ML20082N553
| ML20082N553 | |
| Person / Time | |
|---|---|
| Site: | Fort Calhoun |
| Issue date: | 06/14/1991 |
| From: | OMAHA PUBLIC POWER DISTRICT |
| To: | |
| Shared Package | |
| ML20082N551 | List: |
| References | |
| EA-FC-90-062, EA-FC-90-062-R02, EA-FC-90-62, EA-FC-90-62-R2, NUDOCS 9109090236 | |
| Download: ML20082N553 (195) | |
Text
I
, Engineering Analysis Preparation Engineering Analysis No.: EA-FC 10 cP cT
' Review and Approval Rev. No.
7-
)
Form PED-QP-5.1 Page 1 of 2 EA Page No.
/
'~'
lEngineeringAnalysisCoverSheet Total Pages
/9E g
EA TITLE:
Diesel Generator Upper Temperature Operating Limits QA CATEGORY:
REPORT TYPE:
[
] Revision
[xx]CQE
[
]LimitedCQE
[XX]AnalyticalReport
[
]FireProtection
[
]Special
[ ]NonCQE Does this chance require a USAR/DBD Revision?
[
]Yes
[XX] No jINITIATION:
7['
~
3-
, Responsible PED Department DD/- Mechanical 357 Responsible Department Head b-L ' """
CIDate
'~ '
\\
f' Preparer D. G. Borcyk/P. F. Vovk Date 6/14/91
(\\
gf
- (_)
- Mgr - Station Eng./Mgr - DEN Date PED Department No.
Due Date ENGINEERING ANALYSIS TYPE:
OTHER:
[
]
Electrical Equipment Qualification (EEQ)
Computer Code Error Seismic Ecuipment Qualification (SEQ)
Analysis (CCE)
[
]
. Core Reload Analysis (CRA)
Nuclear Mat'l Fire Hazards Analysis (FHA)
Accountability (NMA)
[
]
Cable Separation Analysis (CSA)
Operations Support Associated Circuits Analysis (ACA)
Analysis (0SA)
'/;
Safe Shutdown Analysis (SSA)
USAR Justification (USJ)
Only required when independent review authorization is required.
DISTRIBUTION:
Copy Copy Name &
Sent Name &
Sent Group Location (X)
Group Location (X)
Sys. Eng R. R. Ronning (FC-7)
(3 9109090236 910903 UR ADOCK 0500 5
PED-QP-S.25 Mid
i Engineering Analysis Preparation Engineering Analysis No.: EA-FC. M M
. Review ana Approval Rev. No.
2.
Form PED-0P-5.1 Page 2 of 2 EA Page No.
E
~(y lEngineeringAnalysisCoverSheet
[i i
%)
PREPARATION / REVIEW 2 s fry (SIGNATURE (S)/DATE)
Preparer (s) b
( - 'N /
N. / I -voI t
Reviewer (s) / -
b 4,'u-4/
47 Independent Reviewer (s) g # d d e AAv//
//M 4/ t//yh/
f
- (
AFFECTED DOCUMENTS:
Responsible
..tle Revision Division / Dept l
I l
USAR section 8.4.1.2 NA'. 2 359 TDB-III 26.A ffrv. 3 MD Os V
1 1
AFFECTED SYSTEM / EQUIPMENT:
System Tag No.
DG DG-1, DG-2 VA-52A, VA-52B i
VA-759A, VA-759B AI-133A,AI-1_3y 3
t
/%
PED-QP-5.27 Rev. 1
- c f
f
~
Engineering Analysis Preparation, EA No.
EA-FC-90 -ota t Review ano Approvei-Rev No.
= 2-0 Form PED-QP-5.2 Page 1_of 4 EA Page No.
3 O-EA Review Checklist-b,M j
Yes l f{q -
-g j
- 1.
Does the PURPOSE section acequately and correctly state the reasons or g
e
- the need to prepare the'EA?
r
- 2..
Does the EA adequately and correctly address the concerns as stated in the PURPOSE saction?
X 3.
Are the RESULTS'and C0'NCLUSIONS
' stated and reasonable and supportive i
of the PURPOSE and SCOPE 7 X
i i
4 Were the methoosiused in the performance of the-Analysis-appropriately applied 7 N
i
-5.
Have adjustment factors,-uncertainties and empirical correlatient useo in the
- analysis'been correctly _acplied?
^
6.
Were the' INPUTS correctly selected and incorporated into-the EA?
F
-7.
Are all INPUTS to the ANALYSIS correctly
- numbereo ano referenced such that the source document can_be'readily retrieved?
I
?
?
6.
Were th'e ASSUMPTIONS used to prepare the i
EA' adequately documented?
X l
)
9.
Is the inforn tion presented in the ANALYSIS accurate and clearly stated in a' logical-manner?-
.X PED-0P-5.28 Rev.~ 1 i
w
-m.
Engineering Analysis Preparation,
.EA-No.
EA-FC-.. b N E Review and: Approval-
-Rev. No.
_ _ - - 2 form PED-QP-5.2-Page 2'of 4
- EA:Page No.-
4--
-y z
EA Review Checklist m
sa m
l l
- 10. _
Have the appropriate REFERENCE and the latest revisions been identified?
3 i
11.
Have the REFERENCES been appropriately applied in the preparation of the-
?
EA7.
X
-)
12..
If manual calculations are presented in the ANALYSIS are they:
n" -
- a.
free from mathematical. error?
X b.
appropriately documented commensurate d
with the scope of the analysis?
13.
Have the affected documents, identified O
on the-PED-QP-5.1 form been accurately I
- marked up and included with a 10CFR50.59
. [
- evaluation?--
X-14.
Isithe EA free of unconfirmed references I
and assumptions?
X l
i
'15.
Have all crossouts or overstrikes been initial *d and dated by the Preparer /
i Reviewer?
g 4
i i
i I
b j
i FED-QP-5.29 Rev. 1
Engineering Analysis Preparation, EA No.
EA-FC _2c-c6 Z.
I Review and Approval Rev. No.
2
<m Form PED-QP-5.2 Page 3 of 4-EA Page ho.
5
'(
)
EA Review Checklist v
Yes No N/A 16.
Is the EA legible and suitable for 7d reprocuttien and microfilming?
X,,
_[
T 17.
Has the EA been prepared and assembled in accordance with paragraph 4.9 of this procedure?
X 18.
Has the EA Cover Sheet been appropriately completed?
M 19.
For Revisions only, is the change identified and the reason for the change providea on the Record of Revision Sheet?
M 20.
Does the computer run have page numoer and alphanumeric gy program number on every sheet?
f']
21.
Is the listing of the final computer
(_,/
input and output provided?
"j 22.
Is the computer code title and version / level properly occumented in the EA?
23.
Are final computer runs correctly
/ G, identified?
24.
Is the computer program validated and verified in accordance with N00-QP-57
/,,'
25.
If the computer program was developed for limited or onetime use and not validated and verified in accordance with N00-QP-5, has a functional description of the program, identifi-cation of the code (title, revision, manufacturer), identification of the software and brief user's instructions pr been documented in the EA?
X L
7.,s PED-QP-5.30 Rev. 1
l l
Engineering Analysis Preparation.
EA No.
EA-FC-fo-m 7
- Review and Approval Rev. No.
7.
l Form PED-QP 5.2 Page 4 of 4 EA Page No.
6
(
EA Review Checklist le.ji, No N/A e
i 25.
Is the modeling correct in terms of geometry input and initial concitions?
X, Note:
For all "No" responses, a written connent shall be documented on Coment Form PED-0P-5.5 briefly explaining the deficiency and, as appropriate, providing a suggested resolution.
I 4
!C! ornents:
f t
Co=nent Resolution:
I Reviewer (s) Signature Date Department / Organization 5
i$fv&
A -fV-fl
'b& -/164 - 377 i'
p PED-QP-5.31 Rev. 1
.n
'Y Q
l~-) -
J V
Engineering Analysis. Preparation,' Review and Approval-EA No. EA-FC -
D - 06 C Form PED-QP-5_.5 Page 1 of 1-Rev. No.-
r' Comment Form EA Page No.
7 Reviewer' #
/ I, l Organization 23Cv /OE4/ /X7-g Page of EA Title Date Z -/9'-1/
4 Comment
~
b Coment Type humber Code
- Page' Comment Resolution
/
TG er t.%. %m an ene c. sw 1v.m ree,&rm 2
ro-t w-a O i
42/bstfft, pts Staserv e fa /M'f btf' f?rf &}W iven~m t he<eume-e sans s,,,c,r e
bra e t f&f) fot;no it' fff s s- )4-t' m ) b6-2.4 % y Sm w J nswr.r we<E srWJaem re>
ora.
-l.
1 t
i i
I COP 94ENT TYPE CODES
- RESOLUTION CATEGORY **
- Editorial (ED)
System Interaction /
1= Resolution Required
- Technical (TC)
Design Change (DCC) 2=Nonmandatory Recomendation PED-QP-5.35 Rev. 1
i Engineering Analysis Preparation, EA No.
EA-FC Co- ( 2 l
Review ano Approval Rev. No.
A
~
Form PED-0P-5.3 Page 1 of 2 EA Page ho.
95
()J lEAIndeoendentReviewChecklist I
Yes
!Lq N/A l
1.
Were the INPUTS correctly selected and incorporated into the EA7 2.
Are the ASSUMPTIONS necessary to perform the EA adequately cescribed and reasonable anc appropriately
/
V i
documented?
3.
If applicable, have the appropriate
/
V QA requirements been specified?
4 Are the applicable codes, standards and regulatory requirements including issue and addenda properly identifieo anu the reouirertents correctly applied in the EA7 5.
Is the approach used in the ANALYSIS section appropriate for the scope of
/
the EA7 6.
Were the methods applied in the
'/
performance of the ANALYSIS appropriate?
7.
Has applicable operating exoerience been considered (e.g. for replacement I
parts / components, has NPRDS, INP0, NRC, e
industr experience been used supporting
- j the app ication)?
8.
Have any interface requirements been appropriatelyconsidered(e.g.between
/
disciplines,Divisiens,etc.)?
V 9.
Are the results and conclusions reasonable when compared to the
,/
purpose and scope?
V 10.
Has the impact on Design Basis Documents and the USAR been correctly
/
identified and considered?
/
11.
Have all applicable licensing comit-ments regarding the subject EA been
-/
met?
i O
y/
PED-0P-5.32 Rev. 1
lEngineeringAnalysisPreparation, EA No.
l lReviewandApproval Rev. No.
2 Form PED 0P b.3 Page 2 of 2 EA dage No.
7
[3 EA Incependent Review Checklist t
o i
Note:
For all "Nt" respnses, a written coment shall be cocumentee on Coment Form PED 0P-5.5 briefly explaining the deficiency and, as appropriate, providing a suggested resolution.
fq s.........a...................................
i
)
Coments:
'$ es A ) 6's i t J o f w
- 1. '2, L,7
<~.LG/ s. V 2 6.6.22s.L p
- A/wlete k.
~ / 1.7 l m a s v
............................................u.........................,........
Co'nment Resolution:
IndependentReviewer(s)
Signature Date Department / Organization G.,f97b r Y -r
/,/A'!9/
375'd//)$$
oN.]
PED-QP-5.33 Rev. 1 i
Engineering Analysis Praparation, EA No.
T A FC _2 0 -o (.1 Review and Approval Rev. No.
2 form PED-0P-5.3
/ age 1 of 2 EA Page No.
't A (O)
EA Independent Review Checklist
,Yt1 F_q N/A 1.
Were the INPUTS correctly selected l
and incorporated into the EA7 V
2.
Are the A55UMPTIONS necessary to perform the EA adequately described and reasonable and appropriately y
documented?
3.
If applicable, have the appropriate QA requirements been specified?
4.
Are the applicable codes, standards and regulatory requirements including issue and addenca properly identified and the requirements correctly applied 7
in the EA?
6 5.
Is the approach used in the ANALYSIS section appropriate for the scope of the EA?
Were the methods applied in the V
(]
performance of the ANALYSIS appropriate?
7.
Has applicable operating experience beenconsidered(e.g.forreplacement parts / components, has NPRDS, INPO, NRC, industry uperience been used supporting
.f the application)?
V 8.
Have any interface requirements been appropriately considered (e.g. between 7
disciplines, Divisions,etc.)?
I 9.
Are the results and conclusions reasonable when compared to the f
purpose and scope?
10.
Has the impact on Design Basis Documents and the USAR been correctly
/
identified and consideredi 8
'1.
Hr.ve all applicable licensing commit-ments regarding the subject EA been
/
met?
b(x li'R vmpii PED-QP-5.32 Rev. 1
n Engineering Analysis Preparation, EA No.
E A FC. __ S o - n 6 2.
Peview and Approval Rev. No.
2 X
Form PED-QP 5.3 Page 2 of 2 EA Page No.
4B f
EA Independent Review Checklist l
t l
i l
t
+
t Notti For all "No" responses, a written coment shall be documented on Coment Form PED-QP 5.5 briefly explaining the deficiency and, as appropriate, providing a suggested resolution.
................................................-ra..=........................
(
Coments:
D;.fnof ye m e.u herm
- 6. 12. 3 l
t r
.................s....................................e.......................
Coment Resolution:
huw-IndependentReviewer(s)
Signature Date Department / Organization A b, Md S /N/1/
3C7/()Cv-/1 i
.i I
PED-QP-5.33 Rev. 1 i
l
l l1 i
j.
I EA-FC 90 062 Rev. 2 l
Page No. 10 eas i
i i
table OF CONTENTS
\\
l PAGE 1.0 PURPOSE 12 1-2.0 SCOPE 12 a
l 3.0.
INPUTS TO THE ANALYS!$
12 l
L
4.0 REFERENCES
13 j
S.0
-ASSUMPTIONS 13 6.0 ANALYSIS 14
- 7.0 RESULTS AND CONCLUSIONS 29 L
8.0 ATTACHMENTS 30
'e i
i l
l l
l l
l
.i l -
i i 9 I
l Engineering Analyu s Preparation EA No.
EA FC-90-062 Review and Approval form PED 0P 5.4 Page 1 of 1 EA Page No.
11_
Record of Revision Rev. No.
l Description / Reason for Change 0
IllITIAL ISSUE 1
Revised Analysis as noted with sidebars based on Revision 2 of calculation FC03382 and latest Diesel Generator Jacket water outlet gauge calibrations.
2 Revised analysis as noted with side bars based on Rev. 3 of calculation FC03382, MR-FC-90-073 DG Exciter Cabine', Cooling, Jacket Water System improvanents and Coolant Change, 1
i I
[ \\
'q,)
4 t
A
[J
\\
w PED-QP-5.31 Rev. 0 7/89
P EA-fC-90 062
(
Rev. 2 Page No. 12 eas 3.0 PURPOSE The purpose of this Engineering Analysis is to establish the maximum outhor ambient air temperature at which diesel generatnrs DG-1 and DG-2 can be expected to provide power to the Engineered Safety features (EST) loads to i
assure safe reactor shutdown should a Design Basis Event requiring diesel generator response occur.
This maximum limit also assures that single failure criteria are met.
2.0 LCEf_
The scope of this Engineering Analysis is to:
2.1 Define the worst case load and load profile.
2.2 Establish the engine /generato outputs based on the outdoor ambient temperature, diesel generator operational effects on room ambient temperature, results of radiator cleaning and results of engine coolant changeout.
A 2.3 Establish the, capability of the generator / exciter to operate in the V
diesel generator room environment based on the exciter cooling modification, MR-FC-90-073, as well as with the cabinet doors off in the event of cooler failure.
2.4 Establish the margin available to allow-operator restart of equipment to enhance shutdown, i.e. an air compressor.
2.5 Determine maximum ambient temperatures for which the DG's are i
operable. 110'T has been established as a goal for diesel ambient air operating limits, based on review of meteorological data for this area predicts that 110*F wi'l not be exceeded as an cutdoor ambient air temperature.
3.0 INPUTS TO THE ANALYSIS 3.1 Calculation number FC03382 Rev. 3, Diesel Generator LOCA Loads l
3.2 Power Systems Analysis of FCS Generator Capabilities l.
3.3 EMD Specification Sheet for the Generator l
3.4 Diesel Generator Nameplate data l
3.5 Tables from the " Standard Handbook for Electrical Engineers" l
3.6 12, FCS Weather Tower Uncertainty Calculation #FC01381, Rev. l
1 i
g EA-FC-90-062
(-
Rev. 2 Page No. 13 eas 3.7 MR-FC-90-073 DG Exciter Cooling 3.8 DG-1 Testing - Airflows Before Steam Cleaning, 3/8/91 l
3.9 DG-1 Testing - Airflows After Steam Cleaning, 3/14/91 l
i 3.10 DG-2 Testing - Airflows Before Steam Cleaning 2/27/91 3.11-DG-2 Testing - Airflows After Steam Cleaning; 1/25/91 l
3.12 Young Radiator Company Radiator Performance Antlysis l
f
4.0 REFERENCES
4.1 Letter dated 7/2/90 from M.
J. Fleckenstein of EMD to R. F.
Mehaffey OPPD Engine loads Above the 2000 HR Rating l
4.2 Letter dated 7/20/90 from Roland Royal of G.E.- to G. P. Schwart;.
G. E Static Exciter 4.3
" Data Reduction and Error Analysis for the Ph Philip R. Bevington, McGraw-Hill,1969, p. 71-72 bMcal Sciences,
se EA FC-90-062, Rev. 1) 4.4 DG-1 Testing Performed, 6/25/00 (See EA-FC-90-062, Rev. 1) l 4.5 DG-1TestingPerformed,6/26/90(SeeEA-FC-90-062,Rev.1) l 4.6 DG-2TestingPerformed,7/16/90(SeeEA-FC-90-062,Rev.1) l 4.7 DG-2 Test'ngPerformed,7/17/90(SeeEA-FC-90-062,Rev.1) l 5
4.8 DG-1 and DG-2 Jacket Water Outlet Gauge Calibrations (9/17/90 and 10/9/90)(SeeEA-FC-90-062,Rev.1) 4.9 DG1 Testing Performed 9/25/90 (See EA-FC-90-062, Rev. 1) 4.10 Mrt-FC-90-073, DG Exciter Cooling Post Modification Testing l
4.11 EA-FC-90-091, Rev. 0 l
4.12 Letter from R. L. Phelps to R. L. Jaworski and T. L. Patterson, dated 5/31/91(Attachment 8.10) 5.0 ASSUMPTIONS
/G 5.1 The sequential loading of the diesel generator has only a secondary V
effect on long term engine / generator performance because loading i
,,,--,.--,..n.,
en.-n.,
,,, - -.c
-,n,n
.-n.
,w.nn
-n
O EA-FC-90-062 l
V Rev. 2 Page No, 14 j
eas i
is complete within approximately 60 seconds and will not be considered here.
5.2 Station Blackout analysis requires that the loss of offsite power r
and diesel generator onsite power must be assumed.
This Design Basis Event (DBE) is outside the bounds of this EA.
l
-5.3 Limitorque motor operated valves are not considered long term loads. Cycling time is insignificant compared to long term loads.
5.4 For radiator performance analysis, a design jacket water flow of I
1100 gpm (minimum) is assumed for all cases. This flow rate is the i
discharge capacity of the engine water pumps per EMC and has been confirmed by test during full coolant flow operation.
5.5 For radiator performance analysis, Young Radiator Company utilizes i
uniform air velocities measured immediately downstream of radiator core to determine required SCFM for heat removal at various temperatures.
All air velocities (converted to flows) obtained during FCS diesel tests were measured at the closest convenient point downstream of the raditter core.
Due to flow restrictions k
present in system, the actual core face velocities would not be l
uniform, but the overall radiator capability would not be l
significantly degraded.
5.6 At elevated ambient temperatures (>95'F), it is assumed that inlet air to the radiator fan is the same temperature as outdoor ambient.
This assumption based on test data taken 7/17/90, per Reference i
4.11, Attachment 8.11, page 9 and 10 of 15.
5.7 Instrument uncertainties from past data collection will be utilized in th turbo charger inlet air and JW-analyses and heat-up rate projections and are considered conservative. See Reference 4.3 and 4.8.
'6.0 ANALJ E T h i', analysis will establish the temperature limits at which the ergine/ generator can operate the worst. case safety-related loads in response f
to a Design Basis Accident with a-loss of offsite power.
To accomplish this, accident loading will be compared to elevated ambient air temperature engine performance determined by-analysis of the expected DG cooling system performance and test data to pr0 ject OG room temperature rise above outside 1
ambient air.
The analysis also demonstrates that the static exciter and generator can operate at the analyzed higher temperatures.
5 e
e,
, : --E -
rew.,
,,,.~.%.ri,,,.-
,,,..,-Me
=
---.r r-
---.,-.,.-...s.-.,----.-
e,-.
N.
I i
EA-FC-90-062
'd Rev. 2 Page No. 15 eas The analysis is organized to:
1.
Determine the Worst Case accident load and peak load on the diesel generator.
2.
Define the Test Data Reduction Criteria for use in the analysis.
3.
Define the Engine / Generator Power Output criteria.
4.
Define the engine, exciter and Generator Derating Methodology. l 5.
Define Test Data Instrument uncertainty for use in this analysis.
6.
Perform an Engine Derating Analysis and establish Operating Temperature Limits based on Jacket Water and Turoocharger irlet air temperature.
i j
7.
Establish Operating Temperature limits for Generator and exciter.
8.
Determine margin for additional loads.
l 6.1 Worst Case Load and Load Profile The Fort Calhoun Station is required to have sufficient onsite electrical generation capacity to safely shutdown the reactor and maintain it in a safe shutdown condition under all Design Basis Events (DBE) which could result in a loss of offsite power or require the assumption of a loss of offsite power (except station blackout), in addition, single failure criteria must be met. The following discussions review the expected electrical /DG system requirements under specific DBEs to define the worst case load and load profile, 6.1.1 Worst Case Load A process of elimination is used to determine tht. worst case load by looking at the equipnent required to respond to a DBE, This is discussed below, 6.1.1.1 Reactor Trip and Coincident Lo:s of Offsite Power i ()
A reactor trip and coincident loss of off site power where the Reactor Coolant System (RCS) and the Steam Generator secondary i
l
P k
Rev. 2 Page No. 16 eas system remain intact require a minimal amount of equipment for safe shutdown.
The basic systems required are raw water, component cooling water, auxiliary feedwater, charging, containment cooling, and low pressure safety injection (shutdown cooling). In addition the operators would be expected to have the instrument air system in operation.
6.1.1.2 Uncontrolled Heat Extraction The most limiting Uncontrolled Heat Extraction case would be a main steam line break in containment which would require automatic initiation of Engineered Safety (Features.In this case the Raw Water (RW), Component Cooling CCW), Charging (CH), Auxiliary Feedwater (AFW) senuential start of FW-6, Containment Filtering and Cooling (VA) Containment Spray (CS), High Pressure Safety injection (HPSI), and Low Pressure Safety injection (LPSI) systems will be automatically aligned and sequentially loaded on the diesel generator. The initial loading is expected to be nearly the same as a large break LOCA, however, once the RCS inventory has been restored, the HPSI and LPSI pumps will operate on minimum o
recirculation resulting in a reduced load to the diesel generators.
6.1.1.3 LOCA The ESF response to a LOCA automatically aligns and loads the ESF and tuxiliary systems on the diesel generator. In the small break LOCA case, the LPS) pumps are expected to be on minimum recirculation and not running at fuli load, in the case of a tube rupture, crAtainment spray is not required resulting in a smaller load on the dietel generator.
In the large break LOCA scenario, the LPSI and HPSI pumps ire expected to run at full flow until the SIRW Tank is emptied.
- nis represents the largest load for the longest time.
The large break LOCA loads will be used in all
[
further discussions.
6.2 DG Peak Load and load Profile 1he expected load is based on a lerge break LOCA for DG 1 2551 KW and for DG-2 is 2421 KW (calculation #FC03382 Rev. 3, Attachment 8.1).
The peak loads are expected to occur after the final loads have automatically sequenced on the diesel and accelerated to full speed.
i 6,3
}Lorst Case load Profile The large break LOCA load profile is based on loads which either
(,_,)
reduce over time as a result of accident mitigation or receive
(_/
automatic trip signals some time into the event.
O EA FC-90-062 Rev. 2 Page No. 17 eas 6.3.1 Load Reduction Due to Containment Depressurization Load reduction over time occurs on the containtnent filtering and cooling f ans (VA-7C, VA-70, VA-3A and VA-3B).
These f ans are initially loaded to 100% power when the containment air / steam mixture is near 60 PSIG. As the steam in containment is condensed by the containment spray system and containment filtering and cooling units, the containment atmospheric density is reduced causing the fans to unload.
6.3.2 Automatic Trip The LPSI pumps meet the automatic trip criteria (no operator action required). These pumps are tripped on RAS at which minimum safety injection occurs at approximately 3740 seconds (USAR Section 6.2.5).
6.3.3 Load Profile O
The load profile is graphed in Attachment 8.3 for each diesel.
This load profile is based on the large break LOCA, as defined in Calculation FC03382 Rev. 3, Attachment 8.1 (Figure 1 and 2).
6.4 Test Data Reduction Due to the room specific configuration for each engine, testing was used to establish the relation between outdoor ambient air and the room air temperature dependant functions of the diesel generators, e.g., turbo charger inlet air temperature.
6.4.1 The test data from Rev. O of this analysis (used in this analysis (See References 4.4 - 4.7)) was compiled using a thermocouple datalogger.
The test data used in this analysis concerning the exciters was obtained in the test procedures of MR-FC-90-073 discussed in the next section.
The critical parameters used in this analysis are outside ambient air temperature, combustion inlet air temperature (turbocharger intake air temperature), generator inlet temperature and jacket water temperature.
The analysis is based on the following:
a.
Thermocouple average temperature for ambient air temperat"re.
b.
Thermocouple average temperature for turbocharger inlet temperature.
c.
Thermocouple for generator inlet air temperature, g
Data reduction was accomplished in two steps.
First, it was determined that the data required could be compiled at 15 minute
Page No. 18
[
eas intervals versus the datalogger 5 minute interval printout. This was done due to the relatively slow rate of change of the observed temperatures.
Second, averages were taken at each time interval where more than one thermocouple was used to measure the same temperature area.
6.4.2 The test data used for the exciter temperature discussion is based on MR-FC-90-073 and was obtained with RTD temperature detectors with
- l'F accuracy.
The following temperatures were measured:
a.
Average of 3 center mounted exciter cabinet RTDs.
b.
Single hand-held RTD temperature detector for room ambient temperature, c.
Weather tower or the hand-held probe was used for outdoor ambient temperatures.
6.5 Enoine/ Generator Power Output Criteria 6.5.1 Engine Capability j
i g.
The deration of engine capability limit based on temperature is to l
[
ensura that the ESF loads dc not result in unacceptable engine wear L
and potential decreased - reliability
- of the engine.
This is N
interpreted as the engine 2000 Hr/Yr capability rating.
To quantify the engine reliability, Electro Motive Division. General Motors Corporat'on (EMD) has established output ratings for its engines based on potential engine degradation over a specified period of time.
The time intervals specified are 30 minutes, 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, and - 2000 hours0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br />.
The time ratings provide a neasure of stress on the engine.. Operation at the 30 minutes and 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> l
ratings should be minimized, however, the engines are expected to provide reliable performance even with brief excursions into the l
30 minute and four hour rating range.
EMD has developed these ratings based on detailed knowledge of the temperature related l
engine stress-caused by operation at elevated _ loads, and operating 1-experience with the engines (refer to Attachment 8.7). Following l
l an engine run that exceeds one of the interval ratings it should be inspected for abnormal wear and refurbished if required Ic achieve the highest possible reliability for future use.
I The 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> rating is c guide to schedule maintenance frequency.
[
Operation at the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> rating for 2000 hours0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> would indicate that an in:,pection be performed at the end of the run.
l The acceptance criterion is based on the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> rating, the goal being not to exceed this rating which is consistent with Technical l
Specification 3.7.
i
?
-m
i EA-FC-90-062 O
Rev. 2 i
Page No. 19 eas i
N published engine ratings are based on turbo charger intake i
temperatures of 90*F. For intake temperatures above 90'F, EMD has
[
provided de rating curves (Attachment 8.2).
These are straight l line curves showing intake air temperatures versus percent of full i
load rating.
The curve used is based on jacket water outlet temperature (JWOT) of either 190'F or less, or 200'T to 210'F. For l
the purposes of this analysis where test data shows JWOT above 190*F, the 200'T to 210*F curve will be used.
j When jacket water outlet temperature and turbocharger iniet temperatures are known while the engine is heating up during the
[
initial-stages of operation, a time versus engine / generator output limit can'be plotted for the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> engine rating.
Past test data (used in Rev. O of this analysis) gath* red during the initial stages of engine operation allow a heat-up rate to be determined, j
From this, jacket water temperatures vs. time can be predicted for other outdoor ambient temperature.
In the highly unlikely event that a large break LOCA wera to occur i
i shortly after the engine has completed its month' surveillance, p
the 30. minute rating curve would be applied to toe initial LOCA Q
loads in excess of the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> rating.
This would assure operation of-the ESF loads based on EMD's expectations for engiro performanca.
i
[
6.6
- Deratina Methodoloav i
6.6.1 Engine Derating The limiting parameters for engine / generator power output -(in
[
kilowatts) are Jacket water temperature ano turbo charg)er ai; temperature. The.iacket water outlet temperature (JWOT determines what turbocharger air intake temperature-de-rating curve is applicable. The percent of standard rating versus elevated inlet temperature curves (based on jacket water temperatures) are shown l
in-Attachment 8.2.
The graph shows two deratings the upper right curve is based on a JWOT of 190*F, the lower curve,on a JWOT in the l
range of 200'F to 210'F. In this analysis, engine / generator power
?
output. is based on the 190'F curve when JWOT-is 190'F or less, and-the curve of 200'F to 210*F when JWOT is above 190'F - For purposes-of this analysis, 208'T will be used as the maximum JWOT, based on
~!
cylinder head life (refer to Attachment 8.2).
l g
.- 6. 6. 2 Generator and Exciter Derating 6.6.2.1 The _ temperature limit for the generator is determined by taking the O
known upoer limit' of the generator and reducing it by the rise i
between ambient outside and the generator inlet temperature.
j j
4.,,. ---
,,,--,-,,,--,~.....-m4,m--_,-m.._._.-,...____.- __. -
- - ~
,.r-
l
\\
EA-FC 90 062 (7
Rev. 2
()
Page No. 20 eas Instrument uncertair, will be included in a conservative manner.
6.6.2.2 Modification MR-FC-90-073 installed cooling in the exciter housing.
The testing done by the modification will be analyzed to determine the adequacy of the newly installed A/C units (VA-759A, VA-759B) at outdoor ambient temperatures of 110*f.
6.7 Instrument Uncertainty This section discusses the expected uncertainties of the instrumentation use o measure the critical parameters of ambient air into the die: 3 -
generator
- rooms, turbocharger inlet temperatures, generato; air cooling temperatures, and exciter cabinet air temperatures.
6.7.1 Outside Ambient Air Temperature Test Data Uncertainty Ambient Air entering the room was measured using 6 thermocouplcs mounted at the room air intake and recorded on a data logger (this information was not used for the exciter discussion in this revision). Each of these type J thermoccuples has an uncertainty tb of 2.2'C or 3.96*F.
The data logger has a.72*f uncertainty, however, post calibration testing indicated an uncertainty of
.22'F.
Using the square root of the sum of the squares method, the loop uncertainty for aach therm 3 couple is : 3.97'F.
The use of six thermocouplet to measure the ambier.t air temperature will result in a more accurate reading. Using the error analysis method for multiple inputs of equal uncertainty as defined in Chapter 5 of " Data Reduction and Error Analysis for the Physical Sciences", reference 4.3, the overall uncertainty of the average temperature is reduced to the ind widual loop uncertainty divided by the square root of the total number of channels.
For the ambient air case, the uncertainty would be
- 3.97'F//6 =
- 1.62'F.
The actual outdoor ambient air temperature will be the average reading minus 1.62'F, which is conservative. The outdoor ambient air temperature calculated in this manner is conservative because this temperature is used to calculate delta Ts between the outdoor ambient and other temperatures greater than ambient (jacket water outlet, turbo intake air, and generator intake air temperatures) which produces larger delta Ts.
A larger delta T will give a larger temperature rise above ambient for the system being analyzed yielding a conservatively lower upper temperature limit for that system.
o
\\h Page N(.. 21 eas 6.7.2 Turbocharger Intake Air Temperature Uncertainty The turbocharger intake air (combustion air) temperature uncertainty was determined using the same method and equipment as the outside ambient air temperature.
In the case of the it.rbocharger air intake, nine thermocouples were used.
The expected uncertainty is : 3.97'F//9
- 1.32'F.
For the purposes of engine derating due to turbocharger intake temperature, any temperature rise of the turbocharger intake over ambient will be increased by 1.32'F, resulting in a conservative derating.
6.7.3 Exciter Cabinet Internal Air Temperature Uncertainty MR-FC-90-073 installed air conditioning units on each exciter panel. Testing was performed by the modification to determine the effects of a failed A/C unit on the ambient temperature limits of the exciters.
The test used 9 platinum RTDs which were mounted inside the exciter cabinet and connected to a datalogger.
The above measuring devices have a a l'r uncertainty for each RTD.
Only the center 3 RTDs will be used for determining the enclosure o
temperature with the door open because these are located in the t
i area of the most heat sensitive components.
This provides an V
uncertainty of
- l'FN 3 = 0.58'F.
6.7.4 Generator Cooling Air Inlet Temperature Uncertainty The generator cooling air inlet temperature was measured using one thermocouple and the same datalogger as outside ambient air.
The expected uncertainty is t 3.97'F.
The 3.97'r uncertainty will be subtracted from the upper generator operating temperature limit, which is a conservative application.
6.7.5 Weather Tower Outside Ambient Temperature Uncertainty The weather tower 10 meter air temperature can be used to determine the margin available to manually load additional equipment on the diesel generators. ES-87-12, Weather Tower Instrument Uncertainty Calculation FC01381 (Input 3.6),
established a temperature uncertainty for the ERF computer readout of t
.71'F.
This uncertainty is not considered significant, the reading alone without correction can be applied. Data taken during the 6/25/90 testing confirms the adequacy of the weather tower as shown below:
Time
_ Tower Thermocouples Delta T 14:38 87'F 86'F l'F 15:30 90'F 89'F l'F
(]
17: 40 89'T 88'F l'F v
i i'
I
EA-FC-90-062
(~N Rev. 2
()
Page No. 22 eas 6.8 Basic Engine Limit and Rating Calculation Including Uncertainty with a Jacket Water Outlet Temperature Based Operating Limit The basis for the following equations is that the limit:, of concern vary linearly with outside ambient temperature.
A.
DG 1 Turbo Dtrating) Temp. = DG-1 Operating Limit 4 ((T
+
y 1.32) - (Tg-1.62)
B.
DG-2 Turbo Derating) Temp. = DG-2 Operating Limit + ((Ty+
1.32) - (Ty - 1.62)
C.
Generator Outdoor Ambient Temperature Limit DG 1 Tct -((T;c 3.97) - (Tg -1.62))
+
D.
Generator Outdoor Ambient Temperature Limit DG 2 = Tct - ((T ci 3.97) - (Tg -1.62))
+
E.
Exciter Outdoor Ambient Temperature Limit DG-1 = i tt (TAvt
- 0.58 - Tg3) (Door open, A/C off)
F.
Exciter Outdoor Ambient Temperature Limit DG-2 = Ttt - (Tavt
- V) 0.58 - Typ) (Door open, A/C off)
All variables are in *F.
T
- outside ambient air measured during the test g
i
- turbocharger inlet temperature measured during the test n
T
- exciter temperature limit (maximum rated temperature) l it T
- exciter temperature measured in the testing of MR-FC-90-073 ut Teo - outside ambient temperature measured in the testing of HR-FC-90-073 T
-generatortemperaturelimit(maximumratedtemperature) l ct T
- generator initt temperature measured in the test ci 6.9 Enaine Deratina Analysi,1 6.9.1 DG-1 Ambient Air Temperature Limit Based on Jacket Water Cooling System Improvements As a result of temperature limitations on the diesel generators imposed in 1990, steps were taken during the first quarter of 1991 to improve the heat removal capebilities of the diesel generator radiators.
Access doors installed in the exhaust duct above the r6diator core allowed for steam cleaeing and maintenance of the
)
7" radiator cooling fins.
Post maintenance testing confirmed a
(
significant improvement in air flow across/the radiator cores. See
p EA-fC-90-062 Rev. 2 g
Page No. 23 eas Table 1.9d and Attachments 8.11 through 8.14 f(r actual before/after air flow data.
According to literature (documented in EA-90 062 Rev.1 and EA 091 Rev. 0) received from MK Power Systems, OPPD's representative for EM? stationary diesel generating units, a net horsepower savings of 180 bhp can be assumed if the Ethylene Glycol engine coolant is replaced by treated water. inis can be converted to an additional 130 KW to be applied to offset the diesel generator deration curve.
The addition of 130 KW to the rated capacity of 2654 yields 2784 KW availeble. The diesels will satisf; the post-LOCA loads if this 2784 KW power available is applied to the 2000 hr deration curve.
The corrbined benefits of a "near new" cleaned condition of the radiator in conjunction with ef ficiency savings associated with changing coolarit f rom Ethylene Glycol to treated water result in higher output capacity such that the temperature limit could be raised. Limiting JW temperature per MFG, is 208'F.
Test results shown on Attachment 8.8 show that with ambient temperature of 110*F
(
the JW temperature is expected to be 208'F af ter 20 minutes, i
Therefore:
DG-1 ODeratino limit = 110'F (Based en JW temperature)
See Attachment 8.8 for expected er.gine/ generator performance at '
110'F and Attachments 8.9 and 8.10 (Attachment A) for supporting analysis.
6.9.2 Derating Description of DG-1 Based on Test for Turbo Charger Inlet Temperature and Revhed DG-1 Capacity Rating The test data on DG-1 taken on 6/25/90 was used to determine room specific temperatures. The test was conducted using water as the engine coolant.
Readings were t:. ken every five minutes from thermocouples and every 10 minutes of the engine jacket water outlet panel temperature indicator.
For this analysis, turbo-charger inlet air temperatures, at 10 minute intervals,-were used to establish a correlaticn to outside emblent temperatures as well as to derive a heat-up rate profile for use in projecting turbochargar inlet temperatures at an outdoor ambient temperature of 110'F.
Frora these projected inlet temperatures, deration f actors (from Attachment 8.2) were applied to pross availeble output power and comparet) to ESF power requirements as shown in Att achment 8.8.
Operation at 110*F was considered an acceptable p
limit.
I
I i
(~'
EA-fC 90-062 y*
Rev. 2 Page No. 24 eas f
6.9.3 DG-1 Derating Based on a Hot Engine There is expected to be a period of some three hours per month when DG-1 would be at elevated temperatures af ter a monthly surveillance test.
In the event of a LOCA under these conditions, the engine l
would still be expected to perform its safety function, based on the 30 minute capability rating.
6.10 DG-2 Enaine Deratina Analysis 6.10.1 DG-2 Ambient Air Temperature Limit Based on Jacket Water Cooling g
System Improvements See discussion in Section 6.9.1.
l
[
EG-2 Operatina. Limit = 110*F (Based on JW temperature) l See attachment 8.8 for expected engine / generator performance at l
110'F and Attachments 8.9 and 8.10 (Attachment A) for supporting l
O analysis.
l Q
~6.10,2 Derating Description of DG-2 Based on Test for Turbo Charger Inlet Temperature and Revised DG-2 Capacity Rating DG-2 was tested on 7D 6/90 and 7/17/90 to determine room specific temperatures.
The test on 7/16/90 was corducted using ethylene-l glycol as the engine coolant and the test on 7/17/90 used water as
~
the engine coolant. Readings were taken every five minutes of the thermocouples and every 15 minutes of the engine JWO panel temperature indicator for the test on 7/16/90 and every 10 minutes of the engine JWO panel temperature indicator for the test on 7/17/90. For this analysis, turbo-charger inlet air temperatures l
from the 7/17/90 test, taken every 10 minutes, were used to establish a correlation to outside ambient temperatures as well as to derive a heat-up rate profile for use in projecting turbocharger inlet temperatures at an outdoor ambient temperature of 110 f.
