ML20058N160
| ML20058N160 | |
| Person / Time | |
|---|---|
| Site: | Brunswick |
| Issue date: | 08/09/1990 |
| From: | CAROLINA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML20058N159 | List: |
| References | |
| NUDOCS 9008130270 | |
| Download: ML20058N160 (55) | |
Text
_
1 INDEX l
BASES SECTION PACE 3/4.4 REACTOR COOLANT SYSTEM (Continued) 3/4.4.4 CHEMISTRY.................................,.......
B 3/4 4-2 3/4.4.5 SPECIFIC ACTIVITY.................................
B 3/4 4-2 3/4.4.6 PRESSURE / TEMPERATURE LIMITS.......................
B 3/4 4-3 3/4.4.7 MAIN STEAM LINE ISOLATION VALVES..................
B 3/4 4-7 3/4.4.B STRUCTURAL INTECRITY..............................
B 3/4 4-7 3/4.5 EMERCENCY CORE COOLING SYSTEM i
3/4.5.1 HICH PRESSURE COOLANT INJECTION SYSTEM............
B 3/4 5-1 3/4.5.2 AUTOMATIC DEPRESSURIZATION SYSTEM (ADS)...........
B 3/4 5-1 3/4.5.3 LDW PRESSURE COOLING SYSTEMS......................
B 3/4 5-2 3/4.5.4 SUPPRESSION P00L..................................
B 3/4 5-4 3/4.6 CONTAINMENT SYSTEMS 3/4.6.1 PR I M AR Y CO NT AI NM EN T...............................
B 3/4 6-1 3/4.6.2 DEPRESSURIZATION AND C00LINC SYSTEMS..............
B 3/4 6-3 3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES..............
B 3/4 6-4 3/4.6.4 VACUUM RELIEF.....................................
B 3/4 6-5 3/4.6.5 S E CO ND AR Y CO NT AI NM EN T.............................
B 3/4 6-5 3/4.6.6 CONTAINMENT ATMOSPHERE C0NTRCL....................
B 3/4 6-6 3/4.7 PLANT SYSTEMS 3/4.7.1 S E RV I C E W ATE R S Y S T EM S.............................
B 3/4 7-1 3/4.7.2 CONTROL ROOM EMERCENCY FILTRATION SYSTEM..........
B 3/4 7-1 9008130270 900809 PDR ADOCK 05000324 P
PDC BRUNSWICK - UNIT 1 XI Amendment No.
DEFINITIONS OPERABLE - OPERABILITY (Continued)
Implicit in this definition shall be the assumption that all necessary f
attendant instrumentation, controls, normal and emergency electric power sources, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its function (s) are also capable of performing their related support function (s).
J OPERATIONAL CONDITION An OPERATIONAL CONDITION shall be any one inclusive combination of mode switch position and average reactor coolant temperature as indicated in Table 1.2.
PHYSICS TESTS i
PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear chsracteristics of the reactor core and related instrumentation and are 1) described in Section 14 of the Updated FSAR, 2) authorized under the provisions of 10 CFR 50.59, or 3) otherwise approved by the Commission.
PRESSURt BOUNDARY LEAKACE PRESSURE BOUNDARY LEAKAGE shall be leakage through a non-isolatable fault in a reactor coolant system component body, pipe wall, or vessel wall.
PRIMARY CONTAINMENT INTECRITY l
PRIKARY CONTAINMENT INTECRITY shall exist when a.
All penetrations required to be closed during accident conditions l
are eithert 1.
Capable of being closed by an OPERABLE containment automatic isolation valve system, or 2.
Closed by at least one manual valve, blind flange, or deactivated automatic valve secured in its closed position, except as provided in Table 3.6.3-1 of Specification 3.6.3.1.
l b.
All equipment hatches are closed and sealed.
c.
Each containment air lock is OPERABLE pursuant to Specification 3.6.1.3.
d.
The containment leakage rates are within the limits of Specification 3.6.1.2.
e.
The sealing mechanism associated with each penetration (e.g., welds, bellows or 0-rings) is OPERABLE.
' BRUNSWICK - UNIT 1 1-5 Amendment No.
TABLE 3.3.2 E Q
ISOLATION ACTUATION INSTRUMENTATION Eg VALVE GROUPS MINIMUM NUMBER APPLICABLE.
M OPERATED BY OPERABLE CHANNELS OPERATIONAL 8
TRIP FUNCTION SIGNAL (a)
PER TRIP SYSTEM (b)(c) CONDITION ACTION Ey 1.
PRIMARY CONTAINNENT ISOLATION a.
Reactor Vessel Water 14 vel -
1.
. Low, Level 1 2, 6 2-1,2,3 20 8
2 1, 2, 3 27 2.
Low, Level 3 1
2 1, 2, 3 20 g
b.
Drywell Pressure - High 2, 6 2
1,2,3 20 g
t*
c.
Radiation - High 1
2 1,2,3 21 w
2.
Pressure - Low 1(5 2
1 22 l
h I5) 2/line 1
22 l
3.
Flow - High I
d.
Main Steam Line Tunnel Temperature - tsigh 1(j) 2(d) 1, 2, 3 21 l
e.
Condenser Vacuum - Iew 1(5}
2 1, 2 ')
21 l
5 j
l f.
Turbine Building Area 53) 4(d) 1, 2, 3 21 l
Temperature - High 1
I W
g.
Main Stack Radiation - High (h) 1 1,2,3 28 I
h.
Reactor Building Exhaust Radiation - High 6
1 1, 2, 3 20 l
F i
l Q-- --.-
. ~..
y,,
- 1
-TABLE 3.3.2-1 (continued)
E' E
ISOLATION ACTUATION INSTRIMENTATION E
E VALVE CROUPS MINIMUM NUMBER APPLICABLE OPERATED BY OPERABLE CHANNELS OPERATIONAL E
~PER TRIP SYSTEM (b)(c) CONDITION ACTION TRIP FUNCTION SIGNAL (a)
Q 2.
SECONDARY CONTAINNENT ISOIATION e.
Reactor Building Exhaust Radiation - High (1) 1 1, 2, 3, 5, and* 23 6
1 1,2,3 20 b.
Drywell Pressure - High (1) 2 1, 2, 3 23 2, 6 2
1, 2, 3 -
20 c.
Low, Level 2 (1) 2 1, 2, 3 23 w
2 3
2 1, 2, 3 24 Y
3.
REACTOR WATER CLEANUP SYSTEM ISOLATION a.
A Flow - High 3
1 1, 2, 3 24 b.
Area Temperature - High 3
2 1,2,3 24 c.
Area Ventilatica a Temperature - High 3
2 1,2,3 24 II)
NA 1, 2, 3 '
24 d.
SLCS Initiation 3
e.
Low, Level 2 3
2 1, 2, 3 24 f.
A Flow - High - Time Delay Relay NA 1
1, 2, 3 24 m
y-,,
my3
+--
---e,'
3-u
--diwr s.m=
-2m
~m
.-w
TABLE 3.3.2-1 (Continued)
ISOLATION ACTUATION INSTRUMENTATION VALVE CROUPS MINIMUM NUMBER APPLICABLE Q
OPERATED BY OPERABLE CHANNELS OPERATIONAL ~
TRIP FUNCTION SIGNAL (a)'
PER TRIP SYSTEM (b)(c) CONDITION' ACTION
. h 4.
CORE STANDBY COOLINC SYSTEMS ISOLATION 4
a.
High Pressure Coclant Injection System Isolation 1.
HPCI Steam Line Flow - High 4
1 1,2,3 25' 2.
HPCI Steam Line Flow - High Time Delay Relay NA 1
1, 2, 3 25 3.
HPCI Steam Supply Pressure - Low 4
2 m, 2, 3 25 7
1 1, 2, 3 25 l
v 2
4.
HPCI Stean Line Tunnel w
Te cerature - High 4
2 1, 2, 3 25 5.
Bus Power Monitor NA(E) 1/ bus 1, 2, 3 26 6.
HPCI Turbine Exhaust Diaphragm Pressure - High 4
2 1,-2, 3
'25 7.
HPCI Steam Line Ambient Temperature - High 4
1 1,2,3 25 8.
HPCI Steam Line Area g
l a Temperature - High 4
1 1,2,3 25 e
9.
HPCI Equipment Area 3
Temperature - High 4
1 1, 2, 3 25
- 1 10.
Drywell Pressure - High 7(k) 1 1, 2, 3 25_
l
,.3-=
y
.-,m-p 4 -
,a9-
,.9m
.s-m pp m.-%
y e
,a s--w-
.u--,.,__v__
.c,-
_.wL-y-y em
TABLE 3.3.2-1 (Continued)
E-ISOLATION ACTUATION INSTRUMENTATION Ey VALVE CROUPS MINIMUM NUMBER APPLICABLE OPERATED BY OPERABLE CHANNELS OPERATIONAL
{
E TRIP FUNCTION SICNAL(a)
PER TRIP SYSTEM (b)(c) CONDITION ACTION 8
4.
CORE STANDBY COOLING SYSTEMS ISOLATION (Continued)
U b.
Reactor Core Isolation' Cooling System Isolation 1.
RCIC Steam Line Flow - High 5
1 1,2,3 25 2.
RCIC Steam Line Flow - High Time Delay Relay NA 1
1,2,3 25 I
3.
RCIC Steam Supply Pressure - Low 9[()
2 1, 2, 3 25 1
1,2,3 25 l
4.
RCIC Steam Line Tunnel ti Temperature - High 5
2 1,2,3 25 n
u 5.
Bus Power Monitor NA (E}
1/ bus 1, 2, 3 26 L
6.
RCIC Turbine Exhaust Diaphragm v'
Pressure - High 5
2 1,2,3 25 7.
RCIC Steam Line Ambient Temperature - High 5
1 1,2,3 25 l
8.
RCIC Steam Line Area o Temperature - High 5
1 1,2,3 25 l
9.
RCIC Equipment Room Ambient Temperature - High 5
1 1,2,3 25 l
Ey 10.
RCIC Equipment Room g
a Temperature - High 5
I 1, 2, 3 25 l
w S
11.
RCIC Steam Line Tunnel Temperature - High Time Delay Relay NA 1
1, 2, 3 25 o
12.
Drywell Pressure - High 9(k) 1 1, 2, 3 25
& g.
m s.
%r-
.w-W-
..gg s%
i.%
ne u
.c m
-%ei y
y.,-e mw-
2.
w TABLE 3.3.2-1 (Continued)
'h ISOLATION ACTUATION INSTRUMENTATION 5
i VALVE CROUPS MINIMUM NUMEER APPLICABLE Q
OPERATED BY-UPERABLE CHANNELS OPERATIONAL TRIP FUNCTION SIGNAL (a)
PER TRIP SYSTEM (b)(c) CONDITION
. ACTION b
5.
SHUTDOWN COOLING SYSTEM ISOLATION 4
~
a.
