ML18029A466

From kanterella
Jump to navigation Jump to search
Radiological Impact Assessment,Browns Ferry Nuclear Plant, Jul-Dec,1980.
ML18029A466
Person / Time
Site: Browns Ferry  Tennessee Valley Authority icon.png
Issue date: 12/31/1980
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML18029A465 List:
References
RH-81-1-BF-1, RH-81-1-BF1, NUDOCS 8504100351
Download: ML18029A466 (46)


Text

-0 .-81-1-BF-1 TENNESSEE VALLEYAUTHORITY RADIOLOGICAL IMPACT ASSESSMENT BROWNS FERRY NUCLEAR PLANT JULY-DECEMBER 1980 DIVISIONOF OCCUPATIONALHEALTHAND SAFETY 8504100351 811105 PDR ADOCK 05000259 R PDR

RH-81-.1-BF-l RADIOLOGICAL IMPACT ASSESSMENT BROWNS FERRY NUCLEAR PLANT JULY-DECEMBER 1980

~ .

ll 1

RADIOLOGICAL IMPACT ASSESSMENT BROWNS FERRY NUCLEAR PLANT JULY-DECEMBER 1980 Introduction Potential doses to individuals and populations have been calcu-lated for the time period July 1 through December 31, 1980. The calculations have been. made using the measured releases listed in Tables 1-3 for radio-activity in both gaseous and liquid effluents. Dispersion of radioactive effluents in the environment has been calculated using meteorological data and river flow data measured during this period.

Meteorolo ical Data Meteorological data were measured, and average quarterly )oint IE frequency distributions (JFD's) for ground-level, split-level, and stack releases were calculated. The ground-level JFD was derived from wind speeds and directions measured 10 meters above ground-level and from the vertical temperature gradient between 10 and 45 meters. The ground-level portion of the .split-level JFD was based on wind speeds and directions measured with a sensor located 10 meters above'round-level and from the vertical tempera-ture gradient between 10 and 45 meters. The elevated portion of the split-level JFD was based on wind speed and direction measurements at the 46-m<<<<

level and the vertical temperature gradient between 45 and 90 meters. The JFD's for elevated releases were based on wind directions and wind speeds measured at 93 meters. Stability class D was assumed to persist at the effluent release level of 183 meters for the entire period. Examination of rawinsonde data from TVA's Colbert Steam Plant (40 miles west of BFN)

P indicate that for hT-based stabilities at levels above 183 meters, the frequencies of I

stability classes D and E total more than 95 percent, of all occurrences.

i For an elevated release, assumption of class D instead'f E P(

yields conservative results.

The wind speeds were divided into nine wind-speed ranges. For.

calculational purposes, calms were distributed into the lowest wind speed range (0-0.5 mph) according to the directional probabilities in the 0.6-1.4 mph range. The quarterly JFD's are listed in Tables 4 and 5 for ground-level releases, Tables 6 and 7 'for split-level releases, and in Tables 8 and 9 for elevated releases.

Gaseous Effluents Ground-level and elevated dispersion models were applied to turbine building and stack releases respectively. Releases from the reactor building and radwaste building were treated as split-level releases, i.e., partly elevated and partly ground-level. The split-level dispersion approach was implemented using a model that requires for each effluent vent two complete average-annual )oint-frequency distributions (JFD's), one for the elevated release and one for the ground-level releases. Radionuclides in gaseous effluents were assumed to be released continuously., Dose estimates for external air exposures were made at the site boundary. External doses to the skin and total body were estimated for the nearest residence in each sector. Internal doses to the thyroid were estimated from the ingestion, inhalation, and external exposure pathways. The internal doses were calcu-.

lated for farms where milk is consumed without commercial preparation. Doses

are given in Tables 10 and 11 for these individual exposure pathways at the maximum exposure locations.

Population doses were calculated for an estimated 627,000 persons living within a 50-mile radius of the plant site. Population doses were calculated assuming that each individual consumes vegetables and meat produced within the sector annuli in which he resides. Doses from milk ingestion were calculated from data on milk production within 50 miles of the plant site. Doses from external pathways, inhalation, and beef and vegetable ingestion are based on the 50-mile human population distribution. Population dose estimates for the gaseous effluents are presented in Table 12.

Li uid Effluents Doses from liquid effluents were calculated using measured hydraulic, data. The average river flows at the plant site'ere 30,500 cfs

,for the third quarter and 24,100 for the fourth quarter. Radioactivity concentrations in the Tennessee River were calculated assuming that releases in liquid effluents were continuous.

Doses were calculated for recreation, consumption of fish, and drinking water from public water supplies between the plant site and the mouth of, the Tennessee River. The maximum individual dose from drinking water was assumed to be that calculated at the nearest downstream public water supply (Champion Paper Company). The maximum potential recreation dose was calculated for a location immediately downstream from the plant outfall. Dose estimates for the liquid effluents are presented in Tables 13 and 14.

Direct Radiation Analysis of onsite thermoluminescent dosimetry (TLD) data showed that radioactivity levels were not statistically different from levels at offsite locations. This indicates that there was no identifiable increase in dose rate levels attributable to direct radiation from plant equipment and/or gaseous effluents. Fluctuations in natural background dose r'ates and in TLD readings tend to mask any. small increments which may be due to plant operations.

Dose Summar I

Doses calculated for this semiannual period result from the low-level effluent releases of units 1, 2, and 3. For gaseous effluents released in the third quarter, the maximum gamma and beta air doses were calculated to be 0.40 and 0.52 mrad, respectively. During the second quarter, the gamma and beta air doses were 0.93 and 1.09 mrad, respectively. These quarterly doses are well below the annual air dose guidelines (as specified in Appendix'I to 10 CFR 50) of 30 and 60 mrad for'amma and beta radiation, respectively, for three reactor units. (All doses and dose limits referred to will be totals for the three reactor units.) The maximum doses from noble gases to the skin and total body during the third quarter were calculated to be 0.31. and 021 mrem. During the fourth quarter, the skin and total body were 0.64 and 0.45 mrem, respectively. These compare with annual dose guide-lines of 45"mrem to the skin and 15 mrem to the total body. The dose to the maximum exposed organ was 0.07 mrem to the thyroid for the third quarter and 0.08 mrem to the thyroid for the fourth quarter. These doses result from

the ingestion of meat, vegetables, inhalation, and exposure to ground contamination by iodine and particulates.

For liquid effluents released in the third quarter, the maximum ind'ividual doses to the total body and the maximum exposed organ, i.e.,

liver, were calculated to be 0.09 and O.ll mrem, respectively. In the fourth quarter, the maximum doses to the total body and liver were 0.15 and 0.19 mrem, respectively. These compare with annual dose guidelines as specified in Appendix I to 10 CFR 50 of 9 and 30 mrem to,the total body and maximum exposed organ (liver), respectively, for three units.

Population doses from gaseous effluents during the third quarter were estimated to be 2.85 man-rem to the total body and 3.11 man-rem to the thyroid. For the fourth quarter, population doses were 0.61 man-rem to the total body and 0.80 man-rem to the thyroid.

From liquid releases during the third quarter, the total popula-tion along the Tennessee River was estimated to receive 3.0 man-rem to the total body and 3.7 man-rem to the maximum exposed organ (liver). For the fourth quarter, the Tennessee River population was estimated to receive 5.9 man-rem to the total body and 7.2 man-rem to the maximum exposed organ (liver).

In summary, all doses calculated were below the guidelines of Appendix I to 10 CFR 50 and below the limits specified in the Browns Ferry Nuclear Plant technical specifications for plant operation.

TABLE 1 GASEOUS EFFLUENT RELEASES Third uarter 1980 Radionuclide Reactor Bldg. Radwaste Bldg. Turbine Bldg.

'QStack H-,3 la39 E+1 7.80 E-2 6.13 E-1 8.21 E-1 Ar-41 5.90 E+1 1 56 'E-0

~ 3.00 E+1 '-- --1.51 E+2 Mn-54 4.49 E-4 8.52 E-6 4.21 E-4 5.92 E-5 Fe>>59 9.36 E-4 1;71 E-5 9.18 E-4 1';03 E-4 Co-58 4.02 E-4 7.21 E-6 3.87 E-4 4.91 E-5 Co-60 '4. 00 E-3 1.12 E-4 3.60 E-4 3.60 E-4 Kr-85m 3. 15 E+1 1.10 E-0 1'.80 E+1 7.21 E+3 Kr-85 5.17 E-3 1.29 E-4 3.68 E-3 2.75 E+1 Kr-87 1.01 E+2 2.43 E-0 5.17 E+1 1.13 E+4 Kr-88 1.01 E+2 3.86 E-0 6.62 E+1 1.22 E+4 Sr-89 1.77 E-6 6.56 E-8 3.37 E-6 1.22 E-5 Sr-90 3.19 E-6 1 28 E-7

~ 1.77 E-6 1.01 E-6

"" Zr-95 9.37 E-4'-4 1.63 E-5 8.78 E-4 2.57 E-4 Nb-95 3.51 7.29 E-6 4.04 E-4 "-4-.62 E-5 I-131 1. 03 E-3 1.'68 E-5 4.89 E-4 5.65 E-3 KL-131 1. 03 E-3 1.68 E-5 4.89 E-4 5.65 E-3 I-133 '1." 11 E-3 1.74 E-5 5.95 E-4 3.99 E-3 Mi-133 1.11 E-3 1.74 E-5 5.95 E-4 3.99 E-3 I-135 6.35 E-3 1.27 E-4 4.89 E-3 2.98 E-2 Ni-135 6.35 E-3 1 27 E-4

~ 4.89 E-3 2.98 E-2 Xe-133 1.04 E+2 4.86 E+1 $ .40 E+1 2.53 E+4 Xe-135m 2.09 E+2 4.24 E-0 9.80 E+1 4.41 E+2 Xe-135 1.41 E+2 1.69 E+1 6.91 E+1 4.89 E+2 Xe-138 6.81 E+2 1.50 E+1 2.95 E+2 2.40 E+3 Cs-134 4.06 E-4 7.57 E-6 4.54 E-4 4.86 E-5 Cs-137 5.78 E-4 8.34 E-6 4.89 E-4 4.92 E-5 Ba-140 5. 15 E-4 7.53 E-6 4.86 E-4 9.78 E-5 La-140 1.20 E-3 1.91 E-5 1.06 E-3 2.15 E-4

TABLE 2 BROWNS FERRY NUCLEAR PLANT GASEOUS EFFLUENT RELEASES FOURTH UARTER 1980 Reactor Bldg. Radwaste Bldg. Turbine Bldg. Stack Radionuclide (Ci) ~Cf H-3 7.24 E+b 1.27 E-1 l. 16 E+0 3.81 E-1 Ar-41 5;Ol E+1 1.88 E+0 2.72 E+1 5.12 E+1 Mn-54 4.69 E-4 9.66 E-6 2.35 E-4 6.26 E-5 Fe-59 6.96 E-4 '1.66 E-5 5.14 E-4 1.25 E-4 Co-58 3.16 E-4 7.38 E-6 2. 17 E-4. 5.90 E-5 Co-60 3.51 E-3 8.42 E-3 1.75 E-3 2.44 E-4 Kr-85m 3.12 E+1 1.25 E+0 2. 00 E+1 1.29 E+3 Kr-85 6.31. E-3 1.98 E-4 4.29 E-3 2.72 E+1 Kr-87 8.41 E+1 4.63 E+0 3.87 E+1 3.02 E+2 Kr-88 1.04 E+2 4.54 E+0 1.23 E+2 1.99 E+3 Sr'-89 2.19 E-5 2.07 E-7 1.79 E-5 2.85 E-5 Sr-90 3.44 E-5 3.45 E-7 2.86 E-5 2.77 E-6 Zr-95 4.27 E-4 1.63 E-5 4.92 E-4 3.41 E-4 Nb'-95 3.82 E-4 7.33 E-6 2.21 E-4 5.40 E-5 I-131 2.54 E-5 3.75 E-5 4.64 E-4 4.06 E-3 MI-131 2.54 E-5 3.75 E-5 4.64 E-4 4.06 E-3 Z<<133 1.36 E-3 3.79 E-5 4.26 E-4 2.15 E-3 MI-133 1.36 E-3 3.79 E-5 4.26 E-4 2.15 E-3 l-135 4 .27 E-3 1.00 E-4 2.90 E-3 1.48 E-3 1G-135 4.27 E-3 1.00 E-4 2.90 E-3 1.48 E-3 Xe-133 9.42 E+1 1.31 E+1 1.07 E+2 4.29 E+3 Xe-135m 1.83 E+2 7.07 E+0 7.03 E+1 1.14 E+2 Xe-135 3.81 E+1 2.07 E+1 1.77 E+1 1.92 E+1 Xe-138 8.12 E+2 2.54 E+1 7.71 E+2 7.35 E+2 Cs-134 7.66 E-4 9.95 E-6 2.34 E-4 6.16 E-5 Cs-137 8.78 E-4 1.09 E-5 2.60 E-4 6.94 E-5 Ba-140 3.75 E-4 7.84 E-6 2.45 E-4 3.84 E-4 La-140 9.17 E-4 4.32 E-4 6.27 E-4 5.78 E-4

TABLE 3 BFNP LX used Effluents Releases Activist Ci 3rd uarter H-3 3.17E+6 5. 95E+6 Na-24 2.89E+4 6.42E+4 Cr-51 3.04E+4 3.39E+4 Mn-54 3.98E+3 6.52E+3 Mn-56 8.00E+2 1.89E+3 Fe-59 1.41E+3 6.69E+3 Co-58 2.58E+3 4.20E+3 Co-60 2. 04E+4 3.68E+4 Cu-64 1. 75E+4 2.13E+4 Zn-65 2.08E+4 5.38E+3 Sr-89 4.98E+3 2.81E+4 Sr-90 6.80E+2 1.60E+3 Zr-95 1.90E+3 4.13E+3 Nb-95 1.90E+3 4.13E+3 Mo-"99 6.80E+2 1.43E+3 Te-99m 6.80E+2 1.43E+3 Sb-124 l. 24E+3 2.45E+3 I-131 8.29E+3 1.46E+4 I-133 2.38E+3 8~44E+3 Xe-133 2.32E+4 9 OOE+4 Xe-135 1.80E+4 9.49E+4 Cs-134 3.20E+4 5.41E+4 Cs-136 1.38E+3  ? 75E+3 Cs-137 3.85E+4 6>>74E+4 Ba-140 3.73E+2 8~ 60E+2 La-140 3.73E+2 8. 60E+2 Ce-14'1 6.83E+3 1.15E+4

~ .