L From these projected inlet temperatures, deration f actors (from i.2) were applied to gross available output power and l
l compared to E5F power requirements as shown in Attachment 8.8.
Operation at 110'F was considered an acceptable limit.
6.10.3 DG-2 Derating Based on a Hot Engine There is expected to be a per iod of some three hours per month when q
OG-2 would be at elevated temperatures af ter a monthly surveillance Q
test.
In the event of a LOCA under these condition, the engine would still be expected to perform its safety function, based on j
the 30 minute rating.
I
1 f
l r
EA-FC 90-062
(
Rev. 2 Page No. 25 eas
[
6.11 DG-1 and DG-2 Generator Temperature Limits t
6.11.1 Generator Peaking Duty Temperature Rating
[
The generators' upper temperature limits can be derived from the l
nameplate data of the generators which specify the rotor and stator insulation temperature rise limits. See Attachment 8.3 and thc EMD Generator Characteristic Data, Attachment 8.4.
The peakin stotor rise limit rating is 105'C and the rotor rise limit is 70 C above 40*C (a common design number). from the generator data sheet, the load based ris,e at 2500 KW (which represents the peak DG loading by OPPD) is 56'C for the stator and 50*C for the rotor above 40'C.
The rotor is limiting which equates to a limit of 60'C maximum temperature (40'C ambient, plus a 20'C nargin in the rotor between the 70'C limit and the 50*C load induced temperatuie rise).
The operating temperature limits would be 60'C (140*T) minus the room inlet to the grterator inlet temperature rise and correcting for uncertainty as i 1 in Equation 6.8 C and D.
Attachments 8.19 through 8.22 provide ; sts of the generator inlet temperature rise.
O Using the data in Attachment 8.22-1 to determine generator air inlet temperature rise, a limit of 120'F can be calculated for DG-1 (140 - ((102.6 + 3.97) - (88.8 1.62))).
Using the data from.21-1 to determine enerator inlet air temperature a
rise a limit of 114'F can be ca culated for DG-2 (140 - ((110 +
3.97}-(90-1.62))).
Please note that when using the data or graphs in Attachments 8.19 through 8.21 the data taken when the room fan is off should be used, since fans VA-52A and VA-528 are not to be in operation.
6.11.2 This judgement is supported by the ratings of the Class H insulated stator and Class F insulated rotor.
Looking at motor insulation ratings (which can provide information on the insulation systems),
Class F insulation-is capable of 105'C rise above a 40*C ambient and Class H insulation _is capable of 125'C rise above a 40'C ambient.- Refer to the tables in Attachment 8.5 taken from the
" Standard Handbook for Electrical Engineers".
6.12 Exciter Temperature Limits Each Emergency Diesel Generator (EDG) receives field excitation via a General Electric Model 357930SA212A11 Static Exciter.
These l
exciters were part of the original EDG installation and are approximately 20 years old.
G.E. (Letter dated July 20, 1990, Attachmant 8e6) has stated that the open exciter panel will have O
no problem operating at 50'C (122*F).
I l
e%
g 9
w*vr9'r t-V'w-
n
- ~- --- - ---
.O Rev. 2 i
(/
Page No. 26 l
eas l
6.12.1 Exciter Limit with Leff Door Open, Air Conditioner Off Modification MR-FC-90-073 installed an air conditioning unit on i
cach diesel generator exciter cabinet to provide cooling for the components inside the cabinet.
The temperature ratings for this configuration will be analyzed and discussed later. This section will develop temperature limits for each exciter with the A/C unit off and the left door open.
i i
6.12.2 Exciter Test Dots EDG test data obtained in MR FC-90 073 6.ill be used to develop exciter ambient temperature limits with the A/C unit off and the left door open.
This will establish a set of limits for the exciter if the A/C units were to fail.
l 6.12.2.1 Testing Procedure T-1 for DG-1 from MR FC-90-073 (5/30/91)
This test ran the diesel at approximateiy 2500 KW throughout the
}
test. RTDs (9) were mounted inside the exciter cabinet to measure the internal cabinet temperatu.*e.
The average of the center 3 temperatures will be used as the ambient air temperature which will
\\
be used to calculate the delta T between outside ambient and l
cabinet temperature..15 shows that at 15:46:05 the cabinet temperature stabilized with the lef t door open and the A/C unit (VA-759A) off.
The average of the 3 center cabinet readings is:
TAvt = 99. 9 + 100.1 + 100. 2 = 100. l'F 3
The outside ambient temperature at this time was 80'f (T3 from page i
9 of.T from MR-FC-90-073 is the weather tower thermistor).
Therefore, the delta T between the outside ambient and the cabinet i
temperature _ is calculated with instrument uncertainty as follows (refer to equation E from Section 6.8):
AT = Tay; + l'F - Tw = 100.1 +.58 - 80 = 20.68'T (3
Tne outdoor ambient could reach 101'F (122'F - 20.68'F) and the exciter would still be expected to function with no A/C and the r
left door open.
6.12.2.2 Testing Procedure T-2 for DG-2 from MR-FC-90-073 (5/15/91)
~ ^
This test was performed identical to the test for DG-1. Attachment
[(
8.16 shows that at 14:57:27 the exciter cabinet tenperature b
I'
~
EA-FC-90-062 f
k' ^
Rev. 2 i
Page No. 27 i
eas stabilized with the lef t door open and the A/C unit (VA-7598) off.
The average of the 3 center cabinet readings is.
Tag = 91.3 + 92.0 + 93.6 = 92.3*F 3
The outside ambient temperature at this time was 76.9'F which was i
measured using HT-00014 which was post-mod tested at better than l'F uncertainty (per Attachment 8.17) and therefore will be used 2
f with no uncertainty. The delta i between the outside ambient and the cabinet temperature is calculated with instrument uncertainty for the cabinet temperature as follcws (refer to equation F from Section 6.0):
AT = T,yg + l'F - Tag = 92.3*F +.58 - 76.9'F = 16*F i
V3 i
The outdoor ambient could reach 106*F (122*F - 16'F) and the i
exciter would still be expected to function with no A/C and the left door open, j
6.12.3 Exciter lest Data (A/C On, Door Closed)
This section will demonstrate that the VA-759A and VA-759B exciter air conditioners will maintain the internal exciter cabinet air temperature below the 122*F limit.
The exciter A/C unit on each diesel generator was tested by MR FC-90-073. The testing obtained A/C duty cycles at known temperature differentials (between cabinet interior and exterior).
6.12.3.1 DG-1 Exciter A/C Test The diesel generator was run at approximately 2520 KW for I hour with the A/C unit (VA-759A) cooling the exciter cabinet.
At the beginning of the test, the A/C unit duty cycle was approximately 56% while removing primarily the heat generated-internal to the exciter cabinet. The average internal cabinet temperature averaged around 80*F. The room ambient temperature rose from 81'F to 100'F within l' hour. At the end of this ) art of the test, the A/C unit duty cycle increased to approximately 64% to maintain a 20'F delta T between the room ambient and the internal cabinet temperature.
Predicting the A/C unit duty cycle at 110'F outside ambient is accomplished as follows:
+
p) ambient, the A/C unit duty cycle increased 8% based on a 100% duty for a 20*F increase in delta T between internal cabinet and room q
L t
v.,.
.w.
m
EA-FC-90-062 h
Rev. 2 Page No. 28 eas cycle.
Therefore, there is a 8%/20'r = 0.A0 percent increase in duty cycle per 'T increase in delta T between room ambient and internal cabinet air temperature.
At th:! time of the test, the outdoor ambient temperature will be assumed to be 74'F which is conservative (actual temperature went from 74'r to 78'r during the test).
An outside ambient of 110'F is an increase of 36'F over 74er At 0.40% per 'F this gives a 14.4% increase in duty cycle whic, when added to 64% duty cycle gives a duty cycle of approximately 78%.
The above does not account for the increased A/C unit efficiency from approximately 70% to 92% at higher o)erating temperatures es discussed in Attachment 8.18. Since the c>ove discussion is based on maintaining the cabinet internal temperature at 80'F with a 110'F outdoor ambient at a 78% duty cycle at reduced efficiency, it is judged that there is enough margin to assure an internal cabinet temperature of less than the required 122*F upper limit with an outdoor ambient of 110'F.
l 6.12.3.2 DG-2 Exciter A/C Test The analysis for the A/C unit (VA-7598) for DG-2 will be discussed different from that of DG-1 since the room ambient at the start of I
g the A/C unit test was approximately 7'F higher than the internal cabinet temperature. The A/C unit test ran for about I hour with the A/C unit cooling the exciter cabinet at a diesel generator load of 2540 KW.
At the end of the. test the A/C unit duty cycle was approximately 50%.
The average internal cabinet temperature wts 80'r and the-room ambient was 89'F.
Therefore, the A/C unit maintained a 9'F differential between the room ambient and the internal cabinet temperature with a 50% duty cycle.
From-.18, the A/C unit efficiency was approximately 60%.
Therefore, it is judged that the A/C unit would be able to maintain a 9'F differential or better between room ambient and the cabinet L
internal temperature.due to the m ilable. margin in the A/C unit i
by the increase in duty cycle and efficiency as temperatures rise.
from Revision 1 of this analysis, it was found that there was a 17'F delta T between the outdoor ambient and the room temperature.
Therefore, the room ambient could reach 127'T with a 110'F outdoor ambient temperature, it-is judged that the-A/C unit would be able to maintain an enclosure temperature of less than 122'F at an outdoor ambient of 110'F.
l O
.~
---y
.,--,-.,,-.y I
EA-FC-90-062 l
(n-)
Rev. 2 l
Page No. 29 l
eas 7.0 RESOLTS AND CON (LUSlQN$
i 7.1 Resulti i
Generator Room Engine / Radiator Exciter Max. Out.
Temperature Max. Out.
Conling Max. Out.
Ambient Based On Amb. Limit Liouid Amb. Limit Limit
[.an Status l
DG-1 110*F Water 101'F No A/C 120'F YA-52A off Door Open 110'F A/C On Door Closed l
DG-2 110'F Water 106*F No A/C 114'T VA-52B off l
Door Open i
110'F A/C On Door Closed i
O 7.2 Conclusions Based on the results of this analysis, the maximum outdoor ambient air temperature for each diesel generator to carry the loads as stated in the purpose are as follows:
j; Maximum Outdoor Ambient Temperature DG-1 110'F
'DG-2 110*F These limits are based on the diesel generator's anticiaated Jacket water outlet and turbocharger air intake temperatures sased
-}
on test data, and therefore are the limiting parameters.
These temperatures allow each diesel generator to operate within its P.000 hour0 days <br />0 hours <br />0 weeks <br />0 months <br /> rating for the LOCA analyzed here.
Additionally, the' generatorandexcitorcabinet(withA/Crunning)arenotexpected to see temperatures which would exceed their limits at an outdoor ambient temperature of 110'F.
The VA-524 and B fans shall be "0FF" when the respective diesel is run, i
Through the course of'the accident (LOCA) the diesel generator e
will unload such that the load will always be below the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br />
~!
rating of the engine. The KW margin between the actual load and O"
the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> rating is available for addition equipment starts, for the large break LOCA analyzed here.
Actual margin is dependant on the pump loads and ambient air temperature.
EA-FC-90-062 Rev. 2 Page Nu. 30 eas 8.D LIST OF ATTACHMENT 1 Attachment Deserint ior,t 8.1 Calc. No. FC033B2 Rev. 3, Diesel Generator LOCA Loads 8.2
- a. Derating Curves for EPD Diesels
- b. Letter From Ted fryar of M-K to Randy Hueller,.iated 2/21/80 8.3 Diesel Generator Nuneplate Data 8.4 EMC Specification Sheet for the Generator 8.5 Tables from The " Standard Handbook for Electrical Engineers" 8.6 G. E. Letter, Dated 7/20/90 8.7 Letter from GM EMD and 0.. f. Mehaffey, Dated 8/16/90 8.8 a.
Data Sheets. Projected Performance and Deratings at 110*f Ambient, DG-1 and DG-2 b.
Revised Diesel Generator Available KW/ Required KW vs. Time Plots Utilizing Calc. FLO3382, Rev. 3, DG-1 and DG-2 B.9
- a. Young Radiator Company Radiator Performance Analysis b.
Telecon Between M-K Power Systems and D. G. Borcyk, O
Dated 4/19/91 c.
Calculated Heat inputs to Engine Cociant d.
Delivered Air vs. Required Air Analysis 8.10 Letter from R. L. Phelps to R. L. Jaworski and T. L.
Patterson, Dated 5/31/91 8.11 DG-1 Testin;; - Airflows Before Steam Cleaning, 3/8/91 8.12 DG-1 Testing - Airflows After Steam Cleaning, 3/14/91 B.13 DG-2 Testing - Airflows Before Steam Cleaning, 2/27/91 8.14 DG-2 Testing - Airflows After Steam Cleaning, 3/25/91 8.15 DG-1 Datalogger Points et 15: 46:05 8.16 DG-2 Datalogger Points at 14:57:27 8.17 Telecon with Ken Beach 8.18 A/C Efficiency Data 8.19 Graph or Air Temperatures for DG-1 on 6/26/90 2 pages 8.20 Graph of Air Temperatures for DG-2 on 7/16/90 2 pages 8.21 Graph of Air Temperatures for DG-2 on 7/17/90 2 pages 8.22 Graph of Air Temperatures for DG-1 on 6/25/90 (2 pages)
O
'I EA-FC-90-062 9
Rev. 2
.,1 Calculation Number FC03382 Rev. 3 Diesel Generator LCCA Load $
i i
ii
)
l_
- h t
t,s r
- t I
I l
. j t
l-
. p v
i.
I I
i
- i
( .
l 1
l 7 !.'[
h
- t
?
-. i I
l
'I
~ $
l o
l'
~t t
i-
-.x,,e.
mm.... +.....,,....._
._z___._u...--....s,
.._.....-..,.....m.....-._,
.r...,-.,,,,mm-.m.._
,,,..,,,....,,,m.,,,..,,,e,,,
<w-<1.,~,
'A *729 CALCULATION COVER SHEET C_'c.3.g.g".....,e..:.,,..
- u.canm a
ica..P ro,- eco-oe-3.1 F.,.. e.
no. 1 or 2 c.ioui.uon c <- sa...
- o. Tc. w. gt = a i.zxrns cac a n = r er.
,,.,,, a. c=
.sar tem cu.c. as a
,e c' ru>.ici mur xs 0/e.sel Geneva l0v LOC 19 a-, en.e.,o. m i
en.wnw me Lcac s a m... _
aca.
e a 000 No.
j E'0 Den
"# G cdlePPROYAL$ = $1Ge4TLSE & OArE ymyg arensex:
.=mano ies
,, v, m*
.gy,,,
rarr e m u a rtisi nevzrv aisi u ttisi ca.c m.
6Yff A %ng/J Z
f M11
>/
t /n l',n < 7 fu p
- h A.J G M d h/d y Al %s>
Ar?
'/
3~
7ll9/90 f /q,'fg]l u
'l'h W 3I%
\\
\\
n4sn7 At K td.d W-RkY" af
/
2 to/2 r/f o M-N -96'
- dOue'.iAhatYW4MCO.0la M M-1, a Evohwh use.
teach, Load Ad adm ax bQ bE1 i dW. WD P
l"l1l
'N!!
f f & f 2. f/
/
pa /&{
4Fe,- tv-6)
,. w
- EXTERNAL. ORGANIZATION DISTRIBUTION l COPY jCOPY W J E I. I K kT E D' SENTl HmE & L.0CArION SENT It#)
'f#1
_m,---
-4 Ch/l/#3
[ds$
i IT F Med e Ep47 l
l DG 6orcyK SP9 l
l i
t 4
i CALCULATION COVER SHEET
(
celeulauon Proparauon Aevie,
" l AAfION N l No Jege Fe,_
2.
t ena w val g Jyg.g, Form PEO-OP-3,1 Form psy, No. 2 at 2 YC ---
i Calculauon Covw Shoes FAU LITY/ SYSTEM CPS I T'$
l xtwence f'*I%.On %
em n=>TIONS USG AS I r yf IN THE AMtTtis EOLMMIDff TAQs cate. ary NO.
CEEPT.NO.*
SYSTEM m
g
^
34L 7772 - IL-E0 2. u L JT4 O4 vl l
Dd 1
I
_,n._
i l
D4 P41 t
i hd eke l
i e
~
t 99 i
t 1
i l
l i
i l
- e I
~
1 1
k I
r l
l huc 5 i
Calc Preparation, Review ano Approval 1
C)
PED-QP-3.5 Page 1 of 2 CALCULATION NUM8ER C/
Reviewer's Checklist Calculations i
FC$3384 Av. 3
.Yli M
fi/.A 1.
Is Calculation Cover Sheet attached and completed, as required,to thi calculation?
/
j 2.
Is the calculation objective s.ated? Was this achieved?
I,,-
)
3.
Are inputs corrsetly selected and incor-porated into the analysis?
/
4.
Have inputs and/or tasumptions which recuire confirmation at a later date, bean identifiad i
on the Calculation Cover Shee and in the calculstion body?
V 3
5.
Are the applicable codes, standards, rtgulatory requirements,-and other references t
including issue and addenda identified such
/
that they are traciable to source document?
6.
Was an 4)propriate calculatico method useof f
Was the.)asic theory appropriate?
W 1.
Haveassumptionsbeennotedandjustified?
V 8.
Are the calculations free of arithmetic errors 1 V,
9.
Is the calculation consisten; with the design basis requirements?
k, l
10.
Is the conclusion stated 7 D'
11.
Is the calculation legible and suitable for
{
microfilming?
_V V
h f
O l
t
. =.
3pm k p l v' I
Calc Preparation, Review and Approval W
PED-QP-3.5 Page 2 of 2 CALCULATION NUMBER Peviewer's Checklist-Calculations r
L FC$3382 6.3 7
Hi n
KI.A
-['
1 Are all bloc's on the Calculation Cover 4
)/[
Sneet acdressea correctly?
Jd 13.
Have FerLis PED-QP 3.2,:! 4 and 5 been used W ::errectly completeut
_/
, ~ '
g-hf 14.
If the calculation has been pre: red to supersede another calculation, u.s all the i
I valid information been transferred in the new calculation?
/
(p 9
REVIEWER COMMENTS:
i l
)
8dbad i B/nht 1
Rirv%wer Date l
1 9
~T_
FED-QP-3.37-
---_ - -- --_aom_ 5
$w 5 Calc Preparation, Review and Approval
,s 7(
PED-QP 3.7 Page 1 of I CALCULATION NUMBER Independent Reviewer' Checklist - Calc.:htions i
l FC $ 738A thix.3 j
m a
m l
i[
1.
Are the calculation methods accurate and appropriate 7 2.
Are input data sufficiently detailedt
[
3.
Are the calculation assumptions reasonable 7
/
4.
Has the basis-for engineering judgement been included in the calculation, when t
used?
/
l 5.
Is the calculation documented sufficiently such that the analysis is understandable to someone competent in the discipline
/
without recourse to the Preparer?
t/
6.
Have the design interfacs requirements
/
L q been :atisfied?
v I Q' l
7.-
Are the results reasonable and do they resolve ;he calculation objective?
/
8.
If an alternate calculatien was used to verify the adequacy of the analysis, is it
/
i attached to the cckulation?
v t
9.
If qualification testing was used to verify
-the adequacy of the analysis, has it been documented using a retrievable-source, or attached to the calculation?
V.
i 10.
Are calculetions involving Technical Specification values and associated margins 1
of safety identified?
-/
L.-
-INDEPENDENT REVIEWER COMENTS
[
L i-p L
hfMI
/Sk f L
l Indepen~0ent'S6/iepr Dat'e PED-QP-3.40
}
l 1
6 emur m s
,ALCULATION PREPARAT10M SEVIEW AND AFPROVAL CALCULAT10N NO.
FORM PED-OP-3.2 Form Page No.1 Of 1 PRODUCEON ENGINEERING OMS!ON rCO33e2 CALCULATION REVISION SHEET REV*
NO.
OESCRIP110N / REASON FOR CHANGE 0
TNTT!AL ISSUE 1
Added VA-63A, VA-63B, VA-64A, VA-64B, and deltted VA-63 cer MR-FC-97-20.
kC9-1A, CH-1B, CH-1C:
Chanced lead from 62.2KW to 50_pKW due to section 6.4.1 of EA-rC-90-76.
EE-4e r N nced _1 cad trem 10KW te ovW due to T"fe-+ae
- 1 4e *
- enna
- n ba oowered from the battery charcer which is already assumed at full load in this calculation.
VA-90A Chanced load from 4.36KW to OKW, van 4e -a nna l l af em ead
-mn*
hydrocen removal - not recuired for initial stac~e of accident.
Added assumerion 10 g
Added References 12,13. &l4
(*0NCLUS TON S :
Chanced KW loadinc Va des to reflect latest loading info.
due to MR-fC-90-5d.
Chanced KW load of SI-3A from 235.6 KW to 258.7 KW to reflect the 319 bhp requirement of the pump anc usAng W3 as tne e:IscAency Anst.eac oI the previous 95%.
Chanced KW load of SI-3C from 240.6 KW to 243.3 b,nd SI-3B from 235.6 KW to 243.3 KW to reracct an eI:1clen:v or r.>t.
ft % sMr s/s/0/
Added section 3.0 to discuss CI-3A.
Added Attachments A & B.
Deleted Rev, O r; aces ihich were attached to Rev.
1.
3 eleted Assumption #7 which assuned CH-1A, E 6 C to run full load.
Added formulk to determineu KVAR.
Added tables for DC-1 6 2 Power Factor Calculation.
Added Load Calculations for pumps: SI-1A 6 B. Sl-2A B,6 C. SI-3A, B6C, CHIA, B&C, V
AC-3A, B 6 C. AC-10A, B, C 6 D, VA-3A 6 B, VA-6C 6 D and FW-6.
Revised load information to reflect calculation results.
Added pump curves.
=m = 7
{
[ CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-CP-3.4 Form Page No.1 of 1 F?"dR3FP7 PRCDUCTION ENGINEERING DIVISION CALCULATION SHEET Rev. No. g REF.
NO.
TABLE OF CONTENTS FOR CALCULATION FC03382, REV. 3 DIESEL GENERATOR LOCA LOADS CQE OBJECTIVE METHODS ASSUMPTIONS INPUTS / REFERENCES CONCLUSIONS 1.0 Load Shed Information for Diesel Generatore DG-] & DG-2 2.0 Expected Containment Fan Loading 3.0 Increased Loading on DG-1 due to SI-3A HP Increasu 4.0 Sequential loads Based on Brake Horsepower Requirements b
5.0 Unit Substation Transformer Losses 6.0 Diesel Generator load Powerfactor ATTACHMENTS A - Long-Term Pressure Response LOCA B - ABB Letter 0-MPS-079 C - Pump Curves SI-1A/B, SI-2A/B/C, SI-3A/B/C, AC-3A/B/C, AC-10A/B/C/D, and FW-6 4
D - Memo PED-FC-1762 E - Westinghouse Certified.. Test Repots, GO 54X2-9399 i
r v
cut.rset na R
- (j CALCULATION PREPARATION, REVIEW AND APPROVAL
~
FORM PED-OP-3.3 FORM Page No I of 5 CALCULATION NO.
DEC33R2 PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev. No. 3 r
OBJECTIVE i
i ELECTRICAL LOADING MOD 7L FOR DICSEL GENERATORS Tne objective of this calculation is to provide a model of the expected loading of each of the emergency diesel generators DG and DG-2 which load in response to a Loss of Coolant Accident.(LOCA) coincident with a loss of offsite power.
This model will begin with the point in time in which the final sequenced load group has accelerated to full speed and running at-its expected accident load and will end at the t,oint RAS occurs.
l
()h t
h t
i k
)
PED-QP-3.30
=
i t
i n
car.rmt a 9
-;tj'ORM PED-OPJ ' PREPARATION, REVIEW AND APPROVAL ALCULATION :
t FORM _ Page No. 2 of 5 CALCULA110N NO.
i PYnoSf97 PRODUCTICN - ENGifJING CALCULATION
SUMMARY
SHEET Rev.No. 3-METHODS The load -information for equipment 8ad loaded on the diesel generators will be calculated and s a arized using d_
the ELMS orintout and the ELDL data base 'See Inputs),
l The Load Shed Information Summary will inc;ude the load shed status and electrical load in KW for each item listed.
l The load (in KW) for each motor can be detero.ined by:
P (in KW) fRated HP1 x 0.746 KW/HP
=
% efficiency l
The load (in KW) for each load given in KVA can be t
determined by:
P (in KW) = [ load (in KVA)) x (power fsetor)
-p The Load' Shed Information Summary for DG-1 includes V
-4.16KV Bus 1A3 and all 480V-Buses fed from 1A3.
These 480V Buses are
Also included _in the summary is any 480V MCC that is fed l
from one of the aforementioned 480V Buses and is not Jcad
=
shed.
These MCC's are MCC-3A1, MCC-3A2, MCC-3B1, MCC-3C1 i
and-MCC-3C2.
t i
The Lord Shed Information Summary for DG-2 includes 1-4.-16KV Bus 1A4 and all 480V Buses fed from 1A4 These i
480V Buses are=.1B4A,
- 1B4B, IB3B-4B and 184C.
Also.
L included in the summary is any 480V MCC that is fed from L
one of the aforementioned 480V Buses and is not load shed.
These MCC's are MCC-4A1, MCC-4A2, MCC-4B1, MCC-4B2, MCC-4C1, MCC-4C3 and MCC-4C4.
i L
Please note that load shed r9ans 4.16KV load shed, 480V i
t Lunder voltage breaker trip, ESF 480V load shed, OPLS load shed and -those control circuits which drop out as a result-of-loss of offsite power and require manual starting.
l l..
j The value (in KW) of the load for each device which is load shed or is sequentially loaded will be placed in the
" LOAD (KW)"
column of the Load Shed Information Summary.
Each-device which is not load shed needs to be examined to-determine whether it is a continuous or intermittent f
load-(such as valve cycling).
t, L
i M1 PED-QP-3.31
i I
cma m /o ALCULATION PREPARAT10N, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-OP-3.3 FORM Page No. 2 of 5 R'D23R7 PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEER Rev.No. g The value (in KW) of a continuous load will be placed in the
" LOAD (KW)"
column while the value of a intermittent load will be placed in the " INT LOAD
- column of the Load Shed Information Summary.
Also included in the summary will be the cycle time (in seconds) for any applicable valvo listed.
Once the Load Shed Information Summary is completed, a total will be dotermined for non-load shed continuous
- loads, non-load shed intermittent loads and sequential loads.
As noted in the asnumptione, the intermittent loads are not considered part of the total long time running load on the diesel generators.
The total load on each diesel generatcr is equal to the sum of the total not load shed continuous load (dead load) and the total sequential load.
A(~,)
The expected containment cooling fan load will be estimated based on 100%
load at maximum containment pressure and 50%
load during
" normal" condition - no steam / air atmosphero.
It will be limited for the purpose of this calculation to a minimum long term load of 75% of motor name plate rating.
Horsopower used for the sequential loads are based on the brake horsepower requirements of the driven pumps.
Operating points are shown on the pump curves included in g
this calculation.
A separate table has been added to calculate the expected power factor of the diese) generator load.
KVAR is based on nameplate horsepower rating.
KVAR based on nameplato rating will be used for both lightly loaded and overloaded cases.
KVAR will be determined by:
?
]1/2 KVAR = KW[ ( 1/pf
) -1
/
ea PED-QP-3.31
cwa m H
') 0RM PED-OP-3.3ALCul.ATION PREPARATION. REVIEW AN i
FORM Page No. 3 or 5 CALCULATION NO.
r F'C O 3 3M PRODUCTION ENGINEERING CALCULATION
~
SUMMARY
SHEET Rev.No.
3 ASSUMPTIONS 1.
Non-load shed loads which are used intermittently are not considered to be part of the total longer term loaa on the diesel generators.
2.
Equipment which is used infrequently, such as welding receptacles and stress gallery disconnect switch, are assumed to have no load.
3.
When
% efficiency or power factor information is not available, a power factor = 0.80 and a % efficiency =
0.95 will be used as typcial values for electrical equipment.
4.
The diesel ger. orator model assumes that the sequenced load group has accelerated to full speed
+
and is running at expected load.
(,/
5.
RAS is assumed to occur with minimum safeguard actuation maintaining the highest diesel loading for the maximum expected time on each diesel generator.
6.
This model assumes that no manual restart of equipment such as air compressors, turbine plant cooling
- pump, and Auxiliary Building ventilation fans occurs.
7.
The calculation represents 1
worst case in that equipment which could be runr. ng (not intermittent) is running on each safeguard train at the time of the loss of offsite power and DBA.
8.
For conservatism, the battery chargers are assumed at full load.
9.
SI-3A, 3B, and 3C motors are assumed at 92%
efficiency since the motor nameplate states full load amps at 340 amps.
When 92% eff and.90% pf are used to calculate the above SI motor amps, 339.2 amps is obtained as follows:
300 ho x.746Kw/he 339.2 amps.
=
.92eff. x. 9 0 x 1. 7 3 x.46KV
'u)
MMI PED-QP-3.32
p W
cNr.rw n Q ALCULAT10N PREPARATION, REVIEW AND APPROVAL
-rORM PED 4P-3.3 FORM Page No. 3 of 5 CALCULATION WO.
S C O 3 3 8 7-PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No.-
3 i
ASSUMPTIONS 10.
KVAR for an induction motor will not change significantly from the nameplate value with either a lightly loaded motor or motor loaded into its service factor, see reference 16 section 6.4.
11 For the purposes of determining the load losses of the unit-substation transformers it is sssumed that the dead load is equally distributed between the transformers connected to each diesel generator.
Since the dead load is small when compared to the sequenced load this assumption little effect on the results.
12.
Certified test reports could not be retrieved for unit substation transformers TlB-4A and T1B-4C.
For l
the purposes of determining the transformer losses
_,r3 the no load and load loss values for these
(")
transformers will be assumed to be equal to the highest values of the other transformers.
This-t assumption is reasonable because the variance in measured losses of the six transformers in the test report is 1% and the losses of T1B-4A & T1B-4C will be comparable.
i 5
S I
[
i W.1 PED-QP-3.32
I2 CE PME NQ.
3ALCULAT10N PREPARATION. REVIEW AND APPROVAL FORM PED-OP-3.3 FORM Page No. 4 of 5 CALCULATION NO.
FftWEP 2 PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No.
8 INPUTS / REFERENCES
~
REF.
1.
Sargent Lundy Electrical Load Monitoring System (ELMS)
NO.
Printout.
2.
Electrical Load Distribution Listing (ELDL), Vol.
3, 4.16KV and 480V Buses and MCCs.
3.
GHD&R Drawings 11405-E-3, 4.16KV One Line Diagram 11405-E-4, 480V One Line Diagram, Sh. I 11405-E-5, 480V One Line Diagram, Sh. 2 11405-E-6, 480V MCC One Line Diag., Sh. I 11405-E-7, 480V MCC One Line Diag., Sh. 2 4.
cE Drawings 177B2371, 480V McCs Elementary Drawings.
5.
EEQ Manual, Section 2, Containment LOCA Response Curves.
6.
USAR, Figure 14-6-6, Containment Response 7.
USAR, Section 6.2.5, Time to RAS 8.
USAR, Section 8.4, Emergency Power Sources 3.
Stone Webster Calculat. ton (16472.19), Confirmation of D1 and D2 Loading.
- 10. EA-FC-90-76:
Cable Tray Loading Calc / Justification
- 11. MR-FC-87-20:
Control Room Outside Air Filter Unit Replacement.
- 12. USAR, Figure 14.16-2 Long Term Pressure Response Loss of Coolant Accident Rev.
1 (7/89)
(Attachment A
to this calc.).
13.
'r.
letter 0-MPS-90-079 from R.W.
Bradshaw to R.L. Phelps deced 10/2/90 (Attachment B to this calc.).
- 14. Modification Request MR-FC-90-53, Containment Spray Header i
Valve (HCV-344) Interlock.
- 15. Modification Request MR-FC-84-105, Replacement of Transformers T1B-3A,3B,3C (mC16. EPRI _ Power Plant Electrical Reference Series Volume 6,
,d Motors, Copyright 1987 asu PED-QP-3.33
1 I4 cera mt j
} FORM PED-OP-3.3'ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM Page No. 5 of 5 R:DB?P?
PRODUCTION ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No.-
O, CONCLUSIONS Attached are the Load Shed Information Summaries for DG-1 and DG-2.
These summaries note the load shed status for each
- device, the load in KW, the intermittent load (if applicable),
and the cycle time (in seconds) for appropriate valves.
To determine the loading on eacn diesel generator, the total sequential load and the total non-load shed continuous load are needed.
The total non-load shed intermittent load will also be found.
Reference the attached Load Shed Inf ormation Summary f or DG-1 for load information on individual equipment loaded on DG-1.
The load totals for DG-1 are as follows:
Total Non-Load Shed Intermittent Load:
61.3 KW Total Non-Load Shed Continuous Load:
302.1 KW Total Sequential Load:
2248.9 Kh i
I Therefore, the total load which would be loaded on DG-1 as a result of LOCA coincident with a loss of offsite power is 302.1 KW + 2248.9 KW
= 2551.0 KW After approximately 2000 seconds into the
- event, the ventilation fans VA-3A and VA-7C would be expected to unload by approximately 25% of rated KW or 73.6 KW and SI-3A will be at 336.8 hp which is a 17.8 hp increase over the 319 hp (17.8 hp 14.4 KW for SI-3A).
This would reduce the load to
=
approximatelf 2549.1 - 73.6 + 14.4 = 2491.8 KW.
At RAS
)?40 seconds into the event (minimum safety I
l injection),
SI-1A trips reducing the load by 256.1 KW.
SI-3A's bhp increases to 338.8 hp which is a further 2.0 hp l
increase over the 336.8 hp (2.0 hp
= 1.6 KW for SI-3A).
i These two events reduce the lead a further (255.1 - 1.6)KW to 2491.8 - 254.5 = 2237.3 KW, For the lonc term loadino (based on automatic load reduction only and no operator action to reduce the load - refer to OPPD calc.
FC05522 for long term loading based on operator i
action),
SI-3A will be sesumed to be at 343 hp (0 psig l
containment pressure) for conservatism (refer to Attachments A
B).
Therefore, the load will increase another (343 hp -
i
~_
338.8 hp)
= 4.2 hp which for SI-3A is equal to 3.4 KW.
Long l
l>- -)
term KW load 2237.3
+
3.4.= 2240.7 KW.
This final long j
=
term loading is assumed to occur at 5000 seconds for conservatism (Ref. USAR Figure 14.16-2, Attachment A).
1a1 PED-QP-3.24
l5 cu.na A
) 'ALCULATION PREPARATION, REVIEW AND APPROVAL
' FORM PED-OP-3.3 FORM Page No. 5 of 5 CALCULAT)0N NO.
Ft(n338" PROD' JCT 10N ENGINEERING CALCULATION
SUMMARY
SHEET Rev.No.
3 CONCLUSIONS Reference the attached Load Shed Information Summary for DG-2 for load information on individual equipment loaded on DG-2.
The load totals for DG-2 are as follows:
Total Non-Load Shed Intermittent Load:
208.6 KW Tote.1 Non-Load Shed Continuous Load:
594.4 KW Total Sequential Load:
1826.2 KW Therefore, the total load which would be loaded on DG-2 as a
result of LOCA coincident with a loss of offsite i
power is 594.4 KW + 1826.2 KW 2420.6 KW
=
After approximately 2000 seconds into the event, the ventilation fans VA-3B and VA-1D would be expected to unload by approximately 25%
of rated KW or 73.6 KW and 7-3 gyMA,e SI-3AC &
3B bhp would increase to 325 hp each (total
-N ; gylql increase of. 40.5 KW).
These two events reduce the load
(
further (73.6 KW 40.5 KW) to 2420.6 KW - 33.1 KW =
2387.5 KW.
i At RAS-3740 seconds into the event (minimum safety injcction),
SI-1B
- trips, reducing the load a further 256.1 KW to 2131.4 KW, The calculated power factor for the diesel generators are:
DG-1 0.87 pf DG-2 0 85 pf These power factors are larger than the nameplate rating of
.80 at 2500 KW and demonstrate that the LOCA loads are expected to operate within the generator c.7d exciter ratings.
Diesel Generator loading has a direct effect on diesel-generator fuel oil consumption,. reference FCS Tech Spec.
2.7, and the following calculations should be reviewed for affects of load changes any time this calculation is revised.
C_)N FC 05393 DG Sequential loading FC 05522 DG Fuel Consumption EA-FC-30-052 DG Operating Temperature Limits m._
E PED-QP-3.34
CAtcrAz na O ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
ORM PED-QP-3.4 Form Page No.1 of 1 p'rnRRR?
PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev. No.
3 l
REF.
NO.
1.0 LOAD SHED INFORMATION FOR DIESEL GENERATORS DG-1 & DG-2 Attached are the Load Shed Information Summaries for Diesel Generators DG-1 gnd DG-2.
Each summary was deve15 ped from a
Knowledgeman catabase which contained load infor-Ation for each electrical device included in the l
calcuiation.
The heading of the printout contains the page number,
- title, revision number and revision date.
The first three columns contain the source bus number, breaker number and device tag. number, respectively.
The next column uhows the load shed status for each tag.
The column will have a
(~N "YES" for load shed loads, a "NO" for not load shed loads i 'Q and a -SEQ" for sequentially loads.
l The fifth column (LOAD) and the sixth column (INTERMITTENT l
LOAD) contain the actual value of the load in Kilowatts (KW).
If the load is continuous, the value wi31 be located in the
" LOAD' column.
If the load is intermittent, the value will be in " INTERMITTENT LOAD" column.
?or equipment which would constitute no load in an emergency situation, such ae welding receptacles, cranes and fuel handling equipment, both columns will be zero.
The next two columns contain the cycle time (in seconds) for applicable valves.
If the valve fails open, the time will be in the "OPEN" column.
Similarly, if the valve fails
- closed, the time will be shown in the "CLOSE" column.
The final two columns contain the related l
schematic drawing n'. unbar and any comments After. all of the equipment records have been printed, the load totals are printed on the last page.
Given are the total not load shed intermittent load, the total not load l
l i
cAttm. Na 17
(
pALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED--OP-3.4 Form Page Nc.1 of 1 1~l'lD'SSFY2.
PRODUCTION ENGINEERING DMSION CALCULATION, SHEET Rev,No.
g-REF.
NO.
-e a
a a
0 E"' r
-4 l,
.s.
- l.
s:
E ei 9
25 t-a
- a ae e
=.,
a ss g
S ?:
i i En!
- * ? " ?,?,? ? ? - ? i E w w ? ? ? ? ? ? s i ? ? ! ?.s s ? s ?,? y; en nv,,s wwv
- n,: nn,~w:
~;w
- : : : : : : : : : E E : : :: :: : E : :: : :: :: :: :a :
-u 0.gress:
8 a:
0 a
)r r2::
=c:
U 0
=.:
EE:
s 8
E
$$$$$$$EI$IE$$IEEE!EEIEE$$$$$$II$$
5 g,i
.. s.s..ssseo s...eesso s.ssso s...sss 3
- l 3
Y *.
~
g
~
=
- ~
n
~
9" !
o a o c w o a o a c r o,
or o r.--
e e o
". 5:
- EEEWmWr*M322m
- 9=WEM**r*29rRWM2 I
9 A.3.A3.
3 m
am
~-
-n m
- AmWm A
s--nas sa.--n.s.ss=3*MAMM
,sasswg gu o g g
g
~.ssss.n j
WO;;;EM""W"WW5WW25W dWWWW E$W: : V;W 5.
= m.
- k 2
0 =
- 2.... i ?
