ML19282C208

From kanterella
Jump to navigation Jump to search
Thermal-Hydraulic Analysis of Peach Bottom II Turbine Trip Tests, Interim Rept
ML19282C208
Person / Time
Site: Peach Bottom Constellation icon.png
Issue date: 01/31/1979
From: Connell H, Caroline Hsu, Lu M
BROOKHAVEN NATIONAL LABORATORY
To: Odar F
Office of Nuclear Reactor Regulation
References
CON-FIN-A-3005 BNL-NUREG-25526, NUDOCS 7903220105
Download: ML19282C208 (97)


Text

.

(HTERg1 REPORT

  • " f  ; /

Accession No. / "

Contract Program or Project

Title:

Licensing Code Application Group Subject of this Document: Thermal-Hydraulic. Analysis of Peach Bottom II Turbine Trip Tests ,

Type of Document: Informal Report

/

Author (s): M. S. Lu, C. J. Hsu, H. R. Connell, W. G. Shier, and M. M. Levine Date of Document: January 1979 Responsible NRC Individual Dr. Fuat Odar and NRC Office or Division: Div. of Systems Safety

, U.S. Nuclear Regulatory Comm.

Washington, D.C. 20555 This document was prepared primarily for preliminary or internal use. It has not received full review and approval. Since there

.. may be substantive changes, this document should not be considered final.

\

Brookhaven National Laboratory , -

Upton, NY 11973 /

Associated Universities, Inc.

for the U.S. Department of Energy Prepared for l U.S. Nuclear Regulatory Commission Washington, D. C. 20555 Under Interagency Agreement EY-76-C-02-0016 NRC FIN No. A 3005 INTERIM REPORT t, RC Researc 1 and lec1nica NAssistance Repor' .

,u- - . - . . , . . ~ , . , . . , .

< g',.,

r,' y ,

- -4 0 + .

7 4 L-NUREG-25526 . ,

k ORMAL REPORT

)

f. :

n .:

.. THERMAL-HYDRAULIC ANALYSIS OF q ,

PEACH BOTTOM II TURBINE TRIP TESTS E..

l*.

N- ,

4-

?' .

M. S. Lu, C. J. Hsu, H. R. CONNELL,. .,

g .. .

W. G. SHIER, AND'M. M. LEVINE I.

~ .

7 ~

THERMAL REACTOR SAFETY DIVISION n -

DATE PUBLISHED w; -

E , .

. JANUARY 1979 v . .

s , .

Q;'

+

g d ,

A .:

t,  ; -, DEPARTMENT OF NUCLEAk ENERGY BROOKHAVEN NATIONAL LABORATORY

r-I--- o .. ..

UPTON, NEW YORK 11973

's  % .e y.&w .,e

&g p _y W Q.;

<7.- ,

J: : ,

Qy. ll w ,.,

w, w

NW ^ +. ,

c t . . , , .

s n- c

, p - > ,

d

{= J,v.. ~

~

f,? - ~ Prepared for the U.S. Nudeor Regulatory Comrnission p~

~

)h pg3

~ Omce of Nudear Reactor Reguichen Contract No. EY-76<,-02-0016

~

    • ~-

%;J. . m , - - - - - -

wx ; , .;:n m g. x-r

e.m ps; ,ss n, s 1

[j _);m. d, , sN o} .=x,,NN$

. :lNRC Researc'1 anc Tec,mica

. .a j ap+a p ;g ycy, 7 N~ 33j3:anC0 Repor".

., n . r . . . .

1 t

i

_ s t

I l

I e

f g .

s'*

, , v.

I w t

7(>r y

v , ,

I NOTICE f

! This report was prepared as an'~ account d work sponsored by the United States Governrnent. Neither the United States'nar the United States Nuclear Regulatory Comrnimon, aw any of their employees, nor any dtheir contractors, subcontractas, or their employees, makes any warranty, express or implied, or assumes may legal t Embility or responsibihty for the accuracy -,4yL- or usefulness of any informa-

. tion, apparatus, product or process disclosed, or reprem-nts that its use wou!d not mfnnge psivately owned righa.-

r , , , . . , . .

h . . , , f-L , ~

p

. . ~.ll'.?

s i

' t

" , .. 'O s' 'r ._ * , - , 4

.c

, . . .. ~

1 4  % 9 a F V D,. p 4 J =6 , .+ g 'h '

)

  • q ,,)

BNL-NUREG-25526 INFORMAL REPORT LIMITED DISTRIBUTION THERMAL-HYDRAULIC ANALYSIS OF PEACH BOTTOM II TURBINE TRIP TESTS M. S. Lu, C. J. Hsu, H. R. Connell, W. G. Shier, and M. M. Levine Licensing Code Applications Group Thermal Reactor Safety Division Department of Nuclear Energy Brookhaven National Laboratory Upton, New York 11973 Manuscript Completed January 1979 Date Published January 1979 Prepared for the U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Contract No. EY-76-C-02-0016 FIN No. A-3005 5,} ,

.(

! i, ; i'

  • IJ

. . , ,e

y rs., a i

e

NOTICE This document contains preliminary information and was prepared primarily for interim use. Since it may be subject to revision or correction and -

does not represent a final report, it should not be cited as reference without the expressed consent of the authors.

TABLE OF CONTENTS

1. Introduction

. 2. Computer Code Description

3. Model Description
4. Experiments Outline
5. Comparison with Data
6. Sensitivity Study
7. Conclusion and Recommendation O

e

PEACH BOTTOM II TURBINE TRIP AilALYSIS Abstract The RELAP-3B computer code (I)was used to analyz,e the Peach Bottom II turbine trip experiments. Tne timing and the amplitude of the calculated pres-sure wave agreed with the available measured data throughout the reactor system.

When the calculated core inlet temperature, inlet flow rate and the core average pressure were used in the core dynamics analysis via the BNL-TWIGL code, the resulting power response agreed with the measured data. The assumption of using a uniform pressure for the whole core is shown to be adequate for the core dynamics analysis. Sensitivity studies on several input parameters and a nodalization modeling study were performed; steamline inertia and bypass characteristics were found to be the most critical parameters.

1. Introduction The analysis of turbine trip events for boiling water reactors (BWR's) are an important part of the BWR licensing process. Theoretical analysis of this type of transient using various computer codes, though abundant, lack support from a full scale test on operating reactors. Currently, interest in the analysis of turbine trip transients has been generated by the recent a

tests performed at the Peach Bottom (Unit II) reactor in April,1977.

Three tests, simulating turbine trip transients, were performed at different initial power and coolant flow conditions. These tests were performed near the end-of-cycle, all-rods-out condition, by-passing the first scram, and hence provide a stringent test on reactor safety systems. The data from these tests provide considerable information to aid verification of computer codes that are currently used in BWR sa fety analysis. In addition, some quantita-tive assessment of conservatism (or non-conservatism) in previous safety calculations may be possible.

This report summarizes the analysis of all three turbine trip experiments performed at the Peach Bottom II reactor, using the RELAP-38 computer code.

Various modifications to the RELAP-3B code pertinent to this study are described in Section 2. The representation of the reactor is discussed in Section 3.

Section 4 describes briefly the test conditions. Section 5 compares the results of this analysis with the test data. The results presented in this report show good agreement with data for all three tests.

It is important to identify parameters that significantly influence the transient results. Section 6 describes the sensitivity study that was per-formed as part of the current analysis. Sensitivities to the following parameters are given in Section 6:

(1) Steamline nodalization (2) Turbine Inlet Valve (TIV) closure characteristic

(3) Bypass Valve (BV) opening characteristic (4) Steamline junction inertia (L/A)

(5) Delay of power transient (6) Net steamline friction coefficient (K)

(7) Direct heat fraction ,

(8) Steam separator inertia (L/A)

(9) Carryunder steam fraction ,

(10) Power shape Finally, conclusions and recommendations are given in Section 7.

m h

e

2. Comouter Code Description The RELAP-38 code is a plant transient code that is applicable to both b

PWR and BWR analyses. The code is based on the RELAP-3 code , but has been modified in a number of areas to enhance the capabilities for simulating a broad scope of reactor plant transients. For this analysis, the following modifications have been impiemented:

1. Jet Pump Model - Previously, the RELAP-3B code did not have the capability to explicitly calculate transient jet pump performance. A jet pump model, similar to the model described in Reference 12, has been added for the BWR system transient calculations (3) . Comparisons with some jet pump experi-mental data indicate that the new RELAP-38 model adequately simulates transient jet pump performance.
2. Direct Coolant Heating - The original RELAP-3B code assumed that all heat is generated in the fuel . However, in light water reactors, typi-cally 2% to 4% of the heat is added directly to the coolant, mostly due to gamma heating and neutron thermalization. The capability to deposit a user specified percentage of the total power directly in the coolant has been added to RELAP-38
3. Time Varying Axial Power Shape - The axial reactor power is included in RELAP-3B plant nudel by representing the core through a number of axial nodes (a maximum of 20). Previously, the power shape was not a function of time. The code has been modified for these calculations to allow a specified time varying power shape to be input .
4. Recirculation Pump - A new pump model that allows simulation of pump performance in terms of pump head as a function of flow has been implemented.

This model provides a means of representing the Peach Bottom recirculation pump in terms of the available head / flow characteristic.

Each of these rnodifications is described in detail in the appendix of this report.

O e

3. Reference Model Descriction The RELAP-38 representation of the Peach Bottom plant in this analysis consists of 43 control volumes (or nodes) and 49 flow paths. Fig. la and Fig. Ib show the arrangement. The core is modeled with an average channel and a hot channel that is assumed to represent 1/1000 of t% total core flow a rea . Each core channel is modeled by 10 axial control volumes. The initial core power, initial axial power shape, and thermal hydraulic conditions have been chosen to represent the initial condition indicated in Peach Bottom tests.

The steamline from the reactor vessel to the turbine inlet valve is modeled by 9 nodes and 9 flow paths. The bypass line to the condenser is represented by 2 control volumes. As the turbine inlet valve (TIV) started to close at t = 0.0 sec., the steam flow through the valve decreased linearly from the initial flow rate to zero between 0.03 sec. and 0.10 sec. The steam flow transient was se16cted to represent the actual flow characteristic of the TI V. The bypass valve opens at 0.88 sec. after the TIV closed completely.

Table 1 lists some additional parameters used in the RELAP-38 model .

During the turbine trip event, spatial effects are considered significant and should be included in the core physics calculation. In this study, the RELAP-3B calculations employed the measured power transient and transient axial power shape for each of the core nodes. Then the pressure, inlet flow rate and temperature calculated by the RELAP-38 code were used in the core dynamics analysis via the BNL-WIGL computer code.(13)

4. Descriotion of the Exceriments Three turbine trip tests with different initial conditions, (i.e., inlet flow rate and power level) were performed at the Peach Bottom II reactor.

The scram on turbine stop valve position was disabled so that the reactor was tripped on high power. This allowed for a fast and strong power surge in a .

short time. Typically, reactor power increased about 5 fold in approximately

~

0.8 sec. in these experiments. Details of experimental conditions and the results can be found in Ref. 8. For completeness of the report, the initial conditions of the three tests are listed in Table 2.

t

5. Comaarisons with Data Figures 2-4 show the results calculated by RELAP-38 and the experimental data. The solid lines are reproduced from the experimental data traces, and the dotted lines are calculated results. The data were measured at the core exit (vol . 23 in the RELAP-38 model), the steam dome (vol . 26) and along the steamline near the main steam isolation valve (MSIV, vol . 35). The same basic

- plant model was used for the calculation of each test transient.

For all three cases, the initial core and dome pressure rise (before 0.8 sec.) agrees very well with the test data. The oscillations in the data traces may be due to the method by which the data were measured ( }. The initial rate of core pressure increase is an important parameter as it dictates the initial power surge due to feedback from void collapse.

The core and dome pressures near 1.2 sec. were over-predicted by RELAP-38.

The over-predicted pressure at this stage of the transient was not important for determining core power surge as the control rods had already been inserted and overrided the reactivity insertion due to void collapse.

Figures 5-13 show a detailed comparison between the BNL calculations and the test data. In all cases, the BNL calculations show good agreement with the experimental data. Table 3 shows the calculated peak steam dome pressure compared with the test data. Again, the BNL results show good agreement with the measured data.

Figures 14-16 show the calculated pressure at all the nodes between TIV and the core exit. A vivid picture of the physical events during turbine

. trip can be perceived from these Figures. The angular frequency of the ob-C served oscillation can be estimated by w = . The pressure wave propa-A gation speed can be calculated from the amount of time required for the peak pressure to travel between two nodes. The wave propagation speed calculated

this way is consistent with the sound speed in equilibrium steam as estimated from thermodynamics. This speed can also be used to estimate the timing of initiated core pressure rise.

It is interesting to observe that the pressure spikes initiated the TIV gradually dissipate as the pressure waves propagate toward the steam dome. .

The area and the volume of the dome are much larger than those of the steam-

~

line nodes; hence the dome acts to absorb and integrate the pressure pulses.

The dome pressure (vol . 26) shown in Fig.16 demonstrates these cnaracteristics.

Volume 33 is the first node of the steamline next to the dome; hence its pres-sure shows a relatively smooth transition between the dome and the other nodes of the steamline.

This is an important observation since it shows that details of the pres-sure waves in steamline are not crucial to the initial rate of core pressure increase. The initial rate of core pressure increase is governed by the total steamline flow, the rate of turbine valve closure, and the bypass character-istic. Also, since the flow velocity in the ccre is much smaller than the

}

sound speed , and the pressure drop in the core is small compared with the average core pressure ), the assumption of using a uniform pressure for the whole core is a good approximation for core physics dynamic analysis in simu-lating the rate of void collapse.

Table 4 gives the transient pressure drop throt>  : ore for Case 3.

For the large and rapid power and pressure excursion c., eced in the test, it is interesting to note thet the pressure drop stil' remains fairly constant As the amount of voids increases, the frictional pressure drop components become larger but this pressure increase is roughly balanced by the reduction in the elevation pressure drop.

These observations can be surmarized by the following:

(1) Fine structures of the pressure wave along the steamline are not important to the core pressure response. The integrated (average) pressure rate increase is important.

(2) A uniform pressure can be assumed for the core in the core physics dynamic analysis.

O

6. Sensitivity Studies Sensitivity studies on several thermal-hydraulic input parameters and modeling studies were performed to examine the validity of the model, as well as to identify parameters that influence the results of the analysis. Test 3 was chosen as the reference as it was the most stringent transient among -

the three tests. The results were summarized in this section and 11-lustrated in Figures 17-31. In these figures, the reference case is identi-fied with *'s, while the perturbed case is marked with +'s. The parameter varied is indicated on the top of each frame of the figures. The steamline press ce (vol . 35), the steam dome pressure (vol . 26), the core exit pressure (vol . 23) and the mid-core pressure (vol . 7) are shown for each study. In addition, key variables in these sensitivity studies are tabulated in Tables 5- 7. No significant variances on inlet flow rate and inlet temperatures were observed in th'ese studies, and hence are not provided here.

6.A: Steamline Nodalization In the reference model, the section of the steamline between the MSIV and the TIV was represented by 6 nodes. For this sensitivity study, ecch of these nodes were divided into 2 nodes. The results are shown in Fig.17. The steamline pressure transient shows increased detail, as the distance between neighboring nodes is reduced. However, the dome pressure and the core exit pressure do not exhibit significant differences. This is expected since the integrated steamline pressure increase for each case is roughly equal . This ,

sensitivity study demonstrated that a sufficient number of steamline nodes were utilized in the reference model .

6.8- Turbine Inlet Valve Characteristics In the reference case, when the TIV started closing at t = 0 sec., the steam flow out of the TIV was assumed to decrease linearly from the steady

state flow rate to zero between 0.08 sec. and 0.10 sec. Three variations on the valve closing characteristics were analyzed: delayed closing, slower closing and faster closing.

a. Delayed Closing A delay of 0.04 sec. in the valve closing without simultaneously delaj of the power response roughly only delayed the pressure wave by the same time, 0.04 sec. The results are shown in Fig.18.
b. Slower Closing If the exit steam flow rate started decreasing earlier (at 0.0001 sec.),

but decreased linearly at a slower rate, and the valve completely closed at 0.1 sec. , the results are shown in Fig.19. The pressure wave initiated earlier and the peak amplitude reduced slightly. This is understandable since the reduc-tion of the exit steam flow initiated the pressure transient. In the perturbed case, the exit steam flow rate started decreasing earlier, and hence the pres-sure wave began earlier; however, the amplitude of the pressure wave in the L*

perturbed case decreased as the impulse to the system at the valve - y w - ,

is decreased due to the slower valve closing rate. This would have the effect of reducing the peak core power.

c. Faster Closing The results of the third case, when the exit flow rate was assumed to reduce to :ero between 0.09999 s ec . and 0.1 s ec , a re s hown i n Fi g. 20. The peak steamline pressure was higher and occurred later, as shown in Table 7 The difference is not significant since the valve closing time in the reference

- case roughly equals that of the pressure wave transit time between the valve and the first node. Hence, the core power would only be slightly higher.

6.C: Byoass Characteristics In the reference case, the capacity of the bypass system was 35% of the full power rated steam flow in the main steamline. Based on the available

information, the bypass steam flow rate was assumed to rise linearly from zero to the rated value between 0.98 and 1.08 sec. With these parameters, the steamline pressure agreed well with the measured data as shown earlier in Figures 1-3 as well as Figures 5, 8, and 11. In the bypass sensitivity study, the bypass capacity as well as the timing of bypass opening was varied.

a. Increased Bvpass Capacity First, the bypass capacity was increased from 35% to 40% of the steam flow at rated power. The results are shown on Fig. 21. Before 1.0 sec., the pressure wave so generated was identical to the reference case and thus, the peak power is not effected. Later on, the applitude of the wave decreased, because more steam left the system.
b. Reduced Bypass Capacity

~

The bypass capacity was also reduced to 25% of rated steam flow and these results are shown in Figure 21. The pressure transient shows the ex-pected amplitude increase as less energy is removed from the system through the bypass. However, the peak power is not changed since the pressure increase does not occur until after 1.0 sec.

c. Earlier Byoass Opening When the steam flow through the bypass system starts earlier at 0.28 sec., and reaches 35% of rated steam flow at 1.08 sec., the results are as shown in Fig. 22. Before 0.7 sec., there are no significant pressure differ-ences throughout the system. This implied that the initial (before 0.7 sec.) ,

core power response calculated via core dynamic analysis for this perturbed case would not be significantly different from the pressure response calcu-lated for the reference case. (Recall that the core power reached a peak at 0.69 sec.). Later on, the pressures throughout the system were lower, because the bypass steam started earlier, and hence more steam was removed.

6.D: Steamline Inertia The section of the steamline between the dome and the MSIV are quite com-plicated, consisting of elbows, valves, fittings, etc. Hence, the steamline inertia cannot be determined without some uncertainty. In this study, the steamline inertia for these junctions multiplied by factors of 1.25 and 0.75.

This 25% increase and 25". decrease in the values of inertia were judged to be reasonable variations. The results are shown in Figs. 23 and 24 When the inertia increases, the, peak of the pressure wave increases and occurs later.

When the inertia decreases, the peak pressure is lower but occurs earlier.

Reduction in the peak pressure will cause a reduction in the peak power.

This phenomena can be explained from momentum and mass balance of the sys-tem. The transient is initiated by the impulse, k h. An increase in L/A gives high impulse as h is kept constant. This explains why the amplitude varies monotonically with L/A.

