ML19319D131

From kanterella
Jump to navigation Jump to search
Borated Water Storage Tank Drawdown Transient Analysis, Revision 1.Prepared for Util
ML19319D131
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 01/30/1976
From: Ely R
GILBERT/COMMONWEALTH, INC. (FORMERLY GILBERT ASSOCIAT
To:
References
NUDOCS 8003130701
Download: ML19319D131 (61)


Text

.__

's

+

Revision 1 - 1/30/76 CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT BORATED WATER STORAGE TANK DRAWDOWN TRANSIENT ANALYSIS Florida Power Corporarton

-l Frepared by R. F. Ely, Jr.

8003ISOfd/ A GastICamassuewA

TABLE OF CONTENTS Introduction

System Description

Mathematical Method Verific1 tion of Analytical Model Results of Dravdown Analysis Determination of pH Environmental Doses Summary References Tables Figures Appendix A - Compilation of Input Parameters 6

1 I

Gent /Camuususse L

List of Tables I

Comparison of Analytical Results to Full Flow Water Test II Comparison of Analytical Results to Half Flow Water Test (A train)

III Comparison of Analytical Results to Half Flow Water Test (B train)

IV Analytical Results to Chemical Drawdown Using Test Model V

Analytical Results to Chemical Drawdown Using Modified Check Valve Model VI Decay Heat and Reactor Building Spray System Design Criteria VII Tank Inventory and Reactor Coolant Chemical Compositions VIII Chemical Compositions of Laboratory Solutions IX Results of pH Determination X

Parameters Used to Calculate Spray Removal Constants XI Parameters Used to Evaluate Environmental Doses XII Environmental Doses Resulting from MHA l

l 1

MF

_ List of Figures I

Schematic of Decay Heat and Reactor Building Spray Systems II Model of Decay Heat and Reactor Building Spray Systems for Full Flow Drawdown Analysis III Model of Decay Heat and Reactor Building Spray Systems for Half Flow Drawdown Analysis (A train)

IV Model of Decay Heat and Reactor Building Spray Systems for Half Flow Drawdown Analysis (B train)

V Model of Decay Heat and Reactor Building Spray Systems for NaOH Valve Failure Drawdown Analysis VIa Comparison of Analytical Results to Full Flow Water Test -

Borated Water Storage Tank Drawdown l

VIb Comparison of Analytical Results to Full Flow Water Test -

Sodium Thiosulfate Storage Tank Drawdown VIc Comparison of Analytical Results to Full Flow Water Test -

Sodium Hydroxide Storage Tank Drawdown VIIA Comparison of Analytical Results to Half Flow Water Test (A train)

Borated Water Storage Tank Drawdown VIIb Comparison of Analytical Results to Half Flow Water Test (A train)

Sodium Thiosulfate Storage Tank Drawdown VIIc Comparison of Analytical Results to Half Flow Water Test (A train)

Sodium Hydroxide Storage Tank Drawdown VIIIa Comparison of Analytical Results to Half Flow Water Test (B train)

Borated Water Storage Tank Drawdown VIIIb Comparison of Analytical Results to Half Flow Water Test (B train) ~~

Sodium Thiosulfate Storage Tank Drawdown VIIIc Comparison of Analytical Results to Half Flow Water Test (B train)

Sodium Hydroxide Storage Tank Drawdown IX Analytical Results to Chemical Drawdown Using Test Model -

Full Flow Case X

Analytical Results to Chemical Drawdown Using Test Model -

Half Flow (A train) Case 1

Ghet/Cummansumah

List of Figures (Cont'd)

XI Analytical Results to Chemical Drawdown Using Test Model -

NaOH Valve Failure Case XII Analytical Results to Chemical Drawdown Using Test Model -

Temperature Study - Full Flow Case XIII Analytical Results to Chemical Drawdown Using Modified Check Valve Model - Full Flow Case XIV Analytical Results to Chemical Drawdown Using Modified Check Valve Model - Hal'. Flow (A train) Case XV Analytical R6sults to Chemical Drawdown Using Modified Check Valve Model - liaOH Valve Failure Case XVI Analytical Results to Chemical Drawdown Using Modified Check Valve Model - Temperature Study - Full Flow Case e

e l

Geert/P -

I INTRODUCTION This report has been prepared in response to a request from the

)

Florida Power Corporation to evaluate the Borated Water Storage Tank j

(BWST) drawdown transient for Crystal River Unit 3 Nuclear Generating Plant.

The objective of the study is to track the fluid level in the borated water, sodium hydroxde, and sodium thiosulfate storage tanks during the emergency safeguards operation of the reactor building spray system and the I

decay heat system to verify the original design of the systems and to provide a basis to study the effects of proposed changes to the systems.

The GAI computer program " Thermal Hydraulic Analysis" was used to obtain a quasi-steady state solution to the drawdown transient.

This report discusses the method of analysis, verification of the methodology by comparison to experimental data supplied by the Florida Power Corporation, the analysis of the existing system assuming design basis conditions, and a parametric study of temperature and flow effects on the drawdown transient.

O mort /Cummonsunk J

SYSTEM DESCRIPTION The reactor building spray system is designed to furnish building atmosphere cooling to limit post-accident building pressure to less than the design value, and to reduce the building to nearly atmospheric pressure.

In addition, alkaline sodium thiosulfate in the spray removes the fission product iodine inventory from the containment atmosphere.

The decay heat removal system is designed to maintain core cooling for larger break sizes.

This system provides low pressure injection independent of and in addition to the high pressure injection provided by the make-up and purification system.

In the event of a loss-of-coolant-accident, the system injects borated water into the reactor vessel for long term emergency cooling.

The decay heat removal system and the reactor building spray system both take suction on the Borated Water Storage Tank (BWST) within seconds af ter the initiation of an accident.

Sodium hydroxide from the sodium hydroxide storage tank gravity feeds into both systems and mixes with the borated water for pH control; sodium thiosulfate gravity feeds into the reactor building spray system and mixes with the borated water-sodium hydroxide mixture before injection into containment. A simple schematic of the associated piping is shown in Figure I.

The sodium thiosulfate tank and the sodium hydroxide tank are designed and located to permit gravity feeding into the system and are also designed to inject their respective contents at a rate commensurate with the draining rate of the BWST.

.ae contents of each tank are proportioned in such a manner that the correct amount of sodium thiosulfate is injected for iodine removal and the proper quantity of sodium hydroxide is injected for pH control.

Af ter the water in the BWST reaches a low level, coincident with the emptying of the sodium thiosulfate and the sodium hydroxide tanks, the spray pump suction is transferred to the reactor building sump to recycle discharged fluids, thereby terminating the drawdown transient.

en m/cammamese

MATHEMATICAL METHOD The drawdown transient is modeled by determining the steady state fic,4 from the tanks at their initial level. The volume of fluid drawn from the tank during a five minute interval is calculated from the above flow.

In some cases a smaller interval was used because of rapidly changing steady state flow rates.

The tank levels are adjusted and another steady state balance is performed. This procedure is repeated until the transient is over.

The computer program performs a steady state pressure balance on an arbitrary piping network. A relaxation iterative method of network analysis, a modified Bernoulli equation, and the Colebrook equation (the basis of the Moody diagram) are the bases of analysis for the program.

The two fluid properties required to calculate the flow in a pipe are the specific volume and the viscosity of the fluid. Thes3 properties may be inputted into the computer program as a function of temperature for any fluids desired, e.g. aodium hydroxide or sodium thiosulfate.

If the fluid in a pipe is water, these properties may be inputted as above or calculated by the program.

Assuming saturated water conditions exist in the pipe at a specified temperature, the program calculates the specific volume as follows:

1/3 + bT + CT

~

V +aT

)

V, =

k 1+dT1/3 + eT 3

where V, = specific volume at saturated water conditions (ft /lb) l V = 3.1975 cm /g T

=t

-U e

t = critical temperature = 374.11 C.

t = temperature in degrees C i

GastICumassmuth

a = - O.3151548

-3 b = - 1.203374 x 10

-13 e = + 7.48908 x 10 d = + 0.1342489

-3 e = - 3.946263 x 10 k = conversion constant

= 0.0160185 (ft /lb)/(cm /g)

Again assuming saturated conditions, the viscosity of liquid water is calculated as follows:

247.8(T-140)~1 p = k241.4 x 10 where p = viscosity (1b/f t-sec)

T = temperature (

K) k = conversion constant

= 6.7197 x 10-8 (1b/ft-sec)/(micropoise)

The Moody friction factor is then computed by iterating the Colebrook equation

-0.5 f

= - 0.86 in (3 7d +

.5) e where f = Moody friction factor c = pipe roughness (feet); the standard roughness of commercial pipe, 0.0018 inches, is assumed.

d = inner diameter of the pipe (feet)

R, = Reynolds Number dV, V,p V, = fluid velocity in the pipe (ft/sec) east /cuummenen

=

To compute the flow rate in a branch, the line resistance of each pipe must be known.

The line resistance is calculated as:

R ) = 0.03115 f L,/d g

where Rij

= line resistance from junction j to junction i (f t/gpm )

f

= Moody friction factor L,

= equivalent length of pipe (ft)

=L+(h)d L

= length of straight pipe (ft)

(h)

= total representative equivalent length in pipe diameters of various valves and fittings d

= inner diameter of the pipe (ft) i In addition to the data required to calculate the above properties for each pipe branch in the system, data must be supplied to the program in which the branches are combined to form closed loops. To compute the flow rate in each branch, it is assumed that each closed loop obeys Kirchoff's second law, i.e. the sum of pressure drops due to pipe losses and elevation changes around any closed loop is zero.

Therefore:

H-EAP

-EAP

=R pump head (psi) where H

=

EL "

pressure loss due to elevation gain Lai) i AP pressurc loss due to friction (psi)

AP

=

p residual pressure if loop is not balanced R

=

(R = 0 in a balanced loop) and l

R H-EAP (91j + AQ )

=0

~

EL k

ij GeertIP-

i previously calculated flow between junctions i and j where Q

=

fl w added to each line in the k" loop to balance f

AQ

=

k Kirchoff's equation (make residual R equal 0) g 144 V, v

=

R E

S Let a

=

"ij 9

Id Il 2E b

=

y ij 2

H-EAP

-E i

e

=

g ij 1

i Then, using a modified form of the quadratic formula so the difference between large numbers is not caluclated, 1

l 2c AQ

=

-b- (b -4ac) l' To balance the network, the loop with the greatest error is selected, AQk calculated and the residual made zero.

This process is repeated until the residual in every loop is less than 0.01 psi or the largest velocity change in all loops since the previous iteration is less than 0.05 feet /second.

The system being modeled is an open system (Figure I).

In order to mathematically close the system and insure the sama pressure on the top of the fluid in each tank, i.e. 14.7 psi, a control valve (which does exist in ~

the system and is set for the proper flow) was added to the discharge lirie of each pump, preset to the designated flow through the pump.

The necessary pressure drop across this valve is calculated to insure the proper flow.

The pump discharge lines then converge to a common junction (Junction 1, Figures II - V).

A " dummy" fluid of low density and viscosity, is used to close the loop from Junction 1 to the tcp of the fluid in each tank. A large pipe,(ID =.100 inches) is assumed so no friction loss exists and the.

low density insures no pressure loss due to the elevation change.

Thus, the same pressure exists on the fluid surface in each tank.

1 l

M

The stop check valves in the chemical lines had to be specially modeled due to the manner in which they operate.

A 1.25 paid is required to unseat the valve plug and a spring force of 4.75 psi must be overcome; i.e. 6 paid is equired to open the valve and 4.75 paid to keep it men.

This is in addition to the line friction in the valve.

The valve was modeled by assuming a constant L/D of 450 in the branch containing the valve while the spring and plug pressures were modeled by adding 6 psi to the fluid surface in the BWST.

Wh'en the calculated pressure drop across the valves was 6 paid, the overpressure in the BWST was dropped to 4.75 psi.

The overpressure was modeled by the use of a second dummy fluid in the return line to the BWST.

Other parameters calculated by the program are:

1.

Junction Pressure R

Q

+ AE 11 13 13 i

p p

i j

ij y

s AE elevation change between junctions 1 and j

=

g 3

V specific volume in the branch between junctions i and j

=

2.

Fluid velocity (f t/sec)

V

=

w(f)2 e

l k

conversion constant

=

0.13368 ft 1 min.

gal 60 sec Gast/Quuummede i

VERIFICATION OF ANALYTICAL MODEL As part of the start up and test program of Crystal River Unit #3, a test was conducted in 1975 to check the sodium hydroxide-sodium thiosulfate - BWST drawdown by pumping water to the fuel transfer canal.

The test and results of both the full flow and half flow tests are recorded in Test Procedure 71310040 of Crystal River Unit 3.

A comparison of the observed and calculated results of the full flow test is presented in Table I and Figures VI a, b, c.

The computer model is shown in Figure II.

The calculated level drop per five minutes was comparable to that observed for the three tanks.

It should be noted that the level in the BWST had to fall several feet before flow was established in the chemical tanks because of the initial inbalance of static pressure head in the tanks and the pressure differential required to open the stop check valves in the chemical lines.

Further verification of the program is provided by comparison to the half flow water tests in which one set of pumps did not not operate.

(Figures III and IV). Acceptable agreement between the observed and calculated results is shown in Table II and Figures VII a, b, e for the A string test and in Table III and Figures VIII a, b, c for the B string test.

In most cases the analytical model overpredicted the flow out of the chemical tanks.

This trend will be considered in the evaluation of the chemical drawdown results.

Geert/P-

RESULTS OF DRAWDOWN ANALYSIS Four cases were studied using the mathematical models of the water test except that sodium hydroxide and sodium thiosulfate solutions were assumed to be present:

a - full flow at design temperatura conditions b - half flow (A train) at design temperature conditions c - NaOH valve failure at design temperature conditions d - full flow at summer temperature conditions The results of the analysis of each case are given in Table IV and Figures IX to XII. The analytical results do not meet the design. criteria specified by B&W, Table VI, in that the chemical tanks do not draw down far enough.

As noted earlier, the analytical model tended to overpredict the flow rate out of the chemical tanks.

It must be concluded the present system does not meet the design criteria.

1

)

For analytical results to conform to the acceptance criteria, either the resistance in the borated water lines must be increased or the resistance in the chemical lines decreased. The latter approach was chosen.

