ML20070B367
| ML20070B367 | |
| Person / Time | |
|---|---|
| Site: | Beaver Valley |
| Issue date: | 11/19/1982 |
| From: | DUQUESNE LIGHT CO. |
| To: | |
| Shared Package | |
| ML20070B349 | List: |
| References | |
| PROC-821119, NUDOCS 8212090526 | |
| Download: ML20070B367 (159) | |
Text
--
BEAVER VALLEY UNIT NO.1 0FFSITE DOSE CALCULATION MANUAL (ODCM)
DOCKET NO. 50-334 DUQUESNE LIGHT COMPANY OHIO EDISON. COMPANY PENNSYLVANIA POWER COMPANY April 10, 1979 Revised:
Fby 1, 1979 Revised:
November 19, 1982 6212090526 821201 DR ADOCK 05000334 PDR
DUQUESNE LIQfT COMPANY Beaver Valley Powr Station j
Docket No. 50-334 i
i
)
i 0FF-SITE DOSE CALCULATION MNUAL (0DCm i
i l
I April '0, 1979 1
Revised:
May 1, 1979
)
Revised:
November 19, 1982 i
i
i TABLE OF CONTENTS Section Title Page Table of Contents i
List of Tables 1
List of Figures yii Preface yj; 1.0 LIQUID EFFLUENTS 11 1.1 Monitor Alarm Setpoint Determination 11 1.2 Compliance With BVIS 3.11.1.1 1-9 1.3 Compliance With 10 CFR 50 (Liquids) 1-13 2.0 GASEOUS EFFLUENTS 2-1 2.1 Monitor Alarm Setpoint Determination 2-1 2.2 Cornpliance With 10 CFR 20 (Gaseous) 2-20 2.3 Conoliance With 10 CFR-50 (Gaseous) 2-55 3.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM 31 4.0 INF0FORTION RELATED TO 40 CFR 190 4-1 Appendix A Summary of Dispersion Calcu-A-1 lational Procedures Appendix B Inputs to GALE Code 3-1
List of Tabiss Table No.
Title Pece No.
1.1-1 Liquid Source Tenns 17 1.2-1 Recirculation Times Required Before Sampling 1-12 of Liquid Discharge Tanks A r Values for an Adult for the Beaver Valley 1_17 1.3-1 i
Unit 1 2.1-1 Gaseous Source Terms 2-16 2.1-2 Monitor Detector Efficiencies 2-17 2.1-3 Dose Constants for Noble Gases for Elevated 2-18 Finite Plume Release 2.2-1 Modes of Gaseous Release from Beaver Valley 2-38 Power Station Unit 1 Vents for Implementation of 10 CFR 20 2.2-2 Radionuclide Mix for Gaseous Effluents from the 2-39 Beaver Valley Pcwer Station, Unit 1 (Ci/?r) 2.2-3 Distances (Miles) to Controlling Locations as 2-41 Measured from Center of Beaver Valley Unit 1 Containment 2.2-4 Distances (Miles) to Controlling Locations 2-42 (Identified in Table 2-2-3) and Sectors as Measured frcm Center of Beaver Valley Unit 1 Cooling Tower 2.2-5 3eaver Valley Unit 1 Process Vent Dispersion 2-43 3
, sec/m, for Continuous Parameters (t/Q)
Elevated Releases > 500 ErMr or > 150 Hr/Qtr Fcr Special Locations (Identified in Table 2.2-4) 2.2-6 Beaver Valley Unit 1 Containment rent Dispersion 2-44 Parameters (X/Q),sec/m3, for Continuous Mixed Mode Releases > 500 ErsMr or > 150 Hrs /C;r Fcr Special Locations (Identified in Table 2.2-3) l 11
List of Tables (cont'd)
Table No.
Title Pace No.
2.2-7 Beaver Valley Unit 1 Ventilation Vent Dispersion 2-45 3
Parameters (X/Q), sec/m, for continuous Ground Level Releases > 500 HrsMr or > 150 Hrs /Qtr for Special Distances (Identified in Table 2.2-3) 2.2-8 Beaver Valley Unit 1 Process Vent Dispersion 2-46 3
Parameters (X/Q), sec/m, for Continuous Elevated Releases > 500 HrMr or > 150 Er/Qtr 2.2-9 Beaver Valley Unit 1 Containment Vent Dispersion 2-47 3
, sec/m, for Continuous Mixed Parameters (X/Q)
Mode Releases > 500 Hr/Yr or > 150 Hr/Qtr 2.2-10 Beaver Valley Unit 1 Ventilation Vent Dispersion 2-48 Parameters (X/Q)., sec/m3, for Continuous Ground Level Releases > 500 Hr/Yr or > 150 Er/Qtr 2.2-11 Dese Factors for Noble Gases and Daughters 2-49 2.2-12 Dose Parameters for Pinite Elevated Plumes, 2-50 Beaver Valley Pcwer Station, Unit 1 P Values for an Infant for the Beaver Valley 2-51 2.2-13 t
Power Station 2.2-14 Beaver Valley Unit 1 Process Vent Dispersion 2-52 Parameters (D/Q),m-2, for Continuous Elevated Releases > 500 Hrs /Yr or > 150 Hrs /Qtr for Special Locations (Identified in Table 2.2-4) 2.2-15 Beaver Valley Unit 1 Centainment Vent Dispersten 2-53 Parameters (D/Q),m-I, for Continuous Mixed Mode Releases > 500 ErsMr or > 150 Ers/Qtr for Special Locatiens (Identified in Table 2.2-3) iii
"T List of Tables (con 2'd)
Table No.
Title Pace No.
2.2-16 Bea ver Valley Unit 1 Ventilation Vent Dispersion 2-54 Parameters (D/Q), m-2, for Continuous Ground Level Releases > 500 Ers/Yr or > 150 Hrs /Qtr for Special Distances (Identified in Table 2.2-3) 2.3-1 Modes of Gaseous Continuous and Batch Release For 2-83 the Beaver Valley Power Station Unit 1 Vents for Implementation of 10 CFR 50 2.3-2 R Values for the Beaver Valley Power Station 2-84 (Inhalation, Adult) 2.3-3 R Values for the Beaver Valley Power Station 2-85 (Inhalation, Teen) 2.3-4 R Values for the Beaver Valley Power Station 2-86 (Inhalation, Child) 2.3-5 R Values for the Beaver Valley Power Station 2-87 (Inhalation, Infant) 2.3-6 R Values for the Beaver Valley Power Station 2-88 (Ground Plane) 2.3-7 R Values for the Beaver Valley Power Station 2-89 (Vegetable, Adult) 2.3-8 R Values for the Beaver Valley Power Station 2-90 (Vegetable, Teen) 2.3-9 R Values for the Beaver Valley Power Station 2-91 (Vegetable, Child) 2.3-10 R Values for the Beaver Valley Power Station 2-92 (Meat, Adult) iv
List of Tables (cont'd)
Table No.
Title Pace No.
2.3-11 R Values for the Beaver Valley Power Station (Meat, Teen) 2-93 2.3-12 R Values for the Beaver Valley Power Station (Meat, Child) 2-94 2.3-13 R Values for the Beaver Valley Power Station (Cow Milk, Adult) 2-95 2.3-14 R Values for the Beaver Valley Power Station (Cow Milk, Teen) 2-96 2.3-15 R Values for the Beaver Valley Power Station (Cow Milk, Child) 2-97 2.3-16 R Values for the Beaver Valley Power Station (Cow Milk, Infant) 2-98 2.3-17 R Values for the Beaver Valley Power Station (Goat Milk, Adult) 2-99 2.3-18 R Values for the Beaver Valley Power Station (Goat Milk, Teen) 2-100 2.3-19 R Values for the Beaver Valley Power Station (Goat Milk, Child) 2-101 2.3-20 R Values for the Beaver Valley Power Station (Goat Milk, Infant) 2-102 2.3-21 Beaver Valley Unit 1 Process Vent Dispersion ?arameters 2-103 (D/Q), m-2, for Continuous Elevated Releases > 500 Hr/Yr or
> 150 Er/Qt:
2.3-22 Beaver Valley Unit 1 Containment Vent Dispersion Parameters 2-104 (D/Q), m-2, for Continuous Mixed Mode Releases > 500 Er/Yr or
> 150 Er/Qtr 2.3-23 Beaver Va1{ey Unit 1 Ventilation Vent Dispersion Parameter 2-105 (D/Q), m
, for Continuous Ground Level Releases > 500 Hr/Yr or > 150 Hr/Qtr 3.0-1 Radiological Environmental Monitoring Program 3-2 A-1 Beaver Valley Unit 1 Release Conditions A-3 A-2 Beaver Valley Unit 1 Containment Vent Dispersion Parameters A-4 3
(X/q), sec/m, for Batch Mixed Mode Releases 1500 Ers/Yr or 5150 Er/Qtr for Special Locations (Identified in Table 2.2-3)
A-3 Beaver Valley n
at n en sperMon Parameters N
3 (Y/q ), sec/m, for Batch Ground Level Releases f 500 Er/Yr or 1150 Er/Qtr for Special Locations (!dentified in Table 2.2-3) v
List of Tables (cont'd)
Table No.
Title Pace No.
A-4 Beaver Valley nta m.ent Vent aspersion Parameters A-6 3
(X'/q), sec/m, for Batch Mixed Mode Releases s500 q 150 Hr/Qtr or A-5 Beaver Valley Unit 1 Ventilatien Vent Dispersion Parameters A-7 3
(X'/q), sec/m, for Batch Ground Level Releases 1500 Hr/Yr s 150 Hr/Qtr or vi i
I I
),
LIST OF FIGURES Ns.
Title Page 3.0-1 Radiological Environmental Monitoring Program -
Air Sampling Locations 3-6 3,0-2 Radiological Environmental Monitoring Program -
TLD Locations -- Northwest Quadrant 3-7 3.0-3 Radiological Environmental Monitoring Program -
TLD Locations -- Northeast Quadrant 3-8 3.0-4 Radiological Environmental Monitoring Program -
TLD Locations -- Southeast Quadrant 3-9 3.0-S Radiological Environmental Monitoring Program -
TLD Locations -- Southwest Quadrant 3-10 3.0-6 Radiological Environmental Monitoring Program -
Shoreline Sediment, Surface Water, and Drinking Water Sampling Locations 3-11 3.0-7 Radiolgoical Environmental Monitoring Program -
Milk Sa=pling Locations 3-32 3.0-3 Radiological Environmental Monitoring Program -
Foodcrop Sampling Locations 3-13 3.0-9 Radiological Environmental Monitoring Program -
Fish Sampling Locations 3-14 l
t vii
i
>; ?;
\\,
i} f i
PREFACE
/
1 This Offsite Dose Calculation Manual (ODCM) {provides the information and metnodologies to be used by Beaver Valley Power Station (BVPS) to assure compliance with certain portions of DVPS's operating technical specification.
nese portions are those related to liquid and gaseous radiological effluents. Rey
~
are intended to show compliance with 10 CFR 20,10 CFR 50.36a, Appendix I of 10 CFR 50, and 40 CFR 190.
s
\\
nis ODCM !s based on " Radiological Effluent. Technical Specifications for PWR4 (NUREG-0472, Draft)",
" Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants (NUREG-0133)," and other inputs fror. the United States Nuclear Regulatory Commission (USNRC). Specific plant procedures for implementatfor. Of this manual'will be developed. ihese' procedures will be utill',ed by the ope.ating staff of BVPS to assure compliance with technical sr /.cifications.
The ODCM has been prepared as generically as possible in order tc'. minimize the need for future versions. However, some changes to the ODCM will be expected in the future. Any such changes will be properly reviewed and approved as indicated in the Administrative Control Section, Specification 6.15.2 of the BVPS Technical Specifications.
I g
4 4
s
')
1 viii m.
~
1.0 LIQUID EFFLUENTS 1.1 Menitor Alarm Sttpoint Determination This procedure determines the monitor high-high alarm setpoint that indicates if the concentration of radienuclides in the liquid effluent released from the site to unrestricted creas exceeds the concentrations specified in 10CFR20, Appendix B, Table II, Column 2 for radionuclides other than dissolved or entrained noble gases or exceeds a concentration cf 2 x 10~4 yCi/ml for dissolved or entrained noble gases.
The methodology described in Section 1.1.2 is an alternative method to be used to determine the monitor high-high alarm setpoint (HHSP).
The methodology in Section 1.1.2 may be used for any batch release and shall be used when the total radioactivity concentration of the liquid effluent prior to dilution exceeds 1.49E-4 uCi/ml.
This concentration is equivalent to the HHSP of 1.69 x 104 i
ncpm (net counts per minute) derived in section 1.1.1.
Tritium and entrained noble gases are not included in the setpoint calculations in accordance with NUREG-0133.
1.1.1 Setpoint Detemination Based on a Conservative Mix The high-high alarm setpoint for the Liquid Waste Effluent Monitor (LW-104) should be set at 1.69E4 neum and the high-high alarm setpoint for the Liquid Waste Contamination Mortitor (LW-116) should be set at 8.46E4 nepm. These setpoints are based on the following conditions:
e Source tems given in Table 1.1-1.
These source tems have been generated from the computer code GALE, Revision 0 (NUREG-0017).
The inputs to GALE are given in Appendix B.
The source tem six (relative activity) is conservative in that shorter half life nuclides with lower maximum permissible concentrations are pre-sent in greater proportion than is realistic due to decay times selected.
Dilution water flow rate of 15,000 gpm e
i Discharge flow rate prior to dilution of 50 gpm for the Liquid Waste Effluent e
Monitor (LW-104)
Discharge flow rate prior to dilution of 10 gpm for the Liquid Waste e
Contamination Monitor (LW-116) l 1-1
The above se2 points can be varied based on actual operating conditions resulting in changes in the discharge and dilution flow rates as follows:
56.3 F HHSP =
(1,l,1) g HHSP
=
Monitor high-high alarm setpoint above background (nepm)
Proportionality constant based on nominal flow 56.3
=
conditions (56.3 = 1.69 x 10' nepm x 50 gpm +
1.5 x 10 gpm)
Dilution water flow rate (gpm)
F
=
(16,000 T + 9,000 R) - P.E.
=
Number of turbine p'. ant river water pumps in operation T
=
Number of reactor plant river water pumps in operation R
=
10,000 (gpm) from plume evaporation rate uhen the plant is P.E.
=
operating Discharge flow rate prior to dilution (gpm) f
=
1.1.1.1 The " mix" (radionuclides and composition) of the liquid effluent was detemined.as follows:
a.
The liquid source te=s that are representative of the " mix" of the liquid effluent were detemined.
Liquid soure,e te =s are the radioactivity levels of the radienuclides in the effluen:
from Table 1.1-1.
1-2
b.
The fraction of the total radioactivity in the liquid effluent cot: prised by radionuclide "i" (sj) for each individual radio-nuclide in the liquid effluent was detemined by equation 1.1-2.
Al S. =
(1.1-2)
Al i
Ag Annual release of radionuclide "i" in the liquid
=
effluent from Table 1.1-1.
1.1.1.2 The maximum acceptable total radioactivity concentration in
~
pCi/ml of all radionuclides in the liquid effluent prior to dilution (c,)
eas dete =ined by:
C *
- ~
t S.'
f T MPC i
F Dilution water flow rate (gpm)
=
15,000 gpm
=
f Maximum neceptable discharge flow rate prior to dilution
=
(gpm) 50 gpm for Liquid Waste Effluent Monitor (LW-104)III
=
10 gpm for Liquid Waste Con a=ination Monitor
=
(LW-116)III MPC
=
Liquid efnuat radioactivity concentration limit for g
radienuclide "i' (p Ci/ml) from Table 1.1-1 or if not listed in Table 1.1-1, obtained from Reference 3.
S{
ne fraction of :otal radioac-ivi y at ribu ed o
~
=
radionuclide "i" (from Ecuation 1.1 2).
1-3
1.1.1.3 The maximum acceptable radioactivity concentration in gC1/=1 of radionuclide "i" in the liquid effluent prior to dilution (Ci) was deter-mined by:
C (1.1-4)
Cg=Sg g 1.1.1.4 The calculated monitor count rate in nepm above background attributed to the radionuclides, C.R., was detemined by:
C.R. =
{Cg g
E (1.1-5) i E
=
i Detection efficiency of the monitor for radionuclide "1" (cpm / u Ci/ml) from Table 1.1-1 or if not IIsted in Table 1.1-1 from Reference 4.
1.1.1.5 Tlie" monitor high-high alarm setpoint above background (nepm) should be set at the C.R. value. Since only one tank can be released at a time, adjustment of this value is not necessary to compensate for releases from more than one source.
1.1.2 Setoolnt Determination Based on Analysis Prior to Release
, The following method applies to liquid releases when determining the setpoint for the maximum acceptable discharge flow rate prior to dilution and the associated high-high alarm setpoint based on this flow rate for the Liquid Waste Effluent.\\1onitor (LW-104) and 8he Liquid Waste Contamina.on Moni. tor (LW-116) during all operational conditions.
The monitor ala m setpoint is set slign:1y above (a factor of 1.25) the count rate that results from the concentration of gamma emitting radionuclides in order to avoid spurious ala ms.
To compensate for this increase is the monitor alam setpoint, the allowable discharge flow rate is reduced by this same factor.
1.1.2.1 The maximum acceptable discharge flow rate (f) prior to dilution (in gpm) is detemined by:
1-4
F fa (1.1-6)
I
[
MPC 1.25 I
i Dilution water flow rate (gpm)
F
=
(16,000 T + 9,000 R) - P.E.
=
Number of turbine plant river water pump:in operation T
=
Number of reactor plant river water pumps in operation R
=
P.E.
=
10,000 (gem) from plume evaporation rate when the plant is operating g
Radioactivity concentration of radionucijde "i" in the C
=
liquid effluent prior to dilution ( p Ci/ml) from analysis of the liquid effluent to be released.*
1.25 A factor to prevent spurious alarms caused by
=
deviations in the =ixture of radionuclides which affect the monitor response.
=
g The liquid effluent radioactivity concentration limit for radionuclide "i" ( uCi/ml) from Table 1.1-1 or if not listed in Table 1.1-1 from Reference 3.
i l
l l
l l
- f the radioactivity of a radionuclide is below the LLD value specified I
l in Table 4.11-1 of the BVPS Technical Specifications, tne radionuclide j
should not be included as a source term in this setpoint calculation.
l 1-5
1.1.2.2 The calculated monitor count rate (in nepm) above background attributed to the radionuclides (CR) is deter =ined by:
[Cg g
E (1.1-7)
C.R. = 1.25 i
The detection efficiency of the monitor'for radionuclide E
=
g "i" (cpm /y Ci/ml) from Table 1.1-1 or if not listed in Table 1.1-1 from Reference 4.
1.25 A factor to prevent spurious ala: ns caused by
=
deviations in the mixture of radionuclides which affect the monitor response.
1.1.2.3 The monitor high-high alarm setpoint above background (nepm) should be set at the C.R. value. Since only one tank can be released at a time, adjustment of this value is not necessary to compensate for releases from more than one source.
1-6
TABl.E 1.1-1 1.lquip SOURCE TER!!S DETECTION EFFICIMCY, Ei ANNUAI. REl.I!ASF (2)
( 18 I!"I)
("I
"}
RAlll0tl0CI.IDE (Al) (Cl)
Cr-51 9E-5 2K-3 1.07E7 Hn-54 2E-5 IE-4 8.80E7 Fe-55 8E-5 8E-4 5.20E3 Fe-59 SE-5 5E-5 9.02E7 Co-58 7.7E-4 9E-5 1.19E8 Co-60 1.0E-4 3E-5 1.72E8 up-239 SE-5 IE-4 5.I4E7 Hr-83 6E-5 3E-6 1<36E6 Rh-86 IE-5 2E-5 7.57E6 Sr-89 2E-5 3E-6 7.84E3 Sr-91 IE-5 5E-5 1.27E8 Plo-99 3.90E-3 4E-5 2.42E7 1
Tc-99m 5.37E-3 3E-3 9.00E7 Te-127m IE-5 SE-5 5.34E4 Te-127 3E-5 7E-4 4.17E5 Te-129m 7E-5 2E-5 5.37E6 Te-129 SE-5 8E-4 1.91E7 I-130 2.5E-4 3E-6 3.10E8 Te-I31m 9E-5 4E-5 1.39E8 Te-131 2E-5 2E-4 1.09E8 3E-7 1.06E8 I-131 6.027E-2 Te-132 1.15E-3 2E-5 1.17E8 1-132 5.38E-3 8E-6 2.75E8 1-133 5.769E-2 IE-6 1.01E8 I-134 IE-5 2E-5 2.43E8 Cs-134 3.80E-3 9E-6 2.06E8 I-135 1.330E-2 4E-6 1.22E8 Cs-136 1.90E-3 6E-5 3.02E8 Cs-137 2.70E-3 2E-5 7.65E7 Ba-140 lE-5 2E-5 5.21E7 1.a-140 IE-5 2E-5 1.74E8 All Others' 4E-5 lE-7 OE0 TOTAL.
1.60E-1 ll-3 1.60E+2 3E-3 OE0 AExcluiling Tritium anil Entrained Hohle Cases.
BEAVER VALLEY ODCM REFERENCES Liquid Effluent Monitor Setpoin:s (1)
" Beaver Valley Power Station, Appendix I Analysis - Docket No.
50-334 and 50-412", Table 2.1.3.
(2)
" Beaver Valley Power Station, Appendix I Analysis - Docket No.
50-334 and 50-412", Table 2.1. 2.
(3) 10CFR 20, Appendix B, Table II, Column 2.
(4)
"Duquesne Light Co., Beaver Valley Nuclear Plant, Specification No. BVPS 414, Table V Nuclide Data, 5/30/74", Table 2 and Figure 1.
1-3
1.2 Compliance with Bvrs 3.11.1.1 Only nuclides for which activity concentrations are above the LLD*s specifi,ed in Table 4.11-1 of Technical Specification 3.11.1.1 are considered to be present.
1.2.1 Batch Releases 1.2.1.1 Prerelease The radioactivity content of each batch release will be determined prior to release in accordance with Table 4.11-1 of Beaver Valley Technical Specifications (BVTS).
In order to assure representative samples, at least two tank volumes of tntrained fluid from each tank to be discharged shall be recirculated through the mixing eductors.
This will be accomplished by recirculating the tank contents for at least the time periods. indicated in Table 1.2-1.
The Beaver Valley Power Station (BVPS) will show compliance with B'.TS 3.11.1.1 in the following manner:
The activity of the various radionuclides in the batch release, determined in accordance with Table 4.11-1, is divided by the minimum dilution flow to obtain the concentration at the unrestricted area. This calculation is shown in the following equation:
C R
Cone
=
- ~
g
.ilDF where concentration of radionuclide i at the unrestricted Cone
=
g area, pCl/ml; 1-9
C
=
g concentration of radionuclide i in the potential batch release, yCi/ml; R
release rate of the batch, gpm;
=
MDF minimum dilution flow, gpm.
=
The projected concentrations in the unrestricted area are compared to the concentrations in Appendix B, Table H of 10 CFR 20. The most common MPCi concentrations are listed in Table 1.1-1 and were taken from Appendix B. Table II of 10 CFR 20.
Before a release is authorized, Expression 1.2-2 must be satisfied.
For the BVPS the MDF is 9,000 gpm.
The maximum release rate is 50 gpm.
[g (Cone /MPC ) < 1 g
g (1. 2 -2) where MPC;,
maximum permissible concentration of radienuclide
=
i from Appendix 3, Table H of 10 CFR 20, gCi/ml 1.2.1.2 Postrelease The concentration of each radionuclide following release from the batch tank will be calculated in the unrestricted area in the following manner:
The average activity of radionuclide i during the time period of release is divided by the actual dilution flow during the period of release to obtain the concentration in the unrestricted area. This calculation is shown in the following equation:
ik tk Cone
=
(*~
g ADFk
- 10
where Conc
=
ik the concentration of radionuclide i at the unrestricted area, during the release period of time k, gCi/ml; C
=
ik c neentration of radionuclide i in batch release during time period k, gCi/ml; V
=
v lume f tank released during time period k, gal; tk ADF
=
k actual volume of dilution flow during the time period of release k, gal.
To show cc=pliance with B\\TS 3.11.1.1, the fo11cwing relationship mus:
hold:
[j(Concik.\\IPC;) $ 1 (1.0-4)
/
t 1.2.2 Continuous Centinuous releases of liquid effluents do not presently occur at the BVPS. If they did occur the concentration of various radionuclides in the unrestricted area would be calculated using Equation 1.21 with Cik, the concentration of isotope i in the continuous release.
To show ce=pliance with BVTS 3.11.1.1, Expression 1.2-4
=us again hold.
l Since disenarge is from an isolated well-mixed tank at essentially a unif:rm ate, the difference between everage and peak cencentr.atien' within any discharge period is minirnal.
I 1-11
TA3LE 1.2-1 RECIRCULATICH TIMES REQUIRED BEFORE SAMPLING OF LIQUID DISCHARGE TANKS l'.ame Mark No.
Approx. Recire. Time (by Operating Manual)
(hrs) t Laundry and Contaminated Shower Drain Tanks lLW-TK-6A & 63
/ 5" Low Level Vas:e Drain Tanks lLW-TK-3A & 33 2.5*
Eigh Level Vaste Drain Tanks" 11.W-TK-2A & 23 6*
I I
Ivapora:or Test Tanks lLV-TK-5A & 53 2"
Stea= Generator Drain Tanks lLW-TX-7A & 73 11.5 Boron Recovery Test Tanks 13R-TK-2A & 23 9.7 t
l a
Tro: Cperating Manual, Chapter 17, Section 4 Derived f ro;:: infor=ation in Operating Manual, Chapter 8. Section 1
- o t r.or. ally a direc: secr:e of discharge d
The times listed are those required for two recirculations 'of a full tank with one recirculation pump in operation.
Partially full tank recirculation times are directly proportional to the fraction of the tank capacity occupied by the entrained liquid waste after isolation.
1-12
1.3 Complf ance With 10 CFR 50 (Liquids) 1.3.1 Cumulation of Doses The dose contribution from the release of liquid effluents will be calculated monthly for each batch release during the month and a cumulative summation of the total body and organ doses will be maintained for each calendar month, current calendar quarter, and the calendar year to date. The dose contribution will be calculated using the following equation:
m D
- b A
E 6t C
F (1.3-1) r i
ir k
ik k
k= 1 where:
D.
the cumulative dos! commitment to the total body
=
or any organ, r, from the liquid effluents for the total time period [ d t ' "*3 k
k= 1 at the length of the kth release over which C and
=
k p
F are averaged for allliquid releases, hours; k
C
=
ik the average concentration of radionuclide, i, in undiluted liquid effluent during time period 6tk from any liquid release, pCi/ml; I
A
=
ir the site related ingestion dose commitment factor to the total body or any organ r for each identified l
principal gamma and beta emitter, mrem-m1 per hr-Ci; nu=ber of releases contributing to :he m
=
cumulative dose, D7 i
1-13
Fk the near field average dilution factor for C during
=
g any liquid effluent release. Defined as the ratio of the maximum undiluted liquid waste flow during 4
release to the product of the average flow from the site discharge structure to unrestricted receiving waters times 3. (3 is the site specific applicable factor for the mixing effect of the BVPS discharge structure).
Y tk 3 ADFk where V and ADF are defined in Equation 1.2-3.
The site specific d
k applicable factor of 3 represents a conservative estimate of the near field dilution factor based upon Regulato y Guide 1.113 methodology and is a factor of ten below the limit specified in NUREG-0133, section 4.3.
The dose factor A was calculated for an adult for each isotope using the g7 following equation from NUREG-0133.
ir 1.14x10 (730/D, + 21BF ) DFir A
=
(1.3-2) g where 5
6 3
1.14x10 =
10 pCi x 10 j
m x
1 vr
- Ci 1
8760 hr '
730
=
adult water consumption rate,1/yr; D,
dilution factor from the near field area within one
=
quarter mile of the release point to the potable water intake for adult water consumptfor.;
21 adult fish consumption, kg/yr;
=
1-14
BF a
g bioaccumulation factor for radionuclide i in fish from Table A-1 of Regulatory Guide 1.109 Rev.1, P i/Kg C
per pC1/1; DF
=
ir dose conversion factor for radionuclide i for adults for a particular organ r from Table E-11 of Regulatory Guide 1.109 Rev 1, mrem /pCf.
A table of A values for an adult at the BVPS are presented in Table 1.3-1. De far ir field d!!ution factor (D,) for the BVPS is 200. This value is based on a total dilution factor of 600 applicable to the Midland water intake located 1.3 miles downstream and on the opposite bank from the BVPS (ie. 200 = 600 +
- 3).
The total dilution factor of 600 represents a conservative fully mixed annual average condition.
Since the Midland intake is located on-the opposite bank and is below the water surface, essential fully mixed conditions would have to exist for the radioactive effluent to be trans-ported to the intake.
The cumulative doses for a calendar quarter are com;iated to one half tho design cbjective doses for the total body and any organ and to the design objective doses for a calendar year. The fonowing relationships should hold for the BVPS to show compliance with BVPS Technica1 Specification 3.11.1.2:
For the calendar quarter, D
5 1.5 mrem total body (1.3-3) 7 D
5 5 mrem any organ (1.3-4) 7 For the calendar year, D
3 mrem totalbody (1.3-5) 7 D
5 10 mrem any organ (1.3-6) 7 The quarterly limits given above represent one half the annual design objective of Section U.A of Appendix ! of 10 CFR 50. If any of the limits in F.xpressions 1.3-3 through 1.3-3 are exceeded a special report pursuant to Section IV.A of Appendix I of 10 CFR 50 must be f!!ed with the NRC.
1-15
1.3.2 Projection of Doses Doses resulting from the release of liquid effluents will be projected once per month based upon past operating history data for the BVPS. The doses will be proj ected using Equation 1.3-1 with F now based upon the minimum dilution k
flow (MDF) as given in Equation 1.2-1 rather ADF. C is based upon the k
ik projected releases for the remainder of the calendar quarter.
If the sum of the accumulated dose to date for the quarter and the projected dose for the remainder of the quarter exceed 25% of the annual limits, then the approrpiate liquid radwaste sub-system will be used.
1-16
TAeLE 1 3-1 A
VALUE: FOR THE AOULT FOR THE g
?CAVTR VALLEY UNIT 1 (MREM /HR PER M I CR O -C I / F.L )
NUCLICE BONE L IV CP.
T.PODY THYRIOD KIONEY LUNG GI-LLI H
3 0.00E-01 2.70E-01 2.70E-01 2.70E-01
- 2. 70 E-01 2.70E-01 2.70E-01 C
14 3.'13E 04 6 26E 03 6.26E 03 6.26E 03 6 26E 03 6 26! 03 6.26E 03 NA 24 4.0AE 02 L.08E C2 4.CRE 02 4.08C 02 4.08E 02 4.08E 02 4.0EE 02 P
32 4.6?E 07 2 87E 06 1.7aC 06 0.00E-01 0.00E-01 0.00E-01 5 19C 06 CR B1 0.00E-01 0 00E-01 1.27E 00 7.62C-01
- 2. 81 E-01 1.69E 00 3 21E 02 FN 54 0 00E-01 4 38E 03 A.!!E 02 0.00E-01
- 1. 3 0-E 0 3 0.00E-01 134E 04 HN 56 0.00E-01 1 1nE 02 1.a5E 01 0.00E-01 1 40E 02 0.00E-01 3.52E 03 FE 55 6.59E 02 4.56E 02 1.06E 02 0.00E-01 0.q0E-01 2.54E 02 2 61C 02 FC 59 1 0aE 03 2 45E 03 9.38E 02 0.00E-01
- 0. 0 0 E - 01 6.83E 02 8 15C 03 CD 08 0.00E-01 E.95E 01 2 01E 02 0.00E-01 0.00E-01 0.00E-01 1 81E 03 CC 60 0.00E-01 2.57E 02 5 67E 02 0.00E-01 0 00E-01 0.00E-01 4 83E 03 NI 63 3.12E 04 2.16 E 03 1 05E 03 0.00E-01
- 0. 0 0 E-01 0.00E-01 4.51E 02 NI 65 1.27E 02 1.65! 01 7 51E 00 0.00E-01
- 0. 0 0 E-01 0.00E-01 4 17E 02 CU 64 0.00E-01 1 00E 01 4.70E 00 0.01E-01 2.52E 01 0.00E-01 8.52E 02 2N 65 2.32C Da 7 37E Og 3.!!C 04 0.00E-01 4.c3E Oc 0. 0 0 E - 01 4.34E 04 2N 69 4.97E 01 9 43F. 01 6.56E 00 0.00C-01 6 13E 01 0 00E-01 1 42C 01 BR 83 0.0*E-01 0 00E-01 4.04E 01 0.00E-01 0.00E-01 0 00E-01 5.A2C 21 BR 84 0.00E-01 0 00E-01 5.?*C 01 0.00E-01 0.00E-01 0.00~-01 4.11E-04
'R G5 0 00E-01 0 0 0 E-01 2 15E 00 0.00T-01 0.00E-01 0.001-01 1.01E-15 AS 86 0.00E-01 1 017 05 4.71E 04 0.00E-01 0 00E-01 0.00E-01 1 99E 04 Ro SS 0.0CC-01 2 90~ 02 1.54E 02
- 0. 0 0 E-01.- 0.00E-01 0.00E-01 4.00E-09 R5 89 0.00E-01 1.927 02 1.!5E 02 0.00E-01 0.00E-01 0.00E-01 1.12C-11 SR 89 2.22E 04 C. 0 0 '. - 01 6.!"E 02 0.00E-01 0.00E-01 0.00E-01 3.57E 03 SR 90 5 4EC 05 0 00r-01 1.34E C5 0 00E-01 0.03E-01 0. 0~0 E - 01 1.54E 04 Ss 91 4.10E 02 0.00~-01 1 65E 01 0.00E-01 0.00E-01 0.00E-01 1.?5E 03 52 82 1.55E 02 0 00E-01 6.72E 00 0.00E-01 0.00E-01 0.00~-01 3.08E 02 Y
90 5.30E-01 0.00E-01 1.!it-02 0.00E-01 0.00E-01 0.00E-01 6 1 5 E 0'3 Y
91F 5.47F-03 0.00.-01 2.1?f-04 0.00E-01 0.00E-01 0. 0 0 C -01 1.61E-O' Y
91 8.5DE 00 C.00L-01 2 27E-01 0.00T-01 0.00E-01 0.00r cl
- 4. gar az Y
92 E.0=E-02 C.00E-01 1 4:E-03 0.00E-01 0.00E-01 0.00E-01 8 9?E OT Y
93 1 6LE-01 0.00E-01 4.45E-03 0.00E-01 0.00E-01 0.00E-01 5.12E 03 1-17
TABLE 1.3-1(CON 7'D)
A VALUCE FOR THE AGULT FOR THE y
EEAVER VALLEY UNIT 1 (MPEN/HR PER MICRO-C1/ML)
NUCLICE BONE LIVER T.EODY THYRIOD KIONEY LUNG GI-LLI ZR 95 2.53C-01 8.11E-02 5 49E-02 0.00E-01 1 27E-01 0 00E-01 2.57E 02 ZR 97 1 40E-02 2.82E-03 1 2EE-03 0.00E-01 4 26E-03 0.00E-01 8.73E 22 N9 95 4.47C 02 2 48E 02 1.34E 02 0.00E-01 2 46E 02 -0.00E-01 1.51E 06 MO 99 0.00E-01 1.05E 02 2 00E 01 0.00E-01 2.38E 02 0 00E-01 2.43E 02 TC 99M 8 97E-03 2.54C-02 3.23E-01 0.00E-01 3. 8 5,E - 01 1 26E-02 1.50E 01 TC101 9.23C-03 1.33C-02 1.30E-01 0 00r-01 2.3*E-01 6.79E-03 4.00E-14 Rulc3 4 51E 00 0.00E-01 1.44E cn 0.00E-01 1 7.2E 01 0.00E-CI 5.2EE 02 RU105 3.75E-01 0.00E-01 1.4SE-01 0.00E-01 4.&5E 00 0.00E-01 2.2?E 02 RU106 6.70E 01 0.00E-01 S.46E 00 0 00E-01.1.29E 02 0.00E-01 4.3ct 03 AG110M 9.4AE-01 8.77E-01 5.21E-01 0.00E-01 1.72E 00 0.00E-01 3.5AE 0?.
TE125M 2 57E 03 9.30E 02 3.'4E 02 7.72E 02 1.04E 0*
0.00E-01 1.03E 04 TE127M 6 49E 03 2 32C 03 7.90C 02 1 66E 03 2.63E 04 0.00E-01 2.17E 04 J
T E 127' 1.05E 02
- 3. 7 8 F 01 2.2AE 01 7.81E 01 4.29E 02 0.00E-01 8.32E 03 TC12*M 1 10E 04 L.11E 03 1.74C 03
!.78C 03 4.60E 04 0.00r-01 5.55E 04 TE179 3.01E 01 1.13C 01 7.33E 00 2 31E 01 1.26E 07 0.00E-01 2.27C 01 TE131M
- 1. 6 6 E 0 3.
S.10E 02 6.75E 02 1 28E 03 8.21C 03 0.00E-01 8.05C 04 7E 31 1 89E 01 7.88E 00 5.96E 00 1.55C 01 8 77E 01
- 0. 0 0 E-01 2.67E
'O TE132 2 41E 03 1 56E 03 1.*7E 03 1.72E 03 1.50E 04 0.0 0 E -01 7.3*C 0*
130 2.75E 01 9 10F 01 3.2nE 01 6 87E 03 1 26E 02 0.00E-01 6.97C 01 131 1.51C 02 2.16E 02 1.74E C2 7.08E 04 3.71E 02 0.00E-01 5.70C 01 4
I 132 7 37C 00 1 97E 01 6.*0E 00 6.90E 02 3.19C 01 0.0CE-01 3.71E 00 I 133 5.1LE 01 3 97r 01 2 74C 0:
1.32E Oc 1.57E 02 0.00E.01 B.06E 01 I 134 3.85E 00 1 05E 01 3.7aC O r.
1.81E 02 1.66E 01 0.00E-01 8.1?E-03 I 135 1 61C 01 c.21E 01 1.55E 01 2.78C 03 6.76E 01 0.c0E-01 4.76E Of CS?34 2.9FE 05 7.09r og g,7nt og o,coE 01 2.28! 05 7.61C 0*
1.24E 04 CS136 3.12E 04 1.23" 05 S.8tr 04 0.00E-01 6.85E 0*
9 39'c C?
1.40E 04 Ci!37 3.82E 09 5.22E 05 3.&2E C5 0.00E-01 1.77E 05 5 89E 0*
1.01E 04 CI:3E 2 6aC 02 1 22r 02 2.!"E 02 0.00r-01 3.84E 02
!.7aC 01 2 23E-0I DA139 9. S c E - 01 5 00E-04 2.?*E-02 0.00E-01 6.*5E-Sc 1.82E-04 1.720 00 BA*40 P.03E 02 2 5 5 E - 01 1.33C 01 0.00E-01 8 66C-Ot
?.02E-04 2.22E-10 i
l l
l 1-18 t
TABLE 1 3-1(CONT'0)
A,,, VALUCS FOR THC AOULT FOR THE
" CAVER VALLCY UNIT 1 (MRCH/HR PCR HICRO-CI/ML)
'NUCLICC SONC LIVCP T.900Y THYRIOD KIONCY LUNG GI-LLI BA142 2.13E-01 2 19E-04 1.34E-02 0.00E-01 1 85E-0*
1,.2 4 C- 0 4 3.00E-10 LA140 1.51C-01 7 59.-02 2.01E-02 0.00E-01 0.00C-01 0.00E-01 5.57C 03 LA142 7.71C-03 3.51C-03 8.74E-04 0.00E-01 0.00r-01 0.00E-01 2.56r 01 CE141 2.63C-02 1.7ar-02 2 07C-03 0.00E-01 8 26C-03 0.00C-01 6.80E 01 CE143 4.64C-03 3.43E 00 3.79E-04 0.00E-01 1.51E-03 0.00C-01 1.2.*C 02 CC144 1.37E 00 5.73E-01 7.36C-02 0.00C-01 3.40E-01 0.00C-01 4.64C 02 PR143 5.54E-01 2 22T-01 2.75E-02 0.00E-01 1.2RE-01 0.00E-01 2.43E 03 PR144 1.81C-03 7.53E-04 9 2?C-05 0.00E-01
- 4. 25 C- 0 4 0.00C-01 2.61E-10 N0147 3.79C-01 6.38C-01
- 0. 0 0 C-01 0.00C-01 0.00E-01 8.10E 04 NP239 2.90C-02 2.85E-03 1.57E-03 0.00E-01 8.89E-03 0.00C-01 5.85C 02 1-19
2.0 GASEOUS EFFLUENTS 2.1 Monitor Alarm Setooint Determination This procedure determines the monitor high-high alarm setpoint that indicates if the dose rate in the unrestricted areas due to noble gas radione lides in the gaseous effluent released from the site exceeds 500 mrem / year to the whole body or exceeds 3000 mrem / year to the skin.