TABLE 4 BROWNS FERRY NUCLEAR PLANT METEOROLOGICAL DATA GROUND-LEVEL JOINT FRE UENCY DISTRIBUTION IN PERCENT TURBINE BUILDING RELEASES - THIRD UARTER 1980 STAOILITV CLASS A INDICATED SECTOR WINO SPEEDS 0 '3 0 '5 IN HETERS PER SECOND FROH THE SECTORS 1 ~ 10 1 ~ 99 F 80 4 '5 6 '1 9 '9 13 F 00 TOTALS N 0~0 0~0 0 ' 0~0 " 0 ' Oe140 0 '50 0 ' 0 ' 0 ~ 190

' 0 ' 0 ' 0 '40 0 ' 0~0 0 ' 0 ~ 140 NNE Nt 0~0 0~0 0~0 Oe0 0

0 ' 0 ' 0 ' 0 ' 0' 0 ' 0 ' 0 '

ENE 0~0 0~0 0 ' 0 ' 0 ' 0 ' 0' 0 ' 0 ' 0 '

0 ' 0 ' 0 ' 0 ' 0 ' 0 ' Oe0 0 ' 0 ' 0 '

E ESE 0~0 0 ' 0 ' 0 ' 0 ' 0 ' 0' 0 ' 0 ' 0 ~ 0 SE 0~0 0 ' 0 050 0 ~ 95'1 0 '69 '50 0 0' 0 ' 0' 1 F 426 SSE 0~0 0~0 F

0 '50 0 '68 0 ~ 229 0' 0' 0 ' 0' 1 ~ 147 5 ' 0~0 0 ' 0 '69 0~0 0~0 0' 0~0 0' 0 '69 0

0~0 0~0 0 0 0 '79 0 ' 0~0 0' 0~0 0' 0 '79 0 '29 SSW 0'

~

Sb Oe0 0 ' 0 ' 0 '40 0 '90 0 ' 0 ' 0 '

0~0 0 ' 0 ' 0 '29 0 '59 0 0 0~0 Oe0 0' 0.688 0 '80

~

WSW

' 0 0 0' 0 ' 0 '90 0 '90 0 ' 0 ' 0' 0 '29 0

' 0~0

~

0' 0 ' 0 '90 "0 ~ 050 0 '90 0 ' 0 '

hv NW NW 0

0 ' 0 ' 0' 0 ' 0 ' 0 F 050 0' 0' 0

0'

' 0 '50 0'

NN'W 0~0 0 ' Oe0 0~0 0~0 0 ' 0 ' 0 TOTALS 0 ' 0' 0 ~ 100 2 ~ 843 1 ~ 327 Oe519 0~ 140 0' ,0 ~ 0 4 ~ 927 STA8ILITV CLASS 8 PER SECOND FROH THE SECTORS INDICATED SECTOR WIND SPEEDS 0 ~ 13 0 '5 IN NETERS 1 ~ 10 1 ~ 99 F 80 4 5 6 '1 9 '9 13 F 00 TOTALS

'N 0 ' 0 ' 0 ' 0 90 0 050 F 0 '50 0 ' 0 0 ' 0~

'69 100 NNE 0 ' 0 ' 0 ' 0 0 0

~ 0 '80 0~0 0 ~ 0~0 0 Nt 0' 0' 0 ' 0' 0 '90 0' 0~0 0 ' Oi0 0 '90 ENE 0~0 0' 0 ' 0 ' Oe0 0' 0 ' 0 ' 0 ' 0 '

0 ' 0 0 ' 0 0 0 0 0' 0 ' 0~0 0~0 0 E

ESE 0~0 0'

~ 0 0 79 0

~

' 0'

~

0' 0 ' 0~0 0 ' 0 08 "SE.

SSE 0

0 0'

Q~

0 0

0 0 0 F 090 0 ~ 140 0 '79 0

0

'69

'09 0 050 F

0 0 0'

~

0' 0'

0' 0'

0' 0'

0 0

0 0'

0 0'

', 0 0

0

'59

'49 0' 0' S

0' 0 ' 0 ' 0 ' 0' 0' 0 ' 0' 0 '29 SSW 0' 0 ' 0 ' 0 '79 0 050 0' 0' 0 ' 0' Sw Wbw 0 ' 0~0 0 050 0 '59 F

0 140 0' 0' 0' 0 ' 0 '48 0 '69 0'

F 0' 0' F

0~0 0 ' 0 ' 0 '90 0 180

~ 0~0

' 0 '98 0 ' 0 ' 0 ' 0 140 0 '90 0 '79 0 '90 0 0 ~ 0 0' '

WNW 0 '50 F

' 0 ' 0 ' 0 ' 0' 0 050 0 0 100

~

0 '50 0 F 0' '

Nw

' ' ' 0' 0' 0 '50 0' 0 NNW 0 , 0 0 TOTALS '0 ~ 0 0 ~0 0 '59 2 '14 0 '48 0 '08 0 F 140 0~0 0' 4 '69

TABLE 4 Continued)

STABILITY CLASS C ltIND SPEEDS IN HETERS PER SECOND FROH THE SECTORS INDICATED SECTOR 0 ~ 13 0 '5 1 ~ 10 1 ~ 99 2 '0 4 '5 6 '1 9 '9 13 F 00 TOTALS N 0~0 0 ~ 0 0 ' 0 ~ 140 0 '29 0 '90 0~0 0~0 0~0 0 '59 NtvE 0~0 0~0 0 ' 0 '90 0 '40 0 '80 0~0 0~0 0~0 0 '09 NE 0~0 0~0 0 ' 0 F 140 0 '80 0 ~ 0 0~0 0~0 0~0 0 ~ 319 ENE 0~0 0~0 0 ~ 0 0 ~ 0 0~0 0~0 0~0 , 0~0 0~0 0 ~ 0

, E 0~0 0~0 0~0 0 ~ 0 0 ' 0~0 0~0 0~0 0~0 0 ~ 0, ESE 0~0 0~0 0~0 0 ~ 0 0 ' 0~0 0~0 0~0 0~0 0 ~ 0 SE 0~0 0 ' 0 '29 0 F 180 . 0~0 0~0 0~0 0~0 0~0 0 '09 SSE 0~0 0~0 0 '49 0 '98 0~0 0~0 0~0 0~0 0~0 1 ~ 147 0 '88 5 0~0 0 ' 0 '09 0 '79 0~0 0~0 0 0~0 0~0 SSM 0~0 0~0 0 '90 0 '40 0 ' 0~0 0~0 0~0 0~0 0 '29 0 '78 5M 0 ' 0 ' 0 '29 0 '49 0~0 0~0 0~0 0~0 0~0 ASM 0 ' 0~0 0 050 0 '57 0 ~ 319 0 ' 0~0 0~0 0~0 1 ~ 327 0 '09 F

0~0 0 ' 0 F 050 0 180 F 0 '90 0 '90 0~0 0~0 0~0 MNM 0.0 0~0 0 0 0 '29 0 140 0 '98 0~0 0~0 0~0 0 '67 0 '19

~ F to M 0~0 0~0 0 0 0 0 0 '90 0 '29 0~0 0~0 0~0 0 '29

~ ~

NNM 0~0 0~0 0 ~ 0 . 0 '90 0~0 ~

0 F 140 0~0 0~0 0~0 TOTALS 0 ' 0 ' 1 ~ 606 3 '71 1 ~ 187 1 ~ 327 0 ' 0 ' 0 ' 7 '90 STABILITY CLASS D INDICATEO t

'SECTOR MIND SPEEDS Oo13 0 '5 IN HETERS loin PER SECOND FROM THE SECTORS lo99 F 80 4 '5 6 '1 9o59 13 F 00 TOTALS 0~0 0~0 0 ~ 180 0 '09 0 '79 Oo319 0 '90 0~0 0~0 1 ~ 277 NNE 0~0 0 ~ 0 0 '09 0 F 409 0 '59 0 '78 0~0 0~0 Oon 2 '55 NE 0~0 0 ' 0 '29 0 '38 0 '99 0 '29 0 F 050 0~0 0~0 1 ~ 646 ENE 0~0 0 0 0 '09 0 '38 0 0

~ 0~0 0~0 0 ~ 0 0~0 1 ~ 047 E 0~0 0

~

~ 0 0 '98 1 ~ 327 0 '29 0~0 0~0 0~0 0~0 2 '54 ESE 0~0 0 F 050 0 ~ 0'50 0 ~ 319 0 '29 0~0 0~0 0~0 0~0 0 '48 SE 0~0 0 ' lo646 F 015 0 '79 0 ' 0~0 0~0 0~0 3 '40 SSE 0 ' 0 ~ 0 2 ~ 334 1 ~ 237 0 140 F 0~0 0~0 0~0 0~0 3 '10 5 0 ' 0 '50 1 ~ 696 1 ~ 277 0 '90 0 '50 0~0 0~0 0~0 3 ~ 162 SSM 0~0 0 ~ 0 1 ~ 097 0 '38 0~0 0~0 0~0 0~0 ~ 0 1 ~ 735 Sl 0~0 0 0 0 '49 0 '59 Oon 0~0 0 ' 0 ' 0 ' 1 F 007 lt 5lt 0~0 0

~

' 0 '38 1 ~ 925 0 '49 0 '50 0 ' 0 ' 0~0 F 162 0~0 0 ~ 0 0 '29 0 '68 0 '28 Oin 0 0

~ 0~0 0~0 lo925 0 '88 W

MNM 0~0 0' 0 180 0 '38 0 '88 0 0

~

"0 ~ 0 0~0 '2 ~ 194 0 '29 F

0 ' 0 ' 0 '40 0 '90 0 140

~ 0 0

~ 0~0 0~0 0 ~ 598 NNW 0~0 0 ' 0 050 F 0 140

~ 0 180

~ Ool80 0 '90 0~0 0~0 Oo638

'99 E

TOTALS 0~0 0 F 100 10 '32 13 '26 F 588 2 '23 '0 '29 0~0 0~0 >>30

TABLE 4 (Continued)

STABILITY CLASS E SECTOR WIND SPEEDS 0 '3 0 '5 IN METERS PER SECOND FROM THE SECTORS I ~ 10 1 99 F 80 4 '5 6 '1 9 INDICATED

'9 13 F 00 TOTALS N 0 '03 0 F 140 0 '38 0 ~ 459 0 '09 0 '59 0 0 0 ' 0 ' 2 107 NNE 0 '06 0 '29 0 '98 0 '49 0 F 409 0 '09 0~0 0 ' 0 ' 2

~

'00 NE 0+009 0 '69 0 '59 0 '98 0 ~ 180 0 '79 0 ' 0 ' 0 ' 894 0 '02 0 '90 0 '28 0 '80 ' 1 ~

ENE 0' 0' 0 0 ' 0 ' 0~0 0 ' 0 '99 E 1 ~ 416 0 '99 0.140 0 ' 0' 0 ' 0' 2 '55 ESE 0 F 001 0 050 F 0 '28 0 '09 0 ~ 180 0 ' 0' 0~0 0' 367 0 '50 2 '82 '69 ' 1 ~

SE SSE 5

0 F 001 0 F 007 0 ' 0 ',

0 '79 2 '84 2 '74 1 ~

0 '69 0 '09 097 0 0'

0 '90 0

0' 0 F 050 0 ~,0 0'

0' 0

0 0

0' 0'

0' 4 '49 2 '39 2 '72 SS'N 0 '07 0 '79 0 918

~ 0 '09 0 '90 0 '50 0' 0 ' 0 ' 752 0 '03 1 ~

SN 0 140

~ 0 '79 0' 0' 0' 0' 0' 0 ' 0 '22 NSM 0' 0' 1 ~ 965 0 '18 0 '90 0' 0' 0' 0' 2 '72 W 0 '03 0 140 F 1 ~ 147 1 ~ 875 0 '69 0' 0' Oo0 0 ' 3 '34 14Nlt 0' 0' 0 ~ 140 0~ 140 0 '40 0 '90 0' 0~0 0 ' 0 '09 NH 0 001 F 0 '50 0 F 050 0~ 140 0 '90 0 050

~ 0' 0 ' '0 ~ 0 0 '80 NNW 0 '02 0 '90 0 '19 0~ 140 0 '90 0 '90 0' 0 ' 0 ' 0 '30 TOTALS 0 F 045 1 905 16 '25 8 188 2 '43 1 476 0 ' 0 ' .0 ' 31 '83 STABILITY CLASS F RIND SPEEDS SECTOR 0 '3 0 '5 IN METERS PER SECOND FROM THE SECTORS 1 ~ 10 I ~ 99 F 80 4 '5 6 '1 9 INDICATED

'9 13 F 00 TOTALS N 0~0 0 '40 0 F 499 0 '19 0 '29 0 050 0 ' 0~0 0 ' 237 NNE 0 ' 0 '80 1 ~ 327 0 '88 0 F 140 0 F

140 0 ' 0 ' 0 ' 2 1 ~

'73 0 '50 F

NE 0' 0 '88 0 '29 0 319 0 F 050 0' 0~0 0 ' 336 0'

~

0 '50 097 0 '29 ' 1 ~

ENE 1 ~ 0 F 050 0 0' 0 0~0 i426

' ' 596 0 '68 1

E 0 0 1 ~ 0 ~ 0 0' 0' 0 0+0 2 '64 ESE 0 ' 0 ' 0 '38 0 050 F 0 ' 0' 0' 0 ' 0 ' 0 '88 SE 0 ' 0 '40 0 '28 0 0~ 0 F 050 0' 0' 0~0 0 0 ~ 918 SSE 0 ' 0 '40 0 '29 0 0~ 0 ' 0' 0' 0 ' 0 0 '69 5 0 ' 0 '90 0 '79 0 '50 0' 0 ' 0' 0~0 0 ' 0 '19 SSN 0 ~ 0 0 '50 0 '90 0' 0' 0 ' 0' 0' 0 ' 0 F 140 514 0' 0 ' 0 '40 0' 0' 0' 0' 0~0 0' 0 F 140 NS'l0 0' 0 ' 0 '19 0 '29 0 ' 0' 0~0 0 ' 0' Oi549' 0' 0' 0 '29 0 '69 0 ~ OSO 0' 0 ' 0 ' 0' '48 lvNlt 0' 0 0~ 0 '50 0 '90 0 F 050 0' 0' 0~0 0' 0 F 190 NK 0' 0' 0 050 F 0' 0 ' 0 ' 0 ' 0 ' Oi0 0 '50 NNW 0' 0 '50 0 '90 0 '79 0 '90 F 050 0 ' 0 ' 0~0 0 '59 TOTALS 0~0 0 F 888 8 '49 F 401 0 '77 0 '89 0~0 0~0 0 ' 13 ~ 604 I

TABLE 4 (Continued)

STABILITY CLASS G

'MIND SPEEDS IN METERS PER SECOND FRDH THE SECTORS INDICATED SECTOR >0 ~ 13 I

Oe45 Idio le99 2eeo 4 '5 6+91 F 59 13 F 00 TOTALS 0~0 0+140 0 ~ 549 0 ~ 140 ,0 ~ 0 0~0 0~0 0~0 0~0 0 '28 NNE NE 0~0 0~0 0 ~ 090 0 '29 1 ~ 416 0 '18 0 '88 0 090

~

0 ~ 050, 0~0 0~0 0~0 0

0 0

~

0~0 0~0 0~0 0~0

'2 ~ 244 237 1 ~

ENE 0~0 0 0

~ 0 '38 0 '29 0 '90 0~0 0~0 0 ' 0 ' 0 '57 E 0 ~ 0 o.oso o.6ee 0 '99 0~0 0~0 0 ' 0 ' 0~0 1.237 ESE 0~0 0 0

~ 0 QSO 0' 0~0 . 0+0 a.o Ooo 0~0 0 '50 SE 0~ 0 o.o 0 0

~

~

0 140

~

o.osa 0 '50 0+0 0 0

~ 0~0 0~0 0, ~ 0 Oio 0 ' 0~0 0F 140

. SSE 0~0 0~0 0~0 0~0 0~ 100 5 0~0 ' 0~0 0 F 050 0~0 0 ' 0~0 0~0 0~0 0 ' 0 '50

'SM 0~0 ~ 0 0~0 0~0 0 ' 0 0~0 0~0 0~0 0~0 SM 0 ' 0 ' 0 '50 0 F 050 0~0 0~0 0 ' 0~0 0~0 0 F 100 MS'M 0~0 0~0 0~0 0 F 050

'90 0 ' 0~0 0 0'

' 0~0

~

0 ' 0 '50

'M 0~0 0~0 0 '90 0 0~0 0~0 0 0~0 O.leo MNM 0~0

' 0~0 0 ~ OSO 0~0 0~0 0~0 0 ' 0 ' ' 0' 0 ~ 050 NM 0~0 ~ 0 0 '90 0~0 0~0 0 ' Q~Q a.a 0 ~ 0 Oe090 NNM 0~0 I

, 0 '90 0 F 180 0 F 050 0~0 0~0 0 ' ~ 0 0+0 0 ~ 319 TOTALS 0~0 0 '48 4 '57 1 F 885 0~ 140- 0 ~ 0 i(",> 0 ~ 0,.