Specifications of stop check valves BSV-9, 10, 67, and 68, located in the chemical lines include a 1.25 psid to unseat the plug and 4.75 psi spring pressure.

Per Crane Technical Paper No. 410, an L/D of 450 was also assumed in the model.

These stop cha:k valves were replaced by swing check valves, L/D of 135, in the analytical model.

The analytical results of the modified system are shown in Table V and Figures XIII to XVI.

In all cases except the valve failure case the design critoria in Table VI are satisfied.

In those cases where a chemical tank drained prior to the assumed alarm, the transient was continued assuming no flow from that tank.

The effect on flow of the fluid level falling below the top of the outlet nozzle was ignored; it was assumed the tank stopped draining when the level reached the centerline of the outlet nozzle.

i QRet/ w

The volume drawn from each tank during a transient was calculated from the flow rate from each tank over the time interval used to establish the transient. Thus, the total volume drawn from a tank may not be the same in different cases although the start and finish levels may have been the same..

1

+

DETERMINATION OF pH It is impractical to calculate the pH of the reactor bui1 ding spray, decay heat, and reactor building sump solutions because of the number of ions and the nature of the chemical species present, i.e., weak acid, strong base, and acidic salt.

Therefore, it was decided to make the desired pH determinations experimentally.

Solutions corresponding to those found in the borated water, sodium hydroxide, and sodium thiosulfate storage tanks, as well as the core flood tanks, were prepared (Table VII).

The boric acid concentration in the reactor coolant will range from 100 to 13,000 ppm depending on the amount of boron required for neutron control.

The solution representing the reactor-coolant was prepared with the maximum boron concentration to maximize the effect of the reactor coolant to the sump pH.

The above solutions were mixed in various proportions corresponding to the mixtures found in the different drawdown cases.

The mixture of solutions I and II represents the average solution injected by the decay heat pumps.

Addition of solution III to the mixture of I and II simulated the spray solution. The mixture of all five solutions represents the final sump solution immediately prior to initiation of recirculation.

The pH of each sample was determined electrometrically using a glass electrode with a reference KC1 saturated calomel electrode.

The results of the pH determinations are given in Table IX.

The pH of the spray ramps from 9.29 to 10.1 while that of the sump mixtare ranges from 9.11 to 9.68.

e l

l i

1 ommir-

ENVIRONMENTAL DOSES The maximum dose which an indivudusi at the exclusion boundary and the low population zone could receive following an NHA is reduced by the alkaline sodium thiosulfate spray injected by the reactor building spray system.

The i

magnitude of the dose reduction factor depends on how fast airborne fission products are washed from the atmosphere.

The expected washout rates are predicted from mathmatical models which account for controlling removal mechanisms.

Many studies have been made, both experimental and theoretical, of the removal mechanisms.

WASH 1329 reviews the spray absorption models used by the USNRC in evaluating design basis loss of coolant accidents in light I

water cooled reactors.

The DL model described therein will be used as the basis for calculating the iodine removal constants in the various drawdown cases being considered.

A model for removal of organic iodides by alkaline sodium thiosulfate spray is not described in WASH 1329. A conservative estimate of the removal

~

constant, Ao, is stated to be 0.1 hr for the first two hours of spray.

This will be used for both the one header and the two header cases.

1 The spray washout model for aerosol particles is represented in equation form as follows:

3h E f y

p 2d V where A = spray removal constant for particles p

h = effective drop fall height E = total collection efficiency for F. single drop F = spray flow rate d = mean drop diameter V = volume of gas space Gibutth Revision 1 - 1/30/76

\\

Using the parameters listed in Table X, spray removal constants for

-I aerosol particles of'O.37 hr and 0.74 hr are calculated for the one header and two header cases respectively.

In the DL model presented in WASH 1329 the removal rate constant for elemental iodine is calculated as follows:

6V hF y

d VdU where A, = elemental iodine spray removal constant Vd=

verall deposition velocity h = effective drop fall height F = spray flow rate V = containment volume d = drop diameter U = drop terminal settling velocity The deposition velocity is evaluated from 1

1 1

4 Y

HQ d

g where K = gas film transfer coefficient

( = liquid film transfer coefficient H = iodine partition coefficient The gas film mass transfer coefficient is determined using the Ranz-Marshall equation:

D K

l (2 + 0.6 R 3 0.33) 0.5

=

g d

e c

I where D = di fusivity of iodine in gas phase R, = Reynolds number S = Schmidt number But/Qumuseuem l

The liquid film mass transfer coefficient is predicted by:

2 2n D k*

3d where D = diffusivity of iodine in water The parameters used to evaluate 1 are listed in Table X.

Spray removal

~1

~

constants for elemental iodine of 20.6 hr and 41.2 hr were calculated for the one and two header cases respectively.

The dose calculations reported here assumed the spray constants were as calculated above for the duration of the initial injection period of the case eing considered. No credit for' iodine removal by sprays was taken during recirculation of the sump solution.

This was to take into account re-evolution of iodine and the reduced effects of a partially depleted sodium thiosulfate solution.

The environmental doses resulting from the MHA were calculated using the INHEC computer program and the parameters tabulated in Table XI.7 Assumptions given in Regulatory Guide 1.4 were also used.8 The calculated doses are j

given ir. Table XII. Both the one header and two header calculated doses are a small fraction of the dose limits specified by 10CFR100.

o lieert/Cennemassah

SUMMARY

Good agreement exists between the analytical results and the actual test results verifying the quasi-steady state approach and the mathematical model used in the analysis.

The temperature study demonstrates that the system performance is only slightly affected by temperature changes. Thus a temperature study need not be performed whenever other design cases are investigated.

With the proposed modification to valves E3V-9,10, 67 and 68, the system meets the design criteria specifyin't luantities of chemicals :cspected except in the valve failure case.

The results of the valve failure case are acceptable because the pH of the sump and spray solutions were determined to fall within the acceptance range.

The effect of the various drawdown cases on the iodine removal capability on the spray was shown to have a negligible effect on the calculated doses at the site boundary and low population zone.

Both the one header and two header calculated doses are a small fraction of the dose limits specified by 10CFR100.

e Geert/h

REFERENCES 1.

Keenan and Keyes, Thermodynamic Properties of Steam, John Wiley and Sons, Inc. (1936).

2.

ASME Steam Tables, 1967 l

3.

Vennard, J.K., Elementary Fluid Mechanics, John Wiley & Sons, Inc.

(1961).

4.

Flow of Fluids Through Valves, Fittings, and Pipe, Crane Technical Paper No. 410.

5.

Letter from C. E. Barksdale to R. S. Burns, Jt.,

19 August 1975, FPC-1569.

6.

Postma, A.K.,

and W.F. Pasedag, "A Review of Mathematical Models for Predicting Spray Removal of Fission Products in Reactor Containment Vessels," WASH 1329, June, 1973.

7.

Mackay, T.F., and R.F. Ely, Jr., " Computation of Radiologiac1 Consequences Using INHEC Computer Program," Topical Report GAI-TR-101, February, 1974.

8.

" Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors,"

Regulatory Guide 1.4, Revision 2, June 1974.

9.

Codes of Federal Regulations, Title 10, Part 100.

10.

Parsly, L.F., " Design Considerations of Reactor Containment Spray Systems - Part VII. A Method for Calculating Iodine Removal By Sprays," ORNL-TM-2412 Part VII, Oak Ridge National Laboratory, Oak Ridge, Tenn., February, 1970.

11. Crystal River Unit 3 Nuclear Generating Plant Final Safety Analysis Report, Docket No. 50-302.

eenste-

TABLE I FLORIDA POWER CORPORATION CRYSTAL' RIVER UNIT 3 NUCLEAR GENERATING PLANT BORATED WATER STORAGE TANK DRAWDOWN TRANSIENT ANALYSIS

+

COMPARISON OF ANALYTICAL RESULTS TO FULL FLOW WATER TEST BWST NaOH NaThio Time Observed Calculated Observed Calculated Observed Calculated (Min.)

Level

  • Drop Level
  • Drop Level
  • Drop Level
  • Drop Level
  • Drop Level *.

Drop

.0 42.11 42.17 32.19 32.19 30.50 30.50

-5 36.80 5.37 36.85 5.32 32.19 32.19 30.50 30.50 10 31.50

.5.30 31.53 5.32 32.19 32.19 30.50 30.50 12 29.30 2.20 29.40 2.13 32.19 32.19 30.50

'30.50 14 27.20 2.10 27.27 2.13 32.00 0.19 32.19 30.50 30.50 16 25.10 2.10 25.14 2.13 31.55 0.45 32.19 30.50 30.50 20 21.00 4.10 21.00 4.14 30.20 1.35 30.59 1.60 29.50 1.G0 29.09 1.41 24 16.80 4.20 16.90 4.10 28.50 1.70 28.55 2.04 28.00 1.50' 27.22 1.87 26.8 14.20 2.60 14.05 2.85 27.00 1.50 26.91 1.64 26.70 1.30 25.69 1.53 30 11.10 3.10 11.13 2.92 25.50 1.50 24.97 1.94 25.30 1.40 23.87 1.82 34 7.50 3.60 7.49 3.64 23.10 2.40 22.42 2.55 23.30 2.00 21.46-2.41 37 4.75 2.75

'4.77 2.72 21.00 2.10 20.41 2.01 21.60 1.70 19.55

~1.91

  • Levels are relative to center line outlet nozzle.

i

TABLE II FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT BORATED WATER STORAGE TANK DRAWDOWN TRANSIENT ANALYSIS COMPARISON OF ANALYTICAL RESULTS TO A-TRAIN HALF FLOW MATER TEST 4

BWST NaOH NaThio Time Observed Calculated Observed Calculated Observed Calculated (Min.)

Level

  • Drop Level
  • Drop Level
  • Drop Level
  • Drop Level
  • Drop Level
  • Drop 0

42.55 42.55 32.19 32.19 30.78 30.78-5 40.00 2.55 39.89 2.66 32.19 32.19 30.78 30.78 10 37.35 2.65 37.23 2.66 32.19 32.19 30.78 30.78.

15 34.50 2.85 34.57 2.66 32.19 32.19 30.78 30.78 1

20 31.80 2.70 31.91 2.66 32.19 32.19 30.78 30.78-25 29.40 2.40 29.25 2.66 32.19 32.19 30.78 30.78 29 27.10 2.30 27.12 2.13 32.00 0.19 32.19 30.78 30.78 32 125.50 1.60 25.53 1.59 31.50 0.50 32.14 0.05 30.78 30.78 4

34 24.50 1.00 24.48 1.05 31.15 0.35 31.92 0.22-30.78 30.57 0.21 37 23.00 1.50 22.94 1.54 30.60 0.55 31.20 0.72' 30.50 0.28.

29.87 0.70 i

42 20.20 2.80

.20.33 2.56 29.50 1.10 29.89 1.31 29.50 1.00 28.60 1.27 i

45 18.80 1.40 18.85 1.53 28.90 0.60 29.02 0.87 28.90 0.60 27.76 0.841

  • Levels are-relative to center line outlet nozzle.

I i

n TABLE III FLORIDA POWI'R CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT BORATED WATER STORAGE TANK DRAWDOWN TRANSIENT ANALYSIS COMPARISON OF ANALYTICAL RESULTS TO B-TRAIN HALF FLOW WATER TEST BWST NaOH NaThio Time Observed Calculated Observed Calculated Observed Calculated (Min.)

Level

  • Drop Level
  • Drop Level
  • Drop Level
  • Drop Level
  • Drop Level
  • Drop 0

41.69 41.69 31.65 31.65 30.61 30.61 5

39.00 2.69 39.03 2.66 31.65 31.65 30.61 30.61 10 36.40 2.60 36.37 2.66 31.65 31.65 30.61 30.61 15 33.60 2.80 33.71 2.66 31.65 31.65 30.61 30.61 20 31.10 2.50 31.05 2.66 31.65 31.65 30.61 30.61 25 28.40 2.70 28.39 2.66 31.65 31.65 30.61 30.61 29 26.30 2.10 26.26 2.13 31.45 0.20 31.65 30.61 30.61 31 25.30 1.00 25.20 1.06 31.10 0.35 31.60 0.05 30.40 0.21 30.52 0.09 32.9 24.10 1.20 24.22 0.98 30.80 0.30 31.20 0.40 30.00 0.40 30.15 0.37 35 23.40 0.70 23.25 0.97 30.50 0.30 30.78 0.42 29.80 0.20 29.74 0.41 39 21.40 2.00 21.40 1.85 29.95 0.55 29.90 0.88 29.20 0.60 28.90 0.84 44 19.10 2.30 19.10 2.30 28.90 1.05 28.67 1.23 28.45 0.75 27.73 1.17 49 16.70 2.40 16.81 2.29 27.65 1.25 27.30 1.37 27.45 1.00 26.43 1.30 54 14.60 2.10 14.53 2.28 26.50 1.15 25.83 1.47 26.50 0.95 25.03 1.40 59 12.25 2.35 12.26 2.27 24.90 1.60 24.27 1.56 25.45 1.05 23.54 1.49 64 10.00 2.25 9.99 2.27 23.70 1.20 22.64 1.63 24.10 1.35 21.97 1.57 69 7.80 2.20 7.73 2.26 22.10 1.60 20.94 1.70 22.90 1.20 20.34 1.63

  • Relative to center line outlet nozzle.

~

TABLE IV FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT BORATED WATER STORAGE TANK DRAWDOWN TRANSIENT ANALYSIS ANALYTICAL RESULTS TO CHEMICAL DRAWDOWN USING TEST MODEL Temp.

Concentration Initial Level

  • Time Final Level
  • Volume Drawn Mass Of' (OF)

(w/o)

(feet)

(min.)

(feet)

From Tank Chemical (gallons)

(lbs.)

Full Flow Cese 41.24 BWST 70 44.70 2.50 396,692 44,935 NaOH 75 20 32.50 11.98 7,009 14,236 NaThio 50 30 30.50 8.68 8,637 27,778 NaOH Valve Failure Case 41.01 BWST 70 44.70 2.50 396,692 44,935 NaOH 75 20 32.50 19.01 4,608 9,359 NaThio 50 30 30.50 8.71 8,626 27,740 Half-Flow (A-Train) Case 82.87 BWST 70 44.70 2.50 396,692 44,935 NaOH 75 20 32.50 9.71 7,785 15,803 NaThio 50 30 30.50 5.78 9,785 31,470 Full Flow Temp. Study case 41.23 BWST 90 44.70 2.50 396,692 44,799 NaOH 90 20 32.50 11.83 7,061

-14,280 NaThio 90 30 30.50 9.06 8,487 26,607

  • Levels relative to center line outlet nozzle.