Two alarm setpoin dete minations are raqaired for each of the three gaseous offluent monitors; the high alam setpoint (HSP) and the high-high alam setpoint (FESP).
The HSP of each monitor indicates when the dose rate from effluent measured by the monitor exceeds ten percent of the applicable dose rate limit (500 mrem / year to the whole body or 3000 mrem / year to the skin).
The FESP of each monitor indicates when the dose rate from effluent measured by the =enitor exceeds 80 percent of the applicable dose rate limit.
Accor-dingly, one miSP and two HSP alarms occuring at the same time will indicate t
when the dose rate from simultaneous releases may have exceeded the applica-ble dose rate li=its.
The =ethodologies described in Sections 2.1.3 and 2.1.4 provide an alternate means of determining monitor high-high alarm se: points that may be used when an analysis is perfo =ed prior to release.
If two si=ultanec ; gaseous release types (batch 2nd continuous) out of one vent occurs, calculate the setpoint for each type of release and use the lowest setpoint obtained.
Batch refers to releases that are intermitten: in radionuclide concentrations or flow, such as releases from gas storage tanks, cori:ainmen:
ventings and purges, and systems or components with infrequent use.
Batch releases cay be due to operational varia:iens which result in radioactive releases greater than 50's of the releases nomally considered as continuous. Batch releases from these sources during nomal operation, including anticipated operational occu-ences, are defined as those which occur for a total of 500 hours0.00579 days <br />0.139 hours <br />8.267196e-4 weeks <br />1.9025e-4 months <br /> or less in a calendar year but not more than 150 hours0.00174 days <br />0.0417 hours <br />2.480159e-4 weeks <br />5.7075e-5 months <br /> in any quarter.
The batch relative concentra:;on value has been calculated in accordance with the guidelines pro-vided in NUREG-0324 for short-term release 2-1
2.1.1 Seteoint Dete=ination Based on a Conservative Mix for Ventilation Vent and Containment Building Vent Releases (Ground and Mixed Mode Releases) i The calculated monitor count rate above background (C.R.), in nepm, the menitor high-high alarm se: point above background (HHSP), and the ' monitor high alam se point above background (HSP) for each vent and operational condition should be as follows:
C.R.
HHSP HSP Continuous Release Via e
The Ventilation Vent 2.75E3 2.20 E3 2.75E2 Batch Release of Contain-e rnent Purge Via the Ventil-atica Vent 1.16E3 9.28E2 1.16E2 Continucus Release Via The e
Contain=ent Building Vent 6.23E4 4.98 E4 6.23E3 Batch Release cf Contain-e ment Purge Via the Con-ain=en: Building vent 2.00E5 1.50E5 2.00 E4 7"ne se: points were de:emined using the following conditicas:
Source te=s given in Table 2.1-1.
These source :e=s are e
those developed in the FSAR for maxist= expected releases.
The source te= mix (relative activity) is conservative in that shorter half life nuclides with lower maximum pe=issible concen:ra-tions are present in greater propo : ion than is realistic due to l
l decay times selected.
l Discharge flow rate of 62,000 cfm for the Ventilation Ven: (continuous) e Discharge flow rate of 92,000 cfm for the Ventilation Vent (Batch release e
of containment purge).
1 i
Discharge flow rate of 49,300 cfm for the Contain=ent Building Vent (Both continuous and batch release of containment purge).
The calculation method given in Sections 2.1.1.1 through 2.1.1.7 was used to derive the high-high alarm setpoint for the Ventilation Vent Gas Monitor (VS-101B) and the Containment Building Gas Monitor (VS-107B) during the following operational conditions:
2-2
o Ccntinutus rel:asa via tha Ventuaticn Vent Continuous release via the Containment Buildin?, Ven e
Batch release of containment purge via the Ventuation Vent e
Batch release of containment purge via the Contain=ent Building Vent e.
2.1.1.1 The "=ix" (noble gas radionuclides and composition) of the gaseous effluent was deter =ined as follows:
a.
The gaseous source te =s that are representative of the " mix" of the gaseous effluent were selected.
Gaseous source te=s are the radioactivity of the noble gas radionuclides in the effluent.
Gaseous source te =s can be obtained from Table 2.1-1.
b.
The fraction of the total radioactivity in the gaseous effluent co= prised of noble gas radionuclide "i" (S ) for each individual g
noble gas radionuclide in the gaseous effluent was dete=ined by:
A.
3 S
(2.1-1)
I=
.T_
Al i
i A
1 The total radioactivity or radioactivity concentration
=
of noble gas radionuclide "i" in the gaseous effluent from Table 2.1-1.
2.1.1.2 De =axi=u= acceptable total release rate in gCi/see of all noble gas radionuclides in the gaseons effluent (Q )* based upon the whole body exposure li=i: was calculated by:
2-3
(2*1~2I (X/q)
K S t
g g
where Y/Q for each case is given below:
(X/q)*
The highest calculated annual average relative concent-
=
ration of effluents released via the Ventilation Vent for any area at or beyond the unrestricted area boundary for all sectors (sec/m ) from Table 2.2-7 and Table A-3 of Appendix A.
3
=
5.3 E-5 sec/m for continuous releases 3
(X/q) 8.5 E-5 sec/m for batch release of containment,yurge
=
v (X/q)*
The highest calculated annual average relative concent-
=
ration of effluents released via the Containment Building Vent for any area at or beyond the unrestricted area boundary 3
for all sectors (sec/m ) from Table 2.2-9 and Table A-4 of Appendix A.
3 1.3 E-5 sec/m for continuous releases
=
3 3.7 E-5 sec/m for batch release of containment purge (y/q)
=
m K;
The total whole body dose facter due to gamma emissions
=
3 from noble gas radionuclide "i" (mrem / year / p Ci/m )
from Table 2.2-11.
2.1.1.3 Q. was also determined based upon the skin exposure limit by:
3000 (2.1-3)
Q
=
t (gj )
(g 1,1y)3 q
L
=
j The skin dose factor due to beta emissions from noble gas 3
radionuclide "i"(mrem / year / u Ci/m ) from Table 2.2-11.
M n
g Tho air d:sa fceter due to gammt emissi ns from noble 3
gas radionuclid2 "i" (mrad /y:arja Ci/m ) from Table 2.2-11.
1.1 The ratio of the tissue to air absorption coefficients
=
over the energy range of the photon of interest, (= rem /
mrad).
2.1.1.4 The maximum acceptable release rate in pCi/see of noble, gas radio-nuclide "i" in the gaseous effluent (Q ) for each individual noble gas radionuclide g
in the gaseous effluent was determined by:
Q. = Sg(
(2.1-4) 1 (NOTE:
Use the lower of the Q values obtained in Sections 2.1.1.2 and 2.1.1.3) 2.1.1.5 The maxi =um acceptable radioactivity concentration gCi/mi of noble gas radionuclide "i" in the gaseous effluent (C )
for each individual noble g
gas radionuclide in the gaseous effluent w's deter =ined by:
a 2.12 E-3 Q I (2d-5)
C =
i r
F
=
The maximum acceptable effluent flow rate at the point of reler.se (cfm) 62,000 cfm (Ventilation Vent)(1}
=
49,300 cfm (Contain=ent Building Vent) Cl)
=
2.12 E-3 Unit conversion factor (60sec/ min x 3.53 E-5
=
ft /ml).
2.1.1.6 The calculated monitor count rate in neps above background attributed to the noble gas radienuclide (C.R.) was determined by:
{ C; E; (2.1-6)
C.R. =
i The detection efficiency of the moniter for ncble gas E
=
i radienuclide "i"'(cpm / p Ci/ce) from Tacle 2.1-2.
2-5
2.1.1.7 The m:nitor alarm sstpoints abcyo bcckground were datermincd t.s follows:
The monitor high-high alarm HHSP setpoint above background (in a.
ncpm) was determined by:
HHSP = 0.80 C.R.
(2.1-7) b.
The monitor high alam setpoint HSP above backgrourid (in ncpm) was determined by:
HSP = 0.10 C.R.
(2.1-8)
NOTE: The values 0.8 for the HHSP and 0.1 for the ESP are fractions of the total radioactivity concentration that may be released via the monitored pathway to ensure that the site boundary limit is not exceeded due to simultaneous releases from several release points.
2.1.2 Setooint Determination Based on a Conservative Mix for Process Vent Releases (Elevated Releases)
The calculated monitor count rate above background (C.R.), the monitor high-high alarm setpoint above background (HHSP), and the monitor high alarm setpoint above background (HSP) for each operational condition are as follows:
C.R.
HHSP HSP e
Continuous Release 3.85E7 3.08 E7 3.85 E6 e
Batch Release Of Primary Systems Degas 5.07E6 4.06 E6 5.07E5 e
Batch Release Of Waste Gas 6.16 E6 4.93 E6 6.16E5 The setpoints were determined using a conservative mix from the FSAR and discharge flow rate of 1200 cfm for the Process Vent.
2-6
Tha calculationni methed belcw was used to derive tha high-high alam setraint for the Gasseus Waste Gas Menhor (GW-1083) during th2 following opcraticnal canditicns Continuous release via the Process Vent e
Batch release of primary systems degas via the Process Vent e
Batch release of waste gas via the Process Vent e
2.1.2.1 The "=ix" (noble gases and composition) of the gaseous effluent was dete=ined as follows:
The gaseous source tems that are representative of the "=ix" ef a.
i the gaseous effluent were evaluated.
Gaseous source ter=s ace the radioactivity of the noble gases radionuclides in the effluent.
The gaseous source tems can be obtained from Table 2.1-1.
b.
The fraction of the total radioactivity in the gaseous eff1'uent co= prised by noble gas radionuclide "i" (S ) for each individual noble gas radionuclide in the gaseous effluent was calculated by:
AI 5
i-(2.1-9) i
[Ai i
A.
The total radioactivity or radioactivity concen-
=
1 l
tration of noble gas radionuclide "i" in the gaseous effluent from Table 2.1-1.
2.1.2.2 The maxi =um acceptable total release rate (in FCi/sec) of all noble gas radionuclides in the gaseous effluent (g)baseduponthewholebodyexposure limit wa. detemined by:
h.=
500 (2.1-10)
TYi i
i V.
=
The constant for nocle gas radienuclide "i" acccunting for 1
the gamma radiation from the elevated finite plume (mrem / year / u Ci/sec) from Tatie 2.1-3.
27
2.1.2.3 w'as also datorminod based uptn t% skin exposure limit es follows:
3000 (2.1-11)
Q
=
t (L (X/q)s + 1.1 B ) S g
g g
1 L
=
g The skin dose factor due to beta emissions from noble gas 3
radionuclide "i" (mrem / year / y Ci/m ).from Table 2.2-11.
(X/q)8 The highest calculated annual average relative concent-
=
ration of effluents released via the Process Vent for any area at or beyond the unrestricted area boundary for all 3
sectors (sec/m ) from Table 2.2-8.
1.2 E-6 sec/m
=
B
=
The constant for long term releases (greater than 500 g
hrs / year) for noble gas radionuclide "i" accounting for the gamma radiation dose from the elevated finite plume (mrad / year / y C1/sec) fr.om Table 2.1-3.
2.1.2.4 The maximum acceptable release rate (in FC /sec) of noble gas radio-i nuclide "i" in the gaseous effluent (Q ) for each individuzi noble gas radio-g nuclide in the gaseous effluen was determined by:
Qi=St Q (2.1-12)
(NCTE:
Use the loaer of the values obtained in Sections 2.1.2.2 and 2.1.2.3) 2.1.2.5 The maximum acce c v e 2. dioactivity concentration (in uC /ml) of g
noble gas radionuclide "i" ;.a tra pseous effluen: (C )
for each individual g
noble gas radionuclide in the gaseous effluen: was determined by:
2.12 E-3 QI C. =
(2.1-13 )
2-3
7 t
4
- 5. !
bnitconversionfr.cter where:
2.12 E-3
=
The maximum acceptable effluent flow rate at the point F
=
t 1
of release (cfmb t.
1200 cfm (Process Vent)(3}
=
2.1.2.6
~he calculated monitor count rate (in ricpm) above background attri-buted to the noble gas radionuclides (C.R.) was detemined by:
[C E (2.1-14)
C.R. =
g g
I where:
E
=
g The detection efficiency. of the monitor for noble gas radionuclide "1" (epm / y C1/ce) from Table 2.1-2.
2.1.2.7 The aonitor alam setpoints above backgroundwas detemined as follows:
- a. The monitor high-high alam setpoint (hESP) above background (in nepm) was detemined by:
h*HSP = 0.80 C.R.
(2.1-1S)
I j
- b. The monitor high alam setpoint (HSP) above background (in l
nepm) was detemined by:.
l HSP.= 0.10 C.R.
(2.1-16) 2.1.3
'Setpoint Detemination Based on Analysis Prior to Release for Ventilation Vent and Containment Building Vent Release (Ground and Mixed j
Mode Releases) l l
When the setpoints established using "the conservative =ir' for ground or mixed l
modes do not provide adequate flexibility for operational needs, the method l
2-9
described below may be used in lieu of that set forth in Step 2.1.2. In this case, the results of sample analysis are used to determine the source term " mix".
This calculational method applies to gaseous releases via the Ventilation Vent and via the Containment Building Vent when detemining the setuoint for the maximum acceptable discharge flow rate and the associated high-high alam setpoint based on this flow rate for the Ventilation Vent Gas Monitor (VS-1013) and the Contain-ment Building Gas Monitor (VS-107B) during the following operational conditions:
e Batch release of containment purge via the Ventilation Vent Batch release of containment purge via the Containment Building Vent e
NOTE: If the radioac'tivity of a noble gas radionuclide is below the LLD value specified in Table 4.11-2 of the BVPS Technical Specifications, the noble gas radionuclide should not be included rot n :ource tem in this setpoint calculation.
2.1.3.1 The =ar.imum acceptable discharge flow rate from containment vent or ventilation vent during purging is dete mined as follows:
- a. The maximum acceptable gaseous discharge flow rate (f) from containment or ventilation vent (in efs) during purging based upon the whole body exposure limit is calculated by:
( _
0.848 T (2.1-17)
(X/q ) [K C
where (y/q) for each case considered is given below.
0.34 500 = rem /yr x 2.12 E-3 x 0.8
=
500 mrem /yr = dose rate limit 2.12 E-3
= unit conversion factor 0.8
= factor to account for si=ul-taneous releases from other vents.
2-10
(X/q)
Tha high:st calculated shsrt t m rihtive conctnt-
=
V ratien of efflugnts rehassd via ths Ventilation Vent for any area at or beyond the unrestricted area boundary for 3
au sectors (sec/m ) from Table A-3 of Appendix A.
3 8.5 E-5 sec/m
=
(X/q)
The highest calculated short term relative concent-
=
ration of effluents released via the Conrainment Building Vent for areas at or beyond the unrestricted area boundary for 3
all sectors (sec/m ) from Table A-4 of Appendix A.
3 3.7 E-5 sec/m
=
K
=
g The total whole body dose factor due to gamma emissions from noble gas radionuclide "i" (mrem / year / u Ci/m )
from Table 2.2-11.
C.
The radioactivity concentration of noble gas radionuclide
=
1 "i" in the gaseous effluent ( uCi/ce) from the analysis of the gaseous effluent to be deleased.
The minimum number of containment volume air changes needed T
=
to reduce containment gaseous radioactivity to a predetermined level.
- b. The flow rate (f) is siso determined based upon the skin exposure limit as follows:
f=
(2.1-18)
(X/q )
[ (L + 1.1 M ) C g
g g
I where:
5.09 3000 mrem /yr x 2.12 E-3 x 0.8
=
3000 mrem /yr = dose rate limit 2.12 E-3
= unit conversion factor 0.3
= factor to account for si=ultaneous releases from other events.
2-11 l
\\
. ~.,
c-
L u
Tha skin dosa fcetcr duo to bsta emissions from nobla gas g
3 radionuclid3 "i" (mrem /ycar/ p Ci/m ) from Tcbla 2.2-11.
M
=
g The air dose factor due to gamma emissions from noble 3
gas radionucilde "i" (mrad / year / u Ci/m ) from Table 2.2-11.
- c. The flow rate (f) is determined by selecting the smaller of the calculated (f) values based on the whole body exposure limit (Section 2.1.3.1.a) and based on the skin exposure limit (Section 2.1.3.1.b).
The actual purge flow rate in cfm =ust be maintained at or below this calculated (f) value or the discharge cannot be made from the vent.
2.1.3.2 The monitor high-high alarm setpoint (HHSP) above background is detemined as follows:
- a. The calculated monitor count rate (in nepm) above background (C.R.) attributed to the noble gas radienuclides is calculated by:
T f y C; Eg C.R. =
(2.1-19)
-r, +f f
The maximum acceptable gaseous discharge flow rate
=
(cfm) determined in Section 2.1.3.1.
F
=
The normal vent air flow rate from other areas which constitutes the' dilution component for containment purge (cfm).
62,000 cfm (Ventilation Vent)(1}
=
41,800 cfm (Containment Building Vent)( }
=
-12
C n
g Tho radiccetivity concIntraticn of noble gas rIditnuclida "i" in tho gas;ous efflu;nt ( uCi/ce) from ths analysis of the gaseous effluent to be released.
'Eg The detection efficiency of the monitor for noble gas
=
radionuclide "i" (cpm / u Ci/cc) from Table 2.1-2.
b.
The monitor high-high alarm setpoint (HHSP) above background (nepm) should be set at the C.R. value.
2.1.4 Setpoint Determination Based on Analysis Prior to Release for Process Vent Releases (Elevated Releases)
The following calculation method applies to gaseous releases via the Process Vent when the " conservative mix" does not provide adequate operational flexibility.
This method is used to determine the setpoint for the maximum acceptable discharge flow rate and the associated high-high alarm setpoint based on this flow rate for the Gaseous Waste Gas Monitor (GW-108B) during the following operational conditions:
Batch release of waste gas via the Process Vent NOTE: If the radioactivity of a noble gas radionuclide is below the LLD value specified in the BVPS Technical Specifications, the noble gas radionuclide should not be included as a source term in this setpoint calculation.
2.1.4.1 Determine the maximum acceptable discharge flow rate from the waste gas tanks.
The maximum acceptable gaseous discharge flow rate (in efs) from a.
the waste g'as tanks (f) based upon the whole body exposure limit is determined by:
0.848 f=
(2.1-20)
{V g C, i
V
=
The constant for noble gas radionuclide "i" accounting for the gamma radiation from the elevated plume (mrem /
year / u Cl/sec) from Table 2.1-3.
2-13
C a
Tha radioactivity conctntration of ntblygas reditnuclida g
"1" in the gaseous effluent ( pCi/ce) from the analysis of the gaseous effluent to be released.
- b. Based upon the skin exposure limit, (f) is calculated by:
5.09 f=
(2.1-21) '
{ (L (Y/q)* + 1.1 B ) C g
g y
i The skin dose factor due to beta emissions from noble gas L
=
g 3
radionuclide "i" (mrem / year / p C1/m ) from Table 2.2-11.
(X/q)s The highest calculated annual average relative concent-
=
ration of effluents released via the Process Vent'for any area at or beyond the unrestricted area boundary for all 3
sectors (sec/m ) from Table 2.2-8.
3
=
1.2 E-6 sec/m.
The constant for long-term releases (greater than $00 B
=
hrs / year) for noble gas radionuclide "1" accounting for the gamma radiation from the elevated finite plume (mrad /
year / u Cl/sec) from Table 2.1-3.
- c. Select the smaller of the calculated f values based on the whole body exposure limit (Section 2.1.4.1.a) and based on the skin exposure limit (Section 2.1.4.1.b.).
The actual discharge flow rate in (cfs) must be maintained at or below this f value.
2.1.4.2 The monitor high-high alarm setpoint above background is determined as follows.
- a. The calculated monitor count rate above background (in nepm) attributed to the noble gas radionuclides (C.R.) is deter =ined by:
2-14
f C E I
I C.R. =
(2.1-22)
F' +f f
The maximum acceptable gaseous discharge flow rate
=
(cfm) determined in Section 2.1.4.1.
F' The normal vent air flow rate from other areas which
=
constitutes the dilution component for the release (cfm).
1200 cfm (Process Vent)(3)
=
The radioactivity of noble gas radionuclide "i" in the C
=
g gaseous effluent ( u C1/ce) from the analysis of the gas to be released.
The detection efficiency of the monitor for noble gas E
=
g radionuclide "i" (cpm / u Ci/cc) from Table 2.1-2.
b.
The monitor high-high alarm setpoint above backg ound (nepm) should be set at the C.R. value.
2-15 i
TAtt.E 2.5-1 CASDets SaiURCE TDets (INVtMTUitlE5 AND CIW8CENTRATtuess) e Process Vent (A )(Cl)
Contin =aus Ratc h Re l* * *es gy, gyy Elevated Long Te Waste can Primary System Ventitation Vest Containment Rel, ease (A )(Cl)g,y Release (gy Release Degas Release (A ) (Cl)
Purge ( A ) ( lp CUCC) a n t l.=uw i t.le g
t r-8 Le 3.22E-t 2.68E0 6.48E-3 2.24E-3 4.19E-8 a r-n se t. 50r.0 1.2tE0 6.95E-2 I.72E-2 1.17E-F so-ai 8.5E0 6.88Et 1.12E3 5.18E2 1.33E2 2.4tE-3 6t-87 9.33E-!
7.55E0 1.42E-2 1.52E-3 6.81E-8 tr-RA 2.5nEn 2.02Et 4.88E-2 2.0tt-2
- 3. 94 E-7 Er-81 F.8)E-2 6.32E-1 1.34E-3
- 1. 20 E-5 2.35E-10 4
Kr-90 O
Re-13tm I.tFE-2 8.99E-2 9.83E-t 1.15E-I 3.13E0 2.22E-5 Xe-I l be 2.45EO 1.97Et 5.58E-2 3.75E-2 3.93E-t F.7tE-6 Re-II) 2.10ER 1.49E2 A.23El 2.40Et 8.25EO t.62E-4' te-I l%.
8.44E-t 6.84E0 1.43E-2 1.02E-2 2.00E-F Xe-l ls 2.55E0 2.04Et 4.95E-2 9.88E-2 8.94E-6
=
Xc-Ill I.27E-3 1.02F.0 2.21E-3 2.40E-5 4.7tE-10 Xe-I la 5.2nE-3 4.2tE0 8.00E-2 4.25E-4 8.34E-9 Ar-45 TufAI.
4.14Et 3.22E2 1.20E) 5.43E2 1.43E2 2.40E.)
" Primary synten leikar,e out elde containment.
h Prim.ory system leaktge via steam generator air ejector.
p e
TAllt.E 2.1-2 !!OlitTolt DETECT 0lt EFFICIENCIES (4)
(4)
VErlTil.ATIOrt VEtiT CAS COffrAIIMNr BUIIDDK) VIRP lt ADI 0tillCl.II)E HofflTolt*, Eg (c gun /pCI /cc)
H0tilTOlt, E (cgun/pCl/cc) g K r-film K r-fl5:e 1.29E8 7.62E7 K r-IIS 9 35E5 7.92E7 Er-87 1.67E8 1.63E8 K r-flu I.36E8 8.40E7 e4 K r-fl9 7.64E8 l.67E8 E
Kr-90 2.58E8 1.55E8 Xe-131m 3.12E6 Xc-133m 2.32E7 6.16E7 Xc-133 1.33E7 3 50E7 Xe-i35:n 9.43E7 2.13E7 Xe-135 1.52 Ell 9.77E7 Xe-137 4.13E7 1.69E8 Xc-1311
- 3. 93 Ell 1.48E8 Ar-41 9.60E7 1.13E8
- Same for Process. Vent Gas Monitor f
e
TABl.E 2.1-3 Dose Constants For Noble Cases For Elevated Finite Plume Release (For use in setpoint determination only)
TOTAL, BODY SKIN l
DOSE CONSTANT DOSE CONSTANT Vi 81 (HREH/YR (HRAD/YR RADIONUCl.IDE pCI/SEC) pCI/SEC)
Kr-83m 1.83E-09 4.48E-09 Kr-85m 5.39E-04 8.00E-04 Kr-85 1.07E-05 1.62E-05 Kr-87 3.69E-03 5.55E-03 Kr-88 9.31E-03 1.40E-02 b
Kr-89 9.1IE-03 1.37E-02 Xe-131m 1.1IE-04 1.66E-04 Xe-133m 9.40E-05 1.43E-04 Xe-133
- 7. ole-05 1.04E-04 Xe-135m 2.00E-03 3.03E-03 Xe-135 9.68E-04 1.45E-03 Xe-137 7.60E-04 1.15E-03 Xe-138 5.81E-03 8.72E-03 Xe-139 9.87E-04 1.48E-03 Ar-41 7.25E-03 1.09E-02
- Based upon distance from the Process Vent to the nearest unrestricted area boundaries.
i
I BEAVER VALLEY ODCM REFERENCES Gaseous Ef fluent Monitor Setpoints (1)
" Beaver Valle.y Power Station, Appendix I Analysis - Docket No.
50-334 and 50-412", Table 2.1.3.
(2)
" Beaver Valley Power Station, FSAR", Table llA-5.
(3)
" Beaver Valley Power Station, FSAR", Table 12.13. 3 (4)
"Duquesne Light Co., Beaver Valley Nuclear Plant, Specification No. BVPS 414, Table V Nuclide Data, 5/30/74", Tabla 1 and Figure 1, Table 3, and Figure 2.
1 a
e r
2-19
+
2.2 Comoliance With 10 CFR 20 (Gaseous) 2.2.1 Noble Gases The dose rate 8n unrestricted areas resulting from noble gas effluents is limited to 500 mrem /yr to the total body and 3000 mrem /yr to the skin. Based upon NUREG-0133 the following buic expressionsare used to show compliance with BVTS 3.11.2.1.a.
h,V k + K (X/Q)y ky 5 500 mrem /yr (2.2-1) g g
[g
,L ( X/Q)s+ 1.1B
+ (L + 1.1M ) (X/Q)y ky $ 3000 mrem /yr g
g 3
(2.2-2) where K
=
g the total body dose factor due to gamma emissions for each identified noble gas radionuclide i, mrem /yr per pCi/m ;
L
=
g the skin dose factor due to beta emissions for each identified noble gas radionuclide i, mrem /yr per yCi/m ;
M
=
g the air dose factor due to gamma emissions for each identified noble gas radionuclide i, mrad /yr per gCi/m*;
V
=
g the constant for each identified noble gas radionuclide i accounting for the gamma radiation from the elevated finite plume, mrem /yr per HCi/sec; B;
the constant for long-term releases (greater than 500
=
hrs /yr) for each identified noble gas radionuclide i accounting for the gamma radiation from the elevated finite plume, nrad/yr per yCi/sec; 2-20
1.1
=
the ratio of the tissue to air absorption coefficients over the energy range of the photon of interest, mrem / mrad.
the relesse rate of noble gas radionuclide i in gaseous
=
effluents from free-standing stack, pCi/see; the release rate of noble gas radionuclide i in gaseous
=
y effluents from all vent releases, pCi/sec.
(X/q)s The highest calculated annual average relative
=
concentration for any area at or beyond the un-restricted area boundary for elevated releases 3
(sec/m ).
(X/Q)y The highest calculated annual average relative
=
concentration for any area at or beyond the un-restricted area boundary for ground level or mixed modereleases(sec/h).
At the Beaver Valley Power Station (BVPS) gaseous releases may occur from:
1.
the containment building vent atop the containment dome f
2.
the ventilation vent atop the auxiliary building 3.
the process vent atop the cooling tower.
Containment building vent releases are mixed mode in nature. The source of these releases is the containment leak collection exhaust. It is also possible to release containment purges fro $t this vent. ne ventilation vent releases are ground level in nature and the sources of these releases are containment purges and normal auxiliary building ventilation.
De process vent releases are elevated and the j
sources of these releases are the main condenser air efectors and the Easte gas decay tanks.
l 2-21
Nobla gas rel:as:s may occur from all thrse points. To show compliance with BVTS 3.11.2.1.a, Egrsssions 2.2-1 and 2.2-2 are now cxpressed in terms of the actual release points for the BVPS.
For the total body dose e
I Y Qg
+1 K
[( X/Q)cy g (X /Q)yy g s 500 mrem /p
+
g g
g g
gy y
(2.2-3)
For the skin dose
{I #I9)
I Lg ( X/Q)py + 1.1B;, Qg g
_g t
I L
+ 1.1M
$cy i.L cv vy-(2.2-4) where g
=,
release rate of radionuclide i from the process vent, gCi/sec;
~
k"*
release rate of radionuclide i fr5m the containment vent,
=
pC1/sec; q"
release rate of radionuclide i from the ventilation vent,
=
yCi/sec; l
l
( X/Q)py =
highest calculated annual average relative concentration for releases from the process vent, sec/m*;
(x/Q)cv =
highest calculated annual average relative concentra-icn f$r releases from the containment vent, sec/m ;
(X/Q)yy =
highest calculated annual average relative cencentration for releases frem the ventilation vent, sec/f*.
All other terms remain the same as those defined previously.
2-22
-a v
,r
For the BVPS three potential modes of release are possible. The release modes identify the various combinations of sources of radioactivity and their release points which are used to determine the controlling locations. They are pre-sented in Table 2.2-1.
For modes 1 and 2 the controlling location for imple-mentation of BVTS 3.11.2.1.a is 0.4 miles NW of Unit No. I's containment building.
Inserting the appropriate X/Q's from Tables 2.2-5 through 2.2-7 for this location, ex-pressions 2.2-3 and 2.2-4 become For the total body
-8 I
V Q
+IK 5.0 x 10 g
+ 5.3 x 10'5 q,
5 500 g
g g
g g
ev vv pv (2.2-5)
For the skin
'.2 x 10 L
+ 1.1B
+
I 2
i i
1-S
+1 L.
+ 1.1 M1.
5.0 x 10' '
1 1
cv pv
-5 5.3 x 10 Q
5 3000 (2.2-6) vv-For release mode 3 the controlling location is 0.75 miles NNW.
Inserting the appropriate X/Q's from Tsbles 2.2-8 through 2.2-10 for this location, Expressions 2.2-3 and 2.2-4 become For the total body I
V Q
+IK 1.3 x 10'g q
+ 9.1 x 10 Q;vy - 5500 4
g g
g g
g pv ev (2.2-7)
For the skin I
9.8 x 10"I L,
1.1B k
-5
+I L
+
+
g g
1.1M; 1.3 x 10 g
g ey pv k
5 3000 9.1 x 10 (2.2-8) vv 2-23
The determination of controlling location for implementation of BVTS 3.11.2.1.a for noble gases is a function of the following parameters:
(1) radionuellde mix and their isotopic release rate (2) release mode (3) meteorology.
~~
The incorporation of these three parameters into Expressions 2.2-3 and 2.2-4 resulted in the expressions for the controlling locations as presented in Expressions 2.2-5 through 2.2-8.
f The radionuclide mix used to determine controlling locations was based upon source terms calculated with the NRC GALE ccde with inputs based upon the present operating mode of the BVPS.
The GALE inputs are presented in
. Appendix B.
The source term is presented in Table 2.2-2 as a function of release type and release point.
The X/Q values utili ed in the equations for implementation of BVIS 3.11.
2.1.a are based upon the maximum long-tem annual average X/Q in the un-restricted area. Table 2.2-3 presents the distances from the con?.ainment and ventilation vents to the nearest unrestricted area for each of the 16 sectors as well as to the nearest vegetable garden, cow, goat, and beef animal. Table 2.2-4 presents the distances and directions from the center of Unit l's cooling tower (i.e., process vent location) to the locations i
presented in Table 2.2-3.
Tables 2.2-S, 2.2-6 and 2.2-7 present the long-term annual average (X/Q) values for the process vent, containment building vent and the ventilation vent release points from the BVPS to the special locations presented in Table 2.2-3.
A description of their derivation is provided in Appendix A.
For each release mode the two or J1ree highest site boundary Y/Q values for each release point were utilized in conjunction with the radionuclide mix and release rate for each release point to determine the controlling location. Since mixed mode and elevated releases occur from the BVPS their maximum Y/Q value may not decrease with distance (i.e., the site boundary may not have the highest Y/Q values). Therefore, long-term annual average Y/Q values were calculated at the mid-point of the 10 standard distances as given in Tables 2.2-8 through 2.2-10. The highest two or three Y/Q values for each release point at a distance greater than 2-24
the si8e boundary were used in conjunction with tha radionuclida mix to daterming tha controlling location. For each release moda a particular combinition of releas2 point mix and meteorology dominate in the determination of the controlling location. For release modes 1 and 2, it is the ventilation vent. For release mode 3 it is the containment building vent.
In the case of release modes 1 and 2 t.ie controlling location is at the site boundary.; In the ca.ce of release mode 3 the controlling location is at a distance greater than the, site boundary.
Neither area is presently inhabited.
Values for X, !.g and M, which were used in the determination of the controlling 1
g location and which are to be used by the BVPS in Expressions 2.2-5 through 2.2-8 to show co=pliance with BWS 3.11.2.1.2, are presented in Table 2.2-11.
Values taken from Table B-1 of NRC Regulatory Guide 1.109 Revision 1 were multiplied by 106 to convert picoeuries to microcuries for use in Table 2.2-11.
Values for Y and B for the finite plu=e model can be expressed as show g
3 in Equation 2.2-9 and 2.2-10.
Values were calculated using the NRC code the site' boundary loca:icn which weuld receive the'highes:
FABFIN a:
total dose fr:: ce=bined process vent, ventila-ion vent and containment building ven: releases.
These values are presented in Table 2.2-12.
r I
3 3 3 ik b i " a 1 (2.2-9)
K g,
2
- d ik!
"j where :
I
=
the results of numericalintegration over the plume spatial distribution of the airborne activity as defined by the meteorological condition of wind speed (u.)
)
and atmospheric stability class k for a particular wind direction; K
=
c numerical constant representing unit conversions, 250 mrad (radians) (m ) (transformetion) 15 sectors see Olev1(CU 2 racians (10
\\'3.15x10 5'2 9C) yr 0.1x10 mead (m ) tirar.sformation)tyr(Mev) n.Ci);
=
d the distance from the release point to the receptor r
=
location, meters; u) the mean wind speed assigned to the jth wind speed
=
class, meters /sec; fp the joint frequency of occurrence of the jth wind speed
=
class and kth stability class (dimensionless);
A
=
3 the number of photons of energy corresponcing to the Ith energy group emitted per transformation of the ith radionuclide, number / transformation; E
=
l the energy assigned to the Ith energy group, Mev; g,
the energy absorption coefficient in air for photon
=
-1 energy E, meters i
The V; factor is computed with conversion from air dose to tissue depth dose, thus; ik 13, Eg
,-g TTd (2.2-10)
A I
V
=
1.1 1 333 I
rd jk1 u) where:
l the tissue energy absorption coefficient for photons g
=
T l
of energy E, em /gm; 1
T the tissue density thickness taken to represent the
=
d total body dos'e (5gm/cm );
1.1
=
the retto of the tissue to air absorption coefficienu over the energy range of photons of interest, mrem / mrad.
i 2-26 I
2.2.2 Radiciodine and Particulates The dose rate in unrestricted areas resulting from the release of radioiodines and particulates,and radionuclides other than noble gases with half lives greater than 8 days is limited to 1500 mrem /yr to any organ.
Based upon NUREG-0133 tne following basic expression 1:: used to show compliance with BVTS 3.11.2.1.b:
ky I
P W
+ W 5
1500 mrem /yr (2.2-11) g g
s y
where P
=
g dose parameter for radioiodines and particulates with half lives greater than 8 days:
3 mrem /yr per Ci/m for inhalation pathways;
=
mrem /yr per Ci/see per m-2for food and ground
=
plane pathways; Q g the release rate of radionuclide 1, in gaseous effluents
=
from free-standing stack, Ci/see; Q gy the release rate of radionuclide i in gaseous effluents
=
from all vent releases, pCi/sec; W
=
the highest calculated annual average dispersion parameter y
~
for estimating the dose to an individual at the controlling location due to all vent releases:
W
= sec/m for the inhalation pathway; y
meters' for the food and ground pluie W
=
y pathways; 1
l l
2-27 l
.m
W, tha highest calculated annual averige dispirsion par: mater a
for estimating the dose to an individual at the controlling location due to free-standing stack releases:
3 W = sec/m for the inhalation pathway; s
~
W = meters for the food and ground plane pathways.
Radiolodine and particulates may be released from any of the BVPS vents in the release modes listed in Table 2.2-1. To show compliance with BVTS 3.11.2.1.b.
Ex-pression 2.2-11 is now expressed in the following manner to incorpora:e the various release points for the BV"S:
~
l P
W Q
+
g g
py 3
W,y q
+ W q
s 1500 mrem /g (2.2-12) yy pv cv vv J where W
=
the annual average dispersion parameter for the process py vent releases; W
=
the annual average dispersion parameter for the y
containment vent; W
=
annual average dispersion parameter for the ventilation yy vent; g
long-term release of radionuclide i from the containment
=
CV building vent, C1/sec; g
long-term releas'e of radionuclide i from the ventilation VV vent, pC1/sec; g
long-term release of radionucilde i from the process vent,
=
pv pCl/sec.
A11 other terms are the same as those defined previously.
2-23
In the calculation to show compliance with BVTS 3.11.2.1.b only the inha-lation, ground plane, cow milk, and goat milk pathways are considered for the BVPS.
In determining the dose at a particular location, W is a function of pathway.
For the food and ground plane pathways W is in terms of D/Q (i.e., deposition).
If the inhalation pathway is considered, W is in terms of X/Q.
Incorporation of the various pathways into Expression 2.2-12 results in the following:
(X/9)pv S IXI9)cv S,y I
1
+
S
% (P 7 !.
py vy g
yy G
M IW
$py S,y
- W S
I#
MM pv yv i
ev yy where P
=
g dose parameter for radionuclide i for the inhalation I
3 pathway, mrem /yr per pCI/ m ;
P
=
g dose parameter for radionuclide i for the ground plane G
pathway, mrem /yr per pCi/see per m' ;
P
=
g dose parameter for radionuclide i for either the cow milk M
or goat milk pathway, mrem /yr per gCi per m' ;
( X/Q),y =
annual average relative concentration for long-term release from th,e containment building vent, sec/m ;
3
( >'/Q)yy =
annual average relative concentration for long-term releases from the ventilation vent, sec/m ;
( X/Q)py =
annual average relative concentration for long-term release from the process vent, sec/m.
It should be noted that Wpy, W y,and W in Expression 2.2-13 are now in terms of D/Q.
l 2-29
m v
Values of the dose parameters, Pg,Pgg g
were calculated using and P methodology given in NUREG-0133.
For the infant age group, the following equations were used for all nuclides except tritium.
ig 1.4 x 10 ~DFA
'(2.2-14)
P
=
g where:
1.4 x 10' Breathing rate of infant (1400 m /yr) 3
=
6 x unit conversion factor (10 pCi/
gCi)
DFAg The maxi =um organ inhalation dose
=
factor for an infant from Table E-10 of Regulatory Guide 1.109 in units of mrem /pCi.
g (1-eM)/A (2.2-15)
Pig 8.76 x 10 DFG
=
g where:
6 8.76 x 10 10 pCi/pCi x 8760 hr/yr
=
DFG
=
g The ground plane dose conversion facter from Table E-6 of Regulatory Guide 1.109 (mrem /hr per pCi/m )
A Decay constant for the ith radionuclide
=
g (sec-1) 3.15 x 10 secs (1 year) t
=
Qp (U )
-A t ]
(2. 2-16)
Kir y (zi.g )
F, DRg [e if Pig
=
w (m -= rem /yr per pCi/sec) l whe re":
0 a constant of unit conversion, 10 K'
=
pClipCi.