0~0 ~

0 ' 7 ~ 630

lt E

I r

II

TABLE 5 BROWNS FERRY NUCLEAR PLANT METEOROLOGICAL DATA GROUND-LEVEL JOINT FRE UENCY DISTRIBUTION IN PERCENT TURBINE BUILDING RELEASES FOURTH UARTER 1980 SfgTQR 0 ~ 13 geq5 1 ~ 10 1 ~ 99 2 ~ 80 4 ~ 45 ee91 9 ~ 59 13 ~ 00 TOTALS tt ~ neo nen Oen Oeo Oeo oen50 Oe179 0~0 0~0 > Oe229 I 4 ttt <<~0 0~0 0~0 0~0 Oen Oeo 0~0 Oeo 0~0 0 '

I

~nl I 8 Ci 0 0 0 0 0 0 0 0 Oeo Oeo Oeo "0 ' Oeo Sa nen n,n OBO50 ne319 0~ leo 0~0 ,'Oeo "

0~0 . 0~0 0 '08 SZ S n,o o,o o,o 0,3e9 o,179 o,o o.o -

o,o,.-. o.o, '

0,548 9 s 4 Ste O,O n,O O,O n,O O,05O Oeu OBO O,O , O,O O,O5O n 0 0 O.O O.O O.O O.O Oeo neo O,O O,O O,O . O,O

~tll tt(t 0~0 0 0 0~0 0,0 0,0 0 1 0~0 0

0 1 eo 0~0 0~0

~

0 Oe)60 SL'CTOR no 13 0 ~ 45 1 ~ 10 1 ~ 99 2e80 4 ~ 45 ee91 9e59 13eoo TOTALS tt 0~0 0~0 1

0~0 0

0~0 0~0 0

0 ~ 140 0 090 0 ~ 050 0 050 0~

0 0 0; 0~0 0 0

' 0 ~ 189 140 t}8 v~0 n.o o,o o,o o,o o,o oen o,o o,o o.o

~l)E 00 00 05}00'00000000'00 0 0 0 0 E .0 ~ 0 0~0 Oeo 0 ~0 0 ~0 0~0 Oeo 0 ~0 0 ~0 Oeo SE OBO n.o O.O 0, )CeO O,09O O,050 OBO OBO O,O Oe279

<~n 0~0 0~0 0 ~ 140 Oe050 0~0 0~0 Oeo 0 ~ 0. Oel89 S

' 'o n 0 0 0 i 0 0

<<o no oo oo5o oo no oo .oo oo oo5o 0 9 0 0 0 0 0 0 0 0 ' '90 0~0 n~0 0~0 0~0 Oeo 0~V 0~0 0~0 - 0~0 0~0

) 0 n 0 9 tttt oeL} 0~0 Oeo ' ~ 0 0~0 Oe )ceo Oe)40 Oeo 0~0 0 ~ 27

'e 0 0 0 050 0 050 0~0 Oeo 0 0 0 ~ 100 0 1 9 0 e4u 239 0 0 1 545

TABLE 5 (Continued)

SLCT' 0~ I> 0 ~ 45 1 ~ ln 1 ~ 99 2 ~ 80 45445 65]l <59 13<00 T AL tt 8~n V60 '0 ~ V 000>0 00179 Ll ~ 229 0~V 050 0~0 0 F 456 t<>>f: n~0 n< <. 5o 0)050 0 229 Vg>48 0 ~ 229 0~0 0~0 1.106 IILT 050 000 050 0 oi~o ~

T7TI'),v v ~ 0 u ~ V~

.<<E .u 0 0~0 0 5!) 0 090 o 0 v.v 0.0 050 o.o 0 ~ 090 E 0~0 0~0 u~V 0<0 VS 0 0~V 0~0 000 0~0 VS 0 Esr: <) n V.o u,u 0 neo 0 o n.v . v.n 0.0 o.o 0.050 SE 0~0 n~0 VS 179 052 9 0~ 0 0~0 0~n 0 ~0 0~0 00 n.n o,o ssr.

5 0,0 SS<l;>.<) ').n 0 0 os 05o 0 140 0 05o u 0 o,05o Vru n,n

'<V O.n O.n o.o 0.0 50 "

o,o 0~0 0.0 o'. 149 0.140 SW 06n 0~0 05090 050 0~ 0~0 0~0 0~0 0~0 ~ 0 v WSW O,V 0~V O.O O.O O.O O,n O.O O<O O,O O.O W n,v o.o orv o,o , 0 n. Orn 00 00 0 V 0.0 0.0 o.o 0 n50 0 o 0 '69 o.o9o o,o o,o o;5os ftA u~n 0' 0' '

' 0~ 0 0~ 0 0~ 0, 0' Vro 0~

t<t<<l ') 0 0 n 0~0 0~0 0 ~ 050 0 ~ 179 0 ~ 050 0~0 0~0 V ~ 279 SU<<~I.S 6~~0 0 0  ! 66 11 6 16>~60,556 0,0 0 0 6,755 STARI ITY CLASS 0

.I It<I) SPrflt)S lt'I Hf:TEI:S < E< SECDI<D FRbH TIIE SFCTIIRS 1NDlCATED ll 0 0 'JU~TU 009 0~VII 1&3UVVIE3 N,<E n,n O.u 0.140 0 319 0 319 20960 0 ~ 957 0 ~ 050 0~0 4 ~ 743 NL'<n29 <)Un)0 V<V 0 0< 0~

E<IE u~0 n60 0 ~ 229 0 ~ 229 0 ~ 229 0~V 0~0 0~0 0~0 0 '88 E 0 u 0 0 v 0 0 > 9 T79 ~r0 0 '98 5

ESE u<n 060 0 ~ 369 0 ~ 179 0~0 0 ~ 050 0~0 0~0 0~0 5 v ~ olb 0 ~ 0 ~ v '5 r SSE n .) 0~0 1 ~ 046 1 2Z6 0 ~ 678 05229 0~0 000 0~0 ~ 30179 S n ~ <J n<v ~ 4 0 SSW 0~0 <) ~ 0 0<090 0~ 1 <0 00050 0 ~ 050 0~0 0~0 0~0 0 '2'9 Sw 050 0 0 002 0, 0 0~ v ~ 0 ~

WS<l Own 0~0 n~

0 ~ 050 0 ~ 568

~

00638 0<727 Dan 0~0 000 2 '03 W v~0 ~ V 0 W'<Tt )60 <) 0 05229 00498 0 ~ "58 0 ~ Y57 0 ~ 548 0~0 0~0 2 ~ 691 NW 0~0 060 0~V 0 0 ' 8 ~ 8 0~ 0~ C ~

tl <W s<,0 O.O O 229 O,179 "0 ~ 319 1 ~ <f24 1 la( 0 ~ O50 O~O 30787 Tt)TAL5 06045 n. 40 < ~ 793 6 ~ 995 6 ~ 45 7 12 ~ <<45 5 ~ 102 0 ~ 239 0~0 3<30616

TABLE .5 (Continued) l SECT))R 0 ~ 13 0 ~ 45 1 ~ 10 1 ~ ')9 2 ~ 80 4 ~ I5 be 91 9e59 13eoo TOTALS N 000 '

F 0 0 ~ Z29 0 '88 0 F 498 5

0 F 548 0~0

~ 0 0~0 LE 863

~8 8 3 NE 0 0 0~0 OI498 0 '50 0 '50 l) also 0~0 0~0 0~0 0 '37 n 0 6 8 E

SE 0 ~0 0~0 0 ~ 090 0 ~ 229 0 ~ 458 le lab OI 269 1 ~

22904vo00 136 0~ 1 0 ~ 458 Io 0 ~ 140 0 ~ 179 0~0 OI050 0 ~0 0~0 0~0 0~0 .) I 1 e096 5

3 ~ 239 3

S 0~0 0 ~ 140 1 ~ 455 0 '57 0 '67 0 '07

)9 0 '50 0~0 Oeo 4 '75 S<< O.O O.OoO OI369 0 050 0 ~ 050

'2 OIV 0~0 0~0 Oeo 0 ~ 558 MSH )

W Ven O,O OI678 O,957 O,369 Oe09O O.O 0~0 0~0 2 '93 NW 0,0 0,050 OI269 0,229 0 269 0,319 0 0 0~0 0~0 1~ 136 3 )) 8 7 24

)e R S N R 1 H S OR N iC T 0 SECTOR 00130e45 le 10 le99 2>80 4e45 6e91 9)59 .13eoo TOTALS H 000) 0269 0458 0229 0319 0179 OO 00 00 1464 9 49 039 79 278 NE 0 ~ 002 0 '50 OI409 Oeo Oeo 0~0 0~0 0~0 0~0 0 '60

~9 0 0*0 0~0 00 0 00 0412 0~0 0~0 OI727 0 F 409 0 ~ 0,, 0 ~0 0~0 Oeo 0~0 leleb 0 99 79 0 Ogu 0 0 0 0 1 228 SE ne006 0 0 179 1 I 734 Oe229 Oeo 0~0 ' ~ 0 0~0 0~0 8 2 1 l) 08

'69 S OIOO5 ss~.ons.

sn o.nos

~~s 00140 00907 sss n,inn o,ooo o,oso o.o s~n 0 Oe090 o

Oe090 o,o n.o 0~0 0

OIO Oeo O.O 0 0324 0~0 O,O

~

1 ~ 599 0,2e4 n~0~00 n,O O0369 0 ns 00269 O,O 0

0,0 Il 0~0 000 0~0 0~0 0 0 0~0 0 '69 OI638 nen 9 0 r 0

) I'ni 0~0 0~0 0 ~ 319 0 ~ 1 Io 0~0 0~0 0~0 0~0 0~0 0 ~ I58

)5A 0 ~ 58 0 319 6 369 0 179 0~0 0~0 ' 0 1 ~ 377

~ 'I 34 9 6' 285 0 678 00 0 00 5693

TABLE 5 Continued)

~iSECTOR t'I 0 13 0 ~ OSD 0:II 0 45 ll ~ t )8 N 0:5 1 ~ 10 0 ~ 777 T

1 ~

0 ~ 548 R

99 1

5 Y C C 00

~

0 ~ 179 ASS 8 80 I RIIR TH 4 ~ 45 0 ~ 090 SSCTIIIIS IIIDICIIT D 6 ~ 91 0~0 Geo

~

'9 L ~ 00 0~0 T

0 48

~II I: RRPS~I So~90,7 n0179 00319 7 Ct 90 0 050 00~50 II 09(l 0 0 0 0 0,0 20782 tlE 09020 0~0 0 VDU 0~0

'El'IE 0~0 6 0 1 tn 0 ~ 319 0 ~ 090 V ~ 090 V~V 0~0 0~0 0~0 00654 E s) ~ 0 000 1 136 0~4 8 0~ 0~U 0~0 ~ ~ ~

'25

~

ESF 3 itn6 9 ~ 050 0 ~ 269 0 0 0 0 0 V 0~0 0~0 0~0 0 SE 0,< LO 0,09n Ltn46 O,O O,U U,u Oeo OeO O,O ~ b SSE 0 ~ 010 n ~ 090 00548 0 ~ 5 t8 0 ~ 050 0~V 0~0 0~0 0~0 1 ~ 246 Ueo Ue 0 U0015) n.oon 0 ~ 050 0~0 0 0 l)tU 0~0 0~0 0~0 0~ 1t9 5 ll t) F 006 00050 00050 0~0 0~ 0~U 0~0 ~ 0 0~0 D lk S'TJ o.onb 0.05o o.v5o 090 0~0 0~0 0~0 Oeo 000 0 ~ 106 el 00006 0 ~0 0 USU 0 0 ~0 ~ VDU ~

>l lll 0 ~ Os)tt 5) ~ 050 0 ~ 050 0~0 0~0 V~V oto 0~0 0~0 U~ Lob UDGLO OO90 OVSO OO O, OU OO llol 5) 6 n 229 0 ~ 319 0 179 0 179 0~V . 0~0 Geo 0~0 0 ~ 933

'TUTALS 3 279 2,0?3 5 760 3 059 1 ~ 006 V~ 179 0~0 0~0 0~0 12 ~ 257

TABLE 6 BROWNS PERRY NUCLEAR PLANT METEOROLOGICAL DATA SPLIT-LEVEL JOINT FRE UENCY DISTRIBUTION IN PERCENT REACTOR AMa RADWASTE BUILDING RELEASES THIRD UARTER 1980 GROUND-LEVEL PORTION II STABILITY CLASS A

'WIND SPEEDS SECTOR 0 '3 0 '5 IN HETERS PER SECOND FROH THE SECTORS 1 ~ 10 1 ~ 99 F 80 4 '5 6 '1 INDICATEO 9 '9 13 F 00 TOTALS N 0 ' 0 ~ 0' 0 ' 0 ' 0 ' 0 '30 '50 0~0 0 ' 0 ~ 080 NNE 0 ~ 0 ' 0 ' 0 ' 0 ' 0 F 100 0 ' 0~0 0 ' 0 F 100 NE 0' 0' 0 0~ 0 ' 0' 0' 0' 0~0 0' 0 '

