 0.588 0.915 , March 1985 4.880 4.200 0.867 2.750 4.300 3.485 i April 1985 6.000 5.444 2.560 0.857 2.067 2.937
- May 1985 0.800 5 00 0.257 0.233 0.094 9.662 June 1985 1.050 0.778 0.452 1.333 1.200 0.993 l i July 1985 1.208 2.143 0.700 0.567 0.267 0.744 !
) August 1985 1.000 1.400 1.000 0.267 0.367 0.720 September 1985 1.800 1.444 2.605 0.767 0.839 1.566 ! October 1985 1.519 3.000 1.133 2.800 3.267 2.355 Novemtvr 1985 0.143 0.600 0.633 0.125 0.400 0.349 l Janua ry 1986 0.0 0.0 0.133 0.514 0.217 0.214
- Spring Season 3.642 4.857 1.100 1.082 1.841 2.270 7 ,
y Summer Season 1.074 1.385 0.720 0.722 0.611 0.824 Fall Season 1.124 2.077 1.551 1.310 1.495 1.417 i Winter Season 0.377 0.313 0.776 0.593 0.375 0.514 For The Year 1.816 2.406 1.079 0.955 1.178 1.358 I i t i i i i l M M M M M M M IM M M M M M M M - Mi
I 6 - 27 I 6.3.5 seasonal Trends I Table 6.11 showed seasonal changes in the ralative abundance of dominant species. Seasonality may also be examined by consideration of the percentage of total catch for a species that occurred during each season. Table 6.16 presents this information for all species that were collected in numbers of five or more in cicetrofishing sampling. This table shows that seven of the eighteen species were present in all seasons. Seven other species were present during all seasons except the winter. Smallmouth buf f alo and sauger were collected only in the spring and fall. Shorthead redhorse were not collected in the summer and 54.5% of the specimens were sampled in the vinter. The majority of gtzzard shad were collected in the spring (37.57) and fall (46.7%). Goldeye and f reshwater drum were collected in the ;Aghest numbers in the spring, when 62.7% and 60.3% of the specimens were collected, respectively. ::eventy percent of the flathead catfish were collected in the summer. Spring (34.4%) and summe r (54.6%) was when the majority of shortnose bar were collected. whereas longnose gar was collected in the highest numbers in the I summer and fall. Stallmouth buf falo were mainly collected in the spring and fall. Carp and river carpsucker were collected in high numbers during all seasons except winter.
'I I
I I I
6 - 28 Table 6.16 Seasonal Distribution of Species
- in.Electrofisning Collections During the Callaway Study, February 1985 through January 1986 Common Name Spring Summer Fall Winter Chestnut Lamprey 46.4% 7.1% 46.4% 0%
Longnose Car 18.4% 42.9% 38.8% 0% Shortnose Gar 34.4% 54.6% 11.0% 0% 3 Cizzard Shad 37.5% 5.4% 46.7% 10.4% g Goldeye 62.7% 15.5% 18.6% 3.1% Carp 50.4% 24.8% 23.0% 1.8% River t.arpsucker 32.9% 24.7% 40.0% 2.4% Smallmouth Buffalo 54.5% 9.1% 36.4% , 0% Bigmouth Buffalo 50.0% 0% 50.0% 0% Shorthead Redhorse 18.2% 0% 27.3% 54.5% 3 Blue Catfish 20.0% 20.0 60.0% 0% 3 Channel Catfish 42.1% 31.6% 26.3% 0% Flathead Catfish 10.0% 70.0% 10.0% 10.0% White Bass 55.0% 22.5% 17.5% 5.0% Bluegill 75.0% 25.0% 0%' 0% White Crappie 64.3% 28.6% 7.1% 0% Sauger 20.0% 0% 80.0% 0% Freshwater Drum 60.3% 10.2% 22.4% 7.0%
- Fish species collected in numbers of five or more in electrofishing collections.
I I I I I i I l
E 6 - 29 6,3.6 Spa tial Di stribu tiot.9 Table 6.17 sumnarizes de percentage occurrence, the spatial distribution, and the total numbers for each species in the electrofishing collections over the entire study. The three predominant species, gizzard shad, goldeye and f reshwater drum exhibited the highest peteentages of occurrence and were collectec at all sites. Species that occurred at all sites but showed va - "g degrees of occurrence were chestnut lamprey, longnose gar, shu tnose gar, carp, river carpsucker, smallmouth buf f alo, white bass, and white crappie. I The bigmouth buf f alo, shorthead redhorse, bit.e catfish, channel catfish, flathead catfish, green suntish, and bluegill were species occurring at 50% or more of the electrofishing collection sites. .I Habitat preferences were exhibited by certain species during the study. Shortnose gar, goldeye, mooneye, white bass, and f reshwater drum showed a distinct preferer.ce for site 1. Fish species preferring site 3 were river carpsucker, smallmou th bu f f alo, and bigmou th buffalo. Carp, sauger, and golden redhorse exhibited a preference for sites on the north shore. Sixty percer.t of the flathead catfish were collected f rom site 1 and 30% were collected from site 4. Ninety-one g percent of the shorthead redhorse were collected from sites 3, 4, and 5.. I I I
6 - 30 I Table 6.17 Occurrence and Distribution of Species in Electrofishing Collections During the Callaway Study, February 1985 through January 1986 I Percent Occurrence Within E Electrofishing Sites E Common Name Collections 1 2 3 4 5 Total Chestnut Lamprey 22.6% X X X X X 28 Shovelnose Sturgeon 1.9% X 1 Paddlefish 1.9% X 1 Longnose Gar 43.4% X X X X X 49 Shortnose Gar 60.4% X X X X X 163 At>erican Eel. 1.9% X 1 Gizzard Shad 71.7% X X X X X 518 Goldeye 75.5% X X X X X 322 Mooneye 7.5% X X 4 Carp 60.4% X X X X X 113 Grass Carp 1.9% X 1 Emerald Shiner 3.8% X X 2 River Carpsucker 49.1% X X X X X 85 Quillback 1.9% X 1
]
Highfin Carpsucker 1.9% X 1 E Smallmouth Buf falo 15.1% X X X X X 11 Bigmouth Buf falo 7.5% X X X 8 Colden Redhorse 3.8% X X 4 Shorthead Redhorse 17.0% X X X X 11 Blue Catfish 13.2% X X X X 10 Black Bullhead 3.8% X X 2 l Yellow Bullhead 1.9% X 1 E Channel Catfish 22.6% X X X X 19 Flathead Ca tfish 13.2% X X X 10 g White Bass 37.7% X X X X X 40 g Green Sunfish 5.7% X X X 4 Warmouth 1.9% X 2 Bluegill 17.0% X X X X 16 Largemouth Bass 5.7% X X 3 Spotted Bass 1.9% X 1 White Crappie 22.6% X X X X X 14 E Black Crappie 5.7% X X 4 5 Sauger 5.7% X X 5 Freshwater Drum 81.1% X X X X X 469 o I I
E 6 - 31 I 6.4 Di scussion I 6.4.1 Species Cottposition and Abundance I Threatened or endangered fish species (U.S. Dept. of Interior 1975; Missouri Dept. of Conservation 1977) were not collected during the field fisheries study or previous studies near the Callaway Plant (Union Electric Co. 1974, 1975, 1976; Camp, Dresser & McKee 1981, 1982). Sicklefin chub, a species considered rare by the state of Missouri (Missouri Dept. of Conservation 1977), were e allected during the 1985-86 study and previous studies (Camp, Dresser & JcKee 1981, 1982). The occurrence of the sicklefin chub within the study area was not unexpected relative to the habitat present within the study area. Pflieger (1971, p. 338) reported that the sicklefin chub occurs only in the Missouri River and lower Mississippi River in Missouri, preferring the main channel with substrates of sand and fine gravel. Its abundance increases toward the mouth of the Missouri River. The only fish species collected during the 1985-86 study which had not been sampled during previous studies uns the grass carp (Ctenopharyngodon idella) . Pflieger (1975) states the grass carp is a native of eastern Asia that was brought into this country as ear as 1963 and was introduced into open waters of Arkansas shortly thereafter. The grass carp is reported to be an inhabitant of large riv er s. The larger streams of Missouri, particularly the Mississippi and Missouri, appear to provide suitable habitat (Pflieger 1975). Relative abundance and species composition has varied during the Missouri River field fisheries investigations conducted f or one I
6 - 32 I Callaway Plant. Species composition stayed relatively constant for I the river as a whole, but has fluctuated eccording to sampling methodologies and collection sites. Relative abundance has varied among studies but not beyond what would be expected of fish populations in a dynamic riverine environment. Camp, Dresser 6 McKee (1981) in electrofishing coller . ions f ound gizzard shad (69.8%), f reshwater drum (5.2%), shortnose gar (5.0%), aad ri T carpsucker (4.9%) to be the most abundant species in the river near the Callaway Plant. The following year Camp. Dresser & McKee (1982) in electrofishing collections found freshwater drum (36.5%), gizzard shad (35.5%), river carpsucker (6.6%), and goldeye (6.1%) to be the abundant species. The 1985-86 study found gizzard shad (26.9%), f reshwater drum (24.4%), goldeye (16.7%), shortnose gar (8.5%), and carp (5.9%) to- be the most abundant species. Cizzard shad and f reshwater drum have remained the two predominant species collected during the last three field fisheries studies at Callaway. The dif ferences in relative abundance between studios can be attributable to naturally fluctuating biotic and abiotic conditions. There were 34 species collected by electrofishing during the 1985-86 study and in past studies 28 species (Camp, Dresser & McKee, 1982) I and 31 species (Camp, Dresser & McKee 1981) were collected by this methodology. The species composition has remained stable in the Missouri River near the Callaway Plant. Differences in species numbers between studies is accountable by the occurrence of a few
- minor species being collected during certain studies.
I
B 6 - 33 I Seining ss.mples showed high fecundity and compensatory potential of certain species since 559 channel catfish, 159 f reshwater drum, and 80 river carpsucker were collected on July 24, 1985. Seining samples provided information on the presence of minnow, shiner, and chub species, just as past studies have done (Camp, Dresser 6 McKee 1981, 1982). I 6.4.2 Cotrparison by Pflieger Faunal Conposition Faunal cm. positions of the collections from fisheries studies conducted at the Callaway Plant were compared using Pflieger's classification system. The analysis was based on the number of species since analysis by number of specimens would skew the composition toverd certain f aunal groups because of the dif f erences between studies. Table 6.18 presents the Pflieger faunal composition by the number of species collected during the various studies. The earlier electrofishing studies to the present study conducted in the Missouri River near the Callaway Plant shows that faunal composition has been shif ting from the big river raunal group to the wide ranging faunal group. One reason why this phenomenon may be happening is because of the Army Corps of Engineers dike notching program. Just recently the Corps implemented dike notching to create more diverse fish habitat by eliminating sediment build-up behind certain dike fields. Dike notching has created scour holes, flow behind dike fields during low to medium flows, and habitat diversity. This diversity has created niches where faunal groups other than the big river faunal group can I I
Table 6.18 Pflieger Faunal Composition by Number of Specimens Collected ,
.During Field Fisheries Studies Conducted for the Callaway Plant Big Ozark Ozark Wide Not Study And Ranging Defined Collection tiethod Ozark Lowland Prairie River Lowland Prairie Camp, Dresser
- McKee Study, 38.7 3.7 1980-1981 Electrofishing 0.0 0.0 12.9 41.5 3.2 3.2 j
Camp, Dresser
- McKee Study, 3.6 1981-1982, Electrofishing 3.6 0.0 7.1 35.7 0.0 7.1 42.9 Union Electric Company Study, 1985-86, Electrofishing 5.9 2.9 5.9 29.4 2.9 2.9 50.0 0.0 cs 1
W h I l 1 f M g g g
6 - 35 inhabitat within the emin portion of the Missouri River. This shift is beneficial since the big river f aunal group is as abundant but has helped to restore diversity within a river system which has been greatly altered by past channelization and stabilization practices. 6.4.3 Impingment Composition and Abundance 1mpingement samples included utne families and thirteen species, as shown in Table 5.2. Walleye (Stizostedian vitreum) was collected in the impingement studies but was not collected in the 1985-86 field fisheries study. This species has been collected in other studien conducted in the Missouri River near the Callaway Plant (Camp, Dreser
& McKee 1981. 1982). Gizzard shad (91.4%) and f reshwa ter drum (4.0%)
together comprised 95.4% of the relative abundance from the impingement collections. Gizzard shad was the most abundant species in the electrofishing sampling, and f reshwater drum was the second most abundant species. Also, f reshwater drum was the second most abu ndant species in the seining collections. Impingement sampling results indicated that 98% of impinged gizzard shad are one year old or less. The compensatory potential and
~
natural mortality rates (Bodola 1966) of this species suggest that any effect on their populations from impingement would be insignificant. Impingement primarily af fects gizzard shad and freshwater drum, the two dominant species in the electrofishing collections. The field fisheries and impingement studies both confirm the predominance of gizzard shad and freshwater drum in the Missouri River. The other species in impingement samples were less dominant in abundance which
6 - 36 I was consistent with their lower abundance in the field fisheries I study. 6.4.4 Intake Structure Location-Fish Involvemenj - The intake structure's location was selected so its ef fects on the fish populations would be minimal. The intake was located on a I straight rip-rap bank that has the main river channel immediately of f-shore. Water withdrawal eccurs from the depths of the main channel where fish inhabitation is minimal. The intake structure is located where spanning areas are limited and nursery areas are almost non-existent. Fish involvement with the intake basically entails fish migrating around the structure. Major feeding areas do not exist in the area of the intake structure. The impingement study, which was conducted concurrently with the field fisherica study, projected that 2410 fish weighing 59.5 kilograms (131.2 pounds) would be impinged annually. H is extremely low impingement rate lends further credence that the intake structure does not exist in major spawning, nursery, or feeding areas for fish (see sections 4.4.2 and 6.2.3). From the middle of May through the middle of November 1985 (28 impingement tests), there were no fish collectea during the impingement tests except on August 30 when one flathead catfish was collected, he majority of impingement by the intake structure occurred from late fall through the spring. The field fisheries data show that the highest concentration of fish (CPUE) occurs in the spricg and fall around the area of the intake structure. This sculd account for the impingement that occurs in the fall and spring. The I l 3
6 - 37 impingement of fish in the winter by the Callaway intake occurs primarily because of the stressed and lethargic condition of fish during periods of cold water temperature. The construction of the intake structure created a small area downstream of the structure which is more conducive to fish inhabitation than the straight rip-rapped bank which existed before construction. This area is small and limited by the swift and deep main channel which is innediately off-shore. 6.5 Summary and conclusiona The 1985-86 field fisheries study collected a total of 2805 specimens representing 14 f amilies and 46 species by electrofishing and seining. The electrofishing portion of the study surveyed 34 fish species which is comparable to the 31 and 28 species surveyed in previous studies. In electrofishing collections gizzard shad (26.9%), freshwater drum (24.4%), goldeye (16.7%), shc rtnose gar (8.5%) , and carp (5.9%) were the dominant species. Camp Dresser 6 McKee (1981, 1982) also found gizzard shad and freshwater drum to be the two most dominant species in electrofishing collections. Seining sampling collected 881 specimens representing 8 families and 17 species which documented the presence of many species not readily collected by other sampling methodologies. Threatened or endangered fish epecies were not collected during the 1985-86 field fisheries study. The sicklefin chub which is considered rare by the State of Missouri was collected by seining. I
6 - 38 The grass carp was the only species collected which had not been collected during previous studies in the vicinity of the Callaway Plant. Analysis of species composition by Pflieger faunal composition shows that the percentage of vide-ranging species is increasing and the percentage of big river species is decreasing from analysis of past and present studies conducted at Ca llaway . This phenomenon may be occurring because of dike notching by the Army Corps of Engineers. This has increased habitat diversity and possibly has increased fish diversity within the channelized Missouri River. Impingement primarily af fects gizzard shad and f reshwater drum, the two dominant species in the electrofishing collections. The field fisheries and impingement both confirm the predominance of gizzard shad and freshwater drum in the Missouri River. The other species in impingement samples were less dominant in abundance which was consistent with their lower abundance in the field fisheries study. Feeding, spawning, and nursery areas for fish are limited in the area of the intake structure. Fish involvement with the intake E basically entails fish m.igrating around the structure. The low impingement rates indicate that the intake structure was located and designed to minimize impingement since the field fisheries study has shown that fish do reside in the area of intake. I I I I
R l 7-1 I 7.0 Re f e rence s 5 Au er, N. A. (e d. ) . 19 82. Identification of larval fishes of the Creat Lakes basin with emphasis on the Lake Michigan drainage. Creat Lakes Fishery Commission, Ann Arbor, Michigan 48105. Special Pub. 82-3: 744 pp. Ballentine, R. K. , e t al . 1970. Water quality of the Missouri River, Gavins Point Dam to Hetmann, Missouri. Federal Water Quality Administrat!on, Cincinati, Ohio. Battle, J. I. and W. M. Sprule s. 1960. A descripti on of the semibuoyant eggs and early developmental stages of the goldeye Miodon alosoides (Ra finesqur') . J. Fish. Re s. Board Can. 17(2): 245-266. Be rne r , L. M . 1947. A limnological survey of the Missouri River f rom its mouth to the Iowa. state line during summer of 1945. Ma st er s Thesis, University of Missouri. i - Berner, L. M. 1951. Limnology of the lower Missouri River. Ecology 32:1-12. l Bodola , Anthony. 1966. Life history of the gizzard shad, Dorosoma cepedianum (Le Sucur), in Western Lake Erie. Fishery Bulletin. Vol. 65. No. 2. U.S. Fish and Wildlif e Service. Washington, D.C. 391-425. Camp, Dresser & McKee. 1981. Water quality and aquatic biological preoperational monitorir.g program f or the Callaway Nuclear Plant. R
I e 7-2 I' First Annual Report, June 1980-May 1981. Unpublished report prepared for Union Electric Co., St. Louis, Missouri. Camp, Dresser & McKee, 1082. Water quality and aquatic biological preoperational monitoring program for the Callaway Nuclear Plant. Second Annual Report, June 1981-May 1982. Unpublished Report prepared f or Union Electric Co. , St. Louis, Missouri. I Carter. S. R. 1977. Macroinvertebrate entrainment study at Fort Calhoun Station. In_: Jensen, L.D. , ed. , Fourth Na tional Workshop on Entrainment and Impingement. E.A. Communications, Melville, New York. Pages 155-169. Clay, William M. 1975. The fishes of Kentucky. Kentucky Dept. of Fish and Wildhfe Resources. Frankfort, Kentucky. 416 pp. Damann, K. E. 1951. Missouri River Basin plankton study. Federal Security Agency, Public Health Service, Environmental Health Center, Cincinnati, Ohio. l Equitable Environmental Health, Inc. 1976. Labadie Power Plant entrainment and impingement ef fects on biological populations of ! the Missouri River. Submitted to Union Electric Co., St. Louis, Mo. 93 pp. Funk, J. L. and J. W. Robinson. 1974. Changes in the channel of the lower Missouri River and ef fects on fish and vildlife. Missou ri Dept. of Cons. Aquatic Series No. 11, 52 pp. Ha rrow, L. G. and A. B. Schlesinger. 1981. Missouri River I icthyoplankton dynamics. In: Je nsen. L. D. , ed. , Issues I
E. 7-3 I Associated with Impact Assessment - lifth National Workshop on Entrainment and Impingement. E. A. Con:munications, Sparks, MD, Pages 289-307. Hogue, J. J., Jr., R. Wallus and L. K. Kay. 1476. Preliminary guide to the identification of fishes in the Tennessee river. Tech. Note B19. Tennessee Valley Authority, Norris, TN. 66 pp. Hubbs, C. L. 1930. Materials f or a revision of the catost omid fishes I of eastern North America. Mi sc . Publ . Mu s. Zool. Univ, of Michigan, No. 20, 4 7 pp. Hyn e s H. B . N. 1970. The ecology of running waters. University of Toronto Press. 553 pp. King, R. C. 1977. Entrainment of Missouri River fish larvae through Fort Calhoun Station. 3: Jensen, L. D., ed., Fourth National I Workshop on Entrainment and Impingement. E. A. Communications, Melville, NY. Pages 45-56. King, R. C. 1980. Fish population and distribution study. Chapter 5. _I_n n : The evaluation of thermal ef fects in the Missouri River neat Cooper Nuclear Station (Operational phase) . January - December I 1979. Report to Nebraska Public Fower District, Columbus, Nebraska, by Hazleton Environmental Services. Pages 92-119. Lowe, R. L. 1974. Environmental requirenents and pollution tolerance of f reshwatcr diatoms. Prepared for National Environmental Research Center. FPA-670/4-74-005. 333 pp. I I
-m I 7-4 Ma y , E. B . a n d C. R. Ga saway . 1967. A preliminary key to the identification of larval fishes of Oklahoma, with particular reference to Canton Reservoir, including a selected bibliography. Okla. Isept. Wildif. Conserv. Fish. Res. Lab. Bull. No. 5. 42 pp. Missouri Department of Conservation. 1977. Rare and endangered fauna of Mi ssouri. Fish and Wildlife Research Center. Columbia, Mo. ' July 1977. Nordstrom, G. R. , W. L. Pflieger, K. C. Sadler and W. H. Lewis. 1977. Rare and endangered species of Missouri. Missouri Dept. of Conserv. and U. S. Dept. of Agri. Soil Conserv. Se rvi c e . 129 pp. Pflieger, W. 1971. A distributional study of Missouri fishes. Univ. Ran sa s Mu s. Na t . Rist. Publ. 20(3): 225-570. Pflieger, W. 1975. The fishes of Missouri. Missoort Dept. of Conse rva tion. Jefferson City, Mo. 343 pp. Repsys, A. J. 1979. Zooplankton. Chapter 4. In_: The evaluation of thermal ef fects in the Missouri River near Cooper Nuclear Station (Opera tional phase), January-December 1978. Report to Nebraska Public Power District, Columbus, Nebraska, by Hazleton Environmental Sciences. p. 56-66. Robins, C. R. and E. C. Raney. 1956. Studies of the Catostomid a fishes of the s;enus Moxostoma with descriptions of two new species. Cornell Univ. Agri. Exp. Sta. Memoir No. 343, 6 pp. Slizeski, Joseph J. , John L. Andersen, and Wayne G. Dorough. 1982. Hydrologic setting, system operation, present and future stresses. I
I-7-5 Chapter 2. h: Hesse, L. W., et. al . , ed. , The Riddle Missou ri River. The Missouri River Study Croup, Norfolk, Nebraska. p. 15-37. I Smi th , P . W . 1979. The fishes of Illinois. Univ, of Illinois Press, Urbana, Illinois. 314 pp. Stern. D. H. and M. Stern. 1972. Aquatic biology. ,I n,: University of Missouri-Rolla, Mir.souri River Environmental Inventory Rulo. Nebraska to mouth near St. Louis, Missouri. Vol. 1. I Swedberg, D. V. and C. H. Walberg. 1970. Spawning and early life history of the f reshwater drum in Lewis and Clark take, Missouri River. Trans. Am. Fish. Soc. 99(3): 560-570. I Ta be r , C . A . 1969. The distribution and identification of larval fishes in the Buncombe Creek arm of Lake Texema with observations I on spawning habits and relative abundance. Ph.D. dissertation, Univ. Oklahoma, Norman. Taylor, W. D. , L. R. Williams, S . C . 11e rn , V . W . Lamb ou , F . A . Mo r r i s , M. K. Morris and C. L. Howard. 1980. Phytoplankton water-quality relationships in U.S. lakes. Part '!III: Algae associated with or responsible for water-quality problems. EPA 600/3-80-100. 317 PP.
, Todd, R. D. 1980. Wa ter evaluation. Chapter 2. h: The evaluation of thermal ef fects in the Missouri River near Cooper Nuclear Station (Operational phase), January-Dacember 1979. Report to Nebraska Public Power District, Columbus, Ne b ra ska , by llazleton Environmental Sciences, p. 8-44.
I
I 7-6 Trautman, M. B. 1981. The fishes of Ohio. Ohio State Univ. Press with the Ohio Sea Grant Program Center for Lake Erie area research. 782 pp. Union Electric Company. 1971. Site selection study - Phase 1, proposed nuclear power plant. December 1971. Prepared by Dames and Moore, Inc. Union Electric Company. 1973. Site selection study - Phase II, proposed nuclear power plant. Volumes I and II. February 1973. Prepared by Dames and Moore, Inc. Union Electric Company. 1974. Callaway Plant Units 1 and 2, Environmental Ba seline inventory. Prepared by Dames and Moore, Inc. Union Electric Company. 1975. 1974 annual summary, Callaway Plant Units 1 and 2, preconstruction monitoring. Prepared by Dames and Moore, Inc. Union Electric Company. 1976. Callaway Plant Units 1 and 2, preconstruction monitoring - two year summary 1974-1975. Unpublished report. Prepared by Dames and Moore, Inc. Union Electric Company. 1979a. Callaway Plant, Environmental report, operating license stage. Volumes 1 II, and III. St. Louis, MO. I Union Electric Company. 1979b. Rush Island Plant: Evaluation of cocling water intake impacts on the Mississippi River. St. Louis, MO. I I
I 7-7 University of Missouri-Rolla. 1974. A baseline study of the Missouri River: Rulo, Nebraska to mouth near St. Louis, Missouri. Vols. Ill, IV. A report so the Department of the Army, Kansas City District, Corps of Engineers. i U.S. Department of Interior. 1975. Endangered and threatened
- p. 44411-44429.
I wildlife and plants. Fed. Register 40(188): U.S. Environmental Protection Agency. 1976. Development document for best technology available for the location, design, construction and capacity of cooling water intake structures for minimizing adverse environmental impact. April 1976. Effluent Guidelines Division, Of fice of Water and Hazardous Materials. Wa shingt on , D.C. U. S. Environmental Protection Agency. 1977. Guidance for evaluating the adverse impact of cooling water intake structures on the aquatic environment: Section 316(b) P.L. 92-500. May 1977. Of fice of Water Enf orcement. Pemits Division, industrial Pemits Branch. Wa shingt on, D. C. 59 pp. U. S. Fish & Wildlife Service. 1977. Ma thematical methods to I evaluate entrainment of aquatic organisms by power plants. Fish and Wildlife Service, U.S. Dept. of the Interior (Publication
#FWS/0BS-76/20.3). Wa shingt on, D.C. 17 pp.
I U.S. Geological Survey. Provisional and historical flow data from the Missouri River at Hemann, Missouri. Correspondence with Lloyd Waite , Rolla , Mo. I I
I 7-8 U.S. Nuclear Regula tory Commission. 1975. Final environmental statement, related to the proposed Callaway Plant, Units 1 and 2. March 1975. Docket Nos. STN 50-483 and STN 50-486. Office of Nuclear Reactor Regulation. Washington, D.C. U.S. Nuclear Regula tory Commission. 1980. Final environmental statement, related to the operation of Callaway Plant, Unit No. 1. January 1982. Docket No. 50-483. Office of Nuclear Reactor Regulation. Wa shingt on, D.C. Williams, L. C. 1966. Dominant planktonic rotifers of major waterways of the United States. Limnol. Oceanogr, 11(1):83-91. I I I I I I I I I I I
i A-2 e Operational Informati g Section Description Page l A.1 Pump Room section and Electrical Equipment Room section of the Callavay Intake Structur.s. . . . . . . . . . . . . . A-3 1 I I I I I I I I , I l l .
l A-3
. Appendix A.1 94, s * . J r. '
lL q i !.! -I t! 3 i !(d I i "
}.
l h1 Lt t [
.s . y j.. "3, t .q. r4 .'t i }
a 'bl .. f {b * .
>,f ' N.
3 I!l$1 a vg.
!*l . 9 .h l, : s::1 ups.:
i
.l m!! !A!{Li.l I. ,2 . H.
i b r'.v 4 i
;. k l.i k",M.)l 8!.) u*
T
'e niih.. 2 . r*.N
- i. *
.b I: rmyy .h '5 ..
diIl! '
-- w m.] < < c.I ; 3;, ; OD' n.g
- 4. ....t.u. pa .m it t j rII ><.'- , 4-1 E f
- a a ,..
w a ...- o,e ,.I.),a' ".. I M.e.tt ,c
.i ..... .f.i. I .a' . Oj re.. *.fJ -t aq. . .!., .e. ; gy.*t.. e*. t .',.4i.1& . ,%n e-e- w .*p- . q___ m- -
Il L d. ,, C.d, ',.
. . . . w.
e n <
,g[ q<.~
- 1 I ;
i ., n.v,w. "%
,g ",. ia;. ~. . "n c,g, g
- c. c : i l a , t , '.f q... f e o- i
.; Mr hv 8%.. t ti, p
t A w
. + - . m m.;-- - Q b
M #U. ,(
~ A,t. .1*;. - g lq . ~ T ', yt i B . i. _
6
,M.I =.,* ! * -Je *
- s. l i
. 09\ *i G..'l y . t1 '. +.v . *t '. , g g nJ
_ b: ;..5 , . _ . , .
- s. .*e
- n { '"* i +J e ---- -. .- .
g., l .. L-m 4~M@4 .prs%q- ;a ; ls
.-} ; .e, e .a . - . i.
j ..9 vr- - n. -
*-m' .2.<j., . . n-.-g.
- e. .,n y ,l . ."' +,
p _ v Ur y-[
,M,v;, p.,- 3 w -,
- I l l ? _ . r., .a d o ,c; .x . ,
C. d r i'. h-ti.-) .
; , t.
{:
'c 't.I- d-- 3 3
I 1 ! m ---Q t,-p -- r t
} : 3 =. c- -- -q - J. ;' ^ +w I f1 I - ilj 'i.L(.-
I lC t'.< t,_.j : s.;. - I I
* . 7* ..t.;.6t}
it - h %*=*- I 8 s[ C i
*- yJ -iii. s .h* t.'l .:.aI .4 19 j , .a g * '. d ' a ? , ! ,iu.
i: 81-- y ' ) lj b 1[] C' Il8 o a, l -re. p
.f I ~,M, T-. -c ,~r %, $y *- *i. .'. ,_ . . m. v - .- is g
r!.
l i .l " - +p F,,,/
al 4
~,+-.--
w , Ls . tr- ,- p r? - ; t'
. .%-.m----
n
+ .I - - g e
_( i
.1!gl ;T J i 4, ... ms . .a .e1 -I rr- * -: 1 l 'Ir6a./-]c H. + + s I 7 -
4: -. . 13r d, .4 e 1 i , $. [ h f. e,m. ~2 , ,n I - f b~ - ~ ' 5' g,
! . 4.. h ,.L. hIM i !.(,
N- h ...
~ j ..*.-.r.<
n4 +. ~. , . r g ., e
<4 -1:
I>! ; 4
- a. .._, ; - y %, ,
v o
--~~
j: *
,,t--
g 7.h.3*{,p
- 4. s
{ , ..I, E
^ ,T_ '?1.. p( e k [-[ s.'- t__%d _! N [
e vt b, . :. H., I , . i, ,i I 1r .. m 1 w i:-.- 1 p.q; ti~. - .e- - - e e --.I,.g- b +4 ' <+ i w+ e w; c -* w
; , i ; 3 n.s . o , I ,.. f. ,, ., O 1 ~
I. e - -. [yr,; 4 -
.6 ,s_-
sp h= g- -*- # ; i .& e~ ' . -- *Tm-- C.y13 4- ,r:
..M I nu k :'w f, '
f ;. .'i,p C. ,, y 4 z .a. -* \
, Ib g .m C i l \
e
- 3 714
- p. t c
.. , -_ . 3, w e-- -l M, .e %.
3
+
s_,, . h kn.=hc
".=,
4 rra -, . .
"n~ I b I W .4 # . w-p13 d)* i m.=
I e , 3 ~ lg_ .; ' %*uA
~ 'h 9e% m e+' +
e e o; w c -
'y . , --C" '
d L i r-- . . - m r 5.rT, 7* ; d -n-I N,. n " il 1
- T, .. 1 }
~ ?. ,, s
- k. II : h , t -C- M JT 4 n-v i
.D 3 hd ' - -- i , r d Mt i I """--'**" p G..u:/I />' ip i eb;.c i ;fc a . ,a 4 i t. ~.
a ...4dy- 1 : u
~;~- -,1.N .
t.
-- p: , - .- ,
g. gi~:;.g ,, % . l A _. Y ' 19.in)lb' < A t 3 .[. ",; . ;- c - t -) y p s =. y R v". _- - -I:s.- +- a
~. . ; -.i P N .,
4id Nl .,m : ;s; :. r- !
'..- .,4, q . M+. ~ ...d . : i .
u,3
!In?.
4.74. -
.T a ,, m --I.s' e s .
1. 4 . a
- e. . p.3 i m ... . .e
_ _.:'.- .r ,. j .v.
.ei 1-.. L . -- I 4 i
4 3 , h.i '"T.89..?
.r pYu. i !\w r y 4, = , e- . . ; ,i -}{. G .
i
~~ --
e !# p,..... s .t '! < i 1 Q. . ,
.:. ?*t u. {, i. . Q- . ,. - - . " .'"+n.*Q' 1 ; - , r, W
sbl
;: i i* (t.),~d "Q-Ti. . . ;.- - . ,w~.-.,,.-- .. Wl i,* 2 .W . n *.; -.N.--* >
4Y e(1 i ! 8 .. g wf - ; .l
=
o, i. . -~+-r- ,.
.a Q- -h.lV*p - kr.s * ,d + .-
Fj@-r
' !~ , 09 ; .UIf.d-- .-- '-- j 1, , iN=
l( b? Jt
- 4+ *m*l
,.-.I i ~ e 4 u. ,d.U .n. ; e n . k. J . , . r p: - -
- ,sL----c.,- w o b, % ~ ; . i i s' w c': .
I:
- y *s- t .! ,=;.. !O ..aJ ..
l .M i
,t, *- le , i ; , t. , . .l.
3
.__ ,,..; .. y,, , ,,e L., . ura..@ ..:- . ,u... . ..n t. m- _. ~ ,.
c .c! .r- .. ;
,1 {
2 si i. ; 1 u .s i be n .*
.--f e w- , . . i.
J.,,...1- -. p,
,,E s ~'~--'* "y. y--*,*- v ' 3 . ,, Q ~ -'- p - ~ * G ; -* ' . >
_c.-. ,,. ( 5 '
~, _ ?e u 3;
(+... -
. , .,, d - - w-- - . ~ ,,- w. --t. : : . e . -- m -
t e !, ,t. 6,, a r.e;-.- " I T
,; e J, M. 'v .' %-: i 'L - - ,i lsa, i:t r e
t
- a.........e
,,,,,,,,....,_-.,y * , - . . . . , . - - .. - .v . .-.3,. -, - ra . . g.__,._.,, -
A
, 8DI
- em .s . ..
' I I ' 'N te>.e %
i B-2 l Entrainment Data 4 Section Description Page ( B.1 Pertinent Callaway icthyoplankton sampling field data, all samples, April-September 1984 . . . . ......... . . . . . B-3 B.2 Pertinent Callaway icthyoplankton bench data, all samples, Ap ril-Sep t etabe r 1984 . . . . . . . . ... . . . . . . . . . . . B-29 f
} ) )
l
\ )
y m- t__y w r i l ---- - - --
- ' ~~~~~~ ~ ~ ~ . C ALL AW Af ICTHYOPL ANetT ON _5 AMPLING F IELD _00T A ALL SAMPLES APRIL-SEPTEHHER 1994 ~
Uit[E02 P45I~~-----~-----------------------
...~;;_;~;;'_- _-_---_--- . ~ ~
J...~~__~;;- !-__-- - TEET DISCHARGE- wa7ER tJsi 70Nt rLod 5dMd L E'~ 7 0iUME STAGE-M/SEC TruP ID ZONE TIMEi ._ SAMPLED AT AROVE ID# REPLI METER DEG C CUBIC H PLUJT MSL CATE 108 516.4 4424.53 7 NORTH I I I , e .. , _ _ 69.45 t . 4429.53 7 P _. 4 77.26 . 516.4 NORTH 2 2 2 4479.53 7 3 516.4 a 10 4 T H 1 2 I _4.____.__79.13 . 516.4 4429.53 7 3 2 4 75.20 . 5 NORTH 2 516.4 4429.53 7 l' I 3 1 4 81.16 . 7 6 NORTH ~ 46.49 . 516.4 4429.53 2 3 7 f~~~710DLE 2 1 43.83 . 516.4 4429.53 H HIDDLE 1 . .. - I - . 1 -.3 . 516.4 4429.53 7 2 3 50.28 . 7 10 91DDLE I 1 52.38 . 916.4 442 % 53 2 3 2 3 11 910DLE 516.4 4429.53 7 m ___3 _ _ ___.47.1I 12 _ , MIDDLE _ _ 1 _ . _ __ , _ . 3 _ _ _ i 78.38
. 516.4 4429.53 7 i 2 2 3 ?
11 SOUTH 1 73.24 . 516.4 4429.53 I I 3 14 5001H I 516.4 4479.53 7
'3 '~ ~P 2 66.90 .
Is $0dTH 2 516.4 4479.53 7 2 1 _3_ 65.52 . 7 16 50dTH 1 4 90.83 . 516 4 4429.53 50dTH 2 3 2 516 4 4429.53 7 17 4 78.00 . SOUTH I 1 1 19 1>
- "C
- 'O C
~3 CL -- ~--- - - . ~ . . - - - X CC N
t> m o o a S C P L:. A # A Y ICTHYOPLAWTON SAMPLit2G FIEt.D 3ATA
- ALL SAMPLES APRIL-SEPTEMLIER 1984 cs
- - - - - -h ----------------------------------------- --- DATES 10APaa4 - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - o wsTE4 o VOLUME STAGE FEET DISCHaaGE 10 LONE NET ?ONE FL3d SAM 3LE */SEC TEMP 5 I I M E. SAMDLEO AT A90VE 10# "EDLT METER CGC d C;tBIC M PL A*4T MSL . 108 -
5?3 7151.31 9 2 3 71.27 2R 19 404TH 2 . 5 3 7351.31 9 1 1 3 73 03 . 9 2n N04 T.4 1
%23 7 3r.-l . 31 2 2 2 3 101 04 .
21 9G4T4 523 7151.31 9 N04TH 2 1 3 103.31 . 0 27 1 3 102.29 . 523 7151.31 131TH 2 3 2 o 23 3 100.91 . 523 7351.31 24 104TH 1 1 1 7351.31 9 2 3 67.55 . 523 24 4100LE 2 1 523 7151.31 o 3 64.31 . 2A 4103LE 1 1 1 66.86 523 7151.?! 9 4190LE 2 7 2 3 . 9 27 3 64.87 . 523 7351.31 29 4IdDLE 1 2 1 7351.31 m 3 63.55 . 523 2'2 91)DLE 2 3 2 62.16 523 7351.31 9 7 3 3 . o
- 3n AldDLE 1 1 76.0% 523 7351.31 2 2 3 .
9 31 50JTH 1 75.81 523 7351.3', 1 3 . 37 50JTH 1 1 65.89 . 521 7351.31 9 2 2 2 3
% 50JTH 67.98 523 7351.31 Q 2 1 3 e 36 SOJTH 1 2 3 69.41 . 523 7351.31 0 3; SOJT H 2 3 7151.31 9 3 1 3 67.28 . 523 3A 'OJTH 1 M M M M M m m m .g g g; g g g
jJl! l 1 e U'% * $ 7.M= l - 0 3 *r e& ty * ". J - 1 - - - E C
- EP nn0n0ono00n0n - TMG 00o69 t I t 1 1 I 1 i crE 1 1 t 11 i I 1i-U ~~
dTD E
- G 3
222222222222222222 777777777777777777 . . A
- HC CE 55S555555555555555 4RA R98A R98R 9949449 R888R88 SS 99999999909 I /
DM 555555555555555555
- e T V E 444446444444444444 - E0t E9s 000000000000000000 727222272227722727 - FAv 555555555555555555 A -
T - A - 2 - E T O4 G a tT L N A 4 5 LA - E9 - SAP 2 I 1 - F - R - GE NH EE OH 83864R4541 66074644 854496577272478560 I M - . . MLC LE 3T 4 UP I LMH 504542642908292177 90009055656598091 0 1 P 8 1 1 1 1
'A E 4 OA o 1 1 1 5S P VSC - A 4L R 0I l T R =
KP E E NA T L A A L5 D WE M 333333333333333331 PE I 0L - cT yP - Hq s - Ta - C5 - I - R dE fL L -
- 3T s 21212121 212121 21 ?1 AA - LED d - FMI C -
L - L - A - C - T
- ELE 1 2233 - NPT 1 i72331 122311 - OEA - ZRC T#
E0 2I 2I 2I21 21 212I 2121
- N1 - EEEEEE E
HHHHHHLLLLLLHHHHHH 1 TTT T TDODDDDTTTT T T
- N 444444 000000tI JDJJDDJ))JJJ II I I 000000 0
2 NNN1NNM*MAMM 555555 0 7 4 4n1 / 1 4%67 4 0 01 ?4 c -
- 1 3334444 44 4 4 4455S5S
D o o a a , r x CALLAdAY ICTHYOPLAN<TD*4 SAMPLING FIELO 3ATA ,= ALL SAMPLES APRIL-SEPTEMBER 1994
-------- ------------------------------------ DATE=24ADR84 -------------------------------------- ------- 5O =
STAGE FELT DISCHA4GE- wATEP FL3d SA43LE VOLUME 10 ZONE NET 70NE TIME- SAMPLED AT AaovE M/SEC TEMP d ids REPLi METER DEG C 138 CtB:C M PLANT MSL CATE 78.44 24.6 SP3.4 eo68.37 11
? 2 4 5; 404TH 1 573 4 8068.37 11 1 4 R2.63 .
Sa NO4TH 1 1 523.4 8064.37 11 2 2 2 6 90.34 . 57 N04TH 523.4 8n68.37 11 904TH I 2 1 4 85.66 . 58 2 4 81 36 . 573.4 9068.37 11 404TH 2 3 5u 4 93.41 . 523.4 8068.37 11 60 404TH 1 3 1 8068.37 11 2 3 66.17 . 5?3 4 61 MIDDLE 2 1 523 6 8068.37 11 1 3 62 67 . 67 MIDDLE 1 1 571.6 8n68.37 11 2 2 3 69.48 . 63 MIDDLE 2 573.4 8068.37 11 , 7 1 3 65.76 . 66 MIDSLE 1 573 4 R068.37 11 2 3 2 3 66.93 .
- 69 MIGOLE 523 6 Bn68.3/ 11 3 3 63.22 .
66 413DLE 1 1 573.4 A068.37 11 50JTH 2 1 7 1 102.32 . 67 3 95 78 . 573.4 8n68.37 31 6A 50JTH I 1 1 573.4 8068.37 11 2 2 3 94.63 . 60 50JTH 2 523 6 8069.37 11 2 1 3 82 82 . l 70 SOJTH 1 523 4 8n68.37 11 2 3 2 3 98.69 . 71 50JrH 94.19 521.4 8068.37 11 I 3 3 . 77 50JTH 1 O M E E E g g*g g g
g g g ( f1 f U ~l J l '1 CALL ^ DAY ICTHYOPLAN< TON SAMPLIfJG FIELD DATA ALL SAM 3LES APRIL-SEPTEMHEH 1994 DATE=0lMAv84 -------- - ------- ------- --- -------- --- -- ~
,___________________________ ------------- --- DATER FEET DISC *iAWGE SAM 2LE V OLtJME STAGE TeuP 70NE FL34 AT A40VE M/SEC 20NE NET SAMPLED DEG C In PEPLI METER TIME- MSL ID" CORIC M 3LANT CATE IJW 6715.0R 15 79.01 26 521 2 3 6115.08 13 N04TH 2 1 77.66 . 521 77 3 6315.n3 15 NO4TH 1 1 73.13 . 521 76 1 2 1 6715.08 15 NOMTH 2 2 77.37 . 521 74 1 1 6115.08 15 NO4TH I 2 85.1T .
15 7A 2 7 2 3 521 6115.08 77 N04TH 3 83.90 . 6115.08 15 N04TH I 3 1 67.45 . 521 15 7a
? I 2 3 521 6115.04 f 70 910DLE 3 64.08 .
671;.08 1; , MIuDLE I I 1 60.85 521 f 90 2 3
;22 6115.98 15 f R1 9IJ3LE 2 7 1 ;8.73 .
15 = l l
? 1 521 6115.08 l 87 MIJ3LE 1 2 2 55.55 .
6115.08 15 L 2 3 52i 47 9107LE 2 18.15 . 6115.0A 15 MIO7LE 1 3 1 69.61 . 921 Bs 2 3 521 6115.0A 15 Bs 50JTH ? 1 96.80 . 15 l I 1 1 1 521 6115.08 l 96 50)TH 2 4 78.38 . 6715.08 IS 50JTH 2 2 69.90 . 521 I Br 4 6115.03 15 2 1 42.07 . 521 34 50 J 7 *i 1 2 4 6715.0H 15 50JTH 2 1 97.77 . 521 B ') 1 4 1 90 50JTH 1 t 7 3 r
/.
[ 'e h O 3 a
- =
6 m s a. CALLAdAY ICTHYOPLANMTON SAMPLING FIELO 3ATA
- ALL SAMDLES APRIL-SFPTEMBEH 1994 ?
r-
-------- - ---------------- ----------------- DATE=07MAy84 ------------------------------ -------- --- -- C SAM)LE v3LuwE STAGE FEET DISCHARGE WATER 3 In 20NE NET 704E rL3d M/SEC TEMP AT AROVE ids REPLI CATE *ETER ids TIME SAMPLED CJ81C M PLANT MSL DEG C "._
o 13 2 3 83.96 25.8 570.8 6743.29 91 904TH P 1 6743.78 13 3 86.79 . 570.8 97 NO4TH I 1 1 f,74 3. 28 13 7 ? ". 75.33 . 570 8 91 404TH 2 6743.2M 13 2 4 83.39 . 5?0.8 94 404rd 1 1 6743.2R 13 3 2 4 75.9o . 570.R 9; 104TH 2 6741.78 13 904TH I 1 1 4 84.29 . 570.8 96 6743.28 13 2 2 3 59.59 . 520.8 97 9IGOLE 1 520.8 6743.78 13 MIDDLE 1 3 61 7T . 9a 1 1 sPo.R 6743.28 13 94 MI90LE 2 2 2 3 52.66 . 3 50.75 . 570.8 6743.29 13 10n HIJDLE 1 2 1 2 59.52 520.5 6743.28 13 = 101 41)DLE 2 3 2 . 2 58.26 . 520 8 6743.28 13 & 107 MIGOLE 1 3 1 3 116.37 . 570 8 6741.?8 13 101 50JTH 2 1 2 3 108.80 . 523 8 6743.28 13 104 50)TH 1 1 1 570.R 6743.26 13 105 50JTH 2 7 2 4 iO5.96 . 4 110.68 . 520.8 6743.28 13 106 SOJTH I 2 3 4 110.42 . 520.8 6743.28 13 2 107 50JTH 2 3 2 4 104.89 . 520.8 6743.26 13 104 50JTH I 3 1 M M M M M M M M M M'M M m '. m y q
M h tg 41 C AL _ Asd AY ICTHYOPLAN< TON SAMPLING FIELO 3ATA :; ALL SAMDLES APQ1L-SEDTL4 HEP 1994
-~~------------
DATE=14MAY84 ~ ~ ~ - - - - - - - - - - - - - - - - - - - - - -
--- --- --- ------- ------------- ---------- STAGE FEET DISCHAaGE WaTE3 FL3d SA43LE vold4E A90VE M/SEC TEwP (ONE NET 70NE SAMPLE 0 AT DEG C ::
13 REPLT METE 4 TIME- MSL ids CUBIC M PLANT CATE 10m e.$ SAns.03 1A 4 48.11 24.2 519.2 1A I' 2 519.2 5905.03 109 N04TH 2 1 4 5H.49 . 5A05.03 16 N04TH 1 1 1 17.39 . 519.2 16 llo 2 2 2 3
;8.45 519.2 5A35.03 111 N04TH 3 SP05.03 16 N04TH 1 2 1 57.72 . 519.2 117 2 4 5805.03 16 N04TH 2 1 63.12 . 519.2 16 til 1 1 4
519.2 5A05.03 114 104TH 1 3 52.64 . Sa05.03 16 91)DLE 2 1 2 99.00 . 519.2 16 115 1 3 519.2 SA05.03 116 910 ALE 1 1 2 3 55.95 . 514.2 SR05.03 16 41)DLE 2 2 54.04 . 117 3 San 5.n3 16 , MIDDLE 1 2 1 52 40 . 519.? 114 2 3 Sa05.n3 16
- i 2 1 54.00 519.2 110 diddle 3 519.2 SA05.03 IA MIJ7LE 3 1 57.09 120 1 3
5905.03 16 50JTH 2 1 2 53 21 . 519.2 16 121 I I I 3 519.2 SA05.01 127 50JTH 2 3 61.22 . 519.2 5A05.03 16 2 2 59.17 121 SDJTH 3 5405.03 16 50JTH I 2 1 93.67 . 519.2 16 12A 2 3 2 3 519.2 5405.n3 125 50JTH 3 52 31 . I I 1 1 126 5DJTH r> c X T W m Os O 3 c
~ . nus
ii4 S. p CALLAdA/ ICTHYOPL A'MTD'a SAMPLING FIELD 3 AT A ALL SAMPLES APRIL-SEPTEMBER 1944 . DaTE=22HAyB4 ------------------------------ -------- ------T r> ________________________________________- --- DISCHA4GE WATER 3 VOLUME STAGE F7ET q 70NE FL3d SAMPLE A40VE 4/SEC TE"P ZONE 'JE T SAMPLED AT DEG C a. 10 REPLI METER TIME 10# COHIC H PLANT MSL CATE 10# 5180.A6 20 74.59 21.3 518.3 2 4 518.3 5180.86 20 N04TH 2 1 79.58 . 20 127 1 4 518.3 5180.86 12A N34TH I 1 a6.40 . 20 2 2 2 3 518.3 5180.86 124 N04TH 3 02 05 . 5180.86 20 N94TH 1 2 1 93 38 . 518.3 130 1 2 3 518.3 5180.86 20 N04TH 2 96.25 . 70 lli NORTH I 3 1 3 55.00 . 518.3 5180.86 137 2 5180.H6 20 131 9100LE 2 1 2 7 58.35 . 518.3 20 I 1 1 518.3 5180.H6 13 '. MIDDLE 2 2 1 61.12 . 5180.96 20 MIUDLE 2 60.46 . s18.3 m 116 P 1 3 518.3 5180.85 20 136 MIJDLE I 1 50.27 . 20 1 MIDDLE 2 3 2 918.1 5180.R6 137 1 3 51 31 . ~ 5180.86 20 MIJDLE 1 3 81.00 . 518.3 138 2 1 518.3 5180. % 2n 139 SOJTH 2 1 3 76.02 . 2n i 1 1 518.3 5180.86 l' o 50JTH 2 3 81.90 . 5140.86 20 50)TH 2 2 A6.58 . 518.3 141 2 1 3 518.3 5180.96 20 147 50JTH I 3 69.21 . 20 2 1 2 518.3 5180.A6 143 SOJTH " 3 67.96 . I 1 1 144 SOJTH W M M M M M M m' e am
m - M 4
- m2~
82 X A O 5 nkm M -
- 3 C EP - tug AEE 99999999o999a9a48n 1 1 1 11 11 1 t 1 1 1 l 1l1 1i M -
WTD E M - G 655566566666666665 R A 00000000000000 0 0. n. 0
- HC CE 555555555555555555 555555555555555555 _
M
- SS I/
722222272?2277a227 55555555555555S555
- DM M -
E
- TV R888888888886de888 1 1111 111 111 11I1 1 1 1 EOL - EBS 5555555555555S5555 . - FAM M A T -
A - > D - E T
- G N 94 - A A 3 . . . . . . . . . . . . . . . . .
