ML17319B515

From kanterella
Jump to navigation Jump to search
Proposed Revised Offsite Dose Calculation Manual.List of Previous App a Tech Spec Submittals Affecting Radiological Effluent Tech Spec Encl
ML17319B515
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 09/17/1982
From:
INDIANA MICHIGAN POWER CO.
To:
Shared Package
ML17319B516 List:
References
PROC-820917, NUDOCS 8209210143
Download: ML17319B515 (84)


Text

OFFSITE DOSE CALCULATION MANUAL INDIANA & MICHIGAN POWER COMPANY DONALD C. COOK NUCLEAR PLANT UNIT NOS. 1 & 2 BRIDGMAN, MICHIGAN Docket Nos. 50-315 and 50-316 License Nos. DPR-58 and DPR-74 8209210143 820917 PDR ADOCK 0500031S PDR

7

~

r

TABLE OF CONTENTS Page No.

SCOPE AND PURPOSE I. LIQUID EFFLUENT WASTES I.l Identification of Liquid Effluent Release Points I.l.l Waste Disposal System Liquid Effluent Line I.l.2 Steam Generator Blowdown and Blowdown Treatment System I.1.3 Essential Service Eater System I.l.4 Turbine Building Sump System I.2 Alarm Set-Point Determination I.2.1 Waste Disposal System Liquid Effluent Line (Batch Release only)

I.2.2 Steam Generator Blowdov@ and Blowdown Treatment System -(Continuous Release)

I.2.3 Essential Service Water System (Continuous Release)

I.2.4 Turbine Building Sump System I.3 Liquid Effluent Dose Calculations (10 CFR 50) j.3 1.3.1 Dose Determination 1.3.2 Dilution Factor Determination 1.3.3 Dose Factor Determination 15 1.3.4 Shore Line Activities Doses 3.6 1.3.5 Dose Projection II. GASEOUS EFFLUENT WASTES II.1 Identification of Gaseous Effluent Release Points

TABLE OF CONTENTS (Cont'd)

Page No.

II.l.l Plant Unit Vent 19; II.1.2 Condenser Air Ejector System 20 II.1.3 Gland Seal Condenser Exhaust 21 II.1.4 S/G Blowdown System (Start-up Flash Tank Vent)

IX.2 Alarm Set-Point Determination II.2.1 Plant Unit Vent 22 II.2.1.1 Waste Gas System Decay Tanks 26 II.2. 1. 2 Containment Purge and Exhause System II.2.2 Condenser Air Ejector System 27 ~

II.2. 3 Gland Seal Condenser Exhaust 28 II.3 Gaseous Effluent Dose Calculations (10 CFR 50)

'II.3.'1" Noble Gases Air Dose II.3.2 Radiodine and Ra'dioactive Particulate Doses 30 II.3. 3 Steam Generator Blowdown System (Start~p Flash Tank Vent) 32 IX.3.4 Dose Projection 33 Radioactive Effluents Total Dose Radiological Environmental Monitoring 35'5 V.3. Meteorological Model

Sco e and Pu ose The Offsite Dose Calculation Manual (ODCM) is a supporting document to the Radiological Effluent Technical Specifications (RETS), as defined in NUREG-0472. The ODCM contains the methodology and parameters to be used in the calculation of offsite doses due to radioactive liquid and gaseous effluents and in the calculation of liquid and gaseous monitoring instrumentation alarm/trip set-points. The ODCM provides flow diagrams detailing the'treatment path and the ma)or components of the radioactive liquid and gaseous waste management systems. The ODCM also presents a map of the radiological environmental monitoring sample locations and the meteorological model used to estimate the atmospheric dispersion and deposition parameters.

The ODCM specifically addresses the design characteristics of the Donald;C. Cook Nuclear Plant based on the flow diagrams contained on the "OP Drawings" and plant "System Description" documents. The ODOM was prepared using the regulatory criteria and guidance given in 10CFR20, 10CFR50 and NUREG"0472 and NUREG-0133 and Regulatory Guides 1.109, l.ill, and 1.113.

Liquid Effluent Wastes The Donald C. Cook site is located on Lake Michigan. The lake provides supply and discharge capacity for the plant's circulating water system. The plant's liquid effluents are discharged into the environment via six release points. Except for the Turbine Building Sump, all liquid effluents are discharged into Lake Michigan via the site's Circulating Water Discharge Tunnels. The Turbine Building Sump is discharged into the absorption field located southeast of the facility. Each effluent pathway and its discharge point are described below.

Identification of Liquid Effluent Release Points I.l.l Waste Disposal System Liquid Effluent Line (WDS)

The liquid processing portion of the WDS is shared by both units, 1 and 2 and discharges liquid effluents into Lake Michigan. The liquid effluents are commonly processed by the Waste Evaporator Package and Evaporator Condensate Demineralizers. The liquids 'are categorized as either "clean" or "dirty" and ~astes are generally segregated and processed on this basis. Liquid effluents originating from the Monitor Tanks, Waste Evaporator Condensate Tanks, Chemical Drain Tank, and the Laundry and Hot Shower Tanks are released via a radiation monitor (Tag No. RRC-285) and liquid effluent flow monitoring device. The radiation monitor, upon a high level alarm, automatically terminates the liquid effluent release by tripping off the pumps of the Waste Evaporator Condensate Tank and closes discharge valve (RRV-285). Discharge valve RRV-285 isolates all liquid effluent releases identified above. Table I-1 presents the characteristics and functions of radiation monitor RRC-285. Figure I-1 schematically presents the sources of liquid effluents, ma)or treatment systems, and their release points. References are listed as Note 1 in Figure I-l.

I.1.2 Steam Generator Blowdown and Blowdown Treatment System a) Steam Generator Blowdown System (SGBD)

The S/G Blowdown System, during normal operation (lOOX power), directs secondary side water to the Normal S/G Blowdown Flash Tank which is then released to Lake Michigan via the Circulating Water System through the Turbine Room Sump Overflow line. The steam is returned to the Condensate System via the unit turbine condenser. Radiation monitor

(Tag No. DRA-300), upon a high level alarm, isolates each of the four blowdown discharge line valves, each of the four sampling line valves, and the single blowdown tank drain line valve (DRV-350). Table I-2 presents the characteristics and functions of radiation monitor DRA-300.

Figure I-1 schematically presents the sources of liquid effluents, major system components, and its release point.

References are listed as Note 2 in Figure I-l.

b) Steam Generator Blowdown Treatment System (SGBTS)

The Steam Generator Blowdown Treatment System, during normal operations, directs secondary side water to the start~p S/G Blowdown Flash Tank and to the three blowdown demineralizers. The treated S/G Blowdown effluents are released to Lake Michigan via the Circulating Water System through the Turbine Room Sump Overflow. The S/G Blowdown Treatment Systems of Unit 1 and 2 can be cross-connected as is necessary. In this mode of operation, the blowdown tank drain line valve (DRV-350) is closed. Radiation Monitor (Tag No. DRA-353), located between the second and third S/G Blowdown Treatment demineralizers, upon a high level alarm closes each of the four blowdown discharge line valves and each of the four sampling line valves, while the Blowdown Tank drain line valve (DRV-350) remains closed. Table I-3 presents the characteristics and functions of radiation monitor DRA-353. Figure I-1 schematically presents the sources of liquid effluents, major system components, and its release point. References are listed as Note 2 in Figure I-l.

c) Start~p Flash Tank The start-up flash tank can be used during start-up from cold shut down t'o full power and during abnormal operations. The S/G blowdown effluents are released to Lake Michigan via the Circulating Water System. In this mode of operation, the blow-down tank drain line valve (DRV-350) is opened. The steam produced in the startmp flash tank is released to the atmosphere and the liquid effluent is released to Lake Michigan via the Circulating Water System.

I.1.3 Essential Service Water System (ESW)

The Essential Service Water System, shared by both units, provides cooling for the Containment Spray Heat Exchangers. The system also provides cooling to other heat transfer equipment which are not radioactive effluent sources. Circulating water is drawn from the intake pipes and routed through the Heat Exchangers. The discharge side of the Heat Exchangers are returned to the Circulating Water Discharge pipe and is released into Lake Michigan. Radiation Monitors (Tag No. WRA 713 and 717 for 'Unit 1 and WRA 714 and 718 for Unit 2) sample the downstream flow from the Containment Spray Heat Exchangers. Upon a high radioactive signal, each monitor trips an alarm in the Control Room. Water sampling connections are provided downstream of the Containment Spray Heat Exchangers. Table I-4 and I-5 present the characteristics and functions of Radiation Monitors WRA-713 or WPA-714 and WRA-717 or WRA-718. Figure I-1 schematically presents the sources of liquid effluents, system components, and their release points. References are listed in as Note 3 in Figure I-l.

I.1.4 Turbine Building Sump System The Turbine Building Sump, shared by both units, collects leaks and drains from various second'ary side systems. The collected waters are discharged by the turbine room sump pumps to the on-site absorption field. The effluent discharge from the turbine room sumps are pH adjusted and sampled by an inline pH probe. Upon either high or a low effluent pH, the discharge is automatically terminated via closure of valve (DRV-710) and the system is placed on recirculation mode. The effluent line with an automatic composite sampler (DSX-740) and is'quipped effluent flow meters (DFR-700). Figure I-1 schematically present the system flow path and components. References are listed as Note 4 in Figure I-1. The turbine room sump overflow is discharged into Lake Michigan.

I.2 Alarm Set-Point Determination For the purpose of implementing technical specifications 3.3.3.9 and 3.11.1.1 for 10 CFR 20, Appendix B, Table II, Column 2, instantaneous concentration limits, the alarm set points for liquid effluents released into unrestricted areas will be established using the following methodology.

I.2.1 Waste Disposal System Liquid Effluent Line (Batch releases only)

The radioactivity concentration of each batch of radioactive liquid waste to be discharged shall be determined prior to the release by sampling and analysis in accordance with Table 4-11-1.

The basic equation to calculate the variable setpoints for liquid effluents is

where:

the setpoint, in uCi/m'1, of the radioactive monitor measuring the radioactivity concentration in the effluent line prior to dilution and subsequent release; the setpoint, which is proportional to the vo16metric flow of the effluent line and inversely proportional to the volumetric flow of the dilution stream plus the effluent stream, represents a value which, if exceeded, would result in concentrations exceeding the limits of 10 CFR 20, App. B, Table II for the unrestricted area.

f the effluent flow rate as measured at the radiation monitor location, in volume per unit time, but'n the same units as F below (gpm). Table I-6 presents the effluent flow rate parameter.

the dilution water flow rate as measured prior to the release point, in volume per unit time (gpm). Table I-6 presents the dilution flowrate parameters. The minimum available dilution water flow rate (F) is 230,000 gpm for one circulation pump in operation. For two or more pumps, the available dilution flowrates are:

2 circulation pumps 460,000 gpm 3 circulation pumps 690, 000 gpm 4 circulation pumps (Uni't 2 only) 920,000 gpm C ~ effluent concentration limit, technical specification 3~11.1, implementing 10 CFR 20 for the site, in uCi/ml.

Since f ~< F, equation (I-l) can be rewritten as follows, to .

obtain the minimum requi,red dilution flow rate for any discharge:

F >- cf C

Substituting Cip the tank concentration radionuclide i, for c and MPCi, maximum permissible concentration radionuclide i, for C, in equation (Z-2), when C

i ) 1 yeilds:

MPC Since the value of f is assumed fixed, i.e., maximizes effluent flowrate, for each discharge line, the alarm setpoint, c, using the following equation (I-4) is computed with the derived value of F, as defined by equation (Z-3).

c K (SF)

CF (MRP) (I-4) where:

SF ~ an administrative operation safety factor, W 1.0 MRP a weighed multiple release point factor, ( 1.0, such that when all site releases are integrated, the applicable MPC will not be exceeded. The HRP for each of the six effluent release points will be based on past operational experience. The MRP is computed as follows:

l) Compute (g C

i MPCi

) for each discharged into ihe environment.

diluted efflueut stream j, 2)

~C i for all diluted effluent Compute (p ) stream, T, MPCi discharged into 7he environment.

3) Ratio 1) to 2) above to compute the MRP for each release point g.
4) Repeat steps 1) through 3) for each of the site's six liquid release points.

Normally no more than one tank is lined up for sampling or release simultaneously. Bur in case of an accident, combined liquid effluent discharges through radiation monitor RRC-285, i.e., two or more tank leakages or discharges from either the Condensate (i~ionitor) Tanks (CT), Laundry and Hot Shower Tanks (L), and Monitor Tanks (MT), equation (I-3) is rewri'tten as follows to accomodate each subsystem's effluent flow rate (f):

The condition for an acceptable single or combined release from one or more subsystems is met if equation (I-3) and (1-5 ) are satisfied. If this condition cannot be met, the intended discharges can proceed only if any one of the following conditions (1), (2), or (3) are satisfied:

(1) Increase the minimum dilution flow rate, F, while maintaining a constant effluent flow rate, f.

(2) Decrease the a&X.imum effluent flow rate, f, while maintaining a constant dilution flow rate F.

(3) Reprocess liquid effluents as is necessary.

For the purpose of transposing the alarm set-point, c, in uCi/ml, to the average reading, in cpm on the liquid effluent monitor, the radiation monitor calibration curve (Tag No.

RRC-285) shown in Figure I-2 will be used.

In case of the waste disposal liquid monitor, the efficiency of the monitor is the concentration of the equivalent radionuclide, which was used for calibration, in uCi/ml that corresponds with the monitor reading, in cpm. For any releases, the total concentration of gamma emitters mixture, in uCi/ml, is transposed to the monitor reading, in cpm, using the relative detector efficiency (E) compared to that for the equivalent radionuclide.

E Relative detector efficiency ~ Efficiency forM-energy G (I-6)

Efficiency for the equivalent radionuclide G is the weighted-energy per disintegration for the mixture.

(Isotope Concentration) (Effectiveg-ener /dist.)

Tota Concentration The efficiency factor E can be obtained from the monitor energy calibration curve, Figure I-3. Table I-7 presents isotopic effective gamma energy per disintegration and their respective MPCs for a selected group of radionuclides.

If no discharges are planned through this liquid effluent radiation monitor (Tag No. RRC-285), the monitor set-point will be set as close to the ambient background radiation level as practicable to prevent inadvertant releases, but yet high enough to prevent spurious alarms.

I.2.2 'Steam Generator Blowdown and Blowdown Treatment System (Continuous releases) a) Steam Generator Blowdown (SGBD)

The radioactive concentration of the S/G Blowdown System effluent lines (Unit 1 or 2)* shall be monitored by their respective Radiation Monitors (Tag No. DRA-300). Using equation (I-'./)F the alarm set-points, cSGBD, will be established as follows:

SGBD

( GF FSGBD (SF)(MRP)

(I-8)

where:

~ the effluent concentration limit of 10 CFR 20 for the site, in uCi/ml. The value of C is taken as 1.0 x 10 uCi/ml if it is known that 1-129 Ra-226 and Ra-228 are not present. See Note b, Table II, column 2, Appendix B, of 10 CFR 20.

SGBD

~ the S/G Blowdown effluent flow rate at the radiation monitor, in gpm. Table I-6 presents the S/G Blowdown effluent flow rate under normal operation.

~ the dilution rate as measured prior to the release point in gpm and which varies as a function of the number of operating circulating water pumps. For the S/G Blowdown system, no additional dilution credit is being taken for the S/G blowdown discharge. Table I-6 presents the dilution flow rate parameters for each unit.

and where the other terms are as defined above.

For the purpose of transposing the alarm set-point, c, in uCi/ml to its corresponding monitor count-rate, in cpm, the radiation monitor calibration curve (Tag No. DRA-300) shown in Figure 1-4 will be used.'n the event of alarm trip, the S/G Blowdown System will be isolated. If releases are then planned through the S/G Blowdown Treatment System, refer to b) below for the alarm set-point determination of the S/G Blowdown Treatment System radiation monitor-(Tag No. DRA-353).

b) Steam Generator Blowdown Treatment System (SGBDT)

The radioactive concentration of the S/G Blowdown System effluent lines (Unit 1 or 2) shall be monitored by their respective radiation monitors (Tag No. DRA-353). Using Equation (I-8), the alarm set-points will be established as follows:

SGBDT (f CF SGBDT SF) (MRP) where:

where all the terms are as previously defined above.

For the purpose of transposing the alarm set-point, c, in uCi/ml to its corresponding monitor count-rate, in cpm, the radiation monitor calibration curve (Tag No. DRA-353) shown in Figure I-5 will be used.

In the event of alarm trip, the S/G Blowdown Treatment System will be isolated. If continued processing and release of blowdown is necessary through this pathway, the west and middle blowdown demineralizers will require resin replacement.

I.2.3 Essential Service Water System (ESW)

(Continuous release)

Since the Containment Spray Heat Exchangers (CSHE) are only used during LOCA, the alarm set-point methodology described below provides a safeguard alarm trip set-point.

The radioactive concentration of ESW effluents (Unit 1 or 2),

shall be monitored by their respective Radiation Monitor (Tag No. WRA-713 and WRA-717 for Unit 1 and WRA-714 and WRA-718 for Unit 2). Using equation (I-8), the alarm set-points will be established as follows:

c ESW

~~

f CF (sF) ( I-lo) and where:

the Containment Spray Heat Exchanger effluent flow rate for each exchanger, in gpm. Table I-6 presents the CSHE effluent flow rate.

~ the dilution flow rate as measured prior to the release point, in gpm, and which varies as a function of the number of operating circulating water pumps. For the CSHE no additional dilution credit is taken from the following sources; Control Room Air Conditioning I

Condensers, Component Cooling Heat Exchangers, and Emergency Generator Diesel Engine Heat Exchangers.

and where the other terms are as previously defined above.

For the purpose of transposing the alarm set-point, c, in uCi/ml to its corresponding monitor count-rate, in cpm, the radiation monitors calibration curves (Tag No. WRA-713, 714, 717 and 718) shown in Figure I-6, will be used.

In the event of an alarm trip, the CSHE will not be isolated.

Each CSHE will be manually sampled to determine the origin and nature of the radioactivity. These steps and other corrective measures will have, as an objective, to minimize radioactive effluent releases into the environment.

12-

Z.2.4 Turbine Building Sump System The Turbine Building Sump effluent line is not equipped with a liquid radiation monitor. An automatic composite sampler is used to determined the effluent activity concentration. ,The liquid effluents from the Turbine Building Sump System will follow the analysis program given in Table 4.11-1 of the RETS.

1.3 Liquid Effluent Dose Calculations (10CFR50)

For the purpose of implementing Technical Specification 3.11.1.2 and 3.11.1.3 the cumulative dose contributions from liquid effluents will be determined using the following methodology.

I.3.1 Dose Determination o

i io ~

1=1 1 il 1 where:

D 0 the cumulative dose commitment to the total body or any organ, o, from the liquid effluents for the total time period ~t, in mrem.

the length of the 1th time period over which Cil and Fl are averaged for all liquid releases, in hours.

the average concentration of radionuclide, i, period from any liquid realease, in uCi/ml.

