ML16342D554

From kanterella
Jump to navigation Jump to search
Non-proprietary Nrc/Util Meeting on Model 51 SG Tube Integrity & ARC Methodology
ML16342D554
Person / Time
Site: Diablo Canyon  Pacific Gas & Electric icon.png
Issue date: 12/31/1996
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML16342D553 List:
References
WCAP-14796, NUDOCS 9703050171
Download: ML16342D554 (170)


Text

Westinghouse Non-Proprietary Class 3

++++++++

NRC/UTILITYMEETING ON MODEL 51 SG TUBE INTEGRITY AND ARC METHODOLOGY Westinghouse Energy Systems 9703050i7i 970225 PDR ADQCK 05000275 I

P PDR

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-14796 NRC/UTILITYMEETING ON MODEL 51 SG TUBE INTEGRITY AND ARC METHODOLOGY December 1996 1996 Westinghouse Electric Corporation All Rights Reserved WESTINGHOUSE ELECTRIC CORPORATION NUCLEAR SERVICES DIVISION P.O. BOX 355 PITTSBURGH, PA 15230

NRC/UtilityMeeting on Model 51 SG Tube Integrity and ARC Methodology November 20, 1996 AGENDA Topic Meeting Purpose and Objective Presenter Time PG&,E/TVA 10 W* ARC W* Criteria and Overview

~

W* Length Basis

~

SLB Leak Rate Methodology Limited SLB TSP Displacement with Packed Crevices

~

Summary of Submitted WCAP-14707

~

Local TSP Structural Analyses Hot to Cold Condition NDE Uncertainty for Sizing Axial PWSCC at Dented TSPs

~

Pulled Tube and Laboratory Specimen Data

~

NDE and Destructive Exam Depth Profiles Edge Effects and Adjustment Procedure

~

NDE Uncertainty - length, avg. depth, max. depth Pitterle Wepfer Lilly Pitterle Smith Pitterle 35 20 30 10 30 40 ARC Concept - Axial Cracks at Dented TSPs

~

Negligible TSP Displacement

~

ARC Concept

~

SLB Leakage Analysis Basis Pitterle 15 Discussion All 15

W~ ARC and Overview NRCfUtilityMeeting November 20, 1996 Presented By:

T. A. Pitterle Nuclear Services Division Westinghouse Electric Corp.

Discussion Topics General Approach W" Tube Repair Criteria Repair basis

~ Inspection requirements W" SLB Leak Rate Evaluation Inspection Results and Growth Rates NDE Unoertainties Conservatisms in W" Criteria

Elements ofARC for Tubesheet Region W" Builds Upon Fundamental Basis for L~ ARC Basic principles of L* applied, differing primarily in method of leak rate evaluation Pullout load reaction lengths (W* lengths) are dependent upon the type of tubesheet joint Elements of Repair Criteria Pullout load reaction length

- Flexible W* distance dependent upon length of degradation

- Undegraded lengths below BWT must sum to W* distance

. Allowable tube degradation SLB leak rate evaluation Principle Differences Between L~ and W"'

W* lengths > hardroll lengths due to lower WEXTEX contact pressure

. L*undegraded length of about 0.5" below BET not applied to W* as not applicable to limit leakage to negligible levels Allowable degradation within W* distance simplified compared to L*

Closely spaced, multiple cracks not found in WEXTEX expansions

WEXTEX Transition

%BXTEX Region Roll Transition RoQ Region

/A

//

Regions in the WE2CTEX Full Depth Tube-to-Tubesheet Expansion

General Approach to ARC Within Tubesheet Region Provide for Disposition ofIndications Found by Bobbin or RPC Inspections Tube Must be Capable ofWithstanding Axial Pullout Forces HG 1.121 criterion for 3dP~o is generally limiting Pullout force resistance is sum of: WEXTEX expansion + thermal expansion+ pressure differential + tubesheet bow W" Distance of Unde~.aded Tubing Below BWT Flexible distance such that tube to tubesheet contact forces prevent pullout of a postulated severed tube below this distance Cracks Within Tubesheet Cannot Burst Due to Tubesheet Constraint

. Axial crack length limits not required for W*

Pullout Distance and Leakage Restriction Models Supported by Tests for Prototypic Expansions

W>> Tube Repair Criteria Any Tube Degradation Acceptable Below Flexible W>> Distance

'inimum W distances below BWT (36Pgo R G. 1.121 Guideline)

- Zone 8: 6.4" hot leg

- Zone A: 5.0" hot leg

'inimum W* lengths increased by:

- Uncertainty in W* NDE length measurement relative to BWT

- Sum of overall axial crack length within flexible W>> distance Crack lengths increased by uncertainty in NDE length measurement and crack growth Axial Indications WithinW>>

Crack tip must be below BWT by allowances for:

- NDE uncertainty on distance between BWT and crack tip Multiple axial cracks must be circumferentially separated such that th RPC amplitude returns to null between indications

- Bands of unresolved axial ind. require repair unless confirmed to be separate axials with no circumferential involvement by UT inspection Axial cracks must be inclined < (45'-NDE unc.) from tube axis where NDE uncertainty applies to measurement of the crack angle Circxunferential Indications WithinW>> Distance are Repaired SLB Lealmge Must be Within Site Specific Allowable Leakage Limits

'otal leakage from all indications within W>> distance as adjusted for percent inspection

- Total leak rate from all indications within W*region divided. by the fraction of tubes inspected (RPC or bobbin which is frequently 100%)

'*leakage added to SLB leakage for other applied ARCs (i.e., GL 95-

W* Zone A and Zone B Boundaries

~ 0000000000000

~ 00000000000000000000100 45

~ 0000 ~ 0 ~ 0 ~ 000 ~ 0 ~ 000000010t001 ~

~ 0000000

~ 0 ~ 0 ~ 00 ~ 100 ~ 000 ~ 0001000

~ 0001

~0010 ~ 000 ~ 0 ~ 0 ~ 00 ~ 0000 F 0'00 F 000 ~ 0 ~ 0 ~ 0100

~ 000000 ~ 0 ~ 000 ~ 0 ~ 000 ~ 00000000000000

~

000000000

~ 0000000000000000000

'ooteooooooootoooooo 40 000 ~ttttt~ 0 ~ 000 ~ 0 ~ 0 ~ 0 ~ Vga7gII(A 0 ~ 000 ~ 00 ~ 0 ~ 0 ~ 0 ~ 0000000

~ 1 ~ 0 ~ 0 ~ 000 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~

~tooo ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 F 0'0000

~ 1 ~ 0 ~ 0 ~ 0 ~ 00 ~ 00 ~ 0 ~ 0 ~ 00 ~ 00 ~ 0

~ 10000001000 ~ 0 ~ 0 ~ 0 ~ 0000000000000

~ 0 ~ OO ~ 0000000

~ 0 ~ 000 ~ 00 ~ 0 ~ 0000000

~ 0000001000 ~ 0 ~ 0000000 ~ 000000

~ 00 ~ 0 ~ 00 ~ 000000 ~ 0000

~000000000000000oto-35

~ 100 ~ 00 ~ 00000000 ~ 000 Expansipn YraggiIipgZpga f,2,$ 3 tottotootootoeootooo

~ 000 ~ 010 ~ 00000000010

~ 0 ~ 00100000000 ~ 0 ~ 000

~ 0 ~ 0 ~ 001 ~ 0000000000 ~ 010000000001000000000100000000001110000

~ 0 ~ 01

~100010001000000000000t

~ 00 ~ 0 ~ 0 ~ 00000 ~ 0 ~ 0 ~ 0000 ~

~ 000 ~ 0 ~ 0 ~ 01001000000000

~ 0000000000000000000000-30

~ 00 ~ 0 ~ 0 ~ 0 ~oet ~ 0 F 000 '000

~ 0 ~ 0 ~ 00 ~ 00 ~ 0 ~ 00000 ~ 000 tt ~ 0100000 ~ 00 ~ 00 ~ 0 ~ 0000 ~

~ 000000000000000000000000 0000000000001000000000 0000000000000000000000000

~ 1 ~ 0 ~ 0 ~ 0 ~ 0 ~ 00 ~ 000 at

~ 0 ~ 0 ~ 0 ~ 00 ~ 00 ~ 000000 ~ 00

~t0000001 ~ 00000 ~ 0 ~ 0

~000000001000000000

~ 1000000000001000000000

~

~too ~ 0 ~ 000000000 ~ 0 ~

~ 0000000000000000000 000000000000000000000000000000000001 00000000000000000000-25

~ 0000000001000000000 oooooot00000000000000000000000000000 00000000000000000000

~ 00 ~ 00000 ~ 0100000 ~

~ 00000 ~ 000 ~ 0 ~ 0000 ~ 0100 ~ 100 ~ 000 ~ 0

~ 000

~ 0 ~ 0000000 ~ 0000001

~000 ~ 00 ~ 0 ~ 0 ~ 11001

~ 11 ~ 001000001 ~ 001 ~ 0 ~ 100 ~ 000 ~ 10 ~ 0000011 00111100001000000

~000 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0I~ 1

~ 0 ~ 00 ~ 0000 ~ 0000 ~ 00 ~ 000 ~ 000 ~ 10000000000011000

~ 000 ~ 10000 ~ 0 ~ 0 ~ 00 ~

~

100000000000000000 00000000000000000000000000000000000t00000001 ooooooootooooooooo-20

~1000 ~ 010 ~ 00000 ~ 010 00 ~ 000010000000 ~ 00 ~ 0000 ~ 00 ~ 10000000t0001100

~

000000000 ~ 00 ~ 0 ~ 000 ~

~ 0000 ~ 00 ~ 1 ~ 0 ~ 0 ~ 00 ~ 0

~ 0000000 ~ 00 ~ 000000000001000 '000000ttooootto

~oeooett ~ 000 ~ 00010 ~

~ 01000 ~ 0 ~ 0 ~ 0 ~ 000 ~

~ 0000000

~ 00 ~ 0 ~ 0 ~ 00000001010

~ 000000 ~

000010001

~ 0000 ~ 00010000 ~ 00

~ 010001000 ~ 0 ~ 0 ~ 0

~ 00000000000

~ 00000011000000to

~ 000100000001

~ 001

~00000 ~ 000 ~ 0 ~ 000

~0000000000000000 00 ~ 00000000000001

~ 0 ~ 00

~ 000000000000000000000 0000 ~ 00 ~001000000-15

~ 0000000000000010 0000000000 ~ 000 ~ 0 ~ 0 ~ 000 V/+Zpggg 0000010000000100000000 ooeooeooteeoeoooo

~ 00000 ~ 00 ~ 010001 ~

0000000000000000

~ 0 ~ 0 ~ 0

~ 0000000 ~ 000010000000 ~

0 ~ 0000 ~ 000 ~ 000 ~ 0 ~

~00000000000100010 et ~ 00 ~ 000 ~ 000000000 ~ 0000000 ~ 00000000000eet0100010010

~ 0 ~ 00000000000001

~

~ 000 '0000000000

~ 000000000000000000

~ 00000000000000000000000000

~ 00000 000000000000 ~ 00 ~

~ 0 ~ 0 1 0 ~ 0000 ~ 10 ~

0 ~ 0 ~ 00000 00 ~ 0 ~ 0 0 eef

~ 00000001000000000 000000000000000-

]0

~ 00 000000000100

~ 0 ~ 000 ~ 0 ~ 0000000 ~ 00QExpapaipII TppaiIippzppa4 toooeoeteot totttooeo 00 ~ 000 ~too ~ ooo ~