2, 6
.2 1, 2, 3 20 g
Low, Level 1 8:
2 1,2,3 27-
' l II) l b.
Reactor Steam Dome Pressure - High 8
1 1, 2, 3 27
=.
- e i
s E
a,
.O a
y.
.~-
,p.
.m.,
....m.
,n u
.n
.. -. - - -..,. -. - -.. - - -... -... - ~ -.... -
n
?
I e
1 i
r TABLE 3.3.2-1 (Continued)
ISOLATTON ACTUATION INSTRUMENTATION ACTIONS ACTION.20 - Be in at least HOT SHUTDOWN within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30~ hours.
ACTION 21
- Be in at least STARTUP with the main steam line isolation valves closed within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or be in at least HOT SHUTDOWN within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in i
COLD SHUTDOWN within the next 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.
l ACTION 22 - Be in at least STARTUP within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.
ACTION 23 - Establish SECONDARY CONTAINMENT INTEGRITY with the standby gas treatment system operating within one hour.
ACTION 24 - Isolate the reactor water cleanup system.
ACTION 25 - Close the affucted system isolation valves'and declare the affected system inoperable.
ACTION 26 - Verify power availability to thr. bus at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />..
ACTION 27 - Deactivate the shutdown coeling supply and reactor vessel head spray isolation valves in the closed position until the reactor steam dome i
pressure is within the specified limits.
ACTION 28 - Close the affected isolation valves within 14 days or be in HOT SHUTDOWN;within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
NOTES i
When handling irradiated fuel in the secondary containment t
(a)
See Specification 3.6.3.1, Table 3.6.3-1 for valves in each valve group. l l
(b):
A channel may be placed in an inoperable status for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance without placing the trip system in the tripped condition provided at least one other OPERABLE channel in the same trip system is monitoring that parameter.
(c)
With only one channel per trip system, an inoperable channel need not be i
placed.in the tripped condition where this would cause the Trip Function to occur..In these cases, the inoperable channel shall be restored to t
OPERABLE status within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or the ACTION required by Table 3.3.2-1 for that Trip Function shall be taken.
(d)
A channel is OPERABLE if 2 of 4 instruments in that channel are OPERABLE.
(e)
With reactor steam pressure > 500 psig.
(f)
Closes only RWCU outlet isolation valve.
(g)
Alarm only.
l (h)
Isolates containment purge and vent valves.
Is (1)
Does not isolate Ell-F015A,B.
l (j))
Does not isolate B32-F019 or 832-F020.
(k Valve isolation depends upon low steam supply pressure coincident with high drywell pressure.
- (l)-
Secondary containment isolation dampers as listed in Table 3.6.5.2-1.
l-
' BRUNSWICK - UNIT 1 3/4 3-17 Amendment No.
w s
.~
E TABLE 3.3.2-2 E
E ISOLATION ACTUATION INSTRUNEhTATION SETPOINTS E*
ALIAWABLE TRIP FUNCTION TRIP SETPOINT VALUE E
U l.
PRIMARY CONTAINMENT ISOLATION a.
-3 + 162.5 inches (a) 3 + 162.5 inches *)
~
I 1.
Low, Level 1 3 + 2.5 inches *}
3 + 2.5 inches *}
l I
I 2.
Ow, Level 3 b.
in,e 1 Pressure - High
$ 2 psig
$.2 psig c.
1.
Radiation - High
$3xfullgwer
$3.5xfugpower background background e
2.
Pressure - Low 3 825 psig 3 825 psig 3.
Flow - High i 140% of rated flow
$ 140% of rated flow d.
Main Steam Line Tunnel Temperature - High 5 200*F-
$ 200'F e.
Condenser Vacuum - Low 3 7 inches Hg vacuum-3 7 inches Hg vacuum f.
Turbine Building Area Temperature - High 1 200*F
$ 200*F f
g.
Main Stack Radiation - High (b)
(b) h.
Reactor Building Exhaust Radiation - High 1 11 mr/hr i 11 mr/hr a
B.,
se
TARTT 3.3.2-2 (Continued)
Ec TSOIJLTION ACTUATION TMSTRIMENTATION SETPOIMTS z
E
- ALLOWABLE E
TRIP FUNCTION TRIP SETPOINT VALIT e
g 2.
SECONDARY CONTAIRMEET ISOLATION U
a.
Reactor Building Exhaust Radiation -High
$ 11 mr/hr
$ Il er/hr b.
Drywell Pressure - High
< 2 psig
< 2 psig c.
Reactor Vessel Water Level - Low, Level 2
> + 112 inches (a)
> + 112 inches (a) 3.
REACTOR WATER CLEAMUP SYSTEM TSOLATION 53 gal / min
,a. A Flow - High
< 53 gal / min b.
Area Temperature - High
< 150*F
<150'F u
8g c.
Area Ventilation a Temperature - High
< 50*F
< 50*F l
d.
SLCS Initiation NA NA e.
Reactor Vessel Water Level - Low, Level 2
> + 112 inches (a)
> + 112 inches (a) f.
A Flow - High - Time Delay Relay
< 45 seconds
< 45. seconds l
W
-m_-
m, 4
-ngg y
q,
+#,Aa y
e-q w +-
p
TART.F 3,3,2-2 (Crmr imamA )
.g-g ISOLATION ACMIATION IMSTRIBfEMTATION SETPOINTS Eg ALLOWABLE M
TRIP FUNCTION TRIP SETPOINT VAflIF f
4.
CORE STAMDBY COOLIMC SYSTEMS TSOLATION
-1 High Pressure Coolant Injection System Isolation a.
1.
HPCI Steam Line Flow - High
$ 300% of rated flow
$ 3001 of rated flow 2.
HPCI Steam Line Flow - High Time Delay Relay 3 $ t $ 7 seconds 3 $ t i 12 seconds l
3.
HPCI Steam Supply Pressure - Low
> 100 psig
> 100 psig 4.
HPCI Steam Line Tunnel Temperature - High
$ 200*F
~
$ 200*F y
5.
Bus Power Honitor NA NA 6.
HPCI Turbine Exhaust Diaphragm Pressure - High
$ 10 psig
$ 10 psig 7.
HPCI Steam Line Ambient Temperature - High
$ 200*F
$ 200*F I
8.
HPCI Steam Line Area A Temperature - High 5 50*F
$ 50*F l
9.
HPCI Equipment Area Temperature - High
$ 175*F
< 175*F l
,y 10.
Drywell Pressure - High
$ 2 psig
$ 2 psig l
5n.
E
.F w.
---my--
TABLE 3.3.2-2 (Continued)
'E E
ISOLATION ACTUATION INSTRUMENTATION SETPOINTS E
M ALLOWABLE TRIP FUNCTION TRIP SETPOINT VALUE S
U 4.
CORE STANDBY COOLING SYSTEMS ISOLATION (Continued)-
b.
Reactor Core Isolation Cooling System Isolation 1.
RCIC Steam Line Flow - High
< 300I of rated flow
$ 300I of r-ted flow 2.
RCIC Steam Line Flow - High Time Delay Relay 3 < t < 7 seconds 3 $ t $ 12 seconds l
3.
RCIC Steam Supply Pressure - Low 3 50 psig 3 50 psig w
- 175*F
-< 175'F l
4.
RCIC Steam Line Tunnel Temperature - High 3
0 5.
Bus Power Monitor NA NA 6.
RCIC Turbine Exhaust Diaphragm Pressure - High 5 10 psig
$ 10 psig i
7.
RCIC Steam Line Ambient Temperature - High
< 200*F
< 200*F 8.
RCIC Steam Line Area A Temperature - High 5 50*F
< 50*F l
9.
RCIC Equipment Room Ambient s
Temperature - High 3 175'F
$ 175'F l
10.
RCIC Equipment. Room A Temperature - High
$ 50*F
$ 50*F l
g 11.
RCIC Steam Line Tunnel Temperature - High Time Delay Relay
< 30 minutes
<'30 minutes 12.
Drywell Pressure - High
< 2 psig
. < 2 psig i
l-l l
y 4
l TABLE 3.3.2-3 ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME' RESPONSETIME(Seconds)(a)(e)l' TRIP FUNCTION
.. l.'
PRIMARY CONTAINMENT ISOLATION la.
'l.
Low, Level 1 513 2.
. Low, Level--3
<l. (d)
}
7_13 Drywell Pressure - High
$13 u.
c..
=Hain Steam Line 1.
Radiation - High(b) 51.0
[.
$ 13 2.
Pressure Low
$13
)
3.
Flow - High 50.
l" 513 d.
Main Steam Line Tunnel ~ Temperature - High
$13 e.
Condenser Vacuum - Low 513 f.
Turbine Puilding Area' Temperature - High NA
_g.
Main S:.ek' Radiation - High(b)
$ 1.0(d)'
h.;
, Reactor Building Exhaust Radiation - High(b) lI
.NA 2.
SECONDARY CONTAINMENT ISOLATION
+
a.
~ Reactor Building Exhaust Radiation - High(b) 513 b.-
Drywell Pressure - High
$13
'c.
Reactor Vessel Water _ Level - Low, Level 2 513 l
'3.'
REACTOR WATER' CLEANUP SYSTEM ISOLATION a.
A Flow - High 545(c) l
-b.-
Area Temperature - High 513 c.
Area Ventilation A Temperature - High 5 '. 3 l
d.
SLCS Initiation NA e.
Reactor Vessel Water Level - Low, Level 2 513 l.
- f.,
a Flow - High - Time Delay Relay NA
.l BRUNSWICK - UNIT 1 3/4 3-23 Amendment No.
'g4 t i _;
,l
ji;
,f TABLE 3.3.2-3 (Continued)-
ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME TRIP FUNCTION' RESPONSE TIME (Seconds)(a)(e) l-
- 4. : CORE STANDBY COOLING SYSTEMS IS01.ATION a.-
- High Pressure Coolant: Injection System Isolation -
l.
IIPCI Steam Line Flow - High fl3(c)-
.[
l 2.
HPCI Steam Line Flow - High Time Delay Relay NA 3.
HPCI Steam Supply Pressure-- Low
$13-4.
HPCI Steam Line Tunnel Temperature-- High
[13 5.
Bus Power Monitor NA 6.
HPCI Turbine Exhaust Diaphragm Pressure High NA 7.
HPCI Steam Line Ambient Temperature - High NA 8.
HPCI Steam Line Area A Temperatare - High NA
- l.
~
9.
HPCI Equipment Area Temperature - High NA 10.
Drywell Pressure - High NA
-l b.
Reactor Core l Isolation Cooling System Isolation,
- 1. ' RCIC Steam Line Flow - High-
$13(c) d 2.; P.CIC Steam Line Flow - High Time Delay Relay NA 3..
RCIC Steam Supply Pressure - Low..
NA
.4.
RCIC Steam Line Tunnel Temperat're - High NA.
-[
u 5.
Bus Power Monitor NA e
6.