The milch animals censu=ption rate, Q
=
F feed and forage in kg/ day (wet weight).
2-30
.. ~
0 the infant's milk consumption rate,
=
in liters /yr.
Yp the agricultural productivity by
=
unit area, in kg/m.
F, the stable element transfer co-
=
efficients, in days / liter.
fraction of deposited activity retained r
=
on feed grass.
DFL g the maximum organ ingestion dose
=
factor for the ith radionuclide, in mrem /pCi.
the decay constant for th ith radio.
A
=
g nuclide, in see -1.
A the decay constant for removal of
=
y activity on leaf and plant surfaces
~1 by weathering, 5.73 x 10' sec (corresponding to a 14 day half-life).
g the transport time from pasture to t
=
animal, to milk, to infant in sec.
The values of Qp, Uap, and Yp for cows milk are provided in Regulatory Guide 1.109, Tcbles E-3, E-5, and E-15, as 50 kg/ day, 330 liters /yr and 2
0.7 kg/m, respectively.
The value t is provided in Regulatory Guide 1.109, g
Table E-15, as 2 days (1.73 x 10 seconds). The fraction, r, has a value of 1.0 for radioiodines and 0.2 for particulates,. as presented in Regulatory Guide 1.109, Table E-15.
Table E-1 of Regulatory Guide 1.109 provides the stable element transfer coefficients, F, and Table E-14 provides the ingestion dose factors, DFL,
g for the infant's organs.
The organ with the maximum value of DFL is to t
be used.
~
Resolution of the units yields:
2-31 O
o c.
J 10 rF Piq (cow)
= 2.36 x10 m
[At +A )
i [e" i f]
(2.2-17)
DFL y
(m mrem /yr per yCi/sec) for all radionuclides, except tritium.
For goats milk the values of Q, U,p, and Y are provided in Regulatory Guide p
p 1.109, Tables E-3, E-5, and E-15 as 6 kg/ day, 330 liters / yr. and 0.7 kg/m,
respectively. The value t is provided in Regulatory Guide 1.109, Table E-15, g
as 2 days (1.73 x 10 seconds). The fraction, r, has a value of 1.0 for radiciodines and 0.2 for particulates, as presented in Regulatory Guide 1.109, Table E-15.
Table E-1 of Regulatory Guide 1.109 provides the stable element transfer coefficients, F,, and Table E-14 provides the ingestion dose factors, DFL,
g for the infant's organs. The organ with the maximum value of DFL is to be 1
used.
Resolution of the units yields:
Pi,q (goat)
= 2.83 x 10'
-A *f]
(2.2-18) m DFLg [e i
(Si *Aw) 2 (m mrem /yr per gCi/sec) for all radionuclides, except tritium.
In the case of tritium the W parameter for the food pathway, here cow or goat milk, is based upon X/Q. Since tritium (s a weak beta emitter, the ground plane contribution is zero for tritium. Therefore, the left hand side of Expression 2.2-12 reduces to the following:
2-32
Fcr tritium (P,7 P.T )
( IS)py S
T
(%IS)cv k
+
+
( #9}vv k
( * ~ '}
I M
pv cv vv -
where P,7 dose parameter for tritium for the inhalation pathway,
=
I 3
mrem /yr per pCi/m ;
PT dose parameter for tritium for the milk pathway, mrem /yr
=
per pCi/m#;
QT release rate of tritium from the process vent, pCi/sec;
=
Qp release rate of tritium from the ventilation vent, pCi/sec;
=
Qp release rate of tritium from the containment vent,
=
"Y gCi/sec.
The concentration of tritium in milk is based on its airborne concentration rather than the deposition rate.
DFL 3
PTM K'K'"F,Q U,p p
g [0.75 (0.5/H)) (mrem /yr per pCi/m )
=
(2.2-20) where:
K'"
a constant of unit conversion, 10 gm/kg.
=
3 H
absolute humidity of the atmosphere,in gm/m.
=
the fraction df total feed that is water.
0.75
=
0.5 the ratio of t.he specific activity of the feed
=
grass water to the atmospheric water.
From Table E-1 and E-14 of Regulatory Guide 1.109, the values of F, and DFL
-2 g
for tritium in cow milk are 1.0 x 10 day / liter and 3.08 x 10" arem per pCi, respectively. For goat's milk, F, = 0.17 day / liter. Assuming an average absolute humidity of S grams / meter #, the resolution of units yields.
m.,
2-33
1 PTM (cow)
= 2.38 x 10 mrem /yr per pCi/m 4.86 x 103 PTM (goat) mrem /yr per mci /m
=
for tritium, only.
Substituting for PTI Tn the value of 4860, the value of 647 and for P Expression 2.2-19 reduces to:
5.5 x 10 (X/Q)py h
+
( /9)cv P
(XIS)vy (2.2-21)
+
Tpv cv vv-To show compliance with BVTS 3.11.2.1.b, Expressions 2.2-13 and 2.2-21 are evaluated first at the limiting site boundary.
If the 1500 mrem /yr limit is exceeded at the limit 2ng site boundary, then Expressions 2.2-13 and 2.2-21 are evaluated at the limiting controlling location based upon the real pathways.
For Release modes 1 and 2 the controlling site boundary location is 0.4 miles NW. Ex-pression2.2-13 becomes:
For radioiodines and particulates:
~9 k
+ 5.0 x 10-8
-5 7.,
P 2.2 x 10
+ 5.3 x 10 gI pv cv vv -
-10
-10
-8 7.j Pig + Pg 3.4 x 10
+ 9.8 x 10
+ 5.0 x 10 1500 M,
pv cv vv -
(2.2-22)
For the BVPS the limiting real pathway location is 3.7 miles NW. At this location Ex-pression 2.2-13 becomes:
2-3*
~0 4
IP 9.2 x 10
+ 2.8 x 10 k
ka
+ 2.4 x 10 g
g
+
I pv ey yy
~
1 P
+P
'2.6 x 10-10 h
k
+ 1.2 x 10 k
51500
~9
-8
+ 1.4 x 10 3
g g
G M--
pv ev yy
(' 2. 2-23)
For tritium at the limiting site boundary Expression 2.2-21 becomes:
For tritium 3
-9
-8 5.5 x 10 2.2 x 10 g
+
5.0 x 10
+ 5.3 x 10
~
%yy.
,{2.2-24) pv ev At the limiting real pathway location Expression 2.2-21 becomes:
For tritium:
3
-8 k
- 2.4 x 10 k
12.2-25) 5.5 x 10 9.2 x 10
+ 2.8 x 10 pv cv vv For release mode 3 the controlling site boundary is 0.4 iniles NE. Expressions 2.2-13 becomes:
For radiciodines and particulates:
k
-10
+
3.7 x 10 k
~I
+ 8.2 x 10 k
I P 4.9 x 10
+
g g
g g
g I
pv cv vv-
~9
~8 1
P
+Pg -
1.2 x 10 Q
+ 1.2 x '10'8 Q
+ 4.9 x 10 Qg,v g,1500 g
g g
G M
pv cv v
(2.2-26)
For release mode 3 the limiting real pathway location is again 3.7 miles NW and Expressions 2.2-23 and 2.2-25 are used.
For tritium at the controlling site boundary Expression 2.2-21 becomes:
1 1
l
.2-35
~
l
For tritium 3.7 x 10"I Q
+ 8.2 x 10 Q
(2.2-27)
- 5. 5x 10 4.9 x 10' Q
+
T T
Tpv cv vv-The determination of controlling location for implementation of BWS 3.11.2.1.b for radioiodines and particulates is a function of the same three parameters as for noble gases plus a fourth, actual receptor pathways.
The incorporation of these parameters intoExpression2.2-13 results in the respective equations for each release mode at the controlling locations.
The radionuclide mix was again based upon the source ter=s calculated using the GALE Code..
GALE inputs are presented in Appendix B.
The, mix and the source terms are presented in Table 2.2-2 as a function of release type and release point.
In the determination of the controlling site boundary for each release mode the highest two or three site boundary D/Q values for each release point were utilized in ccnjunction with the radionuclide mix and the release rate for each release point to determine the controlling site boundary location. For release modes 1-3, the l
combination of meteorology and release rate which dominates comes from the ventilation vent.
(
In the determination of the actual receptor controlling location, the highest two or three D/Q values from each release point to the pathway locations of Table 2.2-3 are utilized in conjunction with the radionuclide mix and release rate for each l
release point.
For release modes 1-3 the controlling location is the goat milk I
pathway 3.7 miles NW of the containment and ventilation vents.
Values for ?g were calculated for an in,fant for various radionuclides for the inhalation, ground plane, cow milk, and goat milk pathways using the methodolcgy of NUREG-0133. The ?g values ara presented in Table 2.2-13. De values of ?g re flect, for each radionuclide, the maximum P value for any organ for each g
individual pathway of exposure.
Because the highest D/Q value 'fer the goat milk pathway is higher than the highest D/Q value for the cow milk pathway, ? values for the goat milk pathway were utilized in the determination of the varicus cent. olling locations.
- -36
i
, Tcbiss 2.2-14 and 2.2-15 pressnt lcng-torm cnnuni cvsrage D/Q voluss far special locitions for process vent and containment building vent. Table
- 2. 2.16 presents the long-term annual D/Q values for special distances for the ventilation vent.
The D/Q values (W) which were utill:ed in Expressions 2.2-22, 2.2-23 and 2.2-26 were obtained from Tables 2.2-14 through 2.2-16.
The X/Q values in Expressions 2.2-22 through 2.2-27 were obtained from Tables 2.2-5 through 2.2-7. For the case of an infant being present at the site boundary or at the real pathway location, the ground plane pathway is not considered as a reasonable exposure pathway (i.e., P = 0).
G A description of the derivation of the X/Q and the D/Q values is provided in Appendix A.
e f
4 4
e t
2-37 t
Mcd::s of Cassous Release From Benvcr Vtfisy Powcr Station Unit i Vents for Implementation of 10 CFR 20 C
Containment Blde. Vent *) Ventilation Vent (b) Process Vent (c)
Mode 1
Leakage collection Auxiliary building Waste gas decay tanks exhaust ventilation main condenser air ejector 2
Same as Mode 1 Same as Mode 1 Same as Mode 1 plus containment purges 3
Same as Mode 1 Same as Mode 1 Same as Mode 1 plus containment purges a)
Continuous mixed mode meteorology is applicable.
b)
Continuous ground level meteorology is applicable.
c)
Continuous elevated meteorology is applicable.
2-38
TABLE 2.2-2 Radionuclide Mix for Gaseous Effluents from the Beaver Valley Power Station, Unit 1 (Ci/vr)
Process Ventilation Ventilation Containment **
Vent vent vent vent Isotooe (lonc term )
(lonc termi (short term )
(short term )
Kr-83m 0
0 0
0 Kr-85m 2
3 1
1 Kr-85
- 2. 04 (2 )*
0 6
6 Kr-87 0
2 0
0 Kr-88 3
5 2
2 Kr-89 0
0 0
0 Xe-131m 1.94(2) 0 1.0(1)
- 1. 0(1)
Xe-133m 2.4 (1) 3
- 1. 8 (1)
- 1. 8 (1)
Xe-133 1.66(4) 1,70(2) 1.80(3) 1.80(3)
Xe-135m 0
0 0
0 Xe-135 5
8 6
8 Xe-137 0
0 0
0 Xe-138 0
1 0
0 Ar-41 0
0
- 2. 5 (1)
- 2. 5 (1)
I-131 2. 7 (-3 )
- 4. 4 8 (-2) 4. 2 (-2) 4. 2 (-2)
I-133 4.1 (-3 )
- 6. 71 (-2)
- 1. 2 (-2)
- 1. 2 (-2 )
Mn-5 4
- 4. 5 (-5)
- 1. 8 (-2) 1.1 (-2 J 1.1 (-2 )
Fe-59
- 1. 5 (-5 )
6. 0 (-3) 3. 8 (-3 )
3. 8 (-3 )
Co-58
- 1. 5 (-4) 6. 0 (-2) 3. 8 (-2 )
3. 8 (-2 )'
l 2.04(2) = 2.04 x 102 These' releases are the result of containment purges.
I l
2-39 I
TABLE 2.2-2 (Continued)
Radionuclide Mix for Gaseous Effluents'from the Beaver Vallev Power Station, Unit 1 (C1/vr)
Process Ventilation Ventilation Containment vent vent vent vent Isotooe (lone term )
(lone term )
(short term )
(short term)
- 7. 0 (-5 )
2. 7 (-2)
- 1. 7(-2)
- 1. 7 (-2 )
Sr-89
- 3. 3 (-6)
- 1. 3 (-3) 8. 6 (-4) 8. 6 (-4)
Sr-90 6. 0 (-7)
- 2. 4 (-4)
- 1. 5 (-4)
- 1. 5 (-4)
Cs-134 4. 5 (-5)
- 1. 8(-2) 1.1(-2) 1.1 (-2 )
- 7. 5 (-5 )
3. 0 (-2 )
1.9(-2)
- 1. 9 (-2)
C-14 7.0 1.0 H-3 940 These releases are the result of containment purges.
l i
2-40
TAlti.E 2.2-3 DISTANCES (MIT.ES) TO CONTitOI.T.ING I.OCATIONS AS MEASURED FROM CENTElt OP BEAVCit VALI.EY UNIT 1 CONTAINMENT
- Vegetable Sector Site Boundary Garden Cow Goat Beef N
0.4 1.6 2.9 2.5 NNE 0.4**
1.7 3.9 3.2 NE 0.4 4.8 4.8 ENE 0.4 1.2 4.3 3.0 E
0.4 1.3 4.4 2.6 2.0 ESE 0.4 1.1 3.0 2.9 0.9 SE 0.4 1.4 3.5 3.5 1.8
~
SSE 0.5' l.3 3.1 3.2 2.2 S
0.5 1.1 2.1 2.1 1.1 SSW 0.7 1.5 3.5 3.5 2.5 4
SVV 0.9 1.4 2.1 3.3 1.6 i
WSW 0.3 1.6 3.2 1.6 W
0.8 2.6 2.2 WNW 0.5 3.1 4.8 2.3 NVV 0.4 1.1 3.7 2.9 I
NNW 0.4 1.1 2.5 2.3
^
Applicable to Containment Vent and Ventilation Vent releases.
Nearest site boundary in sector not bordering river.
e
TAllI.E 2.2-4 DISTANCES (MILES) TO CONTROLLING LOCATIONS (IDENTIFIED IN TAllLE 2.2-3) AND SECTORS AS MCASURED PROM CENTER OF BI: AVER VALI.EY UNIT 1 COOLING TOWER
- Sector Vegetable Relevant to Site Boundary Garden Cow Goat Beef Containment Center Sector Distance Sector Distance Sector Distance Sector Distance Sector Distanco N
NNW 0.3 N
1.5 N
N 2.8 NNW 2.4 FJ NI; NE 0.2 Nr1E 1.6 NNE NNE 3.8 NNE 3.0 NE ENE 0.2 NE NE 4.6 NE NC 4.6 Ei10 ESE 0.3 ENE 1.1 ENE ENE 4.1 ENE 2.9 E
1:SE 0.3 E
1.2 E
4.3 E
2.5 E
1.9 ESI:
SC 0.5 SE 1.0 ESE 3.0 ESE 3.0 SC 0.9 SE SSC 0.5 SE 1.4 SE 3.5 SE 3.5 SE 1.8 SSE S
0.7 SSE
S 0.7 S
1.1 S
2.2 S
2.3 S
1.1 SSW SSW 0.9 SSW l.6 SSW 3.6 SSW 3.6 SSW 2.6 SW SSW l.0 SW l.5 SW 2.2 SW 3.4 SW l.5 WSW SW 0.4 WSW l.7 WSW 3.3 WSW WSW
.l. 7 W
WSW 0.9 W
W 2.7 W
W 2.4 W il W W
0.5 WNW WNW 3.1 WNW 4.9 W
2.4 NW WNW 0.3 NW l.1 NW NW 3.8 NW 2.9 NNW NW 0.3 NNW l.1 NNW 2.5 NNW NNW 2.2
- Applicalate to Process Vent releases.
TABl.E 2.2-S BEAVER VALLEY UNIT 1 PROCESS VENT DISPEllSION PARAMETERS (Y/Q), sec/m,
l'OR>CONTINtlOUS EI.EVATED REI. RASES > 500 IIR/YR OR > 150 till/QTR FOR SPECIAT. I.OCATIONS (InENTIFIED IN TARI.E 2. 2-4)
Vegetable Sector
- Site Boundary Garden Cow Goat Beef N
6.2C-09 6.9E-07 2.0E-07 1.5E-07 NNE
- 1. 3 E-I l 5.3E-07 1.4E-07 2.0E-07 N1:
4.9E-10 1.9E-07 1.9E-07 ENI:
7.0E-09 1.0E-07 2.2E-07 3.8E-07 E
1.0E-08 5.1E-07 1.8E-07 3.9E-07 7.3E-07 ESE 3.0E-08 8.6E-07 2.lE-07 2.1E-07 7.2E-07 SE 2.4E-08 6.5E-07 1.4E-07 1.4E-07 4.5E-07 SSE 2.9E-07 3.5E-07 1.0E-07 9.4E-00 2.0E-07 S
2.lE-07 4.9E-07 3.2E-07 3.0E-07 4.9E-07 SSW 5,1E-07 2.9E-07 8.6E-08 8.6E-08 1.6E-07 SVV 4.4E 3.3E-07 2.0E-07 1.2E-07 3.3E-07 WSW 2.00-08 3.1E-07 1.3E-07 3.1E-07 W
l.60-00 1.90-07 2.3E-07 WNW
- 3. 6 E-09 1.1E-07 6.4E-08
- 2. 3 E-07 NW 2.2C-09 1.0E-07 9.2E-08 1.5E-07 1
NNW 8.60-10 4.5E-07 1.5E-07 1.8E-07 Measured relevant to center of containment of Unit 1 Period of Record 1/1/76 - 12/31/77
TABLE 2.2-6 BEAVER VAI.LIN UNIT 1 CONTAINMENT VENT DISPEllSION PARAMETIIIS ( y/Q), sec/m,
FOR C0ttrINUOUS MIXED MODE RELEASPS > 500 llRS/YR or > 150 llRS/QTR FOR SPECIAL LOCATIONS (IDENTIFIED IN TABLE 2.2-3)
Vegetable Sector
- Site Boundary Garden Cow Goat Beef N
8.80-06 2.2E-06
- 8. 7 E-07 1.lE-06 NNE 1.8E-07 9.9E-07 2.9E-07
- 4. 0 E-07 NC
- 3. 7 E-07
- 1. 7 E-07 1.7E-07 ENE 4.1E-07
- 1. 2 E-06 1.SE-07 3.1 E-07 E
1.9E-06 6.9E-07 9.1E-08 2.2E-07
- 3. 4 E-07 ESC 1.90-06
- 6. 9 E-07
- 1. 2 E-07
- 1. 3 E-07 9.2C-07 SE 1.9E-06 5.2C-07 1.lE-07
- 4. 9 E-07
- 1. 0 E-07
- 1. 0 E-07
- 1. 9 E-07 8
3.9E-06 1.4E-06 3.9E-07 3.8E-07 1.4E-06 SSW 2.8E-06 7.3E-07 2.00-07
- 1. 9 E-07 3.2E-07 SW 2.80-06 1.5E-06 6.00-07 3.5E-07 1.3E-06 WSW l.0E-06 1.5E-06
- 4. 8 E-07 1.3E-06 W
- 6. 9 E-08 1.1E-06 1.4E-06 WNW 4.0E-08
- 1. 9 E-0 6
- 8. 5 E-07 2.9E-06 NW 5.0E-00 2.8E-06 2.8E-06 3.9E-06 NNW 1.2E-06 7.6E-06 2.0E-06 2.3E-06 Measured relevant to center of containment of Unit 1 Period of Record: 1/1/76 - 12/31/77
TABLE 2.2-7 BEAVEll VALLPY UNIT 1 VENTILATION VENT DISPERSION PARAMETERS (Y/Q),sec/m,
l'Olt CottrINUOUS GROUND LEVEL IlEI. EASES > 500 IIRS/YR OR > 150 IIRS/QTR POlt SPECIAL DISTANCES (IDENTil'IED IN TABLE 2.2-3)
Vegetable Sector
- Site Boundary Garden Cow Goat Beef N
1.3E-05
- 1. 8 E- 06
- 7. 8 E-07 9.4 E-07 NNE 8.7E-06 8.9 E- 0 7
- 2. 8 E-07 3.8 E-07 j'
NE 8.2E-06 1.7 E-07 1.7 E-07 ENE 6.3E-06 1.lE-06 1.5E-07 3.0E-07 E
4.9E-06 6.50-07 9.lE-08
- 2. 2 E- 07 3.3E-07
[
USE 2.9E-06 6.3E-07 1.2E-07 1.3E-07 8.3E-07 SE 3.4E-06 4.9E-07
- 1. l E- 07 1.lE-07 3.6E-07 SSE
- 1. 9 E-06 4.6E-07 1.0E-07 9.8E-08 1.9E-07 S
3.8E-06 1.2E-06 3.7E-07 3.5E-07 1.2E-06 USW
- 2. 2E- 06 8.5E-07 1.9E-07 1.9E-07 3.0E-07 SW
- 2. 2 E- 06 1.30-06
- 6. l E-07 3.2E-07 1.lE-06 WSW l. 8 E- 05 1.3E-06 4.4E-07 1.lE-06 i
NV 7.3E-06 9.7E-06 1.2E-06 WNW.
J.2E-05 1.7E-06
- 7. 6 E-O7 2.4E-05 NVV 5.3E-05 1.2E-05 2.4E-06 3.3E-06 NNW
- 2. 5 E-05 5.3C-06 1.7E-06 1.9E-06
- Measured relevant to center of containment.
Period of Record: 1/1/76 - 12/31/77
TABLE 2 2-8 0
,sec/m,
BEAVER VALLEY UNIT 1 PROCESS VENT iil5PERSION PARAMETERS (Y/Q FOR CONTINUOUS ELEVATED RELEASES > 500 IIR/YR OR > 150 IIR/O Distances to the control locations, in miles Septor 0-0.5.
0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0, N
4.4E-09 1.2E-06 8.1E-07 5.7C-07 2.8E-07 2.0E-07 1.6E-07 1.3E-07 1.lE-07' 9.2E-08 NNE 3.1E-09 1.lE-07 5.5E-07 4.9E-07 3.GE-07 2.7E-07 1.8E-07 1.5E-07 1.2E-07 1.lE-07 NE 6.6E-11 8.4C-09 1.7E-08 3.1E-07 5.5E-07 4.2E-07 3.3E-07 2.7E-07 2.3E-07 1.8E-07 ENE 9.6E-10 1.4E-08 2.0E-07 7.0E-07 5.5E-07 4.0E-07 3.lE-07 2.5E-07 2.lE-07 1.8E-07 E
1.4E-09 4.3E-08 7.lE-07 7.7E-07 4.6E-07 3.4C-07 2.7E-07 2.lE-07 1.8E-07 1.5E-07 y
ESE 3.3C-09 4.4E-07 6.1E-07 4.9E-07 3.lE-07 2.3E-07 1.5E-07 1.2E-07 1.0E-07 7.8E-08 SE 3.0E-09 4.2H-07 7.8E-07 4.6E-07 2.9E-07 2.10-07 1.5E-07 1.2E-07 1.0E-07 7.2E-08 SSE 1.90-09 3.3E-07 3.4E-07 3.1E-07 2.0E-07 1.5E-07 9.lE-08 7.4E-08' 6.lE-08 4.3E-08 S
6.3C-09 3.3E-07 4.9E-07 4.3E-07 3.1E-07 2.2C-07 1.3E-07 1.0E-07 7.lE-07 6.0E-08 SSW l.5E-09 6.2E-07 3.3E-07 2.7E-07 2.0E-07 1.5E-07 1.0E-07 8.10-08 7.9E-08 6.7E-08 SM/
8.8E-09 3.3E-07 3.9E-07 2.8E-07 2.0E-07 1.5E-07 1.3E-07 1.0E-07 1.lE-07 9.5E-08 WSW 2.0E-09 7.4E-09 3.3E-07 3.0E-07 2.4E-07 1.8E-07 1.4E-07 1.1E-07 8.5E-08
- 7. 3 E-08 W
2.0E-09 4.2E-09 4.7E-09 1.9E-07 2.5E-07 1.8E-07 1.4E-07 1.2E-07 9.8E-08 8.3E-08 WNW l.4E-09 3.70-09 5.4E-09 1.2E-07 2.lE-07 1.6E-07 1.0E-07 8.5E-08 7.7E-08 6.5E-08 NW 4.5E-10 2.2C-08 1.7E-07 3.2E-07 2.2E-07 1.6E-07 1.2E-07 9.5E-08 7.9E-08 6.7E-08 NNW 4.7E-09 9.8E-07 3.8E-07 2.5E-07 1.7E-07 1.30-07 8.9E-08 7.2E-08 6.0E-08 5.1E-08 Period of Record: 1/1/76 - 12/31/77
TABLE 2. 2-9 IlE%VER VALI.1X UNIT 1 CONTAINMENT VI:NT DISPERSION PARAMETERS ( y/Q ), sec/m l'OR CONTINUGUS MIXED MODE RELi%SES > 500 IIR/YR or > 150 IIR/QTR S
i Distances to the control locations. In miles Sector 0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0 N
3. 2 E-0 7.7.7E-06
- 3. 3 E-0 6
- 2. 0 E-06 1.3'E-06
- 9. 5 E-07
- 6. 8 E-07 5.6E-07 4.3E-07
- 3. 7 E-07 NNE
- 2. 8 E-07
- 3. l E-07
- 1. 6 E-0 6 9.7t'-07 6.6E-07 4.9E-07
- 3. 8 E-07 2.9E-07 2.6E-07 2.20-07 NC 5.8E-07
- 3. 8 E-07 5.2E-07 9.8E-07 6.7C-07
- 4. 9 E-07 3.3E-07
- 2. 6 E-07 2.0E-07 1.7E-07 ENE 5.6E-07 5.4E-07 1.1E-06 6.7E-07 4.8E-07 3.5E-07
- 2. 7 E-07
- 2. 2 E-07
- 1. 5 E-07 1.20-07 o
E 9.8E-07 1.8E-06 7.0E-07 4.1E-07 2.8E-07 2.0E-07
- 1. 5 E-07
- 1. 2 E-07
- 9. 7 E-08 8.2E-08 ESE 5.7E-07 1.2E-06
- 5. 4 E-07 3.2E-07 2.0E-07 1.4E-07
,1.0E-07
- 8. 3 E-08
- 6. 2 E-08
- 5. 3 E-08 SC 5.0E-07
- 1. 4 E-06
- 6. 5 E-07 3.8E-07 2.60-07
- 1. 9 E-07
- 1. 2 E-07
- 9. 9 E-08 8.2E-08
- 7. 0 E-08 SSE 5.0E-07
- 1. 3 E-0 6 5.5E-07
- 3. 2 E-07 1.8E-07
- 1. 4 E-07
- 9. 6 E-08
- 7. 8 E-08
- 6. 4 E-08 5.5E-08 S
- 7. l E-07
- 2. 4 E-06 8.7E-07 5.1E-07 3.5E-07 2.6E-07
- 1. 8 E-07
- 1. 5 E-07 1.2C-07 1.0E-07 SSW 4.2E-07 2.5E-06 9.2E-07
- 5. 4 E-07 3.7E-07
- 2. 7 E-07 2.1E-07
- 1. 7 E-07
- 1. 3 E-07 1.lE-07 SW 3.7E-07
- 3. 5 E-06
- 1. 8 E-06 1.0E-06 6.00-07
- 4. 5 E-07
- 3. 5 E-07
- 2. 8 E-07
- 2. 2 E-07 1.8E-07 WSW
- 4. 7 E-0 7 4.9E-06 2.10-06 1.3E-06 8.6E-07 6.40-07 4.70-07 3.8E-07 3.0E-07 2.5E-07 W
l.2E-07 5.9E-08 4.6E-06 2.8E-06 1.3E-06
- 1. 0 E-0 6 7.9E-07
- 6. 5 E-07 5.4E-07 4.70-07 WNW
~7.5E-08 7.00-08
- 1. 7 E-07 4.6E-06
- 3. 0 E-06
- 2. 3 E-06 1.80-06
- 1. 5 E-0 6 1.0E-06
- 8. 7 E-07 NW
- 9. 4 E-0 8
- 1. 4 E-07 6.4E-06
- 8. 4 E-06 5.6E-06 4.2C-06
- 3. 3 E-06
- 2. 7 E-06
- 1. 9 E-06
- 1. 6 E-06 NNW l. 3 E-07 1.3E-05 6.10-06 3.60-06 2.4E-06 1.8E-06
- 1. 3 E-06
- 1. l E-06 8.4E-07 7.2E-07 Period of Record 1/1/76 - 12/31/77
TABLE 2.2-10 IlEAVER VALI.EY UNIT 1 VENTILATION VENT DISPERSION PARAMETERS (X/Q), sec/m,
l'Olt CONTItMIOUS GROUND LEVEL IlELEASES > 500 IIR/YR OR > 150 HI(/QTR 4
Distances to the control locations, in miles Sector 0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0 N
3.3E-05 5.5E-06 2.7E-06 1.7E-06 1.lE-06 8.4E-07 6.2E-07 5.lE-07 3.9E-07 3.4E-07 NNE 2.00-05 3.5E-06 1.4E-06 8.7E-07 6.1E-07 4.6C-07 3.6E-07 2.7E-07 2.5E-07 2.1E-07 i
NE 1.6E-05 2.9E-06 1.5E-06 9.3E-07 6.4E-07 4.8E-07 3.2E-07 2.6E-07 2.0E-07 1.7E-07 ENE 1.1E-05 2.0E-06 1.1E-06 6.4E-07 4.7E-07 3.5E-07 2.7E-07 2.2E-07 1.5E-07 1.2E-07 E
9.5E-0G 1.7E-06 6.EE-07 4.0E-07 2.7E-07 2.0E-07 1.4E-07 1.2E-07 9.7E-08 8.2E-08 ESE 5.7E-06 1.1E-06 5.2E-07 3.IE-07 2.0E-07 1.4E-07 1.0E-07 8.3E-08' 6.3E-08 5.3E-08 SC 6.7C-06 1.2E-06 6.0E-07 3.6E-07 2.5E-07 1.8E-07 1.2E-07 9.9E-08 8.2E-08 7.0E-08 SSE 6.3E-06 1.1E-06 5.IE-07 3.IE-07 1.8E-07 1.3E-07 9.5E-08 7.7E-08 6.4E-08 5.4E-08 S
1.lE-05 2.0E-06 7.8E-07 4.7E-07 3.3E-07 2.5E-07 1.8E-07 1.4E-07 1.2E-07 1.0E-07 SSW l.lE-05 2.0E-06 8.0E-07 4.9E-07 3.5E-07 2.6E-07 2.0E-07 1.7E-07 1.3E-07 1.lE-07 i
SW l.5E-05 2.7E-06 1.5E-06 9.30-07 5.5E-07 4.lE-07 3.3E-07 2.7E-07 2.1E-07 1.8E-07 WSW 2.1E-05 3.60-06 1.7E-06 1.1E-06 7.7E-07 5.8E-07 4.3E-07 3.6E-07 2.8E-07 2.4E-07 VV 4.6E-05 7.4E-06 3.6E-06 2.3E-06 1.lE-06 8.8E-07 7.0E-07 5.8E-07 4.9E-07 4.3E-07 l
WNW 7.9E-05 1.2E-05 5.6E-06 3.6E-06 2.5E-06 1.9E-06 1.6E-06 1.3E-06 8.9E-07 7.7E-07 NW l.4E-05 2.10-05 1.0E-05 6.5E-06 4.5E-06 3.5E-06 2.8E-06 2.3E-06 1.6E-06 1.4E-06 NNW b.0E-05 9.1E-06 4.4E-06 2.9E-06 1.9E-06 1.50-06 1.lE-06 9.4E-07 7.4E-07 6.40-07 Period of itecord: 1/1/76-12/31/77
1 s
^
)
3
/a i
Cp 2 3 3 4 3 4 3 3 3 3 2 3 4 3 3 0 0 O 0 0 0 O 0 0 O 0 0 0 0 0 r
r 4
t i
4 t
t i
4 4
i t
t t
4 t
ro e
E E E E E E E E E E E E E E E it p
8 7 5 3 3
6 3 l
8 5 9 6 7 5 8 Ac' 8 9 9 0 9 0 8 l.
4 0 3 4 2 2
7 a
r aF y
2 1
1 1
2 1
7 1
1 1
7 2 1
4 3 t
N/
ee d
B s a
o r
O m
(
s t
)
n 3
e m
u
/
l 1
f C
f r
p e
ro it r
s Ac e
I 3
I 3 4 4 4 2 2 2 3 3 3 3 3 u
a p
O 0 O O O O 0 0 0 0 0 O 0 0 0 o
aF I
i s
i i i i t
t 4
t
- i 4
4 c
m Mr E E E E E E E E E E E E E E 0 s
me y
3 3 2 7 2 3 3 6 7 3 6 2 1
1 0
a 9 2 1
6 5 2 5 3 9 5 2 3 g
as
/
7 5 7 Co d
S O
a 1
1 1
6 1
1 1
1 3 3 3 1
1 9 9 n
R r
i E
m T
(
d i
lG e
t UA ce O
)
t 3
e D
r m
d N
o
/
A t
f e
1 c
C b
1 S
a p
E f
3 3 3 3 4 3 2 2 2 2 3 4 3 3 y
S r
0 O 0 O 0 0 0 0 0 0 O O 0 O a
2 A
e $
4 i
4 i
t e
t t
t
- i i s
i m
G sL p E E E E E E E E E E E E E E 2
o 6 4 3 7 1
9 6 4 6 l
6 2 3 9 t
E O
r 3 7 3 4
0 2 7 9 0 t.
2 6
E.
L y
l l
1 a
h l
B n
/
1 1
9 2 1
7 4 9 3 7 1
1 4 2 t
l O
m l
i A
N k
e s
T S
r e
R m
d O
(
l F
ic S
R un O
T o
C
)_
i d
A 3
a F
m r
/
E l
r S
C o
0 r
p f
0 yo dt r
e e
oc e
2 3 l
3 4 4 4 1
2 2 3 3 3 3 3 r
B a p
0 Od O O O O '0 0 O 0 O O O O a
F I
i i i i i I
e 4
i 4
i i i i l
K r E E E E E E E E E E E E E E E s.
ae y
6 7
1 2
7 6 6 5 1
4 2
p l
2 3 4
r7 t s
/
5, 1
6 9 6
1 5 9 1
4 5
l 0
o-l I.
4 I.
oo m
t 0 TD e
7 1
1 5
1 1
1 9 2 2 3 1
1 0 0 c1 r
a m
f x
(
e6 s5 o
-d7 e
d =
d e
i
.t 2 l
s0 c
i -
u m m m
l E n
m m 1
3 3
5 5 /
6 l
f o
3 5 5 7
8 9 0 3 3 3 3 3
3 3 ilc5 1
8 8 8 8 8 9
1 1
1 1
1 1
1 4
l i
I d
l 7 a
r r r r r r r e e c e c e c r a
- R K E K F r K K X
X X X X
X X A
~
[*
,i i
1
TABLE 2.2-12 DOSE PARAMETERS FOR FINITE ELEVATED PLUMES BEAVER VALLEY POWER STATION, UNIT 1*
Vj Bi TOTAL EODY GAMMA AIR NOBLE GAS ANNUAL ANNUAL RADIONUCLIDES
( SEE M / Y,,1 (MRAO/YR gCI/SEC) pCI/SEC)
KR -8 3 M 1.35E-Os 4.52f-06 KR-85M 2.40E-04 3.5HE-04 KR-85 2.91E-06 4.41E-C6 KR-87 A.18E-04 1.23E-03 KR-88 2 14E-04 3.21E-03 KR-89 1.07E-03 1.60E-03 XE-131M 7.07E-05 1 21E-04 X E -13 3 M 5.2SE-05 9.66E-05 XE-133 6.36E-05 1.07E-04 Xf-135M 4.21E-04 6 40E-04 XE-135 3.57E-04 5.37E-04 XE-137 9.46E-05 1 43E-04 XE-138 1.2ut-03 1.94E-C3 XE-139 3.24E-05 4.87~-05 l
AR-41 1.49E-03 2.24E-03
- THE LISTED DOSE 3AAAMETERS ARE FOR nADIONUCL1CES THAT MAY BE CETECTED IN GASEOUS EFFLUENTS.
NOTE:
THESE VALUES ARE BASED UPON THE MAXIMUM SITE SOUNDARY DOSES WHICH WERE DETERMINED FROM THE CONTAINMENT EUILDING VENT RELEASES AND THE VENTILATION VENT RELEASES IN ADDITION TO THE PRCCESS VENT RELEASES.
2.~ 0
TABLE 2.2-13 P; VALUES FOR AN INFANT FOR THE BEAVER VALLEY POWER STATION #
Isotope Inhalation Ground Plane Cow Milk Goat Milk H-3 6.47(2)+
0 2.38(3)
- 4. 86 ( 3 )'
P-32 2.03(6) 0 1.60(11) 1.93(11)
Mn-54 1.00(6) 1.09(9) 3.89(7) 4.63(6)
Fe-59 1.02(6) 3.92(8) 3.93(8) 5.11(6)
Co-58 7.77(5) 5.29(8) 6.06(7) 7.2S(6)
Co-60 4.51(6) 4.40(9) 2.10(3) 2.52(7)
Zn-65 6.47(3) 6.89(3) 1.90(10) 2.29(9)
Rb-86 1.90(3) 1.28(7) 2.22(10) 2.67(9)
Sr-89 2.03(6) 3.16(4) 1.27(10) 2.66(10)
Sr-90 4.09(7) 1.21(11) 2.55(11)
Y-91 2.45(6) 1.52(6) 5.26(6) 6.32(5)
Zr-95 1.75(6) 3.48(8) 3.23(5) 9.95(4)
Nb-95 4.79(3) 1.95(3)
,2.06(3) 2.48(7)
Ru-103 5.52(5) 1.55(8) 1.05(5) 1.27(4)
Ru-106 1.16(7) 2.99(3) 1.44(6) 1.73(3)
Ag-110m 3.67(6) 3.14(9)
Cd-115m 1.46(10) 1.75(9)
Sn-123 Sn-126 Sb-124 Sb-125 Te-127m 1.31(6) 1.13(3) 1.04(9) 1.24(8)
Te-129m 1.68(6) 2.86(7) 1.40(9) 1.63(8)
Cs<'.34 7.03(5) 2.81(9) 6.79(10) 2.04(11)
Cs-136 1.35(3) 2.13(8) 5.76(9) 1.73(10)
Cs-137 6.12(3) 1.15(9) 6.02(10) 1.31(11)
Ba-140 1.60(6) 2.94(7) 2.41(3) 2.89(7)
Ce-141 5.17(5) 1.98(7) 1.37(7) 1.65(6)
~
Ce-144 9.34(6) 5.84(7) 1.33(8) 1.60(7)
I-131 1.c8(7) 2.46(7) 1.06(12) 1.27(12) 1-133 3.56(6) 3.54(6) 9.30(9) 1.13(10)
- Units are mrem /yr per pCi/
Ci/sec per m'$ for H-3 and inhalation pathways and mrem /yr per for the food and ground plane pathways.