13

Ai the site related ingestion dose commitment factor to the whole body or any organ, o, for each identified

'rincipal gamma and beta emitter listed in RETS Table 4.11-1, or mrem/hr. per uCi/ml.

Fl the near Field average any liquid effluent release. Defined in Z.3.2.

il dilution Factor for C during I.3.2 Dilution Factor Determination The near Field average dilution factor For Cil is defined as follows:

fLWS 1 F (I-12) cw AF where:

LWS is the sum of actual release effluent path(s) flow rate from all liquid waste management systems discharging into Lake Michigan. The value of fLWS is computed as follows:

LWS CT L MT SGBD 622gpm ~ 20gpm + 20gpm + 150gpm + 4(3.08gpm)

FCW Circulating water system discharge flow rate based on the number of operating circulating water pumps.

AF Applicable Factor reflecting the mixing effect of the discharge structure. For once-thru-cooling systems, the AF Factor is set equal to 1, from NUREG 0133.

I.3.3 Dose Factor Determination The site related ingestion dose commitment factor for the total body or critical organ, or, for the maximum exposed individual (adult) is derived using the following equation.

Ai K (U /D + UF BFi DFi (I-13) where:

units conversion factor = 1.14 x 10 5 ~ 10 6 pCi/uCi x 10 ml/Kg/8760 hr./yr.

maximum adult water consumption, 730 kg/yr. Table E-5 of R. G. 1.109.

maximum adult fish consumption, 21 kg/yr. Table E-5 of R.;G.;1.109.

bioaccumulation Factor For radionuclide, 1, in fish for fresh water site. See Table I-8.

dose conversion Factor for radionuclide, i, for adults and critical organ, o, in mrem/pCi. From table E-ll of R.G. 1.109.

dilution factor at the nearest potable water intake. A value of 2.6 is used for the Laketownship intake located approximately 2800 feet SW of the station discharge points." See page V-42, Donald C. Cook FES, dated Aug. 1973.

Inserting the usage factors of R. G. 1.109 as appropriately into equation (I-13), the following equation is derived:

15-

~ ~ J C

A = 1.14 x 10 (730/D w + 21 BFi) DFi io The value of Aio for those elements listed in Table 1-8 are tabulated in Table I-9.

. I.3.4 Shore Line Activities Doses.

Based on the D.C. Cook nuclear power plant semi-annual radioactive effluent release reports, it can be shown that the exposures due to swimming and boating activities are less than 1% of the dose due to all liquid effluents. See NRC regulations position C. in Regulatory Guide 1.109. Therefore, only shoreline activities are considered here. Shoreline activities doses> DSL, due to liquid effluents are determined, based on equation (A-6) of R. G 1.109, using the following methodology:

m DSL 7

i il 1.14 x 10 TicilWL+ U L p ap DF 2 tlj1 - exp(-

i=

4 itb)p (I-15) where:

dose due to shore line activities from deposited radiomuclides, in mrem.

radiological half-life of nuclide i, in days.

the average concentration of radionuclide, i, in undiluted liquid effluent, in uCi/ml, during that time period, g~.

lake-shore width factor accounting for the geometry of exposure, 0.3, from the Table A-2 R.G. 1.109.

U ap shore-line usage factor specifying the exposure time for the maximum exposed individual 67 hr/yr, for the teenager, from table E-5, R.G. 1.109.

DF external dose factor for standing on contaminated ground for radionuclide i, in mrem/hr per pCi/m ,

from table E-6, R.G. 1.109.

H P

mixing ratio expressed as the reciprocal of the dilution factor, D , at the point of exposure, w'imensionless.

tb time period for which sediments are exposed to the contaminated water, in hours, 1.31 x 10 5 hrs (15 -

years), from Table E-15, R.G. 1.109.

radioactive decay constant of nuclide i, in hr. -1 Dt is previously defined.

~;

as i~1 1.14 x 10 7

1pp L 2-d x ip 6 oCi uCi x lp 3 ml x L 8760 r derived hrs'rom equations (A-5) and (A-6) from R.G. 1.109.

I.3.5 Dose Projection:

Doses due to liquid releases into unrestricted areas will be pro)ected once per chlendat'onth and quartere Equation (I-ll) of Section Ie3 1 is used to project monthly and quarterly doses based on anticipated or planned liquid effluent discharges.

17

Anticipated liquid effluent discharges are those discharges which are based on past operations experience and are recurrent. The liquid effluent concentrations for such discharges are based on historical operational experience.

Planned liquid effluent discharges are those discharges for which the actual effluent concentration is known, for example, in the case of batch releases. With the anticipated or known effluent concentration, the projected dose is derived using equation (I-11). When projected doses exceed 0.06 mrem to the total body or 0.2 mrem to any organ, that effluent stream will be treated prior to discharge.

- 18

TABLE I 1 CHARACTERISTICS ANO FUNCTIONS OF THE RADIATION NONITOA ARC-285 ALaRM LocaTIoN CONTAOL ROON NON I TOR DESCR IPT I ON LIQUID RAOWASTE EFFUENT LINE INLINE LIQUIO SAMPLE OETECTOR Loca T I oN STN. LIQUID WASTE POWER SOURCE 120 VAC, DIST, CABINET CCRP-2, CIRC-20 CHECK SOURCE, ASSEN3LY SUPPLIED FRON CCRP-2 C I AC 22o ScaLE 5 DECADES RANGE 2E-4 To 2E 0 UCI/cC IDENTIFICATION NUMBER (R-18)

EFFI gENT I SOLATUON CONTROL DEVICE DISCHARGE VALVE RRV 285 CLOSEST TRIPS WASTE EVAPORATOR CONDENSATE TANK PUMPSo LOCATION OF OEV I CE L I QU I D WASTE D I SCHARGE L I NE POWER SOURCE N/A IDENTIFICATION NUMOER RRV-285

TABLE I 2 CHARACTERISTICS AND FUNCTIONS OF THE RADIATION MONITOR DRA-~

ALARM LOCATION CONTROL ROOM MON I TOR DESCRIPTION STEAM GENERATOR BLOWDOWN EFFLUENT LINE INLINE LIQUID SAMPLE DETECTOR LOCATION ESW EFFLUENT LINE POWER SOURCE 120 VAC, DIST CABINET CCRP-2 CIRC-20 CHECK SOURCES ASSEMBLY SUPPLIED FROM CCRP-2, CIRC 22 (FOR EACH UtlIT)

ScAI.E 5 DECADES R~NcE 2E-g To 2E-1 UCI/cc I DENT I F I CATION NUMBER EFFLUENT I SOLAT I ON CONTROL DEVI CE BLDG ISOLATION OCR-310, DCR-$ 20, DCR-Q~, DRV-3+, DCR-3<I0 S G ~ BLDtI SAMPLE ISO ~ VALo DCR 301'2y A3$ X4 LOCATION OF DEVICE S.G. BLDN EFFLUENT LINE POWER SOURCE N/A IDENTIFICATIOtl NUMBER

TABLE -I 3 CHARACTERISTICS AND FUNCTIONS OF THE RADIATION MONITOR

.DRA-353 ALARM LOCATION CONTROL ROOM MON I TOR DESCRIPTION STEAM GENERATOR BLOND(MN TREATFKNT EFFLUENT L I NE INL I NE LI OUI D SAMPLE DETECTOR LOCATION SG BLDN TREATMENT EFFLUENT LINE POWER SOURCE 120 VAC D I ST CAB INET CCRP-2, C I RC-20 CHECK SOURCE ASSEMBLY SUPPLIED FROM CCRP-2, CIRC-22 (FOR EACII UN I T)

SCALE 5 DECADES RANGE iE-5 TO IE-1 UCI/CC IDENTIFICATION NUMBER EFFLUENT I SOLATI ON CONTROL DEVICE BLDN ISOLATION OCR-310, DCR-320, DCR-330, OCR-$ 40, DRV-350 SoG. BLDN SAMPLES Iso. VALYE DCR-301, 302, 303, LOCATION OF DEVICE POWER SOURCE PNEUMAT I C IDENT I F I CATION NUMBER

TABLE I - 4 CHARACTERISTICS,AND FUNCTIONS OF THE RADIATION MONITOR WRA-71$ ANO WRA-714 ALARM LOCATION CONTROL ROON MONI TOR DESCRIPTION SERVICE WATER SYSTEH EFFLUENT LINE (ESSENT I AL SERV I CE WATER)

TEC INL INE LI QUI 0 SANPLE DETECTOR LOCAT I ON ESW EFFLUENT LINE POWER SOURCE 120 VAC, DIST, CABINET CCRP 2, CIRC-20 CHECK SOURCE, ASSEt%LY SUPPLIED FRON CCRP-2, CIRC. 22 (FOR EACH UN I T)

SCALE 5 DECADES RANCE 3E-5 To 2E-1 UCI/CC IPCNTIFICATION NUMBER (R-20)

EFFLUENT I SOLAT ION CONTROL DEVICE LOCATION OF DCVICE POWER SOURCE N/A IOENTIFICATION NUNBCR

TABLE I 5 CHARACTERISTICS AND FUNCTIONS OF TflE RADIATION MONITOR WRA-71'7 ANO WRA-718 ALARM LOCATION CONTROL ROOM MON I TOR DESCRIPT I ON SERVICE WATER SYSTEM EFFLUENT LINE (ESSENTIAL SERVICE WATER)

TEE INLINE LIQUID SANPLE DETECTOR LOCAT ION ESl LINE POWER SOURCE 120 VAC, DIST CABINET CCRP-2, CIRC-20 CHECK SOURCE ASSEMBLY SUPPLIED FROM CCRP-2, CIRC-22 (FOR EACH UNIT)

SCALE 5 DECADES RANGE 3E 5 TP 2E 1 UC I/CC IOENTIFICATION NUHOER (R 2S)

EFFLUENT ISOLATION CONTROL DEVICE NONE LOCATION OF DEVICE POWER SOURCE N/A I DENT IF I CATION NUHBER

TABLE I 6 PLANT LIQUIO EFFLUENT PARAMETERS COMPONENTS CAPACITY Ft.ow RavE SYSTEM TaNKs PUMI s (EacH) (EACH)

I M 0 S OSA S STEM

+ CHEMIcAI. DRAIN TaNK 600 GaL 20 GIM

+ LAUNDRY ANO HOT SHOWER TANKS 600 GaL 20 GIM

+ MoNITDR TANKs 21,600 GaL 150 GPM

+ blASTE HOt.OUP TANKS 25,000 Gat.

+ MASTE EVAPORATOR 2 GPM

+ YlASTE EVAPORATOR CONDENSATE TANKS 1,500 Gat.

20 GPM II STEAM GENERATOR BLOWDO N AND BLOWDOWW TREATMFNT SYSTEMS

+ START-Up FLASH TANK (VENTED) 1,800 GAL

+ NORMAL FLAStI TANK (NOT VENTEO) 525 GaL II X 108 GPM

+ BLOWOOWN TREATMENT PUMP 60 GPM

+ BLOWOOWN HEAT EXCHANGER (ONE) 160 GI M

+ OEMINERALIZERS (THREE) 25 GPM I I I ESSEtIT A SERV CE MATER SYST M:

+ MATER PUMPS 10,000 Gpt1

+ HEAT EXCHANGER VALVE (ONE) GPM IV CIRCU ATINC t4ATER PUMPS: 3 (UIIIV 1) 4 (UNIT 2) 230,000 GPM

~

I TAOLE I 7 EFFECTIVE GAB% ENERGY PER DISINTEGRATION AND NPC OF SELECTED RADIONUCLIDES EFFECTIVE lf I SOTOPE

~l-1 1 X 10 ~ 10

~Cs-1 2 X 10

~CN-1 4 X 10 1 1X10 Co-60 X 10 2 X 10

~C- 8 X 1

~CN- 1 2 X103 .288o x 1o

~Nu- i~ 1 ~10

~ZN-6 1 X 10 640 X 10

~l-1 1 X 10 4 0

~N-24 X 10 4126 X 10 X 10 12 1 X 10 X 10 .68 24

~CN-1 6 X 10 .2228 1

AG-110M X 10 ~ 2 X 10 6 X 10 ~ 2 GROSS ALPHA x 1o-8 X 1

TABLE I 8 BIOACCU LATION FACTOR FOR FRESHWATER. FISH (PC I/KQ PER PCI/LITER)

BF BF ELEMENT ELEMENT (CONT 0) I 9 OE-01 OE 04 4.6E 03 1 ~ OE 01 NA 1.0E 02 1 5E01 10F 05 1 OE 01 2ipE 02 RH 1.0E 01 4 OE 02 TE 4.0E 02 1 OE 02 1,5E 01 CO 5 OE 01 CS 2.0E 03 Nl 1 OE 02 BA 4.0E 00 CU 50E 01 LA 2o5E 01 ZN 2,0E 03 1 OE 00 BR 4 2E 02 PR 2 5E 01 2 OE 03 ND 2.5E 01 SR 3,0E 01 1.2E 03 2.5E 01 1 OE 01 ZR 3.3E 00 1 ~ EXTRACTEO FROH TAOLE A1 OF REGULATORY Guioz 1,109, Rev>slow 1, 1977.

SITE RELATED INGESTION DOSE COPNITMNT FACTOR ~

(MREM/HRe PER UCI/ML)

RAOIONVCLIOE lN'-Boo Y CRITICAL ORGAN H-3 3-59E0 3-59EO ALL CR 51 1.36EO 3.42E2 G I-LLI m-54 8.63E2 1-39E" Gl-LLI FE-55 1 20E2 7.46E2 BONE FE-59 1.06E3 9-23E3 Gl-LLI Co-58 2.53E2 2.29E3 Gl-LLI Co-60 7.16E2 6.10E3 G I-LLI ZN-65 3-35E4 7.42E4 LIVFR Re-86 4 '4E4 1 02E5 LIVER SR-89 8.19E2 3.20E4 BONE SR-90 1-93E5 7.87E5 BONE Y-91 3.46E-1 7-13E-3 GI-LLI ZR-95 2.63E-1 1 23E3 G I-LLI ZR-97 6.1 E-3 4,19E3 G I-LLI No-95 1.34E2 1,51E6 G I-LLI Mo-99 4 59E1 5-59E2 G I-LLI Ru-103 4.46EO 1 21E3 G I-LLI Ru-106 1 95E1 9.96E3 G I-LLI AG-110M 3.23EO 2 22E3 G I-LLI TE-125M 3-55E2 1.08E4 KtONEY TE-127M 8.16E2 2.72E4 KIONEY TE-131M 6.98E2 8,31E4 GI-LLI TE 132 1 51E3 7.63E4 G I-LLI l-131 2 32E2 1.32E5 THYRO I 0 I-133 5 11E1 47E4 THYRO I 0 Cs-134 5-83E5 7-13E5 LI VER Cs-136 8.92E4 LI VER Cs-137 3.44E5 5-25E5 LlvER BA-1lt0 5 53E1 1.74E3 G I-LLI LA-1ll0 3.06E-2 8.50E3 G I-LLI CE-141 2.47E-2 8.23E2 G I-LLI CE-143 4.6IIE-3 1.57E3 G I-LLI CE 144 9o01E-1 5.68E3 G I-LLI NP-239 3.61E-3 1.34E3 G I-LLI (1) DERIVEO FROM EQVAT toN (I 14). PARAMETERS OOTAltIEO FROM TAOI.ES A-1 ANO E-1I OF R G 1~ 109m (2) RAOI ONUCL I OES Wl TH ll*LF-LI VES - 8 OAYS OECAYEO 12 HRo ANO 24 HR ~ FOR THE WATER ANO F I SH/I NVERTEORATE I NGFST I ON PATHWAYS'ESPECT t VELYo

~ ~

RELEASE I SOURCES SYSTEMS POINTS RTY WASTES: FLOOR DRAINS.

ECONTANINATION RINSE STAT!otl DRAIN CLEAN SOLU'f(ONS. CHEMICAL DRAIN to IR 2 YI SUMP 5UN('AtlK TANK. ETC.. TANK CLEAN WASTES( EOU(PMENT ORAUIS, PUMP 5EAL LEAK DFF5, GDNTAINMENT FAN COOLER CONDENSATE, ETC. PUL'P WA5$ E HOLD UP (See Nett )) STRAINER TANK (CLEAN'I MONITOR WASTE TANKS EVAPORATOR (21 VALVE PUMP WASTE HOLD UP AUTO.

5 1 RA INER TANK TERMINATION (DIRTY) IRRV.TS51 STRAINER FLOW MONITOR PUMP LAUNDRY, HOT CHEMICAL 5HOWER 0 RAIN TANKS(2) CIRCULATINC TANK RRC2$ 5 VA'fER LAKE R )4 DISCHARGE MICH(CAN TUNNELS RADIATION CVCS, dORIC ACID PUMPS EVAPORATOR 'MONITOR EVAPORATOR PACKAGES. MON(TOR (2)

BORIC ACID EVAPORATION CONDENSATE FILTER NORTH ANO SOUTH TANKS (2) OENINERALIEER (2)

(See Note 5) (2)

(2)

PRIMARY WATER STORAGE SAMPLE CVCS TANK ISOLATION HOLD UP VALVE TANK TEAM GENERATOR BLOwoowN RADIATION BLOWOOWN TREATMENT RADIATION 5TA R T4P 5/0 NDNITOR MONITOR PUMP BLOWOOWN BLOwOOVN EM BLOWOOWN ORA353 SHL FLASH TANK HEAT OEMltl.

Nota 2) ORA R44 OENIN.

STEAM $ 40 EXCHANGER (2)

GENERATOR (4) R ($

NORNAL 5/0 BLOWDOWN ISOLATION 5/0 BLOWOOWN FLA5H TANK VALVE ISOLATION CIRCULATINC (ORVO$ 0) WATER VALVE (DILUTION) CUlCULATINC WATER LAKE ST5TEM MICHIGAN E55ENTIAt. SERVICE lATER $ TSTEM PUMP CONTAIHMEHT CIRCULATINC (Seo Note I) CIRCULATIONS WATER SPRAY NEAT LAKE WA'fER OI5CHARCE MICH(GAW EXCHANCERS INTAKE PIPES PIPE WRA 1IS/1te

/R 24)

WRA 1I1/1IS IRZSI RADIATION MONITOR TURBINE BUILDING SUMP UNIT No, I AIIO 2 FLOW ABSORP TK)N (See Nate I) ROON METER PH FIELD PROBE SUMP ISOLATION (WASTE PCWOil VALVE ~ CONP0$ lfE (ORV.110) SAIIPLot OSX.)IO OVERFLO ~

fo LleE MICHIGAN Figure (E-1) LIOUIO EFFLUEIRT RELEASE SYSTEMS

~ ~

Notes to Fig. I-1 Note 1: Drawings: OP-12-5119-0, -5123B-1, -5133-1, -5134-0, -5138-0,

-5138A-O, 1-5661-0, 5661"0.

System Descriptions: SD-DCC-CH113, -NE101, -HP119.

Note 2: Drawings: OP-12-5105-0, -5105B-O, -5141-1, -5141A-O, -5119-0,

-5125-2, 5661-0, 5661-0.