RCIC Turbine Exhaust Diaphram Pressure - High NA 7.-
RCIC Steam Line Ambient Temperature - High NA s
- l 8.
RCIC Stcam Line Area A Temperature - High NA
{
9.- RCIC Equipment 'oom 6 oient Temperature - Sigh NA
- 10. -RCIC Equipment Room A Temperature - Hip.h NA 11.
RCIC Steam Line Tunnel Temperature.- High NA Time Delay Relay s
- 12.. Drywell Pressore - High NA BRUNSWICK - UNIT 1 3/4 3-24 Amend., it No.
m
4 1
- TABLE 3.3.2-3 (Continued)
+
- x ISOLATION SYSTEM' INSTRUMENTATION RESPONSE TIME!
TRIP FUNCTIdN
-RESPONSE TIME (Seconds)(a)(e)
$. ' SHUTDOWN COOLING SYSTEM ISOLATION a.
Reactor Vessel Water ',evel - Low, Level 1 NA
'b.
Reactor Steam Dome Pressure - High NA i
+
t
_f
]
it!
4
'!.l
(:-l '
i
- L I
.i Jp f
. BRUNSWICK - UNIT 1 3/4 3-25 Amendment No.
l'4r s,
I
s a
TABLE 3.3.2-3 (Continued) g ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME-NOTES h
.(a) _
Th'e isolation system instrumentation response. time shall be measured and recorded as a part of the ISOLATION SYSTEM RESPONSE TIME.
Isolation system instrumentation response time specified includes any delay for diesel-generator starting assumed in the accident analysis.
4
- ( b).
Radiation monitors are exempt from response time testing.
Response-time shall be measured from detector output or the input of the first electronic component in the channel.
.(c)
Includes time delay added by the time delay relay.
-(d)
Isolation-actuation-instrumentation response time for MSIVs only.
No' Jdiesel-generator delays assumed.
Isolation system instrumentation response time specified for the Trip (e).
' Function actuating each valve _ group / damper shall be added to the isolation time for valves in each valve group shown in Table'3.6'.3-1 and secondary containment isolation dampers shown in Table 3.6.5.2-1 to obtain ISOLATION SYSTEM RESPONSE TIME for each valve / damper, (f)
Iso 1~ation system instrumentation response time for associa' except MSIVs.
i i
- y
,Yl J
BRUNSWICK - UNIT 1 3/4 3-26 Amendment No.
4
.y
=.
?
l L.
-TABLE 4.3.2-1
.. g
~ ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS v2 S
Q CHANNEL CONDITIONS IN WHICH-OPERATIONAL,
.. CHANNEL i CHANNEL FUNCTIONAL TRIP FUNCTION CHECK-TEST CALIBRATION SURVEILLANCE REQUIRED Ey 1.
PRIMARY CONTAINMENT ISOLATION a.
~
1.'
Low, Level 1 Transmitter:
~NA(a)
NA R(b) 3, 2, ' 3 Trip Logic:
D M
M
.1, 2, 3 l
2.
Low,' Level 3 Transmitter:
NA(a)
NA R(b) 1,:2, 3.
Trip Logic:
D M
. M 1,2,3 b.
Drywell Pressure - Hi;h Transmitter:
~NA(a)
NA R(b) 1, 2, 3 :
w2 Trip Logic:
D M~
M 1, 2, 3 u
c.
Main Steam Line-U l.
Radiation - High D
W R(d) 1, 2, 3 2.
Pressure - Low-Transmitter:
NA(a)
NA R(D) 1 Trip Logic:
D M
M 1
3.
Flow - High-Transmitter:
NA(a)
NA R(b) y Trip Logic:
D M
M 1
d.
Main Steam Line Tunnel g
Temperature - High NA-M R
1, 2, 3' k
e.
Condenser Vacuum - Low B
Transmitter:
NA(a)
NA' R(b) 1, 2(*)'
1, 2(*)
Trip Logic:
D M
M y
f.
Turbine Building Area
~
Temperature - High NA M
- R 1, 2, 3
- l g.
Main Stack Radiation Thigh-NA
-Q R'-
1, 2, 3 -
h.
Reactor-Building Exhausti 1,2,3
-l.
Radiation
- High'
'D-
~M R-
--e.mu-_4y-=
-.-we,
-h-..,.--s'
-es--=--
+. - - - -... _.
a
.m.m...
.ar-
+eh,e--m.k_
....-i*--ham.<%m s
Mw-su q l
jm 3
TART _F 4 1_7-1 (Cnn r i mwd i -
E AcT11ATTON TMSTRID4FMTATTON CIIRVETT.TAMcF R FOITT R EMFMTK
- T COT _ATTON CHANNEL' OPERATIONALL Q
cfECK :
TEST -
CAT.T RR ATION SURVETT T AMCE RFollTRFD l
CHANNEL FUNCTIONAL CHANNEL--
CONDITIONS IN WHICH -
TRTP FIINCTION Ey 2,
errOMnARY COMTATMMFNT TROI.ATTON
~
Reactor Buildin Exhaust If Radiation -'H gh D
H R
1,2,3,5. and a.
b.
Drywell Pressure - High NA a)
NA R
1,.2, 3
g)
Transmitter:
Trip Logic D ~.
M M
1, 2, 3 Reactor Vessel Water Level -
c.
R(b)
..1, 2, 3 Low, Level 2 NA(a)
NA Transmitter:
2 Trip Logic:
D M
M.
1, 2, 3 w
Y 3.
RFACTOR WATER cf.FAMilP SYSTEM TSOTATION E$
a.
A Flow - High D
M R
1, 2, 3 '
b.
Area. Temperature - High NA M
R 1, 2, 3 y
Area Ventilation a Temperature - High NA
~M R
1, 2, 3 l
-I
.l c.
l d.
SLCS Initiation NA R
NA 1, 2, 3 lj e.
'l I
R(b) 1, 2, 3
'i Low, Level 2 NA * )
NA Transmitter:
Trip Logic:
D lM M
1,.2, 3-g a
.l E.
f.
A Flow - High - Time Delay'Rel'y' NA-M
-R 1,-l2, 3-J' a
- s
?
hl
~'
~.
-TABLE 4.3.2-1-(Continued)
L g
~
.E,
ISOLATION ACTUATION ~ INSTRUMENTATION SURVEILLANCE REQUIREMENTS
.y E
CHANNEL.
' OPERATIONAL CHANNEL FUNCTIONAL-CHANNEL-CONDITIONS.IN WHICH M
~ CHECK-TEST CALIBRATION SURVEILLANCE ' REQUIRED e
g TRIP FUNCTION R
4.
CORE STANDBY COOLING SYSTEMS ISOLATION Injection System Isolation a..
High Pressure Coolant 1.
HPCI Steam Line Flow --High.
R(b) 1~
2, 3 NA(a)
NA Transmitter:
Trip Logic:
.D M
M 1,,2, 3
$l 2.
HPCI Steam Line Flow - liigh NA R:
R 1, 2,-~3 Time Delay Relay t
3.
HPCI Steam Supply Pressure-- Low NA H
R 1, 2, 31 n
y 5
4.
HPCI Steam Line Tunnel NA M
Q 1, 2, 3 Temperature - High NA R
NA 1, 2, 3 5.
Bus Power Monitor 6.
HPCI Turbine Exhaust Diaphragm Pressure - High NA M
Q 1, 2, 3 7.
HPCI. Steam Line Ambient
.NA H
R
.1, 2, 3
_ l-Temperature
.High.
g 8.
HPCI Steam Line Area NA M
R 1, 2, 3 l
g-a Temperature - High g
n
.1, 2, 3 -
l 9.
HPCI Equipment. Area M-Q g:
Temperature -.High NA 10.
Drywell' Pressure - liigh -
NA(a)I NA-RID)'
- 1,
- 2, - 3 "
Transmitter:
D:
M-
~M 1, 2, 3 Trip Logic:
=-
~, _ _ '
- '~
~
^
2.~
7 E-
~
TABLE'4.3.2-1 (Continued)
Eg ISOLATION ACTUATION INSTRUMENTATION 3URVEILLANCE REQUIREMENTS
.Q CHANNEL
. OPERATIONAL' CHANNEL
' FUNCTIONAL CHANNEL
. CONDITIONS IN WHICH-TRIP FUNCTION CHECK-TEST CALIBRATION SUFVEILLANCE REQUIRED E
Q 4.
CORE STANDBY COOLING SYSTEMS ISOLATION (Continued)
~
b.
Reactor Core' Isolation Cooling System Isolation 1.
RCIC Steam Line Flow - High Transmitter:-
NA(a)
'NA' R(b) 1, 2, ~ 3
-Trip Logic:
D M
M.
I f
2,' 3 2.
RCIC Steam Line Flow - High Time Delay Relay NA R
R 1, 2, 3 f 3.
RCIC Steam Supply Pressure - Low NA M
Q 1,.2, 3-..
4.
RCIC Steam Line Tunnel
' j-Tempereture -- High NA
-M R
1, 2, 3 5.
Bus Power Monitor NA R
NA 1, 2, 3 6.
RCIC Turbine Exhaust Diaphragm M'
R 1, 2, 3 ;
Pressure - High NA 7.
RCIC Steam Line Ambient
{
Temperature - High NA M
R.
1, 2, 3 -
8.
RCIC Steam Line Area 1, 2, : 3 -
l' g.
A Temperature - High NA M
R' 9.
RCIC Equipment Room Ambient-
. [,-
g Temperature - HighL
'NA
.M Q
1, n-2, 3.
e g
10.
RCIC Equipment Room a Temperature - High NA M
'Q 1, 2, 3 l
o y
- 11.. RCIC Steam Line Tunnel Temperature - High
~
Time' Delay Relay.
~
.NA.
M-
.R
.1, 2, 3 12.
Drywell Pressure. 'High' NA(a):
'R$D)
-1,.2, 3'
Transmitter:
. NA -
Trip Logic:
JD
'M H'
1, 2, 3 '
e
=
n.
.m
-'<+
N4n 4._
.,.9._
a.-
4.,
-rei ai.
e
$%,,g 7
4;w.4,.
g g-4a s
pp 4h
,wr p ary '
d-wn
t.-
' TABLE 4.3.2-1 (Continued)
-ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS NOTES
'(a).
T'he transmitter channel check is satisfied by the trip unit channel check.- A separate transmitter check is.not required.
(b)
Transmitters-are exempted from the' monthly channel calibration.
(c)
If not performed within the previous 31 days.
(d)
Testing shall verify that the mechanical vacuum pump trips and the mechanical vacuum pump line valve closes.
(e)-
When reactor steam pressur3 > $00 psig.
(f), When handling irradiated fuel in the-secondary containment.
l BRUNSWICK - UNIT 1 3/4 3-32 Amendment No.
. i
~ + f _l i'.,If.,.
t n ;.