2
+ 6.47(2) = 6.47 x 10 e
TABI.E 2.2-14 IlEAVER VALLEY UNIT 1 PROCESS VENT DISPERSION PARAMETERS (D/0), 8"~
TOR CONTINUOtlS ELEVATED RELEASES > S00 llRS/YR OR > 150 IIRS/QTR j
POR SPECIAL LOCATIONS (IDENTIFIED IN TABLE 2.2-4)
Vegetable Sector
- Site Boundary Garden Cow Goat fleef N
3.5E-10 2.6E-09 6.2E-10 4.7E-10 NNE 9.3C-10 1.4E-09 6.lE-10 9.lE-10 NE 1.2E-09 9.0E-10 9.0E-10 ENE 1.SE-09 1.SE-09 1.0E-09 2.0E-09 E
1.SE-09 3.6E-09 8.2E-10 2.lE-09 4.3 E-09 ESE 1.0E-09 4.70-09 1.1E-09 1.lE-09 4.8C-09 SE 6.70-10 3.SE-09 6.00-10 6.0E-10 2.3E-09 SSE 2.0E-09 1.3E-09 4.3E-10 4.0E-10 9.3 E-10 S
2.2E-09 2.4E-09 1.50-09 1.4E-09 2.4E-09 SSW l.30-09 6.4E-10 2.3E-10 2.3E-10 4.8E-10 l
SW l.1E-09 9.4E-10 S.3E-10 2.7E-10 9.4E-10 WSW S.lE-10 1.0E-09 3.4E-10 1.0E-09 W
4. 2 E-10 5.lE-10 6.2E-10 WNW 4.0E-10 3.2E-10 1.6E-10 6.2C-10 NW 3.4E-10 5.0E-10 2.6E-10 4.7E-10 NNW 4.0E-10 1.7E-09 4.6E-10 S 7E-10
- Measured relevant to center of containment of Unit 1 3
Period of Record: 1/1/76 - 12/31/77 I
e
TABI.E 2.2-15
-2 BEAVER VAI.I.EY UNIT 1 CONTAINMENT VENT DISPERSION PARAMETERS (D/Q), m I'OR CONTINth)US MIXED MODE RELEASES > 500 IIRS/YR OR > 150 IIRS/QTR FOR SPECIAL LOCATIONS (IDENTil'IED IN TABLE 2.2-3)
Vegetable Sector
- Site Iloundary Garden Cow Goat Beef N
1.9E-08 2.4E-09 8.lE-10 1.0E-09 NNE 4.9g_o9 2.50-09 5.8E-10 8.6E-10 NE 1.2E-08 6.8E-10 6.7E-10 ENE 1.2E-08 7.7E-09 7.7E-10 1.8E-09 i E
2.0E-00 3.8E-09 3.8E-10 1.lE-09 1.7E-09 CSE 1.0E-08 2.8E-09 4.lE-10 4.6E-10 3.8E-09 SE 9.GE-09 1.9E-09 3.3E-10 3.3E-10 1.3E-09 eg U
SSE 7.SE-09 1.7E-09 3.0E-10 2.8E-10 6.0E-10 S
1.3C-08 3.8E-09 9.8E-10 9.3E-10 3.8E-09 SSVV 4.7C-09 1.2E-09 2.5E-10 2.5E-10 4.6E-10 SW 3.7E-09 1.9E-09 7.9E-10 3.5E-10 1.6E-09 WSW 3.1E-09 1.6E-09 4.3E-10 1.4E-09 9.2E-10 VV 8.0E-10 1.2C-09 WNW 6.80-10 1.1E-09 4.2E-10 1.9E-09 NW 9,8 E-10 5.2E-10 1.4E-09 2.2E-09 NNW l.5E-09 5.3E-09 1.1E-09 1.4E-09
- Measured relevant to center of containment.
l'eriod of Record 1/1/76-12/31/77
TABLE 2.2-16 BEAVER VALLEY UNIT 1 VENTILATION VENT DISPERSION PARAMETERS (D/Q), m-2 FOR CottrlNUGUS GROUND LEVEL RELPASES > 500 IIRS/YR OR > 150 IIRS/QTR, POR SPECIAL DISTANCES (ID ENTIFIED IN TABLE 2.2-3)
Vegetable Sector
- Site Boundary Garden Cow Goat Beef N
2.2E-08
- 2. 4 E-09 8.0E-10 1.0E-09 NNE 2.8E-00 2.2E-09 5.lE-10 7.6E-10 NE 4.9E-08 6.0E-10 5.9E-10 ENE 4.6E-08 7.10-09 7.0E-10 1.6E-09
'/
E 3.2E-08
- 3. 8 E-09 3.8E-10
- 1. 0E-09 1.7 E-09 USE 1.4E-00 2.8E-09
- 4. l E-10 4.6E-10 3.8E 09 SE 1.5E-08 1.9 E- 09 3.3E-10 3.3E-l'0 1.3E-09 SSE 8.0E-09 1.7E-09 3.0E-10 2.8E-10 6.0E-10 S
1.3E-08
- 3. 8 E- 09 9.8E-10 9.3E-10 3.8E-09 SSVV 4.7E-09 1.2E-09 2.6E-10 2.5E-10 4.6E-10 SVV
- 3. 7 E- 09 1.9E-09 7.9E-10 3.5E-10 1.6E-09 WSW
- 2. 8 E- 0 8 1.6E-09 4.3E-10 1.4E-09 i
W 9.4E-09
- 8. l E-10 1.0E-09 I
WNW 2'. 3 E-08 9.7E-10 3.6E-10 1.6E-09 NW 5.0E-08 1.0E-08 1.2E-09 1.9E-09 NNW
- 2. 6 E-08 5.2E-09 1.1E-09 1.4 E-09 Measured relevant to center of containment Period of Record: 1/1/76 - 12/31/77 s
2.3 Como11anca With 10 CFR 50 (G2seous) 2.3.1 Noble Gases 2.3.1.1 Cumulation of Doses Ssetion II.B.1 of Appendix I of 10 CFR 50 (BVTS 3.11.2.2) limits the releases of gaseous effluents from each reactor such that the estimated annual gn=sa air dose is limited to 10 millirad and the beta air dose is limited to 20 millirad.
In addition, BtTS 3.11.2.4 requires use of radwaste system if air doses when averaged over 31 days exceed 0.2 mrad for ga=a and 0.4 mrad for beta.
Baserl upon NUREG-0133 the air dos: limits in the unrestricted area due to noble gases re. leas ed in gaseous effluents are defined by the folowing expressions:
During any calend.tr quarter, for gamma radiation:
k X/Q)y
- 3. 1 7 x 1 0 ' T.,
g M
Q + (X/q)yg
' (B Qjb'bg 5 5 mrad, gy y_
g (2.3-1)
During any calendar quarter, for beta radiation:
3.17 x 10 }
N (y/Q)yQ
+
g gy (X/q)y ;y
+ (X/Q)s b
- l#I9I 9s b.510 mrad, S
q (2.3-2)
During any calendar year, for gamma radiation:
3.17 x 10 Mg
_( Y/Q)yQ
+ ( X/q)y gy, + (3 Q
- b;qb)
$ 10 mrad, gy g
gg
~
(2.3-1)
During any calendar year, for beta radiation:
~
.c 3.17 x 10 }
N
( X/Q)yQ lX/q)y gy (X/Q)s is IS#s is 520 mrad
+
+
g iy g
S l
(2.3--4) l l
2-33
(
When averaged over 31 days, for gamma air radiation projection:
3.17 x 10 Mg (Y/Q)& + (x/q),qgy
+ (E Q
+ b qh g
g 0.2 mrad averaged over 31 days, for beta air radiation projection:
1.17 x 10 N
(x/Q),Qgy (x/q),qiy + (X/Q),Qh
- IX/9I 9sh g
g 0.4 rad where:
M
=
1 The air dose factor due to gamma emissions for each 3
identified noble gas radionucUde I, mrad /yr per gCl/m ;
N
=
the air dose factor due to beta emissions for each 1
3 identified noble ges radionucUde i, mrad /yr per yC1/m ;
(X/Q)y the annual average relative concentration for areas
=
at or beyond the unrestricted' area boundary for long-term vent releases (greater than 500 hrs / year), sec/m ;
(x/q)y the relative concentration for areas at or beyond the
=
unrestricted area boundary for short-term vent releases (equal to or less than 500 hrs / year), sec/m ;
(x/Q),
the annual averag,e relative concentration for areas
=
l at or beyond the unrestricted area boundary fo:long-
. term free standing stack releases (greater than 500 3
- hrs / year), sec/m ;
(x /q)s the relative concentration for areas at or beyond the
=
unrestricted area boundary for short-term free standing stack releases (equal to or less than 500 hrs / year),
sec/m ;
2-56 O
--.c m
l 913 Release of noble gas radionuclide i in gaseous effluents for short-term stack releases (equal to or less than 500 hrs / year), pCi; 9gy Release of noble gas radionuclide i in gaseous effluents
.e for short-term vent releases (equal to or less than 500 hrs / year), pCi; Q
Release of noble gas radionuclide i in gaseous effluents
=
for long-term free standing stack releases (greater than 500 hrs / year), gCi; Sgy
' Release of noble gas radionuclide i in gaseous e'ffluents for long-term vent releases (greater than 500 hrs /yr'.. mci; B
=
g the constant for long-term releases (greater than 500 hrs /yr) for each identified noble gas radionuclide i accounting for the gamma radiation from the elevated finite plume, mead /yr per p Ci/see; b
=
g the constant for short-term releases (equal to or less than 500 hrs /yr) for each identified noble gas radionuclide i accounting for the gamma radiation from the elevated finite plume, mrad /yr per pCi/see;
-8 3.17 x 10
=
the inverse of the number of seconds in a year.
For the 3VPS the various noble gas release modes, including both continuous and ba::h (ie. long and short duration releases), are given in Table 2.3-1 for the release points discussed in Section 2.2-1.
The NRC. staff has indicated that it will allow licensees the option of eliminating the short tem release tem and shor: tem meteorological tems from E.pressions 2.3-1 through 2.3-4 provided tha a: the time the licensee files his Annual Report, he calculates the doses 2-57 a
resulting from'the short term releases using the meteorologic'ai date csrresptnding to the periods of short term ralesses.
At Bsaver Valley Unit 1 this option will bo exercised.
The Joint Frequency Distribution (JFD's) of wind speed and wind direction by stability class (as described in Regulatory Guide 1.23) for all short tem releases (i.e. containment purges) for a given quarter will be used to generate a short term X/Q value and a short tern D/Q value for the quarter according to the guidance provided in Regulatory Guide 1.111.
These values will be utilited in calculating the doses resulting from all short tem releases for.that particular quarter.
The incorporation of this option and the release modes' of Table 2'.3-1 results in the.following expressions to show compliance with 10 CFR 50 for the calendar quarter or year.
The doses for all four quarters will be summed to obtain the total annual dose resulting from short term releases.
However, BVPS rill subsequently use actual release data and corresponding meteorology for each of these periods in computer codes technically consistent with XOqD0Q and GASPAR to demonstratd compliance.
For' Release Mode 1
~
During any =onth, calendar quarter or year-
~
Gamma F.adiation
~ 0.2 (per 31 days)
-I 3.17 x 10 I M
(X/Q)cy 9
^ #/9I S
S
< 5 (per quarter) g g
1 vy i
i i
1 cv VV-PV 10 (per W)
(2.3-5)
Bata Radiation 0.4 (per 31 ca i
g 3
g
( X/Q)py Q
< 10 (per paner)
~
3.17 x 10 I
N;
( X/Q),y Q
+ (X /Q)yy Q
+
g cv vv pv-20 (per year)
(2.3-6)
For Release Mode.2 l
During any month, calendar quarter or year-2-58
Gamma Radiati:n 0.2 (per 31 day 5 W md
-8 g
( X/Q)yy Q
+
BQ g
3.17 x 10 1
Mg -(X/Q)cy Q
+
3 g g cv vv.
pv.
10 (per year)
(2.3-7)
Beta Radiation 0.4 (per 31 days) 10 (per quarter)
-8 M
Q 5
3.17 x 10 I
N (X/Q)ey Q
+ %y Q
+
g g
g g
py g
20 (per year) cv vv pv (2.3-8)
For Release Mode 3 During any month, calendar quarter 'or year-Gamma Radiation 0.2 (per 31 days)
-8
< 5 (per quarter) 3.17 x 10 I
M (X/Q) y Q
+ ( /Q)
Q
+
B; Q,pv 10 (per year) j cv vv (2.3-9)
Beta Radiation 0.4. (per 31 days)
-0 M W @aM 3.17 x 10 I
N (X/Q)y Q
+ (X/Q)yy Q
+ W/@py Q g
g g
g g
e,y vv pv.
20 (per year)
?
i (2.3-10) 2-59
whcre (x/Q)cv =
anncal average relative concentration for releases 3
from the containment building vent, sec/m ;
(x/Q)yy =
annual average relative concentration for releases from the ventilation vent, sec/m ;
(x/Q)pv =
annual average relative concentration for releases 3
from the process vent, sec/m ;
Qg release of radionuclide i from the containment
=
cv building vent,pCl; Qg release of radionuclide i from the ventilation vent,pCl;
=
Qy release of radionuclide i from the process vent,
=
pv Ci; For mode 1 the controlling location is 0.4 m!!es NW.
Substitution of the appropriate X/Q values into Expressions 2.3-5 and 2.3-6 results in the following:
Release Mode 1 Durin.g any month, calendar quarter or year-4 Gamma Radiation 3.17 x 10'I I
M 5.0 x 10 Q
+ 5.3 x 10 q
-8
-5 g q{pv g
3 j
i cv Yv-0.2 (per 31 days) 5 (per quarter) 7 0 (per year)
(2.3-11) 2-60
Beta Radbti:n
~0
-8
' -5 3.17 x 10 t
N 5.0 x 10 Q
+ 5.3 x l0 g
I I
I
~
1 cv vy 0.4 (per 31 days)
-l 2.2 x 10"9 Q 10 (per quarter)
(2.3-12) 3 EV -
~ 20 (per year)
For mode 2 the controlling location is again 0.4 miles NW. Substitution of the appropriate X/Q values into Expressions 2.3-7 and 2.8-8 results in the following:
Release Mode 2 During any month, calendar quarter or year-Gamma Radiation 0.2 (per 31 days) i
~8
-8
-5 3.17 x 10 I
M 5.0 x 10 Q
+ 5.3 x 10 q;
BQ 5 (per quarter)
+
g g g 4
I cv
'vv -
PV.
- to (p,. year)
(2.3-13)
Beta Radiation
~
-8
-8 5
-9 3.17 x 10 I
N 5.0 x 10 Q
+ 5.3 x 10 Qg 2.2 x 10 Qg
+
g g
i ev VV PV-O.4 (per 31 days) 10 (per quarter) 20 (per year) e (2.3-14)
- -61
For moda 3 th] controlling 1:caticn is 0.75 milc.s NNW. Substitution of the appropriate X/Q values into Expressions 2.3-9 and 2.3-10 results in the following:
Release Mode 3 During any month, calendar quarter or year-Gamma Radiation
-8
-5 3.17 x 10 I
M 1.3 x 10 Q
+ 9.1 x 10 Q
+
g g
g B;Q 0.2 (per 31 da
< 5 (per quarter)ys)
~
10 (per year)
(2.3-15)
Beta Radiation
-7
-6 9,3 x 10 q{
3.17 x 10 1
N 1.3 x 10-5 q{
+
9.1 x 10 q)
+
~
g 0.4 (per 31 day 10 (per quarter) s) 20 (per year)
(2.3-16)
De determinaHon. of the controlling locations for implementation of 10 CFR 50 is a function of the following parameters 2-62
(1) radionuclide mix and their Isotopic release (2) release mode (3) meteorology.
The incorporation of these parameters into Expressions 2.3-1 through 2.3-4 resulted in the expressions for the controlling locations as presented in Expressions 2.3-11 through' 2.3-Ic. The radionuclide mix was based upon source teims calculated using the' NRC GALE Code (inputs presented in Appendix B) and is presented in Table 2.2-2 as a function of release type and release point.
~
For each release mode the two or three highest boundary X/Q values for each release point and release duration were utilized in conjunction with the radionuellde mix and release for each release point to determine the controlling site boundary location. Since mixed mode and elevated releases occur from the BVPS and their maximum X/Q values may not decrease with distance (i.e., the site boundary may not have the highest X/Q values), the two or three highest X/Q values for those distances, greater than the site boundcry, were also considered in conjunction with 'the radionuclide mix to determine the controlling location.
These values of X/Q were obtained for the midpoint of the 10 standard distance intervals previously presented in Tabics 2.2-3 through 2.2-10.
For each release mode a particular combination of release point mix and meteorology dominates in the determination of the controlling location.
For release mode 1 the controlling release is the ventilation vent-continuous.
For release mode 2 the controlling release is again the ventilation vent while for release mode 3 the controlling release is the containment building vent.
Values for M; and N, v)hich were used in the determination of the controlling g
location and which are to be used by the BVFS in Expressions 2.5-11 through 2.3-16 to show compliance with 10 CFR 50 were presented in Table 2.2-11. values taken from Table B-l of Regulatory Guide 1.109, Revision 1 were multiplied by 106 to convert from picocuries to microcuries for use in Table 2.2-11.
2-63 e
y e,
-.-,.-,= _ -- _ -.-.
In th2 determination of tha controlling locaticn for Modes 1 and 7, Tabits 2.2-5 through 2.2-7 ?re utilized for X/Q values. The B values to be utilized are the g
same values which were presented in Table 2.2-12. A description of the derivation of the various X/Q values is presented in Appendix A.
4 For release mode 3's controlling location, y/Q values for the process vent, containment building vent and the ventilation vent, as presented in Tables 2.2-8 through 2.2-10, were utilized. The X/Q values presented in Tables 2.2-8 through 2.2-10 may be utilized if an additional special location arises different from any presented in Table 2.2-3.
The following relationship should hold for the BVPS to show compliance with t Technical Specification 3.11.2.2
/
i For the calendar quarter D
5 mrad 0.3-17) y D
f 10 mrad (2.3-18) g 1
For the calendar year D
10 mrad (2.3-19) y D
5 20 mrad (2.3-20) g where t
D
~=
the air dose from gamma radiation, mrad; y
the air dose from beta radiation, mrad.
D
=
g 2-64 L
(
.c
.V 3
i The quaderlh.linits given above represent one-ha.If the knnual design objective h
of Section II,. Sci of' Appendix I of 10iCFR 50.
If any of the limits of Expressions a
2.3-17 throug;h 2.3-20 are exceeded a special report pursuant to Section IV.A of Appendix I of 10,CFR 50 must be filed with the NRC.
1.
i In addition, BVTS 3.1.2.4 requires that the gaseous radwaste system must be used to reduce radioactive materials in that waste when projected doses
,1 '
' averaged over 31 days exceed any of the following:
D y.$
0.2 mrad
?
Dp $_
0.4 mrad i
2.3.1.2 Profection of Doses Doses resulting fromjthe release of gaseous efflue'nts will be projected monthly based upon past operating history data for the: BVPS. jThe doses will be projected using Ex-preisions 2.3-7 through 2.3-10.as appropriate.
Based upon the sum of the accumulated doses to date for the quarter and projected doses for the remainder of the quarter the appropriate gaseous radwaste subsystem will be used.
M e
^
2 y.
I i,
l t
e4 e
+
e b
3, b
y 1
2-65 e.
2.3.2 Radioiodine and Particulates 2.3.2.1 Cumulation of Doses Section IIC of Appendix I of 10 CFR 50 (BVTS 3.11.2.3 and 3.11.2.4) limits the release of radioiodines and radioactive material in particulate form from each reactor such that estimated dose or dose commitment to an individual in an unrestricted area from all pathways of exposure is not in excess of 15 mrem to any organ.
In addition, BVTS 3.11.2.4 requires the use of gaseous radwaste treatment system when projected doses averaged over 31 days to any organ from gaseous waste would exceed 0.3 mrem.
Based upon NUREG-0133, the dose to an organ of an individual from radiciodines and particulates, and radionuclides
'other than noble gases with half-lives greater than 8 days in gaseous effluents released to unrestricted areas, can be determi,ned by the following expression:
During any month, calendar quarter or year-
-8 7
0.3 (per 1 days) 3.17 x 10 I R lW 9 "v iv.
Ib mje 9
P
- *9sh ^WSiv #
g g
s b Y
(per ca en ar year)
(2.3-21) where:
Qg release of radionuellde i for long-term free standing
=
stack releases greater than 500 hrs /yr), gCi; Q;y release of radionuellde i for long-term vent releases (greater
=
than 500 hrs /yr), CI; qg release of radionuclide i for short-term free standing stack
=
releases (equal to or less than 500 hrs /yr), gCi; qiy release of isotope i for short-term vent releases (equal
=
to or less than 500 hrs /yr), Ci; 2-66
W
=
dispersion parameter for estimating dose to an indivi dual at the controlling location for long-term free standing stack releases (greater than 500 hrs /yr);
sec/m for the inhalation pathway, (2/Q)s -
=
I
~
for the food and ground plane pathway, (D/Q)s
=
meters I
W
=
the dispersion parameter for estimating the dose to y
an individual at the controlling location for long-term vent releases (greater than 500 hrs /yr);
sec/m for the inhalation pathway, (2/Q)y;
=
=
meters-for the food and ground plane pathway, (3/Q)y; dispersion parameter for estimating the dose to an w
=
s individual at the controlling Itcation for short-term stack releases (equal to or less than 500 hrs /yr);
sec/m for the inhalation pathway, (2/q)s
=
i meters' for the food and ground plane pathway, (3/q)s
=
I the dispersion parameter for estimating the dose to w
=
y an individual at the controlling location for shcrt-term vent releases (equal to or less than 500 hrs /yr);
3 sec/m for the inhalation pathway, (2/q)y;
=
meters' for the food and ground plane pathway, (5/q)y;
=
2-67 0
._-.y m
3.17 x 10
=
the inverse of the number of seconds in a year; R
=
g the dose factor for each identified radionuclide I, of the organ of interest, mrem /yr per gCi/see per m' or mrem /yr per yCi/m.
Radionuclides and particulates may be released from any of the BVPS vents in the release modes identified in Table 2.3-1. As described previously in Section 2.3.1.1 at Beaver Vaney Unit 1, for each quarter, a short term X/Q and a short term D/Q value will be generated based upon the JFD's corresponding to all short term releases for that quarter. These values will be utill ed in calculating the doses from all short term releases for that quarter. The doses for all four quarters will be summed to obtain the total annual dose resulting from short term releases.
The incorporaticn. of this option and the release modes of Table 2.3-1 results in the following expressions to show compliance with BVTS 3.11.2.3 and BtTS 3.11.2.4.
For a particular organ Expression 2.3-21 becomes:
0.3 (per 31 days)
-0
".5 (per quarter Q;pv +
W,y Q
+W Q
3.17 x 10 7., g R W
3 yy g
py cv vv
- 15 (per year)
(2.3-22) l where:
l l
W
=
dispersion parameter for releases from the py process vent; j
W
=
dispersion parameter fer releases from the ey conatinment building vent:
l
=
dispersion parameter for releases from the vv ventilation vent; 1
2-68
Qg release of radionuclide i from the process vent,
=
PV gCI; Qg release of radionuellde i frorn the containment
=
cv building vent,gCl; Q
release of radionuclide i from the ventilation
=
gvv vent,gCl; In determining the dose at a particular location, W, as in Section 2.2.2, is a function of the pathway. For the food and ground plane pathway W is in terms of D/Q. If the inhalation pathway is considered, W is in terms of X/Q. Incorporation of the various pathways into Expression 2.3-22 results in the following expression for a particular organ:
3.17 x 10~I (R
+ R;
- R
+ Rg ) (W Q
+
W Q
W Q
g g
g py g ey g yy g
)
+
cv yy
( X/Q)py Q
+
g
( X/Q)ey Q
+R i
py ev vv
- 0. 3 (per 31 days)
< 7.5 (per quarter
- 15 (per year)
(2.3-23) t 2-69
wher; R
=
g dose factor for an organ for radionuclide i for the g' ound plane exposure t
pathway, mrem /yr per y Ci/see per m-2; R
=
g dose factor for an organ for radionuclide i fo,e either the cow milk or goat M
~'
milk pathway, mrem /yr per gCi/see per m R
=
g dose factor for an organ fcr radionculide i for the vegetable pathway, V
mrem /yr per gC1/sec per m' ;
R
=
g dose factor for an organ for radionuclide i for the meat pathway, mrem /y:
per pCi/ see per m~ ;
R
,=
dose factor for an organ for radionuclide i for the inhalation pathway, gI 3
mrem /yr per pCi/m.
It should be noted that Wpy, Wev, and W, in Expression 2.3-23 are in terms of D/Q(m- ).
Values of the dose factor, R were calculated using the methodology of NUREG-y 0133.
The following equations were used for all nuclides except tritium.
R; 0 (BR), (DFA ),
(mrem /p per pCum )
(2.3-24)
=
i g
where:
6 K'
=
a constant of unit conversion, 10 pCi/FCi.
(BR)a the breathing rate of the receptor of age group (a),
=
in m#/yr.
(DFA ),
the maximum organ inhalation dose factor for the receptor
=
1 of age group (a) for the ith radionuclide, in mrem /pC1.
The total bcdy is considered as an organ in the selection of (DFA ),.
Inhalation dose factors (DFA ), for the g
g various age groups are given in Table E-7 through E-10 of Regulatory Guide 1.109, 2-70
The breathing rates (BR), used for the various age groups are tabulated below, as given in Table E-5 of the Regulatory Guide 1.109.
Age Group (a)
Breathing Rate (m /yr)
Infant 1400 Child 3700 Teen 8000 Adult 8000 K'K" (SF)DFG [(1-e i*)/A ] (m mrem /yr per pCi/sec) ' (2.3-24a)
~
rig
=
i 1
where:
6 K'
a constant of unit conversion,10 pCi/pC1.
=
K" a constant of unit conversion,8760 hr/ year.
=
Ag the decay constant for the ith radionuclide, sec"I
=
8 the exposure time, 4.73 x 10 sec (1S years).
t
=
DFG g the groundplane dose conversion factor for the ith
=
radionuclide (crem/hr per pCi/m ).
A tabulation of i
DFGi values is presented in Table E-6 of Regulatory Guide 1.109 SF the shielding factor (dimensionlessi.
A shielding
=
factor of 0.7 as suggested in Table E-15 of Regulatory Guide 1.109 is used.
ff (1-f f Je" i*h
'A 0 Q (Uap) F,(r)(DFL )a [
4 s F
S 8
3*^^
R K,
ig
=
+
g i
w p
S 2
(m mrem /yr per gCi/sec)
(2.5-25) where:
6
'a constant of unit conversien,10 pCi/gC1.
K'
=
Q the animals consu=ption rate, in kg/ day (wet weli;ht).
=
F U,p the receptor's = ilk consumption' rate for age a, in liters /vr.
=
Y the agricultural productivity by unit area ~of pasture
=
P feed grass, in.kg/m'3.
Y the agricultural productivity by unit area of stored
=
S 3
feed, in kg/m'.
2-71
F, the stable element transfer coefficients, in days /
=
liter.
fraction of deposited activity retained on animals r
=
feed grass.
(DFL ), =
the maximum organ ingestion dose factor for the ith t
radionuclide for the receptor in age group (a), in mrem /
pC1.
Ai the decay constant for the ith radionuclide. in sec-1
=
A, the decay constant for removal of activity on leaf and
=
-7
-1 (corres-plant surfaces by weathering, 5.73 x 10 see ponding to a 14 day half-life).
g the transport time from pasture to animal, to milk, to t
=
receptor,in sec, h
the transport time from pasture, to harvest, to animal, t
=
to milk, to receptor, in sec.
f fraction of the year that the animal is on pasture
=
p (dimensionless).
f fracti n the animal feed that is pasture grass while
=
s the animal is on pasture (dimensionless).
Tabulated below are the parameter values used for cow's milk and their reference to Regulatory Guide 1.109.
Parameter Value Table r (dimensionless) 1.0 for radiciodine E-15 0.2 for particulates E-15 F, (days / liter)
Each Stable element E-1 ap (liters /yr) - In ant U
330 E-5 Child 330 E-3 Teen 400 E-5 Adult 310 E-5 (DFL ), (mres/pCi)
Each radionuclide E-11 to E-14 g
2-72
Parameter Value Table 2
P (kg/m )
Y 0.7 E-15 2
Ys (kg/m )
2.0 E-15 g (seconds) 1.73 x 10* (2 days)
E-15 t
6 (90 days)
E-15 e
I m onds) 7.78 x 10 Qp (kg/ day) 50 E-3 f
0.5 p
f 1.0 s
For goat's milk, all values remain the same except for Q which is 6 kg/ day.
p Q
(U )
ff (1-f f Je'A *h
-A t i
s if f(r)(DFL )a [ o s,
),
Ri B
A
+A 1
y i
w p
s (m mrem /yr per pCi/sec)
(2.3-26) where:
the stable element transfer coefficients, in days /kg.
F
=
f U,p the receptor's meat consu=ption rate for age (a) in
=
kg/yr.
- l the transport time from pasture to receptor, in sec.
c
=
f the transport time from crop field to receptor, in t
=
h sec.
All parameter values are the same as the milk pathway parameter values except Ff which is obtained from Table E-1 of Regulatory Guide 1.109 and U which is obtained from Table E-5 of Regulatory Guide 1.109.
ap l
The values used are as follows:
Parameter Value Table F, (days /kg)
Each stable element E-1 U
(kg/yr) - Infant 0
E-5 Child 41 E-5 l
Teen 65 E-5 Adult 110 E-5 2-73
Man is considered to consume two types of vegetation (fresh and stored) that differ only in the time period between harvest and consumption; therefore:
(#)
~A *L S
~A *h]
(2*3-27)
L i
i Riy K' [y (DFL ), (0,f e
+ U,f e
=
g g
(m mrem /yr per pCi/sec) where:
6 K'
a constant of unit conversion, 10 pCi/ Ci.
=
U,L the consumption rate of fresh leafy vegetation by the
=
receptor in age group (a), in kg/yr.
U,S the consumption rate of stored vegetation by the
=
receptor in age group (a) in kg/yr.
ft the fraction of the annual intake of fresh leafy
=
vegetation grown locally.
f the fraction of the annual intake of stored vegetation
=
5 grown locally, t
the average time between harvest of. leafy vegetation t
=
and its consumption, in seconds.
3 the average time between harvest of stored vegetation t
=
and its consumption, in seconds.
Y the vegetation areal density, in kg/m.
=
y and all other factors are defined previously.
Tabulated below are the appropriate parameter values and their reference to Rep:latory Guide 1.109, 2-n
Parameter Value Table r (dimensionless) 1.0 for radiciodines E-15 0.2 for particulates E-15 (DFL ), (mrem /pC1)
Each radionuclide E-11 to E-14 4^
U,L (kg/yr) - Infant 0
'E-5 Child 26 E-5 Teen 42 E-5 Adult 64 E-5 U, (kg/yr) - Infant 0
E-5 Child 520 E-5 Teen 630 E-5 Adult 520 E-5 fg (dimensionless) 1.0 E-15 fg (dimensionless) 0.76 E-15 g (seconds) 8.6 x 104 (1 day)
E-15 t
h (seconds) 5.18 x 106 (60 days)
E-15 t
2 Y
(kg/m )
2.0 E-15 y
As discussed in Section 2.2.2, for tritium the parameter W for the food pathway is based upon X/Q.
The ground plane pathway is not appropriate for tritium.
Therefore, the left hend portion of Expression 2.5-22 may be expressed for purposes of implementation of 40 CFR 190, discussed in Se tion 4.0, as:
For tritium:
~
3.17 x 10 (R
+R
+R
+RT)
( IS)pv Sh
+ (%I9)cv S T
T-T T
M
\\
B I
pv cv
' (X/Q)yy Q 7 vv
~
(2. 5-2-)
2-75
-n
wh:rs:
R
=
T d se factor for an organ for tritium for the milk pathway, mrsm/
M 3
yr per gCi/sec ;
R
=
T dose factor for an organ for tritium for the vegetable pathway, V
3 mrem /yr per pCi/m ;
R
=
T dose factor for an organ for tritium for the beef pathway, mrem /
B 3
yr per #Ci/m ;
R
=
T dose factor for an organ for tritium for the inhalation pathway, I
3 mrem /yr per pC!/m.
Expression 2.3-28 is used to show compliance with 40 CFR 190, as discussed in Section 1.0.
The concentration of tritium in milk is based on the airborne concentration rather than the deposition. Therefore, the R7g is based on [X/Q]:
K'K'"F,Q U,p(E ), [0.75(0.5/H)] (mem/p per gCum )
(2. 3-M)
RTg
=
p g
where:
a constant of unit conversion,10 gm/kg.
K'"
=
3 H
absciute humidity of the atmosphere, in gm/m.
=
the fraction of total feed that is water.
0.75
=
0.5 the ratio of the specific activity of the feed grass
=
water to the atmospheric water, and other parameters and values are the same as for Riq.
The value of H used is 3
S grams / meter.
The concentration of tritium in vegetation is based on -he airbo ne concen-tration rather than the deposition.
Therefore, the RTy is based on [X/Q]:
2-76
3 RTy K'K'"
Uf +Uf (DFL ),
[0. 75 (0.5/H)]
(2.3-30)
=
g 3
(mrem /yr per pCi/m )
where all terms have been defined above.
The concentration of tritium in meat is based on its airborne concentration rather than the deposition.
Therefore, the RTB is based on [X/Q):
RTB K'K'"F Q U,p (DFL ), [0.75(0.5/H)]
(2.3-31)
=
fp g
3 (mrem /yr per Ci/m )
where all terms have been defined above.
To show compliance with BVTS 3.11.2.3 and BVTS 3.11.2.4, Equation 2.5-23 is evaluated at the controlling pathway location.
For release mode 1, the controlling location is a vegetable garden 1.1 miles in the NW sector. Expression 2.3-23 becomes:
Release Mode 1 (per month, calendar quarter or year)
-8
-10 3.17 x 10 v
R
+R 5.0 x 10 q*,
I I
~
1 G
V-pv
-0
-8 5.2 x 10 Q
+ 1.0 x 10 Q-
+R 1.0 x 10 Q
+
g g
g ev vv-I Pv t
i 0.3 (per 31 days) 2.8 x 10' Q
- 1.2 x 10' Q
< 7.5 (per quarter) g gvv
, - 15 (per year) cv
(
(2.5-32) l 2-77 l
e
,e r
For tritium, for purposes of implementation of 40 CFR 190, as discussed in Section 4.0, Expression 2.3-28 reduces to:
~
-I 4
-3
-8 R
1.0 x 10 Q
+
2.8 x 10 Q
+ 1.2 x 10 Q
3.17 x 10 T
T g
3 3
V I
pv cv yy.
(2.3-33)
For release mode 2 the controlling location is again the vegetable pathway 1.1 mDes in the NW sector. Equations 2.3-23 and 2.3-28 become:
Release Mode 2 (per month, calendar quarter or year) q{vv ]+
-10
-8
-10 Q
+
5.2 x 10 Qg
+ 1.0 x 10
-8
+ R
,.0 x 10 5
g 3.17 x 10 I
R g
~I.
PV cv 1-G y
. 0.3 (per 31 da s) g.5 (per quarter 7
-7
-5 R
1.0 x 10 Q
+ 2. 8 x 10 Q
+ 1.2 x 10 q
g g
g vv _15 (per year)
I~
pv cv (2.3-34)
For tritium, for implementation of 40 CFR 190 as discussed in Section 4.0, Expression 2.3-28 reduces to:
~
-7
-5 3.17 x 10 R
+ RT 1.0 x 10 Q
+ 2.8 x 10 Q
+ 1.2 x 10 q
~
g g
.. TV I
pv cv vv (2.3-33) 2-73
For release mode 3 the controlling location is the goat milk pathway 3.7 miles in the NW sector. For release mode 3 Expression 2.3-23 and 2.3-28 become:
9 Release Mode 3 (per month, calendar quarter or year)
-8
~1 1.4 x 10~8 Q" 3.17 x 10 I
R
+R 2.6 x 10 Q
+
3 g
g g
i
.G M.
pv cv.
+ 1.2 x 10-8 Q
+
R 9.2 x 10 Q
+ 2.8 x 10 Q
-8 i
g 5
g I
pv cv vv 0.3 (per 31 days) 7.5 (per quarter)
+ 2..; x 10 Q
lyy.
15 (per year)
(2.5-36)
For tritium, for purposes of implementation of 40 CFR 190, as discussed in Section 4.0, Expression 2.5-28 reduces to:
3.17 x 10-8 "R
+R 9.2 x 10-8 Q
+
2.8 x 10 Q
+ 2.4 x 10 Q
T T
g 3
M I_
pv cv vv (2.5-37) ne determination of a controlling location for implementation of BYTS 3.11.2.3 and BVTS 3.11.2.4 for radiciodines and particulates is a function of[
(1) radionuclide mix and their isotopic release (2) release mode (3) meteorology (4) exposure pathway (5) receptor's age.
De incorporation of these parameters into Expression 2.3-21 results in the respective equations for each release mode at the contrc2ing location.
29 l
I
In the determination of the controlling location for each release mode, the radionuclide mix of radioiodines and particulates was based upon the source terms calculated using the GALE code.
This mix was presented in Table 2.2-2 as a function of relea: 2 mode and release point. For the ground plane exposure pathway all radionuclides were considered in the determination of the controlling location.
For the inhalation and food pathways only I-131 was considered in determination of the controlling location. Only I-131 was considered for these pathways because, although Section IIC of Appendix I of 10 CFR 50 is based upon the dose to any organ, in reality the controlling organ is the thyroid. Usually 95-99 percent of the thyroid dose results from the I-131 releases.
In the determination of the controlling location for each release mode, all of'the exposure pathways, as presented in Table 2.2-3, were evaluated. These include cow milk, goat m"k, beef and vegetable ingestion and inhalation and ground plcne exposure. An infant was assumed to be present at all milk pathway locations. A child was assumed to be present at all vegetable garden and beef animallocations.
The ground plane and inhalation exposure pathways were considered to be present at all locations.
For the determination of the controlling location, the highest D/Q values for each release point and release mode for the vegetable garden, cow milk, and goat milk -
pathways were selected.
The thyroid dose was calculated at each of these 1ccations using the radionuclide mix and release of Table 2.2-2.
Based upon these calculations, it was determined that the controlling location for release modes 1 and 2 is the vegetable garden / child pathway while for release mode 3 it is the goat milk / infant path *. cy.
2-80
M For rel:asa moda 1 tha controlling taleas2 point and mix is ths ventilation vsnt.
For release mode 2 it is again the ventilation vent release. For release mode 3 it is the containment purge being released from the containment building vent.
Tables 2.3-2 through 2.3-20 present R values for the total body, GI-tract, bone, g
liver, kidney, thyroid, and lung organs for the ground plane, inhalation, cow milk, goat milk, Vegetable, and meat ingestion pathways for the infant, child, teen, and adult age groups as appropriate to the pathways. These values were calculated using the methodology described in NUREG-0133 using a grazing period of 6 months.
In the determination of the controlling location for release Modes 1-3, Tables 2.2-5 through 2.2-7 are utilized for the X/Q for rele tses from the process vent, containment building vent and the ventilation vent, respectively. Tables 2.2-14 through 2.2-16 are utilized for long term D/Q values from the process vent, containment building vent, and the ventilation vent, respectively. A description of the derivation of the various X/Q and D/Q values is presented in Appendix A.
Long term D/Q values for the process vent, containment building vent, and the ventilation vent are provided for the midpoints of the following distances:
0.0-0.5 mi., 0.5-1.0 mi.,1.0-1.5 mi.,1.5-2.0 mi., 2.0-2.5 mi.,
2.5-3.0 mi., 3.0-3.5 mi., 3.5-4.0 mi., 4.0-4.5 mi., 4.5-5.0 mi.
The values appear in Tables 2.3-21 through 2.3-23. These values may be utilized if an additional spe na location arises different from those presented in the special locations of Table 2.2-3.
'Ihe following relationstyip should hold for the BVPS' to show com'pliance with BVPS Technical Specification 3.11.2.3.
for the calendar quarter:
D 5
7.5 mrem to any organ (2.3-38) r 2-31
For the calendar year:
D 15 7
mrem to any organ (2.3-39) where:
D, the dose to any organrfrom radiolodines and pait!'culates, mram.
=
The quarterly limits given above represent one-half the annual design objective of Section IIC of Appendix I of 10 CFR 50. If any of the limits of Expressions 2.3-38 and 2.3-39 are exceeded, a special report pursuant to Section IVA of Appendix I of 10 CFR 50 must be filed with the NRC.
2.3.2.2 Projection of Doses Doses resulting from release of radiciodines and particulates will be projected monthly based upon past operating history data for the BVPS. The doses will be projected using Expressions 2.3-32, 2.3-34 and 2.3-36 as appropriate for the par-ticular release mode.