L8 - TT L 7 E9 - SAP I 1 - - F - M GE R -
- 329086 NH - DM 621 061 45641 1 3425267334 I H - EE 7983031 1 MLC . .
LE 3 T 4 UP 1 513940135889933799 789989664444002233 M MP AE B y LM9 OA u 11 1 1 1 1 S5 A V5C
- 9 NL 9 OI 2 M TR <D E =
E NA T L A A P E' LS D uM 3333443133P2555544 PE AI M OL Y3 ST H4 - TA - C5 - R M I L
- sE 0T W 21 21 21 21 2121 212121 YL -
AA - LED d - FMI A - M L L . A - _ C - 1
- ELE ?2331 1 22311 I 2233
_ - NPT 1 1 _ M - 0EA 7RC M - T8 E0 21 212I212121 7I 2I 2I
- N1 M - - EEEEEE E
HHHHHHLLLLLLHHHHHH TTT T T TDDDDD3iT T T T T N 444444)DJJ] JJJJ)) J
- I I I1 T0O0000 M O 0300001 - Z 1NN1NN4 M4 M9 45S5555 m -
567a9n1 274567 u4O1 7
- ) ' 44 4445555555555S56 111111 1 11111 1 1 1 I1 1 - I !3 j
N 1 3 o. CALLAdAY ICTdYOPLAN< TON SAMPLING FIELD 9ATA = ALL.SAMDLES APRIL-SEPTEMBER 1984 L lg
.__ ............__...________.........--------- DATE=04JUN84 o STAGE FEET DISC;4AaGE waTEa %
ZONE NET ZONE FL3d SAM 2LE VOLUME = I3 ids REpt1 METER TIMEi SAMPLEO AT A9OVE M/SEC TEMP J CoaIC H PLANT MSL DEG C - CATE ids 2 4 89.82 17.7 512 7 3680.75 21 163 104TH 2 1 512 7 3640.75 21 N04TH 1 4 93 10 . 16c 1 1 R7.85 512.7 3680.75 21 NOWTH 2 2 2 5 . 16s 91 34 512.7 3680.75 21 404TH 2 1 5 . 166 1 4 83.48 . 512 7 3680.75 21 167 N041H 2 3 2 3 4 RR.17 . 512 7 3680.75 21 164 404TH 1 1 512.7 36R0.75 21 4IODLE 2 2 1 85.35 . 169 1 R3.40 512 7 3680.75 21 4190LE 1 3 . 17n 1 1 512 7 3680.75 21 4I90LE 2 2 2 3 R2 41 . 171 512 7 1680.75 21 e 110DLE 7 1 3 78.79 . 172 1 75.96 512.7 16ao.75 21 ' 2 3 2 3 . 171 't I O DLE 73 89 512.7 3680.75 21 C 110DLE 3 1 3 . 174 1 81.01 512 7 3680.75 21 lys 50JTH 2 1 2 3 . 3 79.75 . 512 7 3680.75 21 176 50JTH 1 1 1 3680.75 21 50JTH 2 2 2 1 79.91 . 512.7 177 76.63 512 7 3690.75 21 50JTH 2 1 3 . 17a 1 4 93 33 . 512.7 3680.75 21 179 SOJTH 7 3 2 3 4 79.80 . 512 7 3680.75 21 180 50JTH 1 1 E E E E E E E W W Wq g g g g
M M M M M M M M M M M mm M M M M M C A L '_ A d A Y ICT Hf 0PL AtMIO*I S AMPLING F IELD 3 AT A ALL SAMPLES APRIL-5EPTEMBE4 1984 D A T E = l l J!JNR4
--- ----- - ------- -- --- ----- --- STAGE F IE T- DI; CHARGE WA7ED FL34 SAM 3LE V3LO9E M/SEC TEaP NET 70NE AT A90VE 10 ZONE "ETER TIME SA93 LEO DEG C 13e QEPLI CilRIC H PLANT MSL CATE' IDW 6637.n8 73 66.58 26.4 521 4 2 3 6637.04 >3 N04TH 2 1 76.32 . 571 4 191 1 6A37.08 P1 134TH I ! 1 66.47 . 571 4 197 2 3 $< ~ '8 73 134TH 7 2 75 61 521 6 191 3 6AL .oB 73 N04TH I 2 1
. 571.4 194 1 2 4 l'.05 5637.09 ?3 N04TH 2 56.54 . 571 4 73 las I 1 1 4
521.4 6637.09 196 10diH 2 3 18.06 . 6A37.09 71 il) OLE 2 1 19.22 . 571.4 197 1 3 521 4 6617.0M 3 184 41'J7LE I 1
%2 64 .
73
.' 7 ? 4 571 4 6637.08 191 4IJ3LE 4 92.32 .
6637.0a 23 7 MiJDLE 1 2 1 60.05 . 521 4 ' 19a 1 2 1 SPl.4 6437.08 21
- 91) ALE 7 49.26 .
73 C 171 dig 7LE 1 1 1 521 4 6A17.08 177 1 2 2 67.16 . 6637.08 71 50JTH ? I 59.17 . 571 4 194 1 5P1.4 6617.G8 23 19s 50JTH I 1 1 03.14 . 23 2 2 2 571 4 6637.08 145 50JfH 3 Po.S7 . 6637.08 73 50JiH I 7 1 58.54 . 571 4 196 3 2 3 521 4 6637.0S 21 197 50JTH 2 3 57.00 . 3 1 194 ;DJiH I Z H ss X T N
. =
3 r*
~ ,A
N o CALCAdAY ICTdV0PL ANTTON' S AMPLING F IELO DAT A ALL SAMPLES APRIL-SEPTEMBEH 1984 _____________________________________________ oATE=ieJoyB4 ______________________________________________. - SAu2LE VOLUME STAGE. FEET DISCHAPGE WATER g 10 ZONE NET 70NE FL3d TEMP o TIME; SAMDLED AT A20VE M/SEC 10# REPL1 METER DEG C 3 TD8 CUBIC H PLANT MSL CATE lS 19e N04TH 2 1 2 3 85.54 28.1 523 1 7717.2 7717.2 25 25 l-3 93.97 . 523.1 20n N04TH 1 1 1 573.1 7717.2 75 2 2 3 86.96 . 20! N0iTH 2 523 1 7717.2 25 N041H I 2 1 1 45.88 . 207 1 93.97 . 523.1 7717.2 25 904TH 2 3 2 201 3 97.20 . 523 1 7717.2 25 206 N041H I 3 1 7717.2 PS 2 3 66.44 29.1 523.1 205 9IDDLE 2 1 7717.2 25 MIDDLE 1 3 62.10 . 573 1 P06 1 1 62.74 573.1 7717.2 25 MIDDLE P 2 2 2 . 207 2 59.51 . 521.1 7717.2 75 ellaLE 1 2 1 25 P 0 '4 1 2 2 64.?! . 523.1 7717.2 209 MIODLE 2 523.1 7717.2 25 e 1 1 2 60.65 . 21n MIODLE 1 573.1 7717.2 P5 ' 50JTH 2 2 4 114.91 . 211 1 4 106.87 . 523.1 7717.2 25 217 53JTH 1 1 1 523.1 7717.2 25 50JTH 2 / 2 4 110.99 . 211 , 4 110.37 . 573.I 7717.2 25 216 50JTH 1 2 1 7717.2 25 2 4 119.73 . 523.1 P15 50JTH 2 3 25 3 4 101.99 . 523.1 7717.2 216 50JTH 1 1
M M M M M M M M M M M M M M M M M M CGLLAdAY ICTHYOPL APMT 0tl S AMDLING Ff ELD '3AT A ALL SA43LES APRIL-SEPTEMHER 1984
.____________________________________________- OdTE=2SJJV84 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
STAGE- FEET DISCHARGE WATFD NET- 70NE FL0d SAM 3LE vaLUME 13 ZONE Sa4aLED AT A90VE M/SEC TE*P ids REPLI METE 4 TIME' COBIC M PL A*4 T MSL DEG C CATE 13# 90.04 29.9 573.9 7462.04 76 NORTH 2 2 3 76 217 1 3 94.22 . 573.9 7467.04 904TH 1
-21 4 1 1 4 90 48 . 573.9 7462.04 26 219 N04TH 2 7 2 ps g 93.01 . sP3.9 74s2.04 I 22 r, y04TH I 2 1 746?.04 26 2 3 91.44 . 573.9 221 N04TH 2 3 76 3 90.23 . 573.9 7462.04 727 904TH 1 3 1 7467.04 76 2 3 61.42 . 573.0 724 419DLE 2 1 SP3.9 7462.04 76 MIDDLE 1 1 3 56.51 .
i 224 1 3 59.3H . 573.9 7462.04 P6 P2; 9fdDLE 2 7 2 7462.04 76 3 54.96 . 573.9 224 MIUDLE 1 2 1 7467.04 76 1 2 2 63.18 . 573.9 727 4IOOLE 2 573 9 7462.04 26 MIDDLE 3 1 2 60.64 . 4 22r. 1 3 116.8H . 523 9 7462.04 26 m 50JTH 2 1 2 P6 i 229 3 106.91 . 573 9 7462.04 230 50JTH 1 1 1 573.9 7467.04 26 v' 50JTH 2 2 2 4 110.61 . 25 l 231 4 100.32 . 573.9 7462.04 23? SOJTH I 2 1 7462.04 76 2 4 110.54 . 573.9 231 50JiH 2 3 26 4 106.56 . 523.9 7462.04
?34 SOJTH 1 3 1 l
l
=
3 G v X T e o O 5 d N /
m U D 3 a
$i CALLAdAY ICTHYOPLANKT3N SAMPLING FIELO DATA ALL SAM 3LES APRIL-SEPTEMBEH 19R4 ------- U
--- ---------------- --------------- DATE=02JUL84 ----------------- ------------ --- -- -
o FEET DISCHARGE WATE4 0 70NE FL3d SAM 2LE VOLUME STAGE 13 ZONE NET AT ABOVE M/SEC TEMP I 10# REPLI METER TIME' SAMPLED CATE 10# COBIC M PLANT MSL DEG C 3 1 84.85 25 520 5468.11 76 235 N04TH 2 1 2 3 77.17 . 520 5468.11 76 236 NORTH 1 1 1 5468.11 76 2 2 3 86.64 . 520 237 NO4TH 2 520 5468.11 26 N04TH 2 1 3 96.70 . 23A 1 79.1H 520 5468.11 26 404TH 2 3 2 3 . 239 78.45 520 5468.11 26 9941H I 1 1 3 . 260 73.65 520 5468.11 26 4IODLE 2 2 2 . 261 1 520 5468.11 26 4I39LE 1 2 66.71 . 247 1 1 71.60 520 546H.11 26 MIOSLE 2 2 2 2 . 241 66.73 520 546H.11 76 MI'JDLE ? 2 . 244 1 3 1 2 3 72.15 . 520 5468.11 /6 ? 265 MIDDLE 2 5468.11 76 ; 3 3 65.21 . 520 246 wi>3LE ! 1 520 546R.11 26 267 5GJTH 2 1 2 4 121.76 . 4 113.81 . 520 5468.11 25 264 50JIH I 1 1 76 2 2 3 96.06 . 520 5468.11 244 50JTH 2 520 546R.11 26 SGJ7H I 2 1 3 81.02 . 25a 87.07 520 546M.11 26 50JTH 2 3 2 3 . 251 520 5468.11 26 50JYH 3 1 3 83.71 . 257 1 M M M m m e' m e g- g g
M M M m m e e g e g g , CALLAdAY ICTHYOPLAH10t1 SAMDLING FIEL7 DATA ALL SAMDLES AP4IL-SEPTEuBER 1984
-------- --------- -------- ---------- ------ DATE=09JUL84 FEET DISCHA2GE .iATER FLO4 SA43LE VOLUME STAGE 13 20NE NET 70NE AT ABOVE M/SEC TEMP REPLI METER TIME SAMPLEO DEG C IDd .
COBIC M Pl a'4 T MSL CATE ids 521.R 6594.6 76 2 3 93.63 26.8 76 251 N04TH 2 1
- 88. 39 . 5?1.R 6594.6 1 3 ?6 254 N04TH 1 1 92 69 . 571.R 6944.6 7 2 3 6594,6 76 255 N04TH P R9.18 . SP1.R 7 3 76 256 N04TH I 1 84.91 . 521 9 6594.6 3 2 3 76 737 N04TH 2 571.R 6594.6 1 1 3 91 01 .
?6 254 N04TH I 75.97 521 4 6594.6 2 2 2 .
6594.6 26
' T2 HIUDLE 1 70.64 . 571 8 1 2 6s94.6 26 'e c MIDDLE 1 1 77.43 . 521.R 2 2 3 76 261 4IDDLE 2 521.R 6594.6 2 1 3 , 72.14 .
76 y 267 91dDLE 1 41.60 . 521 4 6594.6 3 2 3 P6 - 261 4IJDLE 2 75.67 . 571 8 6594.6 " 1 1 3 26 264 "I)3LE 1 4 134.59 . .571.R 659'.6
+
50JTH 7 2 26 265 1 4 127.31 . 571.R 6594.6 266 50aTH 1 1 1 521.R 6594.6 26 7 2 2 . 4 121.A2 . 76
?67 30JTH 4 109.67 . 5?l.R 6594.6 268 50JTH 1 2 1 521.R 6594.6- 76 2 3 2 3 11?.25 .
26 269 50JTH 103.1R . 571 4 6504.6 3 1 3 i 2?n 50JTH 1 o 3 3. Sa~ X
'D n
O 3 r* M
m
= >cl:a.** > .fnSOo. ci*
g
- g - R C - EP - T uG 777777777777777777 - AEE 222222272>22772222 - WTD M - E 222222222222222222 G
R A 664444444444444644 'M
- HC 999999999999999999 - CE 999999999999999999 - SS 33331 3331313333333 333333333333333333 I /
DM M 4 4 4 4 4 4 4 4
- T V E 4 4 4 4 4 4 4 4.<.4 M - EOL 444444ti 44444444444 1 1 1 1 1 1 11 1 11 1 1 1 1 1 1 1 - ERS - FAM 55555555555s555555 A
T M A - 3 - E T
- G N 4 D4 - A A . . . . . . . . . . . . . . . . .
L8 E9 TT L SAP 4 1 M I 1 - F - R - GE NB
- DM 4897939621 091 23061 821083904969380665 M
I M - EE . LE MLC . . . PT 4 UPI 804605424 6393S8R1 8 MP 8 LMB 90000 08788878R3298 1 1 AE L OA U 1 1 11 1 SS U VSC
- J NL 6 OI 1 T4 =
KP NA E T E L
, M A A 3 E LS O MM 333333333333334433 PE AI OL - ST YP HM M
T A - CS - I - R YL L - dE 3T # LED 21 2121 21 2121 21 21 21 E AA - d - F MI A - L A E C - 1
- ELE - NPT 1 1 22331 1 22331 1 2233 - 0EA 7RC E - T#
E0 N1 21212121 2I 21 21 2I21 E HHHHHHLLLLLLHHHHHH EEEEEE E
- E I T TTT T DDDDDDT T T TT T - N 444444dJJD0J)dJJJJ I000000 - O O00000iI I I 1 - Z NNN9N4MM MM9M5555S5 1 71 4947 4 0 n1 ?3 4;678 - 3. 77777 7777889498999 - I 222222222222222222
m M M M M M M M M M M M M M m' CALLAdAY ICTHYOPLANKT0ti Sh$*PLING F IELO D A T A A L SAM 3LES APRIL-5EPTEMBER 19R4
------------------------------------------ DATE=?3J0L84 ----------------- -------------------- --------
FFE.T DISC 4A4GE WsTES FL3d SAM 3LE VOLUME STAGE-19 ZONE NET ZONE AT ABOVE M/SEC 7 E ** P
*ETER TIME Sa*4; LED IDS REPLI MSL DEG C 108 CHBIC M PLANT CATE 4 109.28 in 513 3659.65 77 289 M34TH 2 1 2 3659.65 27 4 104.40 . 513 2an 104TH 1 1 1 513 3A59.65 77 2 7 7 3 107.77 .
77 291 N04TH 3 105 89 . 513 3659.65 NORTH 2 1 3659.65 27 297 1 2 3 107.47 . 513 2 3 27 291 N04TH 3 106.00 . 513 3659.65 296 N0dTH 3 1 3659.65 27 1 2 3 87.24 . 513 29; MIDDLE 2 1 513 3659.65 ?7 3 78.79 . 206 MID0LE 1 1 1 3 86.BR . 513 3659.65 27 4IDDLE 2 2 2 3659.65 27 297 3 81 73 . 513 e 29a MIDDLE 1 2 1 513 3659.65 27 e 3 2 3 86.36 . 299 HIO9LE 2 7 82.50 . 513 3659.65 27 G 309 MIDDLE I 3 1 513 3659.35 77 2 3 91.70 . 301 50)TH 2 1 3 PT.74 . 513 3659.65 77 50JTH I 307 1 1 2 3 87.07 . 513 3659.65 77 50JTH 2 7 3659.65 27 303 , 3 84.14 . 513 304 SOJTH I 2 1 513 3659.65 /7 3 2 2 89.28 . 309 50JTH 2 513 3659.65 27 3 1 2 82.06 . 306 50JTH 1 R= a
=
A b O
=
r* O m ., M
t D rp 3 CL x CALLAdAY ICTHYOPL A*4(T0tJ S AMPL ING F IELD 3 AT A ALL SAMDLES APRIL-SEPTEMBER 1984 g
-------- ------------------------------------ DATE=3nJUL84 ------------------------ ------------- o 0
WATER 3 VOLUME 57 AGE- FEET DISCHARGE 10 ZONE NET ZONE FLod SAM 3LE 4/SEC . . ud C TIME' SAMPLED AT AROVE 105 REPLT METER ID# CuaIC M PL a*4 T MSL DrG C 3 CATE Sn9.7 2447.12 PA 2 2 4 104.36 14.7 307 N04TH 1 Sn9.7 2447.12 26 N04TH 1 4 102 36 . 309 1 1 2 3 107.09 . 509.7 2447.12 ?6 309 N04TH 2 2 2442.12 26 3 106.14 . 509.7 31n N04TH 1 2 1 2442 12 ?/ 2 4 106.85 . 599.7 N04TH 2 1 311 4 in5.81 . 509.7 2442.12 ?6 317 N04TH 3 1 2442.12 26 1 2 3 94.70 . 509.7 311 9IDDLE 2 1 93.2R 5G9.7 2442.12 26 I 1 3 . 314 MIDDLE 1 509.7 7442.12 76 910DLE 2 2 2 3 102.22 . 315 7 3 95.91 . 509.7 2447.12 26 _ 316 MIODLE I . 1 509.7 2442.12 26 7 3 2 3 105.23 . ' 311 MIJDLE 2 1 3 96.65 . 509.7 2447.12 76 d 313 MTU9LE 1 1 4 13).95 . Sn9.7 2442.12 26 2 2 319 SOJTH 1 1 4 120.43 . 509.7 2442.12 PA 120 50JTH 1 1 Sn9.7 2442.12 26 2 ? 2 5 161.09 . 321 SOJTH 5 139.61 . 509.7 2442.12 76 50JTH 1 2 1 2447.12 76 327 3 2 4 153.37 . 509.7 121 50JTH 2 5n9.7 2442.12 26 1 1 4 135.99 . 324 50JTH 1 9 E E E E E M M M .g g g g g g
I 8
~21 Apt'ndiX fl.1(COht'd)
I i, t 0 W W ft NNNNNNNNNNbbNNbbPN I 4 i e1d ft f\ h A ft N f\ ft f\ fV N e\ f( f\ f\ fy f( f\ 4 af ist LA) l 3NO 1 0 -1 I I 4 e les fe te mm d m m (" m m f*. m fa f9 #9 m m m te i l 3 4e Lo C e e{ e { fe4e 4e Le {e Le .n e eoe{e&L<4 eee l s2 c c. . ,. c. . TU en m I CCC e I UW CCCCCCCCCCCCCCC em men.-.~~ ne ~~~ene t vv wN N f% ft N N N N N N N N f% f% N 4% N f( N 6
$ 03 I il 8 6>
W D.D4444<(( eeeee..eeeeeeeee CDKD4LDt4 T tr to a E ID to to T C ce tt e T T x cr x WCJ I C CC CCCCC CCCCC CCCC C I *1 w 4 1 4 4 I taJ fT V k et 7 WVDDfffWWLffWWWLrTTT af I 1 m a ta t w C 7 O f*J J 1 l' aa er aeeeeeeeeeeeeeeeee
.J ;;C t w e~ .J f' ==
W7 I M4 a I
- l
- 14. t
't I C t,u i 21 0 C7 ** 7 8 WW N f* CC O N D N T & T & T C N A tt' 4 4 C C 4 f9 ED @ C N N O C 4 -= ** m C 4 =
I JW 7 -.J U f1 e-- J O r1 - e e e e e e .=ae Ce N eC eW e eN eft e O*e e ~No ee 7 Q. CC JTT 7C 4 W m 4 2 f% 4 ts.I mm C O C at D
>mV -e c=
f\ wc--
~~ e c c .c. .C C. .c tr. '. 4 f*
I i
?J < .
O ** o
*== fY is V (1 W W .
2 et w J. as m t'.4 4 4 4 3 3 a a f*t9 7 T (P 7 4 4 I 4 ft t$s JV O YY < CL W 4 ==
- CJ l @N 4
- ft 1 TT $
> et i VW d
4
** I *r J $ "E W W .J 4 Ow1 N - N .=. N ce N em N e. N e. N c= N == N .-.
4 ** I J LA.I O 1 4 k3 - 4 .I i J 1 l
.J a e (J $ e W _J W m - *= A N f* m e. c= N N f* F e. - N ft fe 4
7a> JE 4 1 5 O 4AJ 4 N CI U t $ t . i l t t t wa N .-e N - N N m N - N - e Wc N - N .-.ft I Z == W LA) W W W nd I I T T I T J J .J J J J T T T '.J i 4 T T 6
>e- >e-e- w C o t' c e a w w w Y 3 O O 3 3 3 "3 "") w ) w w1 e t. "") ~')
1 7 YYYYY O O O O O O O a . - *. ** - w O O O O O O 1 n N 777777 Y Y T T T T m sn tn m tn th t i 1 ofIN :r O C . f\
.I I
I T ( 5 'T C7 c - f( f' J 4 O N N N N N M m m m fn in m m m m a J t, fn 4 l - fe M fn (9 m m m m m m m f* f9 f* f* m i 8
.- -. - _~
Appendix 13. }/ cont ' d ) 33.j7 T 4 4 0 I fY U t Wn T T T G T T K T T T T!, T T ti tt & T T a t w1C 4 4 W tal N N t\ N N N tt A N N N N N N N N N N 4 3wO 4 4 ' 4 I let e t Q T T (C 7 T T W. T tt T T T (D T 7 tt t 5 I .T &e&e&e7e&o7e7e&e&eO'o&e &e &o 7e7eO' e &e &e at I i IU ??&O&7&&7&7&&&&&O&
-*" - - " - - e ~ ~ ~ ~*=** * " " -
t UW i fV CCCCCCCCCCCCCCCCCC N N N ft N N N N N tt N f4 N N fv N N N D e= N t C7 8 9 0 t 0 W 444444444444444444 eoeeeoeeeaeeeeeeee f WOJ T T tr (E T T CD tD T (D T T to CD CD & T T
&al T W CCCCC CCCCCCCCC ta C C C 4 0 0 W<T / W W W f D D f f f f W D f D W Lr D I
4 4 6- t
< 0 6-("I e td t O 7 $
0J t c er e e e e o e e 4 see e e e e e e e e
.J T t >->=_J f"'"
W& a m 4 fL +=
.= t LA. I fr i OW t 7T I C', T & W t'* N & NWNmC)o 4&W >& c4N& CM 7 cc (* M NT NMM I tal U 4 e ) *= & f*' ** I .J W T .J U eeeeeeeeeeeeeeeeee h w J "2 O m o M ** f) D
- t* N N C 4 (C 00 4 @ C N @
T CL G' .J K IS ** N ,= *=- -- e- *= e= c 40 e= C-C - Cem & N e= N == m o er W e t vg O = = - DB '3 >DU t 4 Z .J . M C i
*= fr ti Va LM W 7 cJ e- .J -
4 4 o tal s@ O TT M M 4 4 4 4 M M t* t*44444444 N sd 4w O .,J t mH kn 0 TT I r er i Um 4 m 4 tr
.J t 4 tu k ..a e n >. a N == N c= N *= N - N - N == N += N ** N =
e2 4 0 .J W O
** I La. T -
C t J 0
.J l 4 e f.J t e=
0 id J (M e- - fk f( M t* e= e a N f( f* M == - N fy M f* i 0 7 a >. ' I O to 4 i N tr U 0 t t v I 8 Wa N - N -= N e= N *, N *=* N - N ** N - N - e WO t 7 *= l 4 4 I t W W W W t.J W i G T T T T T T .J .J J J .J J I I I T*-Tw Tw e->- r n- W +- o o r c .3t9 w w 6-W "3 3 74 77"1"477 4 7 Y T *r *r T T O O ""1 3 i O N OOOOOOa-*--*=*=**OOOOOO 777777 s T T T T T sn sn tn tn tn tn e 1 4 I I t t' 4 tf sC k T (1 C e t\ tv 4 L* { h f & C. t O J 4 J J J J J in in to in in in in in tn in 4 8 w t* M t9 f9 (9 M f9 f9 M M M t'1 t9 M M M M M i
- i
M m M M M M M M M M M M M M M M M CAL AdAf ICI HYOPLA 'M T 0*J S AMPLING FIELO 9 A T A ALL S ASPLES APRIL-5EPT E**BER 19A4
.-------- -_------- ------------------- ------ DATE=21AUGR4 FEET DISCHaaGE we.TEJ VOLtP4E STAGE TEMP 7DNE FLOd SA93LE AT AA0VE */5EC ZO E NET SAMPLED DEG C I -) 4EPLi "ETE'd TIME 'M L 10' C UR I C '4 PLENT CATE T38 1833.3 78 17.2 S n 7. 3 l 2 3 111.95 507.3 1R33.3 2A 361 40dTH 2 1 3 111.55 .
PA 1 507.3 1831.3 367 404TH I 1 113.55 . 2A 2 2 2 4 Sr7.3 IA33.1 363 NOT MP 8 LMB nA u 651 1 11 1 1 1 0001 28470396 2219791 1 021 1?32 AF 2 1 11 1 1 111 1 11 1 1 1 1 !1 1 55 E vSC 5
NL 4 OI 0 M T4 TP E
=
E NA T L- 4333333444433 - A A 2 E 33444 LS D 9M PE AI ," OL - ST Y3 - HM TA CS
- 4* V M I L - dE R
71 21 2121 2121 ?1 2121 YL - 3T s ~ AA - LED d - F* I 8 - L - A - C - I
- ELE 22331 17211 - NPT 11 72131 1 M -
OEA ZRC M - T W ED 2I21 2121 2171 21 21 2I
- NI M -
EEEEEE E HHH1 T1 TTT H1
- +
t D)LLLLLLHHHHHH DD7DTT T T T T
- N 44444aD)JO00JJJJJ) 00000OIIII1 100O000 M -
0 2 N 9 1 N N N 9 M M M 9 55S555 1-M - 7 87n1 ?1455 7 9 4 01 1/1 111 4
- 9 99900000000001 - 1 3334444 44444444 444 t
f> m
'o a
5 CALLAdAY ICTHf0 PLANKTON SAMPLING FIELD DATA e2 ALL-SAMPLES APRIL-SEPTEMBER 19R4
- - -------------------------------- DATE=10SEP84 --------------------------------------- ------ o STAGE- FEET DISCHARGE WATER S NET 70NE FL3d SAM 3LE VOLUME 10 ZONE SAMPLE 0 AT ABOVE M/SEC TEMP 108 REPLT METER TIMEt 3 CUBIC H PLANT MSL DEG C CATE ids 3 112 42 12.2 507.3 1RA3 23 415 N0*TH 2 1 2 3 110.84 . 507.3 1RR3 23 416 NORTH 1 1 1 18R3 ?3 2 2 4 116.02 . 5n7.3 417 N04TH 2 507.3 1883 23 619 N04TH 2 1 4 116.67 .
1 4 114.4R . 507.3 1883 23 419 N04TH 2 3 2 4 117.81 . 507.3 1883 23 420 N04TH 0 3 1 1883 ?3 2 4 112.79 . 507.3 421 4IJOLE 2 1 5n7.3 1RR3 P3 MIDOLE o 1 4 108.47 . 422 1 105.14 507.3 1RR3 73 4IDDLE 2 P 2 3 . 421 507.3 18R3 23 e 4100LE O 2 1 3 105.69 . 626 105.48 507.3 1893 23 a 4I00LE 2 3 2 3 . 42; 3 3 105.R1 . 507.3 1RR3 P3 $ 624 4IDDLE o 1 Sn7.3 1883 23 427 50JTH 2 1 2 4 120.50 . 4 11?.71 . 507.3 1883 23 62R 50JTH 0 1 1 23 4 179.19 507.3 1883 420 50JTH 2 2 2 . 4 117.68 907.3 1883 23 430 50JTH 0 7 1 18R3 23 1 2 4 170.8? . 507.3 431 50)TH 2 507.3 1R43 23 632 50JTH C 3 1 4 115.27 . M M M M M M M M m m -m a g. g g g
p M M M M M m W W W W W W W m m M W CAL _AdAf ICTHYOPLAN< TON SAMPLING FIELD DATA ALL SA13LES AP4IL-SEPTEMBE9 1984 DATE=175EP84 --- ---------------------------- --------------
----------------------------------+---------
FEET DISCHAPGE WATER FL0d 5AM3LE VOLd9E STAGE NET 70NE A90VE 9/SEC TEMP ID ZONE METER TIME' SAMPLEn AT ids PEPLT plant MSL DEG C ids CdRIC M CATE 112 88 17.1 508.1 2n77.67 21 2 3 71 433 N041 H 2 1 112.14 . 308.1 2n77.67 3 634 N0'TH 4 n 1 1 In7.67 . Sca.1 2077.67 21 2 2 5 2077.67 71 43% N04TH 2 5 106.47 . 508.1 638 N04TH 0 2 1 508 1 2077.67 21 2 7 2 3 115.92 . 2n77.67 21 437 104TH 3 114.77 . 508.1 43R 104TH 0 1 1 107.75 . 5n8.1 2077.67 21 2 3 639 MIDDLE 2 1 105.36 . 508.1 2977.67 21 3 46n MId3LE O 1 1 3 104.78 . 508.1 2077.67 21 9100LE 2 2 2 2n77.67 21 c: 661 100.32 . 508.1 3 2, 467 910DLE O 2 1 4 10a.51 . Sna.1 2077.67 21 3 2 2377.67 21 441 91JDLE 2 4 104.51 . 5n8.1 MIDDLE o 1 1 508.1 7677.67 21 666 2 3 126.52 .
?!
66s 50JTH 2 1 3 115.98 . 5n8.1 2077.67 646 50JTH 0 1 1 4 118.39 . 408.1 7077.67 21 50JTH 2 2 2 508.1 2077.67 21 647 2 4 108.35 . 464 50JTH 0 1 4 128.53 . 508.1 2n77.67 21 2 1 2 2077.67 ?1 449 50JTH 4 122.46 . 508.1 50JTH 0 1 1 65n
$e Q
3 x o O E
*e
4 5. CALLAwAY ICTHyOPLANKTO*4 SAM 2 LING FIELD 3ATA " ALL SAM 2LES APRIL-5EPTEMBE$t 1984 .
----- gr DATE=245Ep84 -------- ---------- -------------- --- o
--- - ------- ---------------------- --- STAGE FEET D15C4AaGE WATER 3 rtas S AsptE VOLUME AROVE M/SEC Trup ,
ZONE NET 70'4E SAMPLED AT o. 13 REPLI METER TIME DEG C 108 COMIC H PLANT ** S L CATE 19# 1801.15 72 116.74 11.8 Sc6.R 22 2 1 2 4 Sn6.4 1801.15 451 N04TH 1 4 116.39 . 506.R 1Rol.15 77 4;7 N34TH 0 1 112.76 . 77 2 2 3 506.8 1901 15 451 N04TH ,
- 7 1 1 116.71 .
506 8 1861.15 77 456 N04TH 3 2 3 119.80 . 506.A 1801.15 22 45% N04TH I 3 118.07 . 1H01.15 22 N04TH 0 3 1 10R.98 . 506.8 72 45A 2 3 Sn6.8 lan1.15 457 91)DLE 2 1 105 06 . 22 o 1 1 3 506.8 1801 15 45H MIDDLE 2 4 115.51 . lant.15 27 2 ? 506.8 e 459 9IDDLE 2 1 4 113.07 . 506.A 1901.15 72 MIDDLE o 111.74 . E 46n 3 2 3 Sn6.8 1801.15 22
- 461 9100LE 2 1 112.57 .
22 o 3 1 506.9 1801 15 462 91DDLE 1 115.86 . 1901.15 ?2 46i 50) Di 2 1 2 3 I?5.64 . 506.8 27 0 1 1 506.a lant.15 4 6 <. SOJTH 2 2 3 141 22 . 906.8 1A01.15 72 465 50JTH 2 3 176.13 . 72 0 2 1 506.8 1R01.15 46A 50JTH 3 111.52 . 1A31.15 77 467 50JTH 2 3 2 176.84 . 506.8 3 1 3 50)TH 0 464 M M M m -g a g. m gg W M M M
- D-29 Ap
}w n u .t x 14 . 2 s
L e s e e o e e e e o e *
- es w
cr x e o e e es a es(te e e o esT e e o e e e e w N L- in w w w tr J O w w c I 2O Dm a 4 4 J d i 3 W@ wJ l k4
> >=
7 >" 1 ww O w =.7 d e-4 f.3 W T J U 7 fx at Ww 767070Q7C7CC6COOCOC7OCC2O7&7C7077CC w <t w n W .t t w et W .a 4 et <t 44 t
<2 4 w at .3 at W .t W 4 W 4 W .1 w w at et l w C2 4 f:
w e-3- O7 3' Y 2) T (L T T .T T Te I T T T T T T T T. G) T T T C T .E I T "" T T T T T T 77 V e* Ow 6 YY 7W
** J I Jn >T hT OT e e o e o e e o e * *
- e o e o e * * * * * *************
l C4
>M T *= J 7
W7
.J w J .U -= 4 g > W 4 0 2 4 4 .J >=
V OCCOOCCCOOOCOOOOOOOOOCOCOCOOOOOOOCC l _J 4 U La l LL w
.J l TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT www-w V.-. V=
T w V W V m eD V @.=
@ m m.mm B ww- w f D. V @ @ V.=ww w w w w w .=w m V V.= .= D V V V D V V V O
x 6 6 k k k k k 6 k k k k k k k k k k k L/, 6 k k 4 k k 4 L k k k k k k. k w .= 4 W OOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOOO 7 7 7 7 7 7 7 7 7 7 7 7 'r 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 e-. C
+=
w N m 4 m O P= C O.=..w.- A Nw **.-+w O w N M 4..m. O P- P= C N &N ON wN N mN N NWNP= 4 LA NmmmCPmcm ==m U 1 I i i i 1 l
----- . - - - - - - _ " w-~_ _ _ _ _
I t. App 7ndix D-2 (cont'dl B-30
; E I , c e4 *e e e eee.s 4
- em e .s 4 e * * *
- ee4 *
- e * * * * *
- e44 a cr * *
- e nW W P WW n @@ m
-, &. N NN > tr m *=
- 44 44 44 4 Mo 4 oM WM e-n J h, 4
+- m !
r s-td - o2 mm 4 H et O M T .J U 7 w tr 4 6m C72OOOZZO202C072?OO72OO72 OOC 027(SOCC
=t W w =f er er w w 4 w =* w 4 at w w w 4 as W W 4 4 w w 4 4 at et w w YTTT as 4 4 4 %4 fr ** T:D C X T T D Z X D T (D X X (D CD (C T T W X X Y W LD T T T T ED o2 7& Wm om n
Y@ 7W 4 .J T
.J tt >T OT n7 o4 2 ee*********e*e**e****** e* *
- e e * *
- e e e
>= W WZ T Jm WJ UJ m4 >= Lal 4 d 2 4 w
4 J J W CCOOCCCcCCCCCOOCCCCCOOOOCCCCCOCCCOC at k U M J 2 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT VmV V DVV D V B V m m V V m m mmm>-mmmmm l o VV e-.mV Vm D- V-. V mDmVD mmmm msm. @m m w m == D V. a m @m @m e.e m x k k k La. L 4 4 6 L k k 6 L 4 k 6 k k k k k k k k k 4 k A k La. k k k h. k oeoeoeoooeooeoooooooooooeooooeoeoee 3 i l 4 1 1 7777777777ZZ77777777777777777777777 l . l o n a a tn in e c N e & O m N n a tri e N cn ft tv o O m m N fV n m .* t m o N m U nnnnnnnnnn 44444444444 W D D @ W D D D V f f f V in i E i 1 I
- , - . - - ~ .. _ _ - _ _. - ,.
~ - ~ - - - _ _ _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ ~
BTU _I)d i X 11 . 2 ( (? O n t ' d ) w u O e ea@ e e e eA TT J e eo T e e e e eJ e eoT) e e e e e e e4fa dD 4i eATN 4 t% en 4 E,AA T tc N t% kJ N n N oo ooec , Ww c t- { N N o Ln tn to m w Cr N NN J Ln Ln Ln P et O 4 a4 4 ( Om a: WW mmmmWWW wJ k et UUUUUUU w == HWW>>>> E 7w Ww . O7 m s~ I 4 WA W ef O' et O Wm d tS 7 0 0 6 ? W 7 7 7 7 3 6 7 7 7 '/ *.4 0 2 0 2 ? d o tS 2 3 7 7 7 7 7 74 W d uJ W at at d tal 4 W
>> ef ** W es at 4 W st W W W W *t 4 W W W W < T T T 7 7 (! T fC CD 1 (D (D C T (Y M T T m T T T T T T .T T @ 7 7 T (E CD (P 7 T T T .
U 7 C m=.7 kJ WJ i @ l 77 O~ I M O n >T @ OT tf m 7 Ld 2 e e * * * *
- e e * * * * * *
- e o e e e * * * * *
- e *-
- eNo e e eC T .J L7 J (L .J **
CL T C4
>w T o oooc e .J UJ w4 W
0 ag ocooo*3ooooooooooooooocooococ
> m C 4 uh C 3C k d 0 ** ta i ta l 4 .J .J J
et U LS 49 C C W W O O W W e= m k k. e TIIIIIITIITIIIIIIIITITIITIII*T*TTII m m m,= m m. m m tn m m tn m m tr 7Wtn. W 7 m. e- m. m m
. >m= *m. * *m ==m +='n w m == m m m m. m m m. == mw 7 >= la La O
k k k La.k (+ k k k k La kh kh ta k k k L. k k k h h La h k n k O.k h w W OOOOOOOOOOOOOOOOOOOOOOOOOOOO?O7OOOO 77777777777777777777777727770737777 r O
- & c - N e t Ln 4 5 N e m & ce e c - - N% NN & JN tr. **. I e-N N N m %NN& Dc T- -(D N $tt t\>,D teD DD U in 4 4 4 4 4 h 4 4 4 O O 4 4 N P= %
s
CALLAWAY ICTHYOPLANKTON BENCH DATA 5 ALL SA4DLES 1984 8. LENGTH SORTER IDENTFIER DATE E CID TAX 3N LIFESTAGE IN MM INITIALS INITIALS SORTED 0 MAG TCS S0384 84 NO FISH . S0384 2 0 HAG TCS 84 NO FISH . 0 BEN TCS . 8 8S NO FJSH . TCS . <+ 0 BEN BS NO FilSH . 5 NO F,ISH . MAG TCS . 86 TCS
~
NO FISH :s MAG . 86 . HAG TCS . R7 NO FISH 0 . 0 MAG TCS . 87 NO FISH . TCS NO Fi!SH 0 . BcN . 88 TCS NO FISH 0 . 9EN . 88 TCS UNIDENTIFIED EG3- EGG 2.5 RE4 . 89 TCS SO484 EGG 2.2 BEN 89 UNIDENT IFIED EG3- MAG TCS SO484 > 90 NO FISH 0 . ' 0 0.0 MAG TCS 50484 90 NO FJ SH 50884 m NO F,ISH 0 . BEN TCS 91 92 NO FISH 0 . BEN TCS . & TCS . o 0 HEN 93 NO FilSH . TCS 0 BEN . 94 NO FJSH . 0 BEN TCS . 9S NO FISH . S0864 PROLARVA 6.1 MAG TCS 96 SUC<ER FAMILY TCS . NO FtISH 0 . BEN 97 TCS PROLARVA 6.8 MAG . 98 S AtJ3ER SO984 0 0.0 REN TCS 99 NO FISH 0 BEN TCS . 100 NO F.!SH , 0 BEN TCS . 103 NO FISH . TCS NO FJ SH 0 . BEN . 102 TCS S1084 0 BEN 103 NO FJ SH . SIOR4 PROLARVA 6.0 MAG TCS 104 SAUSER TCS 51084 0 0.0 BEN 10S NO F.ISH EGG 2.1 4AG TCS . 106 UNIDENTIFIED ESS- TCS 51084 0 0.0 BEN 107 NO FISH TCS NO FISH 0 . BEN . 108 9AG TCS SIS 84 109 UNIDENTIFIED EG3 EGG 3.0 PROLARVA 6.9 MAG TCS . 109 SUC<ER FAMILY TCS EGG 2.6 HEN . 110 UNIDENTIrIED EG3 E E E E E E E M M M-M g g; g gg
CALLAWAY ICTHYOPLANKT0*4 BENCM DATA ALL SAMPLES 1984 IDENTFIER DATE LENGTH SORTER S3RTEn LIFESTAGE INJ IALS INIf1ALS C I ') tax 09 IN 71M BE'J- TCS PROLARVA 7.9 TCS . SOCKER FAMILY 6.6 BCN 51584 lin PROLARVA MAG TCS 110 GIZZARO SHAD 0 0.0 TCS . NO FISH 7.4 BEN 111 PROLARVA TCS . f SUCKER FAMILY T.S 9EN t 117 PROLARVA 9EN TCS . Il? SUCKER FAMILY PROLARVA 7.2 TCS . SUCKER FAMILY 7.4 3EN 111 PROLARVA MAG OAW SIRB4 113 SOCKER FAMILY 0 . TCS . NO FISH 2.2 MAG 117 EGG MAG TCS . 114 UNIDENTIFIED EGG PROLARVA 8.0 TCS . SUCKER FAMILY 2.8 3EN 114 EGG MAG JAd . 119 UNIDENTIFIED EGG 0 . TCS . NO FISH S.S MAG Ils PROLARVA MAG TCS S1584 e 116 CRAP 31E SPECIES 0 0.0 S1684 e l 9EN TCS 117 10 FISH 0 . TCS sl684 U NO FISH T.S 3EN lla PROLARVA HAG JAW . 119 SOCKER FAMILY 0 . TCS S1684 NO FISH 0 0.0 3EN . llo MAG TCS 120 , N3 FISH PROLARVA ?.3 TCS . SUCKER FAMILY 6.5 MAG 121 PHOLARVA MAG TCS . 121 SUCKER FAMILY PHDLARVA . TCS . 121 UNIDENTIFIED YOLK SAC LARVA EGG 2.4 MAG 3EN TCS . y 121 UNIDENTIrIED EGG PROLARVA 10.5 TCS . 7 GOLDEYE OR M')ONEYE 7.0 BEM $ 12P PROLARVA SEN TCS . 127 SOCKER FAMILY EGG 3.0 T; . @ 3.1 BEN x 127 UNIDENTIrIED EGu EGG 1.5 . UNIDENTIrIED Eer+ 3.0 BEN e 1 12' EGG BEN TCS . 121' UNIDEt4TIFIED EGG 0 . TC$ . L NO FISH 2.R 3E9 g 124 EGG 3EN TCS . 124' UNIDEtJTIFIED EGG PROLARVA 7.6 . o BEN TCS 124 SUCKER FAMILY PROLARVA T8 TCS . 3 SUCKER FAMILY 2.2 BEN g 1 2 '. FGG BEM TCS . 12G UNIDENTIFIED EGG PH0 LARVA 8.0 . - MAG TCS 125 U*110ENTirIED FGG EGG 3.0 . MAG TCS IPA UNIDENTIrIED CGG EGG 1.5 12' FRE5dWATEH 04tet E ;r. y
_ - _ ~ . _ . N j CALLAWAY ICTHYOPLANKTON HENCH DATA ALL SAMPLES 1984 g LENGTH SORTER IDENTFIER DATE CIO TAXON- LIFESTAGE g IN M4 INITIALS INITIALS SORTE0 VJ 11 5 BEN TCS S2384 _ 127 GOLDEYE DROLARVA o 11 3 BEN TCS . 127 GOLDEYE PROLARVA S DROLARVA 11 3 BEN TCS . 127 GOLDEYE TCS . DROLARVA 11.1 BEN . 127 GOLDEYE TCS . a PROLARVA 11.0 BEN ~ 127 GOLDEYE TCS 127 GOLDEYE PROLARVA 11 4 BEN . DROLARVA 11.5 BEN TCS . 127 GOLDEYE TCS PROLARVA 11.4 9EN . 127 GOLDEYE TCS . PROLARVA 4.3 REN 127 CRAPPIE SPECIES BEN TCS . GIZZARD SHAS LARVA 9.3 127 BEN TCS . GOLDEYE PROLARVA 11.4 128 BEN TCS . 128 GOLDEYE PROLARVA 10.R PROLARVA 11 0 OEN TCS . 12H GOLDEYE TCS . GOLDEyE PROLARVA 10.6 BEN 128 TCS . PROLARVA 11.5 BEN 128 GOLDEYE DROLARVA 12.0 BEN TCS . ? 128 GOLDEYE TCS . % DROLARVA 10.2 REN 128 GOLDEYE TCS DROLARVA 10.1 BEN . 128 GOLDEYE TCS . PROLARVA 10 7 BEN 128 GOLDEYE TCS . PROLARVA 10.4 HEN 128 GOLDEYE TCS . PROLARVA 10.0 BEN 128 GOLDEYE TCS . PROLARVA 10.3 BEN 129 GOLDEYE TCS . DROLARVA 10.3 REN 128 GIZZARD SHAD TCS . PROLARVA 11.4 BEN 129 SOLDEYE TCS . PROLARVA 10.6 REN 129 GOLDEYE TCS . PROLARVA 11.2 BEN 129 GOLDEYE TCS . PROLARVA 10.4 REN 129 GOLDEYE TCS . PROLARVA 11.P HEN 129 GOLDEYE TCS . PROLARVA 11.6 REN 129 GOLDEYE TCS . DROLARVA 11.0 BEM 129 GOLDEYE TCS PROLARVA 11 7 HEN 124 GOLDEYE TCS PROLARVA 11 0 REN 129 GOLDEYE TCS PROLA4VA 10.A BEN . 129 GOLDEVE TCS . PROLARVA 11 4 RE1 129 GOLDEYE TCS . 129 GOLDEYE PROLARVA 12 0 REN W M M M M M M M -m a g. g g .g
W p. m M M - W- M M M M M W E. W M M M M M CALLAWAY ICT4V0 PLANKTON HENCH DATA ALL S A$4DLES 1984 IDENTFIER DATE LENGTH S0?'5R SORTED CID tax 04 LIFESTAGE INITIALS INITIALS IN W REN TCS . GOLDEYE PROLARVA 10.6 TCS . 129 11 4 BEN GOLDEYE PROLARVA TCS . 130 11.6 HEtt GOLDEYE PROLARVA REN TCS . 130 11 8 GOLDEYE PROLARVA TCS . 130 10.4 BEN GOLDEYE P90 LARVA TCS . 130 10.8 BEN l GOLDEYE PROLARVA TCS . 130 12 2 BEN I GOLDEYE PROLARvA BFN TCS . 130 11.2 ; GOLDEYE PROLARVA TCS . ! 130 10.2 BEN GOLDEYE PROLARVA TCS . ' 130 11 0 GEN GOLDEYE PROLARVA HEN TCS . 130 11 8 GOLDEYE PROLARVA TCS . 130 9.6 HEN GOLDEYE PROLARVA TCS . 130 10.4 BEN GOLDEYE PROLARVA BEN TCS . 130 II.B m SOLDEYE PROLARVA TCS . 130 11 4 BEN i GOLDEYE PROLARVA DEN TCS . m 130 10.6 GOLDEYE PROLARVA HEN TCS . 130 11.4 GOLDEYE PROLARVA TCS . 130 11 2 BEN GOLDEYE PROLARVA TCS . 130 8.3 BEN CARP PROLARVA TCS . 130 11 0 REN GOLDEYE LARVA HEN TCS . 130 10.3 GOLDEYE PROLARVA BEN TCS . 131 11 6 PROLARVA TCS . 131 GOLDEYE PROLARVA 10.6 BEN TCS . 131 GOLDEYE 10.5 BEN 3 GOLDEYE P40 LARVA HEN TCS . 131 11 2 3 GOLDEYE PROLARVA BEN TCS . I 131 9.4 CARP LARVA BEN TCS .
- 131 10.3 GOLDEYE DROLARVA TCS .
132 11.7 B E'. 4
?