'l' i ?*i ki?i ?*7 "ii**T*i
.*5
-...:, a.:, a 4 44 aaaax: aaaa: aamaa==wxxxxxx
- 1 5 5 5 1 5 5 5 5 " E = " " * * * "l "l ""***"!"".**S="
1 l
e{"j; 1 5%
a
,,,,,,,,,,ggggggg333,,,,,,,ggggggg g
===---
=
=
=--
==-
e==-
RDf.1 l
1 1
J
wt.mc m 18 4
CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-OP -3.4 Form Page No.1 of 1 PRODUCTION ENGINEERING DMSION F C O'2,387_
CALCULATION SHEET Rev.No.
3-REF.
NO.
l 4.
C 4
7 :
2 t
-e
- e e
.-.-o y;,
NNN 35 5
NN NNNNNNNN 00440RAA04R-*fN 1 3 ':
20: 02: **20000*t0**
I 44ea4444444444444444aa44444a4444ja g
M
+ 46 es+aA fa+e6 +6+
A +AJ & A aaA aa6 A asa.J I
y l
3##32333
??2230*#22 3303323002200%
- : :=====
- : : ====: : : : : : : : : : : : : : : : a:
E rE !
h U
O 2
~
3 b :t OO O
202 a
8 I
5 Eb!
$$$$$$$$$IIII!$$$$$IIIE$$$k$$3E$5!
j io ;
fa o o e o o a e o o a 6aao fao e a 6 o e o o a o a 6e aa o g
3 I
2 4
g
} g g g 8 8 g 8 2 8 g g g g g R. oSgggm~8 R
8RS:
88gggg
--[-o gt:
. o o e o o
- o. ; ge o e o e o. = o e...o o
o o
-g;o
.-o gg;o o
g
~
~
g * ' ::
5
===ew=ssas we a e a a a s e r e +a w+ + mewerwssssa
+m e e a a e m e m e +
a e
~.
M
=
5 :
a 555 ia tr a4 4 WW En-N~
9;.s
- v 2 4 4 e. x.. s. s. =.."MN2.*.- :. o
- ; a -. m.
- ~ ~ ~ ~.
2 E. E. E. E.
A
=
ss22 si~~MEEWWWUIEEWWC WWWsRWNhh$hs(h,0$$$
o -
E
=
l
~*
e~~-78{2$v4ve e,E28*?"UEEE3ggj{v-v
- E EEEE EEE 3
,8 e
vvy....
.j-
- e. v. v. m a a a-
,2 2 : - - --~
Maaaaaaa aa>-ax3ua3~w
~vv~3v~
a m
s x--a aaaaaaaaaaaaaaa-a M MM MM a
au aa
- ****: WWWWWWWWWWEWWWWWWWWWWWWWWWWW 1;
5 !
WWWW-72 7
7777*A7EE7*W3722**O72E
~
.AA-A-A----
A-A---
ge 5
MMMMMM aaaa V W W W U' a a a a a a a a a a a a a a a a a a a a a a a
=
WWWWWWMWWWWWWWWWWWWWWWW REV1
1 l
l N
c u rAI ha
~
CALCULATION PREPARATION, REVIEW AND APPROVAL q
l FORM PED-CP-3.4 CALCULATION NO.
Form Page No.1 of 1 i~C 03387_
PRODUCTION ENGINEERING DIVISION S'
CALCULATION SHEET Rev.No.
REF.
NO.
5 1
3 l
0 T
~
a i
ee I
.b fI
=.*=a=.
t 4
h
&1 h
a e:
2, a m k
0E O
k.
k.
=
N ING Oi
$10
.S N
Sa.
3 3 A *,.
t *3 35 1
3
-w
,E,5@@Yh99vi39595kk$~
bk9,999 599E**I
~
s.
wan-: nawwwev-ne awn w-g 2 $$$$$$$A $$$$% $$3$v$ES$$$SEe. R$$$Ei
+
a
- a: : : : ::::..
~-
u
(
9 d j 2
1 P g l
E O
bi O
O O
5 l
5b!
bbbk$$$$$
$$$$$$!$k$$$bkkb$$$$k3!!
3,a i
so...........s...ess~~-seess
..e6 g
~
E
- e. r :
.~.
-. ~ ~~
...n.
..-.=
g.a g.ig. m.~=.
e.
~
-.4 s
g.
e e.
3
~
9..
sn
.A en g g e
m, are see en en en en
- l 9WIEVE rWWW 22EEW2REW92WW2*22WPSE99 i
e*
2
==g n
3 ee.
a 3
2f!
"e = E1.
e-E 5
iGIGs"t 30"!au.
~.
i s 9 E i i s i s i t i s i E t i i s" E h *) :
.EEEEAO%2Mh;Anh9: 2"
~?3 "O
l i i ttiGiGGG I
ge
.,i 2INE30EOSE8E E.b.b-.=EcS$.dg g
-E S
S O
2S 3
33 UER w w aWy:
sassa-2 2 - :
- a 2 2-ARRRRRR RRR R RRRRERRRRRRR RR R P RRRRRR I
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa WWWWWWE EWWWWWWWWWWWWWWWWWWWWWWWWWW
=
~
RRRRRRRRRRRR RRRRRRRRR 4~RRRRR RRRR RR
- {.
A aaaaaaaaaaaaa*&aa$Wk's
- a aaaaa'Oaaaa'$a g
WWWWWWWYWWWWWNWWW WWWWWkWWYWWN W
=
l E
)l g,N g t
1 i
O> ROC
,{.2 73mT>
g o 2 % Y' 2U g2O<
Uep:o 2g*
groC {e g 2.
1 3
'OaE mQ 71 A
[]
T 4
t 3
1 M;- Q Q y,y, A U~ moOc
_O2 M2O_2mg32g U Iv> O2 g
r
,32 U) $ Q
- k. 2c-4 Q>cOC j
j m.
O.
s m
e n.
5 y
t M
t u
s I
i e
(
r t
r a
l w
m t
y t
t n
e n
t a
a i
a o c
=
t oo a
o t
e s
n e
r 3
s 3 s 6 4 4
5 I
I c
v a
u.
a.
e.
s.
N.
a s u n.
s s s s s s s s 5 s 2 s 4
i t
0 7
4 i n 4
a 4
n 3 a
s s 4
5 l s s 5 3
4 5
3 4
4 2
7 9
1 2 5
. 3
+ -
4 5 4
n 4
1
- - - e
+
t.
t t t 3
4 4 4
5 4
4 4
4 o s 3
4.-
4 1 t 4 41 1 1 t
t 5 E t t o
44 4t - - - - -
1 i
ut - c 7 e s.
i t
3 5
c
- s i
s e s 1
S5 -
e s s s &ss 5 0 5 k05 5 5 0 4
4 06 mcs 3 e 5 o e e 0 e c o 0 c 0
- 0 3 0
1 o 0 o -
4 2
t s
t 4
4 4
4 1
1 8
1 4
1 1
5 1
- o e
r n
5 4
4 n
r ptn i s
11 1
1 1
1 t
1 1
C 1
13 C w 1
s 4
4 4
4 4
4 4
3 4
4 c
1 e
1 t
t i 3 u1 i s s i I
n io s
u
- mm s
e h
n u
1 p
t t
s o
a l
t n
6 4
o 4
2 s
m e
r e
- m m m o.
o s e e s o s m
t.
c o c o c o e wo o e 0 o oa 7 0 0 o o o 0 o o o eo o o o 0 c c s 9 0 0 o o 0 0 o c o c o e o c.
e o c o.
o o c 0 o o.
2 4
0 0 D c.
0 o.
c_ e c.
o c.
3 s
u e e e e 8 e e e e e e o o e c e 8 $ 8 0 8 0 0 G f 0 o e i
m a
t s
e r
i.
o n
r v
e o o 0 o o o o o 0 o o c e e 0 5
3 3 0 C 0 0 0 o o o o a
o s 0 o c a o o 0 o o e s 0 9 w0 7
0 0 o o D 0 o o o o w o.._
- e o
?
o c.
o c c c.
0 c t 9 f.
2 9
e.
0 8 0 6 c.
5 8 9 c.
J.
s.
c.
L e.
s nRo a 5 5 3 s 9 s 3
9 c 0 0 5 6 2 4 9 t
f 9 o r
i e s m
a t
t 2
7 3
i 4 3
4 2 3 I
2 4 i e
s y
m 3
5 2
2 i
a e,.
i s
s s s s m_
ns s s s
s s 5 s 5
s s y
o 3 2
o e
a p k s ue o i niniunio o i o o i i o T i t
nt e.
e a v r
v s N f t a T T s Y f
i t
i t
?
tau e
w s
s s
s x
e S
x t
c t
i -
a C
s i
t t
s a
f P
r t
a s f
s s
44 n
it r 2 t
u un s
w e
(
r l
s e t
2 e 4
4 c 2 1
t 4 1
t e
4 a
ena 5 8 s
- t. m, r -
c f
- xt -
4 t
4 s s 4
3 s 3
2 4
2 0 o a 2 31 2
8 2
r e s.
e o
s t
s 3 - - a a a a a c 5 6
a a
a a a n 1
y t
- s 3
s 4 S e i r s -
t
- a
- a s.- - a v a a c C D 4
M E C t a 0 t t e e
t t
a A t
t t
i a - - - - e T i
i.
Mi E
m C s i s m p v v t
v v a R W V
(
C a f
t t
s i w s s 6
i.
e n.n o
e.
o a
t s
t t
n t
l c c o c o c nes a s o t
t s t
r 3 te t 3 C C 0 e 5 e o x3 e 2 3 4
2 3 e 1
2 4
- r t
i c c r t o
a t
a a a A a a a e C a a a.
a s s C C C C C 3 D t n
t a
- - - - - - - - - - - 44 4 4r e
g t
t t
a a
r t
t 2 2 2 r r 2 2 2 2 2 2 2 r 2 2 2 2 2 r e
s t
a 3
t xxxxs xxxxX xxxxxXxxX Kxxxxxxxx pm.
C C t t C C L C C C C C C C C C C C C C C C C C C C C t
t e
i i
- i. i.
e C
t.
t c
t t
c t
t t C C C t C C C C a n Kt xt s KFMt a n n n n M n n n M n KC c
e F n n rn n
n n
T i
i 4
e.
i 1 i
I t
s i
t 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4
e K x K X x. x x x E x x X K x x K x X x x x x x x x 3 xx C
s o
C C t C t t C t C C C C C C C t C C C t C C C C C C C C N
NKt n n au MmKKc M n a M n n M M M Kt Kt t t t
c t t
C t
t C C c C
t a
a n
n M Mc n n
i 5
l1'l!l,lll jl,
Sh N
~
^
3>2g TmO TOC 5g,xhM O
,3S U.
-TOC dO2 2O.
j ;'
~O 7gh 1
l 3E 2b6 k#
g.h['
T
. i =i yo-
3u
- ,0gC
._O2 2g]P 2OO3M 1
t O> TOC 32 wZh~
2 gP 1
~
e mQ-2O.
m 9
/
5
/
2 3
0 3.
5 s
f t
E
[
t q
e e
o 4
n r
2 e
t C
9 9
t 2
(
f v
o i
f t
e A
f.
m f
r t
e o
f n
e ec t
e s
e s
e s
e C 8 v
n s c
a a
4 4
i 2 2 i
3 6 2 2
n m
C D
C 0 r
7
. c 1
u n
tl 6
n 5.
w.
u-S w.
4.
n-a 0 3 5 3 S 4 S 5 3 0
3 S 2 S S 1 i A
6 4
4 3 6
?
4 l
l 8
6 6 3 4
4 4
4 3 5 7
5 4
4 5
8 R s.
1 2
6 H s.
2 2 1
l 2
l I
1 1
1 3
1 1
1 8
5 5 3 4 2 4 1
2, 1
2 4 5 5 2 2 1
E a
t E t t E E E E t E E
E t t E 6 E 0 I t E ( E 3 E 3 E t 01 4
4 9
4 9 5 4
4 2
S 5 5 5 5 5 t 5 s 5 5 5 5 5 5 5 5 A 5 1 91 5 5 5 5 5 s 5 5 5 5 A 8 8 4 - - - - - - - - - - - - - - -
t 4
4 3
3 C e.
A a 0 0 0 r 0 s 0 t 0 0 0 0 0 0 0 6 4
0 9 $ 0 0 0 0 0 4 0 4 0 0 9 4
4 C
4 4
4l 4
4I el 4 s 4
4 l
l 1
1 l
2 2 2 l
l 8
I 2
l 2
4 4
4 4
4 6 4
0 0 4
4 4
4 4
9 2 D
1 l
I I
I I
I i
l 1
l I
I 1
1 l
2 0
I l
1 I
e f
Cl 4 4,
1 l
l i
1 I
l 4
I 1
0 1
2l I
l l
2 0 e 4
. 0
!a E
s E S I
t F
C l
G s
i f
s f
t i
g s.
l sef s
~
t rO a
e o
f ta
)
m f
o t
W 0 0 0 J 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t
0 0
0
(
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l
l
(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l
l A
- D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e n
9 a e
c I
C r
!N I
l I
a 0
8 O 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 3 C 0 0 0
0 0 0 0 0 0 e 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 4
S
)
6 8 8 0 0 6 2 0 0 1
1
'a.
3 2 5 0 7 0 0 0 2 0 0 3
0 3 0 C 0 0 0 0 1
5 A
w.
G t
4 5 1
4 1
7 9 3 3 8 2
%55 5 4 1
7 4
0 0
9 4
2 2
1 1
2 2 8 9 4
3 7
0 4
9 1
0 9 0 8 3
8 0 0 3 0 4 0 0 3 0 0 S D
(
(
5 2
f 8
a 5
1 2
2 1
2 1
1 c
2 2
5 I
D D A
Q Q Q 5 l W.
UIS 5 5 S Q g C 0
5 1 S O S
o E
t 1 i
{
t 3 o E E i E
o 1 0 0 0 E
1 E E
c T 0 I 1 o 0 c n 1 S O
7 f
Y T Y
f m t T S S S t 5 3 3 3 T 1 T S o T 1
T 7
t 2 s l
8
(
C B A M I
u
)
2 3
l 2 3 1
2 3 a
A 0 0 A
C 8 A A 4
e 8 8 8 C 0 C 0
0 5 4 0 C C C 0 4 4
C C 0 C 8 4 4
4 8
- 4 8 e 8 4 4
6 4 4
4 4
1 3
8 1
3 t
l.
5 4 2 8 3 7 I
2 3 C C 1
C W W y u l
M I a M E C C C u OE -
3 1
C C C
C 8
4 8 8
- - - - - - C C C C - C C C C l
A A 5 il R C T f f i 11 F S v C N A M M F C S M S nC M M O M KM C
I c A C C u
f t
f 8 2 3 4 5 6 E
8 8 8 8 8 8 f
m 6
l 1
1 1
3 4 1 6 8 9 8 8 8 4 A 4 A A 4
A 8 8 8 8 8 5 C C C B r 1
i 2 4
8 6
4 4
4 4
4 1
2 3 4 5 0 7 1 2 4 5 6 8 2 3 4 5
a u 8 8 s
t 4
4 1
4 4
4 4 4 4 3 3
3 1
3 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 a a A
1 a A A A A a A 8 8 9
8 8 S 8 8 5 8 8 8 8 S 8 8 f
l l
l I
1 1
1 J
I l
l 1
1 81 1
8 61 1
1 I
1 1
1 1
81 8
1 1
1 I
1 1
1 1
fo A
8 8 8 8 8 I
5 E
e 8 H 4
4 4
8 B 4
4 e
Nt 8 8 5 8 4 A A A 4
A 8 8 s 8 8 8 8 C
C C 9
s 4
4 4
4 4
4 4
4 4
4 4 4
3 3
1 3
3 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
7 A A
A 8
1 A A
4 A 4
A 8 8 8 8 8 8 8
P 1
(
I 1
1 1
l j
1 I
1 I
8 81 1
1 1
1 1
1 8 B 18 8
1 8 8 6 8 S LI B r 1
1 I
1 1
1 1
1 1
I f
g l
,lf
'li
cg**
N N
r,o> h Ch dO7 oy@.> f dO
- rg >Zg TZO F
1T OChd 2 2O.
O g9
'( *
- yO T3te gO. '" d W 3
S um c
62 g 2mh~ggg~$y)O l O m'
n> h C h dog vIMm(-
mk* 2O W
k, 8
9
/
5 l
2 a
/
3 t
0 9
3.
t C
l f
e f
A 1
w.
g M
T e
e u
r R
g a
u E
fi C
D r
I ue s
t t
i i
T t
r L
I A
1 D
5 f
h t
59 ae I
3 t
5 t
a.
5 2.
9 4 1 3 3 6 9 I
3 I
I 3
I 3
I 0
W 4
5 4
4.
M m.
a.
8.
N.
a.
M.
S 4.
s.
i G a.
S 5
5 S S S 5 S S S 5 S i t 5 5 n
l N
4 i
r e.
2 3 s 5 4
0 0
0 a
e 1
1 2
1 3 4 E
1 E 4 1 E
- i t E
t t t E
A l
8 4
4 2
1 3
1 3
5 4 1
4 51 5 4 2 2 3
5 4 7
3 7
3 3 F 51 N5 6 5 2 2
5 5 4
5 7 9 9 4
4 9
4 6 3 5 3 5 8 9 0
2 e.
3
- nE 4(
t i 4 t 3
5 1
0 5 5 1
0 0 6 0 0 0 c 0 G 0 0 c 0 0 C 0
f 4
t
.E t E t
!.t t t f r
5 0
5 5 5 5 5 5 5 5 S 5 5 5 5 5
5 5 2
S 5 5 8 5 5 s 5 5 5 0 0 8
0 0 3 0 0 0 o0 5
6 0 5 6 0 0 4
4 l
2 I
I F
l l
1 1
I D 0 1
I 5
l I
I l
l I
l l
I l
I I
I I
4 1
4 4
2 4
4 4
3 I
6 I
l i
t 4
4 5
4 9
I 4
4 I
I a
l 4l l
l I
l I
l I
I t
5 1
l 4
4 4
4 4
4 4
4 4
4 4
e 4
4 4
4 0
l ec l
a I
i I
C l
a g 5 s
e 0
e t
l 1
I G
f t
i e s L
o t
i M P 2 2 2
l O
1 1
1 B
na f
ts
)
s l
u 0 0 0 0 0 0 0 e 0 0 0 0 4 0 9 7
0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 o
i t
0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 0 0 9 9 0 0 0 0
0 0 0 0 0 9 C 0 0 0 0 0 0 0 0 0 0 0 9 0 0 M. 0 C.
4 0 0 6 6 0 0 0 0 0 0 0 0 0 6 4 0 0 l
t r
i 8
a M 0 0 0 0 0 0 0 0 0 0 3 0 0 9 0 8 9 3 0 1
1 0 0 0 9 0 0 0 0 0 0 2 0 0 m
B 4
s 1
et 0
a s
I l
a 0 0 3 0 0 0 0 0 0 0 0 0 4 0 o 0 C 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 t
0 0 0 0 0 0 0 0 9 c 0 0 f
0 e 0 0 0 0 1
0 9 0 0 0 5
0 5 0 0 0 9
e 0
)
0 40 3 5 3 0 0 4
0 0 2 2 0 c 0 W f.
0 0 5 2 7 0 5 0 9 6 7
0 0 0 4
S 4
id 9 t 0 2 3 4 4 I
0 0 8
0 5 4 4 9 O 0 3
1
(
2 1
I 7 3 5 4 0 9 8 3 0 0 6 0 0 ! 0 0 0 3 3
4 1
9 4
1 1
0 1
0 0 A
I 0 0 5
s 5
1 1
$ 1 S
G 8
4 4
f o f
o i S 0 3 0 o 1 o o O 0 O t 0 0 t O 0 0 0 3 ! l 0 0 3 I
0 L 5 5 5 s S t T B 8 9 s h 7
n t
- 4 R Y
2 5 Y
N a a 5 5 Y Y s 8 3 T 3 t
F 5
5 T
P F
R P
A E.
E f
t E
C f
C
?
f 5
G e.
A
?
C1 5
8 8
3 5 2 1
8 0 f
1 A P.
F a
C 4 Y
5 l
1 8 6 4
l a
4 5
1 5 9 9 2 B A 9 2 8 I
9 G
3 9
s' C
8 t 8 5 8 2 C t.
IT 0
4 I
8 8 c 5 W
6 1
6 9 3 4
I 8 9 4
2 3 1
0t 2
I C - - -
A f
1 A
f A
1 3 2 4
3 3
5 3 - EC - 9 El V T T E A W W W T 1
2 5
7 7
C 3
2 4
8 U T V t A
t g F V I
- C i C f I
E C
A t
A 4
A l
I i D A a
EED W M 5 C M P B f
A E P C N W f
4 e
N V 4
S 1
2 3
5 6 7 1
I 2
- 4 5 1
2 3 4
l 2
3 4 5 4 7
l 2 3 4
1 3
B 9 8 0 D 0 0 0 C O O 0 t 0 0 0 0 g 0 8 G 0 0 9 e 9 s 0 0 0 f
t 8 A A A A A 8 C C.
C.
l A
Al l
l 1
l l
l A
A A
A a A A
R 8
A C C 0 A
5 l
l l
l l
l l
1 l
l
- 0 0 0
[
f A
f.
f.
- f. f.
A f
l l
l t
1 I
I 2 2 1
f f
(
E f M
l 5 4 2 8 A a 4 A A A A A A A A A A 8
t A
f 9 N m
C C C 4
C 4 a 4 L
4 4
4 4
4 4 4 4
4 4
4 4 4
4 4
4 4
4 f
4 4
4 4
4 4
4 4 4 4
C C C C C C C C C C C C C C C C C C C C C S C C C C C C C S
1 9
1 C
C C C C
C C C C 8
I 1
8 EEEC EC M M M M M M a M M M M M M M M
M l
C C C c C C
C C
C C
C C C C M M M M M M M P M F
f o
t 1
l 1
I 1
1 1
1 1
l l
I 1
l 1
2 5
f A
Al A
A l
1 I
I 1
1 I
l M4 - C C C C C C C C C C c C C C J
A A A
A A
4 A
A A A A A
4 A A A
8 A A 1
l l
2 2 A
A A A 4
t 5
4 4 4
4 4 t 4 4
C C 4
4 4
4 4
f.
4 4
4 4
4 4
4 4 4 4 4 4 4
4 4 4
4 e
S M C C C C
- - C C C t C J C C C C C C C ga N
9 I
83 8 C S
M MP M M M SI MM M M M M M M MC M M KC KC KM M M M M C
C C t C C C C C C C C C C C c C C
C P
t M
M M
1 1
e l
@A
+
curam 23 4 'gCALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO*
FORM PED--OP-3.4 Form Page t'o.1 of 1 FC DB9P7 PRODUCTION ENGINEERING DMS10N CALCULATION SHEET Rev. No.
O REF.
NO.
a 0
.i I
5
$l w
=
O j
8 8b B B k
I' I
a e
W W
X a.
6
,7 gri i
i sii isdi~i
~ E
- . y ; =,:. s 8 i
i my
=.:__:=2 g " ;;.
=
.: xas:
c a c.:.
- : a c q 2 v~
- c.
- . c ; t
- c a s a.
- a bhtbibSEht$%htb4t*h,1aE~bhh~kt$f5
~
a s-w.-
- a:
- a: :
w
---w
-w 2o M
2 8"
Y$ l d :
D w
il g E" !
M a
8 g
g g;
.s.g...aassa...s. eases.ess.aaeeae 8
n:
n
~
h kk
.a g g;j
- .....ss..-gss g-eg.cs6.. sso e::~s ga!! j:
raesereaaersase.=seaae ee aaasxwrzu 0
8
- =
s.
t c 58a k
!!:l W
AA4
=?.
uu5
+
==
i 5!!I55594594~~555E7!? 2::4!$59$Es95
~
E 9
======::::eser:::=W=-
W=w=ma===
..i a
s s* *.a r e.
- s e., -
s e a.= 5 5 5. s g : z-z u : ~, S,
.2 s
e us
.u.
w s w.
$. $..$.$ $. $ N,$,$,$,$ $, $..$ $ $ $ $ $. $ $. $ i. $. $. k b. $ k b $, 3, 3, W W W W N' & a a O & & O & & a &W W W W W W W W W W W N N' O 0000&0Oa0 j
WWWWWWWWWN'u OaO O
u u
WWW W
i 5"
2 2 2 2 2 2,2 2 7,2 2 2 2 2,2,2 2 2 2,2 2, 227: : EEEEUEU g :.
3 - --
ii 7i jggu w
w w w w w w w w w w w
(
u u w w w w w w w u
[
k Nk k
k
\\
~
nn
cutJun m 24 i
(
) CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED--OP-3.4 Form Page No.1 of 1 VC O T t.R T.
PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No.
3 REF.
i NO.
E 3
l
)
g m
B B
BBBB BBBB l
C 0
0000 0000 i
l I
I Illl lill m m -
-m m m m m m m m 4
I 5NN4N55 NNNNNNNNNNNNN f4i i 4ii R s:
~~~3..-
I s22Ee22: s%2222%20022*2sss*220*E2"
!y!
4444E44444444444444444Y4444444444 i
ssss
- ssssessssssssssssssssssssss
- E 8
8 F 5 :!
l fy i
a C l 2
g $" !
a=
3 R
E E5!
$$$$$$$$$$$IE$$$$$$$$$$$$303$$$$$
g ggj ses.sg..s..ss essses.ss sgsas g
1 4
sj sese3..sg...s.----s..seggsss..sss o
l a
- S y.
- *E***2E 2RRR29ERRRRRE
..t. *
- 2. 2 S E E E E E o
~
EE g
4 B. 4 4 3
E!s E
n'99msaa:444555~=EE i s E 6 i i i i i i i i i i i i i i E i i s ! y.;. - : -, g E E E s
- E steer wwwene:: w w w w.:.
.ww-
~
lEEiGEEEEE
{eevgEEs 88g4gwww:
I ECs 3 s 2 3 s -
E - ** 8 g 5 % s E EE
. yvv8 88 v88
.wwww 3: :
wwwww
-t:
oma=uuntuuma===ucascacca0: 0 Ea :
i***iii~ii***i*T ***ii*ii*i~ii**i w gw w w w u u u w w w kk gw gu g' w w w w u w w w w w w u w w w w g
l I
2 0 2 2 % k 2 0 ?;i 2 O222222: L; 2 2 O O O C 0 0 0 0 0 0 C
- E i *i*i7 i i i,i.. w *
- i i.i, w** i, w~i 7 7 7 i ii*7 i i i
l E}
i l
=
w w v w w w w w w w u u v w.
w w w w w w w w w w w w Y
Y YYYYk YYYYYY Y
YY Y
Y E
L l
A O7 TD
>m O>
Fase 5 et !
40AD sato sw canailog roa DfE5ft C sitsfD0 06-2 see.
- 3. 03/25/91 8"" O 2F O O
$O Cc C
n, sag mat a tag 1043 goa0 gest ant rit et now s isnt uma nnigt
{
.g., h niatt e sanot t str@f t SM6 UW) 1C40 f au)
OPis Ctest C*awleG C95e nti d-Md Oh O
ITT
~U MCC-4Cl ItCC-4Cl 4 01 2C-3D-57 ACE -Wf E no 4.500 0 000,
il405-E-32 54 5
$2
{2 '
PCC.4Cl MCC-4C14 02 EC-3D-!
RC 1.490 0.009 11405-(-32 5H. 3 h _O.
.tu fCC 4Cl TC tCl-fC3 TV-1042C 00 0 C0J 0.296 110 Il405-E-44 in, 4 y
MCC 4Cl ACC-4Cl4f5 (E-42 NO O.000 0.000 It405-E-75 IT1 -
8 atCC-40*
MCC-4Ct-A02 IfD-148 Yii 13.000 0.000 19405-1-35 5m. J J"d 2
m MCC-4C2 ftCC-4C2-A03 (N-4 3S vt1 34.300 0.000 Il408-E-45 g
OO MCC 4C2 MCC aC2-003 VA-5 38 no 9.330 S 000 Il405-E-34 SN.9 Z
99CC-4C2 MCC-40t-802 WO-12 Yt1 0.888 0.000 II405-i-41
-O PCC-4C2 RCC-4C2-003 WD-259 YES E.700 0 000 II405-t-4 5 MCC-4C2 MCC-4C2-CO un-400 T15 0 950 0 000 If495-t-31 SM. 3 6
ftCC-4C2 4CC-402 C02 WD-418 Yt1 0.950 0 000 ll435-E-31 54. 5 2
7
- EC-4C2 MCC-4C2-CS3 WD 218 ili 0 950 0.00P 11a05-E-37 G>
MCC-4(2 RCC 4f2-001 WD-58 ff 5 21.000 0.000 Il405-t-47 5H. 4 w
W C-4C2 ftCC-4C2 002 5t-24 to 0.000 0.497 1300F A4 -E 5E -6a Q
MCC-402 MCC-4C2-003 WD-19e so 0.000 0 953 114e5-i-30 5#i. e w
MCC-4C2 MCC-4C2-004 5t-30 m3 0.000 0 ag; 1305;.54-E5K-6A
- U
, MCC-4C2 KC-4C2-t ot trCV-347 Ru 0.000 3.730 42 II40bE 51 54. 2 mosMAi " CL MID MO MCC-4C2 KC-4C7-102 BCf-391-4 oc 0.000 1.590 25 ll80bE-25 5m. 6 MCC-act PEC-4C2-f 03 frf-26 NO 0.000 5.000 i'4G5-E-a0 r""
MCC-4C2 fEC-4C2-E04 CN-13
?t5 0.4f1 0.000 11405 4 -42 54. I PCC-4C2 MCC-4C2-t06 CN-3 YE 5 0.298 0.000 8-23168-414-301 MCC-4C2 ntC-4C2401 AC-138 45
- 2.600 0.000 Il405-E-43 52. 8 MCC-4C2 PCC-4C2423 NE 8 30
- 0. CM 0.000 2419-4 poenatty On 7
MCC-4C2 MCC-4C2404 RM-061/042 NG 9.200 0.000 904654 g
MCC-4CZ MCC-4C2405 AC 51
'f' 33.200 0.D0*
Il405-t -45 MCC-4C3 MCC 4C3-A62 ft-2G-18 YE S 3.789 0.000
!!405 4 -257 is. 3 g
.n,
,.0,
.. 15,0
,,5
... 00
- 0. m u.05 45
,o--,
,cC-o,-,01
.0. I n
.0
,0. m
- 0. m Il405... m 5..,
g y
8tCC-403 RCC-4C 3-803 Et0?sG RfCIPTS 30 0.000 0.000 Il405-E-293 sitG In:EtstittistLT 3
C t
MCC-4C3 MCC-4C3-804 WLOleG attiPTS mo 0.000 m.000 i!405-E -282 tritD taYgawtitExtte Q h MCC-40 m C-u n oi 51-a n1 4t =
- 0. m n=5.t 2sr 5.
3 ai d
g b) @
x C-4C3 MCC-4CSC02 meln uttn1
=0
- 0. m
- 0. m unt4-rei v540 linsslutarty A
- i MCC-40 MCC-4C u o) mein nCm1
.e
- 0. m
- 0. m noS-t.n2
.510 an-Intm, P
2 5
O 4
2 2*
W 5
~
,-m.-
n A
~
>2 O>
LOA 3 910 sofoenati0e ice J!E5f t EtaltafA DG-2 h
h se,.
- 3. 03/25/91 C C C
8835 88E Artt 1AG 1040 10a3 inif ertiff E!
R0f f II8E SC84Eaf!C.
"U PMa stM1I eUMet a f MC 3 (awI tcao (tu}
ceta C1OSE Dsavfas (t795 415 dE d
O
~
O
?*
2 f. rrl U
KC-st )
MCC 4C3-C04 t(teles ptCtr15 a0
- 4 000 e ec6 114001 233 wif e Istgaat titetty
?O2 l
A 2
PC-4C 3 MCC-4C3-001 Vt-1568 Tf 5 6.700 0.0e0 llaekt.275 Sm. 3
~ Mo
-C43 KC-4C3 K C-4L3-002 94-154J t' '
6.700 0 030 134054-2 75 $#. 3 ffl 2 em H py MCC-4C3 MCC-4C3-DD3 94-1583 ft1 6.700 0.000 18465 4 -275 54. 3 Q
f MCC-4C3 MCC-4C3-804 VA-1590 til 6 700 S. 0M 114001-275 58 3 7"'"
yd MC 4C3 NCC-4 Cl-005 TD-Ft MD 21.100 0.000 13465 4 269 58 I g
OO FICC-4C3 MCC-4 C 3-D06 VG-53 to 4.550
- 0. 6 184054-264 Sa. I 32 d-g EC-4C 3 MCC-4C3401 54-158F Yt1 6.?ce 8.000 ll465-i-275 1s. 3
]
MCC-4C3 MCC.4s34t2 TA-153u Yt1 6.700 0.000-Il491-E-2?5 55 3 M
ep Me-4C3 MCC-4 C3403 9A-159P 55 4.f00 0.000 11805 4 -215 58 3 b
st3 FT1 43 -
4C3 MCC-4t3404 (3-130 a0 15 000 0 000 liets-t-258 SW 3 g
MCC-4C3 MCC-4C3465 (T-79 Yt1 1.490 0 peo il4054-M S is. i
,0 >
MCC-4C3 MCC-4C3406 WELD!aC t!CIPf3 80 0.000 0.00$
18405 f-283 MED BRTEamlIYta;ti w
MC-4C3 MCC-4C3-f 0I FW 's0C YE 5 S.487 0.000 I!4054-262 Sw. t Q
MCC-4C3 MCC-4C 34 02 8KV-I!50C no 0.000 0 000 Il400f-?s2 in I nowat o os F w
MCC 4C3 FCC-4C3-704 51-14 Til 50 000 0 Of4 11435 E-259 58-3 "O
s MCC-4C4 MCC-4C4 601 CW-23 e9 2.330 0.000 aI400f-25 18 3 73 O
teCC-4C4 setL4C4 A02 Cv-F Tf5 0.995 0 000 11495-t-168 5s. I aCC-4C4 MCC-4C4 AS3 LP-It so ll. h6 0.000 19405 4 -313 F
MCC-4C4 MCC-4C4-SCI Ev-20 93 2.330 0.000 114ekt-25F u. 3 MCC-404 MCC-4C4-0C2
'v-29 83 2.330 0.000 11425 4 -267 54. 3 MCC-4C4 ICC-4C4-903 flC-48 m$
ll. M 0.000 17752371 Sa. 17 K C-4C4 MCC-4C4-C01 tv-143 a0 0.lMQ 4.940 II405-t-264 '4.
3 3
MCC-4C4 MCC-4C4-Ce2 Cw-ita 30 0 e00 4.,40 in te54 235 5..
g MCC-4C4 MCC-4 C4-C93 CM-14F M
0.0C9 4.946 11405 4 -266 55 3 2
MCC-4C4 MCC-4C4-C04 NCV-1905C M
6.c4F 0.000 18405-1-266 1s. I s.'wmttv cf r o
94*C-4C4 MCC-4C4-Dol Su-29 Yt1 1.999 0.00$
lite 5-t-269 5m. 3 Mtt 4C4 feCC-4C4 003 WEtBING 8ECEP15 a0 0.C00 0 000 11400 1-299 55tD If!!tMiffiFitT h
MCC-4C4 MCC 4C4. Dos tv-43 s0 0.000 4.360 114054-268 in I C
MCC-4C4 MCC-404-005 VS-29 no 0 000 6.153 Il405-t 2641s. 3 h
ict-4C4 MCC-4C4-oo6 tr.ea so 0.aoe a 6+0 184a54-340 5=.
3 h
Mct-4C4 MCC-4C4-ocr at-ils vt1 1.49:
e.000 184c54 33418-3 b
2 NL-4C4 K C-4C4-084 v4-It5 80 3.930 1 000 s-409; b
.O 2 2
.O m "T1 5
~
4-
\\
\\
Calf.PAGE Na '
I ' CALCULATION PREPARATION, REVIEW AND APPROVAL CALCUI.ATION NO.
FORM PED-QP-3.4 Form Page No.1 of 1 F. CO3387-PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No.
q REF.
l NO.
l l
E 1
~
l 4
E :
ri 2
5 :
+
u :
4
}
I nan v:
.g.
27 :
2~%
Yg:
aaa M
ha6 8'
333 8
i r if i j
p E
- c :
3 d
8 i
sli Ela 5
5 g $. :i ess a
l 13 o gg 9e:
=
2 l
A
,$ 3 I 222 g,
-3 E
e 3 2{
3 55
=
s
==
au 4--
- 1
~
W58 aa; s
- 3 } ;ll g
l 5.
1 S S.g g
au :
44 4 22a Eb asa 3
j MMM 2 *4 2
i I
's i
s 1
gf:
? T*
t 3
a
- M WWh h'
a
18 mma
- ALCULATION PREPARATION, REVIEh AND APPROVAL CALCULATION NO.
FORM PED-QP-3.4 Form Page No.1 of 1 R'O3382 PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No.
3 REF.
NO.
2.0 EXPECTED CONTAINMENT FAN LOADING The expected percentage
(%)
of nameplate loading for the containment ventilation fans VA-3A, VA-3D, VA-7C, and VA-7D is a
function of atmospheric density within containment.
The loading is expected to follow the containment pressure profilo.
The graph on the next page shows the expected containment profile (two cases are shown) and an expected time load curve.
The curve Icading extremes are bounded by full load at maximum DBA pressure and 50% load at normal pre-DBA environmental conditions.
For the purpcses of this calculation, the minimum post-DBA load will be assumed to be 75% for conservatism.
Fan curvas are available from the vendors test report, Joy Manufacturing Performance an Sound Level Test of Joy Axivane
- Fans, 07/24/70.
This document can be retrieved q
g from the DBD database, WIP 61095.
Quality of the document is too poor to be reproduced and included in this calculation.
The curves show that motor nameplate horsepower exceeds the maximum fnn required bhp.
Therefore, this calculation uses the motor nameplate for conservatism.
i i
f M
E I
.=-
REVA f
I
'0-b, 'e k
/.O n
v *E.
y e
- y..
i S
t R P;'6 IMAGE EVAL.UATION
- //j
, A.,
, q f' %
$ /o/ ["
9$)?
TEST TARGET (MT-3) f @,f f 4
'N g,
[
p Q
Rg'W W
l.0 Em M y M g_n
.. 33
=
b 11 (olL2d l,l
.m r
((j 1.8
==
!.4 ll l,h l i cz; II e i
4 150mm 4
6" er.,
4p
+++s A>4 o
~
g$s a //o$,
qq$y,g'$
Og/
apg$
9 y/
r Q4%
L v
/
i
.j
s f
k[t
'i g;w;k$,*
jf xN(O t 9,, A't ' $d' IMAGE EVALUATION s' f%
O f'g r[ 4
/
i
\\ /
y "'
%)
TEST TARGET (MT-3)
//
Oygiv 4[f,sqg p
R_q$#y 4((g fius i--
,_ ox m r
fimz; T,,2 u
(lbhcz.0 2
' r*
l,l e
m IM l.0 It!==
1.25 1l 1.4litea al i 1.6
==
sem 4
150mm 4
6" gff x sqft 'N%
+h#$o\\
4d/ Jh, y 8
A sped
~
c-
<py, 0gl y
W 7,
- -- - _ _mi m_____ _ _ _
i
'2 C) 3 c-A/
ed.rast a w CALCULATION PREPARATION REVIEW AND APPROVAL CALCULATION NO, FORM PM"-3.4 Form Page No.1 of 1 pc blid2*
PRODUCTION ENGINEERING DMS:0N CALCULATION SHEET Rev.No.
REF.
NO.
ESTIMATED CONTAnD(ENT COCLING
$F4 FANNLCAD AS A rtNCTION 95;1 ^
OF CCNTADOCENT PRESSURE l
50 RAS
\\
(Kin.SI)j 100 I
i 50
/
%,,. g containment Motor j
90 Pressure Load j
a frein USAR l
Fig. 14.16-6
{
S 40 g
J
\\
s I
-- 8 0
- f
?
=
- so -
i g
i a
i
=
f
- 70 i
g 20 -
U JF 60 c
~s s
c 10 Pressuro 2
l EEQ Manual Sec. 2 (USAR Fig. 6.2-7) g
-l 1
0 I
I i
1 1-11 1
1- -l 50 100 200 300 400 1000 2000 3000 4000 Time, seconds
unna 30
- ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-OP-3.4 Form Page No.1 of 1 P'o o RM' PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No, c,
REF.