1 -:;
y
(
.'t" f.' s l ;-
[':);'
lE
'T
. TABLE 3.6.3-1 la a
1 PRIMARY CONTAINMENT ISOLATION VALVES q
. Table 3.6.3-1 has been deleted.
p:1:
Refer to Plant Procedure RCI-02.6.
I
'. E
. g; Pages 3/4 6-15'.through 3/4~6-17 have been' deleted.
w
'hA i
BRUNSWICK - UNIT 1 3/4 6-14 Amendment No.
CONTAINMENT SYSTEMS :
SECONDARY' CONTAINMENT AUTOMATIC ISOLATION DAMPERS
~ LIMITINC CONDITION FOR OPERATION 3.6.5.2 The sec'ondary containment automatic isolation dampers shown in l
Table 3.6.5.2-1 shall be OPERABLE.
LAPPLICABILITY. OPERATIONAL CONDITIONS 1, 2, 3, 5,.and *.
ACTION With one or. more of the secondary containment isolation dampers specified in Table 3.6.5.2-1 inoperable, operation may continue and the provisions of Specification 3.0.4 are'not applicable provided that at least one isolation
'i damper is maintained OPERABLE-in each affected penetration that is open, and; The inoperable damper is restored to opt.Rt.BLE status.within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, a.
or b.-
The af fected penetration is isolated by use of a closed damper within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, or c.
SECONDARY CONTAINMENT INTECRITY is demonstrated within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> and Y
the damper is restored to OPERABLE status within 7 days.
'l.
Otherwise, in OPERATIONAL CONDITIONS 1, 2, or 3, be in at least il0T SilUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SilVTDOWN within the g
following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
ii Otherwise, in OPERATIONAL CONDITION 5 or *, suspend irradiated fuel l
W handling.in the secondary containment, CORE ALTERATIONS, or activities that could reduce the SiluTDOWN MARCIN. The provisions of Specification 3.0.'3 are not applicable.
'+
- When irradiated fuel is being handled in the secondary containment.
s BRUNSWICK - UNIT 1 3/4 6-22 Amendment No.
TABLE 3.6.5.2-1 SECONDARY CONTAINMENT AUTOMATIC-ISOLATION DAMPERS Table 3.6.5.2-1 has been deleted.
Re fe r to Pl' ant ' Procedure RCI-02.6..
~
\\
BRUNSWICK - UNIT 1 3/4 6-24 Amendment No.
?
~
-CONTAINMENT SYSTEMS BASES-
'3/4.6.3 PRIMARY CONTAINHENT ISOLATION VALVES (Continued)-
A list of. automatic closing primary containment' isolation valves and their associated closure times shall be available at the plant in accordance with 1
Section 50.71(c) of 10 CFR Part 50.
The addition and deletion of primary containment isolation valves shall be made in accordance with Section 50.59 of 10 CFR Part 50.
L3/4.6.4 VACUUM RELIEF Vacuum' relief breakers are provided to equalize the pressure between the drywell and suppression pool and the suppression pool and reactor building.
This system will maintain the structural integrity of the containment under conditions of,large differential pressures.
l The vacuum breakers between the drywell and the suppression pool must not be inoperable in the open position since this would allow bypassing,of the suppression ~ pool in case of an accident. There are an adequate number of valves to provide some redundancy so that operation may continue with no more
.thar. 2 vacuum breakers inoperable and secured in the closed position.
Each set of vacuum relief valves between the suppression chamber and reactor building provides 100% relief, which may by required in the unlikely event that negative pressures develop in the. primary containment.
The Nitrogen Backup-System provides backup motive power for these suppression i
pool-reactor building vacuum breakers on a loss of instrument air.
The normal non-interruptible-instrument air system for these vacuum breakers is designed as a Seismic Class I system supplied by air compressors powered from the emergency buses. The Nitrogen System serves as a backup to that air system and'thus the loss of the Nitrogen System, or portions thereof, does not make the vacuum breakers inoperable. The' design l allows for the out of service r
times in Actions b and c.
The Nitrogen Backup System is added to the Suppression Pool-Reactor Building Vacuum Breaker specification to satisfy NRC concerns relative to 10'CFR 50.44(c)(3) as addressed in the Brunswick Safety Evaluation Report dated October 30, 1986 concerning Generic Letter 84-09.
. Pressurization to 1130 psig assures sufficient system capacity to provide 24 L
hours of operation with design valve actuation and system leakage.
L 3/4.6.5 SECONDARY CONTAINMENT L
Secondary containment is designed to minimize any ground level release of radioactive material which may result from an accident. The reactor building provides secondary containment during normal operation when the drywell is
(.
sealed and in service. When the reactor is shut down, or during refueling, l
the drywell may be open and the reactor building then becomes the primary containment.
l l
l BRUNSWICK - UNIT 1 B 3/4 6-5 Amendment No.
l I
t
CONTAIMMENT SYSTEMS' BASES'(Continued)
.3/4.6.5 SECONDARY CONTAINMENT (Cont inued)
Establishing and maintaining a vacuum in the building with the standby gas-
. treatment-system, once per 18 months, along with the surveillance of the valves._is adequate to ensure that there are no violations.of the integrity of the' secondary containment.
A list of. secondary containment automatic isolation dampers shall be available at-the plant-in accordance with Section~50.71(c) of 10 CFR Part 50.
The addition and deletion of secondary containment automatic isolation dampers shall be made in accordance-with Secti'n 50.59 of 10 CFR Part 50.
3/4.6.6 CONTAINMENT ATMOSPHERE CONTROL The OPERABILITY of the containment iodine filter trains ensures that sufficient iodine removal capability will be svallable in the event of a ELOCA. The reduction in containment iodtae. inventory reduces the resulting site boundary radiation doses associated w;th_ containment leakage. The operation of this system and resultant iodine' removal capacity are consistent with the assun.ptions used in the LOCA analyses.
The OPERABILITY of the equipment and systems required for the detection and control of-hydrogen gas ensures that this equipment will be available to maintain 'the hydrogen concentration within -containment below its flammable limit during post-LOCA conditions. The containment inerting system is capable:
of, controlling the expected hydrogen generation associated with 1) zirconium-
-water reactionsi 2) radiolytic decompositioa of water, and 3) corrosion of metals within containment. The hydrogen' control' system is can'sistent with the
'reconnendations of Regulatory Guide 1.7, " Cont rol of Combustible Cas
'Concentrtions in Containment Following a LOCA."
.i BRUNSWICK - UNIT 1 B 3/4 6-6 Amendment No.
I i
ENCIDSURE 3.
. BRUNSWICK STEAM ELECTRIC' PLANT, UNITS 1 AND.2 NRC DOCKETS 50-325 6 50-324 OPERATING LICENSES DPR-71 & DPR 62 REQUEST FOR LICENSE AMENDMENT PRIMARY CONTAINMENT ISOIATION SYSTEM (NRC TAC NOS, 67991 !.ND 67992)
TECHNICAL SPECIFICATION PACES - UNIT 2 e
,.,i-1 i j '.~
INDEX BASES j
SECTION PACE 3/4.4 REACTOR COOLANT SYSTEM (Continued)
.j 3/4.4.4 CHEMISTRY................................................ B 3/4 4-2
~3/4.4.5 S PECI FI C ACTI VI TY........................................ B 3 /4 4 -2 3/4.4.6 PRESS UR E/ TEMPER ATUR E LI MI TS.............................. B 3 / 414-3 3/4.4.7 MAI N STEAM LI NE. I SOLATION VALVES......................... B 3 /4' 4-7 3/4.4.8 STRUCTU RA L I NTECR ITY..................................... B 3 /4 4 3 3/4.5 EMERGENCY CORE COOLING SYSTEM 3/4.5.1 HICH PRESSURE COOLANT INJECTION SYSTEM................... B 3 /4 5-1 3/4.5.2 AUTOMATIC DEPRESSURIZATION SYSTEM (ADS).................. B 3/4 5-l' i
3/4.5.3 LOW PRESS UR E COOLI NG SYSTEM S............................. B 3 /4 5-2 3/4.5.4 SUPPRESSION P00L......................................... B 3/4 5-4 3/4.6 CONTAINMENT SYSTEMS 1
3/4.6.1
. PRIMARY CONTAINMENT...................................... B 3/4 6 '
3/4.6.2
' DEPRESSURIZ ATION AND COOLING SYSTEMS..................... B 3 /4 ' 6-3 1
3/4.6.3 PRIMARY CONTAINMENT. ISOLATION VALVES..................... B 3/4 6-4 3/4.6.4
. V AC UUM RE LI EF............................................ B 3 / 4 6 -5 3/4.6.5 SECONDARY CONTAINMENT.................................... B 3/4 6-5 3/4.6.6 CONTAINMENT ATMOSPHERE CONTR0L........................... B 3/4 6-6' l.
3/4.7 PLANT SYSTEMS t
3/4.7.1 SERVICE WATER SYSTEMS.................................... B 3/4'7-1 j
l l
3/4.7.2 CONTROL ROOM EMERCENCY FI LTRATION SYSTEM................. B 3 /4' 7-l'~
l i
I l.
l
-BRUNSWICK --UNIT 2 XI Amendment No.
2
' DEFINIT 10NS' 0FFSITE DOSE CALCULATION MANUAL (ODCM)
The OFFSITE DOSE CALCULATIONAL MANUAL (ODCM) is a manual which contains the' current methodology and parameters to be used to calculate offsite doses resulting from the release of radioactive gaseous and liquid effluentst the methodology to calculate gaseous and_ liquid effluent monitoring instrumentation alarm / trip setpoints; and, the requirements of the environmental radiological monitoring. program.
OPERABLE - OPERABILITY A system, subsystem, train, component, or device shall be OPERABLE or have
-OF6RABILITY when it is capable of performing its specified function (s).
LImplicit in this definition shall be the assumption that all necessary attendant instrumentation, controls, normal and emergency electric power sources, cooling or seal water, lubrication or other auxiliary equipment that are required for the system,= subsystem. train, component, or device to perform its function (s) are also capable of. performing their related support function (s).
OPERATIONAL CONDITION An OPERATIONAL CONDITION shall be any one inclusive combination of mode switch position and average reactor coolant temperature as indicated in Table 1.2.
PHYSICS TESTS
' PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor-core and related instrumentation and are 1) described in Section 14 of the Updated FSAR, 2) authorized under the provisions of 10 CFR 50.59, or 3) otherwise approved-by the Commission.
PRESSURE BOUNDARY LEAKACE PRESSURE BOUNDARY LEAKAGE shall be leakage through a non-isolable fault in a reactor coolant system component body, pipe wall, or vessel wall.
PRIMARY CONTAINMENT INTECRITY PRIMARY CONTAINMENT INTEGRITY shall exist when:
All penetrations required to be closed during accident conditions a.
are either:
1.
Capable of being closed by an OPERABLE containment automatic isolation valve system, or 2.