GOLDEYE PROLARVA TCS . 137 11.4 REN u GOLDEYE PROLARVA TCS . 132 10.8 HEN g GOLDEYE PROLARVA TCS . 132 11 8 GEN o GOLDEYE PROLARVA HEN TCS . 132 10.6 S GOLDEYE PROLARVA TCS . 137 10.7 BEN f GOLDEYE PROLARVA BEN ICS . 132 PROLARVA 11.9 137 GOLDEYE HEN TCS . PROLARVA 10.4 132 GOLDEYE y n ___ -
CALLAWAY ICTiV0 PLANKTON HENCH DATA k-ALL SAMDLES 1984 3 LIFESTAGE LENGTH S07TER IDENTFIE9 DATE C i r) tax 0N IN MM INITIALS INITIALS S') RTE 0 TCS " 137 GOLDEYE PROLARVA 10.5 BEN . PROLARVA 10.7 9EN TCS . - 13P GOLDEYE PROLARVA 11.2 BEN TCS . 13P GOLDEYE BEN TCS . @8 PROLARVA 10.3 13? GOLDEYE 11.6 SEN TCS . T PROLARVA 137 GOLDEYE PROLARVA 11.5 9EN TCS . 3 137 GOLDEYE BEN TCS . GOLDEYE PROLARVA 10.2 13P 3EV TCS . GOLDEYE PROLARVA 10.5 13P BEN TCS . 137 GOLDEYE PROLARVA 11.0 LARVA . BEM TCS . 13P MINN3W FAMMILY TCS LARVA 12.0 BEV . 13P GIZZARD SHAD TCS PROLARVA 11.3 9EN . 137 GITZoRD SHAD TCE PROLARVA 9.3 BEN . 137 GIZZARD SHAD TCS LARVA 11.5 BEM . 13? MINH3W FAMMILY TCS m LARVA 7.5 BEN . 13? SUCKER FAMILY S2384 137 UNIDENTIFIED EGG EGG 2.0 M A G- TCS L PROLARVA 7.8 MAG TCS 52484 e 134 UNIDENTIFIED YOLK SAC LA4VA MAG TCS SUCKER FAMILY PROLARVA 4.9 . 136 BEN TCS 52484 NO FISH 0 0.0 13c MAG TCS . UNIDENTIFIED EGG EGG 2.0 13A MAG TCS . 136 GOLDEYE PROLARVA 11.3 PROLARVA 7.7 BEN TCS . 137 GOLDEYE EGG 2.0 3EV TCS . 134 UNIDENTIFIED FGG TCS EGG 2.2 BEN . 13n UNIDENTIFIED EGG TCS PROLARVA !1.a 9EM . 139 GOLDEYE PROLARVA S.3 BEN TCS . 130 MINN3W FAMMILY S2484 0 0.0 BEN TCS 14n NO FISH TCS PROLARVA 7.5 MAG . 141 GOLDEYE PROLARVA 6.9 MAG TCS . 141 SUCKER FAMILY LARVA 9.2 MAG TCS . 141 GIZZARD SHAD TCS S2584 142 GOLDEYE PROLARVA 10t 4AG LARVA 9.d MAG TCS . 14P GIZZARD SHAD TCS PROLARVA 7.5 MAG . 147 GI/ZARD SHAD MAG TCS SUCKER FAMILY PROLARVA 5.3 . 14P BEM TCS . SUCKER FAMILY PROLARVA 7.0 144 N M' W M M M M M M M g- y yq
M ~U :O O CALLAWAY ICT4YOPLANKTON BENCH DATA ALL SAMPLES 1984 IDENTFIER DATE LENGTH SORTER LIFESTAGE. INITIALS SORTE3 CIO TAxDN IN Me INITIALS MAG TCS PROLARVA S.2 . 144 CRADPIE SPECIES MAG TCS EGG 21 S3084 144 UNIDENTIFIED EGS- 6.2 BEN TCS DROLARVA TCS . 14S MINN0w FAMMILY 12 8 JAW GOLDEYE LARVA JAd TCS . 146 DROLARVA 10.4 . 146 GOLDEYE 7.2 JAd TCS SUC<ER FAMILY LARVA JAd TCS . 146 PROLARVA 9.0 . 146 GIZZARD SHAD JAd TCS DROLARVA 6.P . 146 GI7ZARD SHAD REN TCS PROLARVA 7.1 . 147 MINN0d F A HH I LiY BEN TCS DROLARVA 8.7 147 GI7ZhRO SHAD BE9 TCS . P40 LARVA 9.4 . 147 GOL9I)E BEN TCS PROLARVA 10.5 TCS . 147 GOLliYC DROLARVA 12 4 REN 147 GOL3 EYE HEN TCS . DROLARVA 10.9 TCS . m 147 GOL3 EYE BEN GOL3 EYE DROLARVA 11 6 JAd TCS . 6 147 DROLAPVA 10 0 . 4 148 GOL3 EYE JAd TCS PROLARVA 10 4 TCS . 148 GOL3 EVE DROLARVA 10 9 JAd . 148 GOL9 EYE JAd TCS LARVA 8.6 14H GI7ZARO SHAD JAd TCS . DROLARVA S.5 148 HINN0d FAMMILY 8EN TCS . JUVENILE 14.4 . CARD- BEN TCS 149 DROLARVA 11.2 !CS . 150 GOL3 EYE 11 1 HEN > PROLARVA TCS . 150 GOLDEYE 12 2 BEN PROLARVA TCS . $ 150 GOL9 EYE 12.0 BEN g DROLARVA TCS . 150 GOLDEYE 10.6 BEN a GOL3 EYE DROLARVA JAd TCS S3084 150 0 0.0 7 IS) NO F.ISH JAd TCS . 0 . TCS . , 152 NO 5-ISH 0 . BEN - 153 NO FISH BEN TCS . " 0 . 154 NO FISH BEN TCS 0 . TCS . Q ISS NO TISH 0 BEN D NO rISH BEN TCS 53184 " 156 7.5 - 1;7 SEA BASS FAMILV LARVA REN TCS . HINN0w F APilLY DROLARVA 6.7 TCS . 3 157 11 6 JAd DROLARVA 154 GOL3 EYE g
N m 3 CALLAWAY ICTHYOPLANKTON BENCH DATA S x ALL SAMPLES 1984 m IDENTFIER DATE LIFESTAGE LENGTH SORTER SORTE3 L CIO TAXON IN MM INITIALS INITIALS - TCS . g 7.1 BEN s GIZZARD SHAD LARVA 8EN TCS . " 159 PROLARVA 10.1 53184 _ 159 GOLDEYE BEN TCS 0 00 . S 160 NO FISH JAW TCS PROLARVA 10.3 TCS . 161 GOLDEYE PROLARVA 12.7 JAd . GOLDEYE JAd TCS 161 PROLARVA 12 6 TCS . 161 GOLDEYE 11 4 JAW PROLARVA TCS . 161 GOLDEYE 14.6 JAd GIZZARD SHAD LARVA JAd TCS . 161 7.0 HINNOW FAMMTLY LARVA JAd TCS . 161 JdVENILE 46.0 53184 161 SPECKLED CHua BEN TCS 0 00 60584 162 NO FISH 10.? BEN TCS GOLDEYE PROLARVA TCS . 163 11 8 BEN GIZZARD SHA0 LARVA BEN TCS . 163 15 4 60S84 GIZZARD SHAD LARVA MAG TCS m 163 PROLARVA 73 . 164 GIZZARD SHAD MAG TCS GIZZARD SHAD DROLARVA 9.5 MAG TCS . g 164 PROLARVA 7.0 . 164 GIZZARD SHA0 MAG TCS PROLARVA 14.7 TCS . 164 GIZZARD SHAD 56.5 MAG CARP JUVENILE MAG TCS . 164 45.1 CARP JUVENILE MAG TCS . 164 7.4 SUCKER FAMILY LARVA MAG TCS . , 164 9.7 I SUNFISH SPECIES LARVA MAG TCS . 164 JUVENILE 20 0 . 164 CARP JAW TCS PROLARVA 10.0 165 FRESHWATER DRU+ REN TCS . PROLARVA 10.2 j 166 GOLDEYE BEN TCS . LARVA 12.0 . l 166 GIZZARO SHAD REN TCS PROLARVA 8.5 . 166 GIZZARD SHAD HEN TCS LARVA 11 2 TCS . 166 GIZZARD SHAO 14.0 REN GOLDEYE LARVA TCS . 166 S.P BEN 60584 f' CPAPPIE SPECTES LARVA JAd TCS 166 0 0.0 . 167 NO FISH MAb TCS PROLARVA 10.4 . 16M GOLDEYE MAG TCS LARVA S.7 60584 168 SUNFISH SPECIFS BEN TCS 0 0.0 60SR4 169 NO FISH MAG TCS 0 0.n 170 NO FISH M M M m a g g g .g W M M M M
E E E E M M M g g _ g _g _ g CALLAWAY ICT-lYDPL'ANKTON HENCH D AT A ALL SAMPLES 1984 SDRTER IDENTFIER DATE LIFESTAGE LENGTH CID tax 04 IN HH INITIALS INITIALS SDJTED S.7 9EN TCS . 171 SJCKER FAMILY P4DLARVA 6.5 REN TCS . 171 CRAPPIE SPECIES LARVA 60594 49.0 HEN TCS 171 CARP JUVENILE TCS . JUVENILE S4.0 HEN 171 CARP JAW TCS . LtRVA 6.2 172 SJNFISH SPECIES 9EN TCS . 0 0.0 173 N3 FISH MAG TCS , 174 GIZZARD SHAD LARVA 12.0 6.0 MAG TCS . 174 CRAPPIE SPECIES LARVA 9.S REN TCS . 175 GIZZARD SHAD LARVA 606a4 22 6 JAW TCS 176 BJFFALO SPECIE; JOVFNILE TCS LARVA 14.2 JAd . 176 GIZ7ARD SHAD JAW TCS . PRDLARVA 5.9 176 S JCKER. F AMILY HEN TCS . PRDLARVA 8.7 177 G7LDEYE HEN TCS . JOVENILE SS.O 177 CARP MAG TCS . e LARVA 10 4 176 C4APPIE SPECIES 22 0 MAG TCS . i 176 RJFFALO SPECIES JUVENILE 60694 $ 0 0.0 REN TCS 179 N3 FISH JAd TCS . CARP JUVENILE 37.0 180 10.6 JAW TCS . 180 GIZZARD SHAD LARVA 6.7 JAd TCS . PERCH FAMILY PRDLARVA 180 6.1 JAW TCS . 180 SJNFISH SPECIES LA9vA TCS . GI7ZARD SHAD PRDLARVA 10.6 JAW 180 13.2 JAW TCS 61294 181 CARP JdVENILE 23.0 JAd TCS . 181 GI72ARD SHAD JJVENILE TCS . > J0VENILE 22.0 JAd 181 GIZZARD SHAD S.9 . LAW TCS . $ CRAPPIE SPECIES PRDLARVA l 181 70.0 JAd TCS . $ UNIDENTIFIED JdVEMILE JdVENILE 1R1 JUVENILE 25.0 aEN TCS . 3 , 182 G177ARD SHAD DEN TCS . x GI7ZARD SHAD JdVENILE 26.0 182 P4.0 PEN TCS . = 1R2 GIZZARD SHAD JJVENILE TCS . LARVA 1*.6 HEN 2 182 CRAPPIE SPECIES P2.o HEN TCS . 192 G17ZARD SHAD JUVENILE O 19.0 BEN TCS . 182 GIZZARD SHAD LARVA 3 15.0 REN TCS . 182 GIZZARD SHAD LARVA - 11.0 AEN TCS . 192 GIZZARD SHAD LARVA
? - _ -_
d e S CALLAWAY ICTHYOPLANKTON BENCH DATA a ALL SAMPLES 1984 + , LIFESTAGE LENGTH SORTER IDENTFIER DATE , CID TAXON INITIALS SORTED . IN MM INITIALS 92 BEN TCS . g 182 GIZZARD SHA0 LARVA 3 LARVA 14.4 BEN TCS . 182 GIZZARD SHAD T JUVENILE 26 0 MAG TCS . IH3 GIZZARD SHAD TCS a GIZZARD SHAD JUVENILE 33.0 MAG . ~ 183 183 GIZZARD SHA0 JUVENILE 24.n' 4AG TCS . JUVENILE 22.0 MAG TCS . IH3 GIZZARD SHAD MAG TCS 181 GIZZARD SHAD JUVENILE ?S.O . JUVENILE 23.0 MAG TCS . IR3 GIZZARD SHAD LARVA 13.6 MAG TCS 63284 183 CRAPPIE SPECIES TCS CA4P JUVENILE 23.0 MAG . 183 TCS LARVA 17.0 MAb . 183 GIZZARD SHAD PROLARVA S.7 MAG TCS . 183 CRAPPIE SPECIES TCS GIZZARD SHA0 JUVENILE 25.0 MAG . 184 MAG TCS . 184 GIZZARD SHA7 JGVENILE 29.0 JUVENILE 26.0 MAG TCS . 184 GIZZARD SHAD 184 GIZZARD SHA0 JUVENILE 32.0 MAb TC9 . ? JUVENILE 28.0 MAG TCS . 184 GIZZARD SHAD JUVENILE 29.0 MAG TCS . IH4 CARP MAG TCS 164 CARP JUVENILE 28.0 . JUVENILE 20:2 MAG TCS . 184 GIZZARD SHAD LARVA 19.6 MAG TCS . 184 MINNOW FAMMILY LARVA 18 3 MAG TCS . 184 CRAPPIE SPECIES JUVENILE 22 0 MAG TCS . 184 GIZZARD SHAD JOVENILE 21.0 MAG TCS . 184 GIZZARD SHAD GIZZARD SHA0 JUVENILE 20.n MAG TCS . 184 TCS GIZZARD SHAD LARVA 14.R MAG . 184 MAG TCS . 184 CRAPPIE SPECIES JUVENILE 22 0 PROLARVA 4.7 MAG TCS . 184 CRAPPIE SPECIES PRDLARVA S.3 MAO TCS . Id4 CPAPPIE SPECIES PROLARVA 4.S MAG TCS . 184 CRAPPIE SPECIES 612H4-PROLARVA 5.8 MAG TCS IR4 CRAPPIE SPECIES JUVENILE 29.0 B E '1 TCS . 185 GIZZARO SHA7 TCS JUVENILE 27.0 BEN . 185 GIZZARD SHA0 TCS GIZZARO SHAD JJVENILE 22.n HEN . 185 TCS JJVENILE 22.0 HEN . 145 CRAP-IE SPECIES M M M M M M M M m m m '- m a m. m g e
M M M M M M M M M M W M M M M M M M M CALLAWAY ICTHYDPLANKTON HENCH DATA ALL SAHDLES 1984 IDENTFIER DATE. LENGTH SORTER LIFESTAGE INITIALS SDRTE7 CID tax 0N IN HM INITIALS BEN TCS 612R4 LARVA 17.0 61284 CRAPPIE SPECIES BEN TCS 165 PROLARVA S.9 WINNOW FAuMILY DEN TCS . ISS PROLARVA 6.5 MINNDW FAMMILY BEN TCS . 165 PROLARVA 6.7 MINN3W FAMMILY BEN TCS . 165 LARVA 13.0 . MINNOW FAMMILY BEN TCS 165 EGG 1.3 . rRES4 WATER DRUM EGG BEN TCS 185 EGG 1.5 TCS 61284 ISS rRES4 WATER DRU4 EGG 4R.0 JAd SHORTNOSE GAR JuvENILD Jad TCS . 166 JuvENILL 31.0 3 IZZARD SHAD JAd TCS . 136 JUVENILD 28.0 3 IZZARD SHAD Jad TCS . l 166 JuvENILD 24.0 . SIZIARD SHAD JAd TCS Id6 JdVENILE< 26.0 . SIZZARD SHAD JAd TCS IS6 JuvENILEt 22.0 TCS . Id6 SIZZARD SHAD 20.0 JAd 3122ARD SHAD JuVENILD JAd TCS . 196 LARVA 19.0 TCS . a Id6 3 IZZARD SHAD 22.0 JAd i JUVENILE 4 TCS . 166 3 IZZARD SHAD 20.0 JAd ~ JUVENILEt TCS .
... SIZZARD SHAD JAd LARVA .
TCS . 186 SIZZARD SHAD 4.9 JAd' LARVA TCS 61284 IS6 JNIDENTIFIED LARVA JUVENILEi 25.0 BEN . 3 IZZARD SHAD BEN TCS 187 LARVA 19.0 . 3 IZZARD SHAD BEN TCS 167 PROLARVA 4.2 61394 rRESiWATER DRUM JAd TCS 169 FGG 1.3 TCS 61294 164 FRES4 WATER DROA EG3 47.0 BEN JOVENILD MAG TCS 61394 i 190 CARP 21.0 l JdVENILD TCS 613B4 r 191 3122ARD SHAD 0 0.0 BEN o$? l 90 FISH JAd TCS . 192 JOVENILD 29.0 TCS . $ 193 dHITEiCRAPPIE JUVENILD 25.0 Jad E
,193 3 IZZARD SHAD JAd TCS .
LARVA 23.0 7 4HITE.CRADPIE Jad TCS . . 193 JUVENILD 24.0 l ; IZZARD SHAD JAd TCS . 193 LAQVA 2n.0 TCS . 193 SIZZARD SHAD 19.0 JAd 2 l LARVA TCS . 193 3 IZZARD SHAD PROLARVA 7.2 Jad . o l JAd TCS 193 SUCKER FAMILY EGG 3.5 TCS . O 193 JNIDENTIFIED FGG EGG 1.5 Jad " 193 'RES4 WATER 04U4 EGG 9
-- 5 g i l
N N CALLAWAY ICTiYOPLANKTON BENCH DATA 5, ALL SAMDLES 1984 LENGTH SORTER IDENTFIER DATE CIO tax 0N LIFESTAGE ? IN MM INITIALS INITIALS 57 RTE 0 m TCS o EGG 1.5 JAd . 193 FRESiWATER DRUM EGG MAG TCS 61484 0 Lt.RVA 18.0 " 194 GIZZARD SHAD MAG TCS 51384 . LARVA IS.? a 194 GIZZARD SHAD '4 A G TCS . JUVENILE 26.0 ~ 194 GIZZARD SHAD MAG TCS . PROLARVA 4.9 194 SUCKER FAMILY MAG TCS . PROLARVA 4.1 194 SUCKER FAMILY TCS 65484 JUVENILE 24.0 JAd 199 CARP TCS 61584 LARVA 8.2 JAd 195 GIZZARD SHAD TCS LARVA 7.3 JAd . 19% GIZZARD SHAD JAW TCS . PROLARVA 6.2 195 CRAPDIE SPECIES JAd TCS CRAPDIE SPECIES LARVA S.1 . 194 27.0 JAd TCS 61484 195 GIZZARD SHAD JUVENILE JUVENILE 25.0 JAd TCS . 195 WHITE CRAPPIE JAd TCS . GIZZARD SHAD JUVENILE 22.0 19c 14.5 JAd TCS . 199 GIZZARD SHAD LARVA ~ LARVA 11.4 JAd TCS . ? 19% GIZZARD SHAD JAd TCS . UNIDENTIF.IED YOLK SAC LARVA PROLARVA 4.6 " 195 6.2 JAd TCS . SUCKER FAMILY PROLARVA 14% JAd TCS . 19; CRAPDIE SPECIES PROLARVA S.6 EGG 1.5 JAd TCS . 194 FRESMWATER ORUM ESG EGG 1.3 JAd TCS . 199 FRESiWATER ORUM EGG JAd TCS 61484 FRES4 WATER ORUM EGG EGG 1.5 19s 24.0 MAG TCS . 196 GIZZARD 5HAD JUVENILE
, JUVENILE 24.0 MAG TCS .
196 WHITD CRAPPIE MAG TCS LARVA 17.0 19^ WH I I E6 CRAPPIE 7.6 MAG TCS . 196 SUCKER FAMILY LARVA LARVA 17.0 MAG TCS . 19A G12ZARD SHAD MAG TCS . SUCKER FAMILY PROLARVA S.2 196 6.1 3EN TCS 61484 197 SUCKER FAMILY PROLARVA PROLARVA 4.8 3E9 TCS . 194 SUCKER FAMILY LARVA 16.2 3EV TCS . 199 G12ZARD SHAD BEM TCS SUCKER FAMILY PROLARVA S.O . 790 3EN TCS . 194 GIZZARD SHAD JUVENILE 22.0 LARVA 14.4 3EN TCS 61984 190 CA7P PROLARVA 7.2 3EN TCS . 190 SUCKER FAMILY M M M M M M m a m--g g g: g gg
W W W mm e a e g g g g , CALLAWAY ICTHYOPLANKTON HENCH DATA ALL SAMPLES 1984 SORTER IDENTFIER DATE LGFESTAGE LENGTH CID TAXON IN MM INITIALS INITIALS SORTED 7.8 BEN TCS . 199 GIZZARD SHAD LARVA TCS . 7.0 BEN 199 GIZZARD SHAq LARVA TCS . 6.4 BEN 199 MI'3NOW FAMMILY LARVA TCS .
~~ 7.2 AEN 199 MI'INOW FAMMILY LARVA S.0 REN TCS .
199 MINNOW FAM"?LY LARVA S.9 BEN TCS . 199 M1'1NOW FlMMI LY LARVA TCS . 6.9 HEN 199 MINNOW FAMMILY LARVA TCS . LARVA 8.0 HEN 199 MINNOW FAMMILY TCS . MINNOW FAMMILY LARVA S.8 BEN 199 6.7 OEN TCS . 199 MINNOW FAMMILY LARVA TCS 62884 LARVA 6.3 JAW 199 MINNOW rAMMILY JAW TC$ . GIZZARD SHA3 LARVA 84 199 34.0 JAW TCS 61994 200 CARP JUVENILE 8.5 JAW TCS . 700 MINNOW FA%MTLY LARVA 7.1 JAW TCS . 200 GIZZARD SHAD LARVA TCS . w 340 LARVA 5.2 JAW 200 SUCKER FAMILY JAW TCS . 1 SUCKER FAMILY LARVA 5.7 u 200 3.1 JAW TCS . 200 SUCKER FAMILY LARVA 7.2 JAW TCS . 200 MINNOW FAMMILY LARVA TCS . LARVA 7.0 JAW 200 MINNOW FAMMILY JAW TCS . MINNOW FAMMILY LARVA 6.6 700 6.5 JAW TCS . 200 MINNOW FAMMILY LARVA 61984 7.0 JAW TCS 200 MINNOW FAMMILY LARVA 6.7 JAW TCS . 200 MINNOW FAMMILY LARVA 6.9 JAW TCS . 200 MINN3W FAM9ILY LARVA 6.2 JAW TCS . g 200 MINNOW FAMMILY LARVA m 7.5 JAW TCS . POO MINNOW FAMMILY LARVA $ 7.2 JAW TCS . 200 MINNOW FAMMILY LARVA 3 7.0 JAW TCS . 200 MINNOW FAMMILY LARVA x 6.8 JAW TCS . 200 MINNOW FAMMILY LARVA = 6.2 JAW TCS . 200 MINH3W FAMMILY LARVA L 6.5 JAd TCS . 200 MINNOW FAMMILY LARVA ^ S.7 JAW TCS . 200 MINNOW FAMMILY LARVA TCS . S LARVA 6.1 JAW 200 MINNOW FAMMILY 5.4 JAW TCS . 3 200 MINNOW FAMMILY LARVA 5
- :w=
~
3 CALLAWAY ICTMYOPLANKTON HENCH DATA & ALL SAMPLES 1984 x LENGTH SORTER IDENTFIER DATE ? CID TAXON LIFESTAGE " IN M4 INITIALS INITIALS SORTED LARVA S.8 . JAW TCS . h 200 MINNOW FAMMILY 3 4.R JAW TCS . 200 SUNFISH SDECIES LARVA TCS PROLARVA 4.8 BEN . 200 MINNOW FAMMILY 61984 3 JUVENILE 34.0 BEN TCS 201 CARP TCS
?01 GIZZARD 3HAD LARVA 18.8 BEN .
5.8 BEN TCS . 201 G12ZARD SHA9 LARVA 6.8 REN TCS . 201 GIZZARD SHAD LARVA 8.1 REN TCS . 201 GIZZARD SHAS LARVA 12 2 BEN TCS .
?01 GIZZARD SHAD LARVA 42 REN TCS .
201 SUNFISM SPECIES LARVA 4.6 RE1 TCS 61984 201 SUNFISH SDECTES LARVA 6.0 BEN TCS . 201 HINNOW FAMMILY LARVA 6.6 BEN TCS . 201 HINNOW FAMMILY LARVA 7.7 BEN TCS . 201 MINNOW FAMMILY LARVA LARVA 7.6 BEN TCS . , 201 MINNOW FAMMILY TCS 61984 e MINNOW FAMMILY LARVA 7.7 OEN 201 TCF t MINNOW FAMMILY LARVA 7.0 REN . 201 TCS . MINNOW FAMMILY LARVA 7.0 REN 201 TCS MINNOW FAMMILY LARVA 6.5 BEN . 201 TCS LARVA S.R BEN . 201 MINNOW FAMMILY TCS MINNOW FAMMILY LARVA 6.7 BEN . 201 TCS MINNOW FAMMILY LARVA 6.0 BEN . 201 TsS LARVA 6.6 BEN . 201 SOCKER FAMILY LARVA S.1 BEN TCS . 201 SUCKER FAMILY TCS
?01 SUCKER FAMILY LARVA S.3 REN .
LARVA 19.3 JAW TCS . 202 BUFFALO SPECIES DROLARVA 6.0 JAW TCS . 202 GIZZARO SHAD TCS SUCKER FAMILY LARVA S.7 JAW . 202 JAW TCS . 202 MINNOW FAMMILY LARVA S.2 LARVA 6.5 JAW TCS . 202 MINNOW FAMMILY LARVA 7.5 JAW TCS . 702 MINNOW FAMMILY TCS HINNOW F A'NI LY LARVA 6.2 JAW . 202 JAW TCS . MINNOW FAMMILY LARVA 6.1 202 JAd TCS . I 202 MINNOW FAMMILY LARVA 6.0 MINNOW FAMMILY LARVA 62 JAd TCS . 202 M M M M M M M M M M M M M ' ~M M M* M MM
- -- -- - - - w t r- u s s CALLAVAY ICTdYOPL arm Tori atNCH D AT A ALL SAMDLES 1984 IDENTFIER DATE LENGTH SORTER LIFESTASE INITIALS 504TE7 CID TAXON IN M*1 INITIALS JAd TCS LARVA 7.2 91NN3W FAMMILY JAd TCS .
207 LARVA 6.1 TCS 61984 292 MINN3W FAMMILY 6.0 JAd LARVA TCS . 202 41NN3W F Att*4ILY 7.1 . JAW l LARVA JAd TCS . 202 AINN3W FA491LY 7.5 LARVA TCS . 202 41NN3W FA44ILY 6.8 Jad LARVA JAd TCS . 202 91NN3W FA44ILY S.9 l LA4VA JAa TCS . 202 MINN3W FAMMILY 6.7 LARVA JAd TCS 202 MINN3W FAMMILY 6.9 LARVA JAd TCS . 202 MINN3W FA44ILY 5.0 LARVA TCS . 202 SUNFISH SPECIES P OLARVA 4.7 JAW SUCKER FAMILY JAd TCS . 202 PROLARVA 6.0 TCS . 202 SUCKER FAMILY PROLARVA 4.5 -3 E N
't!NN3W FA441LY DEN TCS 202 LARVA 7.3 6198'+
MINN3W FAMMILY BFN TCS 202 JJVEf4 f LEt 20.3 TCS . "f 203 3 IZZARD SHAD 7.2 BEN 6 LARVA TCS . " 203 SIZZARD SHAD 6.9 BEN 3 IZZARD SHAD LA4VA BEV TCS . 201 LARVA 6.3 TCS . 203 91NN3W F ati4ILY 7.7 OEN I LARVA BEN TCS . 203 MINN3W F A4'41 LY 6.5 LARVA TCS . 203 MINN3W FAMMILY R.0 BEN LARVA TCS . 203 91NN3W FAMMILY 7.5 BEN LARVA TCS . P03 91NN3W FA4MILY 7.1 BEN LARVA TCS . 203 91NN3W FAuMILY 7.3 BEN LARVA TCS . 203 SUCKER FAMILY 4.1 BEN 'o LARVA TCS . 203 SUNFISH SPECIFS LARVA 4.3 BEN 6148'. $ SUNFISH SDECIES BEN TCS 203 P OLARVA 4.7 TCS . 3 SUCKER FA4ILY I 203 6.0 BEN PROLARVA TCS 6138 t. 203 SUCKER FAMILY 0 0.0 BEN
. :n NO FISH BEN TCS 204 0 .
TCS .
;a 205 NO FISH 0 . BEN . g NO FISH BEN TCS 205 0 .
TCS . o 207 NO FISH 7.S Jad 3 LARVA TCS . 208 'il NN3W F A644 I L Y FGG 1.4 Jad - rRESadATER DR.I'1 EGG BFN TCS . 208 LAWVA 6.7 704 MINN3d FAMMILY
" . Ius
'o m
CALLAWAY ICTHYOPLANKTON HENCH DATA - ALL SAMPLES 1984 LEtJGTH SORTER IDENTFIER DATE-CIO TAXON LIFESTAGE
- IN ttM INITIALS INITIALS S3RTED .
tJ PROLARVA 3.5 3EN TCS- . 209 SONFISH FAMILY BEN TCS . 3 LARVA' 6.6 200 MINN3W FAMMILY 3EN TCS . 3
-LARVA 7.3 ,
210 MINN3W FAMMILY 6.8 BEN TCS . 210 MINN3W FAMMILY LARVA 52084 S PROLA4VA U.? MAG- TCS Pil MINN3W FAMMILY MAG TCS . PROLARVA 7.0 P11 MINN3W FAMMILY MAG TCS . PROLARVA S.6 211 MINN3W FAMMILY MAG TCS . PROLARVA 6.1 211 MINN3W FAM91LY MAG TCS . PROLARVA 7.0 711 MINN3W FAMMILY '1 AG TCS . PROLARVA 6.2 Pil MINN3W FAMMILY MAG TCS . PROLARVA 6.8 211 MINN3W FAMMILY MAG TCS . PROLARVA S.9 211 MINN3W FAMMILY 6.0 MAG TCS . 211 MINN3W FAHMILY PROLARVA 4.5 MAG TCS . SUNFISH FAMILY LARVA 211 8.4 MAG TCS . w GIZZARD SHAD LARVA 211 6.5 MAG TCS . L 21I St1CKER FAMILY PROLARVA . m S.2 MAG TCS GIZZARD SHAD PROLARVA 211 PROLARVA 3.5 MAG TCS 52084 211 UNIDENTIFIED YOL4 SAC LARVA S.8 BE4 TCS . GIZ7ARD SHAD PROLARVA 211 4.7 9EN TCS . GIZ7ARD SHAD PRGLARVA 211 13.0 JAd TCS . GIZZARD SHAD LARVA 21? 7.9 JAW TCS . MINN3W FAMMILY LARVA 21? S.3 JAd TCS . SUCKER FAMILY PROLARVA 217 6.7 JAd TCS . MINN3W FAMMILY LARVA 21? 7.0 JAd TCS . MINN3W FAMMILY LARVA
- 21) 6.1 JAd TCS .
MINN3W FAMMILY LARVA Pl? 7.5 JAW TCS . GIZZARD SHAD LARVA 217 4.2 BEN TCS . SONFISH rAMILY PROLARVA 213 9.2 9EN. TCS . MINN3W FAMMILY LARVA 217 7.2 9EN TCS . MINN3W FAMMILY LARVA 211 6.4 9EN TCS .
>11NN3d FAMMILY LARVA 217 6.6 9EN TCS .
OINN3W FAMMILY LARVA 213 7.0 3EN TCS .
*ilNN3d FAMMILY LARVA 217 S.6 3EN TCS .
HINN3d FAMMILY LARVA 711 5.1 BEN TCS . SONFISH SPECIFS LARVA 211 W M M M M M m a m: m a m'. g g g
W M M M M M m m a g g g g g CALLAWAY ICT-iYOPL ANKTDN HENCH D AT A ALL' S A*4PLES 1984 SDRTER IDENTFIER DATE LIFESTAGE: LENGTH CIO TAXON INITIALS INITIALS SORTED IN M9 6.2 BEN TCS . 213 MINN3W F AM*4 I LY LARVA TCS . 6.2 H E*J 213 41NN3W FA4MILY LARVA 6.2 HEN TCS . 213 JNIDENTIFIED LARVA LARVA 8.2 BEN TCS . 213 SIZZARD SHAD LARVA 9.5 BEN TCS . 213 SIZZARD SHAD LARVA 7.2 JAW TCS . 214 SUCKER FA4 FLY PROLARVA 62094 5.6 JAW TCS 214 91NN3W FAMMILY PROLARVA 6.7 JAW TCS . 214 MINN3W FAM4ILY PROLARVA 7.7 JAW TCS . 214 SIZZARD SHAD LARVA TCS . LARVA 6.6 JAW 214 SIZZARD SHAD 6.5 JAW TCS . 214 31Z7ARD SHAD LARVA TCS . LARVA 6.8 JAW 214 SIZZARD SHAD 7.1 JAW TCS . 214 31Z7ARD SHAD LARVA S.2 JAW TCS . 214 SUCKER FAMILY PROLARVA 6.2 JAW TCS . 214 91NN3W F AM*4ILY LARVA TCS . e LARVA S.4 JAW 214 MINN3W FAMMILY PROLARVA S.2 JAW TCS . 1 214 SUCKER FAMILY TCS . a LARVA 6.0 JAW 214 41NN3W FAMMILY 6.5 JAW TCS . 214 MINNOW-FAMMILY LARVA S.7 JAW TCS . 214 SUNFISH SPECIES LARVA 7.1 MAG TCS . 215 91NN3W FAAMILY LARVA TCS . 6.5 MAG 215 MINN3W FAMMILY LARVA 6.2 MAG TCS . 215 MINN3d FAMMILY LARVA TCS . 6.8 MAG 215 MIN *13W FAMMILY LARVA H.1 MAG TCS . $ 215 3122ARD SHAD LARVA 7.2 MAG TCS . ]p 215 3 IZZARD SHAD LARVA ' H.2 MAG TCS . 21S SIZZARD SHAD LARVt. TCS . I LARVA 6.9 MAG x 215 SIZZARD SHAD MAG TCS 62004 JUVENILE 32.0 m 215 CARD 38.0 MAG TCS . 215 CARP JilVENILE TCS . L 1.0 MAG 215 41NN3W FAMMILY JUVENILE 3.1 '1 AG TCS . p 215 MINN3W FA*441LY JUVENILE o 9.7 MAG TCS . 219 3 IZZARD SHAD LARVA 3 14.6 HAG TCS . 215 3177ARD SHAD LARVA TCS . g 6.1 MAG 215 91NN3W FAMMILY LARVA
. me
%o CALLAWAY ICTHYOPLANKT09 BENCH DATA $
ALL SAMPLES 1964 S x CIO tax 0N LIFESTAGE LENGTH SORTEP IDENTFIER DATE. m IN MM INITIALS INITIALS SORTE3 m PROLARVA 5.2 MAG TCS . o 215 SUCKER FAMILY j 215 SUNFISH SPECIES LARVA 367 MAG TCS . SUNFISH SPECIES LARVA 4.6 MAG TCS . 215 5 PROLARVA 5.3 MAG TCS . 215 SUCKER FAMILY ~ 215 StlCKER FAMILY DROLARVA 7.1 MAG TCS . LARVA 10 2 BEN TCS . 216 GIl2ARD SHA0 PROLARVA 7.4 BEN TCS . 216 SUCKER FAMILY SUCKER FAMILY PROLARVA 5.7 REN TCS . 216 T Z, 216 MINNOW FAMMILY LARVA 7.1 BEN . LARVA 7.0 OEN TCS . 216 HINNOW FAMMILY ~ LARVA 7.7 BEN TCS . 216 GIZZARD SHAD LARVA 46 BEN TCS . 216 GIZZARD SHA0 LARVA 5.2 BEN TCS . 216 SUNFISH FAMILY MINNOW FAM4ILY PROLARVA 63 BEN TC3 . 216 MINNOW FAM4ILY PROLARVA S.2 BEN TCS . e 216 6208<, MINNOW FAMMILY PROLARVA 67 DEN TCS s 216 $ MINNOW FAMMILY DROLARVA 6.9 HEN TCS . 216 DROLARVA 7.0 BEN TCS .
?l6 MINNOW FAM91L7 DROLARVA 66 REN TCS .
216 MINNOW FAM4TLY SUCKER FAMILY PROLARVA 7.0 REN TCS . 216 , 62664 JUVENILE 39.0 BEN TCS 217 CARP JOVENILE 19.0 HEN TCS . 217 CARP LARVA 14.8 BEN TCS . 217 CARP LARVA 14.0 HEN TCS . 217 CARP GIZZARD SHAD LARVA 19 2 HEN TCS . 217 JUVENILE 20 0 BEN TCS . 217 G1ZZARD SHA9 GIZZARD SHA0 JUVENILE 22 0 BEN TCS . 217 217 GIZZAR9 SHAD JUVENILE 23.0 BEN TCS . GIZZARD SHAD LARV+ 12 6 HEN TCS . 217 GIZZARD SHAD LARVA 12.0 BEN TCS . 217 GIZZARD SHAD LARVA 11 2 REN TCS . 217 LARVA 10.4 6EN TCS . 217 GIZZARD SHAD LARVA 14.0 REN TCS . 217 G12ZARD.SHA0 GIZZARD SHAO JUVENILE 22 0 AEN TCS . 217 GIZZAR0 SHAD LARVA 19.0 BEN TCF . 217 M M M M M M M M M M M m m-m a m: m g g
CALLAWAY ICT4YOPLANRTON BENCH DATA ALL SA*4PLES 1984 LENGTH SORTER IDEVTFIER DATE CIO T A x0N: LIFESTAGE s'1R T ED IN M9 INITIALS INITIALS JUVENILE 22.0 BEN TCS . 217 GIZZARD SHAD BEN TCS . LARVA 6.8 217 SU1 FISH SPECIES 3EN TCS 62684 LARVA 7.1 217 MINN3w FAMMILY JAd TCS . JUVENILE 31.0 21R GIZZARD SHAD JAd TCS . JUVENILE 29.0 219 GIZZARD SHAD JAd TCS . JUVENILE 36.0 21A GIZZARD SHAD 24.0 JAd TCS . 219 GIZZARD SHAD JUVENILE 24.0 JAd TCS . 219 GIZZARD SHAD JUVENILE 16.4 JAd TCS . 219 CARP LARVA 14.2 JAd TCS . PIA CARP LARVA 13.4 JAd TCS . 21A CARP LARVA JUVENILE 20.1 JAd TC9 . Pla GIZZARD SHAD JAd TCS GIZZARD SHAD LARVA 19.0 . 21u 6.9 JAd TCS . 219 GIZZARD SHAn LARVA LARVA 6.5 JAd TCS . 214 GIZZARD SHAD LARVA S.7 JAd TCS . 7
?)P MINN3w FAMMILY LARVA 6.7 JAd TCS . g PlR HINN34 FAMMILY 7.7 JAd TCS .
218 GIZ/ARD SHAD LARVA 4.1 JAd TCS . SUNFISH SPECIES LARVA 21A 22.0 9EN TCS . SUNFISH SPECIES LARVA 214 22.0 BEN TCS . SUNFISH SPECIES LARVA 214 21.0 BEN TCS . SUNFISH SPECIES LARVA 210 18.0 3EN TCS . 219 SUNFISH SPECIES LARVA LARVA 21.0 BEN TCS . 210 SUNFISH SPECIES 19.0 BEN TCS 67584 SUNFISH SPECIES LARVA 21Q 17.0 BEN TCS . . 3 SUNFISH SPECIES LARVA 210 22.0 9EN TCS . t GIZZARD SHAD JUVENILE 210 23.0 9EN TCS . ls GIZZARD SHAD JUVENILE 21Q LARVA 19.3 BEN TCS . 5 219 GIZ7ARD SHAD 7.3 BEN TCS . 41 NN 3'4 FAMMILY LARVA 710 4.3 3EN TCS . SUNFISH SPECitS LARVA 219 PHOLARVA . BEN TCS . ? 210 UNIDENTIFIED YOL< 9AC LARVA J8.0 BEN TCS . CARP JUVENILE A 210 JUVENILE 23.0 3EN TCS . Plo CARP 3EN TCS . 3 LARVA 16.4 214 CARP ,, b
- . In a
u g CALLAWAY ICTHYOPLANKTON BENCH DATA a ALL SAMDLES 1984. r
' LENGTH SORTER IDENTFIER DATE a CID TAXON LIFESTAGE IN MM INITIALS INITIALS SORTED -
219 MINNOW FAMMILY LARVA 13.4 HEN TCS . so 11.R BEN TCS . 219 MINNOW FAMMILY LARVA 5 13.2 BEN TCS . 219 MINNOW FAMMILY LARVA
~ MINNOW FAMMILY LARVA 9.0 REN iCS . 2 219 BEN TCS . ~
219 MINNOW FAMMILY LARVA 6.9 JOVENILE S2.0 JAW TCS . 220 CARP TCS GIZZARD SHAD JUVENILE ?9.0 JAd . 220 JAd TCS . 220 GIZZARD SHAD JUVENILE 29.0 JUVENILE 12.0 JAW TCS . 220 GIZZARD SHAD TCS JUVENILE 23.0 JAW . 220 GIZZARD SHAD TCS GIZZARD SHAD JUVENILE 24.0 JAd . 220 TCS 62684 MINNOW FAM*ILY LARVA 17.2 JAd 220 JAd TCS . 220 MINNOW FAMMILY LARVA 13.0 MINNOW FAMMILY LARVA 16.0 JAd TCS . 220 TCS GIZZARD SHAD JdVENILE 21.n JAd . 220 JAd TCS . o 220 GIZZARD SHAD JUVENILE 21.0 JUVENILE 20.0 JAd TCS . & 220 GIZZARD SHAD o GIZZARD SHAD LARVA 19.0 JAd TCS . 220 JAd TCS . 220 GIZZARD SHAD JdVENILE 20.0 LARVA 19.0 JAd TCS . 220 GIZZARD SHAD TCS GIZZARD SHAD LARVA 19.0 JAd . 220 JAd TCS . MINNOW FAMMILY LARVA 6.9
?20 TCS 220 MINNOW FAMMILY LARVA 7.1 JAW .
MINNOW FAMMILY LARVA 7.2 JAd TCS . 220 TCS MINNOW FAMMILY LARVA 6.1 JAd . 220 jai TCS . 220 SUCKER FAMILY DROLARVA S.1 PROLARVA 6.2 JAW TCS . 220 GIZZARD SHAD GIZZARD SHA7 PROLARVA 6.5 JAd TCS . 220 JAd TCS . 220 SUNFISM SPECIES PROLARVA 4.0 FRESHWATER DRU+ DRDLARVA S.1 JAd TCS . 220 BEN TCS . 221 CARP ~~ JdVENILE 46.0 13.6 REN TCS . 221 HINN06 FAMMILY LARVA 12.0 BEN TCS . 221 M19N0d FAMMILY LARVA LARVA 10.0 PEN TCS 62684 221 MINNOW FAMMILY TCS LARVA 13.2 BEN . 221 MI1NOW FAMMILY E E E E E E E M M M g g: g g g
m M M M M M M M M M M M M M M M M CALLAWAY ICTHYOPLANKTON BENCH DATA ALL SAMPLES 1984 LENGTH SORTER IDENTFIER DATE* CIO TAxDV LIFESTAGE IN MM INITIALS INITIALS SDRTE1 LARVA 4.S BEN TCS . 221 rRES4 WATER DRM4 TCS JUVENILE. 23.0 BEN . 221 31ZlARD SHAD TCS JUVENILEi 24.0 BEN . 221 GIZZARD SHAD TCS LARVA 18.2 BEN . 221 3 IZZARD SHAD MAG TCS - . 222 CARP JUVENILEi 35.0 JUVEf11 lei 25.0 4AG TCS . 222 CARP 4AG TCS . 222 CARP JUVENILE- 30.0 LARVA 15.4 MAG TCS . 2d? 312ZARD SHAD TCS LARVA 13.2 MAG . 222 SIZZARD SHAD MAG TCS . 222 3 IZZARD SHAD LARVA 12.0 1R.0 MAG TCS . 222 31ZZARD SHAD LARVA LARVA 12.2 MAG TCS . P22 MINN3W FAMMILY MAG TCS . 22P 91NN3W FAMMILY LARVA 11 0 11.0 MAG TCS .
?d2 91NN3W FAMMILY LARVA JUVENILE + 23.0 MAG TCS .
222 SIZZARD SHAD TCS ? JUVENILEi 8.2 MA3 . 222 3 IZZARD SHAD TCS m LARVA 15.6 BEN .
~
223 4IN'J3W F AM4ILY TCS LARVA 11.2 SEN . 223 MINN3d FAMMILY BEN TCS . 9?NN3W FAMMILY LARVA 6.3 223 JAW TCS . 2d4 SIZZARD SHAD JuVENILEi 22.0 LARVA 11.4 MAS TCS 62584 225 91'JN3W FAMMILY MA3 TCS . 225 SIZZARD SHAD LARVA 5.7 LARVA 7.4 MAG TCS . 2d5 SIZZARD SHAD TCS SIZZARD SHAD JtiVENILE 20.2 MAG . 225 TCS . . 3 41NN3W FAMMILY LARVA A.B $4 A G 225 BE9 TCS 62684 t 0 0.0 226 ND FISH PRDLARVA 5.6 JAW TCS . 3 227 SUCKER FAMILY TCS 5, EGG 1.4 JAW . 227 TRESidATER DRUM EGG TCS p EGG In.o BE'J . 228 91NN3W Fav9ILY MAG TCS . 229 JUVENILE) 3R.0 CARP JUVEfJ I L E' 37.0 MA3 TCS . ? 229 CARP MAS TCS . 2 3 IZZARD SHAD JUV EfJ I lei 11.6 229 MAG TCS . o 229 SIZZMD SHAD JJVENILEi 11.4 JUVENILE. 14.0 Ma3 TCS . 3 224 31ZZARD SHAD TCS JU V EN I LE- 1/.B 4AG . _ 224 SIZZAPD SHAD _ =
p l Appendix B 2 (cont'd) . B-52 4 8 M
, c e e e e o e e eJ C e e e e e o e e e e e e e e o e e o e e e4CO m eeee W m W S- N k& N #
j #
< O O@
T f W LA
' wJ m m m m m m W W m mLAth m m m m m m m e e m m mLA m m m m m m m m m m ,i k -
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
>H>->->>>->-H>>-F>>->>->->->->=>>->p.>.>-k>>=>>b.>>H Ww Q
e .2 . m l A , t% C O C O n n L% Q O 777777777*/777777777777777 T <! Ww W W W tu W
>>= <! <! <! et <! 4 <14 <1 4 W W W W W W W W W W W W W W W W W W W W:D m m m tr fD fY w T T T T T T T T T T tD m m m m to m m m m m m CD m to m CD m tr1 af C2 > sr e==
4 O ' I 2 4 D C N (9 T G, C h U I
>- T C K f% (D C C C C C N C C C C C C C C C C C C C C C 4 CI e e o e e e e e e e e e o e e e e e e . . . e e e e e e e o e e e-~ e e E 2 w N # N C N ew m C Lii 4MNNNNNNwNNwNem m tD T D N N C w e C N N C Cw4 w N 4*=% me=c Os m % f% wd 4 , W2 w w .=* e= *= N N ** N 7 Os Jw O *=
Y (n 2W . 4J W 4 W W W W W LM W W LU W W W J (L Q W W LaJ W W W W > J J J J A J J JJ J CL T 4 J J.J.J J .J. m T .J. -e w w >= ~ . O sg > J. A. --
>m C 2 2 2 2 2 2 2 <! 4 4 2 2 2 2 2 2 2 2 <t 2 2 <! 2 *T 2 4 4 <! 4> >> <!>*2><f> <! > "<3 T W W W W W W W id > > J to to to W W W W W > W W > W > W> tr & cr Cr 3 (Y n Cr Y Cr >. J 6 > > > > > > > tr er O > > > > > > > > a > > & > tv U .J w 3 3 3 3"")3 3 *')3 ")4 .J at 2J 3 3 3 3 3 3 3 3 <! 3 3 <1 3 a:t 3 <t 414 4 4 4 <! <CI4J<!J CL *) ") ~) 7 ") "") 7 7 .J "") 7 J ""J J *) J J J I .J -.J .J M *1 J ""> ") "*) '"")
g w 4 3 <f
<t > .,)
J tv E 4 4 ' J U () , sa m
.J O
V W >- > 3 T I
>>>>> > w J 1 (Y J J J .J J -e= we= w C C O O C OOOOOOOOOOOOOOCCCOOOM .x <r <z <r er <r <r <x <r <r <* 4 <r <3 c: <x < <ra:t W T T wC T T T T T 4 as og <r tu T T T I T I I I I *-* ImTm ImTm IenI tnI Tm ImTin ItnImTmTin Tm m I Tm ImIm(1m T T 2.
m 4 <t to
<r 4 c c er m m n m ML La. L >
k k kin.6 <r O O O O >- O O O O O O O (*l O O O O O O O O O O O I 33333fr22a2 Cr CL Cr n n & Cr ct m a T & a a a Cr (14a<ra m == 3 (*. 'm ("1 T T 7 n O O O t% sr er <r 4 tal er <r a:t e af cr 4 <r mz <r a:r <r of <r o er =2 O Z 2 2 2 2 N N N N O fl CL N N N N N N N N N N N f% N N N N N N N k 7 2 m st q ?7 == 7
= 7 7 w .N N N N ** T rY N-->=
7<t4m N N NwN N- N N >= N N N N 3T N N N==>=ww N N Nk N 7 7 7 w T.TTTTCCCCBUUCCCCCCCCCOCCCCCCCCCm7: c~ O O c O c c c c n 3 c c c c c c c c c c c c c c c c c c c c c. c c c c N N N N N N N N N N m f9 m m m m m m m m m m M m M M M f9 m M M m (919 m l
.-e U f( N ft N (t N N N N f\ N (% N N ft ft N f% N f% N N ft f% N N N ft ft N f\. (% f\, N N l
l-CALLAWAY ICTHYOPLANKTON BEMCH DATA ALL SAMPLES 1984 IDENTFIER DATE LENGTH SDHTER TAXDN LIFESTA3E INITIALS INITIALS SDRTED CID IN MM BEN TCS EGG 1.5 TCS . 230 rRES4 DATER DRUM EGG 41.0 Jad CARP JUVENILEf JAd TCS . 231 JUVENILE 4 27.0 . 3 IZZARD SHAD JAd TCS 231 JUVENILES 21.0 TCS . 231 3 IZZARD SHAD 22.0 JAd JJVENILEf TCS . 231 3 IZZARD SHAD 22.0 JAW JUVENILEI JAd TCS . 231 3IZZAPD SHAD JUVENILEi 21.0 . 31ZZARD SHAD JAd TCS 231 LARVA 18.0 TCS . 231 3 IZZARD SHAD 2n.0 JAd JUVENILEf JAd TC$ . 231 3 IZZARD SHAD 18.0 LARVA JAd TCS . 231 3 IZZARD SHAD 19.0 LARVA JAd TCS . 231 GIZZARD SHAD 18.0 LARVA JAd TCS . 231 3 IZZARD SHAD 20.0 31ZZARD SHAD JUVENILEi JAd TCS . 231 LARVA *. 0 TCS . 231 3 IZZARD SHAD ^ JAd 6268'. y LARVA . JAd TCS 231 3 IZZARD SHAD - 11.2 m LARVA JAd TCS . 231 41NN3W FAMMILY 10.0 LARVA ICS . 231 3 IZZARD SHAD n.S JAd LARVA JAd TCS . 231 3 IZZARD SHAD 8.7 LARVA TCS . 231 3 IZZARD THAD 7.9 JAd 3 IZZARD SHAD LARVA JAd TCS . 231 LARVA 11 4 . 3 IZZARD SHAD JAd TCS 231 LARVA 6.7 . AINN UW FAMMILY JAd TCS 231 LARVA 6.3 . 4 INN 3W FAMMILY JAd TCS 231 SUNFISH FAMILY LARVA 4.6 JAd TCS . @ 231 PROLARVA 4.7 TCS . T 231 SIZZARD SHAD 7.6 JAd 5 PROLARVA TCS . 231 3ADDLEFISH 30.0 BEN & JUVENILE: BEN TCS . X 2J2 CARP 21.0 JUVENILE. TCS . 2J2 3 IZZARD SHAD JUVENILEi 20.0 BEN m 3 IZZARD SHAD BFN TCS 232 JUVENILE 1 22.0 TCS . L 232 SIZZARD SHAD 18.0 BEN - LARVA BEN TCS . 232 3 IZZARD SHAD 20.0 o LARVA TCS . 232 SIZZARD SHAD 16.0 BEN 3 LARVA BEN TCS . 232 SIZZARD SHAD LARVA 14.0 - 3 IZZARD SHAD BEN TCS . 232 JIVENILEt 22 0 232 3 IZZARD SHAD
5 i 5 CALLAWAY ICTHYOPLANKTON tiENCH D AT A ALL SAMPLES 1984 & x LENGTH SORTER IDENTFIER DATE' m CID TAXDN LIFESTA3E ;, IN HM INITIALS INITIALS SORTED
^
19.0 BEN TCS . o 232 312ZARD SHAD LARVA 232 3 IZZARD SHAD LARVA 17.0 BEN TCS . 1 LARVA 16 0 BEN TCS 62684 232 3 IZZARD SHAD TCS 5 LARVA 19.0 BEN . 232 312ZARD' SHAD TCS
~
LARVA 14.0 BEN . 232 31ZZARD SHAD TCS 232 312ZARD SHAD LARVA 17.0 BEN . LARVA 15.0 BEN TCS . 232 31ZZARD SHAD LARVA 12.0 BEN TCS . 232 31ZZARD SHAD TCS LARVA 12.0 BEN . 232 3 IZZARD SHAD TCS LARVA Q.0 BEN . 232 31ZZARD SHAD TCS LARVA 14.0 BEN . 232 31ZZARD SHAD TCS SUNFISH SPECIES LARVA 4.7 BEN . 232 TCS LARVA 6.5 BEN . 232 HINN3W FAuMILY TCS LARVA S.2 BEN . 232 MINN3W FAH4ILY TCS LARVA 6.0 BEN . a 232 MINN3W FAMMILY TCS e SUNFISH FAMILY PROLARVA 4.1 BEN . 232 TCS I LARVA 12.0 BEN . 232 MINN3W FAMMILY TCS 233 SIZZARD SHAD PROLARVA S.3 MAG . LARVA 16.0 MAG TCS . 233 SIZZARD SHAD TCS 233 3-IZZARD SHAD LARVA 11.0 MAG . LARVA 15.2 MAG TCS . 233 SIZZARD SHAD TCS 233 3 IZZARD SHAD LARVA 18.0 MAG . JifvENILD 20.0 MAG TCS . 233 SIZZARD SHAD LARVA 19.0 MAG TCS . 233 3122ARD SHAD TCS 62694 233 3 IZZARD SHAD JuvENILD 21.0 MAG JuVENILEi 20.0 MAG TCS . 233 3 IZZARD SHAD TCS JUVENILE' 24.0 MAG . 233 31ZZARD SHAD TCS
.tuvENILD 21.0 MAG .