The effect of inertia on the timing of the pressure wave can be explained by the following derivation. The continuity and momentud equations can be written between two adjacent control volumes:

V, Vm j-l J j+1 dM 9

dt * ~ j + "j-1 (continuity) dW

" -P i+1 + Ei (momentum) j dt where M4 = control volume mass P = control volume pressure W = junction flow rate f=junctioninertia

Assuming an adiabatic process, the momentum equation can be rewritten:

2 dw L ddt = -C (Mi +1 - Ml'i X V 3

2 2 dw g d L 3 * -C X j dt 2 V IIt (N i+1 ~ Mi ) -

2 2 dw -C X j dt 2 b j+1 ~ bj + W j-1)

This equation is in the form of the wave equation and an effective pro-pagation speed is found to be proportional to (L/A)~ ,

i.e.,

C effective a (L/A)

Thus, the timing of the pressure peaks varying universely with the. square root of the junction inertia. This effect is exhibited in Figures 23 and 24 6.E Celay of Power Transient This study explored the sensitivity of the timing of the power surge on the pressure wave. For a delay of 0.1 sec. in the power response, tho re-sults are shown in Fig. 25. Before 0.6 sec., the pressures in mid-core, core, -

exit, and steam dome differed from the reference case by less than 0.5 psi. .

In the reference case, the power had already increased to 2.56 times the steady state value, while in the perturbed case the power only increased by 19% (due to the 0.1 sec delay relative to the pressure transient). Thus, the initial (between 0.0 and 0.6 sec.) core pressure response does not depend

strongly on the core power response. This is because the fuel time constant, the time required for heat to transfer from fuel to coolant, is about 0.2 sec.

preventing the difference in the power response from immediately effecting in the pressure response. Later in the transient, around 0.8 sec, the lower core pressure exhibited in the perturbed case reflected the lower power experienced

. ea rl i er.

6. F: Steamline friction The complexity of the steamline geometry caused some uncertainty in the calculation of the hydraulic loss factors for the piping between the reactor vessel outlet and the turbine inlet valve. The data used in the reference model was calculated from drawings available for the Peach Bottom plant.

To evaluate the effect of uncertainty in the calculation of the steamline hydraulic resistance, the values used in the base case model were increased by 20 percent and the transient was recalculated. The results are compared in Tables 5-7 and Figure 26. Both comparisons indicate that the steamline hydraulic resistance does not significantly effect the pressure transients throughout the system. This result is as expected since the frictional dissipation causes only small pressure wave amplitude reduction when compared to the amplitude reduction due to area changes (and the associated change in the acoustic impedance). In addition, as shown in Section 6.D of this report, the timing of the pressure wave is most significantly effected by the inertia of the piping system and not the hydraulic resistance.

In addition, the sensitivity of the steamline hydraulic loss factors to the direction of flow was also studied (i.e., the steamline resistances were changed as the direction of flow changed). The results are indicated in Tables 5-7 and Figure 27. Again, the variation in the hydraulic resistance did not effect the pressure transient in the system.

6.G: Direct Coolant Heatino The base case results all assumed that 3.5% of the heat generated in the fuel was added directly to the primary coolant. This effect is primarily due to gamma heating and neutron thermalization. To evaluate the sensitivity of the assumed fraction of heat generated in the coolant, an additional tran- .

sient was calculated with no direct coolant heating. These results, shown in Tables 5-7 and Figure 28, indicate no significant sensitivity to this param-eter. This is due to the fact that the RELAP-3B calculations used the power transients measured during the tests and did not explicitly account for mod-erator and doppler feedbacks. If it is expected that the fraction of heat assumed to be deposited in the coolant will be significant in core physics dynamic analysis using the BNL-TWIGL computer code.

6.H: Steam Secarator Inertia The analysis of BWR turbine trip events described in Reference 11 exam-ined the sensitivity of the steam separator inertia to the calculated pressure transients. These results indicated that the system response was relatively sensitive to changes in separator inertia. However, this conclusion was based on large variations in the value of the inertia used in the calculations (the inertia was varied by a factor of 125). The value of separator inertia in the RELAP-38 model was obtained frcm Reference 12 and was increased by 50% to examine the sensitivity of the system response (the 50% increase was judged to be a reasonable variation). These results are shown in Tables 5-7 and Figure 29 and indicate that the system pressure transients are not signiff-cantly effected by reasonable changes in the value of the inertia. .

6.I: Carry-under Steam Fraction The amount of quality assumed in the bulkwater flow from the steam sepa-rator to the downcomer is referred to as carry-under. The reference models used in the RELAP-38 analysis assumed that this quality was negligibly small .

To examine the sensitivity to this parameter, the transient was recalculated assuming a 0.17, carryunder fraction. These results are shown in Tables 5-7 and Figure 30. The RELAP-38 calculations show no sensitivity to the assumed carry-under steam fraction.

6.J: Power Shape As discuss.ed in Section 2 of this report, the RELAP-3B code was modified to include a time varying axial power shape. This modification was utilized in the base case calculations with the axial power shape variation measured during the tests. The effect of the variable power shape has been evaluated by performing the calculations with the power shape held constant at the initial value. These results are shown in Tables 5-7 and in Figure 31 and indicate that the variable power shape does not effect the transient pressure response throughout the system.

O

7. Conclusions and Recommendations The RELAP-3B code has accurately predicted the results of the Peach Bottom turbine trip tests. The excellent agreement between the test data and the RELAP calculations indicate the adequacy the thermal-hydraulic models em-played in the code. .

The RELAP-3B model developed for these calculations has been subjected to various sensitivity studies to identify significant input parameters and establish the stability of the model . The sensitivity study has shown, for example, that the use of six control volumes for the steamline representation was sufficient to accurately predict the test transient (increased steamline noding did not affect the analysis results). In addition, the inertia of the steamline was shown to effect the timing of the pressure transient.

The accuracy that the RELAP-38 code has shown in predicting the test transierts indicates the applicability of the code in analyzing more severe -

BWR transients. For example, the turbine trip without bypass are important licensing transients for BWRs. The analysis of this transient with RELAP-38 is currently in progress and the results will be described in a future repo rt.

REFERENCES

1. M. M. Levine, et al., "RELAP A Plant Transient Code", Proceedings Topical Meeting on Thermal Reactor Safety, CONF-77078, July 1977.
2. W. H. Rettig, "RELAP A Computer Program for Reactor Blowdown Analysis",

IN-1321, June 1970.

. 3. M. S. Lu, W. Shier, " Jet Pump Model in RELAP-38", Memo to Files, BNL, January 5,1978.

4. J. M. Christianson, W. Shier, " Direct Coolant Heating in RELAP-38", Memo to Files, BNL, February 1978.
5. M. Levine, " Variable Power Shape in RELAP-38", Memo to Files, BNL, March 1978.
6. W. Shier, "New Pump Model for RELAP-38 Code", Memo to Files, January 1978.
7. D. J. Diamond, et al., "BNL-iWIGL, A Program for Calculating Rapid LWR Core Transients", BNL-NUREG-21925, BNL(1976).
8. L. A. Carmichael and R. O. Niemi, " Transient and Stability Tests at Peach Bottom Atomic Power Station Unit 2 at End of Cyle 2," EPRI-NP-564, June 1978.
9. W. Frisch, et al., "ALMOS-2, Rechenprogramm zur Strofallanalyse von Stedewassereaktoren" MRR-P-13 Gesellschaft fur Reaktorischerheit, Forschungsgelande, Garching (1974).
10. W. Wulff, " Volume Integrals of the One-Dimensional Balance Equations for Lumped-Parameter Formulations in THOR", BNL-NUREG-23238, September 1977.
11. N. S. Burrell, et al ., "RETRAN Sensitivity Studies of Light Water Reactor Transients", EPRI NP-454, June 1977.
12. R. B. Linford, " Analytical Methods of Plant Transient Evaluations for the General Electric Boiling Water Reactor", NED0-10802, February 1973.
13. H. S. Cheng and D. J. Diamond, " Core Analysis of Peach Bottom II Turbine Trip Tests ," BNL-NUREG-24903, September 1978.

6

ACKNOWLEDGMENTS The authors would like to thank Ms. Nancy Schneider, Ms. Ellie Mitchell and Ms. Debbie Tartt for preparing the manuscript.

The cooperation of the Reactor Core Safety Analysis Group which did the BNL-TWIGL calculations is greatly appreciated.

O

Table 1. Selected RELAP-3B Input Parameters Core heated length 12 ft Coolant channel hydraulic diameter .0484 ft Core heat transfer area 66176 ft 2 Initial fuel gap thickness 4.4x10-4 ft Fuel clad thickness 2.64x10-3 ft Fuel pellet radius .02038 ft 3

Fuel pellet density 673.92 lbm/ft 3

Clad density 409.3 lbm/ft Initial core inlet mass flux 2

Test 1 313.7 lbm/ft -sec 2

Test 2 256.7 lbm/ft -sec 2

Test 3 315.5 lbm/ft -sec 6

Table 2. Tests Initial Conditions Power Coreflow Core Exit Dome Case (MWT) 6 Pressure (psi) Pressure (10 lbs/hr) 1 1562.. 101.3 1008.0 1000.0 2 2030 82.9 991.5 984.0 3 2275 101.9 1005.0 995.4 -

Case Steamline Pressure Core Inlet Temp ( F)

(MSIV)(psi) 1 996.6 533.1 2 979.4 526.1 3 988.5 529.2 Table 3. Peak Dome Pressure (Psia) .

Data BNL Test 1 1040.0 1042.7 Test 2 1048.0 1049.7 Test 3 1069.0 1069.5

Table 4. Core Pressure Drop t (sec) ap (psi)

. 0.01 19.26 0.05 19.48 0.10 18.74 0.20 19.04 0.30 19.16 0.36 18.94 0.40 18.89 0.50 18.59 0.60 19.26 0.70 19.06 0.80 19.36 0.90 19.34 1.00 18.98 1.50 18.89 2.00 19.26 2.50 19.39 3.00 19.40

Table 5 Peach Bottom Turoine Trip Analysis Sensitivity Study Baseo on Case 3 Core Exit Pressure (vol . 23)

Peak Pressure First Peak t=0.68sec t=1.2sec

~

t (sec) p (psi) t (sec) p (psi) p (psi) p (psi)

Base Case 2.16 1077.73 1.07 1064.96 1032.54 1063.65 S.L. 0.75 L/A 2.08 1075.94 1.02 1061.12 1034.92 1059.40 S.L. 1.25 L/A 2.52 1080.38 1.13 1067.94 1030.42 1057.70 Separator 1.5 L/A 2.17 1078.55 1.07 1065.91 1033.38 1063.44 B.P. 0.28-1.085 2.15 1071.60 1.04 1058.76 1032.41 1053.71 B.P. 0.40 rated 2.16 1073.41 1.07 1064.96 1032.54 1063.65 B.P. 0.25 rated 2.17 1080.47 1.07 1064.96 1032.54 1063.65 6 more S.L. nodes 2.15 1077.74 1.06 1064.90 1032.55 1063.51 1.2 K 2.16 1077.40 1.07 1064.77 1032.39 1063.56 K (flow) 2.16 1077.42 1.07 1064.38 1032.45 1063.39 Fast Closing Valve 2.16 1077.48 1.08 1065.01 1031.88 1063.61 Slow Closing Valve 2.13 1078.51 1.04 1064.52 1035.14 1064.27 Delayed Valve Clos. 2.19 1076.60 1.10 1065.12 1029.69 1063.80 Direct Heat 2.17 1078.37 1.08 1063.51 1031.31 1062.88 Power Shape 2.16 1077.53 1.07 1064.60 1032.46 1063.29 Carry-under Steam 2.16 1076.55 1.07 1064.33 1031.34 1063.05 Fraction

Table 6 Peach Bottom Turbine Trip Analysis Sensitivity Study Based on Case 3 Steam Dome Pressure (vol. 26)

Peak Dome Pressure First Peak t=0.68sec t=1.2sec t (sec) p (psi) t (sec) p (psi) p (psi) p (psi)

Base Case 2.33 1069.49 1.26 1056.81 1023.86 1056.36 S.L. 0.75 L/A 2.23 1066.13 1.29 1052.56 1026.42 1052.17 S.L. 1.25 L/A 2.45 1072.73 1.28 1061.53 1020.99 1059.51 Separator 1.5 L/A 2.34 1069.85 1.25 1057.22 1023.40 1056.53 B.P. 0.28-1.085 2.13 1062.51 1.00 1046.12 1023.31 1044.44 B.P. 0.40 rated 2.33 1064.95 1.25 105o.83 1023.86 1056.35 B.P. 0.25 rated 2.34 1078.52 1.25 1056.85 1023.86 1056.36 6 more S.L. nodes 2.33 1069.56 1.24 1056.85 1024.14 1056.49 1.2K 2.33 1069.32 1.25 1056.79 1023.70 1056.29 K (flow) 2.34 1069.43 1.25 1056.87 1023.61 1056.26 Fast Closing Valve 2.34 1069.28 1.25 1056.84 1022.75 1056.19 Slow Closing Valve 2.29 1070.31 1.24 1056.69 1028.10 1056.57 Delayed Valve Clos. 2.38 1068.65 1.27 1056.79 1019.65 1056.47 Direct Heat 2.35 1070.44 1.25 1055.83 1023.58 1055.20 Power Shape 2.33 1068.99 1.25 1056.46 1023.85 1055.99 Carry-under Steam 2.33 1068.26 1.25 1056.21 1023.53 1056.06 Fraction e

Table 7 Peach Bottom Turbine Trip Analysis Sensitivity Study Based on Case 3 Steamline Pressure (near MSIV, vol. 35)

First Peak Peak near 1.2 sec Peak near 1.6 sec t (sec) p (psi) t (sec) p (psi) t (sec) p (psi)

Base Case 0.38 1065.69 1.14 1056.49 1.54 1083.69 S.L. 0.75 L/A 0.37 1059.42 1009 1056.04 1.45 1084.44 S.L. 1.25 L/A 0.39 1069.85 1.16 1061.58 1.59 1083.30 Separator 1.5 L/A 0.38 1065.68 1.14 1055.94 1.54 1082.91 B.P. 0.281.08(S) 0.38 1065.69 1.16 1035.28 1.54 1078.87 B.P. 0.40 rated 0.38 1065.69 1.14 1056.48 1.54 1079.89 B.P. 0.25, rated 0.38 1065.69 1.14 1056.52 1.54 1090.91 6 more S.L. nodes 0.42 1074.56 1.14 1058.03 1.53 1083.94 1.2 K 0.38 1065.01 1.15 1056.45 1.54 1082.89 K (flow) 0.38 1065.69 1.14 1057.60 1.54 1082.66 Fast Closing Valve 0.39 1065.93 1.15 1056.57 1.55 1083.06 Slow Closing Valve 0.35 1060.49 1.11 1054.32 1.49 1087.06 Delayed Valve Clos. 0.42 1065.68 1.17 105r,c7 1.59 1082.02 Direct Heat 0.38 1065.68 1.14 1056.25 1.54 1082.85 Power Shape 0.38 1065.69 1.14 1056.22 1.54 1083.21 Carry-under Steam 0.38 1064.89 1.14 1055.84 1.54 1082.35 Fraction

=

Distribution List D. Fieno, NRC S. Weiss, NRC M. Dunenfeld, NRC P. Check, NRC K. Kniel, NRC D. Ross, NRC D. Eisenhut, NRC R. Mattson, NRC V. Stello, NRC W. Minners, NRC J. Telford, NRC L. Tong, NRC T. Murley, NRC S. Hanauer, NRC NRC Public Document Room NRC Bethesda Technical Library B. Zolotar, EPRI G. Sherwood, GE C. Eiche1dinger, W F. Stern, C-E J. Taylor, B&W W. Mechadon, Exxon J. Rahmstahler, INEL R. Brodsky, DOE ACRS (15)

W. Kato, BNL RSP Group Leaders (8)

RSP Division Heads (4)

RSP Library (2)

H. Richings, NRC F. Coffman, NRC C. Berlinger, NRC M. Fleishman, NRC Z. Rosztoczy, NRC R. Tedesco, NRC F. Odar, NRC (5)

P. Norian, NRC H. Denton, NRC S. Levine, NRC R. Minogue, NRC J. Naser, EPRI B. Sehgal, EPRI J. E. Wood, GE H. Cheng, BNL R. Lobel, NRC M. S. Lu, BNL C. J. Hsu, BNL D. Albright, BNL H. Connell, BNL

V26 J36 3

V33 J"27 .

, V25 i - - - --

- J49 Ji26 J,28 V 24 Jt25 V27 p r i ^%

V23 Jill Ji24 Ji22 l l '

V 11 a t io, V 21 l a121 g 37 vio gh, V20 J t20 .

i vs Jte V IS Jil9 V8 Ji7 V10 dhl0 J33 i ,

V7 gh6 V I7 Jil7 V 31 J32 3

. 6 i '

i l V6 af5 yn V l6 jtl6 J34 i i i

} V5 i V 15 V34 Ja a f,3 ,

! . i V4 ga3 Vl4 gai4 i

V32 V30 l V3 8

Jt2l Y I3 Jtl3 3 V2 J*l J 2 3 l V12 ghf2 I I i '

V28 J35 9

VI J138

+

v 35

(

'J 31 J 3o V 29 J 39 Figure la - RELAP-3B Model for Peach Bottom Unit II

8_'

4 7 J 4

J 1 4

V 3 4_ '

4 4 V J 6*

4 J- 5 2 4 4 m 0 V J 4 .

V 3_'

4 J

r o

f 9 l 3 e V d o

MI I

e nt 2* ii l n 4

J mU a

em t o St t

8 B o 3 3B V Ph Ac La

" E e 1 RP 4

J b

I e

r 7 u 3 g V i F

0" 4

J 6

3 v

g '

3-J

CASE 1, STEAMLINE PRESSURE 3 I t i t i i Test Data i t

'g

-1060 RELAP-3B Calculation -

w ^

g -

fr+_ _ _r\ / a j (f J l \

h 1000=d i i i_ i i i i i 0.0 0.8 1.6 2.4 3.2 TIME (sec)

C ASE 1, DOME PRESSURE lI00 i i i i i i i i

,g Test Data _

c. _' _ _ _ RELAP-3B Calculation _

S -

/

$1000 e

a -

~

I l I i i i I i 3.2 O.O O.8 1.6 2.4 TIME (sec)

CASE 1, CORE EXIT PRESSURE i I i t i i i i E I 100 - Test Data -

  • _ _ _ RELAP-3B Calculation -

~

g

~~

m w --

elOOO -

1 i i i i i i i i O.O O.8 1.6 2.4 3.2 TIME ( sec)

Figure - Comparisor of Pressure Transients for Test 1

CASE 2, STE AMLINE PRESSURE i i i i i

.-- # 1 1 Test Data _

.$ 10 80 a _ _ _ RELAP-38 Calculation

~

n n n 1 I v e \

3 t l \ d m I v

l .

$ 1000 / \

, \*

x "li O.0 i

0.8 i i 1.6 i

2.4 i i 3.2 i

TIME ( sec )

CASE 2, DOME PRESSURE i i i i i i i i Test Data

.o1080 -

a _ _ _ _ RELAP-3B Calculation ,_

y ,. m _ _

o _

$ 1000 x

Q.

i  ! I I f i f i 1.6 2.4 3,2 O.O O.8 TIME (sec )

CASE 2, CORE EXIT PRESSURE i i i i i i i i

. 1100 - Test Data -

S - _ _ _ RELAP-3B Calculation - '

w # _-_ -

e ^

~

m _

w -

Z -

c.1000 -

! 1 I I i 'I i I O.O O.8 1.6 2.4 3.2 TIME ( sec)

Figure 3 - Comparison of Pressure Transients for Test 2

CASE 3, STE AMLINE PRESSURE i i i i e i i i

.c1080 e

n n n c.