~000100000 ~ 000 ~

00 ~ 00 ~ 0 ~ 00000000000

~0000 ~ooot000000000

~ 0 ~ 00 ~ 010000 ~ 0 ~

~0000000000000 0000000000000000000000000010000010000000000000000010010000 0000000000000 '

eoottttoo ~ 0 ~

~010000000000-5 0000 ~ttt~ 000 ~

~Ootoott ~ 0000

~000 ~ 00 ~ 0 ~ 000

~ 000000 ~ 00000 I

I IO 5

~ 10 ~otootooo ~

~00001000000 ~

~100 ~ 0 ~ 00 ~ 0 ~ 0

~0000001000 ~ 0

~ 000 ~ 00 ~ 000 ~ 0

~ oootoooooe ~ 0 I

I 90 85 MANWAY 11 ~ 0 ~ 1 ~ 11000000 ~0000000000000001000t0000000'01000000000' 00

~ 01 ~ 0000 ~ 10 ~ 10000 ~ 0000000000000001000100100000000

~ 000100 ~ 000 ~ 00 ~

~ eoooooo10100001010000000000011001000100000000000100000000000000

~ 01 ~ 0 ~ 00 ~ 0001 ~ 01001001000000001

~ 0 ~ 00010101001000

~ 110 ~ 01 ~oeotttte

~ 0100 ~ 0000000000

~ 0 ~ 000 ~ ooto ~ 000 ~ 0

~ 0001000 ~ 000 ~ 0 ~oott ~ 10000000 F 00

~0100 F 0 '000000010000000

~ 0 ~ 0 ~ 01 ~ 000000000000 ~ 0 ~0000 ~ 001000001 ~ 00 I

I I

I I

I I

I I

I I

I I

I 80 75 70 65 60 55 50 45 40 35

- 30 25 20 15 NOZZLE

W" Tube Repair Criteria Inspection Requirements Extent of Inspection

. Extent of inspection determined by plant Tech Specs as supplemented by plant specific guidelines

. Application of W* ARC does not mandate extent of inspection Indications Within Flexible W+ Length

. Bobbin indications must be RPC (or equivalent coil) inspected to measure crack lengths and elevations RPC (or equivalent) Inspection

. When RPC inspection of WEXTEX region is performed, the inspection shall include the full length of the flexible W* region

- Confirm absence of circumferential indications

'easurements required

- Bottom of BWT relative to TTS

- Distance of crack tip within W* length relative to BWT or TTS

- Crack length of axial indications within W* distance

- Crack angle relative to tube axis when crack is clearly inclined to the tube axis Crack angles clearly < 30'o tube axis do not require angle measurement

W" SLB Leak Rate Evaluation SLB'Leak Rate Summed Over Individual Ind. WithinW+

Deterministic analysis methodology

~ Total leak rate based on leakage from sum of indications divided by

&action inspected (RPC or bobbin)

Leak Rate for Each Indication is Function of Distance of Crack Tip Below BWT and W+ Zone Leak rates are independent of crack length due to tubesheet constraint

- Constraint results in an effective crack length as a function of tube to tubesheet contact pressure Leak rate variation with tubesheet radius results from change in contact pressure with varying tubesheet bow

. Radial dependence simplified by defining only two W* zones Crack Distance Below BVPT Adjusted for NDE Uncertainties and Crack Growth

. Reduced by NDE uncertaintv on measurement of length from BWT to upper tip of crack Reduced by crack growth allowance for projected EOC leak rate (Operational Assessment)

- Growth allowance not required for current EOC analysis (Condition Monitoring)

Leak Rate Model Test Basis for Leak Rate Model Constrained crack leak rate tests

- Leak rates for fatigue cracks with varying contact pressure and zero contact pressure (gaps < 1 mil)

- Leak rates measured at tip of crack WEXTEX crevice leak rates

- Leak rates from large openings through varying lengths of WEXTEX expansion Leak Rate Model Effective throughwall crack length as function of tubesheet contact pressure

- Freespan, throughwall crack length (from CRACKFLO code) that gives measured leak rate at tip of crack

- Throughwall cracks 0.3" to 0.6" throughwall reduced to effective throughwall lengths of 0.05" to 0.2" by restricted crack opening due t tubesheet constraint

- Effective length is independent of actual crack length

. Crevice loss coefficient as function of tubesheet contact pressure

- Developed from WEXTEX crevice leak tests

. Effective length and loss coeKcient applied at 95% confidence on mean regression fit to test data

. Leak rate is a series model of leakage from effective crack length through crevice based on crevice loss coefficient

~ Leak rates are a function of distance between upper crack tip and BWT

LeaImge Model is a Generic Approach Generic Leak Rate Model for Constrained (contact pressure to small gaps)

Cracks Effective crack length approach applicable from expected contact pressure to gaps < 1 mil Loss coefficient varied to specific crevice conditions (expansion or packed crevices)

Potential Applications p

. Packed TSP crevices Constrained crack opening model with zero contact pressure and different loss coefficient correlation

~ Applicable to cracks within fully expanded tubesheet for hardroll and hydraulic expansions as well as WEXTEX expansions

- Different loss coefficient correlations for hardroll and hydraulic ex ansions

Inspection Results Types ofIndications Below TIS Field data reviewed from four plants

~ Axial indications are dominantly SAIs (227 of 281 axials)

- 2 MAIs reach null point between ind. and 2 do not reach null point

. Four circumferential and one volumetric (by + Point call)

- Small circumferential involvement Two inclined indications within 30'f tube axis Location of Indications Below TTS Distributed across tubesheet with a bias toward center Circumferential indications within or at bottom of expansion transition Axial indications principally within first few inches below TTS

- Need for flexible W'* length to permit indications to remain in service Bobbin Detection ofIndications Below BWT

'ata review indicates bobbin detection of 80 to 40% of RPC indications below BWT Larger voltage (> 5 volts) appea to be detectable by bobbin inspection

- Recent in situ testing of 82 TTS hardroll transition, axial PWSCC indications found no leakage Consistent with French integrated SG leak tests

. Tubesheet constraint apparently increases tightness of cracks Bobbin inspection judged adequate to detect indications which could be potential axial leakers or could reduce tube to tubesheet contact pressure

Table 7.1-1 SAI SVI Circ. (SCI or MCI)

Depths Measured Relative to TTS

<-0.4"

-0.4" to <-0.2

-0.2 to <-0.1"

-0.1" to < 0.0" Totals RPC Null Point Single RPC Null Point Not Reached Axial Reached Between Cracks Indication Between Cracks or Indeterminate 180 24 9

14 227 Single Volumetric Indication' 0

0 1

2 Single or Multiple Circumferential Indication 4

23 52 52 131 364 Depth Measured Relative to BWT

<-0.4

-0.4" to <-0.2"

-0.2" to <-0.1

-0.1" to < 0.0 Totals 13 3

1 1

18 Criteria Not Applicable Circ. Cracks not included in BWT study V'BCIEXS DES Cane enon 11040 7-X

r

~

~ ~

~ ~

UZGHKGQKZKGX5%MKMR2EEZE&

HHKSERHlRREBHKXMHXK&QZKEEKi%

WHKRRRGRHZRKXRKQBRED

%KR~KZKRGXSSHKKKX&

~HKiWRRRKHRQRKKH3ZKS tH~HXRIZHKlOKQ I

I I

gg II fg IP gQ C9 QQSSgg I gg 8

ER

~< RM

~ REGS SENCEQB~Kl 85RMR

I

~

s

~

ER ggg~z5M @~~ggz3EQ ggQ~~~ ~@gp~

K', g~g~ER gg~~gK~

~

~ggggQg ggfQig~

m

~~rgb >BR"

~gg z ~GO gag g~E 5

(l

~ ~

g

@craw I

~

~

g

~

~ ~Ttg j;

, ~ ~ ~

~A I

~

I I I'.I I I

~E28123 JZJiM ZQ~

f a)

I ~

~ I J

,,<r4;~+<

/J~J," -,-;:/~l</.,s.;-'.ji) )//p///0.:

5% '

I 81

\\

~ ~

0 1

Wage~

e~

K~~ '::

gag

, ~>mm '., 'uxmgg I

Rg ~(

gg

'ling ia aa i)g,'

~

B~g R~

gP "I I

Figure 7.1.2-1 WEXTEXSingle and Spaced INultipleAxial Indications Below TTS 50 45 40.

35

~ SAI o MAI 30

5. 25

~ r r

~

r

~

- r 20 15 10 r

r r r

r g

~

w r r 8

~ ~

r r

~r r

r r-w-r r

,r,mr r 10 20 30 40 50 Column 60 70 60 90 100 0:Mwx!~LWEXTFX4.XLS:SAIMAIhlhp (Ou5re) 11/3/96:12.56 AM

I I

Figure 7.1.3a - Number of WEXTEXCircumferential and Volumetric Indications vs.

Depth Below Top of Tubesheet 100 I

&80 B

~60 C

P I

O I

D~40 '

OVolumetrlc Indlcatlons 8 Clrcumferenttal Indlcadons l

i 0

~2.2

-2.0

.1.8

-1.6

-1.i 12

-1.0 4.8 4.6 44 42 0.0 02 OA Depth Below Top of Tubesheet (Inch)

Figure 7.1.3b - Number of Single and MultipleAxialIndications vs. Depth Below Top of Tubesheet or BWT CA

~~ t5' O

o 10 I

OMAI;Relattve to TTS 0SAI; Relative to SWT

~ SAI; Relattve to TTS 5

0 o

e s

~

cv O

e e

~

re o

o e r rt o

co s

~

ca o

r e)

M Pp e7 n

N n

ei CV ei r

~ r r r

Cp Cp Cp Cp 0

0 0

Depth Below Top of Tubesheet or BWT (inch)

Figure 7.2-1 Bobbin Detection of RPConfirmed SAls vs. Peak RPC Voltage 10 vl 7

0

~~

CJ 6

'U C

V 5

Q.K 4

O 0Z 3

0 Not Detected by Bobbin 8 Detected by Bobbin 1.0 XO 3.0 4.0 5.0 6.0 7.0 d4 9.0 10.0 11.0 12.0 13Al 14Al Peak RPC Voltage (Volts)

Growth Rates ofAxialIndications Below BVVT Growth Rates Evaluated for Two Plants

~ 80 indications evaluated for growth in length Crack Length Growth Bate of 0.236" per EFPY at 95% Cumulative Probability

~ Judged conservative due to diQiculties in sizing initial crack lengths Growth Rate Options for W~ Applications

~ Apply generic growth value of 0.24" per EFPY or develop plant speciQc values

~ Not considered mandatory to develop plant speciQc growth rates for W*

applications due to overall conservatism in W* criteria

Cumulative Probability Distribution for Growth of VP Region Axial Indications 0.9 0.8

= 0.7 J3I~ 0.6 0

CL

~ 0.5 I 04

~ 0.3

~Plant W

~Plant Y l

I I~ Combined 0.2 0.1 0

-0.10 Plant W Average Length Increase/EFPY

= 0.11", Std dev.

0.1Z'lant Y Average Length Increase = 0.10", Std dev. 0.09" I

0.00 0.10 0.20 0.30 0.40 WEXTEXAxial Crack Growth per EFPY comuogro its Gmwm coF chatt 2 11I1$90

NDE Uncertainties Test Specimens

~

Tube and tubesheet collar with WEXTEX expansions Full length tubesheet mockup with multiple, WEXTEX expanded tubes

~

EDM notches

- Judged conservative for applicable W* length measurements since coil lead-in and lead-out effects, which increase crack length measurements, are larger for EDM notches than for tapered cracks NDE Data Collection

~

Robotic inspection in SG mockup to simulate field conditions

~

Probes for which data collected

- Bobbin

'i

+ Point Pancake coils - 80, 115 mil NDE Data Analysis by Field Resolution Analysts Analyses of Test Data to Obtain NDE Uncertainties is in Process

Summary of Conservatisms in W* ARC Length of crack assumed to provide no contribution to pullout force

~

Likely only that WEXTEX expansion pullout resistance affected and thermal expansion, pressure differential and tubesheet bow not affected W* lengths are most limiting tube in each of two zones and bound all other tubes in the zone Axial cracks assumed throughwall for SLB leakage analyses SLB leak rates are most limiting tube in each of two zones All expansions assumed to have a small gap over upper 0.7" of distance below BWT All growth is assumed toward the BWT for leakage analysis

W Pullout Load Evaluation Robert M. Wepfer Senior Engineer Westinghouse Electric Corporation Nuclear Services Division

Elements in the W'ullout Load Evaluation

~

Analysis Conditions and Criteria

~

Pull Force Testing

~

Analysis of Contact Pressure

~

Calculation of Pullout Load Reaction Length (W Length)

Analysis results subject to completion of final checking process

Analysis Conditions and Criteria W'nalysis Conditions Parameter Value Basis Tho<

Tcold 5900F 535'F Lower bound hot leg temperature estimate Lower bound cold leg temperature estimate Pori 2250 psia Operating primary pressure 2650 psia Feed Line Break pressure conservatively used instead of 2560 SLB value Psec 900 psia 760 psia Upper bound steam pressure

- for tubesheet interaction pressure analysis Lower limit steam pressure

- for 36P burst pressure analysis selected from review of plant operating data W

Design Parameters Parameter Tube O.D.