233 3 IZZARD SHAD TCS SIZZARD SHAD JUVENILEi 21 0 MAG . 233 TCS 233 MINN3W FAMMILY LARVA 6.5 MAG . LARVA 7.3 MAG TCS . 233 MINN3W FAMMILY LARVA 7.2 MAG TCS . 233 HINN3W FAMMILY MAG TCS 233 HINN3W FnMMILY PROLARVA S.6 . 233 rRESMWATER DRuu PROLARVA S.2 MAG TCS . PROLARVA 3.9 MAG TCS . 233 SUNFISH FAMILY M M M M M M'W M M M M m m m a mm mg
W M M ~ ' W_ _ M LM_J L_J l I CALLAWAY ICTHYOPLANKTON HENCH DATA ALL SA*4PLES 1984 IDENTFIER DATE. LIFESTAGE LENGTH SORTER tax 0N INITIALS SORTED CID IN MM INITIALS MAG TCS 62794 EGG 1.7 TCS . 233 rRESdWATER DRUM EGG 37.0 JAd CARP JUVENILE TCS . 234 JUVENILEi 35 0 Jad ~ JAd TCS . 234 CARP JUVENILEt 31 0 . CARP JAd TCS 234 JUVENILEi 24.0 2Ju 3 IZZARD SHAD JAd TCS . JUVENILE 4 20.0 TCS . 239 3 IZZARD SHAD 19.0 JAd LARVA TCS . 234 3 IZZARD SHAD 20.0 JAd JUVENILEi TCS . 234 GIZZARD SHAD 19.0 JAd LARVA TCS . 234 GIZZARD SHAD 14.0 JAd LARVA JAd TCS . 234 SIZZARD SHAD J.IVENILEi ?l.0 SIZZARD SHAD JAd TCS 62794 234 LARVA 17.0 l 3 IZZARD SHAD JAd TCS . 2J4 LARVA 10.0 SIZZARD SHAD JAd TCS . 234 LARVA 7.6 m TCS . 234 FRESiWATER DROM LARVA R.2 JAd TCS . j, 234 rRES4 WATER DROM R.8 JAd w LARVA TCS . 234 MINN3W FAMMILY 12 2 JAd LARVA TCS . 234 MINN3W FAMMILY 17.6 JAd LARVA TCS . 2J4 SEA BASS FAMILY 11,2 JAd LARVA TCS . 2J4 MINN3W FAMMILY 13.4 JAd LARVA TCS . 239 MINN3W FAMMILY 10.0 JAd LARVA TCS . 2J4 MINN3W FAMMILY 14.0 JAd MINNOW FAMMILY LARVA TCS . 234 11.0 JAd LARVA TCS . MINN3W FAMMILY JAd 2J4 234 GIZZARD SHAD PROLARVA 4.0 4.6 Jad TCS . @ PR3 LARVA TCS 627a4 'g 2J4 SIZZARD SHAD 6.1 Jaw a LARVA TCS . 234 MINNJW FAMMILY 7.0 JAd $ MINN3W FAMMILY LARVA TCS . 234 S.B JAW x LARVA TCS . 2 3 :. MINN3W FAMMILY PROLARVA 4.2 JAd m TCS . 2J4 rRES4 WATER DR94 LARVA 6.1 JAd TCS . 234 MINN3W FAMMILY 7.0 JAd LARVA TCS . _ 234 FRESMWATER DRd4 5.8 JAd o LADVA TCS . 234 rRES-lW ATER DROM 4.2 JAd rRES4 WATER DRU" PRDLARVA MAG TCS 70394 S 234 JUVENILE 46.0 " CARP MAG TCS . _ 2JS JdVENILE< 21. (, 235 3172ARD SHAD 3 m
z. Yo CALLAWAY ICTHYOPLANKTON BENCH DATA ALL. SAMPLES 1984 )x IDENTFIER DaTE m LIFESTAGE LENGTH SORTER CIO T A X O N. INITIALS INITIALS 57RTED L IN MM
^
7.0 MAG TCS . o 239 GIZZARD SHAD PROLARVA PROLARVA 6.I MAG TCS . O 23S MINN3W FAMMILY MAG TCS . 239 GIZZARD 5HAD PROLARVA 3.6 a JUVENILE 22.0 JAd TCS . 236 MINN3W FAMMILY TCS
~
236 F4ESiWATER DRUM LARVA 16.0 JAW . LARVA 1S.0 JAd TCS . 236 FRES4 WATER 0909 TCS UNIDENTIrIED LARVA LARVA 11.0 JAd . 236 JAW TCS . UNIDENTIFIED LARVA LARVA 11.4 23A JAd TCS . MINN3W FAMMILY LARVA 7.0 236 6.5 JAd TCS . 23A MINN3W FAMMILY LARVA LARVA 6.7 JAd TCS . 236 MINN3W FAMMILY TCS LARVA 4.3 JAd . 23A FRES4 WATER DROM 4.S JAd TCS . 236 SUCKER FAMILY PROLARVA JUVENILE 23.0 BEN TCS . 237 GIZZARD SHAD TCS LARVA 9.1 BEN . 737 FRESiWATER DRUM TCS . m PROLARVA 3.8 BE M-237 FRESiWATER DRUM JUVENILE 21.0 MAG TCS 70S84 5 234 MINN3W FAMMILY
- LARVA S.8 MAG TCS .
23A FRES4 WATER 040% TCS PROLARVA 6.2 MAG . 23A MINN3W FAMMILY TCS JUVENILE 23.0 9EV . 234 MINN3W FAMMILY TCS PROLARVA 4.0 BEN . 239 FRESiWATER DRUM TCS JUVENILE 31.0 JAW . 240 FRESiWATER DRUM JUVENILE 2S.0 JAd TCS . 240 GIZZARD SHAD LARVA 9.0 JAd TCS . 24' SUCKER FAMILY PROLARVA 3.4 JAd TCS . 246 FRES4 WATER DRUM PROLARVA 3.9 JAd TCS . 240 FRESiWATER DRUM TCS 70S84 PROLARVA 4.0 JAW 240 FRESiWATER DRUM PROLARVA 2.4 JAd TCS . 240 UNIDENTIrIED YOLK SAC LARVA BEN TCS 70S84 NO FISH 0 0.0 241 MAG- TCS . MINN3W FAMMILY JUVENILE 30.0 247 TCS 247 MINN3W FAMMILY JUVENILE 28.0 MAG > . JUVENILE 29.0 MAG TCS . 24P MINN3W FAMMILY MAG TCS . MINN3W FAMMILY LARVA I4.2 24? 6.0 MAG TCS . 247 MINN3W FAMMILY PROLARVA PROLARVA 6.2 MAG TCS . 247 MINN3W FAMMILY E E E E E ' E E W M M -~ g g g; g g g
E E E E E M M g g g g g M M CALLAWAY ICTdYOPLANKTON HENCH DATA ALL SAMPLES 1984 LENGTil 50dTER IDEf 4TF IER DATO C10 TAXON LIFESTA3E I N M$4 INITIALS INITIALS 504 T E-) 4.1 MAG TCS . 242 SUNFISH SPECIES PROLARVA 4.0 JAW TCS . 243 SUC<ER FAMILY PROLARVA 70684 22.0 MAG TCS 244 MINN3W F At44 T LY JUVENILD 59 MAG TCS . 244 41NN3W FAMMILY PROLARVA 8.6 MAG TCS . 244 CRAPDIE SPECIFS LARVA 17.4 MAG TCS . 244 MINN3W FAMs11LY J:sVENILE 7.2 MAG TCS . 244 SUCKER FAMILY LARVA 70584 0 0.0 BEN TCS 245 NO FISH JAd TCS 70584 SUC<ER FAMILY LARVA 6.8 246 BEN TCS 70584 247 MINNSW FAMMILY JfvENILO 24.0 TCS . JUVENILD 22.0 BEN 247 MINN3.d FAMMILY BEN TCS . JUVENILO 19.0 247 CRAPDIE SPECIES BEN TCS . 247 CRADDIE SPECIES JUVENILD 19.4 10.2 BEN TCS . 247 30FFALO SDECIFS JUVENILEr S.7 BEN TCS . 247 9INNOW FAMMILY LARVA 70584 6.2 BEN TCS 247 91NN3W FAMMILY LARVA ? 6.5 BEN TCS . 247 MINN3W FAMMILY LARVA PaDLARVA 7.S BEN TCS . 3 247 SUCKER FAMILY BEN TCS . SUNFISH FAMILY PROLARVA S.4 247 21.0 BEN TCS . 247 SIZZARD SHAD LARVA 19.0 SEN TCS . 247 SIZZARD SHAD LARVA 17.0 SEN TCS . 247 312ZARD SHAD LARVA 21.0 SEN TCS . 31ZZARD SHAD J.IV E N I L E6 247 10.0 BFN Tr3 . 247 3 IZZARD SHAD LARVA 20.0 SEN TCS . 247 3 IZZARD SHAD JuVENILO TCS . $ JUVENILEi 21.0 BEN 247 SIZZARD SHAD SEN TCS . ] JUVENILD 2A.0 = 2*7 rRESHWATER OR P4 TCS 247 rRES4 WATER DRUM EGG EGG 1.6 BFN , 3 I.7 BEN TCS . 2 :. 7 rRES9 WATER ORUM EGG EGG x 13.4 *t A G TCS . 24H CRAP 31E SPECIES LARVA = 2c.0 TCS . 249 CRApalE SPECIES .)IVENILD st A G L 22.0 MAS TCS . 249 SEA 3 ASS FAMILY LARVA 17.4 MAG TCS . _ 246 SI77A40 SliAD LARVA o 18.0 MAS TCS . 249 3 IZZARD SHAD LARVA S 20.2 MAS TCS . 249 317Za4D SHAD JtlVENILE. - M
- : nus
-. a
4 i CALLAWAY ICTiYOPLANKTON HENCH DATA 5 ALL SAMPLES 19ft4 y LE NGTH SORTER IDEMTFIER DATE ? CIO TAxDN LIFESTAGE " IN toi INITIALS INIT1ALS SDRTED LARVA 18.0 MAG TCS . S 249 GIZZARD SHAD MAG TCS . 3 GlZZARD SHAD LARVA 19.8 244 TCS 70684 - LARVA 19.2 M A G-244 GIZZARD SHAD FRESMWATER DRUM LARVA 9.0 M A G- TCS . D 24n 4.3 MAG TCS . 24R FRES4 WATER DRUM PRDLARVA PROLARVA 15.0 MAG TCS . 24A FRES4 WATER DRUM MAG TCS . MINN3W FAMMILY LARVA 6.0 24a MAG TCS . 24p FRES4 WATER ORUM LARVA 6.2 PRDLARVA 6.0 MAG TCS . 244 SUCKER FAMILY MAG TCS . SUCKER FAMILY PRDLARVA S.3 24A MAG TCS . UNIDENTIFIED YOLK SAC LARVA PROLARVA 3.2 249 MAG TCS . FRES4 WATER DRUM Ens EGG 1.6 249 15 MAG TCS. . 249 FRESMWATER DRUM EGG EGG LARVA 16.4 BEM TCS . 249 CRAP 3.IE SPECIES TCS JUVENILE 20.0 BEV . 240 SEA BASS FAMILY 9EV TCS . 7 FRES4 WATER DRUM JUVENILE 26.0 24Q BEN TCS . $ GIZZARD SHAD JUVENILE 25.0 240 BEV TCS . GIZZARD SHAD LARVA 21.0 249 23.0 BEN TCS 70684 247 GIZ7ARD SHAD JUVENILE JUVENILE 19.2 9EM TCS . 249 GIZZARD SHAD TCS JUVENILE 17.6 9E9 . 249 GIZZARD SHAD TCS GIZZARD SHAD JUVENILE 19.1 9EN . 249 20.2 9EN TCS . 240 GIZZARD SHAD JUVEf1ILE JUVENILE 16.6 BEM TCS .
?40 GIZZARD SHAD MAG TCS 70686 GIZZARD SHAD LARVA 18.8 250 l'.6 MAG TCS .
2Sn GIZZARD SHAD LARVA LARVA 18.3 MAG TCS . 250 GIZZARD SHAD MAG TCS . LARVA 19.2 250 GIZZARD SHAD MAG TCS . LARVA 20.3 250 GIZZARD SHAD MAG TCS . UNIDENTIrIED YDLK SAC LARVA PROLARVA 2.9 250 S.8 MAG TCS . 250 MIN 43d FAMMILY PRDLARVA LARVA 9.0 MAG TCS . 251 SUCKER FAMILY MAG- TCS . 251 SUCKER ,AMILY LARVA . FGG 1.0 MAG TCS . 251 UNIDENTIFIED FGG BEN TCS . LARVA 19.0 2SP MINN3W FAMMILY M M M M M M M m m m m a g g
,a - _ _ _ _ _ _ _
r
.M M . .M _M_.g g_g._g. g g E E E M _ M CALLAWAY ICTHYOPLANKTON RENCH DATA ALL SAMPLES 1984 IDENTFIER DATE ' LENGTH SORTER CID TAXON LIFESTAGE INITIALS INITIALS SORTE3 i IN HM REN TCS JUVENILE 24.0 252 MINNOW FAMMILY REN TCS .
LARVA 12 6 . 252 SUC<ER FAMILY 18.2 BEN TCS FRESHWATER DRJM LARVA TCS . 252 LARVA 6.8 REN 252 MINNOW FAMMILY BEN TCS . LARVA 6.5 252 FRESHWATER DROM BEN TCS . JdVENILE 26.0 . 252 GIZZARD SHAD OEN TCS LARVA 19.0 TCS 70694 252 GIZZARD SHAD 19.0 BEN GIZZARD SHAD LARVA TCS . 252 LARVA 18.0 BEM . 252 GIZZARD SHAD BEN TCS LARVA 18.3 TCS . 252 GIZZARD SHAD 2.7 OEN 252 UNI 3ENTIFIED EG3 EGG BEN TCS 71n84 JUVENILE 26.0 . 253 CAR 3 REN TCS LARVA 17.0 . 253 CARD 9EN TCS LARVA 16 9 253 MINNOW FAMMILY REN TCS . c JUVENILE 29.0 . 253 GIZZARD SHAD BEN TCS LARVA 19.0 TCS . E d53 FRESHWATER 0904 6.7 BEN
- l SUC<ER FAMILY LARVA TCS .
253 26.0 JAW l JdVENILE TCS . 254 C AR 3i JUVENILE 29.0 JAW . 254 MINN0W FAMMILY JAd TCS JdVENILE 12.0 . 254 GIZZARD SHAD JAd TCS JUVENILE 23.0 TCS . 254 GIZZARD SHAD 2].n JAd GIZZARD SHAD JdVENILE TCS . 254 24.0 JAd GIZZARD SHAD JUVENILE TCS . 254 JUVENILE 22.0 JAW lb ; 254 GIZZARD SHAD JAd TCS ' JdVENILE 24.0 TCS 71084 $ 254 GIZ7ARD SHAD 42 0 BEN CARA JUVENILE TCS . $ 255 JUVENILE 30.n BEN a 255 CAR 3: HEN TCS . JUVENILE 28.0 . 5 255 C AR3' BEN TCS JJVENILE 32.n 71084 m 255 CAH3 BEN TCS J'JVE N ILE 27.0 - 255 CARR REN TCS . JdVENILE 31 0 12 255 CARD. HEN TCS . 255 CARD LARVA 24.n BEN TCS . 1 JJVENILE 21 0 TCS . g 255 CARA 23.0 BEN - C A R 3, LARVA TCS . 255 21.0 BEN CA43 LARVA 255 Ma
?
E CALLAWAY ICL N0PL ANKTON nENCH DATA p ALL SAMDLES 19P4 m IDENTFIER DATE o LIFESTAGE LENGTH SORTER CID T A x0al SDRTE3 IN ?N INITIALS INITIALS _
'o AEN TCS . n 255 SEA BASS FAMILY JUVENILE 32 0 JdVENILE 19.4 REN TCS . ".
255 FRESHWATE7 ORIN 255 GIZZARu SHAD JUVENILE 29.0 BEN TCS . S JVVENILE 24.0 BEN TCS . 2S5 OIZZARD SHAD JJVENILE 23 0 REN TCS . 255 GIZZARD SHA7 JJVENILE 23.0 REN TCS .
/55 GIZZARD SHAD 2S5 GIZIARD SHAD JUVENILE 22 0 BEN ICS .
GIZZARO SHAO JJVENILE 21.0 REN TCS . 255 LARVA 6.5 REN TCS . 255 SUCKER FAMILY LARVA 7.7 BEN TCS .
?SS SUCKER FAMIL(
LARVA 12.4 BEN ICS . 2SS SUCKER FAMILY 710M0 LARVA B.1 J4W TCS 256 SUCKER FAMILY DROLARVA 5.7 JAd TCS . 256 SUCKER FAMIL" LARVA 5.8 JAd TCS . 256 SUCMER FAMILY LARVA 6.0 JAd TCS . 256 SUCKER FAMILY m 7.0 JAd TCS . 256 -SJCKER FAMILY LARVA 71GH4 E LARVA 6.7 JAd TCS 2S6 SUCKER FAMILY LARVA 8.5 JAd TCS . 2S6 SOCKER FAMILY LARVA 10.E JAd TCS . 256 GIZZARD SHA7 JdVENILE 31.0 JAd TCS . 246 GIZZARD SHAO GIZZARD SHA7 JUVENiiE 29.0 JAd TCS . 256 TCS
?56 GIZZARD SHA3 JJVEVILE 26.0 JAd . ?S6 GIZZARD SHA7 JJVENILE 24.0 JAd TCS .
JJVENILE 24.0 JAd TCS . 256 GIZZARD SH10 JJVENILE 25.0 JAa TCS . 256 GIZZARD SHA7 JJVENILE 27.0 JAd TCS . 256 GIZZARD SHAO JUVENILE 73.0 JAd TCS . 256 GIZZA49 SHA0 JJVENILE 23.0 JAd TCS . 256 G12ZARD SHA7 256 GIZZARD SHAS JUVENILE 22 0 JAd TCS . JJVENILE 21.0 JA4 TCS .
?S6 GIZZARD SHAD JJVENILE 72.0 JAd TCS .
P56 GIZZARD SHA7 256 GITZARD SHA7 JJVENILE 21.0 JAd TCS . JJVENILE 23.o JAd TCS . PS6 GIZZARD SHA9 TCS
?56 SI?ZARD SHA7 L A4VA 14.0 JAd .
LARVA 17.0 JAd TCS . 256 GIZZARD SHA7 - - num um e ame amm num amm sem m. - _.m. .. . ,, .
M M - M M M M M M M M M M M M M M M m; CALLAWAY ICT4YOPLANTTON HENCH DATA ALL SAMPLES 19% LENGTH SO2TER IDENTFIER 4 ATE CID TAXON LIFESTAbE s30TE3 IN MW INITIALS INITIALS JUVENILE 34.0 JAd TLS . 756 FRESHWATER 9304 TCS . JJVENILE 20.0 JAd 256 FRESHWATER D404 TCS . FRESHWATER 0304 JUVENILE 21.0 JAd PS6 JAd TCS 71 n e '. 256 F4ESHWATER 0404 JJVEaILE 19.0 JJVENILE 19.0 JAd TCS . 756 FRES4 WATER D304 TCS FRESHWATER 0404 JJVENILE 15.0 JAd . 256 JAd TCS . 256 FRESHWATER 9404 JJVENILE ?0.0 JJVENILE 14.4 .s A d TCS . 256 FRESHdATER Daud TCS . JJVENILE 39.0 JAd 256 CARP TCS . 256 CARP JJVENILE 31.0 JAd JAd TCS . I 256 CARP JJVENILE 34.0 JJVENILE 30.n JAd TCS . 256 CA4P JAd TCS . 256 CA4P JUVENILE 77.0 JUVENILE 29.0 JAd TCS . 256 CA7P TCS . JJVENILE 25.0 JAd
?S6 CA7P TCS . e i
JJVENILE 24.0 JAd 256 CARP JAd TCS . $ CAap JJVENILE 75.0 256 JAd TCS .
~
CA7P JdVENILE 24.n
?S6 JAd TCS . ?56 CA7P JJVENILE 21 0 JAd ICS .
256 CAQP L ARVA 19.n JAd TCS . 256 CA4P JJVENILE 72 0 18.n JAd TCS . 256 CAQP LARVA 61.0 JAd TCS . 256 CA4P JJVENILE JAd TCS . 756 CARP JJVENILE 37.0 JOVENILE 30.0 JAd TCS . 256 CARP TCS 710 % . 3,. JJVENILE 31.n JAd PS6 C 44P TCS ]O JJVENILE 32.0 JAd . 256 CARP JAd TCS . 756 CA4P JJVENILE 13.0 3 30.9 JAd TCS . PS5 C TOP JJVENILE p 74.0 JAd TCS . 256 ' JJVENILE JJVENILE 73.n JAd TCS . 256 L6? BEN TCS . . 340 LARVA S.1 757 SOCKER F A'dILY BEN TCS . '?' GIZZAPD SHAD JUVENILE 29.n o
?S7 9EN TCS .
257 GIZ7ARO SHA9 JJVENiLE ~11 ' o O 27.n TCS . 257 GIZZARO S440 JUVENILE 54 E N f.
,0 - .. rus
, I lllllll! a j* i m ;. $'s*5~ I8 m g
- ;IiiI i =
3 . . . . . . . . . . . . ( .2 . - . . . . . . . . . . . . . . . . . 94 E R 0 ET o 1 TR A O 1 7 7 's u DS a R ES - I L FA SSS3SSSSSSSSSSFSSSSSSSSSSSSSSSsSSss TI NT CCC.CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC TT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT T EI DN II
- A S =
T L A RA N N N N N N M N N N N N v. N N N N N N N N 4 N NNNNNNNNNMNa r D EI EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEFE H C TT RI ON BB9BBBRBBBB9BD8BBRBBRRRBRBRRBBRRBFP m N SI E B4 N9 O1 8 H m Tw . T KS GH n. 0. n. n. 0 0 0 3 0 0. o 0. n. 0. .n. 0 0 0. n. 0 0 0. n. 7. n. 7 7 68350. o. c. 0.u n. NE N 45332446339699673247315666669677 22222232232222222222222 2222222 AL LP EN LI a PM OA YS 4 TL CL E G EEEEEEEEEEEEEEEEEEEEEEE EEEEEEE LLLLLLL e I A A LLLLLLLLLLLLLLLLLLLLLLL II IIIIII I III IIIIIII I III IIIIII I ANNNNNNN Y T S NNNNNNNNNNNNNNNNNNNNNNNAAAA EEEEEEEEEEEEEEEEEEEEEEEVVVVVEEEEEEE s u A W E F VVVVVVVVVVVVVVVVVVVVVVVRRRRRVV/VVVV uJJJU s A L I L UUUUUUUUUUUUUUUUJUUUUUJAAAAAUJLLLLLJJJJJJJ JJJJJJJJJJJJJJJJJJJJJJJ' L A C t4M e uUU YYYYY DRR LLLLL7DDD997 9DDDDDDDO III IIAAAA AAA AAAAAA HHHHHHRRR SSSSSSEEE TTT MMMMMHHHHMHH AAAAASSSSSSS FFFFF m DDDDDDD DDDO9DAAA RRRRRRRRRRRR RRRRRRW WW EEEEEAAAAAAA 9 0 x AAAAAAHHH ZZZZZZSSSPPPPPPPPPPPPPPKKKKKZZZZZZZ ZZZZZZEEERRRRRRRRRRRRRRCCCCCZZZZZZZ m IIIIIIRRRAA AAAAAAAAAAAA UUUUUIIII III A T GGGGGGFF FCCCCCCCCCCCCCCSSSSSGGGGGGG
=
D 7777777777777777177777788B8H8689M94 55555555555555555555555555555555555 I C 222222222?22222222222222227222?2222 =
= ' L
D-63 ' hpnendsx B . "' ( c o n t. ' d ) ~ l n e e e e e e e e e e . . e e e e e e e e es cr e . . e e e e e e e e e e w W c W e. **
>- a N =t c Om - 3 WW *- J La. *z @ v m m m m 0 th O O O O V W W W W W LA @ W W W W W LA O O O O LA O L/ m @
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU l >- w Z> WM
>= >= p- > 6 >- H >- H H >= >- >- >= >= W >- > >- W >= H 6- W 6- >= >= W >= 6- >=W>= l l
e7 O. 4 @ e= J at W <1 777777777777?7777777777777777777 ?77 l O T kJ H
>= W &w O2 W W kJ W hJ t4J Lal W Laj W W W uJ W hJ uJ W W W W W kJ LAJ W u) W W W kJ kJ W h) La) LJ W CD CD (A T. E. K. T> (T CD E (E E E T CE 1 @ E (L E. T C C R LE CL CL E CC E E G1 R T G U
7 ma W 1 T4 7 ,7 T C~ T OC C 6-ym 6- T CCCCCCCCCCCCCCCCCCCC(%CCCCCCCCCCC eeeeeeeeeeeeeeeeeeeeeeeeoeeeoeoeeee cI I 7W
*t J t\
J 7 W7 J~ N m - J N N - f'1 e. m 7 C N & N 4 iO J J N 4 f LA 5 c -= c & N o N J J W W N N N N (% N N N N f% * = N N *- ~ f" N N t% N " ~ ~ 4 4 4 4 f% N !*1 f% N (% f\ N (L T O4
>W \ T >= J W hJ W W kJ W Laj W W W kJ LaJ W W W Lal W W W W W W aJ W W W LaJ W W uJ W W W U .J d J J .J J M 4 4 J - e Je J J e.=J J. J. e J. e J ==
J J J J ..J. J J. wJ .J.. w J. e J. w.JJ. .J. w J. . J J J.
. . . .J.
w . . e 77777777777777777777482477777?777777 I >
=T 3
V W km. kJ W W W W W taj LaJ W W W W W hJ W uJ W tal Laj W > > > kJ W W W W W W W W W W W
>>'A>>>>>>>'*>>)">") > > > > > "> > fr T fr > > > > > > > > > >")">")
3 "") 3 > 3 3 *5 4 4 4 "") "") 3 9 "") 3 "') *') ") 3 d w ""3 3 3 *") *3 *1 *") *") 3 *) 3" J l ") ") "") **) "') "") *) '") ") *') 7 ~1 "') *7 *") *7 ) *) "") *1 J .J .J "1 "1 *1 *") ") *7 *1 "") 7 *) *7 *1 _t I 4 U T T T T T T T 1r 23OOOOOO fr t) rrfr er() n fr OOCOCOCOCCCOCOOCCCOCCCC er 4 4 4 cr 4 er 4 4 4 <* 4 cr <t 4 l TIITIIIIIIITTIT&2aGnaaa O m m m m W W (A LA m m LA to m LA W W W ha taJ W W kJ 6- >->-t W >-t-O O F O O C O O O O O O O C O *2 ef *T *T 82 42 *T 4 W 4 atWerfr <1 2 2**fr424a4a4a<!<f a 2 a4 fretN4 14 11 T T1I2I I1T3I'tI 7 C N NN NNN NNNNNNNNNNNNN N NN NN NN NNN td N bl mtal m hi mtdmLaim ha 0 0u0t T a nra aft fl.CLft rr fr fr T1fy& rr4 (va rr a1 T w == e w e (y ry gr (y gy 3 'y (y <g 4 af af *T 4 <1 eT af eg v1 et og w p == e e w w >= e >=
>= C C C C C C C O O d 0 0 O O C 6 k h.La.Lo h. k La. U U U U U U U U U U U U O O CC m :D @ O T :D di T cc 2 CD CC C O Ts T T T t C T, CD 2 CD 1 T T CL T % 10 T G ** LA O O LA LA LA O LD m LA T LA O LA O O O LA LA O O LA W LA LA .A LA O LA LA O O LA O O U N N N N N f\ N N N f% f% ft N N N N N (V N N N fY ft N N N N N N fU N N N f% ft
go CALLAWAY ICTHYOPLANKTON RFNCH DATA i ALL SAMDLES 1984 ; 5 L'IFESTAGE LENGTH SORTER IDENTFIER DATE CID Tax 0N " IN M4 INITIALS INITIALS SDRTED 258 CARP JUVENILE 27.0 REN TCS . j REN TCS b 258 CARP JJVENILE 21 0 . JJVENILE 25 0 BEN TCS . - 258 CARP 258 CARP JUVENILE 23 0 BEN TCS . i JUVENILE 22 0 BEN TCS . 258 CARP JUVENILE 21.0 eEN TCS . 258 CARP JUVENILE 62.0 JAW TCS . 259 CARP 71184 GIZZARD SHAD JJVENILE 26.0 JAW TCS 260 261 GIZZARD SHAD JUVENILE 24.0 BEN TCS 71194 262 CARP J3VENILE 28.0 JAW TCS . SUCKER FAMILY LARVA 17.0 JAW TC$ . 262 262 SUCKER FAMILY LARVA 13 2 JAW TCS . SUCKER FAHILY LARVA 17.6 HEN TCS . 263 _ T JJVENILE 33.0 BEN TCS . 264 CA7P 264 CARP JUVENILE 22.0 BEN TCS . f 26S GIZZARD SHAD JJVENILE 23.0 BEN TCS . GIZZARD SHAC JUVENILE 20.0 REN TCS . 265 265 GIZZARD SHAD JUVENILE 27.0 BEN TCS . GIZZARD SHAD JUVENILE 26.0 REN TCS . 265 GIZZARD SHAD JdVINILE 24.0 BEN TCS . 265 26; GIZZARD SHA7 JJVENILE 24.0 PEN TCS . 265 GIZZARD SHAD JUVENILE 23.0 BEN TCS . 265 GIZZARD SHAD JUVENILE 25.0 BEN Tc5 . SIZZARD SHA3 JUVENILE 24.0 BEN TCS . 265 GIZZAPD SHA7 JUVENILE 22.0 BEN TCS . 265 JJVENILE 26.0 HEN TCS . 265 CARP 265 PERCH FAMILY 393 LARVA S.5 HEN TCS . MINNOW FAMMILY 3ROLARVA S.6 HEN TCS . 265 266 GIZZARD SHA7 JJVENTLE 2R.0 JAW TCS 71284 266 GIZZARD SHAD JJVENILE 26.0 J4W TCS . 266 GIZZARD SHAD JJVENILE 27.0 JAW TCS . 266 GIZZARD SHA7 JJVENILE 27.0 JAW TCS . 266 GIZZARD SHA7 JJVENTLE 25.0 JAW TCS . 266 GIZ7ARD SHA7 JJVENILE 24.0 JAW TCS . GIZZARO SHA7 JJVENILE 23.0 jaw TCS . 256 E E E E E E M M M W6 1 E3 M', m 3 3
.f;1 7 ll1l!fll 1 g m
~ eA& E
!733 I L s 2 ; ~h -
g D . . . 2 . . . . . . . . . ..4 4 . . . . . . . . . . . ...... - 88 E 22 ET 1 1 TR M A3 DS 77 M R ES I L FA TI SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSCCCCCCCCCCCCCCCCCCCC TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT E NT EI DN II E - S L RA EI d ddd wd44ddddddddNNNNNNNNVMNNNNNNNNN AAAAAEEEEEEEEEEEEEEEEEEE M a TT RI DN AAAAAAAAAAAJJJJJJJJJJJJJJJJ9B999999393999S9999 v SI a D H C H N E TM GM 000000.o.0000000.I 6 0 0 0 0 0 0 0 0 0.n. n. 0 n. 0098266 0 0 0 5. I . . D% t 341 22347 21 26975I22222222221 22222222222332 552634423091 2221 1 1 2 EN N9 LI O1 T
<S NE AL La E
G EEEEEEEEEEEEEEA EEEEEEEEEEEEEEEEEAA LLLLLLLLLLLLLLLLLVV Pg A LLLLLLLLLLLLLLV II II IIII II I IIIR II I I III III IIIII II4R DA YS T S NJ NNNNNNNNNNNNA NNNNNNNNNNNNNNNNNAA EEEEEEEEEEEEEEEEELL 4 E EEEEEEEEEEEEEEL t VVVVVVVVVVVVV3O T
+
s, F VVVVVVVVVVV VVVDGVVVV R CL I I A L UUUUUUUUUUUUUURGUUUUUUUUUUUUUUOUU4JJJJJJJJJJJJJJPEJJJJJJJ Y A W A A V L 7 L A A L C C A S%
<E L
OM y YO yL R DDDDDDDDDDD DDDDDDDDDDDDDDDDDD E AAA AAAAAAAAAA A A A LI I M AAAA AAA AAA A IRHHHHHHHHHHHHHHHH MM HHHHHHHHHHH rESSSSS5SSSSSSSSSS AA SSSSSSSSSSS IT FF DDDDDDDDDDD TADDDDDDDDDDDDDDDD RW RCRRRRRRRRR AAAA AA AA AA A NNRRRRRRRRRRRRRRRR E - AA A A AAAAAAA AAA AA E3 N D R ZZZZZZZZZZZPPPDSZZZZZZZZZZZZ2ZZZP<4 ZZZZZZZZZZZ4RRIEZZZZZZZZZZZZ2ZZZRCT A I I IIII I I II I AAAl RI IIIIII I I I II1 II I AU1 T GGGGGGGGGGGCCC'UFGGGGGGGGGGGGGGGGCS4 ' A 66A6A 66 6A 5 ,666 667777777 ' 77777777777 D I C - 555655555S5555555555555555S55555555 222222227P2227222222?222P2?77722727 fl1f(lfli l II 'f ffl/f - Il fIlflfi1(
;I l il l ll I =*
g__ vE 5 lT E S" a~ . g-- D . . . . . . . . . .4 . .4 . . . . .
- E 4 . . . 4 . . . . . . . . . .46 9 9 ET 9 6 7 T4 A7 D5 2
1 7 2 7 1 2 1 7 2 1 7 1 7 a 1 g 3 ES IL FA SSS9SSsSSSSSSSSSSSSSSSSSSSSsSSSSSsS CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC a TI NT EI TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT DN II m S L RA d ddG3G3Sddd ddd ddddd d ddd EI TT RI dddddddddddd AAAAAAAAAAAAAAAAAAAAaAAAAaAAAAA JJJJJJJJJJJJJJJMMMMMJJJJJJJJJJJJJJJ AAAa m A DN T SI A D M H C H 0 0 0 0 0 0. n. 0 0 0. 0. a. 0 0 6 0 0 0 0 0 0 0 0 0 0 0 8 0 5 0 0 0 0 0 0 N E H4 TM GM N 1 85361 3457321 04S3274 2222222222222S 4263291 1538R 2223222221212 320222 6235 1 M 8 Et N9 LI O1 T KS NE E EAEEEEEE M A L LR G LVLLLLLL DM A EE.EEEEEEEEEEEEAEEEEEEEEEEELLLLLLLLLLLLVLLLLLLLLLLL L! IIIIIIIIIIIIIIRII IIIII IIII IRIIIII I l 0A YS T S NNNNNNNNNNNNNNANNNNNNNNNNNANANNNNN* EEEEEEEEEEEEEELEEEEEEEEEEEVELEEEEEE M E VVVVVVVVVVVVVVDVVVVVVVVVVVRVDVVVVVV t F TL CL I A I L UUUUUUUUUUUUUURUUUUUUUUUUUAURUUUUUU JJJJJJJJJJJJJJPJJJJJJJJJJJLJPJJJJJJ Y A W A A V L a L A A C L M C A S K L M D Y Y L 1DD DDDDDDDDDDDDD AA AAA AA AAAAAA I DDD MA AA DDDDDDD AAA AAA A D E a AA M MHHH HHHHHHH I HHH HHHHHHHHHHHHH SSSSSSSSSSSSS ASSS SSSSSSS F SSS I F DDD DDDDDDDDDDDDD DDD DDDDDDD T RRRRRRRRRRRRR WR RR 3AAA RRRRRRR AAAA AA A E N aRR AA A M A AA AAAAA AA4AA M D x ZZZZZZZZZZ7ZZPNZZZPPZZZ2ZZZPDPPPZZ7 ZZZZZZZZZZZZZ4 NZZZ4RZZZ7ZZZ4IWR4ZZZ A II I I I III II IIIAIIII AAIII IIIIANAAAII I T GGGGGGGGGGGGGCMGGGCCGGGGGGGCUCCCGGG D aa4a8 4A a 0 44A A 9904006 n0 n09 00 0 1 1 1 I 1 1 7777777777777 5555556555566555655577 I C 2722222222222222222227222222?222222
_ ___ ~ - - - _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _____ U-67 $ gf1 dix C.2(cent'j) I I n o e e e e e e e o e e e o e ea s' eeoeeeeeeeeeeoeeeee I l I
- et O CV W
tal 6 (4 G N e= N I O W@ I *- J La. at
-w 7 >-
ta l e= VV@@VVVm@VVVVVVVDVVVm@@DVVVDVVVVWV@UUUUUUUUUUUUUUUU t >- >- H e- W 6 w e- H e- e- *- > 6- >= t- > > 6. >- >- > H H 6- > 6- 6- >= >= e- e-l O7 I 4 0 I > 4 O lr
'Y ac W e=
w >- n+* J lt's 1 'a** 1"s 1 1 1 1 4 at "1 "'sat "1et9 7et-)as*1 et * ;**~)<t 7 es 111 71 v 1r 1 1 11 1 't<11at1et1e
"") =* st =1 at **) at 1at*1 9 7as et"14"")at"1et 3et7et"1 7 71 4 et1** 1 "1*1 -') *1 2 +111'sTtM ** af 4 4 *1 *1 9 > 9 7 C2 IU 7 W
C4 77 (D WM I C-H YD 7W
*! .J T
6- Y tb 7 7 W2 tv 4 N N P") c @4m4 44 #4 th m 4Nm moMN4mNnNONommNrtNKNNm N f'iN f"%)N *= mN Nm NN 4 in N4 NO DO4
, NmN4 O += N Jn Jw tt 7 i .I O et >0 T
HJ tu J .J U .J C W J AW .J W W J JW W .JW W JW) I .JW W JW J.e.,)W W .J W =W J
. J.W J ,- d. W J. LaJJ J .W kJ .- uJ W 6aJ W W 4J I
J .J =w w *t at J ., m = . .J. .J . . J. = e= e-. .J. .J e= =w d V W 7777777777777777777777777777777777"'
== e n. .J. .) =
W W id W kJ kJ W W W td W LaJ W W id W W id La Ld to 60 LaJ W W > >W>LaJ > ** W >uJ W W LJ ul W W
*e L > > > > > > > > > "1 *1 *) 3 *1 '"> 3 "") '") 3 33 9933"1'")9*13 *1 7 "")*")> > > > > > >>*1 >7>3 "')>>>>>>>>* > >'") *1 D "1 * ."'1:1*19999 1 **) *") **) *1 9 *1 ") *1 *) *1 "1 *1 "1 **) *1 "1 *1 *1 *1 I
es
.J J "1 **) ""n *"I *i **) *) *1 "")
J
<t U vvv yTTT YY v v v v v v 1r y v v v v v v v v v v v v v *lr y I ft fr n n ft fr30 OODOOD O er 00n rt 3 330 n ry cr er 0D n n0(r05 F C C f3 C C C C O C C C C C O O C C C C C C C' O C C C C C C C C C D C' at er er n nOOO rr ry fyD00 rr ft 4?nO O 3""*2? *y rt ry fr n et T T T>*G H e-fY #- HW H t-T 4- f1 >- H& >= (I 6= & T>=GH rY >= H& & e-EN &H 6-7>& G Q & E etQ R 3 7 O (Y &
I e- >- t- >- H e+ 6-p . >- t- >= 4. C O C 4 eg 4 eg af 4 egeg 4 eg 4 eg 4 eg 4 at 4 4 4 4 sf of 4 4 et af et*E <t3 .T 't et 1* **
- n *r 2 3 'E 't % 't *E 3 "E 3 "R 73 *E 't 1 4 *R 3 % "E E 1 *W 3 'S *E TT TTTTTT 7
O 4 4 ** ITTTTTTTTTTTTTTTITTTTTTTT NNNDDDDDDBW@D@DBDDD@fDDDfDVVDBBABBf l sr
>=
N N N tal tal h e u t tas 44 81.1 us td W h t W W tal tai u t tas ht hi tal hl tai he b e Lit he las La6 til u t h e us 0 C O k k La. k k to .o k 4 k k k k 4 4 k La. 4 k k k ta. Ls. L t&
*** **= 7 7 G W & Q G W & rY Q W G G R R (Y ./ R 7 fY fY U 2 'Yk Rh,#1k ffL.7 k&kTts *f I ,= - e w,*i.,=
e,-e .= ec ece c. ,= - e-. ,= .= - e.- NNN O - .= e-e m. N N N N >- N % o.
- % N % eN N*NN%NNN *- N N N N N N N f U N N N N fV N ft N N N 6. N N N f\t N N N N N N (% N N N f% N N N N N N fb N f\
I I
[ l hppe r)d i x B . *' ( cop t ' d i B-68 e O
' W We >a eeeeeoeeeeeeeeeeeeoeeeoeoeoeoeoeeee 4O CV W
W@ tr 4 e _a s.e
@VDVVVV@@VDV@V@V@VVVBB@@@VTV@@@@@V@
UUVUUUUUUUUUUUUUUUUUUUUUUUUUUVUUUUU 7 t- > >= * +- w w >- >- o- > > o- H w w > e. ** 9 H >- H H H 6 > > > > > > >- >- >- W kg C..7 4 l
*2 (t 4 a 1 *a 2 m 1 *a a a v lit '9 o W- *t t t4"a4 s4*s4 'tetD at*t t4aet 1 e4 14 *a s2=41 et1 's4 e4 w4 24 Ye2 4 4 et et 4 **'")**")<t")4**)4 "1et"", at*14 ")4 *)
4 o= t= 4 4 *") "5 ") ") "1 ") *1 ") *) ") T & ** "") *") *") "") '*1 ") ") ") ") ") ") "") '") ") *) ") U O2 2 W-W
.I 4 tr 7 '?
O- I W e- T Y@ cI @ J m N 4 f') 2: & J b. @ & C & O Es m @ N J N O 4 CD 4 4 it - C N 4 C & O N 7 td Z N N 4 4 N N - N m N N M M - M N N N N N m m N Nt*tN N M m N N m N m N 10 .J k2
.J (1 .4 ==
CL T o4
>. tr.
T
** J La t W W W W W W taj 14 W W W taJ td taJ W W W W W id kJ W LaJ W W taJ W W W W W W W UA D JW JW J .J... . J. J. Jm J e-J J ) .J. ,J J J J .J ,a J J J - et et .J. .J. J a. J. . . .= e J. . eJ .. J. J. . .e.J = JeJ J .J e= e= = . .
5
@ 77777777777777277777777777777777777 4
3 W 6 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> W W W b) W tal W W td 14 W hJ W W W tai taJ W W LaJ W W W W W W W ua W taJ W W W W W 3 3 "') 3 '") ") *) 9 ") 3 3 ") 3 ") ") *") 33 3 *3 3 3 3 *) 3 *) 3 3 "") 3 - > 3 3 ") "> b d -
*') **) **) ") "") **) ") *") *") *') > *") *) ") *) *') *1 *") > "") *) *1 "') ) *") ") ") *") ") ") "") *) ) ) .J _J J
es U T T T T T T T 1* 7 Y Y Tf7 7TTTTT vTT TTTTvTTTT TTT 3 S333OO33S303335303S3O3303D33530303S tr rr n n er rr tv n tr tv tr er n n tr n er n a tr rr ry ty tr rt rr rr n rr n tr n tr er rr CCCCCCiCCCCCCCCCCCCCOCCCCCCCCOCOCCCC 7 Cr a n Cr 2 fY a 2 2 Q* 2 2 CY 3 0 a 3 2 2 Cr a 2 a a a n n a n a n a tt rr ty O hJ W W W td W W W W W W W W LaJ nd taJ W W W W td td W W W W bJ W W W W 143 W Lal La x >->->->->-6->=6->>k.*->=>-6.>->=t->=>>>->=t-6->=e->t->=t->->=oM 4 4 ef 4 at 4 et of 4 di 4 4 ef 4 aff 4 et af et e3 c! 4 eg af as et og 4 g2 <! 4 4 eg e2 gg a 3 *E 3 18 3 *E *t "W 2 't 1 "E 3 1 2 "E *E 1 2 3 3 *t 3 *B 2"R 3 3 3 3 T *m T 3 4
>=
IITTTTTITTITTTTTTITTITTTTTTTTTIITTT W @ @ m D W V D D B D D @ @ m @ D D D B *J) @ @ A B D D B D V V D D V D l tas tai tai las tai ha tes ad Las tai tai til nas las Las taa tal La Lae tai tal id tai ta t tai tai tai tai tal ed tai hl ui tai ti 7 & 'Y W T Cr T IT T TY T (Y 2 (Y Cr & (Y & & 7 Cr J (Y 4 & CY & rY & CT & G fr R Q k k 6 6 6 k 4 k 6 k k A 4 L L La. A ta. 6 L ta. h. L 14. A na. k 4 k k 6 L ta. k k I C - - - - - - - - - % N- e - - e. -% - Ne%- eNeNp%%
- - - - - - - - - N a e e- % N N * - e.
NNe.PNNNN% G NNNNNNNNNNNNNNNNNANNNNNNNNNNNNNNANN I I _ _ am
B E n-69 p na3x n 3< cont.4) I I . I W We eoeeeeeeeeeeoeeoeoeoeoeaeeeoeeeeeee en
+5 O QV I .
WW wJ
@fDVDWVB@VVDVBDDDVBWVWVVDVVDDVVVVVW I
y km wm 29 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU rwwwwwup>>>>>wrer>>>>werwwwwHwuswww wm
- f CZ E
N h J Iw4 fS I O G4 wm Rm CV TV44 14Y11131TTTV1TTT T T *A 11111111111 1 4444444444444444444444444444444*1444 99999997999999999999999999997799999 V~ i?6 T4 17 X Ca T
~r Ev bB l'W e; J .Jn G7 2
k7
.i m ~4LomONmN4N&@@DNM4N&nWo@4No&mMENWT7FMNNNNNNNNnNNNNN It 7 iT 34 WJ UJ Lt a D WWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWaJ JJJJJJJJJJJJJJJ JJJJJJJJJJJJJJJJJJJ mmmmmmmmmmmmmmm l >4 4 N
n D mmmmmmmmmmmmmmmmmmm??I???????dl??????????????