Based upon the sum of the accumulated doses to date for a c,uarter and the projected doses for the remainder of the quarter the appropriate gaseous radwaste subsystem will be used.
e a
2-82
-y
v
Table 2.3-1 Flodes Of Gascous Continuous Anti llatch Re. leases For The lleaver Valley Power Station linit i Vents for implementation of 10CFR50 l
CONTINtlOLIS Iti!I. EASES BATCll REl. EASES Containment (a)
Ventilation (b)
Process (c)
~ Containment (d)
Ventilation (e)
Process (f) blotte tildg. Vent Vent Vent lildg. Vent Vent Vent i
- 1. cal collec-Auxiliary Main con-
- Same as con-tion exhaust building denser air tinuous release ventiilation ejector and waste gas de-cay tanks 2
Same as Same as Same as Containment
- Same as con-Motle t
>kiile 1 Mode I purges tinuous release 6
o.
3 Same as Same as Same as Conta inraent
- Same as con-Fk>de I hk>de I
>kide I purges tinuous release 4
- Process Vent releases may be either ennt inuous or batch.
a) Continuous mixed motle meteorology is applicable.
b) Continuous grounti level meteorology is applicahic, c) Continuous elevate <. meteorology is applicable.
el) llatch mixed mo.le meteorology is applicable.
c) llatch grounti level meteorology is applicable, f) llat ch elevat eil meteorology is applicable.
~.
- ABLE 2.F 2 4 VALUES FOR 7HE SCAVCR VALLEY POWER 57A710Ne PATHWAY s INHAL 46C GROUP COUALS A00L7 NUCL10E 7.860Y
$1 7RAC7 8ONE LIVER E!DNEY TH7R0!O LUNG SKIN H
3 8 1 26C 03 3 1.26C 03 8 0.00C.01 1 1.26C 03 1 1 26C 03 8 1.26E 03 8 1.26E 03 8 1.26C 0 3 8
- 32 3 S.00E 04 8 8.63[ 04 5 1.32C 06 8 7.70C 04 5 0 0 0C.01 8 0.0 0 C.01 1 0.0 0 C.01 8 0.00E.01 5
....a...
MN S4 8 6.29C 03 8 7.72C 04 1 0.00C-01 4 3.95C 04 8 9.83C 03 8 0.00C.01 8 1.40C 06 1 0.00C.01 8 FC $9 8 1.0SE 04 8 1 88C 05 8 1 17C 04 8 2 77C 04 1 0 00C.01 8 0.08C.01 1 1.01E 06 1 0.00E.01 8
.............. ~
C0 S8 8 2.07C 03 8 1 06C 05 1 0 00C-01 8 1 54C 03 8 0.00C.01 8 0 00E.01 8 9 27C 05 5 0.00C.01 8 CO 60 8 1.48E 04 1 2.84C 05 8 0.00E.01 8 1 1SE 04 4 0.00E-01 3 0.00C-01 1 S.96E 06 8 0 00E-01 8 ZN 65 8 4.6SC f4 5 S.34E 04 3 3.24C 04 1 1.03E OS I 6.89C 04 8 0.00C-01
- 8.63C 05 3 0.00E.01 1 40 46 8 S.89C 04 8 1 66C 04 8 0.00E.01 8 13SC OS t 0.00C.01 8 0.00C.01 8 0.00C.01 8 0.00C-01 8 Sa 89 8 8.71C 03 8 3.49E 05 8 3.04E 05 1 0.00E.01 8 0.00C.01 8 0.00E-01 8 1 40C 06 8 0.00E.01 3 34 90 8 6.f 9 E 06 8 7.21E 05 8
- .*lt 47 8 0.00E-01 8 0.00C.01 1 0.00C-01 8 9.59C 06 8 0.00C.01 8 Y 91 1 1 24C 04 3 3.84C 05 1 4 62E 05 t 0 00C 01 3 0.00C-01 8 0.00E.01 1 1.700 06 8 0.00E.01 3 ZR 95 t 2.32C 04 t 1.50E 05 8 1.07C CS 1 3.44C 04 5 S.41C 04 4 0 00C.01 8 1 77E 06 3 0.00C.01 8 N8 95 1 4.20E 03 8 1 04E OS 1 41E 04 3 7.80C 03 8 7.72r 03 8 0.00E-01 1 S.04E CS I 0.00E.01 8 4U103 3 6.57E 02 1 1 10E 05 8 1.53C 03 1 0 00E.01 1 S.82C 03 8 0.00E-01 8 S.04C 05 8 0.00C.01 I 4U106 8 4.71f 33 8 9.11C OS I 6.40C 04 3 0.00C-01 1 1.35E OS I 0.00C-01 3 9.3SE 06 8 0.00E.01 8 4G110m i S.94E 33 8 3.02E 05 t 1.08E 04 8 9.99C 03 8 1 97C 0* I 0.00E-01 3 4 63E 06 1 0.00E.01 8 7E127m i 1.57C 03 8 1 4*C OS 1 26C OS 8 S.76E 03 3 4.57E 04 8 3.24C 03 8 9.S9C OS I c.00E-01 I 7C129m 8 1.58C 03 8 3 83E OS 8 9.7SE 03 8 4 670 03 8 3.6*C 04 8 3 44C 33 8 1 16C 06 8 O.00C.01 8 I 131 8 2.0SC 04 8 6.27C 03 8 2 52C 04 8 3.57E 04 5 6.12C 04 8 1 19C 07 8 0.00C.01 4 0.00E.01 8 I 133 4 4.51E 03 8 4.87C 03 5 4.63C 03 1 1 48C 04 1 2.58C 04 8 2.1SC 06 8 0.00E.01 8 0.00C.01 1 CS134 3 7.27C OS I 1 04C 04 1 3.72C OS I 8.47E 05 5 2.87C 05 8 0.00E-01
- 9.75C 1*
I 0.00C.01 8 CS136 8 1 10E 05 8 1.17C 04 8 3.90E 04 8 1.46C 05 8 8.SSC 04 8 0.00C.01 8 1.20C 04 8 0.00E-01 I CS137 4 4.27C 05 3 8.3 9C 0 3 8 4.78C OS 8 6.20C OS I 2.22C OS 8 0.00E-01 I 7.51C 04 8 0.00C.01 I SA140 l 2.56C 03 8 2.18E 05 8 3 90E 04 8 4.90C 8 1 67C 01 8 0.00E-01 8 1.27C 06 3 0.00E.01 8 01 l
CC141 8 1.53E 03 8 1.20E 05 8 1.?95 04 1 1 35C 04 5 6.2SC 03 3 0.00[.01 1 3.61& OS 0.00C.01 1 l
l CC144 8 1 84C 05 t 8.1SC OS I 3.43E 06 8 1 43C 06 8 8 47C 05 8 0.00C-01 1 7.76C 06 3 0.00C.01 1 1
1 R values in units of mrem /yr per 4Ci/m3 for inhalation pathway and all tritit=1 pathways, and in units of 22.nres/yr per #Ci/sec for all other pathways.
l t
i l
l I
2-84 e
,~.,
7ABLE 2.3-3 m VALUCS FOR THE SC AVCR VALLE7 power 574710No P A7HWAY s INMAL ASE S40UP EBUALS 7EEN NUCLIDE 7 200Y 41 7AAC7 S DNE LIVER KIDNCY 7HYROIO LUNG SKIN M
3 3127E 03 8 1 27E 03 3 0.00C.01 8 1.27C 03 8 1.27C 03 8 1 27C 03 8 1.27C 03 8 1 27E 03 8 P 32 8 7 15C 04 8 9.27C 04 8 1 89C 06 8 1 09E 05 3 0.00E.01 8 0.00E.01 8 0.0 0E.01 8 0.00E.01 8 NN S4 8 4.39E 03 8 6.67C 04 5 0 00C.01 8 5 10C 04 5 1 27E 04 8 0.00E.01 8 1.98E 06 3 0.00E.01 4 FE 59 8 1.43E 04 8 1.78C 05 8 1 59E 04 8 3.69C 04 1 0.00C 01 3 0.00E.01 8 1.53E 06 8 0.00C.01 8 CO 58 3 2.77E 03 8 9.51C 04 8 0.00C.01 8 2.07C 03 8 0.00C 01 1 0.00C.01 8 1.34C 06 4 0.00C.01 8 CO 60 8 1.18C 04 8 2.59E 05 3 0.00E.01 4 1.S1C 04 8 0.00C.01 8 0.00E.01 8 8.71C 06 8 0 00C.01 I 2N 65 8 6 23C 04 8 4.66E 04 8 3.ASE 04 8 1.33C OS I 8.63C 04 8 0.00E.01 1 1.24C 06 8 0 00C.01 I R8 86 8 8.3 9C 04 1 1.77C 04 3 0.00E.01 8 1.90C OS I 0.00C.01 3 0.00E.01 8 0.00C.01 8 0 00C 01 8 SR 89 8 1 25C 04 8 3.71E OS 1 4.34C OS I 0.00C.01 8 0.00E.01 1 0.00E.01 8 2.41C 06 1 0.00E.01 I SR 90 8 6.67E 06 8 7.64C 05 3 1.08E 08 8 0.00C.01 1 0.00E.01 1 0.00E.01 1 1.65C 07 3 0 00C.01 8 Y
,91 1 1.77E 04 3 4.08C 05 t 6.60C 05 8 0.00E.01 1 0.00E.01 8 0.00E.01 8 2.93C 06 8 0.00C.01
- ZR 95 8 3 1SC 04 8 1.49E OS t 1.45C OS 8 4.58C 04 1 6.73C 04
- 0.00E.01 1 2.68C 06 3 0.00E.01 I NO 95 8 5.66r 03 2 9.67C 04 8 1 85E 04 8 1 03C 04 8 9.99E 03 3 0.00C.01 i 7 50C 05 I 0 00E.01 1 RU103 8 8 95C 02 8 1.09C 05 3 2.10E 03 3 0.00E.01 1 7.42C 03 8 0.00E.01 3 7.82E 05 4 0.00C 01 8 RU106 8 1 24E 04 3 9.59E 05 i 9.8 2C 04 8 0.00C.01 8 1 900 0 8 0.00E.01 1 1.61E 07 1 0.00E.01 4 44110m 8 7.98E 03 8 2 72C CS : 1.38C 04 8 1 31C 04 8 2.!0E 04 3 0.00C 01 4 6.74C 06 1 0.00C.01 8 TC127M 4 2.18E 03 8 1.59C OS 1 1.80C 04 8 8.15E 03 1 6.53C 04 8 4.38E 03 3 1.65E 06 8 0.000 01 8 7Cl2?a 3 2.24C 03 1 4.04E 05 3 1 39C 04 5 6.57C 03 4 5.18C 04 1 4.5 7E 03
- 1 97C 06 8 0 00C.01 8 I 131 8 2.64C 04 8 6.48E 03 8 3 54C 04 8 4.90E 04 8 8.39E 04 1 1.46E 07 3 0.00C.01 8 0.00E.01 I I 133 8 6.21C 03 8 1 03E 04 8 1.21C 04 3 2 05C 04 8 3 59C 04 3 2 92E 06 8 0.03C.01 8 0.00E.01 8 C3134 8 S.44E 05 t 9.75C 03 8 S.02C OS I 1.13E 06 8 3.75C 05 4 0.00E.01 8 1.46E 05 1 0.00C.01 8 CS136 1 137E OS 1 1 09C 04 8 S.14C 04 8 1 93C 35 8 1.10C OS I 0.00C.01 1 1.77[ 04 4 0.00E.01 I CS137 3 3 11C OS t - 8.47C 03 8 6.69C OS I 8.47E 05 8 3.04C 05 8 0.00E.01 1 1.21C OS I 0.00C-01 8 8A140 1 3.51E 03 8 2.20C OS 4 1.44C 04 8 6.69C 01 8 2.28[ 01 1 0.00C.01 2 03C 06 8 0.00C.01
. ~..
CC141 8 2.16C 03 8 1 26E 25 1 2.84C 04 8 1.89E S4 8 8.8 7C 03 3 0.00E=01 8 6.13E OS I 0.00C.01 8 CC144 4 2.62C OS 8 8 63C 05 3 4 88C 06 3 2.02E 06 1 1.21E 06 8 0.00E.01 1 1.33C 07 3 0.80E.01 8
....:....... ~...
R values in units of mrem /yr per uCi/m3 for inhalatien pathway and all tritium pathways, and in units of m2. mrem /yr per 4Ci/sec for all other pa-hways.
1 I
2-35
7ABLE 2.3-4 R VALUCS FOR 7MC BCAVER VALLEY POWCR $7A710No P&7NWA7 s INMAL ASC GROUP COUALS CHILD NUCLIOC 7.800Y GI.7RAC7 80NC LIVCR KIONC7 7H7R010 LUNG SKIN M
3 8 1.12C 03 8 1 12C 03 8 0.00C.01 3 1 12C 03 8 1 12C 03 8 1 12C 03 8 1 12C 03 8 1 12C 03 8 P 32 3 9 46C 04 4 4.21C 04 8 2.60C 06 8 1 14C 05 t 0.00C.01 8 0.00C.01 8.0.00C.01 8 0.80C.01 8 MN 54 8 9.50C 03 5 2 29C 04 8 0.00C.01 8 4 29C 04 8 1.00C 04 8 0.00C.01 8 1 57C 06 I O.00C.01 I FC 59 8 1 47C 04 8 7.06C 04 3 2.07C 04 8 3.34C 04 8 0.0CC.01 8 0.00C.01 8 1 27C 06 1 0.00C.01 I CO 58 8 3.16C 03 8 3.43C 04 1 0 00C-01 1 1 77C 03 3 0.00C.01 1 0.00C-01 3 1.10C 06 8 0.00C.G1 8 C0 60 8 2.26C 34 8 9.61C 04 8 0.00C.01 8 1.31C 24 8 0.00C.01 1 0.00C.01 1 7.06C 06 8 0.00C.01 8 24 65 6 7.02C 04 8 1.63C 04 8 4 25C 04 1 1 13C 05 t 7 13C 04 8 0.00C.01 8 9.94C 05 3 0.00C.01 8 48 06 3 1 14C 05 t 7.98C 03 8 0.00C.01 8 1.98C 05 3 0.00C.01 8 0.00C.01 8 0.00C.01 8 0.00C.01 8 SR 89 8 1 72C 04 8 1.67C 05 5 5.99C 05 3 0.00C.01 8 0.00C 01 8 0.00C.01 1 2 15C 06 3
- 0. OOC.01 1 SR 90 8 6 43C 06 3 3.43C 05 8 1 01C 04 8 0 00C.01 1 0.00C-01 8 0.00C.01 8 1 47C 07 3 0 00E-01 8 T 91 1 2.43C 04 8 1.e4C 05 8 9.13C 05 8 0.00C-01 8 0.00E-01 4 0.00C.01 1 2.62C 06 8 0.00C.01 8 ZR 95 8 3.69C 04 8 6 10E 04 I 1.48C 05 8 4 17C 04 1 5.95C 04 8 0.00C.01 1 2.23C 06 8.0.00C-01 8 48 95 8 6.54C 03 8 3.69C 04 8 2.35C 04 8 9.16C 03 8 8.61C 03 8 0.00C.01 1 6 13C 05 8 0.000 01 8 2U113 8 1.07C 03 8 4.47C 04 1 2.79C 03 4 0.00C-01 8 7.02C 03 8 f.00C-01 8 6.61C 05 3 0.00C.01 8 4U106 8 1 69C 04 3 4 29C 05 3 1 36C 05 8 0.00C.01 8 184C 05 8 H.00C.01 3 1 43C 07 8 0.00C.01 8 AG110m 4 9 13C 03 8 1.00C 35 t 1 6AC 04 8 1 14C 04 8 2 12C 04 3 0.00E-01 6 5.47C 06 8 0.00C.01 I 7C127M 8 3.01C 03 4 7.13C 04 4 2.40C 04 8 6.53C 03 I 6.35C 04 8 6.06C 03 8 1 44C 06 8 0.00C.01 8 7C1294 8 3 04C 03 8 1.81C 95 8 1.92C 04 8 6 84C 03 8 5.02C 04 8 6.32C 03 4 1.76C 06 1 0.30C.01 8 I 131 8 2.72C 04 1 2 84C 031 4.40C 04 8 4.80C 04 4 7 87C 04 8 1.62C 07 3 0.00C.01 3 0.00C.01 8 I 133 8 7.68C 03 8 5.47C 03 8 1 66C 04 8 2.03C 04 1 3.37C 04 8 3 84C 06 1 0.00C 01 1 0.00C.01 8 CS134 1 2.24C 05 8 3.8 4C 03 1 6 50C 05 1 1 01C 06 1 3.30C 05
- 8.00C.01 1 1.21C 05 3 0.00C.01 8 CS136 3 1 16C 05 8 4.17C 03 3 6.50C 04 8 1 71C 05 8 9 53C 04 8 0 00C.01 8 1 45C 04 3 0.00C-01 1 CS137 8 1.28C 05 8 3.61C 03 8 9.05C 05 8 8 24C 05 8 2.82C 05 4 4.00C.01 8 1.04C 35 4 0.00C.01 1 8A140 8 4.32C 03 8 1.02C 05 t 7.39C 04 8 6.47E 01 8 2.11C 01 8 0.00C.01 8 1.74C 06 5 0.00C.01 1 CC141 8 2.89C 03 8 5 65C 04 8 3.92C 04 8 1.95C 04 8 8.53C 03 3 0.00C.01 8 5.T3C 05 1 0.00C.01 I
...................................... -.... -........'.... _. - 1 CC144 8 3.61C 05 8 3 48C O! t 6.76C 06 3 2.11C 06 8,1.17C 06 3 0.00C 0 1 1.1?C 07 5 0.00C.01 8 R values in units of mrem /yr per #C1/m3 for inhalation pathway and all tritit:s pathways, and in units of m2. mrem /yr per #Ci/sec for all other pathways.
l l
{
l i
I 2-36
.. ~. -
7A8tE 2.3-5 R VALUES FOR THE SCAVER VALLEY POWER STATIONe PA7HWAY a INMAL AGE GROUP EOUAL$ INFAN7 NUCLIDE 7 800Y s!.7RAC7 80NC LIVER KIONE7 7HTR0!D LUN8 SEIN M
3 8 6.46E 02 8 6.46C 02 1 0.00E.01 8 6 46E 02 3 6 46E 02 8 6 46E 02 I L.46E 02 1 6.46E OF 1 P 32 8 7.73E 04 5 1.61E 04 8 2.03[ 06 8 1.12E 05 3 0.00C.01 8 0.00C.01 8 0.00E.01 8 0.80C.01 1 NN S4 4 4.90E 03 3 7.0SE 03 1 0.00E.01 3 2 53E 04 8 4.98E 03 1 0.00E.01 8 9 9eE 05 8 0.00E.01 8 FC 59 8 9 46C 03 I 2.47E 04 8 13SE 04 8 2.35E 04 5 0.00E-01 8 0.00E.01 1 1.01E 06 8 0.00E-01 1 C0 54 1 1.82C 03 8 1.11E 04 3 0.00E.01 8 1 22E 03 3 0.00E 01 1 0.00E.01 1 7.76E 05 1 0.00E.01 8 CO 64 3 1.18 E 0 4 1 3.19E 04 8 0.00E.01 8 8.01E 03 8 0.00E.01 3 0.00E.01 8 4.50C 06 1 0.00E.01 8 2N 65 8 3 10E 04 i S.13E 04 8 1.93E 04 8 6 2SE 04 8 3.24E 04 1 0.00E.01 3 6.46E 05 8 0.00E.01
- 48 66 4 8.81C 04 1 3.03E 03 1 0.00C.01 8 1 90C 05 8 0.00E.01 1 0.00[.01 4 0.00E.01 1 0.00E.01 8 I
38 89 8 1.14E 04 5 6.39C 04 8 3.*7C 05 8 0.00E-01 1 0.00[.01 8 0.00E.01 3 2 03E 06 8 0.00E 01 8
$4 90 1 2.S9E 06 8 1.31C OM t 4.04E 07 3 0.00E.01 8 0.00E.01 3 0.COC.01 8 1 12C 07 1 0.00E.01 8 I 91 8 1.S7C 04 8 7.02E 04 8 5.87C 05 8 0.00E.01 8 0 00E-01 8 0.00E.01 1 2 45E 06 8 0.00E.01 1 ZR 95 1 2.03E 04 8 2.17E 04 1 1 1*C 05 1 2.78E 04 8 3 10E 04 5 0.00E-01 1 1 75E 06 8 0.00E.01 8 NO 95 4 3.77E 05 8 1 27E 04 i 1.57E 04 8 6.42E 03 8 4.71C 03 3 0 00E-01 4 4.78[ 05 1 0.00E.J1 8 RU103 8 6.78E 02 8 1 61C 04 1 2.01C 03 4 0.00E.01 8 4.24E 03 1 J.00E 01 8 S.51C 05 8 0.00E.01 8 RU10A i 1.09E 04 5 1.64E 05 1 8.67E 04 5 0.00E.01 4 1.06E 05 8 0.00E.01 8 1.15E 07 8 0.00E 01 8 LG110M I 4.99E 03 ; 3.30C 04 1 9.97E 03 8 7 21E 03 4 1.09E 04 1 0 00E 01 8 3.66E 06 4 0.00E.01 r
7E127M t 2.07E 03 1 2.73E 04 8 1 66C 04 8 6 89E 03 3 3.75E 04 2 4 86E 03 8 1.31E 06 1 0.00E.01 1 7E12?e I 2.22E 03 1 6.89E 04 8 1 41C 04 5 6.08C 33 8 3.17C 11 i S.47C 03 8 1.68E 06 1 0.00C.01 :
............................................. ~............................ -.........
I 131 1 1.96E 04 8 1 06E 03 3 3.79E 04 8 4.43C 04 I S.17C 04 1 1 48C 07 i 0.00E.01 4 0.00E 01 8 I 133 8 5.59E 03 8 2.1SE 03 8 132C 04 8 1 92E 04 8 2.2et 04 1 3.SSE 06 1 0.00E 01 I s.00E.01 I C5134 8 7.44E 04 4 1.33E 03 8 3.96E 05 1 7.02E 05 8 1.90E OS 1 0.00E.41 8 7.95E 04 8 0.00E 01 1 C3136 8 S.2fC 04 8 1 43E 03 8 4.42E 04 5 1.34E 05 3 S.63C 04 8 0.00E.01 8 1.17E 04 8 0.00E-01 I
....................................................~. ~......
Cs137 5 4.$4C v4 8 1.33C 03 1 5.48C 05 8 6 11E 05 i 1.72E 05 t 0.00E.01 8 7.12E 04 3 0.00C.01 8 8A140 1 2 49E 03 8 3 83E 04 t 5.59E 04 5 S.59C 01 8 1.34E 01 8 0.00E 01 I 1.59E 06 8 0.00E.01 1 CE141 8 1.99E 03 8 2.15C 34 8 2.77C 34 8 1.66E 04 8 S.24E 03 8 0.00C.01 i S.16E OS 1 0.00E.01 I CC144 8 1 76E 05 8 1.48E OS I 3 19E 06 8 1 21E 0 6 3 5.37E 05 4 0.00C.01 8 9.83E 06 1 0.00E.01 8 R values in units of mrem /yr per uCi/m3 for inhalation pathway and all triti,:s patnways, and in u: lits of 22-mres/yr per #Ci/sec for all other pathways.
I l
l TAsLE 2.3 6. R VALUCS FOR 7HC SCAVER VALLEY POWCR 37A710N P A7HWA7 s 8400NQ NUCLIDE 7.30DY 87-7RAC7 80NC LIVER K!DNEY THYROID LUNS
$ KIN i
PN 54 8 1 34C 05 3 1.34C 09 8 1.34C 09 8 1.34C 09 8 1 34E 09 1 1 34C 09 8 1.34C 09 t 1.57C 09 8 FC 59 8 2.75C OS I 2.75C 08 8 2.75C 04 8 2.75E 08 8 2.75E 08 8 2.75E 08 8 2.75E 04 1 3.23C 08 i CO 58 8 3.79C 08 I 3.79C 08 3 3.79C 08 8 3.79C 08 3 3.79E 08 8 3.79E 08 8 s.79C OS 8 4.44E 08 8
. ~........... ~.............'..........
CO 68 8 2 15E 10 8 2.15C 10 1 2 15C 10 8 2.15C 10 t 2 15E 10 8 2 15C 10 8 2.15E 10 8 2.52C 10 8 I
ZN 65 I 7.49E 08 8 7.49E 08 8 7.49C 08 8 7.49C 08 1 7.49E OB 4 7.49E 04 I 7.49E 08 8 8.61C 08 8 l
R8 86 8 8.99C 06 8 8.99E 06 8 8.99C 06 8 8.99C 06 8 8 99E 36 8 8.99C 06 8 8 99C 06 8 1.03E 07
- SR 89 8 2.23E 04 8 7.23C 04 1 2.23C 04 3 2 23E 04 8 2 23E 04 8 2.23E 04 8 2.23C 04 1 3.58C 04 I Y 91 8 1 44E 06 1 1 08E 06 4 1.08E 06 8 1.08C 06 3 1 08C 06 8 1 08C 06 1 1.08E 06 3 1 00E C6 I ZR 95 8 2.49E 08 3 2.49E 08 1 2.49E 08 8 2.49E 08 8 2 49E 08 8 2.49E 08 8 2.49E 08 1 2.89E 08 3 N8 95 8 1.3 6E 0 8 8 1.36E 08 8 1.36C 08 8 1 36E 08 8 1.36E 08 8 1.36E 08 8 1.36E 04 8 1.60E 08 i RU103 8 1.09E 08 8 1.09C 08 8 1.09C 08 3 1.09E 08 8 1 09E 08 8 1.09E 04 8 1.09E DA I 1 27C 08 1 AU106 8 4 19 C 0 8 8 4 19C 08 8 4.19C 48 8 4.19C 08 8 4.19E 08 8 4 19C 08 8 4.19E 08 8 5.03E 08 4 AG1104 3 3.48E 09 3 3.48E 09 8 3.44C 09 8 3.48E 09 3 3 48E 09 8 3.48C 09 1 3.48E 09 8 4 06C 09 8 7C127M 4 9.15C 04 8 9 15C 04 8.9.1SE 04 1 9.15C 04 8 9 15E 04 8 9.15E 04 8 9 15E 04 8 1.08E 05 8 7C129M 4 2.00C 07 8 2.00E 07 8 2.00C 07 8 2.00C 07 8 2.00C 07 8 2.000 07 3 2.00E 07 8 2.34C 0 7 I
! 131 8 1.72C 07 8 1.72E 07 8 1.72E 07 8 1.72E 07 8 1 72E 07 8 1 72E 07 8 1.72C 07 1 2.0?! 07 3 I 133 8 2.47C 06 8 2 47C 06 3 2.47E 06 8 2.47E 06 1 2.47E 06 3 2.47C 06 1 2.47C 06 3 3.000 06 t CS134 5 6.42C 09 t 6.82C 09 3 6.82C 3*
- 6.82E 09 I 6.82E 09 3 6.82E 09 3 6 82E 09 8 7.96E 09 8 C5136 1 1.49C 08 8 1 49C 08 8 1.99E 08 1 1.49 E 0 8 8 1 49E 08 3 1 49C 08 8 1.49E 08 1 1.69C 08 8 C2137 8 1.03[ 10 8 1.03E 10 8 1.03E 10 8 1.03C la i 1 03E 10 8 1 03E 10 8 1.03E 10 1 1 20C to I SA140 4 2.05C 07 8 2.05E 07 8 2.05C 07 3 2.05C 0 7 1 2 05E 47 8 2 05C 07 8 2.05C 07 3 2.34C 0 7
- CE141 8 1.36E 07 3 1.3&C 07 1 1.36C 07 1 1.3 6C 0 7 8 136C 07 3 1.36C 07 8 1.36C 07 I 1 53C 07 I CC144 8 6.95C 07 8 6.95C 07 8 6.95C 07 1 6.95E 07 1 6.95E 07 1 6.95C 07 3 6.95C 07 8 8.03C 07 i R values in units of mrem /yr per 4Ci/m3 for inhalation pathway and a.11 tritit=1 pathways, and in units of :n2-mrem /yr per #Ci/see for all other pathways.
2-38 e
---,,.---,w---
-e-
<~w w-w-- - -- - - - -
TA8LC 2.3-7.
R VALUES FOR THC BEAVER VALLET POWER $7A710N.
P47HWAy a VEGE7 AGC GR OUP COUALS AOULT-NUCLIDE 7.800Y
$1-7AACT, BONE LIVER KIONET THYROID LUNG SKIN M
3 8 2.28C 83 3 2 28C 03 3 0.80E-01 1 2.28C 03 8 2.28C 03 8 2.28C 03 8 2.28C 03 1 2.2SE 03
- P 32 3 5.91C 07 8 1.72C 08 8 1.52C #9 8 9 51E 07 8 0.00E-01 8 0.00E-01 3 0 00C-01 3 0.00E.01 8 NN S4 8 5 83C 07 8 9.36E 08 1 0.00E-01 8 3.05C 08 8 1.09C 07 3 0 00E-01 8 0.00E-01 1 0.00E.01 8 FC 59 8 1 12C'08 8 9.75C 08 8 1.24E 08 1 2.93E 08 8 0.00C-01 8 0.00C-01 8 8 17C 07 1 0 00C-01 I CD 58 I 6.71C 07 1 6.07E 08 8 0.00E-01 3 7.99C 07 4 0.00E-01 8 0.00C-01 3 0.00E-01 1 0.00E.01 8 j
CO 64 8 3.67C 08 8 3.12C 09 1 0.00E-01 8 1.66E 08 8 0.00C-01 1 0.00E-01 8 0.00C.01 1 0.00C-01 3 ZN 65 S.77C 08 8 8.04E 08 1 4.01C 08 8 1 28C 09 8 8.54C 08 8 0.00E-01 3 0.00C-01 8 0 00E-01 I 48 86 8 1.03C 08 8 4.36E 07 I 0.00E-01 8 2.21E 08 4 0.00E-01 8 0.00E-01 1 0.00C-01 8 0 00C-01 I SR 89 8 2.8 7C 08 8 1.60E 09 8 1.00E 10 8 0.00E-01 8 0.00E-01 1 0.00E-01 1 0.00C-01 8 0.00C-01 3 SR 90 8 1 64C 11 1 1.93E 10 t 6.70C 11 1 0.00E-01 8 0.00E-01 8 0.00C-01 1 0.00C-01 1 0.00E-01 t.
Y 91 8 1.34C OS I 2.76E 09 3 5.01C 06 8 0.00E-01 1 0.00C-11 1 3.00Ce01 1 0.00E-01 1 0.00E-01 I
.................................................................w................................
2R 95 1 2.53E 05 8 1.17C 09 8 1 16E 06 3 3.71E 05 3 5 8 2C 05 #s 0.0 0 E-01 1 0.00C-01 1 0.00C-01 8 NS 95 8 4.19C 04 8 a.73E 08 3 1.40E OS 1 7.7** 04 8 7.70E $4 8 0.00E-01 3 0.00E-01 8 0 00E-01 8 AU103 3 2 04E 06 3 5.53E 08 8 4.74E 06 8 0 00E-01 8 1.81C 07 8 0.00t=01 8 0.00E-01 1 0.00 -01 8 RU106 8 2.46E 07 8 1.26[ 10 8 1.94[ 08 8 0.00C-01 1 3.75E 08 1 0.00C-01 1 0.00E-01 1 0.00E-01 8 AG110R 8 6.23E 06 8 4.280 09 8 1 13E Of 1 10SE 07 8 2.06E 07 3 0.00E-01 3 0.00C-01 8 0.00E-01 3 7C127M i 6.12E 07 8 1.68C 09 I 5.02E 08 8 1.80C 08 8 2.04E 09 1 1.28C 08 8 0.00E-91 8 0.00E-01 8 7C129M t 4.71C 07 8 1.50C 09 8 2.9AC 04 8 1.11C 04 1 1.24C 09 3 1.02E 08 8 0.00C-01 8 0.00E-01 8 I 131 8 6.61C 07 8 3.04C 07 8 8 07C 07 8 1.15E 08 8 1.98C 08 8 3.78C 10 1 0.00E-01 1 0.00E-01 8 I 133 8 1.12C 06 3 3.30C 06 8 2.11E 06 3 3.67C 06 8 6.40E 06 8 5.39E 08 8 0.00E-41 8 0.00E.01 C3134 8 8.83C 09 3 1 89C 48 8 4.54E 09 3 1.08C 10 8 3.49E 09 i O.00E-01 1 1 16E 09 8 0.00E-01 8 C5136 8 1 19C 08 8 1.88E of 8 4.19C 07 8 1 66C 08 8 9.21C 07 8 3.00C-01 1 1.26E 07 1 0.000 01 8 CS137 I S.94E 09 8 1.76E 08 8 6.63C O I 1.07E 09 8 3.08C 09 1 0.00E.01 8 1.02E 09 3 0.00C-01 8A140 8 8.40C 06 8 2.64E 08 8 1.28C 08 8 1.61C 05 8 5.47E 04 8 3.00E-01 1 9.22E 04 8 0.00E-01 1 CC141 8 1.48E 04 8 4.49E 08 8 1.93E 05 t 1.31C 05 8 6.07E 04
- 0.00E-01 8 0.00E-91 4 0.00C-01 I CC144 8 1.69C 06 8 1.06E 10 1 3.1SC 07 3 1.32E 07 1 7 80E 06 1 0.00E-01 3 0.00E-01 1 0.00E-01 I R values in units of 1 rem /yr per uCi/m3 for inhalatien pathway and aII tritium pa: hays, and in units of m.-crem/yr per pCi/see for all other pathways.
2-59
7A8LC 2.3 8.
4 WALUES FOR 7HE SCAVCR V ALLEY POWCR $7A7!ON.
P&7HWAY s VE6C7 AGE 64 0VP COUALS 7CCN NUCLIOC 7.8007 SI-7R ACT BONC LIVCR MIONET THYR 0!D LUNS
$RIN H
3 4 2.61C 03 1 2.61C 03 1 0.00E-01 4 2.61C 03 8 2.61C 03 8 2 61C 03 8 2.61C 03 8 2.61C 03 8 P 32 8 6 80C 07 8 1 47C 08 8 1 75C 09 8 1 09C 08 8 0.00C-01 1 0.00E-01 8 0.00C-01 1 0 00E-01 8 NN $4 8 8.79C 07 8 9.09C 08 8 0.00C-01 1 4.43C 08 8 1.32C 08 8 0.00C-01 1 0.00C-01 8 0.00C-01 8 FC $9 8 1 60C 08 I 9.78C 08 8 1 77C 80 4 4.14C 08 8 0.00C-01 1 0.00C-01 1 1.30C OS 8 0.00C 01 8 CD $8 8 9.79C 07 8 5 8SC 08 8 0.00E-01 8 4 2SE 07 4 0.00C-01 8 0.00C-01 1 0.00C-01 8 0.00C-01 I CD 60 i S.57C 08 8 3.22C 09 1 0.00C-01 1 2.47C 08 8 0.00E-01 3 0.00C-01 8 0.00C-01 1 0.00E-01 8 ZN 6S I e.68C 08 1 7.8st Os S.36C as 1.n6C 09 8 1.11C 09 8 0.00E-01 1 0.00C.01 1 0.00C-01 1 48 86 1 1.30C 08 8 4.09C 07 1 0.00C-01 8 2.76C 04 8 0.00C-01 8 0.00C-01 8 0.00C-01 8 0.00C.01 I
$R 89 8 4.36C 08 8 1.81C 09 8 1.S2C 10 1 0.00C.01 8 0.00C-01 8 0.00E-01 8 0.00C-01 8 0.00C-01 8 SR 90 1 2 0SC 11 1 2.33C 10 8 4.32C 11 1 0.0 0 E-01 3 0.00C-01 1 0.00C-01 1 0.00C-01 I c.00C-41 I T 91 8 2 06C OS 8 3 1*C 09 8 7.68C 06 8 0.00f-01 8 0.00C-01 8 0.00C-01 8 0.00C-01 8 0.00C-01 8 ZR 95 8 3.68C 05 8 1 23C 09 8 1 69C 06 3 S.3SC 05 t 7.86C OS I 0.00C-01 1 0.00C-01 1 0.00C-01 8 N8 95 t 5.77C 04 8 4.48C 08 8 1 89C OS 8 1 0SC OS 8 1.02C OS
- 3.00C-01 1 0.00C-01 1 0.00C-01
- 4U103 8 2.90C 06 i S.66t 08 8 6.78C c6 8 0 00C-01 1 2.39C 07 4 0.00C-01 1 0.00C-01 3 0.00C=01 8 20106 8 3 93C 07 8 1. SOC to 8 3 12C 08 8 0.00C.01 1 6.02C 08 8 0.00E-01 3 0.00C-21 8 0.00C-01 8
- G110M t 9 39C 06 8 4.34C 09 8 1 63C 07 8 1.54C 07 8 2 95C d7 1 0.00C-01 1 0.00C-01 8 0.00E-01 8 7C127M i 9 44C 07 8 1.98C 09 8 7.93C 08 8 2.81C 08 8 3.22C 09 8 1 89C 04 1 0.00C-01 1 c.00C-01 I 7Cl29m 8 6.79C 07 1 1 61C 09 8 4.2*C 08 8 1 19C 08 8 1.79C 09 8 1.38C 08 3 0.00E-01 1 0.00C-01 8 I 131 8 S.77C 07 8 2.13C 07 8 7.64C 07 8 1.07C 08 8 1 8SC 08 8 3 14C to 8 0.00E-01 4 0.00E-01 8 I 133 8 1.01C 06 8 2.51C 06 8 1.96C 06 8 3.32C 0 6 8 S.83C 06 8 4 64C 08 1 0.00C-01 8 0.00C-01
- CS134 8 7.54C 09 8 2.02C 08 8 6.90C 19 8 1.62C 10 8 S.16C 09 t 0.00C=01 8 1.97C 09 8 0.00C-01 8 C1136 8 1 13C CA 8 1.3SC 07 3 4.28C 07 8 1.68C 08 8 9.16C of 8 0.00C-01 4 1 44C 07 3 0.00C-01 I CS137 4 4 90C 09 8 2 00C 08 8 1 06C la i 1 41C 10 8 4.70C 09 3 0 00C=01 i 1 86C 09 8 0.00E-01 8 84140 8 4.88C 06 8 2.12C 08 8 1.38C t8 i 1 69C 05 t 5.72C 04 1 0 00C-01 3 1.14C OS I 0.00C-81 8
- Clat i 2 12C 0 4 3 S.2*C 38 3 2.77C CS 8 1.8SC OS 8 8.70C 04 5 0.00C-01 8 0.07T-01 8 0.00C-01 8 CClos t 2.71C 06 3 1.27C 10 t S.04C 07 8 2.09C 07 l 1 2SC 07 3 0.00C-01 8 0.00C-01 8 0.00C-01 8 R values in tmits of mrem /yr per #Ci/m3 for inhalation pathway and all tritium pa:hways, and in units of m2-sres/yr per uC1/sec for all other pathways.
2 90 m.
_..m
f 7ASLC 2 3-9.