ENE 0~0 0' 0' 0 ' 0' 0' 0' 0 ' 0 ' 0 '

E 0~0 0' 0'

0' 0'

0

' 0' 0'

0' 0'

0 ' 0~0 0' 0' ESE 0~0 0 OgO 0~0 0 ' 0' SE 0 ~ 0 0~0 0 '10 0F 150 0 080 F 0 '30 0 ' 0 ' 0 ' 0 '70 SSE 0 ' 0 ' 0' 0 190 F 0 '70 0' 0' 0~0 0' 0 '60 5 0~0 0 ' 0' 0 '60 0' 0' 0' 0~0 0' 0 '60 SSW 0 ' 0 ' 0' 0 '50 0' 0' 0' 0 ' 0' 0 '50 SW 0 ' 0' 0' 0 010, 0 010 F ~ 0' 0' 0 ' 0' 0 '20 WSW 0 ' 0' 0' 0 '40 0 100 F 0' 0' 0 ' 0' 0 140 0'

. ~

0 ' 0' 0' 0 ' 0~0 0' 0' 0 ' 0 '

WNW 0 ' 0' 0' 0 ' 0 ~ 010 0' 0 '50 0~0

' 0' 0 '60 NW 0 ' 0 ~ 0 0' 0 ' 0 ' 0 010 F 0' 0 0' 0 '10 NNW 0 ' 0.0 0' 0 ' 0' 0' ' 0' 0 ' 0' 0 '

TOTALS 0' 0 ' 0 ~ 010 0 ~ 499 0 ~ 270 0 ~ 170 0~ 100 0~0 0 ' 1 ~ 049 STABILITY CLASS 8 SECTOR

'WIND SPEEDS 0 13 0 '5 IN METERS PER SECOND FROH THE SECTORS 1 10 1 99 F 80 4 '5 6 '1 INDICATED 9 '9 13 F 00 TOTALS N 0 ' 0~0 0 ' 0 ' ,0 '30 0 ~ 100 0 ' 0~0

' 0 ' 0 F 130 NNE 0 ' 0~0 0 ' 0 F 010 0 ' 0 F 150 0 ' 0 0 ' 0 F 160 NE 0 ' 0~0 0 ' 0 ' 0 '20 0 ' 0~0 0~0 0 ' 0 '20 ENE . 0~0 0 ' OqO 0 ' 0 ' 0 ' 0 ' '0 ~ 0 0 ' 0 '

E, 0 ' 0' 0'

0 ' 0 0'

' ~

0 ' 0' 0 ' 0 ' 0 ' 0 '

' 0' 0' ESE SE SSE 0 0 0'

0'

~

0' 0 0

~

0' 0 '20 0 '20 0 050 F

0 '90 0

0 0'

'30 0' 0'

0' 0'

0~0 0'

0 0

~

0 0

0

'; 0 '

0 ~ 100 0 ~ 110 5 0' 0' 0 010 F 0 '70 0' 0 ' 0' 0' 0 ' 0 F 080 SSW 0' OqO 0' 0 010

~ 0' 0 ' 0' 0' 0 ' 0 '10 SW 0' 0' 0 010

~ 0 '30 0 '20 0 ' 0' Oo0 0 ' 0 '60 WSW 0' 0' 0 010

~ 0 110

~ 0 080 F 0' 0' 0 ' 0 ' 0 '00 W 0 ~ 0 0' 0' 0 '10 0 '50 0 '40 0' 0 ' 0 ' 0 100 F

WNW .0 ~ 0 0' ' 0 '20 0 '30 0 '20 0 '50 0 '40 0 ' 0 ' 0 '10 NW 0~0 0' 0' 0' 0' 0 '40 0 0

~ 0 ~ 0 0 '90 NNW 0~0 0' 0 ' 0' 0' 0 '20 0' 0' 0 ' 0 '20 TOlALS 0 ' 0' 0 F 070 0 '99 0 '60 0 F 479 0 F 180 0' 0 ' I ~ 388

TABLE 6 (Continued)

STABILITY CLASS C I

MIND SPEEDS IN METERS PER SECOND FROM THE SECTORS INDICATEO SECTOR 0 ~ 13 0 ~ 45 I ~ lo I ~ 99 2 ~ 80 4 ~ 45 6 ~ 91 9 ~ 59 13 ~ 00 TOTALS N 0~0 0~0 0~0 00020 0 '20 0~0 0~0 0~0 0~0 0 F 040 NNE 0~0 ooo 0~0 0 ~ 0, 0 ~ 010 020 0 ~ 020 0 ~ 030 0 ~ 080 0~0 0~0 0 ' F 110 NE 0 0~0 0 ~ 0~0 0~0 0~0 0~0 0 ~ 050 ENE ooo 0~0 0~0 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0~0 E 0~0 0~0 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0~0 0~0 ESE 0 ' ooo 0 ~ 0 0~0 0~0 0 ' 0~0 0 ' '

' 0 ~ ,0 SE 0 ' 0 ~ 0 0 ~ 010 0 ~ 020 0~0 0~0 0 ' 0~0 ,0 ~ 0 0 ~ 03 0 SSE 0 ~ 0 0~0 0 F 010 0 ~ 100 0 ' 0~0 0~0 0~0 0~0 0 ~ 110 5 0 ' 0~0 0 F 010 0 ~ 020 0~0 0~0 0~0 0~0 0~0 0 ~ 030 SSW 0 ~ 0 0~0 0 F 010 0 ~ 020 0~0 0~0 0 ' 0~0 0~0 0 '30 SW 0 ~ 0 0 ' 0~0 0 F 040 0~0 0~0 0~0 0~0 ,0 ~ 0 0 F 040 WSM 0 ~ 0 0 ' 0 ~ 010 0 ~ 070 0 '40 0 ~ 0' 0 ' '0 ~ 0 0 ~ 0 0 ~ 120'oo

'W 0 ~ 0 0~0 0~0 0 ~ 020 0 ~ 030 ~ 010 0~0 oeo 0 ~ 0 060 MNW 0~0 0~0 0~0 0 ~ 040 0 ~ 020 0 '40 0~0 0~0 0~0 0 ~ 300 NW 0 ~ 0 0~0 0~0 0~0 0 ~ 020 0 ~ 060 0~0 0~0 0~0 o.oeo NNW 0 ~ 0 0~0 0~0 0 F 010 0~0 0 '40 0 ' 0~0 0~0 0 F 050 TOTALS 0 ~ 0 0~0 o.oso o.389 o.leo o.429 o.o .o.o o.o 1 ~ 049 STABILITY CLASS 0 WIND SPEEDS IN METERS PER SECOND FROM THE SECTORS INDICATEO SECTOR 0 ~ 13 0 ~ 45 I ~ 10 1 ~ 99 F 80 4 '5 6 '1 9+59 13 F 00 TOTALS N 0~0 0~0 0 010 0 ~ 050 0 050 0 F 150 0 ~ 090 0~0 0~0 0 NNE 0~0 0 ~ 0 0 F

F 010 0 ~ 040 0 ~ 080

, 0 F

~ 090 0 ~ 389 0 ' 0~0 0~0

~

350'+529 NE 0~0 0~0 0 F 010 0 F 100 0 F 070 0 ~ 050 0~0 0~0 0 ~ 310 ENE 0~0 0~0 0 F 010 0 F 100 0 ~ 0 0~0 0 ' 0~0 0~0 0 ~ 110' E 0 ' 0~0 0 F 010 0 ~ 200 0 F 050 0~0 0~0 0~0 0 ' ~ 260' ESE 0 ' 0~0 0~0 0 ~ 060 0 F 050 0~0 0~0 0~0

'0 ~ 0 0~0 ~ 110 SE 0~0 0~0 0 ~ 090 0 ~ 409 0 F 150 0~0 0~0 0~0 0 ~ 649 SSE 0~0 0 ~ 0 0 ~ 140 0 ~ 370 0 ~ 140 0~0 0 ' 0~0 0 ' 0'~ 0 ~ 649 5 0~0 0~0 0 ~ 150 0 ~ 350 0 ~ 050 0 F 050 0' 0+0 0~ 0 ~ 599 SSW 0~0 0~0 0 F 070 0 ~ 110 0~0 0~0 0 0

~ 0 ' ~0 0 F 180 SW 0~0 0~0 0 F 010 0 F 050 0~0 0~0 0' 0~0 0 ' 0 ~ 060 bSW 0~0 0~0 0 ~ 040 0 ~ 260 0 F 130 0 '20 0 ' 0~0 0~0 0 '49 W 0~0 0~0 0 ~ 0 0 ~ 110 0 ~ 140 0~0 0 ' 0~0 0~0 0 '50 WNM n.o 0~0 0 ~ 010 0 ~ 080 0 ~ 120 0 ~ 449 0~0 0~0 0 ~ 0 0 '59 NM 0~0 0~0 0 ~ 0 0 ~ 010 oi020 0 ~ 060 0~0 0 ' 0 ~ 0 0 ~ 090 NNM 0~0 0~0 0 ~ 0 0 ~ 020 0 ~ 050 0 ~ 160 0 ~ 090 0~0 0~0 0 ~ 320 TOTALS 0~0

'I 0~0 0 ~ 559 2 '97 I ~ 138 I ~ 348 0 ~ 230 0~0 0~0 ~ 5 ~ 573

0 TABLE 6 (Continued}

STABILITY CLASS E MIND SPEEDS IN METERS PER SECOND FROM THE SECTORS INDICATED SECTOR 0 ~ 13 0 ~ 45 1 ~ 10 l>>99 2>>80 F 45 6 '1 9 '9 13 F 00 TOTALS N 0~0 0 F 010 0 '60 0 ~ 090 0 ~ 150 0 ~ 370 0~0 0~0 0~0 0 ~ 679 NNE 0~0 0 F 010 , 0 ~ 080 0 ~ 110 0 ~ 260 0 ~ 389 0 ' 0~0 0~0 0 ~ 849 NE ,0 ~ 0 0 '30 0 ~ 040 0 F 100 0 ~ 090 0.240 0~0 0~0 a.o- 0>>499 ENE 0 ~ 0 0~0 0 '60 0 ~ 030 0~0 0~0 0~0 0~0 0~0 0 '90 E ~ 0 0~0 0 ~ 130 0 '30 0 '50 0 ' 0 '

0~0 0~0 0 ~ 310 ESE 0~0 0~0 0 ~ 080 0 ~ 090 0 080 F 0 0~ 0 0 ' 0 ' 0 '50 SE . 0~0 0 ~ 010 0 '99 .0 ~ .360 0 '00 0 '40 0~0 0~0 0~0 1 ~ 208*

SSE 0~0 0 ~ 030 0 '49 0 ~ 270 0~Q Q~ 0 0~0 0~0 0~0 0>>749 5 0~0 0 ' 0 330

~ 0 ~ 250 0 F 080 0~0 0~0 0~0 0~0 0 '59 SSM 0~0 0 ~ 010 0 '40 )80 0 '90 0 '20 0 ' 0~0 0~0 0 ~ 439 0 ~

SM 0~0 0 F 010 0 '30 0 ' 0 ~ 0 0~0 0 0~0 0~0 0 '40 MSM 0 ' 0 ' 0 '40 0 ~ 190 0 '30 0~0 0~0 0~0 0~0 0 ~ 459 M 0~0 0 ~ 010 a.lso a.34o 0 ~ 080 0 ' 0~0 0~0 0~0 0>>579 MNM 0 ' 0~0 0 F 010 0 '20 0 ~ 030 0 070

~ 0~0 0~0 0~0 0 '30 NM 0~0 0~0 0 ~ 0 0~ 020 0 ~ 020 0 '60 0~0 0~0 0~0 0 AD )00 NNM 0~0 0~0 0 030

~ 0 '30 0 ~ 020 0 ~ 070 0~ 0 0 ~ 0 0~0 0 ~ 150 TOTALS 0~0 0 '20 2 '27 2 '07 1 ~ 278 1 ~ 258 0~0 0~0 0~0 7 ~ 190 STABILITY CLASS F MIND SPEEDS IN METERS PER SECOND FROM THE SECTORS INDICATED SECTOR 0'o 13 0 ~ 45 1 ~ 10 1 ~ 99 2>>80 F 45 6 '1 9 9 13 F 00 TOTALS N 0~0 0 ~ 010 ~ 060 0 ~ 090 0 '40 '0 F 080 0~0 0~0 0~0 0 ~ 379 NNE 0~0 0 F 010 0 ~ 160 0 ~ 200 0 ~ 060 0 ~ 130 0 ~ 0. 0~0 0~0 0 '59 NE 0~0 0~0 0 ~ 050 0 ~ 090 0 '30 0 '40 0~0 0~0 0~0 0 '09 ENE 0~0 0 F 010 0 ~ 130 0 '50 0 ~ 040 0~0 0~0 0~0 0~0 0 ~ 230 E 0~0 0 ~

0' 0 ~ 200 0 ~ )30 0 ' 0~0 0~0 0~0 " 0~0 0 '30 ESE ~ 0 0~0 0 ~ 090 0 ~ 010 0~0 0~0 0 ' 0~0 0~0 0 F 100 SE 0~0 0 F 010 0 '40 0 ~ 020 0 '40 0~0 0~0 0~0 0~0 0 ~ 210 SSE 0~0 0 '20 0 '60 0~0 0 ' 0~0 0~0 0~0 0 ~

o.o'0; 0 ~ 080 5 0~0 0 F 010 0 '80 0~0 0~0 0~0 0>>0 o.a a.09o SSM 0~0 0~0 0~ 010 0~0 0~0 0~0 0~0 ~ 0 0 ' 0 F 010 S'M 0~0 0~0 0 ~ 020 0~0 0~0 0 ~ 0 0~0 0~0 0~0 0 '20 MSM 0~0 0~0 0 '40 0 '50 0~0 0~0 0~0 0~0 0~0 0 ~ 090.

0~0 0~0 0 '30 0 F 070 0 ~ 010 0~0 0~0 0~0 0~0 0 ~ 110 MNM 0>>0 0~Q 0 F 010 0 F 010 o.ola 0 ~0 0~0 0 ~0 0~0 0 '30 NM 0~0 .-0 ~ 0 0 ~ 0 0 ' 0~0 0~0 0~0 0~0 0~0 0 ~

0' NNM 0~0 0~0

' 0 F 010 0 ~ 070 0F 070 0 '50 0 ' 0 ' 0~0 ~ 200 TOTALS 0~0 0 F 070 1 ~ 089 0 ~ 789 0 '99 0 ~ 300 0~0 0~0 0~0 '2 ~ 846

~ . ~:

TABLE 6 Continued)

STABILITY CLASS G WIND SPEEDS IN METERS PER SECOND FROM THE SECTORS INDICATEO SECTOR 0 ~ 13 0 ~ 45 I ~ 10 I ~ 99 2 ~ 80 4 ~ 45 6 ~ 91 9 ~ 59 13 ~ 00 TOTALS N 0 ' 0 ' 0~ 050 0 '70 0 ' 0~0 0~0 0~0 0 ' 0 '20 NNE 0 ' 0~0 00120 0 F 180 0 ~ 040 0 ' 0~0 0~0 0~0 0 '40 NE 0~0 0 F 010 0 ~ 080 F 040 0~0 0' 0 ' 0~0 0 ' 0 ~ 130 ENE 0~0 0~0 0 '60 0 F 070 0 F 080 0' 0 ' 0 ' 0 ' 0 '10 E 0~0 0 ' 0 '40 0 ~ 060 0 ' 0' 0' 0 ' 0' 0 F 100 ESE 0~0 0~0 0 ~ 010 0 ' 0' 0' 0~0 0~0 0~0 0 ~ 010.