System Descriptions: SD-DCC-CH114, -NE101, "HP119.

Note 3: Drawings: OP-12-5113-1, -5119-0, 5661-0-, 5661-0.

System Descriptions: SD-DCC-HP102, -HP119, NE101.

Note 4: Drawings: OP-12-5125-2, -5125A-O, 5160-2.

System Descriptions: SD-DCC-CH117.

I:i ' ~2 I I

~ I ttJ 2 2 \ ej 4 ~It 4 I' '

~2

' l' "it'I' I<<t Ijtl f  ;::: ~ ~ ~ 2

~

}

~ ~ il ~ I Je.

~ 2 I I 2

~

I. ~ I liI

~

~

rikj lij

~ ~ I~

~

.i.:I I jl,

..; .e.

"I I ~I 2

--I- I I 21

'."'. "i .I

~

4

~

i i .j.:-':. I

~ ~ ~ ~ ~

'I ~

'jibe)'" Zl

~ ~ ~

~ ~

~ ~ ~ ~ Ierj et sj~

I n

~

II

~ ~

I

~

"-jj" -'- v T :j .I-

.I:,I'.II: ~ I~

'l 2're I ~Il~

~

~ I~ t I 't i ~

4j ~j ~ ~ ~ ~

I -:I ':}!!'I ~ 2 .. i-I .

JTt 2

t t'

' -i I I'1 ~ ~ I

~ ~

I~ ~

[ ~" I i!\j.

I:I

~

-'-j 'j.')jj': v

~ ~

I 2 ~

I I

1 ~

' ~ .

J'I

~

r T j e

~

' ' =

I ~

l i I'!1 l.:..}

~: I , jl.,

lrII!I ~2~2 K~- 'll'4 ~ '2 ~ Il 4

!ii:;i IIII!ilet

~ ~

lii:

i ~

j I jjI 2

jl ~ ~

2 I

lfjj

~

I 2'.I'.-

I

~ 2~

~

gg~ Il.j I ej2 j jti.

I'II

~ ~

~ tj j ~ '<<e Ne 2 I I, i;ii'

~ i!.

lj" ~ ~

2 iii'l" jpjjj ti}i',

t jt 2 Ielt"t LR

lit ~, ~ ".

ill '2 I l'.

-!i!;i'!Ii!--;- I !I!
I!.I ~:: ~

2:eji: r ~ '

~

~ ~

I.::: Mj 't.

2 t ~ I ~ <<

'I ~ ~ ~

~ ~ ~ ~

1

-'!:: I

~ .<<

}e

~

I ~ ~

~

~

~

I. ~ 2 ~ 'I 2

~

2 4L ~ i 2 ~2 2 ~ ~ ~ I~ I lt ~ ~ I ~

':i ~

2

'-i I

"j""H ~ ' jt jl ~ ~ ~ '2 ~ t CQ Irj II:  ! l.

I2 2

. ~ ~ ~ ~

l 2 t'...i....i....;

a'i I

I , A..j

j. ~ ej id

~

~-

~

~

~ I

~

2

~

~

~

~ ~

~

~

~

~

~

I I~

~

~ ~ ~

I

~

2 I 2

~

~ ~

~

~

II

~

~ ~

~ ~~

~ '

~

~ ~

'"I tfL PREjIPljEb 9-"-: g/.'2: 'I-; l:::.. S

'L'E- 'fE )~ZA22 7jj

,::.I t ~ ~

j I

t ~

I-"

APPPOVEO DY~H ':.EXP>R T- QH" yE See. Ok ee i.

'I ~ I 'i '"'l

~ I~ ~ ~ ~ ~ j I 'i l ~ ~

/0 i

I

~

} I I

~

ll'ili I

~ ~ ~

~ ~

e

~

I

~

j '

~

~ ~ ~

~

I

~ "~

~

'/o Z Figure I -2

lao:

sc a

~ it 1

. ~

sf

~

~ ~ ~

I a

a t I I ~ C, . ~ I ~

t ca ~ s ~ a.

I ~

~ .I tLt' t(t

~

Ia

~

~

I S

c

~

I t't

~

S ~

a. ~,

II I,'si I

~

~

I II I t

~

II I

~

L%f L

~ a ~ 1> ~

.I I I I t, I'I f

~ ~

tati"'I t,,t c.sit,, it

~

(I S.' I a

I

~ I 1

1'1 I

~

I; t

': ~

~

I I ~ s 1 t t 1 t r; i:: I I~ I ~

~ '

~ ~ ~ ~

~ >> ~

~ ~ 4

~ I

~ ~

~ M ~

a

~ ' t

~ <<L

~ r

~ I

-( left:tt.

~ -t hCCOi')-

~ ~

I I I

~

~

~

~

I a

~

~

~

I I

~

I I ~ '

~

~

I I

~

a c

~

~

~

I

~

~

~

1 I

t s

~

Ls

~

t 1

~

~

I s

~

~

~

I a

~ ~

~

~

a

~

~

I a

~

~

as

~

~

~

~

a I

~

~

~ I ta'1,st I, A

~ ~

.1 I

~ ~

~

~

I I

~

~

~

I I

I I

I I ts

~

~

~

~

~

~ ~

~

~

I~

pa t>

't't ta'

~

aL I 4I

~~

4

~

I t', ~ 'L 4

LL

~ r ~

'I i. I IL I a I

~

L ~ ~ ~I

>sc L>L.

'I I I ' i t I I I I I t ~ ~ f I ~ I

.; 1; i>i, t

t 1 f

t

' s I y s 1st ..

t.f w I c t I Ii

~

tt s g r I I .-.-

t f t, I I;Ir

~

I f'>.i It .1 rzass s.t f w .-:; r ..ai

~

~ rr.a ~ >.IL.

. f t-. ~ -t I 1',.rs

~ I-

~ I 1 1 1 1 1 1 c L a i:,si

~ ~ ~

. ~

~

>>.. ., . . . ,~ . .. ~

. ~ . . ~ .

~

~ . .. .. . . .. ~ . ~ ~ ~ .~ ~

~ ~ ~

~

~ ~

~

~ ~ ~

4

~

~ ~ ~ ~ ~

~

~

~

~

~ ) ~ ' ~ ~ ~ ~ ~ i I ~ a L ~ ' p

~ ( I ~ ~ ~ ~ '

~ .

~

t i ~ ~ i

<< t s-

~ ~

~

~ ~ ~ ~ t ~ ~ ~ ~

j ...-C ~ ~ t I t ~ ~ . , D

~ ~ ~ >> ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~

~ a a ~ ~

It

~ ~ ~ ~ ~ ~ ~ ~ ~

~

~ ~ ~ ~

' ~ ~ ~ * ~ ~ ~

~ ~

~

~

' ~

~~

~

~

~ ~

I

\

~ ~

"f 4 ~ >> 4 ~ ~

I ~ ~ ~ ~ ~

..t

~ ~ ~

~, ~ s

~ ~ ~ ~ ~ . ~

C I

~

g. l a/rf>Q t i.q

~ a>sip ~

l.4

/ ( s]5 ~ ~ t9 r l.'4

~ ~ >eat (~ ~

2.o

'I g g 1. j Z.tt Q

~ te ~ I to<< ~ II j ,t".

o J' o ~ ~1

~ >>t ~ I e.

~

1

~ ~~ 'f'I ~ ~ ~ ~1~

~1 ~ ~ ~ I~ 1

['

i I~

1 I.:- r 'll I '

I

[ I

~ j , ill [ f I tis ol ~

i

.;[I] e 1'1

~

'ef I

[ie

! ~jt i I
I e." l 1

~ ---j-<<-- +3 64e~e o

JR'4~

I ~

' I

~ 'I~ <<

I

~ ~ ~ ~

f ~ o Ie~ "r II 1 ~o I 1~ 1~ I Il

~ 1

~ I ~ i

~ ~~ ~~ .-,j-:: i:L".,.: ~~

.-'kjt

~ ~ ~ I

ij-::)

~

e!.Q .<<+l I~

'I [e1 qj-

~ ~ ~ ~ ~ ~

i I qo peT .[i 1 e'-.':..]" ~1~ 1'7 os

~ ~ ~ ~

I

~

, ~ I I ~ I f

j. >>

I'Trr

~ ~ I s+ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~

~ I

. ~ l" eferietf i:,! i[:[iij

~

otto 1st ~

t<< jire Ill I:I Ij ~~ - ~ o ~

I

~

~II

~~

i ~

ii ... .:..

H.::[::-.::

~

--:::j ~ ~

I

~ ~I I ~ ~-

.'i]i'II;:II="

el l j I

,p"I, lie "i.

'>>I

~ I I

i['j L

~ q ~ I

i':.!,!Ij.-

~

!]i] }leo

~~

I ~

Ie jlIii!i-olf-'A'  !))IIII!l ~

r lr II!IIli ~ ~ ""I>>- -'["

f'[i'I silo ' hh-, ~ ~ ~ I ~ ~

j]i,.:1'"

1.

L/y1tog 1 jlI 1 ~ I r ~ i[o[er ~ ~ ~

P'i i!]it]l.- l ii Ifjlljliiittg!:

~

JIji lit iiiIII! est III! llli

~ eeo

[I'i l ~

~ I P'["

!eoo op O.60<M I el]

I'I i ,o i.li li]j I I

..:I[ }lie t Il jl iljI i!!!:I::j:--T -.j:IIII

~:. 3'; i ..::i:! ': "I'.:

L~d.tonal*

j I::i: 3 ' ~ 'r

[:)::j'. r lol kB

~ ~ ~~ ~ ~ ~ ~ [o ~ ~

[jism[

~ ~~ >>~ o~

"- ~: I:

~ ~ I

~ ~ I~ ~ ~ ~~

o ~ ~

~ ~

o 1 <

>e l ~ ~ ~ JJ'jq ~ I 'o t I ~ ~ ~ te ~ ~~ I o'1 >>-i" j. ~ j Q3 ~ fijii.. ..:.l.. [ ~ -tfN1 '>i=iii,F.'O ~y:~('l~--- I~ I 1 ~ ~ ~ ~ I I

lli]II""l' v I 'rI ApARi[Jjeot Byi ['

I l, I .. ['Eying ((!II!$ A'fg'Scc a.600< ~ ~ I oooiOossioeo sot;os~ t 'I ~ i i [ ill}i,::::::!::;, TH fl ~ << DEt T Dy. /Irj [ ~ I ' 1 ~ I /D Figure I-4 II ~ ~ lw [ I Il fb ~ ~ ~ ~ ~ 'o" rI ~ I I~ ~ sA I ~ pter ~ ~ M.I Ll jo, e flee ~ ffs el fl "';} ~~1 ster I  ;;-IS ifi:. }II t ~I ~ ' tl e e>> e ~ 1 ~ t ~ eli't t ~ ~ }e ~ ~ t ~ e<< ii 't ' 1IT<<f }'1'!: 5 I ~ ~ ~ '--I'-': >>I ~ I ' III ~ - 1 el!le<< e ~ ~ ~ I!I . ~ < 1 I ' el' ~ l 'el!I! .i e t I '/Q~ ." L }II I }'1 I  ;:,I} .;L.:QUAL! ."I

-: OQJ

~ ~ ,, I.I I 1. ~ 1!." I ~ ~~~ -r ~ crt ~ PI~ tt et! qq II I.. I.:' :iX: ee ~ Ye ~ ~ e I t>> I te>> I I S ~ t~e t ~ ~ ~ ' i ~ le eele ~ tt 'll PT' I [:I'}-,".: I e!i 5 ~ ~ ~ ~ I;".'l'.'...' el ~ IY ~ ~ .}I!fr tl ~~~ , I II r':- "e' a ~ ~ ~ ~ I >> I ~ ~ ~ I 1 . 'l1st ~ ~ tl<< Isle e}l, I~ tl st, ~ !il 1 r II L 't ,'. I!Ii: .-'I ~ It I:: e" I ~ fl '5 \ Pj ~ ~ ~ I ~ s 44k@. I rC)

>>I>>-

.!..} 1~ l>>t l "!I'. Jt~l.) ff e I! te tr' ~ Iee >>>>I"" rrpA ~ ' !I' :::el s s ~ I ,;I

"}

d(fOtl<'. ~ 'e'! l l ff>> I' ~ Ir I III 'f~!!I!'1 l Il ~1 1 e 'I" t ~ 0.60UR .',..ll': ~ \ t' !III I ". I i}!!, I II e! ) r 'I's .l, tl ~ ~ III~ ~~ ~~ ~~ ~ ~ lw::}::. ~ ~~ t~ ~ ~ ~ ~~ ~ ~~ ~ ~ ~~~ !!S I" ~ ~ ~ I" ~ ' ~ ~ ~ I:: ~ ~ <<} ~ ~ ~ ~ r>> ~~ ~ ~ >>tfe t ~ te t ~ tt ~ ~ ~ ~ . e' p ~ ~ l t I'I I I ~ ~~ l:;:}::: il.: eel ~ 'e sill ~ I 1! S 4 ',;i I I!i: e ~ I~ ~~ I I Ie t 5 >!,'.:i ! I. ~~~ ~ ~ ' e' >>! }= Jl: }i;; ilfr ~ !s I 1st '>> ! t!' e ~ . ~ ~ I t.l 7 -'} ~,'" ~~

-"r -I ~ I
I:-.

"8g Pl V,'.eS, I!@POD, ~ I .l 'III ~ ~ 'ff< 0 I I:::I f << off.f j. ..... =.I '. 1 COyA p Vle, e O ~eh'll I q ~ I >-.LL!- ~ ~ ' ~ ' I.!.}. ' chÃi4 I I ~ ~ ~ ~ ':::I ~ ~ ~ ~ ~ ~ ~ "}"---r- - }.il-1-$'>> l f I~ I~~ ~ ~ e ~ ~ ~ I " 'fV l re ~ ~ I ~~ ~ I I }I ZRu 78 QQ ~ ~ I~ ~ ~~ LLLI I ' I-"1'  :'P<HAB n..n . I':(."'.:'.::..-.:". rr; ~ t ~ ~ ~ ~ ~ ~ ~ ~ 5 4 I~ ~:) ..prpt.O'IP-,Bt~@- RPJ JRll!Ip([!1)LTE4ta rL .:i::',f Ir ~ ~ ~ ~ '1 I <.,IOre V . I I h~ "j ~ ~e ~ ~ ~ ~ K!rTe /o'6, I'HI.I BY ~ ~ ~ .i.l. ~ ~ .} ~ ~ ~ ~ ~ ~ }e l: I':..'.. II ~ ~ ~ ~ Figure I-5 0 4 $ ~ ~ srs r. Ifff tsf ii,l' ~ fPf ) <<I'I s I ~ ~ ~ P fff'}-tl". t+ sl .s, ts>> I t} s \ ~ 7 l li 1 ~ ~ 4 S 1 ~~ pgr I~ s 'rf'. j"'.; ~ << ~ rf ~ ' ~ <<~ ~ tf ':i. ~.:I'- I', 4 I s ~ ~ s I'.af ~ el ~ ~ si I~' i!I If;:  :::I.; - j ':~8 4~1} riI ':=:..I:=': 1'l ~ "ff.'l I -f- -i ~ gjW 1 ~" ~ ' }if r -~~ ~ ~ ~ ~ ~ ~ ~ I I ' ~ 'I \ ~ f~~ tl ~ +gt ~ ft ~ t ,'1 Is'fs ~1~1 ~ ~ I ~ j ~ ~ r ~ ~~t '.-:: l.l.'. ft ~ ~ -I>>- -f i'1-- Ill! }i!if ~1 tf ~ 4 ' ~ 1 ti Sf l ~ 1 ~ ii s '-r'I >>i ~ li.', . 'f lfI sf ff' ~ ~ 1's i ~ 1 I <<~I << ~ I, ~ ~~

  • i. << ~ >>

l: 1 ~ ~ 1~ ' e iii}f}el ~ ~ 'l ~ e ,} : .':I I s >>I}tr s} 1' 'I"" t I 2 ~ --l""I 1 ~; f t ~ ~

.':I Pffl

~ I ':l t~ ~ le ~ ~ I ~ if>>i ~~ ~ t) iB!-- a 'I 'P ' t <<I, i !I -"I~ I ~ ~ I~ 2 I;-ll }' ~ ~ ~ ~ ~ ~1 t <<<<i. ,5 wL jil'; }f:.: I: ~ s ~ t I!I'. slr ti}; ii 't t if!'ft~ ~1 ~1I 1!1>> lt ~ I 't.'I Ijl' j, ~ I gs. .II 't ~' ~ . ~ t )'as - I '. ~ } alii g 008 s ~ 1 I r 'I'. I i i>> 1>> ~ I 1 i 1111 ,I:  ::::::l::::='- = 1'l" .: r fOlkf'I ~ 1 << ~ I ~~ << ~ f ~ ~ ~ ~ ~ ~ ~ ~ s I ~ ~ as ~~ ~ ! t s ~ t ~ ~ ~s ~ ~ ~ I t~~ ~ ~ +l ~ s '1' ~ s ~ ~ 1 ~~~~ s ~~ 1 ~ Ii eai I ~ ~ ~ i} 1 ~ still sf ~ t1 . Ill s S ts <<,I i 1 ~1 ~ t} '"} I 4 }A

'i >>i t ~

~ I '. ~ ~ ~ Ts W. ~ i f I '~>>i'.->> g 1 <<--r -I I'...7>>'bv>>s ',l I I e' .."l ' ~ ~ ~ I 1 ~ I } ~ li sl 2 II ~ '1 ~ I ~ ~ 1 ~1 ~ f ~,I~ ~ e l EPAB O'.BY . I'i "",:::::IjS p / Y)OL) <<-I-sf i 'j)P PROV D BY + . EXP}BATI See a.4o} l ~  : ). 'GT } I ~ ~ ~ ~ .I<<t ~" I' PBOYEO.POBI I!SE';IN iI: ~- I <<'I '. .:;I.:!!,: ~ I I::l. =: Sr =- ..v DPPy'-.:,,,., l i . l s e}') ~ ~ ~ << ~ I~ ~ ~ ~ ~ e " 'l ~ l