A VALUCS FOR 7HC BCAVER VALLEY POWER 57A7!0No PA7MWAY s VEGC7 AGC GAQUP CGUALS CHILO NUCLIDE 7.8007 GI-7RAC7 BONE LIVCR K!DNCY 7MTR0!D LUN4
$41N M
3 3 4 04C 03 1 4.04C 03 1 0.00C-01 8 4.04C 03 3 4.84E 03 1 4.04C 03 8 4.04E 03 3 4.04C 03 8 P 32 1 1.42C 08 8 1 01C Of 8 3.67C 09 8 1.72E 08 3 0.00C.01 1 0.00E.01 8 0.00E.01 8 0.00E.01 8 MN S4 8 1.73C 08 8 S.44C 08 8 0.00C-01 8 6 49C 08 8 1.82C 08 8 0.00C.01 8 0.00C-01 8 0.00C.01 8 FE $9 1 3 17C 08 8 6.62C 08 8 3.93E 08 1 6.36C 08 8 0 00C-01 1 0.00E-01 1 1.84E 08 4 0.00C-01 8 CO $8 8 1.92C 08 8 3.66C 08 8 0.00E-01 8 4.27C 07 5 0.00E-01 1 0.00E-01 1 0.00E-01 1 0.00C-01 1 00 60 8 1.11C 09 3 2.08C 09 1 0.00C-01 8 3.76C 08 8 0.00E-01 1 0.00C-01 8 0.00C-01 8 0.00E-01 8 ZN 65 t 1 70C 09 8 4.81E 08 i 1.03C 09 8 2.74E 09 i 1.73C 09'8 0.00C 01 8 0.00E-01 1 0.00C.01 8 49 86 8 2 81E 08 8 2.94E 07 1 0.00E-01 8 4.S6C 08 8 0.00E-01 8 0.00E-01 4 0.00C-01 t.0.00E-01 8
'sR 89 8 1.03E 09 8 1.40C 09 1 3.62C 10 1 0.00C 01 8 0.00C-01 8 0.00C-01 8 0.00E-01
- O.00E-01 I Sa 90 1 3.49E 11 1 1.86C 10 8 1.38E 12 1 0.00C-01 3 0.00E-01 8 0.00C-01 8 0.00C-01 3 0.00E-01 8 Y 91 3 4.89C OS I 2.44E 09 8 1.83[ 07 8 0.00E-01 1 0.00E-01 8 0.00C-01 1 0.00E-01 1 0 00E-01 8 Ze 95 8 7.44C OS t s.71E 08 3 3. set 06 8 8 3SE QS 8 1.20E 06 3 0.00E-01 3 0.00E-01 8 0.00E-01 8 NB 95 8 1 12C OS
- 2.91E 08 8 4.0*C 05 8 1.S7C OS 8 1 48f OS I 0.00C-01 1 0.00E-01 1 0.00C 01 I Rut 03 8 S.86C 06 8 3.94C 08 8 1 52E 47 I c.00E-01 4 3.8*E 07 8 e 00t.01 3 0.00C-01 8 0.00E-01 8 Rut 06 8 9.38C 07 1 1.17C 10 i 7.52E 08 8 0.00C-01 8 1.02C 09 3 0.00E-01 1 0.00C-01 8 0.00E-01 8 AG110M 8 1.87C 07 8 2.78C 09 8 3.46C 07 8 2.3 *C 0 7 8 4.3 5C 0 7 8 0.00C-01 8 0.00E-01 8 0.00E-01 8 7C127M 3 2 26C 08 1 1.54C 09 8 1 90C 39 i S.12E 08 8 S.42C 09 i 4.SSC OR 8 0.00E.01 1 0.00E 01 8 I
7C129m i 1.S!E 08 8 1.22C 09 8 9.98C 08 1 2.79E Ge 8 2 93E 09 3 3.22E 08 8 0.00E-01 I O.00E-01 8 I 131 1 8.160 07 8 1.28C 07 8 1.43C 08 8 1.44C 08 4 2.3 6E 0 8 8 4.75E 10 4 0.00C-01 8 0.00C-01 3 i
! 133 1 1 67C 06 8 1 78C 06 8 3.S7C 06 8 4.42C 06 8 7.36C 06 8 8.21C 08 8 0.00C-01 1 0.00E-01 8 Cs134 8 S.40C 09 t 1.38E 08 1 1.54E 10 1 2 56C 10 I 7.93E 09 8 0.00C-01 8 2.86C J9 8 0.00C-01 8 Cst 36 ' 8 1.43E 08 8 7.77C 06 8 8.0*C 07 8 2.21E 08 5 1.18C 08 8 0.00E-01 1 1.76C 07 1
- 0. 0 0 C-01 I Cs137 8 3.52C 09 8 1.50E 08 8 2.49C 10 1 2 39E 10 1 7.78C 09 8 0.00C-01 8 2 80E 09 3 0.00E=01 8 8A140 8 1 61E 07 8 1.40E 08 8 2.76E 08 8 2.42C OS 8 7.47E 04 8 0.00E-01 1 1.**E OS I 0.00C-01 8 l
l CC141 8 4.75C 04 3 3.99E 08 8 6 42C OS I 3.20E OS I 1.40C 05 8 0.00E-01 4 0.00E-01 8 0.00E-01 8 CC144 8 6 49C 06 8 9.94C 09 8 1 22E 08 8 3.81C 0 7 8 2 11C 07 1 0.00E-01 1 0.00E-01 1 0.00E-01 8 R values in uni:s of mrem /yr per pCi/m') for inhalation pathway and all
- i*ium pathways, and in units of m2.mres/yr per #Ci/see for all other pathways.
i l
2-91 x
7ASLC 2.3 10 R VALUCS FOR THE BCAVCR VALLCY POWCR $74710N.
P 47HWA7 s MC A7 ASC 6AOUP COUALS ADULT NUCL!DC 7.800Y GI.7RAC7 80NC L!vCR alDNCY THYR 0!D LUNS
%K!N H
3 1 3 27C 02 8 3.2 7C 02 1 0.00C-01 8 3 27C 02 8 3 27C 02 1 3.27C 02 1 3.27C 02 8 3.27C 02 I
................A P 32 8 8.8SC 07 8 2.57C 08 8 2 29C 09 1 1 42C 08 8 0.00C.01 8 0.00C-01 1 0.00C.01 8 0.00C.01 I I
mN S4 8 4.98C 05 8 1 44C 07 8 6 000 01 1 4.71C 06 8 1 40C 06 8 0.00C.01 8 0.00C.01 8 0.40C.01 8 f
FC 59 8 1.12C OS 8 9.73C 08 8 1 24C OS 8 2 92C OS 8 0.00C.01 8 0.00C.01 8 8 16C 07 1 0.00C.01 I CD S4 I 1.95C 07 8 1 76C 08 8 0.00C.01 8 8.64C 06 8 0.00C.01 3 0.00C.01 1 0.00C.01 8 0 00C.01 I CO 60 8 8.47C 07 1 7.SSC 08 8 0 00C.01 8 4.02C 07 5 0.00C.01 8 0.00C.01 8 0.00C.01 1 0.00C.01 1 ZN 65 1 3.06C 08 8 4.2 7C 08 8 2 13C 04 8 6.78C 08 8 4.53C 08 8 0.00C.01 8 0.00C.01 8 0.00C.01 8 88 86 8 1 07C 08 8 4 53C 07 4 0 00C.01 1 2 30C 08 1 0.00C.01 8 0.00C.01 8 0.00C 01 8 0.00C.01 8 SR 89 8 4.12C 06 8 2.30C 07 8 1 43C 08 8 0.00C-01 8 0.00C 01 1 0.00C.01 1 0.00C.01 5 0.00C.01 8
$8 90 8 1 76C 09 1 2 07C 08 1 7 17C 09 3 0.000 01 1 0.00C.01 8 0.00C 01 8 0.00C.01 8 0.00C.01 7 91 1 1 43C 04 8 2 94C 08 3 5.3SC 05 0 0.00C-01 8 0.00C.01 3 0.00C.01 8 0.00C.01 1 0.00C.01 8
.............................................................................................. :/
ZR 95 8 1 94C 05 t 9.07f S8 8 4.92C OS 8 2.86C 05 1 4.49C OS I 0.00C-01 8 0.00C.01 8 0.00C.01 8/
48 95 8 3.18C 05 8 3.59C 09 8 1 06C 06 8 S.91C OS I S.44C OS
- 0.00C.01 8 0.00C.01 8 0.00C.01 I AU133 8 2.11C 07 I S.73C C9 8 4.91C 07 8 0.00C.01 1 1 87C 08 8 0.00C.01 4 0.00C.01 8 0.CSC.01 8 i
4U106 8 1 66C 00 8 9.53C 10 1 1 47C 09 8 0.00C.01 8 2.8 4C OS 8 0.00C.01 1 0 00C.01 8 0.00C.01 1-aG110M i 1 99C 06 8 1 36C 09 8 3.61C 06 8 3.3*C 06 8 6.S 7C 24 8 0.00C.01 1 0.00C.01 1 0.00C-01 1 TC127m 8 4 37C 07 8 2.30C 09 3 6 47C 08 8 2 46C 08 4 2 79C 09 8 1.76C 08 8 0.00C.01 8 0.00C 01 8 l
fC129m 8 9.0SC 07 8 2.88C 09 I S.72C 08 8 2 13C 08 8 2.39C 09 8 1 96C 04 3 0.00C.01 1 0.00C.01 8 i
i
! 131 8 4.33C 06 8 1 99C 06 S.28C 06 8 7.SSC 06 8 1.29C 07 8 2.40C 09 5 0.00C.01 1 0.00C.01 1 l
I 133 8 1.13C.01 8 3.Jef.01 1 2 14C.01 1 3 72r.01 8 6 49C.01 i S.46C 01 1 0.00C.01 1 0.00C.01 4 CS134 8 6.64C 08 8 1.43C 07 8 3.43C 08 8 8.17C 08 1 2.6*C 08 8 0.00C.01 3 4 74C 07 8 0.00C.01 8 CS136 3 1 61C 07 8 2 53C 06 8 S.6SC 06 3 2.23C 07 8 1.24C 07 8 0.00C.01 4 1 70C 06 3 0.00C.01 8i i
CS137 4 4.3 3C 0 8 8 1.28C 07 8 4 43C 08 1 6.61C 08 1 2.2*C 38 8 0.00C.01*I 7.46C 07 5 0.00C*01 I t
84140 t 9.01C OS I 2.83C 07 1 1.38C 37 8 1 73C.04 1
- 87C 03.3 0.00C.01 1 8.89C 03 8 0.00C.0 0 t
- C141 1 8.96C 02 1 1 67C of I 6.67C 03 8 4.38C 03 1 2.03C 03 1 0.00C.01 8 0.0&C-01 1 0.00Ca%1 I CC144 8 3.96C 04 8 2.49C 08 1 7.37C 05 8 3.08C 0*
- 4.83C CS 8 0.00C.01 3 0.00C.01 8 0.0 0 C.01 ' t R vahes in units of srem/yr per uCi/m3 for inhala:icn Pathway and all
~.4.."-.
pathways, ang :..n units or :--mrem /yr per uCi/ set for all other pathways.
1
[
2-92 i
,y-n s
n
~
e -
/
2 A
Y t
l i
TA8LC 2.
11 R VALUES POR 7HC PCAVER VALLET POWER 3747!ON*
P47MWAY s nC&7 AGC 640up CaVALS 7CEN EUCLIOC 7.8007 81-7AACT 90NC LIVCR RIONC7 7MYR010 LUNG SKtN M
3 8 1 99C 02 8 1 95C 02 1 0.00C.01 1 1 9tC 02 4 1 9SC 02 8 1 95C 02 8,1.9tC 02 I * ?SC 02 I P 32 5 7.$0C 07 8 1.63C 08 1 1.94C 09 8 1 20C OR I 0.0dC.01 8 0.00C=0. l'0.00C.01 8 0.00C=01 I
.....g....
KN S4 C.7 12C 0$ 8 7.37C 06 8 0.00C-01 8 3.S9C 06 8 1.07C 06 5 0.00C.c1 8 0.00C.81 1 0.00C-01 8
.........+............................................
w..
FC 59 1 8 95C 07 i S.48C 08 8 9.93C 07 8 2.32C 04 8 0.00C 01 1 0.00t.41 l 7.31C 07 1 0.00C-01 I C0 $8 I 1 54C 07 8 9.22C 07 1 0.00C-01 1 6.69C 06 8 0.00C=ut 8 0.00E-01 8 0.00C.01 1 0.00C=01 1 CO 60 8 7.03C 07 8 %.06C 08 8 0.00C-01 8 3.12C 07 8 C.00C-01 8 0.00(.01 1 0.00C-01 1 0 00E-01 I 24 65 1 2.43C 08 t 2 20C 04 i 1. SOC 08 i S.20C 08 8 3.33C 08 8 0.00C-01 8 0.00C=01 8 0.00C-01 8
)l 45 86 8 9.00C 07 3 2.84C 07 1 0 00C-01 8 1.92C 08 8 f.00C-01 8 0.00C-11 8 0.00C 01 8 0.00E-01 4 i
$8 89 8 3.47C 06 8 1 44C 07 8 1 21C OA t 0.0CE-01 b C
8.0,0C 01 8 4.CCC=vi 1 0.00C-01 8 0.30C=01 8 f Sp 90 8 1 1?C 09 8 1 30C 08 8 4 64C 0? 8 0.00C-01 f,0.01C-01 1 0.00C-01 1 0.00C=01 3 0.00C-01 8 3...........................................................
r,.'.....................................................................................
f c91 8 1 21C 04 1 1.8SC 0 8 8 4.S1C 05 1 0.00E-01?I 0.00C.01 8 6 00C.01 8 0.00C.01 8 0.00C.01 8
................... 1 S.2 0C ;0* I 7.1SC PS 8 2.2Sf,tt 8 3.31C O S I O.00C-01 8 0.00C-01 3 0.00E-01 8 di 93 8.1.SSC 05 49 95 l'2 13C 05 4t1.??C $9 8 830COS(4 8. 6 ti liS 8 4.46C 05 3 0.60C.01 1 0.30C.01 8 0.00C.01 8 sul03 8 71.71C 07 l'3 34C 29 8 4.00C 07 8 %.00C-01 8 1.41C 08 8 0.00C.01 8 0.00C-01 1 0.00C-01 8 4U106 8 1.16C 08 i S.99C LC 8 1.24C 09 8 0.00E-01 i 2 19C 09 8 0.00C-01 8 0.00C-01 8 0 00C-01 8
.....p... 7.......................................................................................
AG110M 8 1.$8C 36 8 T.27C OA 8 2 74C 06 3 2.29C 06 8 4.94E 06 8 0.00C.01 1 0.10C-01 8 0 00C-01 8 7 C 12 7*
- 6.90C J7 8 1 4SC Otil S.ASC 08 3 2 06C 08 8. 2 3!C ' 09 8 1 38C 08 8 0.00C=01 8 0.00C-01 8
........s......
f C 12 9M. 'l 7.S8C 07 3 1.80C $9" 8 4.79C 08 8 1 74C 08 8 2 0gC 09 8 1 54C 08 8 0 00E-01 1 0.00C-01 I
...............c........................................................................
I 131
,8 3.30C 06 8 1 22C 06 8 4.39 C CE 'l 6.14( 06 8 1.06C 07 8 t.f9C et 8 0.00C-01 8 0.00C-01 8 I 133 1 9.2Sr.02 8 2 3 0C-01 1 1 79C.01 1 3.03C-01 i S.32C.01 5 4.23C 21 3.0.00E-01 1 0.00C-01 8
.......i....................................................................'..................
Cstle 1 2.98C 08 8 7.*9C 06 8 2.73C 08 8 6.42C 08 8 2.04C 08 8 0.00C-31 8 7.79C 07 8 0 00C=01 8 C1136 8 1 16C 07 8 1.40C 06 8 4.41C 06 8 1.73C 07 i S.,44C 06 8 0.00C-01 3 1.49C 06 8 0 00E-01 8 g,,
3I
... J7 8 7.59C 16.8 4.01C 08 8 S.34C OA i 1.42C 08 8 0.00E-01 8 7.06C 07 3 0.00C-01 8 CfS
..t.8.;.86C 08
. \\n,+
I 7.33C OS X 1 75C t? 8 1.14C 07 8 1.39C 04 8 4.72C 03 8 0.00C-01 8 *.37C 03 8 0.00C-01 I
,\\'
dates s
r
- Clel 8 4.17C 02 8 1.04C ;7 i S.43C 03 3 3.63C 03 8 1 71C 03 3 0.00C=01 8 0.00C-01 8 0.0 0 C-01 i L
i-t CCl**
8 3.34C 04 8 1.S6C 03,W 6.21C OS I 2.S7C OS I 1.S3C OS I 0.00C.01 8 0.00r.01 1 0.00C.01 I r
I e
t R values in t:11:s of mrem /p pe uCi/m') for inhalation pathway and all tritiu=
t pathways, and in units of somre.1/yr per FCi/see for all other pathways.
5 o
4
/
c.
i f
=
,..m.ya 1
\\
7ASLC 2 3 12 4 VALUCS FOR 7MC OCAVCR VALLC7 POWC4 57A710No PA7MWAY a RCA7 AGC GR OUP E8U AL$ CHILD NUCL1DC 7.0007 61 7RACT 00NC LIVER EIONCY 7MYR0!D LUNG
$NIN M
3 8 2 36C 02 8 2.36C 02 3 0 00C.01 12.36C 02 8 2 36C 02 8 2.36C 02 8 2 36C 02 8 2.36C 02 8 P 32 8 1.41C 08 I 1.01C 08 1 3.6SC 09 8 1 71C 08 1 0.00C.01 8 0.0 0C.01 1 1.00 C.01 1 0.00C.01 8 NN S4 8 1 09C 06 8 3.4SC 06 8 0 00C.01 1 4 11C 06 8 1 15C 06 8 0 00C.01 8 0.00C.81 1 0.00C.01 I FC $9 8 1 42C 08 1 2.97C OS 8 1 76C On 3 2 8SC 08 8 0.80C.01 8 0 00C.01 8 8.26C 07 3 0.00C.01 8 C0 58 8 2 39C 07 3 4.56C 07 8 0.00C.01 8 7.82C 06 8 0.00C.01 1 0.00C.01 1 0.00C.01 3 0.00C.01 8 CD 60 8 1.09C 08 1 2.0SC 08 8 0.00C.01 I 3.70C 07 1 0.00C.01 8 0.00C.01 8 0.00C.01 3 0.00C.01 1 24 65 4 3 72C 08 8 1 0!C 08 8 2.2*C 04 1 S.9?C OS 8 3.77C 08 8 0.00C-01 8 0.00E-01 1 0.00C.01 1 pt 96 8 1.6 7C 0 8 8 1.75C 07 I 0.00C.01 8 2.72C 08 8 0 00C.01 1 0.00C.01 1 0.00C.01 1 0.00C.01 8 Sn 89 3 6.SSC 06 8 8.87C 06 8 2.29C 08 8 0.00C.01 8 0.000 01 8 0.00C.U1 8 0 00C.01 8 0.00C.01 8 54 90 l 1 52C 09 8 8.08C 07 4 6.00C 09 5 0.00C.01 8 0.00C.01 8 0.00C.01 1 0.00C-01 8 0 00C.01 8 Y
- 1 8 2 2PC 04 8 1 13C 06 t*8.51C OS t 0.00L.01 8 0.00C.01 8 0.00C.01 1 0.00C.01 8 0.00C.01 8 Ze *S 1 2.44C 05 2 91C 04 8 1 27C 06 8 2 79C OS 8 3 99C 05 1 0.00C.01 8 0.00C.01 8 0.00C.01 1 N8 95 8 3.98C 05 1 1 02C 09 8 1 42C 06 8 !.58C OS 8 S.2*C O!
- 0.00C.01 8 0.00C.01 1 0.00C.01 4 s0193 1 2 74C 07 3 1.87C 09 8 7 2fC 07 8 0.00C.01 8 1 82C 04 8 0.00C.01 1 0.00C 01 8 0.00C.01 3 mul06 8 2 9tC 08 8 3.63C to i 1.34C Ce 8 0.00C 01 1 3 1SC 09 3 0.00C.01 8 0.00C.01 8 0.00C.01 8 AG110m 8 2.4SC 06 8 3.6SC 08 8 4.54C 06 1 3.06C 06 i S.71C 06 t 0.00C.01 1 0.000 01 8 0.00C.01 8
- 94C 08 8 3 12C 09 8 2.61C 08 8 0.00C.01 3 0.00C.01 I 7C;27M I 1.3 0 C 0 4 8 8 85C 08 8 1.09C 09 8 7C129 8 1.40C 08 8 1.100 0* t *.02C OA 8 2.52C 08 8 2.6hC 09 8 2 91C 04 8 0.00C.01 8 0.00C.01 1 1 131 8 4 65C 06 1 7.29C OS I 8 14C 06 8 8.19 C 0 6 3 134C 07 8 2 71C 09 1 0.00C.01 1 0.00C.01 1 I 133 8 1.SSC.01 8 1 66C.01 8 3.37C.01 1 4.11C.01 8 6 8SC.01 8 7.63C 01 3 0.00C.01 8 0.00C.01 1 CS134 8 1.67C 08 8 4.26C 06 1 4.81C 08 8 7.90C 08 1 2.4SC 08 4 0.00C.01 1 8.78C 07 3 0.00C.01
- C5136 3 1.3SC 07 8 7.34C 05 8 7.60C 06 3 2.09C 07 8 1 11C 07 1 0.00C.01 5 1.66C 06 3 0.00C.01 8 C5137 8 1 04C 08 3 4.41C 06 8 7.39C of I 7.07C 08 8 2.30C 08 8 0.00E.01 8 8.29C 0) 1 0.00C.01 8 Sat 40 1 1 22C 06 8 1.06C 07 8 2.10C 07 8 184d 34 8 S.98C 03 1 0.00C.01 8 1 10E 04 8 0.00C.01 I CC141 8 7.S7C 02 8 6.36C 06 8 1 02C 04 4 S.10C 03 1 2.24C 03 1 0.00C.01 8 0.JCC.01 8 0.00C.01 8 CC144 8 6.2SC 04 8 9.57C 07 8 1 37C 06 8 3.67C 05 8 2.03C OS 8 0.30C.01 8 0.00C.01 8 0.00C.01 8 R values in units of :nrem/yr per #Ci/m3 for inhalation pathway and all :ri:it=1 pathways, and in units of m2.arem/yr per pCi/sec for all other pathways.
I i
2-94 I
l
7AILE 2.3 13 R VALUCS FOR 7MC OCAVCR VALLC7 POWCA $7&T!0No PATMWA7 : COW NILE AGC GROUP COUALS ADULT NUCLIOC 7 0007 GI. TRACT BONC LIVER MIDNC7 7M7ROIO LUNG SKIN H
3 5 7.69C 02 8 7.69C 02 1 0.00E-01 4 7.69C 02 3 7.69C 02 1 7.69C 02 8 7.69C 02 8 7.69C 02 8 P 32 8 3 2SC 04 8 9.4SC 00 1 8.40C 09 4 S.22C OS I 0 00C.01 1 0.00C.01 1 0.00C.01 1 0.00C 01 I NN $4 8 8.2SC 05 8 1 32C 07 3 0.00C.01 8 4 32C 06 8 1 29C 06 3 0.00C.01 1 0.00C.01 1 0.00C 01 1 FC $9 1 1 2SC 07 8 1.09C 08 3 1 39C 07 8 3 26C 07 8 0.00C.01 8 0 00C.01 4 9.10C 06 3 0 00C.01 8 C0 SS 4 S.03C 06 8 4.SSC 07 3 0.00C.01 8 2.2*C 06 8 3.00C.01 1 0.00C.01 8 0.00C.01 8 0.00C.01 I CG 60 8 1.93C 07 8 1 6SC OS 8 0.00C.31 8 8.77C 06 8 0.00C.01 8 0.00C.01 8 0.00C.01 1 0.00C 01 8 2N 65 l 1 18C 09 8 1 6SC 09 8 4.21C 04 4 2 61C 09 8 1 75C 09 8 0.00C.01 8 0.00C.01 1 0.00C.01 I 48 86 8 5 69C 04 3 2.91C 08 8 0 00C.01 8 1.22C 09 3 0.00C.01 8 0.00C.01 1 0.00C.01 1 0.00C.01 8
$4 49 8 1 97C 07 8 1 10E 08 1 6 8SC CA 8 0.00C.01 3 0.00C-01 8 0.00C.01 3 0.00C.01 8 0.00C.01 8
$4 90 8 6.62C 09 8 7.40C 08 8 2 70C 10 8 0.00C 01 8 0.00C.01 8 0.00C.01 1 0.00C.01 8 0.00C.01 8 Y 91 8 1.04C 02 8 2 23C 06 8 4.0$C 03 8 0.00C.01 8 0.00C.01 8 0.00C.01 8 0.00C.01 1 0.00C.01
- Ze *5 I 9.72C 01 1 e.bSC 0$ 1 4.48C 02 8 1.**C 02 8 2.21C 02 1 0.00C 01 1 0.00C.01 8 0.00C.01 8 NG 95 3 1.14E 04 8 1.2*C 08 3 3.42C 0*
I 2 12C 34 8 2.10C 0*
- 3.00C.01 1 0.00C.01 8 0.00C.01 I
- U103 1 2.04C 02 1 5.!*C Os t 4.7*C 02 1 0 00C.31 8 1 81C 03 8 0.00C.01 8 0.00C.01 8 0.00C.01 8 8c106 8 136C 03 5 6.95C of 8 1.07C 04 1 0.00C.41 8 2.07C C*
t 0.00C.01 1 0 00C.01 8 0.00C.01 8 aG210m i 1 73C 07 8 1 19C 10 8 3 1tC af 8 2.91C of 8 5.7*C 07 1 0.00C.01 1 0.000 01 8 0.00C 01 8 C127 3 3.4*C 06 8 9.aSC *? 8 2.42C 07 8 1.01C
- 7 3 1 15! 08 1 7.21C 36
- 3.00C.61 1 0.00C.01 I 7C129m I a.7EC 06 8 1.52C 08 8 3 02C of 1.13C of 1 2tf op i 1 0*C 07 3 0.00C.01 8 0.00C.01 8 I 131 8 1 19f 08 8 1.*9C 07 8 1 45C 04 8 2 04C 04 1 3.*7C 08 8 6.82C 10 i 3.00C.01 8 0.00C 01 I
...................................................................s I 133 1 1.0$C 06 3 3.0?C 06 8 1 98C 06 8 3.**C 06 I b.01 06 S.06C 08 i 0.00C.01 8 0.00C.01 8 CS13*
- S.74C 09 1 1 23C 08 1 2 95C 09 8 7.02C 09 8 2.27C 09 8 3.00C.01 4 7.54C 08 8 0.00C.01 8 Cst 36 8 3.S!C 04 5 S.60C 07 I 1 2SE 30 t 4.93C 08 8 2 7*C 04 3 0.00C.01 1 3.76C 07 1 0.JCC-01 8
- !137 8 3.66C 09 1 1.04C 08 8 *.09C 09 8 5.59C 09 8 1 90C 09 I 0.00E-01 3 6.31C OS 8 0.00C.01 3 8A140 8 8.43C 05 1 2.63C 07 8 1 29C 07 8 1.62C 04 8 S.49C 03 3 0.00C.01 8 9 2SC 03 3 0.00C.01 8 CC141 8 1 71C 02 i 5.78C 06 8 2.24C 03 8 1.51C 03 8 7.02C 02 3 0.00C.01 8 0.00C.01 3 0.00C.01 8 Cl**
I 1.71C 03 8 6.11C 07 5 1.41C OS 8 7.56C 0* t 6.48C 04 8 0.00C.01 8 0.00C.01 8 0.00C-01 1 R values in units of mre-:/p per pCi/M fer inhalation pathway and all tritiua pathways, and in units of m--mrem /yr per #C1/se: for all other pathways.
2 05
7ASLC 2.3 14 ' A V ALUCS FOR 7MC SCAVCR VALLEY POWER 37A710No P & 7Mv A Y s COW MILE AGC Ga0UP COUALS 7CEN NUCL10C 7.8007 St.7AAC7 BONE LIVCa NIONC7 7HYR010 LUNG SKIN M
3 8 1 00C 03 8 1 00C 03 8 0 00C.01 8 1.00C 03 8 1 00C 03 8 1 00C 03 8 1.00C 03 8 1.00C 03 8 P 32 3 6.01C OS 8 1 30C 09 8 1.5SC to 4 9.60C OS 8 0.00C.01 1 0 00C.01 t*0.00C.01 0 00C.01 8 NN S4 8 1 43C 06 8 1.*ar 07 8 6 00C.01 8 7.20C 06 8 2.15C 06 1 0.00C.01 1 0.00C 01 1 0.00C.01 I FC $9 8 2 18C 07 8 1 3*C 08 4 2 42C 07 8 S.6SC 071 0.00C.01 8 0.00C.01 3 1 78C 07 8 0.00C.01 8 C0 58 8 4.70C 06 8 S.21C 07 8 0.00C-01 3 3.78C 06 1 0 00C.01 1 0.00C.01 1 0.00C.01 8 0.00C-01 8 C0 60 1 3 3SC 07 8 1.94C 08 8 0.00C.01 1 1 49C 07 4 0.00C.01 8 0.00C.01 1 0.00C.01 3 0.00C.01 8 2N 65 8 2.0*C 09 8 1.8SC 09 3 1 26C 09 8 4.38C 09 8 2.80C 09 8 0.00C.01 8 0.00C.11 0.00C.01 1 1
- 3 86 3 1.4SC 09 8 3.29C 08 8 0.02C.01 4 2.23C 09 8 0.00C.01 1 0.00C.01 8 0.00C-01 1 0.00C.01 8 18 99 8 3 62C 37 8 1 10C 08 1 1.26C 09 8 0.00C-01 1 3.00C.01 1 0. 3C.01 8
.33C.01 1
.00C.31 8 S4 80 t 9.82C 09 8 1.07C 09 3 3.81C 10 8 0.00C.01 8 0.00C.01 8 0.00C.01 8 0 00C.01 1 0.00C.01 8 Y
91 2 00C 02 1 3 2SC 36 8 7.*SC 03 3 0.30C.01 8 3.00C.01 8 3.03C.01 1 0.00C.01 0.00C.01 4 24 95 8 1 70C 02 3 5.70C OS i 7.43C 02 1
.*7C 02 3 3.63C 02 1 0.00C.01 8 0.00C-01 8 0.00C.01 8 48 95 8
1.**C 04 8 1.S*C 00 8 6.51C 0*
- 3.61C 0*
I 3.!ct 0*
8 0.00E-01 1 0.00C.01 8 0.03C-01 8
- U133 8 3.61C 02 & 7.05C 04 8 8 43C 02 8 0.00C 01 8 2~97C 03 3 0.00C.01 8 0 00C.01 8 0.00C.01 I
- ul06 8 2.49C 03 8 9.*7C 05 3 1.*7C 0*
I 0.00C.01 1 3.81C 0*
- 0.00C.01 0.00C.01 8 0.00C.01 8 40110m t 3.00C 37 8 1 38C 10 S.23C 07 3 4 92C 07 8 9.39C 07 4 0 00C.01 1 0.30C.01 8 0.00C.01 8 7C127m 8 6.18C 06 8 1.30C 08 i S.20C 07 4 1 88C 57 8 2 11C 08 8 1.2*C 07 8 0.00C.01 t 3.00C.01 8 7C129 t 4.75C 06 8 2 07C 30 t 5.53C 07 1 2 0$C 07 8 2.31C 0 8 8 1.73C 07 8 0.00C.01 1 0.00E-01 8 I 131 4 1.9st 08 1 7.31C 0 7 8 2 6*C 08 8 3.69C 08 8 6.36C 08 1 1.ast 11 1 0.00C.01 8 0.00C.01
- I 133 8 1.47C 06 8 4 6*C 06 t 3.61C 06 8 9 13C 06 8 1.Get 87 8 8.56C 38 1 0.00C-01 1 0.00C.01 8 CS13*
- 9.60C 39 8 1 SOC 08 3 S.12C 09 8 1.21C 10 8 3.83C 09 8 0.03C.01 8 1.46C 09 8 0.00C.01 4 0$136 8 5 62C 38 8 6.73C 07 t 2.13C of 1 4.37C 38 1 *.SSC 08 8 0.00C.01 8 7 18C 07 8 0 00C.01 3 C3137 1
3.**C 39 8 1.*0C 26 3 7.42C 0*
- 8.87C 39 8 3.36C 09 1 0.00C.01 8 1.30C 09 3 0.:St.01 I 3a140 8 1.50C 06 8 1.5 8C 07 t 2.32C 07 8 2.8+C 0* I 9.6SC 03 4 0.00C.01 1 1.91C 04 8 0.00C.01 I CCl*1 8 3.14C $2 5 7.83C 36 8 4 13C 03 1 2.74C 03 4 1.29C 03 1 0.00C.01 3 3.:0C.01 8 3.00C.01 8 CCl**
1 1.71C 04 1 S.37C 37 8 3.33C OS 8 1.38C OS 3'8 22C 0*
- 0.00C.01 1 0.00C.41 1 3.00C.01
- l t
l R values in units of mrem /yr per uCi/E for inhalation pathway and all tritium pathways, and in units of m2.mres/yr per gCi/see for all other pathways.
I I
I I
f 2-96 i
I-
7ASLC 2.3 15 R vaLUCS FOR THE SCAVCA VALLEY POWER 37A710N.
PATHva? s Cow MILK AGC SROUP EQUALS CHILD NUCLICC 7 800Y GI.7RAC7 80NC LIVER K!DNCY THfR0!D LUNG SKIN M
3 8 1 58E 03 8 1.58E 03 1 0.00C=01'l 1.>3E A3 8 1 58E 03 8 1.S8C 03 8 1.58C 03 3 1.58E 03 8 P 32 3 1 47C 09 8 1.06C 09 8 3.82C 10 8 1.7?C 09 8 6.00C.01 3 0.00E-01 8 0.00C-01 8 0.00E.01 8 mN 54 t 2 87C 06 8 9.0*C 06 8 0.00C=01 8 1.*8E 27 8 3.02C 06 8 0.00C.01 8 0.00C.01 8 0 00C-01 8 FE 59 8 4.52f 67 8 9.45C 07 3 5.51C 07 8 a. cat of 8 0.00C.01 4 0 00E*01 8 2 63E 07 1 0 00C=01 1 CO 58 8 1 77C 07 8 3.37E $7 3 0.00E.01 3 5.77E 06 1 0.0CC=01 1 0.00C-01 8 3.00C-01 8 0.00E-01 I CO 63 8 6 41C 07 8 1 20E 08 8 0 00E.01 1 2.31r 07 3 3 00E 01 8 0.00E-01 8 0.00E.01 8 0.00E 01 8
.....................................................s..................................
7N 65 8 4 10E C9 8 1 16C ** 8 2.47f Ce t 6.!*C CS 8 4.1*C 09 C.03E.01 8 0.00C.01 8 0 00C.01 8 29 46 8 2 5aC 0*
- 2.6ft OP t
- 0. GOC.C1 i *.13r f*
- 0.0ct.01 L 0.00E.01 1 0.COC.01 1 0.00E.01 8
- $8 09 8 8.*!: 17 8 1.21! OS 8 3.13C 28 1 ?.3t'.c1 8
.:st.c1 0.00E-01 I
.0CE-01 8 3.00E-01 8
$4 at i 1.63! 13 3 *.AAC 38 1 6.**C 1. 3 0 0tf-01 1 0.0CC-01 8 0.00C-01 8 0.00E-01 1 C+00C=J1 4
? 41 8 4.92C 02 1 2.45! 06 t 1.5=C Ca 8 c.ett.gl 8
- a. cat.cl 0.00E=e1 8 3.;"E-01 i :.31E*01 3 2R **
I 3.*6? 02 a.17E a' :
- 1. P E 1: 8 4.
t! ?? t S.7:C 11 1 0.*0E-01 1 1.;GE.at t
.J:E.C1 l
NE 85 8
- .0*C 0*
- 1.:6C C8 i 1.*7E O! t *.73E ?4 I !.3ut ce
- C.c0E.g1 4 0.oCE. 1 1 0.CCE.01 8 4U1:3 3 7.67C C2 8 5.liC G4 i 1.**C 02 8 C.0 1-01 3 5. C P C C.'
- 0.00E-11 8 3.23C-21 8 0.:CE.01 1 4U116 i 6.37E 22 8 7.*iC Of I *.36E 28 1 0.20E-01 8 6.!?' O.
I 3.00E-C1 1 3.00E-21 3 0.00C-01 i AG110" t 6.09E 07 8 9.C 7E 3* 8 1 1?C 38 8 7.6fC 1*
- 1 4:E $6 : C.03C-C1 1 3.20E-C1 2 3.0S!-21 1 7E127p 8 1.52E 27 8 1.1*C cm : 1.2pC ga t 3.*SE 07 8 3.65C CP 1 3.C6C 07 8 0.CCE-31 8 C.OCC-31 8 l
7E1298 3 2.11E 37 8 1 66E 08 4 1.26E 28 8 3.40E 07 3 4.00E 08 8 4.39E 07 8 0 00[.01 8 3 00E-01 8 1 131 8 3.66C 08 3 5 72E 07 3 6.aCC 08 8 6.**E 08 8 1.36C 0*
- 2 13C 11 8 0.00C-01 1 0.0CC-01 8 I 133 3 4 11E 06 8 4.38[ 06 t 8.78C 06 8 1.09C 07 8 1.81C 0 7 8 2 02C 09 8 0.00E-01 8 0.00E*01 8 Ctt!*
8 4.*9E 09 8 1.35E 28 1 1 18E 1C 4 1.9*l to 8 6.C1C 09 8 0.00E-01 3 2 16C 39 8 3.0CE 01 8 C3136 8 5.53E 08 t 4.63E 37 3 4.8CE 08 8 1.32E 0* t 7.02C Of 8 S.00E=01 1 1 05E 08 3 3.00E-01 8 05117 8 2 52C 09 8 1.3?C
'8 8 1 79C to 3 1.71E la 8 5.5 7E 09 8 0.00E-01 8 2.00E 09 3 0.00E-01 8 "Al*0 8 3.27E 16 8 2 8aC 07 3 5.6CC of I
- .*1C C4 8 1 60C 04 8 0.00E-01 1 2.93E 04 8 0.00E*01 8
[141 1 7.47C 22 8 6 28E 06 8 1.01C 0*
I 5.03E C3 8 2.21C 03 8 0 00E-01 1 0.0CC-01 3 3.30E-01 I
- C14*
I 4.38E to 8 6.71E 07 8 8 20C 05 8 2.57E Of I 1.*:C 05 8 C.20E-01 2 3.30E.01 1 :.0CC.91 1 R values in tmits of mrem /yr per pC1/m3 for inhal ation.oathwaY and a.11 u"..i p.gways, an.;..n 11n., s c:
3--Cirem/yr per #Ci/sec for all other pathways.
l I
1 l
i l
l
- 1. 0"-
.e
TA8LC 2.3=16
't VALUCS FOR THC OC AVER VALLC7 POWCR STATION.
PATHWAY s COW MILE ASC GR oup COUALS INFANT NUCL10C 7.0007 81 7RACT BONC LIVCR K!ONCY TH7R0!O LUNG SE!N N
3 8 2.40C 03 I 2.40C 03 8 0.00C-01 1 2 40C 83 1 2.40C 03 8 2.40C 03 1 2.40C 03 8 2 40C 03 I P 32 8 3.8SC 09 8107C 09 8 7.88C to 8 4.63C 89 8 8.80C-81 8 8.08C-01 8's.00C c1 8 0.00C-01 1 NN S4 8 4 54C 06 8 7.36C 06 8 0.00C-01 8 2. set 87 8 4.44C 06 4 0.00C-01 8 0.00E-01 8 0.00C-01 8 FC 59 8 7 21C J7 8 8.74C 07 8 1 05C 08 8 1.83C 08 8 0.00C.01 1 0.00C-01 3 S.41C 07 4 0.00C.01 8 CO 58 8 2.88C 07 8 2.s4C 07 4 0.00C.01 1 1.15C 07
- 0 00C-01 8 0.00C-01 8 0.00C-01 8 0.00C.01 8 C0 60 1 1 11C 08 l 1 12C 08 8 0.00C-01 8 4.71C 07 5 0.00C-01 8 0.00C-01 8 0.00C-01 8 0.00C-01 I 24 65 t S.26C 09 8 9.63C 09 8 3.32C 09 8 1 14C 10 8 S.S!C 09 8 0.00C-01 8 0 00C-01 8 0.00C-01 8 48 86 8 S.17C 09 8 2 68C 08 8 0.00C-01 8 1.0SC 10 1 0.00E-01 8 0.00C-01 1 0.00r-01 3 0.00C-01 8 SR 89 1 1.70C 00 8 122C 08 3 5.94C 09 1 0.00C-01 8 0.00E-01 t 0.00C-01 1 0.CCC-01 1 0.00C-01 8 SR 90 8 1 79C 10 t 8.75C 08 8 7.01C 10 8 0.00C-01 1 0.00C-01 1 0.00C-01 8 0.00C-01 1 0.00E-01 8 7 91 8 9.20C 02 8 2.48C 06 3 3.46C 04 8 0.00Ca01 1 0.00C-01 8 0.00Ca01 8 0.00C-01 1 0.00C-01 8 ZR 95 8 S.*8C 02 3 3.*2C OS
- 3.23C 03 8 7.87C 02 8 8.46C 02 3 0.00C-01 8 0.00C-01 1 0.00C-01 8 48 95 8 6.54C 04 8 9.54C 07 8 2.75C OS 1 13C OS 8 8.10C 04 1 0.00C-01 1 0.00E-01 8 0.00C-01 8 RU103 8 135C 01 1 4 91C 04 8 4 04C 03 8 0.00C-01 8 8.40C 03 1 0.00C.01 8 0.00C-01 8 0.00C-01 I 2U106 I 1.2SC 04 8 7.60C OS 8 1.00C OS 8 0.00C-01 8 1 1tC OS 0.00C-01 4 0 00C 01 8 0.00r-01 8
....................................................s..........................