1 TABLE V FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR CENELJING PLANT '

BORATED WATER STORACE TANK DRAWDOWN TRANSIENT ANALYSIS ANALYTICAL FISULTS TO CHEMICAL DRAWDOWN USING MODIFIED CHELE VALVE MODEL Temp.

Concentration Initial Level

  • Time Final Levela Volume Drawn From Tank h as'of Chemical

(*F)

(w/o)'

(faet)

(min.)

(feet)

(gallons)

(1bs.)

Full Flow Case 41.18' SWST 70 44.70 3.26 389.596 44,131 NaOH 75 20 32.50 3.15 10.04l 20,383 NaThio 50 30 30.50 0.00 12.073 35,828 41.93 2.50 396,692' 44,935 2.57 10.224

-20,754' O.00 12.073-38,828 NaOH Valve Failure Case 40.94 BWST 70 44.70 3.19 390.211 44,201:

NaOH 75 20 32.50 18.89 7,067 14.345 NaThio 50 30 30.50 0.00 12.073 38,828 41.62 2.50 396,692 44,935 II.47 7,184 14.583 0.00 12,073 38,824 Half Flow (A-Train) Case 71.42 BWST 70 44.70 9.01 337,822 34,187.

NaOH 75 20 2. 50 4.54 9,627 19.543 -

NeThio 50 30 30.50 0.00 12.073 38,828 82.36 3.36 388.762 44,037 0.00.

I1.102 22,536 0.00 12.073 38,828 -

84.04 2.50 396.692 44,935 0.00 11.102 22,536 0.00 12.073 38,828 Full Flow Temp. Study case 41.23 SWST 90 44.70 3.20 390,069 44,185 NaOH 90 20 32.50 2.80-10,158 20,689 MaThio 90

' 30 30.50 0.00 12.073

' 34,828 41.93 2.50 396,692 44,935 2.26 10,330 20,969 0.00 12,073 38,828,

  • Levels relative to center line outlet nozzle.

6

TABLE VI FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT 5

DECAY HEAT AND REACTOR BUILDING SPRAY SYSTEM DESIGN CRITERIA Chemical masses to be added to the reactor building sump by the end of the initial injection period:

Boric acid 43,820 lb* +

5,700 lb: maximum 49,520 lb 2,260 lb: minimum 41,560 lb NaOH 20,890 lb

+

1,360 lb: maximum 22,250 lb 960 lb: minimum 19,930 lb i

NaThio 37,040 lb** +

1,870 lb: maximum 38,910 lb 3,310 lb: minimum 33,730 lb Water 3,391,000 lb* + 140,000 lb: maximum 3,531,000 lb

- 140,000 lb: minimum 3,251,000 lb does not include mass of borated water added to sump from the two core flood tanks and the reactor coolant system.

    • neglect sodium thiosulfate decomposition during storage.

~e l

1 l

Geert/Comummmesah

TABLE VII

. FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING. PLANT TANK INVENTORY AND REACTOR COOLANT CHEMICAL COMPOSITIONS CONTENTS (1b)

DHT-1 BST-2 BST-3

,000 Na 0 0 223 1,250 H B0 35,880 3 3 21,500 750 NaOH Volume-(gal) 380,000 11,296 12,557 Core Flood Tanks - 2,270 ppm boron 4

-Reactor Coolant - 13,000 ppm boric acid

(

  • e l

i Gast/Comnummeda

\\

TABLE VIII FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT CHEMICAL COMPOSITIONS OF LABORATORY SOLUTIONS Solution Solution Solution Solution Solution IV V

Contents I

II III (Reactor (Core g/ml (DHT-1)

(BST-2)

(BST-1)

Coolant)

Flooding) 0.36265 Na 8 0 223 HM 0.01132 0.01193 0.01300 0.00227 3 3 NaOH 0.22809 0.00716 pH 4.9

>14 9.81 4.80 5.51 t

h/

\\

l'

r TABLE 11 F1hkIDA POWER CORPORATION CRTSTAL RIVER UNIT 3 NUCLEAR GENERATING PIANT RESULTS OF pH DETERMINATION Case-Condition Volume Volume p!!

Volume pH '

Voluhe

. Volume -

' PN '.

Solution i Solution 11 Mixture Solution III Mixture Solution IV Solution V Misture.

at al Soln 1611 al Sola I. !!

si al JSols 1. 11

& 111

.!!!. IV & V een -

en Full flow - end of transient 100 2.58 9.90 3.04 9.84.

15.42 3.53 9.56 -

Full flow - NaThio tank empties 100 2.58 9.90 3.10

~ 9.84 Valve failure - end of transient 100 1.81 9.37 3.04 9.30 15.42 3.53 9.11 Valve failure - NeThio tank empties 100 1.81 9.35 3.09 9.29 Half flow - end of tranatent 100 2.80 10.13 3.04 10.07 15.42 3.53.

'9.68 Malf flow - NaThio Tank empties 100 2.86 10.18 3.58 10.09 Ralf flow - Encel tank empties 100 2.86 10.15 3.11 10.10 Temp. study - end of transient 100 2.60 9.93 3,04

-9.87 Temp. study - NeThio tank emptu 100 2.60 9.94 3.10 9.89 Corresponds to pu of solution injected into pressure vessel during initial injectiam period.

Corresponds to pH of building spray during inittal injection period.

Corresponds to pH of sump at termination of #rswdown.

I

. l

TABLE X FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT PARAMETERS USED TO CALCULATE SPRAY REMOVAL CONSTANTS Parameter 100 C( 0)

Temperature p,g,(10)

-4 Viscosity of vapor (p )

1.83 x 10 y

-3 3 ( 0)

Density of vapor (p) 1.78 x 10 g/cm Diffusivity of iodine in gas phase. (D )

6.34 x 10 cm 7,,e (10)

-2 2

g Diffusivity of iodine in liquid phase (D )

5.14 x 10-5,2/sec (10) g Drop diameter (d) 1080 microns (11)

Drop terminal settling velocity (U) 480 cm/sec( 0)

Partition coefficient (H) 1 x 10 0

3 (11)

(

Reactor building free volume (V) 2 x 10 ft Effective drop fall height (h) 96 feet ("}

Total collection efficiency for a single drop (E) 0.0015 (6)

Geert/r-

f TABLE XI FLORIDA POWER CORPORATION.

CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT PARAMETERS USED TO EVALUATE ENVIRONMENTAL DOSES Atmospheric dispersion coefficients

-4 3

exclusion boundary 0-2 hour 1.55 x 10 sec/m

-6 low population zone 0-8 hour 5.88 x 10 sec/m

-6 8-24 hour 3.81 x 10 sec/m

-6 1-4 days 1.69 x 10 sec/m 4-30 days 1.03 x 10-6,,cf,3 Spray removal constants (hr-1) one header two header i

elemental iodine 20.6 41.2 aerosol particles 0.37 0.74

(

organic iodides 0.1 0.1 l'

Containment Leakage Rate 0 - 1 day 0.25 %/ day 1 - 30 days 0.125 %/ day Initial Inventories - Tables 14-50, 14-51

~

l s

Gast/Cumunmunk Revision 1 - 1/30/76

TABLE XII FLORIDA POWER CORPORATION CRYSTAL RIVER UNIT 3 NUCLEAR GENERATING PLANT ENVIRONMENTAL DOSES RESULTING FROM MHA 2 Hour Dose at Exclusion Boundary Case Thyroid Whole Body (REM)

(REM)

No Sprays 241 2.4 One Header 25 1.6 Two Headers 21 1.6 30 Day Dose at Low Population Zone Case Thyroid Whole Body (REM)

(REM)

No Sprays 93 0.3 One Header 7

0.2 Two Headers 6

0.2

~

=e O

I i

Geert/Cummunode j

i

i FD UREl FLCIIIA PMER C@tPCCATION I

CRYSTAL alvEn UN#T 3 gucLEAR GENERATING PLANT

. SCHEMATIC 0F DECAY HEAT AND l

REACTOR BUILDtHG SPRAY SYSTEMS S== 4 g

=

,1 * $ _f ~

E 4

=

m a

h5 0

ngs s

% d4 8

I f

I f ggf0x E

Elll3 f 5'i f]

2 5

y

=

_a a

( N r y i

I i

-* M

, M I

~

eh E

o 4 r f N

( N 1

5 i

=

E t

I r

"g h

e W

-n

r N

38

  • "*=%

l g

g's 7

l l

N l

LEGEND 1

l 1

l 80 RATED WATER l 31 l25 2

g l

BST-1 BST-2 DHT-1 l

Na TM.

g l

rue SODIUM SODIUM BORATED r

DUuuY FLUID #1 Q

DuuuY FLU D n2, ', ', ', ', ', ", ', ' ', ', ' ' ', ', ' '

THIOSULFATE HYDROXIDE WATER m

i STORAGE STORAGE STORAGE l

l E$

hE TANK TANK TANK i

nu 1,,

2.

,4 I

EU "E I

I M!!:

f..1.".} 34 1

3*-:,

RBSP 23 22 27 5

t o

1 1

i F9 u-a 9 :!

l o=m

>->O

' 2 In p_,j t___j gg g =

i

,, /

hy X 4 >10 20 28

~"I C;

I 4 Z g"

19 w

18 _l7

/

16 15 M

N fDHRP t

5 5

_J }lr]

s l

t._ _

8 PDHRP J

5 4

b<7

~

[

]

i

ig__.___________.__.___,

N*%'%,

l 38 O

l

\\

I

Lecewo, I

7 I

80 RATED WATER l3i 325 2

l W OH g

h m Thi.

BST-1 BST-2 DHT-1 g

E oumY FLuso si -------

SODIUM SODIUM BORATED l

,h n Om n DUMY FLUlO m2 THIOSULFATE HYDROXIDE WATER l

m, g

I N$ U STORAGE STORAGE STORAGE l

r>

t-

'd

=

TANK TANK TANK l

mZ <

$7 Q i

l32 26 id 1

=*cs i

lb

!b b 3

  • m x
8. =x p= ;=* =

4 '34 24 I

't 22 27

=

r se

,23 Z

o n

3.

o C Z

( l2I y

4 l

Go F N Y l

E E

]

35 j

$Z d O

  • Iyy (

20 28 i

>m.-

2 4 x d

19

)

=

ronar

,i8 if -

is is 5

r u

i i

h 1

i i

ml

"'** s g %

j 38 5l LEGEND:

1 SORATED WATER l

%}

g No OH l 31 l25 2

g 5

w. m.

g BST-1 BST-2 DHT-1 l

E DumY FLulD #1 oumY roueD #2 i11i1i11i1,,i11ie SODIUM SODIUM BORATED l

[

= _ _ _ _

THIOSULFATE HYDROXIDE WATER I

o ' =<

ma l

xRh STORAGE STORAGE STORAGE g

TANV TANK TANK qD[

a i

, =g m,

32 26 3

g*c" u

  • O> EE a

m=

-e r.

33

>O a =, $, %

u L2'

EP"

E gm em a

24 m

')

O

>O, 'z q u

8 l

Z>w*O O

37 3

r-c E "

l 29 4 i: m -4 l

5 e "i l

$fd PRBSP 12 II 1

l j

I 2

1

-e m

E 1

l

,1 lV 38 r

L__

]

I

l

= = =


=---e-.----.-=---

i N N-s 37-~~~~~~_

7 i

j I

N i

l LECEND l

I 1

l l31 l25 2

l g

80 RATED WATER O

BST-1 BST-2 DHT-1 l

l N m.

SODIUM SODIUM BORATED g

g oumY FLuso si __ ____

uMY FLUID s2,, ', ', ', ', ', ', ' ', ', ', ', ',,,,

IHIOSULFATE HYDROXlDE WATER l

l 3 %Q

      1. /

"E $

STORAGE STORAGE STORAGE h

TANK TANK TANK h

<hm l32 26 14 3

k"$

r e

L'.'.

g i!!

8 b

R

,23 2

27

=a s as e:

c

  • g *: 2

==

o2i 3*

13 l

r 4

e l11 35g g

]

PRBSP 12 4 >10 20 l28 i

se E! at z 4

    • g 19 PDHRP 18 17

/

16 15 M'

N t

)

-J i

8 6

5 PDHRP (7

4 j

i 8

50

=.. - - -. _. -

.i i i,

t l>

e t

t

,. i Figure VIa

.>- 1 J

Florida Power Corporation i

Crystal River Unit 3 Nuclear Generating Plant 45

- L - --

Comparison of Analytical Results to Full Flow Water Test -

Borated Water Storage Tank Drawdown l

l xxxxxxxx Test Results Analytical Results

- -. - - -. J 40 t

t l

l

  1. r. L.

.t j

l i t !

Ii 1 -.

  • C-'

i j

i.-4

..4 7

i i

i "I.

i i

l 4

l l

?,

{..;*

. 3

,8

,' t * *i-l a -

[

H I..t4

+

g i

t

' t u

35

-- - - -- --+-

1 '.

24 I

!'I' I

w I

s.

+

  • i-
i. t
  1. L+f ce d se.

I' 4

,j l

,' i I.

[

>3 i

s,

t t

Wg l

4-I.

s-A i

t i! t W5 M

(

l J.

I f4?

-l' zs O

?' ?

I 4

w3 g t

li n

g t

i 30 s

v w

i i

O j

A 5

g I

i

,i.,

u I

N I'

! t' O

.j.

l Zi

++

. - 7 M

]

'1.

j i

l.

-4 9

g 1--

6 t.

25 u

i n

j

-; ; 4 j te O

j tt-4

,i - f' ' }' : -k. -

t+

t ' r '.-

i

. 4 I

2 i

a (3

-I!~

w u.

ji

..- t.

g I

i i

4 6

O

.' ; ;3 6

I

.c

-I.,

l g

4 t.,;

r.

I t

20 au o2 -

ii t.t i

}

-- O

{i:

2 i

4 ; ;.

>l

== >

i

- - ti j1-i

. w w

(,.

t i

ou e.J

,.i.'-.7<.,'.

l' r

'.!tt f Q.

gg p -,.}

}

..a..