Tube I.D.

Tubesheet Hole Diameter Value 0.875 inch 0.775 inch 0.890 inch

Analysis Conditions and Criteria Tube Burst Normal Operating Conditions

~

RG 1.121 Criteria for Tube Burst of 36P,

~ Load Developed from Pressure Acting on Area of Expanded Tube OD (0.890" dia)

~ Bounding Min. Steam Pressure of 760 psia Selected from Review of Plant Operating Data

~ Normal Condition Axial Pullout Load Criterion:

(

pri Psec)

(IT/4) (Tube OD) 3+(2250 - 760)+(IT/4'~(0.890)2 = 2781 lbs.

Analysis Conditions and Criteria Tube Burst - Faulted Conditions

~

Feedline Break (FLB) hP of 2650 psia used as compared to Steam Line Break {SLB) of hP of 2560 psia

~

Load Developed from Pressure Acting on Area of Expanded Tube OD (0.890" dia)

ASME factor of safety of 1.0/0.7 = 1.43 applied t

Faulted Condition Axial Pullout Load Criterion:

F =

1 43 (Ppfi Psec)

(n/4)~{Tube OD)

= 1.43 '2650

- 0) (rr/4)~(0.890)',

2358 lbs.

Pull Force Testing Test Objectives and Description

~Ob'ective:

To determine the coefficient of friction between the tube and tubesheet collar and the nominal radial interference pressure due to WEXTEX expansion S ecimen Pre aration:

~

Tubes expanded with nominal WEXTEX conditions

~

Average sample length approx. 4"

~

0.875" x 0.050" Alloy 600 tubes

~

Expanded into 1018 CR collars sized to simulate the radial stiffness of the tubesheet

~

Typical collar ID surface finish of 100 to 250 rms Testin

~

Each specimen tested at four conditions:

Room temperature 400'F, Zero ID pressure 600'F, Zero lD pressure 600'F, 1635 lD pressure

~

Pull forces obtained for each test condition

Alloy 600 Tube

~Unexpanded OD 0.875

" x..05

" %'all Carbon Steel Collar 225

" OD x.890

" ID As-Fabricated WEXTEX Samples for Pull Tests

End Cap Engagement Length E

agem eat

.C Pressurizing

+

End Cap b)

Pressurized T = Axial Pull Force Applied to Tribe Through Suitable End Plug or Grip R = Collar Restraint a)

Unpressurized Pull Force Sample Confgurations Tested

WEXTEX EXPANSION JOINT PULL FORCE TEST RESULTS Sample No.

-- Design Test Cond'ns -- -------- Actual Test Conditions -----

Pull

~T.'F

~ID P I L"','" T~F I~DP I

F Lb.

J

Pull Force Testing Test Results Linear Regression Fit of 4 Data Points for Each Sample:

Sample No.

p, Friction Coefficient SrW, WEXTEX Radial Contact Pressure b,c,e Limiting Condition:

~

WEXTEX average friction coefficient

~

WEXTEX average expansion pressure

Pull Force Testing Pullout Load Reaction Length Calculation

~

Pullout Load Reaction Length (PLRL)

PLRL =

A lied Axial Load

{Integrated Contact Pressure v

D p )

where, p = average tube-to-tubesheet friction coefficient D = expanded tube outside diameter and Contact Pressure

= Operating Contact Pressure

+ WEXTEX Contact Pressure

Tubesheet Structural Analysis Overview Pur ose of Anal sis:

Provide a model to represent changes in tube/tubesheet contact pressure for variations in:

~

Operating conditions (temperature, pressure)

~

Radius from tubesheet centerline axis

~

Depth below secondary face of tubesheet Results used in conjuction with test to determine radial contact pressure at each location of tubesheet.

Model Confi uration:

~

Model 51 FEM

~

2-D, Axisymmetric

~

Unit Loadings

~

Results for analysis conditions determined by scaling

Tubesheet Structural Analysis Observations for W Conditions

~

Radial contact pressure increases with distance (depth) from top of tubesheet

~

Radial contact pressure is lower near tubesheet centerline axis, higher at periphery

~

Radial contact pressures are lower on cold leg than on hot leg

W*Zone A and Zone B Boundaries

~t00000000000 ~

~ 00000000000000000000000 45

~ ootoooooo ~ 00 ~ 00000000000 ~ 000 ~

~000000000 ~ 00 ~ 00000000000000000 '000

~0000000 ~ 000 ~ 000 ~ 0000000000000 ~ 00 ~ 0000 ~ 0

~ote ~ 0 ~ 00000000000 ~ 0000000 ~oooooto ~ootot F 000

~0000000000000000000 00000000000000000000 40

~ 000000000000000000000 yf+Zon)A oeoooooooootooooeooooo

~ 00000 ~ 0 ~ 0 ~ 000 ~ 000000' 0 ~ 00 ~ 00000 ~ 0 ~ 0 ~ 00000' 0000 ~000 ~ 0000 ~ 00 ~ 000000 ~ 000 ~ 0 ~ 000000000 ~ 00 ~ 0 ~ 0 ~ 0000000 ~ 0 ~

~ 000 ~ 00 ~ 0000000 ~ 000000 ~ 0000000t000000000

~ 0000000 ~ 00 ~ 00001000

~000000000000000

~ 00 ~

~000000000000000000-35

~ 0000000000000000000 Expansion TransitionZones],2, &3 otoeoeoooeeoooeeoooe

~ 00000000000000

~ 0000

~ 0 ~ 0 ~ 00000000000 ~ 000

~ 000 ~ 0000000000 ~000000000 ~ 0000000000000000000000

~ot0000000000000

~ 0 ~ Oto ~ 00000000000 ~ 0 F 00

~0000000 ~ 000000 ~ 0000000

~0000000000000000000

~ 00

~ 0000000000000000000000-30

~0000000000too ~ 0 ~ 0000 F 00 oote ~ 00 ~ 0000 ~ 0 ~ 00 ~ 0 ~ 0 ~

~ 0000 ~ 000 ~ oot00000000000 00000 F 0 '0000000000000000

~ 0 ~ 0000000000 ~ 0 ~ 0 ~ 0000

~ 0000000000000 ~ 0000000000

~ 0 ~ 000000 ~ 00 ~ 00000 ~

~ 00 ~ 0 ~ 0 ~ 000 ~ 00 ~ 00 ~ 0 F 00

~ 0000000 ~ 0000000000

~ 0 ~ 000 ~ 0 ~ 0000000000

~00000000000 ~ 0 ~ 0000 ~ 0 F 00

~ 00 ~ 00010000 ~ 000000

~0000000000000000000 000000000000000000000000000000000000 00000000000000000000-25

~ 0 ~ 00000000000000

~ 0 ~

00000 ~ 0 ~ 000 ~ 00 ~ 0 ~ 0 ~ 000000 ~ 000000

~ 000 0000000000000000

~ 000

~000 ~ 0000000000000

~0000000000 ~ 000000000000000000000000

~00000000000000000

~ 0 ~ 0 ~ 0100110000 ~ 0 00010000

~ 00000 ~ 001 ~ 000000 ~ 00000 ~ 000 ~

0 ~

10010000000000000 110100010000001001 111010010000010

~ 001010 ~ 10001111000110101 '00 111111011110000000

~

eooottttetoootooot 11111111010101111111111101110111011111111111 111111111111010111-20

~ 10 ~ 000000011001001

~ 00001100000000010

~ 01101010010111001

~ 000 ~ tto 0111011111111 ~ 1 ~ 001

~ 10 ~ 00010 ~ 1 ~ 100100 ~

0010100000000101111 '110100000 ~00000001toeee 110 ~ 01100010100000 ~

~000 ~ 00000 ~ 0 ~ 000 ~

~00000010000000000000000000000000000

~1001011

~00000001100 ~ 000 ~

~000000000000000

~ 0000000000000000000000000000000000001

~ 00 ~

ooot

~1000000000000

~ 0

~ 0000000000000000 000000000000000

~ 00000 ~

~000000000000000100111 00000000000000000-

]5

~ 0000000000000000 000 ~00000000000000

~ 000 yy+Znng)) ~ 000000000000000000000 00000000000000000

~ 0 ~ 000000000 ~ 0000 00000 ~ 00000000 ~ 0000000

~ 00000000

~ 00000 ~ '000000 000000000000000

~ 0

~00000000000000000

~ 0000000000000 ~ 0000000 ~ 00000000000 '000000000010000 '00000000000000000

~000000000000000

~ 0000000000000 ~ 0000000 ~ 000000000000000000000

~ 0000000 0000000000000 ~ 0 ~

~ 0000000 ~ 00000 ~

0000000000 ~ 000000

~ooeoooooottotoooo 00000 ~ 0000000 ~0- ]0

~00000000000000 0000000000ooooooeoo Expansion TransitionZone4 000000000000ooeoooeo 000000000000000

~00000000000000 ooooeooeoooetoooooo

~ 0000000000000000000 00000000000 ~ 00 ~

~ 0 ~ 0000000 ~ 000 ot000000000000000

~ oote00000000000000000000000000000

~ 000000 000000 ~ 0000 ~ Ot

~000000000 ~ 0 ~

0000000'000000000000000000000000000000 F 0000000 ~ 000 ~eoootoo

~ 00000 ~ 0 ~ 0 ~ 00

~000000000000 00000000010000000000000000000000000000000000000'00000000000000000 0000000000000-5

~001 ~ 00 ~ 00 ~ 0 ~

~ 00000 ~ 0000000tooooo ~ 000 ~ 000 ~ ooooootoooo ~ 0 ~ 000000 ~ 00 ~00000000000 00000000 ~ 0000

~1110110100 ~ 0 10100000110000111101 '000000111001000000

~ 000100000 ~ 01 ~ 0000010000 10110000 ~ 1000

~0000 ~ 0 ~ 00 ~ 00

~ 000000011 ~ 000000000 ~ 00000 ~ 0 ~ 00000000000000000

~ 000010 ~oootoooooo ootoo ~ 00 ~ooto

~000000000000 000000000000000000000 '000000000000000000000000100te100000000000 00000 ~ 000000 ~

I I

I I

I I

I I

I I I, I I

I I

I 90 85 80 75 70 6$

60 55 50 45 40 35 30:

25 20 15 10 5

" MANWAY NOZZLE

W" Length Calculation for Normal Conditions - Hot Leg Depth from TTS Total Contact Pressure R=2.28" R=37.7" (Zone B)

(Zone A)

Incremental Load R=2.28" R=37.7" (Zone B)

(Zone A)

Cumulative Load R=2.28" R=37.7" (Zone B)

(Zone A) c.,e W Length

W'ength Summary Condition Location Radial Distance from Tubesheet Centerline Normal Normal Faulted Faulted HL CL HL CL R= 2.28" (W" Zone B) 6.4 6.9 5.0 5.2 R= 37.7" (W

Zone A) 5.0 5.2 3.0 3.1

Conservatisms in W Length Calculations

~

Lower value of p and WEXTEX radial pressure used

~

"Clean" crevice conditions used in test; significantly higher pullout loads observed in samples exposed to doped steam Crevice deposits expected to increase radial contact pressures

~

No pullout load resistance assumed over entire axial extent of an axial crack

~

The potential for burst-type leakage is essentially eliminated by the presence of adjacent U-bends (interior tubes) and lockup at tube support plates

W* ARC SLB Leak Rate Methodology Meeting with NRC November 20, 1996 Presented by G. P. Lilly Westinghouse, NSD

W" Leak Rate Modeling Purpose Develop and Apply Model for Calculating Leakage from Cracks within a WEXTEX Crevice Summary

Background

- Previous Modeling Model Changes, Leak Tests with Constrained Crack Opening IVlodel Test Data Bases and Results

W* Leak Rate Modeling Background - Previous Modeling

- Developed Leak Rates for Cracks in Series with WEXTEX Crevices

- Basis

- Free Span Crack Opening Assumed

- Crevice Loss Coefficient Based on Crevice Leak Tests, Correlated with Contact Pressure

- Calculated Contact Pressure for Field Application

- Results:

Leak Rates vs Geometry and Operating Condition Factors

- Normal I Faulted Operating Conditions

- Tube Position on Tubesheet

- Crack Length and Depth Model Changes Integrate New Data Base for Constrained Crack Opening Leak Tests into Leak Rate Model

W'eak Rate Modeling Leak Tests with Constrained Crack Opening

- Cracks Leak Tested at Free Span and in Constraining Collar with Controlled Gap/ Interference Fit

- Tests Designed to Eliminate Crevice Resistance Effect Constrained Crack Leak Test Results Comparison with CRACKFLO, Code for Calculating Free Span Crack Leak Rates Free Span Tests "Closed Gap" Collar Tests "Tight Gap" Collar Tests Determination of an "Effective Crack Length" Effective length of a crack is the length of a free span crack which leaks at the measured rate The correlating parameter is tube/tubesheet contact pressure

W Leak Rate Modeling Autodave Top of colhr to centerline crack 0.59

+l- 0.03 EOM Notch with Fa ue AA AA AA A

AA AA AA A

A AA A

AA AA AA A

AA AA AA AA AA A

AA AA A

A A

A AA AA A

A AA A

A A

((

I

jc Tube Inlet Line Top Rug

. wag<

. 9 Pgr JAP A/5r '

A A A A A A A

A A A A A A A A A A A A A

A A A

A A A A A A A

A A A A A

A A A

A A A

A A A

A A A A A A A

A A A

A A A

A A A A A A A A A A A A A A A A

A A A

A A A A A

A A A

A A A

A A A

A A A A A

A A A

A A A

A A A A A

A A A

A A A

A A A A A

A Rashing Seam Condensed and Collechxf

Free Span Results Predicted vs. Measured CLG I

Q)

CL 6$

o+

oz, o

~ 0.327 in.