3.0 INCREASED LOADING ON DG-1 DUE TO SI-3A HP INCREASE Due to MR-FC-90-53, the SI-3A containment spray purp will require an additional bhp due to the one pump, one header configuration (refer to Attachment B).
Looking at the marked up USAR Figure 14.16-2 (Attachment A), at 0 seconds into the
- LOCA, containment pressure is expected to be approximately 55 psig (60 psig will be used as the 0 second pressure for conservatism).
' ^^ seconds into the LOCA, containment pressure is ex, o be approximately 17.5
-e psig.
At 3740 seconds into w a A, containment pressure is expected to be approximately 20.6 psig.
From Attachment B-6, and using linear interpolation, the following
!s obtained:
Approximate Seconcs into Containment bhp required Equivalent KW l
l
)
Accident Pressure (psia) from SI-3A at 92% efft 0
60 319 258.7 2000 17.5 336.8 273.1 3740 10.6 338.8 274.7 5000 0.0 343.0 278.1 Similar to the situation with SI-3A, the containment spray pumps SI-35 end SI-3C will require additional bhp over the motor nameplate rating with two pump and two header operation and with the contianment pressure of 0 psig.
Irom Attachment D-1 a following values are obtained:
Approximate Seconds into Containment bhp required Equivalent KW Accident Pressure (psic) from SI-3/B/C at 92% eff.
0 60 295 239.2 5000 0.0 325 263.5 For conservatism, nameplate value of 300 hp will be used at time equel 0
sec.
and maximum horsepower (325 hp) regired at 2000 seconds.
f
~
V i
cu rA:z no. S I LCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
ORM PED-OP-3 4 Form Page No.1 of 1 WOR 9P~'
PRODUCTION ENGINEERING DMS10N CALCULATION SHEET Rev.No. 8 REF.
4.0 SEQUENTIAL LOADS BASED ON BRAKE HORSEPOWER REQUIREMENTS Operating points are plotted on the vendor pump curves to determine the sequential loaa at worst case DBA conditions.
The pump curves and bases for each operating point is included as Attachment C.
The postulated
" worst case" DBA condition for a diesel generator is a depressurized large break LOCA with loss of offsite power and failure of the redundant diesel generator.
The calculated KW values have been incorporated into the load shed information tables for DG1 and DG2.
Low Pressure SI Pumps SI-1A (DG-1) & SI-1B (DG-21 9
Nameplate Horsepower 300 Service factor 1.15 Efficiency 90%
Power factor 0.88 Assume all four loop injection valves open prior to redundant diesel failure.
Operating LPSI pumps will be in worst
- case, 309 hp as determined by CE per telecon with B.
VanSant of OPPD.
KW = 309 HP x 0.746 KW/HP 256.1 KW
=
.90 Hioh Pressure SI Pumps SI-2A. SI-2B, SI-2C Nameplate Horsepower 300 Service factor 1.15 Efficiency 93%
Power factor 0.89 Assume all eight injection valves open prior to the redundant diesel failure.
SI-2A and SI-2C on DG-1 wil2 not go to runout because there are two pumps on one header.
Pump operating point has not been confirmed by CE.
Therefore this calculation is based I
on the worst condition which is same bhp as SI-28.
.W-
l Calf.PAI M b d sALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-QP-3.4 Form Page No.1 of 1 r/m387 PRODUCTION ENGINEERING DIVISION CALCULABON SHEET Rev. No.
9 REF.
SI-2B on DG-2 will go to runout.
Based on pump curve the maximum brake horsepower is 300 HP.
KW = 300 HP x 0.746 KW/HP 240.6 KW
=
0.93 Containment Scray Pumos SI-3A._SI-3B. SI-3C Nameplate Horsepower 300 Service factor 1.15 Efficiency 92%
Power factor 0.90 SI-3A (DG-1), see Section 3.0 of this calculation, s
l SI-3B and SI-3C (DG-2),
operating with two headers l
I available will have a combined flow of 4400 GPM assumed l
equally distributed from pump curves using recirc flow of 2200 GPM the pumps require 300 HP.
KW = 300 HP x 0.746 KW/HP 243.3 KW
=
O.92 Charcina Pumos CH-1 A (DG-1), CH-1B & CH-1C (DG-2)
Nameplate Horsepower 75 i
Service factor 1.15 Efficiency 89%
Power factor 0.82 Charging pumps are positive displacement pumps.
Using a conservative discharge pressure of 200 psig the required power is 15 horsepower.
i KW = 15 HP x 0.746 KW/HP 12.6 KW
=
0.89 Note:
If RCS pressure were assumed
- higher, the horsepower requirements for the LPSI would drop compensating for increase in charging requirements.
l
tac nat No. 33 CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATICN NO*
FORM PED-CP-3.4 Form Page No.1 of 1 n! y = p.,
PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No.
2 REF.
CCW Pumps AC-3A (DG-1), 3B ( DG-2 ), and 3C (DG-1)
Nameplate Horsepower 250 Service factor Efficiency 92.5%
Power factor 0.86 Based on 2 CCW pump operation, loss of instrument air and loss of B
power.
Reference S&W calculation 17321.01-FM-33 Rev. 1 run CL1A0.WR3.
AC-3A & 3C (DG-1)
KW = 270 x 0.746 KW/HP 217 KW
=
0.925 Based on 1 CCW pump operation loss of instrument air and O
loss of A
power.
Reference S&W calculation 17321.01-FM-33 Rev. 1 run CL1AB.WR1.
AC-3B (DG-2)
KW = 260 x 0,746 KW/HP 209.7 KW
=
0.925 Raw Water Pumps AC-10A, AC-10B, AC-10C and AC-10D Nameplate Horsepower 200 Service factor Efficiency 91%
Power factor 0.87 AC-10A and 10C operating with 3
CCW heat exchangers, minimum river water elevation, loss of B
power.
Reference S&W calculation 17321.01-PM-41 Rev.
O.
AC-10A and 10C (DG-1)
KW = 190 HP x 0.746 FW/HP 155.8 KW
=
0.91 AC-10B and 10D operating with 3
CCW heat exchanges, minimum rivar water elevation, loss of A
power.
Reference S&W calculation 17321.01-PM-41 Rev.
O.
REU
cura no. M
- ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-OP-3.4 Form Page No.1 of 1 PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No.
REF.
AC-10B and 10D (DG-2)
NO.
KW = 190 HP x 0.746 KW/HP
= 155.8 KW 0.91 Containment Vent Fans VA-3A, 3B, 70 and 7D See Section 2.0 of this calculation for determination of operating horsepower.
VA-3A/B VA-7C/D Nameplate Horsepower 250 125 Service factor Efficiency 95%
93.2%
Power factor 0.88 0.88 l
VA-3A (DG-1) l l
I KW = 2,50 HP x 0.746 KW/HP 196.3 KW
=
0.95 VA-7C (DG-1)
KW = 125 HP x 0.746 KW/HP 100.1 KW
=
0.93.2 VA-3B (DG-2)
KW =-250 HP x 0.746 KW/HP 196.3 KW
=
0.95 VA-7D (DG-2)
KW = 125 HP x 0.746 KW/HP 100.1 KW
=
0.93.2
w n.35 I
bALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-OP-3.4 Form Page No.1 of 1 rc 0538 :-
PRODUCTION ENGINEERING DIVISION 2
CALCULATION SHEET Rev.No.
REF.
NO.
Auxiliary Feedwater Pumo FW-6 IDG-1)
Nameplate Horsepower 250 Service factor Efficiency 91%
Power factor 0.87 FW-6 cperates at 254 GPM at a TDH of.2403 feet, reference calculation 17321.01-PM-9 Rev. 2, from the pump curve the expected power required is 240 HP.
KW = 240 HP x 0.746 KW/HP 196.7 KW
=
0.91 i
REV1
twu. No. M
_ ACULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PEDL--OP-3.4 Form Page No.1 of I CEC 33MC PRODUCTION ENGINEERING DMS10N Rev.No. 7 CALCULATION SHEET REF.
NO.
5.0 UNIT SUBSTATION TRANSFORMER LOSSES losses will be estimated based on the vendors Transformer factory test data of no load and full load losses.
Losses will be estimated as the sum of the no load loss plus the ratio of the squarc of the current to the square of the full load current as follows:
Total Losses
- No load losses + (Current /FLA2)* full 2
load losses FLA for 1000 KVA, 4.16 KV transformer = 138.8 amps From the Westinghouse test data from MR-FC-84-105 Attachment E,
(cartridge
- 1552, frames 841 through 847) the following no load / full load losses are taken I
No Load Loss Load Loss Transformer Serial #
( KW )
( KW i T1B-3A DAV36530201 2.7 7.7 TlB-3B DAV36530202 2.6 7.7 TIB-3C DA36530401 2.6 7.7 T1B-4A DA36530301*
2.7 7.7 TIB-4B DA36530203 2.6 7.7 T1B-4C DA36530302*
2.7 7.7
- Test data not available, use highest value of similar transformer through each transformer will be estimated as current The sum of the currents of each ESF pump connected to the the particular transformer plus one-third of the diesel generator dead load amps.
Transformer amps are estimated as follows:
Dead Load Amps for DG-1 302.1 KW
= 52 Amps (4.16 KV)(.80)(3)1/2 TIB-3A LOAD AMPS (DG-1)
Dead Load I = 1/3 x 51
= 17A REV1
cum a 3
{
k:ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-OP-3.4 Form Page No.1 of 1 W' 9'2 P PRODUCTION ENGINEERING DIVISION o
CALCULATION SHEET Rev.No v REF.
NO.
SI-2A I=
240.6 W 37.5A
=
(4:16 KV)( 89)(3)
SI-2C I
240.6 KW
=
37.5A
=
(4.16 KV)(.89)(3)"
CH-1A I=
- 12. 6 W 2.lA
=
( 4.16 KV ) (. 8 2 ) ( 3 ) '
VA-3A I
196.3 W
=
31.0A
=
( 4.16 KV ) (. 8 8 ) ( 3 ) " "
Total 125.1 TlB-3B LOAD AMPS (DG-1)
Dead Load I=
1/3
- 51 17A
=
AC-3A I=
217.8 KW
=
35 lA
( 4.16KV ) (. 8 6 ) ( 3 ) " '
Total
- 52. lamps l
T1B-3C LOAD AMPS (DG-1)
Dead Load I=
1/3
- 51 17A
=
l 1
-l
- EPAat na b
- ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-OP-3.4 Form Page No.1 of 1 py.g.p, PRODUCTION ENGINEERING DIVISION CALCul.ATION SHEET Rev.No. ,
REF.
NO.
SI-3A 213 7 KN I
39.9A
=
=
(4.16KV)(.90)(3)-
AC-3C 217.8 KN I
35.1A
=
=
( 4.16 m' ) (. 8 6 ) ( 3 ) ' ' '
VA-7C 98.2 KN
=
I 15.5A
=
( 4.16 Br ) ( 8 8 ) ( 3 ) "' '
Total 107.5A l
l The equipment load and no load loss are combined together and results in the total loss for each transformer.
2 I R Losses for Transformer T1B-3A 2
2.7 + LJ25.11 x 7.7 9.0
=
.(138)'
2 I R Losses for Transformer TlB-3B 2
2.6 + (52.11 x 7.7 3.7
=
138' 4
2 I R Losses for Transformer T1B-3C 2
2.6 + (107,51 x 7.7 7.3
=
2 138' REVJ
i 1
1 w, rAr ha 39 JALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED--0P-3.4 Form Page No.I cf1 R^M-T'F ?-
PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No M REF.
NO.
Total Dead Load for DG-1 T1B-3A 9.0 KW TIB-3B 3.7 W T13-3C 7.3 KW 20.0 KW Loss values for T1B-3A,3B,3C have been entered into the Load Shed Information Summaries for DG1, section 1.0 of the calculation Dead Load Amps for DG-2 594.9
=
103 Amps (4.16KV)(.80)(3)
l I
T1B-4A Load Amps (DG-2)
Dead Load I
1/3 x 103 34A
=
=
AC-3B I=
209.7
=
33.8A (4.16KV)(.86)(3)
Total 67.8A
' iB-4B Load Amps (DG-2)
Dead Load I=
1/3 x 103 34A
=
SI-3C I=
243.6 KW __
=
37.6A (4.16KV)(.90)(3)*'4 SI-3B I
243.6 KW
=
37.6A
=
(4.16KV)(.90)(3)*
i curAz m dd J
.ALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-OP-3.4 Form Page No.1 of 1 f( P'PM PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No. O, REF.
NO.
CH-1C 12.6 KW __
=
I 2.1A
=
(4.16KV)(.82)(3)*##
VA-7D
- 98. 2 W I
15.5A
=
=
(4.16KV){.88)(3)
Total 926.8A T1B-4C Load Amps (DG-2)
Dead Load I=
1/3 x 102 34A
=
{
}
SI-2B I=
240.6 KW
=
37.5A (4.16KV)(.89)(3)^#"
VA-3B 196.3 KW
=
I 31.0A
=
(4.16KV)(.88)(3)*
CH-1B I=
12.6 KW._
=
2.1A (4.16KV)(.82)(3)*'"
Total 104.6A The equivalent load and dead amps are added together ar.d results in the total load for each transformer.
2 I R Losses for Transformer-T1B-4A 2
2.7 + (67.81 x 7.7 4.6
=
(138)
1 l
Cu rAz ha.
OALCULATION. PREPARATION, REVIEW /ND APPROVAL CALCULATION NO*
FORM PED-OP-3.4 Form Page No.1 of 1 r(!N2%97 PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No.
O REF.
NO.
2 I R Losses for Transformer TIB-4B i
2 2.6 + (126.81 x 7.7 = 9.1 1
(138)'
2 I R Losses for Transformer TIB-4C 2
2.7 + (104.61 x 7.7 7.1
=
(138)'
Total Dead Load for DG-2 T1B-4A 4.6 PM T1B-4B 9.1 KW T1B-4C 7.1 KW j
{
}
20.8 KW l
Loss values for T1B-4A,4B,4C have been entered into the Load Shed Information Summaries for DG21, section 1.0 of the calculation
6 ennPAz a CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-QP-3.4 Form Page No.1 of 1 WO?32L PRODUCTION ENGINEERING DIVISION g
CALCULATION SHEET Rev No.
v REF.
No.
6.0 DETERMINE DG LOAD POWER FACTOR
)
i Load KWs are tabulated in Section 1.0.
KVAR is determined from nameplate horsepower and power factor.
The calculated KVAR will not change significantly for lightly loaded or motors operating in the service factor range.
KVAR determined by:
KW KVAR l
I KVA KVA = E pf KVA2 = KW2 + KVAR2 therefores-2 - 1]1/2 KVAR = KW(1/pf REYJ
~ - _ - - - - _ - _ _ _ _ _ _ _.
d3 exrAz na CALCul.ATION NO.
J
~
AND APPROVAL e No.l ef1 Fe!N43M2 1
DMS10N
, Rev. No. _ J.
REF. '
NO.
~
t LOAD POWER PAC 1QR p_G-1 LOAD D'2B LMEPLATE N
fl E
226.6 302.1 0.80 02.1 92.9 155.8 0.87
- 64.0 93.4 196.7 0.91 205.0 134.2 256.1 0.88 298.7 92.9 155.8 0.87 l'
O 123.3 240.6 0.89 2
6 43.9 12.6 0.62 62.9 106,0 196.3 0.88 196.3 123.3 240.6 0.89 240.6 119,6 217.8 0.86 201.6 117.8 258.7 0.90 243.3 53.0 100.1 0.88 f
100.1
_119 4 217. B_
0.86 201.6 1446.5 2551.0 COS (TAN ~1 { WAR /KW] )
=
AD POWER FACTOR COS(TAN ~1(1446.5/2551.0])
M O
REYJ
cAtt.rA:r no.di CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO.
FORM PED-QP-3.4 Form Page No.1 of 1 F/'03382.
PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No.
3 REF.
NO.
DG-2 LOAD POWER FACTOR NAMEPLATE LOAD LOAD E
fl g
KVAg DEAD LOAD 594.4 0.80 594.4 445.8 AC-10B 164.0 0.87 155.8 92.9 AC-10D 164.0 0.87 155.8 92.9 SI-1B 248.7 0.88 256.1 134.2
{
I SI-3C 243.3 0.90 243.3 117.8 VA-7D 100.2 0.88 100.1 53.0 CH-1C 62.9 0.82 12.6 43.9 AC-3B 201.6 0.86 209.7 119.6 SI-3B 243.3 0.90 243.3 117.8 SI-2B 240.6 0.89 240.6 123.3 CH-1B 62.9 0.82 12.6 43.9 VA-3B 196.3 0.88 196.3 106.0 2420.6 1491.1 COS(TAN-1[KVAR/KW))
LOAD POWER FACTOR
=
COS(TAN-1(1491.1/2420.6))
=
.85
=
REVJ
FC03382, Rev. gj
[
ATTACEMINT A M
i i
i i
i i
i i
i 50 7
3 8
30 E
a 8u m
,, g.
10 I' 0
O 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 suo IIMC( M )
O Long-Term h.-ww R_w OmahaPublicPv, District Mgme Ta edN1.Aaa L
c to c,,,bn.ikh Ma 1 14.16 2
FC03382, Rev. ( b ATTACEMINT B-1 O
~
4 October 2.
1990
.I 0-MPS-90-079 Mr. R. L. Phelps-Omaha Publis Power District YW/EP-1 i
444 South leth street Mall i
Omaha, Nekraska 88102-2247 i
i subjoeta Analysis of the Pt. Calhoes Centtiament Spray j
System t
I
-Rafareneest (A)
CE Inttar 0=NPS-to-074, Saee subject, R, t
w.
i aradshav to R. L. Ptolps (OPPD) dated septamaar 23, 1990 O
OPPD containment Sprey Syntas Analysis, (3) i CE Calculation 6024SS-MPS=5 CAM:~001 (C)
CE Letter 07FD-90-054, same Suh$eet, D.
L X.
Sente11 to W. O. Weber (OPPD) dated hugust is, 1990 i
(D)
OPPD telesepy dated September 30, 1990 Enclosures (1)
Centainment Sprey Flow Rate for the 5 containamat Sprey Meader Case 'l Reader.
1 Neat Euchanger,1 Pimp" with ese Spray Nessle Mimaing i
Daar Mr. Phelpas combust.ien ineariar has psweidad an analysis of the flee rates in the saanennt spray system at the Port Calheum Station under verteus-poet assident eenditiene esing *as-built
- p u sentipuration date.
Eigh Ceafidense resulte of
. that amCyeie = eere provided La Referanes (4).
Se purpose et thie letter le to provide additional infessaties aheet the method used to obtain these remuiteHe effect of the th i
mies spray nossle in the 3 C =
a spray Esader, and other raised dur previene phone eenversattees.
.These are provided as hi eenfidense information having toen
- reviewed bF a qualified Final Assuranac ed O-
'" *" ** *"' f ewe r. " "' "Omal ABB Combustion Engineering Nuciser Power er g, =
= = - - - - - - - - - - - - -.a. a
- =
w smomen
i 1
FC 03 3 8 2', Rev. d ATTACHMENT B-2
!O Mr.
R.1,. Phelps Page 2 1.
One Puup/one Needer Nydraulio Analysis I
i Reference and one pum(A) summarised the results of a one_ pump /ene header i
p/two header hydraulia analysis.
The mothed used to arrive at these results and the additional results of l
Enclosure (1) are identical to that employed in the C=3 i
calculation of containnest spray flew rate based upon "reiaranee-dasign" plant eenfiguration data.
That aalculation. Rararence (B), is a recorded calculation La esserdance with the Cendression Engineer' lity Assurance Precedure Manual GhM=101 and was transai te OppD by Reference (C).
As Reference illustrates, the values ehtained using the "as-tu11t*(A)
L inpet data are sensistant wit I
the values attained in Reference (3) using the araterance h design input data.
a The results shewh in both Reference (A) and Ensleeuzu (1 were calculated with eash of the three contatrument spray) ion pumps' mintaus reciraulation line isolated.
This assumpt
&n these analyses is a signifisant ditforenes from the surrent system alignannt.
O 1
The results shown la Rafarance (A) for the #as M ilt" ant sentipuration were developed for the purgese of evalua the performance of the Ceneminnant spray with res to the eezvise faster allowanee of the aster.
fare the abioetive was to determine both the lowest and the highest values of expoeted Fu g flew rate my defining the two eases Flow (1) and Flow (3).
Tae resulte given in Reference (A) art for the A containment sprey mander.- The 3 cansainmaat sprer Naader differs from the A Emeder des to: J1) a missing sprey asasle, and (2) the presense of too addithemai valves.
Tha.
results for the a containment spray mandana flow rates for the ease of *1 Beeder, 1 Beat Emehammer, 1 Pump
- are in 4
Ensleeure (1) of this letter.
The met effect of ditiareneas in the esisting sendittees of the headore is that the a headag Age a slightly ~ 43ger fley reta.
Enslesure (1L indientes that supseted actor performanos will be with;a the range of asemptable with seasideration plus 1.181 service faster limitfor the servies gester reting of the peep (Ep).
300 amataal-E p ses Emelesure (1) asemane that the three S
minimum resisselatien mammal valves are sleeed. prayEvaluat with these valves open show results which are umaeseptably high 2
with respect to the aster servies fastes? limit and L
~
ena ly low with respect to the-sentaimammt everpressere.
estrie co.,Dioeussions with the aster wender, General en.
.~
have indiented that the suay or sea rqa i
sentimessely ter sp to 60 days at tan a48 servies raster l
limit.
I N
~
~
4
FC03382, Rev, N ATTACHMENT-B-3 0
.Mr. R. L. phelps page 3 2.
costalamant Transient Analysis When evaluating the containment sprey flow rate with respeet to the containment Saildiaq poet assident desien prosaure the values shown in Ensleeurs (1) meat he serrested te aseount for the effnetivamess of the flew.
The Klev rate through the location with the missing messle annamt he credited due to the laek et dispersies and these nessies which are bleeked by existing ventilation does work aannet he credited as well.
The results shown im Smelosure (1)ith respect to the critaria when serrested for the eteve issues, have been reviewed w for poet easident sentainment desi have heem feant to be acceptable. gn pressure protection and The asseytaase writaria for sentainment peak pressure protestien is a feastian of both spray flev rata and SIRNT temperatare.
As a boundlag minimum, an atomised sprey flow rate of at leent sees gpa at a sIRNT temperature of less than 117 degrees F will be required to maintala sentainment seassure less than 40 poig during the meerne of a design heels IAc&.
3.
SZENT Level sensitivity O,.
c-E has evaluated the effects of==wh $2xwT 1ews1 en tha mawi== flew rate values takulated La saaleeure (be great 1).
The eenslusion is that the SIRrf level woeld have to er than 10 feet aheve the emernat miniasm testaissi specifiention operating limit betere the estah11ehad mawinum flow rate limit of 3200 gym is emoeeded.
Oppe will verify this to be aseeptahle by reviewing as-built staur draviage.
4.
system orities tastallaties c-E perforand an ialtial review et reasibility et inse ting an erision in the pip leading to the A and a oesta sprey heedere.
This ens t the sentainment asrey aster from ts service faster lead 11mit ta ease where ama e
lied two headers.
prm11minary e,sisations t
erifice weald need to gewrite a Oy et 347 ting ta a 47 said mesesure esey a4 1600 Goalitative evaluations ladiente that it is feasible to r -ees the erifice without intesing envitaties.
Several; Assess som14 amed to be oderessed however, to fully the tability of this epyse,esh.
Lee 11y or sis seatsen, and-strees would hav,e to addreened.
Additismally the pipe by the riewindseedforeesweal&havetobe prise to implementaties.
O
FC03382, Rev. /
l ATTACEMENT B-4 lO I
+
Mr. R. L. Phelps p.,,4 l
5.
Dump Operadation Evaluation c.E evaluated the sentainmaat spray pump test data provided in meteranoe (D).
Se data for the pump in quantion were to the analysis assumptions and ears found to fall vi the 84 degradation assemption.
s.
Spray Nessle parformance An evaluation was performed to identify the affect.of Enclosure 1
partieular(se)nsern was the especteden the espected nessle
- erunaa, og let sisa that is i
estarained by measle flew and differen Ceaversattens with the nessle maastasturer indicated that an espeeted drop mise for the flee would be on the ester of 1400 storees. s of Enslesure (1)
Se C=3 containment Transiaat sede couT3Nes does not spesifically addreae spray eine in the thermal hydraulis calculations of the poos sentainment atmosphere.
Se analysis is driven primeipally by the y taasmal sifasteney which is spesified as e en of tha stoma Se spray officioney m/ air mass ratie in theedal within the sede is O
eestaimment.
based en a spray drop mean dienster of 1980 storens and a senservative (low) drop fall height of to feet.
While spray flew rete does met have a strong affect em the everall theamal offiaiency, drop sise does.
CRNL stadies have hooever, that 0
shown,ise sentainment buildings (tysical fail height latheasal offisiency_is e full s emeess of to feet) for dee storene.
For tala ressen,p sises Fa the range of. 500 to 4000 the espected drop sute of 1800 misreas is satistastery from a thasaal hydraul;ms perspective.
P 7.
Bree Pqalpe, One mandae Eydraalle Evaluaties The case of three operating to supply one header with flee ses sa Sesh a case would result 12 teth diesel gemaratore aparated, a handar igelatica valve i ed to opes, and all three pumgo started.
Bis eersti ties any have been e seneers tz the erstem oss u be ed La some manner to address the ens See header ease.
resulting head and flew eendi throtti
, hooever are seek that the9 the everall C m w,ith Alger ersten 4ew rete and work A e'7 ' *'" W
- 8 am enal La the *
- eales2atima es eme des basis eenfigurations.
further analysis af _e$_the eenf ties ses sempleted la espport of this peetest mer is
'it seemed assessary.
O
,r-.e v-m w
.--n
i FC03382,Rev.[h i.
ATTACHMENT B-5
!O 4
Mr. R. L. Phelps Page S If you have questions regarding t.his analysis or it we een be of er assistance, please de not hesitate to call i
me at (303) 385-5443 er Mr. Femak Ferrarseste at (303) 388=
3493.
4 sinearely, 00MBUST20N ENsmersng, 2NC hYJ
, _, _.. hf a A
.r x
f-Rieberd W. Bradshaw Manager, Flaat systems Distributies:
R. Belthaus-(CFFD)
W. Weber L. Ph11pos(cFFD) i 1CE) i F. PerreraccLo (CE)
}
D. senta11-(cz) t i
4 5
- O J
i
4 i
1,,
FC03382,Rev.-Ih ATTACHMENT B-6 LO e
i
!~
1 I
EN M (1) 1 0-MPS=90-079 i9' DeNTAZNEENT SFRAY F14W RATES for the 's cogrrA230tRNT SFRAY 1
ERADER C&BE *1 EEADER, 1 EEAT EXCEMSER, 1 PEDEF" WITE Ogre SFRAY NOSILE NESSING t
contataeant i
Pressure Flow (1)
Flow (2)
~
aats 4 &
J.samL J.smal M24LL EEtit.L 0/0 3040 3175 337 343 l
15 /- 38 3900 3040 336 337 30 / 70 3740 3890 330 336 45 / 105 3960 3740 319 330 60 / 140 2380 3560 313 319 ME231 f
(1)
Aaeusee low SIRWT level and degraded pany performance of 54 se minimise espested flew rate.
(3)
Aeouses minimman technical specification level in the l
823rf ame===tna) pump performanos to anzimise espected i
flow rate.
1 k
1-I l
2 k
- . ?
iO j.
4
?
FC03382, Rev. 2 ATTACHMENT B-1 0
AB.B Cctober 2 1990 0*MPS-90-079 Mr. R. L. Phelps Omaha Public Power District 7W/KP-1 j
444 South loth Street Mall i
omaha, Nahraska 64102-2247 euejoets
?
analysis of the Pt. Calheum coattimbant Spray tysten-l I
i a
Refertases (A)
CE M tter 0*MPsat0*078, Same subject. R.
1 W.
tratahav te R. L. Faalpe (oPFD) dated t
Septeaser 29, 1990 O
(3)
QPPD Containment Sprey Syst:en Analysia, 2 Calculation 6024 58-MFo*5 CAM ll-001 (C) 3 h tter CFFD-90-454, Some Suh$est. D.
R.
Sente11 to W. O. Waher (CFFD) dated August is, 1990 I
(D)
OPPD telecopy dated September 30, 1990 ej l
taalosures (1)
Centainment Spray Fles Rate for the S Containment Spray Meeder Case-"1 Eeader.
1 Neat Emehanger, 1 pumpa with one Sprey Nessle Misstag Daar Mr. phalpes combustion Engineering has provided as analysis of the flew retes in the contaimaient spray system at the Fort calhoun Station mader verteue poet assident senditiene using *se-kuilt* plaat eenfiguration esta.
Eigh Confidense resulto of
- that analyste e provided in Referesse (A).
The purpose of thie letter to to pewide addittenal infasmaties about the method used to entaia tasse resulte, the effect et the mise spray mossle in the S contaimment Spray Sender, and ethat raised during previces phone soeversettese.
.These are provided as high confidense inferosties having been reviewed by a qualified Reviewer.
Piani osality asserenee se all analyses is nepeated to he esspieted osteher 12, teso.
ABB Combustion Engineermo Nucieer Power gresumen h sus atW Pummusam tuus h M M1
FC03382, Rev. 2 O'
ATTACEMINT B-2 Mr. R. L. Phelps Page 2 1.
one Pump /one Wendar trydraulie Analysis Reference (A) summarised the resulte of a one cump/ene header and one pump /two header hydraulis analysis.
h mothed used to arrive at these resulte and the additional resulta'of Ensleeure (1) are identical to that employed in the C-E sairclation of eestainment spray flew rate based upon "regerenee-destyn" plant sentiguration data.
That-enlev1,ation, Retesance (B), is a recorded enlentation in assertanee with the comtession Engineer ity Assurance Precedure Manual QAM*101 and was tranesi to 0FF0 by Reference (c).
As Reference illustrates, the values shtained using the "no-euilt"(A)input data are sensistent with the values ektained in Rafaramee (3) metag the erstarance.
design
- input data.
The results shown in both Refersees (h) and Ensleeure (1) were saleulated with eseh et the three centeirueens spray pumps 8 minimum roeirculation line imelated.
Ydie assumptica in these analyses is a significant difistance from the aurrent system alignment.
The restite shown la Referense (A) for the See-built' plant eentiferation were developed for the purgese of evaluat the perterasnee of the centainment 4 prey with res to the seavisa factor 411swanee of the aster.
tere, the obiestive was to determine both the lowest and the highest values of supected punt flow rate by defining the two emees Flow (1) and Flow (2).
Tr.a resulte given la Refersees (&) are 4
for the h containment spray Meader.
The 3 containment sprey Maader ditfare from the & Reeder due to 41 asasle, and (2) the presease af too additu.se)al valves.a missing agraf The results ier the 3 containment spray amadme flew rates ier the emee of *1 5eeder, 1 Beat Esekameer,-1 puep' are in Emelecure (1) of this letter.
The est effest et diffatenone ta the emiettag eatsditions of the headees is that the 5 header has a slightly laster flee sets.
Emeleases (1L indieetes that oupeeted peep aster performanos will he withMt the range of assoptable my with seasidesstion for the servies faster rettag of the peep (300 meniaal M plus 1.134 sesvise faster limit citing 345 m).
Emeleeure (1) moeunes that the three containment S Ri&ieum resizealation ammeal valves are sleeed. pre?Ev41 mat with these velves spee show reselte whiek are masseeptably high with respost to the meses' easvios faster limit and ly low with respect to the senteimment overpressure.
Discussions with the aster vender, Gameral leetrie ca., have Ladiented that the pues esser saa rum O,
sentimeously for op to 60 days at the 348 SEp service faster limit.
4;
~
FC03382, Rev. O A7fACEMENT B-3 I
h Mr. R. L. Phelpe page :
2.
cen**1amant Transient Analysia when evaluating the containment sprey flow rute with respees to the ceaemi== ant seild poet aesident desisa pressure the valuas shown La taclosure
- 1) flow.seet he serrested to secount for the effectivenese of leeation with the missing nossle maanot he seedited eue toS e flow rate through the laek of 4.1. ersies and these nossles etLich are hiesked by
- existing venti etion doet work emanet be eredited as well.
The results sheen in Emelesure (1) when sorrested for the eheve Leeues, have been reviewed Eth peopeet to the criteria for poet semident sentalmeent desi have heen isend to be meseptable. gn pressere protectise and The asseptamos writerie for gentainment peak pressure preteetten Le a faaetten of both spray flew rate end SZ3 TWT temperature.
As a besating mini = =,
a sZzwr temperature of.we than 117 segrees F will been atomisesi cesy during the seerse of a deelge haeae 30C&. required to asiatain sensainm
(
3.
SZESPF 1mvel sensitivity O
o s e.a1.at t.e e,,.ste e, -.
rt 1
w4
flow rate values tabulated La Emelesare e1.s 4
(1).
The eenelusion in that the SZRWT 1evel eseld have to be gTeater i
than 10 feet aheve the marrent minimus techaiana specification operettag limit betere the estehltahed==wi===
flew rate limit of 3200 gym le essended.
Oppo will verify i
this to be asseytable by reviewing as-built s2RNT erewlage.
4.
system'oritios Zastallation C=E performed an ialtial review of feasibility of inee sing en ersfies is the p leading to the A and a conta sprey homeers.
This see sentatament y
meter from the to servies faster leed
- t in seen ehere one too headers.
pralimianwy evalentiene t
erifice wes14 ames to provide e er of 347 La a 4?
14 pressere easy at 1500 Qualitative evalsetiene to that it is feasible to 1 s;e the eriftee witimet datesing envitaties.
Several see&d amed to h9 addressed hooeverc to fully the 11147 #f this appea,nah..
- leally, sis
, ens l
strese seald have to i
ederessed.
Additiesmal the pipe bF the ww i=e===a formes seu5& have te me eseesses prior te 1ementasies.-
l 1
i i
FC03382, Rev. 2 i
O.
ATTACIDLENT 8-4 i
Er. R. L. Pheins i
Page 4 l
5.
Pump popradation Evaluation C*r evaluated the sentainmast t d pump test data provided in asterense (D).
Se data to pump La quantion were esapared to the analysis asesmytions and sore found to fall witbla the 84 degradaties assumptima s.
sprey Nessle performamoe An evaluaties was ermed to identi the affect of Eneareere 1
en espostad nessle emmanos.
of i
particular(se)asera ese the-espected let sina that is i
dotazzined by measle flow and differen t
l
-conversations with the nessle manutasturer indleated that an esposted drop sise fear the flev i
would he sa the estar of 1400 atorees. e of Ensiemure (1)
The C=3 containment j
Treasiest code ceNTRANS does est spesifically address spray 1
i eine la the thermal hydraulio calculat;,one of the poet i
sentaiammat atmosphere.
The masarets as driven prinsistily ky the y thermal offisiemer which is O
opes 12ied as a of the steen/aar mass ratie in the ecstatament.
Se effici medal within the code is l
hased en a spray mean of 1980 sterens and a eenservative (low) fall heigget of 30 feet.
Rile spray flow rete does met a streep affect en the everall thermal effist drop siSe does.
W EL studies have
- hooever, t
e shown,ise sentaimment tailthermal of inteney is ehtaised La fall s
(
fall height ta essnese of 90 feet) for dro the of 500 to 4000 Fee this season,p athe espected drop e of 1400 i
miseens.
missons is satistastery from a thessel kytre perspective.
v.
3r g., me shader ard-att.==1=auen l
L me on of are.
operatimp t. coppi ese be. der via i
flew ens Seen a 4 result if heth a es.1 - = re oper.t. eased. a needer u.attaa
{
valve ed to spea, and all three penge started.
Mis i
eenfigerattom any have tema a seassen Lg the system oss to be
. E.zad la'oems amaser to see pump ese header ease.
ressatimp tend and tiens wa,thest sFetes hooever,ith W are seek that thef Aeprove the everall w
- flew Nate end work assess three penpoI-* eaten 14tism as een e etalist seaf en ses i
emal ths 8 JC1 the hasis settlgurettees.
36 forther analysis of j
'it deemed assessary. pleted in espport of this West ame la vorettaa ses esa O
1j I
t
TC03382, Rev. 2 ATTACHMENT B-5 Mr. R. L. Phelps Page 8 '
If you have any questions regarding this analysis or it we oma he et turther assistanee, please de not hesitate to call (303) 285-5443 or Mr. Frank Ferrarassie at (203) 283=
an at 3893.
simmarely, 0003537105 Eutmunne, Zare u
- r...
f A; !YNY
_f unanger, Flaat systmas Distribution:
L Melthaus (OFFD) i O+
W. Weber (OFFD)
L. Philpot Jes)
F. Ferraracche (CE)
D. Senta11 (CE) g I'
i O
1
i I
l l
I j
l TC03382, Rev. 2
)
l ATTACEMENT B-6 i
l I
'n I
l DNMJ38URs (1) e-NPS=90-079 i
)
swranompt senAr rtow muts ter the e coerrAnnetwT sP94Y j
l meansa cas: *1 asAnna, a usat arcumassa, t vuur= wzra cars i
spaAt mos Ls utsarme j
contaisement I
Pressere Flow (1)
Flow (2 i
lsant )
MELL mr.Lt.L i
i ash 4 &
isamL i
l 0/0 sees 3175 337 343 i
is / 38 3D00 3040 336 337 30 / 70 3740 3090 330 336 i
45 / lts asse 3740 als 330 i
60 / 140 asse sees sts 313 (1) naeusse low szmWT 1evel and daireded pump partemmes et se se maataise empensed tiew rate.
l (a)
Assumes miatasum teemaisal spesificatien level in tem I
823nr2 ans seminal pay perteenames to aaminise esposted flew rate.
i L
,t'.
O i
4 t
sv i,d s -
- 7Fs
.. - L.)
- ".e !
.r
- ,,. v
- 4,.,g,,g ii w.n-.-
_ =
y
_m____
~1 a,
r-
. ~. - _ _
g_
l d--
g m -
._n
_ = %_
y 1
__m m.
-g
__..w
.. ti e
1 9(-
w
=
1__--
n 1
i
==
-2
- _- g q.
r i
j.
m m
2.-- _
.___2-
_ ~
1 p
. __ __ n=e_
1 1
s
,g s [4 ----
. W.
_ 4...
W
__.f._"..
a we--<
' -~
_2_
r'.,
g
__._e
.1 a.y _ m.
l
(,,,
g-
- j.,,
3
^
(
-~
{ -- _-
g*
__.___m
.y
.g
,.*.g
__ _ - _.a
- _ -:^
2 2m ".'.
=. " __.
=
,,,. = _ = _ ~
~ - ~
- y..
- j
_2 2-
^'
^ "" ^ T --
< * - = = = =
3;
_m a
m
.? Y' r
' =._- - -
i =.
1 w _. ",,._:
_T m_:
m,.
N
_ - perm.
. -=
~=
7--.
- _- a i
.T.
5.m
_C
__7
- r=~* -.
y h
e
- r---
w~
n, I
t 1.--
l
- -,...;m
- 0
' _ ' _ ' " ^
a-t.
M.-_l,,. - _. _. -
g
- ~
J 4
m
-=
B
=
d
^
~
9 r
.".~.,r.+--.
^-
- --- *-a.rv J
.1 ---
^g-----
--.:..u
,j t k __ _,
_ - = =
7
.c
- ^.
1-J.
r u, _- _ _.- _ _ - - - __ _-
1 yA, W
g
_.. =
1 3..,
__m m,_
i
- ~
..m, 1
.;_r.---
==.
,c-
=e
<m..
s er t
e.
o u%
f I.4. - -
I
,~u,,,,,,,
.4_
1_
..e
._.,m
,r.-
_m.
.m--
^^
1; g --
N M
__n
_ 7
/*
m
.ma
-...i,,,
.D r*'
y
- - =
y l
A@g I
.r--
_,N.
c, I
a - - -
6 r-u--
-- - -- c A.