Closed by at least one manual valve, blind flange, or deactivated automatic valve secured in its closed position, except as provided in-Table 3.6.3-1 of Specification 3.6.3.1.
l BRUNSWICK - UNIT 2 1-5 Amendment No.
m=
=.
~r~
~
~
~
~
~
~ '
F.
~
~
- 1% & ~
^
. : :_- =
e~..
-~
~.
~ ~ ~
5~ ^ ^~
. ' '. ; 9~ : ~ - -.
1
^
~ TABLE 3.3.2-1
_g ISOLATION ACTUATION INSTRUMENTATION y
E VALVE CROUPS-MINIMUM NUMBER APPLICABLE X
. OPERATED BY OPERABLE CHANNELS :
OPERATIONAL-8 SIGNAL (a)
PER TRIP SYSTEM (b)(c) CONDITION-
. ACTION TRIP FUNCTION U
1.
PRIMARY CONTAINMENT ISOLATION-m Reactor Vessel Water Level -
1.
Low, Level 1 2, 6 2
1,2,3 20 a.
8-2 1,2,3 27 1
2 1,2,3 (20 I
2.
Low, Level 3 b.
Drywell Pressure - High 2, 6 '
2 "1,
2, 3 20
. l ]..
'7 1.
Radiation - High 1
2 1, 2, 3' 21 c.
C I5) 2
.1 22 j '.
I 2.
Pressure - Low 1(5) 2/line 1
22 I
3.
Flow - High 55) 2 2, 3 -
21 l
1 4.
Flow - High d.
Main Steam Line Tunnel I5) 2(d) 1, 2, 3 21 l'
I Temperature - High
~1, 2(*)
21 l
I5) 2 I
Condenser Vacuum - Low e.
E.
f.
Turbine Building Area I5) 4(d) 1, 2, 3 21 l'
I 2
Temperature - Ifigh
- s (h) 1 1, 2,. 3
.28 Main Stack Radiation - High g.
6 1
1, 2, 3 20
- l~-
h.
Reactor Building Exhaust Radiation - High w-'
im.
- ?
f ~-
~~~
~~~ ~ ~~
~"
" ~ _
c-- -
-v=
bl _
.:e
~
9 1..
j'
--TABLE 3.3.2-1 (Continued) 5-
~
~g
' ISOLATION ACTUATION INSTRUMENTATION.
.. VALVE CROUPS MINIMUM NUMBER:
. APPLICABLE y
x 8
OPERATED BY OPERABLE. CHANNELS OPERATIONAL TRIP FUNCTION SICNAL(a)
'PER TRIP SYSTEM (b)(c) s CONDITI N-
~ ACTION U
2.
SECONDARY' CONTAINMENT ISOLATION y
a.
Reactor Building Exhaust (1) 1
'1,'2,-3, 5, 23i
' Radiation - High and *.
~ 20 '-
l-6 1
1,2,3 b.
Drywell Pressure High
.(1).
2-1,2,3 23l 2, 6 2
1,2,3 20:
R c.
(1) 2 1,'2',
3 73 Low,. Level 2 3
2 1,2,3
~ 24 Y
C 3.
REACTOP WATER CLEANUP-SYSTEM ISOLATION a.
A Flow - High 3
1 1,'2,'3 24 b.
Area Temperature - High 3
2 1,2,3 24 c.
Area Ventilation a Temperature - High 3
2 1,'2, 3
24 1l.
I) d.
SLCS Initiation 3
NA 1, 2, 3 '
24 e.
k Lov, Level 2 3
2 1,2,3 24 a
3 f.
A Flow - High - Time Delay Relay NA 1
1,2,3 24 l.
E
.i!F
.,._--s
,~.
.-.3
. E'
- 7 o-~-
.'s.
't-w-
- ' * + +
~w' ' -
"'"~"wM-9 r--
'~---w*
r
~ ~ ~ ~ "
.u-::3
- ;-R 1 :- =. ' = e -.
~' "%:~
~
39 s
y x
l TABLE 13.3I2-1 (continued) 1g
'E ISOLATION ACTUATION INSTRUMENTATION
.. E VALVE' GROUPS _.. MINIMUM NUMBER APPLICABLE' OPERATED BY OPERABLE CHANNELS..
OPERATIONAL-TRIP FUNCTION SICNAL(a)
PER TRIP SYSTEM (b)(c) CONDITION ACTION U
4.
CORE STANDBY COOLING SYSTEMS ISOLATION u
a.
High Pressure Coolant Injection System Isolation 1.
HPCI Steam Line Flow - High 4
1-
'-1,2,3 25 2.
HPCI Steam Line Flow - High 1
1, 2,. 3 25 I
g.
Time Delay Relay NA -
t 3.
HPCI Steam Supply Pressure - Low 4
2
-1, 2, 3 25 I}
7 I
1, 2, 3 25
[
Y E
4.
HPCI Steam Line Tunnel Temperature - High 4
2
- 1, 2, 3 25 IE) 1/ bus 1, 2,~3 26 5.
Bus Power Monitor NA 6.
HPCI Turbine Exhaust-Diaphragm Pressure - High-.
4
. 2 1,2,3 25 7.
HPCI Steam Line Ambient Temperature - High.
4 1
' 1,-2, 3
25-N 8.
HPCI Steam Line Area A Temperature
.High.
4 1
1,.2, 3
'25
-l 5
9.
HPCI Equipment Area E
Temperature - High-4 1
1,2,3
'25 l
10.
Drywell Pressure
.High.
7(k)
~1 1, 2, 3 -
25 g
_m.
a
..u.,
3.e.,,-
h p
g-9p.mg i,q,9.-
ea y
~p y
..y,*m
.e c
Sg--.,.
m
)
ww.,,
.,.ww-.
g
.g.
q y
re-w.,eq
[:[
~~'
^
~
~
u.
e 2 TABLE 3.3.2-1-(Continued)
"n' ISOLATION ACTUATION INSTRUMENT 5 TION ~
us E
VALVE CROUPS - MINIMUM NUMBER APPLICABLE Q
OPERATED BY OPERABLE CHANNELS OPERATIONAL SIGNAL (a)
PER TRIP SYSTEM (b)(c)-~ CONDITION ACTION-TRIP FUNCTION:
E CORE STANDBY COOLING SYSTEMS ISOLATION. (Contir.ued)
Q 4.
.b.
Reactor Core: Isolation Cooling System ' Isolation 1.
RCIC Steam Line Flow - High 5
1 1,2,3 25 2.
RCIC Steam Line Flow
.High-1 1,2,3
-25
.l.
NA Time Delay Relay 2
1,2,3
- 25 3.
RCIC Steam Supply Pressure
. Low-g) 9
'1
-1, 2, 3
.25 l:
4.
RCIC Steam Line Tunnel 5
2.
1, 2, 3 25 Temperature - High IE) 1/ bus 1, 2, 3 2r 5.
Ous Power Monitor NA 6.
RCIC Turbine Exhaust Diaphragm Pressure - High~
5 2
1, 2,' 3 25 7.
RCIC Steam Line Ambient 5
3 1,2,3 25 Temperature - High 5
1 1, 2, 3 ;
25 l..
8.
RCIC Steam Line Area A Temperature - High 9.
RCIC Equipment Room Ambient 1
1,2,3 25
-l' g
Temperature - High-5
- m E
5
~1 1,2,3 25 B
10.
RCIC Equipment Room A Temperature - High NA I
1, 2, 3 25 y
11.
RCIC Steam Line Tunnel:
. Temperature High Time' Delay Relay 9(k) 1 1, 2,.3 25 12.
Drywell' Pressure - High.
~
^'
N---
m.m.
N
9.5:,-
' M -.. - ::.
-: '. x, '~
~-72;jc.-
2:n
- - v --
- -
23.y e ~- m -.- m =- - _
n= T --
_ m y
. ".; f, ?
? :..
Y
-o c :-
. g.
l
~1 j TABLE 3.3.2-1 (Continued)
~
E.
Ty ISOLATION ACTUATION INSTRUMENTATION M
MINIMUM NUMBER APPLICABLE.
M'
- VALVE GROUPS e
OPERATED BY- ~ OPERABLE CHANNELS-OPERATIONAL TRIP FUNCTION SIGNAL (a)-
PER TRIP SYSTEM (b)(c) CONDITION
- ACTION u U
5.
SffUTDOWN COOLING SYSTEM ' ISOLATION m
a.
2,~ 6 2
-l', 2, 3' '
20; Low, Level 1
'8-2.
1, 2, ~ 3 -
. 2 7;.
~
II } ~
f 2
b.
Reactor Steam Dome Pressure - liigh 8
l.
-- 1,~2, 37
-;27 i
a o.
B
.e h
m p-se-
~
s
+,.-m..-
fA y,sw,,., -,
aa ao.,i A
7_.,-,
3--
p W
_se-g.-.-
+ ~
.%=
i-.---9 g.
__3__y g___
y 7
w.r
-TABLE-3.3.2-1 (Continued)
' ISOLATION ACTUATION INSTR _UMENTATION
-ACTIONS k
ACTION'20
-Be in at'least HOT SHUTDOWN within 6' hours and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.
ACTION 21 - Be in at least STARTUP h the main steam line isolation valves closed
.within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or be in at least HOT SHUTDOWN within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />'and in COLD-SHUTDOWN within the next 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.
ACTION 22 - Be in at least STARTUP within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.
. ACTION 23 - Establish SECONDARY CONTAINMENT INTECRITY with the standby gas treatment system operating within one hour.
.~ ACTION 24 - Isolate the reactor water cleanup system.
ACTION 25 - Close the affected system isolation valves and declare the affected-system inoperable.
ACTION 26 - Verify p'ower availability to the bus at least once'per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
ACTION 27 - Deactivate the shutdown cooling supply and reactor' vessel head spray isolation' valves in the closed position until the reactor steam dome
. pressure is within the specified limits.
ACTION 28 - Close:the affected isolation valves within 14 days or be in HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following.24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
NOTES l
When' handling irradiated fuel in the secondary containment.
t l'
(a)
See' Specification 3.6.3.1, Table 3.6.3-1-for valves-.in each valve group.
l (b)-
A channel'may be placed in an. inoperable status for.up to'2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for
. required surveillance without placing the trip system in the. tripped condi. tion provided at least one other OPERABLE channel in the same trip
-t system is monitoring that parameter.
(c)
With only one channel per trip system, an inoperable channel need not be placed in the tripped condition where this would cause the Trip Function to occur.
In these cases, the inoperable channel shall be. restored to OPERABLE status within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or the ACTION required by Table'3.3.2-1 for.that Trip Function shall be taken.
(d).
A channel is OPERABLE if 2 of 4 instruments in that channel are OPERABLE.
(e)
With reactor steam pressure > 500 psig.
(f)
Closes'only RWCU outlet tsolation valve.
(g)-
Alarm only.
(h)
' Isolates containment purge and vent valves.
(i)
Does not isolate Ell-F015A,B.