~

I'/ \/ "

W

,\ V v

D \ i m j I j Test Data M

W 1000

/ l _ _ _ RELAP-3B Calculation E ", i i i i i i i O.0 0.8 1.6 2.4 3.2 TIME (sec)

CASE 3, DOME PRESSURE l 100 i , i. i i i i i a -

'G - _ _

a -

f-w w

x - _

Test Data _

w ---

RELAP-3B Calculation g _

1 I I f I I i f 0.0 0.8 1.6 2.4 3.2 TIM E (sec)

CASE 3, CORE EXIT PRESSURE i i i i i i i i g 1100 -

m -

2 -

y - -

D Test Data m - -

m

--- RELAP-3B Calculation y 1000 -

Q. I ,f f I f f f I O.0 0.8 1.6 2.4 3.2 TIME ( sec )

Figure 4 - Comparison of Pressure Transients for Test 3

1060 i i i i CASE l,STEAMLINE PRESSURE 1050 -

Test oata

\

  • g _ _ _ RELAP-3B Calculation

\

1040 -

I f5 l /

I t j 1030 -

j g

/

i

/" s /

i

$ l l fT \ / \l '

/

@1020 l g \ -

I (

I

[ I l a: l j G- \ \

I 1010 g i I (

l \j \

~

I 1000 -

990 -

1 I I I I O O.2 0.4 0.6 0.8 1.0 1.2 TIME (sec)

Figure 5 - Steaaline Pressure Test 1

I I I I I CASE I, DOME PRESSURE Test Data

_ _ _ RELAP-3B Calculation 1040 -

.7

/

1030 - _

7 8 /

uJ /

cc o 1020 -

/

cn m /

$ /

Q. /

1010 -

/ .

/ .

/

/

1000 -

980 -

1 I l l I O O.2 0.4 0.6 0.8 1.0 1.2

~

TIME (sec)

Figure 6 - Steam Dome Pressure Test 1

I I i i p i CASE I, CORE EXIT PRESSURE 1050 - -

Test Data -

f%

_ _ _ RELAP-3B Calculation /

f 1040 -

f l

/

/ .

-1030 n

2 /

to / (

x /

o 1020 -

w /

0 /

x

0.  !

1010 -

_f -

1000 -

990 - -

1 I I I I O O.2 0.4 0.6 0.8 1.0 1.2 TIME (sec)

Figure 7 - Core Exit Pressure Test 1

1060 i t t i t 1050 - --

. A CASE 2,STEAMLINE PRESSURE O l

I Test Data _

I RELAP-3B Calculation r (

\ j \

l \

\ p I 1030 I l I I

I '

c. I .

G1020 3

I I l l

O/\ f \ j g

y I t

l' \

\ f I'

,'l

@ 1010 -

I / -

l fj 8 I \ I I E I I I

{

Id ~

1000 l \ I I ~

\ I I

\

\l \

I I

L

\ /

990 -

I l

g '/

980 - D 1 I I I I O 0.2 0.4 0.6 0.8 1.0 1.2 TIME (sec)

Figure 8 - Steamline Pressure Test 2

i i i I i CASE 2, DOME PRESSURE 1040 - -

Test Data '

_ _ _ RELAP-3B Calculation /

p 1030 - /

f

/

/

3 1020 -

o.

v W /

e a 1010 -

/

8 /

sa. /

/

1000 -

/

/

/

/

990 /

/

/

980 - -

1 I l l 1 0 0.2 0.4 0.6 0.8 1.0 1. 2 TIME ( sec)

Figure 9 - Steam Dome Pressure Test 2

I I I I I CASE 2, CORE EXIT PRESSURE 7N_

1040 -

/ o Test Data j

_ _ _ RELAP-3B Calculation /

1030 -

/

/

, {

n 1020 - -

c.

v

.w i e /

a 1010 -

w /

/

e /

1000 -

f

/

/

/

990 - -

980 .

I I I I I O O.2 0.4 0.6 0.8 1.0 1.2 TIME ( sec)

-Figure 10 - Core Exit Pressure Test 2

1070 _ i i i i i CASE 3, STEAMLINE PRESSURE I

1 Test cata 1060 -

I g _ _ _ RELAP-3B Calculation 1 ,

\

1 , \

1050 -

I i \ f l

/ 4 i

I

\ , I 1040 - I l I I /, \

\ 1

.C l 1

/ T E. I

I I

~

1030 -

I f, I l to 1 r'I x I I t

I

\ I \

@ g

\

\

l 0 1020 -

I

\ l -

x  ;

I \

0- I I \  ;

I \ l \ g 10lO -

I

\

I) \

/

\

l \'[

\

t

\ \ l 1000 -

l -

/ -

990 /J L I I l l l 0 0.2 0.4 0.6 0.8 1.0 1.2 TIM E ( sec)

Figure 11 - Steamline Pressure Test 3

1060 i i i I i CASE 3, DOME PRESSURE ,

Test Data /

- - -.RELAP-3B Calculation /

1040 -

/

C 1030 -

g

/

- /

to . /

x /

g 1020 .

j Ya' /

T /

1010 -

/ -

f

/

/

1000 j -

990 -

1 I I i l 0 0.2 0.4 0.6 0.8 1.0 1.2 .

TIME (sec)

Figure 12 - Steam Dome Pressure Test 3

I I i l i CASE 3, CORE EXIT PRESSU RE f 7 Test Data j

_ _ _ RELAP-3B Calculation f lO50 -

/

/r

\(

/

G1040 / -k O  !

Lo /

$1030

~

cn /

0 /

d

[ /

1020 / -

/

/

1010 -

/

./

1000 -

1 I I l i O O.2 0.4 0.6 0.8 1.0 1.2 TIME ( sec)

Figure 13 - Core Exit Pressure Test 3

O

. I I &.

> 1

-: L -:

, i I

CQ l

e: L e -:

l "

/ . .i ( E ,

(

g a .-

v E

  • [ ~ al i o  ! t c

% - O -

I o w . a w

~~ e- 3  ! D .*M -

=

  • 3

.C -

j

( -

3- -

- ( -

a

@ ( **

l i

n. D .

= 5, e .

4.

/

  • m

$; I M "z . g

.- . . .. m. y g.

?,

{l

, m A. 2 g- .. g. == C L

, '. . '\ D . o u

MI 2911 wt CEI C908 21 04 A Cit :El 3 3 C1 32:t Et CM d 3

!vitai 3eF5314d Evalse is:5.: Isnssiae reaire e m

CM L

C. a m

EC O V-=

a e

m6

  • hC D%

i

'~

=

4[ 4ll7*

e.A e

-

  • L l.
  • 4 .

3 I O

/ j *F

/ .

h J=~ 1 l

/ I

N -
[ g 1~

_ ea [

w . ,

5 L l

eC :E r

~ r j = =

. 9, N

5 c- 5 a

-2

=

y a .

a D

    • U em 9%

j Tl I 9  % *;

.4

g. ..

-g. .. -

,  :,,: :w :n wi :wi  :,ci :xt s

=:- x: cri :Ei mi ceci :n -A  ! sis.i 3.ess;,, re pe

'viini isr$53ae EvePs

y . ey um ; vi " , , . . , . _ .,. _.,_ ., __ .,. _.-_

y . ey um ; vii . .=; _ . , _ _ . ,_. . , _ . _ , . . . , . _ _ _ . , _ _ _ . .

e Steamline flode 37 W

w h

il

\l b g-  ; -- 1

?  ?~

{W h  ;;E r r

'M 'S U-U-

"s -

u Steamline tiode 36 i _]

a a a a a _s - A s a 4 A. A a 4_ _s A A.-

Ea

.e .e s .a se se re as 37 36 *e de s .. .e s. as F .s s .* re or se es lift (MC I e litt IMII

_._!p W M..; V8.' ..I;..___._,__. _ , , ,--y , y -- -- If bd U j nim 1 - - - , - -- -- i ,

Steamline liode 35 Steamline flode 34 H

._ i'.__W r E tj  ::M q
:: i e r 2,3 "p

i X

r j

. 2.

& J H li 11

~ M i

.) .-I

. .. _.1.._

,4, ,,.._i_-,*

,, , l, ,, g, . . _ -.1,, .

,, j, j, j,- i-., - ,; ,,

nm ian im iso Figure 15 - System Pressure Transients

, , for Test 3

y .spwn ;va u,. , ., _ , , . _ , _ _ _ , _ _ . . _ y ey w*i ; va : ?; _ . , - - _ , . _ , _ - _ , - . - _ , ,

Steamline Node 33 Steam Dome itode 26 u u N

g.

.M s

., l\ [ f'v' }'. ,/ X~-

y g y, j\y z .. t ..

.;5 /
s a
2. 2 v

a U U ii H s..._.__.__._.,__.-_._.

s. .. 6..__m_.___.,

,. _,_m,.__.,

um iuo um iac.

y 7 W 89 . ; YW '. 5% . . ._ . , _ _ . . , _, . ._ , _ _ , '

g . -- f W M f*I Y 4,

,. _ _ ~ , _ - - , - - - , - - - , - , ,

y Separator Node 25 y Separator Stand-pipe flode 24 8  !~!

r_ g.

' _~.

-j -

s a :o y

/

{

/ \

.s *W. ' ~ "'Nf

r :r
2. *

.7 J

!! X U U

._ .. =__

m. . .. .- ., , ..

4.. , , . . ...

litt IMLi lift 4 M L i Figure 16 -' System Pressure Transients for Test 3

wwm ww=

nu,.conm w

, =m.c , , , , ,

nu, eonon .

, .vie , , , , ,

  • Reference tiodel
  • Reference Model 8 '

a -

~

+ Perturbed Model = + Perturbed flodel l '

g 0 c 51 h! L E

rg -

ri -

E  ;~

H g -

! g L. .. .. l- 3,) l. l. l, .. g,, .: ,

nMH MMM w MWW wwM nMM Balfon u wolm 04/ gong g ' '

g e s e e s Y s s

  • Reference 11odel -

- s~

3

+ Perturbed tiodel r

\~ l '

/

M ,

l '

G B El il a a E I E rG 1

ri

?  ?

N M'

~

d

  • Reference Model 8

M + Perturbed Model

- - - - - - a L.

.. ,. ,, ,. L= = .* .= se =< ** == 's litt IMCI litt IMC a Figure 17 - Sensitivity: Steabiline Nodalization .

I H INlll(M (Mt Vit VI (10$100 U LRffD 04/10/715 fif(Hif)llfMtidtW4VI M *UIRIIO , Y Reference Model

  • Reference Model

+ Perturbed Model

" ~

+ Perturbed Model

, %. - y y

~

/_.

c \d==

?

El  :!

E n n f3 EI '

e e.- =

.e

~

g 0 g, ,; .; ,, ,. a.  :. a. " L. .. . i.  :.  :. a.  : i.

Iltt IMCI Ilif IMCI Pt fY H (DIliM fM4 WR vf (t OSING (11pf(D 04/30/10 g M N I,81813 HM 88 WEa VI Cl glW'. (it AY(ne y 04/10/18 s

g_ e y e e F s s e = e s ,

  • Reference flodel  !

u 1

+ Perturbed Model S t=* l

- .,s n# = \

  • y.

"I  :-

-  ?! i n ti 20 c x u,

  • Reference Model

+ Perturbed !!odel -

g, .; .; .,

s.

is u E. * * '--

',g ,ga  :. n. >= ..

Iltf IMC I Figure 18 - Sensitivity: Delayed TIV Closing

$"'" "";' al's ,'** *4' " m'*l S- *_ , _ _ , , ,- -

, n w 7 eniim,- a vp ue=; a = _, . _._-_, _ _ . , - _ _ , - - g

=

  • Reference Model
  • Reference Model

~

l' + Perturbed Model E

+ Perturbed Model p='* N 3.,_2 I-n a-v: 4'/ n

% # ,f' M n ,

is da r

r-

=

=

EU l'! -

e e.

n  !

v

.; Jr J. i. ie /. 1, i. 4. .:

J, l, /,  ;, y, *

t. .. , lift IMC s Inrt eMC s 04/10nu *

, s' , s - -- -

Pt #10H t:0 lim tha v6Lvf gg u m h g _

  • Reference Model if

' = + Perturbed Model a_

/

! // '"* N , ;: ,

g ,

y l r

! ~.Q ps' r

g

= l Es EU , e-e n

n

~~

  • Reference Model n M

+ Perturbed Model , , _ a a __ __ a a a ._ - _ _ _._ a -- a . a

,, 4 A__.____a a_- _ a a . . __ a_ a____-. Re . e . se a. ra re z. ne an ab . .e o er e4 sa se r se as Igrg 19 0 3 Ilru IM CI Figure 19 - Sensitivity: Slower TIV Closing . .

wiun a n=aeorim w wium g nunsoism.w

. .m n no.si.c em.i . . .  : . . .= ve am. oc rei . . . .

  • Reference Model n -

s .

+ Perturbed flodel I

) 8 e E

$1 EI a  :

EG El '

.,- e

=

J a

~

-.J Reference Model g .

+ Perturbed tiodel - -

a

3. .

.. ,4 ... r. i, i.

E' * * 'i s. == -. e. se ..

nut iues 's" iuti n un ensim e. .m n no,si.c ensi wione a

"""""""." , " P "' ' "' . , ,

wione e . . r , , .

  • Reference flodel
  • Reference tiodel 8 I '

+ Perturbed Model

+ Perturbad liodel g .

~

n g

  • }

a! E~

E e E O Vg .

II .',-

a

's g

y a A a a a a a a a a a a a a = as4 .* 4 e4 e4 s -. s.e se is na L.e .e e s .: e6 24 se s .e as as igrt (MC s s itt IMCI Figure 20 - Sensitivity: Faster TIV Closing

3 a

. . . s . . e r; I

I I t l

\,

ica 's,'. ic-

. . s  !, . .

l I n F l3 P  !

3 l *'l 2 *n l  ?( & in

,i e O \ \e j l l t6 4

. 74 / /s .;

=

223 i '

  • sl ,

=

AAA

-, ,y

=o, .,

e PM. kJ 4 %s [9 f M E4 q N

\.x'y ..

l

'c 3

,j . . .

>c

<t

.' f; G i

e s.

i

- O.s I  :

9 ,3 19* 3 m , ~

5, g ' e *; ~, ~'

I;

I E d.,! *W E

7. =

.- I - I. -

  • g

.-. f<~ ,1 p

- i-

'Q h

s. O i

o d.

C b r l

i u C , L3 C '

S, --

sg '- 5g  : -

g l7 l is ,

=

l ^  !

'* l^ .'.* m T5  %! g

~

U

=a -

i M

E. y= '3 e E. W = -3* m M2 I s2 (

m MC WW b a 5: f l.< = * '< h

=i w l 1* :f

=

w

= c l8 , _

, s

'a

~

~

a .

s .sar : s.: s : sat a esat s a:t 0 wot s t:01 0 0001 l .es  : s,:i s em: : as:: s a:: : w: s r:cc :: t h 9tA slid SS]ad the

:ci g ,gi

.s ,Ise 55]ed S?w ,j m

a m

m C

3 C i g -

3 m

l /s -

-s i

l L.

r

~

N i e

. e 12 o i;

/ i I c -

, i >

r~

i e, Si,i

--- . e n-b2 C Uis

-b t

\ N (N sc, NO T s N,

!3 W

,- . ..  :: :  !, c<

O # , 'p , ' O l9 _

i: A r;F T r .J is?

I w  ! i
s - .<-
  • I!

w

, a5 e

i. 4 t -

.- - - - i

5 %a g

=; '-

- .. . 3

. e.n .-

'c 1

,e lc

~ s' -,

g ,  :,

~'

3E-

-,fv t

_ * , i

.. i.

= - -

r.<

1 l.

i.

~ .g g C = l3e

.: - :n: :S : . :w: : :: : : :::: : :se C its ,I3, 5 5;,, ;g s .s: c s.:t s'rt:i : :sc: s a:: : w:t s r :t ::::

E!A oI5e 55 es Ste

_ _n.tn eniim m _es,nu.in;NuG. , , , ,

ouww , , , , , , , , , , , , , , , , , , , , , , , , ,,, ,w,,

s . . . . . . .

  • Reference Model Reference Model

! + Perturbed flodel  ! + Perturbed l'odel k  %,

g-

's-. w= e'b ,

! ~

s c Ny E"

N. in

=

EI [g- .

? g l

g .

g .

g .

i.

E. .. l ..,

.,g , j . .:. i, ...

g, .; , ,, ,, g, ,, g, g, ,,

e lirt 8 MCI Of-H65 (N1 N M G4 04/1068 8 PtIE H tWillan t t 1 s 1 I ' '

Ptisti till10n 5.( ST PfL$ G1 N M G4 ,

  • Reference !!odel N

+ Perturbed !1odel l

I g .

\ _.

U r

..  ?.

E'

D il

=g e

=

e.

I

~

d

  • Reference I-todel -

M '

i Perturbed Model I

.., .. .. .. 3, i.

L. .. . ...

iirs isci L. .. .., ... .. .. .. i, i.

itrE IMCI Figure 22 - Sensitivity: Bypass Charac teristic

_ __ nny mmr,= , _ - . _ o*" w m nea.y meri,te_ , ury.__ .., _ _ _ , _ . . _ _u4"ma a , 9 9; _. _ _ , _ _ _ , _ _, a , _,_

  • Reference Model M N

+ Perturbed t'odel AA '%:::f.

/

W r

H ff/

$3 $3 FU l'S e e u

/

a H

~}

  • Reference !1odel

+ Perturbed f?odel E.

1. .. . .., .. ,.. .. t. .-, i. .. .. .., i. ... r. .. i, i.

in exci in ince

, _ _ . , . _ _ . , - - __ _ o

  • o w n y __ntsy wt!m,an._,o n ur . . _ , __ _ , _ _ __. a. o w =

y _n'!yrsim,* _, M.ui,L__._,.__ , _ _ _ _ . , .

  • Reference !iodel

.

  • Reference flodel X 8

+ Perturbed liodel

+ Perturbed l1odel g g ...-

,,-

  • O !c.,:

' v % 'A g;n;

~.

~. _:Aj 'c r

y vg

~.

y-be

/

h.4 2 EE e e u

a U E

~

H H g7_ q__ _; 1

,, ,p __, __g, ,,

,, ,, g,  ;  ;

,i ,

1 um iuci im esci t

Figure 23 - Sensitivity: Decreased 5teamline Inertia

ouione n=a mom = , i M va ou w=

g n == Bon e,M AM a q. , , , , g , , , , ,

  • Reference flodel s .

/ u -

+ Perturbed Ibdel

[

n g m.

53 .

f 59 -

r- r-n El d El -

? 2 i

I  ! ~

y Reference Itodel g

+ Perturbed Model . . . . . . . .

L .. . .., .. .. ... .. ., ,. L. .. -. i, i. ,. .. .. ,, ,.

nre esce litt suca MMH 00Ilm M 04/10M8 MMH 00 tim M ,t.M t/R og/ gong g ,l.M L/A 8 ,

  • Peference Model
  • Reference !!odel I

+ Perturbed !'odel l

+ Perturbed Model

~

s ,.

== -%

E- r-m = '

EI E0 2 i G H u

Figure 24 - Sensitivity: Increased Steanline Inertia

, na a !P a't!' 9; i at , - _ aa'u =>

.aa 'u 'a n't;' ia'F",*"-

y

. na;' ulne, tat ._. ,nat !yan a; AM! , -_ _ , . ,

Reference !'.odel

! + Perturbed Ibdel

/

g a

/V[ . . .

SI E. l m

= El fli e

.e.

N

~

a

~

_J

  • Reference liodel ,

+ Perturbed tiodel  ;. l, n, . --; ,Y ,'. l. ,T - l. l, ,. L. .: .- l. l. . ,.

nee iuci in i2ci www nay ="i=,a*__, nw up ano a;an, www p n a;po!itap ,nwl tgut'iu3pi at , , _ _ _ , _ _ - g , ,

  • Reference !!odel
  • Reference Itodel H H = + Perturbed flodel

=

+ Perturbed flodel

.m. ,

u w.

u ,-

s,.,=, ***=i

" *  ;* ,y.

r.

r_

I!

e FM e

li ti

__ _,p __,2 ,.,___.,,_._f,___,,,__,, g, p.-; . ,, , _ _ . ,

,., j, ,,

g, , , im iac, ont .ac i figure 25 - Sensitivity: Delayed Power Transient

n.< p mismp* ,. ?u t'eagisiti <>! 91tT 1!* , . ,

g naymptnpa__,_ror9pJi!!qia$'t?i!= , _ , - -

  • Reference tiodel
  • Reference :todel M - "

= + Perturbed :bdel + Perturbed 11odel a g -

V'" b _.

- g

[H *H ,V E r-tu vg

.3-a e G

g -

G I e u g .