4_
~
_- _= _
m m
1 m
12 r
' w,, y r-e
,--+
bg-_
g
=
..]
.J -, ~ _. _ _ _ - -.w 3
,- g _ _ _ y., -.
.. ~ ~ -__,-
~
3 6
f""""-""
=.===.
a.
d
- ==_.
EJ 4==
'. _ ;.= N ** ** = 7 '* * ' ' y"'
=
r n
=~.
l
[ g,"
.:-_;: =-
mns. _
..._g--.__,,,,
. j
-- 3gg_
=u w
rm..
d e
s mw m n, r.-
p,j LEE 4 H1 wnH 'TY A
y' N
~~
- - - - - - -.. - ----~
s,.-..
s. s,,,..............
l*
-.....l ',,......
t, -.
J
- 'i l
,,.,. l"**"V -
a '. f
. n.. l./.
.*T.M. ' ! *
- t ) ;
e i
................ ~ _
.,.,t.
O';.'O
..E t,
s, i
f.. I
..O.
.T.
r)
. - ' t~.
___ l.
1s
.g 6...
Ny,i.d..
'.. g..
l.
-....,...-....4
.eJ
. JL t
'...p
..l.
<.).....,..m.,.n.......-,...-.r,-
......p
....,J
- ),
p m.
.... s'), t t,.. [1' t i.
yj.
g J
p.
h,,
g L,i..
m
. G..s.... a
.c
..j
..s...--
r s.<
,., g.g.
p.
1 w....,.....
- 9) #
l.-.
......... t i..,-
.g g /..
-l..t f.e y.
- 7.. g...
- -......j. t g.......j-t.
...... '.m_t a
-i..
'...,..s.
...l. '.
p<
l.' -.
t[t*.+i,,<.
.g.
-.(,.
U
.( ej :
,e
- 6 j
6, s* 6,..
i.
1 j
i
-... 4
.g
..f'.
.,.s..
e.y.
i
.t.
/.
.....e.%.
_. i g g
/.
... ;j f
g
. ' t *",..t/...;.;
il f..
3
.....l.
.. t'
..- t.
4[.
.-t..
1_
..... rJ.
1....
l,.
. $.,,.,o
..g,f,.
y yw.,,,,,g..
i.,.
,...i.
.g
.l.
..-.1
...t
- l..,..,.
........,....).
g..........
(g
+,
w,,. i.
f*t i F.
J..
g.
..)
. O..
- u....
L..,,,b.,
.w.
.i.............. f'...
s q
.,..)..
me
.l n
p p..
....i M t.,,.
N.,
C t.
......o.......
. *U.
.g V.
(
.'1 t,.(,
h.
i..
q g
I.
f...
3..
. l..a...............-...._.......
o
..l.
I y.
- g....
g..
a.
. b,
......t
.I
......, A.,. <
J.,.*
- ^. q.
.I"1 c
g
)t. 3.,.
&..,.,.,l. w,.
~
.p
..e
.r.... _..........
'.*f,,,.;. j, y.8. g, <
t/) '
p g
.g.
.., u l....
.. w..
...o..-..
.......e..4
.f 1
t.,T.,.., t 6..
l...... t t..
.........g.....,.
g.,.
.g
....,,,L...
..,.f.'......,.g.
..,.e,d,,"
.q,
- t.........
t.
............t j....
.N.
... 9..
-f.........._
s f.....,..
..,.............y..
t.**..,.. i... t..,f
.l............,
f..
.s L.
y.
y-'
9,
...-(.
...,....I.,
..t........
. 9 L.k...
q G....
.... g...
d..
g.,,.
.........,.......1...
p
./..
....t1
...,.,L.
. L.,..
..... l
.....)....
,I-4
-t.........
....1......J..
.......,.....1....6..
l
.s g
4
. p...
J.
.. i...
.......,.J._..T.
...4
.4,
........l.,,,...
...f../.
.l........
,s..,.
I 1
y
,.-i-Q
..l...
l..
.........,...1.............
..,. 1 1-
.....l.
1 4
....1..~.....
....,.l l
1
. +....
l..................,..........{..
. i........
../
f
.... l.s 3..,.,. g...,.
. a4 L.
..i 4..
..t 4
4
..i...
i....
,n...
.,,)
L tw er.
,,..y... _..
.,..,.]....
.i.
...............t. l. %..,
4,,
1.
l..,sJ
...,....,..........f.......f......
I.
C.
- 4..,
..... M....,,.i.
..,.. l..
3
.i
.g g
i n
+
Il.
~..
l.
u.
.l 1....
y
.I g
l.
....1
.,.4g
.,......... -........1
~
p.
g
......s,......
l..
g:
1.
(c
.t.
3
~.
6 L
l t
.s 6.
c,..
..4....
t.
1..
F...
V L.
.....l.
- 1....
.l,... l
- l......
..t.....
,c
.........f.,...
......1
. 1...
.l..1....
s
.t...
i...
3 1........,..,......,.t.,.,.y i
..L..
4,,,
=.
.g t
f.
.1
.g.
.....-........l.....I...,.
1
.1...
......).........
I e.
f*.
f,.,,,,,,
..,.g
.i.. s
.............,f...... 1.
... f....
. J. t........
- 1..
....... 7..
..a
,e,
..f....
.s
..f*."."..,..,.,.......
... s.. 1
. (
....h.
l._
..........l.....
.................,..1.,.,
.....e g
..e,
..... d 6
6.\\
....I
. ~..
g.
.1 4
i.y.e Ip Y
. -..,..i.J'"i 1.
.....A./ g g
.e-....
3
..... ~.6...
...=......
.,.rr
~..,.,t..'*.....
.t 1....~
f..
\\
s.
..+
...L..e
..e.
. t
.=..l....
... e.....,......
8 t-............l...!.. (.
l...
.f
.. ).
y O...... p. -
4 4
.............e..
.w f.
3 1
.I Ig a
,3..
.a
.i..
.,.....i.
l;
's
.-t.
-~
- d..l
.3
.t.
..~
..l.
. T*
,. b' t :.
i(t
.s.
N,,.
.t......
.l.
- p. ().
.y.
.s
..,,3
.l.
g.....
1.
. e.
. '"L
........ g..........
.p
....I.,..
l..... p*.
..., r#
~..
.c
,3
].n e l t.
n.
.s
~.
.-..m 4
.i
..{.
../,
). c.).. -.. -
- d. 4
~..
' 6'
... f,.
s j, g (
i
.t
- 1.. '. ' -
...., }
(,
................ t.
i=...
....e /.-.
+
ga. _
r,
....S...
..i.
- i. *..
.....j
.gNg1
.g..,
s 6_.. r
,MM
- 2. 0 ud,_L_:.2 _.
'.;"....kc
..._.....t
- a...g-
..u
~
n-i, 4
, c.
r, 2.1..
o 4.
!. l.1.. s.
._4:.
jd i. L..'.j -_..$, _....$.,.
gs t
e i
i
.i..
I 8,,
..=-},.. w _.i d.'.'t. t j
.. t. e l.-
l 4
s l
.:..... 4...
a...
i
.. j 16 3-4 i
f "i w
%. w n
.. r..
~....
. !.. q i.
7 h
c, 5 4..
w
. i m. _#, 4.... q.... _g.
31p,..
2 c.
3 i
zj
.4
. 1. _
2
.. 5,.. b.O. y... i t. 3 1 g_
a,.u
.. 6...
c T,,o a..
4.
is.: #
.e n
2 4
u.
- w. s i 4
v. :.
..i.
q p:
i l
u n
a
.....g; i@a.
t.. !,.,.3 6
.i u o z ms am, e
d e_.
.c-I.
.a R -a
,a 3
. m..
a,j,l g-
=
,i -
,p 3.,
q.
- -e
- -.r. :- n.-
r.-
t
- r r i x
)-
,e
.. - g r,
o a
8 1
- am
~
.r.-V. a'
- 1l"
- t. ' <
-i k- - 'i
'm
~ ~~'. ' r.t~*F.' 8. '. '['hd
!C
"; j
.l
' {""' t d I.
I 2.-
g.g 77.
I g
t L'
+
i w s
- q. e. a m
r u.
m.
.u aw s (
'[i.,, j}i !-Q%h ;" *t-f M -
y 1 "- f- -y --f_"'"--*g*:. y :j4 y
e
?
A
.A
-1
.,. p I
d?
N, 9(.
3p,.
j j
i v
_g :..
a.
.t....
.. t._
_.3._.,....
y/
I l
i i
i n
p, Ms.
<ut i
i j
- ..... - l
- - [._ j i-
.I f f.l
- . g4*
- j i
a.
e
..i p
t.r e
i.,.
2
. :. p..
.. z
.',e c' h
d P"'
e i
. u.
(c-g o
c s
y p..
.. a.: a2
._I........
.i a
_e.. %
_m._..
.J_
u-
<r f -
)
q e
- a...
t.
i.
\\c r
s,.3As
_ n
.' a Z
?
0
~
t gk 2
4:
( +ig...
N tW, ;..Q 9;y.: p.; ';::i.
..."4 E3Cic.tiJ
',4 i
~
h m
a I"- AM n.: i%> l G,T t! ; U:YR:,1.2
% "~
Y
[lW5.nnWU
~
.. dW. id.r, $r..l @
{. ",
C i
-i s
.,,. h u I.".
l...
A.,,.a h.u,.."".y 1..
w y o:y'.
, t-
..c..
...,r....
M C
r@m.t
.u e.:: :. : :.. : p...
.e. -
.i 1, -
.-i..
um gp tr ;w.m i. :...; :q:
n.
i o 1
%a p:-.M c.i" XhHis i
t s'M..l.i.i:..:r.$
.Im. J.,
- " t '- 1 ::
.. :.13;. E ?.'2,Q ei u,.._:e,;p -L =Ww ;
...c
- ,. i.e..t*vt.h "W :
5
.M2
'.. +'.10; rig
- 1 m@s.cwn m.
i.
- :c 4
Yf e. :."..:4 I h
'i Ji *Mi R Whe:a I i i #JM
'2n ! ric %G.n Mir :ab i
a
\\
ap.,;p
- h...ti.
.F. N,..
. u.. t. r t. p.t.% n...
. :..r.5.i.6,-
mE-t.i.q O.. P., Mc v.
9.
r.m.
i.
a.u L
p 3
',(s. I,. p J. ' *.. '.
,9 vl.'.e., e.
e g.
i e
.t.. l u
g.j ej.he"g.
hl ;9M
{..
(-. ? ]
o r
ti
,.f
..;,.M.., p* 1 %r..'l{a...: ;A*;;
,1 A;-
- i.
W f
',[L-' d' I
[
j f t, s
, (f M g '.g " fl M
i
' )
f(I
. En 2( !,Tt, $-,[,4 h }, [ '
. j ""
',, p ',b-* k*l Jr i
' 'J,cm.'. I.*
~ * '. ^
' v. l,* I 3\\. mr;
,r. - V;!
=.-e' r-
..u!, k.
6
.7 t h
' t." F.:k th.
~'
'I
,.1.:,- '.3, t.r ;'I 4 ;f' k
2
. - o m
l.
- [
t I.[
I
$8 f
^-
_t.-
h.l4 t.
m
>- "s t.c..
i 4
- e..+.; %.
tu.. X.a x.
t.a t t
h $$$
lb
,N.
.N I
'h k b h
k
- E d'.I. H '.* ";. T 3. 5. l. ~. E. i-n...
N' '! '
k}d i.i h D
it-4 C~*~M-
.]
t v
[
c.
- : u e
g o..o.
.g a
g 5
?
.?
?.C.9 ~3- - ?_ -
_ ~
T, x, -____
x
- n...
3
- .th l.
.[...l
- a. i.d
.; 7.., f'm p..
. +..
. W..
,i l...
ie n.
y.
.i m
w'.
y-a_
j
~
w.
,..a.
.i j@Q;in g
.L'i
.g,....u t 7 1
_a
~
.!Q.. ' j.',.. '
m..
%..e.,.
_ ;q, m@
e I
w tt
/_ "se !.. 8:., Z.
_.__...._.-L_.,n i h"
a..
-l p; a..
au..
n i
a.
w
- 9.. _.
y i,.
m
- 3cu..
s"A;.w re:
p o
M;--
i
.d '4
, _ p..,
~
. ~,
u a
w. L
_n._1.:.,,. _
- . i.j.s_'p. 2c..,,' t,,y.'
gg,_Ji y F-.j,tF.J.,_. :l j._:!.4._co. _..
p
.,.ms,. a$ n--.,51 g g
m
}.
F e
+
- _.,j - n.
. g p,. P i
n"
-.J..
. l 1 n.v; e
up: :.
)- 4. /'r p+..g.:
.u.a._.
,__...... p__
c.t
.. l
-l o.-
'.ep r a,
.'J_
u.a
- a...
u.
S I
..w 1
_3 up.-
A.Q
.g Up.;
.:n i
i.
t 5
- i r
o, 1
~
,6 6
e t.;
1
.:_ a -H. )
.l....
.t..
4 ". %,. 4_..
(,il.g :..2 2.:.
_ _ 1" i
u 84 i
,.i.
- 7 1
g;.,,,
- !.,..LE c.'..w w1
.c u
"" t $ 1-w..
v 4-ny, e g.
V :' t:O s.
"?
i 4 _4
..a
.c a,
g.c.-.g..y.
_. =
.. ; g:. E 4,:el k q...E p %-,. J: :i.t cn m
.r
, g u..
i y
g, j +-- q._ Q. l9 ; l.. k;.r N.
,9 3
or
--. w -. 7.i. y,y.5.Q i
lag 4.:.
k;h) ^ lO
- t.v.z gb
--h y' g
- "i r
. u,,
s.y;.'---t4p l'--
- r. ~ C
-d C z. _z. v.'
=
ff.
...i..
,..l.
.. L _.....I
-,..h
,2,.
V_
a.l n4 a"
oo; n n.
L. i is I
tr)
@d..
g.
..p r..
A,
.h.
7 b.$.
- ' ? _h $g '
.a.
-}_.
0' d
I. '(
l-( ** ~ ' N '-
- h. 5'l
..h
'T bI M'
- l O
% k I I.,
""~.
d=*
4.,(..
3' i
I
[;e*
/ (?-
g,...-
- h.
- h
=
in. @
i8 n,, W. c7..
.l
. 4 i
+1
[.i, co i.,
....d.
..l
..a
- -.i._
.g3
.u.a.!
. p.
g: qm
. U _ u,.
r,.
i;
- n.,4
,pm u
i
.i a n_.
g.w a._
%CFN '[ "T @ [j % ~' T
~' Il dN g ex e
ua
.. ~.
mi 1-
}y$hhh -}'I
~~
.. am
[
y;.
-.. _... _. j _._.;
q.p.
M
,6 p.h
,w -
y:%y u
..t.
. J _~
. n._
g_.. e '
a
- -. l..,
[.:
i,
.I
$ i
" t.
.a p:
- p..
y a
4 e
g L g,y 2
.I
- 2..
aw..%
lip I4 w.
...r.- Jl.
J o
.,a.,
t -,..., 6
' 3., ;..
a.
r a
.u.
r-
,6it
.1 *f,
- i. *
/.!.
.4...
1 e. p.4 d.<
. s.
a...q.
eg.
s is.p u ;
l t..#--
wm;*r L' ' t. '
.ts n i,.:1.;;
l u. d., a t."r
.Hn
..R1.B.I g w*
,1A at o,.
. q.
arWee i
.. - wi" 1
7 m-m-
ng m.m.. a o.e,o.
- , #a. g.a.k.p. g.4 f.
-4 :
g'.; r;u. 4
.. ~. i' + g k
N
.. q:. i r.: 5.l.3 g
gL'm.i H.
l t4 N.y._
..M N
0:0.
7M M N. W Liri ie t.*n.c.
14 'T m-
"E t.
4
- 7. ' m
[s.::
. 'X 5
, g, r!j.c.
. I..~.gi rr.o c
A...p_ gn (p- :"t.p-itu.
.m
.g, v.
p
]U.,,,,j4.:,.j. ::..' c:m@: :..P q. i.:a..p
' n...P' t
.,1
" I~I=I;.: ~T a a.
t
~r 3 4. -
g,,p/*
l %'h,,
t.
PL gm" t T1...
S":'
- i
- 1..
- ,". t ;;-
/ l!L;
. :,. t r
..t.'"
gi t :. t 'i;. :.. f.N.,
g p t..i. ;a d
- n-b
.n tt
-i
.p m
si
.g 5---iii.iM di M.l._"" 4[ iit
"*# N? cIi dP T.NI N 4'1Ni $"- !Y eiE i! Y '.ih 'tii !"i r:8 L
- j0 23-a! ;.. W
'a :T-M 48i.i:t..l '
- 1. ;,R M.,2.. 4li:;.' s".!!.W, -
a3y- @,. d h.i F. M t!.:S... hm.
- d..v4:
~
r
~-
x
..e a.:
- . ; r. :.A,., gg.. 4...,, p.: L.... l ;....
i
. :... e;:.., ". ci 2.- 5
- .b_. W G..ji.s: %: F....;
. _g:
a:
j p
1;- *s -
..uj.y.
p :
-,.cj p..
q w
w;.;
- r..; w..
... - :. e.
- i
.o g /.,,, }g v
s
.rn
. i.F...
80
. r
..: W' t., :.: :,.zi.. m.!. tt.- !.q. !
d-u s
.o i.
. g;:..
.. g.
i
... q. :.
b
- r. c.
a.-
.:4-g._{y%.u; ::
it31
.v.., c..:m..p.1 i- ?.,.. r.:...
,i: g,.
..,.' A "'". F '-
,[.
f;L \\, m- _..
.-.7
. e 4.4 h..! M N,,_;:y,,;,';
.k.
,:t :h:i.:. /jy;; '. l.r<
- . [,.,
R B G.* ' h_.id i-4
. :rg
. i..
_e...
..l.lld~
.E.".u:.p::: 9 0
.L1.,jF i".
HI !'sUy'.
. : ;n '.:p:j.
\\ -. ::
L-h::n e-= m wsw
.:u;;
h-ga d:
.,. ig _
i Erp..
,.. t,.. l.--...o".}~';"
"J:" l. p..
.t..,
..; ".,3... l.. :; - j.el p.
6 J
j u l' Hy,.
m ll.
t.
t..c.
.t.
.3, y
w, ~, -,1 m
8,.
M E_
8 c
- 6-M^@GW" ("%. <t/__
~
a
,, y,,,
S -? _/AS WU. M V.
3L
^
t n.
ai
. __ __ Rr __ __. _ _.. _ _... _.._.. _. _. _.. _.. _.._. _._. _.. u - - -.. _.
..._._..=n__...
j.
n.
J
_---=___._._.a....._,- u = ~ _ _
+
_.._.a..___
~
- ~.=-.-=.-
a1.o.- >
._i......
__..._._.__.__.__e-
._._5._...._._._...
,1 6
m _.$, __.
_v
...g.._
....c
_.__..._..__.___a.... _ _.
. i._. _ _.s. _. _
(,
+
d.
s
_.. m
. _.,. _... ~. _. _ -..
s x
,]
)
?_
'W
- s. -
1
+ c t,t
_. _ w-.. _..
..__m._-... _.. _
I,,
..c.. i _. ___ _._
_ r_
_v c
e
,s
. __.__._ r_.
n _.... _a _.
i 1
_ _ _ _ _ __._3.,
m.._.
o.
c r
9 n_.__ -..
- n. _- _.
)
is,
_. _ ~ _ _ _
o t
s._
e s
._......._y.___.____.__.__..._...._.-
s w e
. _. _ a a. _ i. :::g_.__ __ _... _ _.
r b
n
._._._.~u..,__.,-
G
_ u__.._...__.
x
_...___,m
=
v..,.r.,._...._.__.
, _. _.. ~n. _ _ _. m., -
. s-
_._._.._.._a.
_.._a.__..._._#3'__.__._.._
._.. ~ _..
1
_...1.... _... _
__.i.-_._.:._
x s
.r_._ u
._. _ _ n. _
(
_.a,.
_ _. r
.._. r. -.
.m_.f__..__..____s.____.__,--
-.e.._-._._i._. _.- _. - _......_._._. -
..__m...__..
._v
_._ _... _._. n _v__. ~_..
a,....._,...__......... _.... _. _.. -
. u._
o g......._.. _.
.a..
6
, s
_ a. _...
m s
_...._.2__....-
._i....._..._...__.. _. _........
. w.
_.__i._..____..a.__..
z
,.t.
g w t t
s s
__._...__. a. _. _.... _...
s
..r,..__a.._..._..._..._..._.___._.-._...._._.
n
,.i s.
_.._.._..i.__._.i..o_._._._.._._..._....a.._....._.i.._......_.._.__
..,,=.a
..... _. _.... _.. ~ _.
_... _ t _.__ w. __ _ a. _ -.... _
. _. _. __ m........._ _. _
v
.-...._...._..._..a____..
_1. _ _._..
.. i, s.
_.._.t.__.__..__... _.. _ _... _.. _ _.. _.....:.................
,,, 9
.t_y.s o
M
___i___--....._-.._....
.._._.i...._...
.s
._. 2.__.._ _. o...
..._.._......i,_...__.
, g,
. r.
.-._..a.__...._..,_.".,_.w,,,...
.._-r__...._......._..i......,.,......._'._...
.. i..._......_. _ _.., _.. _. _. _ _. _._ m...-
d a.,<._.._.--
.4
,.a,m.
.s
- u....
C.
y
...... g...........,...,.
s.
6-3g_...1._._...,_._._............_g,=-=
w
,., l..
.r,.,
I t,
p
. _ I.....g....
T.
- 's g.
s,
....._.._4......._
........ {.... L...., N,r.,.
_6.*#.3. A. _l f.. v g _.......
j 4 _.
.. 1...
(
..g
- a. _. _...
...........i,......
we 4
.....f........
- u, gg E.
.l
.... s.
e,.
.. s g) e..,. t,
(1
...3..___..
e j
g
.{.
k
.i..._....N.
..... 1. _..._...
i 9
.M i
N j
.j..
.r,
....,1
..1........._.
1 k
..7..__.*... l. pr 6,
h t
4 e
o e
e o
o e
o o
o
.D 0 g
i O
,K Ch 40 t*
is to ar f'1 N
N N
.DM 13d 'ADMIDIll13 f
h
- d R,
a r
5 E
E im hi ovm w.t.cl<
R 4
~
G51588 49 e._
f 6
9 v
A y
-w--
w
.F
- tmR 00AUTY md W HON modasm sms f,{ e]
")O ~ AGMWLV t-f
............-*.<*h.-+.1"=..*==*..'1...-
==**..
- .-~
I9 9
...d.....e.-.*
.=. *.
==*.
t1
'uj9
\\'
- "*****".."***.****9..~
.e.....
. *. * = * " -
- l g
{
~... ~ -. =..%..*-..-..-
...............................1......-.$==..
4.
.-. =~ *
=
\\
- = -.
t. %
,. s s.
b....
.1
..............." e -
-.?*.--
f 5
t
..l......f
..'c.......J.t.......l........
.. 1
. -- - o - -
- * ~. s-Jg
- 1..._.
m,
.......n-...-...
4 N
9
---.~1..-.m-tt(Ig#
......~}.......
P..
. L...... _. %.......*'L.......
2..
w-:
. l %....
f*....
.I L
8
- ~ ~ -. = =
i~.-
e
.....+...
=
.e,.
.a
/* <
i#
-=* = =*
-t
= =.
8'Ag
.=~...3---.*-..~..
...........l..............-.-
3
-..-..3.- - -
,9 i
)
1....
u.
L.,,
.-==...-..a a
......3.-.....==I~.*.J--**--a.-*='**-=.
W
--- -w 6
b 3-
+
........W)
) g..9q' j_
I
=.. _. -
-..d J. -.
4.
- q..
+
U C
wg (g k
.-***==.*.*.M*a
- +*. =.....
-~~-.-+---l--..t-
).
~*.-4-*
aan
..u... w - (. --
., 6 en tY 4.
-{
--. - ~.t-w<......
...........-_-.e..
^
..=*-.*4 h.i. -. -.
y
.3...-..-.-..-
a,
.....j,
..... 3.....
.i g
M
\\,
.....*".'.I--.4-.=A.-
w W
e.....,..-..-
P.
g
.~.4 Q
.....-{.2......~"~~1
...,.. -.....d..
-. 7 -
.. 1....
3 g
- 1 Om
-.p*.-.-.4--
...3..g..-.3.................-..,
88
...,....s.
..+.
+
l
.. 2.
0
-.t**
4..
.-p-.
i 4
g-4 l.
..~..... -
f
..).
.p...
e....
t 4..
........9.=..
-.e 4
6
.f._.. - -
l
+.
Tt p3
,-.9..=
.u.... -... _e
==
.. =
^
- g c
T
... - I -
l
.l.. -
4.
M, e
-... -...=.4.-
e.
p.
g l..
w C
-... t.
......j.........
-1.5--
....s..
...J.............,
r
= =1. - -
as,
g 4.
. 8....J.
~
..g
{.
.~..i..o
- ad A
...u
,,j r
.. p :. *\\.....
.......b.....--....,I e.-
.l......
gp
.....V.
g E
.......... e....
s
... 1 l..
1..
....l...
I
... J...........
~.
i
. ~...
...(.
t
... ~....
-4 4
at
.......l
... {..
4
.c d
g,
......l.........
............./......
.l 4
i A.g.,9.....1...
........ % d 3...
Q
....M=..=.=./.
.n.
j---.-.'
s
....g
~~
g-s t.
C., N.
gY p=.s-
..............A
.................................4....
1......
.t.
E.
....L......
(...
m.
e g
.......-4.......
4..
is 4 p
..s.
4,
.......,-_...I....l. f......... 1
-l
.e.
g g
g
...-..l
.....-....J.s......,......
i w a c.
.t._.......-;
...4 a.
wV
.....-......~ 4
. - _ - --- l. -
a-l 1.
...,s..-.
6..
- e...
q-z.,
9 i
,N
.7......
.... -..........,.......1....
..)_
. \\.
.1
..............w......
e 4,
a.
k' s
4.
e O
- \\\\
...-.e....\\,,J
.j..
.J g
4
.*l
.....p.. 3.
,.4 5
p, b,l.
s.
1.--
...k...l....--...........-..-...-
E 2 3
..l.
.=* ~. -..........
...... '.T
.{.
4.
-- ~. ~.
4 i
~
6.
L
...s-.4..
g...
4 o s s
..- ~...
_....4.-,,,
.,.....................%.,.h................._..l...
.l..
a 1
.......... u.. _
........N..V..I.....
1._
I 1......I..
.l.
1...
....1..........
i 1...
1.
. J,.m..
p.w.
....j....
j.........
=......
..!g,......t......._........__
............ 6.....l....
....._..1..,
.....,. 1'............
- 7..... t.
.p...
..I
=........, _ _.. ~ _ _._
s,,
.._........ _.._... i.............
.......l.
.-...f_..
...3
.w g
3..
........t.....,.
.1..
o N.... &.. -..
i
., 1..
g e.
.1
.3..
,s N.;
.........3..L.
.. =,....
_......)..
.],....3.
4 s
N.,1 g
h h.
.h c
n c.
2
,1.N3) U3d SDNIDM tr f
.a i
f f
i p
4
.c.
y s
y
[
o g
e M
C w
e 5
E h
1sidii avan w.telt s.
e t
I
~ i f
f
'T.
.4.
b,
)b&NY li t 3 3
_.m.
_,t,.._.......i_..d....,t 1
.. n.......n m...-........ -. 4 p.
. Q...
La..A+.A. Eg -._.
- p..
.CIi -. C'*}..
.. $l M
- n. 41,L...
.... a.
v..~
...-. t. ~......
3;&
--- : n.: =:g p.: tw t -- - m r r.A.(".~.:~W.
6 i -..;
'".~.-,.- Q...... g g M. nt _.
.+.
., r :._ -
. n tr m w = =..m h~=...r tu
=. =.
n-,z i.~- L EL- -
i g
K.4@p...-,.!....~..e~.+.-*j.--.-a-.*.*-..**~+.
.+-.*..m.*~...4,~.
... * * ~ + ' * * '.' * - ** m
...+ =. M ~
m +.
. ~,
~
a.
p.,-
.
- a.
h
.o.
- +.
- ...+g.***
..."?~-
-e
~
..e....
-u.%4_.
+.*...y.
.[ -.::m.
..,Uw
.,. A. 4 4. - Q 6 _
~. _.
3
_. ~.. -................,
m.. -.. _ -
.. - -, g.,, h.e s!, *^
.y i w
W *
..4
.~a.
e (.
wg1 m.w 4_ __
,.,,,y,,.,,,,,
_-..~...~.'..c.4+.,
~...
.f.
g
.-.4,
- m.. t
~.. H..,
. ~_-:_=.....~.. - g.... --
~
,e.
A.
e g,,
g
._.a i
.-.e-g.
w-
._te
'. ' *. = *. '. * * * * * = * -.. * -
. - -a...-
t._
M,,, g - -
F
_. L.,y.
_g
__:.."_.4SR+-..~
y,
- e. 4 - ----p.~.ee....
p e.
$.^^,:
. + -.,
4 -
P^T-7 TE..k 1*.*
- .k*.+.
ee.-^.~--.
. : ;. ; ;, m,
P
_;.s e.-.4.
m-m_. n 4
.s.
.m-
.2' s.
_.i.4
... g. M.
~
I*
. [;I T' ~ ~ }
e
+
f***
i E. y'
~ - *'g
-7,.; _
^- __. **--f**
_ _ _ _ m m
- --1.
_g Qp
,+
ry. -
w
- !7 '
........p.,
- p..O* *""*O* ',. ~ +;g+g Jf$
9i 6
- 48. p.f.. -
_^- _...
~--m m}
. '""'I"h#_ - - _
e_.
p.:
._.-4...g,.-
q
~..
.~....
.ee.........-......... -
--01 *.
m.
p i(,
Jg.-
.f..,.._.......,-_.._...-r.=.=4.p...
t+
L..
..e
~.
.It::.~.
8
_.eo
.-,...,g.,.%.,,.},
Q Yp.:
24 x
.77. - - -
6_a... _1...
a....... m. uu 8m,..,
,3,Q
..o-
.s.
Huw.4
- pg, j
i
.u og mean.e mr; -
.. n.
.r,
- g. m p..-
_ 4, -
-~:
.,4bL-
-.- ---., i + ~g,.. ; -
5 g(y.g,
- ,,,w : n::;.; -. :.-~. p '
~... ~
i
-. -.-..n t-.*
b f.-
j Q, --
4 e*'. r...
r-y
.. +*
Q i N"
,PC
_y 7 AG
[*%
f t an.
J.'.*. K =
s
~%
, _ ;g jg gg
.u ~ % W i.:.23 R.
G--
w-4
~
w
\\
r c'
.a' nk..
e.
J'.._,
___ =
2 \\)
$ ** ~ _
..n c
- . I w4y-2
.- he r.--
. -g,,,
. n.
~
f*
W tl *** --
-- - -*~
z y
m p C"
= = * * -
- 4. r apa (
-_.a T R s.
p m.
=-
4 g f.+-
~.
=
e, w
.h-r.
.m
-.r c
4
-^
s..
_ ~-
- .xI**.*.*...
6 M', L. r -
+.4.
4..j.--..
.g eW..
g
_.e g
p-
- -* nt;'* a G
.~.w =~**hr.-_.
v 6
pp
- n+y mA.. :..n Q
d.--. _
h ye d
gg !
~~l 3 E P ~*~
W g
g
)
.it _ 1 ::nr.n:r
- I C*
gp-
- ?-
-gu 5%
-+
~s
. 6. :
m. a.
hg :: @= m ;
e 9
~ w
.m
(
- ,/ i %
~
i ****f i i f C
1, 4
m.
nII
^.A.$ 44 7 ~~ d,,
.. r sar -
_ 1.
.,+***h-
,_g.,,-
i.
-+r-e4
"***9.,
- h.
-* " * * * ' * * ^ ~ ^ -
9,1.*. f,
.L.
,m,.,.__
ppm g
%,y ;
_----.__t
~..
-iz
+-
e
.+
- _ T_
y..j.
e.ee.e
_ _ _ +4
_>1 e.
.a r.
w :-
m
)
m 7-Q"
- ~T,: %. -A7
.. > + -
i g
84.*
t g
---1
- ?-
ed e.,.
4 4
^
r_ ma tg
.t e
- - %+ A 8 >
3 "' f,,"{
p*.A, g.
{
._ " N Uhp g.:= m
- 22.i ~
~ ~
w +.r
_Mi
"'C*tr
. i. i s
cDg
-~
__ u %
+
c m
w.
M$i w
.. m g
Ihts n~4
.. __ c r.-
x s f Q m
c
- m....:r :.~._q /d 4
- - = -
y.
c.
Mbw 4f'
-~:=.
- m. p: : ; +4......
uo o-
.e.-.
q.e see g
es
-W c-
_..;f
.h, f., 7,. *.$.4'" *.**.*.
~
r+*%
- g4..+.4g t,;=-
,y 4-
' '~
~ ~^^--
eene
--t+,_,--
} W **f
- I
,h.. - n, m - =. -
Q.._
a r
- ~ ___-
m, W E -A.I
~
jk kI d'W ^_i
-+~.*4t, ;--
,~ *******=o.3
',, ~39 % !+ 1"^
- ++
.e
++ ;..
- ~
l 7, : "-_
-t :
F.~.t a>
jd
-w
. w_p, NEL&
Gird:N. - _Ili M
- *:2= *--
J 2
g -- bg+i.? 'J. -,-. w e
E-w
- v. _5 c.3 z m;
. a: -. s
.t G4-a
-w E N 4**5
,M x:
- -~
ih*12
~
- , w-M ~
5-.7 ' " e-E
-*f
^l
~, - y %: # "
j
'J M*E m; a
[g "O - a
?.p.} 2
' T g' _
"p'*gj m.
.2
--~g1
. *t.* 1
., f -
'7 e
+P*
.~y
_i,
t e-I l
- =
1,,, w..y*"t******-
f n
[
' _ 51_ "
.:m4.-.,_.m
-- 1;--
-..**.4*.
m !_-
r
=
.r 7
~ ^
.-pE"_.
- 4..-
.- h
, ^-
a
- ,..m
- - _ +, -
A t
a p
yl
{ 4.M d 44
.- ; m>
- _= -=
.- + M__
T
.=-w.
a
=_
rr,
-4 I
E-c
~m
.u
, ; 1,1.,%
u.,. - _.
.r -. : m-
- at.
m:
_q
~~
..s c
e J. m.-
t.
,,)
x
- =
=
1g^
,2
_e---. -
.,b.l__
e
,u 4 h _
9*. v,
c:.
.o *v 2
w g.m -- 3 e g;
/
a:
-+ +
.-M*_.
{
4,.
1 m6. < -wg
., ; + u c**
v m
r_
ntem" 1 -y1e+_ #c
- - a + w.H d
2:-~ t~ n
.w.
I QC,
c- -
a u.Le rn u yJ.IM.~f V'l t m - -- **y:. nr*_--*-** ** :
a..4&
y i
m-1
> = s.
m.
-e
,._ man >.
.w
,,.,..o.,.
y e
e
.e
.t bl.M
. ' ' * ~
,a 6* *.
g
,. ?* {
s
" j # '..
' btH M = A*
.i,
%,*," gpg"'"M54
- M
).,%
QQ r:' '..,,
.: 1 =
m sha m-m TM -CA.
L, si g 8,...
9
], j. '; M
.59M%W e=Y(yf O'M
?. -I.Q
'i M
'f
[
3 v
JtOr-
- +
dfd 1
aH rr.r !"
+"
y A
I
%r.
~.',"2'% '.g;. K.** r':[ l *[l,T*
M., k!u
- 9.,g, ld:
.,1,,,y. '..
- r i%
1
}
Y 1,. ' p $.3 c.o -
r-
.]
.4 g.yy
.,, e
.,. r..,.,
...1
'am'
,,m.
+
- *:. J-:..He4 -~- +, -. ' '.+..
- u..
r I',:T i.
1~....
.ir. O..4. +
a 3 pr n-h -
t
.a. Bun 6 rn.i
_pt 4
.v e.
.i a.
- r -...o- _..
j s.
u.
L.
n stic !m.a.!..i.. i.. s.
..M' M l... !...
,. m m
i A
6'
.:nbH1 f.%
. d*
' "R" ' 'I.--
4" 3
t** c i
tJ
't s
^
e ~. n.,
-..n...
Tl r,:.
..i.j.; a.p fin t
. I~.
9.{).
.J..:;..,J ;st:
.}e t
4
,5 3".
.N y
- i r i.
' i
,.i 1
3
..j!.1,;' K,
.~., a.. '.. '. 3,. 4 j,i.',.M u ' vs TA4C,
j j d rs hp tr:'p
.,I.t
..s
'. l') ~ yt.t I
7, g
_ '_ _.y.
- a...
... el..
ga-
- .t
".3 Q.p..;.::: :
-.4';.....
'L-....!
l..
rf'.p 7
.. ~
ss 'ur?
r r. r;.t-p:
6
+
i 1;
)
_'IO_. !_!.
T'b'.
Y
'1 h.
m.j.I'
..f.
m
..t.[
r..
e a:.- n,:ip
. p.
a i.o q g
i W
W se g
pa
- i...pj ' t,. ' Wi.
...h. :,;.., ;r ;...u. y 1---
+
q::.
a.--
s
.i y
,.. :.a 'e. :: :p;::a::.
~
L p"
i.. ~. : '. i.-W"g.-
.- +
o r-a;
".up,,; r-1
- p-j:
4.' iq..
',.g g
.it
,b:1
" r-
.h
.v' u y D:
r p.
j l
c.a
- r..m.; ~g n-t
":..a gr r
",1 :
4:.
.. P.-h(H h::
i!p jpt p:
i.-
+
--~~-
- t"."; O r.
m.-
..: n"m
'l. H i}E. iP!
~~
~
F.
i.
c tv
.. a s
. ; t.h ?!'.*,y. d. q !!..".U j..l.*." 1.$; ! !* '
.ih *.
4..
(m'.'
.": t,'. ' *I...Dl..,.
. l.
" ' 'l. '
'.l
." T, ' '
'}
,j
.~
..,f1P.
'l U
1a;,a
.l ii...'!.* : f' ' I,.. ' '9 I.d...h..
,, ;.. 2,
!q?.'
f n.
n I
!.. )*
I' elb
.I f* IT; k j,
..I g
I
' f,
'ikki tk. Ih..
f.1j
!b.
l:
U p'l r b
i I.
l
,, v t* g" u" t":
n.'! W :.. h.. u. n, i,,(tj P't u
.r L. 't..
I._
- T fit 8%.h-*m,.g. ; e, a; n;4 n,.
..... Fr-te: r: a:
o-
- .pa h"r-i i
~
- d..f.
2, N,.,
g g
y.
w.
- :n. v.g.H.s... w., ;.3:
r 1
.i n.
- .k, m\\
- li- :m a-n. u.-
u:
e---
- 1.
g::::
.H"g r; r-2.
i.n.:
w& w
.n.: v-).S i
,,,,,,,,1 u.=
.. t...... -
3
. ' l. 3 R,.R.p.. i$.@a 4..!. $1:lit.i..iM. F4p-h.,.......
.~
r:
t P.
,p i
j b,
.ri,.. d, : M.d; f.} m.i. N... [O.. g'U, r..'dE::'
I.!
ff d
-l n.
g 8
\\
h Y*:
- ill
[
.,,9,,
'[
3,,
- -IilI : ~t ' '.UI !!ih--E
- -';
- II'U 1
.a.. j. ;.
.i.if>dUUf M :34M-* Y ".,I- '.:h i
f.
..3.
..{
I
.4 '
'ir.i [.h ["p"." '.;;; FC 4U.
g '_
" 1. -
'.l l
1.,,;,,,,,._,,, _ '
s
"-p', __r!
4 ap
_. ;"j.
l.
j-
.I.
m.
- H P
i g
a 6
. t 1.
..:P...