@ 0.424 in.

i0.425 in.

Q 0.512 in.

<> 0.572 in.

g 0.593 in.

CRACKFLO Leak Rate - GPM

Constrained Crack Results Closed Gap - Collar B 4

o 8 a'~

e 0.327 in.

0.424 in.

0.425 in.

0.512 in.

0.572 in.

0.593 in.

CRACKFLO Leak Rate - GPM

Constrained Crack Results Tight Gap - Collar A CLU I

Q) lU 6$

C)

Q)I-I II I

, n

~ 0.32

@ 0.424 in.,

L 0.425 in.'

Q 0.512 in.

0 0.572 in.

g 0.593 in.

CRACKFLO Leak Rate - GPM

Effective Crack Length vs Contact Pressure C

I U:

6)

Otg O

0 4

UJ Regression, all lengths Crack Length

~ 0.33 in

~ OA2 in

~ 0.51 in 0.58 in

~

0 2

Thousands Contact Pressure - psi i:hwk96>wstar.wk4

W'eak Rate Modeling l eak Rate Model Uses the DENTFLO Code which solves for leakage of a tube crack in series with a crevice resistance.

The crack element of the leakage path assumes an effective length derived from the constrained crack data.

Effective length is a function of contact pressure and independent of crack length.

The crevice element of the leakage path uses a crevice loss coefficient derived from leak rate tests through WEXTEX crevices.

Loss coefficient is a function of contact pressure.

Leak Rate Calculations Parameters which determine leak rate are:

Primary and secondary side fluid conditions - SLB assumed Crack depth and tubesheet radial position. These two parameters define contact pressure:

- At the crack depth ~ Effective crack length

- Along the crevice ~

Crevice loss coefficient Analysis results are subject to completion of final checking process

a Effective Crack Length Data Linear Regression


Reg. 95% Upper Conf.

~ W I

bS 0)

Cl

~ W 0

0 0.

1000.

2000.

3000.

Contact Pressue

- psi 4000.

Figure 6.4-1 Effective Crack Length Versus Tube-to-Tubesheet Contact Pressure

WEXTEX Crevice Loss Coefficients vs Contact Pressure 1.0E+

1.0E-C:

1.0E.

O 0)0O10 M0 1.0E.

1.0E-WEXTEXCrevice Data

MLE of Median

-- Reg. 95% Lower Conf.


Reg. 95% Lower Conf. on AA 500 1000 1500 2000 2500 Contact Pressure - psi fWSTKLOSR.XLS) Conf.Band JL 11/'.9%

WEXTEXCrack/ Crevice Leak Rate Hot Leg

~42.5 in Tubesheet Radius Zone A

~2.3 in Tube sheet Radius Zone B 2

3 4

Crack Depth Betow BIT-in

Model 51 SG Limited SLB TSP Displacement Summary ofWCAP-14707 NRClUtilityMeeting November 20, 1996 Presented By:

T. A. Pitterle Nuclear Services Division Westinghouse Electric Corp.

WCAP-147G7:

Model 51 SG Limited TSP Displacement Axmlyses for Dented or Packed Tube to TSP Crevices Axial Pull Forces to Determine Loads Required to Displaoe TSPs Relative to Tube for Packed or Dented Intersections Lealmge Tests with Packed or Dented Intersections Hydraulic SLB Loads on TSPs (RELAP5, TEVWFLO)

Dyn unic Structural Analyses for TSP Displacements Assessment for SLB TSP Displacements with Dented or Packed Crevices Revision to WCAP-14707 in Process Local TSP structural analyses for Hot to Cold Condition q me vuefry96 wp5 Norcmbcr I9.

1 996

TubeflSP Displacement Force Tests Laboratory Pull Force Tests

'SP displacement forces of 80 to 4200 lbs for laboratory induced dented specimens Pulled Tubes Tube breakaway forces of 925 to 2650 lbs French Dang~erre-1 Tubes Removed &am SG with TSP

. Non-dented tube/TSP intersections

~ Average of 23 measurements yields 8120 lbs to move tube at room temperature and 2686 lbs at operating temperatures

- Forces at lower 90% con6dence are 2106 at room temperature and 1685 at operating temperature Forces approximately independent of TSP displacements up to 0.4"

3500 Tube/Tsp Axial Pull Force vs. Displacement Damplerre-5 Removed Tubes and TSP with Crevice Deposits 3000 2500 I 2000 be0 LL 1500 a

a a

10OO 500 4

Room Temperature Force Data

~

Elevated Temperature Force Data Room Temperature AfterChemical Cleaning

- - " 1563lbAverageAxialPu!IForce

-2666 Ib Average Axial Pull Force

3120 Ib Average Axial Pull Force 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Tube/TSP Relative Olsptacement (in.)

TSPPULL.XLS 2/813:00 PM

Ledge for Indications at Packed and Dented TSPs Laboratory Leak Rate Tests Essentially.no leakage for throughwall cracks up to 0.7" at SLB conditions Dampiem. 1 Leak Rate Tests for Tubes/TSP Removed Born SG

~ Crevice deposits limit leakage to negligible levels (< 0.004 gpm for TW hole in tube)

~ Leakage essentially independent of TSP displacements up to about 0.16" Conclusion Leakage from indications within packed or dented TSPs result in

~

~

~

negligible leakage

Sun+nary of Laboratory Leak Rate and PuH Force Test Results for Dented TSP Intersections Specimen Dent Volts TW Crack Length, in.

SLB Leak Rate, gpm TSP Pull Force, lbs FAT-1 FAT-2 FAT-3 FAT-4 FAT-5 FAT-6 FAT-7 FAT-8 FAT-9 FAT-10 FAT-11 BW-3 BW-9 7.4 6.1 12.1 12.0 4.6 0.0 9.4 17.4 3.4 2.5 2.8 6.3 6.4 0.500 0.299 0.300 0.697 0.300 0.302 0.509 0.707 0.513 0.701 0.499 0.78"'

65(l) 0.0 0.0 0.0 0.0 0.0 0.0 0.0002 0.0 0.0 4,200 3,220 475 700 85 85 80 Notes:

1.

Corrosion crack specimens.

Lengths given are total corrosion crack length ofknown TW cracks.

TW lengths were not measured.

s itubanaldmcpcoghntcl 96.AS Febeusry

14. 1996

Leak Rates (Dampierre-1 Data) from 20 mil Diameter Hole with Packed Crevice Normal Operation: 4 P ~ 1450 pai Leak Rate Net MMaaulabkr (o30 llhr) 10 0.1 0.01 0.001 0 0001 0.025 005 0.075 0.1 0.125 0.15 a175 02 0.225 TSP t7laphrcemont Inch i

o No Chemcal r3eanrno o Wah Cherncal Creanrng SLB Conditiona: h P ~ 2485 pal Leek Rate Nct Meeaunrhle (i30 trhrl 10 01 JC 0.01 0 0001 0

0 025 0 05 0 075 0.1 0.125 0.15 0.175 0.2 0.225 Tar twaPI~~-~

o No chemrcal Qeancrg o wah chohcal creanrng 7SPPULLXLS 2/8$$ I'.17 PM

SLB TSP Displacement Analysis Results SLB Forces on TSP to Cause Displacement

~ Maximum force on TSP < 60 lbs even for SLB upstream of Qow restrictor Conclusions

~ SLB forces acting on TSPs are much smaller than the forces required to displace the TSP with packed crevices

~ 0.1 to 1.3 tubes with packed crevices within tube groups of 13 to 60 tubes are adequate to prevent SLB TSP displacement

~ 0.2 to 2.5 tubes per tube group are adequate to prevent TSP displacement even following chemical cleaning qnretnndrp96wp5-Novcnbcr l9. L996

Overall Conclusions TSPs With Packed Crevices WillNot Displace Relative to the Tube in a SLB Event Tube Integrity Analyses Should be Based. Upon:

~ Only crack length outside TSP contributes to the potential for tube burst

~ Only the throughwall crack length outside the TSP or near the edge of the TSP contributes to potential SLB leakage

- Even with crack extending outside the TSP, crack opening is restricted by the packed crevice, particularly for dented TSP intersections

~ Adequate TSP integrity is retained to prevent tube rupture as long as there is not a loss of a section ofTSP at an indication

- Limited cracking of the TSP ligament at an indication is acceptable provided there is not a loss of a TSP section

- Acceptable TSP integrity would include one crack at a tube indication or-two or more cracks ifthe adjacent tube intersection has only one crack

~ Some denting presence in a SG provides a basis for the TSP corrosion and packed crevices to develop high forces resisting SLB TSP displacement and resulting in negligible leakage for indications within the TSP q;nwhnrabp96 ~Vevenbcr l9, V56

Overall Conclusions Alternate Repair Criteria for Indications at Dented TSP Intersections

~ Based on TSP preventing tube burst even at SLB conditions for indications within the TSP or negligible (about < 0.2") extension outside of the TSP

~ LimitingSLB leakage within acceptable limits would be the basis for tube repair for indications at dented TSP intersections within or negligibly outside the TSP

~ ARCs for cracks (PWSCC) extending significantly outside the TSP would be based upon the length of crack outside the TSP relative to achieving structural and leakage integrity q nrc'Lnndtp96.wyS.Novaabcr

19. L996

TSP DISPLACEMENTANALYSISFOR SERIES 51 STE'AM GENERATORS 3VI'M PACKED CREVICES LocALTSP STRUcTURAL Azar.YSEs HOT - TO - COLD CONDITION RICHE E. Sxnx NOVInmER 20, 1996 DISK250 ~ DIABLO'dRC01 ~ 1V1686

TSP DISPLACEMENT ANALYSIS Pj&SENTATIONOUTLINE INTRODUCTION TSP SUPPORT CONFIGURATION REVIEW OF GLOBAL (DYNAMIC)MODEL / RESULTS FOR HOT-TO-COLD CONDITION GEiNERAL METHODOLOGY FOR DETAILED EVALUATION DEVELOPMENT OF TUBE / PLATE EQUIVALENTPROPERTIES FINITE ELEMENT MODEL INITIALMATRIXOF BOUNDARY CONDITIONS TO BE CONSIDERED ANALYSIS STATUS TUBE / TSP INTERACTION: TUBES EXCEEDING BREAKAWAYFORCE TSP STRESS RESULTS REMAINING WVORK ANALYSIS CONCLUSIONS DISK 250 - DIABLOQlRCOI-II/19/96

ANALYSIS PURPOSE - EVALUATELOCKED TUBE CONDITION FOR SEEDS 51 STEM I OENRFIAIOBB SIIEJEOF 'IO~ TRREMAI EXPANSION FROM FULL POWER TO COLD SHU'I'DOWN ANALYSIS OSJECrmZS D~ NUMBER ANO TOOATION OF TIIBRE TEAT SEOERO BREAI&WAYFORCE

~

CALCULATEPLATE STIKSSES FOR THE PRFSCRIBED LOADING

~

GALCULATESTRESSES FOR YIELDS JOIMNG WEDGES AND SUPPORT HAIKTO TSP ANDWRAI~R DISK250 ~ DIABLO'QGKOl-Ill1NBB

TSP SmvoRT CoNH:Gmu TIDN TSP SUPPORTED SV WEDGES, SUPPORT BARS, AND TIERODS /

SPACERS RIX VVROORR RPAORD RVRRV RO AROORD PII VR COI DMMDOM WEDGE WIDTHOF 6" FOR TSP 1 - 6, 10'OR TBP 7 TWO VERTICALBAR SUPPORTS LOCATED 180 APART ONE CFW'ITALTIEROD / SPACER, 4 TXEZODS / SPACERS WEDGES AND VERTICALBARS WELDED TO BOIH TSP ANDWauPPZR THUDS THREADED INI'0 TUBESHE3:T, WITH NUT ON TOP OF UPPERMOST TSP SPACERS LOCATED BEIWf&NTSP - NON-LVQMtINTERACTION 0

DISK250 ~ DIABLO~1-IV1S86

1 5+me 8-2. %'rappee I TSP / Wedge IxMr&ua 8-20

a,c HNue 8-4.