/.---f, .; .;

1

A f,
u. . .: ., ..

j ,. /e i. g, , ,, ,, ,,

I ttt E SA C I n f t et D0i f tM in* 70 U/0 IRillityd im $1[sn t IPE , 04 /10/7tl g ' r - '-r-'-- i

=

, nu7 wnmpa ,2groggijta,m!ty.iju_, ,

.o emew

  • Reference !1odel

! + Perturbed tiodel y .

- /

j u 4 n r,, i :g

' r-og .,

r-

e. a!

t ek e

e a y _

u

  • Reference llodel M

+ Perturbed !1odel g8 L_

8 L

82 a

lA a _ _ a--- - 6.--_a__-_

30 se s. sa ns n 1 L 2 a L a __ a Ilft 85400 ate . .e -. ee aa ae ao aa 3-r s.

litt (LI C I Fioure 26 - Sensitivity: Steanline Friction

nin ii mnon,w

, mn, _ .__,

n i. . pen m,. ,..., , , , ,

o4nono

  • Reference tiodel

!~ + Perturbed l'odel  !

8 l '

h p

9

El Es

e. e

. g a

~ u

~

g g

  • Reference tiodel

+ Perturbed flodel

s. .; ..,

.,7, ,j; " " " "

s. .; .. ,:, , n /. ,. i, ..

y na ,. mnm u o4none nn mumpa , m' ai , , , , ,

! l N.

E t

$1

$3 a-

Eli Eg e

e

  • Reference Itodel y -
  • Reference flodel

+ Perturbed liodel + Perturbed ;1odel a.

' 6 id,' " * "

'f* idi i

Figure 27 - Sensitivity: Flovi Dependent

, Steamline Friction Factor ,

nw;enre,w_ _,emiyaa m.,. wnm _ n .. y .._in m ,- _ , n m . .. n , , . __ w n , n.

y , , , . _ , , ,_

A W E _

  • a a a g 7 g g , N ,

an ao F? g;a

= n l'8 l't;-

e e

- a u-u

-~

g

  • Reference 11odel ,
  • Reference ticdel

+ Perturbed 11odel -

+ Perturbed !'odel

a. .

i.,

2

,i. ,i .

1

,, ,. t.

314 8MCO litt IM C I g 81'I',8 IIIIIM,I8U , IllhI S',8."I,lNii __ _ , _ _ , _ _ _ _ _l14/18/7d f16. ,9 tilli lm l,b.t, __ _. (HRill 9.f.Il{

04 / l l / 7tl

~ ~

  • Reference 11odel
  • Reference Itodel V + Perturbed ltodel  ! + Perturbed !!odel u y r==.

u

, .._..*(,;2  : ,

> s .-

% 5=:

is<e/. "

n

=

- . . . r ..

24 *E e e N S

~

s. - --: .', .'.

nm iM r.

i' l;-i.  ;, ,. n, . .;-

  • um iuci
. l.- -l. ---l,- ,.

Fioure 23 - Sensitivity: Direct tioderator I!eatina

04 t t0 Mil n,.7 mium,w , i 6 "? . r - '

04/10/71B n.y mfon - ,

i 5 ' 'a M~

M_

I T i

6 E

j! '

SI Eu

El 2 y n

~.

d

  • Reference tiodel a

~'

I

  • Reference Model y

+ Perturbed flodel

.', .'. i. .:. i. i, + Perturbed i'odel E. l .

i.

. . > > a litt IMCI L. .. . ., .. .. r. .. n a tire iMCi Ouione , , , ,

nuei mum w

, i .s va , , , ,

b ny,, ,,y, ,

1 F u u e a e s

  • Reference :1odel
  • Reference Ilodel

! + Perturbed :1odel  ! -

+ Perturbed flodel c =

an r-N/ gi

= .

! hE -

P g l

0 g .

g .

.,( j . i.  ;  ; j, L. 1 i ., .". i, i. g, ,,

l, g, g, g, ,,

ilrf IMCI Figure 29 - Sensitivity: Separator Inertia

e

  • f165 tt (WilllM IM 4518(fMT-tAdfR gf_M 64/12/ iti f16E tt (MilitM t.et .ml [f 8dty -4,d3 R, $1(8M,y 04/12/lg g _ 5 T y 1 e T.

=

4 n f

'. .=. ,n.=.=.

W  ! ,/

.. ~

El a u F!i ES e

e. y a n_

a_

  • Reference !!odel
  • Reference ! U el ,

+ Perturbed flodel + Perturbed 11odel E, . .. . .., .. .. ,. ,, .-, i ., n, .. ., .., . ,, ,. ,, ,, ,,

it* iscci iim esci g n eu; mom,= , an cy_v 2 a p!< =._, _. _ ,

a4'irne g narymnm,= ,

mi car-i asl sirm , , ,

a* ' i z""

  • Reference flodel
  • Reference liodel 5 + Perturbed tiodel  ! -

+ Perturbed 'todel E

~

,~  !

g , y =.m. =\ . = .

58

\ ./*~/ . _ . . N , Eg .

u u YE Yi a a d E

! g

m. .. .. .., .. ,., ,i ._ ,, ,, i, g, , .. .. ,., . ,, ,.. ,, ,, ,,

iis suce um iaci Figure 30 - Sensitivity: Carry - Under Stean Fraction

_ m ' ' o'

  • od"a'"

y _.m!;rme,a*._ -. , "ani=,' t s ,

,. ,. ,. , e<=7 eorim,ina ,

cmsim' e s

- =

  • Reference flodel
  • Reference !!odel H + Perturbed !iodel  ! ~

+ Perturbed l'odel s'

W g n* -

L*

$I Eg r

EO l'I ~

2 g u l

  • a a a
  • A 4 _a a a

.d. . .. .. ., .. ,. .A.. ,4. i ., i. g, , .. ., ,, ,. ,, ,_, ,, ,, ,.

IIFE IMC 8 IlrE IMCI g titW H futilm inet it#Calmt P h u4 / lu/ M

' ~ ~ ' ' - - ' ~ - - ~'--r-- ' '-- ,---

y muy mise,ta _.,t m im,' e s_ ,._ _ ..,_- .,. . , _ _ oa 'io' * =

8

=

a_

~

4 f

BW-

~%

as C- n l's l'N e-

~

Y h g .

N-

'-') ,

  • Reference flodel
  • Reference Model 3

u

+ Perturbed tiodel + Perturbed flodel A a a

.,____a_._.__a___a-__a-a Us e ..- a s ., 4.__s____.,a_____.a

,e e sa se ab e 4 e e7 ee ae .a__-,a...._-4,-----

2.e e a at st F -e litt 454[s lirt IMCI Figure 31 - Sensitivity: Power Shape

Appendix A. RELAP-3B Input Data for Three Test Conditions.

B. BNL Memo to Files, " Jet Pump Model in RELAP-3B", January 1978.

C. BNL Memo to Files, " Direct Coolant Heating in RELAP-3B", February 1978.

D. BNL Memo to Files, " Variable Power Shape in RELAP-3B", March 1978.

E. BNL Memo to Files, "New Pump Model for RELAP-3B", January 1978.

e

RELAP-3B Input for Test 1 9

RELAP3B MOD 111 BWR DATE = 04/28/78 TIME = 13.17.10 PAGE 13 PEACH BOTTOM UWR REPHESENTATION BY RELAP 38 (CASE NO.ll TIME STEP NUM 0 TIME = 0 SEC. CURRENT TIME STEP SIZE = .500000E-03 SEC.

NORM POWR POWR HEAT REM ENGY LEAN MASS LEAK ENGY BAL. MASS DAL. TOT. HEAC REAC T TOTAL SYSIEM QUANTITIES (MW) IBTU/HR) (BTU) (LO) (BTul (LO) .

(5) SEC.

1.00000E+00 1.56200E*03 0 O. O. 3.92634E+08 6.68914E*05 O. O.

VOLUME AVG. PRES TOT. MASS AVO. ENTH AVG. DENS AVG. TEMP AVO. QUAL DUBB MASS MIKT LEVL LIQ. NASS NUMBER PSIA (LB) (RTU/LBI (L8/FT33 (F) (LBI (FTl (Lol 1 1.02700E+03 1.59145E+05 5.28400E+02 4.70573E 01 5.33102E+02 0 O. 1.80300E+01 1.59145E+05 2 1.01425E+03 4.54544E+03 5.30109E+02 4.69618E*01 5.34476E+02 0 O. 1.20001C+00 4.54544E*03 3 1.01364E+03 4.52303E+03 5.34599E+02 4.67302EiOI 5.38116E+02 0 O. 1.20001E+00 4.52303E+03 4 1.01301E+03 4.49636E+03 5.39945E+02 4.64547E*01 5.42450E+02 0 O. 1.20001E+00 4.49636E*03 5 1.01238E*03 4.21964E+03 5.46385E*02 4.35958Es01 5.45980E+02 3.11756E-03 1.31550E401 1.20001E*00 4.20649E+03 6 1.20001E+00 1.0ll79E+03 3.57095E+03 5.52757E+02 3.68937E*01 5.45913E+02 1.30808E-02 4.67108E*01 1.20001E+00 3.02322E+03 3.52423E+03 7 1.01121E*03 3.09453E*03 5.59132E*02 3.19715E+01 5.45848E+02 2.30444E-02 7.13116E+01 8 1.01065E+03 2.71364E+03 5.65841E+02 2.80363E+01 5.45784E+02 3.35133E-02 9.09431E+01 1.20001E+00 2.62270E+03 9 1.01010E+03 2.36678E+03 5.73839E+02 2.44527E+01 5.45722E*02 4.59655E-02 1.08790E*02 1.20001E+00 2.25799E+03 1.93651E*03 10 1.00956E+03 2.06101E+03 5.83129E+02 2.12935E*01 5.45661E+02 6.04039E-02 1.24493E+02 1.20001E*00 1.82500E+03 11 1.00900E*03 1.95488E+03 5.86971E502 2.01971E*01 5.45598E+02 6.64418E-02 1.29886E502 1.20001E4001.2000lE+00 4.54337E*00 12 1.01425E+03 4.54337E+00 5.30522E+02 4.69405Eh01 5.34811E*02 0. O.

13 1.01364E+03 4.51556E+00 5.36097E+02 4.66531E+01 5.39330E+02 0 O. 1.20001E*00 4.51556E+00 14 1.01301E*03 4.48241E*00 5.42733E+02 4.63107E?01 5.44705E+02 0. 0+ .

1.20001E+00 4.48241E+00 15 1.01238E+03 3.76604E+00 5.50668E*02 3.89094E*01 5.45980E*02 9.72621E-03 3.66293E-02 1.20001E*00 3.72941E*00 16 1.01179E+03 3.13555E+00 5.58588E*02 3.23954E+01 5.45913E*02 2.20773E-02 6.92245E-02 1.20001E+00 3.06633E+00 IT 1.01121E*03 2.68536E+00 5.66512E+02 2.77442E+01 5.45848E+02' 3.44281E-02 9.24520E-02 1.20001E+00 2.59291E+00 18 1.01065E+03 2.33303E+00 5.74847E+02 2.41041E+01 5.45784E+02 4.74031E-02 1.ld593E-01 1.20001Es00 2.22244E+00 1.20001E+00 1.89100E+00 s 19 1.01010Et 03 2.01779E+00 5.84781E+02 2.08471E+01 5.45722E+02 6.28380E-02 1.26794E-01 1.20001E+00 20 1.00956E*03 1.74424E+00 5.96316E+02 1.80209E*01 5.45661E+02 8.07355E-02 1.40822E-01 1.20001E+00 1.60342E.00 1.50484E*00 21 1.00900E*03 1.65041E+00 6.01087E+02 1.70514E*01 5.45598E+02 8.82026E-02 1.45570E-01 1.20001E401 4.15139E+04 22 1.01163E*03 4.15139E+04 5.28400E*02 4.70482E 01 5.33089E+02 0 O.

23 1.00800E*03 2.98604E+04 5.81026E+02 2+18439E+01 5.45485E+02 5.74880E-02 1.71662E+03 6.85901E+00 2.81438E+04 7.55896E+03 24 1.00600E*03 8.02358E+03 5.81026E*02 2.17359Es01 5.45259E*02 5.79060E-02 4.64613E*02 7.65601E+00 6.37258E+04 25 1.00100E+03 6.68152E+04 5.72761E+02 2.42765E*01 5.44694E*02 4.62373E-02 3.08935E+03 8.37501E+00 2.33944E+01 26 1.00000E+03 1.21152E+04 1.19168E+03 2.24651E*00 5.44581E+02 9.98069E-01 1.20918E+04 1.96250E+01 2.32453E*05 27 1.00560E+03 2.32453E+05 5.28400E+02 4.70446E+01 5.33084E+02 0. O. 3.44092E+01 28 1.01100E+03 2.20344E+04 5.28400E+02 4.70479E+01 5.33088E*02 0. O. 3.93780E*01 2.20344E*04 29 1.11087E+03 9.23295E*03 5.28400E+02 4.71069E+01 5.33174E*02 0 0. 5.s0001E+00 9.23295E+03 30 1.21074E+03 3.20246E+04 5.28400E*02 4.71669E 01 5.33273E+02 0. O. 4.85010E+01 3.20246E+04 31 1.00200E+03 2.91193E*03 5.28400E*02 4.70425E+01 5.33081E+02 0. C. 8.48001E+00 2.91193E+03 32 1.03060E*03 8.24293E 03 5.28400E ?02 4.70594E+01 5.33105E+02 0. O. 7.77001E+00 8.24293E+03 33 9.97800E*02 1 13482E+03 1.19168E+03 2.24139E+00 5.44290E+02 9.97961E-01 1.13250E*03 4.03690E+01 2.31389E+00 34 9.97500E*02 1.01320E+03 1.19168E+03 2.24070E+00 5.44251E+02 9.97946E-01 1.01112E*03 1.46830E+01 2.08111E+00 ,

35 9.96600E+02 5.78501E+02 1.19168E+03 2.23861E+00 5.44132E+02 9.97902E-01 5.77267E+02 1.95060E+01 1.21369E+00 36 9.92200E+02 1.50387E+03 1.19168E*03 2.23535E+00 5.43948E+02 9.97834E-01 1.50062E 03 1.95220E+01 3.25739E+00 37 9.94800E+02 1.50325E+03 1.19168E+03 2.23442EA00 5.43895E+02 9.97814E-01 1.49996E+03 3.85601E+00 3.28610E+00 38 9.94510E+02 1.50279E+03 1.19168E+03 2.23375E*00 5.43857E*02 9.97800E-01 1.49949E503 3.85601E*00 3.30615E+00 39 9.94110E+02 1.50217E*03 1.19168E+03 2.23282E+00 5.43804E+02 9.97781E-01 1.49883EiO3 3.85601E+00 3.33331E+00 40 9.93660E+02 1.50146E+03 1.19168E+03 2.23177E+00 5.43745E+02 9.97759E-01 1.49810E+03 3.85601E*00 3.36478E*00 41 9.93600E+02 3.30250E+02 1.19168E*03 2.23163E*00 5.43737E+02 9.97756E-01 3.29509Ee02 3.85601E+00 7.41081E-01 42 9.93387E*02 2.02766E+02 1.19168E+03 2.23114Ee00 5.43709E+02 9.97745E-01 2.02309E502 3.20000E+01 4.57196E-01 43 9.93158E*02 1.90668E+02 1.19168E+03 2.23061E+00 5.43678E+02 9.97734E-01 1.90236E+02 1.90201E+00 4.32053E-01 JET PUNP HEAD IS 25000E+02 , PSIA H RATIO IS .19600E+01 N RATIO 15 1496?E+00 EFFICIENCY IS 29.3255 PER CENT

VOLUME HEAT TRANS. SURF FLUX CHFR H.T. C0(F SURF TEMP FUEL TEMP CENT TEMP POWR H2O FUEL P0hR NUMBER MODE (870/HR/F72) (BTU /H/F2/F) (FI TF) (FI ,

(87U/HR) (MW) 2 1 2.27169E+04 4.38233EA0) 3.01181E+03 5.42019E*02 6.17265E*02 6.58279E*02 1.55744E+08 4.56326E*01 3 2 5.96317E+04 1.66978E*01 3.75696E+03 5.53988E*02 7.62603E*02 8.83771E*02 4.08828E 08 1.19786E*02 4 2 7.09902E+04 1.40290E*01 5.82497E*03 5.54637E+02 8.05963E*02 9.53746E+02 4.86701E*08 1.42602E*02 5 3 8.23486E+04 1.20963E+0! 8.86131E+03 5.55273E+02 8.49987E+02 1.02542E+03 5.64573E+08 1.65418E*02 6 3 8.51882E+04 1.16953E+01 8.87385E*03 5.55513E+02 8.61184E*02 1.04372E+03 5.84041E+08 1.71122E*02 7 3 8.51882E*04 1.16974E+01 8.73080EA03 5.55605E+02 8.61284E*02 1.04383E+03 5.84041E*08 1.71122E+02 8 3 8.94476E+04 1.11424E+01 8.77933E*03 5.55973E*02 8.78211E*02 1.07157E*03 6.13243Ee08 1.79678E+02 s 9 3 1.06485E*05 9.36123E*00 9.33167r+03 5.57134E*02 9.46593E*02 1.18504E*03 7.30051E*08 2.13903E*02 to 3 1.23523E+05 8.07142E+00 9.74591E 03 5.58335E*02 1.01685E+03 1.30387E+03 8.46859E*08 2.48127E*02 11 3 5.Ill29E*04 1.91958E+01 6.42134E+03 5.53558E+02 7.30614E*02 8.32445E*02 3.50424E*08 1.02673E*02 )

12 1 2.81689E+04 3.53414E*01 3.01395E.03 5.44157E*02 6.38259E+02 6.9010$EA02 1.93123Ee05 5.65845E-02 13 2 7.39434E*04 1.34660E*01 4.75481E+03 5.54881E+02 8.17411E+02 9.722FIE;02 5.06947E*05 1.48534E-01 14 2 8.80278E+04 1.13137E+01 8.07058EiO3 5.55612E+02 8.72293E*02 1.06200E*03 6.03509E.05 1.76826E-01 '

15 3 1.02112E+05 9.75510E+00 9.76135E 03 5.56441E+02 9.28415E*02 1.15492E+03 7.00070E+05 2.05119E-01 16 3 1.05633E*05 9.43170E*00 9.71981E*03 5.56781E+02 9.42799E*02 1.17888C+03 7.24210E*05 2.12192E-01 17 3 1.05633E*05 9.43343E+00 9.50555E+03 5.56960E+02 9.42997E*02 1.17909E+03 7.24210E+05 2.12192E-01 i 18 3 1.10915E*05 8.98580E*00 9.49551E503 5.57465E+02 9.64762E+0? 1.21552Ei03 7.60421E*05 2.22801E-01 19 3 1.32042E+05 7.51785E*00 1.00268EiO4 5.58891E+02 1.05273E*03 1.36557E503 9.05263E 05 2.65240E-01 20 3 1.53168E+05 6.0975SE*00 1.04099E*04 5.60375E*02 1.14446E*03 1.52686E+03 1.05011E+06 3.07678E-01 21 3 6.33800E+04 1.43507E.01 6.73312E+03 5.550!!E+02 7.77712E+02 9.07622E+02 4.34526E+05 1.27315E-01 MINIMUM CHFR IN VOLUME 20 = 6'.09758E+00 i VOLUME NODE TEMP NODE TEMP N00E TEMP NUMBER 2 1 6.58279E+02 2j 5.72559E+02 26 5.49810EiO2 3 1 8.83771E+02 6.33871E*02 26 5.74154E+02 21 )

4 9.53746E*02 6.49688E+02 1

2) 26 5.78597E*02 5 1.02542E+03 6.65478E+02 5.83013E*02 6

1 2] 26 1 1.04372E+03 21 6.69503E*02 26 5.84193E*02 )

7 1 1.04383E+03 21~

6.69592E+02 26 5.84283E+02 8 1.07157E+03 6.75635E+02 26 9

1 21 5.86060E+02 1 1.18504E*03 21 6.99480E+02 26 5.92843E+02 )

10 1 1.30387E+03 2i 7.23331E+02 26 5.99632E*02 11 1 8.32445E+02 21 6.22053E+02 26 5.70868E+02 12 1 6.90105E+02 21 5.02004E+02 26 5.53795E+02 i 13 1 9.72271E+02 2l 6.53872E*02 26 5.79824E+02 14 1 1.06200E+03 21 6.73389E*02 26 5.85235E+02 15 1 1.15492E+03 6.92979E*02 26 5.90721E*02 21 16 1 1.17888E+03 21 6.98002E+02 26 5.92218E+02 17 1.17909E+03 6.98176E+02 26 18 1 21 5.92393E*02 1 1.21552E+03 2) 7.05703E+02 26 5.94630E+02 19 1 1.36557E*03 21 7.35201E+02 26 6.02971E*02 20 1.52686E+03 7.64703E+02 21 1

21 26 6.ll316EA02 1 9.07622E+02 21 6.39888E+02 26 5.76417EiO2 D

' ' n $ i *

) ) ) # ) ,

$ 22111 00000

  • + + * +

(I EEEEE S 77223 P 88449 A 00004 P 66665 M 11994 I U . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . .

P O000OOO00O0 OOC 000 COD 0O0OOD00O1111300 OOOOOCO000OOO T

666 55 5 5 5 55 5 4 65 3 445 633 11 1 11 1 1 N ,1 1 1

- ;- - - .- ,1- ,1- ,;-

11 1 111 100 I EEE EE E E E EE E E EE E EEE EEE S 888 66 6 6 6 16 6 4 83 7 791 961 EP 777 33 3 3 3 73 3 3 74 8 107 803 111 66 6 6 6 26 6 4 15 6 212 050 L 888 77 7 7 7 57 7 8 80 3 425 480 RC 888 77 7 7 7 57 7 6 81 845 C . . . . . . . . .

1

, . , . . . . . 4 7.,5 . . .

A 0888C00110101010310010500087010000213000000444OOO E - - - - - - -

4 01111111111011111111111013100102130010011112 F 00000000000000000000000000000000000000000000 1 t - - - - ;- - ; - ; * - 7- - ;;- - - - tt - t - t+ + + + + t+ + - + t - - - - -

FS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEtEEEEEEEEE 47907276121371678530587 44T737 400248937S60000 P 312926699214251 916056134573131 85100018 u00000 E 1677609231610698497087699844R259046745040000 G 1C 19998389509100969204624413897 981904183080000 A I 61345902589624692468010106175002462521479050 P R . . . . . . .

DF 9222223333392222333344119321529228527112244600O0D 01111111111011111111110000101 0000001115111l211 E

000000000000000000000000000000000000000011I100

  • - - - - - - - - - - + - - - - - - - - - * * + + + - * * * + * * + * - - - - - - - - - - =

I S

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RP 631 038349A973943257052465333483606823904662750 6871733007857480839538350261 e599070916 49962180 Y

13223907 6831 930150291 2608154740374604885122872 40855608024 497570671 61089619903995478561433373 UE 19873851970188595186499403830213666123,22326873 L . . . . . . . . . . .

E 33333222116333322211154211761476121342512334220O0 5 - - - - - - - - - - - - - -

1111111111011111111110100000011201001101111211 S 0000000000000000000000000000000000000000000000 I

  • ---------++---------*+***+++*+++*+*--*-=-----

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE0EE ES 0000000000000000000000000000G00000000000000000 6 P 3000000000030a00000000000 000000400000000000000 1

R .

5000000000450400000004700000G77700000000000007 7 7085409863070854098630330000C88806000000000038 1

T O

2122985445021229854450560006499068620040905072 PT 1666555555116665555551132514599232323914244622OCO 3 ,- - - - ,-

1

- 3222222 3222222 2214 111 11111111 a

L

,- ,0000000

- - - ; - - - ,0000000

- ;- - - - - ,0000

- - - ,00000000000 E A ,- EEEEEEE EEEEEEE EEEE EEEEEEEEEEE M U - 6843598 1311056 001 9 91624401 995 I Q S - 5043531 27 83852 8633 664031 08554 T E - T841604 6720330 8012 09998a87777

. I - l005944 2044872 4981 87777777777 T T - 7247208 C R - . . . . l. 3 3 3 5 0 6 . . . .

7790 99999999999 J E l P -- 000031234660000923468800559100000G099999999999000 8

7O

l. O -

R - 2222222222222222222222222232222222233333333333332

/N H P -- +000000000000000000000000000000000C000000000000000

+ + * * + + * * * + + + + +

  • t+ + + + * + + + * + + + + + + + + + * * + + + * + + + * + + + .

8 Tl W - EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 2E

/S NaO - 09955721991 0273882716700668500000008888888a8AA986 4A ELL-/F 0094853432702936814818002261 000000066666666666368 0C .U 41593718819450765587304 4 001844444 44111111111 11710

( TT

- 80496295336806208 64 461881192888888899999999999898

= CB ,- 2333455678823345567890228814222222211111 1111111 19 8 J( - 55555555555555555555565555155555555111 11111111112 E3 T

AP 44444444444111111111113344343333444333333333 33 DA 00000000000000000000000000000000000000000000 00 L W * * + + + + + + + + + * + * + + + + * + + + + + * + * * + * + + * + * + * * * + + * + + + +

E R

O)

LC EECEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EE FE 77777777777000000000009999780R88599777777777 77 Y

99999999999000000000008888013333288000000000 00 D

TD

.S/ 99999999999000000000003333786666333777777777 22222222222333333333331111540000611555555555 77 55 RN CL 55555555555555555555558888665555888666666666 66 WO J( 22222222222222222222222222129999122111 11111100011 BI -

T A E T N N O OOOOOOoOOOOOOO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOo E H NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN S C E

R 1P G 23456789013234567890132345678901 12134567890123317 1E N 11211111111222222222223333 33333334444 442 1R I TS 0R CE OOOOOOOOOoO0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 0w EM TTTTTTTTTTT1TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTT MB NU NL 123456789011234567a9011234 557R90712634 S6789002000 M OO 11 111111l122 22222222323323333333444 HO CV 3T PT AO N LB OR E T E RH TB 12345678901 234567890123 4567890123456F a90123456789 C CM 11111111 1122222222223333333333444 444 4 4 4 4 4 N U E UN P J

RELAP-3B Input for Test 2 G

e

RELAP3D MOD 111 OkR DATE = 04/28/78 TIMF = 13.20.24 PAGE 13 PEACM BOTTOM BWR REPRESENTATION BY RELAP 3B (CASE NO.23 TIME STEP NUM 0+ TIME = 0. SEC. CURRENT TIME STEP SIZE = .500000E-03 SEC.

TOTAL SYSTEM NORM POWR PCWR HEAT REM EN0Y LEAK MASS LEAK ENGY BAL. MASS BAL. TOT. REAC REAC T QUANTITIES (MW) IBTU/MR) (BTU) (LBI (BTU) (LB) .

($1 SEC.

1.00000E*00 2.03000E+03 0. O. O. 3.84514E*08 6.57229E*05 0 O.

VOLUME AV6. PRES TOT + MASS AVG. ENTH AVO. DENS AVG. TEMP AVG. QUAL BUO8 MASS MIET LEVL L10 MASS NUMBER PSIA (LB) (BTU /LD) (L8/FT3), IF) (LB) (Fil ILB) 1 1.00800E*03 1.60602E*05 5.19800E*02 4.74881E+01 5.261ffE+02 0 O. 1.80300E*01 1.60602E*05 2 9.96730E+02 4.57938E+03 5.23089E+02 4.73124E+01 5.28766E*02 0 O. 1.20001E+00 4.57938E+03 3 9.96200E.02 4.53636E+03 5.31752E*02 4.68679E*01 5.35808E+02 0. O. .

1.20001E+00 4.53636E*03 4 9.95650E+02 4.44193E+03 5.42167E*02 4.58924E 01 5.44007E+02 5.04960E-04 2.24300E+00 1.20001E*00 4.43969E+03 5 9.95110E*02 3.24590E+03 5.54337EiO2 3.35355E+01 5.43936E+02 1.93237E-02 6.27229E*01 1.20001E+00 3.18318E+03 6 9.94600E+02 2.53638E+03 5.66977E+02 2.62049E*01 5.43868E*02 3.88521E-02 9.85436E*01 1.2000lE+00 2.43783E+03 7 9.94120E+02 2.47997E*03 5.79660E*02 2.14895E+01 5.4380SE+02 5.84342E-02 1.21541E+02 1 20001E*00 1.95843E+c3 8 9.93660Eo02 1.77338E+03 5.91837E+02 1.83219E*01 5.43745E+02 7.72278E-02 1.36954E+02 1.20001E400 1.636420 03 9 9.93230E+02 1.58129E+03 6.01854E+02 1.63372E*01 5.43688E+02 9.26963E=02 1.46579E*02 1.20001E*00 1.43471E+03 10 9.92800E+02 1.45708E+03 6.09712E+02 1.50540E*01 5.43631E+02 1.04848E-01 1.52772EiO2 1.20001E+00 1.30431E*03 11 9.92370E+02 1.41483E+03 6.12639E*02 1.46175E+01 5.43574E*02 1.09434E-01 1.54830Es02 1.20001E+00 1.26000E+03 12 9.96730E+02 4.57542E+00 5.23885E+02 4.72716E+01 5.29413E+02 0 O. 1.20001Et00 4.57542E+00 13 9.96200E+02 4.52200E+00 5.34642Et 02 4.67197E+01 5.38157E+02 0 O. .

1.20001E? 00 4.52200E*00 14 9.95650E+02 3.82086E*00 5.47576E+02 3.94758E901 5.44007E*02 8.80973E-03 3.36607E-02 1.20001E+00 3.78720E*00 15 9.95110E+02 2.74266E*00 5.62687E*02 2.83362E*01 5.43936E+02 3.21446E-02 8.81618E-02 1.20001E+00 2.65450E+00 16 9.94600E+02 2.12003E+00 5.78384E+02 2.19116E*01 5.43868E*02 5.63627E-02 1.19535E-01 1.20001E+00 2.00129E+00 17 9.94120E*02 1.72760E+00 5.94134E+02 1.78490Et01 5.43805E*02 8.06494E-02 1.39330E-01 1.2000l[+00 1.58827E*00 18 9.93660E+02 1.46639E+00 6.09255E*02 1.51502E+01 5.43745E+02 1.03958E-01 1.52443E-01 1.20001E+00 1.31394E+00 19 9.93230E*02 1.30392E*00 6.21694E+02 1.34717E501 5.41688E+02 1.23140E-01 1.60565E-01 1.20001E+00 1.14336E+00 20 9.92800E*02 1.19930E+00 6.31452E+02 1.2391eE*01 5.43631E+02 1.38203E-01 1.65759E-01 1.20001E+00 1.03362E*00 21 9.92370E+02 1.16400E+00 6.35087E+02 1.20260E+01 5.43574E*02 1.43869E-01 1.67463E-01 1.20001E+00 9.96535E-01 22 9.94550E+02 4.18952E+04 5.19800E+02 4.74803E 01 5.26095E*02 0 0 1.20001EA01 4.18952E+04 23 9.91500E+02 2.18905E+04 6.03374E+02 1.60136E*01 5.43460E*02 9.54132E-02 2.08864E+03 6.85901E+00 1.98018E+04 24 9.89630E*02 5.88676E+03 6.03373E+02 1.59472E*01 5.43213E+02 9.58288E-02 5.64121EiO2 7.65601Ee00 5.32264E*03 25 9.84940E+02 6.69377E+04 5.69714E+02 2.43210r+01 5.42595E+02 4.53491E-02 3.03557E*03 8.37501E+00 6.39022E*04 26 9.84000E+02 1.18951E+04 1.19280E*03 2.20569Es00 5.42471E+02 9.99002E-01 1.18832E+04 1.96250E+01 1.18713E+01 27 9.90230E*02 2.34598E*05 5.19800E*02 4.74786EiOI 5.26101E+02 0 O. 3.44092E t03 2.34590E+05 28 9.97470E*02 2.22374E*04 5.19800E*02 4.74814E 01 5.26092E+02 0 O. 3.93780E*01 2.22374E+04 29 1.06633E+03 9.31586E+03 5.19800E+02 4.75299E+01 5.26237E+02 0 0 5.0000lE+00 9.31586E*03 30 1.13145E+03 3.23028E+04 5.19800E+02 4.75766E+01 5.26382E+02 0. O. 4.85010EiOI 3.23028E+04 31 9.89500E+02 2.93891E+03 5.19800E+02 4.74783E*01 5.26101E+02 0 O. 8.48001E*00 2.93891E+03 32 1.00953E+03 8.31821E+03 5.19800E+02 4.74892E+01 5.26110E+02 0. O. 7.77001E+00 8.31821E*03 33 9.81400E+02 1.ll368E*03 1.19280E+03 2.19965E*00 5.42128E+02 9.98874E-01 1.11243EiO3 4.03690EiO! 1.25401E+00 34 9.80700E+02 9.93903E*02 1.19280E+03 2.19803E+00 5.42036E*02 9.98840E-01 9.92750EiO2 1 46830FiOI 1.15293E*00 35 9.79400E+02 5.67233E+02 1.19280E+03 2.19500EiOO 5.41864E+02 9.98777E-01 5.66539E+02 1.95060E*01 6.93726E-01 36 9.77160E+02 1.47323E+03 1.19280E+03 2.18980EiOO 5.41569E*02 9.98667E-01 1.47126E+03 1.95220E*01 1.96381E.00 37 9.76590E*02 1.47233E+03 1.19280Ea03 2.18847E+00 5.41494E+02 9.98639E-01 1.47033E*03 3.85601Ee00 2.00385E+00

3. 9.74130E+02 1.47161E*03 1.19280E+03 2.18740E+00 5.41433E+02 9.98617E-01 1.46958E*03 3.85601E+00 2.03524E*00 39 9.75490E+02 1.47061Ee03 1.19280E*03 2.18591r500 5.41349E+02 9.98586E-01 1.46853E*03 3.85601Ee00 2.07489E+00 40 9.74770E+02 1.46949E*03 1.19280E+03 2.18424E*00 5.41254E+02 9.98551E-01 1.46736E+03 3.85601E*00 2.12929E*00 41 9.74670E+02 3.23202E+02 1.19280E+03 2.1840lE*00 5.41241E+02 9.98546E-01 3.22732EiO2 3.85601E+00 4.69936E-01 42 9.74498E+02 1.98446E+02 1.19280E+03 2.18361F+00 5.41218E*02 9.98537E-01 1.98156EiO2 3.20000E+01 2.90327E-01 43 9.74270E*02 1.86605E+02 1.19280E+03 2.18308EiOO 5.41188E+02 9.18526E-01 1.86330E*02 1.90201E*00 2.75056E-01 JE7 PUMP HE4D IS 19300E*02 PSIA M R4710 IS .19600E+01 N R4710 IS .16881E+00 EFFICIENCY IS 33.0863 .PER EEN7

VOLUME HEAT TRANS. SURF FLUX CHFR H.T. COEF SURF TEMP FUEL TEMP CENT TEMP POWR H2O FUEL POWR HUMBER MODE IDTU/HR/FT2) (BTU /H/F2/F) (F) (FI (F) . (BTU /HRI. (MWI 2 1 3.57631E+04 2.79903E*01 2.56306E*03 5.42719E*02 6.63444E+02 7.30877E+02 2.45188E*08 7.18394E*01 3 2 9.41736E+04 1.06313E+01 5.14780Ei03 5.54102E*02 8.94639E+02 1.09998E+03 6.45644E*08 1.89172E+02 4 3 1.13237E+05 8.84304E+00 1.02908E;04 5.55011E+02 9.71422E+02 1.22838E+03 7.76339E*08 2.27465E*02 5 3 1.32300E+05 7.57011E*00 1.0734BE+04 5.56260E+02 1.05087E*03 1.36400E*03 9.07033Ee08 2.65758E*02 6 3 1.37420E+05 7.28921E+00 1.05190E+04 5.56932E+02 1.07312E*03 1.40247E.93 9.42137E*08 2.76044E*02 7 3 1.37893E*05 7.26531E+00 1.01047E+04 5.57452E*02 1.07570E+03 1.40665E*03 9.45378E+08 2.76993E+02 8 3 1.32379E*05 7.23604E*00 9.48026E 03 5.57708E*02 1.05282E+03 1.36651E 03 9.07574E 08 2.65917E*02 9 3 .. 08904E+05 8.32724E+00 8.24592E*03 5.56695E+02 9.56030E*02 1.20111E+03 7+46635E*08 2.18762E*02 to 4 8.54298E+04 1.01464E+01 5.99040F*03 5.57892E*02 8.64703E*02 1.04807Ey03 5.85697E 08 1.71608E+02 11 4 3.18245E+04 2.67640E*01 4.68353E+03 5.50369E*02 6.57530E+02 7.17150E*02 2.18185E*08 6.39276E+01 12 1 4.43463E+04 2.25728E+01 2.56605E+03 5.46695E+02 6.90556E+02 7.84897E+02 1.04033E*05 8.90809E-02 13 2 1.16775E+05 8.57361E+00 6.83572E;03 5.55240E+02 9.85943E+02 1.25294EiO3 8.00598Es05 2.34573E-01 14 3 1.40414E+05 7.13148E*00 1.12863E404 5.56448E*02 1.08524E+03 1.42410E+03 9.62660E.05 2.82057E-01 15 3 1.64052E.5 6.10493E*00 1.16670E*04 5.57997E+02 1.18966E+03 1.61074E*03 1.12472E+06 3.29540E-01

  • 16 3 1.70401E+05 5.87839E+00 1.13278E+04 5.58911E+02 1.21924E*03 1.66477E+03 1.16825E+06 3.42294E-01 17 3 1.70987E+05 5.53528E*00 1 07835E*04 5.59662E+02 1.22277E*03 1.67080E+03 1.17227E+06 3.43472E-01 i 18 4 1.64150E+05 5.29715E+00 8.02682E+03 5.64195E+02 1.19722E+03 1.62023E+03 1+12539E+06 3.29737E-01 19 . 4 1.35041E*05 5.9700EE+00 7.58474F+03 5.61492E*02 1.06822E*03 1.39084E+03 9.25828E*05 2.71265E-01 20 4 1.05933E+05 7.14127E+00 7.07805E+03 5.58598E+02 9.45997E*02 1.18311E+03 7.26264E+05 2.12793E-01 21 4 3.94623E+04 1.86977E*01 5.49324E*03 5.50758E+02 6.85190E*02 7.61126E*02 2.70549E+05 7.92702E-02 MINIMUM CHFR IN VOLUME 18 e 5".29715E+00 VOLUME NODE TEMP N06E TEMP NODE TEMP NUMBER 2 1 7.30877E+02 2j 5.90771E*02 26 5.54957E*02 3 1 1.09998E+03 21 6.80112E*02 26 5.85805E*02 3 4 1 1.22830E*03 21 7.06411E+02 26 5.93013E+02 5 1 1.36408E+03 21 7.33000E+02 26 6.00512E+02 6 1 1.40247E*03 2] 7.40460E*02 26 6.02844E+02 1 7 1 1.40665E+03 21 7.41590E*02 26 6.03500E+02 8 1 1.36651E+03 21 7.3450SE+02 26 6.01938E.02 9 i 1.20lllE+03 21 7.02470L+02 26 5.93411E+02 )

10 1 1.04807E+03 21 6.72152E*02 26 5.86601E*02 11 1 7.17150E*02 21 5.93070E+02 26 5.61201E*02 12 1 7.84897E+02 21 6.06215E+02 26 5.61806E+02 -

13 1 1.25294E*03 25 7.11347E+02 26 5.94405EiO2 14 1 1.42410E+03 21 7.43972E+02 ,

26 6.03359E+02 15 1 1.61074E+03 21 7.76867E+02 26 6.12582E+02 16 1 1.66477E*03 21 7.86169E+02 26 6.15526E*02 17 1 1.67080E*03 21 7.87665E+02 26 6.16435Ey02 18 1 1.62023E+03 21 7.82944E*02 26 6.18561E+02 19 1 1.39084E+03 , 21 7.41702E*02 26 6.06469Ej02 20 1 1.18311E*03 21 7.00169E*02 26 5.94085E+02 21 1 7.61126E*02 21 6.03690E+02 26 5.64171E+02 e e .