,s,p ;,
t'
[ j
- .Ft '
-fM 1
I J.
g<
O
)
L. -..n.
- bt 59E9 Ok*\\R\\bh\\D h/$CM4 98r Parso var, ho s g
akavr-c-6
+
- ee #
- pm :.;- w y y.i
- py.gg {
l
,,, o
. E4 *liO ncr' ~ '
- 9 C-
,1 l
nL -
~r 7
.,.....r..
'i i
h a
. 4 ". '
j '..; u.g 4
%lJ' m.i h
E da.
02 '.N.'
W
',3.
,Ab 'Q.4.~ y 4t'c
' eA 1
1 l
'g
,. J.
(B>i r
+
g i?k, no
_i{ '$
w n
4.
l-t t
t l E' I
.i&,,. xd
, a
.iiTS:l'i~
[j g
M i
97w )
i 5.;: !.s deiW
--M W s m me,f'
- yi in w e ie s 1 a
s g
h '9..j. T. 3 [ [ I'"
f
~'
M_
h
~
d' k.
'N %ni.!!i ' 64 i I g
s
.. +r.
n.
e m..
u ez a,,,,'t,,', W L t.,'
q,r y
0. $. T--? ? '~j. h :) s & h R..
-9 ' i hr M 4 5 '! k Q r;
-.1 F
- M ] kg#.hidsi. g bt Y ik 11 1 M
3
- ~ x.nrJt.py g_DJF g,
.m. m ts y
x a
>f fi
'7.h!r 7 2 c ::. :#
1'
, mirr W. 33 },
'"r..
y
% % itte d.P:::jgf(? %
id:# ML o'..
Cle :
1
{3 wt,yi;..;
Mg + nt
- 3..'~.- g.
J T
D I!
d el10P Ppth
-M:1h l.
\\
?
! :'"f. '.~k w n i+ 1 l'
.g.
,+.hIb a:. EI 6 "9 r l i.ev w..v: m -- n}'
U.
. (:. b $ h.. i l
?I Yd '
i
~
...:en:= 1 1
?.T isang f.u._7.:.iun
'*j j
M e a.2 I
'g
- .3 p '",
g n -..
- s..-
g.
MM /T
[,
,..:. N,
,+
dmeyevr-c-9
FM S387_ b 3
" "" N Memorandum DATE: March 21, 1991 PED FC 91 1762 FROM:
B. J. Van Sant 10:
R. F. Hehaffey
SUBJECT:
Motor Horsepower Estimate for Si 38 and C pump operation Per your request, DEN. Mechanical has performed an informal calculation to determine the motor horsepower recuriements for the containment spray pumps.
We have analyzed the performance of the B and C pumps operating through two heat exchangers and two spray headers.
The results of the analysis show the pumps to supply 2650 GPM each at 0 psig in containment.
At 60 psig the pumps will suppyh 2125 GPM each.
The motor horsepower per pump is 325 and 295, respectively.
The analysis assumed the SIRWT was at Technical Specification minimum..This is conservative since the level will drop during the accident. The analysis O
also assumed nominal pump perfonnance.
This is also conservative since the actual pump performance is slightly degraded.
Although the analysis was informal, it has been checked. The analysis was based on resistance values derived in the Combustion Engineering's (C E) calculation for Spray Pump performance. Those resistance values were used to develop system curves for the two header, two pump hydraulic model.
The head curves for the two pumps were combined, and the intersection with the system curves for 0 psig and 60 psig containment pressure were plotted.
C E is performing a design basis calculation to verify the values given here.
DEN Electrical will be notified of any changes at that time.
If you have any questions, contact Jon Ressler at extension 2426.
B. J. Van Sant Supervisor - Hechanical Engineering Production Engineering c:
R. L. Phelps J. L. Skiles i
R. E. Levis r
R. G. Eurich
(
R. P. Clemens J. S. Ressler PED Library 4...ies
l 5VlY2K9?QMQVSNf3F
- FFC.84:Jo_
,,, ).;t. MC 8 Af !f !EP'- T R A N 8 7 0 AM E R 1 E S T R E P C AT "
, g-- - u.
StAAL ORDER: 54Al*f399
$ HOP 0ADEn D AV 3 oS 3 t0129446*C ggg
.v.
PW ACH A5ER'l C ADE A hum 86 As MN29399MKC 9 ' j.P M t.$ E 00 MERT1 COOLANT
- AIR
$Uu/PH ASE POL A A!1Y khldSh
$TOMER: OMANA PPD MbbM E~f v1N0!NG LOW YOLTAGE
{'[.t.h01NGMIGM VCLTAGE 100C AVA
.00J AVA 6eG VOLil OtLTA N
- 160 VOLib DELTA 4 tap 5:
6360 6200 4160 6055 3950 Ji..............................................................................
Ms515fAhst$a LQl8El, IMPED ANCE, AND AE3UL ATION cot AECTED TO 100 Ot3 AEE C.
fl[7 A ATING, LNLESS OTHkRs!$E 5f ATED.
. Atl!$fAhCE5s (ACITING CURalNfr LCia!5 AND !MPEG ANCES A AE B Ast0 ON NCAM AL LO S $ El AND A E G u'. AT ICN AAt 6A$tp JN sATIMlle,4
.y. MEASUREMENT 3.
FOR THREE. PHASE TRAN5f0Amit1/ THE 4($15fAhcil art TH( sum 0, 7 '
4*fy.T M E T MRi f P M All5 t h $ d A !( 3..............................................................................
?F
- At31 STANCES IN :
AT 100% aAft0 1 06160 to
=so
')
- CHM $
i VOLTAGE 100*J EvA
s SERIAL TEST : w1ND1NG t i t A C 1 *. i N G : 40 LGAD
- LCAD.01$ 1 Num6ER DATE :
n.v. :
L.V.
- CURRENT
- 6055 WATT eAff$
A!MP DAv.530101 110145
.59 05
.00591 0 50d$
25e5
??99 4.e4 :
kh0Avr,530<ht 1107.
.57652
.00591 0 1677 2009 1661 4.s>
4t.DAV3053C 11074
.58 50
.00590 7.! iv 2550 76ed o.4u :
c'DAV36530..J 11134
.576 3
.005Y$
0. ) ; '. 0 2o19 7703
.T5 :
'0Av30530401 111385
.57:'$
.0051/
0.$4t-2o47 7702
. 7) :
TCTAL. 44
+
,);
A/(4431
.oJ3 2010 2
10)11 1
P!h s.
GuAAANies 4
< t W. - e i t :.
j r'-
$ C.;
I PC.EA FACTCA 1001 h. '.
AVERAGE 1.186 0.11o y.
E' T i. e 8. A 3 '
- 9 -
. TtlT vf 14htGr*I
,.610C "hilERIALNC.
'.AVEAAGE R15E th DESREE C.,
- t."
s s
' 0 4:
DAV36530101 wifH.i i
.60 W I'
..d AMP 3 1 D 3v50 WCLTS 16o..
A=
- i.iM V W1hDING WhTIL Coh5T ANT TEMPEH ATURE e 4 4 4 ; A C 4 i.'
alh0ING 4!$E k
6f RE51$fANC'
!RON LOAD LCAO R15E Al$E
$9AA TQfAL t
- (Mi pi,i 1001 26.0 40.2 00 SS.1 1331 13.9 53 0 30 o2.4 D AT L 11/14/o5 APPrm s; e,,,,,p,M ff;,,,
c i.s c i 0,
,s c
q.
I I
a ti b
-~
f I
ko (C '
RG H 'A s
......,....0.,........
~
1489LAf10Ns itsf O. APP 61t0 P0ftNf1AL TC$7 (v0LTAGE 18 APPL 1(D 6ttet[N (ACH =1NDING AND ALL o c
[
F sihD1hs$ CONNECitD TO C04t AND GA0Whp) y f gjp,ow,
'~
i k
i RAftD filf VOLIA.*e! t OwAAfiON OF
- NO'n-,
j i
eth0!NG VOLTS :
APPL!tD ftST 28 3 n.W, t 0616) :
12 KV eC $ECOND$ 3 C
L.V.
.50 1 6 s. V 00 stCUhD$ 8 ATTAM4 E f.
lE i
.1NDUC&D POT!hilAL T[$ft Teo f1 Mil RAtkD VOLTAGE AtRO$$ THE IVLL nnutaw a1 J
l 7200 CYCLil.
.{100ntAttFOR
, V..............................................................................
f;$tA1AL 0203 A J601 TElf AtlVLT ADoto.
. y...............................................................................
,9 4 nt4 WY CERT!ff THAT 781$ 15 A TRut alp 0Rt bast 0 CN FACTORY fi$T$ MADE {N 7p ACCOADANCE ilfd THE LAffit T4Ahsf0NMtR Ttst (0pt CST OF Tdt AME4: CAN $f AhD ARD$
A$$0CIAT10hi AND inAT LACH TRANsf0 Amin.lin37000 fet Aeovt IN$uwAfl0N tt476.
....,hM.
DAff 11/1./s) A7Pi*d; ev
[
, 0, P..t, i
I j f
?.
I o l
- v..
[
- t i
k L*.
ve -
i I
s'
. ~.
i,
'I.
i-j.
t 9
1 i
Y. -
,3
?
I
.t' I
.I' l
[*
i
~
t.V.
S
- 9 F
i
?
E TIF,9. MAhlf 0 AMti1 W 4tM Af
- ww.y g T.N. % G I'"
L G4htRAL'CRotAt $412-9399
$NCP OAOLA P AV)65 3 M29446HKC R'_D333L ;
MCJ5T0MLAl OMANA PPD PJACHAllA'$ CADIA NVPJtAl Mhl9399MAC REV 5 l'f 3 *P h e d i 60 NEATA C 0 0 6, A h f a AIA
$US/PWAl( POLAA!TT A3T/ G E 3 ks!N01hGMIGHVOLTAGE W140!NG LOW VOLTAGE l,
1000 (VA 1000 KvA
,'f 616 i,$ V0Lia OtLTA 4sc v0Lf8 DLLTA
{d fAPS:
4360
- d60 4 toy
=05) 3950 P{;w.
1 1MPub6t illi i
j f' istA1AL a.Avt W ulrl!N G n0A!10hTAL r.v/CM vtaf! CAL KV C5CILLOG6aN p' hum 9tA ffPt latiP OffL(Cfl0N
,G s
E.TE6T&D MICAC$(C/CM (CM)
'A DAv3o530101 Adt n1 5
9.10 1.700 15 67 1
Asl n1 10 i
Cw N1 1
1s.it 1.700 30.94 3
C.
H1 1
11 40 1.700 30.94
=
Fat HI 5
18.00 1.700 30.76 5
a
[,
f.!
n1 10 Amt H2 5
9.1C 1.700 15 67 7
,{
4 3
4d1 H2 to C.
H2 1
to.40 1.700 30.i4 6
- 4 1
{,1 Ce nd 1
- i.ZC 1.700 30.6*
10 fat i
5 15 4C 1.70, 30.r=
11 j
12 f;
T Fv1 M2 10 Ret H3 5
v.10 1.700 15.A7 13 f.
Aw!
H3 10 C.
h3 1
14.10 1.700 30.9-1>
Cw H3 1
14.20 1.700 30.9 Io Fdt H3 5
14.20 1.700 30.9*
17 13 g'
fa!
H3 10 Aet KO,1,2,3 5
7.10
.550 5.01 1r Ce x0,1,2,3 1
16.20
.550 10.01 20 Ce x0,1,d,3 1
14.20
.550 10.01 21 Fat X0,1,2,3 5
16.20
.550 10.J1 22 yg(t3 fy'L.Ayt, I a C y R R E, N T, & a
','.* C e a CMOPPt; EAVE, At a AlpyCip Wast,
- p. e fC
....e % /..(...............
2
>ATi m i u s A,,.s0,u 0,
P '. s t 3 Of 3
PAGt5
]
vt.
g 3
i'f'
.e
.7 e.
~.
i i,
i EA fC-90 062 9
Rev. 2.2 A. Derating Curves for EMD Diesels B. Letter from Ted Fryar of M-K to Randy Mueller, Dated 2/21/80 i
1 I
i i
l O
4 l
l-
-t I
i a
i l.
l i
I e
l I
[
l
{i" i
l' 9
a
'i
..u......____.-.__._.;_..._._-
I i
EA4C 90 062 Rev. 2-
- .2a J
i 5
6 L
a*
i J
Derating Curves for EMD Dieselt, i
4
- f l
t j.
j'
?
!e i
i r
v, I
l l
=
r b
i.,
h t
r f
4 c
f*
4 i
j.
- j.
- t
.g i
j t'
L.G i
.i r
.s rewmme.m-wwemse-mem -mmenm
-e m msa.s-ww u s-ww.ee
-ommme-w,_._ _ _. _
_ M Wm*#3. _ _,
._ W Wfg qq -3g 9'8F "PF97 -
Eb-TC-90-0(:
Rev. 2 Attach"'ent B.Ta.1 MORRISON4(NUD8EN ccMPANY,INC. ;
' " " " " * " " " _ " 3 I sex 7. -
g sammmun.
gs M
TEtICODY DATE:
August 24, $ses C0f9ANY:
Osana Pubite Power ATTENTION:
Mr trian 'tr'r C,{, g ({.
Elevated Olesel Centrator Water Tofte.
TIiE00PY NUMBER:-
402.ss3 67n THIS 15 FAGE 1 0F 2
pgn,v,:
Harry Faltar IF YOU DO NOT EECE!YE ALL PAGES LISTED, PLEASE CAL!. OUR WORD j
PROCE!!!NG DE:T., (91e)s77-1720, EXT, 212.
Attacnec 13 a cata snett that shows the engine jaczet w ate r g l a rte s e t 3 208'T ano shutdown 0 215'F.
1.c n g
- cers 1en i temperatures over 208'F mgy reduce the lif e of ne cy!!acer netos..
NOTE:
FOR.'ATER TEMPERATURE IN EXCl35 0F tt0'r At0V!215 POWER DERATION PER CUAVE (200 to 210'F)
WITH AM8! INT AIR (COMBUSTION A!R) TERP{RATURE!
A80VI 90'T, 7~
~
O
- w w ACW U21
- .a wM::::
E'
- ii. ?* !**
tCtt trf 5tev ers v r.:
EA.FC.90 062 l
QlESEL dtCMERATOR PWTO M Rev. 2 C,uGNE5 Anacnnm s.2a.2 i
f.NAING Ytte#f AATuna l
O ISYlTCH NOMINAL eenen i
elme 1
gw c
4tT77N64 573 1 1
208' F.
I.
19te F.
l or 213' T.
20se y, l
IT5 2 m
ET516 Het esp e stata sc. HC. 3.
Ts 2 - H.t...a. avi sc. xc. 5.
Tk. D/(, e emak ts epivM fa m'S*'or
\\
l 1 -I\\
l
.I I
I I \\l l
I I\\l I
I i
I l\\l l
I l\\
l l
l I
I li mllLa-=h,+\\
l I
l-I
\\
l I
l \\l I
O i,.
i i
i x i
x i
8,,
i I
I I
NI I
I
\\
l,,
I I
fI I
l\\'
I I
I s
i I
l l
l l.
k i-l 1
3.,
r, I 'Imlll:,::rb.
,..,J.4, I I
I I
I I
I
\\
l I
I I
I I
I I
I
\\
l
^
I l-1 I
I
\\
I I
I I
I l
X I
I
_I I
I I
l\\
I I
-l I
I I
l l
I
=
s.
su am arrass nusematums i
Rattrig et Eleveted Temperature ('F)
PorIMD 8445%
- s. a:
.n:9:. -.n.ww s t : *- u. ?! t"..
i i
i i
t EA.fC-90 062 Rev. 2 i.2b l
t i
1 a -
i 4
i l
I
?
t i
e
[
Letter from Ted fryar of M-K to Randy Mueller, Dated 2/21/80 l
i I
i-l s
I
[.--
- i 1
l-i I
4 I
j, 7
j i
1.
t r
1 h
a f
lIO
. f f
4 M
a e
N E-
?
1 w-
~ we,-men.
,,,e
c:aArons er namen.2b 1 i
Mlhvaa SUPet? sv5TEME
' f.
p
.EEA SYSJTE S l
u n.....w n m _
~
O Q A CONST. REC.
w.co, tws.si wrn Q L3 REL February 21. 1980 O NIA i
Omaha Pubite Power District INmAu 4 Fort Calhoun Nuclear Plant i
Fort Calhoun Neb.
Attantion: Mr. Radv Mum 11er f
~
Referen P.O. #46079 Reg. #91336 PSD !WO E256 Gentlemen:
Sucolarmenting my letter dated January i
22, 1980 1 tm pleaseo to enclose the cata sheets preoareo from the information we hao to rata your stand-by Ofesel Generaters.
The ratings with a 50/50 solution of water and ethylene glycol in the engine Jacket water cooling system are:
W Retinos 90eF O
M M
Continuous (*)
2402 W 2330 KW 2257 m 2000 HRS /YEAA 2654 W 2583 W 1510 W 4 HRS / YEAR 2800 W 2727 W 2454 W i
1/2 HR/ YEAR 2253 W 2781 W 2709 W
(*) This rating is to DD% standares and therefore may be operated at a 10% overloac for two (2) hours in a twenty four (24) hour peroid.
i i
If we may be of further service by working with you to increase the capacity of the generator sets, please let me know.
Thank you for the oppurtunity to work with Omaha Pubite Power District.
Very truly yours.
POWER SYSTEMS A MORA!$0N KNUDSEN O! VISION h
s,,
s.w
%%N Ted Fryer J
Manager. Tec,hnic'al Services L
TF:wo i
Mr. Wayne Steele - OPPO - Purchasing Oact.
cc:
Harry Faltar. P50. Eng. Dept.
Rao Kattoju. PSO. Eng. Dept.
Milton sharpe. P50. Sales Dept.
gg{
1 EA-FC 90 062
[B Rev. 2 N k. f)y$7
/.2b 2
.8I /
., m o r v s.s P O. 80X 10:3. nCCKY MOUNT NCRTH C.A AQUu pggg i
l ALL 645 TUR80 CHARGED ENGINES. (9
\\
4 LWERGENCY STAND 8Y DUTY These ratings accly t L ergency Stancby Acolications ONLY, 2000 Mr/Yr 200 He/Ye a Hr/Yr 1/2 Hr/Ye 20-645E4 3950 8HP 4100 8HP 4150 BHP 4225 BHP 16-645E4 3320 BHP 3420 8HP 3485 BHP-3520 SHP 12 645E4 2425 BHP 2500 BNP 2525 BHP-2574 BHP The acove ratings are not cwnulative and are not subject to overloac, 4
1/76 8
~.
y
,,,, = ~
3r,...,-.e-n,~, - --
-vr.m,1,m,r--#p,.--,..w--,-ww.--- - -. --,., - -, - -,, - -
y,-
,yw.
EA FC-90-062 Rev. 2 w - m ya Attachment B.2b-3 Diesel Generater System Rating:
Engine Derating Fact:rs Radiat:r Fan Orive 80HP Generat:r c: cling fan 20RP 50/50 Glycel Solution in C:nling Water 180HP E50hP Engine A.r Intate Amient 90!T None Derata for 100jF 100 HP Derata for 110 F 200 HP Engine Ratings 9 90*F er below Continuous 2000 HR 4 Hour 1/2 HR Engine 3600 3950 4150 4225 Deratings
- 220 280 280 280 3320~~
"I570~
3870
~3itT*
BHP /G
-x.746 x.746 x.746 x.746 2476 G 2737 LEB7
~IR7" Gen eff.
x.97 x.97 x.97 x.97 s40Z G 2554 2500 ~ ~
~lIII~
Engine Ratings 9100 F 0
tentinuous 2000 NA 4 Hour 1/2 HR Engine 3600 SNP 3950 4150 422h Deratings 380 BHP 380 3B0 0
727CIBHP M
7776 x.746 x.746 x.716 x.746
~ITUI G
~ZEIT
~75TI
~IIIT Gen eff.
x.97 x.97 x.97 x.97
~23% G
~2TET
~I777
~27ET Engine Ratings # 110.0F Continueus 2000 HR 4 Hour 1/2 HR Engine 3600 BHP 3950 4150 4Z25 Deratings 480 BHP 480 A80 A80
~3T E BHP 1376 7576 W
x.746 x.746 x.746 x.746
~l327 G
~I!!E
~I737 2793 Gen eff.
x'.97 x.97 x.97 x.97 W
~I5TU
~IGT
~TNI
,-.---------,----_----------____-a--
EA FC 90-062 sqperest tyrmas ommo:s Rev. 2 Attachment B.2b-4 O
~
Note:
at 101 above the ratec leae for 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> in any 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> ratings oo not have an overlean facter.
The other Generator Ratings 3110*T air intake tamperature or below:
Continuous 2(00 W 2000 WR 2860 W 4
Diesel Enqine Generater System Aatings at OPP 0 (Fort Calhun)
Glycol So'utten:
knount 9 Air Intake 0
90 F 100**
0 t: Diesel Engine 110 F C:ntinuous 2000 HR
- 2402 G tK,0 G 2257 G 4
2854 G 7483 G 2510 G 4 HR 1/2 HR 2800 W 2727 G 2654 G 2853 W 2781 W 2709 G O
(
e 4
O t
0
EA FC 90-062 onwim amsas emson Rev. 2 Attachtrent 3.2b-5
]
I V
"ATA SHEE I Ingine Cata:
Manufacturer Electro Motive Division of Gen Motors Corp.
Mocal Serial Nos.
20 645E4. 2 cycle Eng1ne Speea 70C11052 ane 70C11016 Contin 1ous Rating 900 RPH 8
3600 BHP 0 90 F anc less tha altituse Speed Control Woooware UG-8 Gov. Part No.
4520-205 5erial Mos. 975804, 971405 Generator Data:
Manufacturer Electro Motive Division, General Model Motors Corp.
Serial Nos.
A20C2 Generator scese 70C11024 and 70C11066 Yoltage 900 RPM Continu1ous Rating 4160 volt 2000 Hour Rating 3250 KVA/2600 rd Power Factor 3575 KVA/2860 KW Air Coolee
.8 Ratings given 3
Mechanical Blower x
85*C Stator ane 60'C Rotor max tamcerature Radiator Data:
Manufacturer Mocal.
Young Radiator Comeany Serial Nos.
D242007 HC1310 Fan and Gear Box YM6312 ane YM6313 Manufacturne Model Western Gear Corp.
Serial Nos.
85V-117 Ratio 3004 and 3003 Service HP 1.5 : 1 104 Generator Exciter Manufacturer Regulater Model General Electric Co.
Current Forcing Device Static 357930$8212A11 L
AC Regulation Device 357932YA DC Regulation Device 357932MA196A1 O
357931MA197Al
- m.,
At tachnient 8.2b-6
,e, t i j-ia i
'ysy (v)
_f.
i
?
4 k
- U !!
190 -
-li.
!t I_
i I I $ L lI Md_
-l i
l
.i,a I l
l gi-hp i
I
'l
'I l
f b
l ty
.i
,i
. i i n.
,%.@p..
l.. -
)
r a u 1
y-si n i
- [;'
' ;s.
NN$.
l
-3]
L 8 iI l
l L
8
~
_E r,
n -
i
$y
! n _J
- _ i i
1 l
i j
- I it j
=)
J 7
af l'
l N!bdsC pe (.tu l
sl C E 1 $l
[ldi.$ !.
i I
i',
o a
ip
~i--
-i ci f
> >g 7 p}q 1
i
'I d 4
! p=g
'I p Q..i i.
4-y l'
f ii (G
P,@m; 4
em
.R, amu.a ;.
1i i l s.,
88tD---l m,
><a
-i l i n,, :. fi e t.
} ~~" P, P)*
l '- i > i.
1I!Il3l0 I'-
5 y it
.d!-
f l r " ' ' " ll i ii t
se.4 l
e..-,.!, %. il l
1... A.
n i
I i
2
!.l
','l, ', '
.j Wuj2 q c.
- r,5
,ec..Ji, a y
i I lI ll 1I 1..*,-t g ]J l
8 i
i i
i
,i
< {.j l. s:s,1 a_..)
-,,{
m i
.f I
g "l"
i t i i
i[i' 4
1
]
l-ll c
l' p
iS
]
i f3 l:j t
it i
i k
k f....f._j "i
7
^ l l
it J.c!
n
> KIT @:
$D iW !
~
l' f I
N) tq i:1 Hil-H i
i i
It -
i J1
'I j[
,1
=
1 I
t 5l
'}.Weil
' ' e'
.,si-l 0
N,1:i is.
fr i
1iP a&'! h b
f'E i
e.I i
e e
h___.--u.___
EA.FC.90-062 Rev. 2.2b 7
==
v i i y
1
- e H
O e'"
5
,f
\\'
1 i
I I
I Y'
I lj l i I,
e i
1 L
1 i
1 I
4
. as y,
Im g
i 1
i i
X.
pA _
O N
i 9%
1 i
A I
.i i
i r N
l i [
i y-i N
t i i i
i I
i f
i l
I
_7 n
._m-.,
i i !
I i
e I
I ~'
I T
,, i g,
v s,
w f
D C
i e
G
\\j l
[
g i w o
g r
O 1
i i
i E
I A
a q
.i t
'I I
]
i g
E
~~
I f l i i g
i i i
, i r-i
) i,
t i -
I f
i 1
. i t
y O-
!! \\
+*
i i
j Q
il '
! i i
ie gg i
j
! 3 w
4 d
I P
[
Ln g
5
EA-FC 90 062 Rev. 2 wag 1NG $(WARY.2b-8 j
(latn Diesa ss start
(
'biF ! IIM EIc n.P.
l 5 TART l FULL ;N ! ON UNIT Wi FRIDA LDApi isTal i 50 CN UNIT No I
a s
rinat ggA; i 5 Ti. u cs.
'.h. :a 9.. ON UNIT G '
1 10 750 900 1500 0
900 1500 2_
13 1350 1620 2700 560 2180 3250 1547
+
560 l
3 18 750-900 1500 1567 2467 3067 2127 j
4 30 450 b-3 900 2127 2667 3027 2463 l
a e
4 1.
8
(
l l
l
... ~
EA.iC-90 Of;2 Rev. 2
-.2b.9 LOADING !!CUENCE ?0TW OfE!EL! !TA "__
A53UMPTICNS FOR t,0A0 NDEL CALCULATICNS Acceleration time for each motor is 2.5 secenes.
For the puroese of K.W. calculation eacn H.P. is con-sidered ecual to one KVA.
Thus. 750 H.P. MOT = 750 KVA Loa Start Power Factor = 0.2 5 tart in Rush Current = 6 times isted current Start G = 6 x KYA a 0.2 = (1.2 x KVA) K.W.
Pull in KW = 2 x Aated XYA = (2 x KVA) K.W.
LOAD 8 LOCK #1 750 H.P. = 750 KVA.
Start KW = 1.2 x 750 = 900 XW Pull in KW = 2 x 750 = 1500 XW Load on Unit at End of Step #1 = 750 H.P. = 750 x 0.744 LOAD ILOCX #2 1350 H.P.
Start KW = 1350 x 1.2 = 1620 KW Pull in XW = 350 x 2 = 2700 KW O
Load on Unit at Start of it = 1620 + 560 = 2180 KW t d Load on Unit at Pull In of f2 = 2700 + 560 = 3260 KW Load at End of Step #2 = 560 + 1350 x.746 = 1567 G LOAD BLOCX #3 ----- 750 H.P. - (SameasStep#1)
Start KW = 900 XW Pull In XW = 1500 KW Load on Unit at Start of Step f3 = 1567 + 900 = 2467 KW Load at End o' Step f3 = 1567 + 75 x.746 = 2 LOAD 8LOCX #4 ------------- 450 H. P.
Start XW = 450 x 1.2 = 540 KW Pull in KW = 450 x 2 = 900 KW Load on Unit at start of Step f4 = 2127 + 540 = 2067 KV Laas on Unit at " Pull In" of Step #4 = 217.7 + 900 = 3027 W Loed on Unit at Eitd of Step f4 = 2127 + 450 x.746 = 2463 KW 4
6'
EA.FC.90 062 Rev. 2
,.?b.10 e
fT 3
V I
f i}
I Il i
=.-
l eis.it; a u _,'
- l!
g '$ j," H sg7-y,T ill-I 8j t
I
.I.I.e!!.
I,l
,I.
h i
i.
il 3
i I
i i
l1 ll l
j -.
i.
i.
i.
- ;l I...... l
- .'s _
n.
~
I m /rf li tl E
l
-l
{
)
i
,,a.o
- 1 1
i l
.i
- 4, c,t 4..... _.1
g7 m7 ttt 1
i' n
il o @El[li1i J
d ii i
1
.i.! 1.1 n
1
.t t
I l ln I
,' ri.
__' : aO
... _....s
.a I
i I
.~
l
- ""*~
i
'j *****.....
1 iw w c
g
.j R
.l
?
h.kL D
i l
3 4 ii <g !
i I
i i
.. !...... j _
4,'.
i'
!! ti ;
wu
- i]k
- t!
f '4 d L si r
n rs i
1g;n
.4 g i
s i:
'li li t
~
il.f'iI,iiig.iu 5 a ll i il! :I l
l i
.l!i l
H
%r,
$$,iti.
~
I I:!!
rr-
}i li e
r.
i e
g U
s
,ll ll.ll rii
,j y} hl g,lg ;
i p;
.u. u, a-c l
.,pn 4;,
.o
.i ni oe h
h...E. [rii,2 l i
.m aL f
f r
f
,t e
t tt q t; i
1{
]! l 4 7 Ila, f '!
,!'j,j i
g
)
,r i
n'
?
'a.. [II!:f Eh[ F!!!
d(~'
I lici
_.k<g !!!!
i pll 9
Lp s
1 i
l EA-FC_90-062
\\
kev.
I II3CDFOCI b,['D-l';
i 1
4 9
i J
4 0
l 4
j o
1 x
N v
i A-f M~
- M._ _
x<
r T-C_
t i r gm 1
i
~
m
._2 j
g
- 3..vl i
a
+
1 ft l
y w
%s
-T 4
i I
a i
l T
y i
ungk
! l 6 e
a i
I 1
W -
4 i
o j
\\
s 1
f I
a
_e'i-
.i 4
x muses-J e i
_, 1 -
r.
f j
1 1
~
i as 1
g
'e A_
_y 1
4
(
)
i b
(
.. ans
,J -
'Wesues-uu* -
i J
g h
1 1
{
t P
Rev. 2 Attachment B.2b-12 SEOUENCE OF l.0ADING - ONE DIESEL START'NG AssumDtions for making Load Model Calculations art the as in the previous case.
LQAD 8LOCX #1 480 H.P.
Start G = 480 x 1.2 = 576 KW Pull in W = 440 x 2 = 960 KW Load on Unit at Start of Step fl = $76 W Load on Unit at Pull in of Step #1 i 960 W LoaJ on Unit at End of Step #1 = 480 x.746 = 358 G LQAD BLOCK #2
~~~ 1225 H.P.
Start G = 1225 x 1.2 = 1470 KW Pull in W = 1225 x 2 = 2450 W Load on Unit at-Start of 5 tan'f2 = 358 + 1470 = 182 Loaa en Unit at Pull in of Step #2 = 358 + 2450 = 2808 W Load on Unit: at-End of Step #2 = 350 + 1225 x 0.746 = 12 LOAD BLOCK #3 ---~~----- 1050 H.P.
Start G = 1050 x 1.2 = 1260 W Pull in KW = 1050 x 2 = 2100 W Load on Unit at Start of Step #3 = 1264 + 1260 = 2524 KW Load on Unit at Pull In of Step #3 = 1264 +2100 = 3364 W Load on Unit at End of' step #3 = 1264 + 1050 x.744 = 204 LQAD BLOCX #4 -------- 47.5 H.P.
Start W =- 475 x 1.2 = 570 KW Pull in W = 475 x 2 = 950 KW Load on Unit at Start of Stas #4 = 2047 + 570 = 261 Load on Unit at Pull-in of Step #4 = 2047 + 950 = 2997 KW Load on Unit at End of Step #4 = 2047 x.746 = 2a01 LQADING.51M MRY (ONE DIESEL ONLY START)
ITiP TIME SEC H.P.
START ' PULL IN PRIOR LOAD TOTAL LOAD ON UNTT FINAL LOAD NO W
KW ON UNIT W MAGI a rutt In KW ON UNIT W 1.
10 480 576 960 0-576 2-13 1225 1470 2450 960 358 358 1828
'3 18 1050 1250 2100 1264 2524 3364 2047 2808 1264 30 475 570 950 2047 2517 2997 2401 a
w
,a
,w-e
k I..
3
}
I 1-4 t
t EA-FC-90-062 Rev. 2 i-.3 t
i j
i.
i.
i, -
4 3.
l Diesel Generator Nameplate Data l.
e I
e iI k '.
l-t b
t 9
l L
I i
i
~
l l
1-l
^
1.
k l'
9 Le
~
--<ew-v 'r 1-,en--
-.=
a mrt-a
r o'
EA-fC-90-062 AT1ACHMENT 8.3 C
Lkr DIESEL GENERATOR NAMEPLATE DATA (Deta Applicable for Both Generators) r Model Number............................................................A-20-C2 Serici Number.......................................................
70-C1-1034 Continuous Ratino:
v o i t s.............................................................. 2 4 00 / 41 6 0 r
Current (Amps)............................
............................. 782/452 i
KVA.......................................................................
3250 Frequency (Hz).............................................................. 60 Phase........................................
.............................. 3
[
Power Facter,............................................................. 0.8 l
1 RPM........................................................................
900
/
I
.(
lemperature Rise (*C):
Stator-Therm........................
..................................... 85 Rotor-Res.................................................................
60 1
l KVA Peaking..........................................s......... 3575, 2000Hr/Yr t
Temperature. Rise Peaking ('C):
(
l Stator-Therm.............................................................
105 j
Rotor-Res.................................................................
70 l
Rotation..........................................................CCW @ BRG END l
i Insulation Class:
l-l l
Stator......
...............................................................H l
Rotor........................................................................F l
L 1 Excitation Vo1ts..........................................................
144 Excitation Amps............................................................
100 Phase Sequence............................,.............................. 1,3,2 NOTE:
The -above information was obtained from actual nameplate by RSK on July 2, 1990.
n
{-}4 :
-?
L j-EA-FC-90-062 Rev. 2.4 4
i 2:
l l
t-e l.
I i -
n i;
EMD Specification Sheet for the Generator n
l r
t.
l P
l-l.
i h
l.
i 4.
P l-II i-(
p.
1g
}
I i
j..
i t
i=
f-i I:
-T@
1
EA-FC-90-062 Rev. 2.4-1 1
MM MY
[
\\
s_2 l
GENERATOR CHARACTERISTICS es N seesdm l
TYFE OF SERVICE W
amr taas W
w I
MODEL A 20 A 20 A-20 A@
RA1TNG KW 2750 25Cio 2300 2151 i
KVA 3440 3125 2875 2625 i
PJ.
04 0J 04 0.8 ARMATURE CURRENT AMPERES Wye 477 434 399 365 Detta 826 751 691 632 i
Statar Taumparessre Rise
'C.
70 4 56 4 47.0 39A.
TERMINAL VOLTAGE Wye 4160 4160 4160 4840 j
Delts 2400 2400 2400 3400 SPEED - RPM 900 900 750 730 l
REACTANCES FER UNITS RATED KVA BASE l
Direct Axis Synetuomous.L
!.76 140.
1.267 1.159 Quamenses AmisSynchronous.X.
1.06-0.963 0.760 8495 Direct Anas Trammmet.L' O.462 0.420 0.277 8253 Direct AxisSuberumment.L=
0.298 0.271 0.1775 4.3425 Nossove Sequenas.x 0.2325 0.211 0.225 0.2055 Zero Sequenos.L 0.117 0.106 0.1077 889P5 TIME CONSTANTS SECONDS S 75"C.
Direct Axis Traammet Open Circuit.T '
4.340 4.340 4.340 4J40
. Direct Asis ahme====t Short Cimut. Ts*
0A17 0A17 OAIS ASIS s
Direct AxisTrummentsbartCirant.T
- 0454 0454 0420
&&20 SHORTCULCUIT RATID 042 048 1.04 1.14 BALANCID T.LF.
14 14 10 10 REGULATION AT RATED LOAD PER CENT 43.1 4045 3547 27.26 SYNCHRONIZING COEFFICIENT-KW/ RADIAN Fat I.and 5870 5660 6240 9980 NoLand 3250 32.50 3780 3780 FIELD DATA a
at 73't.(06uns) 1.2F2 1.292 1.292 1.292 m'a=W At No land. Rated Voltags (Amps) 39.2 39.2 55.0 SSA Eastation At Rated imod and Voltage (Amps) 105.1 97.67 i30.22 13L79 Fised Tsarpernaus Rise
'C.
60 4 50.0 91.0 30.0 EFFICIENCY-RATED KVA AND PS.
97.21 97.26 96.50 96.54 O
TOTAL WEIGHT-POUNDS 18.100 18,100 18.100 18.100 Stator 9,000-9,000 9.000 -
9,000 Rotor a,100 8,100 8,100 8.100 End Housmas and teenns I,000 1,000 1,000 I,000 WR2 - Ib. ft.2 -
12.330 12.130 12430 12,330 TYPICAL CH
_ARACTERISTIC CURVE,Sas seenes 2 Pues i1 Page 12 Pass 13 Pass a
._..___._.._.___._._._._._.___.-.-_._.__.___..___..._.____..._..m._.....______
EA-fC-90-062 Rev. 2-
'.5 Tables From the " Standard Handbook for Electrical Engineers" I
I l
9 5
i I
k
-s
?t I
r 5
l'
)
1 s
P 3
1 l@
l b
I I
s 6
.g L
b
EA-FC-90-062 Rev. 2.5-1 l
(
cammmmmmenasamumme mammmasaamme as as N mommmme, aw ear sunsei esamene.a am, emme summen======== T. e.en 40"C ake ami enemme me wane.
For noems. a. h. s. L.
Temenswe=rsseaoefT.- T.)
For mens c. e. 3. A.
Temommune noe m asse iT. - T.:
s-was9e Ie. CAO W WWwe e gfwem De Wat M Dhiel lumm e AK ark" Chas one e usms 1 13 "
M B
laet" 13rc F
- st-larc H
larc P,esarene enhame si essammen menossamme soon, erC ase SPC. RFC. 90"C.113"C.
T&E2 W. Tommemumme anse ear mape sease ese asusumens amenusene samens C2sse a sumamman vorm s
B F
M mL_--
%M emmunut wim s.4.5 servine femmer er essame
't"C 4PC 11.ft 72
-- _ ammemmea semer.
WC tiPC tort 12C T =m -
- ammm.comammweemmswi WC U'C lirC L3rC r Mmmes wie ;
esansman. u eevoise immes WC 9PC lirC
,e u emmemamm trC art larc LTC Femaman -
d Osam mamme was LIA answise emner er eneser
'TC trC larC
T
1 man =eemumme meees mmen WC WC 1Irc 1FC
. Anv meer a exame samasse man es tema et WC tart 13rt i All ammw emme meure WC 18FC 4WC 1NC wrv. Saarl en sun.mpe ensemaanse a erC. 33054 emanas. T esummmes er me sesammane namens bWWWWmr 6 ese 6 M MBMbe8. DUN ema ens asemanas. All shevmene ramma ese esses seen a amme ease wenen saau ensemamme wome she emmenes one sans a me emner ese wiman 8'C el me enemmat mammemove M, seevue Fasme. '"---
ammmaman ens emmenWassamammer essasse we grees a mornas senew. wanan ause s me omsmer e emmeer gusener saem amne meneesem wuhese seemsman um ammesamma samen. The esaner a esammes sa emane oesmee ano ismensmev. The namesse earnese sammes em 1.4 inr enema meme tem as te no.1.35 ist s = =
g5gr/Ax, p A.,,e v
g s
o 30
- o 900 se n essmer 6
, Mg. 96 alt. Typmus esenese edsammese se Deessa 4 muissel-c 1
1
.. ~... - ~ - -
EA-FC-90-062 1
Rev. 2.6 t
0
.I G. E. Letter, Dated 7/20/90 i.
t}-
i I-r
<q-i I
$!9 1
l I.
i 6
a.
1
(:
(.