SE 0~0 0 0'

' 0 ~ 020 0 ' 0' 0' 0 ' 0' 0 ' 0 '20 SSE 0 ' 0 ~ 010 0 ' 0 0

~ 0' 0 ~ 0 0~0 0~0 0 '10 '

5 0 ' 0' 0 '40 0 0

~ 0' 0~0 0 ' 0~0 0 ' 040 SSW 0 ~ 0~ 0~0 0' 0' 0~0 0 ' 0~0 0 ' 0~0 F

0~0 SW 0 ' 0~0 0 ~ 0 0 ~ 010 0~0 0~0 0 ' 0 ' 0 ' 0 ~ 010 WSW 0~0 0 ~ 0 0 ~ 0 0~0 0 ' 0~0 0~0 0 ' 0 ' 0~0 0~0 0 ' 0 ~ 010 0 '10 0~0 0~0 0 ' 0' 0' 0 '20 WNW 0 ' 0 ~ 0 0 '10 0~0 0~0 0~0 0~0 0' 0' 0 ~ 010 NW NNW 0~0 0~0 0

0 0 '10 0~ 030 0 '

0 ~ 020 0 '

0~0 0 '

0~0 0

0 0 0 0'

~ 0 '

0~0

~ 010

'50 0

TOTALS 0 ~ 0 0 ~ 010 0 '89 0 ~ 459 0 '20 0 ' 0~0 0' 0~0 1 ~ 079

0 TABLE 6 Continued)

ELEVATED PORTION OF SPLIT-LEVEL JFD'S STABILITY CLASS A WINO SPEEDS IN HETERS PER SECOND FROH THE SECTORS INDICATEO SECTOR 0 ~ 13 0 ~ 45 I~ 10 I ~ 99 2 ~ 80 4 ~ 45 6 ~ 91 9 ~ 59 13>> 00 TOTALS N 0~0 0 ~ 0 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0~0 0 ~0 NhE 0 ' 0~0 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0~0 0~0 hE 0 ' 0~0 0 ~ 0 0~0 0~0 0~0 0 ' 0~0 0 ~ 0 0~0 ENE 0 ' 0~0 0 ' 0~0 0~0 0~0 0~0 0~0 0 ~ 0 ooo E 0 ' 0~0 0 ~ 0 0~0 0~0 0 ' 0~0 0~0 0~0 0 '

ESE 0~0 0~0 0 ~ 0 0~0 0 ~ 0 0~0 0 ~ 0 0~0 0 ~ 0 0 '

SE, 0~0 0 ' 0 ~0 0~0 0~0 0~0 0 ~ 0 0~0 0 ~0 0~0 SSE 0~0 0 ' 0 ~0 0~0 0 ~ 0 0~0 0 ~ 0 0~0 0 ~0 0~0 5 0 ' 0~0 0 ~ 0 0~0 0 ~ 0 0~0 0 ~0 0~0 0 ~0 0~0 SSW n.o 0~0 0 ~ 0 0~0 0 ~ 0 0~0 0 ~0 F 0 0 ~ 0 0~0 Sb 0~0 0~0 0 0 0~0 0 ~ 0 0~0 0 ~0 0~0 0+0 0~0 WSW 0~0 0 ' 0

~

~ 0 0~0 0 ~ 0 0~0 0 ' 0~0 0 ~ 0 0 '

W 0~0 F 0 0 ~ 0 0~0 0 ~ 0 0~0 0 ' 0~0 0+0 0 ~ 0 WNW 0 ' 0~0 0 ~0 0~0 0 ~ 0 0~0 0 ~ 0 0~0 0~0 0~0 NW 0~0 0~0 0 ~ 0 0~0 0 ~ 0 0~0 0 '0 0~0 0 ~ 0 0~0 hhW n.o 0~0 0 ~ 0 0~0 0 ~ 0 0~0 0 ~ 0~0 0~0 0~0 TOTALS 0 ' 0~0

~ 0 0 ' 0~0 0 ' 0~0 0 ' 0~0 0 '

STABILITY CLASS 8 IN HETERS PER SECOND FROH THE SECTORS INDICATED SECTOR WIND SPEEDS 0 13 0 ~ 45 1 10 I 99 F 80 4 '5 6 '1 9 '9 13 F 00 TOTALS h 0 ~ 0 0~0 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0~0 0 ~ 0 NNE 0 ~ 0 0~0 0 ~ 0 0~0 0~0 0 ' 0 ' 0~0 0~0 0 ~ 0 neo 0~0 0 ~ 0 0~0 0~0 0~0 0 ' 0 ~ 0 0~0 0 ~ 0 ENE 0~0 0~0 0 ~ 0 0~0 0~0 0~0 0 ' 0~0 0~0 0~ 0 0 ' 0 ' 0~ 0 0~0 0~0 0~0 0 0

~ 0~0 0~0 0 '

ESE 0~0 0~0 0~ 0 0~0 0~0 0~0 0' 0~0 0~0 0 ~ 0 se 0 ' 0 ' 0~ 0 0~0 0 ' 0~0 F 0 0 ' 0~0 0~0 SSE 0~0 0~0 0~0 0~0 0~0 0~0 0~0 0~0 0~0 0 ~ 0 5 0~0 0~0 0~0 0 ' F 0 0 ' 0~0 0~0 0~0 0~0 SSW 0~0 >> 0~0 0 ~ 0 0~0 0 ' 0~0 .0 ' 0~0 0~0 0~0 Sw 0~0 0~0 0 ~ 0 0 ' 0~0 0~0 0~0 0~0 0~0 0 WSM 0~0 0~0 oio 0~0 0~0 0~0 0 ' 0~0 0~0 0+0

'W 0~0 0~0 0 ' 0~0 0 ' 0~0 0~0 0~0 0~0 0 ~ 0 WNW 0 ' 0 ' 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0~0 0 ~ 0 hW 0+0 0~0 0 ~ 0 0~0 0' 0~0 0 ' 0~0 0~0 0~0 hhW 0 ' 0~0 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0~0 0 ~ 0 TOTALS 0~0 0~0 0 ~ 0 0 ~ 0 , 0~0 0 ~ 0 0~0 0~0 0 ~ 0 0 ~ 0

~

If TABLE 6 (Continued)

ELEVATED PORTlON STABILITY CLASS C INOICATEO SECTOR WINO SPEEOS 0 ~ 13 0 '5 IN METERS PER SECOND FROM THE SECTORS 1 ~ 10 1 ~ 99 2e80 4 '5 6 '1 9 '9 13 F 00 TOTALS N 0~0 0~0 0 ~0 0~0 0~0 0~0 0~0 0~0 0~0 0~0 NNE 0 ' an 0~0 0~0 0~0 an 0~ 0 DE 0 0~0 an NE n.o 0 ~ 0 0 ' 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0 ~ 0 ENE 0~0 0~0 0 ' 0~0 0~0 0 ~ 0 0~0 0~0 0~0 0 ~ 0 E 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0~0 0 ~ 0 0~0 0 ~ 0 ESE 0~0 '0 ~ 0 0~0 0 ' 0~0 0 ~ 0 0~0 0~0 Oeo 0 ~ 0 SE 0~0 Oeo an 0 ~ 0, 0~0 0 ~ 0 0 ' 0~0 0~0 0 ~ 0 SSE 0~0 0 ~ 0 0 ' 0 ' 0~0 0~0 0~0 0~0 an 0 ~ 0 S 0~0 0~D D AD 0~0 0~0 0 ~ 0 0~0 0 ~ 0, 0~0 0 ~ 0 SSW 0 ' 0~0 0~0 0~0 0 ' 0 ~ 0 0~ 0, 0~0 0 ' 0 '

5'W 0~0 0~0 0 ' 0~0 0 ' 0~0 0~0 0~0 0~0 0 ~ 0 WSW 0~0 Oeo 0 ' 0~0 AD 0~0 0~0 0~0 0~0 0 ~ 0

'W 0 ~ 0 0 ~ 0 0~0 0~0 0~0 0~0 0 ' 0~0 0~0 0 ~ 0 WNW 0~0 0 ~ 0 0 ~ 0 0~0 0 ' 0~0 0~0 0~0 0~0 0 '

NW 0~0 0~0 0 ~ 0 0 ' 0~0 0 ' 0~0 0~0 0~0 0 ~ 0 NNW 0 ~ 0 0 ~ 0 0 ~ 0 0~0 0~0 0~0 0~0 0~0 0~0 0 ~ 0 TOTALS 0~0 0 ~ 0 0~0 0~0 0~0 0~0 0 ' Oeo 0~0 0~0 STABILITY CLASS O SECTOR W'INO SPEEOS Oe)3 0 '5 IN METERS PER SECONO FROM THE SECTORS 1 ~ 10 1 ~ 99 F 80 4 '5 6 '1 INOICATEO 9e59 13 F 00 TOTALS 0.0 0~0 0 F 180 0 '99 0 '10 0 ~ 549 0 '90 0~0 0~0 I ~ 628 NNE 0~0 0 ~ 0. 0,230 0 ~ 4)9 0 '39 0 '39 0 '90 0 ' 0~0 '2 ~ 017 NE 0 ' 0 '50 0 '30 0 '70 0 ~ 350 0 '00 0~0 0~0 0 ' le298 ENE 0~0 Oe050 0 0

~ 0 379

~ 0 '09 0 '50 0~0 0~0 0~0 I F 089 E n.o. 0 0

~ 0.)eo 0 '20 0 ~ 310 0 ~ 669 0~0 0 ' 0~0 1 ~ 278 ESE 0~0 0' 0 '30 0 '89 0 '50 0 ~ 529 0 ' 0~0 0~0 1 ~ 698 SE 0 ' 0' 1 ~ 328 2 '77 1 ~ 128 1 ~ 648 0F 100 0~0 0~0 6 '82 SSE 0~0 0 050

~ 0 599

~ I 059 0 929

~ 1 ~ 947 0 '40 Oeo 0 ~ 0, 4 '24 5 0~0 0 0

~ 0 '79 1 ~ 288 0 699

~ 0 '69 0 '30 0~0 0~0 3.665 SSW 0~0 0 0

~ 0 459

~ 1 ~ 138 0 '29 0 '29 0 '50 0~0 .0 ~ 0 2 '06 Sw 0 ' 0 '50 0 639

~ 1 ~ 748 0 '39 0 779

~ 0 '20 0~0 =

0~0 3 '75 WSW Oeo 0 ' oe230 ) F 468 1.)68 0 '69 0 0 ~ 0~0 0~0 3 '35 h 0~0 0~0 0 ~ 140 1 ~ 278 1 ~ 049 1 ~ 089 0 F 010 Oeo 0~0 3 '65 hNW 0~0 0 ' 0 ~ 050 0 ~ 160 0 F 499 0 ~ 939 0 ~ 130 0 ' 0 ' 1 ~ 778 Nh 0~0 0~0 0 ' 0 '40 0 '90 0 '20 0 '30 Own 0~0 0 F 479 NNW 0 ~ 0 0~0 0 ~ 050 0 '60 0 080

~ 0 '60 0 '20 0~0 0~0 0 '69 TOTALS 0~0 0 '00 5 '23 12 ~ 793 9 '78 )2 '83 0 ~ 709 0~0 0~0 40 '86

TABLE 6 (Continued)

ELEVATED PORTION STABILITY CLASS E secT0R WIND SPEEDS 0 '3 0 '5 IN METERS PER SECOND FROM THE SECTORS 1 ~ lo I ~ 99 2~80 4 '5 6 '1 9 INDICATED

'9 13 F 00 TOTALS N 0~ 010 0 ~ 050 0 F 180 0+379 0 ~ 150 0 ~ 829 0 ~ 150 0~0 0~0 1 ~ 748 NNE o.nlo 0 ~ 050 0 '70 0+409 0 ~ 429 0 ~ 729 0 ~ 130 0~0 0~0 2 '27 NE 0 ~ 0 0 ~ 0 0 ~ 409 0 ~ 499 Oq389 0 ~ 449 0 ~ 020 0~0 0 ' 1 '68 ENE n.o n.o 0 '99 0 '40 0 ~ 429 0 ~ 260 0 ~ 010 0 ' 0~0 I ~ 538 e 0 ~ 0 0 ~ 0 0 '80 0 '29 0 '89 0 '39 0~0 0~0 0~0 I ~ 937 ESE 0 ~ 010 0 F 050 0 320

~ I ~ 258 0 '89 0 ~ 409 0 '20 0~0 0~0 2 '56 SE 0 ~ 017 0 ~ 090 0 '29 I ~ 338 1 ~ 019 0 '39 0 ~ 010 0~0 0~0 4 '42

. SSE n.o 0~0 0 270 0 '79 1 ~ 049 0 '69 0 '20 0~0 0~0 2 '86 5 0~0 0~0

~

0 ~ 140 0 ~ 709 0 ~ 310 0 '09 0 '30 0 ' 0~0 1 0698 SSW 0~0 0 ~ 0 0 F 180 0 ~ 659 0 ~ 509 0 ~ 370 0 ~ 010 0~0 0~0 1 '28 SW 0~0 0~0 0 ~ 320 0 ~ 799 0 ~ 979 0 ~ 290 0~0 0~0 0~0 2 '87 WSW 0~0 0~0 0 ~ 230