}

-'.I":: ', ':I:I . "< 'jQ } ~ a d yD Figure I-6 Gaseous Effluent Wastes Gaseous effluent wastes, at the Donald C. Cook site, are released to the atmosphere via the following pathways: Plant Unit Vent( ), Condenser Air Ejector System( ), Turbine Gland Seal Condenser Exhaust , and the S/G Blowdown Treatment System Vent( II.l Identification of Gaseous Effluent Release Points II.l.l Plant Unit Vent (PUV) The plant unit vent discharges gaseous effluents from the following, sources: Waste Gas Decay Tanks; Aux. Building Ventilation; Engineered Safety Features Ventilation; Fuel Handling Ventilation; Containment Purge and Relief Systems; and Instrumentation Room Purge System. The plant vent is equipped with a noble gas radiation monitor and flow,recorder which samples the gaseous effluents from all sources noted above. Upon a high level alarm, the plant vent monitor (Tag No. VRC-315) automatically trips closed the waste gas release valve (RRV-306). Table II-1 presents the characteristics and functions of the plant unit vent radiation monitor VRC-315. .Figure II-1 schematically presents the gaseous effluent flow paths and components. References are listed as Notes 1 through 4 on Figure II-1. Two major gaseous effluent source contributors to the plant vent, which are equipped with gaseous radiation monitors are described individualy below. a) Waste Gas System The Waste Gas System is shared by both units No. 1 and 2, and discharges gaseous effluents from any one of the eight gas decay tanks via the plant vent. Before the content of gas decay tank is released to the environment, it must be sampled and analyzed. The tank content is discharged at a controlled rate to the plant vent through a flow regulator (RRV-305), isolation valve (RRV-306), and radiation monitor Tag No. RRA-300. The Waste Gas System radiation monitor (Tag No. RRA-300) is used for indication only. The PUV is the controlling radiation monitor for releases from the waste gas system. T b) Containment Purge and Exhaust Systems The Containment Purge System discharges gaseous effluents via the plant vent only periodically, during refueling and outage. The containment atmosphere is sampled by radiation monitor (Tag No. VRC-300 and VRC-303), which upon a high level alarm automatically isolates the Containment Purge Exhaust System and Instrumentation Room Purge and Exhaust System. Table,II-2 presents the characteristics and functions of the containment radiation" monitor (VRC-303) and lists those valves which are energized closed on a high level signal. The setpoints for monitor VRC-300 and VRC-303 is contained in the plant Technical Specification Appendix A. II.1.2 Condenser Air Ejector System Condenser Air Ejector effluents are non-condensable gases discharged locally to the environment via radiation monitor (Tag No. SRA-401). Upon a high level signal an alarm is actuated. The Condenser Air Ejector effluent flow is monitored by a recorder and a local sampling point is provided. Table 11-3 presents the characteristics and functions of the Condenser Air Ejector System radiation monitor SRA-401. Figure II-1 schematically presents the condenser air ejector effluent flow path and components. References are listed as Note 6 in Figure II-1. II.1.3 Gland Seal Condenser Exhaust The Gland Seal Condenser effluents are non-condensable gases and are discharged to the environment through a local exhaust via radiation monitor (Tag No. SRA-201).'pon a high level signal an alarm is actuated. The Gland Seal Condenser effluent flow is monitored by a recorder and a local sampling point is provided. Table II-4 presents the characteristics and functions of the Gland Seal Condenser Exhaust radiation monitor Tag No. SRA-201. Figure II-1 schematically presents the Gland Seal Condenser effluent flow path and components. References are listed as Note 7 in Figure II-l. II.1.4 S/G Blowdown System (Start-up Flash Tank Vent) The S/G Blowdown System discharges steam and non-condensable gases to the environment via the S/G Start-up Flash Tank Vent. Figure II-1 schematically presents the gaseous effluent flow paths and start-up flash system components. References are listed as Note 5 in Figure II-1. The determination of the release rate and offsite doses due to radioiodines, via the start-up flash tank vent, are provided in Section II.3.3 of the ODCM. II.2 Alarm Set-Point Determination For the purpose of implementing technical specifications 3.3.3.10 and 3.11.2.1, instantaneous concentration limits, the alarm set points for gaseous effluents released into unrestricted areas will be established using the following methodology. In addition, the gaseous effluent technical specifications do not apply to instantaneous alarm and trip set-points for integrating radiation monitors sampling radioiodines, radioactive materials'n particulate form and 21 radionuclides other than noble gases. The calculated high level alarm and release termination set-point adjustments may be established at lower values than the calculated values, if so desired. Table II-5 presents the effluent flow rate parameter. II.2.1 Plant Unit Vent The gaseous effluents discharged from the plant vent will be monitored by the plant vent radiation detector (Tag No. VRC-315) to assure that alarms and trip actions (isolation of gaseous release) will occur prior to exceeding the technical specifications noted above. The alarm set-point values will be established using the following equations: S P ~ (SF)(1EP)(DL )(A ) dp (II-1) where: Sp ~ set-point count-rate for release point p, based on the most limiting organ. SF an operating safety factor,W 1.0. >EP a weighed multiple release point factor ((1.0), such that when all site gaseous releases are integrated, the applicable dose will not be exceeded based on the release rate of each effluent point. The >EP will be based on the release rate or the volumetric flow rate of each effluent point to the total respective value and will be consistent with past operational experience. The >EP is computed as follows: - 22 e p e

1) compute the average release ratep Q (or the volumetric flow rate, f ) from each release point p.

P

2) compute gQ (or gfP ) for all release points.
3) ratio Q /g Q P (or fP /gfP ) for each release poiat.

This ratio is the HRP for that specific release I point.

4) repeat I) through 3) for each of the site's eight gaseous release points.

DL dose rate limit to organ j in an unrestricted area required to limit the dose to the applicable limit (mrem/yr). jp = count-rate which corresponds to a dose rate of 1 mrem/yr to organ j from release point p, in counts/min per mrem/yr. Based on continuous releases, the dose rate limits, DLj, from Tech. Spec. 3.11.2.1, are as follows: Total Body 500 mrem/year Skin (~ 3000 mrem/year Any Organ 1500 mrem/year For the whole body, skin, and thyroid inhalation exposure, the jp is calculated from: c A ~i ~X Q DCF ij p - -23 where: c observed count-rate of the monitor of a representative P sample corresponding to grab sample radionuclide concentration, whose analysis meets the requirements of Tech. Specs. contained in Table 4.11-2, in counts per minute (cpm). The grab sample upon which the is based, is taken concurrently with the release such that c is proportional to ~fQi. ~XQ the annual average relative concentration in the applicable sector or area, in sec/m 3 . See Table II-6.a, the worst -6 3 ~X Q is 9.0 x 10 sec/m in the north sector at the site boundary. See page V-40, D.C. Cook FES, dated August 1973. The worst X/Q value will be updated, as necessary, based on historical meteorological data. the average release rate of radionuclide, i, from the release point, p, at the time the grab sample is taken, in uCi/sec. dose conversion factor which is used to relate radiation dose to organ j, from exposure to radionuclide i. See Equations II-4 to II"6 in mrem/yr per uCi/m . The value of Qi is determined as follows: ip p ~ C opi F p (II-3) - 24 ~ ~ where: C opi the observed concentration of the ith radionuclide in the effluent stream of release point p for the grab sample, in uCi/ml. the volumetric flow rate of release point p, at the time of the grab sample in ml/sec. The dose conversion factor, DCFi~, is dependent upon the organ of concern. For the whole body: DCFi) where: Ki whole-body dose factor due to gamma emissions for each identified noble gas radionuclide in mrem/yr per uCi/m . See Table II-7; For the skin: DCFi) Li + 1'1 Mi (II-5) where: L skin dose factor due to beta emissions for each identified noble gas radionuclide, in mrem/yr per uCi/m . See Table II-7. 1.1 the ratio of tissue to air absorption coefficient over the energy range of photons of interest. This ratio converts dose (mrad) to dose equivalent (mrem). ~ the air dose factor due to gamma emissions for each identified noble gas radionuclide in mrad/yr per uCi/m 3 . See Table II-7. For the thyroid, via inhalation: DCFi) ~ p where: Pi = the dose parameter, for radionuclides other than noble gas, for the inhalation pathway in mrem/yr per uCi/m . See Table II-S. The plant vent radiation monitor set-point, Sp, will be set such that the dose rate in unrestricted areas to the whole body, skin, and thyroid or any other organ, whichever is most limiting, will be less than or equal to 500 mrem/yr, 3000 mrem/yr, and 1500 mrem/yr, respectively. The thyroid dose is limited to the inhalation pathway only. The plant vent radiation monitor set-point, Sp, will be recomputed whenever gaseous releases from the containment and gas decay tanks are discharged through the plant vent to redetermine the most limiting organ. The set-point, Sp, will be established at the lowest computed count-rate via equation II-1. II.2.1.1 Waste Gas System Decay Tanks The gaseous effluents discharged or leakage from the Waste Gas System will be monitored by the waste gas radiation monitor (Tag No. RRA-300). The waste gas radiation monitor alarm set-point will be set as close to the ambient background radiation level as practicable to monitor any inadvertant releases through this pathway from any of the gas decay tanks, if no discharges are planned, but yet high enough to prevent spurious alarms (2x background). The automatic termination of release from the Vaste Gas System will be initiated from the plant vent radiation monitor Tag No. VRC-315. Therefore', for any gaseous release configuration, which include normal operation and waste gas system gaseous discharges, the alarm set-point of the plant-vent radiation monitor will be recomputed to determine the most limiting organ based on all gaseous effluent source terms. II.2.1.2 Containment Purge and Exhaust System The gaseous effluents discharged by the Containment Purge and Exhaust Systems and Instrumentation Room Purge and Exhaust System will be monitored by the Containment Radiogas Monitor (Tag No. VRC-303) ~ For the Containment Purge System, continuous air sample from the containment atmosphere is drawn through a closed, sealed system to the radiogas radiation monitor (Tag No. VRC-303). The sample is constantly mixed in the fixed, shielded volume, where it is viewed by the monitor detector. The sample is then returned back to the containment. Sample analysis is also performed prior to the containment purge before release. For the Containment Pressure Relief System, no sample is routinely taken. The Containment Radiogas Monitor (VRC-303) upon high gas radiation level, will automatically initiate closure of the containment and instrument room purge supply and exhaust duct valves and containment pressure relief system valves. II.2.2 Condenser Air Ejector System The gaseous effluents from the Condenser Air Ejector System are discharged to the environment via radiation monitor Tag No. SRA-401. The monitor will trip an alarm prior to exceeding the Technical Specifications noted in II.2. The alarm set-point for - 27 the Condenser Air Ejector System monitor will be based on the maximum air ejector exhaust flow rate (120 cfm). The alarm set"point value will be established using the following equations: S ~ (SF)(MRP)(DL )(A. JP ) (II-7) where: set-point count-rate for the Condenser Air Ejector System radiation monitor, based on the most limiting organ. and where the other terms are as previously defined. See equations II-2 through II-6. 11.2.3 Gland Seal Condenser Exhaust (GSCE) The gaseous effluents from the Gland Seal Condenser Exhaust are discharged to the environment via radiation monitor (Tag No. SRA-201). The radiation monitor will trip an alarm pri'or to exceeding the technical specifications noted in II.2. The alarm set-point for the GSCE monitor will be based on the maximum condenser exhaust flow rate (5000 CFM). The alarm set-point t value will be established using the following equations: S ~ (SF)(MRP)(DL )(A dp ) (II-8) where: set-point count-rate for the Gland Seal Condenser Exhaust radiation monitor, based on the most limiting organ, in cpm. and where the other terms are previously defined. See Equation II-2 through II-6. II.3 Gaseous Effluent Dose calculations (10CFR50) For the purpose of implementing Technical Specification 3.11.2.2, 3.11.2.3 and 3.11.2.4, the cumulative dose commitment due to gaseous effluents will be determined using the following methodology. II.3.1 Noble Gases Air Dose The .air dose in unrestricted areas due to noble gases, for gamma and beta emitters, DAG and D~, repectively, will be determined as follows: a) Gamma Radiation D>G 3.17 x 10 g Mi X/Q Qi (II-9) b) Beta Radiation DAB 3.17 x 10 g Ni X/Q Qic (II-10) where: air dose factor due to gamma emissions for each identified >noble gas radionuclide, in mrad/yr per uCi/m 3 . See Table II-7. air dose factor due to beta emissions for each identified noble gas radionuclide in mrad/yr. per uCi/m 3 . See Table II-7. the annual average relative concentration in the applicable section or area, in sec/m . See Table II-6, for those critical receptor locations. The worst site -6 3 boundary Z/Q is 9.0 x 10 sec/m in the North Sector. 29 j ~ Qic the cumulative release of noble gas radionuclide in gaseous effluents from all release points over the calendar quarter or year, in uCi. 3.17 x 10 inverse of the number of seconds per year. The air doses due to either gamma or beta emissions, once calculated using equation (11-9) and (II-10) will be compared for compliance to the limiting condition for operation as specified in Technical specification 3.11.2.2 for the current calendar quarter and calendar year. II.3.2 Radioiodine and Radioactive Particulate Doses. DIP to an individual from radioiodines, radioactive materials in particulate form, and radionuclides other than noble gases with half-lives greater than 8 days in gaseous, effluents released to unrestricted areas will be determined as follows: DIp 3 17 x 10 g Ri Q ic (II-11) where: R dose 2 factor for each identified radionuclide i, in m (mrem/yr) per uCi/sec (for food and ground pathway) or mrem/yr. per uCi/m 3 (For inhalation pathway), for the appropriate pathway. For sectors with existing pathways within 5 miles from the site, use the values << Ri for these real pathways. If no real pathway exists within 5 miles from the site, use the cow~ilk Ri for the critical age group, infant or child, assuming that this pathway exists at the 4 to 5 mile distance in the worst sector. If the Ri value for an existing pathway within 5 miles is less than the - 30 cow~ilk pathway at 4 to 5 miles, then use the cow~ilk pathway Ri value at 4 to 5 miles. See Tables II-. 9a through II-9d, for each specific age group and exposure Table II-9e present maximum -R pathway. i valises for the most controlling age group for selected radionuclides. Ri values generated by computer code PARTS, see NUREG-0133, App. D. the atmospheric dispersion parameters for estimating doses to an individual at the controlling location, and where V is further defined as: X/Q for the inhalation pathway, in sec/m D/Q for the food and ground pathways, in 1/m2. See Table II-6a and II-6b, for those critical receptor locations. and Qic is as previously defined above. The individual doses from radioiodines and radioactive materials in particulate forms, and radionuclides other than noble gases, once calculated using equation II-ll, for the appropriate exposure pathway, will be compared for compliance to the limiting c'ondition for operation as specified in Technical Specification 3.11.2.3 for the current calendar quarter and calendar year. 31 II.3.3 Steam Generator Blowdown Treatment System (Start-up Flash Tank Vent) The determination of the release rate of radioiodine(s) via the Start-up Flash Tank Vent, such that the technical specification 3.11.2.3 is not to be exceeded, will be derived from the measured concentration of I-131 in the secondary coolant system. This calculation will be performed every time measurements of secondary coolant I-131 concentration are required by the plant technical specifications and the Start~p tank is required to be used. The calculated release rate will be assumed at this calculated level until the next secondary coolant analysis is computed. The calculated release rate is used to verify that the annual average concentration in air for Iodine-131, in unrestricted areas, will not exceed the dose limit DL to an individual from radioiodine, and that the instantaneous concentration limits are met. Equation II-ll, for this specific release pathway, is re-written as follows: DLI 3.17 x 10 RI QICW (II-12) where: ~ the dose rate limit to an individual from radioiodines, i.e., 7.5 mrem per calendar quarter or 15 mrem per calendar year to any organ. 3.17 x 10 -8 inverse of the number of second per year. RI inhalation dose factor of I-131 for for infant or child in (mrem/yr) per uCi/m for this specific pathway. See Table 11-9a. X/Q for the inhalation pathway sec/m . See Table II-6a. 32 QIC the cumulative release of I-131 in gaseous effluents from this release point over the calendar quarter or year, in uCi. The valve of QZC is computed as follows: Q ~ (C ) (IPF) (MRP) (R ) (T) (II-13) where: CI ~ the I-131 concentration of the secondary coolant in uCi/ml. MPZ ~ a multiple release point factor, such that when all gaseous releases are integrated, the applicable MPC will not be exceeded. See Section II.2.1. IPF = the iodine partition factor for the Start-up Flash Tank. A value of 0.05 is assumed as per NUREG-0017. the Steam Generator Blowdown-rate to the Start~p Flash Tank, in ml/sec. l duration of release through the Start-up Flash Tank Vent, in seconds. 11.3.4 Dose Projection: Doses due to gaseous releases into unrestricted areas will be pro/ected once per calendar month and quarter. Equations (11-9, II-10, and II-ll) of Sections II.3.1 and II.3.2 is used to project monthly and quarterly doses based on anticipated or planned gaseous effluent discharges. Anticipated gaseous effluent discharges are those discharges which are based on past operations experience and are recurrent. The gaseous effluent 33 concentrations for such= discharges are based on historical operational experience. Planned gaseous effluent discharges are those discharges for which the actual effluent concentration is known, for example, in the case of batch releases. With the anticipated or known effluent concentration, the projected dose is derived using equations (II-9, II-l0 and II-ll). When projected doses exceed 0.2 mrad for gamma radiation, or 0.4 mrad for beta radiation or 0.3 mrem to any organs that effluent stream will be treated prior to discharge. TABLE I I 1 CHARACTERISTICS AND FUNCTIONS OF TflE RADIATION MONITOR VRC-$ 15 ALARN LOCATION CONTROL ROOM MONITOR DESCRIPTION RADIOGAS SAMPLE DETECTOR LOCATION UNIT VENT POWER SOURCE 120 VAC DIST CABINET CCRP 2 CIRC-20 CHECK SOURCE, ASSEMBLY SUPPLIED FROM CCRP-2, CIRC. 22 (FOR EACH UNIT) SCALE 5 DECADE RANGE 4, TP 3E 2 UCI/CC IDENTIFICATION NUMSER R-26 EFFLUENT ISOLATION CONTROL DEVICE ONLY INDICATION AT WASTE GAS DISPOSAL TANK DISCHARGE VALVE VAI Vf RRV-306 CLOsEO LOCATION OF'EVICE GAS DECAY TANK DISCHARGE POWER SOURCE N/A IDENTIFICATION NUNOER RRV-~6 t TABLE II CHARACTERISTICS ANO FUNCTIONS OF THE RADIATION MONITOR VRC-~$ ALARtt LocaTtON CONTROL ROOM MONITOR OESCRIPTIOtt CONTAINMENT RAOIOGAS LOCATION LQrlER CONTAINMENT POWER SOURCE 120 VAG, DIST, CABINET CGRP-2, CIRC-20 CHECK SOURCE, ASSEMBLY SUPPLIED FROM CGRP-2, CIRC~ 22 SCALc 5 DECADE RANGE N-6 toKE'3 UCI/Cc IDEttTIFI CATION NUHSER R-12 EFFLUENT- ISOt.ATION CONTROL DEVICE CLosE VA! vEs VGR 103t 203t 105'0$ TRIPS F ANS VCR-104, 204, 106, 206 VCR-1CP, 207 ~ I II VGR-101, 201 t VCR-102, 202 LOCATION OF OFV I CE CONTAINMENT PURGE CONTAINMENT RELIEF EXHAUSTS POWER SOURCE N/A IOENTIFICATIOtt NUtIOCR TABLE II $ CHARACTERISTICS AND FUNCTIONS OF THE RADIATION MONITOR SRA-II01 ALARtI LOCATION CONTROL ROOM-MON I TOR DESCR I P T I ON INI.INE RAOIOGAS DETECTOR CONDENSER EVaCuaTION SYSTEM LOCATION S.J,A.E. VERT POWER SOURCE 120 VAG DIST CABINET CCRP-2, CIRC-20+ CHECK SOURCE, ASSEMBLY SUPPLIED FROM CCRP-2,.CIRC 22 (FOR EACH UNIT) SCALE 5 DECADE RAWOE 5E-6 To 1E-2 UCI/OC IDENTIFICATION NUNBER R-15 EFFI.UEtIT ISOLATION CONTROL DEVICE NONE LOCATION OF DEVICE POWER SOURCE N/A I OEN T I F I CAT I ON NUtIBER TABLE I I Iy. CHARACTERISTICS AND FUNCTIONS OF THE RADIATION NONITOR SRA-201 ALARM LOCATION CONTROL ROON NON I TOR DESCRIPT I ON RADIOGAS DETECTOR LOCATION GLAND SEAL EXHAUST POWER SOURCE 120 VAC DIST. CABINET CCRP-2, CIRC-20 CHECK SOURCE ASSEt%LY SUPPLIED FRON CCRP-2, CIRC-22 (FOR EACH UNIT) SCALE 5 DECADES RANCE 3E-6 To $ E-2 UCI/CC IDENTIFICATION NUMBER R-$ 3 EFFLUENT ISOLATION CONTROL DEVICE NONE LOCATION OF DEVI CE POWER SOURCE N/A IDENTIFICATION NUMBER TABLE I I 5 PLANT GASEOUS EFFLUENT PARAMETERS EXHAUST FLow Rave SYSTEM UNIT (CFV) CAPACITY NO~ OF TANKS I PLANT UN T VENTI UwIv 1 159,600 UNI T 2 1 2$ ) 500 + WasTE GAs OEGAY TANKs UNIT 1 + WASTE GAS COMPRESSORS 125 + AUX. BUILOING UwIT 1 72,600 Exwausv UwIv 2 64,500 + ENCE SAFETY FEATURES VENT UwIv 1 Ilc 2 25,000 + FUEL HawoLIwG ARea Vewv UwIv 1 ~) 000 SYSTEM + CCNTAINMENT PURGE SYsTEH Uw I T $ 2) 000 + CONTAINMENT PRESSURE UNIv 1 Ilc 2 1,000 RELIEF SYSTEM + INSTR% ROON PURGE SYSTEM UwIT 1 8c 2 1,000 II CONOENSER A R EJECTOR UNIv 1 Ec 2 120 8 E~ECTORS SYBTEM I I I TURBINE SEAI.s SYsvEM UNIT 1 Ec 2 TABLE II-6a ., OATHS OF LhfT Ã/0 CcttttttthTIOtt hRK FRntt Sf 'F 1 f TO 88 83084 Ground Average X/9 (sel.-/m3 81938VYZPt FROft tt t.GV~tJE=tL'.IC&ttf-07 9+8654K-08 So4419K-08 3o79GSK-08 t-s?9?K-IS 7.1952K-OQ 3.5506E-IQ lo283ZK-09 ie6249E-OP SIDItt&CTION FROh tPIE i*7231K-06 3.2494K-07 io49GZK-07 So7597E-08 Sobsdtf 08 R.9756K-IB 1.123BE-OS 5.603?E-OP 3+4909K-OQ ao4ssff-09 aitithKCTION FHOtl I;K 1-04'DCE-06 3.4095K-07 1.6735E-07 to0083E-07 7oOBSSK-08 3.5451E-IB 1.3004K-QS 6.$ QOQE-49 4a40tff-OQ 3+f7?3K-09 Ill'IAECTION FROh Et:c. 2.252?E-bs 4.3IL'QE-07 B.ODCGE-07 1.2667K-07 S.Q372E-OS 4.50tCE-IS 1.7816K-OB 8.893SE-OQ 6o7016E-09 4+tZQGE"09 0=i>>nECT ION FRCh 3.02IGK-IG 5-7CC?K-47 8+7552K-07 1 ~ GCBOE-07 toi79?K-07 5.9?53E"48 2 3?04E-08 ~ tetsttf"08 7.6595E-OQ 6 483?E"&9 SIDIAECTIOtt FRDtt ESE 3.493?E-IG 6.9??SE-O7 3.4124E-07 8. CS11E-07 ..1.476GE-07 7.5 193K-08 3. 0113E-08 1.5064K-OB Q.GGIGE-OQ 7 1359E-09 8 1 l'IAECTION FROtl'K 3.5926K-06 6.8403K-07 3,39&PE-47 2.1934E-17 t,4SQBE-d7 7.4182K-QB 3.0013E-OB t+SSIZK-08 9+9924K-OQ 7.2949K-OQ 01DI tlECI'ION FRCtl SSK 2.5774K-OS 4.9057E-07 Bo4286E-07 fe49ZSE-07 1.0S36E-07 5.4572E-OB 2.21OGE-&B f.tf4OE-OS 7'.1825K-09 - 5.248?E-09 WGIAECTION FRDN 6 2.i4GGE-OG 4.1534K-07 8+0324K-07 1.2394K-07 8.7964E-OB 4.4844K-IS 1.8014K-OS 9+0614E-09 6.83BSE-OQ 4.2522K-OP SIDIAECTION FROtl 55U 2.O332K-OG 3.9?SIK-07 1 Q311E-07 i.f71%K-07 8.29BSE-OS 4.2ICCK-OB 1.6BGQE-OB 8.4764f-bp Se462BK-OQ 3. 9719E-OQ SCOIAECTION FROh 5U 2.";643K-OS '4.6tt3E-07 8.1714K-07 ts28$ 4E-07 P.1492K-OS 4.53S?E-OS f.769?E-OS 8+7840K-09 5isfSff-Op 4o0489K-09 SIDIAECTIOtl FROh VSU