L t
~-
! ^t'.
l, 4-e.
b 1.i-a l!@
EA-FC-90-062 Rev. 2 S).5-1
]
...a.:
'..;.... s.. ;c :
'! r::::1 July 20, 199e RDR e90/28 Mr. G. P. Schwart:
Acting Manager - Cloctrical/I4rc Engineering Omaha Public Power District 444 South 16th Street Hall Omana Nebraska 68102-2247
SUBJECT:
GE Static Exciter 357930SA212A11 REFERENCEo G.P. Schwart: Letter PED-PC-90-2415 to R.D. Royal Dated July 16 1990 l -.d
Dear Hr. Schwart:
l L
GE Nuclear Energy has forwarded Omaha Public Power District's (OPPD)
GE Dtive System, Sales, Virginia, tecnnically respo static exciter.
followings GE Drive System after review of OPPD's request offers the ect The suelect Exciter System was originally manufactured and -
o shipped by the Wayneboro. ViMinia Plant 20 years amo.
business moved to Sales, Virginia le years aco, This No teennical f.ata folder as available for this exciter an the o
files.
It is most likely the excitar was a special application for this o
diesel generator vendor, The excitar panel supplied by GE was placed in an enclosure alon o
with other support equipment ta comprime the Emergency Diesel Generator (EDG) vendor's total syntaa.
Because of the aforementioned. GE cannet provide OPPD with a cost qu as requested irt the referenced letter. since we have no technical data upon n
which to base an investigation.
O However, it is our opinion the open a $4_ degrees C ambient temperature. exciter panel as originally sup GE recommends OPPD contact the EDG vendor and obtain total system to get the appropriata answers they seek e
-t a
Rev. 2 i
i Attachment B.6-2 i
i i
!-t in If you-nave. additional questiens or connents, please advise,
- l f
. Sincerely,
.f 3
(.
i vs 4-
-i R.1D.Royalk j
Hanager Electrical /Isrc servlees Nuclear Services Department Central Territ:ry C R< MAS-P. Vovk --OPPD D.L Brager - GE -
I t
?
o t
f i
5 e
i e
i I
I i
I.
t 4
i i
I i*.y f
I
.1
,5 c.-
y-,s,.y
-+n.a
-e ma
,k 4
EA-FC-90-0 Rev. 2 i.7
-l 1
i i
l-b k
i I
Letter from GM-EMD and R. f. Mehaffey, Dated 8/16/90 l.
a e
u I
w t
t 4
R :
3 a
N P
EA-FC-90-062 Rev. 2,7-1 RECORD OF TELEPHONE CONitUNICA1 i'
EA-FC-90-062 and M.R. No.:
C1D 900617/01 File No.:
PE0-FC 90-2481 Date: 8/16/90 Time:
3:00 o.m.
Telephone No.:
(708) 397 5818 Party Calling:
M. J. Fleckenstein EMD (Company Name)
Party Answering:
R. F. W haffev OPPD (Company NameJ
Subject:
Feroency Diesel Generators at FCS i
l Telecen Summary:
(Including Decisions and Commitments)
I called Marty to discuss in more detail why EMD judged that :peration of OPPD's Emergency Diesel Generators above the 2000 hr. XW output rating was acceptable.
Marty stated that these ratings were developed in and came into effect in 1966 in response to requests for information about the output capabilities of these p
engines in emergency applications. The ratings were based on a knowledge and Q
review of temperature within the engine and at the cylinder head. This is supported by experience with the engine.
Action Reauired:
None Distribution:
J
_. _. _. _.. _.... _.. _ -.. _. _ _... _. _ _ _ _. ~.. _ _. _
'I l
i EA-FC-90-062 f
Rev. 2 i.8 i
i i
f l
i i
i A.
Data Sheets, Projected Performance and Deratings at 110*F Ambient, DG-1 and DG-2 I
i i
B.
Revised Diesel Generator Available KW/ Required KW vs. Time Plots j
Utilizing Calc. FC03382, Rev. 3, DG-1 and DG-2 l
l t
1 i
?
I l
t O
f 1
k l1 l.-
l I
t
~-
l I
i l
c' l
l-t h
I h
p b
I l
e
?
(
b
} :;
4 1:;'
})
1vi:
EA-fC-90-062
[-
Rev. 2-i lt.8a-2: -
f.,
f' 4
t-l' i -.
l-(l 1.
i Data-Sheets, Projected Performance-and Deratings'at 110'F Ambient, DG-1 and DG-2 t
E i :
r I
f-i.
4' l --
l-w t-I L@
O O
O DG-1 DERATING AT 110*F AMBIENT Time Outdoor Turbo al Assumed Predicted Derate Derate Reg'd Start Ambient Inlet Turbo JW at IIO*r Turbo at 110"I
- e Power (KW) Load (KW)
(1)
(2)
(3)
(4)
(S)
(6)
(7)
(8) 0.0 86 91 8
125 118 100 2784 2551 10 88 93 8
174 118 99 2756 2531 20 87 94 10 208 120 92.2 2567 2512 30 88 97 12 208 122 91.2 2539 2492 40 88 98 13 208 123 91 2533 2492 50 89 98 12 208 122 91.2 2539 2492 60 89 99 13 208 (9) 123 91 2533 2237 70 89 100 14 298 124 90.5 2520 2237 90 89 100 14 208 124 90.3 2514 2237 120 89 101 15 208 125 90.2 2511 2237 1.
Measured outdoor and>le.t temperature otrtained esring diewl test rwr (6 75-90).
7.
Messered tertiochariper air intet teauperature obtained dtrrirsg diesel test run (6-75-90) f an unit VA-57A in *0f f* position.
3.
si fertio - (Isrtio inlet air teasp + I.37*f ) - (measured astdaar astilent - 1.67 T ) See Sections 6.f.I and 6.1.2 for explanation.
4.
Illstor(cal heat - up rate with MOT valves folly open aggrotimately las mivustes irto dicel run. Att. 8.9. (Radiator vendor anticipated feat removal p,,,,,
capabilities of unit) leplies that JIt tensperatwres siwneld tie lower than ti.is at IIO*f' amtsieni.
.N rart let gauge for IE.1 has a 7*f unrertainty c+ <e w g.* L (Reference 4.8) that uses not appIled to this value for this ressan.
n e'
5.
Predicted tarino inlet truperatures at IIO*f - IID*f
- si tutto (3). This includes ernrertaint les as defined in (3) above,
'I ",h i
6.
Deration (tiart. Attacturnt 8.7, determined these values.
itr o
7.
Drration percerrt applied to gross available RW of 2184 KW (2654 EV a 130 KW (sc-M tius 6.9.7).
3 6
8.
100A load profile based on calculation (C01387 Rev. 3.
9.
At 3140 sercrats into a t0CA event, load on the diesel grserator driges signif icaetly. As less twt h gr -fratest y the engine.M temperatures will m
decline prtvorticnately, tmst are sinnun corrstant in this example.
L
y
}
&.J u
4 d
DG-2 DERATING AT 110"f AMBIINT Outdoor Turbo AT.
Assumed Predicted-Derate Derate Req'd' Time Ambient Inlet Turbo JW at 110- Turbo at Il0*f; Power (KW)' Load (KW)
(1)
(2[~
(3)
(4)
(5)
-(6)-
(7)
(8) 0.0 89-97
'l1 '
128 121 98.5 2742-2421 10 89 100 14 164.
124 97.2 2706 2410 20 89 103
'17 208
'127 90 2506 2399 30 89 105 19 208 129' 89.2 2483 2388 40 90 106 19 208 129 89.2 2483 2388 50 90 109 22 208 132 88.5 2464 2388 60 90 110 23 208(9) 133' 88.2 2455 2131 70 90 109 22 208 132 88.5 2464 2131 I
90 90 110-23 208 133 88.2 2455 2131 120 90' 113 26 208 136 87.5 2436 2131 1.
finesured setener ablent temperature abtained during diesel test run (7-17-98).'
2.
ftresured tortecharger air inlet temperatore obtained during d6esel test run (1-17-90) fan unit VA-525 in "Off* positlen.
3.
ai Torto - (forte inlet air teg + l.32*f ) - (fteesured entdear ambient - 1.62*F) See Sect lens 6.1.1 and 6.1.2 for emplanetlen.
4.
Historical heet - up rete with NWT wolves fully open a:promies'ely 15 minutes lato diesel run. Att. 8.9, (Radiater Wender anticipeted heet tvuuswel -
- 2. m m 1 capabilities of emelt) luplies that A tesquerature should be leuer than this at il0*f ambient. Jif outlet gauge for DG-7 has a 1*F enicertainty.
r+ *
(Reference 4.8) that uns met applied to this valise for this reesen.
7,,
5.
Predicted tutto inlet temperatures at lle*F - 118"I + si ter$o (3). This includes uncertainties as defined in (3) ahowe.
g g y) -
6.
Deration chart. Attaciment 8.2. determinrd these valves.-
13
_m 7.
Deration percent applied to gross available RW of 7184 trW (2654 RW + 130 Inf (see Sectiesi 6.9.7).
'8.
LOCA lead profile hosed en calculat ten FCO33R7 thew. 3.
j)
,+
o 9.
At 3148 seconds into a LOCA event, lead on the dicsci apenerator dr@s siviificant ly. As less heat is generated by the esegisse Jif temperatores will
.Q' decline proportlenstely, last are shnun constant in this example.
=
4 m
-c-------'------^=-J
~ _
. -. = -.
. -... -. _. ~...... -
EA-FC-90-062 Rev 2.8b-i.
e Revised Diesel Generator Available KW/ Required KW vs. Time Plots Utilizing Calc. No. FC03382. Rev. 3, DG-1 and DG-2 I
~
l P
I l'
L f
.=
I l '
\\
LM*tG vv.vyg A-Rev. 2 Attecnment 3,33,3 m -)
LoAp pgep,g OG'(
anuax,
s.
4
' /
)
9
(
)
. s_e dis ' t L.o J. D 4
s &c0 N
vs T' AC A D~ - ?/ I.i M m g
,'g,,
gg b
k Jf oo
- i
^N
,6 -w
_s t
t
.(A)
A4co v
l l
)My f
f M
l s
)300 i
5 i
diOO L
i
.D oe o to 70 h
T
')
'j )
')
9.)
- - )
}
- 2 i
P 1
Ftc,aRE I
I
..... ~. _ _ _ _ _. - _. _
t A.H. 90.uyt Rev. 2 q,.8b-2' pg. g toAp~
AFIL6-w, 1 Anivea.w.creo +
_.(,
6, i
740 b(, 2.
Le Ao Asc.viamo
= -
y3 TIMC i
??gD, Y
4MVMid6 Ngo W M
.)
t
.\\-
h W I.
\\
\\
l
\\
t I
,l
~
x~ g a
-l a
(_ -(
)NO@ l l
l 3
y-f-
1 I
'J300l >
Jaea
'4600 3C00 i
1
/
h FteuRE 2
. u
O EA-fC-90-062 Rev. 2.9 A.
Young Radiator Company Radiator Performance Analysis B.
Telecon Between M-K Power Systems and D. G. Borcyk, Dated 4/19/91 C.
Calculated Heat Inputs to Engine Coolant D.
Delivered Air vs. Required Air Analysis O
O
1:
4 l'
4 l
t i=
l
.EA FC 90-062 Rev'. 2
',9a l :.l, I
l 4
l Young Radiator Company Radiator Performance Analysis l
l l
l
)
l l
.- ~....
m.
tm.rs.ys.uoc
.o.
c Rev. 2 s,...,
.. ~ ~~ ~ !.9a.1 4
2825 Fo# 0Ae Aoes, Rmane.-Moenmarr6340dk Tverorv 414.&M-1010
- Easyi,Wct6;rrEss3t?
[
TWX 910 2712397 o TWee26*4435~-
~
M3A%*:mMin TeYtt: 414 4 39 1013:
i (G
_/
FACSIMILE TRANSMISSION
~~
~~
c.c.
l i
TRANSMIT To:
FA) NO. M 2*b3b*3 M NAME QM 60 M. Y K TITLE l
~ ~ " ' "
COMPANY CMAHA 90 ML1/*
Pdw6R CITY _ o M A R A STATE k 2JPE'"5 NUMBER OF PAGES BEING TRANSMITTED. INCLUDING THIS COVEA I
- -. uwMs
..--....m v-
.f k.Wh7.L ono
- '.l 3A 9 7 0_.6 klw._
.--....Qil 1
cooc_AuTJ. F-(.o w,. Te M f' J.W. '..W.o T.E.R,. l 10 Q.G PM./ Eda: l-.. T i
m.nme.: a 0.7 f t
'...._ 2. K Qit.
...RARk ToK 2]CG AttE A ' /A.$..l.h..~......Y)/.986 f.KA'&fM.^&iy... l
......e r,w...... b...... aw r
+3. tie +._.
+ne
..F
- wAT.cL..
.47.u.
. m nrm a7"..*
-:.t..
nessu wee
.zhr.%
.... I AsR w m,em w,ee A, a..s r
.fAcz vr'..-... M? > r y w = +. '. :
e g ya.
m o:
y 3. ;
.10 3..*.
74, 4.57...
.9....._. 7. 7.7
- 1. 2'2.......
I
~
... I o 8
- 8 I, o.91.
. 9. 3...
.....T1.l...
k 3 D..-.'k
-i 8 6,.3 % m.4. 6 it..Z i '........ _ J. A. 5'.....
.,1.1 3 '
U
--. J J. 8
- 49 2 <2 M i #.. S..'1..
.._.8.7..&...... m.I.;fo.5~....
i
.._] 2 " *
..4 4,20.0
...b.. I.
9.M b..
Isb.f.....
c' O
3 4
i
....'_..J......
v X g..,'1r f.<, !
g
... 2.. ac
. e, i
y
.... _Y ' k*i
., h 4
4Q 1
c
,.....~_.......n.
~
i c
.,::&. M.:.5.
. G wq a.s u
.y.
.-........a.
1 w.4
..4-.
3 '.
.f<.
..\\....,
.py g '
4 TRANSMISSION FROM:
2;7 I
..J. _..
p lbM
~I L LEA
~
i TITLE -
s NAME
- r.;::QW
- l h RACINE. WI OtExiscTos.TN O CENTERVILLE. lA 414 4 39 1013 901 968 3617 516 856-0634 FORM NO. 3513 R E 6/89 DATE-
/I
/9 f TIME yw ow t'd esisc is, sr see *:
l Ni,
9,,
s+
,n C)-
./
EA-FC-90-062 Rev. 2.9a-2 Toung's Model Parameters Achievable for FC Units' Parameters Airflow (SCFM) 93,000 101,774 DG-1 101-531 DG-2 See Table 111 and.9d Coolant flow (gpm) Water 1,100 1096 minimum observed Heat Rejection (BTU / min) 120,970 123,536 DG-1 See Attachment 8.9c 118,780 DG-2 See Attachment 8.9c Coolant-Temp.to 208 208 acceptable for emergencies
. Radiator ('F)-
Air Temp to 115'F 11C / maximum l]O Radiator ('F)
The' higher achievable air flow will result in lower DG water jacket outlet temperatures.
The lower ambient-air temperature to the radiator (110*F) will also result in lower DG water jacket outlet temperatures.
The lower DG water jacket outlet temperature would be offset slightly by the 2.1% increased heat.
rejection of DG-1.
Ther.efore it can be concluded from the Young Radiator analysis model and actual test parameters that 208'F DG water jacket temperature can be achieved with 110'F ambient outside air temperature.
V
O EA-FC-90-062 Rev. 2.9b Teleton Between M-K Power Systems and D. G. Borcyk, Dated 4/19/91 O
O
EA-FC-90-062 Rev. 2.9b-1
,~
,(j RECORD OF TELEPHONE C0m VNICATION M.R. NO.91-004 FILE NO..Pfj.-fC-91-1808 DATE: 4/19/91 TIME: 1400 TELEPHONE NO. (919) 977-2720 PARTY CALLING: Dan Borev OPPD (NAME)
(COMPANY)
PARTY ANSWERING: Weslev Batchelor MK Power Systems (NAME)
(COMPANY)
SUBJECT:
Diesel Generator Heat Re_iection Rate
..........................c...................................................
TELECON
SUMMARY
(Including Decisions & Coments)
('T Dan called Wes Datchelor to pursue Rich Ronning's concern of whether or not the V
33 Btu / MIN / BHP heat rate used in the Young Radiator heat transfer analysis included heat input from the lube oil cooler.
Wes confirmed that this number includes all engine related heat loads (including L. O. Cooler) and is the number esed for sizing radiators.
ACTION RE0VIRED: None D15TRIBUT10N:
c:
R. R. Ronning
(]
PED Library V
I e
1 i
EA.Tt 90-062 i
Pev. 2 i.9C i
.t I
i t
t t
Calculated Heat Inputs to Engine Coolant h
I r
r i
i 1
I P
)
'I t
r t
F
?
?
f I-e
?
t1 t
}
i i
1.-
i
.t L
i r
I
.l l.
t
[ A.FC 90.UG Rev. 2 Attachatnt 6,9c.)
- w. ta wt.-
l CALCULATION PREPARATION. REYlEW AND APPFt0 VALCALCULATION NO.
FORM PED-QP-3.4 Form Page No.1 of 1 m
FC PRODUCT 10N ENGINEERING DMSION
~-
CALCULATION SHEET Rev. No.
Hd
}U-l
( 4ll'ULA77~P U C-? Y /dPsir A/7?)
f/16MQ QtXAru'7~
/
/N 7?t" OTA/1' (f a.1 LQ CF/WC/DCd7" N /FN s4
/Q$iS 0f (ffG/Tl* ht./O&,
h4-/
/s J 04@
7"O ZSS/ WW.
Al'Mc+riswrn 1 2oco SEcc403 (3.5 anurrs)
M7D 77 4 Er'Eur W te,*p /5
- 9uccp VD Eq '? /. 8 kw.
ASSumiH6 A Cot.p S7h27* s9dp us/MG
.Z;+vA
~~373 [4.;/d 7-/tr 90 a ? / 7,'70)
C.dTh WCD F/?cm D/EJE't c
WC O/&iME /3 J71&L AP &fn/6 UP Z;4 M/U S 2 /S ENn+E it)?/CD, tFtrK A)M/CH, A
".C7 PPD Y- :1,~+ 7 C "
chaOtrio.4 v/s cccr N+7tX' Curter 7ynnr*c4rti,eE i
/S 4 77A~ 14(D.
A 7-
/C4s, 3??O 3CCOMZs
/d7b 7PG~
p D'O,tt;
- f74*
/ C,+.P
/.5 FcMTNCit M C 'i.'/c i:p
- ~D O
2222 3 j'd.
7"L' AWAcYdC 77C" 404C,
.T &1 MCA Y KOncW.at.
04*+1llt -
/t'ICC of 7?'r P/ESEL GEMEX4%'/L RAD /.4'JTA' CoctW6 SYsrisi, /4Hitt
$ 77t c swi,vrain/NG, 0*M0D WAT7 rn,
77t'C ZA?/.0 [W 40Ap A//t L
,d'E~
USCP /N' 7kr fcttcuisicy 64c: ut A7mq, NfAT is./A> 7~
249). 6 kW dciv' EPA 701t' 4cvO 50.9)
CaCNEMA7DR EFF/c/Tscy 256 8. 9 rw E 0.?4&
KN 76 3MP* Conyggsiau' 3443.S BNP f 80 NP
/~C:t ifAD/.t7D/t' iS4d C;f/VC W
3523.S BHP h
fM HP fck G o/tc+72;ve Coociag FA,y' O
3S43.3 BNP L/
M i
i LA FC 90-062 Rev. ?
Attachrent 8.9
.t i
O CALCULATION PREPARADON, REME'N AND APPROVAL cut.ra na CALCULABON NO.
FORM PED.-QP-3.4 Form Page No.1 of FC PRODUCTION ENGINEERING DMSION CALCULATION SHEN Rw. No.
REF.
3S43. S
,8MP gg*
r 200 MP 5 ERA r1Q4 As30 C /A TYD N/YA QT/C+1704 3743.S BMP S
~
AW j v.a 4.-
f o CA det EntP 20 -frK C+
4/N /Y5, c46Hf N477M6 e //o r rm acco ac/m ceceu rica is pl J9so EN7" >
'3743. S /JMP,
oK.
9,2 {
r ll W W'Y/$W(W DCLAW SY
{JYb/hl$
hf f, JS 33 A72//b114,8HP
)
S? 4].b NN
,e
??
Bns/N.v.13HP i
a.s. s s e-sw/s1,a l
YCWN4 iT4D/47CM CDef,4Ny ffXf0af>CD 4 N # 4 W A L Y.5/s 1
70
/4tt"D/C7~
[APECrE2)
/M7' Mf/1cvAt CA!948/L! Y7E5
?
Of out #dP/MZM', 77W 4,M4t y.$/.<
JMTERntsNCD ifcCu/Arb drA? s cca dr Mrucws
/A/&c7 Awa c
7'Etth*6%172/AT5 7D At4sH Y.4///
t/,4C KE Y /U rfE?L 7271/PRAruA'65 W 0,c A9OU 206 'f s%W enc 4P/C l
MANVFAC12/RrMS <1?Vbo mi*r O /p M 7osv3 Wl
$2
,w, vrs.e rWc,wi rsn ame.s
,cotcoa.u :
EsVGrJE Cbo&1~
Ng C
~
G bt.A d f' f4OJ A#ff -
//00 Gt"$1
/Q Mfx. CoOLAHr YK*17 -
208 *f (JA.,- of cVdwr)
/WAf /WPtJ7 sf,473?
/20,970 btu /nrid W'
+ ucre :
run er,wur esrc ms proep mr A 1%fV/ous G{N' cst +7pT 444D, /WCst(Asdp d'o/psyn c>v-pth - / /h:
cMJrp rpa AN/M6CK 10 60 t#' BY E. I %
m
~ - - -. -..
I IA FC 90 Oti?
Rev. 2
(.9cd l
fMf. PAE 16 I
(
CALCULATION PREPARATION, REVIEW AND APPROVE
\\
CALCULA110N NO.
FORM-PED-QP-3.4 Form Pese No.1 of 1 FC,
}
PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev. No.
REF.!
MrZ 69LCut. AYED AC W M Pttr suTV [MG*Wf COO W r NO, l 117T.
\\
P6 E
/M/r7,4t. (Pfds:)tr.a/4 77T EV6dr of fI l A L.0CA CO/dd/Cftf r /J/ rd,4 f D Cs of 0FF$/rf i
/%dG4.
/5 2420, & AM, &r' 2000 $CCCN4;S, 77hr l
w.m a
. err-aceo 7o zwv. s sw. sr <r,es, 37M SEcoup:, /470 rHc EMW7~, /MD mt:s-l 75 2/3/. 4
,<tJ.
l i9:
tJirH 4M /, rpr scad 47~ ZCCO 4ECodAf
?
(Z387. $~4) ) /J/a. BC usl~D /d 7~75 fccccuid6 l
~~
C4tcUL M 4.
h &'r 4/Pn 7~
/U 239 1.S stfJ GCVe&trOR 404D
. ::7.~.-
8'L l f 0. 9 9 GtgeM47vit f.ppic)cWcy
~~'
f 2 44/. 3 Mil i
i 70746 Ah) 70 8/ F Cl M 'C<Ts c d l
~ ~ ~ ~
3499.+ DNP
_ t 8 C' M7 FCoe /fAP/ATO!T H+/14T/Vd' 35?" 4 SH7
~,"~~L t 20 HP i@g G fs)EC.4408 @ pu h6 rA J t
~~
I 3391.4 BMP
+ too Hp p rx + 77 o v',4 S o Cs,+ T p N/rp oAe7041104 l
y4 y
e,i,9 e p i
t
.S950 Odf h 3S99. 4 ON j*
M c,+1-C o d r7?i c u r r p 70 CootAJr 5>'
O/d/J C ~~' ~
l
/S 33 3 fit /m n! - 2W/'
~ ~
i JS?* 4
- now : *fM N' s13cR /S
/. 6 %
l u
X 33 Lcu % / :7/r Mtur I
//8,780.0Rifid SC/f't /@ Th ?@UNA. N H,+t.1]I!.
' '*~ '
I.
EVI
. ~..
LA.FC.90 062 O
Rey, 2 Attechment 8.9d i
1 1
i I
Delivered Air vs. Required Air Analysis b
b i
f 0
b O
I
-i I
f O
I g
EA-FC 90 062 Rev. 2
- .9d-l
(
ATTACHMENT 8.9 A comparison of before Snd af ter cleaning air flows, adjusted to a standard temperature of 70*F showed a marked improvement for DG-2 and a lesser improvement for US 1.
See Table 1 belos for comparison.
Table 1 l
AIR FLOW COMPARISON BEFORE AND AFTER CLEANING RADIATORS l
FORT CALHOUN STA110N EMERGENCY O!ESEL GENERATORS
.l Outdoor I
Ambient Measured Corrected i
Diesel Status
_Temn CFM
.A_i r f low. SCFM at 70'T i
DG-1 Dirty 59 101,356 99,271 l
DG 1 Clean 33 109,448 101,774*
DG 1
- Clean, 58 70 104,852 103,711 l
Temporary Air Deflector in
~
Stack O
DG-2 Dirty.
36 100,799 94,310 DG-2 2nd Cleaning 73 100,972 101,531*
l k
- This comparison also reveals that both units arn essentially performing the
{
same, i.e., measured flows are nearly equal.
1 Radiator fan output at test conditions was adjusted to a standard condition of f
-70'F to determine base SCFM delivered by the unit.
Temperature correction
}
factors.were then applied to account for decreased air density at elevated temperature and compared to required flows to maintain jacket water temperatures at or below 208'F.
As can he seen from Attachment 8.9d-2 and 8.9d-3, the radiator vendor predicts that the FCS diesel generator radiator configuration is j
adequate for operation at up to 114'F ambient temperature for DG-1 and 117'F for DG-2.
l l
O j
I I
[A*FC 90 002 Rev. 2 Attachmerit S.d; CNC. th1 %
r^3 CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO*
!j FORM PED-CP-3.4 Torm Page No.1 of 1 FC PRODUCTION ENGINEERING DIVISION CALCULATION SHEET Rev.No.
REF.
RA [6 /
l.)/ 7'n' A/S ALCWf.
C/3fA JC AoC "c6 NO.
i C4 64 //.'JG (3 - /4 - 9 /
FLCid P/0/WCf' t
/HL.'t ~2. &
7D 2,% !CAi&
7;DatPERA n'tt'E O=
'70
- f =
/0/, 774 JCFM.
+
++
Kg
[,,,
sSCSIl Tk tvCifD OCTA1 Pl*G 'O iCG
, /3G 9!, ZG O l4,/cl
/07
. )37
?,/59
$ !, Cia
/Of
. ?*!!
?~l. ?SS fG, C 7 /
/09
. 9 32:
?d, !SE
$ 9. /.' ?
(~
//O 9,5C 9J, & SD
/$,C9T
(
///
. 9?B 9v', 24v
!?,GCs
//'
i;' ?
- C, %4
') C. C / 7
//!
.92 44,/41 9/, & !/
- // i
. lld
'ld,0H 9:,i?G
//S 9ZE
?J, 834
?4, /G :
s'/b 120 93, 432
?f, 4l T Y
R.csJ Concc'1CP FOK 7EM!4 /%YuRC
-tt-R.CA ':
/d 7V/S Coc uesd ht'PRCCEt/7~
YbJ6 W D/A *:i' OCMt%)Y ':
cat. c t/l MEP 195C 'O R.Cu:
M ' W-f k / O./.*
~75MfECA72//PCC s ///:f CA % D E Y 2./ % (3EE W I%'.
EXPutdAricN)
Aap Coef t eo Rx
./'c ? ' E ;M rica o)
\\-
w T
_ = _ -
EA.rC 90 062 Rev 2 g.9 3 CAIL PA1 %
CALCULATION PREPARATION, REVIEW AND APPROVAL CALCULATION NO*
D FORM PED-OP-3.4 Form Page No. I of 1 (O
FC PRODUCTION ENGINEERING DMSION CALCULATION SHEET Rev.No.
REF.
F C.T F 6 -i'.,
J./ / 7"H Arty ficW:
cdTAidE D Ar7DC No.
Esp /ATcc Ct.E/N/M6
( J-t5-11), FLOW A PJUGTtD 7t S i A~ d D n
- D 7 7s ? P Edi A ru A r o c
?o* F
/O/,$8/
^J,n e
%.e C,,,,.
S c ris? Pct IVC 6Tr
- SCfM ffE b'"
IC.;-
- C 6C BC, 81't
/C7
. ?M 94,978 6I, f Z&
/id
. 935 9 4, ?? T 2E 774 i
/0)
. 93:.
N,u:J Qi 64a
//C
. ?l.^
T4,4?C i4, Ti4
///
.9:6 9ct, Z& ?
!$~1b:
O)
\\'
//:
.M 94, /c6 E7,063 n]
H.~
95, %
$!, iz z.
//4
. i -i 9], E& l 8 } I!$
/6 92i U.05S
't o, % +
/r t ftOd? N 77/iS W UMd RffA'f3&/7" Youd6
,{-ipiA7:R CrA P M fi cat CulATE"D CEC'O fcca 4 7* meiouS
/d.:sr 79t'EMA ru/i'a,
DecKssFO g,,
7, s 7 l
(,Sce~
f.0M fvA' EAFL&/4M/ ) /r/:
CORfi: Ti.
\\
ffM
/OC'? ' Ct' f 4417ce!,
m w
a l
i
1 a
1; l
-j l.10 i
i i
l l
t
)
i l
Letter from R. L. Phelps to R. L. Jaworski and T. L. Patterson, Dated 5/31/91 4
l
'(e I
I j
l l
l-~
l:
t I
L i
l l
lt g
. =. - - -. -. - - -.. - - - - -
- - - - - - ~-
EA FC 90-00?
Rev. 2 MemorEndum
^ " " "" " 8 ' o 2 DATE:
May 31, 1991 PED FC<91-1877 FROM:
R. L. Phelps TO:
R. L. Jaworski T. L. Patterson
SUBJECT:
Fort Calhoun Station Emergency Diesel Generator Ambient Air Limits
REFERENCES:
1.
Engineering Analysis FC 90-062 Rev. 1
- Diesel Generator Upper Temperature Operating Limits" 2.
Engineering Analysis FC 90 091 Rev. 0 *!mproving the Performante of the Emergency Diesel Generator Jacket Water Cooling System" The purpose of this memo is to provide high confidence level resultt of the changes made to the DG cooling sustems to raise the ambient air temperature limit.
The recent insta:lations of local air conditioning units on the exciter cabinets will allow operation of the exciter at Il0'F ambient concitions.
The ambient air temperature limitations on the engine, previously established in EA-90-062 Rev. 1 (Ref. 1) are 103'T for DG-) and 100*F far DG 2 n
(u) to ensure that the 2000 hr. deration curve was not exceeded.
The engine ambient air temperature limits are increased t PT based upon reduction of mechanical load and improved heat transfer associated with changing coolant to treated water together with benefits achieced by cleaning the radiators on both diesels.
Specific details regarding the art 4: a td ea to increase the ambient air temperature limitation on DG 1 and DG-2 is provided in attachment "A" to this memorandum.
Based on the information that DEN has obtained from MK Power Systems, Young Radiator, Station Engineering and Stone & Webster Engineering, DEN concludes, with a high degree of confidence, that the diesel generators will not be limited by Mcket water or turbo charger temperatures at ambient temperatures below 110'F if treated water is used in the Jacket Water system.
While this is a high confidence level conclusion, EA-90-062 Rev.1 must be revised, reviewed and independently reviewed per the requirements of QP-5 " Engineering Analysis Preparation, Review, and Approval" to fully document this conclusion.
Although an elevated ambient air condition test is not required due to the documented test data recorded in EA-90-062 Rev. I and EA-90-091 Rev. O, it would lend further credibility to the engineering analysis and ensure that it withstood regulatory scrutiny.
Warm weather testing is strongly recommended by DEN to validate the revision to EA-90-062 Rev. 1.
Recommended maintenance and construction activities associated with the near anc long term operation of the diesels are provided in Attachment "B".
A 1
l
..in
EA-FC-90 06:
ReV. 2
-.10 2 PED FC 91-1877 3
Page 2 As previously comitted in the DG Temperature Improvements Project, DEN Hechanical expects to formally complets the revision to EA 90-062 and publish it no later than June 15, 1991.
In the interim, this memo is consi#ered as support for establishment of diesel generator operability at or below 110'F, if treated water is used in the Jacket Water system.
If ethylene gycol is used as a cooling medium, the ambient temperature limit will not increase above the previously established values of 100'F for DG 2 and 103'T for DG-1.
}
p f.,<.
R. L. Phelps Manager Design fcgineering Suclear Procuction Engineering Division JLS/KAM/sf 1
Attachments c:
S. K. Gambhir J. W. Chase
(
J. T. O' Conner T. G. Therkildsen D. R. Trausch D. K. Haas D. G. Borcyk D. G. Flegle R. R. Ronning PED Library v
]
EA FC 90 062 Rev. 2.10 3 k%J i
i ATTACHMENT "A*
)
DETAILS OF ACTIONS TAKE BY DEN MECHANICAL TO INCREASE DG 1 AND DG 2 AMBIENT AIR TEMPERATURE i
Effect of Coolant Chance on Jaclet Water Temocrature I
i EA 90 091. Rev. O concluded that there was no improvement in lowering jacket water temperature by replacing 50/50 Glycol coolant medium with a treated water medium.
OPPD DEN has since obtained Young Radiator data relating to performance of different coolants. The conclusion in EA 90-091 Rev. O is in conflict with anticipated jacket water temperature performance normally expected in this type of equipment.
Young Radiator has performed calculations which indicate that the coolant temperature will be maintained at 208'T (using treated water as a coolant) with a design heat input of 120.970 BTV/ MIN. a coolant flon of !!00 ppm, and with cooling air entering the radiator at 115'r i
at a-flow rate of 104,852 CFM (93,000-sefm, standard conditions).
Because a
water has a higher specific heat (C (1.0 BTU /lb *F) than 50/50 Glycol (.85 BTU /lb *F) and a lower density and S)iscosity than Et lene Glycol, a higher temperature limit of 115'r vs. (EA-90-091 Rev. 0) 100 been predicted due to improved heat transfer and reduced pumping requirement 5.
i
(\\
Test data collected in EA-90-062 Rev. I was reevaluated by DEN and it has been concluded that the test data collected during operating runs on DG-1 confirms I
there is a-substantial reduction in jacket water temperature when treated water is utilized as a coolant medium, in reevaluation of the test data, data points collected during the first 30 minutes of a diesel run were excluded to ensure that the diesel had reached a steady state condition.
Table 1 i
summarizes the reevaluation of this test data.
_ Table I j
COMPARISON OF JACKET WATER TEMPERATURES TO AMBIENT AIR TEMPERATURES 5
DG-1 Test Ambient-Jacket Water AT-Jacket Water Coolant Coolant h
Air Temo *F Temo 'F to Ambient Air Flow Medium i
7/26/89 89 199 110 Not Avail Glycol l
8/23/89 81
-84 194 110 - 114 Not Avail Glycol
- 8/26/89 70-184 114 Not Avail Glycol 6/25/90.
89 188 98 1150 Water These tests were conducted at identical diesel generator power levels under elevated ambient air temperature conditions.
It is apparent in the first
{
- three tests that the data is repeatable for AT in the Glycol coolant configuration and that a substantial improvement should have been noted in O
lowering jacket water temperature when water was utilized as a cooling medium.
t i
,1-,
.s.-.-
.m
,__c_._._.._,.,,
tA FC 90 002 Rev. 2.10 4 ATTACHMENT "A" (Continued)
EA 90-062 Rey, 1 compares the results of diesel generator DG 2 tests performed before and after coolant replacement.
This data is sumarized in Table !!.
Table !!
COMPARISON OF JACKET WATER TEMPERA 1URES TO AMBIENT AIR TEMPERATURES DG 2 Test Ambient Jacket Water AT Jacket Water Coolant Coolant g
air Temp 'r Terp er to Ambient Air Fle*
Medium 7/16/90 87 192 105 1096 Glycol 7/17/90 89.5 194 105 975 Water 9/6/90 89 195 106 Water During testing of DG 2 on July 17. 1990, the coolant flow fluctuated repeatedly and was considerably below its expected value of >l100 gpm.
DEN suspects that the coolant system may not have been adequately vented following the coolant change, an AMOT valve did not perform as designed during this e
test, or the flowmeter malfunctioned.
As no jacket water flow data 15
(
available for subsequent N-2 tests conducted at elevated ambient air temperatures, this problem may have persisted.
It should also be noted that the radiator for DG 1 was not as severely fouled as the radiator for DG 2. ano that the fouling factor for DG 2 could have been the dominant element in DG-2's reduced heat transfer capability.
Removal of Debris from Diesel Dediators DEN has evaluated the benefits of the cleaning that was performed by fort Calhoun Station maintenance on air flows through the diesel generator radiators. To aid in this evaluation, Station Engineering performed extensive testing of air flows in the diesel radiator exhaust ductwork and supplied DEN with the results.
Using raw data, there was no apparent measurable improvement in air flow, however, in order to compare fan flows taken under varying air temperature conditions, the delivered air flow must be corrected to indicate the air flow that would be dalivered if the inlet air was at a temperature of 70*T.
This correction is required because fan output is a function of air density, i.e., less fan SCTH output occurs at higher temperatures.
Table 111 summarizes the data collected from testing performed before and after cleaning the radiators on diesel generators OG-1 and DG-2.
l l
l G
l l
EA FC 90 Of 2 Pev. 2 j
Atta? bent B.10 5 l
i O
ATTACHMENT
A* (Continued)
\\
Table 111 AIR FLOW COMPARISON BEFORE AND AFTER CLEANING RADI ATORS j
FORT CALHOUN STATION EMERGENCY DIESEL GENERATORS t
Heascred Corrected Diesel S.tatus lff_t
= CFM Air riew, scrH DG 1 Dirty
$9 101J50 99,271 l
DG 1 Clean 33 109,4 6 101,774 DG 1 Clean. Air 58 70 10A.852 103,711 Deflector in Stack DG 2 Dirty 36 100.799 94,310 DG-2 2nd Cleaning 73 100,972 101.531 With the corrected adr flows comparing fan performance at identical operating
{
conditions, the air flow was dramatically improved through DG-2 and reasonably improved through DG 1 after radiator fin cleaning.
i EA 90 091 Rev. O concludes that a 1*r gain in ambient allonet,le temperature O
corresponds to ea;h 1000 SCFM of additional air.
This infers that t.n additional 2'T cmdient allowable is gained by claaning DG 1 and a 7'F gain was i
achieved on DG 2.
This is a very rough correlatien, but supports the predicted jacket water temperatures suppl Sd by Young Radiator.
The difference in air flows correlates well to the measured difference in jacket water temperature and ambient air temperatures shown in Table 1 and Table 11.
DG-2 showed a 7'T higher AT than DG 1, because of-loss of air flow and combined with reduction of heat transfer surface eres because of fouling.
Efficiency Savinos Resultino from Coolant Chance According to literature (documented in EA 90 062 Rev. I and EA 90 091 Rev. 0) received from MK Pcwer Systems, OPPD's representetive for EMD stationary
. diesel generating units, a net horsepower sevings of 180 bhp can be assumed if the Ethylene Glyco! engine coolant is replaced by treated water.
This can be converted to an additional 130 KWe to be applied to offset the diesel
- generator deration curve. The addition of 130 KWe to the rated capacity of 2654 yields 2784 KWe available.
In a trial run performed by the DEN
-Electrical Group with the computer program used to graah attachments 8 6 3 and 8101 of EA 90-091 Rev. O, the diesels will satisfy tae post LOCA loads if this 2784 kWe powr available is applied to the 2000 hr. deration curve.
This computer program.:tilizes the assurnptions of EA-90-062 Rev. I that the demand occurs only while the diesel is in a cold standby condition and not imediately following a planned surveillance test run of the diesel operating considerations.
. O
(A FC 90 062 Rev. 2
!.10 6 l
t
+
k A11ACHMEN1 "A" (Continued)
+
r Although it is satisfacte to operate the diesels at eier ted jacket water j
temperatures when requireo to meet emergency demant it is not recommended that this be done for normal surveillance testing.