'0 ~ 619 0 F 419 0 ~ SS9 0~0 0~0 0 ' I ~ 828 W 0~0 0~0 0 180 0 ~ 409 0 ~ 350 0 '59 0~0 0~0 0~0 I ~ 897 0~0 0 ' 0 '40 0 F 040 0 '70 0 ~ 479 0~0 0~0 0~0 0 ~ 929 NW 0 ' 0~0 0 '90 0 F 040 0' 0 '40 0 ' 0~0 0~0 0 '70 NNW 0~0 0~0 0 '90 0'o 090 0 F 150 0 ~ 399 0 '30 0~0 0~0 0 ~ 759 TOTALS 0 '47 0+240 4 '24 8+998 7 '30 8 '28 0 F 429 0~0 0~0 30 '96 STABILITY CLASS F WIND SPEEDS IN METERS PER SECOND FROM THE SECTORS INDICATED SECTOR 0 13 0 ~ 45 1 ~ 10 1 99 2 ~ 80 4 ~ 45 6 ~ 91 9 ~ 59 13 ~ 00 TOTALS 0~0 0 ~ 0 0 140 0 '50 0~0 0 '89 0 ~ 020 0~0 0~0 0 '99 NNE 0~0 0+0 0 ~ 090 0 ~ 170 0 ~ 080 0 ~ 599 0 '20 0~0 0~0 0 '59 NE 0~0 0 ~ 0 0 F140 0+080 0 F 190 0 F 180 0 '30 0~0 0 ~ 0 0 ~ 619 eNE 0~0 n.OSo 0 F 090 0 F 080 Oo]50 0 '20 0~0 0~0 0 ~ 0 00589 E 0~0 0~0 oeo 0 '90 0 '80 0 ~ 110 0 ' 0~0 0 ~ 0 0 ~ 280 ESE 0+0 0~0 0+140 0 ~ 459 0 '30 0~0 0~0 0~0 0~0 0 '29 SE 0~0 0 ' 0 ~ 140 0 ~ 370 0 '60 0~0 0' 0~0 0 ~ 0, 0 '69 SSE 0~0 0~0 0+050 0 ~ 300 0 F 120 0 ~ 070 0' 0~0 0 ~ 0 0 '39 5 0~0 0~0 0 '90 0 ~ 300 0 ~ 080 0 '70 0 '20 0~0 0~0 0 ~ 559 SSW 0~0 0~0 0 ~ 0 0 F 170 0F 080 0 '60 0~0 0~0 0 ' 0 ~ 310 5W 0~0 0~0 0 ~ 050 Oo200 0 ~ 230 0 F 100 0~0 0~0 0 ~ 0 0 '79 WSW 0~0 0~0 o.nso 0 '70 0 ~,080 0 ~ 180 0 ' 0 ' 0 ~ 0 0 '79 0~0 0~0 0~0 0 '20 0~ 040 0 ~ 070 0~0 0~0 0~0 0 '30 WNW 0~0 0~0 0 ' 0 F 170 0~

0+0 120 0 ~ 070' 0 ' 0~0 0~0 0 ~ 360

'90 NW 0~0 0~0 0~0 0 ~ 090 0~0 0+0 0 0~0 0 NN'W 0~0 0~0 0~0 0 F 080 0 ~ 0 F 080 0 ' 0'on 0~0 0 ~ 160 TOTALS 0~0 0 ~ 050 0 ~ 979 3 ~ 096 I ~ 638 2 ~ 197 0 ~ 090 0~0 0~0 8 ~ 049

TABLE 6 (Continued)

ELEVATED PORTION STABILITY CLASS G SECTOR 0 '3 WINO SPEEDS 0+45 IN METERS PER SECONO FROH THE SECTORS,INQICATEO

) ~ )0 ) ~ 99 F 80 4 '5 6 '1 F 59 13 F 00 TOTALS N 0~0 0 ~ 0 0 ' 0 '40 0 '40 0~0 0 ' 0 ' 0 ' 0 ~ 08.0 NNE 0 ' 0 ' 0 ' 0 '40 0 '40 0 '40 0 F 010 0~0 0 ' 0 ~ 130 NE 0 ' 0 ' 0 ' 0 '40 0 F 080 0 F 070 0 '20 0~0 0 ' 0 '10 ENE 0 ' 0 '

0 ' 0 '

'40 0 '40 0 '40

'40 0 '20 0 ' 0 ' 0 '00 E 0 ' 0 0' 0 0' 0 0 ' OoO 0 ' 0 F 080 ESE 0 ' 0 ~ 0 0 '50 0 ' 0' 0 ' 0 ' 0 ' 0 ' 0 F 050 SE 0 ' 0 ' 0 ' 0+040 0' 0 ' 0~0 0 ' 0 ' 0 '40 SSE 0 ' 0 ' Oo050 0 ' 0 040 F 0' 0 ' 0 ' 0 ' 0 '90 5 0' 0' 0' 0 ' 0' 0 '40 0 ' 0 ' 0' 0 '40 SSW 0' 0 ~ 0 0' 0 ' 0' 0' 0 ' 0 ' 0 ' 0 '

Sw 0' 0 ' 0' 0 ' 0' 0' 0 ' 0 ' 0 ' 0 '

WSW 0 ' 0 ' 0 ' 0' 0' 0 ' 0 ' 0 ' 0 ~ ,0 0' 0 ' 0' 0 ' 0 ' 0' 0 ' OoO 0 ' 0 ~ 0 0 '

WNW 0 '

0' 0' 0 ' 0 0 ' 0' 0'

0 '

0 ~ 0 0 '

hW 0 0 0 ' 0 F 080 0 0 ' 0 0 ~ 0 0 F 080 hNW 0' 0~0 0 ' 0 ' 0 ' 0 ' 0' 0~0 0 ~ 0 0 '

TOTALS 0' 0 ' 0 '00 0 '80 0 '40 0 '30 0 F 050 0~0 0 ' 0 '99

I TABLE 7 BROWNS FERRY NUCLEAR PLANT METEOROLOGICAL DATA SPLIT-LEVEL JOINT FRE UENCY DISTRIBUTION IN PERCENT REACTOR AND RADWASTE BUILDING RELEASES FOURTH UARTER 1980 GROUND-LEVEL PORTION

~~T~CaSS II1,'IS III I T:>>S>> R S C Nn I:RIIM TIIE SECTIIRS TNIIICIITEO 0 ~ 45 99 ~ 80 >045 e ~ 91 9 ~ 59 13000

'1 SECTOR 0~ 1 ) 1 0 10 1 ~ 2 T T>4LS

'0 II'IE>>ll ven .> ~

'I 0 0 0~0 0 0 0~0 0 Oln 0~0 0 0 0 ~ <)

0 ll>0 0 ~ 14V 0 0 0~0 0 0 0 0

~ 0 V~

0 0>>>

ea

(>>

uep

~ n l)>auaapanuaeuaauau 0'>>ll ae(>

0 0 aeo 0,0 Oeo

>IF 0~V

,0 VIV II 0 0 VIV Oea II VS 0 i

~ 0 V

')

F, ~

ESE '<> F 0 0~0 0 0~0 0~0 0~V 0~0 0~0 0~0 0~0 SE . 0~0 000 0~0 0~0 0 ~ 0 n~V Oeu ~ 0~ ~ V SSE u~0 a>>V Oeu 0~0 0 090 ueu 0~0 0~0 0~0 0 ~ V9<)

5 V,a nev V.O O,a O ue 0 V,u .0 .O O,O , V

'u S~w E .n >.0 V,u a.o30 0 050 0 V Oea 0~0 0~0 0 08V Sw N> ~ a f>op VS <> VS 0' 0 Veu e V~ ~ V l)SW i>> (> uea 0~V 0~0 ' 0 VIV 0~0 0~0 Oea 0~0

~ ~

W ve() n.a ' Oeu O,a O, O.V Oeu Oea V,O V.V c.o o.n o.o 0'o o.o I;II>

NH 1141 o o 0 s

") ~

0 n

0.

V~ 0

~00 uen o o,n 0~0 oil 0 o IF,~.TF=O,1 0 0 o,>

n~V aen - 0~0 0~0

~

V~ 0 V

TOTI<LS ,>>n <eu o.n o, luo 0,259 o,u3n 0.279 O.o o,o uee68 e>Tht< IL 1TY C t<SS 8

,.lilt) St>LLl)s 1N l)LTERs t>ER SEcoNQ I-'Rtt)1 Tl!E sEGTURs 1NolcATEO OECT t>( n ~ 13 (>045 1>10 10 9 2 ~ 0 ~ F 00 tl tll )E Nl:

u.a Geu

~ 0 PE 0 0~0 0>>

0 ~ i) 0'

~ V 0~0 0 0~

'20 0 0~0 0 0 'Zu

~ '

0~0 0 00050

~

0~0 0~

Oea 0 ~ 189 ENE 0~0 nea 0~0 0 ~ 010 0~0 0~V 0~0 . 0~0 0~0 0 ~ Olv E i) ~ 0 0~0 Oeo 0~0 0~ VIV Vea eo Oeo ~ U FSE R>ea aea 0~0 -0 ~ 0 0~0 0~V 0~0 0~0 0~0 0~u SE Ve ~ ~ 9TT Oe ssE v.n o.o n.o o.a4o o,u u,u aalu 0~0 0~0 0 '4V 5 <> ~ n 0~G vs V neo 0 ~ 0 V AU ~ V 55>t V ~ C) n,a '

~

0 0 ~ Q5Q 0,0 O,V VS 0 0~0 0 '0 0 ~ 05V 5>t E) ~ 0 >)>>0 n 0 ~ ((10 e Qe ~ V

'0 ~ 020 HSW V ~ '0 aeo Oea OEOZO" 0 ~ 0 AU 0~0 0~0 0~0 9 vea ) ~ ~ > -

~ 0 ~ ~ 0 W>lW ~ > n n~0 0~0 a~0 0~0 0~ 1 l9 0 ~ 050 0~0 0~0 0 ~ 229 tilt <> ~ <l ue V 0~0 0~0 ~ 0 V~ V V 0~ ~ V~

tt:tw ',).n ( .n "

O,n O,a . O,OZO n,u30 u~0 Oea 0~0 0 '5V TUT4LS V~n ueV, 0 ~ <) 0 ~ 209 0 ~ 229 V~ 538 003e9 0~0 u ~0 1 ~ 3 >b

0 TABLE 7 (Continued)

SECTOR 0 13 0 45 1 10 1 99 2 ~ 80 4y45 6 91 9 59 L3 00 TPTA1S N Oeo 00 Oeo Oeolo 0020 Ve040 Oeo Oeo 0~0 0 ~ 070 NE Geo oeo VeV Oeolo '0 ~ 020 0 ~ 010 0 ~ 050 Oeo 0~0 V)090 0 0 0,0 O.D O,O 0.0 O,O D,V O,O O,O O,O O.O SE Oeo OeO Oevlo 0 050 0 050 0 V oeO 0 0 Oeo Vello

)

S Oeo Oeo Veo10 0 ~ 110 0 ~ 130 Veo 0~0 Oeo Oeo 0 ~ 2e9 l

5 l oeV 0 0 Oeolo 0~0 0 ~ 010 0~V 0~0 0~0 Veo Oe020 ll vo eee.~ Q llu 0~0 0 0

~e~a!L

~

0 ~0 Oeo 0 0 0~0 edl 0~0

~~>lfl~eRI 0, 0 ~ VLV Oe020 Oeo 0 ~ Veo V~ 0 0 ~ 050 0~

0~0 0~0 oeo V ~ OLO Oe110

~.~~

~

1

~QIAL~

v j c: R S N R ll H RNOCT SECTOR 0 ~ 13 0 45 1 10 1 ~ 99 2i80 e 45 6 91 9 59 13 ~ 00 TUTA1S v.o O.OLO O,14O L,605 1.864 0,140 O,O 3,777 N

I I O,O O,OZO 0 06 Oe080 oe329 565 0 897 0 ~ 050 0~0 05 0~0 2 '2 V ~ e78 VeO 0~0 0~0 Oe020 0 0 V 100 E 0~0 0~0 0 ~ 010 Oe070 Oe080 0 '50 0~0 0~0 0~0 0 '09 0 3 0 0 040 0 0 0 0 0 0 VS 090 0 0 0 ' 0 '60 0 '29 Ve 5

18 0 '672' 0' 0 ' 0 ' ~

S O.O O.V OeO3O Oe L69 Oe239 Ve140 O.o OeO OeO Oe578

) 6 05 050 0 0 0 0 ' '59 SH 0~D 0~0 Veolo 0 030 0 ~ 060 V ~ 100 0~V Oeo 0~0 0 ~ 199 n ) 9 0 1 9 528 0 0 0 0 0 0 ~ 80 OeO oeO oeo oe050 5

Oe070 0

Oe379 48 '

Oe090 Oeo Oeo VS 588 236 NV veO 0~0 0~0 0 ~ 050 0 ~ LOV 0 '79 .Oe,458 $ geo u.geo ., qejll8 Ntg ,n O.n 0 030 O O60 '1 206 feL86 O,O50 0,0 2e542 0 9 5 2 3 9 4 5 093 0 39 0 7 07

TABLE 7 (Cont1nued) 1 C AS

'il tt tl RT P S C N R(lN TH ORS 1NOICAT D SECT(IR O 13 O 45 1 ~ LO 1 ~ 99 208O 4045 6591 .59 13500 T TAld

~t~g ~~0 tt V,o 090 0 0~0

'20 n ~ 110 utodo 0 '30 0 140 0 '48 ug698 0~0 00050 0~0 0~0 0~0 000 0 ~ 807 0 '37 t

0 IIS(I 0020 It 020 0 U31t 0 D 00 00 0110 u,u 0.010 usu50 000 0 0 '80 (9u an 0' 0' V~

E ESE SE n~~,(tin 050 0 020 0,07n Oeldo o,n40 095 8 0 090 09 9 u ~

0 F 829 000 0 0 0 0 0 ~ 536 SSE ~

0~0

~

0 ~ 010 0 'e9 0 220 0 F 329 0 ~ 319 0 '29 0~0 0~0 0~0 l. 056 S 3) ~ 0 00020 5 0 SS(t u ~ Oln 0 '90 0 0 0 050 0 '90 0~0 0~0 0 0 0 ~ 339 s:t v.o o.olo o,n 0 o,o o u, o o,u O.u 00 u50 ~ U wS(t 0 0 0 Olo oolto 0 o8O o LLo v 0 oDO 0~0 O o 00309 W Vou 0~0 0 ~ 100 0~ 09 0 0 ~ 00 0~0 0~0 0~0

~ 8 il V 0 0 ~ 010 0 ~ 020 0 020 0 ~u 0~0 0~0 0 0 0 ~ 050 ttW tllW 050 u

0~0 000 05020 O,030 0~0 0 n 150 0~

0 110 0 0~

O3867 0~0 00179 ~

~

000 '00 ~

1 336 TO ALS 1, 3e 2 272 2 512 4.665 0 '29 050 o.o 'o 924 STA81 (TY CI,ASS F SSC103 W(ttu SP(: 't)S 1tt Nf TERS PER SECOND FR(IH THE SECTORS 0,13 0,35 1, 10 1,99 2~0 ~9, 'S'il,o, 1N01CATED 1 too N

ttllE u~

0 0 0,0 ~

n~0 010 0~0 0 09020 050 0 0 ~ 1LO 0

0 189 0 0~

u 169 0~0 0~0

~

0~0 0~0 0~0 0 ~ 488 N 0~0 0 ~ 010 0~0 0 0~0 0~u 0 V~

ENE 0~0 Oooln (l ~ 040 0,0

~

0~0 u,u

~

0,0 050 ufo 0 '50 E 0~0 0,0 v ~ 100 Osl>0 0~~ 0~O ~

ESE SS SE 3~0 O,O 0 l 0 ~ 010 O.OTOO;RTD n.02 0 ~ 159 o.369 0,Oil'~~,U 0 ~ Oso o 169 0~0 o 179 0~V o 05o 0~0 l4 O,o 000 0~0 0~0 0~0 09209 0 '87 S VS 0 0900 ~ 1 0 ~ o ~ Su ~ ~ ~ ~ P SSw 0.0 v.o4o o.nzo o,o o,o o,u o0o o,o o,o u,oeu SW 0,0 00010 05020 0 ~ OLO 0~ VDV 000 050 000 ~ 0