'ESP Sup)xat Locaticns mp2-7 8 - 22

OF GLOBO (DYNAMIC)MODEL/ RIESUL1S FOR HOT-TO-COLD LOAD CONDITION DYNAMICMODEL LUMPED TUBES INTO 80 GROUPS NUMBER OF TUBES / GROUP BAS1H) ON PLATE AREA RATIO HNFFR~ MoDRL CQNHtoEHKD 7 'IBP, CRANNY HRAO, TUBESHEET, SHELL, TQHmDS / SPACERS, AND TUBE GROUPS

-. ANALYSIS SHOWED TUBE / PLATE INTERACTION FORCES THAT RANGED FROM 56 LBS. TO 419 LBS.

MAXFORCES ISOLATED TO ARE~ ADJACENT TO WEDGES DUE TO TUBE GROUPING, DYNAMICMODELDID NOT GIVE SUFFICIENT DETAILIN WEDGE REGIONS DETAIUMMODELS OF WEDGE REGIONS NEEDED TO CALCULATE TUBE / PLATE INTERACTION FORCES, AND PLATE AND WELD STrmSES DISK250 - DIABLOQGKX)1~ 11/l5$6

a,c E+ure $4. Overall Finite Kement Model 8-23

a,c Figme 8-7. Lattice@ af Tahe Gmaps aud. Number ofTubes Per Gaxxp 8-25

Table )0-2 Sanxmaxy ofMazimum Tube / Hate EakezEace Fcmes Pu11 Power to Cold Shutdown Conditions a.c

)D - 5

a.c Hg Ewl. ~NBQ IH~F Ful1 Paver to Can@ Shutdown - H~ 6 Qaachamt 1,S S~xrt Lomtiaas 10- 12

F4r m7. ~MRd>>/%ad F

PaH Paver to Cd@ Shakedown - Hate 7 Quadra~ lp S>qgxxt Lorica~

10- 13

a,c K+ue l0-13. IR~hutioa afTube I Phde Fcxees PuH Rmna. to Caid Shatdawn - Hste 6 Quadraxxt 2,4 Sa~xxt &xa6cms 10- 19

lie 1Di4. tabs ATbl /I%d F Fali Power to Cdk Shatcbwn - Ehda 7 Qaadame 2,4 Sx~xrt Loadhaa

a,c Hyxee 10-16. Dhgacmi Geametry Hot; Fnll Power to CciMShu&own Quadrat 1,S Stggaet Locaticms 10- 21

Figure 10-1L D~daoe6 Geometry HaC PuH Paver to CoM8~down Quadrant 2,4 Sxq~ Loca6cus 10- 22

G R EIHODOIDGYFOR DETAILEZ)EVALUATION DEVKZOP DETAIUK)MODELS OF TEMPS WEDGE REGIONS AND CEN'IRAL REGION ADJAGENT To TIERQD DzvzLOP PLATE EqurvALENT PLATE PRopmrrms FOR LomLWEDGE REGIONS USING DETAILEDMODELS MODIFYDYNAMICMODEL TO INCLUDE MORE DETAILEDMODELING OF WEDGE REGIONS AND CENTRAL TKROD ABZA APPLY TEMPERATURE GRADIENTs To MODEL CALCULATETUBE / PLATE INTERACTION FORCES FOR ANYTUBE WHERE BREAXAWAYFORCE IS EXCEEDED, DECOUPLE TIIRRI FILARIllTRIITAUR,AIIO RRRUN~ ROIII11ON UNTIL CoNvERGED SOLUTIoN REsULTs ONcz CONvERGED SOLUTION rs OBTAIwzn, Gu.cULATE WELD STruSSES CONSIDER VARIOUS BOUNDARY CONDITIONS To ACCOUNT FOR TSP SUPPORT ARIvwGEMENT,FnED / ONED TSP / WRAPPER IN'IXRFACE,AND MIN/ MAXBIKAKAWAYFORCE DISK250 - DIABLOWRQ)1-1V19I96

DXWFIOP DETAILEDMODELS PF THREE WEDGE REGIONS AND CENTRAL REGION ADJACENT TO TlEZOD DE%%OP CORRESPONDING EQUIVAUPITPLATE MODEL OF EACH REGION INCLUDE TUBES WITH PACIFIED INTERSECTIONS IN EACH MODEL

- APPED TEMPEmmam TO TUBES

- ADmSr TuSE/ ~TE PaOPmemZ VO ACHILWZSAME (Oa AS CXaSE AB PDSSOIIR) A1aAL STJHBS DIKKBOTZQNttlTIHIIH DHKaao - DIAEOQIM)1-i@ass

00 00 00 OO OO OO OO 0

0 000 00 OOOO 00000 00000 00000 00000 00000 00000 OOOO 0000000 0000000000 OOD000000000 0080000000000 00 000000000000000000 0

00 0

00 0

00 0

00 0

00 0

- Tierod Location 0 ~

OOOO00 OO0 000000000000000 0000 0

Detailed Region 3 Patch Plate 000 000 000 000 OOOO OOOO OOOO 0000000 Detailed Region 4 Detailed Region I 0

OOOO 0000 00000 00000 00000 00000 000000 00000 Nota: How alota not shown along tubcdano 0000000000000000000000000000000000000000 Model 51 Tube Support Plate Location and Size ofDetailed Plate Regions DISK250 - DIhBLO~I-1111508

000 00 00 00 00 00 00 OOOO 0000000 0000000000 000000000000 0000000000000 00 000000000000000000 0

0 0

0 0

Detailed Region 3 0 0

0 0

0 0

0 000000

- Tiered Location 00 0OO OOOO QOOOO 000000 00 0

0 000 00 000000 OOOOOO OOQOOOOOO 00 0000000 OO'000000000 00000 00 0000 Patch Plate 00 000000000000000000 Detailed Region 2 00000000000 00000000 Note: How alota not abner alaag tubelane 000 0000000000000000000000000OOOOOOOOOOOOOOO000000 Model 51 Tube Support Plate Location and Size ofDetailed Plate Regions 0

DISK@0 DIhBLD~l-ll/15i96

Damage~ Resow 3 / P~TcH ~TE E~'. Ehzmm r Moozx.

DISK250 ~ DIAKO~I-1V18$6

DETAILEDREGION 3 / PATCH BATE EQUIVALENTPLATE MODEL DISK250 - DIABLODGK01-1V18$6

zl 2t

/g go Cr Sf

+c sa s's

~C

$ 3 si c S Cl'S zo sz so sC ez 4r sr j4 Es

/1 Zf Sl gf sX cl cc rl Pc J'

lY fl' I

zc zs so v>

ff

$V 4 ~

4o r

ls rf gs

>r

> ~

lJ 7f l5 CZ Zf vz vr s's l'r ir sv rr rp pz DETAILS)RFAHON 3 / PATCH PLA'XK TUBE NUMtBERINGSCHEME DISK250 - DlABLO~I~ 11II8$6

Comparison ofTube AxialStress Detailed Region 3 Six inch Wedge Width 25.0 20.0:

a Detailed Model u Eq. Plt. model 15.0

~

Q C-

>00 co E

5.0 0.0

-5.0 0

10 30 40 50 60 70 Tube Number

MQDEL FINITE ELECT MODEL SAME AS DYNAMICMODELWITH MODIFIED PLATE REPRESENTATION AND SHFLL KCIZNDEDTO TOP TSP IN MODEL EXCEEDS 31,000 SINGLE Tubs MOD~m - 567 TuSE GROUPS MODELED - 119 TaFAL NUMBRa QF~

DISK250 - DIAEDMKK01-1V1$96

DISK250 - DIABLO'JPRCOl - 1V16$6

FINITEELEMENTMOOEL ENLARQEDVIEWS OF PLATES 6 AND 7 DISK250 - DIAEOM81-Illi5I96

FINITEELEMENTMODEL TUBE ELEMENTS NOT SHOWN DISK250

~ DIhBLO'AKOI-1 Vl5l96

~

4I%CJU4%%lJS Ner151N41LSRSOOQMXCC Ver$5 0

Toe P~m Emma'~Uczw DlSK%0 - DIhBLO~1 - 1II15$B

000 00 000 000 000 000 000 000 00 00 00 00 00 000000 000000 000400 OOOOIQO 000000 OO 0000 00 0000000000000000000000000000000 OOOO')

000000 000000 000000 000000 00000 0000 0000000 0000000000 000000000000 0080000000000 00 OOOOG0000000000000 0000Q000000000000000 000000000000000000000 0

00 0

00 0

00 0

- Tierod Location 0 g 000000000 0000000000000 00000 000000 000 Detailed Region 3 Patch Plate 000 000 000 000 000 000 000 000 000 000 000 000 OOOO OOOO OOOO OOOO Detailed Region 4 Detailed Region I OOOO 00000 00000 00000 00000 000 000 000 000 000 Note: Flow slots not shown elaag tubelene 0000000000000000000000000000000000000000 Model 51 Tube Support Plate Location and Size ofDetailed Plate Regions Global Model DISK250 DIhKD~1-ll/lN96

000 00 000 000 000 000 000 000 00 00 00 00 00 0000 0000000 0000000000 I00000000000 000000000000 00 000000000000000000 000000000000000000 006000000000000000 o ~

ooo 0

Detailed Region 3 000 0

000 0

- Tierod Locaion 000000 000000 000500 00 00 000 0000 00000 000000 Qooooo 0000 00 000 ooo oooooo QQQ Qo 00000 QQQ 00$0000000 OOQ OO'000000000 000 00000000000000 Patch Plate Detailed Region 2 0000 00 00 00000000000000 0000800000000000 0000'0000000000000 000 000000000000000000000000Oo000000 00000000 Noes: How slots not shown along tubelsne 0

0 000000000000000000000000000000000 Model 51 Tube Support Plate Location and Size ofDetailed Plate Regions Global Model DISK248 - MOD360-FIG03 - 51/)M996

INrrIALMATHIXOF BOUlK)AKFCONDITIONS CONSIDFZED NUMBER OF TSP SUPPORT CONFIGURATIONS: 2

~

QUADRANT 1, 3

~

QUADRANT2, 4 NUMBER OF PLATE / WRAmW. SUPPORT CONDITIONS: 2

~

B3KD AND PQ PAD NUMBER OF BREAXAWAYFORCES CONSIDER): 2

~

MVnaena (-rj: 1630 LBS.

MAXMUM("Pl: 8740 Ue.