-.4 w-i ! i i i

.i6

,,t ltll 54

{} l' It ' t i ft

t

't p

l+l c..

[

!I 1J.! ' ilf I J l t t 6

15 3

i 9

t.i i

i;l,-

}!.

i

.: l i

et

. i t

I.; 6 ri 1

a

+

g i

{,

e 6

-}q

+-f t

,4 6

i.

6 '-j {-

b g

,i I

?

..].

-. *, }

t. *t +g f p ;-

g

.j

+.

4 7-

77

. 7_. _.

,.7.._._

..4_ p,-..7-7..

a 7--. 7 4

9;.

p.-,....s

,_ 6 i

7

,)

. v

.. +

.4-.

7 m.+.

-t t

  • 1.

t i

{

t t

F -.

  • t -

t-4-y ~

  • - t- ; -

i i t

10 I !j e

  • i*

I4 t -f I-ti - H t-

' + --t-t

},

6.

1

+ +

t,

+tt d' t - +5 1 4' +--' I f&*

  • - ~ -

1 -+d

.i i i 4 1' t 5-l.t

'.I t.5 Ia, yfj

--tf- -f Lf

, t t-t-t - t t I -i i*

b 1

1

.i'!

i

.l ki4i

. i t-4+Li i-F4 L !pd 4

. a

't i.i 1Lii

  • s t

I..

t

-t 4 t 3L

--+ + t'-.

+

ii i

l l

I i1 i 1 j

iit l,

iiI'

l 1..

t t..

i..

i,

!i t

4...

- } 1.

p.t

j. t l 1 5

e t.

j Fi

-t i + -}Ii-t' 4

.I1l 4 f,

  • a f

{t

}

41.l 4

l 6

+ e i

,, i

'.I i.t s,

?

i i{

f ! j; Ill.j j '!

j li;.

  1. {

LL.

!, 4}tt

+

i t

t-l ' 'r-t t

I

.4, p,./

.j... L..t.4.?..

6.

ii.

t t

.-k f

l

-t e 4.

i 4

..,,...11.~..44 4_,- -, '

.w_

- I

}1i.

t!t}

i 11 4i j.e j

}

~f

[

I i }l i4 b

6 t

{ 'L l

i-ii t-

{

t 8-

!l.[.'

t.t b

l I

i[

i--

-I-i-

- -tltl l

t i 5

t" t d-Tf.- -b 1 -

t t

-F t

- t

! tft t

i t-0 10 20 30 40 50 60 70 Time (Minutes)

50

~~

i Figure VIb Florida Power Corporation Crystal River Unit 3 Nuclear Generating Plant Comparison of Analytical Results to Full Flow Water Test -

45 r=

Sodium Thiosulfate Storage Tank Drawdown xxxxxxxx Test Results Analytical Results 40 ~~~~ - - - - * + - - -

p + -6 4

~4 p

a t-,

-.y

-..-.7-4

' y6 A.

~i-.--A j.

_. ~ -_

~

u t**I

.t?M-g

,..4 t

  • 3 - *-'

i.

1 - h4 t - i

  • . k-

-f - {, f ' +

j l

d,-;

35

--- - i i

6 t ?;-

' ' ' ' ' ~ 1"i~ I ~*L 24 I

f I1 L.IA j

j l

g 4-s 3 -+ 3 {

j*

4 j

F4 r4 t

>3 l

t l

!4

  • ^ +
  • w, 3

u-i g

..i wg

, 4.

l'b.

Za M

l 1ii 3

"3

'u 4

.,a i i 1 -.

Ea. <q w

r, v

a, i

H w

I f 1

W K

4

..I i

v I

l 1 -}

i

. +

.O.e i

{

1..,

N AI

_.'. _ _.i

, - F.'-

no i

ix p4 j d

,r Z

L.

j l

4

...,.-.h*-

4-1-.

.L g

[

25 1

t:.

u

\\

D o

. E.

.}. p 4-..

1

.., -. i.

.'..h

,4 g

y j

i.

.K i p

.. b}

4 1

o K..

t_.

1-j 4

..E.

i 4,

4-4 --.

4 f

l e

t 13 I f

~T g < 20 T'

8!

M l

.4 iF I

O s

i f.

B 6

.i a

kEil 6

.i l

l i

r j

l t

j e..

r!

.. i g

4

-4

r,

,{ l-p +t--

e y.

+.. +

1 3

!f'

'f f

l !

I

?

t t

i

.'*8 s

i t

8 * *

  • 1:

l I'

l' l'.

j 1

I

!l,

?

8 I

l e ;

15 i i,

l i

. i

}

4t *I 4

6 t 6.

t ;i j?

I{

i

. 1 6

I

.l i '

l f.'

i l

r

! t

't y

t

{.

u 6- +,

9 i

j i i }4 L.

t 4 7

I f

t {

,4 t-

-h?

+

, ; &4 e

f.,

-t f

f 7+

4.,

I 10 t

' 4

  • ' + - -

~'1 t-f--

i j i.t tit.

j H. :-i.e m! t " ?.

1 I

ttjt e

t e

l,

+ t

-*-+'-!

t1 l

i

+':+

-t - i 4*

!.t i f i

..T. *;.+.

.4 r

,1

c. 7 I

6 t. ) $..

F.. ; --

74 4 j, ; --,-

11

.,;2 t it r

3

- 1 i.

h.}' f+ f j

f i

I I

I' 4

5 e

- l

.I i.a i f!f' ii*t I'

I-f l -i I 'Iiif fAI' i !

'3 t t

t. t l !

-i t';

t

,l4'8'.

ff6!

  • }i t

t,

6

, +-

s I

1 9e

{t Iii I

    • 6 e e a !

.t + +

- i'

t. t j

...4.,

}.i,

.(

4-r i

i i{

{

i i

i

{,t ij, t.

. i i

i tii

}j,'i

,i

+1,.

t.

I

.i i

tt - -

t.

t, 4

  1. 4,.

.. i tit' l!

t r*li t; t'+

!!if it t

ti-F t;

4 0

10 20 30 40 50 60 70 Time (Minutes)

50 -- -

i

--~

~ ~ - -

i i

f Figure VIc Florida Power Corporation Crystal River Unit 3 Nuclear Generating Plant l

Comparison of Analytial Results to Full Flow Water Test -

45 Sodium Hydroxide Storage Tank Drawdown i

xxxxxxxx Test Results Analytical Results i

40... _ _ _ _ __ _. _. _ -

i i

[il.

it i.1 4..' !

i r

.- ; p t[4 ;

{ L..

l i

i it i.

};.

7.7, 4 I

p.

.;4.L.

i d

35 - - - -H I

u i

i '.,'

.!.;?

t t

-; ;F * ***

' +- t i w

9 4

i f

r* -

ib lj1; re.;

. !L

+- 2

(

l

'f i

i lt t

}

g.,.,..,.i- -..

i.

o,,.

. ---t -+ 1 - --

-r--

,,i.

r1 c

m s 4s+

.g u

m 6

.#{

y

}

}

i Ir,.

t it t'

+1 - + +Ir

': !4 i tf*

i "3

5' -

' M. '

% 30

  • 0h

- + -

1 t!lI i.t

}

l.*

6 i

i e r s

l i f.+#

il1 l

  • =9 I

i t 'i y

l

-_._t.! -_ jt i

o

.1 Z

i

!;I{l

  • , i

,. i 4 6 I

6 ++

4; t f.

i..

t i

M i

r

)

j l

.il

} l i, i

'f' M

l t

i 4

l

+

i fI !

ii ll 25 6

u

(

c 1

i i}

I i

! fI ii

i i

t t*

I Ii !

C i

t g

l 5

I.

i !t'

,it!

j !)

3 i 4 I

e :

!!! t

+

..-.t J t n

i 1

K{

I Jl.

p 4

i.

.5

-,-2..

9;i t

(

5 E',

..t'

.. -3. -.--4 i

i xi; i

tt.!,

a o

i e

i s

4.

t

+-

I

.f t',i k.t'

  • -4

. t.*.

t t

s

$b, t- #

e.f, o-0

..t 46 1.

.i +

i

,l r

t t

f i ! l' i,i i

j.f zo e

i 14 i

i

.4--.-

t t.E l b

. f..-.i

  • h

_i

-,-._i h _

i gg j

t-.-

+-.t e

i i

.!l

'. Il',.

i; I.

+

5 l!*t G,

j i

I 8 I

+

4 li c

(l l

l*

l "i

c.

g3 t-

-tt!

l i4lA f +F t -f~l 'I tf

[tti

}t -i

' -;j ci i.

.i6 tt pt

-" ; t. -t tjt; d

t

?*

'.I. i

- '- I -

,! m t}

. ttti t' t-'

x t,

t st7_

7 -t '

.. [..._.

4.

t

. }

i t

1 4-t 4-H.'. A2.

..4.1 +A- *l t

t..

.;i 7

' r i i-t k' 5

j t 1

-f { y f'- 4+E p'i 't -t 4

t 10 I

I

'I't 9

'1 1

,l

.I {}

it!

+

} }3 }._-. j

+t -} -j.

i 4

7 p.

+

1 6

i 4..;

.-t

,t

+-

t -t

--t T F 7 t t p--

- +

t-'

F i

_._.t t

_. l '

'?

- '*- t M-i {-

.m i I 4,.,

i

'.+LF M., 1-i 4. f a 4

i:.t

.i.

t ii i

.f f ; Lu.. -

1

_s..q {...

7 b ----

~

H4. }b.-

4 i

t..t 6.

1 I

.t 5

j jil!

lr;9 i..j

- ; -F.

L-4 L -.-k t 7

fl l'

.ji.I iii.

.. i.-

- t ' 4 -.

i j j i!

i.I

.. b..-.L i. Q -a. -M

,i 4....--4 +4 q + J 14,

.4 4

i i t i.

i.

4

,t i

.tk~ -ff tf ~ t-b4 i

.6 i

f,.

.} }

'j.}.

6 ii.

4

,i t

't

-l

' -h ' - - I' - - l- ' I I f-I-l I.t I'.t llt*

t i.

4 l

r

+

-. p 4-..-

.p -

---+- l-.-4 i

i i.

ti

.ie 6 ti.i l

i.

{

1 llii I'l(

lt I ilf- -li -

j '" j --y --"-h-i--"~

t' i

i !f

.. - +


t-j i

f '

[J

-1 U

AU ZU 30 4U 30 50 su Time (Minutes)

50 J.

l'

. Figura VIIo,

. -.- j Florida Power Corporation Crystal River Unit 3 Nuclear Generating Plant Comparison of Analytical Results to Half Flow Water Test

.I (A Train) - Borated Water Storage Tank Drawdown i

45

-+

i xxxxxxxx Test Results

)

Analytical Results I

40l----

t i --- -

1 i.-

1 i

,i

_!_.l _ +

H+

+

3 i

t.

t '.

<11 j

i t

i J

1.t r,..

i d

35 L-- -

- - - - + - - -

t.-

L--

l a-i...

i l

4 y

}

i r3 r.

i 4

w, i.

,. t -i -

e O~

m g

g 6

og u

}

i z<

q a. 3.,

4-.- %

E3 k

l' --

l

{

i

.i j t

{

t.

..I s

v 30 W

i i

I

(

.F a

O i

l' l

1

..i l

j

+

w 7,. ;

l i

. i i N

i i

---+,-~~f-'-*'-+--l-i

}

0 4

+

4 4- - + - - +

2;

^

e i

l t

+

t '+

l'il; a

j f'.

I...

i M

4. I l

t i

?

i. 1. ;

t m

f I

i I

j6 yt 3 it t +

w 25 o

3

- -. - +

--t- -

(

,i,5 c

O l

i i :

l1 g

.;1, 4,g i,

t.- j.

4

,.g i

..+l a

'ti y

e,

-~

4 a

i

! b, j

y o

i 4

k

  • I 1, '

4 I

'i*

t-a 2i,.

4r

- 20

=

s ')

o i

2e j

... j A-e,.

I

.i.

.. +.

C-i

.q p g. ;

' l. 4

.p 7 d.

  1. u.

I.

' ;i r.

-~

';ti 8n rt f t--

i i..

+ - - - - - -- ' - - - - * - * - -

i. i

..4 4

i

,. t,.,-

7 f -,.,--

..,4 i

t S.t h t-

~

e

,4 g-t i,.

4

+ +

15 4

+.4!

44 1,..

. i 4,;.

c'.

i i

1 6,

j,I{

4 {.. - }.

.l-i l..

{j..

ii..

1 i

1 11'.

. 4j.-

9 g

7

+l fe14 6, :

: i
t:

4 4 z

i

..4, 4

i pit {

! il i H t.

; }i

+4 i

...I e

r,it 4.

I Li t 4 -t- +

. i.

+

1 l' i t, t ],7 7.J1,j.

6 t 4'+

,i t i

i.;i 10 t

42.:

it,i R4a 4

.1,,

Iii, I

. A l j 1. i.4l

&il e.

p

6, 1.
a. ; 4 1-4 L

l,4 j

i. e. i,t t it]..j ; t-;

t i

. i.. ;

,.{.....

1

.4-7,.- ;

-,L+,..

,,i

,.3

4.,7..

.. t-9.

7

,tt,l

-4 33 t.:

? i '

.it t+1 t-Q rif l

II

' I I*

N '. ~

~

5 l!il i.,

i..'

lj f,i i,

Ji 4--

1-

f. L

{- p' 4-4

[,l,l

((

Ij g

~+- 4~t f. -

e l

ij*

,l1 i

!' i, l4l ii.

t. j j 6 --

4 1-t

~ 4-.-

Ii 4..-

i i i

!j

.et i i ~

4 4-f t 7,-

}t-~+- -t-l;

, 63i

,;i

.. 7.-4 -+-...; h r 4.1. ;. - -.t t-

_4J. j y

'...e

-. A

... $-4 i'

4

! 4 It {}

il

  • I~j Il

,l i

.j Hf-L Ld--

I h.t t

  • t i

4 i

, +

4 1

lle

,I

{}

i, i

I (

j.