(j)
Does not isolate B32-F019 or B32-F020.
-(k)
-Valve isolation depends upon low steam supply pressure coincirJent with high drywell' pressure.
(1)
Secondary containment isolation dampers as listed in Table 3.6.5.2-1.
BRUNSWICK - UNIT 2 1/4 3-17 Amendment No.
A is m
, 'q:.q !:
,e 3g-1 r
e
_m TABLE 3.3.2-2
=
E E
-E ISOLATION ACTUATION INSTRUMENTATION SETPOINTS ALLOWABLE' '-
n*
TRIP SETPOINT VALUE TRIP FUNCTION 1
E Q
1.
PRIMARY CONTAINMENT ISOLATION
~
w Reactor Vessel Water Level -
3 + 162.5 inches *)
3 + 162.5 inches *):
I I
a.
1.
Low, Level 1 3 + 2.5 inches (a)
+ 2.5 inches (a),
2.
Low, Level 3 b.
Drywell Pressure - High 5 2 psig i 2 psig c.
Radiation - High' 5 3 x full g wer 53.5xfu{) power
- j I
2 background background j
w 2.
Pressure - Low 3 825 psig 3 825-psig 3.
Flow - High 5 140%.of rated flow 1 140% of rated flow 4.
Flow - High 5 40% of rated flow
$ 40% of rated flow.
d.
Main Steam Line Tunnel Temperature - High
$ 200*F 1 200*F e.
Condenser Vacuum - Low 3 7 inches Hg vacuum
'3 7 inches Hg vacuum f.
Turbine Building Area Temperature - High 5 200*F.
1 200*F Main Stack Radiation - High (b)
(b).
g.
N E
h.
Reactor Building Exhaust Radiation - High 5 11 mr/hr
'$ 11 mr/hr E
Z
.._ M. -
~
~
- ?2 -
- * ? P.
- ~ _.?#
~-
- ~5 2 N [ '~ 7.d d f.4Eur
.'3Edi J1~-1M[
g-33 u
- x 7;g=
~
~'
~ $$1
^
- .. :-W'
'T;
.L /
~"
~
~
~~ :
. d.
--~
~.1, A : ' -
N TART F ' 1.1. 7-7 (EnntinsiedI E
Tuni.ATION APT 11ATTON TMRTRIDtKMTATTOM MFTPOTNTM
{c cm
-ALLOWABLE TRTP MFTFOTUT VAtifF TRTP F11McTTON E
~
G 2.
MFCOMDARY FOMTATMWFMT TMOT ATTON w
Reactor Building Exhaust Radiation - High
$ 11 er/hr 5.11.mr/hr
~
a.
b.
Drywell Pressure - High
.$ 2 psig 5 2 psig 3 + 112-inches *)
3 + 112 inches (a).
~
I c.
R6 actor Vessel Water Level - Low, Level 2 3.
RFAPTOR MATFR cfFAMllp MYRTFM TROT.ATION A Flow - High
< 53 gal / min 5 53 gal / min w
a.
g Y
b.
Area Temperature High
$ 150*F.
$ 150*F Area Ventilation A Temperature - High-
$ 50*F
$ 50*F l
e c.
d.
SLCS Initiation NA NA '
I I
-3 + 112 inches ")
3 + 112. inches ")
- e. ' Reactor Vessel-Water Level Low, Level 2 f.
A Flow - High -. Time Delay Relay 5 45 seconds'
$ 45 seconds l
lT ao.
B
$n E
=
I
.O w
v.i M
L-
g_g-4:
3, z l
~
ll-
^
~
_'~:
3
^
g h
i ~
' g
. TABLE 3.3.2-2 (Continued)
E=
- y.
ISOLATION ACTUATION INSTRUMENTATION SETPOINTS E*~
, ALLOWABLE -
- y e
TRIP FUNCTION
. TRIP SETPOINT VALUE-
~
E Q
- 4.
COPE STANDBY ~ COOLING SYSTEMS ISOLATION i
w a.
High Pressure. Coolant Injection System Isolation-1.-
HPCI Steam Line Flow - High
$ 300% of rated flow
$ 300% of rated f!ow:
2.
HPCI Steam Line Flow - High 3l< t'<.12 seconds-Time Delay Relay 3 < t 3 7 seconds
_ 100 psig-3.
HPCI Steam Supply Pressure - Low
?_ 100 psig m$
4.
HPCI Steam Line Tunnel Temperature - High
< 200*F
< 200*F-O c>
5.
Bus Power Monitor
. NA
- NA-6.
HPCI Turbine-Exhaust Diaphragm Pressure - Highi
$ 10 psig
< 10 psig 7.
HPCI Steam LineIAmbient Temperature'- High 3 200*F
$ 200*F.
- l~
8.
HPCI Steam'Line Area A Temperature - High 5 50*F
-$ 50*F.
' l 1 175*F l.
9.
HPCI Equipment Area Temperature - High
< 175'F g
10.
Drywell Pressare'- High
< 2 psig-
< 2 psig-l
?.
.1 1
st 9
y:T.
er w.-
s
.ig."
9 r,y
,er',-
4
,.hanw-,-
r--,_
3
,.d'w m,
-.p.w,,e-
,,*,.u.s.e.W d+
,e eg-
,gDrest er
.._,i-cg%
w.,
y-iiipy
-.%-g,%
w y
9.nem.g.,
y
.gi
.,e
- e 9_ py.g y
.g.
.~.
".=
r_
4;
- = '
~
- - ( _
~ ~
w
.w
..M TABLE 3.3.2-2'(Continued)
E E
E
' ISOLATION ACTUATION ^ INSTRUMENTATION SETPOINTS E
ALLOWABLE-TRIP SETPOINT VALUE TRIP FUNCTION E
E 4.
CORE STANDBY COOLING SYSTEMS ISOLATION-(Continued)-
n b.
Reactor Core' Isolation Cooling System Isolation.
1.
RCIC Steam Line Flow High
$ 300% of rated flow
$ 300% of rated flow Time Delay Relay 3 $ t 5 7 seconds 3 $'t'$ 12 seconds.
1l...
2.
RCIC Steam'Line Flow --High 3.
RCIC Steam Supply Pressure - Low 3 50 psig 3 50 psig-4.
RCIC Steam Line Tunnel Temperature - High 5 175'F
$l175*F-NA NA 5.
Bus Power Monitor 6.
RCIC Turbine Exhaust Diaphragm
~
Pressure - High 5 10 psig 5 10,psig 7.
RCIC Steam Line Ambient Temperature - High
$ 200*F' 1'200*F-l 8.
RCIC Steam Line Area A Temperature'- High 1.50*F
$ 50*F l
9.
RCIC Equipment Room Ambient Temperature - High~
$ 175'F
$ 175*F l
E 10.
RCIC Equipment Room A Temperature
- High
$ 50*F
$ 50*F j.
a RCIC Steam'Line Tunnel Temperature Hight
. 1:30 minutes 5.30-minutes 11.
1 Time Delay Relay.
12.
Dryvell Pressure - High
$ 2 psig-f5 2 psig-
___.a.6..
ll l
a p
- ~
}l, g;
-TABLE 3.3.2-3 ISOLATION SYSTEM TNTTilURENTITION RESPONSE TIME TRIPFUNCT50NT RESPONSE TIME"(Seconds)(a)(e);
~ 1. ' PRIMARY CONTAINMENT ISOLATION-a..-
Reactor; Vessel Water Level 1.
Low,-Level 1-
$13, (d) o 2 '. - Low, Level 3
<1.gf) cl!
.313 b.
Drywell Pressure - High-
$13 1
c.
Main Steam-Line 1.-~ Radiation -;High(b) ci, (d)-
2 f)
_13 i
2 '. Pressure;- Low
$13
<0. (f) d)
3..
Flow - High
~
$13 E13}(d)'
d,'
4.
Flow:- High
<0 f) d '. '
Hain Steam Line Tunnel. Temperature - High
$13 e.
Condenser Vacuum'- Low-
$13 Turbine Building Area-Temperature - High-NA-i'
- f.
'Hain. Stack Ra'diation;- High(b)
<l.0(d)-
g.
- h.. ' Reactor Building Exhaust Radiation - High(b) yg 2.,
SECONDARY CONTAINMENT ISOLATION
. Reactor Building-Exhaust Radiation - High(b)~
,5g3 o
.a.
,b.
Drywell' Pressure - High
$13 c.'
Reactor Vessel Water Level - Low, Level 2
$13
'[
- 3.
REACTOR' WATER CLEANUP SYSTEM ISOLATION a.
A Flow High
$45(C) b'. -.ArcaiTemperature - High
$13 7
c.-
. Area' Ventilation a Temperature - High
$13 d.
SLCS Initiation NA e.
Reactor Vessel Water Lovel - Low, Level 2 113
-f.
-A Flow - High - Time Delay Relay NA
' BRUNSWICK' UNIT 2 3/4 3-23 Amendment No.
- s b
TABLE 3.3.2-3 (Continued)
ISOLATION SYSTEM INSTRUMENTATION RESPONSE TIME TRIP FUNCTION RESPONSE TIME (Seconds)(a)(c) 4.
CORE STANDBY COOLING SYSTEMS ISOLATION a.
High Pressure Coolant Injection System Isolation 1.
HPCI Steam Line Flow - H16h
$13(c) 2.
HPCI Steam Line Flow - High Time Delay Relay NA 3.
HPCI Steam Supply Pressure - Low
$13 4.
HPCI Steam Line Tunne1 Temperature - High
$13 5.
Bus Power Monitor NA 6.
HPCI Turbine Exhaust Diaphragm Pressure - High NA 7.
HPCI Steam Line Ambient Temperature - High NA 8.
HPCI Steam Line Area a Temperature - High NA l
9.
HPCI Equipment Area Temperature - High NA l
10.
Drywell Pressure - High NA l
b.
Reactor Core Isolation Cooling System Isolation 1.
RCIC Steam Line Flow - High
$13(C) 2.
RCIC Steam L.ne Flow - High Time Delay Relay NA 3.
RCIC St.; 2 Supply Pressure - Low NA l
4.
RCIC Steam Line Tunnel Tempn e vee - High NA 5.
Bus Power Monitor NA 6.
RCIC Turbine Exhaust Diaphram Pressure - High NA 7.
RCIC Steam Line Ambient Temperature - High NA 8.
RCIC Steam Line Area a Temperature - High NA 9.
RCIC Equipment Room Ambient Temperature - High NA
- 10. RCIC Equipment Room a Temperature - High NA g
- 11. RCIC Steam Line Tunnel Temperature - High NA Time Delay Relay
- 12. Drywell Pressure Sligh NA i
BRUNSWICK - UNIT 2 3/4 3-24 Amendment No.
c
-3 4
Q op TABLE 3.3.2-3 (Continued) 1__ SOLATION SYSTEM INSTRUMENTATION RESPONSE TIME RESPONSE TIME (Seconds)(a)(c)
TRIP FUNCTION 5.