TOTALNUMBER OF CASES TO BE CONSIDEEE33: 8 e

DISK250 - DIABLO~1-11/16$ 6

FOUR CASES CURRENTLY IN PROGRESS

~

QUADRANT 1,3; FlXED TSP / WRAPPER; MIN FORCE QUADRANT 1,3; PINNED TSP / WRAPPER; MIN FORCE

~

QUADRANT2,4; FV&DTSP / WRAPPER; MIN FORCE

~

QUADRANT2,4; PINNED TSF / WRAPPER; MINFORCE DISK 250 - DIABLO%%K01 - 11/19$ 6

Distribution ofInterface Forces Quadrant 1, 3 Boundary Conditions Plate /Wrapper -AllDOF Coupled AllElements Active MtnIMat Force Values For Each Ran Plate R

on

~ 1078

~ -1000 I.500 I

~ 1000

~

500 '00

~ 100 100 100 I 400 I 800 i 1200 I 1630 I

4oo i Soo

~ 1200 t 1630 12543 l~

Intoner Dotal I Dated 2 Deuul 3 Patch Plate Doted 4 Ol Ol 0'l Os OI pl Oi Ol OI 3

0 0

31 0

7 0

29 1

0 37 9941 134 I 115 80 89 49 133 0

38 0

I 0

101 1461 172 10 0)

Ol 31 OI Ol 3

3 Intartor Dated I Decad 2 Decad 3 i Patch Plate Decal 4 I

TOTAL Intoner Dated I i

Dated 3 i Patch Plate Detatl 4 I

TOTAL pl Ol pe Ol pl 0;

0.

pi OI OI OI Ol 0

0 3

OI OI Ol I

31 Ol ol ol 0'

13 7

0 0

0 Ip 881 128 137 109 85 49 246 0

27 3

6 0

748 137 174 106 91 49 331 0

0 0

0 0

1305 331 1389 I 282 47 0

0 0

0 0

47 OI Ol I

Ol Intoner Dated I Dated 2 Doted 3 Patch Plate Dotal 4 Oi OI OI 0<

0.

Ol 720 136 174 112 86 49 313 5

0 0

5 0

95 0

0 0

0 0

I OI 1277 323 95 Intoner Doted I Dated 2 Dated 3 Patch Plate Decad 4 0>

691 94 174 41 17 49 303 42 0

63 74 0

85 0

0 0

0 0

47 0

0 0

0 0

13 1066 482 85 47 Intoner Decal I Decal 2 Doted 3 Patch Plate Decad 4 663 31 146 4

I 43 284 98 22 72 90 0

133 6

0 29 0

0 19 0

0 0

0 0

28 0

0 0

0 0

15 888 566 168 19 Intanor Decad I Decad 2 Decad 3 Patch Plate Dated 4 786 31 118 0

3S 36 218 81 50 68 55 9

76 19 6

23 0

3 19 5

0 8

0 I

28 2

0 10 0

0 1007 481 127 33 40 DISK2M MOD3QP GLBMO~TBIl8-1111986

OISTRIBUTION OF INTERFACE FORCES GUAORANT 1

6 3 SUPPORT LOCATIONS PLATE / WRAPPER ALL OOF COUPLEO PLATE 6 ALL ELEMENTS ACTIVE F~A D

1078.

c

'IJ~N F c -1000

~

00000 00000 000000 00000 00000 00000 00000 00000 00000 000000 00000 00000 OOOOO

+000 0+4+0 ~ 0 OOOOSSS F 00

~ SSSSSSSS+40 OSSSSSSSS00000 OOOOSSSSOOOOOO 000000000000000 00000000000000

~

~

~

11 0

0 0

0 0

0 0

t t

t t

t 0

0 S

S

~

~

S

~

0000 OOOO 0000+++

++t+++++

++++++ttb

++++++++ 4

+tt++t++4

+ttt+++++ddb ttt+ttttttttt t+++++++++++++

t+++++++++++++

+tt++t+t++t+++

++++++++++++++

+

+++

0 1000.

c F

C 500.

CL 500.

C F C

-100.

+

-100.

C F C

100.

0 100.

C F

C 400 '

400.

c F c 800.

2!

800.

c F c 1200.

~

1200.

F c 1630.

8 1630.

c F c 2543.

t t

t t

t

+

t t

+

t t

t o

o o

o o

o S

t 0

0

.0 0

~

INTEAFACE ElEHEHT OEACT VATE0 t

t t

t t++++

+++ t+

+++++

t+t++

44+++

t t

t t

t t

t t

t t

t t

0 t

t t

0

+

t t

0 t

+

t t

t t

0 0

t t

t 0

~

t t

+

t 0

S t

t

+

t 0

+

+

+

+

0

~

+

+

t 0

0

++++0

++000

+0000+

+00004 000004 00000+0 0000000 OOOOOS ~

OOOOOS ~

OOOOOSS 00000000 00000000 00000000 00000004

+0000000

+0000000 DISK250 - DIhBLO'QGK01 - 11/15I96

~

~ ~

~

~

~ ~

~

~

~ ~

t ~

~

~

~ ~

~

~

~

~

~

~

~ ~

Distribution ofinterface Forces Quadrant 2, 4 Boundary Conditions Plate /Wrapper - All DOF Coupled AllElements Active hhn/Max Force Values For Each Ran I

Plate Re on

~ 1410 I 1000 I.500

~ 1000 I.500 I

100

~ 100 I

100 100

( 400 I 800 I 1200 I 1630 400 I 800 I 1200 I 1630 I 2657 Intoner Dated I Doted 2 Doted 3 Patch Plate Dated 4 Ol Pl Ol 0:

PI Ol 0

0 16 2

0 0

938 I 116(

158 I 60 90 49 189 13 0

31 1

0 0

6 0

10 0

0 0

2 0

41 OI 18 1411 234 16 Intertor Doted I Doted 2 Dated 3 Patch Plate Doted 4 TOTAL Ol Ol OI Pl Ol OI I.l 0

11 833 135 156 77 80 49 265 I

18 25ll 0

28 0

0 2

0 0

1330 320 30 Intertor Doted I Doted 2 Doted 3 Patch Plate Doted 4 Ol OI OI Ol 0

0 PI 739 140 174 110 91'9 256 0

0 2

0 0

I 1303 258 133 0

0 0

0 0

4 Intersor Dated 1

Doted 2 Patch Plate Doted 4 OI 0(

pl OI 0

0 729

)41 59 60(

83 49 208 0

114 52 8

0 133 0

0 0

0 0

57 0

0 0

0 0

I 1121 382 133 57 Intertor Doted 1

Decal 2 Dated 3 Patch Plate Dotal 4 OI 720 141 28 21 29 49 161 0

143 89 62 0

133 0

0 0

0 0

104 0

0 0

0 0

5 988 455 133 Intertor Doted I Dotal 2 Doted 3 Patch Plate Doted 4 682 141 6

1 3

43 180 0

134 103 88 0

142 0

26 5

0 0

66 0

0 0

0 0

47 0

0 0

0 0

3 12 876 505 173 Intertor Doted 1 Doted 2 Doted 3 Patch Plate Dotal 4 748 141 4

5 42 36 218 0

122 92 48 9

28 0

27

~ 1 1

3 76 0ll 2

0 1

57 0

7 2

0 0

0 976 489 70 DISK250- MOD360iGIAMOD02iTBL09-1ln9S6

OISTRIBUTION OF INTERFACE FORCES OUAORANT 2 6 4

SUPPORT LOCATIONS PLATE I WRAPPER ALL OOF COUPLEO PLATE 6 ALL ELEMENTS ACTIVE 0

OOO

+000 bb+0000 00000000 00$ $ $ 0000 0 ~ $ $ $ $ 000 OSSA $000 Ob0$ $ $ $ $ $ 000 Ob+00$ $ $ 00000

++0000$ $$ 00000 000000000000000 000000000000000 0000000000000000 bbb+

00000000 0000000000 000000000$ $ $

000000000000000 000000000000000 000000000000000 000000000000000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 OOOO

~

0 0

0 0

0

~

~

0 0

+

~

S

~

~

S

~

0 F~R

~~N 0 -1410.

< F

< -1ooo.

0 -1000. <<F C

-500.

-500.

c F c

-100.

+

100.

c F c 100.

0 100.

F 400.

N 400.

< F C

800.

II 800.

< F 1200.

4 1200.

< F c 1530.

8 1630.

< F c 2557.

~

~

~

5

~

~

0

+

+

+

+

+

0 S

~

~

~

~

0 0

+

4

+

+

+

~

INTERFACE ELEMENT OEACTIVATED

+

++

++

++

++

++

++

+++

+++

+++

+++

+++

+++

++++

++++

++++

++ ++

++++

++++

++++

++++

++++

++ ++

++++

++++

++++

++++

++++

++++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

0 0

0

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0

+

+

+

+

0

+

+

+

+

0

+++++

+++++

+++++

+++++

+++bb

+

+

+

+

+

+

+

DISK250 -DIhBID~1-11l15$8

OISTRI BUTION OF INTERFACE FORCES QUAORANT 2 6 4

SUPPORT LOCATIONS PLATE /

WRAPPER - ALL OOF COUPLEO PLATE 7 ALL ELEMENTS aCTIVE 0

~ 04 ff~ 4 0 b 0 ffD D 0 4

~ ffff~ DOOO

~ ffffSO%0 44 ff8 $i0 0 0 4 4 ffD$400004 DoffDD4044000 0 ~ff1800000004

~ SOS ~404000044 040044404000040 ooooooooooooooo 444444044400004 ffeeafa OODSSDD 000040DDDOO 4000040400000 040000400000000 400400000000000 400004000000000 400000004000000 00000 00000 00000 00000 000++

0000+

0000+

00+++

0++++

+++++

++++++

+++++

++4th

~

4 4

0 0

~

4

+

+

+

+

+

ff 4

0 0

+

+

+

C~A

~N D -fcfo. c F << -1000.

0 -1000.

< F <

-500.

d

-500.

< F

-100.

+

100, F

100.

0 100.

c F

400.

D

<00.

C 800.

800.

< F 1200.

0 1200.

F 1630.

S f630.

< F <

2657.

~

~

0

~

ff ff

~

4

+

+

+

+

+

4 0

4 4

4 0

0

+

+

+

+

+

+

+

~

ZNTERFACE Ef.EMEHT OEACT IVATEO

+++ 4+

+++++

++++++

++ ++++

++++++

++++++0

++t 4+++

+++++++

+++++++

+++++++

++++++++

+++ t++++

++++++++

++++++0+

++++++++

++++++++

4 0

0

+

4

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

4

+

+

+

4

+

+

+

+

0

+++++

+++++

++++0

+++00

++000

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0 DISK250 - DDLKO~1-11/1506

TSP STRESS HZ'.VS EDGE STRFDSES CONCEN'GD.TED ATWEDGES NEAR THE PLATE GENERAL PLATE STIKSSES LESS 'QRQl YIELDTWO TO THREE TUBE PITCHES AWAYFROM SUPPORT LOCATION Prinz STRESSES LESS THANYIELDFOUR TO Frm TuSE PITCHES AWAYFROM SUPPORT LOCATION DISK250 - DIABLO~1-11/19I96

4VECAPVPLVS Ncw 10 1t901~ GLBLNX)02 VeFAS 0

XhSPLACZO GEOMInra JADRANT 1,$ SUPPORT CONDITION PLATE / WRAPPER - AZZ. DOF Cour'ISK 250 - DIABLO'Q4RCOl - 1lll9$6

DISPLACED GEOMETRY - PLATE 7 QUADRANT 1,3 SUPPORT CONDITION

~TE / WRAPPER - Au. DOF COUPLED DISK250 - DIABLO~1-1 1/1986

LOad SteP a 1 Itefaapll> 4 I

~

I

~

NeIItrat file a SWS200 Vanabte a 5INT LLg.r 67002.8 Mol. ~ 10939 t 20 a 65520.

19 a 62160.

18 a 58800.

17 ~ 55440.

16 a 52080.

15 a 48720.

14 a 45360.

13 a 12000.

1 2 a 38640.

11 a 35280.

10 a 31920.

9 a 29560.

s. a2a.

7 a 21840.

6 a 18480 5 a 15120 1 a 11760 3 a 6400.

2 r 5040.

1 a 1680.

+~~++

+'JPJJJJJJJJ

~ r )

I

~

~

L L

,~+-f-+

r I rrr r

I I

I rr I ~

I I

~'ll

%It r

r Ll I

WI

~

I I

LIlI baal J

I lr 1

L L

I

~'

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I r>>

L I

I I

~ %

-I

~'

~

~

I

~

r

~

~l I

~

~

+J+J J.+

J.

J JJtJ-

)

Ilr rrll I

~

I I I

L L

~

I II r

e~J JJ,JJ Nt6CAWf'UJS Hoe to tace1~ GLBM0002 Vol:O5 0

~ STRIPS CONTOUR PLOT - PIATE 7 JADRANT 1,3 SUPPORT CONDITION

~TH/6'au PER - Are. DOF COUPLED DISK250 - DIABLOMIIRC01-11/19/96

LONS SS4SS ~ 1 Slerannn~ 4 I-I, N~IIN -saalll'v Vanable a SIMT Max. a 67002.8 Me. a 10.9391 20 a 65520.

19 a 62160.

18 a 58800.

17 a 55440.