TIME = 13.20.24 PAGE 14 RELAP3R H0D 111 BWR DATE = 04/28/78 PEACH 00TTOM RwR REPRESENTATION BY RELAP 38 (CASE NO 2)

JUNCTION CONNECTING CHOKE JCT FLOW JCT. ENTH JCT. Quit P R E S S U R E o ! F F E R E N T ! A L 5 TOT. PSI ELEV PSI FRIC PSI ACCL PSI PUMP PSI NUMBER VOLUMES (L8/SEC) (DTU/LB) '

FLOW PROPERTIES ,

5.19800E*02 1.12700E+0! 3.17009E*00 8.09991Eh00 0. O.

1 1 TO 2 NO 2.07043E+04 0.

1.37582E-01 8.88178E-16 0 '

2 2 TO 3 NO 2.07043E+04 5.23089E+02 0. 5.30000E-01 3.92418E-31 1.63499E-01 -8.88178E-16 0 3 TO 4 NO 2,07043E+f4 5.31752E+02 0. 5.50000E=01 3.86501E-01 3 .

5.04960E-04 5.40000E-01 3.30949E-01 2.09051E701 0. 0.

4 4 TO 5 NO 2.07043E+<6 5.42167E+02 2.61082E;01 1.77636E-15 0.

  • 5 5 TO 6 NO 2.07043E*04 5.54337E+02 1.93237F;02 5.10000E-01 2.4891eE-01 5.66977E+02 3.885?tE-02 4.00000E-01 1.98727E-01 2.01273E;01 0. O.

6 6 TO 7 NO 2.07043E*04 2.94119E-01 -1.77636E-15 0.

7 7 TO 8 NO 2.07043E*04 5.79660E*02 5.84342E-02 4.60000E-01 1.65881E-01 2.85587E-01 0 O.

8 8 TO 9 NO 2.07043E+04 5.91837E 02 7.72278E-02 4.30000E-01 1.44413E-01 1.30797E-01 2.99203E-01 0. 0 9 9 TO 10 NO 2.07043E+04 6.01854E+02 9.26963E702 4.30000E-01 ,

4.30000E-01 1.236?.10-01 3.06369E-01 -1.77636E;15 0.

10 10 TO lt NO 2.07043E+04 6.09712E*02 1 04948E-01 '

NO 2.07043E+04 6.12639E+02 1 09434E-01 8.70000E-01 4.42286E-01 4.27714E-01 -1.77636E-15 0 11 11 TO 23 3.16992E*00 8.10008E 00 0. O.

12 1 TO 12 NO 2.07000E+0! 5.19800E*02 0. 1.12700E+01 5.30000E-01 3.91631E-01 1.38361E-01 0 O.

13 12 TO 13 NO 2.07000E+01 5.23885E+02 0.

13 TO 14 NO 2.07000C+01 5.34642E+02 0 ,, 5.50000E-01 3.59148E-01 1.90852E;01 0. C.

14 5.47576E+02 A.80973E;03 5.40000E-01 2.82550E-01 2.57450E-01 0.

0.

15 14 TO 15 NO 2.07000E+01 ,

0.

16 15 TO 16 NO 2.07000E*01 5.62687E+E2 3,21446E702 5.10000E-01 2.09366E-01 3.00634E-01 01.77636E-15 C.

17 16 TO 17 NO 2.07000E+01 5.78384E*02 5.63627E-02 4.80000E-01 1.656690-01 3.14331E-01 .

0.

5.94134E*02 8.06494E-02 4.60000E-01 1.37497E-01 3.22503Er o l -1.77636E-15 18 17 TO la NO 2.07000E+01 3.107*2E-01 0 O.

18 TO 19 NO 2.07000E+01 6.09255E+02 1.03958F-01 4.30000E-01 1.19258E-01 .

19 1 07764E-01 3.22236E-01 1.77636E-15 0 1 20 19 TO 20 NO 2.07000E+01 6.21694E+02 1.23140E-01 4.30000E-01 4.30000E-01 1.01740E-01 3.28260E-01 0 O.

21 20 TO 21 NO 2.07000E+01 6.31452E+02 1.38203E-01 4.38512E-01 0 O.

21 TO 23 NO 2.07000E+01 6.35087E+02 1 43869E-01 8.70000E-01 4.31488E-01 22 4.95131E*00 8.49869E*00 0 O.

23 I TO 22 NO 2.30278E 03 5.19800E+02 0. 1.34500E+01 24 22 TO 23 NO 2.30278E*03 5.19800E+02 0. 3.05000E+00 2.35971E+00 6.90290E-01 -3.55271E;15 0.

NO 2.30278E+04 6.03374E+02 9.54132Edo2 1.87000E+00 8.05310E-01 3.48117E+00 1.06469E+00 -7.10543E-15 0 25 23 TO 24 1.20883E*00 1.42109E 14 0.

  • 26 24 TO 25 no 2.30278E+04 6.03373E+02 9.58288E-02 4.69000E+00 25 TO 26 NO 2.23266E+03 1.19280E+03 9.99048E-01 9.40000E-01 7.79899E-01 1.60101E-01 -8.88178E-16 0.

27 1.15719E+00 -7.10543E-15 O.

28 25 TO 27 NO 2.07951E+04 5.40090E+02 7.08858E-06 -5.29000E+00 -6.44719E+00 3.83958E 00 0. D.

29 27 TO 28 NO 7.77966E*03 5.19800E*02 0. -7.24000E+00 -1.10796C+01

-6.88600E*01 -4.24332E+00 6.90516E.01 0. 1.33668E+02 30 28 TO 29 NO 7.77966E*03 5.19800E*02 0. 0. 1.33668E*02 31 29 TO 10 NO 7.77966E+03 5.19800E+02 0. -6.51200E+01 7.19263E*00 6.13557E+01 1.41950E*02 6.44870E+00 1.48510E+02 0. 1.30087E+01 i 32 30 TO 31 NO 7.77966E*03 5.19800E+02 0 33 27 TO 31 NO 1.52481E+04 5.19800E*02 0. _7.30000E=01 -1.71272E*00 1.54515E+0! 0 1.30087E+01

0. -2.00300E*01 -2.67919E+00 5.57496E+00 0. 2.29258E+01 34 31 TO 32 NO 2.30278E+04 5.19800E 02 0.

35 32 TO NO 2.30278E+04 5.19800E+02 0. 1.53000E*00 -1.66112E*00 3.19112Es00 0.

1 2.60000E*00 -3.Il195E=01 2.91120E+00 1.42109E l l4 0.

36 26 TO 33 NO 2.23266E+03 1.19280E+03 9.99002E-01 2.23266E*03 1.19280E*03 9.98874r-01 7.00000E-01 -4.20387E-01 1.12039E 00 0.

O.

37 33 TO 34 NO 38 34 TO 35 NO 2.23266E*03 1.19280E+03 9.98840E-01 1.30000E+00 -2.31318E-01 1.53132Es00 0 O.

9,98777E-01 2.24000E+00 -1.61222E-04 2.24016E 00 1.42109E;14 0.

39 35 TO 36 NO 2.23266E*03 1.19280E*03 1.77636E-15 0.

40 36 TO 37 NO 2.23266E*03 1.19280E+03 9.98667E-01 5.70000E-01 1.19116E-01 4.50804E;01 37 TO 38 NO 2.23266E*03 1.19280E+03 9.98639E-01 4.60000E-01 -3.71681E-Il 4.60000E-01 1 77636E-15 0 41 6.40000E-01 -3.55271E-15 0.

42 38 TO 39 NO 2.23266E+03 1.19280E*03 9.98617E-01 6.40000E-01 -5.16642E-11 NO 2.23266E.03 1.19280E+03 9.98586E-01 7.20000E-01 -5.81626E-11 7.20000E;01 0. C.

43 39 TO 40 1.00000E-01 0.

44 40 TO 41 NO 2.23266E+03 1.19280E+03 9.98551E-01 1.00000E-01 -8.06549E-12 0.

45 40 TO 42 NO 0 1.19280E*03 9.98551E-01 2.72000E-01 2.718h8E-01 0 1.32366E504 0

-2.32516E-04 0 46 42 TO 43 NO 0. 1.19280E+03 9.98537E-01 2.28000E-01 2.28233E-01 0 O. O. 0 C. O.

47 0 TO 43 NO 0. 1.18739E+03 0.

O.

0. O. O. O. O.

48 0 TO 41 NO -2.23266E+03 1.19280E*03 D. O.

2.23266E*03 3.30818E*02 0. O. O. O.

49 0 TO 27 NO 30 28 TO 29 PUNP SPEED = 1.66800E*03 RPM 31 29 TO 30 PUMP SPEED = 9.00177E-01 RPM e

RELAP-3B Input for Test 3 t

0

RELAP38 MOD 111 BwR DATE = 04/28/78 TIME = 13.21.42 PAGE 13 PEACH ROTTOM BhR REPRESENT 4710N BY RELAP 3R (CASE NO.31 TIME STEP NUM 0 TIME = 03 SEC. CURRENT TIME STEP SIZE = 500000E-03 SEC.

TOTAL SYSTEM NORM P0wR POWR MrAT REM ENGY LEAK MASS LEAK ENGY BAL. MASS BAL. TOT. REAC REAC 7 QUANTITIES (MW) (BTU /HR) 10Tui .tLB) (BTU) (LB) .

($3 SEC.

1.00000E*00 2.27500E*03 0 O. O. 3.88749E+08 6.580llE*05 0. O.

VOLUME AVG. PRES TOT. MASS AVG. ENTH AVG. DENS AVG. TEMP AVG. QUAL 8U88 HASS HIET LEVL LIO. HASS NUNRER PSIA (LB) (BTU /LB) (LB/FT33, (FI (LB) (FT) (LB)

I 1.02400E+03 1.59977E+05 5.23600E+02 4.73034E+01 5.29216E*02 0 O. 1.80300E*01 1.59977E+05 2 1.0ll28E*03 4.56183E+03 5.26785E+02 4.713tlE*01 5.31779E*02 0 O. 1.20001E*00 4.56183E + 03 3 1.01067E+03 4.52036E+03 5.35106E+02 4.67027E 01 5.38527E+02 0 O. ,

1.20001E*00 4.!2036E+03 4 1.01004F+03 4.36607E+03 5.44861E+02 4.51086E*01 5.45715E+02 1.29358E-03 5.64786E+00 1.2000lE+00 4.36042E*03 5 1.00941E*03 3.28501E+03 5.56050E.02 3.39395E*01 5.45644E+02 1.86867E-02 6.13860EADI 1.20001E*00 3.22363E+03 6 1.00882E*03 2.63093E+03 5.67279E+02 2.71817E401 5.45577E+02 3.61257E-0a 9.50440E*01 1.20401E+00 2.53588E*03 7 1.00823E+03 2.20745E*03 5.78082E+02 2.28065EiO! 5.45511E*02 5.29031E-02 1.16781EiO2 1.2000l[+00 2.09067E+03 8 1.00767E+03 1.91606E*03 5.88278E*02 1.97960E+01 5.45447E+02 6.87320E-02 1.31695EiO2 1.20001E*00 1.78437E+03 9 1.00712E*03 1.71491E*03 5.97319E+02 1.77178E*01 5.45385E+02 8.27746E-02 1.41951E402 1.20001E+00 1.57296E+03 10 1.00657E+03 1.57069E*03 6.05205E*02 1.62278r401 5.45323E+02 9.50338E*02 1.49269E*02 1.20001E*00 1.42143E+03 1.00600E*03 1.52024E+03 6.08244E+02 1.57066Ei01 5.45259E+02 9.98275E-02 1.51762E+02 1.20001E*00 1.36848E+03 11 12 1.0ll28E*03 4.55799E*00 5.27553E+02 4.70916ri01 5.32402E+02 0 O. 1.20001E*00 4.55799E+00 13 1.01067E+03 4.50652E+00 5.37885E*02 4.65597E*01 5.40781E+02 0 O. 1.20001E*00 4.50652E*00 14 1.01004E+03 3.79745E+00 5.49995E+02 3.92339E401 5.45715E+02 9.21145E-03 3.49800E-02 1.20C01E+00 3.76247E*00 15 1.00941E*03 2.80279E+00 5.63887Eio2 2.89574r+01 5.45644E*02 3.07695E-02 8.62403E502 1.20001E*00 2.71654E+00 16 1.00882E*03 2.21911E+00 5.77828E+02 2.29270E+01 5.45577E+02 5.23869E-02 1.16252Et01 1.20 Cole +00 2.10286E+00 17 1.008231+03 1.84828E+00 5.91241E+02 1.90958r+01 5.45511E+02 7.31828E-02 1.35262E-01 1.20001E 00 1.71302E+00 10 1.00767E+03 1.59626E*00 6.03899E*02 1.64920E*01 5.45447E+02 9.28030E-02 1.48138E-01 1.20001E*00 1.44813E+00 19 1.00712E*03 1.42378E+00 6.15123E+02 1.47100E+01 5.45385E+02 1.10206E-01 1.56909E-01 1.20001E+00 1.26687E*00 t 20 1.00657E+03 1.30086E+00 6.24914E+02 1.34401Ee01 5.45323E*02 1.25395E-01 1.63122E-01 1.20001E+00 1.1377+E+00 21 1.00600E*03 1.25812E*00 6.28687E402 1.29984E*01 5.45259E*02 1.31314E-01 1.65209E101 1.20001EiC0 1.09291E+00 22 1.00865E+03 4.17301E+04 5.23600E+02 4.72932ri0l 5.29192E*02 0. O. 1.20001E*01 4.17301E+04

  • 23 1.00500E+03 2.34426E+04 5.99797E*02 1.71491E+01 5.45146E+02 8.70180E-02 2.03993EiO3 6.8590lE400 2.14027E+04 24 1.00270E+03 6.29914E+03 5.99797E+02 1.70644E+01 5.44886E+02 8.74788E-02 5.51042E+02 7.65601E+00 5.74810Ee 25 9.96500E*02 6.68489E+04 5.71918E*02 2.42888E+01 5.44119f*02 4.59861E-02 3.07412E+03 8.37501E+00 6.37748E+04 26 9.95400E+02 1.20448E+04 1.19240E+03 2.23346FiOO 5.43974E+02 9.98949E-01 1.20322E+04 1.96250E*01 1.26591E+0!

27 1.00119E*03 2.33657E+05 5.23600E+02 4.72883E*01 5.29179E+02 0 O. 3.44092E*01 2.33657E+05 28 1.00652E+03 2.21486E+04 5.23600E*02 4.72918r+01 5.29186Ee02 0. 0+ 3.93780E*01 2.21486E+04 29 1.10815E+03 9.28237E+03 5.23600E+02 4.73590r+01 5.29353E*02 0 O. 5.0000lE+00 9.28237E+03 30 1.20992E*03 3.22001E*04 5.23601E+02 4.74254E*01 5.29511E+02 0. 0 4.85010E 01 3.2200lf +04 31 9.98760E+02 2.92707E*03 5.23600E+02 4.72070E 01 5.29179E*02 0 O. 8.48001E*00 2.92707E+03 32 1.02767E*03 8.28609E+03 5.23600E+02 4.73058E+01 5.29222E+02 0. O. 7.77001E*00 8.2P609E+03 33 9.91200E+02 1.12586E+03 1.19240E+03 2.22371riOO 5.43420E+02 9.98743E-41 1.12445E503 4.03690E*01 1.41521E*00 34 9.90300E+02 1400457E*03 1.19240E*03 2.22162E+00 5.43301E+0? 9.98699E-01 1.00326EiO3 1.46830E*01 1.30695E+00 35 9.8850GE+02 5.73030E*02 1.19240EiO3 2.21744E+00 5.43064E+02 9.98610E-01 5.72234E+C2 1.95060E*01 7.56512E-01 36 9.85930E*02 1.48788E*03 1.19240E+03 2.211580500 5.427J2E+02 9.98487E-01 1.48563E+03 1.95220E+01 2.25116E*00 37 9.85360E+02 1.48691E+03 1.19240E+03 2.21014E+00 5.42650E+02 9.98457E-01 1.48462EiO3 3.85601E+00 2.29430E*00 38 9.84840E+02 1.48610E*03 1.19240E+03 2.20893r*00 5.42582E+02 9.98431E-01 1.48377E+03 3.85601E+00 2.33169E+00 39 9.84120E+02 1.48497E+03 1.19240E+03 2.20726t+00 5.42407E+02 9.98396E-01 1.48259E*03 3.85601E*00 2.38190E+00 40 9.83310E+02 1.48371E+03 1.19240E+03 2.20538E+00 5.42380E*02 9.98356E-01 1.48127Es03 3.85601E+00 2.43921E+00 41 9.83200E+02 3.26327E+02 1.19240E+03 2.20512r+00 5.42365E+02 9.98351E-01 3.25789E+02 3.85601E+00 5.38113E-01 42 9.83036E+02 2.00367E+02 1.19240E+03 2.20474E.00 5.42344E+02 9.98343E-01 2.00035E*02 3.20000E401 3.32027E-01 43 9.82805E+02 1.8841tE+02 1.19240E+03 2.20420F+00 5.42313E*02 9.98332E-01 1.88096E+02 1.90201E*00 3.14326E-01 JET PUMP HEAD 15 26480E+n2 . PSIA H RATIO IS .19600E+01 N RATIO 15 .15608E+00 EFFICIENCY IS 30.5911 .PER CENT

VOLUME HEAT TRANS. SURF FLUX CHFR H.T. COEF SURF TEMP FUEL TEMP CENT TEMP POWR H2O FutL PowR NUFBER MODE (BTU /HR/FT28 (BTU /H/F2/FI (F) (F) (FI (BTU /HR) (Mwn 2 3 4.25604E*04 2'.34129E+01 3.02789E+03 5.45835E*02 6.91164E*02 7.73526EiO2 2.91789E+08 8.54934E*01 3 2 1.11193E*05 8.96329E+00 6.16858E+03 5.56553Ee02 9.64872E*02 1.21629EiO3 7.62326E*08 2.23360E*02 4 3 1.30361E*05 7.64684E+00 1.ll552E+04 5.57401E+02 1.04406E*03 1.35150E*03 8.93743E 08 2.61864E*02 5 3 1.49530E+05 6.66791E*00 1.15964E+04 5.58539E+02 1.12663E*03 1.49611E+03 1.02516E*09 3.00369E*02 6 3 1.50058E+05 6.64568E+00 1.12548E+04 5.58910E+02 1.12933E+03 1.50068E+03 1.02878E+09 3.01429E+02 7 3 1.44372E+05 6.90868E+00 1.06885E.04 5.59018E+02 1.10505E*03 1.45733E403 3.89799E+08 2.90069E*02 8 3 1.36250E*05 7.14791E*00 1.00523r 04 5.59002!*02 1.0705tE+03 1.39652Ei03 9.34114E+08 2.73693E+02 -

9 3 1.20818E*05 7.67962E*00 9.18102F+03 5.58545E*02 1.00601E+03 1.28511E*03 8.28313E+08 2.42694E*02 10 3 1.05386E+05 8.42262E+00 8.34172EiO3* 5.57957E.02 9.43104E*02 1.17865E403 7.22512E.08 2.11694E.02 11 3 4.06110E+04 2.16718E+01 5.58200E+03 5.52534E*02 6.91219E*02 7.69779E+02 2.78425E*08 8.15777E+01 12 1 5.27748E+04 1.88814E+01 1.03197E*03 5.49808E*02 7.32T23r.+02 8.38014E*02 3.61818E+05 1.06012E-01 13 2 1.37879E*05 7.228%6E+00 8.11328E+03 5.57775E+02 1.07600E*03 1.40697E+03 9.45285E*05 2.76966E-01 14 3 1.61648E+05 6.16681E+00 1.22593E+04 75.58901E*02 1.18001E*03 1.59241EiO3 1.10824E+06 3.24712E-01 15 3 1.85417E+05 5.37734E+00 1 26457E 04 5.60347E*02 1.29028E*03 1.7982SE*03 1.27120E*06 3.72457E-01 16 3 1.86072E*05 5.35942E*00 1.21749Ee04 5.60861E*02 1.29403E*P3 1.80510E+03 1.27569E+06 3.73773E-01 17 3 1.79022E+05 5.35735E*00 1.14634E*04 5.61128E*02 1+26133E*03 1.74227E*03 1.22735[*06 3.59611E-01 -