SHUTDOWN COOLING SYSTEM ISOLATION
.a.
Reactor' Vessel Water Level - Low, Level 1 NA b.
Reactor Steam Dome Pressure - High NA 4
4 i
l
' BRUNSWICK'- UNIT 2 3/4 3-25 Amendment No.
g ",
=
,6
\\;.:.
9, pp
- f
(
[ g l'g. ce n
.i.
9, i i),', '
wj,
- TABLE 3.3.2-3'(Continued) j a-"6 2 ISOLATION SYSTEM'(NSTRUMENTATION RESPONSE TIME l's]
d
{ ~a:
NOTES l
'1 (a)L The isolation system instrumentation response tire shall be measured [and I,,,
4bm '
recorded as a part of the ISOLATION SYSTEM RESPONSE TIME.. Isolation i
' system instrumentation response time specified includes any delay for in.,,
diesel generator starting assumed in the accident analysis.
~
ll' l
j.
(b)L : Radiation monitors are exempt from response time testing.. Response' time l
t shall be measured from detector output or the. input of the first d?
electronic component!in the channel.
,,t s
o(
(c)
- Includes time delay added by the time' delay relay.
g b>1 1
s (d)
Isolation. actuation instrumentation response time for MSIVs only. :No
(!
idlesel generator delays assumed.
s
)
1
.( v (e)-
Isolation system instrumentation. response time specifled for the Trip
'j a
.i V;l$f' Function actuating each valve group / damper'shall be added to the i
f'
. isolation time forsv'alves'in each ve.tve group shown in Table 3.6.3-1 and, t
i
' secondary containment isolation dampers shown in _ Table 3.6.5.2-1 to.
obtain: ISOLATION! SYSTEM RESPONSE TIME for each valve / damper.
,i; I"'
(f))
Isolation system instrumentation response time for associated valves B1
.except MSIVs.
t i
di
'I
-i di i
'A 3
h a
L
+
i r
n
, BRUNSWICK - UNIT 2
_3/4 3-26 Amendment No.
u
u
~~
_=:
m TABLE 4.3.2-1 8
E ISOIATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS 5
OPERATIONAL CHANNEL Q
CHANNEL FUNCTIONAL CHANNEL CONDITIONS IN WHICH CHECK TEST CALIBRATION SURVEILLANCE REQUIRED TRIP FUNCTION c
5 1.
PRIMARY CONTAI M ENT ISOLATION Reactor Vessel Water Level -
a.
R(b) 1 2, 3 y
1.
Low, Level 1 NA(a)
NA Transmitter:
D M
M 1, 2, 3 Trip Logic:
T(b) 1 2, 3 2.
Low, Level 3 NA(a)
NA Transmitter:
Trip Logic R(b) 1, 2, 3 b.
Drywell Pressure - High NA(a)
NA Transmitter:
D M
M 1, 2, 3 w
7 Trip Logic:
I w
Radiation - High D
W R
1, 2, 3 c.
R(b) g 2.
Pressure - Low NA(a)
NA Transmitter:
D M
M 1
Trip Logic:
R(b) 1 3.
Flow - High NA(a) 74 Transmitter:
M 1
D M
Trip Logic:
D M
M 2, 3 4.
Flow - High Y
Main Steam Line Tunnel R
1, 2, 3 d.
NA M
u E
Temperature - High R(b) 1,2(e)
Condenser Vacuum - Low
'NA(a)
NA o
e.
1, 2 * >
Transmitter:
D M
M y
Trip Logic:
[
f.
Turbine Building Area NA M
R 1, 2, 3 I
Temperature - High.
Main Stack Radiation - High NA.
Q
' R' 1, 2, 3 g.
h.
Reactor Building Exhaust R-1,2,3 l
D
.M Radiation - High
E TABLE 4.3.2-1 (Continued)
E E
ISOIATION ACTUATION INSTRIMENTATION SURVEILLANCE REQUIRENENTS
-E CHANNEL OPERATIONAL..
E.
CHANNEL FUNCTIONAL CHANNEL CONDITIONS IN WHICH
~
TRIP FUNCTION CHECK TEST CALIBRATION
-SURVEILLANCE REQUIRED e
w 2.
SECONDARY CONTAINNENT ISOLATION a.
Reactor Building Exhaust III-Radiation - High D
M R
1,2,3,5, and b.
Drywell Pressure - High a)
ID}
Transmitter:
NA NA R
1, 2, 3 Trip Logic:
D M
M 1, 2. 3 h*
c.
Low, Level 2 Y
Transmitter:
NA(a)
NA R(b) 1 2, 3 Trip Logic:
D M
M 1, 2, 3 3.
REACTOR WATER CLEANUP SYSTEM ISOLATION a.
A Flow - High D
M R
I,2,3 b.
Area Temperature - High NA M
R 1, 2, 3 c.
Area Ventilation a Temperature - High NA M
R 1, 2, 3 d.
SLCS Initiation MA R
NA 1, 2, 3 e
E, e.
Resctor Vessel Water Level -
Low, Level 2 E
Transmitter:
NA(a)
NA R(b) 1, 2, 3 Trip Logic:
D M
M 1, 2, 3 xo o
f.
A Flow - High - Time Delay Relay NA M
R-1, 2, 3
. ~.
.a
~ TABLE 4.3.2-1 (Continued) g; E!
ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS
.p E
CHANNEL OPERATIONAL CHANNEL.
FUNCTIONAL CHANNEL CONDITIONS IN WHICH M
CHECK TEST CALIBRATION SURVEILLANCE REQUIRED ji TRIP FUNCTION
.~,~
4.
CORE STANDBY COOLING SYSTEMS ISOLATION u
High Pressure Coolant Injection System Isolation a.
1.
HPCI Steam Line Flow - High R(b) g 7, 3 NA(a)
NA Transmitter:
D M
M 1, 2, 3 Trip Logic:
2.
HPCI Steam Line Flow - High R
1, 2, 3 l
NA R
Si Time Deley Relay o
Y 3.
HPCI Steam Supply Pressu.c - Low NA M
R 1, 2, 3 9e 4.
HPCI Steam Line Tunnel NA M
Q 1, 2, 3 Temperature - High 5.
Bus Power Monitor NA R
NA 1, 2, 3 6.
HPCI Turbine Exhaust Diaphragm Pressure - High NA M
Q 1, 2, 3 7.
HPCI Steam Line Ambient NA M
R 1, 2, 3 l
g.
Temperature - High
.so.
3 8.
HPCI Steam Line Area NA M
R 1, 2, 3 l
E a Temperature - High z
9.
HPCI Equipment Area NA M
Q 1, 2, 3 Temperature - High 10.
Drywell Pressure - High NA(a)
NA R(b) 1 2r3 Transmitter:
Trip Logic: ~
D M
M-1, 2, 3 ll
E TAnf r & _ t 2-1 ' (erme i n.
a )
^
E
=
TsnilTToni ACTIIATTGbf TERTaffMFarTATTORf RIIRVFTil.AMrF BFDitTRFmFMTK E
CHANNEL OPERATIONAL CHANNEL FUNCT"JNAL CHANNEL CONDITIONS IN WHICH TRIP FUNCTION CHFM -
TEST CALIBRATION SURVEILLAMCE REQUIRED Q
4.
CORE STANDRY cnnt.TMC RYSTFDtg TKOT_ATTfW (Continued) so b.
Reactor Core Isolation Cooling System Isolation 1.
RCIC Steam Line Flow - High Transmitter:
NA(a)
NA R(b)'
1, 2, 3 Trip togic:
D-M M
1, 2, 3 2.
RCIC Steam Line Flow - High Time Delay Relay NA R
-R 1, 2, 3 l_
~
3.
RCIC Steam Supply Pressure - Low NA M
Q 1, 2, 3 4.
RCIC Steam Line Tunnel l
u, Temperature - High NA M
R 1, 2, 3 1
5.
Bus Power Monitor NA R
NA -
1,2,3 6.
RCIC Turbine Exhaust Diaphragm Pressure - High NA M
R 1, 2, 3 7.
RCIC Steam Line Amlient Temperature - High NA M
R 1, 2, 3 f
8.
RCIC Steam Line Area A Temperature - High NA M
R 1, 2, 3 l
.r.
9.
RCIC Equipment Room kaient
{
Temperature - High NA M
Q 1, 2, 3 l
e y,
10.
RCIC Equipment Room.
A Temperature - High NA' M
Q 1, 2, 3 l
,o 11.
RCIC Steam Line Temperature - High Time Delay Relay NA M
R 1, 2, ~ 3 12.
Drywell Pressure - High Transmitter:
NA(a)
NA R
1, 2, 3 gg Trip Logic:
D M
M 1, 2, 3
t t t h
I i
TABLE 4.3.2-1 (Continued)
ISOLATION ACTUATION INSTRUMENTATION SURVEILLANCE REQUIREMENTS NOTES (a) The transitter channel check is satisfied by the trip unit channel check.- A separate transmitter check is not required.
(b) Transmitters are exempted from the monthly channel calibration.
(c) 'If not performed within the previous 31 days.
(d) Testing shall verify that the mechanical vacuum pump trips and the mechanical vacuum pump line valve closes.
(e) When reactor steam pressure > $00 psig.
(f) When handling irradiated fuel in the secondary containment.
b BRUNSWICK - UNIT 2 3/4 3-32 Amendment No.
mw:N,m,r d[j }pg i y;f G,:k
- 3. ;.
~ ; T gwyowg.. M,f.-,
4 1
E.i n..w1. c,.
1
.p a 4.
p.
'..y. e?p
.t p b 3 4
' J;. A i nj.,,
cc] 7
,y o
i 7
]pi f.4. g, @
H's.
t 2
r 3
3:
J if
- 1. '
, :;u.: W -l ' '
'l.. m. )..-
.c n.vww5
'l-
. in 3
+.
s.. i.
- 3., r).
- w; M.,j ['c
,?? -
y
=q L
i.
- 4 F, tW.. j. g=
e,
-s, A. t.
4
".' '.P ', ' g i t-is -:
p
=v M;,,. f ;,
, n ty L [t j
'1~l f
Q;i p (, }
1,. --F r 4
';ii : F. p ' 'y,
- . -"
- . b.
M[ 'p. g.
,' i 5
A a.9. c.
L 1
.. a '
- c. ;'
m,.
w.
i Rh x
o '
^'4
}g_-
-p
}
4
_.a jy nN4 r,<
4 e# #
- q a
A
- s 4
+
s
( '+
'4;.
iWj ta' 1
sj
<1 i
t*
),
+.
.s.
.,3<.,
?
sp'
. TABLE'3.6.3-1; q
.j-
? T,.me.
u.
'- U m
n
- y
. 'y
~e q
1 v
~
p.
- .g
..'i p.
- !c.