The jacket water temperature alarm sounds et 200'f, with diesel trip occurring at 208'T.
This places the operator in the position of operating equipnent in an alarmed f
condition, which may not be cesirable.
i I
i k
I h
I f
f i
f i
I l
l l
I I
I I
i l
I f
I t
EA-TC-90 062 Rev. 2
'.10 7 O
ATTACHMENT *B"
\\
RECOMMENDEO MAlliTENANCE AND CONSTRUCTION ACTIV111ES FOR DG 1 AND DG-2 i
l DEN Mechanical also recommends that these maintenance and construction I
activities be performed as scheduled:
1.
Replace the AMOT valve thermostatic elements to ensure reliability at elevated jacket water temperatures.
2.
Replace the radiator cooling fans with unit, designed for higher output at the differential pressures observed.
3.
Up;rade the instrumentation associated with the diesel generator jacket aster cooling system (MR FC 90 005).
J.
Establish a Preventive Maintenance Procedure for cleaning the finned surface of the radiators.
t 5.
Change coolant back to 50/50 Glycol to prevent freeze damage after October 15 each year and run treated water from May 15 through October 15 of each year.
Until other improvements in cooling air flow can be implemented. the coolant should be changed to treated water in May and tO returned to 50/50 Glycol in October of every year.
i t
f i
?
P I
i I
~
....4-,
.. ~ _, - - -..., _..,.,..,,,,. _, -.... _. _,., -..
m,
t i
i i
i EA.FC.90 062 Rev. 2 l
O.11 d,
1 DG 1 Testing Airflows Before $ team Cleaning, 3/8/91 l
4 I
O k
I 9
-5 e
I f
l i-i
(
9 i
-l f
t I
-..-......- --.:.-.----..--. -.s
_. f I
l L
.WY l
c.:cus.eed eis. o.e ec-1 e. tere s,een cteundne. 3-8-91. 25 9.gre. Ptte g ;,- ql "
g g, ** '
4
]
g i-11 i
21 31 kl 41 1
31 41 n
M M
j scr>
233T.78' 9 Scfm 2742.22 scrum 2000 Istf **
2488.88
.Scfm 176T.
ScFM MSS.M scMe. 2211.1 scr> 7366.42 M33.
fesp..
IM.9 I-foup..
1M.5 te p..
1M.5 { f.ac..
1M.4 f,..
133.
temy..
1%.2 temp..
175.
fame.=
135.9 esp..
1 i
a
\\ W g --
g., p
_y-3 ~y~
T h' ; 52 y=.,
m m y 1,
t 12 22 32 42 62 T2 Sr st f
ic, rrn.=
i.c mi.n
.cm.
2sn.u
.cm.
m2.=
p.c, i=2.
.c, na
.c 12n
.c me3.n sn,
t I
i se.p..
In.3 i,..
Tw.1 i,..
135.s v
1x.r ct,..
ns.
ven.
ns.:
ut.s res.
Tw.i em.
i y --
, ; g; y; ^t
~T W h'
c v
l 13 23 33 43 1
53 63 23 85 95 i
j
.crw-are
.cm.
2ee3.33
.cm.
a41.11 sr> nos.se isem-1res.
.cro.
2144.u sem-2117.
.cm.
sees mm.
j i
Tsuy..
121.2 temp..
1M toep..
131.2 :
Temp..
127 foup..
133.
Temp..
1M t.ugs..
127 Temp..
th.3 temp..
1 h
d
,y.
y ~}
- '3 y
m.
. l,feup..
1 14 24 34 i
44 g
54 44 F4 94 t
ScFW*
24PS.99 SefM.
2M t.19 Scme 2311.M d Sc7W.
2MT.F3
.ScFe=
1444.
SCFm M13.11 ScMo=
2121 ocne=
24FT.
2112.
feup..
114.4 f foup..
123.4 fesp..
123.4 T*=p..
122.4
.feup..
121.
Tsuy..
12F.7 feep..
1M.2 Temy..
121.1 Temp..
I
- . 3 1
n--.
n i
a n
t as ss es n
e n
i sem.
vne. set scrw-Zsw.ar sem-Zw1.it 1scre. an.n ' sem.
11r7.
scr=
Mee 1
oces. tw4.u tss2.2 t
118.5 T teep..
114.2 Temp..
113.1 fesp..
171.4 @ f g..
If1.
tesup..
14.3 foup..
114.3 Temp..
1M.2 esp.*
175
-l.
.. g. _ _ _.
.W
.. c
.. n o.. -
1.nw.c.
L
~<.
%*A A a- *= q e T%p.nke 12c
- r (G 3fo\\
j ~ y, c
03 N
0 " ~ y T L,, ~ A a yp r Q,, f )
h l\\
,\\L
~
T c7 7
=
i%
re 2
\\
t
=
l
)
4 i
i EA+FC 90 062 Rev. 2 l.12 l
l 1
l 4
l i
i I
i
?
i J:
i DG 1 Testing Airflows After Steam Cleaning, 3/14/91 i
i a
?
1 i
i e l
i.
1 i
l 1
r 1
l I
l i
1 l
l h
I s
t' 9
f f
I i.:
.:.2-195: 09: 2 r M CFFD-5Y! TEM EN31tEDitto
- O E*-7 Gl'A A,c3 EA-FC-90 002 Rev. 2 3
At tachttent 8.12-1 i
si i
a F
li s
s s
c It i
if f
if i
h e
ce 50 E
.Eif.N11
,N R
i c
if if if i
3 i
i s
s
.i W",.
i c
c e
t i
11 if if o
g' E
3 2
3 S,.
0 Ji Ili l'
i si i
d
'a g
3 M
2 a.
f i
8 n!.
ll 95 E"
E
' EE i
i i
is
~
a t
- s c
i 3
l l
l l#
l x.
m b
h 11 I
t 3
E c
m n
m.
h1 if if AY lf 3'
i o
k k
1 C
I I':
t
- - - - - - ~ ~ - ~ ~ ~ ~ ' ~ ~
~
~
~
~
~
.f t
r i
}
r Rev. 2
!.13 i
1 l
l
}
I DG 2 Testing. Airflows Before Steam Cleaning, 2/27/91 i
i O
i I
l i
I
.)
i
-1 l
f ri i
e a
I G
I
-P t
t
EA FC.90-062
.1T -
Rev. 2
~.13 1 l
e
=C q9 32 O
k',
k k
C,I -
E W
S hf hI hI II I
I-un e-e.-
ei En R
n zu g
ce sa 4
g-of.if if 6f if L.
qn n
s s9 d
[*
ga gI u
e a
e
=
If i.f if if if l~
==
3:
g5 g *,
E E
N i
3 3
3{.xg
{
{(
E
( \\y
{g
{x.{.
t x_
=
x 1
_.r.
ni ne
~
a ni e
i t--
s s
a O
ia l.
=if if if J x
m if i
i t 3 n-3.
eg 39 39 l
l
- 1 E~
r n
n
=
e 6
d8 I*
3 2
u 3
il if if if il
~
c i-
=,
s,
~B fE
~!
(*
g g
8 if if if if 61,'I
=
=
=
==
y,5 18 i~
i i
E n
n n
1n 6f if if if 6f 4 i e
b C
Cn i
r 2
dj
.C
- J I.
j s-e a
s 3
O 1
=
=
=
t i
j !i 6_t i_t e _i,n i
4 EA-fC 90 062 l
Rev. 2 l.14 l
- i' i
i i
i i
1 J
DG-2 Testing - Airflows After Steam Cleaning. 3/25/91 I
l O
l i
l l
i.
4 l
1 s.
I 1
1 I
l -
i s
b;;:y
-l
(-.
i t
e h
w ene.e
- .s ene.a re.sswe e m w hwrw e wee *+e'e=
'N* tr r hN 9hitD*"WM*NF4*-d'Tw'"*MeWM*1M
'9"N****"**N'**Y
i EA-FC 90-062 Rev. 2 l
Attachment B.14 1 l
- E
- 3. E
.=
9 I
i O
- i i
i i
- l
- l.
s C
8 i
t i
! *E 8E ME
- 8. !
- 8. I I
l l
E E
I E
i
- s s.
a a
s l
I I
hf f
I.
E l-f il 5
I I. k n
s c
c c
c j
i $I I
$I II hI 1
1 l
1
- 98 92 92 85 j
j !
E E
I E
)
3
-s 2
s s
hI lf I
II l
8 i
.E lE SIE El 1
~
l li
- m It x$$
l$
l!
.m x
1 4
4 j;
-- 2. E 8E
$5 82
- 2. E 3i
'-E E
l i
e
,s 2
c s
s ll f
if f
f
$B E
8:
j l
z 5
I E
l n
m m
x m
l h
b
.6 9E 9!!
.E I
i E
E E
y >}
n m
,c x-c.
I t
t.;
i lt i
- E 5E
$1!
[f a
j5 3}-
j
- E n
e a
O 4
e
=
t i
In,,I!
t 1i l
M ' el bA l% D led O
b!
lb l d d
i_,.
i 4-i '.
l~
EA rC 90-062 Rev. 2 i,..15
-l i
e I
i f
i i
I I
i DG 1 Datalogger Points at 15:46:05
)
i b
l 4-0 i
4 1
i.
i I
i ir l
l l'
i l-sIO i
l-I i
..-...u_a._;__n;-__._-___..__--..,-__.2._..__:._._____--_-______________________-___________.-__
gjap JCAN GROUP 1 30 Msv 91.15830:36 ATTACHYEh1 B.15 1 3;;.;q 3 tan 35.W u :.
30 ne
.t t.
iit31 30 CA-FC 90 062 DG lAB 7EMP5 41 ni TOP LEr~
103,31 DEG 8"
42 at CH7 LEFT 100.40 DEG F l
c
<3 A3 DOT LEF" 99.056 DEG F 44 Ita TOP CENT 104.33 DEG F 45 B2 M1D CEHT 100,65 DEG F c
46 53 80T CENT 96.235 DEG F
_C 47 C1 TOP RHT 193.06 DEG F 43 C CNT RHT 200.33 DEG F C
49 C3 BTM RHT
- 96. 474 DEG F
}
c 50 AUG. TEMP.
100,69 DEG F EtC 3CAN GROUP 1 30.w 91 15:31137 l
1E 3N SCAN GROUP 1 30 MAY 91 15:36t31 4
41 A1 TOP LEFT 103.26 DEG F
.c 42 A2 CKT LEFT 100.06 DEG F
- C 43 A3 BOT LEFT 100.23 DEG F
'. C 44 B1' TOP CENT 103. 66 DEG F C 45 B2 MID CENT 200.60 DEG F
.C 46 B3 BOT CENT 97.301 DEG F
.C 47 C1 TOP RHT 102.71 DEG F
.C 40 C2 CH3 RHT 100,56 DEG F
.C 49 C3 BTM RHT 99.465 DEG F C 50 AUG. TEMP.
100,99 DEG F
@ D 3CAN GROUP 1 30 MeY 91 15t36830 1EGIN SCAN GROUP 1 30 MnY 9A 15 41132 as CAB TEMPS
- C 41 A4 TOP LEFT 102,44 DEG F
- C 42 A2 CNT LEFT 99.575 DEG F
.C 43 A3 DOT LEFT 98.715 DEG F
.C 44 R1 TDP CENT 103,89 DEG F
.: 45 R2 K1D CEHT 99.727 DEG F C 46 B3 BUT CENT 97.169 DEG F
.c C1 Ton RHT 101.14 DEG F
..; 43 O CNT RHT 99.966 DEG F 4.9 C3 NTM RHT 99.063 DEG F
.; 55 AUG. TEMP.
100.10 DEG F 3 Jill2N GROUP 1 30 MnY 91 15841133
.: m.ai 3CAN GROUP A 30 MAY 91
.15846885
.. w O a s T B F S
.r at TDa LETT 103.22 DEG F
- 42 A2 CF 1E T
- 99. 43 DEG F
.G A3 BCF' LECT
- 99. 063 DEG F 4
.s.' 21 TD: CENT 103. 72 DEG F I
- *" 30 10.5 CENT 180. 07 DEG F 4
-f 53 90 :EHi 97.506 DEG F j
- # C::. TDC RHT 101. 54 DEG F l
- 46 3 CF RHT 100. 23 DEG F l
.r - ~3 Fm RHT
- 99. 497 DEG F
- 5E 43. IEM:.
100.54 DEG F EE:.5.;e CiEF.= t.
30 MAY 91 15846 12'~
h GR;"Jo :.
30 May 9 15t46173
--s w=-
EA FC 90 062 Rev. 2 O.16 i-J' e
i i
Ej DG 2 Datalogger Points at 14: 57:27
-l l
r I
s I
t I
r 1
i i
4 i
e i
e
+
I, i
- i r
h 3
n r
b 1
i t
4 b
f f
1 0
1 t
l 1
d 6
9
-,.w-,,r-w,._
_<*.-~,-o--,--.--w-
..---------- m-.
mb
--- ---.+
m --- 4------
"END 3 CAM GROUP 1 f
MY 91 14 91850ti
~
l ATTACHMEhi 8,n -1
,~ IGIN JCin GFOUS i 15 me
-A 14: C2:13.
LA FC-90 0C?
.00 CAD TEMPX I
^C 41 n1 TOP LEFT 95.'309 DEG'F 42 AE CNT LEFT SA.379 DEG E
=
43 A3 BDT LEFT 91.379 DEG F 4 B1 TOP CENT 95.193 DEG F
~
45 B2 MID CENT si.968 DEG F
~
46 B3 SOT CEHT 92.129 DEG F if. -47 C1 TOP RHT 96.642 DEG F
-49 C2 CNT RHT 93,206 DEG F
0 49 C3 llTM RHT 91.483 DEG F 93.,1.19 DEG F
.p 59 AVG.TIMP.
3HD SCAH GROUP 1 15 MnY 91 1485:516.
.3EGIN SCAN GROUP 1
- a5 MY 91 1485"'t12 G CAB 7EMR5
+4.-E19 DEG~F a
?
-42 At CNT.2FT 91.T25 DEG *
- . -43 A3 BDi IEFT da.543 DEU'E 4
44~23~ TOP' TENT
-94. 355.DE G F
-45 B2 MID. CENT S2.171 T>EG W
-46 33 307 T.EHT
.91.A90*DEG*F J_'7
-47 'C1 TOP RHT 95.'74 0 lDEG ~F 4
-48 C2 CNT RHT S3. &23 DEG 'F
-49 C3 BTM RHT 91.781 DEG F TB AUG. TEMP.
- 93. 874 DEG 7
~2 HD SCAN GROUP.1 15 MAY 91 _14857817 f
.MiEEG1H SCAN GiROUP 1 15 MAY 91 14 t 57 t 27 i
- DG CAB 7EMP5 7
CC A1 *TDP IEFT 94.530 DEG F 2 A2 CHT.Lar i Si,392 DEG F CC A3 30T.1. EFT
.91.488 DEG F
~' C - 44 81' TOP. CENT
-94.944 DEG F
, ".0 0 45 32 MID IENT
.92.131 DEG F 2*.C -- 4 6.33. BOT _ CENT 91.747 DEU F
~~.C --47.ci TOP RHT 95.694 DEG F CC -49 C2 CNT RHT S3.353 DEG F CC -49.C3 TTM RHT
.91.739 DEG 'F
- - f 18 AUG.' TEMP, 33.683 DEG F 3CAN'URCUP A
.15 MY PA 14857 r32 p
M "OQ'O 6 5
~
-EEEG1H.3CAN GROUP 1
.15 MAY 91 15881858
,CDG.. CAB TEMP 5 1C -.41 A1 TOP LEFT 95 195 VEG'F q"'iC A2 CNT L'IFT S2.329 DEG F
- C -43 A3 kDT 1. EFT
.32e443.DEG F
.*C 44.Bi TOP CENT
'35.396 DEU F
-,. C 45 32 MID CENT S2.281 DEG F 7
11:.C -44.33 BDT ' CENT
.91. 689 DEG F
=
- 7. C 47 Ci' TOP RHT
- 95. 538 DEG F
- C -48 C2 CNT WHT
.93.355 'DEG F
.C 49 C3 BTM RHT
.S.L 999 DEG'F l.
1 C
se. AVG;TExp.
93.258'DEG*F, j!
l
.~EHDISCAH GROUP i
- 15 % Y 91 /58328 E R E G I. N. 3. na N ' 4. R D U P t 1
_-15 iMAY sit.i 215682 C
7 EA FC 90 062 i
Rev, 2
!.,17 4
4 i
i l
1 i
l Telecon with Ken Beach i
i 5
l I
I O
I i
9 l
Le 6
' he:MW e s* +w+p4&w s? ene e e gir me w +e'lsweeme 76 remW41uwse+uW heeM w m'ir m
ev e ww-wd i
ATTACHMENT 8.17 1 EA-FC-90 062 RECORD OF TELEPHONE COMMUNICATION (v'~')
_E. A. NO.
90 062 f!LE NO.
PED-FC-91 403 DATE: 6 10 91 TIME: 2:00 p.m.
TELEPHONE NO. x 6735 PARTY CALLING: P, F. Vovk
_QPPD (NAME)
(COMPANY)
PARTf ANSWERING: (.
Beach
_QPPD (NAME).
(COMPANY)
SUB.'ECT :_ Uncertainty of Test Ecuionent Used in Post. Calibration of MR.FC.90-073 TELECON
SUMMARY
(Including Decisions and Commitments)
The post-mod calibration of test instruments used in T-1 and T-2 of HR.FC-90-073 was a function check of the equipment. The devices used to perforni this check have uncertainties of petter than a l'F (MT-00027, -00001, 08201).
b 2
iN n
i ATiUN RE001 RED Use for revision 2 of EA-FC-00-062, t
DISTRIBUTION PED Library I
lC')
s_
L
ATTACHMENT 8,17 2 EA-FC 90-062 t
i Qseg
[2eunio Fuwe.n m TEST OF TLMPts.An ac D etices.
en a
3G-1 Tot
- Acesvrmet r-os.
mis est ts tI*F l
.b6 P*Aes l
--)
M T-ioio7 i
M T-loto8 w
z ges er 32,o 32,1 A*kia me
..,J mt- -st m n,'
a%.or 73.o 13.2.
i h
64-i t f
l t
.(3) - MT- 0001%
[
LAR C6 *4Wm s g Ag
% wive l
l O m-A 8 -
,i.
- e 4
n.z/
-s i
i i
u 719 F f
%.O % P H.
MT- 00014 iwe %
k 4.*9I L
I 1
h b
.o i
._.7__
ATTACHMENT 8.17 3 l
EA.FC.90-062 r
F u u c ti o,a T a r T we en.vuri.e Di.vice s
[
kicN 6 N N t w e.
A-
.et Urst ow
- D G - 3.,
T erst,
t A e c. p+ =
4.-
tus t..+
e l' F,
3 MT.00015 F Lu k.E DATA L OGGET2-w/
H4 CAL RTb5 hsa) j s*417, so f t 1, K*411, to' 2 5, 3 436, r*4af M T-50% =,. so v e9, so4 tKf t
eTabeeif W ift'4M %M.
a M PT,(NTC%
)
E E O.* H J C e 0
(-,;"
1 2*-
M-Y &;
it1108el Ce:~ :nB TEMF5 y
41 Ai TOF LEFT 32,310 DEG
- l 41 41. CHT LE:7 31,611 DEG F i
.23 A3 SOT LECT 32.200 DEG F C
e4 91 TOP CENT 31,472 DEG F f
45 St MID CENT 31.901 DEO F di 53 90T CEC 32.094 DEG F 47 Ci TCF RHT 32.00P DEG F i
C
-d C2 CNT R4T 32.166 DEG F 0
2 9 ' 03 Siti RH*
32,28S DEG F C
EO AVG. TEMP.
32.110 DEG F l
y L t o
u Es: JC4N GROUF 1 29 MAY 91 1D208c.-
F-"-9' Y 5 :.::E: 2:se E 3:,
2.5. M a s i
- p ;cs c i
J L
MT-1OIo E
,.Aia P k.
i
?
- (s**r). ser.
32,3 j
m u,
wv s
-(w*)= set 73 o (a r. w.< m.
...n 4,. r.. m i Jvb-a i
l.
i Il j
L
.M T-oco19 i
t.n o ceuni m ur i
As waw.sco y mr. 32.i '.
~'lld'F.
H 5,2'4 e. W s
p k
7 f. 'f
- F M
410 % R.H.
n v.
.w
.uww (e - L - M %Qr l
nt#
1 l
m e,.
.....dr.
.2 1 FASi i~.ed* Ll.TiO PGST.
- O Ec Ti-FLODE F.C1 ATTACHMENT 8.17 4 EA.FC.90-062 m
R sex R.~uiu a -
F wemea Test oi Tss m o.s % m J.
DG-#I T ES T-Osw oa ACg,gPTA NCE Fe b.
W %S TEST 1%
lf }.-
o (b)
')
M'T~ Coo 7 5 F L.V M b% L6CSED.
g hlT cat.
3 tT-Sovel SotM, 56%ls, 56W1, Fogli, Seni, sent, 54414, 56 %8 j
se e n.
- - I.
- t. IteN 3F.DUF i es JUN 91
- .1
- 472Yi
- 3 tHE TEMF5 41 41 TOF LE:T 32.198 DEtt F 42 At CNT LE -
31,734 DEii F 43 w.3 BOT LEFT 32.216 DE4 F e4 Bi TOP CENT 32.434 DE ' F 45 E2 MID CENT
47 Cf. TOO RHT
e$ C3 BTM RHT 32.295 DE) F lC 50 4U0. TEMP.
- 32. 061 DE ? F l
Erc 3CAN GROUP i 06 JON Pi Li: 44t97 370sFED 5 ND E 3 dN 06 JUN 3'i
'1: 44iO4 L
l-EEO3h IM.N UROVL i 07 JUH' Si 12 i T,[ t 7 *.
?.% CAS ~ EMF 3 A m s.,w r w a r-e m s.7,e,ei,
C 42 41 TOP LE~T 73.e19 DE3 F C
43 42 CNT LEFT 42
- 72. 855 DE3 F l
l 43 BOT LEFT 73,462 DE3 F r
l C
- A B1 TOP CENT
- 73. 76ti DE3 F
@'S f
T C
45 P2 M3D CEHT
- 73. 256 DE 3 F L.
0 46 B3 BOT CENT
?3.322 DE3 F l
C 47 Ci-TOP RHT
- 73. 277 DE 3 F C
48 C2 CNT RHT
- 73. 423 DE 3 F C
49 C3 BTM RHT
- 73. 799 DE3 C C
50 AUG. TEMP.
- 73. 354 DE 3 F END SCnN GROUP 1 87 JUH 91 LD: S2tti ITO* FED $3t4GLE 3 Cati 07 JUN 91--
12:52 47 l
r
'(d 6-G 6 9 i
/
l t
i i'
l'
'f F i!lf EA-FC-90-062-h
-Rev. 2 j
. Attachment-8.18 I
L 8
e
'i j.
l:
l l.
e I
I 1.
i A/C Efficiency Data i
1 O
j
!.j i
t 8
i a
a l
-4 f
1 i
i.
t l :. '
i
.+
in
)
[
s i
t t
.\\^ :
.{
.f r
I
);
\\?
?
e 1
I I
,i.
h
-i l
t
._......;.._..._........u._.,.-.
_._____._-.._.-_.___,.?
_-15-ace: 031.:~ ~::OM. _ _ -. - -OcFL DE:3 r FLG-.. _
.~. _ _. -
TO 3GT. !121T
- .0; e
ATTACHMENT 8.18 1 l
Pwat* trand ha unmmitw muna sh le::e*= * 'l I
EA-FC-90-062 l
- uDHiR K Ate A l"" Eeu
^
"OMAuA PP D f Md L,CAAI M 00067
,f^
em smene e k
~
am i re..
r i
summ en e
d i
J a
e The purpose of thin womo is to help cxplaan why har conditionur capacaty is reduccc as enclosure temperhture is reduced, und to provide tiaructing with a
" rule-of-thumb" us to the extent of the reduction.
O bj As you know. t1c Lean Nadwest aar conditioners are normully rated at g
120 F mmbient und 125 F encluhure re s urra air temperatures.
Typically.
this condition imposes the highest load on the air conditioner.
The basic rule to remember is that m-r e d.ie t i e n in the return air tememiature will enuva n
ree! g;t_i o ri in
'he enumeite of W nir 1
c o n d i t 3 e rie r.
Thiw tv because
- 4. reduction in the return-Air tempotature requares a
. reduc Lion in the evapurutor coil teasperature, which in turn requ4res u
' lower suction pressuro.in the refrigerution system.
A lowtr suction 1
prummure.-in turn, reduces the density of L4e muction gas being pumped i_
by the compressor.
Since the pump 4ng capa;;ity' of the compressor As I
fined by volume, this reduction An wuction gav density nieuns that the compressor is.pumptug iews weisht of refrigerant. with a corrumponding l
iloss -in air condition 4ng c u p a c a t.y.
b l-The Joss of oapacity with a
reauction in suction pressure (or enelemure return air temperature) is extremely empte.
For best capacity performance and operating officiency. It is important tnut tire air conditioner operate at the highest suct. ion pres'sure possible.
A decrease in the habians temperature will result in on increnze an air conditioner capacity, due to the reau: tion of the heud preskure.
However, this capacity increase is small compnred to the loss of capacity-due to the decrease in the auction ptassure.
Fn t-this N
reannn,.the not res u l t-o f red uc i tit' both t 1e umbient t erntee ra tu r e and the enelomuce return mir temmernture by t M-
- a.n e-
,, m e n ti t w n reaueiren 6
In mir conti f t s ott i n e c ri rs n e s i v 4
4 enee ones. riu..vnn o.uum.,r.,.
....s...u.ss,c.. n :oi...on.
,y...o.osos.,u on sco om
t ATTACHMENT 8.18 2 EA-FC-90-062 d',
Pnge k ot y l
..g'-
l Hobean Higwest Engineering St ancaro l
A.'
Eng. Std. No.:
10-3000-t7 j
t tNTT c AP ACTTY MULTIPLTIf, tSASE CAPACITY RATED AT 126/1251 f
jl.00 1%5v I
f
~
i
!l 0.W7 0.vt j 120=
I l
0.ww U.wa 0.88 0.W3 110*
i I
t 1
0.95 0.wo 0.uS 0.s0 0.75 110 1
0.97 0.W2 U.W7 U.82 0.77 0.12 0.67 10 5v Return r,
Air
'i
.f 0.W8 0.83 U.8W 0.83 0.78 0.73 0.58 U.53 0.68 100* Temp.
(W F) j 0.40 0.55 0.30 0.75 0.70 0.63 U.UU U 05 0.50 l SSu l
l 2.95 I
\\
~
h r
J.W7 0.32 0.77 0.72 0.67
.062 0.S7 0.5%
0.47 U.4%
90" i
J 0.78 l0;73 0.6u 0.53 0.68 0.53 0.48 0.43 0.38 U.33 l u5u I
l 0.70 0.66 0.60 0.65 0.50 0.45 0.40 0.35 0.30 0.25 809
~~:
l CD' XS*
90=
g6v 1009 1068 1108 1158 agow iM6" Annient Temperature t w Fi i
I 3 AMPLE:
To determins estimatec cooling
- cspacity, multiply catalot:
f actor corre spondirig to aosuna ombient cooling unpacity by the l
and esturn air temperature conaitions.
t A unit with catalog capacity of WOU) ST0/lar operasang at WO' F return air T,e mpe rature ano 100*F ambient will nave an estimated cooling capacity or:
8000 BTU /hr x 0.07 : 5300 BT'J/hr l
i t
f l
.- i
M b
EA-FC-90-062
{
Rev. 2
'.19 4
t 7
i f
f i
r Graph or' Air-Temperatures for DG-1 on 6/26/90 (2 pages)
I i
i r
~
+
t t
)
I
~!::
t I
o@
E 9
I I
I I
?
e f
i-1 1-a I
t I:
6
)
t 1
I t
+
-I
. h i
i r
tr I
k
DG-1 (6-26-90) MWO OP-ST-DG-0001 I!iSEiS$f$.19.j I"":
exh(ussumed) 0 3 9:45, of f oco:o i10 yag j
~
0'
ll il to -tL 3,
\\
106 i
g7 h
r
- ~ ' '
104 l.
a l
4 --ig;1_ g g'
+,
\\,
7 102
/
+
s
/
s 100
-/
u s.
1 c
98
- N
~
l.
t r5Qk l
l M
j I \\y,/
?
96 lL' A,
- w g' If,' d' j
'n.. n
^
o 94 6
/g
( ;
s-r.
y e
's
[
o 92
\\, p j
.A a
s
[
n
~ z.-
7 90 n
r v
88 86 84 82 80 78
,_,_i__'
t-g-
19:45 20:15 20:45 21:15 73:45 22: 35 22:45 23:15 23:45
- 15 00:45 01: 5 01 S
I I""'
'I a Front Cab. 0 3-Outside Arnbient Imp I' ni Cab. o 8-A Gen. Infoke Air O
e
==
- =. =
y..==
e
.O O O.O O O ON N
. =.==.==..m,
.O. O.
.O.
.&... N N NN N N N N-N N N
N N N N a=
s e am O.
.C,
.O, O.. @ e w
N.. N..
.N.
N.
..h u== 0 A w.
a.
w.. w w w g
.& u==
W==
A W
O & w=
9 m 9 e C
- C #
9 O V V @ V O 4"
O V t* O @ %# C @ T4 V D m
e
.m em
/~~N
\\
I k$e i
\\~,/
9
- L B
w a
e y
==
-u w
sw =
.=
m.
p
==
m.
a p
O O
O O C O O C D o O O O e a V.
W wO O O O O O OO O O N
.=.e 9.& w. O O t.9 s
w w==
e N
.O Q.O O.
s p
P
===== W @
I-F 9
ta e
o O n
g 5' b
~
- 8. w. w C.e, P.
R
&. # @@ $.8 N..# v. w.
N.. O O O O O. #
C 0 0 0 C O e
- 8. S r.
oO O n O u 5
w 3
% W *= w OW O @ O O O O O O O O OO O O e
.=
8 9
P 8
i.
9 **
4 t.a e
- R t
N
@ 6 W
3 O
e e e
a s
4, 2e e
e b 9 e.*
9 C
"o' T
s 3 5
= -
@ u3 @ @ @ @ @ @ @ 40 @ @ @ @ @ @ @ @ @ @ @ @ W 4'
@ e *=
w.*
N. e. #.- CD
.%. e w
== w a @ @ N N w O O O O O.
N @ @ # A @ @ @
V m 4 h.
A v -.
N.
.
O O O O O O O O.
O 5 4 w
O O O.
e ss g m
%s
>m
- e 3=
===d 0
M9 mn t
O.
Ns,
.m.e O s
.CO N buu8 s
N
1 i
l I
EA4 :-90-062
{
Rev. 2
,.20 l
i --
-j i
I t
i Graph of Air Temperatures for DG-2 on 7/16/90 (2 pages) i b
r'!r 4
y a
f i
?
i
)
I h
r h
i i
t
+
I T
f f
n Y
-p i
3 k-s-r
-,--..,,---w.
- =
TempercLre i-F
\\v) a A
Ch CD C
N A
Ch CD O
N A
Ch CD o
N W
E'
's.
-A
+
1 5-
, \\,o.
l O
s
- O
]
N C
r N
l
&P 8
i \\,
"'N N \\
l e
4-x.:
> N W*
/
/
/
C e b
l
/
/
\\y
'N s
r e
M.
d e,
2 5
e
.,N s
3 O
t L. B.-
,4 X,
X w
w b
2 l
s o
s
+
e 4
ie 3
a.e
~
j h-d
'Y o
s i o l
o x
f a
4 k
7, b
f O
y i
s m
i Ch
(
'I
,[%\\
L e
'e k
u 4
o N
' ~ '
c.
~
+
c
~
M h
0 C
J 2
o 7
s
,e O _3 e
?
U 3
)
(
Q g
C-
[ y',/
g 3 0 u
._ h o
i; P
O c
c i
E,.
1 i
,r 0
N Ce s
s rg CC U ~,
[
I k
N
\\1
', e O
o
,P.
J c
iu j cn
.CO _
i l
f
'.Y C)
/
d y
Q i
l 1
f c.
+
..O l
O i
I s
C
.'2 -
o
~
I 1/
e 2
l l
U" Nd i
o N
d N
i 4
5 pm N
I I
w>
,/
I
,o ap J
y' oo 2e si Q],
m o.
z-eO
.CD N N
C3 6
e.*
N e
O N
N CO CQW 8 3" cw av La= *C 4 >==
- 4. >""
w<
r O.
t e O.
O.
O.
O.
O. J.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
CP w e er 4 e @== @ O
- m N m A ba er O @ @ @ @ @ # % %.= QD @ @ @ EC CP
- . a @ CP @ O koO O O O
O
.O O. O
- a O.= O-O
.=. 0 0 O O O O O
e e
.=
. =. - -
C== 8
-Q w e e
4 O e o.
e 6 9 e 18.:
b e 53 e
ee c ew ew a # @ %
C6 w@ e g CC @ @ @ @ O @ O @ @ @ @ m%
e
- C C RJ 10 CO G @ C :O C %
C a M :D CD @ @ @ :D (Q 4) c0 4 m C,, @
w a==.
g'.
e e
.= e 1
W A e 4 b **
- n.
a n
(
.e..=@ s q
c.
e t
8 5
w C.
O.
O O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
e e
e W CQ N % A e*
N O -==
O-O.= O.= O g
w e C cc @ CP @ @ @ @
O.
O O "O O @ m tP e se w w er M m
=== "* "
o 04 db @ O O O O O O O e
.==
.=.
-a e e
- .e w
g u :
o e to e
e
.3 e
O w e e
a e
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O e
N e 4 % O M N er w w # % % %
T. @@ @ CB @ @ @
e 4 @ @ @
Q e e CQ CD CP @ @ Clm @ @ @ @ @ CP vs
@ @ @ Ch 7
.O O
.O O.
O
.O..o.
s ed e
P C
e o
e e
M O 4 N.
u.
M 4 s 5:
- w
-e
==
e O
4 4
4 O O O O.= O O O $ O O O O.= O O O O O O O O O O O O O O e
G ' *.
- e. e.. e.r. C..
.. m.
s.e.O....
1.Q 8*.
g
" 881 w.
.. m.. v.. Q..
O #
- m..e.. O.. =. = m. er. O.. =.=..... o..
- m..v.. O..
w s
t.aD @
s A %
@ O @ $ @ @ @
@== N b %..
+.
I w w w
-.=
.=
O e
e
. m
.=
=
W E
.* *g m
e
.... = - - -.
1 4
i_
EA-FC-90-062
.t Rev. 2.21 i
s t-t,-
4 1-i a
I F
Graph of Air Temperatures for DG-2 on 7/17/90 (2 pages) i:.
i.
i 4
1 4
t
- q..
i il@
n:
?.
i~
t f.
1 a-t I s
?
9,,
a AA2..
ea -.,,.
._m,._
m N.
N O3 t.O O b-
- Z O
.\\
+
O e
at e--
w at
\\
N
\\
s h
Y J.
f s
i
/
/
o e
m O
m.,
T
/
m t
/
J i
/
o f
I O..
t
+
m
.h i
8 Q
{
\\
<r p
\\
CC D l
~,
~~ i m
x
?*
s
(\\l 3
e O
/
C 0
o
.0 --
m..
p C
C
+
CO O C 6
I y
O 4
I.
I s
w C
3 o
D u
o..
C e,,,
O O
o
.s i
i j
[
u$
s O
~,.
0 l
g M
b
.3 9
e t
o
(\\j 3
/
l O
C 4
4,'
C
~*
_ s i
4 a
O I
O..
0 1%
l
-[
v%
p S's\\
mC
\\
J
\\
s.
N i
l e
., o x
N N
'*' O m..
i
'e N
a
. g A
s d
.,C
\\
\\
' j oO 4
N N
y-hl k
7 '-
N.s N
0
- h..
N N '
, i O..
O
~
l.
D 3
Y N
Q p
O o
o o
e e
e o
e d
g f,%
9 i
, -. ~. ~.,
_. _ _ -., _. _ _ - -. ~..
EA fC-90 062
- j Rev 2 i
Attachment'8.22
~
l-I L
l i
j-l-
l Graph of Air Temperatures for DG-1 on 6/25/90'(2 pages) i:
Il I'
t l
4 I
i
- 1 I
!lt i
l 4
?-
i l9 i
I
+
n,_,,_---.,_
_____._,__,,-m,...
..,-m,-,,-___,..,,,,,-.=-,-.,-,,_4.
N e
==g N
e N CQ C) H 8 M P
Ow uu
- b. eEC S >==
4W WC 5
e b
.e O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
O.
m a T
9 e O O m c e O't 4
N @ T & O Oe O O & S %
- D E
O O.
O.
t'"t
==. D.
De O.
w.
4 @ O O.
O
==
m Q
m ee
=
3 h e
4 + = a S
. t:
5 :.
e: EEE888E8888888EEE
..g - l8 baw a - e 9 et e.
44 p$e 1
.c -- - :
5 t
e
+ o e 4.
e 13 e
E O.
O.
O.
O.
O.
O.
O.
O. O. O.
O.
O.
O.
O.
O.
O.
O.
e e
N
- @ # @ 9 W W W M N 4
.s e88m 8N k
w O. O O -
O-O O O O O O O O O
G en a 43
.c e
g
. e w
e l
+
e e
b I
e O O O O O O O O O O O O O O O O O 8
N, 8 e 8 8 ~ 8' 8' O.
- 4 - * '
G e
O O.
O. 8 O. - ; 88' e
m
. _ cO.
%.e w
q c e
.%W M *.
O e
& e N
e 5
e 9
0 w
4 e
.d w e
~~d e
e
. *=
e 5
O @ C ? O O O / O O O O O..,. e.. e.r. O...
M. a e.r. o..
- m..e.r. D...P.e O
O O O O * *
- e
- ".* **S
- e
== O
-O
".'.t. % % N @
.O O @ D
@.. m..e.. c..
a
.O,.
@ @ O e
w wt 1
4
.n 5
==
N e
e
EA-FC-90-062 As TACINENT 8.22-1 DG-1(6-25-90) MWO 90 2171 Fan:of f 914:38. supply 617:05.eeh 017:41 108
- ~ ~ '
- - - - - - - ' - - ~ ~
/.
106 p - *i !
104
~
102
' g N
4
\\,
100 --
/^~~~~
'r k
/
2 98
^
jc 96
,/
//
k e
l 94
' J-tj 97
,I
,n W
j
, / +mg/ y 90
/
/"' ' -f
-c ' lY's
/
,+
/N
{+# "
\\
88 l-l'D
./ g,, n%z -y -.-- w )
' L;4','
86
-o ff 84 E
1-1 1
i
-r--
1 -- -
3 y
1 14:15 14:45 15:15 15.45 16:15 16:45 17:15 17:45 18:15 Tinie U
Front Cab. O 3' t
Fron1 Cob. O 8' O
intake Air to Room A
Gen. Inloke Air O
O O
EA-FC-90-062 ATTACHMENT 8.22-2 ilit: 0l[511 lhis is for LG-1 (6-25-90) onctside cabinet front Aver age 3'
8' Outside Ambient logger Point 49 l i:e Logger Point 42 Logger Point 46 Points 14-19 Generator intake 14:15 84.2 86.5 85.9 86.0 14:30 85.1 81.4 85.8 81.0 14:45 86.1 81.5 81.9 39.3 15:00 86.8 B1.3 86.1 93.1 15:15 81.5 88.3 81.5 97.3 15:30 88.4 89.3 88.6 98.2 15:45 88.5 90.2 83.3 10G.3 16:00 89.0 90.2 89.1 100.3 16:15 89.5 90.1 69.9 101.1 16:30 90.4 91.3 89.0 102.6 16:45 89.8 90.8 88.8 102.6 11:00 90.8 92.2 89.1 101.2 11:15 93.9 94.1 89.6 94.1 j
11:30 91.8
%. I 89.2 95.4 11:45 103.4 105.5 88.1 99.1 18:00 105.4 106.6 88.2 100.5 18:15 105.4 104.9 88.8 99.8 e
e e
v