2. t~c.?1E-OG 4.1647E-07 1,9080E-07 tei32IK"07 7,93S3E-OS 3.f 55?E-08 1.5443K-OS 7e6945K-09 4o9389E-OQ 3.5648K-OQ WCIAECT IO.'l FROtl U t.<52?E-ZS 2.7606E-07 ie2899K-07 7eGZQSE-08 -5.328SE-OS 2.13936-08 t.0165E-OB 6.1204E-OQ 3.ZOZ?E-OQ Zi29$ 3C-09 81DlliECTIDN fRDh UttU 1."255K-OB 2 ~ 4550K-07 i.f289E-07 B.SQstE-OS 4+5938K-OS 2,ENDE OS SCDIAECTION fROtl NU 8 5?62K 09 4.2ZOSK-OQ 8.6864E-OQ f o QZIQE-19 1.19?IE-OB R.IQOQE&7 9+9130K-OR So743tf-08 3e9587E-08 1.0108K-OS 7,0721E-09 3e44ZCE-Op 8+1766K-09 to5420K-49 SIDIAECTION FRDtt tlttU 1.1031K-OB f 9?SGE-OS t7 496(K-09 i 1 30I f-07 9,8715K"OS 3oSPOZK-09 d 8118K tfo 3470 K"09 4,0309E-OS f,67?QK-OQ

~~ a USED'ttt CnLCVLRTIDNS tt04 elf 24tleb 4020+0 5830, ~ 7840 o0 f2037+0 24t Si,b 40228+0 50316q0 gy400.e TABLE II-6b- .. DATES OF LaST XIO aCCUNULATfoft hhK FROII Sf 7 f i To 88 83080 Deposition (I/BID) At0 IGKCTIDtt FRNI tel tl tE-09 6,1872E-1 ~ Bi7816E-10 fi7363K"IO 7.47926-09 1 . 7.2S22E-II 8. 3G13E-1 1 8.693$ E-18 4i6482E"IB 8.9156E-f8 Ot DIRECT ION FRON tnlE ,f.RIGCK-CB f .'CECA-09 ~ +4374K"I ~ 4 4269K-f ~ 8.8242K-I ~ <.7424K-IR t.l79CE-I4 3.04CBE-tf 104101K-tt 7iS<7GE-fB otnfnccrloN FROtt NK 8 '26CK CQ 1.2000K-OQ 6 8438K-10 3.066IE-IO 1.9660E-I ~ B. 17C2E-11 8.6&ca-tt 9.7942K-fa 6i227&E-fB 3.20iGE-fB ot OICKcrION FRCtl KNE 9.3017K-CQ 1.4227K-OQ 8.<512K-10 3.3847K-IO Bif&93E-14 9.0193E-11 R.Q306E-11 1 0$ 12E-11 Sa7709E-fB 3.6260E-18 OIDIRiECTION FROtl E 1.53GIE-OB 8.3<95K"09 tiOGSRE-09 S.SBQGE"10 3i6660E-14 f.<BQSE-IO 4.8496K-t t lo78&SE-tt 9+S30OE-IB 6.9879E-12 OtDIRECTIOtt FRON ESE 2.el<2K-CB 3.0030K"09 1.3969E-OQ 7i329<E-IO i+8759K-IO 1 . 953 I E" 13 6.3593K-ft 8.3413K-ft ti2496E-ff 7 i 8616E-18 'ttDIAECTIOtt FROtl 5E 1.749IE-OB 2.6753E-OQ f .2131E-OQ 8.3647K-IO 4.0605K"10 f.GCCCE-IO 6.52i".IE-11 8 i 0331E-1 t ti0852E-11 Bi$ 1$ 3E-12 xtDIREcrtoN FROtl SSE fi0745K-03 I. 6436K-09 7.4525K-IO 3.910 1 E" f0 Bi(QRSE-f ~ 1-0419K-IO 3.3924K-t 1 1.2490K-tt 8.6G66E-IB 4.1$ 88E-IB ttDIAEcrION FRON S Q. I lad&-49 1.3930E-09 8.3199E-10 3 3158E Bi 1ISAE" 14 8.8357&-11 8.$ 769E-lt fi0592E-tt 6.653(E-IB 3i5522E-18 'tDIAECTIOtt F ROtl SSU 9.30GIE-OQ 1.4372K-OQ 8, &160E-10 3.4192K-10 8, 1813E-10 Q.lf IIE-Il 2.9GGSE-lf fi0922E-ft Si8296E-18 3i6629E"12 00DIRECTION F Roll 5U 1.5400K-OB 2.3507E"09 1.06$ GE-OQ S.&060E-I ~ 3i5769E"10 1.49ICE-IO 4.8645K-tt 1 7910E-1 1 9.6593E-IB 8.0064K-fB Bt DIRECTION F ROil USU 1.6701K-OB 2.5667K-OQ fi1638E-OQ 8. 1 06 4E-1 ~ 3 i8956E-10 1.6272E-10 6.2979K-ff tiQ506E"ff fi04ffE-ft 8.5415K-fB BtnIREcrlON F RON V 1.3103K-OB 8.0184K"OQ Qif433E-10 4+7972K-IO 3.4605K-1 ~ 1.2703K-IO W.f02IE-tf 1.532(E-tt Bi179OE"18 6it39IE-IB gtDIAECTION F RON VNU ti3$ (GE-OB 2.1178K-OQ 9.60296-10 Si4384E-IO 3iaf43E-'f0 t.'3i2GK-IO $ 0DIRECTION F RO!l NU 4 3713E"11 f i609<E-f t 8.6902K"18 Si3974E-fB 1 ~ 3046K-OB 2 f17SE-OQ QiS029E-10 Si0384K-f ~ 3.81436-10 ti3i2GE"IO 4i3713E-ff 1.60QNK-fl 8.6902K"18 Si3974E-f 8 OODIRECT ION FR Otl NtN t i0627E-00 i 0305K-1 liSRGSK-09 7o3704K 10 3i847IK-10 ~ 4870K 10 1 ~ 3i3&S1E-fl fiR3$ 3E 11 8e&93$ E fB eH$ 7E-.18 ggg~gES USED fN CALCVthrfONS 800 id 801$ .0 4020i0 6430i0 7NO, ~ . 12007+0 8013&iO 4022Se0 6$ 3fSi0 7N00og ABLE I l DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS'AOIONUC TOTAL SODY GAMMA AIR BETA AIR DOSE FACTOR SK IN DOSE FACTOR DOSE FACTOR DOSE FACTOR I 3 LI Nl NI IDE (MREM YR PER UCI M ) XR-83M 7.56E-02 1 93E+01 2.88E~2 KR-85M 1.17&03 1. lf6E+03 1.23&03 1.97E+03 KR-85 1.61EW1 1.34E~3 1.72EW1 1.95EW3 KR-87 5,92E+03 9.73E+03 6.17EW3 1.o3Fm4 KR-88 1 47E+ol 2.37E+03 1.52E~4 2.93E+03 KR-89 1.66E+o4 1 01E+Olf 1 73E+04 1.06E+o4 KR-90 1.56E~4 7 29E+03 1.63E~4 7.83E+03 XE-131M 9.15E+01 4.76E~2 1.56E~2 1. 11E+03 XE-133M 2.51E+02 9 94E+02 3.27EM2 1.48E+03 XE-133 2.94E+o2 3.06E+02 3.63E+o2 1.05E+03 XE-135M 3.12&03 7 11E+02 3.36E+o3 7-39E 02 Xc-135 1.81Em3 1.86E+o3 1 92EW3 2.46E+03 XE-137 1.42EW3 1.22EW4 1.51E+03 1 27E+olf XE-138 8.83E+03 4.13E+03 9.21E+03 4.75E+o3 AR 4 8.84E+03 2.69Em3 9.30E+03 3.28c~o> THE LISTED DOSE FACTORS ARE FOR RADIONUCLI DES THAT MAY OE DETECTED IN GASEOUS EFFLUENTS ~ 7.56E-o2 = 7.56 K 1o I~IDO RADIO-NUCLIOE H-3 P-32 w-54 P INHALATION PATHWAY 6.5E~2 2.0E<06 DOSE (M PARA&TERS FOR FOOD 2 Rc PART I CULATE P I RFM YR PER  ?.4EW3 1 5E+11 TABLE GROUND PATHWAYS UC I I SFC) 8 RADIOIODINES AND RADIOACTIVE GASEOUS EFFLUENTS>> RADIO-ED CD-115M SN-123 MRFM YR PER P 7.0Em4 2.9&05 I INHALATION PATHWAY UC M FOOD (M 2 Ec MREM YR PFR 4.8Em7 P 3.4E+09 I GROUND PATHWAYS UCI S C) 2.5E+o4 1. 1E+09 SN-126 1 2E+06 1 ~ 1E+09 FE-59 2,4E+04 7.0E+08 Ss-124 5 9E+04 1 1E+09 Co-58 1.1E~4 9.7EW8 SII-125 1.5Em4, 1.1E+09 Co-6o 3.2E~4 4.6E+o9 TE 127M 3.8E~4 7. 4E+10 ZN-65 6 ..3E+o4 1 7E+10 TE-129M 3.2&04 1.3E+09 Re-86 1.9E+05 1 6E+10 Cs-134 7.0EW5 5 3E+10 SR-89 4 PE+0 1 OE+10 Cs-136 1,3E+05 5 4E+09 SR-90 4.'1E~7 9.5E+1o Cs-137 6.1E~5 4-,7E+1o Y-91 7.0Em4 1;.9E+09 Ba-14o 5.6Em4 2.4E+o8 ZR-95 2;2E~4 3 5E+08 CE-141 2.2E+04 8.7E~7 Ne-95 1.3E~04 3.6E~8 CE-144 1-5E+05 6.5E~8 Ru-103 1.6Em4 3.4E+1o 1-131 1 5E+07 1o 1E+12 RU-106 1.6E~5 4.4E+11 1 ~ 1 33 3.6E~6 9o6E+09 AG-110M 3.3E+04 1 5E+10 UN I DENT I F I ED** 4.1Em7 9.5E+10 THE LISTED DOSE PARAMETERS ARE FOR RAOIONUCLIOES THAT MAY BE OETECTEO IN GASEOUS EFFLUENTSe I F SR 90 ANALYSIS I S PERFORMED y USE P G I VEN IN RU106 FOR UN I DENT I FIED COMPONENTSO I IF sR-90 AND RU-106 ANALYsfs ARE =PERFDRMED UsE P I G I vEN IN I- I31 FoR UN I DENT IF I Eo coMPDNENTs~ IF SR-90'U-106 ANO I 131 ANALYSES ARE PERFORMEEgy USE P G I VEN IN P-32 FOR UN I DENT I FIED COMPONENTSa ThB)E t l 9A DOIIALD C CO Ct itift(IIT PA) IittAT DOSE I'Ali\nf 1 I-aS I OR ttAD I OHU(LI I II( a TIIAti IIOOLE GASf 6 RADIO IltllALATlOH GROUND PL A tlf CDU I II.K GOAI NILK t NTNAL-t'EA T V E G E T AO l. E S tIUCL I DE (NREN/YR (H2 Naf.'ll Y a ( t'2 paf t:IY a ( tip N af N/ T R f N/Ya PRE N/Yl\ CCCCCCC cctlctlllec 668 3ICCCRRIICOCICC CCICCFCRSUCCICIC 6%686668666SS 66668&668 6X166 Ci,66888CeeCICCCX II 3~t 6 Sftf2 0 2.4E t(t5 4.9E tn~ u. 0 C 14 Z.ef tec 0. 3. ZI, t nfi 3.2E tn6 0 0 HA 24 I f t04 I 2(t3? I '.7'f ~ n? 2 (.EtG6 0 0 P 32 Z.QE tnd n. (.e>>t)1 1.'9f + I ) 0 0 CR 51 3.6E t02 C ?ltnd Ci .Zf tne S.CE tCS ('. 0 54 Z.SE t(.4 ).CE ti) 9 1 f 'UI 3. 7E t06 0~ 56  ?.2E t04 9 l.'E t i) 5 2 OE t00 5E-OI n. 0 ~ FE SS 2 Uf tCC 0 I .lf t48 Cc i'It) 4f t Gti 0. 0 FE so 2.4E t('4 2.? f tl)8 3 4 .Cftnd 0. 0. Cn SS 1 1EtQC '3 sf tns 5 .0. t Il? 6.0ftnd 0 Q. co eo 3. ZE t04 2 ZF.t I 0 1.7f t ni) Z.cctn? 0~ Hr 6$ .$ .4E tns 0. 0>> t )0 5 SEtGO G. n. Hl 65 5 OEt04 3.liEtns 3 l)r tnl 6E tnn p 0 CU 64 1. SE't04 6.(.F. ~ 0 5 5 .Sc t I)6 4-2ftns lH 65 6 tGC  ?.sf tnt) I.7Ft 1U 2 1EtC9 0 0~ rtt 69 1.5E $E tOC O. 3 . I. - I) 9 Ci 4 lc'u 0. 0 ZH 69% 1F.t04 1 3(>>nd Of tn7 5 9f +t'6 G. 0 na 8c 4.0E t02 2.l. f tn5 1 .'$f -22 6E-23 0. 0 as 86 I.OF.tOS 9.('Etnd Z.IF,t lU Z Sft09 G. 0 as 88 5.6E tC2 3.5f ~ OC I). O. 0. 0 Rt) SO 3.2E t02 1.2E F 05 O. 0. 0. 0 SR 89 C.QF tus Zftn4 I 1 f t ln 2-2f.t 10 0 0 ~ Sa 90 4.1f tn? Q. 1.QF t ll 2 1F tl 1 t) n. Sa 91  ?.Wf tOC lftne (.Zf t Its 6.?f.tG5 n. 0 SR 92 ).4E tnS  ?.Rf ins S.lf tnl I 1EtC2 Q. G. Y 90 1 OEtUS 4 Sf tu3 9 Cf tu5 I. If tns 0 0 ~ 7 OEtQC I. Ift06 Ci.4F tt)6 5.3E tnS 0 ~ 0 Y 91N Z CEtn$ ) .I>f ~ GS Z.i)f -I5 2.4E-16 Q. Y 92 1.3E tns 1 fftQS I-(ctnl 5'E t G. (. Y 93 1.?E tOS 1 Sltu5 1 76 t04 lftus ti('. 0 0. ra 95 2.2EtQC 2.SEE 08 9f t t)5 8-5E t04 0 za 97 1.4f. PCS 2.9( tne 4.5f,tU4 S.?f t0$ 0. 0. tls 95 1.3E tQC 1 cf t08 1 ~ St tnb 2.2f.tn? Q G. ttO 99 2 6ctCZ 4 t lt(6 1 f tni) 5. 7E! t.'? 0 0 TC 2.0f t(.3 1.(if tiJ5 I 7f.ii)4 2.0( tu3 n. O. 99'C IUI 8.4f t02 UFtQC '). U 0~ 0 RU 10$ 1.6 E tGC 1.1E>>OS 2E t:)4 1 lft04 0. 0. RU 105 C.SE t04 6.4E tCS $ .2( tfin OE-01 0 C. RU 106 6E tGS 4. 2f GS ~ I Zctne I Cf tns 0 0 CG 1 ION ,SE tOC Sf t:IO I -?Ft lb 1 5( tQ9 0 ~ C CD 113>>i 2.5E 04 ~ 4.6(tnd C $ ctJ? 5 lf'tnd 0. 0 CO 'I 1stl  ?.OE' OC u. 5 2f t:)7 6-2f tne n. U. SH 12$ 2 9E t(is O. $ .?ftJO 4.CFtGS Q. 0 I'I 1 2d 1.ZE inc 2 ef 10 ~ H.or.to9 'I .1E tU9 0. 0 Sn I 2C 5.9ctuC ei ltf til8 5 4 f til3 .'if. t 0 7 0. 0 Ss 'I 25 1.5f t04 2.$ t t09 1.6f ti)8 I .OF tn? 0. 0 TE 12SN 4 Sf tni$ 1.6E t:)6 I 4F ti)H 1 ?Etn? 0. 0 1E 12? 2 CftGC 3f tt)5 I sf t tet) l. SEtC? 0 G. Tf 1 2/N 3.8f.tnC 9.2('i:IC I ttf tu9 2E t08 0. 0 TE 129 2 dEtGC I.ff tn/ I ?F.t.)8 1.4F:tn? 0. 0. Tf )ZOH 3.2ftnC  ? Cf tn? I 5F t')9 1. Gil' 0 8 0. (I T'E 151 8 Zftnl 2.1E'tnd I diF. ti 6 1 9Et US , Q. (. TC ) 5)P 1.2Et05 8.CEt 06 2.3E ~ 07 2.8f tne i O. 0 TE 132 C CEt(C 4 2ftu6 4 ltt; t07 4.'?F tl;6 (1 0 CS 134  ? UE tCS 6 Sf.t')9 5 CF.< 'l(i 1.6F t 1 1 ',0 0. 9A (COIIT'0) CS 'I 36 3f. ~ OS 1.SEt')8 5 Sftt)9 I o 7Et IU 0 I'. CS 6.1f <<5 1 Df ~ I tt 4-9ft ID I.SE t I I 0. 0 CS 138 7.8E tC2 5.GF t JS I .3f-22 9E-27 0. 0 OA 139 5.1E t(l4 I l(tos 2 IE-JS 5F -l)6 0 0 OA 140 S.bf tDC 2. Ift07 2.3E tot) 2 8F tLI O. 0 BA 141 I .bf -OI 4.2ftL4 I) 0. 0. n. HA IC2 4.0E-D2 C.SFtJC U 0 0 0 LA ICD 8 SFtOC 1.9F tur 1.9E tu5  ? 5f tUC n. 0~ LC 142 6 OF tu4 Z.IF tOS 1 3F-DS 1.6e-ob 0. 0 CE 141 2.2f ~ 04 1.4F t07 1.2F tf 7 1 CF t(b (:. I. ~ CE 145 S Qf t04 2.3ftob I SFt06 1.8E t05 0 n. CE 14C 1.5E tos 7.(f tur 1 .)ftu8 ) ~ 3C tor 0 U PR IC3 I rf t(i4 0 I .Sf tos 9.(.f t04 0 0~ PR 144 4 Sf t03 8f tQ3 0 0 0. D ND 1C7 3 )Et()4 8.4f ~ Gb 5 SEtos 6. 7ft04 C 0 I'H 147 8.1E to) 0 ')E ~ 05 3~ 'E t(:C 0 0 Pff 1CRH C.zf t04 1 Sft08 I Cetob I If tDS 0. 0 SH 151 4.8ft05 1. 3E t08 I . If tos 2 ?Et L'C D. 0 H 187 I.bf tOC 2.4Ft06 sft06 5.fftOS 0, O. NP 239 2.SEt04 1 Ift(tb 9.SE t04 1.1E tOC C. D. 130 1 bf.tob 5- SE t07 I .Sf tlo 9. Oft 10 0 0 I I31 I.SE tfl/ I .IEt07 I.GFt )2 1 28112 Q 0 I 152 I rf tOS 1.?E 06 ~ I 4F t02 1.6f t02 0 O. I 133 3.6E t06 2 4f t06 9 6E to9 1 2f t10 0. (i I I34 4 SEt04 4.SF t05 9 4E-10 1. 1E -tl9 0 0 I 135 7.0E tOS 2. SEt DG 2.OE t07 2.4EtOI 0 0 UH I Dt 4. I C tOI 0 1 t)f t 1 1 2.1E t I I 0 0 t1f SR-90 ANALYSIS (S I'ERf ORttf 9, U$ f. R(1 ) GIVEtl Itl 1-131 FOR UNIDfttlI I )ED COt'.POtlEtlTS ~ lf SR 90 AND 1-131 ANALYSfS ARE PCRFORt CD USE tt(l) GIVEN I tl CS-137 FOR O'IIDEHT IF IED COHPOHCBTS IF Stt-90, 1-131 AHD CS-137 AtlALYSES ARE I'f RFORNED USE R(l ) GIVE)I Itl IN-GSFOR UNIDEHI IF)ED CO'tPOHftlTS and Cart)oo FOR TRI TIU> THE UNITS Of TIIE DOSE I'ARAHETFRS ARE HRf HITR (R UCI/t'3 FOR ALL PATHHATS~ THEY ttUST~ OE ttULTIPLIE 4 OT X/O lll Si'EC If ICAl 104S 3.11 .2 I'HD A AHD H TABLE I I 90 DOJJALD C CO CJI (I) ~ CIIII I I'AT I<MAY DOS I: PARA'<<<IE RS f OR RAD I OJIUCLI Dt Gill( R I <<AN UOULE GASES RAD)0- )I<I<ALAI IO Jl GROUIJD Pl. A JJE C<)<<J -<t)L K G0 A I- I<< I l. K I VEGETAOLfS IJUCL )DE'dlhhdd (<<REJIIY<<l (HZ. VRE k/ I K (>2 ~ Rkf I<</YR ( JI2 RRE N/YR ( J<<2. J'RE<<</Y R (82 J<<RE<</YR ddhdhdPtddh SS'CJIdhhh%8<<$ 45 dddhdhdh<<)0<<$ /.dddd(d ddl)hnddddhd5 JIKBR<<IJ)I)dd))ddBihddhdhdnddddddd $a a 1.1E ~ (,$ U. ) .Gf<<4$ 3.2Et(3 2 .Sf<02 (:Etl