16 a 52080.

15 ~ 48720.

14 ~ 45360.

13 a 42000, 12 a 38640.

11 a 35280.

10 ~ 31920.

9 a 28560, 8 a 25200.

7 ~ 2 1 840.

6 a 18480.

5 a 15120.

4 a 11760.

3 a 8400.

2 ~ 5040.

1 a 1680.

I

~

~

I I

~

g r-n I

~

~

~

~I+

~

'c c

II I

I I I

I r

I I

I~

a 1

t++++,

I I

I I

r S

r Ir 4

~ I 1

gA+gA+

+

AAJ A a\\1 I

I I

~ llI 1-I I Ql P

% lg I

1 I I r It+

ply a

a I

I I

I I

I I

I I

a I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

4 I ~

I I

I I

I I

I I

I I

\\\\\\

rl I I I

~

~

~

~ r

~

'I I

i J

I 1

L

-- ~

> rr AA,AAA.Q

~CAWSILUS Hov SO SS60 122RSb GLBMOO02 VorSS 0

STREss CoNToUR Purr - ~TE 6 QUADRANT 1,3 SUppoRr CoNDmoN

~TE / WRAPPER - Au. DOF CoUPUu)

DISK250 - DIABLO'iNRC01 - 1111986

DISPLACED GEOmam QUADRANT2,4 SUPPORT CONDITION PLATE / WRAPPZa - Au. DOF COUPLED DISK 250 - DIABLO~1-11/1986

DISPLACED GEOMIKRY-PLATE 7 QUADRANT2,4 SUPPORT CONDITION PLATE / WRAPPER - Au. DOF COUPLED DISK250 - DIABLO~1-11/19$ 6

r I I

~

I.cQd etey ~ I Itetaton q 4 I

'I

',! n-.,

4etttrel 6le ~ STRS401%

'-!-4+

Venable a SINT Max. ~ 83502.9 Mat. r 1.81866 20 ~ 81120.

19 ~ 76960.

I8 ~ 72800.

17 a 68640.

16 ~ 64480.

15 a 60320.

'I4 ~ 56'1 60.

13 a 52000.

12 a 47840, 11 a 43680, 10 r 39520.

9 a 35360.

8 a 31200.

'7 ~ 27040.

6 ~ 22880.

5 a 18720 4 a 14560 3 a 10400 2 r 6240, I

~

I I

~

I J gl

'I ~ J

~II//

It'-"~~c--

I III I

I I

I

/

J fL I

I I

'ItI I

I I

I I

~

I 14 r 7I J.J. j.+J.

QJ.J.J J.

I

+J% 'I+

III/

L I

I I

I I

I I

I I

I I

I J

J J

a I

I J

I I

J I

I I

Ia I

I I

J I

I I

I I

I I

I I

I I

r I

I I

a

~

J I

~

I I

I I

I I

r I

/II/ I I

I

~

<<4

~

J 4

I I

I I

I I

I I

I I

I

/

4 4

I r 2080

/I

\\j >I /

%i I gl

~

~

L I

I I

J I

I I

J I

/

rr I rrr A Sermon CONTOUR PLOT - ~TE 7 QUADRANT2,4 SUPPORT, CONDITION PLaTE / WRAPPZR - ALT,DOP COUPLED DISK250 - DIABLO~1-11/19$ 6

LO40 StbP a 1 Itetgcna 4 ~

Naeal No a STA540f Venable SWr M4tII a 83502.9 Min. a 1.81866 20 a 81120.

19 ~ 76960.

18 a 72800.

17 a 68640.

16 a 64480.

15 ~ 60320.

14 ~ 56160.

13 ~ 52000.

12 a 47840.

11 a 43680.

10 a 39520.

9 a 35360.

8 ~ 31200.

7 a 27040.

6 a 22880.

5 a 18720.

4 a 14560, 3 a 10400.

2 a 6240 I a 2080.

'-H l

l

~

~,l+I/ll I Ir ltlr llI/


a----tt:

I I

I I

I I

l 4

I I

I I

I4 lII/

I II I I I

I'L r

\\

~ Ir

\\ I /r r 1q I

I 1I r I

I r

/

I rrr 1

~

I

~

I

~

I r-eI 8 ~

l I

l ~

J+ '

P J JJJJJ-JJ I

l I

I I

I I

I I

I a

l I

I I

Ia I

I I

I l

I I

I J

J.

J.

J.

l \\ + I l \\ + /

I

.0 I~

I l

~

~

'-H-I-H-I-'r I l

'+J.+~J~

I I

r JJJ J

SnumS CONTOUR Prar - ~TE 6 JADRANT 2,4 SUPPORT CONDITION

~TE /WRAPPrm - Au. DOF COm~

DISK250 - DIABLOQ1RC01 - 11/1986

G &0RE COXPLImZ MATRIXOF CASES TO COmZRGZNCE CALCULATEWELD STIKSSES PREPARE RESSORT COMPLETE DOCUMENTATION DISK250 - DIABLO~1-11/19$ 6

ANALYSIS CONCLUSIONS LIMITEDNUMBER OF TUBES WILLEXCEED MINIMUMBREAKAWAY FORCE HOT-TO-COLD DISPLACEMENT AT TOP YSP IS 0.1 INCH. TUBE BREAKAWAYWILLNOT RESULT IN SIGNIFICANTDISPLACEMENT BREAKAWAYOF LIMITEDNUMBER OF TUBES ADJACENT TO WEDGES WILL NOT RESULT IN SIGNIFICANTINCREASE IN PLATE DISPLACEMENT UNDER SLB PLATE STRESSES ARE LOCALIZEDAT PLATE WEDGE REGION PLATES SUPPORTED BY BOTH WEDGES AND TUBES:

LOSS OF WEDGE SUPPORT WOULD NOT RESULT IN PLATE MOTION AXIALSTRESS IN TUBES FOR HOT-TO-COLD CONDITION LESS THAN YIELD DISK 250 - DIABLOWRCOI-II/l9/96

NDE Sizing for Axial PWSCC at Dented TSPs NRClUtilityMeeting November 20, 1996 Presented By:

T. A. Pitterle Nuclear Services Division Westinghouse Electric Corp.

Discussion Topics Pulled Tube and Laboratory Specimen Database Coil Lead-in and Lead-out Crack Edge Effects

~ Length adjustment guidelines Depth Adjustments for Uncorroded Ligaments General Comparisons of NDE and Destructive Exam NDE Uncertainties Condusions

i NDE Sizing for Axial PWSCC Objective Qualify + Point sizing for PWSCC axial cracks at dented TSPs

- Average depth

- Maximum depth

- Length Database

~ 4 pulled tube axial PKVSCC indications from dented TSP intersections

- Lengths = 0.12" to 0.99"

- 4 cracks in 8 intersections 14 laboratory cracks in dented specimens

- Lengths = 0.18" to 2.56" 14 cracks in 6 specimens

- Additional specimen with 2 cracks being processed NDE An:dyses are "Blin8'ompleted prior to destructive examination Only 1 pulled tube has NDE following tube exam Coils Evaluated

~ + Point mid-range

- principal emphasis

~ Also + Point high frequency, mag bias and gimbaled

Laboratory Speciale Preparation Mech:apically dented Cracked in doped steam

'ISP with packed magnetite crevice placed on tube Specimens burst

~ 3 with TSP and 3 freespan Specimens destructively ermnined Fractcgraphy to obtain depth vs length profiles

. Uncorroded ligaments identiQed and sized

Crack Morphology of Pulled Tubes and Lab Specimens Pulled Tube PvVSCC Shows Relatively Simple Morphology

. Generally single cracks

- May be two cracks about 180'part Typical initiation as microcracks Only a few remaining uncorroded ligaments

. Cracks nearly linear with small (typically < 10 mil) ligaments joining microcracks Laboratory PVSCC Morphology

. No identifiable differences from pulled tubes No Identi6able Di6erence in Sizing Lab Specimens vs Pulled Tubes

~ Shallower lab and pulled tube ind. show comparable NDE

. Deeper lab ind. easier to size as would pulled tubes ifavailable Lab Specimen Preparation Emphasized Deeper Indications

. Desire to demonstrate capability to size indications challenging structural integrity

. Smaller indications also obtained with larger indications

Coil Lead-in, Lead-out Crack Edge EEects Edge Effects

~ Demonstrated on EDM notches

~ Effects somewhat larger for + Point coil than for pancake coils

- Larger + point field of > 0.2" Effects Found on EDM Notch and Laboratory Specimens

~ Lengths overestimated within coil Geld of end of crack

. Phase angles increase within coil field of edge of crack

- Causes ID depths to be overestimated

- OD phase angles frequently occur at edges of crack

. Increased phase angles occur with low voltage response

- Typically depths > 85% with <

1 volt Edge Effects Significantly Reduce Detection ofLarge (.1-0.3") Ligaments Within Macrocrack

. Effects tend to result in deep NDE calls at ligaments Length Adjustment Guideline Defined

. Length adjustment applied to NDE for development of NDE uncertainties

l00% 'I'W Slot - Eddynet, + Point 100 90 80 O o Oo 0-0 RQ

-'- a 00 0

D 0" 0

0 0

0 0

0 QP 0 0 70 60

- Og-0 i5 o

o Phase Angle o Volts 50 40.

30 20 10 0 ~ o&.p op opp OO po o

OO OO 0

oo o

p oo 0

o o

o oo o oo O~~pypp p OO 0

o pp op op povoo.

-0.5

-0.4

-0.2 0

01 02 Axial Dbtance 0.3 0.4 0.5 S1'CSl't'ES.XIS:Ch tOOS TMISlot.'SIII96

60% TW ID Slot - Eddynet+ Point l00 90 80 70 60 a

a o

0 0

oo aa

-- a e e--e o

aeee 0

a 0--

a

-1.-

4 4 Phase Angle 50 o Volts 40 30 20 10 4

4 4

4 4

oo4 4

44ooo4oo4oooo4 o

4 4

4 4 4

4 0

po oooooooooooooooooooo oo

-0.2

-O.l 0

Axial Distance O.l 0.2 0.3 0.4 0.5 STCSTPFS,XUl:Ch 60N TN lDStot:8/l/96

40% 'I'%D Slot - Eddynet, + Point l00 90 80 70 o Depth O Phase Angle O Volts 60 50 ao aooao a

a 30 20 10 OO y O y OW ~-~W.O-O~~

O p 0 OOOO OOOOOOOOOOO 0

-~ O-+

0 OOOOO OO

-0.5

-0.4

-O.l 0

Axial Distance O.l 0.2 0.3 0.4 0.5 STCSTPES.XLS:Ch 40% TW IO Slot:8/l/96

S0% l'W OD Slot - Eddynet, + Point 120 100 80 a Depth 0 Phase Angle 60 O Volts a

a0 0

a aaao 4 O.O. 0000 O044 aaaa y O-O-+-

0 0

0a 0

0 0

8-40 20 OOOO OOOO OOOO OOOO OO STCSTPES.XLS:Ch 80!4 TW OD Stot:ttII@6 Q3 Axial Distance

. ~

0.1 0.2 0.3 0.4 0.5

100 Sample 12-Cracks 1 and 5 Destructive Exam Depth vs. NDE+Pt Depth, Volts and Phase Angle 8

SO 80

--6Crack 1+ 5, +Pent ED-A2 -Depth 70 80 A

60 o

40 30.

20 10

~

~'

~

~

a $

~

~

~

~

~

~

~

I I

t

.Q....

a p) tt'

- o 4

0 3

. - 0

~ -Crack1+ 5, iPoint. ED.A2Phaaa Angle

~Crackr 5-Omr. Exam W Crack 1 + 5, +Point, ED-A2. Volte 0

-1.6 4.6 ArittlLength 0.6 0

1.6 Dnttabt 2.Chart A:11/1 5/JO

Ac/ustment Guidelines for PvVSCC Crack Lengths OD Phase Angles Near Ends of Crack Data points with OD phase angles Rom the start of OD to the end of the crack are ignored in deGning the crack length as long as within 0.2" of the indicated end of the crack.

The end of the crack shall be de6ned as c 0.03" beyond the last accepted (without points with OD phase) data point ifpoints are deleted at the end of the crack.

Near Tfuoughwall ID Phase Angles Near Ends of Crack Near throughwall.ID phase depths (z 85 %) with voltages < 1 volt are ignored in defining the crack length as long as within 0.2" of the indicated end of the crack.