AG110R 1 1 01C 08 1 7.8 9C 0 9 8 2.09C 08 1 1.52C 08 8 2 18C 08 8 0.00C-01 1 0.00C-01 1 0.00C-01 8 I
7C1274 8 3 14C 07 8 1 0!C 08 8 2.!9C 08 8 8.60C 07 4 6.38C 08 1 7.49C 07 1 0.00C-01 4 0.00C-01 1 7C129m 8 4.31C 0 7 8 167C 08 8 2.80C 04 8 9.59C 07 8 6.99C 08 8 1.07C 08 8 0.00C-01 8 0.00C-01 8 1 131 8 6.92C 08 S.62C 07 8 1.3*C 09 1 1.57C 09 8 1 84C 0* I S.17C 11 3 0.00C-01 8 9.00C-01 I I 133 3 7.91C 06 8 4 57C 06 8 1.8SC 07 8 2 70C 07 8 3.17C of 8 4.91C 09 8 0.00C-01 8 0.00E-01
- l C3134 8 3.59C 09 8 9.6SC 07 8 1 90C to 8 3.SSC 10 8 9.14C 09 1 0.00C-01 3 3.7SC 09 8 0.00C-01 1
(
l C3136 8 1 03C 09 8 4 1?C 07 8 9.37C 08 1 ?.76C 09 8 1 10C 09 3 0.00E-01' 2.2SC 08 8 0.00E-01 8 8
1 C3137 8 2 37C 09 1 1.04C at 2.85C 10 8 2.34C 10 8 8.96C 09 8 0.00E-01 1 3.63C 09 8 0.00C-01
- Sat 40 t S.94C 06 8 2.83C 37 8 1.1SC 08 8 1.1SC 05 1 2.74C 04 8 0.00C-01 8 7. ORC 04 1 0.00C.01 1 CC141 8
1.**C 03 3 6.30C 06 1 2.00C C* : 1 22C 04 8 3.76C 03 3 0.00C-01 1 0.00C-01 3 0.00C-01
- l CC1**
I 6.39C 34 1 6.75C 37 t 1.18C 06 8 *.81C OS 1 1.**C OS I 0.00C-?! t 3.00C-01 1 0.00C-01 3 R values in units of = rem /p per uCi/m3 for inhalation pa-hway and all :ritium pathways, and in units o: m--mres/yr per #Ci/sec for all other pathways.
.-93
--,-,--,-.---r.--
--r---
-~
7ASLC 2.3 17 R VALUCS FCA THE BEAVER VALLET POWCA $7A710N.
PATHWAY s 8047 MILE AGC GROUS COUALS ADUL7 NUCL!DC 7.8007 Gl.7RAC7 ADNC LIVER K!DNCY THfROID LUNG
$ MIN 4...........
H 3
8 1.57C 03 8 1 57C 03 3 0.00C.01 8 1.57C 03 8 1 57C 03 8 1.57C 03 8 1 57C 03 8 1 57C 03 1
- 32 8 3.90C 08 1 1 13C 09 8 1 01C 10 t 6.27C 08 8 0.00C.01 1 0.00C.01 0.00C.01 8 0.00C.01 3 PN 54 I 9 8?! 04 1 1.S9C 06 8 0.00C.01 1 S.1?C 05 8 154C 05 3 0.00C.01 8 0.00C.01 8 0.00C.01 8 FC 59 8162C 05 8 1.41f 06 8 1.80C 05 8 4 23C 05 8 0.00C.81 8 0.00C.01 1 1 18C 05 3 0.00C.01 8 CO 58 5 6.030 05 8 5 46C 06 8 4.00C.01 1 ?.6*C 35 3 0.00C.01 t 0.00C 01 8 0.00C.01 8 0.00C.01 8 C3 60 8 2.32C 06 t 1.*8C 07 t 0.00C.01 1 1.0fC 36 3 3.00C.01 8 0 00C.01 3 0.00C.01 8 0.000 01 8 7N 65 t 1.42C 08 8 1 97C 08 8 9.A*C 07 8 3.14C OP 3 7 10C 08 8 2.00C.01 8 0.00C.01 8 2.00C.01 8
................................................................................................L.
et 96 8 6.83C 07 8 2 89C 07 3 0 00C.01 8 1.47C 08 8
.00C.01 8 0.00C.01 1 0.00C.01 1 0.00C.01 I 4...........
$8 **
8 *.13C 37 8 2 31C p 1 1..*C 3*
- 0.30C.01 3 0.30C.21 8 0.00C.21 1 2.0?C.01 3 0.00C.01 8
$8 to 1 1 39C to i 1.6*C 09 i S.n?C 10 8 3.00C 0a i S.00C.01 0.00C-01 1 0.00C.91 3 3.00C.01 8 Y
- 1 1 1 3 C C 01 8 2.67C 0*
t 4 86C *2 1 3.00C.01 1 0.00C.01 3.00C.01 8 3.*0C.21 1 0.00C.01 i E'
'S I 1 17E 01 8 5.46E 34 3 *.37C C1 8 1.72C 01 1 2. 7 0 C 0 *. t 5.03C.01 1 0.30C.21 0.00C.01
- N9 ?S 8 137C 03 t 1.5"E 07 8 *.58C 23 8 2.5SC 33 8 2.52t 03
- 0.00C.01 1 0.000 01 8 0.00C.01 i RU193 8 2.45C 01 4 6 6*F 03 3 5.6*C 01 *
.00C.01 t 2 17C 02 8 0.00C.01 3 2.30C.01 8 2.00C.01 8 eU196 8 1. 6 3 C 0 2 4 8.3*C 04 8 1 29C 03 3 7 00C.01 8 2.*9C 03 1 0 0$C 01 8.00C.01 8 0 00C 01 8 aG110*
8 2.07C 06 3 1.43C S*
- 3.7PC 36 8 3.*9C 46 8 6.87C 06 1 0.00C.C1 2 0.00C.01 1 2.00C.01 3 TC127p 8 4 12C 05 8 1.13C 07 1 3.39C 06 8 1.21C 06 i 1 37C 07 I t.65C 25 3 0.00C.01 1 0.00C.01 8 7C12**
8 5 74C OS 8 1.83C 07 3 3.63C 26 5 1.3*C 06 8 1.51C Of 1 1.25C 06 8 3.00C.01 8 0.00C.01 8 I 131 1 43C 38 8 6.5*C 17 8 1.7et 38 8 2.50C CA 8 4.28C 08 8 A.18C to 8 0.00C.01 8 c.00C.01
- I 133 8 1 26C 06 8 3.71C 06 8 2 37C 06 8 4 13C 06 8 7.21C 06 8 6.07C 08 8 0.00C.01 1 0.000 01 8 C$13*
3 1.72C 10 3 3.6*C 0F A.85C $9 3 2 11C 10 8 6.82C 0*
I 0.00C.01 8 2.26C 09 8 0.t0C.01 8 CS136 1 1 06C 39 8 1 6PC 08 8 3.75C 3A 3 1 4AC 39 8 8.23C OS 8 0.C0C.01 8 1 13C 08 8 0.03C.01 8 C3137 8 1.10C 1: 1 3.2*F 38 8 1.23C 10 8 1 6AC 10 t 5.70C 3*
- 3 00E-01 8 1.49C 09 8 2.001 01 8 o
Sa140 8 1 01C 35 8 3.18C 06 8 1.54C 34 8 1 94C 03 8 6.59C 02 8 0.00C.01 8 1.11C 03 3 0.31C.01 8 CC141 1 2.36C 31 8 4.94C 35 8 2.63C C2 8 1 01C 02 3 8.43C 01 8 0.00C.11 8 0.00C.01 3 0.00E-01 8 CCl**
- 1.17C 03 3 7.3*C 36 8 2.17C 34 1 *.37C 33 1 5.38C 03 3 0.00C.01 8 0.00C.01 1 3.30C.01 8 R values in t: nits of = rem /yr per 4Ci/m") for inhalation pathway and att ""
pathways, and in 1: nits of m2.crem/yr per mci /sec for all other pa:hways.
. 99
TABLE 2.3 18 4 VALUC3 FOR THC OCAVER VALLEY POWCR $7A710No PATMWAY s 60A7m!LK Act sROUP CSUALS TECN N U Ct.10 C 7.8007 41 7RAC7 00NC L!vCR K10NCY THfR0!O LUNG SKIN M
3 5 2 04C 03 8 2.04C 03 8 0.00C-01 8 2.04C 03 8 2.04C 03 8 2.04C 03 8 2 04C 03 3 2.04C 03 8 P 32 8 7.21C 00 1 1.S6C 09 8 1.86C 10 8 1.1SC 09 1 0.00C-01 8 0.00C-01 t*0.00C-01 4 0.00C-01 8 NN So I 1.71C OS t 1 77C 06 8 0.00C-01 8 8.6*C OS I 2 58C OS 8 0.00E-01 8 0 00C-01 8 0.00C-01 8 FC 59 8 2 83C OS t 1.7eC 16 3 3.14C 05 t 7 3*C OS 8 J.00C-01 8 0.00C-01 8 2 31r 05 8 0.00C.01 C0 58 8 104C 06 8 6 2SC 06 8 0.00E-01 8 4 53C OS 8 0 00E-01 8 0.00E-01 8 0.00C-01 3 0.00C-01 8 CD 60 8 4.02C 06 3 2.32C 07 8 0.00C-01 8 1 78C 06 8 0.00C-01 8 0.00C-01 4 0.00C-01 8 0.00C-01 4 Zh 65 8 2.4SC 08 8 2.224 08 8 1 51C 08 1 S.2SE 08 3 3 36C 08 8 0.00C-01 8 0.00C=01 8 0.00f=01 8 4B 66 8 1.25C 08 8 3.95r 07 5 0.00C-01 1 2.67C 08 8 0.00C-01 8 0 00C-01 8 0.09C=01 8 0.00C-01 8 4................
SA A9 8 7 59C 07 8 3.16f 08 8 2.69C 0*
- 0.00C-01 0.00C-01 8 0.00C-01 3 0.30C-01 8 3.00C-01 3 58 90 8 1 94C 10 8 2.2'C 38 8 8.01C 10 8 0.00C-01 8 0.00C-01 8 0.00C-01 1 0.00C-01 1 0.00C-01 1 f
- 1 1 2.40C 01 1 3.66C 35 8 A.**C 02 1 0.00r-01 1 0.00E-01 8 0.00C-01 1 0.00C-01 8 0.00C-01 8 23 95 8 2 0 4 C 31 8 6.4*f 3* 8 9.40C 03 8 2.97C 01 8 4.36C 01 3 0.00C-01 8 0 00C-01 1 0.00C-01 8 N8 91 8 2.39r 33 3 1.65C 07 i 7 71C 03 8 4.3*r 33 3 4 20C 33
- 0.00C-01 3 0 0 0 E -01 1 0.00C-01 1 4U103 8 6.33C 01 3 8..SC 33 8 1 01C f2 8 0.00C-01 8 3.57C 32 3 0.00C-01 8 0.00E-01 8 0.00C-01 eul06 8 2 99C 02 1 1 14C CS I 2 37C 33 8 0.00E-01 1 4.57C 03 1 0.30E-01 8 0.00C-71 1 0.00C-01
.............................................................w....................................
AG110m 8 3.59C 06 8 1.ast e9 I 6.2*C 06 8 1.91C 26 8 1.13C 07 3 0.00C-01 1 0.00C-01 3 0.30E-01 8 TC127m i 7.42C 05 3 1.S$C 07 3 6.24C 06 4 2 21C 06 8 2.53C 07 8 1.48C 06 8 0.00C-01 8 0.00E-01 4 TC12*
8 1 0SC 06 3 2.**r 37 8 6.63C 06 8 2.46C 06 8 2.77C 97 t 2 14 C 0 6 3 3.00C-01 8 3.00C-01 8 I 131 8 2 38C 08 1 9.77C 07 3 3.17C 38 8 4.43C 08 8 7.63C 08 4 1.29C 11 8 0.00C-01 1 0.00C-01 8 I 133 1 2.24C 06 S.57C 06 i 4.3
- C 3 6 1 7.36C 06 8 1 29C 07 8 1.03C 09 1 0.00E-01 3 0.00C-01 3 C$134 1 1.68C 10 t a. SCC 08 8 1.S*C 10 8 3.62C 10 1 1.15C 10 t 0.00C-01 8 4.39C 09 1 0.00C-01 i C:136 8 1 69C 09 f 2.02C 08 8 6.38C 28 8 2.51C 09 8 1 3 7C 19 3 3.0$C-01 3 2.!!C OS 8 2.00C-01 8
....................................a..............
C**37 8 1.03C la 1 4 21C 04 8 2.22C 10 1 2.96C 10 1 1.01C 10 3 0.00C-01 3 3.91C 09 3 0.00C-01 8 5a140 1 1.8 0C OS I a.30C 36 3 2.79C 06 8 3.41C 03 8 1.16C 03 8 3.00C-?1 1 2.30C 33 3 0.30C-01 8
................................................................................s.................
3.77C 01 8 9.39C OS 3 4.*2C 32 8 3.28r 32 8 1.SSC 12 8 0.00C-01 1 0.00C.01 0.00E-01 8 OC141 cCl**
- 2 1SC e3 1 0:C e7 1 3.9*C :* I t.65C 0*
- 9.a 7C Cr 1
- 0. cec-Ot I c.0:C-01 1 0.30C-01 I R values in units of mrem /yr per uCi/m3 for inhalation rathway and all tritium pathways, and in units of m2.nrem/yr per #Ci/sec for all other pathways.
-100
Ta8LC 2.3.!*
R vaLUCS FCR 7MC 8 CAVER V8 LLC 7 PowCR STATION.
Pa7>WAY s 40A7P!LK AGC SRoup COUaLS CHILD NUCLICE 7.8007 Gl.7aaC7 t0NC LIVLR KIDNf7 7M7R0!O LUNG SKIN 3
8 3.23C 03 4 3.22C 03 3 3.COC 01 l f.23C 03 3 3 23C 03 3 3.23C 03 8 3.23C 03 8 3.23C 03 8
- 32 8 1.77C 09 8 12 7C 0? 8 4.5*C 10 3 2.1!C 0? I 0.00C.01 8 0.00C.01 1 0.00C 01 3 0.00C.01 i NN 54 8 3.**C 05 3 1.08C 06 8 0.0at.01 4 1 29C 06 1 3.62C 0 t 0.00C.31 4 0.00C.01 8 0.00C.01
- FC is 1 S.88C 35 1 1.23C 06 8 7.2*C 05 8 1.1RC 06 1 0.00C-01 1 0.00C.01 1 1.*2C 05 8 0.00C.01 t
.........................................a.........................
Cn 58 8 2 12C 06 2 4.e*C C6
- c.CCC.C1 1 6.92C C! t 3.C0C 01 1 3 00E-01 3 3.00C.01 8 0.03C 01 3 CO 63 8 f.17C 06 t 1.S3C C7 8 0.0CC.01 3 2 77C 36 8 0.03C.01 1 0.00C 01 8 0.00f.01 3 1.00C.01 8 2N 65 t 4.92r 08 8 1 39f 08 8 2 97C QP 3 7.91f 04
- .*SC 08 8 0.CSC-01 1 0.00C 01 8 3.00C 01
- RB A6 8 3.0!f C8 3 3.19C 07 8 0.cet.01 8
- .**C 69 3 0.0:f.01 1 0.00C.01 0.00C.01 8 0.00C 01 8 4...........
$8 4*
1 1.8 7C C e t 2.rar on : 6.*6C ta
.00C.C1 3 3.: C.01 1 0.:CC.^1 t 0.cet-01 1 0.00C 01 8
$A 94 8 3.4 3C to i 1 82f *9 1 1.3tt 11 *
.c f.01 1 3.00C-01 3 2.00C-C1 4 0.00C.31 3 0.00C.31 i v
- 1 3 9.*1C C1 8 7.**C 0*
- 2.2'r 33 8 f.OSC.01 i S.00C.01 8 3.3Cr C1 8 3.33C.01 i C.0CC-01
- Ze *5
- 4. * ?r al i S.01r
- 2.1dC
- 2 8 a.d'C G1 1 6 87C 31 3 0.0:C 01 *
- CC.41 8 1.03C.01 :
Np og i 4.elr C3 3 1.17C 07 & !.7et 34 8 6.atr c3 3 6.*!! 03 3 0.CSC 01 1 0.CCC at t 0.00C.01 I sul:3 8 4 2CC 01 3 e.19 r.
33 1 2.39C C2 i f.C?f.01 1 6 33C 02 1 S.00C.01 8 0.000 01 3 0.CCC-01 i PU106 8 7.~8f 02 * *.88C 0*
t $.E3C 03 C.0Sr.01 1 7.8tt 13 8 0.00C 51 0.CCC-01 1 0.00C.01 4G110m 8 7.J1r 06 8 1.1*r
- 9 1 3*C 37 i
- .1*E 06 8 1.70F 07 0.00C.01 1 0.30C 01 3 0.00E.01
- 7'127' t 1.a2C 26 t 1.2*C 07 8 1.!*C 07 3 4.1*C 36 8 a.3ff 07 1 3.68C 06 f 3.30C 01 1 0.00C 01 i 7C12*"
4 2.**f 06 8 1.**C 07 3 1.e1C 37 i *.56C C6 8 4.ACC 37 S.27C C6 3 3.00C.01 3 0.0CC-01 8 I ;31
- e.39C 38 6.e8C of 1 7.6dC 08 7.72C 08 1.27C 09 8 2.!5C 11 3 0.0ct.01 0.c0C.01 8 I 133 4.93C 06 8 $.2*C 36 8 1.0$C 37 1 1 30C 07 8 2.17C 07 8 2.*2C 39 1 0.00C.21 7 0.00C 01 8 Ct134 1 1 23C 10 1 3.1*C c8 3 3.ggE to 8 5 22! le i 1.P*C !! 8 S.00C-01 8 6.47C 09 8 3.30C.01 0$136 8 2.*6C 09 8 1.39C 08
- 1.**C 0*
i 3 96C n9 1 2.11C 09 3 0.00C 01 3.14C 38't 0.00C-31 1
- 1
8 7 57r a,
t 2.22f Cf I !.!6C 10 : *.1?C 13 3 1.67C 11 8 3.03C.01 6.11r je t :.;;C.g1 94140 t 3.92r 35 2 3.*1C o. I 6.72C 36 3 5.89f 03 8 1.82C 03 i *.3?C.C1 1 3.51C C3 8 C.30C.01 0C181 1 9.9't 21 8
- 7. tar C5 1 1.21C 23 3 6.Cet c2 3 2.6*C C2 3 0.30C.31 1 3.JCC-31 8 0.00f.31 8 CCl**
".2*C 33 i a.C*C 36 3 8 4*C 34 8 3.0*C re t 1.71C 0*
I 3.*0C.01 8 3.10C 01 *
- 30f.01 I R values in t:: lits of mrem /yr per uCi/m3 for inhala, ion pathway and all tritil:m pa-hways, and in units of m2-mrem /yr per #Ci/sec for all c:her pathways.
I Y
.S.101 m
r
7AOLC 2 3 20 4 VALUES FOR FHC SCAVER VALLEY POWCR 57A7!0N.
- A7Mwa7 s 60A7 MILK AGC GROUP CGUALS INFAN7 NUCL!DC 7.8007
$!.7AAC7 00NC LIVER N!DNC7 7HYR010 LUNG SKIN M
3 8 4 90C 03 1 4.90C 03 8 0.00E-01 4.10C 03 8 4.90C 03 8 4.90C 03 8 4.90C 03 8 4.90C 03 8 P 32 1 3.66C 09 3 1 24C 09 8 9.4SC 10 t 5.56C 09 8 0.00C 01 8 0.00C.01 8 0.00C.01 1 0.00C 01 8 NN !*
I S.4SC OS I R.83C OS I 0.00C 01 8 2.40C 06 8 S.33C OS I 0 00C.01 8 0.00C.01 1 0.00C.01 8 FC 59 8 9 37C OS I 1.1*C 06 8 1 36C 06 8 2 30C 06 3 0 00C.01 8 0.00E-01 8 7.03C OS 1 0.0 0 C.01 8 C0 S4 8 3.4SC 06 8 3.*SC 06 8 0.00C.01 1 1.34C 0 6 8 0.00E-01 1 0.00C.01 1 0.00C.01 1 0.00C.01 8 CC 60 8 1 34C 07 8 1.35C 07 8 0.00C.01 3 S.6SC 06 8 0.00C.01 1 0.00C.01 8 0.00C.01 8 0.00C.01 I ZM 65 8 6 31C 08 8 1.16C 09 3 3.99C 04 8 1.37C 09 8 6.63C 08 8 0.00E-01 1 0.00C 01 8 0.00C.01 8 R8 86 8 6.21C 08 8 3 22C 07 8 0 00C.01 8 1 2*C 0* I 0.00C.01 t 0.00C.01 8 0.00C.01 3 0.0CC.01 8 SR 99 8 3.58C 08 8 2.57C 08 8 1 2SE 10 8 0.00C.01 1 0.00C.01 8 0.00C-11 1 0.00C-01 1 0.00C.01 8 38 90 8 3.75C 10 8 1.84C 09 8 1 47C 11 8 0.00C.01 8 0.00C.01 1 0.00C 01 1 0.00C.01 8 0.00C.01 1 f
91 8 1 10C 02 8 2 97C 05 8 4.!!C 03 8 0.00C.01 8 0.00C.01 0.00C.01 1 0.00C.01 8 0.00C.01 8 24 95 8 6.73r 01 4.70C 0* 1 3.88C 22 8 9.*SC ?! I 1.*2C 02 1 0.000 01 8 3.00C.01 8 0.0GC.01 8 N9 95 8 7.4*C 03 8 1.15C 07
- 3.2*C 0* 1 1.36C 04 8 9.73C 03
- 0.00E-01 1 0.00C.01 8 0.00C.01 1 au133 8 1.62C 02 8 5.89C 03 3 4 95C 02 8 a.00C.01 8 1 01C 03 1 0.01C.01 8 0 00C 01 8 0.00C.01
- RU106 8 1.50C 03 1 9 13C 04 8 1.20C 0*
I 0 00C.01 4 1.42C 0*
t 0.00E-01 1 0.00C-01 1 0.00C-01 I aG110m 1.21C Of 9.e7C 08 8 2.50C 07 8 1 83C 07 3 2.61C 07 4 0.00C.01 1 0.00C.01 1 0.00C.01 I 7C177m 8 3.77C 06 8 1.26C 07 8 3 11C 07 8 1.03C 07 1 7.66C 07 8 8 99C 06 4 0.00C.01 8 0.00C.01 I 7C129" 8 S.17C 06 8 2.00C 07 8 3.36C 07 8 1.1SC 07 8 8.39C 07 8 1 29C 07 8 0.00C.01 8 0.00C.01 1 I 131 1 8.31C 08 8 6.74C 07 8 1.60C 09 8 1 89C 09 8 2.21C 09 8 6.21C 11 3 0 00E-01 8 0.000 01 8 I 133 8 9.49C 06 4 S.48C 06 8 2.23C 07 8 3.2*C 07 1 3.81C 07 8 S.A9C 09 8 0.00C.01 1 0.00C.01 I C:134 i 1.08C 10 1 2.!9C 08 i 5.71C to i 1 07C 11 1 2.74C 10 1 0.00C.01 8 1.12C 10 8 0.00C.01 8
- 136 8 3.09C 09 8 1.26C 38 8 2.81C 2* 1 4 27C 09 8 3.30C "9 8 2 03C.01 1 6.74C 08 8 3.00C.01 8
- 13?
8 7.10C 09 8 3 13C 39 1 8.*1C 10 8 1 0$C 11 8 2 6*C 13 3 0.00C 01 3 1.*9C 13 1 0.00C.01 4 o.......................................................................................
BA140 1 '7.13C OS I 3.40C 06 8 1.34C 0 7 8 1.38C De 8 3.29C 03't 0.00C.01 8 8.50C 03 1 0.00C 01 I atlet t 1.72C 02 8 7. ' 7C 05 8 2.*3C 33 8 1.86f 03 1 4.52C 32 3 0.00C.01 1 0.00C 01 3 0.00r.01 I CCl**
I 7.90C 03 5 8.09C 06 1 1.*1C OS t S.77C 34 1 2.33C 04 1 0 00C 01 1 0.00C 01 1 0.00C.01 i A vah:es in tmits of cres/yr per 4Ci/m3 for inhalation pathway and all tritit:m pathways, and in tmits of m2. mrem /yr per #C1/sec for all other pathways.
.$. 9 0
-,-n-,-
C C C C C C C C C C C C C C C C C
- .=
a.s u1 1
1 1
I i
1 1
1 1
1 I
i 1
1 1
1 l
CJ M M CJ CJ M CJ CJ M CJ CJ CJ
- M CJ M C:
u)
T v c c1 CD m.
c) W N W CD tD CC Cn.
M.
v N v CC 6 c=1 N==* N - =*
-s m
C C
<ln C C C C C C C C C C C C C
- -* C.* -* - - -.* **.*
a*
v i
l i
i i
1 I
i 1
1 1
1 I
i 1
1 I
C4 M CJ CJ CJ CJ CJ CJ C.:
CJ CJ CJ CJ CJ CJ CJ C.
C c) - 5 c*)
' S.
N.
v b C v C O N W N.
v c1 v ** c) CD v v N N N N N N N N -
N I
E C.
C C ci ci c) C C C C C C C C C C C
.* - C C C ** **
e-*
aa
- ** -* ** ** -==
- d v
i 1
I I
I I
I I
I I
I I
I I
I I
h I
CJ CJ CJ CJ CJ CJ CJ CJ M CJ M J CJ M CJ M
^
6 O.
m N
v N ci co. O.
C.
N c1 b CD c.)
6 C.
M O
M M
- - - m m M v N N N N N N N c
~
C/: O m
C C ci c1 Cn C C C C C
.O C C C C C
=m C
- o o o
- J."*
c.5 I
I I
I I
I I
I I
I I
I I
I I
I
'~
H A l
M M M M M M M M M M M M M M M M M
v2 C
CC C.
c3 c')
b.
Cn.
N.
m.
CC cl O
t.D C.
m.
t.0 y ~,,,
c C
M v C - - - S C M m N M M M M M N g
~E%
C C
C C ci ci ci ci c) C C C C C C C C C C a~ '.
C
- O C C C C - - - - - - - - - -
2=
en i
I I
I I
I I
l l
i I
I I
i i
1 I
- s:
C.:
i: M r: M C: :: CJ M M :J :.: ::
C--
C m.
m.
- CO ci c v b
6 Co 6 - G:
m.
N.
m.
(9 C
w 7
3C T
N t.D
== N N
-.=* c) C ci v C')
T T
v m c")
Y^
M.
L 0
3 u)
O ci ci ci c) Cn c)
C' c) C C C C C C C
-N C/:-
C,
.* O O C C C C s
C.* -
- -e ao
.e M
Cy,1 N
I I
i I
i i
a i
i i
i I
e I
i i
=
q"*
t CJ M CJ C:
f.J CJ CJ C.:
C.:
CJ M IJ f.J M CJ CJ d
C C
N CC c) C r
c.
Cn.
M.
6 v N v N N b
6 v
Z..
b C4 ~;
m N
c) - N c-)
N ad
- Cn - e u) c t.o c 5 m C
cf- %
C 4
C C
Cn Cn ci ci ci c1 Cn ci c) C C C C C c) C Yi C C
O C C C C C C C C. - *
-a a*
C aa
~M N
I I
I I
I e
1 i
I I
I I
I I
I I
U M
M M M M M M M M M M M M M M M M O <H 5
m!
C.
Cn.
M.
Co c)
- v 6 v
v M.
m.
m.
N.
l
=
,l>
C *q
==
N aa
-* v v N N am N
c4 c: c1 M N== CO
- *E F
u'a Cn c) ci ci Cn c4 ci ci c) C C C C C C c4 C C C C C C C C C - - - - - - C 3
C.y e -
1 I
I I
I i
I
- I I
I I
I I
I f*
I 3
I M M M M M M M M M M M M M M M M v.
m.
N,,.
C
==
v c) f.D C== c v c*)
C ci.
Cn.
N.
>g g
Mg M
- - N v M v -
N b m C N N v -
N
~
N
-2<D C
O C
m C O
C C C C m O
C C C C C C C C C C C C C C C C - -* -== C I
-=
1 I
I a
1 i
l*
I I
i i
i i
I i
i
~~ ~~
t.D l
CJ C: :J M *: CJ f: CJ f: :J
- 4 C: :: C: :: M
- 3..O 3
m T
b c M.
c.
C.
o.
o.
C.
o.
N m
- C v -
,c Cl c")
N - -
N c'1 c")
M N
N v v N c9 N N,
C C C Cn Cn c1 C5 c) C O C C C C C C C W1'
-== C C C C C.*
C aa e*
=.*
O I
1 i
i i
I I
I I
l l
I I
I I
I C
- J f.4
- 4 f: l: f CJ C*
- :: M CJ
".J M
4 *:
O I
C3 6
ad u)
N b t.:
C U
m.
e.
ci.
m.
C.
m.
C c9 C
N== -*
b
- c9 u':
v v c'S v c9 b
CO - -
w 0
6 t
S 3
3 3
u u,,
3 e,
=
2
. g 7
a en a
m.
d w$
b)
L l
2-103 I
C C C O O O O
.O.,.
O
.O O O O O Oe O O m
m m
- ~
m m
m m
~.
m i.t) i I
I I
I I
I I
I I
I i
1 I
I I
I W W W W W W W W W W W W W W W W m
C.
- G3 C9 CD v.
v.
5 C O.
M.
N.
N.
- C9 v
N v f.O M - - - N - - N M V b C")
m O O O O O O C O C.
O O O O-C C O
~.
~ ~ ~.
m m
m
~
~ ~ ~
v i
i i
i I
1 1
1 1
I I
i 1
I I
I N
I W W W W W W W W W W W W W W W W I
g O
m.
O.
M.
N.
O.
M.
S.
m.
O.
v.
m.
N M
C g g v
.M 4 C N v N N - N - N N M 4 C M
%E O
O O m m C O O O O O O O O C m C
~
m O O - ~
m a
m m
~ ~
m m
o m
g v
1 l
i I
I i
1 1
I I
i 1
1
(
l
==
f*
I M W W W W W W W R W C3 W M C.*
M M m
CC CD c) ~ ~
C N
M N.
S.
N.
N.
v.
M A t1 C
.C M
v m - ~ m N N N M N N M v C - W a
bWO "E
m O O c) m O O O O O O O O O e es e C
- - O C - - - - - - - - - O C e f_
M i
1 1
I I
I i
1 1
1 1
1 I
I I
I i
M M M M M M M u W M M M M M M W m
O.
m.
5 O.
- =*
LI) m C CD C)
LD N
CO CC C=
g M
C C '"" "
M M N T N M
T C " ~
C ZO
.C O
~
h O
C C C1 C1 C O O O O.
O O C O CM C4 C
- O O C - * " * -
a'-
- - - - O C N
DA C
M I
I I
I I
I I
I I
I I
I I
I I
I N
O g
M l
C M M M M J M J U J M
- J J M
- J J
- M
- 5 O
C m.
O D
C.
N.
C.
C.
C.
C.
T T
m M
_g w
N Qq N
O - N N m m C v c M v c c - N O L..
C N
D m m m o m O O O C C O C D m m
~
=
C C O O O O - -
O O O O e.
o
>~.g N
I I
I I
I I
I I
i i
i 1
1 I
I I
4 8
W W W G W M M d d M
'A M M M M J y
O S
C M W O T M G
b.
C.
T.
W W O
W T
zc
.O M.
S CD 4 C3 m C CC - N M -
ye N
- - M N 2.d 41 C
C o
Z.;
e C
m m m e C m e e e C e e e m e C
O C C O C C O C O C C O C C
<y
.m N
I I
I I
e i
I I
e i
I I
I I
I I
Y t1 I
d W
- 3 W M M d M
'. M e,
M M
- J Z
C" N.
C.
N.
O.
m.
M.
I.t)
T
- N M
C"1
(*)
W N LI)
M Q
N N m v N - - - - C
- - N M 4 N QQ
~
=
- =:~
4 m m m m CM 01 C1 C) m m o m O O C m
.V 2 C C O O O C C C C C C C C C
~
'I b
1 I
I I
I I
l i
I I
I I*
- I
- I t
t';
I
- d
- 3 M
W
'd
- J
- J M M J
d d
N DC O
C N
Q CC c: v C1 v W C')
v c M
N N.
\\
U N.
h
~
M v
M S
M N N - N - N N v N v v N
g ".'
C e m o m C C m m o O
m C C C m
- b
~ '
C C C C C C C O C C C C O L
1 I
e i
i I
I e
I a
i i
I i
I
=
~
l
'd J
?,,,3 M M C.'.
C.3 M M M M M J M
- J U
s c)
W 5 M c 5
- to 4 5 p
st) c) c -
N.
O.
N.
g s
s Cl O N C O -
T m T v T 4
O T 4 m g
_C O
Ci
= O O
CO
= O 0l*
m 01 m m C1 C")
m m
O C C O C C C O C C C C C
,o C C
- O 6
.i
. i.
e 1
I
.I I
.i.. e.
. I.
.t.
.a.
.s.
1
. I.
e g g y y u g u e
c C m
.v C9 (9
m N
- C c v C y
M C
_A e e M
m e n M
N w
O X
U..
N..'d
,M, f3 N
g Z
3
~
~
5 Z = = M M uE s=G n 3 3 3 z =
c e
2-10.:
C C C C O C
.C C O O C C C C C C O m
m m
~
m m
m m
m m
m m
W I
I i
1 1
1 I
I I
i 1
I I
i 1
1 I
W W W W W W f.:
W W W W W W W W W 4
6 C.
6 CD c3 tc c) v -
M.
N.
C.
6 N.
N.
N T
N C*)
W W M - - - N - - N N M l.D M
D C O C O O
.O O O C C O O O O C C m
~
m m
m m
~ ~
m m
m
~
m
~ ~
m v
i i
l i
l 1
I I
i i
I i
l i
l i
I W W W f: W W W W W W W W W W
'2 W
=
N C.
v.
M.
C.
O.
v.
N.
W w to C.
v.
M.
m W c)
I cll EH v
M v N N v N N - N - N N c')
v N M O'
N allf.
C C C 2 CD C C C C C O O O C C Cn C lll';
m m
o C m
m m
m m
m c
==
v i
1 I
I i
1 I
I I
I I
I I
I I
I C
i W W W W W W W = W W id W W W f2 u m.
m 6 -
O.
N.
c1
=
- CD N.
N.
N.
M.
w h
M v W
- - W N N N M N N M V
- 4 g A
=
m W ~0 "G""
H~
m C C m m o o C C o C C C C Ce m C m
m C C m
m m
m m
em m
m m
o y
3 m
m i
I I
I I
I I
I I
i 1
i i
i i
i s-I W W W W W W W W W u W W W u u =
-R e
m N.
M.
e.
N.
m.
N.
M.
e.
v w CC e
Cn CD
<n in e
~
C M
t.D N
to M M N v N M
- 4 CO m
C Z
.O
~
O w
O,,,.m C
C C
C C Cn Cn C.=
C O C C C O O Cn c4 C g
O C m
=
C C M'
4 U
M i
i I
I I
i 1
1 1
1 I
I I
I I
I N
M ^
t M
t'
- J W
t.:
'd M
J C.,
- J t., ' '.; M M I
~
M
= ~4 0
O.
m A
Cn N lln LC.
C.
C.
C.
G:
C1 C.
N.
C.
N
~
C
.U j
N CC CD N -
C)
O LD v to M v t.D N
- N O Q E..
C y HM U
US C4 ci c) Cn Cn C C C C C C C Cn c4 c) Cn
-% Z y~
C C C C C - - ~ ** -=== - C C C C 3
N I
I a
l i
I I
I I
I I
I I
i 1
1
~4 f: -
g i
rJ W f.J W :.: W :J :: :.: u :: W C.:
2J C
c'1 v
C1 W
m Cn to C.
u O
N.
v.
M.
6 m.
r%
Cn v Qy N
- ~ N N t%
~
=
r4 Hd C
$m O
C m m m m m m C m m C m m m m m m O "*
C C C C O O O C C C
O C C C C C p&
C N
I I
I e
i I
I i
1 1
I I
I I
e i
ga g
i W W u u u W W u u u u u u u u u
~ ~ *
~
,O
-g N N v M N C - ~
N N v N w
h 4
m m m m m C m m m C m m m m m m
~*0 C C C C C C C C C C C C C C C C C, "-
=
t i
1 1
1 I
f I
I l
1 I
I I
I f
I f: u
- fJ R W :: M M *; *:
"J M M M
!.2
>" E C.
N CC CC O c)
CC N v v v m M v C C.
\\
v
'M C
~
=
M M
=
t.C M N N N
N N v 4 T
=
=
~.c M
N
<.~.
N C
C")
CC CC
=
CC Cn ci ci c4 ci CD c) m
- 'O O Cn C C C C C C C C C C C C C C C C I
- " l:
I i
I i
I 8
I I
e i
i i
a I
I e
go
- 4 W I
W W G W u u
'J M W O M M W u O R 3
e v - m N m
e.
6
=. m x_,,,
m e S
e N
C CD
= - = = v 4 V C v v 4 m
N O N
=
ll*.
= CC CC
=
Cll:
N Cll:
W C C C C C C C C C C C C C "O
w w
w 1
1 I
I I
e i
i I
f I
I I
I e
i 6
=
C C
c M
e N
N :s O
a M
v M
CJ C r.:
m.
e.
~
O C
D
=
I,n m =
LD N
M N M N N M m t%
~
C w
.=
- i E>z 9
2 = *i Z 3: z A =.. ::
-'3 m.
C,.
s >
s u
~ ~
3.0 RADIOLOGICAL ENVIROSSENTAL MONITORING PROGRAM Table 3.0-1 contains the DLC site number, sector, distance sar:ple point description, sa=pling and collection fr'equency, analysis, and analysis frequency for various exposure pathways in the vicinity of the BVPS for the radiological monitoring program.
Figures 3.0-1 through 3.0-9 show the location of the various sampling points.
0 m
O 4
9 3-1
TAllt.F. ~). 0- 1 1
MaJ I.elag.,1 cal IC evI ro ceit al H. nI g ne lug ro ugram top.e.use realway DI C 5.smgele reint hampling and Type and Frequency Bka.e r igt t e
- Cullecttone Fre.tuce y of An.nlysea g 4/ e L..n. I e Situ 18... Sve t..e til l.
1.
A B NiluMNE ta.II.I JIsie anJ-Il it 1.6 lb.ok a t..we (Heyes*es Fase)
Continuoue ediepter EsJialoellne CartrlJges ra n t Itse ls t ee 10 4
p.6 Stol pyleegpor t (unike's teesy operation willi collection I-138 analysts weekly.
Sulmantion) at least weakly.
32 l) 0.8 HIJIae.1 (HIJian.1 Sshstation)
PartIcestate Samplers 4 f.. t 6
2.0 feeJustry (TIse Companiy)
Crose i. eta analyule fol-48 10 16.%
Welttua. WV (We t z tene W.s t e r lowing filter cleange; Storma;e Tann)
Comme isotopic analyste est composite (by location) quarterly.
y 2.
ItInterr NADI ATloN 10 4
n.8 St.lppingport Buso (rome Office)
Continuous measurement Caenna Jose q.sarterly.
44 I )*
11 1.6 Heyer's Farm witte quarterly collection.
14 11 2.6 Iku.kutuwn li I4
- 1. I a:aserge e own 27 7
6.2 asunton's Farm 28 8
8.7 SI.es an's Faren 298
)
8.8 Beever County b epital 10 4
u.6 sin t pp ingpor t Nao (l'uok's Ferry) 12 15 p.8 HIJIand Ikaro (HIJiand Sulstation) 45 1.2 Nacenosi Towinslilp (Hg. Pleament Cisurcle) 4%.I 6
2.0 macco...i Town,s.p;. (FesencJy 's Corner) 46 5
- f. 5 InJustry (thescler 46.5 1
2.0 leeJus t s y (Tire t'ompany) 41 14 4.8 t;as t I.t verront. 411:1o (W.e s er Cum,p.any) 48 to 36.)