  • 3.6E <<OC n. .?l,<<)ii I .7K t<<8 5.3 I.<OS 3.5 f <<)8 JJA 24 I 6E tOC 1.2E<<01 9K ti)4 I.IE<<04 1.9E-O5 3./E <<05 P $2 2 6E t06 0.  ?.df t10 9.1F<<IC 1.3f <<09 3 7K ~ ti9 CR 51 1.1f t0$ C.lf tnd C.BE <<CG 5. BF. tn5 C.2E<<45 6 If <<UG N<J 5C 4.3F. <<04 1.4f <<O9 I.? f tA? 2.nd lid ~ Cf tud 6 5E <<08 NN 56 1-2E<<05 9 ~ (if t<)5 I .'JE ~ <)0 3E-Ul O. Z.?ED U3 Ff 55 (E 59 4.7E <<CC

$ .3f <<04 0. 2.?f t08 8 lf tnl I If <<06 S -6C t(JL<< 7 'ftn(<< I 7F tl<8 2 2E <<06 5 Za<<08 6 3E<<08 CO 58 3.4f <<04 3.8f tnB 5,9E Ul ~ 7.1f <<06 8 Of t(i? 3 ~ ?E<<08 <<0 GC D.df <<04 2.2E<<10 1.9F, f>8 ~ 7 ~ 3E t J)lI('IJIHAL-Hfh S.nftne 2 IE<<U9 IJI 43 8.2f.<<05 0~ 10 3.UE<<09 Z .5F<<10 4 ~ Gf t10 J<l 65 8 4ftnC 3.(.E <<05 1.9f tnl 2 3ftnu ?E<<03 CU 64 $ .lf <<OC 6.('f <<05 $ 5f tnd 3.9f tn5 0 I Sf-05 1 5 1E ~ 05 (H 65 1.1 f <<GS  ?.SE <GB 9E tl)9 I 2Et09 9.l'.E 08 < 2 7E<<49 ZR 69 I.OE <<04 n. I .UF.-G9 'I ZE" I C O. 8 7E-04 LJJ 69<< I .OE <<05 l. Sf tnd C SF tn1 5 Sf tnd I 1 f-03 2 ?E <<06 OR RC 5 5 K<<OZ 2.0ft35 6.9E-ZS 8 3E-24 n. 3 SE-11 Re 86 2.0E.<<05 9.nft)d 8.? f <<09 9.8E <<08 5.4E <08 C KEtnf RR 88 S.df <02 $ .5ftOC 0. 0. 0 3 CE-22 RB 89 5.5f tn? 1. Zf<<0$ 0 ~ 0 0 3 5E-26 SR 89 G.OE <<0$ Z.ZE<<JC 5 l<<E't09 ZE<<IG 4 1Et08 Sf t )0 Sh 90 ).OE tnB 0. 9.5f << IU 1.9<<tll 8 6ft09 1 CF t12 SR 91 I ?E tn$ 2.1f t(<<6 2 .9Ft<<)5 6 Gf<<05 5 OE-10 If<<f 6 SR 9? 2 Cf tCS l RF. t<."S 4 .Zf tnl B.BE <<01 0. 1 E<<CC T 90 2.lf <<GS 4.$ E<<us 9.2C<<05 1.)E <<US 4.9f<<05 1 G.GE<<Lr I 91 I .Bf. tnS I lftnd C.CC<<06 5 2E<<US 2 CE<<08 2 Cf<<09 I 9)R 1./E tG3 I.UF.<<0$ 5 .6<:-Id 6 7f-17 0 1 df -(iS Y 92 Z.CE <<05 1.RE<<OS Cc <<00 8. 9F.-01 8 1K-35 C 5f <<LC T 93 3.9f.tGS 1.8f i)5 ~ I Sf t<<J4 I.KEtU3 I . ZE-(<<l C CE<<06 IR 95 6 )E t04 Z.SE <<OR 7.4E<<u5 8 PE<<04 5.2E<<08 8.8ftn& ZR 97 5 Sf <<05 2.9ftnd 4 IF tu4 4 9E t05 5 Bf 01 1.2E<<O? NO 9$ .7E<<OC ).CF <<08 2.4f <<47 $ 2 .UF tn<<8  ?.Of <<09 2 9ft08 <<0 99 I<< $ .9E <<02 4 O: J6 ~ 7E <<IJJI 2 1E tnl 2 4ftnS 1.7f << 07 99'C C.BK <<0$ 1.8Et05 I.SE<<UC I BE<<03 8 OE 18 .5.3E <<03 101 I 6E <GI  ? ~ Of ~ UC II. 0. 0 ~ Gf-30 RU 10$ 4 Sf tOC I IE <<OB s) Gif <UC 1.?E<<04 $ .5E<<C9 3 9EtGI<< RU 105 I.OE <<0$ G.Cf <<CS Z.Sr <<UU 3.OE-OI 6 4(-25 5.9E<<C4 KU AG 106 1 10'I 4.5E<<05 1.0E ~ CS 4.2E<<08 S.SE <<39 ).2F tl,d I .4F,t IG 1.4f t(5 1.?E t09 5 6f 10 ~ GE<OR 1 2Et 2 Pf <<09 lf <<o IISV G.UF. <<OC 4.RI<<nd 4.? f <<Il S.CE <<06 2.3Etul .6 SE <C9 <<0 I IS<< I Bf t05 0 5 . I I'<<Ul G 1Ftnd 2.1F. ~ 01 2.(K<<U9 SH 12$ 4 BE <05 0. 2 .I)E <<l)9  ?.4E <<08 1 lEtC9 6 3E<<09 SJJ 126 2.5E tnd 2.6f<<IU b.nft08 4c t(<9 5./f tud 6 4ct08 /. I a t ln 2 4E<<IC S<) 124 1 6E ~ 0$ <<Et39 6 JIE<<Ul ).5f ~ <) 8 2.2f<<09 SO 125 C.UK ).dc<<UB 2.UE<<07 4f <Ul I 2E<<09 Tf I ZS<<< <O'.lf ~ 0$ ).r E<<nd 6.9( <<Jn1 8 3K<<06 5.3< <08 CCE<<08 TE 121 5 dEtGC 8.3f<<05 I 5< t<<"<<') 1./E<<nl 1.1f <<C9 1.2E<<09 TE )2?I<< d 4E <OC 9.2f <<OC 5 ~f <<L<8 1.CEtn? Gf <09 S.CE<49 IE 129 2.SF <<04 I Pf tlJ? C .CE ~ Ul S SEtU6 2.9F <<08 I ~ ?ftn(<< TF I ZQJ< 5 Of t04 7. Of tnl 1.$ F <<OB 9 Of tO? C.9f <09 9E<<09 If 131 $K tul 2.lr ~ OG 9.<<J UC ).ZE t<<)c 4.3( <<01 2 9 VE <<04 lf <<C5 F ~ IE I 31'I 8 I f (6 ~  ? .5F>>',,7  ?. /E<< (6 1.('E tl'4 3E t Ul IF. 132 I.AC <05 C. ZE <<l)6 c . /I'v 1 S. GF ~ I:6 9 7( <OA 2 Sf ~ Ul <<S 134 I <<JF <<0<<<< J<<r ~,(< 9 7. Jf ~ I <<< J'. ~F << ) .7F <<('J 7./.f t I f. TABLE I I 90 (Cot(v I 0) CS 136 ).7E tUS 1.5(- ~ Jh 7.68 t09 /.9C t09 4 ~ 2t tn7 2 2t tb8 CS I SF 8. 5F. t OS I Gttll' Sf t16 I ~ 5E I I( I OEt09 2.4f. t 1C CS 138 8.4Et62 3.6E t05 5. 5E" 23 I O'.-22 0 7 8E 11 HA 139 5.8F. t(,C 1.)F.t05 I .2t-05 I .4C -0/i 0 2 7F t(<U 04 ICO 7.4t tOC 2.1ft07 I .Itt08 I:5F tO/ 4.?f ~ OF 2.EEt(8 OA 141 2 'E-01 4 ?Et04 1- (t ~ 0. )-de-2) OA 1C2 5 GE-C2 4.5ftn4 0- G. 0. 6. 4E-'59 LA 140  ? 3E tOS 1.9f tf)7 ).9E t05 2.3C tu4 S.CftU2 5.2ftb? LA 142 7 dF tltC F.FFtu5 li-2E-Ud I 5E UI 0 2f tL'1 ce 141 S.7 E t04 ).CV'-tUF ) .2ttt)7 1 ce t06 I.?EtOF 4.6ft08 CE 143 ).SE t05 7..3f F 06 1.58 t06 I -8E t LS  ?.Sft02 1.4EtOF Cf 14C 1.9Et65 F.OFtu? I OE 08~ I ~ 3f tGF 1 5Et08 1.(.ftlG PR 143 9.7E t64 n. 7 4Ct05 8 9ftl4 CEt07 I 4f t68 PR I CC 2 OF t02 1.&CtOS ' 0. 0. 0. 2.9E-?3 <<O )CF 8 2E tuC 8 CFt06 5.5f t05 6 6EtOC 1.5f t07 9 2Et07 Ptl 147 2.)E tGC 2.9F. 05 F 3 Sif tOC 3 4f t07 6.1E tn8 1 CRH 1.3f.tOS 1.5Ct08 1.5ft06 1 Rf ~ C'5 ).3f t08 3E t09 SH 151 I 3EtOC I 3E t ll8 I.ttft05 2 le t04 2 .2ft07 4 OEt08 187 lf tOC 2.4Ct 06 2.4etoo 2.9Et05 2.FF t00 5 ift(i6 HP 239 6 Cf tOC I FI't06 9.'?f tUC I lf OC ~ 2 5(t05 I 4Et( 7 I 130 1.8f. t66 5.sr. tOF 3.3ft IG 3. 9E 16~ )..FI 08 ~ 3-5E t(:9 I 131 I 6E tOF I.?ftUF 4.3f t ll 5 lf tl1 5.4t t09 4 fet)4 I 132 I 9E tOS 1.?rtnd 5 .9F ~ 01 I If to) 0 7 Cf t05 I 153 5 8E t06 CEt06 3.9E t09 4 Fe t09 ).SF t02 8.1t'tu8 I 134 5 IE tOC 4.'SftU5 4 -It-10 4 9F.-,) U O. d CF.-05 I 135 7.9E tOS 2 Sft06 8 Sr.t06 1 CEtOI 9.2E-15 9.8EtG6 Utl I 0> I.OE t08 6. O.SE t 10 I 9E I I I 8.6(t09 1.4ft 12 t If SR 93 AHALTS'IS IS Ptttf ORItED USE, R(1 ) 41VE It IH I 1-131 FOR UHI OCH) I f CO CONPOHEH'IS IF SR-99 AHO I 131 AtihLTSf5 4 Rt PERFOR PEO USE R ( I) f 0 IVE ti I I CS-1 3 I f OR Ut(l OEtil I IED CO>PORE Ht 5 IF SR-90~ I 131~ At(O CS-137 CttALYSF S AR E Pf RFORtiED, USE R( I) filVEH IH ZH-65fOR Uti)DfHT)f 0 CO"rPOt(EHTS If attd Carl>on ttfOR TRIT)Of(,THE UHITS Of THE DOSt I'ARhttf (ERS ARE I(RED/TR PIR UCI/tt3 fOR ALL PAT)(HATS AHD Tt(f T t(UST Of ttULIIPL)fO IV X/O (ti SPEC) f)CAT(otiS 3.11.2.5.4 IID O. TABLA II 9c ), Il.(tlhnl(IS PATlsui/ DOSE I'ARC FF,T(IIS FOR iIADIOIIUCLI D NCR TRAN NOIILC GASES RAO I O- INNALATION GROuhD I'LAl<f COsl-s I Ls( GOAT-I ILK ANI s)AL -HE A I vf GETAALrs NUCL IDE (NREN/YR (r2.HPEH/ vR (ts2 PRE r/V I (r? NREH/YR (8 2.rPtn/V R (ts2.rPEr/VP aaaaaaaaa h 6 R 6 8 6 6 6% lL a 6 6 RA 6 R 6 0 6'C 6 6 Bcaaahehaoaadaaaaaaaeaa86aaaa caaah 66 686(66 86666Allaa86666666 3ts I .Sf ~ ('3 G. 9.9ri (s2 2.(Etc3 'I 9f tn2 2.6fsC3 C 14 <s NA 24 1.4E iOC 1.7( snl 4 .sftnd 5 2F t(>S 1 2(-US 2 Cft05 P 52 I 9E tCd 0. IEs ln 3.?f t IC 5.8f.i09 Pf sU9 CR 51 5.0E tn5 4.7E ~ 06 7 ~ Sf t s)d 0.Grins 8 4E tnS 1.CE tnl HN SC 6 ?E tUC 1.4( ~ 00 2 Sf it)l BC i(ld> 1.1f tn'1 9 2EtOF HN 56 5 ~ ?E i04 9.('f iGS 4 9E "s) I 5 9E"02 'n. 9.2f i02 FE 55 '$.3E t04 A. S.SE iu? 4.5E tGS I 0(i08 3.1s- t(sB FE 59 1.8E tOS 2 7( t08 2 >SE ils8 3.2f tGb 1.l.'E i 09 9. /8 t(tf CO $ 8 0.5f iOC 3 l'( tnB 4.1E i Jl l. IEtn/ bf tUB 5.9C t(sf CO 60 2.6C i05 2.?r t)0 2 0F ~ 08 S.4rt07 6.(IE i08 3 2ft(s9 tll 63 5 Bf tnS 0. I .Oft ln 1.2t.tl!0 1.3F iln <Et)0 tl( 65 5.?E i('4 3 Gf ~ 05 4 . l L s.')0 5.6E -nl O. 3.9E iC2 CU 64 6 IEiG4 6.((s05 3.3Eind 3. Cf iOS 1.6E-QS 6 CEs('5 TN 65 1 3E ~ 05 7.5ft08 6 dF s09 7.9E tnb 7~8( sUB I 9fs09 TN 69 '0 2r;-G2 0. 8 SE-12 I ('E- I 2 0. 9 'E-06 l tt 60sl t)R 84 1 lf 4.3Etn2 i0$ 1 Sf t>Jd