18 3 1.68950E+05 5.29541E+00 1 06824E 04 5.61263E*02 1.21540E*03 1.65594EiO3 1 15830E*06 3.39379E-01 19 4 1.49814E+05 5.59035E*00 8.30027E+03 5.63435E*02 1.13338E*03 1.50483E+03 1.02711E+06 3.00940E-01 20 4 1.30678E*05 6.02730E+00 8.12199E+03 5.61413E+02 1.04986E*03 1.35891E+03 8.95915E+05 2.62501E-01 21 4 5.03577E*04 1.52565E+01 6.26237E*03 5.53300E+02 7.27562E+02 8.27685E*02 3.45246E*05 1.01156E-01 MINIMUM CHFR IN VOLUME 18 = 5.29541E*00 VOLUME NODE TEMP N00E TEMP NODE TEMP NUMBER 2 1 7.73526EiO2 2i 6.0297tE*02 26 5.60351E+02 3 1 1.21629E+03 2} 7.05186E*02 26 5.93835E+02 4 1 1.35150E+03 21 7.31525E+02 26 6.00978E+02 5 1 1.49611E*03 21 7.581C.1E+02 26 6.08361E+02 6 1 1.50068E*03 21 7.59162E*02 26 6.08891E+02 7 1 1.45733E+03 21 7.53713E+02 26 6.07135E*02 8 1 1.39652E+J3 21 7.40902E*02 26 6.04458E+02 9 1 1.28511E*03 21 7.19934E+02 26 5.98945E.02 10 1 1,17865E+03 2) 6.98816E*02 26 5.93280E*02 11 1 7.69779E+02 21 6.06986E+02 26 5.66317E+02 12 1 8.38014E*02 21 6.20578E+02 26 5.67728E+02 13 1 1.40697E*03 2} 7.43884E+02 26 6.03809E+02 14 1 1.59241E+03 21 7.74544E*02 26 6.12666E*02 15 1 1.79828E+03 21 8.07414E*02 26 6.21733E*02 16 1 1.80510E+03 21 8.08810E+02 26 6.22474E*02 17 1 1.74227E*03 21 7.99722E+02 26 6.20446E+02 18 1 1.65594E+03 21 7.86498E*02 26 6.17308E+02 19 1 1.50483E+03 21 7.63196E+02 26 6.13168E+02 20 1 1.35891E*03 21 7.35826E*02 26 6.04962E+02 21 1 8.27685E*02 21 6.20788E+02 26 5.70359E+02

@ s

RELAP3B MOD 111 BWR DATE = 04/28/78 TIME = 13.21.42 PAGE 14 PEACH CDTTOM 8wn REPHE5ENTATION BY RELAP 3B (CASE NO.31 JUNCTION CONNECTING CHOKE JCT. FLOW JCT. ENTH JCT. QUAL P R E $ $ U R E D I F F E R E N T 1 A L S NUMBER VOLUMES EL8/SEC) (BTU /Let TOT. PSI ELEV PSI FRIC PSI ACCL PSI PUMP PSI FLOW PROPERTIES 1 1 TO 2 NO 2.54496E+04 5.23600E+02 0 1.27200E.01 3.15777E*00 9.56223EiOO 5.68434E-14 0 2 2 TO 3 NO 2.54496E+04 5.26785E+02 0. 6.10000E-01 3.90974E-01 2.19026EE01 1.77636E-15 0.

3 3 TO 4 NO 2.54496E+04 5.35106E+02 0. 6.30000E-01 3.82547E-01 2.47453EE01 0. 0 4 4 TO 5 NO 2.54496E.04 5.44861E+02 1.29359EE03 6.30000E-01 3.293670-01 3.00633E-01 0. O.

5 5 TO 6 NO 2.54496E*04 5.56050E+02 1.86867F-02 5.90000E-01 2.54672E-01 3.35328E-01 0. D.

6 6 TO 7 NO 2.54496E+04 5.67279E*02 3.61257E-02 5.90000E-01 2.08284E-01 3.81716E 01 1.77636 Ell 5 0.

7 7 TO 8 No 2.54496E+04 5.78082E+02 5.29031E-02 5.60000E-01 1.77511E-01 3.82489E-01 0. 0.

8 8 TO 9 NO 2.54*.96E+04 5.88278E+02 6.87320E-02 5.50000E-01 1.56308E-01 3.93692E-01 1.77636E-15 0 9 9 TO 10 NO 2.54496E+04 5.97319E+02 8.27746r-02 5.50000E-01 1.41440E-01 4.08560E-01 -1 77636E-15 0 10 10 TO 11 NO 2.54496E+04 6.05205E+02 9.50338Er02 5.70000E-01 1.33060E-01 4.36940E-01 1.77636E-15 0.

11 11 TO 23 NO 2.54496E+04 6.08244E*02 9.98275E-02 1.00000E+00 4.73866E-01 5.26134E-01 3.55271E-15 0. i 12 1 To 12 NO 2.54500E*01 5.23600E+02 0. 1.27200E+01 3.15760E*00 9.56240E*00 S. O.

13 12 TO 13 NO 2.54500E+01 5.27553E*02 0. 6.10000E-01 3.90214L-01 2.19786E-01 8.88178E-16 0 14 13 TO 14 NO 2.54500E+01 5.37885E+02 0. 6.30000L-01 3.57474E-01 2.72526EiO1 0 O.

15 14 TO 15 NO 2.54500E+01 5.49995E+02 9.21145E 03 6.30000E-01 2.84130E-01 3.45870EE01 0. 0 16 15 TO 16 NO 2.54500E+01 5.63887E+02 3.07695r-02 5.90000E-01 2.16185E-01 3.73815EE01 1.77636EE15 0.

17 16 TO 17 NO 2.54500E+01 5.77828E*02 5.23869Ef02 5.90000E-01 1.75095E-01 4.14905E-01 1 77636E-15 0.

18 17 TO 18 No 2.54500E+01 5.91241E*02 7.31828E-02 5.60000E-01 1.48283E-01 4.ll717E-01 1 77636E-15 0 19 18 TO 19 No 2.54500E+0! 6.03899E*02 9,28030E 02 5.50000E-01 1.30000E-01 4.19992E 01 1.77636E-15 0 20 19 TO 20 NO 2.54500E*01 6.15123E+02 1.10206E70l* 5.50000E-01 1.17292E-01 4.32708E;01 3.55271E-15 O.

21 20 TO 21 NO 2.54500E+01 6.24914E+02 1.25395r-01 5.70000E-01 1.10160E-01 4.59840E-01 3.55271E-15 0.

22 21 TO 23 NO 2.54500E401- 6.28687E+02 1.31314E-01 1.00000E+00 4.62582E-01 5.37418E-01 3.55271E?15 0 23 1 10 22 NO 2.83056E+03 5.23600E+02 0 1.53500E+01 4.93195E*00 1.04180E*01 5.68434E-14 0 3 24 22 TO 23 NO 2.83056E+03 5.23600EA02 0. . .

  • 3.65000E+00 2.37896E100 1.27104E*00 7.10543E-15 0 25 23 TO 24 NO 2.83056E+04 5.99797E+02 8.70180E-02 2.30000E*00 0.62050E-01 1.43795E+00 0 O.

26 24 TO 25 NO 2.83056E+04 5.99797E+02 8.74788E-02 6.20000E+00 1.23746E*00 4.96254E+00 0 O.

27 25 TO 26 NO 2.51597E+03 1.19240E+03 9.98999E-01 1.10000E*00 7.80982E-01 3.19018EE01 0 0 28 25 TO 27 NO 2.57896E*04 5.41984E+02 9.99937E-06 -4.69000E*00 -6.42343E*00 1.73343EiOO 1.42109E-14 0 29 27 10 28 NO 9.56269E+03 5.23600E+02 0 =5.33000E+00 -1.10353E*01 5.70527E400 2.8(217E-14 0 30 28 70 29 NO 9.56269E+03 S.23630E+02 c. -1.01630E*02 -4.22638E*00 1.92494E+01 -1.13687E-13 1.16653E+02 31 29 TO 30 NO 9.56269E+03 5.23600E+02 0. -1.01770E+02 7.17012E+00 7.71290E*00 -2.84217E-14 1.16653E*02 32 30 TO 31 NO 9.56269E+03 5.23601E+02 0. 2.ll160E+02 6.42940E*00 2.24465EiO2 -9.09495E-13 1.97346E+01 33 27 TO 31 NO 1.87429E+04 5.23600E*02 0. 2.43000E+00 -1.70582E+00 2.38704Ei01 1.13687E-13 1.97346E+01 34 31 TO 32 NO 2.83056E+04 5.23600E+02 0. -2.89100E+01 -2.66861E*00 8.53759EiOO 0. 3.47790E+0!

35 32 TO 1 NO 2.83056E*04 5.23600E+02 0. 3.67000E.00 -1.65470E+00 5.32470EA00 0 O.

36 26 TO 33 NO 2.51597E+03 1.19240E+03 9.98949E-01 4.20000E*00 -3.14628E-01 4.51463EiOO 0 O.

37 33 TO 34 NO 2.51591 +03 1.19240E*03 9.98743E-01 9.00000E-01 -4.24961E-01 1.32496E+00 0. G.

38 34 TO 35 No 2.51597E+03 1.19240E+03 9.98699E-01 1.80000E*00 -2.337322-01 2.03373EiOO 1.42109E-14 0.

39 35 TO 36 NO 2.51597E+03 1.19240E.03 9.98610EE01 2.52000E*00 -1.95373E-04 2.52020E+00 0. O.

40 36 TO 37 NO 2.51597E+03 1.19240E+03 9.98487E-01 6.20000E-01 1.20301E-01 4.99699Ea01 3.55271E-15 0.

41 37 TO 38 NO 2.51597E+03 1.192 0E+03 9.93457Ea01 5.20000E-01 a4.19234E-11 5.20000E-01 3.55271E-15 0.

42 38 TO 39 NO 2.51597E+03 1.19240E+03 9.98431E-01 7.20000E-01 -5.81237E-Il 7.20000E-01 3.55271E-15 0 43 39 TO 40 NO 2.51597E+03 1.19240E+03 9.98396E-01 8.10000E-01 -6.53480E-Il 8.10000E-01 0. O.

44 40 TO 41 NO 2.51597E+03 1.19240E+03 9.98356E-01 1.10000E-01 -6.90646E-12 1.10000E-01 4.44089E-16 0.

45 40 TO 42 NO 0. 1.19240E+03 9.98356F-01 2.74500E-01 2.74498E-01 0 1.64523E-06 0.

46 42 TO 43 NO 0 1.19240E*03 9.98343E-01 2.30500E-01 2.30941E-01 0 5.90169E-05 0.

47 0 TO 43 NO 0. 1.19240E+03 0. 0 O. 0. O. O.

48 0 TO 41 NO -2.51597E+03 1.19240E+03 0 O. 8 O. C. O.

49 0 TO 27 NO 2.51597E+03 3.35158E*02 0. O. D. O. O. O.

30 28 in 29 PUMP SPEED = 1.66800E*03 RPM 31 29 TO 30 PUMP SPEED = 1.00180E+00 RPM

BROOKHAVEN NATIONAL LABORATORY MEMORANDUM DATE: Jan. 5, 1978 To: Files FROM: M. S. Lu and W. Shier

SUBJECT:

Jet Pump Model in RELAP 3B e

Summary.

An approximate acdel for jet pumps in a BWR has been incorporated in the RELAP 3B code.5 This memo describes the model and summarizes the results of two tests using the model. The results agree well with the available references,1,4 and demonstrate the adequacy of the nodel.

Introduction and Descrintion of the Model

, In a jet pump, the driving flow (u ) experiences a large pressure d

drop as it emerges through a small nozzle. The low pressure creates a suction that draws in the downcomer (or suction) flow (ug ). These two streams then enter a mixing throat region where momentum transfer be-tween the two streams occurs and the cixture gains pressure head, AP .

The combined flow (u ) then enters an expanding diffuser region to gain more pressure head APdif t ug m mentu ecreases.

In steady state calculations with the RELiP 3B code,2 frictional fd =-K pressure loss in a junction is expressed as AP . The fric-tional loss coefficient K is calculated via momentum balance equation and the input steady state conditions. This can be used to simplify the modeling of jet pump as the pressure loss due to contraction of the flow areas from A to A can be expressed as 1 2

( -

).

c A "2 l

Memo to: Files Jan. 5, 1978 The contractional pressure loss hence does not require additional model-ing in the RELAP 3B code, as an effective frictional loss coef ficient K

gf

=K+ ( - ) will be calculated by the code if the input

" A A 2 1 6 steady state pressures and flow rates are estimated reasonably. Ilow-ever, pressure gains due to mixing and expansion of flow areas cannot be accounted readily in the code as a negative value of K is not al-lowed. The new model takes into consideration the pressure gains in a jet pump by adding a pressure head based on the flow rates, u ' ""

d "s' e to the momentum balance equation.

The model considers the jet pump to be located in a volume with two inlet flows, (the driving flow e and the suction flow a g ); the comoined d

flow exits at the tip of the mixing throat region. This mixture then enters the expanding diffuser region. At both inlet junctions, pressure gains in the throat region 2 2 2

=( "d + "s "t )/pA AP g g, noz set th is added to the governing comentum balance equations as if it, were a pump head. A ,A ,A g are the nozzle, suction and throat ereas, o equals d s, an p s the water density in de throat regon. At die juncdon w

between the throat and the diffuser, pressure gain in the diffuser 2

0 1 "t dif " 5 2 Wth is similarly added to the governing momentum balance equation.

O

Memo to: Files Jan. 5, 1978 This model is similar to the jet pump modeling in RELAP 4. Ilow-ever, in REIAP 4, the throat region and the diffuser region are com-bined as one volume and the momentum flux term AP is explicitly rap-resented in the momentum balance equation. While in the model described in this memo, the throat region and the diffuser region are separated, and the pressure gain enters momentum balance equat. ion quasi-statically as a pump head. This model also resembles the jeg pump model in NEDO-10802 3as the pressure loss at the nozzle ( -Wd

), that is explicitly 2

2g pA

  • e noz considered in NEDO-10802, is included as part of' the frictional loss term.

Both pressure gains AP , AP gf are considered explicitly in NEDO-10802.

As a very s=all time step will be used in REIAP-3B calculations, the quasi-static pump head modeling for pressure gains in this mode] should yield reasonable results for problems of current interest. This is demonstrated in the following two tests.

This model cannot treat the flow reversal problem correctly, as the pressure gain in the throat is expressed as 2 2 2 "d "s "e AP

=(Anoz +A set - pth }/ Ag g in the code. Modifications of the AP term can be cade to allow flow reversal treatment consideration in the code. However, for problems of current interest, the current model should suffice.

Memo to: Files Jan. 5, 1978 Test Results of the Model Two test problems ~were executed to check the adequacy of the model.

The first problem is represented in Fig. 1. It is a HATCH BWR ptiinp ,

coast down transient used in AWS study.4 In the old model, the jet pump head is represented by AP=Ku g and distributed evenly between two junctions: the junction between the suction region and the mixing re-gion, and the junction between the threat region and the diffuser. The transient was executed for 5 see with both models and the results are compared in Table I. The area.s of the nozzle and the suction flow in the new model were adjusted such that the total jet pump head agrees closely with the old model in the steady state. The adjusted areas are within 10% of the designed values. The results are summarized in Table II.

For this problem two models do not yield significantly different results.

However, in the new model the jet pump head is more correctly represented to depend on both suction and driving flow rate, and the pressure gain wt 2 in the diffuser is calculated independently as during the transient.

2 2g c th The second problem is represented in Fig. 2. The model contains 6 volumes: a non-heated core, a downcomer, a combined mixer diffuser and two volumes for the driver. One volume of the driver contains a pump and the jet pump is located in the mixer diffuser. For this prob-lem, the mixer and the diffuser are combined as one volume for further simplification. To test both steady state and transient behavior for a longer time span, the driver pump head was held constant for the first two seconds and then allowed to coast down to 5% of the total steady state head in 20 seconds, roughly as e - (t-2) / 6. 69 . Table II suretarizes the results. The model is judged to be adequate even when the pump head is almost lost.

Memo to: Files Jan. 5, 1978 Application of the Model The new model is hardwired into the RELAP 3B code. In order to use the model, the user has to enter the appropriate numbers of the volumes and the junctions in the update deck. A listing of the update deck is given in the Appendix, where cor: ment cards are inserted to serve as in-struction.

It is recon: mended that the steady state pressure be approximated as follows: If one knows, roughly, the pressure at the driver, and the flow rates u and u , ne can estimate the pressure at the tip of the nozzle s d (P ) as the principal loss of pressure is due to the contraction of the nozzle area. The pressure in the mixer is then estimated as Pg =

P + AP and the pressure in the diffuser P s est hated as et dif dif =Pg + APdif. Fine tuning of a few psi may be needed to estab-P lish the steady state condition. The nozzle area and suction area can also be tuned to establish steady state.

Memo to: Files Jan. 5, 1978 Table I HATCH Pump Coastdown Jet Pump Head M Ratio (psi) Core Inlet Flcw lb/sec diffu (Psi) t sec)

Old New Old New Old New Old Neu 0

0.0 1.295 1.295 27.47 27.47 , 2.180 x 10 2.180 x 10 1054.3 1054.3 1.0 1.312 1.327 22.09 22.42 1.948 1.965 1052.3 1052.3 2.0 1.336 1.346 17.44 17.71 1.938 1.745 1049.8 1049.9 3.0 1.367 1.371 14.24 14.36 1.571 1.578 1044.4 1044.5 4.0 1.399 1.399 11.87 12.04 1.440 1.445 1038.7 1038.9 5.0 1.436 1.434 10.07 10.14 1.337 1.341 1033.4 1033.5

i Memo to: Files Jan. 5,1978 Table II Jet Pump Simulation Core Inlet Flow diffusion t M Ratio AP (psi) (lb/sec) (psi) 0.0 1.794 31.87 2.85 x 104 1054.0 2.0 1.794 31.87 2.85 x 10' 1054.0 4

6.0 1.813 18.18 2.18 x 10 1049.2 4

10.0 1.817 10.31 1.642 x 10 1046.4 4

14.0 1.817 6.01 1.250 x 10 1044.9 4

18.0 1.828 3.80 1.003 x 10 1044.1 4

22.0 1.902 1.59 0.679 x 10 1043.4 4

26.0 1.795 1.59 0.636 x 10 1043.4

Meao to: Files Jan. 5, 1978 References

1. " Design and Performance of GE-BWR Jet Pumps", APED-5460, GE (1968) .
2. RELAP 4 - A Computer Program for Transient Thermal-Hydraulic Analy- '

sis, ANCR-ll27 (1973) .

3. R. B. Linford, " Analytical Methods of Plant Transient Evaluations for the GE BWR", NEDO-lG802 (1973).
4. A. Aronson, C. Hsu, G. Lellouche, M. Levine, L. Shotkin, " Status Report on BNL Calculation of ATWS in EWR's", BNL-17608, RP-1022 (1973).
5. " User's Manual for RELAP 3B - Mod 10, A Reactor System Transient Code", BNL-NUREG 22011 (1976).

Appendix

  • IDENt JETP,
  • ! PUMPS.234 ,

C ENTER THE. VOLUME NUMBER OF THE HIXER RH0=AVED(22) . . .

  • D PUMPS.242, PUMPS.244 ATH=AN0Z+ASCT C SEE PUMPPI15) ,PUMPPI56).

WR=(WP(15)+WP(161)**2 .. . ...

PP_= ( WP ,(15 ) * ? 21/ AN0 Z + (WP ( 16 ) *

  • 2) / A SC T-WR/ ATH PP=PP/(RHO *144.0*32.2*ATH) . . _ .. . .