'e 4
, g~e... s 4pq
&u
..m
>q
'g 1 1rj t
.i
-a'1 PRIMARY CONTAINMENT-ISOLATION VALVES -
j f{.
1 yL1 y
=
m 4
s s
4
' I! [d r
m.s.
1 s
I' 1
f
. I f,l, 4,L. p.n <
9
(
m s
3, ' A,,3 ). ' /L W,
4
- )
i c-
,3 (X
f 5
1-1 3
6 4
y t,
b t,
I 3.'
?1-l t
s t
kin
, d ;'._
o i
/*
e n
+ <
1~
, ?f f,
r -
- Table'3.6.3-1 has;been deleted..
M:. 1 p.,
r K
.s n
3 1
y
-,.j, j i
.r".
- ._l*
.,f, Refer to Plant. Procedure RCI-02.6..
-. C
'...%gs t., d.
g s
y 3
A-a b.:i.. ~
10 e
'Dth l
1 as, i-'-
,..,, - o 1
2 y\\c t
"'l A
F;Y._
t
)
~ i!
.I 4
-v\\ (,
r-
,.l.
.'p Q:,.
t ' 1: Page's 3/4.6-15.through 3/4 6-17 have'been deleted' 1
-g
, s
~,
' -f.,,
?{'
i 4
'.1 ) '
- 3 J
gi 4.:y, g i
1
. y,,
..s e
4:
a if.s t *,,.
i
-i 1
4 t.J
> 3 mb J.
4
?
t w
" ;e ( >
w,
.s 3
a
. r-
~ >
- 6,..
u 3
t
. - l. j--
4f t 4 'p
.q
?
' k 4
1 r
w 7
4
-(;
1 E
,e
- f L. ; G
>)_,
l i
5 f # _i
' t.l s
a: ~y
.p t
n i
i t
i+
s r
,f o
i'.. S-8 i' '
I e'I:
, 1
'(j
, k -(
I .
.L
\\
i, 4
'd l"
1,, p
- ?. i i} " t } ', '
,,j i
a i t e
[,
.I E
)
.I,.;
(
)'
o,.
o =,.
u x
t u
s.
a i
n; 1
s n,
1
,i m
q n
g k
d i
7 m
-m f3.
.k],.'
q' A
v?
it; s
2a
.f p1 m
i i <.'pn
'v 4
?
.-)
_..g.
. 1
.j
-i 4
H q
s l.
- .p s
3, t
~ d y g ',
4 a
s c
e
?
i
- r a
- : i '
4 BRUNSWICK UNIT 2 3/4 6-14 Amendment No.
+
1,-
gt
- h 5
s
'.m.}'
fG!d' ! ';;'3 E'..,
f t
3 dk h.),. +,..a s_>.,3,,
I e ma 4
6 r, i d
- ' - i 'r J ) #6 e
4 m
+
,i w w, -
e wee-rwe..t,.-e-+v t.--
vw s-r
-er,um
-m,--.%45--iwk w-
,,.--v-m-+
+
p.
1 i;
CONTAINMENT SYSTEMS SECONDARY CONTAINMENT AUTOMATIC ISOLATION DAMPERS LlHITING CONDITION FOR OPERATION 3.6.5.2 The secondary containment automatic isolation dampers shown in Table 3.6.5.2-1 shall be OPERABLE.
APPLICABILITY OPERATIONAL CONDITIONS 1, 2, 3, 5, and *.
l ACTION With one or more of the secondary containment isolation dampers specified in Table 3.6.5.2-1 inoperable, operation may continae and the provisions of Specification 3.0.4 are not applicable, provided that at least one isolation danper is maintained OPERABLE in each af fected penetration that is open, and t a.
The inoperable damper is restored to OPERABLE status within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, or b.
The affected penetration is isolated by use of a closed damper within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, or 4
c.
SECONDARY CONTAINHENT INTECRITY is demonstrated within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> and the damper is vestored to OPERABLE status wit hin 7 days.
Otherwise, in OPERATIONAL CONDITION 1, 2, or 3, be in at least 110T SilVTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SilVTDOWN within the l
following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
Otherwise, in OPERATIONAL CONDITION 5 o- *, suspend irradiated fuel i
handling in the secondary containment, CORE ALTERATIONS, or activities I
that could reduce the SilUTDOWN M ARCIN. The provisions of Specification 3.0.3 are not applicable.
- When irradiated fuel is being handled in the secondary containment.
BRUNSWICK - UNIT 2 3/4 6-22 Amendment No.
@E m.h N.A.
.y., j
, i J
l
{N'Y, 4
4 y:
- v, -
u
- m...
,n, y
y,,
my-
+ - s s
,.1 -
w.
i + L apyi 3 g,'f.
- L;*,3,, '
r
. 9 '
i
,)
,..y,, g g ;
=
f i-p. ;
f a
8
.,v-i1
.i.,,)
r s y ;,
.g g,
t.
- y 3,,sIy
- i
.1
.=-:
.1 a
.gs
, ;e 4
1v
,+
9 1
- a vs n.-
.s a' '
b '
'7
- p
~
Q.
_3-
.).
'j t
rs I
'3.'.-
l'y
.1 r,
-'a p
i
'.5 lqp v,,
s
. TABLE 3.6.5-2:
s
- , T
-.; i ?'
4 7
4 7
E
l
.ij'
..'h 1
(-
4
t,-
6 k,
r e
. SECONDARY CONTAIMMENT AUTOMATIC; ISOLATION DAMPERS.
o' N i
..,h.~~
1 4
v i
s tj
."1 s ;
<.~1, g
1 f
a,,
y y
+
- 4..
s
. r
- f;Q' i
ta -_. l. ',
j e.c
.t, t
e y
m..~.
4, w,f v;a
t a
c t '. ' it;'.
s afW w y
Ta bl e i 3.6 d.2-l ' ha s ; been del et ed..c J
J. i.!, $
r r !.,4 s.g 1
n l.
s i
2 t
<<g.
Refer, to; Plant' Procedure PCI' 02.; 6'.h U,,
- C I
-. j y-S&a ':y x
+
nh :
p.~ %~
~
1 d '.j I ; g..,
5
.;4_g
-s:
m.
t b
E p
t
> ' r; r
- r s.
4
)",
j kl
.s
' d i
-(
,1 P
" I. -
4 Nh.
[
r
..y 8
5
+
> e h
- g 1 r g
s
- ; ',JI 2,
/
- i 1,'.
t i i t
jl_
.. <. g 'j e.- :
a n.._
< fr p.
' \\ ')
- c'%
rT5
[-
M, a 1'
6
~y y,
si q2
!*<u.
4 r.?-"
m f-l'.t l^,
m
- m...
mi 1
s 7
d -\\
6 j
k
,.....-4 4
It w
- ?f s
s R. >:..
W I4.
- i. k 4?
i g
.(u s
2 x.
l- '
c-a J-8 a
s,w, w Y
's :. '
f i
s
,, e-
,(
n.,
"'-: 'i j
.i..
(-
.~i' T r,
w w
t;.
i[ h_
r
- -
- L 1
BR'UNSWICK
' UNIT 21 3/4 6-24 Amendment No.
' i s
4e, l
r
- 'l 8,} Y.-
t 1
g'?
+g Mg
CONTAINMENT SYSTEMS BASES
-3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES (Continued).
A list of automatic closing primary containment isolation valves and their associated closure times shall be available at the plant in accordance with Section 50.71(c) of 10 CPR Part 50. The addition and deletion of primary containment isolation valves shall be made in secordance with Section 50.59 of 10 CFR Part 50.
3/4.6.4 VACUUM RELIEF Vacuum relief breakers are provided to equalize the pressure between the drywell and suppression pool and the suppression pool and reactor building.
This system will maintain the structural integrity of the containment under conditions of large differential pressures.
The vacuum breakers between the drywell and the suppression pool must not be inoperable in the open position since this would allow bypassing of the suppression pool in case of an accident. There are an adequate number of valves to provide some redundancy so that operation.nay continue with no more than 2 vacuum breakers inoperable and secured in the closed position.
Each set of vacuum relief valves between the suppression chamber and reactor building provides 100% relief, which may be required in the unlikely event that negative pressures develop in the primary coni.ainment.
The Nitrugen Backup System provides backup motive power f or these suppression pool-reactor building vacuum breakers on a loss of instrument air. The normal non-interruptible instrument air system for these vacuum breakers is designed as a Seismic Class I system supplied by air compressors. powered from the emergency buses. The Nitrogen System serves as a backup to the air system and thus the loss of the Nitrogen System, or portions thereof, does not make the vacuum breakers inoperable. This design allows for the out of service times in Actions b and c.
The Nitrogen Backup System is added to the Suppression Pool-Reactor Building Vacuum Breaker specification to satisfy NRC concerns relative to 10 CFR 50.44(c)(3) as addressed in the Brunswick Safety Evaluation Report dated October 30, 1986 concerning Ceneric Letter 84-09.
Pressurization to 1130 psig assures sufficient system capacity to provide 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of operation with design valve actuation and system leakage.
3/4.6.5 SECONDARY CONTAINMENT Secondary containment is designed to minimize any ground level release of radioactive material which may result from an accident. The reactor building provides secondary containment during normal operation when the drywell is sealed and in service. When the reactor is shut down or during refueling the drywell may be open and the reactor building then becomes the primary containment.
BRUNSWICK - UNIT 2 B 3/4 6-5 Amendment No.
?
i CONTAINMENT SYSTEMS BASES (Continued) 3/4.6.5 SECONDARY CONTAINMENT (Continued) l Establishing and maintaining a -vacuum in the building with the standby gas treatment system, once per 18 months, along with the surveillance of the valves, is adequate to ensure that there are no violations 9f the integrity of the secondary containment.
A list of secondary containment automatic isolation dampers shall be available at the plant 'in accordance with Section 50.71(c) of 10 CFR Part 50. The addition and deletion of secondary containrent automatic isolation dampers shall be made in accordance with Section 50.59 of 10 CFR Part 50.
3/4.6.6 CONTAINMENT ATHOSPHERE CONTROL The OPERABILITY of the containment iodine filter trains ensures that sufficient iodine removal capability will be available in the event of a LOCA. The reduction of containment iodine inventory reduces the resulting site boundary radiation doses associated with containment leakage..The operation of this system and resultant iodine removal capacity are consistent with the assumptions used in the LOCA analyses.
The OPERABILITY of the equipment and systems required for the detection and control of. hydrogen gas ensures that this equipment will be available to l
maintain the hydrogen concentration within containment below its flammable limit during post-LOCA conditions. 'The containment inerting system is capable of controlling the expected hydrogea generation associated with 1) zirconium-water reactions, 2) radiolytic decomposition of water, and 3) corrosion of metals within containment. The hydrogen control system is consistent with the recommendations of Regulatory Guide 1.7, " Control of Combustible Cas Concentrations in Containment Following a LOCA."
l BRUNSWICK - UNIT 2 B 3/4 6-6 Amendment No.