J.4 tt i

tr 7

tt.1 r; -- -t-f1--f- -"--4

}

i

,i 6

ll.

jtt:

l t{I i

li tt t

1l

{- -

i ?..

t-J tft

.i'

. {

m,---

t-

.t r-O 10 20 30 40 51) 6')

7)

Time (Minutes)

50 I

f f l.;-

Figure VIIb Florida Power Corporation Crystal-River Unit 3 Nuclear Generating Plant 45

-t-Comparison of Analytical Results to Half Flow Water Test (A Train) - Sodium Thiosulfate Storage Tank Drawdown xxxxxxxx Test Results Analytical Results I.

40 f

l

.._.t.t y.

4

-....a.-.-.m e i i !

e i+

+

i piH-

.4 j

.f

'. i E- -f t-4 Eh e

j i t

' ? t-*} -

l T -*

?MT 1

y 4,--

- 7 ;- + f

+ hp--

4 1

.t 1

4 t

p t

i H r t t-t- -t + t -

M u

35 4

.- d-4.-p-] 4-j.-

g4 l

i,+

4-.

4 9

1-

.;flp w

I

,. p-. t

.-.--l--

7-

,I y.

+

w i.

. j -- t -

. r-

J --* -

>d j

s.

1

. - }-,

,-'-*-t-Tz i

i

.-4l 4 i G-i j

j i

.-, i t w3

^

4 i,,

t i

!l, ii1 b$

5, i,

iffh,'

q

. m - - --

.-s.-

.r.

g.' g.

.k I

a a

a 4

w*

5 w .1. r gg9 a w 30 o i i i ! N' 4A;E ii-, - t i ! 11, v 1 ttj t, t. x. i i i t.$ + ,o., + i 6 t N l l l 5' * .--.++. A-L 8 7? 't r i N -} i ' {.4 --w k - + - * -+ O l ji. } l,i .f l - 7.]f

  • f i

1 u i t *. t

  • 4

.tt i. ( + r r ii! y j f ! I 1 e I t-t ?

  • 25 i

u .L } ;-4.. a .i !,j 4 .S L. f f Ili 4- +!. U-y \\ . i 3 tt 4 4. a i .. p+ y..+ 4 p. j 1

  1. !.I 1

g y 7.i-w .L 4 g l !} L-- ;-J4 .,-.-[.+i. 3 l. a i t g 4 - +- p-a r+

g. gj4

--.4 c. - r4, 4- ++4 L+

5 20

.t

  • r
  • - 4,'- h f ~*

- t -- +.l-OJ b 9 t. ! r.. - i ; ..O t-m .4 .. 1 2m l J. t' '. . L.t - [ ww e . 5 - Mg W i I i f ,4 f _t l-f _E 4. e N ,..,_.y ...I_. , _j l g ,, j ,i 1 +., a,+ w-i ti Ex j i 4 i .i!} lIl

I It, o

i i', 0-I i i i { t*l' i .l 4 lt i 15 {+i t i i + i..;}l - ti I e i n + 1 +l 9 e i.. il Ii' I i !! tf d I'.f' f+f f i Z ' i jiI{.._f ! + _ j -!+vb 4H -i t-- t -+ 1 l . * + I i } 9 L. i + +l -e,--, j } t -j.. 9 - +--,4 a --. 7 Le-- i.. ; i, l l h. f 1-h - h-hE-d d-6 8 i t j t e 10 1 { t ! 7 p. ;. t 12-r.y.-g- . i .i t 3-1-I m-b .._-+ H-. - i :

3. --.-.j p f,i. :

i 1 j 2 i 6 i i I i. .I y } -f - -fy,- t. l 1 j i+1 b i4

,ii

,4 ii. -; i -t 4 & -t...+.--t. t i l ,t 1 i-a+A. 4 ' j-3,- . 1 tt i.6 7 11 6 L-., i. } L 4-i y i I ~ !

bj

,ti, 6 i f -- H--! - 18 t i t l t i i +. 5 ist t.,' l, f.. - de teti i, - --. 1 +' ' 44~ - - '+. 'i t i 't Ii' 14 !!f. il Jif* _,7,. t l t - l ,t - .tt

f. -

t ',t.t - 1 +-' M~hh- -t ,i .ie t -+ -4 -' -*-- ' h h' i .,....t-- ~ fh*l i lf3 } 6 l 1.l*- M 8 -t 5. t 8 6. t-f{lj 4 ) i } E-q

.i

. -i - j t4 l, {s; .{ l ht-q.f.- I i } }t! l { g- -- t- ) i ~- h- -i-- } -_. - _ + _ tI ! I' t i 8 i 7-0 10 20 30 40 50 60 70 Time (Minutes)

50 I Figura VIIc 7 Florida Power Corporation-Crystal River Unit 3 Nuclear Generating Plant Comparison of Analytical Results to Half Flow Water Test .--.-J (A Train) - Sodium Hydroxide Storage Tank Drawdown 45 xxxxxxxx Test Results l Analytical Results I 40 - - -. - - - - -i, f I i i ! Id I . }..n ; i 9 - ;.7 p .... g __._. _. _........ _ _. _ .,... L,, t. -. j j i, F Lp p . t.. -j t. f. ....t. p.7_ n. +. s 9 .-,..p 35 r - --- I' 4-i z4 .tt.t *... ' T.. 1 -

  • r+

w. -+ y j 7.,t " + (; > 3 I i 8 .y l.. _.. ._..7-.---.-.., ':t s %w ; r, e,r y .w; e r e c o n 2,, j tj .K{g x,N. t ,. i. g ,g. ' 4 ,I ir i i. y n t------+

r. --

n i t!

i. -

r t ;- m 30 w !. t a-ig. I i v i i i I 4. A 0 1 I

i.., ;-

t, u o i 4 ..:.._.t t s ' u i o I: Z t f i' i - l4 l 5

  • i
14

+ i, 1 y ta j, c

i. ! t i

i . t i.

  • 25 i -

'.<- [ t '.+ l u i

i..

g 4 i } 4 + .r I i Iij. i , j t t i gy j...j._.... j . 4 4 i 6: t. o i j l l +-. 7 j !4 i.- ..S.,. ,c i 20

  • - - - - -~ > - - + -

4 l. o i .. i i a .,j { j 6. I f ?-!i a a 1 u Iqi .i.. - - *, i + 4 x 1 .i ,a 1 4 4 1 1 6 6 3 .'1 o i 1 5.. 3-1 l 'l . t. - t 15 i r. it it ter l !*i 1 ! '- R l i ' t I .f;i g tt t + + t -'{ 1 i t i+. .4 tt i I z i +- ,j i i ~_ jL;-;. L l..1 .} I i . 4 ti.. ri+t i + i t t

  • i-i '.{ ]. i '.t *

+6Ii I + .t 10 }. 4 6 L 4t7 s t-H.. iph-a_7 9 v j i i e .+ p 3. 7-.I t._. t.'. t i. 4.., _7, _t,- 4- , ;i. t. p !;.[: l l ..L. i; i i _; p t i 4 2 i-I t- .t tt'-h _, 4., f. -m. L F. '. 4 i i t i .i' e 6

..g 7..

. y.., 6 i,i, .,i 2 t.i .1. 1, 4t., t.;, ,4 i . 6 .F,5 } 999 44.. 5 6 i;I 1.f; i+.i t j -4q 3 A.+; ; e j j. : i.. ;. i. li L'.il

i.,

l}il i., 3 t .j p f 3 i l. i L .i t 4 { f.- *'t f I ti th+ i T- ! ~' H i i. +t t t! t ?' j t i r ttT' t i- _.t.

7.. t

.'.'.n' ._4.._.' 't+t t 7 -} :. .t.i,., p 4

iti,

, i 3., ,i. .i i. . [. i. i,i i., ,l t } i l,,! t-l} f.9 {t i i.{ I 1 r }- 8 -+ -t-t- - i .,e t i t '-t-i t 1 t- 'i -~ - }- r --'-f 1 t ' i ]- It !.

  • tf I3 tt i i

!i t t-' "t 0 10 20 30 40 50 60 70 Time (Minutes) L

50 -*9 .1 . i, Figure VIIIa f Florida Power Corporation Crystal River Unit 3 Nuclear Generating Plant Comparison of Analytical Results to Half Flow Water Test (B Train) - Forated Water Storage Tank Drawdown 45 j xxxxxxxx Test Results Analytical Results ) 40 t jj a s. .: 7,. 4 9.. L ....t. y.

1. t --. ' -

969- .f3-{j ,p j

4---

7--+- q. m i

4..

I 4 -+.-l-.- ,-j-lL.f+i-i , el L -,;-t-t j F-4J++- 1 -4 tE t 5' i f - *t +f !f

  • - f i '-

d l l t-u 35 za l i i, i I ,f f- -i 4 -+l i+f-r 4 4 -. - 4 t- - -.., -, - w d i i i i L! 'l r. H l* 3

4.1.

r ; * ;- 3 1{ W, u-m - e.. 4.-..... .:l, H .t Wo I ( -i -t-l Ii- -t 4 t- -![i* 3{ h i l . f, 7- ' - 4ht-tr it ? l l t t*t i t i t-t- t t F*+4 n. ?,

  • 30

~ 0 i ..,4 . i. .) 1 i-t j- -, 3 'N i -.-i., - g , a I n 6 t O i z . -- r - -.- A 7- + + - - - i. ul+. ,i iei .t a.. t t 1. .) g - h j-[ -{ - i - 4.- t. s " 25 ( 1 ; ,#u 1, e,..,,, ;_ I..L IY ! 'i 2 Og t t.i ' '. t ! r i I, 3 .L L i t { t 4 j,7

1., p;.

, 7.- r l so i. t l . !.,4,. i, i, 4 .i; [!.i .!+1 o I;f .lt: I ! o 4 l1 t' 2 20 il c c 'e g' e I i > l l !ll z i. i e i ; l, 3 i i.. 4 i

e i i;lt il i

= . 1 l l! l 1...;.! i 6 ! I ~ 6 ~.-_p+1}[.

p. {, 4.. -{ 4 Ll.

,e .. e.. g { I Ily i 1, 1. 4, l}(( il.l-

i n ;.

.i i F} l{.,I 6 1 iI j 15 3 44.;i

,i, a

J + i.ij -.1}l } 1a i [.,; .J! 4 t l i. j 4.- 4 i.', i f. L -+ '{ 7 i. { . } i ) t. !t.-%.+ L 4 .. i t. 6 i i .i, 1 i;3.} 1 ' j t 4. 4 t' h '!'I 10 I I i " '. ~ ~. " i1., .. h i fI'.t., i,j4

i,i l 4 -r i

i + .ii f t.4 it. 4 t f-t : t k- ...+ i li+t }tt ? l' f }r t -f i i i 6 -- f.'}> l + i 4 t++ +r

+

t-ttt+ t.;; i + _r .t,... ' 1 .1, i ii t 16ii !6 : ,t, ti,' ) l i ti! i j i ii i, j jt ; i e i t ,tli t, i: i - tr. tt t l *1 j ji t i 4 , i e.t.- +- i 5 ~, }te,. l.!t, ! p.,- i _ t +, i ,it t i. 14

}-

i ii i i ij i j. ,, I,- j, i;., i t.t i. 9 tt t t t t i ,4 3 r rt i f tr4 i;.. 7: _ +..~ -, - .-.-.u-+- t I t- - c l I l:I f ,, i ?. f ?.f 1 f hi h ' 'y 'I lg a>}'f. 14 af.

t F'

+4- ~ 6. i r t 4i }. j-t i E.t- -t-t-b , i 6

ti!

Ii1 l --F i t -.i.,. 74 t ri 4-t- *t-m+- ' - ~ i- + tie l 'I ri i lr, i - Trt7 tit 0 10 20 30 403 50 60 70 Time (Minutes)

50 Figure VIIIb Florida Power Corporation Crystal River Unit 3 Nuclear Generating Plant Comparison of Analytical Results to Half Flow Water Test 45 +-- (B Train) - Sodium Thiosulfate Storage Tank Drawdown I i j

xxxxxxx Test Results i

Analytical Results I t i l-

i 40 4--...-

i i t ..~..., t-+ m t j n..

.._....,r. -- 7 l

4.. .i. 7 .;_t. l i ..a. l qj_ 4.-._.. +Q4 t. l

t.- p t,

+-+ ~H -- l*'*r- +- i i d 'd -

  • -t--

u 35 i

t. -

1. ,.,. i t i. e: i +--+ +1-2- , i w i

4. 4

,4t' 9.

+.

s 1 i $d j i w, 6 i ' +I i ; t.. c.t a i i sii 1. ,,1 .+ i 1 w= "! ^U r. i .w o'. lti+

  • i i *+

u o. m t l ., 8 4-o o i i r i i i s n. 30 .s - - - - rr.' W v j l' I+ .;&i ,1 -{ .i i I j i ' '.- 2 j l. li .x ,i.. i F l.' 7 i i i x... 2. e i - .1 K. k-. w t t 'r t '.-- x 's,k - H. ! t-t i . t.t t -.... 2: i J .4 i 1 i l- .h 'i I-i l i; i ;.-, 1 .t. _ri X i i -..j i-. t ?- 4 t t-t- + - 'p .*, 25 q 4.e _}? 4....x : .4.t u. o 5 4.[X, u.4 a.; 0... I-o 4_..;.... g 77 g.. +jh Q ,.t j ..t.

f..

.I a n .n ..{,,, _a_ . ; j.p;+. _t.4A is y II A o l -'..'..i--... 7 k'-- t 4.. -p. 3.4.L. g t p, 7 -. 7 4 e 20 n u. .4 i 3-t..I i +.it ( L. u,,

}t o

I , }. i, .Fcii ,t sa > -.. L.. o l i T.3 .i .i [ -. !i i. ii .i. I. -.t. t -.. i i. t -.ti. ti, i. .ili ii - 1.,t I l!: i i n 9' i i't i l l flii ' !!i 15 - - - + i i i i i 6 1.. ! j i-i ,! - j-- 4j i a 1, t i ,;t f. i. i, -}. titi til! i } g 8 e. 4 ? ,4 r i y i c.. -. i. ,. 3 -4 t .-4 7 bti }- t+ f--t t-i. ! Ft t i! ; i Jt -4 p t t i j e

j.l i

-h ia ,j t- *4 t. - ta 7 7 -t-t t t i , i 77 g 10 .. i . 5, i .i. LLAa. 4 LL 4 4La 6 i ; ;i ..k +. L +l.~_L. .L 4.{ 4-A. L 4 . t.- 4.j.4 L.l 4 6.4 i

i. 4 ;..

l} .i. !.j [.-}.p. i + L J-3_.. ,. J. i.4 i. }._ i.-,, 4: 4 j- .. ;.1 j.i { q -g, lL.