??/?5???d 4 W W W W W LAJ W W uJ W W td W W W W tal W W W > W W W W W W> >>>>>
W> W> W> W> uJ us tal 3 4 >>>>>>>>>>>>>>>>>>>R>>>>> N3337333933973333334D337D3933373339 4 J J m J 9999999979999999999J999799979997999 4 U TTTYYYTTTTTYTT77TTTTT' TT #7TTTssvT sss DOOOOOOODODODOUDDDDDODOOOODOOOOOOOO I ? WWnnuNWaunnNNWWWNNNNNWNWnwaNwnWnn9n CCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCCCCC n n a n g 2 2 n a g T m a n u n rr & n g a n g a n n a n a n a c a c a O W W W W Lal W LaJ taJ W kJ W W kJ W 44J W W W W kJ W W W W W W LAt W>&W Las tal W W W LAs to w > > H > > > > > H W W W > > & W W w w & > > > > > > > > > > > > 43T3 4 e1 4 44444444444444444444444444444444 33133334333173233413333333331331 TIITTTT.ITTTTTTTTTTTTTIITTTTTTITTTTT D@DDDDDDDVDDDDDDDDDDDDDDDDDBWDVVDDAW R&TTR&TR&&RTT&TR&704TTRW&T733Q44403 W tal ha I k k h. A k is k k ta. k k A k k is. L ta k 6 6 k k k k 16. k'k k ta.A L k k k 14 mm ~~m o mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmNANwss%sssss NNNNNNNNNNN ANNNNA %NNNNA E m U NNNNNNANNNNNNNNANNNNNNNNNNNNNNNNNNN I I
l- l!l! l'
~
g e3nSx mLg ,~ mLo m g 3 E 1 ET TR AO
................................... 3 DS g
R ES IL FA SSSSSSSSSSSSSSSSSS%SSSSSSSSSSSSSSSS CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC TI NT EI TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT g DN - II i W A S T L RA A D EI Wdwe ddddWddWWdWWd wdWddWddWddddddddd AAAAAA H C TT RI ON AAaAAAAAAAAAAAAA4AAAAAAAAAAAA JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ W N SI E B4 N9 8 t W O1 e T 9 T KS GM 91 12544325968223023402219384271 22222222221 2222222222222121121221 589112 NE AL LP N FN LI W PM OA YS H TL CL E G EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE.EE W I A A LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL II I IIII I II I I II IIIIII III IIIIII IIIIII Y T S NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE A W E VV VVVVVVVVVVVVVVVVvVVvvVVVVVVVVVVVV M A F I L UUUJJJOUUUJJJUUUUUuUUuuUUUUdUJddUUJ JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ L L A C M iT4+t4+44d 4 44d444++4444d444+44444+4 uU000U00Uu000uUUU0000u0u0000000O000 RQ 4344444a44 aR44403 3 R2a34404 44J 33 R DDDDD0DDDDDD0DD0nD0DDDDDDDD0D0DDDDD M N RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 0 x a TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA WddWWWWW WWWWWWWdWWWWWWWWWWWJd WWWWWW h T HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RRRQRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR FFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFF - W D 1 1 11 111 1 77777 11 1 117777777T7771 1 111 11 1 1 1111 7777T1111 77 11 1771 1 1 1 77177771 I C 22272222222277222222?22222222?22222 M E E
' l
B #! U 7) A sf T e' t)~d .i--- x H - .--.r
.' ( O f.i_t _' d_)
I t E
- . . . . . . . . . . G) ........................ i Q) N W e- e-E >- O st c N
O@ E W WV V V V D V @ @ st
.J ts. <1 >-*-. V V V V (n in D V @ @ @ V @ V tn m @ m V tr Lt.
W >= > >= >= 6- >= > >= H 6- HH>=>=>=>*>*>->->->->-6-6->-t->-W W / @ @ @ t1UUUV
>->=>->=HH 7 >=
taJ .=e C. 2 f @ C3 I 6- J cr O er as kJ.=* *R 't 1 ** 't 11"4 't *W ? 7 7 7 7 7 7 7 7 7 7 ? 7 7 7 7 ? 7 7 7 7 7 7 7 7 l
> =t et et .* et at at 4 4"")**~1WGi W3)WRtud'W G'td3,as T TuJTus(Y toLTuJ T aJW& til 3' uJEuJ 3: WtT uJC,tuT W al W 3 W 3TTaf W W u I W- "") *S "i "") ") ") ") ")
U C7 7 V-tw E CE 4 f> 77 C C C CC C C- I " "; C C I >y= W
?W <2 Jn J
t- 3 LD 7 7 W7
.J -
OCCCCCC4.C4CCCC e e e e e e e C & CC m N J & =* e= ft e=e - N f5 N e N e e e e e e DCC N 4O== 4& N alNm e e eCeCeCeCeC. C (N m PN mN (*)NMf9@ f*' N MCNftN9Ntvft- N e e . C. Ce e e e e e .
--.NNNtfiNo N Jm tV N Lfi.-=
f\ f\ & I nT O4
>- m T
tJ W W W W W W W 14J W kJJ W W W kJ W uJ)WJ W UJ J W W LJ W W W tal ul ~2W L4J uJ uJ J W, J uJ W W 1.1.
-4 *L ) JJJ ))a J .=J J.. J= )= .J . = .a ) . . J.
J .J
- - >= J .=J .J..- .- J J .J = = .J.
E > D
-.6-777777747 =-.
7777777777777777777777777 W W W uJ LaJ uJ W uJ uJ W LJ W ut tu Ltl W uJ W tu til W W 10 L.I td 4 L4J W W kJ uJ LaJ W uJ > 4) >>> > > > > > "> >>>>> "')> "")> "i> ~1* >*) 3 k >> >> > > > 3
*") *) ) ") *") "") 3 at >0>>>>>>">*J **) LD *) ~") **) ") ") ") 3 *S "") 7 ""> ") **) ") ) *") ") 9 "") *') *') '") "S *") *) "') ") 9 "1 "") *") ,a J **J "") *'J ") "') "") *') J *7 L41 ") ") ") ") **) 9 ") ") "") **) **) **) **)
1 st U T% TTTTTTT C7YTTTTTTTTTTTTTTTTTTTTT t') W 5 9 3 ") '".' O *S 9 "' ** 9 "' 5 r, ") 9 9 '*) S99739* E 3 "S '*) "* "J 9 S
&fYnnWDW DnnntvnnnnnO 81r (Y n n n n n n n 4 4 0 nn OOOOODO OOOOODOOOOCOOOOOOOOOOOODOO ta) .a 'Y (Y CY fY Cr tY W (Y (Y tY W tY - tY (Y CY CY W tY tY (Y CY CY CY W W (Y W tY W CY (1 WIdWWWWW k Lu W W W W k: to W LW W Ld to td h td W W to hi k k. LJ > 6- e- >- W >- k. t. . >- >- t- >- p Lil W L >->->-e-b- > 6 >- >- >= J I.=>->-6-o->-> <1 at <t ut at <t 4 et er 3 .J >-7 e:f "E .-*
4 at 4 ef <t at et *1 **'Eaf3<!4 <t'Eat'tet41 "X "E T 1 't 1 141 at 3et <t'tet't<t'a=T"E cf 'It <T't -' t ~a
? Im1 Iin*tIin'tIm'sI toT 4 1 I C t.D uJ I I T I I I I I I I I T I I I I I I I T I I I I I tn in Las tit O n m (n m m to to m tn in in in m tn in m m m in m to in in m in I
O M L4J Lal La) W W 14 Lal ? 3 - Lal LM Ld td W W W LJ to Ld tal W LJ Lal W W WWnW
.*Y kJ n LUa nW LAJ ul L4' W 't CY W CX W W W W a n J 7 W Ct & W (Y CY W W G W CY tY (Y W CE tY W CY W >- k. k ta. k La. ta. k al at 3 k k k 14. k k k k to La. Lo La. La. L. h. La k k k ta k ts. k k u - == = * .e e .= -= -* == N N N N N N N N N N N N NNNN N N N NN N NNN N NN N N N N Ne.- NN N.
i O N N t- N N b. N 5NNNN N e. N N N f N N N P=-
.=
U NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN E I
l Appendix B,2(cont'd) ._ B-72 O I is.A WW wk eeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeee 40 Om WO wJ V @ @ m B V @ @ @ V V, @ @ V f th tt W B V V @ @ W (f V @ r @ J V B ih @ @ k at wm
?>
UUUUUUUUUUUUUUUUUUUUUUUUUUUUOOQUUUU
>>wwwwwwwwwwwywwwwwwwwwwwwwwkwwv www tal m C?
mm E J 4 O 34 Wm WW
????????????????/???????????????Y??
W W W td td W W W W W W td W W W W W W W W W W W WCW E W' rr (DLJ IWCWT ta tL td mW .a W W T sY m CD [ E (D 1 sU CC 6; fC fr I T C ft 5 & E Q (D T E 1 I E T ft U C
? Am a,
W
??
Om T w > S' YW 07
?W ? @TNNMcNmJcNNa&mm4NNm7@&mc&WmN4&ctOmNNNNNNNNNNNNN 4J W:
Jm Ja hT C4 km 7
>J W J ~UJ M4 4 W W W W W W W W W W W W W W W uJ W W W W W W W mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm w
Y ??????????????????????????????????? 4 3 W 6 >>>>>>>>>>>>>>>>>>>>>>>>>>>> W W W W id W W W W td L61 td W W W W t4J W W W W W td W W W 14 uJ W W W id td W
>>>>>>>33379M9333733373393333339339 4
J J m J 77777797777979997977777777797777777 3379733 e U TTTTT TT TTT TTTT TTTTTT T TTT T TTTTYT 4 % TT 0000000000000000000000030300D00DOOO E nnunWWNnunkwnWnnawWnnNnnnnnWnnnaann OCOOOCCCCCOCOCCCCCCOOOCCOCOOCCOCCCC
?
O 2TR&22 Wean 3&32andT2227222222W322373W wwwwwwwwwwwwwwwwwwwwwwww W td W td W H wwwwwWWwww>4444 4444444444 44444444444444 4444 444 4
+ 33 3333337333 33333333 373333333333 % '3 3 TTITTTTTTITTTTTTTTITTTTTTTTITTITTTT WDm@@@WWWWDBB@WWDDDDDDDADDDWVBTMDBB tai td td LJ td td td td tai u s tai tai tal tas ist tas til 44 4 taJ W ad ad La laJ Z&37tas tai tai tai un t R&RNR73&MTWWTT3&&T&&UTET&TTT&TOkkkkkkkkkkkkkkkk O NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN NNNNNNNNNNN NANANNNNANNNA N NNNN NNN A NN m
U N N N N 1% N N N N A N N ft fy ft N N N N ft (V f\ fV N ft A N ft N ft ft ft N ft % I I I
b73 Appe rni1 X B.2(Cont'd{ t r$ taJ l kJ >
> (1 4C (3 m eeeeeeoeeeeoeeoeeeoeeeeaeoeoeeeeeee I T WW *J l m > >@ > p-@ w w@ t- FVWVH V w6.w> >- V rw>- f>-V>=wt- Lt > >V p- V t- etr>-V w V6-V>- tr.6- >-m t- >-@ @ V V V V t:) m tr et > 6= m ?> Hw Lal e'* (
7 C. 7 I 4
=
LP J
>4 O
rr as Ld *=e 77777777777777777777777777?77777777 _E 1 T w> (Y w uJ W 14 tal W W taJ W W W W W uJ W W Las uJ ta> tu La) kJ LaJ taJ W Laj W kJ(D CD CD (L CD tr ft (D (D T T E LD [D E. CD E CL E (L (D (D & C E 1 (P (I W taJ T TW TW mW a WW G W& U Z C .7 D* I tu
&4 7&
T) T ccccccccocccccce O ea
- *T cccccccccccccc<ccc eeeeeoeeeeeeeo eeeeeeeeeeeeeoeeoeeee in m LA m n 4 N c f% M th m 4 o c a 4 T N N N & N N N O o N C C 4 & 4 m N O'
- ir m CI I >7 W 7 af J 62 N f* N N N f" f" M LT f4 N N m C - M 4 N m N ft N N N m 4 ca LD m f" f* f* r" N fV Jn J **
rt T I O4 T wJ O! Lai O W d W LaJ kJ td LM taj W W W W td W
) ) J I J.J. J ww )
W .sj hJ LaJ W kJ W W td Laj W W W W kJ taJ W W W W
) ) J .,J .J .J .J ) .J ** w J J . J. J. ., .J ) J J J .J . . J. ** al 4 .J J.,J ).J.w) e. w .w w e 7 7. 7 7. 7 7ew 7 7 7 7 7 7 7 7 at 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ;7 8 af 3
taJ Lu LaJ W tal W kJ taJ W W taJ naJ t J u1 tu > h1 W taJ W W W W W hJ to>>>>>>
> > >>>>>>>')'>">> **) -">a D> 3 1> 5> as a >> >3 >9 > -) >93 > 9> 9>->>>-)>9 >7 >3 > td W W W td -) 7 1 o *3 9 -') uJ ut td kJ (d .k. 1 3 > 9 -1 n ") **) *") '") "") 9 *"I "1 *1 7 **) 7 *3 as ""') **), *1 "'1 9 *') "') ") ) "1 9 *") -") "") *") *1 .J ") "1 *") 7 "1 I .J .J a <f U
TTfY Y Y T y ir y v v v v v v v v v v v v T y y y vvvvvvvvv D ry3O rt O OO rv O tr 2tySryO()3rr3 n3 nOnOnOn O OD er0n7frOnOft O O rr O rrO oDrtCry"3rrOryOrrO O O I 7 C rr n tv C ( O C C C C (S C O C O C C O C O C C C C C C C C C C (9 O C D
& T n Q fr Q CL n & Cr O' a a fY a O n Cr 4 2 Cr Cr (r rr a Cr rr tr Q er T & l1 a Cr W tu W W LaJ W tal (d taJ taJ Lal LaJ (d LaJ L4J 6d Ed h) La) kJ id ft er i (Y >- La3 >- >-kJ>-141
("> Oet t- 6.tal C (T
>- Ld C >- HLaJ W Las kJ W td tal W W x M >= >= >= >= >. >- >- >= >= H 6- H H H > e >- >= H >- >- e. 6. >-
et c 4 4 < es 4 <1 4 ef<1 ereses 4 at 4 4 4 4 .* 4 4 as af .7 4 at et of et e3 <3 =? < I' n!
> 2741 2 1 *a 3 3 3 !a T 3 1 1 1 m M t a 4 v t 2TT27 1 1 2 2 muv ITTTTTTTITTTTTTTTTTTTTTTTTTTTTTTTTT VW DW tal tal Las to t tn La4W tatDtalW tai td D tai D tai B tat f V.
(at D t,# Ln DD tas 4,4 tasD DD tel14 se D e taiDtalDtilDtoDtalB WD D tD) L.) bt tai D tal D LaD ist A tal D tal D fr fr rr O' fr fy rr fr fr fr fr rr 7 fr rr fr :r T C tt :y n ry t'r n r ty rr to (YtarrAfrLa&14. Wta. Cr6 ak I 4 4 La. k k ta. Lo to La. La. k La. La. k k k k La. k h. LA 4 6 4 k La. L6 C N N N N N N N N N N NNNNeNeNNbNeNNNNN N N N N N N N N N N N N Nt% NNNN NN Ne. N N t% N NN NNNf% N
== NNNNN NNN*f E U N fY N f% N N N N ft N N (\ N ft N N fV f4 N N N (A fV fv f% N f4 N N N N N N ft r\
I
l K D-74 i Byendix H.2(cont'd) E'
- . . . . . . . . . . . . . ................. 4 T . . . I W >
WH " M WW N 40 OM WW wJ I k4
>w VVVVVVVVVVVWVVDV@@@DWVVVVVWVVVW/DfVUUUUUUUUUUUUU wn>>>>HHkwwwH&WwwwHWHWHY>>ww&HWW>>H wm C7 mm 4 0 I > J e
O 34 Wm 77???77'2777777777777777777777771413 W W W W W W W W W W W W W W W W W W>W W W W W W W W W W W Wta I am U OZ 2 Vw w T4 S
??
Cm
> WT e e e e e .
vm er Ce sC C.e C e C s C.e C C C. C. C C C. C. C C C C. C C C. C C. C C. C C C C. C e e e e e e e e ZW 4J 7 W2 m&NNM&moNmmm&m4&&o@NNONNNmmmmemowe
*~@@@meerMMRNCwR4DMNmVPDNNNNNm 4mm4 Jn Jw nT 04 PO T.
W WW HJ UJ O WWWWWWWWWWWWWWWWWWWWWWWWWWWWWW4W JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ>J wm JJ
~4 w
V 4 mummwwwwmmmmw~~~~wemmwwmwwwmmwww 77777777777777777777777777777747477 JW> dW 4 W W W W W W W W W W> W> W> W> W> W> W> W> W> W> W> W> W> W> W> W 3 6 m 3333333333339D93395N3339333399W9499 4 J J J 9999999999999'19979999799999797Q9J99 4 U YYsv T77svvYYsisivYTTTTss ODOO C0D03703330D00303300 n n er n n n a rr n n n tr n tr er er a rr a tr > rr n er rv OOCOCCOCOCOOCCOOCDOC DOOOOOJCCOC 444444m 2222T&%22222T20n1222 11TIIITanui 7 WWmmmm4WWWW O W W W W W W W W W W WH&WHYW W> W> W> W W W W W W kW WWW W H>>>WWWH&>> 000000 4444 [ c 44444444444444 4444 44 anannyc23 32
> 333T433377322222131* 444444WTITT l
IIITTITTTTIITTTTITIT
@ @ D W D C th W W W W D V D D D @ D D D h k h rrk er N NHNNNNNNN N Ym@@V tas W La. tal Las 's' a t ist W ta s W b e W u t tal tal til b e tal tal rr rr 4mwwwwmDWWWO N U be bl La s tal 1
l MW2WWuW%QTTTW3WWnWTT444 kkkkkkkLkkkkkkkkkkkkUUUUddddddmkkkk O NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNPmmm NNNNNNNNNN N% A NNNNNNNNANN N NNNNNANNNN U N A N N N A N N N N ft A N N N N N N N N N f\ N N N N N N f\ N ft N N A. N 1 1 E I
l B-7r, endix B . 2 f (* o n t ' d ) i -l (3 I LaJ taJ 6-
- p. Ct et O CW I &
W@
** J @ @ V V th V V W V D V (f th V V / D D V @ @ D @ f f B @ @ @ V / D V / tr k4 >- m T >=
OUUUUUUUUUUUUUUUUUUUUUUUUUVUUUUUUUU
*= k- > >= >- 6. W 6 6- p. >= 6. H > >= W ta e- W W H H 6- H M >= > H 6- >- 6* H H l ta J *-
C7
>= e=
4 WJ b= s a 1 1 1 "t 1 3 1 3 1 *is 4 1 1 1 1e i i 1 1 4 *a "a 1r 1 41at1 et t la4"44 ** "a *u 1 es fr eg E C W W >= es 4 ei e4 et at 4 4 ** e4 at et 4 ef 4 4 4 er et "J 4 as e4 +1 et et et ") ") et et e4 4
**) *1 *) "") ") *") ") ") ") *1 *') *) '") "") *") *") " ") ") *") ") **) "") *1 M ") ") ") *1 "*J "") "'1 T & *=
U C7 I 7 W IJ 77 cc Z ** C- T
>- p 7 yM ta T N N N Cb M N N O N 7 M N N sa o b m o J & 4 $ N & 2 & N N M CP M o4 km m m f*' M .* kJ ? N M N N N N N M N N N N N M @ - tt' M M M M M N N *= == @ m W M 4 et A 62 J f1 .J >=
tt Y O4
>W T
H .J kJ U _A 0 kJ W W LaJ W W W kJ W W W W W W W W W W W uJ W J WW J W.J LaJI W JW JWJLJJW W W W W 1J J
>= at 4 J J J J J = .J.== >= .J.= +.J .e J. J . J. >.J JJ J. >= . . J. .e == J. .-
a J. J- -)- w J. .= . J. J. .J. J. - . J. .
> D 7 7 7 7 7 7 7 7 7 / 7 7 7 7 7 7 7 7 7 7 7 7 7 J' 7 7 7 7 7 7 7 7 7 7 7 et taJ tal kJ W W W LJ W LJ W W> hJ > Lal W W Lal W W W W kJ Lal LJ W>>>>>>>>>
W >>>>>>>>>>'m> uJ W LaJ kl W W W W kJ tal bl m 3 6 > >>>>>>>>
"") *3 '*) *1 *1 *) ) " > 3 *>13 *1 3 *1 3 3 3 3 3 *) > > ""1 *1 3 *3 3 3 *") 3 3 *3 3 *) 9 "1 *1 4 >= *) *1 *1 ") "") *') "") *1 9 '"> "# *") *7 *") *1 *1 "") *") "") *"# "") *") *") *1 *1 *") 9 9 9 *") "7 *") *") *') '"i * .J J J
sd U TT T T T T T T T 5" T T T T TT T TTS"TTT TTTTT T TTT 7 7 1r OO330303003339 3 3er3tr3erOfr O 3 er rr rr D rrD tr3rrOtr*J ry 3fy 3n 3er3fr0rr3rrO a frO **' n er ry fr rr rr cr ft n n n rr ft n
't
("' C C C C C C C C C C C C C C C C C' C C C C (" c CCCCCCCCCCC
? fr Cr tr & Cr a er 2 tr a fr Cr ft fr Ct fr (r & Cr T fr a fr tr & Cr & tr Cr tt ft (7 fr fr &
O W W W W W W W W LaJ +- +- tal k. tal>-La1HW p. kJ kJ p-
> >- WW p- W > t-tal>=
La!MWt-Lal >=Wp.W> W p. tal
>=Wt- W W uJ W W W W W > > e- p. >- p- >r >=>=H>=D->>=> *$ e5 4 et 4 of 4 e4 4 el e4 e4 e3 et 4 et 4 et er e2 et 4 et og 4 et 4 eg eJ et es e4 4 e:: 4 et 3 1r 3 R 1 *s 3t 1 3 133*5 W D!s1373 1 1 3 't 1L 2 't 3 "3 *1B s "a "a v 3 >=
IIITTTTTTTTTITTTTTTTTTTTTTTITTTTTTT
@ B D D D tn D D D D D D @ D D D D D D D V @ tn B D B D D D D D B D V D tas tal ui tas ut tal as ut tas tat us tas tai us t.1 us W W h4 W hs tal W us las W us tal tal W tal bl ut ut ut rr #r 3 (r (Y (Y fr Cr & tr fr Cr fr R & Cr 7 T fr T tr 3 (r Cr & Cr & rr (r (r T rf (T (r 3 L k La. A L L k 6 k La. k k k k k k La. 44. 4 La. L4. 6 6 k k 6 k k La. 6 k k k ta. k O M M M "1 M M M M M M M M M M M M M M M M M M M M *.a M >= *)* MN M NM NM
- MN M N Nm NM** *)
NNNN N N P= N N N N b. N N N N N NNNA >- N U ft N N N N N N ft (L N (L N N N N N N f\ ft N f\' f( ft N N N f\ fv f( N (b N N rs f\'
,fD'nd A i )( D. 2 ( cont ' d ) D-76
- I f
W Ww eeeeeeeeeeeeeoeeeoeeeee t- eeoeeoee**e pg 40 O st
]
l W@
@@@mW@@m@Z w .J 64 >*e mmmWWmWWVZmMWmWMVWV@@@@@@UUUUUUUUUUU 2H U
wHwwwwww&>> U U U(J V U U U U U U U U 47U U U U U U U U U>wwHH>wwwwww>>>0=WWWH> i ca U mm E 4 @ w J 4 W4 Wm 111111111111111'R1 444444444444 11%11111111 1 1 444 31111 444 O ' pH T Wm 4 4 4 4 4 4 4 4 4 4 4 ** d d d 4 477777779779977777977777777797979977 U O2 2 mm W CJ T
??
C- I
> HT YW OT ZW Z M&M4&&CENON@CT4WEwMJ@AMcNNM44MEONNmMN4mMJWMNmmmN 4J 4 Ja Jm hv 'Od T
WJ W UJ c
~4 4 WWWWWWWWWWWWuIWWWWWWWWWWWWWWWWWWWWWWJJJJJJJJJJ mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm w
W
?????ll?????????????????Tl????????? idWWWW 4
Y k W
>>>>>>>> W W W W W W W W> W> W> W> W> W> W> W> W> W> W> W> W> W m
4 J J 33333337N333333733333773333D777777777777797777777777 a 4 U 777777 77 T7 7 557 777 77 7 7T7 7777 57 77 T TTT DSODDOODODODO90033DODOODOOOD3OOOOOO n tr N N W N n w n h n w n D N W W W W n W W W w W w w n n n n W n n n DCOCOCCCOOCCOCCOOCCOOOOOCOCOOOCCCCC W 2 O w T&E22222272Wa&&&&&n22WT&TEEW2&TQWT3W ww>>HHV-wwwww WWW WWWW&www&WWww&WWwHw&4444d4444444444444444444444d4d44444 4
> 11 111413 1 11111 111 1 1111 3*s1111111 1 11T TTIITTTTTTITTTTITTTITTTITITTTTTITTT ZWWMMWWAmmmWWWWWWWWWWWWWWWWWWWWWWWW W us hl tal W Las tu tal til Las tai ha ud tai til tai til tu tu tak tal tal W taJ 646 tas Lu W to tal wkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkLsk W W (Y W W tY W W W W W G W W (Y W G W G W W fY W W W W CY W W W W G CY E
m N N N N N N ;. N N N N N N N N N N N N N N N N N N N NNN N NNNNN U N N N N N N N N N N N N N fL N N N N N N N A N N N N N N N N N N N N N E I
m 3 m04 r g83# I I m 2 @3 - . m _ m 3 : E ET . . . . . . . a TR AC DS m R ES I L FA SS5SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC M II NT EI TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT _ DN II M A S T L mDA H C RA EI TT RI DN dddddddWddddddddddddddddddddddddddd AAAAAAAAAAaAAAAAA AAAAAAAAAAAAAAAAAA JJIJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ N SI E M B4 8 49 G1 H TH T KS GH 772006571 43635818942S79169773435217 M NE AL N EN 122222222222226755S5S43443333334232 LP LI PM 3A YS M H E TL CL I A G A EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL I IIII IIIII I I IIIII IIIIIIII IIII I II III W Y T S E NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE A W F VVVVVVVVVVVVVVVVVVVVvVVVVVVVVVVVVVV UJUUUUUUUJUJJJddUJUOuJUJUJJJUJJJUJJ A L L I L JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ W A C 444444iwd444444w444+44444 u0U000uuuU00U00U00Uu00uUu0000000UuU 444449 4 444 3 444444aa744R444444o43 43 44443 74473 4 9D0D0D9DD0DDD0DDDD0D00D09D9D9DD0907 m N RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR D EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT x A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AAA W T W WWWddWWWWd WWWd WWWWWWWWWWWWdWWWWWW HHHHHHHHHHHHHHH4HHHHHHHHHHHHHHHHHHH SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS d EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RRRRRRRRRRRRRRRR4R4RRRRRRRRRRRRRRRR m FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF D 33333333333J33333333333333333333333 777777777777t77777777777777 777 a I C 77777
?2222222P22222222?222222?2222P227?2 M
m 1 !l : jl jl )
D-78 Appendix B.2(cont'd) _ e e e e e e e e e o e e e e e e e e s e es C eeeeeeeeee..ee W N . WW w ww N de O st O i Wm mJ k4
-H mmmmmmmmmmmmmmWWWWWmmmmmmmmmmmmmmmm OUUUUkUUUUUUUUUUUUUUUUUUUUUUUUUUUUU ZW wn>kwww&>>HwwwwkwHe*kH&wwwwwwnw>>www W.
07 mm 4 V W J 4 N4 O Wm
. wp 13111124444111111111333300300030033 44444 444444444444444444444444444444 I
U Nm 07 97777777777777777777777771777777777 2 mm W T4 T 7& Cm W ym W7 OT CCCCCCCCCCCCCCCCCCCWCCCCCCCCCCCCCCC eeeeeeeeeeeeeeoeeoeeeeeeeeeeeeeeeee 7W 7 NmdomNNmmmEN4cM4@N& RPF4MNNNNNNNPm4NNAN don <mWFMmMMNNmm
&c4&4WN&c?cmA 4MN 4J WO Ja JM h1 04 km T
HJ W UJ O WWWWWWWWWWWWWWWWWWW4WWWWWWWWWWWWWWW
~4 4 w
JJJJJJJJJJJJJJJJJJJ>JJJJJJJJJJJJJJJ wmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 4 m W 77777777777777777774 777777777777777 JWWWWWWWWWWWWWWW 4 3 k
~
W W W W W W W W W W W W W W W> W> W> W> W> O > > > > > > > > > > > 3 N S
>>>>>>>>>>>>>>33333T33333333333 33333333333733 J
J J 7777797777777777977a777777777777777 4 W TTTTTTTtS T Y tty TTTtTTTtTTT Y 00D00003003 DD3530030300303 nwnunWNwWWn >wWnnwNnnnWnnnow COOCCCDOCCC CCCCJCCCCCCCCCCCCCCC 44 44m 7 00000WOCOOO TTTITOOOOOCOOWOOOO2Q O WWWWWWWWWWW LA m m m 4 WWWWWWWWWWWWWWW M W>>>>>>>>>> k>>H&&W>>>>>Hwn> 4 44444 444444 COCO 444444444444 444
> 33333332131 &&2%O3333333Mt331 333 TTTITTITTTT 4444WITTTITTTTTTITTT mmmmmmmmmmm&Q14NNNNMmmmmmmmmmmmmm@m he W hl he he tal bl hl he he he n & T rr N N N N O W M W he W hl W hl W hl toI tal Las bl hi T7074TT&7734444mmmm3&O2&2%RRET&7TTG kkkkkkkkkkkUUUUOOOOmkkkkkkkWkkkkkkk O
m MM9mMmFMmMPMmMMPMMMM NN NNNNNNNNNN NNNNNNNNNNNNNNNNNNN 444444444444 NNNN J44 U A N f\ N N N N N N N A N N N ft N N N N N N N N N N N N N N N N N N f\ (b I I
I D-79 gyendix B.2(cent'd) P*
)
I (S I W 6-
> tt 4C C@
W
**e********************************
l 3 WW I
.-. J W @ @ @ W (S @ @ @ @ to W W @ @ @ m @ m @ t/
k ** wa @@$tfWW@@@WWWW@UUUUUUUUUUUUUUUUUUUUUU UUUUUUUUUUUUU
>->=>>>-ww>->*-H>=>->-9e->s-Hp.>>>>>>>>>->>=**>-*
2v g W ** I
.C. 7 4 @
6- 1 et W <t E O WM 6- e d*ddOOOddOdddC00OdddddddddddOdddddd0<a <* 2 4 4 et 4 4 4 4 <* 4 er 4 ** 4 at et er at 4 4 e.g = T Ws Y 7 7 % T T Y 7 7 7 7 7 Y 7 7 Y Y 7 Y Y 7 */ Y Y 7 Y 7 7 7 7 7 7 7 7 7 U C: ? I7 W I, 4 7O CD m >= Cm I N M l.f' M *E 4 4 0 4 *= N 4 0 :D N O m @ N & 4 N tt N s-* N @ & CC @ ~ o @ N P
>- >- T .I tf M 7W 4 .J OY 7
W7 N N N N N N f\ 4
- M M N M ** M m f* N M M CC 4 m 4 4 4 M M m r* N M ~ M N J () Jw t nF O4 T
>= J W .
W W W W uJ W W UA C J J J J H4 4 W WWWWWWWWWW J
.J. J. .J. .J J. J J. . J. .J. w I .J. J. J. . , J .J.W W.J.WJ W) . - . . .W W . .J.
J J.. .J. . J.W) J. .JW >= W. WJ. W -=W W W W W WJ J. J 6 m W 7777777777777772777777777777777777.' 4 2 k W
>>>>> W W >W >W >W>W>W W W W> W> W> W> hJ W W W W uJ W3W".W) W >>>>>>>>>t.>>>>> ""2 3 D 3,"3 3 3 1 1 3 *") 3 3 3 3 3 3 *9 W W W W W W> W>
4 - 3 3 3 3 3 3 3 3 3 -) *1 3'a 3 ) 3 *') '") *') '") 7 '") "') *1 '") *") ""4 3 *") '") *1 "') * *") *") *7 3 3 *") *'1 *") *") -) *4 **) ) "1
- 6 '") .
.J _J J
er u TT TiTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT OOODOOOO3: OOO3OO3OO?DDODD3: O30'"O3OO fr (r ry fr n a tv tt tv ry fy tv n ty rt ry rr er ry n tv n a tv a tv W n a n tv n tv (Y .'Y CCCCCCOCCC*CCCCCCCCCCCCOCOOCCCCCOCCO 2 O 22&&2222222C2&2&Q2222Oa&T222&423aO7 W W W tas W W W W W W W W as W W W W W W h1 W W W W W W Las W W h1 W w W W W w *=6-&~>>->->>=t=>-&- >=>>->-6->=>>>=>=>->->-t->->=>=>=>-v-6->>=6- =5 <! 4 a* : *T 4 4 4 at 4 af 4 4 at af et as ** af et e4 4 <1 si 3at3at1 e4 4 at Taf3et3 at"E4 %211T32T3 2 *ir =2 <3
>- 333333433TT343333 TTTTTTITTTITITITIITTTTITTTTTTITTTTT @@@@@D@@@@VD@@@@\r@DB@mWDmmBDWD@@MVD W W ht lAJ Las tai hJ hs W hi tal t i W he t.A h1 W tai tai tal tai hl hl hl bl bl W Lal he tal ul W tal tallet W O n 3 tY & O O X & 3 O O O O 3 O W W 3 % O W (Y W G W W h W W W W T ;Y
- h. L k. k 6 6 k k La. k k k La. k k ta. La LA. k k k k La. k La La. 4 k ta k k 4 L L 4A.
44444444442444444443NN*= 344444444 44444 3 C
>= NN NeNNN NNtN e N N e. N A NNt N N e.
- N N NN N NN N U N N N N N N N N f% A N N N A. A N N N N N N N N N f( N N N N N N N (\ N N
ADDE ndi X. U . 2 ( cont ' d1 D-80 n i I W t Ww eeeeeeeeeoeeeoeeoeeoeoeoee****eeeee 4 pg 1 do Cm i
! & E WA mJ VVV@@VWVV@@DD@@@@@VVVV@DDVVVV k4 *w ZH V@@@@@UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU UUUUU >>>Hw&HH>>>Hwww>>Hwwwwwww>>wwHHwwHW Wm t CZ mm - D & J 4 34 C W= c44444444444 0 0 0 0 0 0 0 d d 6 0444444444444444444 0 0 c d 3 .9 d d S d d d .9 d d d d144 d 6 0444300 U
T Wm OZ 3YYYTTTT777YTTTTTTT% TTT3 Y777777Y777 O Du w 24 m 77 cm O WT w VD 7W CT 2 m&NmNNNMNMWcTN7mNDNN@NWON@mmmeccNmW MmMN4mMMNNMMNNmN4mmmmMNMNMN4D4444MN 4J WZ Ja Jm tt T C4
>M T '
W HJ UJ c WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ m4 4 H mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 77777777777777777777777777777777777 4 3 W k W W W W W W W W W W> W> W> W> W> W> W> W> W>
> > > > > > > >3 7 3 3 3 0 3 7 3 3 3 3 3 7 7 7 3 3 3 3 3 3 3 3 3 3 9 97333339 d
J J M J 77777777777777777777797777777777779 4 U YTTTTTTTTTTTFT TTY YTTTTTTTTTTY YT T T TY 000303000000330033037003030S03DOUDO nWWWNwnunnWNwwWnWNnnnnnununnnnnunnn CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 7 O 27&&22227322222&E22222222&&&2W22n&2 x W W W W W W W W W W W W>ww&H
&>>>>>>>HHHHW> W W >W W W W W W W> >W >W W> W> W> >W >>>>>>>H 4 44444444444444444444 3 3 3 3 *A 3 3 3 3 % 3 333333333 444444444444444 333333333 1 333M M H
ITITIITTTTTTITITTITTITTITTIITTTTTTT DDDDV@VDDDDDDDDDDDDWDDDDDDDDVBWVVDV 6 he us to us ut ul W W W t. us ui td ue ad gas ts: tas us us W W W us us ha us ha ut W tal W tai u6 ti WWOWWWWNOJOT30WWWWWWGWWWXWOOOWWWWMN kkkkkkkkWkkkkkkkkkkkkkkkkkkkkkkkkkk o m 44444444444 NNNNNNNN NN NNNN 444444444 N NN NNNN 444444444444444 NN NNNHA N N NN NNN U N N ft N N N N N N N N N N N N N N N A f\' N (\ N N A N (b (\ N N ft n' f\ N N E I
,l1 li1l g g ?3 E5 E1
- si
)Cj- I g UI g ]
E , g ET TR AO DS e R ES IL FA SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC a TI NT EI DN TTTTTTTTiTTTTT TTT TTTTTTTTTTTTTTTTTT II m A S T L A RA o D G G G G GG G b GS G S GG G G G G G G GG G G GG G G GG G b G G M H EI TT RI AA AAA AAAAAAAAAAAA M4 MMM*MMMMM*" AAAAAAAAAAAAAAAAAA
- MM* MMM" MMMMMMMMMw*wM" C ON N SI E
M H4 8 N9 O1 H T 9 T 4S GM 00451 3S6S7526I32I5321 59268670661 224 54333SIII222233S42S43324I32231I3332 M NE AL N EN L3 LI DM OA YS M H E TL CL I A G A EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL IIIII I IIITI I I I III III II I TII I II I II III M Y T S E NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE A W A F VVVVVvVVVVVvVVVVV vV% VVVVVVVvVvVVVVV JJJJUaJJJJJJJJJJJJJJJJJJJJJuJuJJJJJ L L I L JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ M A C
- 44+4*44444w4 0u008 44 4444 d 44t S 444444444d4 0000Uu0000u00u00uUU00U0U00uu0 4 v 4 4 0' F 44434a4444a34a3 443R3 3R443 43 o4 0u9DDDD3009n9D9DDD9Dn00DDDDDD00D0D0 N 7 MRRRRRRD4RRRRRRRRRRRRRRRRRDRR4RRRR
- e. CEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE TT TTT TTTTTTTTT AA TTTTTTTTTTTTTTTTTTTTT A' AAAAAAAAAAAAAA WW WWWWdW wWWWWW AAAAAAA AAAAAAAAAAAA WWWWWWWWWWWWWWWW wWW wW T
HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RRRRRRDRRR4RR4RRRRRRRR4RRRRR4RRRJRR FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF D 44 7 ? 444444444444444444444444444444
'f >44 771 7177 7 7 1 7777 7T 7777 777777 777 7 I
C ??T?i72222?72?222277?272222222?77?2
$3 { X ?2oS"_a~ ? m" g_
g 3 . . . . . . . . . . . . . . . ....4 9
. . . . . . . . . . . . . . g L 8 ET 1 TR 7 AO DS g R
ES 3 I L FA SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC TI uT TTTTTTTTTTT TTTTTTTT TTTTTTTTTT TTTTTT FI DN II W A T S L W A DA D EI G G G G G GG G G GG G b G GG G G GG d d d d d d d d d d d d d d d TT AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJJJJJJJJJJ H RI ON HMMMMMMMMMMMMMMMMMMMJJJJJ W C N SI E H4 8 N9 O1 H W T 4S T M bM R22773930753393452 NE N 64671226435R8437123322220333223352655344333326332 3I1 1 FN AL LP PM LI W OA YS H TL E CL I A G A EEEEEEEEEEEEEEEEEEEEEEEEEEEELEEEEEELLLLLLLLLLLLL E IIII I II I TII II I ITI II IIII I IINNNN* III 1I I II I NNNNN 1 Y T S NNNNNNNNNNNNNNNNNNNNNNNN4 EEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEE' A E VVvVVVVVVVV vVVVVVVVVVVVVVVVVVeVVVVV W A L F I L UduJ3UJJJJJddJOJJJJJJJJJUJJJJJUUJJJ JJJ' JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ E L A C 44w4 49+4i444w4 U0uU E UUuUu00Uu0 3 7a4 74a4R444a3 7OODO3 79nG 0DnDD009n0 AAAAA A RRRR N RRRRRRRRRR HHHHHH EEEE E 0 EEEEEEEEEE SSSSSS TTTT
- TTTTTTTTTT DDDODD AAS A A AAAAAAAAAA RRRRRR ddWd T WdWWdddWdW A AA AAA H4H4 HHHHHHHHHH SSSSSSSSSSPPPPZZZZZZPPPPPDPPPPPSSSS EEEEEEEEEERR7RZZZZZZR4R4RR374aREEEE AAAAAAAAAAARRR4 O
RRRRRRRRRRAAAAIIIIII FFFFFFFFFFCCCCGGGGGGCCCCCCCCCCCFFFF E 444444444 444 4 444444455555555555S555 D I C 77777 777777 7777? 7 777 777777777 7 7T 77 7 222272227727272?22227272?22?722P22?
)
O*b3 A18DO D d i X D.2(cont'd) I I O W ,, I WW wa 40 Om eeeeeeoeoeeoeoeseeeeeeeoeeeeeoeee**
- E &
WO "J OmmVVWWMMWWmVWWWWWVMVWVMVWWWWVOmm@m I UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU A4 ww 2> Ww
>>>>>HHHe>HHHMHe>>HHHHWW>=HHwwwwwHww I O?
ww J 4 W4 Ww 1 1 1 1 1 1 1 1 1 1*a 1 1 1 1 1 1 1 1 1'3 1 1 1 1 1 1 1 1 '3 1 1 1 1 1 O I WH
&M 44444444 444444 444a144444444 4 444 44444 7 7 7 7 7 7 7 7 7 7 9 7 7 7 7 7 7 7 7 "J 7 7 9 7 7 7 7 7 7 7 9 7 7 7 7 U CZ ? mm I W G4 ?@
Om m I
@cTNON&TONc?wMcN@
I
> n1 YM cr @ m 7 N N M @ M o m M M @ M 4 0 4 JaNwmemmM44MMMN@wMw?4mMNMwwNNNMNM ?W 2 44 W2 Jn Jw af I ,k J 04 km T
UM W D WWWWWWWWWWWWWWWWWWWWWkiWWWWWWWWWWWWW
~4 4 JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ wwwwwwwwwwwwwwwwwwwwwww W
W wwwwwwwwwwww????????????????????????
???????????
E 4 W W W W W W> W W W W W> W> W> W> W> W> W> W> W> 4 4 k m >>>>>>>>3377933333333333333N7939999 33337333 77777777777777797777997779977777777 J 'J I J 4 U YYYYWYTTY5 5TYYTTTT5YTTTYTssvYY% YYYY D30DD000000D30000000000530000350000 I ? n rr er fr (r n tv n rr n n n fr (y fy n n rv n n n n (1r rv n tv n n n tv n nr a a n COCCCCCCCCCCCCCCCCOCCCorOCCCCCCOOCC Eng&&2nanng2Wnna&22nnynnannanan20ac O W W W W W W Lal W W W W W W W W W W W W WkHWW> H>>HH>>>WHWWWWH&VHH>> W W W> W W>HH>>&& W W W W> til W W W tal W W 4 44444444 444444444444444444444 X11111*r11T1113111N 1 11 444444 11 5 W 111111131711 TTTITTITITTITITITTTIITTITITTTTITTTT mmmmWWmmmMWWWmmmmmmWWWWOMmmdWWWmmMM 448 441 tai t4e ist tas tal tai tai ta t tal W tal W tal tal tal tai t4l tai tai he W tas tas W til hi tal W ta f 44# tai tal W WWWWWnNWOOOWWWWWWW3KWMWWWWWWWWW73On I kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk o [mb kb k b NNNNNNNN NN NNNNNN N NNNNNNNN NNNNNNN NNN I~ ~ U f%t% N N N Nt% N f\t% N N N N N Nt% N N N t\ N N N f% f% f\ N N f\ N N (% N N I I
Appendix D.2(cent'd) B-84 l-I A W Wh Hg eeeeeeeoeeeeeeoeeoeeoeeoeeeee****ee af C CO 2 WW m .) ket VVBD@@DVVWDVVffffVBfVVB@@@VVWDD@mV@ U00000U000000000000000000U00UU00UUU Hoe O to H&HHHH&HHHHH;=>>>>HHHHHHHHHHmWHHHHH& LaJ e
- C */
F4 m 4 @ H J 4 O 34 Wm 321Tvww1 44444 4443DDT11 444444444444 1131 11 1%T11133414T211 444444444444444 T U HH Tm C2 79777997777777777*177777777779779977 2 mm 6 DJ T
??
Cm I wY
~
Y@ 07 COm@mmN.44mN.@D@NNnONR4CNN~OR@dNNm. NNNNNNNNNNNNNmNNNNNNNNNNNNNmNemNmNN 2W ? 4J W7 JA Jm h T C4 HM T W HJ UJ c WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
~4 4
H Y mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
???????????????????????????????????
4 W W W W W W W >> W W W W W> W> W> W> W> W> W> W> W> W> >>>W> W> W> 3 k >>>>>>>>733339339373333333333333393 93333333 d J J n J 77797977977777797777777777777777779 4 U W T TTTTTTTTTTTTTTT TTTTTTTT TTTTTTY Y T7 T 0030330000D03D00000CD333000000D0ODO W w h w n w W n N n' n n a n n a n W W n a w w w n W W n u n n a w n n CCCOOCCCCOOCCCCCCCCCCCCCCCCCOOCCCCO
?
C COTWW222n&7&&EnaWana22nn&2273G&nanu W W W W W tu W W W W W W W W td W W W W W W W W W W W W tai taa W Lu td W id W M HHHHHHHHHHHHHHHHHHHHHmWHHHHHw&HHHHH 444444444444444444444444444 4 4 44 4444 4 W 3 3 3 3 1 T 3 3 3 1 3 1 3 1 3 3 3 1 'R 3 1 3 3 3 3 3 3 3 T D 3'3 3 33 TTTITTTTTTTTTTTITITTTITTITTTTTTITTT WWWWWWWWWmmdWWWWWWWWWWWWWWWWWWWWWWW tal W td Las he uf tai hi h4 48 he taf bi 48 ed bl ut h8 tel bl W W W 148 td La8 til tal ha td W Lal bl ul W OOWOWOWXWTW%GWNOWWWWWTONWWWWWWWWWhK k k k 6 L La. k La. L L L k 4 k k k 6 L k La. k k k k k k k k k k k k k k k I C ......... ......... N NNNNNNN NNNN NNNNNNNNNN N
~ NNNNNNNNNNNN U h N ft N N N (b (L' ft fV N N N N f\ f\ (V N N N N f% N N N N f% N N N f\ N N ft ft I
I
l B-85 Appendix 8.?(cont'dj P* I I m s W I WW wm 40 CM oeoeoeeeoeeeeeeoeeoeoe5eoeeeeeeeeee E & WO M J I k4 ww 7> W a= CT
-m VVVWWVVVVVWV@@VDVVVVVVVV@@@@VVWDVVV0000000U00000000 >>>>kWWWWWWWWWWWWWWW WWWWWW>>>>WWWWW 4 W & J I4O 04 WM 111 11111111 R 21111111 111111111111 44444444444444444444 444444 444444444B T *3 0
U
&M OZ 9999997999997999999999999")797997999 Mw IOA 7?
Ce O ccccccccCCcocccccccccoccocccocrcccc eeeeeeeeeeeeeaeeeeeeeeeeeeeeeeee eee tf m H T d2 O&mc&TmNo&c4&TWmWmmcNoNmmMNm-m44VT-
~~NNmmNNN~D~NNNPNNNMnmWNNNPNmN #444 E 7W CJ 7
WO Jn J~ 17 I 04 kW T wJ W C WWWWWldWWWWWWWWWWk'WWWWWWWWWWWWW4WWWJ UJ 4 4 JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ>JJJJ wwwmmwwmmmmmmwwmmmmmmmmmwmwwmwnmm-> l "C> f W 777777777777777777777777*P7777747777 W W W W W W td W W W W W W W W W W> W> W> W> >>O>>>> W> W> W> W> W> W> W> W D k >>>>>>>>>>>>>>>> 9993333799339339393333333D39993999N d J w J 997999999999999999999999999999n9999 I4 J U YYYYYYYYYYY Yi sYsYYYY vsYsTY 000003S0D00330000000000003 I n er rr n n (1r n tv n n n tv n n n tr fr n n n n tv tv n tv n OCCJ CCCOCCOCCCCCCCCCCCCCCCCCCC 444-IIIT 7 C 243202RO2222Wa&&nnan20$3n3 W W W W W W W W W W id til 441 W W td W td W W W W W W W W m W tt 4 k W WWWWWWWWWWWWWW>> kWWWWWWWWWJ 4 44 4 4 4 4 4 ef111 4 4 417.111 444 44 444444 111113 4 41113-anx2 4 4 J C- C C I & 11111111 TTTTTTITTTITTTITTTTTITTITTb44 4W WWAOWWWWWMMMWWWWWWWWWWWWWWWNNNYalaa tat tai tal W h e w W 141 he tai tal us tel ht t i he W td til W un te e tal 64 4 b e las 9 NM34 NNU Y fy fr 'T 444 TT&R&&WV1TR7477G732R&3&T7TJWM I kkkkkkkkkkkkkkkkkkkkkkkkkkmCCOWUUUU I C U th W m W .A in to P # @ W T Z # m tA W m m tn m LA in LA W (A m # m to $ 4 4 4 4 N N NNNNNNNNNA NN% NN% NNA NNNNNNNN mA N A NN N N f% N n' N N N N (A ft N N N A N ft ft fV ft n ft fY N N N N N N f\ ft it (V N N I I
e: 4 CALLAdAY ICTHYODLANMT01 HENCH DATA ALL SAMPLES 1984 @ X LENGTH SO4TER IDENTFIER DATE w LIFESTAGE CID TAKON ;, Irf M4 INITIALS INITIALS SORTE3 43 JAd TCS . 3 276 CARP JUVENILE JUVENILE 34 JAd TCS . 5 276 CARP JAd TCS 776 CARP JUVENILE 36 . JJVENILE 37 JAd TCS . 276 CARP JAd TCS . 776 CARP JJVENILE 33 JJVENILE 40 JAd TCS . 776 CARP JAd TCS 776 CARP JJVENILE 27 . JUVENILE 32 JAd TCS . 276 CARP TCS JJVENILE 23 JAd . 276 CARP 46 JAd TCS . 276 FRESHWATER DRUM JUVENILE JJVENILE 16 JAd TCS . 276 FRESHdATER D404 TCS 276 FRESHdATER Daud JJVENILE 43 JAd . 28 JAd TCS . 276 FRESHdATER ORU4- JJVENILE JUVENILE 30 jam TCS . 776 FRESHdATER n4U4 TCS FRESHWATER D344 JUVENILE 32 JAd . y 276 JAd TCS 276 FRESHdATER 0404 JUVENILE 22 . JUVENILE 21 JAd TCS . $ 276 F3ESHdATER D704 TCS FRESHWATER D304 JUVENILE 67 JAd . 276 JAd TCS 776 FRESHWATER 7404 JUVENILE 57 . JUVENILE 53 JAd TCS .