~SW 00 .D;0 0,030 0,02D 0,0 0,0 0,0 00 00 000tt W 5 Wllw 0 n . 0~0 0 ~ 030 0 ~ 020 0~0 090 0~0 0~0 0~0 00050 t]ll 0 ~0 090 0~V 0 0~0 0 05 0 ~ 'u 0 ~0 OIO 0 ~0 0 u ttttw v.o 000 0 ~ o5o 0 ~ 070 0;169 0 ~ 179 0~0 0~0 0~0 0 ~ sbP TOTAlS 0 0 0 ~ 130 1,5e5 1 O47 O 757 0 ~ 680 0 0 020 0 0 4 186

~

TABLE 7 (Continued)

SECT))R 0 13 ) 45 1 10 1 99 2 80 4 46 6 91 9 59 13 ~ 00 TUTALS

~E~.~ ~~

(I 0~0 O.n

() ~ 030 o,o 0 ~ O'SO o,o)o 0 a 199 o,o2o, o,04o 0 ~ 110 2

0 ~ 040 n

o,o 0~0 o.o 0~0 0~0 0~0

'0 ~ 0 0 F 45))

0 8 0 '70 E o.n O.o 0 ~ 150 0 050 F 0,0 0~0 0~0 0~0 0 ~0 0 ~ 199 0 n 0 SE Ooo 0>020 Oi179 Oio Oeo n)n 0ln Oso Oeo 0 ~ 199 s on n 0 o,v novo 0 o o,n o o o o 0 o o o9o n t n 0 ))

SH Van Oenln Oen Ogo 0~0 0~0 oao oso v ~ 010 M 0~

~~Ql~LI!l9 0 0 010 n)010

~ 0~0 0~0 0

O,V 0~0 Ogo Oyo 0 '20 0

Nii 0~0 Oeo Oyo Ogo ,Oyo 0~0 0 ~0 0 ~ 0,. 0~0 . 0~0 h n 1

)) 6 ) 3 3 3

TABLE 7 (ConCinued)

ELEVATED PORTION OP SPLIT-LEVEL JFD'S cT t)t Y C AS A t')

1 l ) c ') S C ND RON TH SE TORS 1NO1CAT D

>ECTt)R 0 ~ 13 0 ~ 05 1 ~ 10 1 ~ 99 2 ~ 80 4 ~ 4> o ~ 91 ~ 59 13 ~ 00 T At.

~IU0 tl ttE

~0~2v.o 4~0 n

n,v 0~0 I 0 000 ouo 0~V 0 0 o,n 0 o 0~0 0 0 0~0 0~

0 0 0

0~V 0 0 0~V 0 V O

0~0

~

~ 0 0~V O Ofo 0 0

~

0~0 Of 0 0 0 0~

0~0 0~0 0~0 0~0 0)0 000 0~0 0;, 0

~0 E Stl 0~0 0~0 0 ~0 0~

0~0

> 0 0 0~0 0~V 0 0 0~

V~ V V V 0~V V~

0~

000 0 '

~

~

0~0 0

Vgo 0 0 0~0

'0 ~ V0

~

VS 0 SSE 0 0 0 0 0 '50 0~0 0 '0 0~0 0~0 0~0 0~0 0 '50 S V0V 000 000 000 nf ~ 0 0~

sw on On

'0 oo on oo ov oo oo oo oo SW 0~0 0 ~ 0~0 Of ) 0~0 0~V 0~0 0~0 0~0 VS 0 WSW 0 0 0~0 0~0 0~0 0~0 0~V 0~0 0~0 0~0 0~0 v.o n.o o,v v,o 00 0 Vo Wt)W 0 0 u.o 0~0 " 000 0 0 0~0 0 ' 0~0 '

~ 0 0~0 ttW 000 0 ~0 000 000 0 ~ 0~V 000 0~0 0~0 ~ 0 0 0 0 0 0 0 0 0 0 0~0 0~0 0 0 0~0 TDTAt.s o 0 O.v 0005o o o 0 o o,v . o,o o,o o,o o.o50 STA81 lTY 'C ASS t)

)t tttt) ~g IDS ll'I t4ETERS PER SECOND t'RUtt TtlE SECTDRS 1NDlCATED SECTUR 0013 0045 1010 1099 2 ~ tto 4i4> 091 0 9 l,OO T 0 o,o o,o Il,o o,o I Nt)E nn nn ov vo oo nv oo oo .oo oo Ht: 0~0 000 0 ~V 0~0 0 ~ V IV ~ 0 EIIE 010 n,o 000 0 0 000 0~V 000 000 0,0 V,O E O.n O.O vov O,v v, ESE 0~0 o,o u

u.~,uoB 0 ~V 0 0 0~0 0 0 0~0 0 0 0~0 0.II 0 0 0~V 0,0 0 0 0~0 Il.o 0 0 000 0 0 000 0 0 000 0 0 Oto S

SSW '00 000 0~0 0~0 o.o 0~0 0~0 oon 0~0 o,o o,

~

0~0 VIV 0~V v,v

~

0~0

.o V ~

000 0~0 Oyo sw ooo WSW 0 0 n.n- o.o o.o O 0 n.v O.O O,O O,O O>O w 0,0 00 wtlw o.o n.0 o, o o.o o.0 o, v o.o o, o o, o o, o ill 000 noo 00 Ofo oof vvI oo Nllw 000 no on oo . ooo on oo T'DTAt.S O 0 V.O Oon O.O 0~0 O,V 0~0 0~0 0~0 0~0

TABLE,7 Continued)

, ~

ELEVATED PORTION

>ECT>>R O. 13 de45 1 10 1.99 2 '0 F 45 6 9L 9e59 L3 00 TOTALS 0,0 0~0 0,0 0 ~0 a,o 0~P 0~0 0~0 0~0 NE N

U' MD 0~0 0

aeo Oea "" 0~0 0~0 e

0~0

'I 0~0 0~0 0~0 0~0 E VeO D.O O,a O,O O,a O,V a,p O,O O,O Ofo SC 0~0 0~0 0~0 0~0 0~0 0~V 0~0 pea 0~0 0~0 0

oeo 0,0 O,V5p 0,040 0 ~ 040 0~V 0~0 0~0 ' 0 of130

~S~,~~

00 Va 00 00 pafa

~

s>> v,n e,o o,v Oepa ~ ~ ~ ~ ~

O D.O O.a Oea O,040 O,O4O O,O4O O.OLO O,O Oea oeL3O D.O O,O Oep , O,P O,V O,O , O,a 0,0 0~0 Oip I (

MQIALS~ e Ce . ~ eLL~ LllQ Me L2~459~~ M'tl~2 IA~ZQ.ELJ R S gN~RQ~~H C SCCTV'1 Oe13 0 '5 10 1 99 2f80 4f e5 6 ~ 91 9 ~ 59 13 00 TOTALS tl 0~0 0 '50 Oeo90 0 ~ 120 0 '58 Le993 0 'L9 -

Oep 'ea 3e030 Oea 0~V f

Oea 0

0~0 Oe179 0~0 4

pe409 oe080 69 6

Oe 198 00 0 ~ 269 2

V V~

535 Oeb18 Va 100 35 0 ~ 040 0~0 Oe030 ba pep 00 0~0

'00,0 ~ O' 0~

2

~ 744 0379" 0 ~ 478 6

SE vea OeO5O O,409 0,458 0,159 Oe817 O,120 0,0 . O.O 2fal3 I 1< 3 34 76 5 63 5 0 D 0~0 pe319 0 ' 419 0

'0269 0 748 n 698 0 120 D

Oeo 0 0 0~0 0

L ~ 874 007 Sll 0~V 0~0 0 '409 0 ~ 239 69 0 ~ 309 Oe937

)68 0 ~ 060 40 0~0 0~0 i 1 ~ 684 0 2 9 0 0 0 LE 336 M 0~0 0~0 0 0 0 498 0 309 Oe349 0 ~ 130 0~0 Oeo 1 ~ 286 2 o 94 0~V 0~0 0 090 0 ~ 209 0 269 0 '57 0 070 0~0 0~0 lf495 093 4 4 76 8 6 5 0 6 29

TABLE 7 Continued)

ELEVATED PORTXON A81 JTY C ASS E SCCT'IR I

0

)::I)

1) 0 ~ t5
1) tt 1 ~ 10 P

1 ~

R 99 S C N 2 ~ 80 FROI( TN 4 ~ t5 SECTORS 6 ~ 91 1NDICATED s59 13 ~ 00 T TAL

<).O V.o 0 F 050 0 ~ 0'to DE 69 0 ')37 0 ~ VZO 0~0 0~0

)I)IF ') n 0 00090 0 )30 0 229 V~ 'I97 F 110 0' o o )0355

)IE >) ~ V 0~0 Vr(>SV Or f~MO ~ ) <) ~ 499 V~ V V ~ 0 '

t< 0 ',).0 0 ~ 050 0 329 0 159 U )79 0 '20 0~0 0 0 0 ~ 73(t E V~ 0 <!00, 0~ ) 0 0~ 0 ~ <) ~ V~ 0 ~ ~ D SLrn ESE SSE Orn 0 n 0~V Oro 00050 0 ~ 229 Oe229 0 ~ 359 0 ~ 498 Or7 0 ~ 528 7

0 389 0, 09 0 ~ 379 V~

Vs<) 7 0 '27 369

>000000 ~ 010 0 ~ 140 0~0 0~0 0~0 0~0 Oeo

~

2 1 ~

~

'82 495 2

6 VS 0 000 ~ 0 ~

SSW VS 0 n.O90 Oe359 0 709 0 ~ 189 00458 0 F 010 0~0 Oro 1 ~ 316

'Ii 0 ~0 0~0 0 ~ 1

' 0 Vr ~ 0 ~ ~ ~ D WSW Oon 0 F 050 0 '90

~

0 ~ 329

~

0 ~ 269 0 ~ 150 0~0 0~0 0~0

0 '87 W VS 0 0~0 0 Oro Oeo 0 ~ 0~ 0 VS 0 ~ VS WIIW 0 0 0.0 00050 . 0 209 0 't58 Oe2)9 00020 Oeo Oeo Oe957 IW VS 0 0~0 ro V Oe VS Vr ~ I

' 0 II)IN nn 00 0 40 0040 .0229 0708 00050 0~0 00 166 0 ALS 0 0 0.289 2<272 t 385 t ~ 465 7 734 0 ~ 6L8 0~0 0~0 1'64 STAB 1 )TY C ASS F Wl(ID SPCEDS lN t)ETERS PER SECOND FRON THE SECTORS 1NDlCATED SECTOR 0 ~ 45 ls)V, 1 ~ 99 2<80 ts45 soo 000l~

0 ~ 13 ~ e 1 II 0 0 0 0 0 0' ~ 0 ~

.( .0 n.O OrOSO 0.0<)0 O,O4O nr478 OrO4O OeO O,O O,688'L V,o Ooo Vro 0 Or l~ ~ )

EIIC E

CSC Oro 0~0 Veo n.o Oro 000 0~0 0 oo '28 OeV50 0~0 0

.o>o 00080 o,.<<0 0 ~ 189 0 ~ 070 0'

0 '59

>V 0~0 0

0~0 "o'>u.Oso r

Oso Oto eo Vso (I ~

lr027' 150 SE' 0~0 SF. 0 n n.v50 Or 40 0 449 0 159 Vr't39 0~0 ~ 0 0~0 1 ~ 236 S Vrn 0~0 0 ~ 1>0 0~0 0 Or 0 n~ 59 V~ 0 0~0 0,'89

~ ~

SbW Vr<) 0 F 050 0 '29 or369 0 VS 040 0~0 0~0 0~0 ) ~ 076 SW Vrn on or)4o o, i < o rO WSW 0~0 0 0 0 ~ 090 0 ~ 0 to 0~ )89 0~ l50 0~0 O,O O,O O,468

'ro W 0~0 0~0 so 0 0~ ~ 3 ~ ~ IP

> II 0 050 0 249 0

~

)20 0 070

~ 0 0~0 0 0 0 '88 NW 0~0 0 V~ lto Oro 0 ~ 0 0 ~ 00 0~

t( IW 0 0 0 050 0 ~ 040 0~0 0 ~ 080 0 ~ 130 0 ~ 020 0~0 0~0 00319 OTALS 0 0 0 199 1 ~ 385 2 6 tl 3 020 3 t39 0 ~ 169 0 0 0~0 )V ~ 854

TABLE 7 (Continued)

ELEVATED PORTION SECTUR 013 n45 11O 199 280 445 891 959 13>00 TUTAI S ff 0~0 )~0 0~0 0 ~ 040 0~0 0 ~ 169 0~0 0~0 0~0 0 ~ 209 l

0~0 0~0 0 0 OIO 0 ~ 040 0 ~ V90 0~0 OIO 0~0 0 ~ 130 r I { 'I 0 0 0 k Voo 0~0 Oto 0~0 Oip VS 030 0~0 0~0 . Oyo Oy030 SE 0 ~0 0~0 0 ~ 0'90 0 ~ 419 0,349 01249 0~0 OIO" 0)0 .