Welttoes. West VI s glanla (W.s t e r Gemp.any) 51 S
M.0 Al legu lpp.a 5's
/
3.8 B re en's Farm t.0 II
- 1. 7 Haney's Fasse
TAlli,It 3.0-1 (Con t inited)
MaJiule.gtral Fnviso. ental H..nitoring Psogram t a p...w s ee realony til C Sample Point Sampitag and Type and Fre.Inency
. 3/..: L eg. l.
Site M...
Sect.or Hlle Ibracs tpa leen Collect ion Fee peenscy of Analysee 2.
telkit:T k Altl4Tiess
/0 4
3.0 We= teres Reaves Illgte Sal.ool Consta.i.aua meaantement Casemma Jose atuarterly.
(ContInuva) 18 2
5.4 Rsiglitoes Tov. ' 8p Sci...I witti stuarterly collection.
72 1
1.2 legais School 73 4
2.2 rot s es Towne.lipp Scl.ool 74 4
6.8 a:ent es Towinstely (Com ent t y Cet lege) l FS S
4.3 Raccoons Towaslete (Ilo t t Noad) 76 6
- 3. 8 Macce.on Towa>1elp Sct.ool 4
77 6
$.8 Racco.no Tow.inlity (Ca cces CarJen Road) 75 7
2.1 Raccoon Townality H.e.itcipal sulIJing 19 il 4.6 Raccoon Toonaleir (Mont es 18 & ISI) u 8
50 9
8.4 Raccoves rash w
di 9
1.9 Soutt.alJe School 57 9
- 7. 8 Haseover Tuwnship H.seitelpel Rest lJteig El to 4.5 Cause Toweishlp (Hill a:s eek Road) 54 II 8.4 Hasecosh C.unty. W.V.
(Cle t tJ r en's llome) 18 %
12 5.8 llancock County, W.V. (Routes 8 & 30) 56 13 6.5 t..s e t 8.t wa s pool, Olig o (C.stel l t ' m) 57 14
- 7. 0 Calcantaa, Oleto 88 IS 1.8 Hl.Iland Helglese 89 IS 4.7 otilowllte 90 16 S.2 Falsvleo Scisoal 11 2
3.7 Balstaton Townulate (Plane Usove & Inoyle Roada) 91 p 82 3.0 Cavenee Townstelp (Ceessgetowse Road) 98 46 1.1 Hl.lle..J (Sunset lit t le) 94 5
2.4 Racc no Tovosisip (McCle.ary Itoad) 9%
in 2.4 Creeno TowisalIp (H.Cleasy Road) e
TAltLE 3.0-1 (Con t inised)
RaJiological Environmental it.nItosing ruegram Lap..vure real.way plE Sample Folne Sampling and Type and Fre.guesicy anJ/us :; ms.lc 5 t a e N...
- ereus '
lit lee.
Dee.c r Ip t lon Cuttectlun Fecetuency of Analysee L WAT t umontaE m) surface (itver) 49.8 4
5.0 Upstreme - In vicIntay of composite sample with Camma tootopic analyste Mont games y inam mample collect ion at enthly!
Tyttlue (Akt'O Clienical Cong.any'.
least emna t te l y.
analyste on composite formerly AltCil Folymeru)
(by location) oguarterly.
2.1 84 4.3 thnaist reme - H8Jiand i
h) prinking Weer 4
14 1.3 HIJianJ (HIJiand W aer Composite sample witIn 1-138 analysis bi-weekly; Treatment Flant) emmple collection at Comma footopic analyste least bi-weekly.
on compoette (by loca-S 14 4.8 Ea s t I.t ve r pool. Ole t o (Fe s t -
tion) emnathly; Trittee I.tverpool Water Treat-analysts on comeemite h
ment Plant)
(by location) stuarterly.
c)
Csaun.1 Weaea
'Home resgu!:eNI I d)
St.os eline Sc.Ilm.mt 2A 13 0.2 Vicinity el BVr5 Diocleatge Semi-a naise l l y.
Comma isotopic analysis Structure seel-annually.
4.
Insisort m) til s k 25 le
- 2. 5 sear iglia 's Dais y At least bt-weekly uleen Camma isotopic and 1-118 5
.sntmale are on postutet analysis est each sample.
0'I 56 At least mu.stgely at other "J 7 times.
96 In 10.1 Wi ndel.t.er 's Ita l e y
M
=,
N h
e h
al.
V.,
o e
1 e
9 3.
1 f.
.a.
o w =
I a
- y
-=
. 2
., *1 a
m J h
J b.
O w
w e
M m
y e.s 3
F.
t.
3 m
h 4
1.
h.
=
0 J
3 e
O.
.h.
m.
S a.
.3 M
w
. G t
.a.
'I J.
a.
s a.
i t-3 w
e.
a 81 O.
m 3
J.a.
N a
- o. >
I e
3
=,
J.
a,.
t 3
3 g
y e.
e.
=
a,.
=
=
u
.o..e.
=
=
.,.1
,- w v
w
.i >.
=
8.
2 1
8.
.,. 2
..= -,
e, J
_e m
O a.
..e
- 3..
1 w,.
w
- 5..
o 2
r.
2
.. n JJ
=
..I. c
.=
-.?!.
- J.
i *.
J2 4
2
- o i-.
s,
,.=.
.=. =...- -
. I
-. 3 e
w u.e.r i
~
~.
.J $
3
=.
O
.e C - N @
E E
h
.T=
S
..E 87 3 10
=.M. j.
3 g.
a.
4 J
=
i
-3 2
m a e 3
to g 1
=
03 Io u o.
3 i - -
w e.
w
.E EI 3
3 m
==
e.
.=.
g.,.
e 2.
J a.
w
. e=
=.
3. =.
e s.e e
w w m o
=,== e y
s.
==
M
. =.= ]
3 3
s.
-L T 3.
.y a
3
. - 3 1
.m.
a.
- y ab i
.b 1
1..
,f 1
T.. - m I
ys 1
v Q==
N O.
m.
3 1
=
3
(
== 19 s
.2
.g =.-
=. -
2 a n w
w w w
=
a.
. e e
h.
3 3
t w
e d
. 3
==
3 a
=
- z. m a a.
f.-
a n
.s. 3 *..
2J s
.3 e
R
- =
2 g
=.
. 2
=. =.
2J
=L-
==:. "J"."
3 = = =
a.
S "I
>.is 3
5== T I
}.
M * =.
- 4
- s -
. 3 T.
.m
. C 3.
"l w-
=
.r
. 2 8r.--
I.
- v 54.
. =
-=
-.*w 3
J 2
3 M'
=.m.
g
==
3 s
= *
- a.
A 4.
P
}...
=
e "J
'dl
=
3.
g d3
. '. = =.
h.
w
... 1 g.
e
. H ad 2
a.
28.
m
-* C I
g 4
- i M
- a. =. j. = 4 as
- J *
- 6 *=
a 3-4 2
=*
4 m.
d.
- w
.3 o
et m.
A A
m q
.y
.a
-s
.=
w w
w w w
w 3-5
FIGURE 3.0-1 fj a!8 elm _PG e mys W'
13
.tra's r.GY EW 5
"-te I
~
.L f.-
-r 32
.".1:uro
-Q p
l
,\\f
- t..
e g.-
'l 4
wim,ervmim w.=.
I, p-i.
t.,- ~ y a
I
'5
/.. (
f g
/.-
O N
s a.,..J
-Ig.N J L.
c.----.
g wa, -
I
- 9.h
(
1 s
7's
,,p s,-
-s * *.- no,.
I
.pr, V
30 ; w.t.q~
j a~
t --.,
n
.r, p ^~,..
,b' 5l O
.e
,.,.r s
a h
, \\l t
a.
t l
I4
\\\\
A
'W' /'
,\\
7, e
. k' t
si,.. '
1
,m l E Ae
!'h k
~ ' -
s 2
5
\\.
/
+
(
M#d"FT
[
SEAYOt COUNTY WIy oav g
t A
4 Ww nw
, G- -....
.sw. c.v x.
,.. ~
\\
\\'.)c<.
l 3-6
FIGURE 3.0-2 TLD LOCATIONS soserwc7 cu4cowT I
Sc#,cs ve *::n.cs Stariow a
saaga.esst 16
\\
\\
+
w ws.
i s
u i
l:,".":::'m
\\'
,S. :: ;:-'
a n
4 ll li'!:t!2.""'"
', ) ;,
- '4
- : ;d :"'
i m
i
=
.:.............j...
j y
' f
t
/, y.
\\,
-5 S
%y N.e j
z
\\'
I.
2 s.
, so j
l' N
l- ?
s
....a ;
j\\
[t
/
).*
f 2
f if
/.
r
' b-t i
\\(
%3 s
/-
\\
'~;
~ ?~~g
..\\,
l
/
..... s 7
j '-
.ca.
g _.
7@-
.. c.
8 c.y.py w
- q'
- u
... g,, /,
.g::
x.y 4
w. hb
= [N i '
l 1-ih n.,.
1 i
w,,.
.s.
1.
, u l
/
t i
1 3,
s-J
?
r
\\.
\\
j z
~'
g M
t'
'#1.'"
.. h. y
\\ _'. g ' v '
.e %,
l'L 3
a
.w
.h
,e i
/ '.
..,x
, -ww.
3-7
FIGURE 3.0-3 TLD LOCATIONS
.wcor.Asr :.:Aonmr
~
m mm---
m.
14.;.g s.e. itea sr...n s....,y as pas.rna. :..
a et
- <. i s.. t.
\\
/
2
'a se.se.assa M. sa.m t g
.s.1
- n.srv itse. :.
t
.s
- u...esty causse i
i 1
n....
se same.e :.n a r
i
- ss
.avy e.
s.nappsaes.ers ps....
s sas p
- sette.
f Is et. pa 3.4 3 8
i 93
,e t_
4 P s.t e s.?,.9. Se n a.....,,...
.u.
l )
\\.
.1 i
li.
'.t".':..::....
2, ss s',3
~
[
- i
<r
"'-"' ?
\\
- j, '
\\\\
\\
,a
/
..../. -
N.
/
{
N Z,,..
/
/
+.,
/
/
..i i
u.
\\-
r s
n.
j,
_.. _ _.. m.;
y s
\\
( sN./
.s, l-f
%y),i..':.,
a l%
\\
,)
p."
n
.r- ~
,, /.'
t:.
t
, ~
- s. -
.u
<xA N[
O.*
l i
., Y.. M,
..... f. **
" "\\
M%. n, a f.,,-y
- ;)
a
/,
,. ~
=, -.
\\-
i
.. e~,
.'. 3 L.g,-
~
w/
L
. ~
y
.j ' -
.?..
.. v /-
..)
J
,N i,. '(
u-
,r
's u
o
~
T.=_<.:-"fB
' o c.
.4
~
~? ~ ' 'k ' " _ % !Nd ' ;2 ~:
L.' \\...'
s,,
i; s..
iG
.o
~
,s
,z e
. c)
~.
.\\
.w
/.
+
v 3-8
. FIGimE 3.0-4 TLD LOCATIONS f
,/.
I
_y
'\\
(
"* x hq *,.o.,
l.
%],
c< " -
e L..
p-T t.
L _.:..
]' \\,'
s/l
~
- hr.
z\\
./
i s \\
a' '.
7.e
/n
\\
,/
/
n
> Ni'.
i i
ks
/,
.e 5.
3*
., s /\\
3 v
a i g e
,./ t @
\\
g s-.a rr si
~
-s
,y t
{-
c.
0(",
7 ' 'g
\\
x g,,-
= ' / % "..
, ~ - ~
s u
/
a" '
k',
)
\\,
'l,
~5. 5
\\
\\
I i
'\\
Ml
!,[
r/
x r
i
\\
N i
,. s i
.g t
s s
On s
s
/
\\
i
\\
\\
./
W l N
/
/
'\\
N. ~.._ 'N
\\
^
.:& /u
\\
N g. -- / \\ )Y....
(
\\
l s
/
s
?
i~
/
j,,.E-.%-
\\
.//
'f3T
.j 4
\\
N J './', '\\-
A tuin 1F.2 i.".:'%
Na
\\
(
- 'd.'.a"m....
n.,..
-~~
s _._
~ es_
9-2..
,m.
i
.p,
/
\\
....i s a..
=
,..... :..rr l
'.?tt'!#". ai l'
'd!'".:,Wi'..
in moi....
/
SoyNEAs7 CtaCRMC O-
. ~4. a wvo..g gv :e-o 5 a c W
3 3-9
FIGURE 3.0-5 TLD LOCATIONS
"/
Q x
\\ L 'l( ' / \\\\1 T
r'
,,p
.s ~
s
\\e\\
1e '
- s. /
t.........
e_ y o I
j xi r
1
.~
J'
! \\ g"
/
- "o
\\
,,, 1; \\,;,1 I
~
\\,
c s
i'
,1 ps
! 1
-)
\\
~
/
1
/
\\
1 h
.\\
,/
=
WV
(
i
___\\,___'
N f _ ___ _ _ _ *,
l N,
-j F8-l-*a
.\\, j s
s
/-
~ ~.
a i
n
)
tg
- )
1
- j k
/
i e...
ty
/
/
j' e=\\
x
[.]
N-
... ~.
s,.
u TL,@
ti E@SF5=
h,
/
/s "'~,4f
""' M
~
n
- w e ti
- .=nm..
s.
i:
- a:=,:
- rrr.:n.
I Mu %N Al'4Y EU u-o
~ se e-n, 3-10
?,
L Mournonsav Der q
r-m s%*
L.___l b
V{M 9,
on/o 8
I O
MIDLAMD 8
,.-j Q IM %
l o
O 0[t Gjsg l
. Bono Oc \\
A'"G'*RY
', Geonnerouw L
[is ooz.
a
\\
d
/
-g i
t A
'8
-s-
~
w
[,
\\
l, y.
W#'
'i
'o ACN SYLVANIA V/MtpMIA
/
p/
L'
\\ y Rf_ACYOR d'/
g satiri t g
g-Tire or sanrit rosur saari s ta: rij!ur otsreirTh5 g (B wa t att us e a m
\\
J.
tauclai t su tt.
\\
f' 49.1 Ance rotuans i* i na i rm; WA H N 4
HIDiAND WaH R ruMr OO/(STOMA/
(isunto units)
O SilORELINE SEDIMENT us: i nvier... W4nn runt
' " " " ^""'
A SURFACE WAl[R & DRINKI E WALER EnvinoNHENDAL Mvsron/AAy 37~97/ OMS 10 Call 0NS - SilORELINE SEDIMENT
- SUHfACE WAIER & DRINKIM WATER
FIGURE 3.0-7 i
~
ru m eiru. - waro.-
a l
N u ear m <n
~
man cain 3
)
E b =-Q.
m 25 SRIGir P '.
</
l k (,.,.
96 WINDSHIMER N
~..
u.
j
'(
STATICH NOS 55-57 g
- l f;i' 3AS O Ci HIGHEST I
a 3
CE80 SIT!0tl FACTORS I
ej e
- y.p
'\\
~
Q
~ ~' d
_.:~..
l g'
p.
i
.e;
.m e
I G
g.-,.,.r%.
~ \\
c,-----
i
,.S A.,
- p$ '%
- lty'y
/
-u--
p g,
D**' h "\\
.g '
s
~
c, s,
d f
....., - J Nj, /
c
.. a}
I e
i
,i N
t i
\\'
\\
e e-u R.,
~
\\
/
f 5
4pshe**v = * /
2 l g
f' wc
--a yl s
m
.\\
a g
g. 7.
cou m. _.3 7
d"m' g
N CCWWW
\\
t W./, aev' t 1
'-==
+<
s.. a -...
=*
\\
d r R. d.
6 -
\\
e 3-12
-~
FIGURE 3.0-8
//
s t e4 s, _,
s, m
i e 4l1( 6 i
s t
'~' ~.J c4 e t!
i l t
4<
s.
@ p H r
2 c
ga s
=x 4
G I
!8
/
~"
/
E E
E
- g.. __
f
-e U
p g
e- -
/
\\
V l
9 I
3C
</
1)
U e
i w
l
'd O
P o
N 2
cc
=
2 h
5 O
M i
5.
o-e
('e i
me am
%!N\\si 3-13
FICITRE 3.0-9 x-
\\__JLS]
Q
%.u, ap88 g
N-g t,
s-h T
N q
%s o
5m u
8 f\\
f5
\\.
h9 N,
/-
e s
8 o3 s
o o
- 5. 5
'{
f 0
, ~
^
~
2 t
a s
t e
/
~
r.
=
/
T-9 M
,o y
s-t C
4 d
Z'
-f V3 s%
ta fel 4
Z m
M
=
~
r
.2
^
f.*
Q.
=
- =
0g e
O km r"-
(/
t I
s l
qa x
I 3
I.
.x a
l c
s s
e
,o r.
t
'q
/
f 4
. u,,'
L_
,9
-Q p
/
t
.v
.5 n[
I
~
t,
~
k h~~
e f
s p.,
\\
= -,b c.
.e ** %
==
r s
~
==-
i
==%
"-=
"3.':
L t
>4 w
U
(
i
'i.
=
3=
An c
p O 9 d
_ l f,, - L -
c'
~
- =.
=
a
..:9
..- Q
- -.7.
\\,,
g w
3-M,,,
+
,i !
4.0 INFOPJfATION REI.ATED TO 40 CFR 190
,. [
i
'f av Technical Specification 3.11.4.1.a requires that when the calculated doses associated with the effluent releases exceed twice the limits of Specifications 3.11.1.2.a, 3.11.1. 2.b, 3. ll. 2. 2. a. 3. ll. 2. 2.b, 3.11. 2.3.a or 3.11.'2. 3.b, the licensee shall prepare and submit a Special Report to the Commission and limit subsequent releases such that the dose or dose commitment to member (s) of the public from all facility releases is limited to $ 25 mrem to the total oody, any organ (except the thyro.id, which is limited to S 75 mrem) for a calendar year.
The Technical Specifications consider doses to members of the public due to the operation of BVPS but do not include any other part of the uranium fuel cycle or direct shine,Ifrom the reactor.
If a Special Report to the Commission is prepared by the licensee as required by Specification 3.11.4.1.a. the report should contain:
/
1)
A determination of the maximum exposed member of'the public.
2)
A determination of the total dose to this person from all existing pathways and sources of radioactive ef fluents.
Where additional informa-tion on pathways and nuclides is needed, the best available ibforamtion will be used and documented.
R 3)
A determination of the dose resulting from direct radiation f m the plant and storage facilities.
Total body and organ doses resulting from liquid effluents from the BVPS will be summed with the doses resulting from releases of noble gases, radioiodine,s, particulates, and tritium (excluding C-14).
These doses will be based upon releases f rom the BVPS during the appropriate time period in which twice. the Specification was exceeded.
Direct dose components due to skyshine till be determined either by calculation, using methodology specified in NLTEG-0133, or by actual measorement.
The dose from both rele,ases and direct radiation-will be summed'.g
(
l 0
41 e
e,.,
-.-r e
a
[
t N
e AFPENDIX A n
s'
~.
Summarv of Discersion Calculation'al Pheedures.
g,e Undepleted, undecayed dispersion parameters were co.1nputed usinr,i he computer t
program XOQDOQISagendorf and Gol$ 1977).2 Specifically, setor, average X/Q and D/Q values were obtained for a sector width of 22.5 degrees.; Credit was taken for mom,Ibntum p{ume rise and effective plume heigh't was adjusted for local terrain height for elevated releases. JEuilding wake corrections were used to adjust calculations for ground-level releyses. A mixing height restriction (1000m).
~
was imposed for all releases. Site specific recirculation correction factors were also applied (Albersheim,1978) as developid using the computer program NUSPUF (Chandler, et al,1976).
Dispersion calculations were based og ground-level' releases for the ventilation vent, elevated releases for the process vent anOmixed mode releases for the containment vent. A summary of release conditions used as input to XOQDOQ is presented in 'Iable A-1.
Onsite' meteorological data for the period January 1.1976 through December 31.
1977 (as ' presented in Section 2.3 of the Beaver Valley Power Ststion Unit 2 Environmental Report) were used as input to XOQDOQ. Data were collected in conformance.with NRC Regulatory Guide 1.23. Dispersion calculaticns for the containment vent and ventilation vent used gT150*-35, and 35 fcot vlind data "cint data recovery of 39 percent) as input. Prodtss vent calculations were based on AT500'-35, and 500' wind data (joint recovery of 83 percent).
i
. 'i Tables Aa2 through A-5 contain short term X/Q values for batch releases originating from the ~v n-ilt. tion vent and containment vent releases. Tables A-2 and A-3 are shortsterm X/Q values at the special location and Tables A-4 and A-5 are short tem X/Q values at the 10 standard distance intervals.
~he values ih these Tables are based upon 192 hours0.00222 days <br />0.0533 hours <br />3.174603e-4 weeks <br />7.3056e-5 months <br /> per year of containment purges.
Tables A-3 and A-4 were used for set point determinations for gaseous effluent y
nonitors in Section 2.1.
L A-1 i
,s-1 (
Albersheim, S.R., Develooment of Terrain Adiustment Factors for Use At the Beaver Vallev Power Station for the Straight-Line Atmosoheric Discersion.'.fodel, NUS-3173, NUS Corporation, June 1978 Chandler, M.W.; Fleming, J.R.; Shipley, S.L. and Tapparo, M.S., NUSPUF-A Seemented Plume Discersion Program for the Calculation of Averare Concentrations in a Time-Decendent Meteorological Rezime, NUS-TM-260, NUS Corporation, March 1976 Sagendorf, J.F. and Goll, J.T., XOQDOQ Program for the Evaluation of Routine Effluent Releases at Nuclear Power Stations, NUREG-0324, U.S.
Nuclear Regulatory Commission, September 1977 1
l 1
1 A-2
TAllLE A-1 ILEAVElt VAI.I.EY IJNIT 1 REI.EASI: CONDITIONS Ventilation Vent Containment Vent Process Vent Type Itelease Ground Level Mixed Mode Elevated (l.ong and Short-Term)
(Long and Short-Term)
(Long-Term)
Itclease Point lleight (m) 26 47 155 Adjacent Building IIelght (m) 44 44 155 llelative I.ocation to NW Corner of Primary Top Center of Atop Cooling Adjacent Structures Aux. Ilullding Containment Dome Tower w
Exit Velocity (m/sec)
NA 22 7.1 i
Internal Stack Diameter (ni)
NA 0.99 0.32 Ilullding Cross-Sectional 2
Arco * (m )
1,600 1,600 NA Purge l'requency* * (times /
yr.)
24 24 NA Purge Duration * * (hours /
solease)
Il 8
NA AppIlett to ground level releases.
Applied to short-term calculations only.
TABLE A-2 BEAVER VALI.EY UNIT 1 CONTAINMENT VENT DISPl:llSION PARAMETERS (X/q-),sec/m,
l'OR llATCil MIXED MODE RELEASES < 500 IIRS/Yll OR < 150 IIRS/OTR FOR SPI:CIAl. I.0CATIOilS (IDEllTIFIED IN TABLE 2.2-3)
Vegetable Sector
- Site lloundary, Garden Cow Goat Beef N
- 3. 51:- 0 5 6.4E-06 2.6E-06 3.2C-06 NNE
- 8. 81:- 07 3.0E-06 9.0E-07 1.2E-06 NE 1.21:-06 4.4E-07 4.3C-07 ENE 1.41:-06 2.9E-06 3.7E-07 7.3E-07 E
6.51:-06.
2.3E-06 3.1E-07
'7.3E-07 1.10-06 ESE 1.11:-05 3.0E-06 5.3E-07 5.7E-07 3.9E-06 SE 1. 01:-05 2.0E-0G 4.4E-07 4.4E-07 1.4E-06 SSE 9. 11 -0 6 2.lE-06 5.0E-07 4.0E-07 9.0E-07 S
1.8E-05 5.0E-06 1.5E-06 1.4E-06 5.0E-06 SSW
- 1. 41:-05 3.2E-06 8.9E-07 8.0E-07 1.3E-06 l
SW l.21:-05 5.4E-06 2.5E-06 1.3E-06 4.5E-06 WSW 5.41:-06 5.1E-06 1.7E-06 4.7E-06 W
3. 01:- 0 7 3.7E-06
~
4.4E-06 WNW
- 1. 31:- 07 4.7E-06 2.2E-06 6.8E-06 NW 8.81:- 08 6.2E-06 5.lE-06 7.2E-06 NNW 5.91:-06 2.lE-05 5.5E-06 6.4E-06 Measured relevant to center of containment of Unit 1 Period of Record: 1/1/76 - 12/31/77
TABLE A-3 Bl:AVI:lt VAI. LEY llNIT I VI:NTil.ATION VI:NT DISI'ERSION PARAMETERS (X/q),sec/m,
l'OR BATCil GROtJND LEVEL RELI:ASI:S f 500 flR/YR OR $ 150 IIR/OTit POR SI'ECIAL LOCATIONS (IDENTil' ICD IN TABLE 2.2-3)
Vegetable Sector
- Site Boundary Garden Cow Goat Beef N
3.7E-05 5.5E-06 2.3E-06 2.8E-0G N NI:
2.4C-05 2.80-06 8.2E-07 1.1E-06 NC
'l.90-05 4.3E-07 4.3E-07 1:NE 1.6E-05 2.8E-06 3.7E-07 7.2E-07 1:
1.5E-05 2.2E-06 3.lE-07 7.3E-07 1.lE-06 1:SE 1.21:-05 2.8E-06 5.4E-07 5.8E-07 3.8E-06 SE 1.30-05 2.0E-06 4.4E-07 4.4E-07 1.4E-06 SSE 8.50-06 2.0E-06 5.0E-07 4.8E-07 9.1E-07 3
1.4E-05 4.5E-06 1.4E-06 1.4E-06 4.5E-06 SSW 9.I1:-06 2.DE-06 8.3E-07 8.2E-07 1.3E-06 SW
- 8. 71:-0 6 4.5h-06 2.4E-06 1.2E-06 3.9E-06 WSW 6.IE-05 4.4E-06 1.5E-06 4.0E-06 W
2.00-05 3.lE-06 3.7E-06 WNW 4.91:-05 3.8E-06 1.8E-06 5.7E-06 NW 8.50,05 2.2C-05 4.1E-06 5.9E-06 NNW 5.61:-05 1.4E-05 4.3C-06 5.0E-06 Measured relevant to center of containment
^
l'eriod of itecord 1/1/76 - 12/31/77
.a
TABLE A-4 HEAVER VAI. LEY UllIT 1 cotiTAIllilEllT VEllT DISI'ERSIO!! hARAMETERS (Y/q),sec/m3, I
POlt BATCll MIXED MODE REl. EASED < 500 llR/YR or < 150 IIR/Q'TR Distances to the control locations, in miles Sector 0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0.
N 1.6E-06 2.3E-05
- 9. u t-0 6 5.0E-06 3.7E-06
- 2. 0E -0 6 2$2E-06 1.8E-06 1.4E-06 1.2C-06 Ni1E 1.4E-06
- 1. 0 E-0 6 4.9E-06 2.9E-06 2.0E-06
- 1. 5 E -0 6 1.2E-06 9.0E-07 8.lE-07 6.9E-07 NC 2.2E-06 1.2E-06 1.3E-06 2.3E-06 1.5E-06 1.lE-06 8.0E-07 6.4E-07 5.1E-07 4.4 C -07 l
EtJC 2.2E-06 1.4E-06 2.8E-06 1.7E-06 1.lE 06 8.30-07 6.4E-07 5.lE-07 3.7E-07
- 3. 2 E -07 E
3.5E-06 5.8E-06 2.4E-06 1.40-06 9.5E-07 6.9E-07 5. 0 0-O'A 4.0E-07 3.3E-07 2.8E-07 ES E 2.7E-06 5.0E-06 2.4E-06 1.4C-06 8.00-07
- 6. 4 E -0 7-4.6E-07 3.7E-07 2.8E-07 2.4E-07 SE 2.4E-06 5.50-06 2.5E-06 1.4E-06 9.8C-07 7.lE-07 5.00-07 4.0E-07 3.3E-07 2.8C 07 SSE 2.5E-06 5.7E-06 2.4E-06 1.4C-06 8.5E-07 6.30-G7 4.6E-07 3.8E-07 3.lE-07 2.7E-07 o,
S 3.2E-06 9.2E-06 3.4E-06 2.0E-06 1.3E-06 9.9E-07 7.5E-07 6.lE-07 5.lE-07 4.3E-07 SStV 2.7E-00 1.1E-05 4.1E-06 2.3E-06 1.6E-06 1.2E-06 9.7E-07 8.0E-07 6.5E-07
- 5. 4 E-07.
SW 2.3E-06 1.4E-05 6.4E-06 3.7E-06 2.2E-06 1.7E-06 1.3E-06 1.10-06 9. O l'-0 7 7.7E-07 WSW 2.7E-06 1.7E-05 7.3E-06 4.3C-06 3.0E-06 2.2C-06
!.7E-06 1.4E-06 1.lE-06 9.8E-07.
W l.6E-08 2.5E-07 1.3E-05 7.UE-06 4.3C-06 3.3E-06 2.6E-06 2.1E-06 1.8E-06 1.6E-06 WNW l.8E-09 3.7E-07 7.5E-07 1.lE-05 7.3E-06 5.4E-06 4.4E-06 3.6E-06 2.7E-06 2.3C-06 NW 2.5E-09 4.9E-07 1.3E-05 1,6E-05 1.0E-05 8.0E-06 6.2E-06 5.0E-06 3.7E-06 3.2E-06 NNW 2.0E-07 3.7E-05 1.6E-05 1.0E-05 6.5E-06 5.0E-06 3.7E-06 3.lE-06 2.5E-06 2.lE-06..
1 l'oriod of Record 1/1/76 - 12/31/77
TAllII A-5 BEAVER VAI. LEY UNIT 1 VENTil.ATION VENT DISPERSION PARAMETERS (Y/q),,sec/m,
FOR liATCit GROUND IIVEL REIIASES i 500 IIR/YR OR $_150 IIR/QTR Distances to the control locations, in miles Sector 0-0.5 0.5-1.0 1.0-1.5 1.5-2.0_
2.0-2.5 2.5-3.0_
3.0-3.5 3.5-4.0 4.0-4.5 4.5-5.0 N
9.6E-05 1.6E-05 7.0E-06 5.0E-06 3.3C-06 2.5E-06 1.9E-06 1.6E-06 1.3E-06 1.lE-06 NNE 5.5E-05 1.00-05 4.3E-06 2.7C-06 1.8E-06 1.4C-06 1.1E-06 8.5E-07 7.5E-07 6.5E-07 NE 3.7C-05 7.2C-06 3.6E-06 2.2E-06 1.5E-06 1.1E-06 8.0E-07 6.4C-07 5.0E-07 4.3E-07 ENE 2.00-05 5.4C-06 2.7C-06 1.6E-06 1.1E-06 8.lE-07 6.4E-07 5.lE-07 3.7E-07 3.2E-07 E
2.00-05 5.4E-06 2.3E-06 1.30-06 9.2E-07 6.8E-07 5.lE-07 4.0E-07 3.3E-07 2.9E-07 l'SE 2.4E-05 4.00-06 2.3E-06 1.4E-06 8.7E-07 6.3C-07 4.7"-07 3.6E-07 2.8 E-07 2.50-07 Y
SI:
2.50-05 5.0E-06 2.4E-06 1.4C-0G 9.7E-07 7.1E-07 5.0E-07 4.0E-07 3.3E-07 2.8C-07 y
SSE 2.7E-05 4.8C-06 2.2C-0G 1.4C-06 8.4E-07 6.2E-07 4.6E-07 3.7E-07 3.1E-07 2.60-07 S
4.1E-05 7.2E-06 3.0E-0G 1.9E-06 1.3C-06 9.5E-07 7.0E-07 5.8C-07 4.9E-07 4.1E-07 SSW 4.6E-05 8.3E-06 3.4E-06 2.2C-06 1.5E-06 1.1E-06 9.1E-07 7.6E-07 6.0E-07 5.00-07 SW 5.6E-05 1.00-05 5.3E-06 3.4C-06 2.10-06 1.6E-06 1.2E-06 1.00-06 8.2C-07 6.9C-07 WSW 7.2C-05 1.3E-05 6.lE-06 3.8C-06 2.7E-06 2.0E-06 1.5E-06 1.2C-06 1.0E-06 8.6E-07 l
W l.2C-04 2.00-05 1.0C-05 6.4E-06 3.7E-06 2.8C-06 2.2E-06 1.9E-06 1.6E-06 1.4C-06 i
WNW l.6C-04 2.8E-05 1.3C-05 8.3C-06 5.9E-06 4.50-06 3.5E-06 2.9 E-06. 2.2C-06 1.9E-06 NW 2. 2 E'-0 4 3.5E-05' l.9C-05 1.2C-05 8.3E-06 6.3E-06 5.0E-06 4.lE-06 3.10-06 2.7C-06 NNW l.41:-04 2.20-05 1.2E-05 7.3C-06 5.10-06 3.9E-06 2.9E-06 2.4E-06 2.0E-06 1.70-06 l'eriod of Record: 1/1/76 - 12/31/77 i
T l
APPENDIX B INPUTS TO GALE CODE FOR GENERATION OF LIQUID AND GASECUS SOURCE TEP31 MIXES e
9 3-1
i.I A v t W W Ali 11 ase 17 i PM /
P=W THt P* At 9 0
- F le 1,r vt L (alb6.a f ISI 276fa.00uo
>La*T CaeaCfit i t r it.d 0.00 e*A55 TW PWi"A4Y CHULAhI ( IMultha'.D LH3 1 34'a. 0 0 n o PtwCral rutt elin Ct anott:C ist Ft r f S
.1700 PN{walY L Y.i f t.m L t thOne-W a l f.
( f.P k )
hu.00nD L t t n.". A C1.i f 4ts CErl Ath allirH ILon ( t:P= 1 6.0000
%umot> no sitaat brht H A I0sts 5.0000 fof At 5f t AH FI O8 (h!LLIn" Lh5/>W) 11.4700 pa55 06 Straa lh FACH s i t' a w GF :.F k A 10R (TunUSA44 t,HS h.7724 mass nF L!urito IP EACH Sif an Gr e.f # aluk ( Thousas.n Lits) 97.00u0 wa55 nr aAffw th 5fFA= f,fArRATHWG ( f eruS A*:0 L351 291 0000 TOTAL =a55 0F 3FCn%0Anf C60tAAI (THOUSAND LP.53 1214.0000 ML0h00eN NAIF (Im005amb LH5/Hel 11.9000 potwawf 10 StC0h0Adf i f. A N W'TF f L H S /na f )
100 Cohnt N5a f f Ot:r!'stu al l?LW WrAratpatitN t ! sef (DAYS) 0.0000 F I 5 5108 PW400r7 Cawwf.Uvt2 twACT]h*
0010 naLOCF w CaWRf.ovfu Fwatignh
. O l *J o Cn*:Ot %5 A TE OF*!"tdall/tw FL0d F8aCf!CN
- 0. 0 0 'J O WaDaa5ft O!Luflon FL0= (IMOUSAr.D GP=1 22.$000 LIO01D "ASTF INPuf5 Fd AC f tete FRAC 116w COLLECfidh OtCAT
.SfRLAM Flow 4 ATE OF PCA DISCHANGLn 1 t r r.
T!"t OLCDNTAMINAf!ON FACf0H3 (CAI/hAf)
(PAYS)
(DAYS) 1 C5 OfetWS SHf= OLErp MATE 1.12t,0a 1.000 0.0Go 11.?64 7./20 1.00f*07 1.00r+01 1.00F.07 F00!*=E%f 04AINS 4.00F*02 1.390 0.000 11.76n 7.??o 1.00F*of 1.00F+0T l.00F+07 Csta= =&SfC INPu 7.%0r,01 1.000 1.090 37!
. hem 1.not+05
?.00 tens.].00t+0g DIR1T aA5fC I=Puf 1.tSF+0%
315 1.006 071
.neA 1.00f*05 2.00f+04 1.00t+05 HLO.nnow
- 4. 75F + 04 1.non 371 648 1.00F*05 2.00F.+04 1.00t*05 UNfwr.aff0 0L0=00 4 0, 1.044 0.0 0.0 1.00f 00 1.00F 00 1.00F 00 m
9 4
l l
l 3-2
\\
e
. fy
a
- t f A V et V &l.L I V il
. P Wit f ils a m at l'It W l 4 li vs 4 (MasAW4fl%)
7744.00:111 0 s't i'l l %A l* 4 e fif f is lit.(
tl. H ie m A u of-P w t aa v t c uuL A*I f ( THou p Na LuS )
10.000n0 P tit CT *1T FUF L WITH CLAnuTNG OLFLf.T5 0.17000 PR 19 A4r SY5 tl 9 LF fillids W ATC (CPM) 60.00000 LETOOWN CATT0N DEMINERALIZER FLOW (CPM) 6.00000 Nud9C2 0F STEA.1 CENPMAT025
'1.00000 TOTAL STLA9 8LnW (M:LLION L35/HR) 11.A2000 mass GF STEA9 IN F ACH STEAM Gr*IFRATOR (THOUS ANO LRS) 6.77200 1A55 0F LTCUID fx tach STL11 6tNcR AT02 (THOUSAND L35) 97.00000 TOTAL 1A55 08 SECOM0AAY CUOLANT (THOUSANO LSS) 1296.00000 OLOWOOJN RATE (T.0005AND LRS/n')
3).9000
- lLdwil0WN IS NOT P40CE55E0 indnucal GnNO. OCMIN.
,CONoiNSATF Od4tNtRAL11ER REGkNIRATION TIME (OATS) 0.00000 CON 0iNSATE DEMINERAL1LER FLOW FRACTION 0.00000 RA0 WASTE DILUTION FLOW-(THOUSAND GPM) 22.50000 CASEQU5 WA5T3 I1 PUTS THERE 15 Nni CdNTIN005 STRIPPTNG OF FULL LETOWN FLOW FLJW 1 ATE TH100Gn GAS STki/PER (GPM) 9.6167 ha L4 Jo it=g *nt tsN0m (OAys) 12.9c000 HOLouP'711E 804 OtYPTdN (OAYS) 12.90300 FTLL T14E OF 08 CAY TA'l45 F02 THF G AS ST2[PPE2 (D AYS) 5.10000 P R IM S:Y COOL A*:T LCA< TO AUZ!L' ART 3 LOG (LS/ DAY) 160.
Aut!LIARY UL3G LEAK IDDINE P ARTTTION FACTOR 0.00750 GA5 JtSTC SYSTE9 PiRTICULATE get:ASE FRACTION 0.01000 AUAILLAT RLO3 CHARL0t00 T1E AtLE ASE FatLTION 1.00000 P AR TICULATE 4 ELE ASE FR AC TION 1.00000 CON T A !1* Pif 10L u= E (MILLIU'I F T ))
1.20000 FREQUCNCf OF Pl!"AAT COOL AN T OEG A55 t:4C (TI.1ES/YR) 2.
321*Att TO 5.1 CalMO A A Y LEAT.1ATF (L1/0AY) 100.
THLRi IS A X0 4EY FILTet C3NTAIN*ENT A T x0 5 P.1 c 2 C CL8ANUP RATE (TH0J5AND CFM) 2.00000 PURCh Tf1E 09 LONTA!4McNT (Pdun5) 16.00000 THEA! 15 NOT A CON 0 ENS A TI DE*!NE A ALI!!4 100!'IE PAAT!TTON FACTha (GAS /LIOUTC) Il STiAM SENEAATOR 0.01 FR E )ucaCY 08 CNimT QLnG HTCa VOL su2GF(TIME 5/YA) 24.
LNT*T VOL P u ; *.'
tua:NE TEL:A SE 8; ALT:0's 1.0C0C0 PARTICULATE REL*ASE FRACTION 1.00000 CNT*T LOW PUICf. RATERATE(CFN) 5.00 CMTMT LOW PU4GE R ATE 100 TNE RELE ASE 84 ACTION 0.10000 PAATICULATE RELEAsi FRACTION 0.01000 STiA9 L*At T3 TUARINE 8 LOG (LSS/Ma) 1700.0G000 2.4ACTIJN ICDINE 4ELEJ5CO F404 JL3WOOWN Tarix VE*17 0.00000 FAACTION 100fME RELEASED FA31 18:1 CuNO AIA EJECT 0A 0.10000 THEAi 15 NOT A C270GiNIC OFFGA5 ST5TE4 3-3
-.- -