?76 FRESHWATER Dau4 JUVENILE 39 JAd TCS .
276 FRESHdATER D404 TCS FRESHdATER Daud JUVENILE 40 JAd . 276 JAd TCS 276 FRESHdATER DRU4 JUVENILE 37 . JJVENILE 35 JAd TCS . 276 FRESHdATER DRU4 TC% FRESHdATER DRU+ JJVENILE 33 JAd . 276 TCS FRESHWATER DRU4 JJVENILE 33 JAd . 276 JAd TCS 276 FRESHdATER D304 JJVENILE 29 . JUVENILE 63 JAd TCS . 276 FRESHdATER D204 TCS 27o FRESHdATER Dau+ JJVENILE 16 JAd . JJVENILE 39 JAd TCS . 276 FRESHWATER D304 TCS JJVENILE 49 JAd . 276 FRESHWATER 7304 TCS JJVENILE S0 JAd . 776 FRESddATED 030d TCS JUVENILE 38 Jad . 276 FRESHdATER 9304 TCS JJVENILE 27 JAd . 276 FRESHdATER nauw TCS JUVENILE 30 JAd .
?76 FRESH 4ATER 9404 M N M M M M M M m ea e e a eg
M M M M M M M M M M M M M M M M M M m; CALLAdAY ICTHYOPLCNKTON BENCH DATA ALL SAM 4LES 1984 LENGTH SDRTER IDENTFIER DATE CID TAXON LIFESTAGE SORTE3 IN MH INITIALS INITIALS JUVENILE 17 JAW TCS . 276 FRESHWATER D404 TCS JJVENILE 19 JAd .
?T6 FRESHWATER D404 TCS JUVENILE 28 JAd .
276 FRESHWATER D4U4 TCS FRESHWATER 04U+ JUVENILE 28 JAd .
?76 JAd TCS .
276 FRESHdATER D404 JUVENILE II6 JOVENILE 65 JAW TCS . 276 FRESHWATER 0404 TCS . JJVENILE 48 JAd 276 F9ESHdATER 94Ut TCS 776 FRESHWATE4 0404 JUVENILE AI Jad . 43 JAd TCS . 776 F4ES4 DATER D404 JJVENIsF JJVENILE 34 JAd TCS . 776 FRESHWATER D4U4 TCS FRESHdATE9 0404 JJVENILE 36 JAd . i 276 JAd TCS . 216 FRESHdATER D404 JJVENILE 37 33 JAd TCS . 276 FRESHdATED 0404 JJVENILE JUVENILE 40 JAW TCS .
?T6 F4ESH4ATER 04U4 TCS JUVENILE 27 JAd .
276 FRESHdATEQ 0404 32 JAd TCS . ? 776 FRESHWATER D409 JUVENILE JJVENILE 23 JAd TCS . $ 276 FRESHdATE4 0404 TCS FRESHWATER 0404 JOVENILE 46 JAd . 276 JAW TCS . F4ESHWATER 04u4 JJVENILE 16
?76 JAd TCS .
3 FRESHdATER Dauw JUVENILE 43 276 TCS 276 F4ESHWATER D404 JJVENILE 28 JAW . 30 JAd TCS . 776 F4ESHWATER D404 JJVENILE JJVENILE 32 JAd TCS . 276 FRESHWATER Dau1 TCS JdVENILE 22 JAd . 776 FRESHWATER Dau4 TCS JJVENILE 21 JAd . 276 FRESHWATER 04u4 TCS JUVENILE 17 JAd . 276 FRESHdATER D404 TCS
?76 FRESHWATER 0404 JJVENILE 27 JAd .
k$ JJVENILE 22 JAd TCS . 4 476 FRESHWATER D40* TCS 3 JUVENILE 20 JAd . 276 FRESHWATER 0404 TCS ? JJVENILE 20 JA4 . 276 FRESHWATER D404 26 JAd TCS . 7 276 FRESHWATER nout JJVENILE
- 25 JAd TCS .
?76 FRESHdATER 7304 JJVENILE 27 JAd TCS .
276 FRESHWATER 0304 JJVENILE . JJVENILE 21 JAd TCS .
?76 FRESHdATEQ 0394 TCS A ?T5 F4ESHJATEQ 0404 JJVENILE 24 JAd .
3
? -_ =
Ie CALLAWAY ICTHYOP ANKTON BFNCH DATA g ALL SAHPLES 1984 x LENGTH SORTER IDENTFIEC Dr!E m CID TAXON LIFESTAGE ;, IN MH INITIALS INITIAlc SORTED 23 JAW TCS . 8 276 FRESHWATER 0R04 JUVENILE JUVENILE 26 JAd TCS . % PF6 FRESHWATER DRUM - JUVENILE 23 JAW TCS . 276 FRESHWATER 0404 3: JUVENILE 25 JAd TCS . 276 FRESHWATER DRU+ TCS JUVENI!.E 68 JAd . 276 FRESHWATER ORU4 JAd TCS . 376 FRESHWATER DRU9 JUVEN?ti 71 JUVENILE 58 JAW TCS . 276 FRESHWATER Dat:4 TCS FRE3HWATER 0404 JJVENILE 59 JAd . 276 JAW TCS 276 FRESHWATER DRU4 JUVENfLE 54 . JUVENILE .52 JAd TCS . 776 FRESHWATER ORUd FRESHWATER 0 R1, 4 JJVENILE SS JAW TCS . 276 TCS FRESHWATER DRU' IUVENILE 47 JAW . 276 JAW TC5 P76 FRESHWATER 070' JUVENILE 39 . JUVENILE 41 JAd TCS . 276 FRESHWATER DRif4 TCS FRESHWATER ORU4 JUVENILE 46 JAW . 276 sad TCS . JUVENILE 39 276 FRESHWATER Dail4 JUVENILE 37 JAW TCS . g 276 FRESHWATER 4904 TCS JNVENILE 37 JAW . 276 FRESHWATER D4Ut TCS JUVENILE 33 JAd . 276 FRESHWATER 0004 TCS 276 FRESHWATER 0704 JUVENILE 34 JAW . JUVENILE 33 JAW TCS . 276 FRESHWATER DRt 4 TCS FRESHWATER 0404 JUVENILE 4S JAd .
??6 TCS 276 FRESHWATER 970+ JUVENILE 22 JAW .
JUVENILE 31 JAW TCS . P76 FRESHWATER DRtl* TCS JUVE'ILE 27 JA4 . 276 FRESHWATER 0404 TCS FRESHWATER DRU4 JUVE! TLE 32 JAd . 276 JAW TCS JUVENILE 31 . 276 FRESHWATER DQUM JAd TCS JUVENILE 34 . 276 FRESHWATER DRU4 TCS F9ESHWATER DQud JUVENILE 40 JAW . 276 JAd TCS . P76 FRESHWATER ORtl4 JUVENILE 31 JJVENILE 27 JAd TCS . 276 FRESHWATER DRU4 JUVENILE 27 JAd TCS . 276 FRESHWATER 04U4 TCS 776 FRESHWATER ORu4 JUVENILE 23 JAW . JUVENILE 2S JAW TCS . 276 FRESHWATE9 9304 TCS P76 FR ES Hid AT ER nRU4 JUVE91LE 23 JAd . E N E E E. E E M M M' -M g g: g g g
m M M M_ M M M M M M M N M M M M M M M CALLAWAY ICTHYOPLANKTON HENCH DATA ALL SAMPLES 198 MORTER IDENTFIER DATE LIFESTAGE uE: CID t D' ~" 41TIALS INITIALS SORTE) JAd TCS .
?76 FRESHWATER DRU+ JUVE4iLE jam TCS .
FRESHWATER 0904 JUVENILE 26 276 24 JAd TCS . 276 FRESHWATER DROM JUVENILE 40 JAd TCC . 276 FRESHWATER DRUM JUVENILE 16 JAW TCS . 276 FRESHWATER ORUM JUVENILE 31 JAW TCS . 276 FRESHWATER 04U4 JUVENILE 32 JAd TCS . 2/6 FRESHWATER 0904 JUVENILE 26 JAd (CS . 776 FRESHWATER 0709 JUVENILE 30 JAd TCS . 276 FRESHWATER 04U4 JUVENILL TCS J'JVEN I LE 18 JAd . 276 FRESHWATER nRU4 JAd TCS . JJVENILE 37 P76 F9ESHWATER 9R04 JAd TCS . FRESHWATER 0404 JOVENILE 10 276 31 JAd TCS . 276 FRESHWATER ORU+ JUVENILE TCS JUVENILE 25 JAd . 276 FRESHWATER ODUM 32 JAd TCS . ? 276 FRESHWATER 0704 JUVENILE TCS . m JUVENILE 39 JAW
- P)6 FRESHWATER DRU4 JAd TCS .
FRESHWATER DRUS JOVENILE 84 276 42 JAd TCS . 276 FRESHWATER DRUM JUVENILE TCS J'JV ENILE 38 JAd . 276 FRESHW ATER 0404 TCS . JdVENILE 42 JAW 276 FRESHWATER DRU4 JAd TCS . JJVENILE 41 276 FRESHWATER nRU4 JAd TCS . JUVENILE 42
??6 FRESH 4ATER DRU4 JAd TCS .
FRESHWATER ORU+ JJVENILE 36 276 39 J4d TCS . 276 FRESHWATER DRU9 JUVENILE TCS JJVENILE 18 JAd . 276 FRESHWATER 9401 JAd TCS . > JUVENILE 35 276 FRESHWATER D409 JAd TCS . 3 JJVENTLE 21 G 276 FRESHWATER DRU9 JAd TCS . JOVENILE 30 S 276 FRESHWATER ORta4 JAd TCS . JJVENILE 19 276 FRESHWATER ORU4 JAd TCS . [ JdVENILE 32 276 FRESHWATER 0304 JAd TCS . FRESHWATER ORUM JJVENILE 23 ? 276 31 JAW TCS . P76 FRESHWATER ORUM JJVENILE 'l 19 JAW TCS .
?76 FRESHWATER ORUM JUVENILE TCS .
O JUVENILE 32 JAd P76 FRESHWATER ORUM JAd TCS . O JJVENILE 21 " P16 FRESHWATER DRU4 - S
- me
E
- a.
CALLAWAY ICTHYOPLANKTON blNCH DATA r ALL SA4PLES 191M x m CID T".xDN LIFESTAGE LENGTH SORTER IDENTFIER DATE ;, In M9 INITIALS INITIALS SORTED - 0 TCS a 276 FRESHWATER 0709 JUVENILE 42 JAW . JAW TCS . "_ 276 FRESHWATER 000+ JUVENILE 17 FRESHWATER 0409 JUVENILE 32 JAW TCS . $ 276 JAd TCS P76 FRESHWATER DRU+ JUVENILE 33 . JUVENILE 22 JAW TCS . 276 FRESHWATER D909 JUVENILE 23 JAW TCS . 276 FRESHWATER DRU4 JUVENILE 36 JAd TCS .
?76 FRESHWATER DRUM FRESHWATER DRU4 JUVENILE 30 JAd TCS .
216 TCS FRESHWATER nRU4 JUVENTLE 28 JAd . 276 JAd TCS 276 FRESHWATER DRUM JUVENILE 27 . 276 FRESHWATER DRU+ JUVENILE 19 JA4 TCS . JUVENILE 21 JAd TCS .
??6 FRESHWATER SRU4 JUVENILE 42 JAW TCS .
276 FRESHWATER DRUM JUVENILE 15 JAW TCS . P76 FRESHWATER 0404 C JUVENILE 17 JAW TCS . 276 FRESHWATER DROM e JUVENILE 17 JAW TCS . 276 FRESHWATER DQui JUVENILE 19 JAd TCS . 276 FRESHWATER DRui JUVENILE 32 JAW TCS . P76 FRESHWATER DRUM JUVENILE 25 JAW TCS . 776 FRESPWATER DRut TCS FRESHWATER DRut JUVENILE 30 JAW . 276 JAd TCS
>I6 FRESHWATER DRU4 JUVENILE 27 .
FRESHWATER 0R04 JUVENILE 35 JAd TCS . 276 JAW TCS . 776 FRESHWATER nRut JUVENILE 21 JUVENILE 41 JAW TCS . 276 FRESHWATER DRUM JUVENILE S1 JAd TCS . 776 FRESHWATER Dau4 JUVENILE 17 JAd TCS . 276 FRESHWATER DROM JUVENILE 27 JAW TCS . 276 FRESHWATER 04U4 TCS 276 FRESHWATER DQui JUVENILE 22 JAW . JUVENILE 20 JAW TCS . 776 FRESHWATER DRUM LARVA 19 JAd TCS . 276 GIZZARD SHAD GIZ7ARD 5HAD LARVA 20 JAd TCS . 276 JAd TCS 276 GIZZARD SHAD JUVENILE 26 . JUVENILE 25 JAW TCS . 716 GIZZARU SHA0 JAW TCS 276 GI7ZARD SHAD JJVENILE 27 . JJVENILE 21 JAd TCS . 776 GIZZARD SHAD E E E E E E E W M M M M -g M gL g gg i
hy y m CALLAWAY ICT4YOPLANKTON OENCH DATA ALL'SA4PLES 1984 IDENTFIER DATE LENGTH SORTER tax 0N LIFESTAGE INITIALS SORTE3 CID IN M4 INITIALS JAd TCS JUVENILE 24.0 276 GIZZARD SHA9 23.0 JAd TCS . GIZZARD SHAD JUVENILE TCS . 276 26.0 JAd GIZlARD SHA9 JUVENILE TCS . 276 JUVENILE 23.0 JAd 276 GIZZARD SHAD 25.0 JAd TCS . GIZZARD SHAD JUVENILE TCS . 276 6.1 JAd MINN-W FAMMILY PROLARVA TCS . 276 PROLARVA 7.3 JAd . 276 SUCKER FAMILY JAd TCS SUNFISH FAMILY JUVENILE 18.8 TCS . 276 JUVENILE 13.4 JAd 276 SUNFISH FAMILY 4.4 JAd TCS . SUCKER FAMILY DROLA4VA TCS 71884 276 JJVENILE 69.0 JAd 277 CARP 76.n JAd TCS . CARP JUVENILE TCS . 277 68.0 JAW CA7P JUVENILE TCS . 777 71.0 JAd CA4P JUVENILL TCS . 277 JUVENILE 58.0 JAd . ? 277 CAMP 59.0 JAd TCS 277 CARP JUVENILE JAd TCS . $ JUVENILE S4.0 277 CARP JAd TCS . JUVENILE S2 0 . 277 CARP JAd TCS JUVENILE 55 0 . 277 CARP 47.0 JAd TCS CARP JUVENILE TCS . P77 39.0 JAW
?!7 CA4P JUVENILE JAd 7CS .
JUVENILE 41 0 . 277 CA9P 46.0 JAd TCS CARP JUVENILE TCS . P77 39.0 JAd 277 CA7P JUVENILE JAd TCS . JUVENILE 37.0 , 777 CARP JAd TCS . 777 CA7P JUVENILE 17.0 JAd TCS . y JUVENILE 33.0 o 277 CARP JAd TCS . JUVENILE 34.0 5 277 CA7P JAd TCS . JUVENILE 33 0 . ~p 777 CA4P JAd TCS JUVENILE 45.h 277 F4ES4 WATER 0704 TCS . FRESadATER DROM JUVENILE 22 0 JAW TCS . ? 277 JUVENILE 31.n JAd M 277 F4ESHuATER DRU4 27.0 JAd TCS . o FRESHWATER nau4 JJVENILE TCS . 277 JUVENILE 32.0 JAd S 277 FRESHWATER 0404 JAd TCS . JUVENILE 31.0 277 F4ES64 WATER 0204
- , m .a
l g i CALLAWAY ICT4YOPLAt<% TON HENCH DATA
'ALL SAHPLES 1984 a.
LIFESTAGE LENGTH SORTER IDENTFIER DATE
- CID TAXON SORTED IN MH INITIALS INITIALS .
2" JAW TCS o 277 FRESHWATER DRut JUVENILE 34 . 40 JAd TCS . O 277 FRESHWATER DRUM JUVENILE FRESHWATER 0909 JUVENILE 31 JAW TCS . [ 277 TCS a 277 FRESHWATER DRUM JUVENILE 27 JAd .
~
FRESHW ATER 0904 JUVENILE 27 JAW TCS . 277 JUVENILE 23 JAd TCS . 777 FRESHWATER DRU4 FRESHWATER ORU+ JUVENILE 25 JAd TCS . 277 FRESHWATER 04U4 JUVENILE 23 JAd TCS . 217 277 FRESHWATER ORU4 JUVENILE 28 JAd TCS . JUVENILE 26 JAW TCS . 271 FRESHWATER DRUM JUVENILE 24 JAW TCS . 277 FRESHWATER 0004 277 GIZZARD SHA9 JUVENILE 34 JAd TCS . FRESHWATER DRUM JUVENILE 40 JAd TCS 71884 27H TCS JUVENILE 16 JAW . 278 FRESHWATER 0904 JUVENILE 31 JAW TCS . 278 FRESHWATER ORUM D JUVENILE 32 JAd TCS . 278 FRESHWATER 0404 e JUVENILE 26 JAd TCS . 278 FRESHWATER ORU9 " JJVENILE 30 JAd TCS . 278 FRESHWATER 0404 278 FRESHWATER D904 JUVENILE 18 JAd TCS . JUVENILE 37 JAd TCS . 278 FRESHWATER ORU4 JUVENILE 30 JAd TCS . 2/8 FRESHWATER 040+ JUVENILE 31 JAd TCS . 278 FRESHWATER DRUM JUVENILE 25 JAd TCS . 278 FRESHWATER n4U4 JUVENILE 67 JAW TCS . 278 FRESHWATER DRUM JUVENILE S7 JAd TCS . 278 FRESHWATER 0404 JUVENILE S3 JAd TCS . 278 FRESHWATER D40+ JUVENILE 39 JAd TCS .
?78 FRESHWATER 9704 JUVENILE 43 JAd TCS .
278 FRESHWATER DRut JUVENILE 40 JAd TCS . 278 FRESHWATER DRU4 JUVENILE 37 JAW TCS . 278 FRESHWATER ORU+ JUVENILE 35 JAd TCS . 278 FRESHWATER DRU4 JJVENILE 33 JAW TCS .
?78 FRESHWATER 0904 27H FRESHWATER 0204 JJVENILE 23 JAd TCS .
FRESHWATER 04U4 JUVENILE 29 JAd TCS . 278 TCS 27H FRESHMATER ORU4 JUVENILE 63 JAd . O O M M M M M M M M -~M .M M M Mq
M M M M M M m a m a g g g g g g g CALLOWAY ICTHY0 PLANKTON BENCH DATA ALL SAHPLES 1984 LENGTH SORTER IDENTFIER DATE CID tax 0N LIFESTAGE IN HH INITIALS INITIALS SDRTE3 778 FRESHWATER D40+ JUVENILE 16 JAd TCS . JUVENILE 39 JAd TCS . 218 FRESHW ATER DRU+ FRESHWATER 0909 JUVENILE 49 JAd TCS . 278 TCS P78 FRESHWATER ORU+ JUVENILE S0 JAd . 278 FRESHWATER DRU+ JUVENILE 38 JAd TCS . 278 FRESHWATER DRUM JUVENILE 27 JAd TCS . FRESHWATER 0909 JUVENILE 30 JAd TCS . P78 JUVENILE 17 JAd TCS . 278 FRESHWATER D009 JUVENILE 19 JAd TCS . 278 FRESHWATER DRU9 JUVENILE 28 JAW TCS . 278 FRESHWATER DRtH JUVENILE 28 JAd TCS . 278 FRESHWATER DQU9 JUVENILE 114 JAd TCS . 278 FRESHWATER DRU9 JUVENILE 65 JAd TCS . 778 FRESHW ATER ORU+ JUVENILE 48 JAd TCS . 278 FRESHW ATER DRU+ TCS 778 FRESHWATER ORU+ JUVENILE 41 JAd . JUVENILE 43 JAW TCS . 278 FRESHWATER 000+ 278 FRESHJATER O4tH JUVENILE 34 JAd TCS . 8 JUVENILE 36 JAd TCS . 278 FRESHWATER 0004 278 FRESHW ATER DQtM JUVENILE 37 JAd TCS ,. JUVENILE 33 JAd TCS . 278 FRESHWATER 0009 278 FRESHWATER ORU4 JUVENILE 40 JAd TCS . JUVENILE 27 JAW TCS . 278 FRESHWATER ORu4 TCS 278 FRES4 WATER D409 JUVENILE 32 JAd . JJVENILE 23 JAd TCS . 278 FRESHWATER 7404 JUVENILE 46 JAd TCS . 278 FRESHWATER DatH > JUVENILE 16 JAd TCS . 4 278 FRESHWATER ORTH y JJVENILE 43 JAd TCS . I 278 FRESHWATER D409 o JUVENILE 60 JAd TCS . 278 CARP TCS S 278 CARP JUVENILE 54 JAW . JUVENILE 55 JAd TCS . Q - 278 CARP TCS JUVENILE 48 JAd .
?78 CARP TCS ?
JUVENILE SO JAd . 278 CARP TCS 2 JUVENILE 38 JAd . 278 CARP TCS G 278 CARP JUVENILE 42 JAd . 36 JAW TCS . O 278 CARP JUVENILE
?
N e g CALLAWAY ICTHYOPLANKTON BENCH DATA a ALL-SAMDLES 1984 "x LENGTH SORTER IDENTFIER DATE a CID Tax 0N LIFESTAGE IN Mu INITIALS INITIALS SORTED - JUVENILE 39.0 JAW TCS . 278 CA9P JAW TCS . a 278 CARP JUVENILE 32.0 # JUVENILE 23.0 JAW . TCS . - 278 CARP JAW TCS . S 27R CARP JUVENILE 22.0 JUVENILE 27.0 JAW TCS . 278 CARP TCS . SUCKER FAMILY PROLARVA 3.9 JAW 278 JAW TCS 720R4 2 79 CARP JUVENILE 120.0 JUVENILE 94.0 JAW TCS . 279 CARP TCS JUVENILE 84.0 JAW . 279 CARP JAW TCS . 279 CA7P JUVENILE 42.0 JUVENILE 38.0 JAW TCS . 279 CARP JUVENILE 42.0 JAW TCS . 279 CARP JAW TCS . 279 CARP JUVENILE 41.0 JUVENILE 42.0 JAW TCS . 279 CARP TCS JUVENILE 36.0 JAW . 279 CARP JAW TCS . ? 279 FRESHWATER DRU4 JUVENILE 39.0 e JUVENILE 18.0 JAW TCS .
- 279 FRESHWATER DRU4 TCS FRESHWATER nRU4 JUVENILE 35.0 JAW .
279 TCS
. JUVENILE 21.0 JAW .
279 FRESHWATER DRUM JUVENILE 30.0 JAW TCS . 279 FRESHWATER DRU4 JUVENILE 19.0 JAW TCS . 279 FRESHW ATER DRU+ JUVENILE 32.0 JAW TCS . 279 FRESHW ATER DRU+ JUVENILE 23.0 JAW TCS . 279 FRESHWATER DRui JUVENILE 28.0 JAW TCS . 279 FRESHWATER DRud JUVENILE 25.0 JAW TCS . 279 FRESHWATER ORU+ JUVENILE 33.0 JAW TCS . 279 FRESHWATER 9404 JUVENILE 25.0 JAW TCS . 279 FRESHWATER Dau4 JUVENILE 23.0 JAW TCS . 279 FRESHWATER D4U4 JUVENILE 23.0 JAW TCS . 279 FRESHWATER 97U4 JUVENILE 36.0 JAW TCS . 279 FRESHWATER 7404 JJVENILE 32.0 JAW TCS .
??9 FRESHWATER DRU4 TCS FRESHWATER 04U4 JUVENILE 30.0 JAW .
279 JAW TCS . 279 FRESHWATER 9404 JUVENILE S2.0 JJVENILE 23.0 JAW TCS . 279 FRESHWATER D404 JUVENILE 25.0 JAW TCS . P79 FRESHWATER 9004 N O M M M M M q~ q g q
I 13 - 9 5 Appendix B.2(cont'd) I I - . . . . . . . . . . . . . . . . . . . ..m . . . . . . . . . . . . . . W C WW N WW 6 I 40 O *ft I W WM mJ VDwvVVVVmmmmVWWWVVVDVVWWw@@@ @@WVVVV 0000000 I k4 Wm ZH U0000000000U00000000UU000000wwww>wwwwww>>>>&>>>m>w>>H&w l td m C2 mm I 4 W J I >d O I U 34 Wm kW ww O2 4143 3 4 3113 3 2 31 T 3 7 3 T 4 S d d d 7WWWWWWWWidWW 444444444444444444444444 777779777777779777777771 7777777777 ETOCTETTT.GC Z WM IWD4 m 7 Os Om I . , e e Ce Ce eCeC. C. C e C e C C.. C. .CeC. e C C eCeCe Co C C .C C C. C. C C. C. C C C. C. C. C C C I
& WT e e e e Ym or ZW Z 44 W: M4cmemWNN@mm&NucTON@NNNNMNmocmW@mmoNrtmR4NFANNMmmNONN Jh Jm h1 I 04 >M T
WJ UJ W O WWW WWWWWWWLdWWWWWWWWWWWWWWWWWWWWWWW JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ 4 JJJ mummmmmmmmmmmmmmmmmmmmmmmmmmmmm I ~>4 4 3 w V W 6 77747777777777777777777777777777777 mmm W W W > W W W W W> W> W> W> W> W> W> W> W> W>
>>>E>>>>3333333333333333333333333739333 3334 W> W> W> W> W 4
J m-J 777J7777777777777777777777777997797 I4 J U TT TTTTTTTTTTTT T TTTTTTTT TYTTTY 000 0: 30000000 OOono ODS==Com: WWnnWWWWWWnNnW I 7 WWWWWnNWWWWWawW CCCOCOCOOOOCCCOCCOr
&OOONOOOOOOOWWOTXZX W td W ul W W W W Lu W 1414 W W td m M W m 4444 CC000000 Oct? OOC OOO00%0%WOOOWO td W td 14 LJ W W Lu W W W W W W O &&WH&wWWWWWWWWW J >>>WWw&&WWWwww M
444444444444444OOCOJ 44444444444444 4 3333333333333T3W2O2m 33333333333333 E > TTTITTTIIIIIITI4444d IITTITTITTTITT WWWWWWWmMWWWWWWNNNNW1mmWWWWWWWWmddm tal tal tal tal tat 4d tal tal tal tal tal tal tal h1 tal N N N N 7 (Y Ld tal tal W Lal id ha td td tal tal (a f tal tal WWW1&WWWWWOWWWOmmmmJ4WWWWWWWWWGWWGW I kkkkkkkkkkkkkkkCCCCTUkkkkkkkkkkkkkk
&&&&7&7&&&&O&&&&&&&&o00000000000000 I C m
U NNNNN5NNNNNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNANNNNNNNNNNNNN N M T T E T m m T T T T,I T T I I
fl];ll '
$3g 5, u 2gr ~ ~ mi& .
D ET TR AO DS E R ES SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS I L FA TI NT EI CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCTTTTTTTTTTTTTTTT DN II A S z T A D H Ra EI TT RI L NNNNNNNNNNNNNNNNNNNNN9NNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RBRBRBRBBBBBBBBBBBRBRBBRBBRBBRRRRHO C ON N E B4 N9 8 SI O1 H T KS NE T 9 GM N 0451356S526132153215926867066122464 4333S11 I 22233S425433241 322311 333231 AL EN LP LI PM 0A YS H TL E CL G EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEELLLLLLLLLLLLLLLL I A Y A W A T S E F II II I III IIII IIIIII II I II II I IIIITI I II NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVUUUUUUUUJUJUUUUUUU JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ A I L L L A C
++4++9+*+9++++44+494t+44MM9994M++49 N
UuUUUu0OU000UU0U0U00uu00UU000004UUU RaRRDa7RR944R44R4R47Ra474R44944477R ODDDDDDDD00DD0nO0D0DDDD0nD00DDn0D0D . RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRPRREEEEEEEEEEEEEEEEE TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 0 AAAAAA x A AAAAAAAAAAAAAAAAAAAAAAAAAAAAA WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW T HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSEEEEEEEEEEEEEEEEE RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRFFFFFFFFFFFFFFFFF - D 00000000000000000000000000000000000 888 I C 8888888898888888888888988888888R222222222722222222222222222
' ' l! ,l llilillfffIf' \
M M M M M M I M M M m'M M M M M M M M. l CALLaWAY ICTHYOPLANKTOM OFNCH DATA ALL SAMPLES 1984 IDENTFIER D AT,E LENGTH SORTER TAxDN LIFESTAGE INITIALS SORTED CID IN M4 INITIALS REN TCS JUVENILE 16 2HO FRESHWATER 0404 BEN TCS . JUVENILE 27 . 280 FRESHWATER D40+ BEN TCS JUVEN!LE 31 . 280 FRESHWATER DR9+ 32 BEN TCS FRESHW ATER 040+ JUVENILE TCS . 280 JUVENILE 22 BEN 280 FRESHWATER 04U4 BEN TCS . JUVENILE 26 . 280 FRESHWATER n404 BEN TCS JUVENILE 21 . 2R0 FRESHWATER D404 BEN TCS JJVE'dLE 23 . 2HO GIZZARD SHA3 BEN TCS JUVENILE 25 . 280 GIZZARD SHAn 9EN TCS JUVE4fLE 25 . 280 GIZZARD SHAS EN TCS JUVENILE 25 . l 280 GI2ZARD SHA9 REN TCS JUVENILE 26 . l 280 GIZZARD SHAD BEN TCS f JUVENILE 27 280 GIZZARD SHAD BEN TCS . JUVENILE 23 . m 280 GIZZARD SHAD 85 BEN TCS ' JUVENILE TCS . 280 CARP JJVENILE 87 BEN TCS . 3 280 CARP 86 BEN ~ CARP JUVENILE TCS . ! PHO 72 BEN ! CA7P JUVENILE BEN TCS . 280 JUVENILE 51 280 CARP 46 9EN TCS . CARP JUVENILE TCS . 280 40 9EN CARP JUVENILE REN TCS . 280 JUVENILE 40 280 CARP BEN TCS . JJVENILE 42 . 280 CARP REN TCS JJVENILE 31 Qf 280 CARF REN TCS . JUVENILE 25 72084 e 280 CARP WJE TCS JUVENILE 72 . $ 281 CARP WJE TCS JUVENILE 66 $ 281 CARP WJE TCS . JUVENILE 68 x
?Rl CARP WJE TCS .
JUVENILE 61 . m P81 CARP WJE TCS JJVENTLE 52
.CS . ;,
281 CA7P S3 WJE - CARP JUVENILE TCS . 2HI JJVENILE 54 WJE
. O 281 CA7P WJE TCS JUVENILE S1 . E 791 CA9P 47 WJE TCS JJVENILE TCS .
Pal CA7P JUVENILE 31 WJE
?81 CA7P I -- 1 g
e_ t
! Appendix B . 2 ( cont ' d ) B-98 5
1 I i O I g' i W Ww wg eeeoeeeeeeeeeeeeeeoeeeeeeeoeeeeoeee 1 4C i Om 1 1 Wm J l "m k wm mmmmmmVWWDmmmmmmmmmmmmmDDmmmmmmmDWW U0000000000U000000000000000U0000UUU 7H Wm wwwwwwwwwwwwww>>wwwwwwwwewwwwwwwwww C7 I mm i I w J 4 C 34 Wm ww WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW 77777777777777777777777777777777777 T U nm C7 33333333333333333333333333333333333 7 mm L C4 E 70 Om w wv Mm ZW CI 7 CNNmN4cmbommNO4N@NmNe&4mecONMm&N-NN NN4mMNMmMMMNMMm4M444MMmMNMmMNMmMNmN ; CJ W7 Ja Jw
&I C4 km T
wJ W UJ c WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW J J J J J J J J J J J J J J J J J J J J J J J J J .J J J J J J J J J J w4 4 w D mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 77777777777777777777777777777777777 4 W W W W W W W W W W> W> W> W> W> W> W> W> W> W> 3 k m 33333333333333333333333333333333337 4 J J J 77777777777777779777777797779777797 l 4 U TtiffTfTTTTTTfTtTtTYTTtTtTTTTTtTT 030303000333030303300D3303000000O NNWWWOWWWWWWuwWWWwWau1WWnNNWwanna CCCCCCCCCCCCCCCCCCCCCOCCCCCCCCCCC TOWWCOTWOWWWWWOGTC&&&OTOW&W&WWWWW W W W W W W W W W W W W W Lu W W W W W W W W W W h.) W W W W W W W tal
>>wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 44444444444444444444444444444444 4 7
333373373333333333333333333333333 IIITIITIIIIITTIIIIITITIIIIIIITIIT i ! O x 11mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
& (Y M W ht un hl hl W hl W W hs W hl hs W hl ha tal W W W he W W hl W hl W W W b e W W 4
W 44E2GT2&TTTERTT&&2&N&T&&TT&2&T27&&& UUkkkkkkkkkk6LkkkkkkkkkkkkakkkkkkkW c mmmmmmmmmmmmmmm mmmmmemmmmmmmmmmmmmm m U TCCTTCmemmmTTO7CCTOTTTTTETmTCITrcTX NNNNNNNNNNNNNN'4NNNNNNNNNNNNNNNNNNNN I I
D-99 Appendix B.2(cont'd) I I o W . I WW w& 40 CV
. e e e e o e e . . e e o e e e e e e e e e e o e . . . e e e o e e e I %
WM
>J WWmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmVmm I
- k4 wm Zn Wm C7 mm U00UU00000000000000U000U00000U00UUU ww>>>>wwwwwwwwwnwwwwwwwwwwwwwwww>>> I
- W > J I 4 O
T U 24 Ld - Nm 07 W LAJ W LAJ W Ld L.) W W kJ LaJ Ld LAJ hj hj LAJ W LAJ LAJ LAJ kJ ha uJ LAJ LAJ LAJ LAJ LAJ LAl W kJ LAJ W LAJ hJ 77777777777777777777777777777777777 3 3 3 3 3 3 3 3 3 *a 3 3 3 3 3 3 3 333333333 333333333 mm I 2 W e4 C 7& Om T
> ' CCCCCCCCCCCCCCCCCCCCCJCCCCCCCCCCCCC I
VW Of a e e e e e e e e e e e e e e e e e e e o e e o e o e o e e e e e e e 7W 7 <&MmNNMm4m&@JMCmCMmNN4N&NmoNmmmmmmm 4J WZ NNNNNNNNNN4mPPFMMAN4PmmmMNmNMN4NNNN Ja J~ hT I C4 km T WJ UJ kJ O WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
~4 4 JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ I >
4 3 4 w m W k
~
wmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 77?77777777777777777777777777777777 W W W W W W W W hl kJ W W W W W W W W W W W W W W W W W W W W W W W W W 33333333333333333333333333333333333 J J 77777777777777777777777777777777977 I. J
'4 U
TTfTyrtvity TT viTT TTTTTTTTTTT TTT I 33333333030D003D3300302D330000D tv er n & & n er a ft tr n a ry & a er n o n tr ty (Y n n n a n n n n o OCCCOOCCOOOOCOOCOOOOCOCCOCOCOCOOCCC 4 444 7 TE222CT&72G%&% TEE 720T@ETTERGNETITTT O h> W W W W W W W W W W LAJ W W W W W W W W W W W W W W W W W W W m m m m wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww I M 4 w 4444444444444444444 444444444444CCCC 3T333333333333333333333 333333332227 TITTITTTTTTTTITTITTITTTITTTITIT4444 mmmmWWmmmmmmmmmmmmmmmmmmmmmmmmmNNNN Las tat tai tal Las ut LAs Las las ha ut tal tas W W Las taJ Las W hl h t b e h3 W Lal LAs bl Lal kl til tal N. N N. N WT&& TENT 22E&TT&tT&2TT&&TNTRTR&&Rmmmm kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkOOOO _I M m TTTTTmTccTreemmmTTmTTTTTTTxc1%TTram U (u N (b N N N N N N N N N N N N N N N N N N N tt N N N N ft N N ft N N N tv I I
$I 2
a CALLAWAY ICT4YODLANKTON BENCH DATA p ALL. SAMPLES 1984 CID TAXON LIFESTAGE LENGTH SORTER IDENTFIER DATE 2 INITIALS INITIALS SORTE) o IN M9 - JUVENILE 29.0 WJE TCS . "_ 281 GIZZARD SHA9 a SUCKER FAMILY PROLARVA 4.4 WJE TCS . 281 72484
~
JUVENILE 75 0 JAW TCS 282 CARP JUVENILE 63.0 JAW TCS . 282 CARP JUVENILE 54.0 JAW TCS . 282 CARP TCS 282 CARP JUVENILE 50.0 JAW . JUVENILE 40 0 JAW TCS . 282 CARP TCS 2H2 CARP JUVENILE 34.0 JAW . JUVENILE 35 0 JAW TCS - . 282 CARP TCS JUVENILE 31.0 JAW . 282 CARP TCS FRESHWATER DRut JUVENILE 53.0 JAW . 282 282 FRESHWATER DRut JUVENILE 15.0 JAW TCS . JUVENILE 16.0 JAW TCS . 282 FRESHWATER ORUM 7 282 FRESHWATER DRut JUVENILE 15.0 JAW TCS . 282 FRESHWATER DRut JUVENILE 27.0 JAW TCS . Z JAW TCS . o 282 FRESHWATER DRut JUVENILE 25 0 JUVENILE 22 0 JAW TCS . 282 FRESHWATER DRU4 JUVENILE 26.0 JAW TCS . 282 FRESHWATER DRut JUVENILE 31.0 JAW TCS , 282 FRESHWATER ORU4 JUVENILE 73.0 JAW TCS . 282 FRESHWATER DRUT JUVENILE 15.0 JAW TCS . 282 FRESHWATER 000+ FRESHWATER DRU4 JUVENILE 22.0 JAW TCS . PH2 JUVENILE 29.0 JAW TCS . 2B2 FRESHWATER DRU+ JUVENILE 18.0 JAW TCS . 282 FRESHWATER nRut 282 FRESHWATER D4ut JUVENILE 19.0 JAW TCS . JUVENILE 67.0 JAW TCS . 282 FRESHWATER 040+ JUVENILE 57.0 JAW TCS . 2H2 FRESHWATER DRU+ JUVENILE 53.0 JAW TCS . 282 FRESHWATER DRU+ FRESHWATER D4ut JUVENILE 39.0 JAW TCS . 282 TCS FRESHWATER DRU+ JUVENILE 43.0 JAW .
?82 TCS FRESHW ATER D40+ JUVENILE 40.0 JAW .
2H2 JUVENILE 37.0 JAW TCS . 282 FRESHWATER DRU4 JUVENILE 35.0 JAW TCS . 282 FRESHWATER DRU4 JUVENILE 33.0 JAW- TCS . 2A2 FRESHWATER DRU4 J'JVE NILE 33.0 JAW TCS .
?H2 FRESHWATER 0704 E E E E E E E E M M M M M M, gg
m m m m e e M M M M M M M M M M CALLAWAY ICTHY0 PLANKTON HENCH DATA i ALL SAMPLES 1984 SORTER IDENTFIER DATE tax 0N LIFESTAGE LENGTH CID INITIALS INITIALS SORTED IN MH 29 JAd TCS . 282 FRESHWATER 0909 JUVENILE 63 JAd TCS . 282 FRESHWATER D409 JUVENILE 16 JAd TCS . 792 FRESHWATER 0404 JUVENILE 39 JAd TCS . 2H2 FRESHWATER D4U9 JUVENILE 49 JAd TCS . 282 FRESHWATER 0409 JUVENILE 50 JAd TCS . 282 FRESHWATER 04U4 JUVENILE 38 JAd TCS . 282 FRESHWATER 99U9 JUVENILE 27 JAd TCS . 282 FRESHWATER DRUM JUVENILE 30 JAd TCS . 282 FRESHWATER DRU9 JUVENILE 17 JAd TCS . 282 FRESHWATER ORU4 JUVENILE 19 JAd TCS . 282 FRESHWATER 0709 JUVENILE I 28 JAd TCS . 282 FRESHWATER 940+ JUVENILE TCS . JUVENILE 28 JAd 2H2 FRESHWATER 090+ JAW TCS . FRESHWATER 040+ JUVENILE 114 262 65 JAd TCS . ? 282 FRESHWATER 07U9 JUVENILE - 48 JAd TCS . P82 FRESHWATER 940+ JUVENILE 41 JAW TCS . 242 FRESHWATER Dau+ JUVENILE 43 JAW TCS . 2H2 FRESHWATER D20+ JUVENILE 34 JAd TCS . 282 FRESHWATER ORU+ JUVENILE l 36 JAd TCS . 282 FRESHWATER 07U+ JUVENILE 37 JAd TCS . 282 FRESHWATER DRU9 JUVENILE TCS JUVENILE 33 JAd . 282 FRESHWATER 04U+ JAd TCS . JUVENILE 40 2H2 FRESHWATER 040+ JAW TCS . FRESHWATER D70+ JUVENILE 27 282 32 JAW TCS . 282 FRESH, WATER 7709 JUVENILE g 23 JAd TCS . 782 FRESHWATER 97U+ JUVENILE t 46 JAd TCS . 282 FRESHWATER 04U4 JdVENILE TCS . $ JUVENILE 16 JAW 282 FRESHWATER ORUM TCS $ JUVENILE 43 JAd . 282 FRESHWATER 0409 TCS x JUVENILE 28 JAd . 282 FRESHWATER 000+ JAW TCS . m JdVENILE 30 2H2 FRESHWATER 0404 JAd TCS . L JUVENILE 32.
?H2 F4ESHWATER DRU4 JAd TCS .
FRESHWATER 93O+ JUVENILE 22 282 21 JAd TCS . @ PH2 FRESHWATER DRU4 JUVENILE JavENILE 17 JAd TC3 . 3 782 FRESHWATER 0409 5
' - ; ms
5 CALLAWAY ICTiYOPLANKTDN DENCH DATA S x ALL SAMPLES 1984 e CID TAXON LIFESTAGE LENGTH SORTER IDENTFIER DATE L IN HM INITIALS INITIALS SORTED g 282 FRESHWATER DRUM JUVENILE 27 JAW TCS . 282 FRESHWATER ORU+ JUVENILE 22 JAW TC9 . g 282 FRESHWATER DRut JUVENILE 20 JAW TCS . -- 282 FRESHWATER DRU+ JUVENILE 20 JAW TCS . 282 FRESHWATER DRUM JUVENILE 26 JAW TCS . 282 FRESHWATER DRUM JUVENILE 25 JAW TCS .
?H2 FRESHWATER ORU9 JUVENILE 27 JAW TCS .
282 FRESHWATER DRU+ JUVENILE 21 JAW TCS . 282 FRESHWATER DRut JUVENILE 24' JAW TCS . 282 FRESHWATER nRU9 JUVENILE 23 JAW TCS . 282 FRESHWATED DRU4 JUVENILE 26 JAW TCS . 282 FRESHWATER DRU9 JUVENILE 23 JAW TCS . 282 FRESHWATER ORU9 JUVENILE 25 JAW TCS . JUVENILE 68 JAW TCS m 282 FRESHWATER DRUM . 282 FRESHWATER ORU9 JUVENILE 71 JAW TCS : 1 282 FRESHWATER D40+ JUVENILE 58 JAW TCS . $ 2H2 FRESHWATER D409 JUVENILE 59 jaw TCS . 282 FRESHWATER. DRUM JUVENILE S4 JAW TCS . 282 FRESHWATER DRU1 JUVENILE S2 JAW TCS . 282 FRESHWATER D409 JUVENILE SS JAW TCS . PR2 FRESHWATER DRUM JUVENILE 47 JAW TCS . 282 FRESHWATER DRU4 JUVENILE 39 JAW TCS . 282 FRESHWATER DRU+ JUVENILE 41 JAW TCS . 282 FRESHWATER D40+ JUVENILE 46 JAW TCS . 282 FRESHWATER D409 JUVENILE 39 JAd TCS . 282 FRESHWATER 0409 JUVENILE 31 JAW TCS . 78? FRESHWATER ORU+ JUVENILE 37 JAW TCS . 282 FRESHWATER DRUM JUVENILE 33 JAW TCS . 282 FRESHWATER 94U9 JUVENILE 34 JAW TCS . 282 FRESHWATER 9404 JUVENILE 33 JAW TCS . 282 FRESHWATER DRU+ JUVENILE 45 JAW TCS . 242 FRESHWATER D409 JUVENILE 22 JAW TCS . 282 FRESHWATER DRU9 JUVENILE 31 JAW TCS . 292 FRESHWATER DRUM JUVENILE 27 JAW TCS . PH? FRESHWATER 0309 JUVENILE 32 JAW TCS . M M M .M M M - M M-m M W; eM
- _- = _. _ = _ _
_ _ _ _ = _ _ . _-
R . M M M M M M M m m e a m a g g g g
+
CALLAWAY TCTHYOPLANRTON HENCH DATA ALL SAMPLES 1984 SDRTER IDENTFTEM DATE LIFE 6TAGE t.ENGTH 57RTEo CIn tax 01 IN M'1 INITIALS INITIALS JAd TCS . JUVENILE 31 0 PBP FRES4 WATER DROM 34.0 JAd TCS . FRESiWATER ORUM JUVENILE TCS . 297 JUVENILE 40.0 JAd 287 FRESiwATER DRUM 31.0 JAd TCS . FRESidATER DRU4 JUVENILE TCS . 28P 27.0 JAd FRESidATER DRU9 JUVENILE TCS . 282 JUVENILE 27.0 JAd 287 FRES4 WATER ORUM JAd TCS . JUVEf3ILE 23.0 28? FRESidATER DRUM 25.0 JAd TCS . JUVENILE TCS 28P FRESidATER ORUM 73.0 JAd . FRES-iW ATER ort /W JUVENILE TCS . PB? JUVENILE 28.0 JAd P 9 FRES4 WATER DRUM JAd TCS . JUVENILE S2.0 PSP FRES4WA1ER 09051 41.0 JAW TCS . JUVENILE TCS . 2BP FRES4 WATER DRUM JUVENILE 23.0 JAd 1 28P GIZ7ARD SHAD 24.0 Jad TCS .. JUVENILE TCS m ?97 GIZZARD SHAD 25.0 JAd . JUVENILE TCS .
- 28P GIZ?ARD SHAD 26.0 JAd PB) GIZZARD SHAD JUVENILE JAd TCS . 5 JUVENILE 25.0 "
29? GIZZARD SHAD 25.0 Jad TCS . JUVENILE TCS . 287 GIZZARD SHAD 26.0 JAd JUVENILE TCS . 23P GIZZARD SHAD JUVENILE 23.0 JAd PSP GIZZARD SHAD 24.n JAd TCS . JUVENILE TCS . 297 GI7/ARD SHAD JUVEtJILE 25.0 JAd 2BP GIZZARD SHAD 23.0 JAd TCS . JUVENILE TCS . PSP MINN3W FAMMILY JUVENILE 19.0 JAd 292 '4 INN 3d F AM'4 I L Y 3.7 JAd TCS . PROLARVA TCS 7248<. 28P UNIDENTIrIED YOLK SAC LARVA JUVENILE 77.0 9EN , PB7 CARP 73.0 9EN TCS . 3 JUVEr41LE TCS . 5 2B1 CARD 73.0 9EN JUVENILE TCS . [
?91 CARP JUVENILE 71.0 9E1 r ?B1 CA4P 56.0 BEN TCS .
JUVENILE TCS . PB7 CARP S3.0 9EN JUVENILE TCS . 5 PB7 CA4P 42.0 SEN . JUVENILE TCS . "
?el CARP 31.0 9EN JUVENILE TCS . A 797 CARP JUVENILE 35.0 DEN 281 CA4P 29.0 3EN TCS .
JUVENILE
?97 CARP . ? =
0 CALLAWAY ICTHYOPLANKTON RENCH DATA- g ALL SAMPLES 1984 x m LIFESTAGE LENGTH SORTER IDENTFIER DATE - CID TAXON IN HM INITIALS INITIALS SORTE3 2 0 3 FRESHWATER DRU9 JUVENILE 42 BEN TCS . 283 7. JUVENILE 16 REN TCS . 283 FRESHWATER DRU+ 283 FRESHWATER D4u4 JUVENILE 38 BEN TCS . 3 JUVENILE 26 BEN TCS . 283 FRESHWATER DRU9 TCS 283 FRESHWATER DRU9 JUVENILE 27 REN . JUVENILE 30 BEN TCS . 283 FRESHWATER DRUM TCS FRESHWATER DRUM JUVENILE 16 AEN . 283 TCS FRESHWATER DRU+ JUVENILE 25 BEN . 283 TCS FRESHWATER 0409 J:fvENILE la BEN . 283 TCS 283 FRESHWATER 0709 JUVENILE 19 REN .
' JUVENILE 23 BEN TCS .
283 FRESHWATER 070+ JUVENILE 20 BEN TCS . 283 -FRESHWATER D00+ JUVENILE 19 REN TCS . 283 FRESHWATER DRt19 TCS JUVENILE 18 REN . a ?83 FRESHWATER DRU4
- JUVENILE 23 BEN TCS .
283 FRESHWATER DRU9 G JUVENILE 22 BEN TCS . 283 FRESHWATER D40+
- JUVENILE 24 BEN TCS .