1.

1 ,,-. i.y

J

. +, j . + +p t. 4 ,,.j j. p. i. e. .r i t 5 i . i c r i i i ,i 1 1 1. J.1, [ J. .t, & J. ru i-1 + r.+ i .+p F j p i; f " I j- . i 4 .. e

i. t{ei t..

. 6 i t I t4 + {I }. {- f, { -h 1,t1 s i, i .h.,-_.,,i.8.__ f, ! I. i d i p{ jt - t hd I-a t 7 j.lj i ti ,4 - p.. }. 4 i .i, ..i t-. i. l, [ . 1 i e i i,,f i ... - i-

  • ; 7---H i

I ft i ei r!t. 1iti F +[-_.- } J [- i } 4 1 I i. .[a. J'. 4 .. +. ..l j. 7s i i i -{ l; i ! 4 q_ p thr d._ _+ l 0 10 20 30 40 50 60 70 Time (Minutes)

50 t Figure VIIIe - -- - u l Florida Power Corporation Crystal River Unit 3 Huclear Generating Plant 45 Comparison of Analytical Results to Half Flow Water Test i. (B Train) - Sodium Hydroxide Storage Tank Drawdown l xxxxxxxx Test Results j Analytical Results 40 i i li i, ... _..._4.. .' t ri j .. + + - i ,i t { 1.ii i i.!. I.,;; i i ', i t i,. i-t ~ ~- .py ) 1;. t g u 3$ . - ~. ne I 6 ,fi, f+'? , t. t 'j - -t J, j I + + t ff {i;e r, j *- 6 e ,t;t ,e i i .j=,1 { Ptt I *k'

  • 'i*

f 6 ' t ' + - ~ -+ -2 j .w y% g +' h SA i t f -a

u. a 1

a a a-r .a-c - -,.. a,,_- g., t. .j. {. .. t +.. 8 i f,.tt o - r r - r- .r. t, y o 14 io 9 g g g-. e 4 3 V' 30 . ) ..1 8' g 4 , + f i,-.+r.i..l+,.+l i r t i g I t n g g --e 4 N 1 t-- i. , 6 i g. L.g., O Z 4 .1 e 4 g g .{ u l 1 l '. tl K'*

  • t-t t

-( 25 . g, g.- . 4.

  • H i

+ -... g l ,g u i l ?. L,.4 4.. -. W:.... A.. 6i .1 , 4. i t 4 i

1. '

) i I Jt

i

.X..

4..., J

..x,.u. i i., ,, i 4. E,!. cf . _ '. 7 .? 4 4 ,. 7- _ n _1 n ,3 3 4 o. 20 lt 4 t+ .,{ ,i, + i 4 o i R 6 e i I J e a e I c' 3 i e i.i i g 4 s 4 - -_.__.2.,-- l i 'i 1 ' 4 I ll g, l c i . 4 ,1 c i' .,te .{ 15 ~t 2 q.g,, 3 ,, 4. 4 .t 6

. q...

yg ,i;tg,t } a .i.-., .4 , ;e. _t _,. 7 i i 4 4 i 6 3. 7.,7- ,... -.. -. +._. _.. .. ~ _. _. 4 i j ii ,,.{ . i.-., i 1 1 ! ;i. 1 e i. . t ',. .+4 } .t ei i i. t i, a i t+.. .a i . f-j ! t-t t+ f

  • l-t -

ir f. j . + 10 p

,,4

, 5p l 1.;, ,,3 l 1,, '..i ,t-. }. +.i i4 '- ^* t' tt't ., 4 + +, ,,i 9 4 4 >., !.l I i * *! tt'1+ 4, f I l f- ~ ..-+.I.--. '.3 4 t d 1, ..4-. t. t,..

,i 4

ii. t.g! t4 i ,e f. j,tt Ii tt t a

.8'tj I

t't; t . i t, i ii l t , tt f 5 4. .l,; ..i 1

4f. ;, ;.. F}.;,

7 i{.I l }. 4 1 i s ,i - ~4 4 i 1 i. . i 9 d4 I# i t'i. t t llt

i. L j,r,i -

i i, t i

  • i 4

i [. .. y } . i 4'. ,9 ;. t u . } l t a 4 4.. ...a.u ,i l;, ' tie . L -,-., r, t -.+ -.; n,.. e.7-l 6 i t 4 44 - 14 g 9- ., -{.. . 6 i,! 6. g e t. ei, 9 , 4.,. iej t }

  • -..4 1

.-rtf-4+ j } &4 -1 - }-d -H--'-t-+t'-- r1 i i i i. t , i i I ; &it ? i lt.. I; i t;I t + + + 0 10 20 30 40 50 60 70 Time (Minutes)

50 Figure IX Florida Power Corporation Crystal River Unit 3 iluclear Generating Plant Borated Water Storage Tank Drawdown Transient Analysis

  • ~'

45 Analytical Results to Chemical Drawdown Using Test Model - l Full Flow Case l i BWST + t -- - NaThio a NaOH 40 i. { - f 11i_ i[i! I t t i 4...t ir .t 9.. i 1i. .4 I l ' I .t.. j.

e t

+ttI fit 4 i { t!9 i .l. l -**'j 4;. i 4 t + I.. t.f*t d t {- I

  • +

' t i 't*- u 35 j --- 3

i..

...i ..;i .4 4.ppia 4 3. -.. }.. +. u e l4 6 }... [ t l... { g p $. J., .c., F 64aq q ,f f, t t - a: {._t_.... ' _.. 4 44 *. _ l.... ; 8

3.,1

._.1.,_.+ _ 4 .s r .Lt i wy t' b l! 4 lN \\ 4 -i

  • i !

l' - J }i.i. b ' 1' *t '-

f. a m i,

{' l 1. {. p~.i+4- + e u r

  • t a- -

h.--F,- - ' s-,--. 3 0 30 g l

7. q -. a.. :.. ! ! i.4 4

i s v s N. . e, ..e. 4

1. 4

.. t.

  • P' -

r s } l. ,a' {.. 4 1 4,. 9 .j. i i i t 7 Lj ..l {;j. i. g g i. s is t.--

t -- -

fI " I. i I t f 9' k I i I f l1 N 'h ij t*l.i i} ... + 1 _.i t i r4 t - o s J. 4 a 4 i 46.p. 4 1.,, p

.it

,, y s d ' 25 i -- - T-t*.: i

t. ;.,i+tl

, i i ti it' '6,s i t-[t j it.

i. -

u s .' ;} }i -.t3,.

t

+ g

  • s N

.t t;*! t {- t 4 4.6 i i.. .\\. y .is. i: i

1. ;.;;

.3;i i ig J-4 . 46 i: 4 6 .Ii.; n N .g.. I,,.. 4 tt } -ig.i t ,i;+, 4 6 4 ..g - 4 i 14 ..il r o s. - '. 2 i,

.a '

a e 20 li l 2 - g .i4 6.t I .,{, 6 L.. p 4..y .+.L 1.h.. l.. PI-4

H 7

-h+F-

.4
a _i-.

+... L.,t, - a - s . g;

..i 4 i

.l 3' o ..e i i i p.., .r g -s -+-+-+4-. .- t, p j i..: \\- ~ g ..q g }+, 8 ., jj.,} t -t 8 .. a*.t 7,.ar .u. t, ,,5 .a[. t i tt

i. ;

i I. i.. .s 6. \\ i i; !8 : t-t -H ti f b et'. r 4 15

K.

, J, $, .T. j v4. i. i i t i g l..[.}..I.__.a.. f a.

p.i_

t l ..L; L .lT' q+.

.s 1

t,i 4

t. n.a,+

.+ 7-1 .. s. ..s 4 q+ q. h ,it r-jt r+tt

3

.. ' _ _2_q.9 i p.p L._._pf.p i ..i. sjt,; g.4..{.,- p' -..h...... }. t.. ,f g..t ,3., h9 }.. t .3, TF-.- -l-F b t

  • -I- -

"it 1i*, t t- -i- +, al t

  • t.

10 ..\\ }j ;J31 ,. ;3 .,;t tit. 14 p._i__ . 1.. _4.-._4 L[._ .) .t., . 1,. 644 5 l. ,94h 4t. 4 p: j .4 }p p j. 1 t-I:t . tie-- l;,. tt

t. -[

f i i .f i .t . u._ {. 4.}q .i.,j.. t rl t - aft 4 j 1. 4 7 4 . t., 4 t.. l..-'. __-Qy... p 7e. 1 ,i

l l a> ~.. ;
.9,j I,jc[.

l ,i 5 .i t g,i, i1 }...5 ..t r_". ,t..a.4. .p . _ pj_ 1 };j 9.y i t. 4. t i4 ,i F '-- 6. 9- [ l.., 66 _{ p.

6. g p } (4
lt

. i L .j . 7 g.- ..!. 2. t....t ._....i - 't

t,
i. :: t.

.t)t; . 9p + 4 t. -+- t .-._4 -, r .t 4... j j. ^ !i. iip..LL[4... [. L. Li. ; !. IJ_ }' i L._.L.c _.nu.h.. a j _4 +. t t4, _. 1. i i .i l!'I L j. i,.! j t t--' ~ --f--- - ~ { i+'- t-Y I - l; .iil e sii. i.;'

  • i

) tt 1 -t-t- - t t-t-

iii, il e

i i 0 10 20-30 40 50 60 70 i

SC ~,~ ~ r-~ ~r-- r. i Figure X [ Florida Power Corporation +- Crystal River Unit 3 Nuclear Generating Plant Borated Water Storage Tank Drawdown Transient Analysis 45 ~ - - - - I Analytical Results to Chemical Drawdown Using Test Model - l Half Flow (A Train) Case I l BWST i i - - - NaThio 40 -- ! - - - -- NaOH i i j i

n. a......

i, _ N i t. .{.., ....f i,.. t 7 ,j -.....a ,i. 4,, ,s F. -,.. t,2.,4_ i t d I t j f 6 t-h l } i. i } } 6 t+ + f t-. e ...a....,. -.--- u .,n u _ s. i If M N,h O i {.;' F e.,4-l t -- [ i i i 9, ti ; 3, 30_. j .g. l l. i i, v 't' _.v. - = _ _ + - - l.. .;FL j,.. .a j 3 4 s., t. ,. t 4 ..t .t o lr. N _...J.-.L.._ ,4 - 4 .6 g l \\ l }e t

  • , ?,

!6 - + f \\ I e k l l ll.! .l 6 .} j f , t i 4.3 O T,-- - ---i - m t.- ----- 4 3 25 ..a i t .4 .,e g l j j i i }. I j, i4 I '- I {l 1 4 i i --..i t+ re 3 i 1 f.. \\.; N j O .j j k i ( l i ' t, f.,' l i 8 l t g s i ,\\

i-4 t,4 u

"' 20 ----4----- - \\ l 1 444h { l t j 6 a j } N 1 t. i ; i.. a Q--.; ;.-.. - i s, . \\ i,,; p . 4 }* L.;c ..'} i \\ 8 +; {ie ...t ! _.-.m. n j g. h . -..t

i4 3

i 9 j j i i. , h j +j. { { p. i t-4 j .\\., i 7 15 =.. g\\.1 i., p.}.,. 6 -4. ,.~4 ,1 + 3 4 ,, 1 6i l ' ~ ~ . T, - -'h t \\... ll, I } 1 f 9 .- j 7 ? I t.< , 9 7 .-it 1: l .... J. ..... \\. t p -tt j h . } - { }.- . } --- +. 6 i 1 ,..i , I , 44 7* .Lii l -f-6 ,4 jt +- t [. 9{ !i } 6.. ,e su.6 10 = 3, .I;;L p [.;j+I f I__i j ,i, i 3 ,I t} };! .;g. . p...t s + 4 .i -_p., +. ..1

1..,

. -. 1 7... 4 p -.. F p ! t f.. +.. . t. }} + * -t +}. +. 1 4l.. 4 t . ;- t. t-1 l. ,,9 i, 4,. + .d-L..F..- t 1. ; 4 i j i,,{ 5 ig , g&. . 4 . p p......._ .((.. .... p.. e ~1

- + t-.,4 g.

) i. e; j-- - t '-. -f-- +4 +r t-i I. ..Iy ,I 4 i 16

7,+

t 7-4-L._4-. 4

I

.. b.,_ _ p. i h.. i..-. i. '. i l4 j 4 i }j 4.g 1-.. M i i !6 1 .-t ~. - 4 41 y. -. l l.'- 5.... ! } t p '.t } p, '- {. L +.... I 1.b-f.. r ;.1 1 4 }_ y } j {t-f -j t ;;-j -[ F}4} hp t - -f t-' T -1 t-l b i b - 4 l I . 1 + 1 O 20 40 60 80 100 Time (Minutes)

50 =.] ~ a Figure XI Florida Power Corporation j Crystal River Unit 3 Nuclear Generating Plant w 45 Borated Water Storage Tank Drawdown Transient Analysis I ' Analytical Results to Chemical Drawdown Using Test Model - NaOH Valve Failure Case .i I BWST f - - - NaThio + NaOH 40 i I l -...,....!;4._.+. ~.' .. 5 . & *.L t ..tu. . 6 4. i. -.. b t

  • f, I.

j ?. - t' t*'? !ti t 6 .*1 i A i a, } , t -1 f-u 35 i - -- - I j. ! t l,6 M4 t-q, w Od 9 ye 4.+ e t t 7 t t qd 4 t + a a j . a M .-,4- .g 4 .... ~ ....-e-4-. I ', g(g jj g. }. . i j

t. t i t j,rt i-l

, !t

p. &-

w i

i.,

t r. + !.6 } t,f- + + .e y, v g I e N 6. i e i 30~, -~ ~- .6 i ..-t o l 'kl N l l,' I b l; 2 .y.

s...

+..... _ h -.- f f. f j i. ..f. \\ l h. . 4, . ~.... [. g 1.. 6. 4 1.- u g.

  • t

. - l &- - 4 g . N, }. 1 4' 25~---'l--" i N. ~ {t.1 ,1 i N -}.J. T,- H.. g i N. i.. t-t - 4 g. o N l. 9.-~j t 6 0 .v. 7 .g .g 7 o t. k { \\ l .,g. L -. A-9 -i i.s.. t e I N 1 s.