C ENTER.THE7QUNCTION NUMBER BETWEEN THE DRIVER AND THE MIXER

. PUMPP(15)=PP . . . . .

C ENTER THE" JUNCTION NUMBER BETWEEN THE' SUCTION AND THE HIXER POMPPii6)=PP . .. . _, .... .

C ENTER THE,-JUNCTION' NUMBER BETWEEN THE, MIXER AND THE DIFFUSER PUMPP(25)=WP(25)**2/(RHO *288.0?32.2*ATH**2)

C-DRIVER" PUMP. ENTERS-AS-FUNCTION OF TIME BST = TIMEX BSH=POLATE(BSiH.BST,NBSiH,E I )' ~ -

H = BSH -

C ENTER THE-VOLUME" NUMBER OF THE DRIVER RH0=AVED(12) .

PP*H*RH0/SQINCH -

C ENTER THE VOLUME NUMBER OF THE DIFFUSER PUMPP~Iid)=PP

-- ~~~- - -

  1. D POMPS.265
  • ! PUMPS.127 COMMON /STATOS/ PERIOD,POWERetiMEX,NOGO,IMPWR

_ LOGICAL NOGO -

C 54=2*27 DIMENSION BSTH(5I) -

C NUMBER OF HEAD (IN,FT) AND TIME (IN SEC) PAIRS DATA NBSTH/27/ "~~~ ~

C HEAD. TIME, HEAD,T.5HE, HEAD, TIME,~EtC'. . . . . ., , .. .

DATA-BSTH/469.08,0.0,453.28,0.2, 426.26,0.4, .402.00,0.6. 379.76, 50'.8, 359'.29,1,0 340'42,1,2, 3 2 2'. 9 8 , l'. 4f . 3 0 6'. 8 3 , l'. 6 , 29[.86,i'.8, 2277.97,2.0, 265.04,2.2, 253.00,2.4, 241.75 2.6, . t 231.23,2.,8, 3221.38 ,3.0, 21E.24,3.2, 203.46,3.4, _195.31,3.6, _18,7.63.,3.8, 4180.39,4.0, 173,.56,4 2, 167.10,4.4, 160.99,4.6, 155.21,4.8, 5149.73,5.0, 144,53,5.2/

C- ENTER SUCTION. AREA IN FT**2 DATA,ASCT/6.268/ ..

C ENTER N0Z2LE' AREA IN FT**2 -

. DATA AN0Z/1.088/

  • ! EDIT.358.- _ _--- - -- . . ,

C ENTER DIFFUSER VOLUME NUMBER AND THEN DOWNCOMER VOLUME NUMBER XJTP=Pii4)-P(11)-~

- WRITE (6,900)XJTP, , .

900 FORMAT (/10X,H., JET. PUMP HEAD IS ",E15.5," , PSIA")

C ENTER 00WNCOMER FLOW NUMBER AND DRIVING FLOW NUMBER XMRA=WPT16)/WP(15)

WRITE (6,901)XMRA _ _

901 FORMAT (/10X,"..H' RATIO IS .

",E15.5)

C ENTER DIFFUSER TIP AREA ADF=39.4 C ENTER DIFFUSER. VOLUME NUMBER AND ITS JUNC. TION NUMBER PDIF=P-(14)+WP(17)**2/(288.*47.3 *32.2*ADF**2)

C ENTER DRIVER FLOW AREA BEFORE N0ZZEL ADR=7.5- ~ --

C ENTER DRIV.ER VOLUME, NUMBER AND ITS FLOW JUNQTION NUMBER PDRI=P(13)+WP(15)**2/(288.*47.3 #32.2*ADR**2)

C ENTER DOWN, COMER FLOW AREA

_.--ADW=91.09 - - - - - - - - - - - ~ - - - - ~- --

C' ENTER DOWNp0MER VOLUME ~5 UMBER AND ITS FLOW RATE JUNCTION NOMUER PDWN=P(11)+WP(10)**2/(288.*47.3 #32.2*ADWe*2)

X NR A m .( PD IF-PDWN) / ( POR I-P D IF )

WRITEf69 902)XNRA _ , .

902 FORM AT(/10X," N_R ATIO IS "e E15.5)

XEFImXNRA*XHRA#100.

WRITEj6,903)XEFI.., _ _ .

903 FORMAT (/10X," EFFICIENCY IS ",F15.5," 0/0 ")

R e6 s9eee

  • 9 0

0 m

P

,m b

g -9 72$

~ft2-

- 4 V20 4 h 726 3rl I v4

+ ,

31' 7ta v yf &~ ',_~ y Vfl f

e + %e TL' 3/ ~ :s) (flN lb f_ '/ '_

yt?'

ff7lT Mt'

.-. \/f 'e _a. . . .

V21 V+ 3,1 V7 VIY ~J'

, 75r ~ ~ bf J2f WO VIs 7 ---- f ,  ;

V 2 ["

--r ,

visml q p

g3 _ l JI J7 I's ! ,

/13l

+

!! 7 i l

i

\/l /l;  !

1 TG:

T

4. :.'. i

! 4

\ II: ..

Fig. 1 Jet Pump Simulation for HATCH BWR

T2 .

V1

'/ l 3-o -

(cYL Com"

!Y 76 T.3 ,

- V3 ~ V4 vi :< J7 .

3ET V'iH D.Clytt PUMP p;p Ms ru

. DIFT?st

_lL j vr i s o

tRivec l j . ,

s ScffL1

\/

p k

/

~

i ~T l 37 Fig. 2 Jet Pump Simulation

BROOKHAVEN NATIONAL LABORATORY MEMORANDUM DATE: February 22, 1978 To: Files FROM: J. M. Christenson and W. Shier G 5

SUBJECT:

Direct Coolant Heating In RELAP-3B In the current version of the RELAP-3 code, all nuclear heat is assumed to be generated in the fuel pins. This heat is then transferred to the reactor coolant by conduction through the fuel, gap, and clad and various modes of heat transfer between the clad and the coolant. In light water reactors, however, a small amount of heat (2 to 4%) is deposited directly in the coolant as the ccmbined result of gamma ray absorption, (n,n') scattering, and (n,Y) reactions. This direct coolant heating can significantly effect predicted plant performance, particularly during rapid transients. For ex-ample, Reference 1 has shown that accounting for the direct heat addition (3% of the total power) during a BNR turbine trip without bypass event has a much greater effect on the transient plant performance than a 10% varia-tion in either Doppler or moderator feedback coefficients. The results pre-sented in Reference 1 indicate that neglect of direct coolant heat deposition increases the peak core power by 57% over an identical case where 3% of the her c was deposited directly in the coolant. Thus, neglecting this 'effect sbaificantly overpredicts the peak core power during the turbine trip tran-sient.

The RELAP-3B code has been recently modified to provide the capabi'ity to account for the effects of this direct coolant heating. This modification

, will be used for the RELAP prediction of the Peach Bottom turbine trip test results.

Attached is a listing of the required code changes, with comments indi-cating the implementation of the mode. The fraction of heat deposited in the coolant is entered as an input parameter on card type 16-b, " Doppler Para-meters" in the third real variable field (col. 33-42).

Reference:

1 "The Significance of Fa# !'oderator Feedback Effects in a Boiling Water Reactor During Severe Pressc~ Transients", Nuclear Science and Engineering, 64, 843-848 (1977)

C DIRECT COOLANT HEATING MODEL

  • IDENT DCHT
  • INSERT INREAC.33
  • COPY CHNLeCHNL.lll,CHNL.112
  • DELETE INREAC.57,58 READ (5,532) EXPO, TEMPIN, DCFAC, CARD

, 532 FORMAT (12X,3E10.6. 30X, 2A4)

C DCFAC EGUALS THE FRACTION OF HEAT GENERATED IN THE COOLANT A(74)=DCFAC

  • DELETE INREAC.59 WRITE (6,622) EXPO, TEMPIN, DCFAC. CARD
  • DELETE INREAC.79 1 41H INITIAL CORE INLET TEttP. = F12.4/

2 41H P. FRACTION DIRECT TO COOLANT (DCFAC) = F12.6.59X2A4)

  • DELETE CINITL.159 DCFAC =A(74) 22 PHIS(K)=Q(K)*(1.- DCFAC)
  • DELETE CINITL.163 30 QR(J)=P0FR(K,J)*0 TOTO (1.-DCFAC)
  • DELETE CHNL.156 WQH = (ARHT(L)* TROD (J.L.DELT)/SECHR)

C UNITS OF WQH ARE BTU /SEC AND REPRESENT THE RATE OF CONnUCTIVE H.T. TO THF C THE COOLANT IN C.R. L. JMC 9/9/77 QTOTDC=A(75)

C QTOTDC MUST BE SET EQUAL TO A(75) AFTER~ THE TROD CALL ABOVE JMC 6/12/77 WQ(J) = WQH + OTOTDC C UNITS OF TROD ARE BTU /(SQ FT-HR) UNITS OF QTOTDC ARE BTU /SEC

  • INSERT TROD.110 DCFAC=A(74)

OTOTDC=0 TOT *DCFAC A(75)=0TOTDC

  • DELETE TROD.113 10 GR(I)=P0FR(K,I)*0 TOTO (1.-DCFAC)

BROOKHAVEN NATIONAL LABORATORY MEMORANDUM DATE: March 6, 1978 To: Files FRO M : M. Levine

SUBJECT:

Variable Power Shape in RELAP 3B A modification has been made to RELAP 3B to allow a measured axial power distribution to be inserted as a function of time. The existing version of RELAP 3B assumes a fixed power shape with a total power ob-tained from a point kinetics solution or from an input table. In the new altered version both the shape and the total power are supplied by the user.

The modification, together with the data insertion, is carried out by means of a deck of update cards, which is listed in the appendix to this memo. Items which may need to be changed from case to case include the dimension statement and the data statement for QFP, PKFC, and NOCORZ.

The power is tabulated for positions (XF(I), I=1,6) for times (TF(J),

J=1,26). The measured power, in'MW-thermal, at position XF(I) at time TF(J) is called QF(I,J), and it is assumed that the power is zero at the two end points. The variable XF is given as a fraction of core height; this means that the power is zero at XF(l)=0, and XF(6)=1.

For ease of data entry the power vs. position is supplied by means of a variable QFP(I,J), where QFP(1,J) is time J, and QFP(I,J) for I=2,3, 4,5 are the powers at the interior space points XF(I),I=2,3,4,5. The pro-gram fills in the tables TF and QF by rearranging the input table of QFP.

The code assumes the average channel is divided into NOCORZ equal thickness zones. It assumes there is a hot channel with the same number of zones and an identical axial power distrioution. For example, if NOCORZ is given as 5, then the positions of the mid-points of the core zones are at XPOS=.1,.3,.5,.7,and .9. The power in any hot channel zone is equal to the power in the corresponding average channel zone multiplied by the factor PKFC, where PKFC has the definition PKFC=(Hot channel factor)*(hot channel area)/(core area).

0130H,SlMr2,1PO,i400. 00010 ACCOUNT (LEVINE.1103) 00011 ATTACHiOLDPL,PLMOD109,In=ZZRCONNEL. 00012 UPDATE. 00013 RETURN,0LDPL. ~

00014

, RFL,64000 00015 FTN.I= COMPILE,0PT=2,L=0,PL=100000,ROUNT=.-o/, LCM =I. 00016 REDUCE. 00017 i.

ATTACH,0LOLGO,LGOM00109,ID=ZZRCONNEL. 00018 REWIND,LGO. 00019 COPYLM,0LOLGO.LGO, DISK. -

00020

[ REWIND, DISK. 00021

-~~~~~~ -~ -- -

REkIND,LGO. '-

00022 COPY 8R, DISK,01,2. 00023

COPYBR,LGO.D1il. ~ ~ ~ ~ - - " - ~ ~ - - '

~-~ ~0 0 0 24 COPY.0fSK,01. 00025

, RETURN,OLDLGO. ' '" '-~

00026

( 01. 00027,

^

~*/TO INSERT MEASURED POWER DISTRIBUTION VS TIME '

00029' oIDENT KINSUG --- -

00030-

~~~

  • B E F O R E 8 U B R S .1 - -- ~ -

- 00031' oDECK RKEN1 00032i FUNCTIONRKEN1(TIME,0L) - ~

000331 C OL= POWER FRACTIONS CALCULATED FOR EACH OF NOCORZo2 CORE ZONFS 000341 C XF= POSITIONS AT WHICH POWER WAS MEASURED 000354 C OFP= DATA FROM STRIP CHART: TIME, POWER'S 000361 C ASSUME POWER IS ZERO AT ENDS 00037(

C OF(I,J)= POWER MEASURED AT POSITION I AND TIME J 00038t C TF(J)=TIuE J 00039(

C XPOS= POSITION IN CORE AT WHICH PowEP IS WANTED 00040(

C CHECK THE DIMENSIONS OF OL 00041(

DIMENSIONOL (20) , XF (6) ,0FP t 5,26 ) ,0F (6, P6) , TF (26) , xPOS (10) 00042(

DATA (XF(I), 1=1,6)/0.. 125,.375,.625,.875,1./ 00043C DATA ((OFP(I,J),I=1,5),J=1,26)/0.. 32,,48, 48,.72, 00044C 2.54,.32,.48,.48 72,.6,.32. 49,.49,.74,.66,.36,.57,.59,.P8, 0004SC 3.72,.45,.75,.82,1.22,.78, 62,1.1 1.23.1.63, 00046(

4.84, 86 1.6,1.88,2.71,.9,1.09,2.09,2.5,3.35, 00047C 5.936,1.12,2.18,2.66,4.43,.96,.99 1.99,2.5,3.51, 00040C 61.02,.56,1.26,1.67,2.24,1.08. 3,.8,1,07,1.4, 00049C 71.14,.17,.55,.74. 96,1.2,.12,.42,.56,.73, 00050C 81.32,.n5 26,.34,.45,1.44,.03,.10 24,.32e 00051C 91.56,.02,.14,.19,.27,1.68,.01,.11,.16 23, 00052C A1.8, 01,,1,.14,.21,2.15,,01,.04,.15. 18, 00053C B2.4,.01,.02,.1,.09,2.73...,0. 08. 05, 00054C C3.,0.,0.,.07,.04,3.3 0.,0,,.03,.02, 00055C D3.6,0.,0.,0.,0.,1.E6,0 ,0.,0. 0./ 00056C C PUT IN HOT CHANNEL FACTOR o HOT CHANNEL AREA RATIO 00057C DATAPKFC/1.E-3/ 00058C C NUMBER OF ZONES IN AVG CHANNEL: NUMBER OF ZONES IN HOT CHANNEL 00039C DATANOCORZ/5/ 00060C IF(IPI.EO.951413)GOT01 00061C D05I=1,NOCORZ 00062C 5 XPOS(I)=(FLOAT (I) .9)/ FLOAT (NOCO'Z) 000630 002J=1 26 000640 002I=1,6 000650 0F(I.J)=0. 000660 IF(I.EO.1)GOT03 000670 IF(I.EO.6)GOT02 ,

000680 0F(I,J)=.lo0FP(I J) - 000690 GOT02 ~ ~

000700 3 TF(J)=0FP(I,J) ~ ~

~~~000710 2 CONTINUE 000720 I P I = 9 51413 ' --~- - --- -~~' "- ~ ~

- " ~ ~ ~ ~- " ""-'-"--- ~

--~-- ~0 0 0 73 0

~

0045x=1,NOCORZ bbO75

'CALLPOL2(xF.TF,0F,6,26,XPOS(IX), TIME,0L(IX),-1,-1) 00076-4 POWER = POWER +0L(IX) 00077i 007IX=1,NOCORZ 00078i OL(IX)=0L(IX)/ POWER /(1.+AFFC) 000798 7 OL(IX+NOCORZ)=0L(IX)*PKFC/(1.+PKFC) 00080(

IF(JPI.EO.29172)GOT06 ~ ~

000811 PZER0= POWER 000821 JPI:28172 00083(

6 PNORM= POWER /PZERO _, _ .._

000R4(

RKEN1=PNORM ' - ~~ ' ~

00085(

RETURN 00086(

END - ~-

00087C

  • INSERT I N C NL'.1~6T- - -- ~

~ ~

~ ~ ~ - - ~ ~ ~~

00088C PNORM=RKEN1(0.,OFRAC) 00089C

' ~ "~- ' '

  • INSERT TRAN.5 00090C COM40N/CHNLER/ARHT(20),CHANL(20),HOIAM(20),HEDIAM(20),

- ~ ~

00091C 10FR AC (20 ) e I IN (20 ) 'i !OUT ( 2 0 ) ~~ ~ 00092C

~~~

  • 0ELETE TRAN.118 00093C PNORM=RKEN1-(TIMEX+0T,0 FRAC) -

'--- ' 00094C HELVIW7.5000l?.5 LINES PRINTED.

~ -

55555555555555555555555555555555555555555555555555555555555555s'555555555555555 55555555555555555555555555555555555555'555555955555555555555555555555555555$55 55555555555555555555555555555555555555t355555555555555555555555555555555555S55 15555555555555555555555555555555555555c555tt555555555555555555555555555555T555 55555555555555555555555555555555555555tS555555%555555555555555c555555555555555 5555555555555555555555555555555555555555555555155555555555555555555555555S5555 5555555555555555555555555555555555555%'55555555555555555555555tS55555555555555 5555555555555555555555555555555555555515555555555555555555555555555555555S5555 p . .g

. . , e amm -

. _ _e D_.m . $66.h. .m

  • ' S 5 *. I e..e *Mf*

. . e .e_.._ _. .$. . . .- me . .w-e..--...h ggg g m w. .eeene 66$.g o e. e . _e 4em -__ h mm

BROOKHAVEN NATIONAL LABORATORY MEMORANDUM DATE: Jan. 19, 1978 To: Files FROM: W. Shier [.A

SUBJECT:

New Pump Model for RELAP-3B Code This memorandum describes a new method of representing pump perform-ance that has been implemented in the RELAP-3B code. The pump model cur-rently in RELAP-3B is the so-called homologous model that was specifically developed for loss of coolant accident analyses. Although this model is well suited for other analyses, the detailed calculation that is provided is not always necessary and the required input parameters are not always readily available. In addition, pump maneuvering transients (e .g . , pump startups) are difficult to simulate with the homologous pump model.

The new pump model provides an option to simulate pump performance in terms of either head as a function of time or head as a function of flow. This allows a quick representation of pump maneuvering transients when pump head is known as a function of time; in addition, pump perfor=-

ance can nov be simulated by a head vs. flow function when the detailed calculations of the current RELAP model are not desired (head / flow char-acteristics of pumps are usually readily available) .

Attached is a listing of the required code changes, with comments describing the implementation of the model. The pump nodal location must be indicated in the RELAP input in the same manner as for the homo-logous pump.

WS:emm Attachment

  • IDENT PUvPN 000124
  • INSFAT PU4PS.127 000125 COV40N / STATUS / PERIOP, POWER.TI"EX,NOGO,IMPWR 000126 C 95TH ShotiLD AE DIMENSIONED TO THE TOTAL NUMBER OF HEAD /TIuE

, C OA HEAD /FLOV POINTS DIMENSION ASTH (8) 000127 C BSTw = TIME, HEAD ... OP FLOW HEAP ...

DATA RSTH /0.0.0.0, 0.0 1.0, P77.4,1.1, 272.4,2000.0/ 000128 C NASTH SHOULO EOUAL THE NUMBER OF PAIPS OF DATA POINTS DATA fiASTH /4 / 000129

  • INSERT PUVPS.241 000130 C FOR PUuP HEA0 (FT) VS TIHE (SECS)

AST = TI"Ex 000131 C FOR PUMP HEAD (FT) VS FLOW (GPP)

C NX = PUMP JUNCTION NU'iPER C NY = PUMP VOLUME MUPOER BST = WP(NX)*60.0 / (AVEn(NY)*.1737)

RSP = P O L A T E ( B S T H , R S T , L'9 S T H , - 1 ) 000132 H RSH 000133 O

9