283 FRESHWATER DRU9 JUVENILE 19 BEN TCS . 283 FRESHW ATER ORU+ TCS 283 FRESHWATER DRU9 JJVENILE 60 BEN . JUVENILE 16 REN TCS . ?H3 FRESHWATER DRif+ JUVENILE 29 9EN TCS . 283 FRESHWATER DRU9 TCS 283 FRESHWATER DRU4 JUVENILE 28 OEN . JUVENILE 25 REN TCS . 283 FRESHWATER D409 JUVENILE 33 BEN TCS . 283 FRESHWATER DRU4 JUVENILE 25 REN TCS . 283 FRESHWATER 0909 JUVENILE 23 9EN TCS . 283 FRESHWATER D409 JUVENILE 23 BEN TCS . 283 FRESHAATER DRU9 JUVENILE 36 BEN TCS .
?83 FRESHWATER D709 JUVENILE 32 REN TCS .
281 FRESHWATER 0909 JUVENILE 30 BEN TCS . 283 FRESHWATER DRU+ JUVENILE S2 REN TCS . 283 FRESHWATER DRU4 TC PH3 FRESHWATER DRU4 JUVENILE 23 BEN . JUVENILE 2S BEN TCS . 283 FRESHWATER DRU4 JUVENILE 23 BEN TCS . P83 FRESHWATER DRU4 JUVENILE 34 HEN TCS . PH1 FRESHWATER DRui
1 E B-105 Aypendix B.2(cont'd) I I O W ., I Ww
&2 4C Cm . . . . . . . e . . . . . e . . . . . . . . . . . . e e . . . . . . .
I 2 WM mJ I k4 km 7> wm 07
'O M W W W W W W W W V m W V Z W W O W W O W m M O W W V W m m W W O W U0000000U0000000U000000U0000000UUUU wwwwwwwwkwwwwwwwwwwwwwwwww>>wwwwwww !
mm 4 O
> J I 4 O
T U 24 Wm
&M OZ 77772727277777777277227777772777777 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW QCETTTCCCCCTZmCCmEmmTCCCEICCCmETCCT mm I
2 W T4 - C
?@
Cm T CCCCCCCCCC I w YW 7W 4J Jn WT Cz 2 k2 J~ CdCCCCCCCCC.CCCC.CCCCCCCCCC e e o e e e e e o e e e e CmWmNNN&mNNCCNTC4&4WN&m&NNM&mchtemm&
<mm4NmNNNNNmCm0mmmmmNNmmCWWm44mFmmN e e e e o e e o e e e e e . e o e e e e 3
ET C4 km T
& J W UJ C W WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW m4 4 J JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ I >
4 3 w A m W w mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 24 722777777777777777777777777777777 W>WWWWWWWWWWWWWW
>2>>>>>>>>>>>>>>>>>>333333333333337J 34333333333333333733 >>>W >>>
W W W W W W W W W W> W> W> W 7J777777777977777777777777779777777 I J J J 4 f U T f Y Y Y 7 5 f 7 7 T T 5 & T T ii W T T i T T T f f T T T T T # T Y 20: 3303003D0000000000D0000000000000 I 2 W W W W W W n W W W W W W W W W W W W N tr u W W n W n w W W W W N W W OCOOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 222222222222222222222222222&E222222 O WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW x ww>>wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 44444444444444444444444444444444 444 4 w 33373333333333333333333333333333T33 ITITITITTIITITIITTTIITTITTTTTITTIIT WWWWWWWWWWWWWWWWWWWWWWWWWWWWZWWWWWW W W ha W hl ha tal W ha h8 ki kl hl W tai tal W he W W Lal W be W hr W W tal W W Las ha hs hl W I 22W2322222W2000CWWWTWWWW202WWO22WWW kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk I C U mmmmmmmmmmm9mmmmmmmmmmmmmmmmmmmmmmm CTET11TTTCOTTTOTIT1TTCTTWCCC%2T@TTT N ft N N N N ft A f\ N N N f\ N ft N N N N N N N ft N fV N f\ N N N N (b N f\ ft I
y o CALLAWAY ICTHYOPLANKTON BENCH DATA 5 ALL SAHPLES 1984 ; tax 0N LIFESTAGE LENGTH SORTER IDENTFIER DATE P CID
.. IN M4 INITIALS INITIALS SORTED 2
?83 FRESHWATER DRU4 JUVENILE 63 BEN TCS . 283 FRESHWATER DRU4 JUVENILE 16 REN TCS . _ JUVENILE 39 BEN TCS . a 283 FRESHWATER 090+ ~ 293 FRESHWATER D404 JUVENILE 49 BEN TCS , 283 FRESHWATER D404 JUVENILE SO BEN TCS . 283 FRESHWATER 0404 JUVENILE 38 BEN TCS . 283 FRESHWATER DRU+ JUVENILE 27 BEN TCS . 233 FRESHWATER 000+ JUVENILE 30 REN TCS . 283 FRESHWATER ORUW JUVENILE 17 BEN TCS . 283 FRESHWATER DOUM JUVENILE 19 REN TCS . 283 FRESHWATER 0404 JUVENILE 28 BEN TCS . 283 FRESHWATER 04U4 JUVENILE 28 BEN TCS . 283 FRESHWATER DRUM JUVENILE 114 HEN TCS . /83 FRESHWATER 0404 JUVENILE 6S HEN TCS . 283 FRESHWATER 040+ JUVENILE 48 REN TCS . 7 JUVENILE 41 BEN TC9 . $; 283 FRESH 4ATER ORU+ m 283 FRESHWATER D40+ JUVENILE 43 AEN TCS . 283 FRESHWATER DRU+ JUVENILE 34 BEN TCS . 283 FRESHWATER ORU+ JUVENILE 36 8EN TCS . 283 FRESHWATER 0004 ' JUVENILE 37 BEN TCS . ?H3 FRESHWATER ORU+ JUVENILE 33 BEN TCS . FRESHWATER D404 JUVENILE 40 REN TCS . 2H3 283 FRESHWATER DRU4 JUVENILE 27 REN TCS . 283 FRESHWATER 04U4 JUVENILE 32 BEN TCS . 283 FRESH 4ATER 04H+ JUVENILE 23 4EN TCS . FRESHWATER 0704 JUVENILE 46 HEN TCS . 283 283 FRESHWATER 0404 JUVENILE 16 BEN TCS . 283 FRESHWATER nau4 JUVENILE 43 HEN TCS . FRESHWATER nRU4 JUVENILE 28 BEN TCS . 283 283 FRESHWATER DRU4 JUVENILE 30 8EN TCS . 283 FRESHWATER DRU4 JUVENILE 32 8EN TCS . 283 FRESHWATER n409 JJVENILE 22 BEN TCS . 283 FRESHWATER DRUM JUVENILE 21 REN TCS . 293 FRESHWATER DRU4 JUVENILE 17 REN TCS . FRESHWATER 9404 JJVENILE 27 BEN TCS . 283
M M M m a e e g M M M 'M M M M M CALLAWAY ICTHYOPL'ANKTON BENCH DATA ALL SAMPLES 1984 SORTER IDENTFIER DATE tax 0N LIFESTAGE LENGTH SORTE) CID IN HM INITIALS INITIALS 22 BEN TCS . PR3 FRESHWATER DRU4 JUVENILE TCS . JUVENILE 20 REN 283 FRESHWATER DRUM BEN TCS . JUVENILE 20 283 FRESHWATER 090+ BEN TCS , , JUVENILE 26 283 FRESHW ATER D40+ REN TCS . JUVENILE 25 283 FRESHWATER ORU4 BEN TCS . JUVENILE 27 283 FRESHWATER DRU4. BEN TCS . JUVENILE 21 283 FRESHWATER DRUM BEN TCS . JUVENILE 24 283 FRESHWATER D40+ BEN TCS . JUVENILE 23 283 FRESHWATER "404 BEN TCS . JUVENILE 26 283 FRESHWATER DRU4 BEN TCS . JUVENILE 16 283 FRESHWATER DRU4 REN TCS . JUVENILE 31 283 FRESHWATER 070+ 32 BEN TCS . 283 FRESHWATER ORu9 JUVENILE TCS . JUVENILE 32 GEN 283 FRESHWATER DRu4 TCS . m JUVENILE 24 BEN 8 283 FRESHWATER DRU+ BEN TCS . JUVENILE 26 5 283 GIZZARD SHAD 26 HEN TCS . 293 GIZZARD SHAD JUVENILE TCS . JUVENILE 27 BEN 283 GIZZARD SHA0 23 REN TCS . 283 GIZZARD SHAD JUVENILE TCS . JUVENILE 26 BEN 783 GIZZAR9 SHA1 JAW TCS 72584 JJVENILE 58 284 CARP JAW TCS . JUVENILE 73 284 C ARP .. S0 JAW TCS . 284 CARP JUVENILE TCS . JUVENILE 42 JAW 284 CARP JAW TCS . JUVENILE 36 284 CARP 40 JAW TCS . CARP JUVENILE > 284 42 JAW TCS . 784 CARP JUVENILE TCS . S JUVENILE 35 JAW 284 CARP JAW TCS . $ JUVENILE 36 a 284 FRESHWATER DRU9 JAW TCS . JUVENILE 14 $
?84 FRESHWATER DRUM JAW TCS .
JUVENILE 16 284 FRESHWATER D404 JAW TCS . e JUVENILE 27 - 284 FRESHWATER 04U4 JAW TCS . " JUVENILE 31 284 FRESHWATER DRus 32 JAW TCS 284 FRESHWATER DROM JUVENILE TCS . @ 22 JAW
?84 FRESHWATER DRUM JUVENILE E 5
me
5
?
a G CALLAWAY ICTHYOPLANKTON BENCH DATA ALL SAHPLES 1984 7 m CID TAXON LIFESTAGE LcNGTH SORTER IDENTFIER DATE y IN M9 INITIALS INITIALS SORTE9 -
"o 3
FRESHWATER 94U+ JUVENILE 26 JAW TCS . 244 JUVENILE 29 JAW TCS . - 284 FRESHWATER DRU+ FRESHWATER 04H+ JUVENILE 23 JAW TCS . 3 284 TCS 284 FRESHWATER 990+ JUVENILE 25 JAW .
- 21. JAW TCS . I 284 FRESHWATER ORU+ JUVENILE FRESHWATER nRU4 JUVENILE 19 JAW TCS .
PH4 JUVENILE 23 JAW TCS . 284 FRESHWATER DRU+ FRESHWATER ORu9 JUVENILE 18 JAW TCS . 2R4 JUVENILE 14 JAW TCS . 284 FRESHWATER D909 JUVENILE 22 JAW TCS . 284 FRESHWATER 040+ FRESHWATER ORU+ JUVENILE 17 JAW TCS . 284 FRESHWATER 99u9 JUVENILE 21 JAW TCS . 284 JUVENILE 25 JAW TCS . 284 FRESHW ATER ORU+ JUVENILE 18 JAW TCS . m 284 FRESHWATER 0909 284 FRESHWATER 040+ JUVENILE 19 JAW TCS . L 23 JAW TCS . o 784 FRESHWATER 0R0+ JUVENILE
- JUVENILE 20 JAW TCS .
284 FRESHWATER ORU+ FRESHWATER D40+ JUVENILE 19 JAW TCS . 284 FRESHWATER 090+ JUVENILE 18 JAW TCS . 284 TCS 2R4 FRESHWATER 040+ JUVENILE 23 JAW . JUVENILE 22 JAW TCS . 284 FRESHWATER ORU+ FRESHW ATER 04U+ JUVENILE 24 JAW TCS . PH4 JUVENILE 19 JAW TCS . 284 FRESHWATER DROM FRESHWATER 0409 JUVENILE 60 JAW TCS . 284 FRESHWATER 040+ JUVENILE 16 JAW TCS . 284 JUVENILE 29 JAW TCS . 284 FRESHWATER ORU4 JOVENILE 28 JAW TCS . 284 FRESHWATER 070+ 284 FRESHWATER 040+ JUVENILE 25 JAd TCS . JUVENILE 33 JAW TCS .
?R4 FRESHWATER D409 JUVENILE 25 JAW TCS .
284 FRESHWATER 0D04 JUVENILE 23 JAW TCS . 284 FRESHWATER 9409 FRESHWATER 040+ JUVENILE 23 JAW TCS . 284 TCS 2H4 FRESHWATER D4U9 JUVENILE 36 JAW . JUVENILE 32 JAW TCS . 284 FRESHWATER nRu+ JUVENILE 30 JAW TCS . PH4 FRESHWATER 0409 M M M M M M M M m m m m m m- g g
M M M M M M' W m m m a ; e e g g g CALLAWAY ICTdYDPLANKTON HFNCH DATA ALL SAMPLES 1984 LENGTH SORTER IDENTFIER DATE CID TAxDN LIFESTAGE IN M4 INITIALS INITIALS SORTE) JUVENILE S2.n JAW TCS . 284 FRESHWATER.DRU+ JUVENILE 23.0 -JAW TCS . 284 FRESHWATER 0704 JUVENILE 25.0 JAd TCS . 284 FRESHWATER 0404 JUVENILE 23.0 JAW TCS .
?B4 FRESHWATER 0904 JUVENILE 14.0 JAW TCS . ?84 FRESHWATER D40+
JUVENILE 60 0 JAW TCS .
?84 FRESHWATER DRU4 PH4 FRESHWATER n4U+ LARVA 11.6 JAd TCS .
JUVENILE 36.0 JAd TCS . 284 FRESHWATER D4U+ J'JVENILE 48.0 JAW TCS . 284 FRESHWATER D404 284 FRESHWATER DRU+ JUVENILE 27.0 JAd TCS . JUVENILE 32.0 JAW TCS . P84 FRESHWATER DRU4 JUVENILE 22.0 JAW TCS . 284 FRESHWATER 0904 784 FRESHWATER 0904 JUVENILE 29.0 JAd TCS . JUVENILE 23.0 JAd TCS . 284 FRESHWATER D404 m JUVENILE 27.0 JAd TCS . 284 FRESHWATER D404 i JUVENILE 27.0 JAW TCS . 284 FRESHWATER DRU+ 284 FRESHWATER DRUM JUVENILE 30 0 JAW TCS . $ JUVENILE 60.0 JAd TCS . PH4 FRESHWATER DRU+ JUVENILE 17.0 JAW TCS . P84 FRESHWATER 04U4 JUVENILE 58.0 JAd TCS .
'284 FQESHWATER n404 JUVENILE 30.0 JAW TCS .
784 FRESHWATER D904 JUVENILE 34.0 JAd . TCS . 284 FRESHWATER D404 JUVENILE 19.0 JAW TCS . 284 FRESHWATER DRU+ 284 FRESHWATER D404 JUVENILE 34.0 JAd TCS . JUVENILE 35.0 JAd TCS . 2R4 FRESHWATER 040+ JUVENILE 22.n JAd TCS . 284 FRESHWATER 0004 284 FRESHWATER 0404 JUVENILE 29.0 JAd TCS . $ 284 FRESHWATER 0704 JUVENTLE 18.0 JAd TCS .
]
JAd TCS . s 284 FRESHWATER nRU4 JJVENILE 19.n JUVENILE 67.n JAW TCS . 3 284 FRESHWATER 0704 X JUVENILE 57.n JAW TCS . 784 F4ESHWATER D404 m P84 FRESHWATER D4H+ JUVENILE S3.n JA# TCS . JUVENILE 19.0 JAd TCS . L 244 FRESHWATER D2U4 g JJVENILE 43.0 JAd TCS . 2H4 FRESHJATER D304 o JJVENILE 40.n JAd TCS , 284 F1ESHRATER 77U4 c S
- ; nur
r
,1 Appendix D.2(cont'd) B-110 c eeoeeeee.eeeeeeeeeeeeeeeeeeeeeeeeee .W WW HR AC OM 2
WW wJ k4 mmDV@@VmmV@VWV@@DVVW@@V@mmmmVVVVVVV UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU WM
?> WW>>>>>>>>>>>H HHFeFW WWWWWFWH>>>>>>H Ww OZ mm W -
J 24 TNTT11114 Ww 111444TT14411111TT1144tT11 44444444444444444444444444444444444 4 WH Ww C2 99979999979999999999999999999999999 ,
> mm 4
O I W U T WT CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC-eeeeoeoeoeeeeeeeeeeeeeeeeeeeeeeeeee 2 W CI NOMM&M42&CTNCN&TT4WCwm44NNcNTMW4WW4 MMMMN4-M4WMNM--NNw@444MMNNMNNNNNNw C4 2 e W2 27 Jw Om W Y@ 2W W 4J Jn C WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW4 JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ> kT 4
> wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww2 04 T >D O W
22222222222222222222222222222222224 W W W W W kJ W W Las kJ uJ taJ us LAJ Las ta) taJ tiJ W kJ W LAs W kJ kJ kJ kJ tij tiJ LiJ us W Lai tal J WJ k w
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>C D3333333333333233333333D333333333D2 UJ ~4 J 77777777777777777777777777777777774 4
3 4 4 > J & _a 4 4 J U (3 5 4 V V J C TT7777T777TTTTTYTTTTTTTYY 3333333333333333333333333 > NwWWWWWWWWWwwnwwwxn1WWWWW O C0000000C0000000000C0000000000000 444 44444 W Z%%%TTE%%%%T%%%%%%%%C%%%%ITTII1II W taJ w W W W W W tar W W W W ha tal W LaJ LA) tal W W W tal W W m m m m m m m m Jw h www&&WWw>>>WWWWWWWWWWHHWW 4444444444444444444444444 COOOOCOOJW 7 3333333333333333373333333 TTTTTTTTTTTTTTTTTTTTTTTTT nan 444444d 22naa-2 e tS tet C X DDD@mWDmmmDmmBVBDADDVWWWDNNNNNNNNWC W W Lal W LaJ hJ W h1 kJ W hJ W W (AJ W hl W W W L6J LaJ W tal W W N N N N N N N N J2 7 *== 4
%T2T%27TEZEETTT37223T323TwwwwwwwCTO WkkkkkkkkkkkkkkkkkkkkkkkkCCCCCCC C 4 4 4 44 44 4 44 4444 444 4 4 4 444 444 44 4 4 34444 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm U NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANNN
m'm ammui 1 rT F t___J t CALLAWAY ICTHYOPLANGTON BENCH DATA ALL SAMPLES 1984 SDRTER IDENTFIER DATE LIFESTAGE LENGTH CID tax 0N IN HM INITIALS INITIALS SORTED BEN TCS 725R4 JUVENILE 48 285 CARP BEN TCS . JUVENILE 40 285 CARP 38 BEN TCS . PHS CARP JUVENILE TCS . JUVENILE 34 REN 285 CARP REN TCS . _ JUVENILE 33 285 CARP 35 BEN TCS . 285 CARP JUVENILE TCS . JUVENILE 25 BEN 285 CARP BEN TCS . JUVENILE 27 285 CARP BEN TCS . JUVENILE 49 285 FRESHWATER naus 16 BEN TCS . 285 FRESHWATER 9404 JUVENILE TCS . JUVENILE 34 BEN / 285 FRESHWATER ORu+ REN TCS . JUVENILE 33 l 285 FRESHWATER n409 HEN TCS . JUVENILE 30 295 FRESHWATER 0904 31 9EN TCS . 2R5 FRESHWATER DRU + JUVENILE TCS . m JUVENILE 30 BEN s 285 FRESHWATER OPU+ 23 BEN TCS . 285 FRESHWATER 0909 JUVENILE TCS . [ , JUVENILE 25 BEN ~ 285 FRESHWATER D40+ BEN TCS . JUVENILE 19 j 285 FRESHWATER DQU+ 23 REN TCS . ' 285 FRESHWATER DRU4 JUVENILE TCS . 20 REN 285 FRESHWATER DRU+ JUVENILE TCS . JUVENILE 19 REN 285 FRESHWATER D4ut 18 AEN TCS . 285 FRESHWATER DQU+ JUVENILE TCS . JUVENILE 23 BE1
?85 FRESHWATER D40+ BEN TCS .
JUVENILE 22 P85 FRESHWATER D404 BEN TCS . JUVENILE 24 2H5 FRESHWATER ORU+ 19 BEN TCS . 285 FRESHWATER DRU+ JUVENILE TCS . 60 REN
?85 FRESHWATER DRU+ JUVENILE 16 REN TC9 . #
285 FRESHWATER Dauw JUVENILE TCS .
]
29 HEN 285 FRESHWATER 0404 JJVENILE TCS . a JUVENILE 28 BEN 285 FRESHWATFR 0204 BEN TCS . S l JUVENILE 25 x 2RS FRESHWATER DRU4 REN TCS . JUVENILE 33 m
?H5 FRESHWATER D20+ BEN TCS .
JJVENILE 25 L 285 FRESHWATER 0904 23 REN TCS . 285 FRESHWATEM 7404 JUVENILE 23 BEN TCS . p 2R5 FRESHWATER DRUM JUVENILE 8
~.
S REE
a
.. CALLAWAY ICT4YOPLAN< TON BENCH DATA $
ALL SAMPLES 1984 x m CID TAXON LIFESTAGE LENGTH SORTER IDENTFIER DATE m IN H4 INITIALS INITIALS SORTED - o 285 FRESHWATER 0704 JUVENILE 36.n BEN TCS . 3 785 FRESHWATER DRut JUVENILE 32.0 REN TCS . - 785 FRESHWATER nRUS JUVENILE 30.0 BEN TCS . 3 285 FRESHWATER DRU4 JUVENILE S2.0 REN TCS . 2H5 FRESHWATER DRO* JUVENILE 23.o REN TCS . 285 FRESHWATER DRU+ JUVENILE 25.0 9EN TCS . P85 FRESHWATER ORU+ JUVENILE 23.0 REN TCS . 285 FRESHWATER 070+ JUVENILE 34.0 BEN TCS . 785 FRESHWATER ORUM JUVENILE 60.0 REN TCS . 2HS FRESHWATER 04U4 LARVA 11.6 . HEN TCS . 285 FRESHWATER D204 JUVENILE 36.0 HEN TCS . 2HS FRESHWATER DRut JUVENILE 48.n BEN TCS . 285 FRESHWATER DRut JUVENILE 27.0 BEN TCS . 785 FRESHWATER 0R0+ JUVENILE 32.0 REN TCS . m PBS FRESHWATER D40W JUVENILE 22.0 REN TCS . L 285 FRESHWATER DRUt JUVENILE 29.0 REN TCS . -- 285 FRESHWATER D30+ JUVENILE 23.n BEN TCS . 265 FRESHWATER DRU+ JUVENILE 27.0 REN TCS . 295 FRESHWATER ORU4 JUVENILE 27.0 HEN TCS . 285 FRESHWATER 04U4 JUVENILE 30.0 BEN TCS . 285 FRESHWATER DRU+ JUVENILE 60.0 BEU TCS . 285 FRESHWATER DQU4 JUVENILE 17.o BEN TCS . 2RS FRESHWATER ORU4 JUVENILE ss.n HEN TCS . 285 FRESHWATER ORU4 JUVENILE 30.0 BEN TCS . 285 FRESHWATER D404 JUVENILE 34.0 BEN TCS . 285 FRESHWATER 0404 JUVENILE 39.0 REN TCS . 285 FRESHWATER DRU4 JUVENItE 34.0 REN TCS . PBS FRESHWATER DRUM JUVENILE 35.0 BEN TCS . 285 FRESHWATER ORUM JUVENILE 22 0 REN TCS . 285 FRESHWATER 0404 JUVENILE 29.0 REN TCS . 785 FRESHWATER ORU4 JUVENILE 18.0 HEN TCS . 285 FRESHWATER ORUM JUVENILE 19.0 BEN TCS . PHS FRESHWATER 07U4 JUVENILE 67.0 REN , TCS . PR5 FRESHWATER 0304 JUVENILE 57.0 HEN TCS . 285 FRESHWATER 04U4 JJVENILE S3.0 HEN TCS . M M M M M M M M M M M M -m m ma mg
M M M M M M MW W W WW W MM M M M M CALLAWAY ICTHYOPLANKTON HENCH DATA ALL SA4DLES 1984 CID TAXON LIFESTAGE LENGTH SORTER IDENTFIER DATE IN M4 INITIALS INITIALS SORTE3 285 FRESHWATER DRUM JUVENILE 39 BEN ' TCS . 285 FRESHWATER DRU+ JUVENILE 43 BEN TCS . 285 FRESHWATER nRu+ JUVENILE 40 BEN TCS . 285 FRESHWATER DRU+ JUVENILE 37 BEN TCS . 285 FRESHWATER 0404 JUVENILE 35 BEN TCS . 285 FRESHWATER 0904 JUVENILE 33 REN TCS . 285 FRESHWATER DRU+ JUVENILE 33 BEN TCS . 285 F 'F:HWATER DRU+ JUVENILE 29 BEN TCS . 285 FRESHWATER D404 JUVENILE 63 HEN TCS . 285 FRESHWATER 040+ JUVENILE 16 REN TCS . 285 FRESHWATER DRU+ JUVENILE 39 REN TCS . 285 FRESHWATER DROM JJVENILE 49 REN TCS . 2H5 FRESHWATER DRU+ JUVENILE 50 REN TCS . 285 FRESHWATER DRU4 JUVENILE 38 BEN TCS . w 285 FRESHWATER DRUM JUVENILE 27 HEN TCS . JUVENILE 30 BEN TCS . C 285 FRESHWATER DRU4 " 285 FRESHWATER DRUM JUVENILE 17 BEN TCS . 265 FRESHWATER 94U4 JUVENILE 19 BEN TCS . 285 FRESHWATER tRUM JUVENILE 28 BEN TCS . 285 FRESHWATER 00u4 JUVENILE 28 REN TCS . 285 FRESHWATER 9400 JUVENILE 114 REN TCS . 265 FRESHWATER DRU4 JJVENILE 65 8EN TCS . 285 FRESHWATER 0404 JUVENILE 48 REN TCS . JUVENILE 41 HEN TCS . 285 FRESHWATER DRUM 2B5 FRESHWATER DRut JUVENILE 43 BEN TCS . 285 FRECHWATER DRU4 JUVENILE 14 BEN TCS . 27 PBS FRESHWATER DRU4 JUVENILE 36 REN TCS . R3 FRESHWATER DRO4 JUVENILE 37 REN TCS . 3 285 295 FRESHWATER DRU4 JUVENILE 33 REN TCS . 3 JUVENILE 40 REN TCS . x 285 FRESHWATER 04U4 295 FRESHWATER Opun JUVENILE 27 BEN TC% . m PBS FRESHWATER DRU4 JJVENILE 32 REN TCS . ;; 285 FRES4 WATER 00U4 JJVENILE 23 HEN TC% . 285 FRESHWATFR 7R04 JUVENILE 46 BE1 TCS . 3 3 PHS FRESHWATER DRUM JJVENILE 16 PEN TC% . 2 _ :ws
Appnndix B.2(cont'd) D-114 I o I W - WW H2 eeeeeeeeeeoeeeeeoeeeeeeeeeoeeeeoeee do Om Wm mJ l k4 wm mmmmmmmmmmmmmm@mmmt.mmmmmVWmvvmmmmVV U00000000000000000JU000000000000UUU Zw wm wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
, C7 mm E - W w J N4 4
O Wm 577777777772?l27727777?Zlll22777772 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW O I Ww O2 XWTTTDCCCWWDCW1DDCTCWTXDTTWTTCTT5T1 2 mm W C4 t
?>
Om I w YW
>T CI MTONNmbbNOCCmNm4M4MOTm274NmN&m4?NNM 4NMMNNmNNNNNNNNNNNNN46mmmmm4M44MMMM VW Z 4J WZ Jn Jm 2T-Q4 Nm T
WJ W UJ C W W W W W W W W W W W W W W LJ W W W W W W W W W W W W W W W W W W W W m4 4 w J J J J J J J J J .J J J J J J J J J J J J J J J J J J J J J J J J J J w m m m m m m m m en u m m m m m m m m m m m m m m m m m m m m m m m m N O W
?????????????????S?llllllllllllll??
4 W W W W W> W W W W W W> W> W> W> W> W> W> W> W> 3 4 J k m J 33333333533333333333333333333337337 77777777777977777777977977779999977 J 4 (3 TTTTIS TTTITTTTTTI TTTTTT TTITTTVITT 0000030D000000300000000300000000000 WWww2nNENWWnWWEWWWOnunawwwnnWnnunNW OCCCCCCCCCCCCCCCCOCCCCCCCOCCCOCCCCO 2 T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0,'2 2 2 2 2 2 2 2 O WWWWWWWWWWWWWWWWWWWWW=WWWWWWWWWWWWWW wwwwwwwwww. wnwwwwwwwwwkww K wwwww>>>>>444444444# 4444444444 444444444444444 4
+ 3333333333333333333 IIIIIIIIIIIITIITTTIIIIIIIIITITITITI 2333333333333333 mmmmmWmmmmmmmmmmmVWWmmmmmmmmmmmmmmm un W W W W W W h1 W W W W W W W W W us bl W he W hi tal W hl W W W W us W bi W W 32222222222222222222222222222723222 kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk C
m Vmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm TmTTTCTTamCTTCTT2TTTETTTCTIr%CmcmTm U N N N N t% N N t% N N t\ (% t% t% N N N N N t% t% N N N N N N N N N N t\ t% N t\ I I
B-115 gpendix B.2(cont'd) l' I E O W WH - I pg 40 CD
. . e e e e . . e e e e e e .e e * * + * * * * * * * * * * * * *
- E 2 WW mJ kW W W W W Un d W W W D V W W D V V V W W W D V W W W W W D V W D V W W V t Hm 7%
Wm C7 mm U0000U00000000U0U0000U00000000U0UUU
>HWWHwwHWWH&>>wwwww>>Hm>>>>>>WWWww&
I C W J 4 n4 BO T U 7 W~ Em O2 mm 77777777277777777777777777777777777 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW E m m C.C G T C C C C m 1 T E m C m @ T E C E E T m m 2 T C E T T T T IW G4 72 Om w T I wT YW CZ JMON-NNm4CmNNMWMCW4CWmNWCENomWN74NT 7W 7 MM4NMNMMM4MNNNNNNNN4mMMNMmMMMNMnC4M 4J W7 Jn JA
&T i
04 kW T WJ k UJ C WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
~4 4 JJJJJJJJJJJJJJJJaJJJJJJJJJJJJJJJJJJ wwwmmmmm~~mmmmmmeemmmmmmmmmmmmmmmmmm 77777777777777777777777777777777777
.i x 4 3 4 W 6 m WWWWWWWWE' 4 W W W W W W W W W W W W W W W W W W W W W> W> W> W>
>>>>>>>>>e>>>>>>>>>>>>>>>>>>>>>33373 773333333337333333333333333333 77777777777777777777777777777799777 J J EO 2
4 TTTTTTTTTTTTTTTTTv7TTTT TTTTTTTTTTTY 33000S3333D333D03003030000303000 DOS I
& & & n a n n n & n a n n n n u n n n fr n a n n a n n n a n tr a & n n CCCccoCocccCCcocCCCCCCCCCCCCCCCCCCC 7 22222222222222222222222222222222222 O
M WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW> W&H&WW&&WmWWWWWW>>H&WWWWWW&&W WWWHH I 4 W 4444444444444444 4444444 444444444444 33333333333333333333333333333333333 TTTTTITTTITTITITITTIITTTITTTTIITTTT WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW he W W be W hs W he ha tal bl he tal us us W W W ha u W W us us W us uf ut 41 ut ul W W ut ht 222222222222T2222222222222222RW222n i AkkkkkkkkkkkkkkkkkkkkkkkkkkkkkWkkkk C WWWWWWWWWWWWWWWWWWWWWWWWWWWWWTWTWWW
~ mDmmmmxxDTmmTmmmTCm1mTTTDKxmmTTI%XT I. U N N (b N N N N N N N n, ft N ft N N N N (b (\ N N ft N N N N N N ft (L N N ft (b I
I
s g p9ndix B.2(cont'd) D-115 . E O I V i w y eeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 3 m 2 WV mJ 1 kM Hm VV@@@VVVVVVVVDVVVVVVVVV@@@VVVVV313 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU4444
?H w k H H H H H H H w w H H H H H H H e t- H H H v > H H e > > > 9 9 9 9 Wm C? .
mm 4 . I
> J 04 4
O Wm H:-
???????????????????? ???????????Ona*h LJ W W W W W W W W W W W uJ W W W td W W W W W td kJ W W W W W W W 4 =* 4 4 Y Ww W W D T W T W T T T W W W W W W W X C @ G W W W W T Ts %TWWTYTT U C? ? mm 6
C4
?O Cm H
YV OT i7 NmNDOW@mCONMmOhmNHNMNMCCDHOmNDNHOCT
?W ? 444MMmMNMuMNMmMN4mMMNNMMNNaNomdNmMN %J W?
Jh Jm n7 04
>W T
W W W W W W W W W W W W W W J W W W W W W W W W W W 'JJWWWWWWWWW HJ UJ B ,.s J J J J J J J J
~4 4 JJJJJJJJJJJJJJJJJJJJJJJJJ ~ ~ m m m m m m m m m m m m m m m m m m m m m m m m m e- m m m m m m m ? ? $ 5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 6' ? e ??????
H
> V 4
4 3 W 4 m >>>>>>>>333333339333333D33333993399 93333333 W W td kJ W W kJ W td tal W kJ (d W W td W id W W W W W W W td te W td W W W W W W J J J 9999999979979"s979999999'499"s99999979 4 U TvTvTTTTTiTTYTTY#vvY77TYYTTYTTTTT 00333D03033330.303D3330D3033333ODO nnannnnnWWnnnnannannnnnnnannnannn CCCCCCCCCCCCOOCCCCCCCCCCCCCCCCCCCoc 44
?
O EEEE3&TET7&E2EGWQTEE37EW3&&WERQEETI id kJ (d td td W W W W W id td W W W W tu kJ LaJ W tu kJ tv LJ W td td (d ad W W to kJ S m 4 W HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH&H& 44444444444444444444444444444444 40C
& 34333333333333133313333333333133333 TTTITTTIITTTTTITITITTITTTTTTITTTI44 WWWWWWMWWWWWWWWWWWWWWWWWWWWWWWWWWNN he hi tai tal W ten tai he tat Las tal tai tu ha td Let ta6 W W La tal he tai Las Las ta? Lo he he 6 4 L.8 u t to N N OWOWWWWOTnOWWWWWWWWWWWWWWWTGOWWRn>w LLkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkOO O
m WDVBWWWWDDVDWDDDDDWOffDDDWDDDBDfBWV mTec2TecEmerTTmTTTxmTTTmTTTTtsmIrms O N N N N fV N t\ N N N f\ N ft N N ft N N N N N N N (b N N ts N N N N tv N f\ rt I
i D-ll? A J pendix 3.2fcont'dj C * * * * * * * * *
- e4 e * * * * *a * * * * * * **********
W Cl 4 WW V V-
>W A N h 5
( 40 CV O WV
-J 64 22242223121 22323311 1 113133v11331 1TT 4 4 e44 4 4 4 4 4 44 4 c44 4 44 4 444 de44 4 44 d c <T 4 d ZH Ww 77777779997799777777799777797979797 g C2 wm 4
W 4 V O J W4 T ww C0000COOOOO 777777777777777777777777 U >> 44 444 4e4444WWWwwwwwwwwwwwwwwwwwwwWk 2 3- 7 T F T T T T T T T T W C T E T I T Q W T T T I G T Te 11ET11TO W O2 C4 Vw T. 70 Ow H VV 7W I WT CCCCCCCCCCC-CCCCCCCCCCCCCCCCCCCCCCC e e o e o e e e o e e e o e e e e e e o e e e o e a e e o e *e e *
- 4J Jn OT 7
VTNNTF@4DmwCPNCtakVDVPmN4VVVCTwP4NN NNNNNNNNNNnNRnmNNNNNNNNNNNNNN40M44N w G T W7 04 Jw kV T
&J UJ M4 W LM Laj Lal w W taJ kJ LaJ tal W tal LaJ Lal LaJ W Lal W Las hJ Lal tal tal tal taJ W LaJ Lal LJ Las ta) tai tal Lal O JJJJJJ > 4 JJJJJJJJJJJ JJJJJJJJJJJJJaJJ wwwwwwwwwwwwwwww wwwwww 4 w wwwwwwwwwww 3 V 22222222222427227727272772224222272 4 W LaJ W W W w '. A w w w w w > w u W >>>>>>>>>>>Wh> W w w W W W w w w w w> w>>W>>>>>> >>>>>>>>>>> taJ > W W W W W w J k 99999999799499999999999999994 999999 J w ) 4 J 9979777 4 ' 4 7 7 J 9 7 7 9 7 9 ") 9 9 9 9 7 *J 7 9 9 J 7 7 9 9 9 9 O
CCCCOCCorrCCFCOOOFCCCOCCFFFCE deedeocceedece444 44444c44 dece TTITTTTTTTITTTTTTTTTTTTTTTTIT VVVVVVVVVVVVVVVVVVVVVVVVVVVVV 7 C x CCCCCCCCCCCCCCCCCCCCCCCCCCCCC W W W W W N O W W N W W W W W W W W W W n W W w tr W W W W 4 44444444444444444 444444444444 W NNNNNNNNNNNNNNNNNNNNNNNNNNNNNQAFA NNNNNNNNNNNNNNNNNNNNNNNNNNNNNWWCOWT A h. n wwwwwwwwwwwwwwwwwwwwwwwwwwwwwg cedd 4 000000000000000000C0000000000U00000 l C te S TtnTtn T tn C TV TVTtnT tn V TVm TC .nTcme Tc T oT r rTemc Tr o TO sm TT ewr oe.xe+Txr sT oT cmcgeTs U NNNNNNNNNNNNNNNNNNNNNNNNNNANNNNNNAN i k 6
e - __ _ _ _ _ _ _ . - _ _ _ _ _ . _ _ _ _ _ _ _ g pendjx H.2(cont'd) D-118 E M . . . . .. . . . . . . . . . . . . . . . . . . . . . w. . . . . . . . I W X W W WW N wn N N N 4 0 CV 2 WW wJ k4 ww 134111111111 44 444444444444444 11 111111 444444444 111111111 44444 1141314444 2H La w 77777777777777777777777777777777777 C7 ww 4 W I W J 4 O n4 Wm
>w 77777777777777777777777777777777777 w hJ td W W W W W W td td W W Ld hi W W W W td W W id W W W W td W W W W W id W T Ww W W W T T X X W T T W.W W X T W W W W W n % D X T T T W W W W m m W T U O2 7 Mw W
TJ m 7& Om I W WY ce ce D c c ce ce ce ce ce ce ce ce ce ce c' e e e Nm&DJNoMC,2NOMMJoNJcNwo&NwTNWWJ e ec ec e c ec ec ec ec e ce ce ce c ce ce ce ce ce ce ce ce YW CT 7W 7 &WMWN MJ W7 Jw m4wwNMNNNNMMANwMwMNNNNMMwNNNMMNMMNA Jn nT Od WW T
>J W UJ c W WWWWWWWWWWM89WWWWWWWWWWWWWWWWWWWW JJJJJJJJJJaJJJJJJJJJJJJJJJJJJJJJ w4 4 J
w wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
> W 47477777777777777777777777777777777 > W > td W W taJ kJ W ta kJ td W W W td LJ W W W W W W td W W W LJ kJ tu W td td W W 4
3 W w w 434737333 n>n>>>>>>333333333773737377N37777N7 4 J J J J7J77777777777777777777797777777779 4 W WTf7TTT TTY YTTTTT TTT TTYTT T TTYYT TTYY C000007000000000000000000000000000 WnWnnnnnnnnnannnnnnnnWnnnnannnnnnn CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 2 2 & 2 7 2 0 2 0: u 2 0 n 2 2 2 3 2 3 n 3 & n a n W W 7 n n N a n n W W h1 W W W LaJ W W W W W tai kJ W Lal W W W W 40 kJ W W W W W W tai kJ td td h1 W WWHHH>>>>>HWWWWH>>>HHHHwh>>ww&H&WW 4444444 444444444 44444444444444444 4M13 7 1433111 131 TTTTITTITTTTTTTTTTTITTTTTTTTTTTTTT 1 131433TJ 131 1331Y1TTE C AWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW
*( n tal tal tra tal hi hl he ha tal tal tai tal tal tal tai tal he tal tal td tai tai tai tal tai td tal tai tal tal tal tal teI tei 4 43WNWWWWnWWWWWWWWWnWWWWWWWWOnW3%WTO M Ukkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk O
w DDDDDDbDDDDDDDDDDDDDDDDDDDDDDDDDDDD T % tt 1 T T a? T T m rc T T tr tr T % m X tt D T T m m T T t et 'D Ct T T % r l U ft N N N N ft (L N N ft N f\ ft ft N f( f\ N N N N N ft f\ N f\' (V N N fv A N N f\ A I 1
B-119 E grendix B.2(cont'd) I I m . . . . . . . . . . . . . .. . . . . . . . . . . . . . . ... . . . O td W> m I H (Y et O C tl' N N i & WW w .) k et 11**1111 1s i 1 s 1 't s 1 1 3 4 1 1B 1 *s 1 1 1 2111 2 's * 's 's 1 e- e-o et et 4 4 4 et et e4 et 4 et et**)4'")4 et 4 4 a:f 4 4 4*') et 4 <t 4 *J *1 et 4 4 ** *1 4 4 et
"") ") *) "1 ") *') *1 ~7 7 7 ~1 *') *") "'s *") "") '") *") "') ") "1 *1 "") ") *1 "1 ") *1 ~7 *1 *1 ")
I 7k W-
,o 7 I
f
- e.
I et W k J d 34 O W.
>H 777777777777777777777777??777777777 kJ Ld W W W id uj 64 ta) W W W W 14 W td LJ ul LJ W tu ul td ta) W tu td W W W tu (d W W td T fr * (L G: E T m T CL T (D Q' (L a E Cf, CE (f (T T Ei % % m (T tr (L 1 T T n- (T (r T T T C U O7 T Ww IW D4 7&
O -= CC I
> >Y I !f W 7W et .J Jn OY OT 7
W7 Jee
# . N @ cr J o cc o m N N .* &
fN N N e.s N f*) m M N N N m m M 4 N N N N N N 4 4 m N m N P *== f\ 4 N e '*1 f%
*=e M @ w w & & W N C 4 M J D & 4 N f" T J D O et >M T
W .J W U .J O W W (d W W id W W W W W uJ W W W W W W td W W W tal W W uJ La td W W W uJ W W W J J
- . J. .e J. . . J. mJ J. J. J. ..J. ~J J. J. J. . J - J . J / .e J J .J M et et J .J J .J J. .J. J w.J .J. w .J ~
I w . .J J. w-J. wJ -. . . .
@ ~7 'a* 777777777777777777777777777777777 1d uJ kJ uJ LaJ td W W W W W W W LaJ hJ td W W W uJ W uJ W W W td kJ LaJ t4J ta; uJ (d W ut td e>t=
3 s1 td 4 3 *1 3 ") *') 3 3 3 3 3 3 3 3 3 *") 3 "1 ") ") 3 "") **J 3 *1 "3 **) 3 ~3 1 3 ") **) *) *1 *)
.J J *1 *) *') ") **l 7 '"") *") *") **) *") ") "i *") *1 ~1 *) *) "1 *1 *1 "') "") 9 *) *) 7 7 *1 *) ") *1 ") *3 *)
IU st J T T TfTTTT TTTTTT TT5 Y YY TT TT T T fTTTTT 353**OO3S333D350337 D O*"'O O O S 3 ? O** fr n n er (Y n O 3 ? T* O D S T
'y rr rr (Y ty n rr n ft rr rr er n fy tr tt n' fr fr fr fy tr ft a cr n n er n I C C C O C C C C C C C C C C (' C4 CCCCCCCOCCCCCOCCCCC 7 Cr n & R Cr CY a (Y & (Y n Cr & (Y W Q T 2 a (Y n 2 2 O fY n n n a 3 n rY Q & Q O LaJ W H WW&hJ WW >=WHW H LaJ H >= LaJ WW WW WWHW HW &W 641> W > >W>LaJ > >= WH W>= WH W =WHWWW>= WHt.aJ WW H >= W W Lu W 10 td .W~ > >=
et <f et 4 4 d et et et et et et 4 et eF et et et elf 4 et et et et 4 et etE et et 4 et 4 et 4 et +1 E >= 4 *E 3 3 3 "E 'E ~t 3 3 3 ** 3 1 1 3 1 3 Y Ir E 1 1 *B *t 3 *Z *R 3 3 3 3 "R *M TTTTTITTTTTTT7 TTTTTTITTTITTTTTTTTTT mmmmW(nmDDmmWWDAWmDWD@MDDDmDBmvW@DVD tal to t tai tot tai u s t.1 tai tal 10 tot tai tal tal tal tal tal tai tai tal td tal tal W td tal le t W tal tal tai tai 60 ta t ul I & fY fY ff fY Q fY fY Cr 4 fY (Y fY R & (Y 'T fY (Y 4 & (Y T (Y fr (T CY & fY & R Q (Y (Y fY k La., k k k k k k ta. 6 k k k k ta. La. 4 k k k k k k k k k 6 k k k k La. k k k i O. e. U D s2sC D D D D D D D D D D D D D D D D D D D D D D D D D D D D D 4 st D fc c rt to a T m e cr m an a e fr, r, e a m cr to e T T E E, I m T T T r T T m T ft N (V N N N f\ fV N N f\ f\ N N N N N f\ fV N N fU N N N (b t\. N N N ft N fu ft N I I .
- . - _. _ m . s~, - _ . , .,
App 7ndix B . 2 ( cont ' d ) D-120 E I O E W ) WW wu eeeeeeeeeeeoeeeeoeeeeoeoeoeeeeeeeee 40 Om WW wJ kg 13111111331 44 444444 311 3111111111111 444444444444 444 444 1 444444444
%%31 311 km Zk Wm 77777777777777777777799777777777777 . Or mm 4 @ > J W4 4
O Wm kw 777??727227277727777277777777777777 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW T W~ W G W T W T. T G T T W 1 T< W C W T W T W T G T T T W W W W W W E T T G U OZ 7 Wm W X4 m 77 Cm I w 97 Y@ 07 mkNWDN.ND4 7t4nd.c5m7N4n>D.7N4NncmW 4NNmMNNNNMNaNNNNNNNNMNNNNNN ZW Z MMMNNNNJ 4J W2 JN Jm hY 04
>O T
WJ W UJ c WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
~4 4
W mummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm 77777777777777777277777777777777777 4 W W W W W W W W W W W W> W> W> W> W> W> W> W> W> 3 4 J 4 m J 333333333353333393339333N7333333793 77777777777777777777777997777799999 J 4 U YT TTvvvv7 TTY 1 T TTTTYTYTT 777 7T 74 TTTTT 03S3305S300335D303D0D003330D0000003 nWnNWWN WWnNNNWnNNNWWnNnnwaNWNNnNNNN CCCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCO Z O a&&&2&2Wa&2222232&T23242Ga&%2222072 x W
&WWWWW>>WWWWwww W W W W W W W W W W W W WWWWWWWwwHWWW W> W> W> W W W W W W W W ww& WWWWWW 444 4 44444444444444444444444444444444 %1333 1313131312M1334311333311111711 W
- TITIITITTTTITTITTITITTITTITTTIITTTT W@WWWWWWDMAWBADDDBBBDDWAWDBWDADVDBV tal w W he bl bl W hl W hl he he hl W hl W hl us W hl bl kl W hl tal tal tal tal W hl W Lal tal tal tal WWW30WWWOOWWWWWWOWT3WWWWWWWWWWONWWW kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk I
m U ' OTmmTmemmTTmmT1mmTTmrTTmT%CimTTTxTT N N N N N N N N N A N n; N N N N N N N f5 N N N N N N N (b fk N N N fV N N I E
A n D-121 J pe nd i x 11. 2 ( con t ' dl I I m ' I Lal Wr wa 40 CW I & WW
~J 44 11311111111 e2 4 <t et 4 e2 et 4 4 1111 'e Y4 14 et11 at 41*11at14411113111111 4 vs et 4 4 at s2 at 4 14 7777777797777"'57 '977777777777777777 *T 4 4 er e* m.
ww 3 l 7W Ww 07 ww I 4 Y w J W4 4 O Ww WW 77777777111111111 W W W W W .a.l W W *% *t at "E 4 et at ef et ** 4 4 <t ** si 111111111111111TT1 e2 *1 4 ** 4 4 4 4 4 ** *1 ** T &w C C (I E 2 C & E 7 7 7 7 7 9 9 9 7 7 7 7 7 9 7 7 7 7 7 7 7 7 7 7 7 7 7 U OZ mm I 7 W 04 TT T Qw T wy T YW OT dwN&NNmm4NcomNETDWwNSwDWWNwmoNWJWW NmNNmNNNmNNNMmNewNm4mmNNNNNNNmNNmmN I 7W 4J 7 W7 Jn Jw hT C4 kW T W kJ UJ C WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ w4 4 wwwwwwwwwwwwwwwwwwwww H W wwwwwwwwwwwwww?? 7777777777777 77777777777777777777 i 4 W W W W W W >W >> W W W W W W> W> W> W> W> W> W> W> W> W> 2 L
>>>>>>>>337739333337N37333333733379 93733353 4 d w J 77777777779777797777777777779797797 I
J J 4 U TT TTTTTT TTTTY TTTT TTTYveTTT Try YTTT&T g 30000030000000000000000000000000000 annannnnnnannunnnnnnnnnnannnnnnnnan I CCOCOCCCCCCCCCCCOOOCCCCOCCCCCCCCCCC 7 C 2R72242R&2&22722RO&&On322222TN23URG M W W W W W W W W W W W W >W >W
&&WWWH&W>>>>> HHwwwwww&H&www>>>
W> W> W >W 44444444 W W444 4444 W W W W W W W W W tu W W 4 44444444444444444444 331 E H 331333333113113313123111M7133373 TTITTITIITTTTTITTTTTTITTTITITTTTTTT WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW W he ut ut W tas tai hs las he hl us W hi ut ut tai tai tai tai tai tai hJ hl h# 44) hk 141 he ha tal he us hl hi OWTOONOWWWWWWGWWWTWW&NWNWWnNNWWWW%N kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk O DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD TIETTTTETE TTTTTTT rTmTTmTTITTTTITTTT i - U N ft ft N N (% N N N N N N N N N ft N N N N N N N A N N ft N f\ ft f\ fbNNN I I
- - ~ - - - - , - _ _ _ _ _ _ _ _ _ _ _ _
h E m W WW WW eeeeeeeeeoeeeeeeoeeeeeeeoeeeeeeeoee 40 CW W WM
-J kg mw 32 313131141T213333232333T1124231333 44444444 444444444444444444 444444444 7M Wm 77777777777777777777777779797997777 C7 mm N @
W J 4 O 44 WW WW T1TTDT1213D114433T34141DD1111431T1% 44444444444 444444444444444 444444444 T U Om C2 77997779777999797997777775977779977 7 mm W C4 27 Cm I mr W YW C 4' *N7omkNN.NMmM.47mdemM4DW444WkDewNmm MMNNNmNMM4N4MNM*NNNNNNM*NNN44NMM4MN 7W 2 4J W2 Jn Jm hY 04 kW T WJ W UJ O WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
~4 4
W W mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmemm 7777777?777777777777777777?77777777 4 3 W k m W W W W W W W W W W W> W> W> W> W> W> W> W> 93333333333333333373333333333333335 4 J J J 79977999999777979779997799997799999 r 4 U TYYYYWYT YTT TTYTYYTTTTY5TTT77Y77T TTT ODOS S0000D03330000DD00000000030000: nnWnunWWWWWWONWnunWWawnWWnWWnnWnnnn CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 2 W2002O2W2222442222222222222&23Wa&23 o K WWWWWWWWWWWW>W>W>WWWWWWWWWWWWWWWWWWWWW
>>>>>mWWWWW WWWWWWWWWWWWWWWWWWWWW 444-4 44444444444444444444444444444444 T3333333332T323333333333333333333%T W
ITTITTTITITITTTTTITTITTTTITTTTITTTI WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW W W W tal tal tal L4 W Las tal tai La tal Lt be tai tal W tat taf W W W bl sas tal 148 W tal b1 tal tal W L1 tal WWWWWWWOWWWWWWWWWWWWWWWWWGWWNWWWWWW kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk O .. .D D D. D W DY D D ..Y
- D.. D D. D. . .D D. D.D. .D .D .D D.