2. ('8 t05 4 ~ Cf till 3 'IF 5.2E inc li-24

~ 2 2E-I'3 0 2.8Ei06 2 lE-11 RU 86 9F, tn5 9.UE t Jb 4 ~ Cf t(>0 5 SEt08 S.BE i08 2 RftCB Rn 88 5 SE <<02 3.3fiOC s) o 0 U 2 SF.-22 Rn 89 .S.SE t02 1.2Et05 0 ~ 0 0 2 7E-26 SR 80 4 3E t05 7..2l.iOC 3r: tu9 4 &Ei00 2.2E i08 1. 5E i10 SR 90 I.IE sOS A. S.SE ili. 1.2Etll 6 7F I 09 8.3E i11 SR 91 2.6EtGS 2.1f tnd 2.4E t>IS 'S.cEinS $ . SE-I G 1 Sf tnd SR 02 1.2E iOS  ?.GFsOS 2 ~ Sf sl)1 4 Rftnl 0~ 9.9fiG5 90 5 6E 10$ 4.5EiO'5 I .I r ~ I)d I 3Et05 7.5fi05 1.(Ei08 Y 01 C.IE tCS 1 llin6 Cf tnd 6.5E VS 3.3Es08 3.'IE iQ9 Y 01N UE F 01 1.(.rtnS Sf-18 6 78-19 0. 2 2E-07 v 92 1 bf i05 1.8fs05 2 ~ 9F s s)0 5 ~ 5E-01 4 IE $ 5 2 3EiU4 Y 03 5 RF snS 1.8f.t05 I SF i04 1.5ii03 4 E-01 4.&fine TR 05 I.SE t05 2.5E s(s8 1.0EiUd 1.2E ~ 05 9.2Et08 1.2F.i09 (R 97 6 3f t05 2.9( i06 4 .I E iAC 4 9Et03 7 6F-01 6F. sr>7 IIO 05 0.1EiUC 1.4EiCB 2.0ti )8 S.S( sn? 3.?Et09 4.5Ei08 Hn 99 C.l f iG2 C.Mind I .UE sna I 2f tU7 I 0f tU5 I 3Etnl TC 99N 6.1E t05 I 8 Ft('S 1 IEt JC I 5f i05 7 5E-18 5 GEsU3 TC 101 I-SE "03 2.CF tnC 0 0 0 I SE"20 PU 105 I IE t05 1.1F tns) 1 SEtnS I bftnC 6 2EtG9 5.?ftGB Ru 1AS 0.0E iOC 6~ cf t0$ 1 SE is'>U 1. Sf "01 4.4F-25 4 GEsUC RU 106 9.6i iOS 4 2r tl)R 1 CEtlld 1.?r i 05 9 lf t ln 1.Sit Il, AG 1)nts 2 7f iOS 5 Sf t39 2 1filu  ?./E i09 ~

1. If 09

~ C SEsL'9 CD 115N 1.3E i05 4 &rs J6 5 SF s;)1 6.3r s(tb 5 Bf tnl 8.2fsC9 CD 115ss 4 ~ I i t05 (. 6> 4 f tl 1 7 6fsld S.S( t(s/ 2 efiC'? SN 123 5.5f sUS 1.2F st)') 1.4E i08 5.7E iU9 4 GE t0 0 SN 126 I 1E tUd 2.6( t 10 2 Sf iu9 2.?f iOB 1.2r iln 1 (Et ln Sh l24 4.0f i05 6.(.(inB /,8( is)B 9 3f tnl 2.lf i08 3.l Ei00 SO 12$ 9 9f t04 2.3l s;l9 2f <<08 2.lf t07 9.bf.in/ 1.6f s(9 Tf I 2$ sl 7-5 E ~ OC I. /f ~ 06 8 St tnl I.Cfi07 8.4f ts)8 5 SEiUB TE 121 II 1E t(s4 Ts.3f s05 1.(Es08 1.3E ~ Ul 1.2(sn0 1. (,F. i 09 Tf I 21N 6.$ E tn4 4. 2 f.iUC $ .$ rioB C.niinl $ .?Ei00 3.2E t09 Tf 120 2 ?E-01 1.(f i07 I .2E i!Id I.CEtPS 1.0F i07 C.9E iG6 Tf I 29 "I 5.2E t04 2.CEi Jl 4 Sit(sa S 2ftil 5.7f.sn9 1 BE i( 9 TE 131 6.2f -C2 2.) find 5 Cf sUC 4.(ii03 1.0fsn1 4.5Ei(4 TE 151N 6.2f iOS R.(r:.Od 2.b( i J/ 5. IftU< 1 5(s04 5 Cft(s? TE 132 4.6E tGS 4.2f ind G.RLt J7 1. IfiU? Cftn7 8 4ft67 CS ISC I.lfslid 6 h(sG0 I .8/ Ins S..F iIU 0.?fsnn 1 6F ~ I (s TABLE ll 9C ((:Ottx<<O) CS 156 1 9E <<CS I-5(tuS 1 . l f t!)9 $ .(.f <<C9 5.5E<<0l 1.7E<<GP CS 157 8 5E <<05,. I .Gf t 10 I CF t IC 4 3f t IU 7.8(:<<08 1 ~ 4Ft10 CS 138 8.6E<<02 5.6(. <<05 5.1)f Z5 9. IE-73 0 ~ 5 ~ 9E-11 Oh 159 6.4E<<G5 1.1F <<05 7.5r "Ul 8 8(-08 O. 2 3E-GI HA I CO 2.5E t05 2. If<<0/ 7.2E<<C7 8.6f <<06 5. 5( t I?7 2.1E <<Gf OA 141 I ~ 4E-01 4.?ftUc 0. 0 0 8. or.-22 Uh 142 lf-02 C.SE<<04 0. U ~ 0 5 5E-39 LA. I 40 C 9E tOS I 4f t07 2.3E tt)5 2 7EtOC S.df<<QZ S. 1 f <<(.7 LA 142 1.2E tOC 7.7t<<JS 5.5f -07 6 Cf-08 0. 2 6F<<GL CF. I C'I 1.3E tGS 1. CF. Ol ~ I 5f<<0/ 1.8f t06 2.OE ~ Ql 5 3E t(t8 Cf ICE 2 'E<<05 2-3f t06 I . /f <<06 Z.GE<<05 3 7E<<UZ Z Lft07 CE 144 8.6E<<05 l.(.f t07 1.5E<<08 1 6Etbl 2.4'8 1 3E t 1( trf PR 145 2.1E tOS 0. 9. IE <<05 1.1E t I) 5 5.5f <<Ol 2.5E PR IC4 4 .5E-02 I.ef t03 ts. 0 0. 2 3E-26 ND I/7 I SE<<05 8.CE<<06 6 .9E<<US ?f <<04 2 CE<<0/ I 4E<<08 PH 147 C lf <<OC 0. 5.df tUS C.CE<<UC 5 df<<07 7.8( <<08 Sf'09 PH 14SH 3.38<<05 1.5E ~ Qk 2 I E t lid Z.SE <<05 2 CF<<G8 1 SH 151 Z.RE<<04 1.5l t08 7..2FtUS 2 ~ 7E <<UC 5.6E<<07 S.QE<<08 <<t 187 I.SE <<05 2.4l.t 06 Z.hf tUd 2ft05 3 SE<<GU 7 SftC6 NP 259 1.5E <<05 1.7rtG6 1 IF t05 1 5F t04 5-Sf <<05 2.1E <<Gl I I30 5E l}6 5.5E tOl SEt10 I .&E <<10 I UftOI<< 2.1f <<09 2.6f tll 1 ~ 1 ~ I 15I I .SE<<t?/ I 78 t07  ? ?Etll 5 df<<09 3 IE<<10 I 132 1 Sf tOS I .7t t06  ? .hf <<UI 5.1F tt)1 0 4.CEt03 I 135 2 9E <<06 Z.CC<<06 1 /f t09 2 GE<<09 7 Zf t01 4 6Et08 I 15C 4 QF <<(tl C.SE<<05 I . SE-10  ? . If-IU 0 3 7E-L5 I 135 6.2f tl'5 sf ~ 06 5 lE t06 4.5E<<l.6 '5 5f-I 5 5.7E 06 ll F Utt I Dt I. I f t(:8 r,. S.SE t10 l. 2F <<11 6 7ftQ4 8.3Et t) f SR-90 AIIAL'YS)S I 8 I'Ekl ct'I'D, USI R(l ) tilVEI<< IN l-131 FOR UNIDft<<T IF IED COHPO)IENYS IF SR-93 AND I-151 At<<hi.YS(S ARF Pl,ktot<<ff D USE R(I) 6 IVItl it<< CS-137 fOR UNIDENTIFIED COHPOtlft}TS 'll SR-90~ 1-131 AllO CS-137 AtlALYSES Ak E PERFORHED, USf. R(I) GIVEN Itt IN-6SFOR UNIDEt}TIIIED CDPPDttEt<<IS and Carbon ttFOR TRI TIUH, i}if Ut)ITS OF TIIE DOSE PAR AHF TERS ARE Hkf H/YR PfR UCI/t<<3 FOR ALL PAT)}WAYS, Atlo THEY HUST PE HULTIPLIFD UY X/n Itt SPECIFICATIONS 3.11.2.5.A AND O. TABLE l I .9o DONALD C DCH m!!!1.) I'Atl<MAY DOSE f ARArf tf RS FOR DAD IONUCL BI<If R TIIAN NOIILE GPSCE RAD I 0- I NNAI. A't IOII GR BUND PLANE CON -NII.K GOAT-II()K ANIMAL-t)EA V EGEST AI)Ll5 NUCL l Df (!tREII I YR (>I yf,( vl YH (NZ. Mt'</YR (rZ NRE t>I Y (r2. I<I<Et IY fi (<<2 ~ l>FE h<I YR <<a&a act RCRCRC86 CCR 66&CRR <<a&86&a&Cad& &RSR CI)6&<<ada&CRRdRCOCC<<66656&OCR&BC&<<6 tcccaRaaaaa<<Y&tcd 3 ~ ~ 1.3f ins I) I (>E iOZ I.df i 03 5-2f tp? 2 3f tO5 14 I. Sf ~ QI 0 3.(>C I W 3.61.' n", 3. 31.'05 g.n(I n0 2 lf (.5 C NA 24 1 OE t(C ?EiG7 Z.SF t 06 3 QEiOS S(-03 ~ P 32 1.5E ind 0. I .IE i10 2 GEt10 bftn9 1 Sfi09 CR Sl 3f t03 4.7(i )6 6> 4 E 4 06 7 7E<GS I 6EiOb 1. 2E i(. 7 IIN 54 r.rf ind I .CE <09 2 IF i pl 2.5E i06 Z.ZE ~ Ol 9 4fiOR rN Sd 2 Uf t04 V.CE I G5 I $ C-01 1.6E"(2 0 5 - l.F. i 0 Z EE 55 2. SE iCC U. Z.(f tur 2.5EiC5 2.3F i08  ? l;F.t(iR EE 59 ).-VE tAS 2.7f in8 z.ofioe 2 68 tPd I Sfi09 9.7E tOS CO 58 I I E tpS 5 ef>08 r <<E ior 9 Sf ipd 1E <08 1E ipe CO bn 2 8E t05 7. ?F. <10 2 4F<08 2.9f ipr 1.1E ~ 09 3-1Ei09 Nl 63 C 5E tQS 0 ~ S.lEiu9 6.8E iQB I 6fi10 I.ZEt1L HI 65 1 2EIGC 3.pc<us I -?E i 00 I ~ Sf:-Ql n. 2.0E i02 CU 64 4 ~ OE iuc 6.0(tn5 Z.UE i 06 2 2ft05  ? Z f-05 l.eEics LN 65 I.UE iOS 7 5(<PR 5.9Ei09 4 lftGd I Oft09 I 3fi09 TN 69 6.SE-02 0- C .68-12 5.5E-13 0 1. 1(-('5 EN d9N 1.4E tCS 1 3fipb Z.?Eipl 5.2Eipb 2-9E-03 3-4E t(<6 BR 84 I. f inZ 1 2.0E iCS 1 .7E.-Z5 2. 1f-24 0 2.3E-11 RB 86 I CFi05 9 OFi36 2 Cft09 2.9F ip8 4 SEt08 2.?ftoe RB 88 3.9E t02 E,tOC 0 O. 0. 2.7E-22 RB 89 2.6f tQZ 1  ?(<05 n 0 0~ '5-QE-?6 &R 89 3.UE i(:5 2 2E<04 I 2 Et>)9 Z.bfi09 2 6f i08 9 8Et09 SR 90 9.9f iul 0- 3.9E i lp R.2E i10 I.pfi10 6.7Ci11 SR 91 1.98 iQS 2 ~ 1E tCd I .CfiAS 2.9E il 5 6 SF,-IU 1 Cf t06 SR 92 4.3EiQC /.8f tUS 9.SEtup 2 ~ lftp) 0 8.5Ei03 Y 90 5.1C tCS 4 .Sf<03 r sfins 9.CE i04 I. I E i 06 1 CEi06 Y 91 $ .8E iCS 1.1f>> 06 4 Gfi06 C.SEtGS 5 ZEiCS 2-7Ei(9 Y 91N 1.5E iGO I ~ (;Ein5 I .VE-19 2.3F-20 n. 1. Ce-(.8 Y 92 7 4f iOC Rf <95 9 .4F.-nl I 2F 01 5 1(-3$ 1.6E i04 93 4 2E tOS I.SF <05 I .ZE t<)5 S.dEi02 I.rc-nr 5 CEIGd IR 95 I Sf <0$ 2.5F.i38 3.OE tn'5 9 7Et04 1 bf i 09 1.2Ei09 ZR 97 S.zf ius Z.VE>06 2 Ff ~ UC 3.26 iu3 I 1Einp 2.1Eipl N3 95 1.UE inS I.CE tGS Z CEi08 Z. 9E i(il d.ef iOS 4.7F,i08 t<O 94 2.'JE ip? 4 OEt36 5.6Etul 6 7E i06 2 3ftAS 1.4FtC7 TC 94>I 4.2E i03 T.RC t05 5 lf i0$ 6 SF tPZ 8 dk-18 5 2E t(3 TC )OI I. IE-LT Z.CFtCC n. 0 1 df-?9 RU 103 1 1EtQS 1.1Et08 I .OEiu5 1 2( iIJC 1 IEIIU 5.5E i(8 RU 105 C Sf.t04 6.CFiUS 5.5f-p I 6 CE-02 C OE-25 3.SE'tGC RU 106 9.1E iGS 4.2E <08 1 IE tl)b , 1.3EtpS I.SEi11 1.3fi10 AG 1 1ON 3 GFip$ 3.5F i09 I -Sf i 10 2.?F. t0 9 2.1E>09 4. 3E t('9 CD 1158 I 3ft(<$ C.BE<06 $ .8ft(7 4.6Ei06 b.ncipr 6.9C i04 cD IIS!t 5.<)ftAS n. 4 bf t07 S 6f ind 5 Sf ip/ 2 3E iC>9 &N 125 3.1E i 05 0 ~ S.ef ipR I If tOS 9 1E ~ 09 3.4E i09 d>I 126 I 3E ind 2.<if t lp I 3C t<)9 I SEt08 1.5(i lp df tG9 SB 124 4 f ) tUS b.l.f i08 6 lf s 7.4F il;7 4.7F<AR 2.9E iQV &8 12S I AEiC5 2.3E >09 I.SF t AS Z. lf ipl I-rfins SF ip9 TE 125N 7.1f tp'i I .ef I')6 6>. I I'ul r.sf ipd 1.5E in4 C.ff tUS Tf 127 S.l f tQC EI 5C i0$ 5 .IE iur 6.9C ~ UD 1.4f il)V 6.5E tpf TE I?7>I 4.6E i04 4 2E <04 ).III: tu8 2.26 i07 C.cft09 7..( f L9~ TE 124 1.9E"01 I.RE< 0/ I> SR i 05 7 ~ RftQC 1-?f tC,7 3.CCICb lE I 29<< 3. ?E ~ 04 7. I'Fipr I,C ~ <IS 2. Ff iUr C 4f in9 1.2E i(9 TE 131 C.CE-02 Z.I (tnb Pf I ll4 2.2Ft05 2-sl iu1 4 ef icc Tf 131<< S.df ipS R.LF ipb I .I<E ~ ur 2.1EiCG>  ?.?E ~ 04 4.7EtU7 tf 152 5.1E i0$ 4 ZF tpd 7 ..'C.i.)7 4.(ftGb 4.5(ipr I.AE i pe CS 13I 8.5f i(S Rc< )9 1.16 I ll 3 Zfi1(. I.Z(< 09 1.1E i I(, TABLE II 9o (Cotlv<o) CS 156 I .5 E ~ ('.5 1.5(<<08 9 ~ Of <<)k <e9 C.SE<<07 1.7f.(f CS I 31 6 2E <<GS I Cr <<10 8 'If <<09 2 CE <<)0 9 6E<<08 9 If<<09 CS 158 6.2E <<02 X.C<<r,S 1 .7F-23 5 ~ 1E-23 n. 6.6E-) ) OA I 3<<< D.l'JE <<C2 1.) f OS ~ 7 .'Jf-<itt 9 ~ CE-IJ9 'I 4 8E-02 llh 1 4U 2.2E <<05 2.)E<u/ 5 .3E<<U7 6.3f <<06 5.7E<<07 2.bf<<(<f Bh ICI Of "01 4.2F<<OC O. 0 n. 9.2E-22 <)h I C2 2 df-02 C. 5F. ~ OC 0. 0 0. 3 ff"39 LA, 140 4 6E <<05 ('I I.OE<<07 1 7E<<<JS 2 l'E<<04 1.4'5 7-3f <<(<7 Lh )48 2.1 E ~ 7.7E<<05 1 Sf ')8 CE-e9 0. 7- I f."01 CE ICI l.2E 05 ~ I 4f.<<U1 I .I E<<07 I 5E <(<6 ).2E <<01 5-f f <<L<8 Cf IC5 2 5f <<05 2 5E<06 I 2F. ~ 06 'I 4E <<CS 5.6E<<02 2.8E <<U7 CE 144 8.2f.<05 7.CF ~ 07 9 df <01 I ~ If <<0/ 3.9E<<08 I )E<<1( PR <'R ND )43 I C4 )Cl 2 Of<<OS 3 UE-02 1.7f.<<05 e. 1.8F<<03 t) Cf <06 6<.bc<<05 <). 5 IE<<05 IL'.0E 7. 9E <<IJC

b. 1F <<(IC II.RE ~ U7 O.