4.,

f y i;,. .c, ') Q 20 .s I .t t+t g a g t 4.i 4 j~ 4

t--

1* i t i-I y

rt r

f' )% I ' '. ' I I' I

  • O i
t I t.

t. 4 I'i . f

  • i,.I t - y.! I.

n. g 7-4 4. 6 i ++ ,.t -;. 6 t-g 15-1 i.

H t-*

F*. 4. .; f 3.. 1I) i j

i.,'

,; k 4 + l.} L l i 6-i, 7-.t. L r.F t... , t;

3. +-..t, f.~4

} 4-.,. 7 \\. 4 .-, + p. {'.

. g. -

s i. .4 r t t t t- '+7- ,. I i.h 7 , 9 + + 'i t ., - 4 t-b t " t~+-+ t. !t 10 i..; {.. j L..,,,y j 47 1. . 1,\\ j ,e s i! i p ,itJ L,*t I ' -t - ,j i 4 . - j ;, ) ;I .. 4 H..,.L r;. , 4Lp 4. t-. F... p - p . wt -w 7 9 t. ,&q. .{tj. .I p,- y ..j j-4e, l 1 . t .4 9 pl, 7,.. { 7 -- +L L-l4.. l. L.t. . 4. h.' p . y,. + t tl f aht

,ej i

fiI t p 9 &j.! ' 4.ji I .i! 6. tli} 'l.f'f' .i i. s.. 4. },i: j t}ii I*',i II I i I I 4, .! + t i 'l

f. r, -';
t. L +

3l t .i j g e. je 2 t'! t _tti (rt. 4 + ri.. . _. t e au_

4... m I4r-

. A Li l i + '.-

i..

'. L i i ti': i.8 I 4 t e 3.. 4 t, 4i&!, !..}.lr. j;i. 4. -F. { { j. i. ,,4 9.., s,. 6 4 ,gi 4.., j. ,,4 F.. H '- t t IT t' 4-'- a ; 6. !!I i 3 tt-+-t-- -t f-t t 1t.! 12 I-i t# t i Iil +1.t i. i -t t. t-t+t- -t b i 0 10 20 30 40 30 60 70 Time (Minutes)

~ ~ ~ ~ 50-~.-t Figure XII r r+ Florida Power Corporation l Crystal River Unit 3 Nuclear Generating Plant Borated Water Storage Tank Drawdown Transient Analysis 45 Analytical Results to Chemical Drawdown Using Test Model - Temperature Study - Full Flow Case i BWST e - - NaThio NaOH t 40 v } 4 . t + t t ;-.,-l-. .; m - 4_.-.-.-. --,-.-4._ !1f'-y -1 ,.1.. l. ( j i

5 j.LL i

4 ..il-4-k4 t 9

f 1

i.I1-7 f- , t j J.- m 4-l4 t -+- t -[- j f e U )$ ~ -~ ~ ~- ~ ~- - T ~. -~. .. 3 4.7 - ~ ;f-+- 3 y t

.i.

r w l: r t *,- +I+ + _ 4 ;.. ,.J. i.- en } ttt s t v. I 1 m o s. r ~- 1.-~1-ii

s ^

-+ ..r.

a.. p.

i. i. y-a s j. j t,'4 LL t.. t. M i. i. N f, i ;. i. 3 ,it it s. 30 g 3 ,,,) . t., y lN si i 'i!. l*; ili;' n A l.. x L ,..s 1 t

- u 6 1.;.

4ll 14 LL I l +l

i u
ji 4

4.. t-!. i 3 l g t. l } 6.

+t7 ijja 6

I t t} t 'I'r }t-u l I t t + 2 25 ..% 'N. } ,A C j -s Ii. 7 l.;,. 5 L.- -4. y h.;-

.j

.. ; l -- j-+-.. g

..L

,t.,.,. g g;. 1. I 1 i,. .;.7.. g. I..... N \\, -...,..~. _ _......: o .] Lt. 4 Q .\\ i i i4e 1 -i j .g !t- -iit* j t*6

  • 't' i

6 I e4 .l ? E'

  • l - f -+

t \\. t t.* o n 20 l -h,y t. t- + d g (2 1.,t

f. -, : t-j-.. A-t 4-i.

e + . i.7.t j- ' '}t' '--' -* b r 6 tt - -+ + +- a a g + g i. s g. 7 -. \\. ..., { r t. ) I. . +t -~ ' .. y.. - g .l. ;., t4 5 .,.. t ;_ i i t i 4 4 6 J ti1 1 L }.4-. ?- ~;i, {4i 3 .%{}e. e .t bi { ,? t i t. g. -t{. . p { t,.[". 4 3 g, i. i.4 ,,r, 15 ,y 3 q3,j.. ;.; ; q4

  • .t

- T t t\\ : ';f, I

f. -* t l

A ie + jt*-t i f ,'. 4 )*l b Ii. , teg tt t .I I. .3 t *- t

j. t

-[; -t .. i 6i 4 ... + -.._ .s i I ). 1.i'{-_-.! t. ;

;t y;

,3 -4 . l' t t ..kl j l. i. 4 1 t- (,.. f -t.. 4 l-i

}

t f *, . t '+-+ t 9 , I t., j7 ,e. .j. + -r. }}9, i 9 7- - }. 4-btt-iht t ' l. ii. 10 j.}}t t- .\\ i;' $'4;i }t i {.. L{ j. 1 -p L j..- j-y 4 j-v .i., 6 I ,) ..i 14, .+ e.. -++. -..L t*+ i t..; - J. r L. L4-4.i. 4 4-,' _-f.. I .._7_\\.'f'_,. f.1. i i 4 4 l ,f { 4-tj-- Lj-j- -f-t-t A. i. I t i l . i ., 3_; a.a.La_p. L4 L j, i ;4, , j +.,.L L._ _}L...- 1 ,j. F..

4. p.t

. 9 t ;-._ i

i.

t t-

  • 1 't -. -.

- d-t- . - -l L -4 ' (( i Lj t i t i i j . {; {,! f.

t..}

4 }. 4, --. j+S. h.f, 41.. {. }. -.i . i i 4 . 4 i }. j..+-. i i. 4-j. ...I. ...k*i. .s_'. '. ' t.I h._* f l, , f* !i f 'f ^ i i" f-hl..., 4 l 4 y t 6, 4 t-I .' "-+ T j - I 9

  • L

.H.- 9--. *

  • 7*

.1-6... --., -;- 1 i !4 .l I i. j j. j. i i, & 41 'l .ji l I, i j t 1.: +- .li. }y, '-r i*l-i - t II T-g Ifff f';t-a i t v. {j!l !!tt -ltTt -" r d t- -t't

  • ftt-

't~ 4-- -f i t -- ~t-Ii i i !' t i t 0 10 20 30 40 50 60 70 Time (Minutes)

50 I Figura XIII Florida Power Corporation i Crystal River Unit 3 Nuclear Generating Plant Borated Water Storage Tank Drawdown Transient Analysis ~ l Analytical Results to Chemical Drawdown Using Modified Check 45 Valve Model - Full Flow Case f BWST - - NaThio NaOH 40- - - I - I' .i. ,l. f.i 1,, f 1 .i .4 [ 1. .L .., 4.i _._ -Q t t' fI4' I'. 1' L I i t t t .!l 4,; 4 Li l l l i t A hl +- i;; [ .t jti ) g - d- -~ .i; 'ttr 4 u 35 it. ,.1. } .4 4. t., y

!.1 +
7.. ;

t.t: 1I! b i.44 &I. -3 4. .4 1

4..

L q \\. a.

i

. 4 m i 2 u i i; 4 +.i d,,, \\ 4jit..'.i. i 4 ii 5 ..'..t t i w \\.. j tt4 o v 4.., 3 30~---v f,,f O e 1 9 I t N, \\.. i l .'i ', j{, 1, i O \\ g. I '..' L . --_4'. 7 lI t** l .a.._- . i.. l- +..'- y.!' $._+, 2'; 46 6 i T . 2 e I i, e ilte f} I6 I6 If I3 ej}j A i g-t j{j i i t

  • i t t i

. e f t 6 ' 6 i l' i I tit i f i' M t- \\ ---j s f I t lt f f g 25 \\ l 't h f 't -\\ I. g.' i } -..'.4 l y { i . I -, 7.. f-4 \\ ), l. 9 I1 4 g 4!}. 6 a.. ',i .-i. 7 !. c 5 n l -\\. l.. l

1. M

_4 9 Q f 'h, j, 4 9

1,.

,i 4 o i !! ,e l g. l t.' r . i I s t t,.. .+t + tt \\ l' " 20 f A i 4 j 4.. j ,\\ ,\\ t i .t . +. .. l {-,t 3 H y 6 g 2 4 p

t. -. l i

_.t g g-4 ?-

-H i!tI i

g a. i l i l t, M...:. '.' '. t 3 4..t 4 .3,, I e 9 4 , r9

6. 5

{ l g j l 1. f'. *;* 4i }3} I f. b i. ,t.

i i*

j p 4, g 6 4.j. , 6 4 g. 4 1e i l ,4

l..

,}- Ili; . i } 9 }. [ ....N ..7- _.a.. i j i ,4 i V...g j'

.j{

{. 1 -... ip .1 ,,t; . }p i j e t N. 4 t-t i'1* i 6 7 4 I \\ t..t i. .}; i N; t-

  • {l; i

t +f t ; i t. i .t V l,; .4 i L. .LL { ,4.1 j v \\ \\{ j.-4pl. .,j. 4it. .} 4 i

i. 5

{ i p.i, 7 _4 { L_~ -1 7 .e..I } } ,4. .e + 7.p, +. . - ), .,,. 4 _pLe .y_.i 6 .., 3.. .. i.? {3 }..+. 4._.. 4_9 4 4,,. + 4 a f.. i.. [. . i. I ; .\\ i j ' i t a,~ fI,,".-g.j_.- j - + ji .4 ,. i .3 h+lA 7 .,. p._ I i ' !( f f t' ' ~ f 7- ' ie,4

. t. Y i--l.

f 4.t ; j 6 4.t tiL AdJ.1'__y 4 L.4-t.4_ . p.,. .4. + 4 .L L,} 14. .4 Lt L 4 L q..4 9. p.{ f -f f,I t 'f i r. ! i 1' + - f t I.t ! 2.5 ' - --

  • r -+ -

6' 4 i.. ,,f: -p6 .. ;.1. i..., 1 4 4_..4*t {. 7.j t 4 { + l. ;l93..w. 4 4. ; g. g_4_44. 4_p.h a , 4 6..(._.1_ .j ,,t !,,i 6! j i A. _ 1 4 e i 14 47 7..__1_4 a 1 7 ._-h[-I-t ,t} q-I- t ' il f t -t-Mt '-M L i.I i i i. t 0 10 zu Ju eu 30 ou i0 Time (Minutes)

50 ~f~,. " ~*- ~ ~~ -~ ~ ~~~ i;;. Figure XIV Florida Power Corporation i Crystal River Unit 3 Nuclear Generating Plant s 45 ..-- -..l. Borated Water Storage Tank Drawdown Transient Analysis f Analytical Results to Chemical Drawdown Using Modified Check Valve Model - Half Flow (A Train) Case i 1 4 l l BWST - - NaThio NaOH 40 . - + m 1 l 4 i f.. ~ - ~. - I h t.4 -[-y,y h-- h -- I I,,, 1 y-t *t ~t-- t t-l 4.L,y .9, 4 (.1 ) l

4..-. 3

.4 i 4.i-{. ;. j 1 .i}6 + 35 l ..1_--- , 5 - a'4; 44 ' '. v'.- - -. 1... } ,i 1 ;W f: } t-d F i;;. 3... t.. + -. }i: T T, i~t 3 i i 6 t t*;i i t. i n g - +... .,-e g l j la M j i. . f f-4 h ?.1 f ~ l ..,1 s ta- ,. t j k \\ tf -h* ii I~ l f- ,? 9 i i I } g. -t-30'.-- \\ v O ...-.i. .if i, } ..l } f 41-M .\\ i 6. + b-9 .lj$ F;.; 6 t N \\- t

  • 6 I

I+ 4 .f r n !N. it e .t. - z .4-t f,- g. {. t

i..

y j }

e t.-+ 5 t-t

-..j,; 9 I 1.t - g g l 4 4 p. 25 -A It u t t t 6 ' ' _( o i.., ;., e s i A ep i i \\ , J.[-;t-I "I. i t t- + - t - t-' l l g. I 6-6 g I \\. - -.y. .j. }.tl . j - t4 - 4 .....7. -.-. - -...- \\'.6 i. l -l. j 4 i 1. .- s. 't t j i,

i 4

ga j t 9 4 1 i 6.} , t} ., 1i i + t -1 t+ -t .. e i I I f t*;} m 20 p q 6, M } .6 .i a

j ;-

.\\ 1 i .7-. .br{ i

}.

... I.... _ 4-4 j } ,g j j e 1,. {g{l.,[ -l -.. l -

e
i i-g, i

t g .\\ ._2 .-,- _. _-w .34 - I, p ) 4-i .. 1 i } h g - \\ f, e1[f,. l 4,4-f {-j 4- !.i i 1-4 9 {- t -.. t -- 6. .y.{- t 4 t t,t +d t2+- i e g i i e e - F ; e. it. 15 \\ s . i, ,i ! 44 i4 i.q 4t. 4 4 i 4 - t I-i f . l.9 41 .j. t 8 g,.. 7 4... { ,g 6 4 i 4 ,V..

rti, t

_7, 1 .{4 ...1 H j 494.I- .\\ a i 9 1 ,t'?- -* P t e-I.\\

  • f

.--t fP h +f. 4 9 *i j 7 i I t t- }t t'T 1 T ' 4 t. j ' g' t l .1 l j 4}{i J ;I, { -h s ,4 ,h t

4

{, 4 i 4 + I 4

t i

-9,. ii I gi ,!. a.t ; - 4 t. y ,t. t 7.. - y4I. j+t t j 7 p- , i.. \\.. .~ 7.\\. i e ; }.aI i t ,v.. 7. , + j { ;,,, ..\\ 6. -. - t i., } 5 i , 4 g... 1 I 8 i 1 ...\\ & t. 4.t {. {; L f e! i. + l .;{j{ 4 t t 9 j. 7 6{, i, ,9 g

4. \\..r' i

l.. 7.i j 4.: i i l 4 4 -j. 4 - .i v } [ j. i i. i t t f t j-1 4 6 g; 4 i @}t L.; .[.i l. . t ;.r.. t l 4 ..+.1., n, g .gi 1 i t-i .,i.., ... 7 i ! 11 t t i i ...3 jj l63 ji . 1-h. 1.f4j . I-I{ h',,, l ,j , t +- 1 .t 4 4-t , i ..l;.