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANANN
.=D. D. D D. D D. .D U
I I I
m m r u n ei"" $Bxm;;gc3_2 a m
)
E . ET M T4 A0 D5 e R ES I L FA dddddddd dd m ddddddddddWWdWddddSSSSSS AAAAAAAAAAAAAA AAAAAAAAAAAAAAACCCCCC W T1 NT EI JJJJJJJJJJJJJJJJJJJJJJJJJJJJJTTT TTT DN II - m O S T L WD A H C RA EI TT RI ON ddddddddddd WdWd W dddddddddddd ddddddd AAAAAAAAAAAAAA AA A AAAAAAAAAAAAAAA AAA JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ N SI WF H4 4 9 O1 8 H T Tu mI ;S NE A L LD GH N FN LI 68823402402475289467292305202747877 11 233222333226 422222234322333564P53
. P "
MOA YS H TL CL E G EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE I A A LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL I I III I II I I I I II II T I I I I II I IIII I III II I T
- m. Y A
W S E F NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE VVVVVVVVVVVVVVVVvVVVVVVVVVVVVVVVVVV O I UUUUUUUUUUUUJUUJuUJUUUUUUJUUJJJJJJJ L L JJJJJJJJJJJJJJJJl JJJJJJJJJJJJJJJJJJ MO L C 4 44444444M444+44 4444 444 4 44d44 :
~
UU0U0UU00U0UO0t 0uU00UUU1 0lt u0t J 1 43 4R4?443J 77R4a4aR94R?4440a4a M 000D9D00DDD3D0D9DO09D00000DDD N RRRRRRRRRRRRRRRRRRRRRRRRRRRRR 0 EEEEEEEEEEEEEEEEEEEEEEEEEEEEE x TTTTTTTTTTTTTT TTTTTTTTTTTT TTT A AAAAAAA AAAAAAAAAAAAAAAA AAAAAA M T WdWWWWWdWWWWWWWdW4WWdWWd4WWdW HHHHHHHHHHHHHHHHHHHHHHHHHHHHH SSSSSSSSSSSSSSSSSSSSSSSSSSSSSP0PPPP EEEEEEEEEEEEEEEEEEEEEEEEEEEEE72 O 44 R RR4RRRRRQRRRRRRRRRRRRRRRRRRRRAAAA AA FFFFFFFFFFFFFFFFFFFFFFFFFFFFFCCCCCC m D 666566666666666666666666666667777 77 88488888884484 8AR8H M488dR8388 48HH88 N I C 2222222222272P72P2PPP72 PP277727?P2P M m l ! (([lll;Jl!!f[l(lllIlft jlilI!f
, MP7hdiX B.2(Cont'd) g,}p4 i I l e e W ' WW wn eeeoeeoeeeeoeeeeeeeeeeoeeeeeeeeeeee d O CV 2
; WM ,
mJ @@@@V@@@@@V@VV k4 wm D@VM@V@@@V@@@V@@@@@@@UUUUUUUUUUUUUUU UUUUUUUUUUUUUUUUUUUU ZW wm Wm>>>->>>>>wwwwwwwwwwwwwwwwwwwwwwww C7 mm 4 @ w J e
- O 24 wm 111111114141111142241211111111111E 44444444444444444444444444444444444 T
O w& Tm O2 79999779797777999977799799999777979
- 2 Vm k
C4 m T& . Om W I WT CCCoC4k 3@CdoCCCCCCCCCCCCCCCCCCCCCCC eoeeeeeoeeeeeeeeeeeeeeeeeeeeoeeeeee CT
< Vm 7W 4J 7
WZ WNmN-44hNmWNJmmmWmCNmomoMM&mc&TMN4@ mmNmN 4mmNNNNNNmPmmmMNNmNNmmA-ANm Jn Jm nT C4 kW T W
&J UJ LD WWWWW4444WWWWWWWWWWWWWWWWWWWWWWWWWW JJJJJ>>>>JJJJJJJJJJJJJJJJJJJJJJJJJJ m4 4
w mmmmmWWWWmmmmmmmmmmmmmmmmmmmmmmmmmm 77777444477777777777777777777777777 4 2 W W W W W W W J J J J W W W W W W W W> W> W> W> W> W> W> W> W> W> W
>>>>>COOO>>>>>>>
d J M J 33333&T&T33333337339333733333337337Q77977977779779999777 77979anQ J 4 U TYYYsvYTstsvssYvsTYYTTsvTT 30000003000303000000000000
>>>>nnnnanannnnninnannnnnannan r O C .l J J J C C O C- C O C C C C C C O C C C C O O C C C C C C C 444mmmm TTITTTTERG&R227&T&T&&R2277GG33TTE m m O 4 4 4 4 W W W W W W W W W W W W> >W wwwwww W> W> W> >W W W W W W 44444 4 kkkkwwwww&wwwww444444444444def4444 7
TTT&172331332333333333333333T133 Omo 44 444WWWWTTTTITTITTTTTTTTTTITTTTTTT gmOMMMOMWMBWWWWBBWO@@WWVWWB 3 C &aNNNYYY tal Lal tai tal w (Y & N N N U U ( ) U tal W bl W LaJ Lal tal 444 tal ul tal tal Lal Lal hi tal tal tal L41 tal tal tal243&T 4 4 m m m 3 3 D O W 7 & T 2 7 4 7 4 4 T W T T & T 3 7 3 2 CT 4 w UUCCOAmmmkkkkkkkkkkkkkkkkkkkkkkkkkk E
--n---- -------------n - --------cxTrer.TrrreermmtaTxmtrarrTe O
m czeemcTe U NNNNNNNNNNANNNNNNNNAANNNNNNNNNANNNN I I
Appendix B.2(cont'd) F* D-125 1 I I l n s W WH wn eeeeeeoeeeeeeeeeeeeeeoeeeoeeeeeeeee 40 f CD a WD
~J kn ww DV@DVDDDDDVDBVDDVDVDDVBWVVDDDDDVVVV UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU ?>
ww nwwwwHwww>>wwwwwwwHHwww>wHwwwwwwHww C? ww 4 B
> J 4 W4 O WM 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 4 *B 1 1 1 1 1 1 4444444 1111111 I
wW
&w 4444444444444444444444444444 99799999799999999999999799797999999 O G? ? Dw W
C4 T
?@
om I w >T R4eNRONNmetm YD OT OD7DDmDmntNONnDM4mW4DTM
- CwNNNnNNNMMMDNNNMNNwC444Mnnm4NMNowd ZW ? -
4J W? Jn Jw a7 04
>D T
wJ W UJ M4 J 4 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ wwww *wwwwwwwwwwwwwww w W D wwwwwwwwwwwwwww?????l0
????e taJ W W W????????? ??????????????
W W W W W W W W tu W W W W 642 W uj W W W J W W W W W W t.J W kl W W 4 W 3 k 4 w J 93933333333399333393333333399933339 99999999999999999999979999999999999 J J 4 l U TTTT TTTTTTT TTVTTT TTTT YTTT TYTTTTT TT T LDOOOOSDDDDOODOOOOOODO3DOOOOO3OU700 nannannnnnnnnnnnnnnnnnannannnnnanna I CCCCCCCCCCCCCCCCCCCCCCCCCCCCCrCOCCC
? R&222223 REOGa&&a2&&n32&TR&2&R330374 O W W W taJ W W W W W W tal W W W W W W W W W W W W W W W W W W W W W W W W wwww>>wwwwwwwww>>WWHwwkHwyWHwWWHwww 4
44444444444444444 T 3 *.3 1 3 3 3 3 31 2111 44411121 4444d44444 44 444 331 TT32131111313 IIIITITIITTTITITTTTITTTTTTIITTTTTTT BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD tal be tai u t uJ tat tal ha ui bl hJ Las W Lal tat hl W ut bl ha ut hl b e is t til tal W tal tal ha tai tal b e ta n bl
&WOOWWWTWWTGWWGWWWT&WWWOnnWW JWWGnW9 L 's k k k k k k k k k k k k k. k k k k k k k k k k k k k k k k k k k a C
w NNN T@@QTT%TTT NNNNNNNN T S O CNNNNNNNN T T T 7 T T, N TNNANNN E T T T NNNNNN T T T & TITT&T NNN U N N N f\ N N f\ f\ N N N ft N f% N N ft N N N N f\ N N f\ N N N N N N ft N fV f\ l
_ 1$7 P y o@[ a ~ ?[e M M M
)
E . ET TR AO DS m R ES m I L FA SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC TI NT EI TTTTTTTTTTTTT TTTTTTTTTTTTTTTT TTTTTT 4-DN II ' m A S T L A RA D EI ddddddddddddd AAAAA AAAAaAAAddddddd ddd ddddd ddddddd AAAA AAAAAAaAAAAAAAAAAA H TT RI JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ M C ON N SI E H4 N9 8 M O1 H TM 0 0 0 0. b. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 T KS GM 80221779425791697709789785442657722 233221255S5434433303222222222231 232 NE AL N EN 1 M' L3 LI PH OA YS H TL E G EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE W CL I A A LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL TI IIIII I I II II IIIIIII II I I I I III III III Y T S NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE A W E VVVvvvVV VVVVVVVVVVvVVvvVvVVVVVVV VVV M A L F I L dJUuuuUUJdUJUUUUOUuUdduUuJJJJJJUJJJ JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ L A C 44 444 M M44+4444 444+4+4*44 UUU00 U000u0U00U0U00Uu0U 74 40Ra444R4R44777R R RR3 7 DDD0DD09DDDDD9DD9D DDDDDDDDDDD0 AAAAAAA HHHHHHHRRRRC M N RRRRRRRRRRRRRRRRRR SSSSSSSEEEEE D EEEEEEEEEEEEEEEEEE TTTTTTTTTTTTT TTTTT TT TTT X AAAAAAAAAAAAAAAAAA DDDDDDOA AAA A A RRRRRRRWWWd W T WWWWWWWW WWWWWd WWWW HHHHHHHHHHHHHHHHHH SSSSSSSSSSSSSSSSSSPPPPPZZZZZZZSSSSS AAAAAAA HHHHH W EEEEEEEEEEEEEEEEEERRR44ZZZZ/ZZEEEEE RRRRRRRRRARRRRRRRRAAAAAIII I I I I RRRRa FFFFFFFFFFFFFFFFFFCCCCCGGGGGGGFFFFF 4 D 7777777777777 7777788H63888H88R888HB I C 8898888RH888869888R888888HH9889988H 7?2222222722272722P22277222?72222?P M M M
B-127 Appendix B.2(cont'd) I s d M ~3 W y> . wu oeoeeeeeeeeoeeeoeoeeeeeeeeeeeeeeeee 4O Cm T WW
>= J V V D V @ D W W @ D tt V D D V @ f D D V @ D V V @ V V V V D @ V V V L La. et 6- e.*
r e-UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
> 6- >- F w e 6- > > >- > t- e- >- >- >= >- > > w w p- >- e- t- W > > > *= *
- e-W=
O7 e.e w
*1 W k J 1 1 7 1 1 1 *B *B 1 <1 O
3 ** We 1 *B 111 1*tet1at*R"5 1 14 "E4 4241et1og 1 14 4 1 3"Idcf 1e2*E<!1e2 1 4"'tet*B a1 <! 4 et 4 et e1"")<T"') et") 4 ef 4 si et 4 et 4 et
") ") *") *") ") "1 ") "") "") ") "") "b "') **) ") *) ") 7 "") "") "1 "") "") ") ") " >= >=
T Cr >= ") 7 "") ") 7 *") U C7 Z D~ 14 Z4 ~
- D 7 Ch C-D
>Y CCCCCCCCCCCC4CCCCCCCCCCCCCCCCCCCCCC eeeeeeeoeeeeeeeeeeeeeeeeeeeeeee..ee Ym OE N m cc 4 N LA P. & ~ @ w N 4 S m N Os ct cr 4 m cc - m 4 4 N r" O N N m 4 4 m 7W 7 N N N o m LA 4 m 4 4 m m - N m N - N N w - @ 4 4 4 m f9 m f*) 4 N f9 N 4 - 4 *! e W7 Jn .J *.e nT O4 >m T
tJ W W W W W W '4J W W W UJ 0 J J J
- at at W w J->
J W =J.W W W W W WJ W
= J J. .J.>=.Je.J. J. wJwe .J. m W .JW .J. W W) .W J ..J.
J
.J.weW W ww J .e J
W W.J W W W= eu . W >Ww >= We-W J.WJ J .J. =J J J J .J .J w 77777777777777*2s*7777777777777777777
- e. .
>= m ** W W kJ W W W W W W LaJ W W W L W W bJ uJ W W W W W W W >W W>>>>>>> W W> tal W W W W W W s 3 > >>>>>>>>>>>>>>>>>>>>>>>> '") >'") *)~1*) '"3 "i 9 *") ") ")
ex L. m "") 3 "") D *) *"J D *) "1 *) '") 3 3 "") 3 3 3 3 3 ") "3 3 3 ") "") "") "') ") ") '") '") *") *") ") ") "1 ""> *) *7 *"n J J *") '") '") *) "") *') "") "") '") ") "") *") ") *") ") *1 ") ") '">
.J ct u
TTTTT TTT T T T T i T T T T T T T 5' Y Y 1* T T T T T T T T T T T DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD n n n fr er & fy n a nr a n rv a fr n (Y fY ty nr rY (Y n tY n n tY (Y n n n n n (Y n C C C C C O C> c C Co c c C O c C C c c c C o c c c c C C C C C C C C O 7 & 2 2 2 T a n n U & & R 2 2 2 2 a 2 a a a a & 2 n 2 2 O ft Q 2 "Y T c rr O W p- We >=LaJp-Wt-W W >-
> e- WWp- W p- kJ W p. > >= kJ e-W e-W P.W> W6- WW W>= W >= LaJ>- W6- W>=W >=
WW W W0.*Lal
> >= e- WF kJ k' W>=We-W F t- >=W pr a1 .T si 4 eg et et ct 4 et et <! ei et cf eg 4 c3 cf eg et er sg 4 4 at af af eg et of <! e3 <! et 1 1 1 'E ef > 2 1 "B 3 's 3 'E 3 'E 3 'E 3 *E ~B 3 3 3 3 3 'E 3 3 1 'E "E D 1 3 1 M Jf T1ITTTTTTTTTTTTIIITTTTTTTTTTTTTTTTT W W W W W W W W W th W W M W W W m W M @ m W W LA O m W W W W W W (A LA LA tal ut ut W tal tal ui us tai ut tal taJ tai tai tai tai tal tat ha us las bs tai la6 bl tal tal tal tal let tal tai tallei nel CY 2 2k7k &
k k La. L A7 La. 7 ELa. G h, CYk k&La. 4 7k & La.3 La. 4 TLa. 3 3k & k k3k(Y E &6 fY k La. k 6W 6 4&hTLa. T La.
& Tk&la.TLA. R fr6 O cc m cc cc e ce cc I cc T e m ce cc co cc ec 2 T ce T T T, T T T cc T cc I e T ce cr e ** *C %) cD 1 1 :D T T T T T T T T T cc & c0 m T T T T T T T T T N T N TN(bTT N TN c0n.f\ T U N f\ N N ft N N f\ f% (% N N N N N N tt N N N N N h ft N N f\ -- -- -__- -__-_ _ -__ __ ~ .
r. IApp9ndix B.2(cont'd) B-128 I O I W Ww pg ,eeeeeeeeeeeeeeeeeoeeoeeeeoeeeoeeoe nO CW i i ! 2
- WW w .J I k4 wm
?>
V@VVVVVVVVVVWWDVVVDAV.VV@DWVWDVVVDDVUUUUUUUUUUUUU wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww I Ww C7 mm I
& J 4
c Oc wm 11141T*D141**T TTT1DTV1111 1111344131 44444444444444444444444444444444444 T U wk nm C? 77777777777977779777777777777799797
? mm W
T4 C
?>
Om O w >T TONNmWk 4morDTmT74NDWOmLCwwn4 Y@
?W WY ? N m m N N mNOC4DW#N N N N N N N N N N N N N 4 N O W W W m 4 m 4 4 M e,M M M 44 W Jn Jw
- n. T 04 T
h1 wJ VJ Q WWWWWWWWWWWWWWWWWWWWWWWWWW.siWWWWWWWW JJJJJJJJJJJJJJ4JJJJJJJJJJJ 1JJJJJJJJ mmmw e,wwwmmmmm
~4 4 w mmmmmmmmmmmmmmmmmmmmmm $ ???????? > V ????????????????????$75L &
4 W W
> W W W W W W W W W W> W> W> W>>>>>>>>>>>>>> >>>>>>>>> W> W> W> W> W> W> '>J W W k k 3
4 J 6 m J 3333333333333333333333333333337333? 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 7 7 9 9 9 9 "J J 4 U vtTvvvv7TTT7 TTYYTvv7T7 TTTTTTTTTTTtt DDOOODOOODOOOOODOOOODO7DDOOOOOOSO00 nna n n a n a n a n a n n n n n n a n m a n a n n n a n n n n n n f7 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC W
?
O 222&G2222272&N22222R22222222&a&&C27 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWE x >>wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww& 4444 444444444444444444444 444 4444444 4 33333TT 313
> 3%333DT13D333333T33333341 TTIITTTITTTITTITTITITTTITTITTTTITTT WWWWWWWWWWWWWWWWWWWWWWWWWWWdmWWWWWW W hl t$1 kl ha h1 us u t he tai hl W hi W ut tai h e W h1 u s ht us W hs h s LI W W u t tai h e tai til 14 til 20WWWWOTWh0Wn3WWWWWWnWWWWWWWWWnWWWX kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk O TTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT T T T T T T T T Tf\cT NT NT (V TT m
U f\ N N N N N N f\ A,Xf%TNT> NT NTNTNT NT TN f\ N T f\' TN T ftT NT NT NT NT NT f\T>NNTN T I I
fi I! II ;)!! 7~S f>$$R5 = L 3S & - 7 E 6 S OT 7 ? TR 7 7 AO DS R ES I L FA TI SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS CCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCCCCC NT TTTTTTTTTTTTTT TTTTTTTTT TTTTTTTTTTT T EI DJ I I'
- S L
A RA T A EI TT dddddd4d AAA A A ddd ddd aAaAeA A A dddddwWdl A AAA A AA 4SNNNNNNN4NN AAErEEEEEEEErFE D RI ON JJJJJJJJJJJJJJJJJJJJJJBBOBBBBBBBBB8 H SI C N E H4 8 H N9 T4 00000000000000000000000001 . . . . . 050000000 O1 GM . . T N 1521 771 401773531 342323334322222221 2222221 1R4267477Sn1 27975773 311 1 233 KS EN
- NE LI AL LP P4 O A' YS t
E 3 OEOEOEOOOOOOOOOOOOOOOOOOOAO OOOELOO A LLLLLLLLLLLLLLLLLLLLLLLLLVL LLLLLLL TL IIII I II CL T IIIII I II I IIIII III II I III IIRI NNl NNNN I A S E NNNNf 4 NNNNNNNNNNNNNNNNNNNNAN EEEEEEEEEEEEEEEEEEEEEEEEELE EEEEEEE f Y A F I vVVVVVVVVVvVVVVVVVvVVVVVVOVGVVVVVVV uJJJdUUdUJudJUUJUUuUUdJJURUGOJJUJJO W A L JJJJJJJJJJJJJJJJJJJJJJJJJPJEJJJJJJJ L L A G C G E MM M4MMMw1 4i4 l'" 4"9M 1 4 wMM w1 M " M 4 M" OUU0 oui u L t Js s 1 1 f
; 099UU' 9JUO aRY u O' U JOtJi RRRRRt R
RRR4RaRR44R4R444RRRRRR DDOOOD DDD0DDDDDDDDDD00DnDnDDDnDLDD A I A A RDRRRRRRRRRRRRRRRRRRRRHRR* 4 HR RRRRR4 1 EEEEEEEEEEEEEEEEEEEEEESEEASE EEEEES TTF T TTTTT TTTTTTTTTTT TTTTTT TTTTT DA AAAAAD AAAAAAAA AAAAAAAAAAAAAADAA WWWWWdWwWWWWWWWWW WWdddRdwRRw d diii4t t d d -W R. V 444i4iiii4i4Hiii444iiiA * - i i EAa - - 0 x SSSSSsSSSSSSSSSSSSSSSS7SS<ZSPSSSSS7 EEEEEEEEEEEEEEEEEEEEEEZEECZEREEEEE2 . A T RRRRRRRRRRRRRRRRRRR4RRI T rF rT rrrrrrT rrrrrrTrrrSrrS3rCC RRUIRARRRRR1 rrT r3
~ O l
99989939999R99999989dR 86 58668SB6863836Bd8dBB86b966999999) 799949n000 00n C 2222222P2222222222222222P222277227?
~
j! l (llI f fII flII ,' lllE
l I' lI!llll lll !I pU - ~*.u g 8 d - e'C 7 . ' . , . . . . . . . . .4 . . . . . . .a . . . . . . . . . . .a B
. 4 8
8 9 8 E 6 7 7 1 E' T 6 2 2 2 3 TR 2 7 7 7 A0 7 7 D5 R ES IL FA SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC TI NT EI TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT DN II S L A RA WdWd T EI NNNNNMNNNNNNNNNNNNNNNNNNNNNWWWW EEEEEEEEEEEEEEEEEEEEEEEEEEEAA A A AaA A A D TT RI ON BBBBBBBSBBBBBSBSBBBBBBBBSBBJJJJJJJJ H SI C N E B4 8 H 0 0 0 0 0 0 0 0 0 0 4 4. G. 0 0 0 0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 1 6 5 0 N9 TM O1 GM 18921 3642761 38724638845797885474SS9 7 T N 61 2556131 21 542311 232211 3275251
<S EN 1 NE LI AL LP PM OA DEDEDDE r
YS E s t E'EEE
+i E' D E E , 4 I AAAE EEDEDDED
- I : 6 .
H 3 EE VVVL TL A LLLLLLLL LL LLLL LLLL LLLLLLL III IIII RRRI II IIII IIII CL I A T S I I IIIIII NNNNNNNNANN NNNNAANNNNANNNNNNNAAAAN EEEEVVEEEEVEEEEEEEVLLLE EEEEEEEEVEE Y A E F VVVVVVVVPVVGVVVVRRVVVVRVVVVVVVRO3Ov UUUUUUUUAUUGUUUUAA1 UUUAaUUUUJJA RRu W A I L JJJJJJJJLJJEJJJJLLJJJJLJJJJJJJLPPPJ L L A C G G E 9M 9 MM449M4S 4M uUY0 UU011U3U 1J 4RL4 RRRRRR7R RR YYYY S D0DDDDI 0ODDDDD0DDO0D DDDLLLL AIIII S AAAA M AAAA A HHHHRRARHHHHRRRRQRRR RRHMMMM B SSSSEEFESSSSEEEEEEEE EESAAAA TT T TTTT TTTT TT FFFF DDDDAAHADDDDAAAAAAAA AAD D WWRRRRR E RRRRWWSWRRRRWdWWWWWW AAAA4dI 4A AAAHi4H4HHi 4iA EEEE V 0 x TPDDZZZ7SSFSZZZZSSSSSSSSDPPSSZ<K<<D T ORRRZZZZEENEZZZZEEEEEEEERRREEZCCCCR a T SCCC3333C DRURIIIIRRRRRRRRAA PAAA1I I1 rSFSS3SrrrrrrrrCCCrr3SSSSC ARRI UliUUA O 01 1 1 1 1 1 1 1 1 11 2222272233333134 4 4444 45 I C 99999999999999999999999919999999999 22222222222222222222222222222222222
' m m m u t rm I L- > v CALLAWAY ICTdyDPLANTTON HENCH DATA ALL SAMPLES 1984 SO4TER IDENTFIER DATE LIFESTAGE LENGTH CIn tax 0N IN MM INITIALS INITIALS 57 RTE 7 88.0 JAd TCS .
JUVENILE TCS . ?94 CARP JUVENILE 76.0 JAd 295 CA4P S3.0 BE1 TCS . CARP JUVENILE TCS . 295 JUVENILE S0.0 BEN 295 CARP 41.0 SEN TCS . CA4P JUVENILE TCS . 29% JUVENILE 17.0 3EN 29% F4ESHwATER D4U4 1.6 BEN TCS . FRESiWATER DRUM ESG EGG TCS . 295 JUVENILE 28.0 JAd 296 FRES4 WATER ORUM 25.0 JAd TCS . G122490 SHAD JUVENILE TCS . 296 PROLARVA 4.3 JAd 296 UNIDENTIFIED YOL4 SAC LARVA 3.0 JAd TCS . UNIDENTIFIED EGG EGG TCS . 79A EGG I.6 JAd ?96 FRES4*ATER DRU4 Esn 31.0 9EN TCS . SUCKER FAMILY JUVENILE TCS . ?77 JUVENILE 58.0 BEN CARP TCS . e 297 JUVENILE 58.0 BEN TCS . /, 797 CARP S0.0 BEN CARP JUVENILE TCS . w 297 JUVENILE 48.0 9EN ~ 297 GIZZARD SHAD 4.7 BEN TCS . PR3 LARVA 297 SilCKER FAMILY 48.0 JAd TCS . FRESidATER DRtiM JUVENILE TCS 73184 j 29A PROLARVA 7.H JAd P9a UNIDENTIF.IED YOL< SAC LA4va 3EN TCS~ E01R4 l JUVENILE H8 0 290 CARP 57.0 9EN TCS . CARP JUVENILE TCS . 791 JUVENILE S4.0 BEN 299 CA4P 45.0 BEN TCS . CARP JUVENILE TCS . 790 JUVENILE 37.0 9EN 299 CA4P 14.0 9EN TCS . FRES4 WATER DRUM JUVENILE TCS $ 790 JUVENILE 77.0 JAd . 30n CARD 45.0 JAd TC9 . 7 CARP JUVENILE TCS . 5 300 JUVENILE 27.n JAd 30n CA4P 26.0 JAd TCS . 3 , JUVENILE x ' 306 GIZZARD SHAD 15.0 JAd TCS . FRES4 DATER DWily JUVENILE = MS 57.0 9EN TCS . 301 CARP JUVENILE SEN TCS . ;, JUVENILE 62.0 ~ 301 CARD 48.0 9EN TCS . JUVENILE o 331 CA4P 47.0 REN TCS . JUVENILE E 301 GIZZARD SHAD 5
,Afpendix B.3(cont'd) B-132 e I .W - . . . . . ..c . . . . ..m. . . . . . . . . . . . . . . .x . . . . . . N bl > w N e +3 o c g 40 E E Om E
tu tt wJ k4 Ww mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU 7k Ww
>>>>>>kwww>>>wWWW>>Hwww>>&wwwwkH>>>
OZ ww W J 4 24 Ww 77777773111177711111177771133DTT277 td WLd W W W W 4 444 4 talW W 4 et af 4 ef e W104dh14 4 <! < 44 4 4 b. ui
*:1 O ** W Ww OZ mmmmmmm77777mmm777777mmmm79777777mm I vw U
Z W Z4 m T wY 7& ow ce oe ce ce o. oeme oe oe oe oe oe oe oe m ee oe oeom e eoec eN M m.m. o.e4e4ec eNeaeme ee t e CI 7 WZ ENK#00444NNNOMMN7twM4mweetNNwwwww4N NNNMwN @mMNww www Nw Nw YM ZW JM 4J J ct aY C4 . km W .. . . . . _ . . . . . . . . W 4 (d 4 T 69 td taJ W W tal tal 4 tal W td las to taJ 4 W W taJ > 4 JJJJJJ>JJJJJJ > .J J J J > J x
>J wwwwwwgwwwwww awww w a w 4
UJ & 4ZZZ 244 24 w4 m 2222Z242Z2222 W td W W W W _J td to W W W W .J td tu taf W > _A W> J W Lo >>>>>>O>>>>>>OOD>>d>TOOCO>WCCCCC000 DDDDDD&DDDDDDONDDDCDe&CCOD4CCCCCOWO 4 4 3 J 7777774777777Wa777W7J1WWW7JWWWWWWaw J J 4 d Odd U C CCC ta s hi h e te t 0000CC C 0 YYY CCCCCCY6 l 77 77YC TT77 7 T D > D r. D y > W W W W tv W " b D DD 7DDWFDDDD WJWWW JJ W WW> WWW JWWWW 1 W C CCCCJ CCCCCC-CCCC CwCCCwwCCCCCCCC T 7TWWWWWW W
- 44 WT 2
44 1%2OT 77202wd&M&W &723274 wwwwww&w W 4 W Wtal<!La. k 6 k ta,ta. kWL W mMWW4 m W W W kJ k k td W 44) W wwwwwwww
> wwk wwww wwww &kww>k 444 TWp HWW H4*
4 0044 OO444WT4444 4 333333m22ZZZZMZ l 3 TT337 ZT3332m3333 T O T T T O M taJ tal tal tat tal Las T tai 7 4 4 T Ttal 44 T T T ta l - T T T T 7 o maNNmmVaNNmmmchOmmmam7mmm?kOCOOComC W T N N W W U N N Ntd W W - 7 W W W W & W 7 W W W Z 7 w w w w w wtd w [ x 4 24ww2234wwn2223E1T24%-E22-3722272E7 La U LS ti h h m U ti M a ta h 7 m ta to h h O La T se h h Ym997999La 7 l C ~NNNNNNMMMMMJ44mmmm@4NNNN@mmmTTOTO& 0o00o303333000 3o303o300 30000o300070 w U MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM I I l
O N E E E E E O E E E M M M M M g CALLAWAY ICT4YCPLAN< TON GFNCH DATA ALL SAMPLES 1984 LENGTH SORTER 70ENTFIER DATE-CIn tax 0N LIFESTAGE I N tei INITIALS INITIALS S?RTEn 1.6 BEN TCS . 309 FRES4 DATER DROM EGG EGG EGG 1.4 3EN TCS . 300 FRES4 DATER DRUM EGG JA4 TCS . PROLARVA 6.5 llo MINN3W FAMMILY 4.6 JAd TCS . 310 FRESidATER ORUM PROLARVA EGG 2.7 JAd TCS . 310 UNIDENTIrIED EGG 1.3 JAd TCS . 310 FHES4 WATER DRUM EGG EGG EGG 1.7 JAd TCS . 310 FRES4 DATER ORUM EGG JAd TCS . UNIDENTIrIED FGG EGG 1.P llo S.O BEN TCS . 311 " INN 3W FAMMILY PROLARVA PROLARVA 4.5 BEN TCS . 311 FRES4 DATER ORUM BEN TCS . EGG 1.5 311 FRES4 WATER Dau4 EGG BEN TCS . FGG 1.4 311 FRES4 WATER DRUM EGG JAd TCS 40384 PROLARVA 7.0 317 MINN3d FAMMILY JAd TCS . a PROLARVA 6.8 317 MINN3w FAMMILY JAd TCS . PROLARVA 4.7 ll? SUNFISH FAMILY 4.5 JAd TCS 90384 C 317 SUNFISH rAMILY PROLARVA " j 4.8 JAd TCS . 317 MINN3d FAMMILY PROLARVA EGG 2.8 JAd TCS . 317 UNIDENTirIED EGG I.S JAd TCS . J 31? FRES4 WATER DRUM E;G EGG l EGG 1.6 JAd TCS . 312 FRES4 DATER Dau4 E;G TCS f EGG 1.5 JAd . 317 FRES4 DATER DRUM E%G JAd TCS . i EGG 1.5 317 FRESidATER ORUM Eis 1.6 JAd TCS . ! llo FRES4 WATER DRtraf EGG EGG JUVENILE 5R.0 JAd TCS . 317 CARP JAd TCS . p JUVENILE 46.0 311 CARP JAd TCS . 3 EGG 1.5 317 FRES4 DATER DRUM EsG JA4 TCS . s EGG 1.5 311 FRES4 WATER 0409 EGG JAd TCS . 8, EGG 1.4 317 FRES4 DATER DRUM EGG . 45.0 JAd TCS . 114 CARP JUVENILE
- PROLARVA . JAd TCS .
314 UNIOENTirIED YOL< SAC LA7VA 1.3 JAd TCS . 5 FRES4 WATER DRUM Ein EGG o lla T1.n JAd TCS . 315 CARP JUVENILE A JUVENILE 46.0 JAd TCS . 319 CARP 4.1 JAd TCS . j FRES4 WATER DauM PROLARVA lls FGG 1.3 JAd TCS . [ 11% FRESidATER DatiM E;G S
- 1ng
1 CALLAWAY ICTiYOPLANTTON BENCH DATA ALL SAMPLES 1984 p tax 0N LIFESTAGE LENGTH SORTER IDENTFIER DATEe . C10 INITIAL 5 T IN M4 INITIALS 50 RTE 7 JUVENILE- 71.0 Jad TCS 80784 316 CARP TCS . [ 316 MINN3w FAMMILY JUVENILEi 26.0 Ja4 JAd TCS 80794 a 316 rRESHWATER D434 EGG EGG 1.7 ~ EGG 15 JAd TCS . 316 rRES4 WATER 040* EGG EGG 1.5 J4d TCS . 316 rRES4 WATER Dadd EGG JUVENILE. 69.0 BEN TCS . 317 CARP TCS JUVENILE. 61.0 BEN . 317 CARP BEN TCS . 317 CARP JUVENILE. 54.0 JUVENILE- 52.0 BEN TCS . 317 CARP BEN TCS . 317 CARP JUVENILE. 47.0 JOVENILE. 49.0 BEN TCS . 317 GIZZARD SHAD TCS EGG 1.6 BEN . 31T rRES9 WATER DROM EGG TCS IRESiWATER 0904 EGG EGG 1.5 BEN . 317 TCS JUVENILEi 58.0 Jad . _ 118 CARD TCS 7 31a rRES1 WATER DRUM PROLARVA 4.5 Jad . 318 rRESidATER ORUM EGG EGG 1.6 JAd TCS . [ A EGG 1.6 JAd TCS . 319 rRESidATER OR04 EGG 0 0.0 dFN TCS . 319 NO FISH GIZZARD SHAD JUVENILE: 32.0 JAd TCS . 3d0 JAd TCS . 320 31ZZARD SHAD JOVENILEl 24.0 LARVA 7.3 Jad TCS . 320 SUNFISH FAMILY TCS 320 FRES4 WATER 0404 EGG EGG 1.5 JAd . JuVENILEi. 34.0 BEN TCS 808A4 321 3 IZZARD SHAD TCS PROLARVA 6.5 BEN . 321 91NN3W FAMMILY 80894 PROLARVA 4.8 BEN TCS 321 FRES4 WATER D40% EGG 16 BEN TCS . 321 rRESHWATER DRUM EGG PROLARVA 4.0 Jad TCS . 322 SUCKER FAMILY TCS rRES4 WATER Dat:9 PROLARVA 4.1 Jad . 322 TCS PROLARVA 4.3 JAd . 322 FRES4 WATER DROM 322 rRESiWATER OR99 EGG EGG 1.4 JAd TCS . PROLARVA 4.6 BEN TCS . 323 FRES4NATED 040* TCS rRES4WATED 0409 EGG EGG 1.4 BEN . 323 TCS rRES4 WATER OR04 EGG EGG 13 BEN . 3d3 Bev TCS . 321 rRES4 WATER ORUM EGS EGG 1.5 P40 LARVA 7.1 WAG TCS H0694 324 4TNN3W FA491LY U E E E E E M M M M -g g g g gg
E E E M W M M M M M M g m g O N E CALLAWAY ICTiYOPLANETON RENCH DATA ALL SAMPLES 1984 SORTER IDENTFIER DATE LIFESTA3E LENGTH TAXON INITIALS Sua T E-) CID IN MM INITIALS _ 4.6 MAG TCS . rpESHWATER nRUM PROLARVA TCS . 324 1.5 MAG 344 rRESiWATER DRU9 EGG EGG TCS 80 88 t.
?3.0 BEN 325 MINN3W FAM*4ILY JUVENILE- TCS .
P40 LARVA S.0 BEN 325 TRESHWATER D499 2.8 BEN TCS . JNIDENTIFIED EGG EGG 325 1.6 BEN TCS . FRES4WATED 04'Jw EGG EGG TCS 325 1.5 BEN 329 rRES4 WATER DRUM EGG EGG JAW . JUVENILE: 41.0 BEN 326 GIZZARD SHAD 110.0 SEN JAW . 326 CARP JUVENILE JAW . 6.3 BEN MINNOW FAv4ILY LARVA 326 4.5 BEN JAW . j 91NN3W FAMMILY PROLARVA n o gm. 326 1.6 BEN JAW ' 326 rRESMWATER OR'JM EGG EGG JAW . EGG 3.5 BE1 326 rRESHWATER ORUM EGG 1.5 8EN JAW . EGG C 327 rRESMWATER DQu9 EGG JAW . 327 rRESMWATER DRUM EGG FGG 1.4 JAW JAW . 1 1.6 JAW 327 rRESiWATER DRUM EGG EGG A.1 BEN JAW . $ SUCKER FAMILY PROLARVA 32R 1.6 BEN JAW . rues 4 WATER DRtf4 EGG EGG JAW 32R i.5 BEN . rRES4 WATER DRUM EGG EGG 328 1.5 BEN JAW . rRES4 WATER DR:N EGG EGG 329 1.4 BEN JAW . TRESHWATER DRUM EGG EGG JAW . 32M 1.7 BEN 328 #RES4 WATER ORIN EGG EGG JAW . EGG 15 BCN 329 CPES4 WATER ORUM EGG S.1 JAW JAW . FRES4 WATER 0R:14 PROLARVA JAW 329 EGG 1.5 JAW I. 329 rRESHWATER DR>N EGG 1.6 JAW JAW . 324 rRES4 WATER DRJ9 EGG EGG JAW JAW . 3 EGG 1.5 O 329 rRES4 WATER DRUM EGG JAW JAW . rRES4 WATER DROM EGG FGG 1.4 S 329 EGG 1.7 JAW JAW . 329 rRESiyATER Da N EGG BEN JAW . JJVENILE' 18.0 5 3JO GIZZARD SHAD 79.0 BEN JAW . . GIZZARD SHAD JUVENILE
- JAW .
o 3JO S.I BEN 330 91943W FAMMILy PROLARVA BEN JAW . A FGG 1.6 3 rHESHW ATED 04tN EGG J4W 330 ( 34.0 HEN 3J1 317ZARD SHAD J9VENILE- JAW . PROLARVA 4.2 BEN 331 HES4WATED ORM* 3 m
o E s CALLAWAY ICTMYOPLANKTDN HENCM DATA 3 ALL SAMPLES 1984 x LIFESTAGE LENGTH SDRTER IDENTFIEW DATE - CIn TAxDS INITIALS S1RTED E IN M'4 INITIALS o 1.6 9E4 JAd 80884 0 331 FRES4 WATER DRUM EGG EGG " EGG 124 BEM JAd . . 331 FwESiwATER ORUM EGG FRES4 WATER DRUM E%G EGG 1.5 REM JAW . S 331 FRES4 WATER 04U4 ESG EGG 1.4 m SU . 331 337 UNIDENTIFIED EGG EGG 2.T 112 W . 1.5 Jag ;*d . 337 FRESiWATER DRUM EiG EGG EGG 1.0 Jaw JAd . 337 FRESHWATER DRUM EGG JA4 v 331 FRES9 WATER DRUM PROLARVA 4.5 . MIN 43W FAMMILY PROLARVA 6.1 JAd sAW . 331 JAd JAd . 131 SUCKER FAMILY PROLARVA 5.0 EGG 1.5 JAd JAd . 333 FRES4 WATER ORUM EGG JAd EGG 1.6 JAd . 337 FRES4 WATER DRUM EGG JAd JAW . 331 FRES4 WATER DRUM EGG EGG 1.7 FRES4 WATER DRUM E%G EGG 1.5 JAd JAW . w 331 JAd jaw . , 133 UNIDENTIFIED EGG EGG 2.5 PROLARVA 4.6 9EN JAd . C 334 FRES4 WATER ORUM SEN dad . o FRESiWATER DRUM E7G EGG 1.6 134 9EN JAd . 134 GIZZARD SHAD JUVENILE 34.0 PROLARVA 6.8 3EN JAd . 33S MINN3W FAMMILY EGG 1.5 BEN JAd . 334 FRES4 WATER DRUM EGG EGG 1.5 9EM JAW . 33; FRESiwATER DRUM EGG 136 UNIDENTIF4IED YOLK SAC LARVA PROLARVA '4.3 JAd JAd . FRESidATER DRUM PROLARVA 4.1 JAd JAd . 136 JAd JAW . UNIDENTIFIED EGG EGG 2.9 33A JAd JAW 8n894 FdESiwATER DRUM EsG EGG 1.5 336 1.5 JAd jaw . 336 FRESiwATER DRU4 E%G EGG EGG 1.7 JAd JAd . 33A FRESiWATER DRUM EsG FRESidATER DRil4 EsG EGG 16 JAd JAW . 136 JAd JAW . FRES4 WATER DRUM ESG EGG 1.4 13A SEM jaw . FRES4 WATER DRtM EGG EGG 1.6 337 BEN JAd MINN3W FAMMILY LA4VA 5.7 . 33A SEM jaw . FRESiWATER DRUM EGG EGG 1.7 139 3E1 Jad . FMESHWATER DRt1M EnG EGG 1.5 13a 9EM jaw . NO FISM 0 . 33Q JAd JAd 0 . 340 NG FISH . M M M M M M M M M mm ma eM m m me
I ifi ilIfjil ;I lll llll l 1 I4 , M
- i$ >hs 5 ; # . y o j
i 1-M . . . . .....
. . . . . . . . . . . .4 . . .4 n . . . . . . . .4 8 8 9 E 7 0 0 ET 2 2 M T4 S3 1
9 4 a DS M R ES IL FA dddd wddddwd AaAAaAaaAaA aAA dddddd AAAA Addddddddddd AA A aaAAaAA dddsddd AAA AA A M TI 9T EI JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ DN II W '
~
S L RA NN4NN W EI TT RI N N N N N 4 d d G 3 3 N N N N 3 S 3 S S N N N N V 9 9 3.3.3. E E E E E EEEEEEAAAAAEEEEAAAAAEEEEEMMMB9B3335SS3B33B3 B B 9 B 9 3- JJ4'M M99B9'4 M A ON SI WT A D H C H N TM GM 822674.S.62.%.4065471755464345534538310 . . . . . . . W E H4 8 J t EN 61 441 1 1 41 43I 441 1 S711 1 1S21 I 411 1 1 SP11 1 N9 LI O1 T W KS NE AL E AA A AA a A LD G A AA A AA VV w V V VV V VV vV V P' 4 A RR R M OA T R RR R RR RR 4 A Aa AA A m 4 YS S E AAAA LVLL A L A L A_ AA LL OROOGGDGODSOOGGORGGGGOOGGOGGGGOGGGG Lv LL L L TL CL I A F I L RARRGGRGRRGRRGGRAGGGGRRGGRGGGGRGGGG PLPPEEPEPPEPPEEPLEEEEPPEFPEEEEPEEEE M Y A W A A A V V L R R L A M A C A L L C C A A GGGG SGG GGGs G G; G SG GG GGGs s 4GG% G4 M G3 EE E G
<E % sG EE EEEE 4EE EEEE G
E GG L L MMM 9Ms4 DMM4 MMMM GMGG Y Y MO YMMM9 U U UMOM 0 U Y U Y U u U Y y 0 O u 0' Y 3RR4RRRL Y U O 0' UUUOYEOEE R LLRLRRR9 R RLRaRLL4Ro0 L M I I MM DIDDD0DDOIDDDII DDD0I DDDDDDDDIDDDD M E M MM ME *E EE MMRMRRRRRIRMRRRMARRRRMI. AAEAEEEEEFEAEEEArEEEEAT EEEEEEEArEFr RRRRRRR4 IRI I S FFTFTTTT TITFTTTF AAA TT TTFITTTTT TAAAAAAA TTFiTI1 TATT AAAAATA HAAAA M A ddddddd 33i3i44 wdNddWdddSwwdWdNwwddddddNdNN 44E434i43I 4a443E44444443E4EE 4 O NNSNsSSSSDSNSSSHFSSSSNDSSSSSSSNnSDD NNENEEEEEIENEEENNEEEENI EEEEEEENiEII X A II4IRRRRRNDI RRRI MMFMFFFFFUFMFFFMSFFFFMUFFFFFFFMUFUU URRRRI NRRRRRRRINRNN M T B D 1 1 11 1 1 7) 177 44e44%9447 A aa999Q0 4 44444 4 444 44 4 444 4 4 4 44 4 4 4 4 4 4 9n0 455555nn0 M I 4 3 33333333333333111333333%3333333333 C W
' f l i
Q -- 9 2 1 CALLAWAY ICT4YOPLANKTO's BENCH DATA ALL SAMPLES 1984 :: LIrESTAGE LENGTH SORTER I DE54T FI ER DaTE 2 CID Tax 0N INITIALS 53 RTE 9 o IN MM INITIALS S EGG I.5 BEN JAd . ". 35n FRES4 DATER Davn EGG BEN JAd . j~e-FRES-id ATER DRUM EGG FGG !.4 35n 4.7 5.3 JAd . 351 SUCKER FAMILY PROLARVA PROLARVA 5.7 3.3 JAd . 351 SUCKER FAMILY 4.9 3.3 JAd . SUCKER FAMILY PROLARVA 351 G.3 JEW . FRE51 DATER DRUM PROLARVA 4.5 351 2.7 3.3 JAd . UNIDENTIFIED YOLK SAC LA7VA PROLARVA 351 1.7 3.3 JAd . 331 FRES1 WATER DROM EGG EGG EGG 1.5 S.3 JAd . 351 FRES4 WATER DRUM EGG 3.3 JAd . FPES4 WATER D7UM EGG EGG 1.1 351 1.6 3EN JAd . 357 FRESidATER DauM EGr- EGG LARVA S.2 3EN JAd . 353 SUNFISH FAMILY BEN JAd . PROLARVA 4.5 357 FRES9 WATER DRUM EGG 2.2 BEN JAd . ? 357 UNIDENTIr:IED EGG 9FN Jaw . [ FRE54 DATER DayM E ",G EGG 1.4 m 157 1.1 SEN JAd . 357 UNIDENTIr.IED EGG EG3 EGG 1.3 9EN JAd . 357 FHESidATER ORun EGG BEN JAd . EGG 1.3 357 FRESidATER DROM EGG 3.3 JAd A2084 EGG 2.5 154 UNIGENTIFIED EGG G.3 JAd . PROLARVA 6.3 355 M I N'43 d FAMMILY 5.3 JAd . PROLARVA 4.0 159 FRES4 WATER DRUM 5.1 5.3 JAd . SUNFISH FAMILY PROLARVA 355 4.6 3.3 JAd . MINN3W FAMMILY PROLARVA 356 Sol G.3 JAd . SU'JFISH FAMILY PROLARVA 356 5.2 G.3 JAd . SUNFISH FAMILY PROLARVA 357
- 5.1 5.3 Jaw .
SUNFISH FAMILY PROLARVA 15A 1.2 G.B Ja1 . 35R UNIDENTIFIED EGG EGG J, . EGG 1.7 3.3 154 ONIDENTIFIED FGG 3,9 3Ag . SUNFISH ragtty pHOLARVA 4.9 157 1.6 3.3 Jaw . FRESHdATER DauM PR3 LARVA 35o 5.1 5.3 JAW . 160 SUNFISH FAMILY PROLARVA LARVA 6.4 3.3 JAd . 350 SUNFISM rAMILY 3.3 Jad . FRESidATER DPuM E;G EGG 1.5 36n 4.1 3EN JAd R2284 FRESidATER DRUM LARVA 351 5.6 9EN JAd a2286 161 MIN 434 F A't*11 L Y PROLARVA M M M M M M M M -g g g y yq
I mli)lI'
,8 C* > o$Sh m ;, - @ S 3 e ....4 D . . . . . . . . . . . . . . . . . . . . .8844 . . . . . . 8 E 23 8 m ET TR s3 22 R4 2
4 DS e R ES dW dWWdWdWdwdWWWWWWdddWdwwsWdWvdWddW I L FA e TI NT AA AAAAAAAAaAAAA AAAAaAAAaAAAAA AaAaAA JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ EI DN I I f a o, S L N m RA EI NNNNNNNMNNN 3 3 3 3 3 3 3.. E E ENNN3NNNNN13.EEEEN EEEEEEEEEEE .EEEEEE N N N 3. E A TT RI ON BBBB93B3BBBGGGGGGG349GB3333BGR333G3 T SI W A D H C H mE N B4 19 8 TM GM N EN LI
- 4. n. 0 0 5 4 6 3 3. S. 2 3 9 8 2. R.
I 00041I41I1 223461
. .5 . 7 7 n. 4 3 6 4 3 4 3. S. 0 4 0 0 4 4. n.
1 461 4331 1 1 ISP601 1 0 I 01 T W KS NE E 0 0
- AL AAAA A AAA LD G 000A V VVV PM A V VVVV R RRRR R RRR OA AAA m YS H
T S E F G A L A V AAAAA LLLLV OGGRGGGOOOORGGORGOOOGGGGRRD AA LV AAA LLL VVV GG GG TL CL I G .RGGAGGGRRRRAGGRAGRRRGGGGAAA PEELEEEPPPPLEEPLEPPPEEEELLL EE IA L E M Y A W AA A A V L Vv RR R M L A C AA LL A L C 0 AA 4 G GG M G G GG GG G, G r% SS GG}}