' f 108 0

5, 0~0 0~0 0 f0 Oy080 0 ~ 080 ' ~ 040 0~0 Olp Oyp Vy )99 I

'09

~~Sif W

NW 0~0 Voo V

II 023 0~0 0~0

'L II 0 05n 0 ~ 050 0e050 O>O 0 F 040 0Ioffp 0 F 040 0 080 0 ~0 0 '80' VS 040 0/V

(

0~0 pep 0~0 0~0 0~0 Otp 0~0 0 ~0 oyo ,

0 0 ~ 130 Ofl92

~h~&~~~M~la2~o

~~

TABLE 8 BROILS PERRY NUCLEAR PLANT METEOROLOGICAL DATA ELEVATED JOINT FRE UENCY DISTRIBUTION IN PERCENT STACK RELEASES THIRD UARTER 1980 STABILITY CLASS D SECTOR WIND SPEEDS 0 ~ 13 0 '5 IN METERS PER SECOND FROM THE SECTORS

) ~ )0 ) ~ 99 F 80 F 45 6 '1 9 INDICATEO

'9 13 F 00 TOTALS N 0 ' 0 ' 0 '80 0 '99 0 ~ 550 1 ~ 509 2 '58 0 '80 0 F 050 ST 225 hhE 0+0 0 F 050 0 '70 0 '00 0 '69 1 ~ 788 1 ~ 828 0 '89 0 ' 6 '95 NE 0 ' 0 F 050 0 '40 0 '00 0 '99 1 ~ 559 0 '19 0 ~ 729 F 050 4 '46 ENE 0 ' 0 '90 0 '30 0 '29 0 919

~ 0 '29 0 '99 0 ~ 090 0' 3 '87 0 ' 0+050 0 '50 0 '79 0 '59 ) 878 0 '60

~ 0 ' 0' 676 ESE SE SSE 0'

0' 0'

OBO 0 '90 0 '90 0 '39 0 '19 0 919

~

0 '29

) ~ 968

) ~ 329 0 '29 F 018 2 '48

) 4)9

~

3 '97 4 '96 1 ~

1 ~

1 ~

049 329 698 0

0 0

F

'70

'90 050 0' 0

0'

', F 816 9 ~ 991 10 ~ 670 5 0' 0' 0 460

~ 1 ~ 509 ) 649 3+667

~ 1 ~ 329 0 '40 0 050 F 8 '02 SSW 0' 0 '50 0 869

~ ) ~ 189 1 ~ 329 2 '48 0 '39 0 '80 0 '50 6 '54 SW 0' 0' 0 639

~ 1 ~ 509 1 ~ 239 2 '08 1 ~ 698 0 '90 0' 7 '83 WSW 0' 0' 0 '39 2 '38 I 469 F 428

~ 1 ~ 009 0' 0' 7 '83 W 0 ' 0 '50 '30 ) 788 F 2 '98 2 '68 0 829 ~ 0 0

~ 0' 7 '63 0 '50 0

WNW 0 ' 0' 0 '80 0 '39 1 ~ 279 3 '67 ) 559~ 0' 6 '74 0 ' 0' 0 '30 0 '10 Oo,599 0 '59 0 '60 0 '50 0' 2 '08 NNW 0 ' 0 '50 0 '50 0 '20 0 410

~ 0 '99 0 '60 0 '40 0' 2 '28 TOTALS 0 ' 0 '69 7 '43 16 ~ 935 19 '63 34 '19 17 924 ~ 3 '47 0 '00 100 F 000

0 TABLE 9 BROMNS FERRY NUCLEAR PLANT METEOROLOGICAL DATA ELEVATED JOINT FRE UENCY DISTRIBUTION IN PERCENT STACK RELEASES - FOURTH UARTER 1980 R 5 N SECTOR ~ Ot 13 0 ~ 45 1 ~ lo 1 ~ 99 2 ~ 80 4!45 6 ~ 91 =

9t59 13 ~ 00 'TQTAlS N OtOL9 O.O5O O O9O O,14O 8

O,769 4

2t ll7 3

' 5 O75 2toee O 23O ll9 t177 NL Oto n~0 Ot090 0~

3 tlo Ot499 23 lt 679 t ta Lt678 0 450 0 ~ 410 0 09 Oto fi535 2 147 E Qt019 0 ~ 050 Ot230 Otl40 Ot360 0 ~ 639 0 ~ 410 Os050 0~0 lt897 3 8 3 0 679 89 0 8 9 23 3 546 588 2t497 ' 269 0 ~ 679 6 ~ 893 SE 0~Q 0~Q Ot090 Ot41Q Ot 360 1 ~ ~ ~

9 S Qt019 0 ~ 050 Ot589 ' I69 Ot679 2t t97 3 ~ 267 0 ~ 729 '0 ~ 230 8 ~ 830 5 a 499 44 2 38 0 e59 0 4 6 912 Stt oto19 n.o50 ot539 ot499 0 ~'e769 1 768 lt998 ot589 0 090 6 '22 H Pto 0~0 Ot050 0 ~ 909 0 ~ 499 1 ~ 179 1 ~ 089 0 ~ 230 0~0 3t956 5 6 8 6 Nlf, 0~0 0~0 0( 180 0 ~ 450 0 ~ 39 1 ~ 9 ta 1 ~ 179 1 ~ 538 0 ~ 1 to 6tg7 8 4 948 947 089 n 3 7 285 489 8 6 6 8 8 9 859 4 784 2 757 6 7 1 0 ~ no

TABLE 10 BROWNS FERRY NUCLEAR PLANT INDIVIDUALDOSES FROM GASEOUS EFFLUENTS THIRD UARTER 1980 Effluent ~Pathwa Guideline* Point Dose I

Nobie gases g Air dose 30 Max. Exp. 1 0.40 mrad 8 Air dose 60 Max. Exp. 1 0.52 mrad Total body 15 Residence 0.21 mrem Skin 45 Residence 0.31 mrem I

Iodines/Particulates Thyroid Real 0.07 mrem (critical organ) 45 Pathway Breakdown of Iodine/Particulate osures (mrem)

Child Adult Vegetable Ingestion 2.46E-2 1.67E-2 Beef Ingestion" 7. 95E-4 8.47E-4 Inhalation 2.70E-3 2.05E-3 Ground Contamination 3.84E-2 3.84E-2 Total 6.65E-2 5.80E-2

  • The annual guidelines are defined in Appendix I to 10 CFR 50.
1. Maximum exposure point is at 1,620 meters in the NNW sector.
2. Dose from air submersion.
3. Receptor is at 1~860 meters in the NR< sector.

4, Beef ingestion dose is calculated at the site boundary at 1,620 meters in the NNt< sector.

0 TABLE 11 BROWNS FERRY NUCLEAR PLANT INDIVIDUALDOSES FROM GASEOUS EFFLUENTS FOURTH UARTER 1980 Effluent ~Pathwa Guideline* Point Dose Noble gases g Air dose 30 Max.

Exp.'ax.

0.93,mrad 9 A'ir dose 60 Exp. 1,09. mrad Total body 15 Residence3 0.45 mrem Skin Resi4ence 0.64 mrem Xodines/Particulates Thyroid 45 Real 0.08 mrem (critical organ) Pathway3 Breakdown of Iodine/Particulate E osures mrem)

Chdld Adult Vegetable 1.48xl0 1.01xl0 Ingestion Beef 5.18x10 " 5.89x10 "

Ingestion Inhalation 2.56x10 1.87xl0 6.46x10 6.46xl0 Ground'ontamination Total 0.. 08 0.08

  • The annual guidelines are defined by Appendix I to 10 CFR 50.
1. The maximum exposure'oint is at'1,620 meters in the NNW sector.
2. Dose from air 'submersion.
3. Receptor is at 1,860 meters in the NNW sector.
4. Beef ingestion dose is calculated at the site boundary at 1,620 meters in the NNW sector.

TABLE 12 GASEOUS EFFLUENT DOSES POPULATION Third arter 1980 TOTALS INFANT CHILD TEEN ADUCT TOTALS ItlFA!IT CHILD TEEN ADULT SUBHERSItttt 9 24E"02 5 ~ 76E"01 3 ~ 66E<<01 ]e7OE 00 2 ~ 73E 00 9 '4E-02 5 '6E Ol 3.66E-Ot ];TQE 00 2 '3E OO GROUND 2 ~ 7"E<<03 le7]E<<02 ]e09E<<02 5 ~ 03E<<02 8'e09E<<02 2e74Ei03 1 ~ 7]E<<02 1 ~ 09E<<OP 5 ~ 03E<<02 8e09E<<02 Itl)tALATIWt 6'.t.]E-04 6.86E 03 Rt63E<<03 1 ~ 32E-OZ 2 ~ 34E<<02 3 ~ 54E<<05 5 ~ 76E<<04 ReS5E 04 3e]3E 02 3e22E 02 53E-02 9 ~ 72E 02 2 ~ 73E<<0 t 1'e21E 03 5 l]E<<04 2 ~ 98E 03 4 ~ 97E 03 CON HIt K 3 ~ 9 ~ 13E-02 2e43E DZ 2 ~ tBEee01 ~

BEEF IttCEST 1(itt 0 0 86E 03 8 ~ 06E<<0 t 5 ~ t2E<<03 S ~ 09Eee03 0~0 2 ~ ]OE<<04 1 ~ 18E 04 1 ~ 12E 03 1 45E "03 VFG INGESTio:>> 0~O 4 ~ 92E"03 2 ~ 13E<<03 ]e31E 02 2eo]Ei02 0~0 1 ~ 7]E<<0 t 1 ~ 07Ei04 9e36E<<04 ']s2]E<<03

.OTAL ttAtt-..@EH. Ue3]E~ie9QE" 8 Fourth uarter 1980 H RO 0 TOTAL BUOY IttFANT CHILD TEEN ADULT TOTALS N AhT H L EE L> I L

]e73E 02 ] ~ OSE<<0 .6tSTE<<02 3 ~ ]SE<<01 t]RE<<0] 1 ~ <<02 to 0 ~ 2 ~ ~

75E<<02 t 1]E<<OZ 5 ~ 15 <<OZ 9E OR 2 ~ 0 <<0 ~ <<0 ~ 2 ~

- ~ E" IIZ SF'UBHERSION GROUND 2 ~ SOE 03 1 ~ 1 ~

INHALATION F 82 04 3 '9 <<0 ]t 2 <<0 ~ 0 ~ 1 <<0 , t <<0 ~ << ~ ~ ~

<<02 ' '

COtt HILK 2 '0E 02 ~ <<0 1 ~

e

~

W BEEF INGESTION 0~0 1 ~ ZSE<<0 5t55E<<04 '3 ~ 3 <<03 .- e56E<<03 0~0 2~2 0 1t21 04 ~ 0 0 V NG T ti eO ~ ~ << ' ~ << ": ~ << " S

~

94E<<01 9t9RE<<02 4 ~ 53E<<01 7t89E<<0] 2totE 02 lt27E 01 8 ~ OSE 02 3 ~ 83E-01 6 11E-Ol TOTAL HAtt<<REH 4 ~ 35E 02 1 ~

. TABLE 13 LIOUIO EFFLUENT DOSES FERRY NUCLEAR PLANT ROUTlhE RELEASES 3PD OUARTER-1980 tttttttttttttttttttttttatttttttttttttttttttttttttttttttttttt BROGANS

~

BONF Gf TRA T THYROID T0TA BODY l, VER KfN S x Zt 5 Zt

~ loa I v NGFST ION A~ VAX INUM INO V UAL DOSE lolRFH)

UOS ~ PLYOOOOC Cl APP ION PAPER 5 'E-04 . I ~ 4E-04 9OTE 04 4 'E 04 5.3E-04 4, IS-04 8~ TOTAL POPULaffch DOSE lvAN-REH)

T NN 5 R V R 17K 0 3 > 0 5 -0 0 I I~ F 1$ H CONSUHP t~*o~~ ~

T ION

'i WC 4 4 ~ N MAXINUoo 'fNDI Ua =

DOSE <HRE)Yl) tHEFL'EP LAKE'C V YPFN 4ON)E 02 7 8 -03 5 BE-07 SOS -0 YIN L P ~OOL' Y Ol'OOOO NOON-II II Ya cQ T

~,2 18+00 O)Y 3 'E-01 O 2 'E 00 >2 TEtIO ATE., 00 ATE 00

'To III ~ RECl EAT IOV IN WATER APovE-vATER SHORELINE-TOTAL BODY. SKIN TOTAL BODY SKIN TOTAL BODY SKIN A~ MAXINUV [NUIVIOLal. DOSE {MREH)

WHEELER LAKE BELOV BFN -USE-05 I ~ 6E 04 I ~ 4E-05 USE-04 3 ~ OE-02 3 ~ 5E-02 RE TOTAL POPULATIOh DOSE lNAN REH)

TENNESSEE RfVER I ~ 7E-OS 2 ~ OE-04 4 ~ 5E-05 5 ~ 2E-04 2 ~ OE 01 2 ~ 4E-01 IV. TOTAl. BchE G TRACT YNYIIOIO YOYDL OOOY LIVER SKIN t

A~ >AXI~UH INDIVfOUAL DOSE lHREH) 7 'E-02 3 'E-02 8 ~ BE-07 ROSE 02 I.IE-OI 9OIE 02 poviiLaiioN ocsE '<vaw-WE~)

TFNNESSEE RIVFR 2.3EOOO 5 SE 01 3 ~ OE+00 3 AI DE+00 3.7EPOO 3.0Eo00

TABLE 14 LIGUIO EFFLUENT OOSES BHOrrNS FLHH NUCt..a rLAN HUVTIN H L 4 f ott 0 ABATER-)9 0 tttaoeattaaaaaaaeaetaaeooattaaoooteeataataootetetateateeooooa r)Graf Gl IRACT THYROIO tOTAL BODY LIVFR 5K IN I ~ HATER INGESTION MAXIMUH INUIVIOUAL BOSE IHREH)

A~

VtSe PLYeOOC Cl'Ar PION PAPER torrf-03 4 ~ lf 04 2o IE-03 9 'E-04 1 ~ 2E-03 9 'E 04 TOTAL POPULATION BOSE tPAN REM) 8~

TENNESSF R IVFR 4~ )F. r)2 8~ I -03 3 lf-02 2otf-02 " 3 ' -02 2 ~ 7F-02 ll ~ FISH CONSUHP Ioh 4~ MAXIMUM INtrlvlOUAL 00'SE tMHEM)

WHEELER LAKE rrELO)r BFN Vo2E-02 1 ~ BE-02 1 2E-01 1 ~ 2E-01 I'6E-01 I 2E-01 8~ TOTAL POPULATION DOSE t)rAN-REM)

TENNESSEE RIVER 4 ~ Eaoo 8 ~ 4E 01 5,9fooo 5 ~ Tfooo I ~ Tftoo 5 ~ 7fooo IN-VATER A>OVF.-lrATER SHOHFL INE III~ RECREATION e e 'e e'e TOTAL HOOT SKIN IOTA). AOOY SKIN TOTAL AOOY SKIN A~ MAXIHV+ INDIVIOVAL OOSL tHHE>)

WHEFLER LAKE BELOW BFN 2 ~ 5E-05 2~ IE-04 2 ~ 4F.-05 2 ~ Of-04 3 ~ 3E-02 3 ~ 9E-02 Rt TOTAL POPULATION BOSE tHAN REH)

TENNESSEE RIVER 2 ~ SE 0 2 IE-04 6 ~ 4F.-05 5 ~ 6E-04 2 ~ 2E 01 2 SE-ol IV ~ TOTAL Hrrhf G TRACT TPYRntn TOTAL BUOY t.IVER 5KIN A~ MAXIHUH INOIVIOUAL DOSE. IHHEH) I ~ 3E-Ul 5. lf-02 I ~ 6E-Ol I ~ 5E-Ol 1.9f-ol "

I ~ 6E-01 8 POPULAtION OOSF t4AN FP) '

TENNESSEE RIVFH 4 ~ Tf too . I ~ If+00 6.)E.OO 5.9E OO 7;TftnO 6.0fo00