4 t.

- + - + r* --,.1 - 1.r-+ -}-~ }.,,j 9,, g 4-.,.g t ta ) ig+ .4 ..e i a 7 _t.t.-+- t-- + .- j.$.r. 3,,... 9,., p +_r.t .;i i1

i t

r 0 20 40-60 80 100 Time (Minutes)

50 ...i ~ ~~ ~ Figure XV l Florida Power Corporation Crystal River Unit 3 Nuclear Generating Plant i 45.... h...... Dorated Water Storage Tank Drawdown Transient Analysis Analytical Results to Chemical Drawdown Using Modified Check Valve Model - NaOH Failure Case i l -- BWST - - NaThio ---i NaOH 40 .l h

  • t-l

{ * -k. l.-.t7 l e. e. L ,* a ...t - }'- ' + ,4 e i !}} A - t t-j l I I 'I * ! t- -tt II f I' i '~ th d 1 u 35 ' - - - - + - - - i i -i 4 -i t-- H t -e - o i i i l t 4 ti p t. ii {;,.;,.- ,, m -. y k* _w tt*. HJ u t t +1 + e, n o-O \\... l }

t.

f- } b -] 'e w "' W ! ' i-? 1,i, N I ',i, i. . ? P I- -Q l { ,t t ! t --! t +i-l A t t ; e 46 O Pt t-- o rs l 4 ~ 30 ---+-N- ) i i t u

. 1.

.F 2 i y f .\\. e. + ,j, r*'f

n f

N f i ^6 j.. gl N --.t.. - L.1-4 -e ! +: u y .t-l t } i-4 g g }

t!t u

i I i

i. l t

++4 t i*!' , i t b-y- I n t e 4 2 t td i l -t t TT t'! 0 l t t t j i -\\. 25 + L 4 1 4 f.,,. 6 .i}-

7.._7

~ l ( i t p+ f .- t } 4 61 -+} - + - - J. .i . t*' '+ L g i I 4 9 +- 1

  • 7 4

.}tt ti+* g. 6 O I , ~.- _A-.- 4 .0 I J46.. ,t LL 4 l l i 4 .1 i;;1 i,t 1 } 7 I i ( t ii ..+ i. g I e I j --- ig I, i ,9- .t t! -t 4 > 20 } -pi i i . -t j i t !+}t i g. -++4-- ,ii a 4 ! i, t- - t 1 p-et-i t- +-+J. y j g- - g.- l t*; f *t i t"-t -+ t d-l t t t-* t i

  • }<

t g* ..* 7 _u a. a w,, _.... ; r -i .h ,. { jj, . (... - }.. ,..j N ii 9, '

  • t-i+i I

-{+_ i.. u. 4.t--. E' i { 15 4 -- \\- t H -F i Ft t-t v i- .H t.j- -*H - '! $' \\ i .h l N. : i,s t i t. .t *

  • b i

\\ l j.--- d -.--f-h

t. *[ +f L 4

e, e i ,.,4 .+ t r r i-t- 1-t r .g,6.. .u7 9,, i ..i. t. ' ! r I t... 4 i y, 4_ {_.-,3 L.. !e, 4,,; .}.. ,\\. ' t ...,jp .4 p-f _-. - --{ + L. _j; .},. 9 i .t {-.y.{. 7 9__.{. 7 _ , p j

j j f

6 10 j.h. .h it;, i .L a j, 1.ip'_. :_I'.I-- _. 4. 4_n._ l i.. .a_ k__. i i i j; i i ip 4 pp_ i i [{ _.j_ [ t- -- y f I-F. -- ., + 4 .g .,9 i l.4

4 11 47 l
4

-4 1 i. {4.t h.'.l ..;. 4 I ...i L 4 1.4.t_. 9 .[ -j 7 j i e, . 4 1. 4 t .i ,t .1 ,4 i, i t 7 F.i a. ._j p [ + L. i. 4 ,5 _. q p . 4;...) -l.;.3...t. 1 : .. t p ,t l.[ .. _t.. t_ i ...... t ,g. gl t[ l.i t, ._..- lI7.__t;1,_.... _.__p i i ,g .t p_. 4.., u. t- -+; - t..

,i -.

i 6L . 61 { j, . i 'I,l, . t - F. -t N..I. _b-. j 7 ,_ _.y- . _.,. b. - I... 1, 6j\\ - t-F '- t 4 h.t +. t .i e. v.*. 3 . +. 4. v l - 2 9 h h... h 14, 1- - } -! i ;; toi . t { i j il i ! l l .+ - t t O 10 20 30 40 50 60 70 i Time (Minutes)

50 - - r-i t '} l t l Figure XVI j Florida Power Corporation Crystal River Unit 3 Nuclear Generating Plant Borated Water Storage Tank Drawdown Transient Analysis 45 ' Analytical Results to Chemical Drawdown Using Midifed Check l Valve Model - Temperature Study - Full Flow Case .i i BWST - NaThio 40..-_.L.--...-- .... l NaOH i i i 4 e r :--+- 4 . h I-9 g j ,t 3 I~' t' t i 4 ?. + i e } ~ ^ 35,-. J- ....- w. - ---4-.---- i 4.. + i i i

  • 4

.,. t l t.4 4 ~d i ei1 9 }.e t- . g 6 3 pg g j .3 u t-. e + r6 5 E k aj v$ . i i .t l . t.r ; i t! i p 7.r-+ t. t E o 30,i. \\ -%- r-- l j. .- l 6 t l- ,a +-. ~ J -4 4, l. i N I 7;ij .\\ l 1 i t 4e I .r. - - h.e Lj r! 8 t e ..h-. ..9 +-- u M k ..\\ l, 4.. e. I i ;- i 4ti \\. f.t I, 1' ' I 6-f I u 6 + - {- - j - ( g g 4 f 25 ,( - g j i j.h. ( -4 l i t ' ? I l' T~ cy i 6 + 2 ' gt .6 Ii L 2 4 i + + - g ..i. .O , \\.,% --..s o e i. 4 4 \\. \\ .i. i e i I 6 it i t. y g 20 - ---.N ----A. j "a ',t..,; - [ -\\ t' 9}: a t l s 4 g i . i,g. 4.. ; p_. g,.; a 8 ii, 8 ,j

je t.

r i . 4 i 3 9 ,I '. I 15 l ..i t. t ' ta l., e., , t,. I ..I,' 4 .A .. i. ~ p. l! 1.. j. -l..Ii i

e *

.\\ 9 .. J. i. .;g i..J, i i i +,. - j^,. i,; g,....% H.., . p i-,. 4..- 1 1 t\\. g,ti ,,t y p; 6 I e6, i +-h e {- p.t 10 g t.4 k. j ij - ti f- .it .i.,\\...N.. ,l !,! J;'i;. i. i...,. i..u. 4 . _u_,. .. t.4 tg,..} t;4 ij ; i j + 4-..i -f rti{- ....41 4. } 4-.--. 1 J. l.4.. i ;.. . \\..-.\\'.!i l i t-t ' ;*?f i l '- ..t. *. j +4 1 .,+i. -t. ; 4}.,4..'- t -j 4 t ..\\,i:( ij'{ i. t., i 4 i t ';)l y,}*. t,. . j. 4-. }.e).. t. 74 }.- i .- & t t ,4 , t..; y. n .L 4-

  • 4 3;,

i.j g (6 ( { { - t. t, 6 t- -t-4.4. t-r ' F. *I ,i lt {. f-e

  • 4

+ p ...e,-> . q-;

i +}. p;3

.,- A.L.Lj n. -- p. p. -. _.. -.u. i 3(1.. 1

. +,. l--

t tj . i la i; i.AL-i, j.,. .i} }t; .ii i ;. i', ji L} f'- h-~ ~ I-+~i-' .~- .. j p t pt i 4 T-' 0 11) 2') 3) 43 5') O'J /J Time (Minutes)

e APPENDIX A COMPILATION OF INPUT PARAMETERS 4 h

r TABIA A-1 FIDRIDA F0WER (DRPORATION CRTSTAL RIVER IX6IT 3 Isn'AR CENERATING FLAlff BORATED WATER STORAGE TANK DRAWDOWN TRANSIENT AXALYSIS BRANCE DATA Total Total Equivalent Equivaleet Elevettee From To Pipe ID Straight Pipe Diameters Legth Chenee h function Juncties (lack) (Feet) 90 Elbow 45' Elbow cete Velve Check valve Tee Run Tee Brerech Re.1ucers (L/D) Jfset) (feet) 8 1 3 37 13.25 47.21 1 2 1 1 105.0 163.15 -34.19 2 37 4 13.25 22.00 2 1 1 1 1 94.0 237.01- - 2.42 3 4 5 13.25 2.00 1 60.0 68.25 0.00 4 5 6 13.25 32.50 2 1 1 1 139.0 185.90 - 3.06 5 6 7 10.02 5.07 1 13.0 15.92 - 1.25 6 4 9 13.25 4.90 1 20.0 26.98 - 4.90 7 9 to 13.25 9.83 1 1 53.0 68.35 - 2.50

  • 8 10 11 10.02 3.79 1

1 1 161.0 158.22 2.00 9 11 12 10.02 45.02 5 65.0 99.29 0.17 10 14 35 13.25 33.72 2 1 66.0 100.59 -14.50 11 35 15 13.25 47.49 3 2 1 1 1 239.0 311.39 -22.20 12 15 16 13.25 2.00 1 60.0 68.25 0.00 13 16 17 13.25 77.90 6 1 1 1 191.0 288.80 - 4.96 14 17 18 10.02 5.07 1 13.0 15.92 - 1.15 15 15 20 13.25 4.00 1 20.0 26.se - 4.00 16 20 21 13.25 6.96 1 1 53.0 65.44 - 2.50 17 21 22 10.02 4.46 1 1 1 161.0 134.09 2.00 18 22 23 10.02 44.48 5 65.0 98.75 0.17 19 26 27 4.03 74.92 5 1 1 153.0 126.30 -16.00-20 27 28 3.07 38.00 2 2 2 2 1 3 667.0 20s.90 -23.33 21 28 20 1.94 3.38 1 1 1 167.0 30.38 - 1.17 22 28 16 2.47 7.01 2 1 1 1 121.5 32.02 3.63 23 27 29 4.03 0.89 1 1 1 66.0 23.05 0.00 - 24 29 30 3.07 42.03 6 2 2 1 2 633.0 203.97 -23.33 25 30 9 1.94 2.67 1 1 1 167.0 29.07 - 1.17 26 30 5 2.47 7.40 2 1 1 105.5 29.12 3.73 27 32 33 4.03 76.07 3 1 1-125.0 118.05 -15.75 28 33 11 3.07 37.30 3 1 2 1 1 3 665.0 207.93 -25.25 29 33 34 4.03 0.00 1 I . 50.0 16.79 0.00 30 34 22 3.07_ 35.31 2 2 2 1 2 577.0 182.93 -25.25 e l I

l TABLE A-II EQUIVALENT LENGTH IN PIPE DIAMETERS (L/D) 0F VALVES AND FITTINGS 4 90 degree elbow 14" pipe, 21" radius 13 10" pipe, 15" radius 13 4" pipe, 6" radius 14 3" pipe, 4-1/2" radius 14 2" pipe, 3" radius 14 2-1/2" pipe, 3-3/4" radius 14 45 degree standard elbow 16 gate valve (fully open) 13 check valve (fully open) conventional swing 135 stop (stem perpendicular to run) 450 standard tee (with flow through branch) 60 standard tee (with flow through run) 20 k Y fitting

  • 40 14" to 10" reducer 40 4" to.'" reducer 30 3" to 4" reducer 11 3" to 2" reducer 93 3" to 2-1/2" reducer 17.5
  • Assumed to be compromise of tee branch and tee run - therefore, L/D of 40.

i i ) 1 h/ h

TABI.E A-III PUMP HEAD DATA Decay Heat Pumps Flow (gpm) 0 1,050 1,700 2,000 2,300 3,000 3,300 4,150 Head (feet) 430 420 415 405 395 360 340 270 Reactor Building Spray Pumps Flow (gpm) 0 600 1,200 1,425 1,675 1,850 2,125 Head (feet 555 550 500 475 435 400 345 Make-up Pumps Piping not modeled. Treated as a 500 gym tap off the main borated water line. ( [ we 7 mumle-

TABLE A-IV TANK PARAMETERS Elevation of Level Indicator Level Tap Calibration Elev. of Outlet ID (feet) Elevation (feet) Nozzle (feet) BWST (DHT-1) 40' 121.0 121.0 120.5 NaThio (BST-1) 98.5" 121.0 119.0 119.5 NaOH (BST-2) 91.5" 121.0 119.0 119.5 D e J l 4 1 libert /P-j

i a TABLE A-V SPECIFIC VOLUME AND VISCOSITY CURVES NaThio (30 w/o) NaOH (20 w/o) -1 -1 p y p y Temp. ( F) (ft /lb) (lbm/ft-sec) (ft /lb) (lbm/ft-sec) -2 -3 -2 -3 40 1.238 x 10 3.02 x 10 1.306 x 10 6.10 x 10 -3 -2' -3 50 1.247 x 10 2.55 x 10 1.309 x 10 4.65 x 10 ~ -2 -2 -2 -3 60 1.256 x 10 2.22 x 10 1.312 x 10 3.60 x 10 -2 -2 70 1.264 x 10 1.88 x 10 1.315 x 10 2.84 x 10" ~ -2 -3 -2 -3 80 1.272 x 10 1.58 x 10 1.318 x 10 2.28 x 10 -2 -3 -2 -3 90 1.279 x 10 1.38 x 10 1.322 x 10 1.90 x 10 -2 -3 -2 ~3 100 1.285 x 10 1.21 x 10 1.326 x 10 1.63 x 10 d gayuc- --}}