5~RE<07 2.7E<<I:8 2 SE-26 I sf <<L(< PM 147 4.4f <<04 0 7E <<05 3,2E<<n4 8-9E<01 6 SE<<08 PM I CRM 3.58 <<OS I 5F <08 1.6E <<06 9E<<QS 3 oE<<08 I 78 <<09 S" 151 2 ~ 6'E <<('4 ).5f<<08 1.6E<<05 1 9E<<UC 5 6E<<01 4.)f <08 ll 187 I.bf<<ns 2.4E<<<Jb ).RE <<Ob 2.1E<<45 5.7E<<00 \ OE<<07 tlP 259 1.2E <<05 I 7f<<<)6 7 CE<<OC 8.9E<<05 5.3E <<03 2.9E <<07 I 150 )E<<OS S.Sf<07 OE <<<J9 1.1f << In 'I.CE<<08 2.5E<<09 I 131 I 2E <<01 1.7f <<07 I CF <<I) 1.6E<<1 I 4.9E <<l<9 3-8E<<1(. I 152 I )E <<LS I 2E<<06 I Sf <<0) 1.8f <<Ol 0 ~ 5-2E<<CS I 133 2.2E <<05 2.4E<06 'Jf <<08 1 ~ 2E <<09 9.5E+UI 5 3E <<OP. I 154 5 OE <<04 C.SE<<OS I .If-IU 1 5E")C 0 4 CE-U3 135 C.SE <<OS 2 Sf<06 2 2E <<)6 2.6E<<ob 6.7(-) 5 6 6E<<06 UN ID> 9.9E <07 0. 5 9E< 8.2E<< 1( I (<f <<10 6 7E<<11 IF SR 90 ANALYSIS ls rf RFOR))ED USE R(l ) GIVE tl Itl I-131 FOR'NI DENT I FIED COMPONENTS ~ IF SR 93 AND I I 31 At<ALTSf S ARE PER FO<t t'FO USE R ( I ) 0< IVEN Ill CS 157 FOR UNI Of k) I f IEO CDMPONEllTS IF SR 43 ~ I I 5 Ir AND CS 'I 37 ANALYSEG AR F PL'RFDRMEO~ USE R ( I ) G IVfN I tl IN 65FDR UNI DFNI It D lf COMPONENTS'nd Carbon >+FOR TRI TIUM,?Itf UNITS OI'<lf DOSE PARAMETF RS ARE NREM/ Y& PIR UCI/ t<3 FOR ALL PATHNAYS ANO Inf Y MUST I<t <<ULI (PLIED 'll X/0 ) to SPEC IF)CAT IONS 3 11 2 3 4 AND 8 TABLE f$ 9E PATHWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE CASES (HAXIHUH DOSE CONVERSION FACTOR> ACE INDEPENDENT) Inhalation Heat Ground Plane Cow-Hilk Leafy Vegetables Coat-Hilk Pathway Pathway Pathway Pathway Pathway Ri Ri Ri Ri Ri Ri (m2 mrem/yr (mrem/yr 2 (m2 mrem/yr (m mrem/yr (m mrem/yr per per uCI/sec) Radionuclide ~cr cilPg p r~ucil c H-3 1.3 (3) 3.2 (2) 2.4 (3) 4 0(3) 4.9 (3) CR-51 3.3 (3) 1.6 (6) 4.7 (6) 7.5 (6) 1.2 (7) 9.0 (5) HN-54 7.7 (4)- 2.2 (7) 1.4 (9) 3.1 (7) 9.4 (8) 3.7 (6) FE-59 1.9 (5) 1.8 2.7 (8) 3.4 (8) 9.7 (8) 4.4 (6) (9) CO-58 1.1 (5) 3.1 (8) 3.8 (8) 9.1 (7) 6.1 (8) 1.1 (7) CO-60 2.8 (5) lil (9) 2.2 (10) 2.9 (8) 3.2 (9) 3.4 (7) ZN-65 1.3 (5) 7.5 (8) 1.7 (10) 2.7 (9) 2.1 (9) 1~0 (9) SR-89 6.0(5) 2.6 2.2 (4) 1.1 (ID) 3.5 (10) 2.2 (10) (8) SR-90 1.1 (8) 1.0 (10) 0. 1.0 (11) 1-4 (12) 2.1 (11) ZR-95 1.5 (5) 2' (8) 1.0 (6) 1.2 (9) 1.2 (5) 1.G (9) 1-131 1 6 (7) ~ 5.4 (9) 1.7 (7) 1.0 (12) 4.8 (10) 1.2 (12) 1-133 3.8 (6) 1;3 (2) 2.4 (6) 9.6 (9) 8' (8) 1.2 (10) CS-134 1.1 (6) 1.2 6.8 (9) 5.4 (10) 2.6 (10) 1.G (11) (9) CS-136 1.9 (5) 4.5 1.5 (8) 5.5 (9) 2.2 (8) 1.7 (10) (7) CS-137 8.5 (5) 1..0 (9) 1.0(IO) 4.9 (10) 2.4 (10) 1.5 (11) BA-140 2.3 (5) 5.7 (7; 2.1 (7) 2.3 (8) 2.8 (8) 2.8 (7) CE-,141 1.3 (5) 3.2 (7) 1.4 (7) 1.5 (7) 5.3 (8) 1.8 (6)

  • 1.3 (3) = 1.3 x 10

R L SOURCES SYSTEMS PO tSOLAZIO!t VALVE WASTE CAS VENT HEAOER RRV )06 AY TANKS <<ate I) RAOIAltON Mt)HI(OR I(CIST URE OECAV HNA 3A TANKS PRE FILTERS HEPA SEPARATOR H.2( tlt ~FILTER CONPRE550RS (2) t FLOW CAS RECVLATOR FAN FROM HEAOERS ANAL'YZER RRW 16$ ANO SY5TKNS AUX. BLOC. AUX. BVILOINC VER f)LAY)ON VENT PLENUM (Sce Note 2l FAlt FROM AREAS ANO ROOMS PRE FILTER~ ENCINEKREO SAFETY FEATURFS VENT. ENCHIEEREO VENT 0 FAil SYSTEM SAfETY AND 00 (seo Note 5) FEATURES PIPE 00 KNCL0$ URES 5 HAF'f 0 CARBON I FLOW FILTER sic 'ECOROER 2 SETS I VfROIS FUEL HANOLINC HEPA PLANT VENTILATION PRM'ILTER) B 'VENT (Sco Note 5) FROM f FILTERS 0() CI I TO ATMOSPHERK 5PENZ FANS VRCQIS FUEL sic R 26 POOL 0 00'ARBON RAOIATION FILTKR ltON(fOR (SOLATION VALVES HEPA fILTERS CONZAINWENZ PURCE AND VPPER RELIEF 5Y5TKM CONTAINNKNT ..(Sco Note () FANS PURCE LOIKR l50LATION VALVES (2) ON'fAINNENT 00 RELIEF 0 0 FANS HEPA CARBON INST. ROON'URCE KILTER FILTER SYSTEM (Seo Note l) 0 INSTRUMENTATION 00 ROO!I 0 00 FAN $ AMPLINC RAOIAZION Hf PA CARBO!I POINT MONITOR FILTER FILTER (ESX453) VRC 563 0!ITAINMEN MONITOR R (2 ISOLATKS CONZAINNKNT PVRCK CONTAINMEHT RELIEF ANO LISZRUMENTATIO!(ROON EXHAUSTS ON HIGH ALARM STEAM VENERATOR BLOIOOIN LOCAL SZART4P CASEOUS PHA5E EXHAUST REATMKNT 5YSTKN (See Note 5) 5/0 BLOeOOIN HEAVER fLA5H SILENCKR TO TANK RA)i) ATN05PHERE NORMAL ZO ZREAZNENZ INO CASEOU$ FLA5H TK SYSTEM RELEASE) CONOENSER AIR RAOIATION VONITOR SAMPLE POl!I'f LOCAL K)ECTOR SYSTEI( 5TEAM )ET SRA40l EXHAUST (See Note 6) AIR E)EC fORS TO R IS (al ATMO'IPHERE FLOW RECOROER IfRASI CLANO SEAL CONOEN5ER f RAOIA IOtl ltO NIT OR FAN LOCAL EXHAUST 5 I EXH VST (5ee Note 2) 5TEAN PACK(AC TO KXHAUSTEP* A fMO)PHEPE ~FLOW 5ANPLV 0 RECOROER POINT 5FRZCI Figure {H-1) GASEOUS EFFLUENT RELEASE SYST"MS i Notes to Fig. XI-1 Note 1: Drawings: OP-12-5139-0, -5148-1, -5162-2, 5661-0, 2-5661-0, 5141-1. System Descriptions: SD-DCC-CH113, -NE101. Note 2: Drawings: OP-12-5148-1, 5148A-O. System Descriptions: SD-DCC-PN104, -NE101, -CH113. Not'e 3: Drawings: OP-12-5148-1, -5148A-O. System Descriptions: SD-DCC-PH104. Note 4: Drawings: OP-1-5147A-O, OP-12-5148-1, 1-5611-0, 2-5611-0. System Descriptions: SD-DCC-PM102. Note 5: Drawings: OP-1&2-5105B-0 System Descriptions: SD-DCC-CH114. Note 6: Drawings: OP-1-5109A-l, OP-2-5109A-1, 5661-0, 5661-0. System Descriptions: SD-DCC-HP110. Note 7: Drawings: OP-1-5122-1, OP-2-5122-0, 5661-0, 5661-0. System Descriptions: SD"DCC-TB102 and TB-103. III.l Radioactive Effluents Total Dose For the purpose of implementing Technical Specification 3.11.4, the cumulative dose contributions from liquid and gaseous effluents will be determined by summing the cumulative doses as derived in Sections I.3 and II.3 of this manual. Dose contribution from direct radiation exposure will be based on the results of the direct radiation monitoring devices located at the environmental monitoring stations. See NUREG"0133, Section 3.8 IV. 1 Radiological Environmental Monitoring For, the purpose of implementing Technical Specification 4.12.1, the radiological environmental monitoring samples will be collected at the locations as shown in Figures IV-1 through IV-3 and location codes shown in Table IV-1. Reference, Environmental Technical Specifications, Appendix B, Part I of May 1982. V.l Meteorological Model The meteorological model used to estimate the atmospheric dispersion and deposition parameters at the Donald C Cook nuclear plant is based on the guidance provided in Regulatory Guide l.ill for routine release. More specifically, each release point is considered separately so that the height of release, level, building wake conditions and vent characteristics are accounted for. All calculations use"the Gaussian plume model. 35 -' 5' 4 TABL 1 ENVIRONNENTAL SAYPLING LOCATION CODES CODE DISTANCE FROM SI TE SECTOR SAMPLE TYPE A1>> NNE AI R PREC IP I TAT I ON 8c TLD A2 AIR PRECIP I TAT ION 8c TLD A3 ENE AIR PRECIP ITATION 8c TLD A4 ESE AI R PREC IP I TATI ON 8c TLD A5 MI TH I N 2000 FOOT AIR PRECIPITATION 8c TLD A6 RADIUS REGION SSW AIR PRECIPITATION 8c TLD A7 NNE TLD oNLY A8 TLD ONLY A9 SSE TLD CNI Y M1>> 2000 (FEET) 9 (NNE) MATER WELL W2 3400 (FEET) 65 (NE) WATER WELL W3 4500 (F EET) 84 (ENE) MATER WELL W4 400 (FEET) 345 (NW) MATER WELL W5 250 (FEET) 289o(W) MATER WELL M6 500 (FEET) 223 (SSW) WATER WELL M7 3MO (FEET) 186'(S) WATER WELL L>> CONDENSER COOL I NG WATER INTAKE (M) LAKE WATER 1 L 500 FEET SOUTHWEST OF DI SCHARGE PO I NT (SSW) LAKE WATER L3 500 FEET NORTHWEST OF D I SCHARGE PO I NT (NNE) LAKE WATER TABLE I V 1 (CONT') COOE D I STAN CE FRON S I TE SECTOR SANPLE TYPE: NNE TLO oNLY A2 TLD oNI.v A3 TLO 0NLY A4 ENE TLO oNI.v A5 ESE TLD oNLY A6 Wl THIN 4 SE TLO oNI.v NILES RADIUS A7 S TLD oNLY REGION A8 SSE TLO oNI.v A9 TLO oNLY A10 SSW TLD 0NLY A1~~* .?0 MILES AIR PRECIPITATION & TLD A2 24 MILES ENE AIR PRECIPITATION & TLO A3 26 MILES AIR PRECIP I TATI ON & TLD A4 16 MILES SSW AIR PRECIPITATION & TLO Wl THIN 4 MILK MILES RAOIUS ESE MILK M3 REG I ON SE Ml LK M4 18 NII.ES MILK 20 MILES S Ml I.K FEET LAKE WATER L2 '9 MILES NNE LAKE MATER L3 11 MILES LAKE WATER t L4 16 NI LES LAKE WATER FROM FIGURE IV 1 FROM FIGURE FROM FIGURE IV 2 IV 0 TRUE PLANT 0 iN 8 E S TR I CT E D A 8 E A NORTH NORTH PROPERTY LINE -iNI-'At::::::::::::::::::::::::::-"""::::'::-::::;~-::::--:.::::-:: . A7 ~ 'l '.; a.,"'",;1 7r Lo/re ROAD Nich/ gon V ~- i' . ~; vz 'A~2 RAILROAD TRACK 1 345 kV YARD (P Jc>> ==L2 / /p PLANT E-Vl '3 I I 765 kV Q / .,::~i / VARD @3 ':""j'll"',;'i"'HESAPEAKE SHORE Llk'E 8 OHIO R.R. / I 2,000 FOOT;;~/ 4 j /&~ )y'9 "R~DiUS ,sj g4 A Air, Precipitation, TLD Stations lg Well Water Sample Stations 0 1000 2000 5000 4000 FEET L Lake Water Sample Stations SCALE Figure IV-1 MACDEN ~l U al; E OLE flLORO Uj GLENLORD Ci I g,Q )/ ~ PCI POUETTE WOODS RD. .+r II2 TLD STATIONS V)ITHIiil4T5 VAILE PLANT RADIUS "-Q6 JOHN C VILLE /fC/C r-0 0 A iTLD STATIONS s~~s* - // ROCKY wECD POAD 4'p 0 5 F. 0 I/2 I.O 2.0 ( +I+ 0 I 0 Al +~  %>r 0 Z Cal I/a" ~ I MILE g O' 0 Xc~ Y I /" ILI LCM CO 0 .~!i'CVCLZAC tLACIT I JERICHO I I HINCH!AAN R AO 0 CSTON g ROPO 0 OI 0 QA9 cl 0 0 CL X CC Y LEt>ON CRFEK ROAD C BAR'ODA RUSS ROAD SHAWM A5 noap Q Cal I X 0 0 0 CC: 0 0 0 CC SRIDGIAAN 0 0X 0 0 CCC CJ SKALA ROAD 7 0 0IAI gC SNOW ROAD SNOV/ ff CZ Z QA6 C: 0 CLI 0 0IA C X 0 OTT Pcl. t BROWN TOWN ROAD t l96 20 NILES TLD Stations P, Air, Precipitation, I A+V!atsrvli,".t L 94 Q Lake Vilater Sample Stations Gloma M Milk Sample Stations JOSEPH BENTON I"A~DOR$$ l3 51 ST. ..Lip'4 Mt D. C. COOti PLAb} l ='S Stevensvi Bridarta 33 Herr[en Eau Claire 'l D0%'wiGtAC Sprtngs lit I t M3t / 94 / / / NlLES '>". g',I / l, NGW BUfTQlO US t'2 NICHIGAN //I/O/AAA New lCHlGAN::":: Carlisle VS 20 ClT'l;"j'.'.:.",:, pc us tN02 20 8END, 10 SCALE OF MILES Ftgure IV-3 ATTACHMENT 4 TO AEP:NRC:0055F PREVIOUS APPENDIX A TECHNICAL SPECIFICATION SUBMITTALS AFFECTING THE EFFLUENT TECHNICAL SPECIfICATION UNIT 1 SUBMITTAL NO. DATE AFFECTED PAGES IN AEP:NRC:0055F AEP: NRC:0109 (12/22/1978) 6-9 to 6-12, 6-23 AEP: NRC: 0659 (3/29/1982) 6-5, 6-6, 6-13 UNIT 2 SUBMITTAL NO. DATE AFFECTED PAGES IN AEP:NRC:0055F AEP:NRC:0111 (2/13/1979) 6-9 to 6-12, 6-23, 6-24, 3/4 3-65 AEP: NRC: 0659 (3/29/1982) 6-5, 6-6, 6-13 AEP: NRC: 0660D (8/2/1982) B 3/4 3-3 .C.}}