The end of the crack shaQ be deGned as c 0.03" beyond the last accepted data point ifpoints are deleted at the end of the crack.

ID Depths Increase Near Ends of: Crack IfID depths at points near the end of the crack show depth increases of

> 10% over about 0.05" spans and voltages ( 1 volt, the data points shall be ignored in defining the crack length as long as within 0.2" of the indicated end of the crack. The end of the crack shall be defined as s 0.03" beyond the last accepted data point ifpoints are deleted at the end of the crack.

100 Sample 8-Crack 2 Axial Distance vs Throughwall Depth 90 80

~+Point - A1

~+ Point-A2

~ Dest Exam 70 g

60 4

50 40.

30 Al A2 DE t Pt

+Pt Max Volts 6.08 6.05 Max Depth 100%

100%

100%

t.ength 2.74 2.43 2.45 Avg. Depth 81%

80.6%

84.2%

20 10 0

-1.5 A.5 0

Axial Distattce 0.5 1.5 DNTLABOS.XLS:ChNDE DE C2:10/28/96

100 Sample 8 - Crack 2 (MOI)3)

Axial l)istance vs Throughwall Depth SO 80

~+Point - At

~+ Point - A2

~ Dest Exam 70 0

60.

8'l 60.

ol o

40 30 A I A2 DE i Pt Max Votts 6 08 6.t)5 Max Depth 97%

96%

t00%

Length 2.48 2.25 2.45 Avg. Dpth 800% 782%

84 2%

20 10.

-1.S N.S O.S Dnttab08.xts:Ch NDE DE C2 (MOD 3): t0/29/96

t Depth Adjustments for Uncorroded Liyuments General Considerations

. Uncorroded ligaments between microcracks much smaller for PWSCC at dents than for ODSCC indications

~ Smaller ligaments result in less inQuence on NDE sizing accuracy Ligament Area ofUncorroded Ligiunents Measured in Destructive Exams Crack Depths Can be Adjusted for Ligament Area Crack depths are reduced by effective ligament area

~ Effective ligament area for burst considerations is 60% of total area

- Ligaments perpendicular to plane of crack are in shear

. Application to depth profiling requires length averaging

- Destructive exam depth profiles and ligament areas developed as running average over 0.2" coil field spread Corrections for Ligaments

~ Adjustments range from 1% to 5% on average depth Ligament corrections improve agreement with NDE

Ch8-2RA Comparison of Length vs Depth to Length vs Running Average of Depth I00%

90%

~ Depth

~ Running Average 80%

70%

60%

Cl 50%

I 8

40%

30%

20%

l0%

0%

0.00 0.50 1.00 I.50 I

2.00 2.50 Axial Distance (in.)

Ch8-2RA Dntlab08 I I/7/96

Ch or Sample 8 Crack 2, Ligament Correction 100%

90%

80o/o P

70%

Gp 60'p%

@00

~ Uncorrected

~ - o - -Lig. Corrected

~- Ligament Eq. Depth PDA 304/o o

Uncorrected 846/o 20%

10%

0/o 0.00 0.50 1.00 Crack Length 1.50 o

P%

I 1

2.00 2.50 Corrected 79.3%

Ch8-2LlgCor DNTLAB08.XLS1 1/1 S/96

I.CiC NI)I A2 Sample 8 Lig Correction Compared to NOE Crack 2 lo 100'0%

I.ig. Corr

~A2 MOD3 80%

70%

o<

60%

Cl 50%

o 40%

A2 I.C I

Pl)A 78.2 79.3 l.ength 2.2$

2.45 30%

20%

10%

0%

-1.50

-1.00

-0.50 0.00 Axial Distance(ln.)

0.50 I.00 1.50 0,

LGC C1 Sample 7 Lig Correction Compared to NDE Crack 1 100%

90%

80%

Lig. Corr.

~ A2Mod3 70%

60%

Q 50 o

40%.

I-30%

Length

.90

.87 (POA

87.5%

94.3%

20%

10%

0

-0.5

-0.4

-0.3

-0.2

-0.1 0

0.1 Axial Distance(in.)

0.2 0.3 0.4 0.5 Page 1

General Comparisons of NDE and Destructive Exam Comparisons Between Analysts

~ Very good agreement between NDE analysts for significant indications

~ Differences between analysts primarily in unadjusted length calls with some analysts terminating length at significant OD phase angles

~ As would be expected, differences between analysts are more significant for small indications and in separating closely spaced, small indications Length

~ Unadjusted lengths consistently and significantly overestimate actual lengths

~ Adjusted lengths remain slightly biased to overestimates oflength bu show generally good agreement with actual lengths Average Depth

~ General trend to overestimate average depths below about 80% depth and slightly underestimate above 80%

~ Overall agreement ofNDE with actuals is good

~ Length adjustment leads to a modest improvement in average depth q:ncchandrp&Lwp6-Norecabcr 19, 1996

100 Sample 10 Depth vs. Axial Length

+ Point Probe 90 80

~Crack 1 - A1 -ANS+ Pt

~ Crack 1 - A2 - EN + Pt

~Crack 1 -A3-EN+ Pt 70

~

60 A

60 o

40 30 At AiP A2 A3 EtP E+P Max Volts 6.86 6.87 7.02 Max Depth 100%

100%

100%

Length 2.95 2.57 2.73 Avg. Depth 79.6%

77.2%

80.7%

20 10

~

0

-2

-1.6 0

Axial Length 0.6 1.6 DNTLAB10.XLS:Ch sarnplc 10 C l,a l,a2,a3:8/l5/96

ftCDt505AViIOA.HCALNO0530A h 5C 11t01 46 flite tSS tta/Scan%

1lrasrt YlrnI0 thrtat5 5otrhC I.55 1.05 tel-5 PJ

'IMI HLl eC!

CSS

,~tlat BR

~frill~IO 2t0 0

01C 0.50

80 70 Sample 7 - Crack 3 Axial Distance vs Throughvvall Depth MOD 3

~ + Point - A1

-ta- + Point - A2

~ Dest. Exam 60 50 A1 A2 DE 40 30 20 Max Yotts 1.61 1.68 Max Depth 72%

58%

65.2%

Length

.32

.15

..13 Avg. Depth 45.9% 46.4%

46.2%

10 4.8 4.?

4.B 4.5 W.4 AxialDistance 4.3 4.2 4.1 0

Ch NDE DEC3(MOD3)

DNTLAB07.XLS:10/29/96

100 90 Sample 7 - Crack 3 Axial Distance vs Throughwall Depth

~ + Point-A1

-Et- + Point-A2

~ + Point-A3

~ Dest. Exam 80 70 60

~O 50 40.

A1 A2 A3 DE Max Volts 1.61 1.68 1.65 Max Depth 98'/o 58%

100%

65.2%

Length

.55

.15

.45

.13 Avg. Depth 64.5% 46.4%

65.4%

46.2%

30 20 10 0

%.9 4.8

%.7

%.6 4.5 4.4 4.3 W.2 W.1 Axial Distance 0

Ch NDE DE C3 DNTLAB07.XLS:10/29/96

i General Comparisons of NDE and Destructive Exam Maximum Depth

~ As generally expected, agreement of NDE with actuals is not as good as for 'average depth and length

~ Generally acceptable for predicting throughwaQ or near throughwall depths Differences Between Coils

~ Mid-range + Point coil yields an acceptable and consistent agreement with actuals

~

Mag bias and high frequency + Point tend to overpredict average depths

~ Mid-range + Point is preferred coil and used as basis to develop NDE uncertainties g rsclsMcp96.wp5 Nmanbcr l9. 1996

NDE vs DE Axial Length (in.)

3.00 2.50 2.00

~~

1.50 LU Oa 1.00 0

0 0X 0 o

A1 ANS+ Point a A2EDD+Point x A3 EDD+ Point g A3ANS+ Point MB h A3EDD+ Point MB

+ A3ANSG+ Point o A3 EDDHF+ Point

~ A2 +Point

~ A3 +Point 0.50 0.00 0.00 0.50 1.00 1.50 2.00 Dest. Exam Axial Length (in.)

2.50 3.00 ChAX Lath NDE vs DE Dentinlt.std:11/18$ 8

3.00 2.50 2.00 1.50 Ul ClZ 1.00 0

0 NDE vs DE Axial Length (in.)

Length Adjusted 0

n 0

A1 ANS+ Point a A2EDD+Point x A3 EDD+ Point x A3ANS+ Point MB h A3 EDD + Point MB

+ A3ANS G+ Point o A3 EDD HF + Point

~ A2 +Point a A3+Point 0.50

~ g 0.00 0.00 0.50 1.00 1.50 2.00 2.50 3.00 Dest. Exam Axial Length (in.)

Ch AXLgth NDE vs DE (ADJ)

Dantant 1.std:11/18I96

NDE vs DE Average Depth (%)

100 90 80 70 g

60 4

50 Lii 40 4R 30

~

0 X

0 0

o A1 ANS+ Point o A2EDD+ Point x A3EDD+ Point x A3ANS+PolntMB 4 A3 EDD+ Point MB

+ A3ANS G+ Point o

A3 EDDHF+ Point

~ A2 +Point a

A3+Point 20 10 10 20 30 40 50 60 Dest. Exam Average Depth (/)

70 80 100 Ch Avg. Depth NDE ve 08 Dentenl 1.eld: 11/1 SI9e

100 90 80 70 g

60 Gl 50 40.

O x

0 NDE vs DE Average Depth (%)

Length Adjusted 0

0 0

0 O I ltt 8

+x 0a 0

A1 ANS + Point o A2EDD+ Point x A3 EDD+ Point x A3 ANS + Point MB d A3EDD+ Point MB

+ A3ANSG+ Point o A3 EDDHF+ Point

~ A2 +Point a

A3 +Point 20 10 10 20 30 40 50 60 70 Oest. Exam Average Depth (%)

80 90 100 Ch Avg. Depth NDE ve DE (ADJ)

Oentent t.std:11/18I96

NDE vs DE Maximum Depth (%)

100 90 80 70 e<

60 0

5 50 E

40 WDz 30 N0hX

+

+

0 o

A1 ANS+ Point 0 A2 EDD+ Point x A3 EDD+ Point g A3ANS+ Point MB d A3EDD+ Point MB

+ A3ANSG+Point o

A3 EDDHF+ Point

~ A2 +Point a A3+Point 20 10 10 20 30 40 50 60 70 80 90 100 Dest. Exam MaximUm Depth f%%d)

Ch Max. Depth NDE vs DE Dentanl1.ae:11/1 196

100 90 80 70 c

60 0

E 50 E

40 OZ 30 NDE vs DE Maximum Depth (%)

Length Adjusted h

U x

0 0 A1ANS+ Point 0 A2EDD+ Point x A3 EDD+ Point x A3ANS+ Poin't MB h A3 EDD + Point MB

+ A3ANS G+ Point o A3 EDD HF + Point

~ A2 +Point a A3+Point 20 10 10 20 30 40 50 60 70 80 90 100 Dest. Exam iI/tax(mum Depth (%}

Ch Max. Depth NDE vs OF (ADJ)

Dentanlt.sld:t t/t8/96

NDE Uncertainties Data for Tom Axmlysts Utilized

~ Some indications only analyzed by two analysts

~ One pulled tube with only one analyst

- Data is 80 mil coil but included for completeness and conservatism NDE Uncertainty Armlysis Limited to Mid-range + Point Coil with Length Adjusted Data Armlyses for NDE Uncert unties

'omparisons of NDE with Destructive Exam

~ Regression analyses to compare slope to theoretical one-to-one slope Mean and standard deviation of differences between NDE and Destructive Exam

. Preliminary NDE uncertainty analyses given herein wiQ be updated to include two additional indications and ligament corrections to the destructive exam average depths qmc&mhpQ6.ebb l4erezaber lb. 1990

3.00

+Point Coil NDE vs DE Axial Length (in.)

Length Adjusted 2.50 0

0 A1 ANSI Point a

2.00 0

a A2EDD+ Point a

~

1.50 QjOz 1.00 0

0 X

0 x A3 EDD+ Point 0.50 aa 0X0 0.0 0.00 0.50 1.00, 1.50 2.00 Dest. Exam Axial Length (In.)

2.50 3.00 Ch AXt.gth HDE vs DE(Adi)2)

Dantanlt.std:1 t/t8/96

100

+Point Coil NDE vs DE Average Depth (%)

Length Adjusted 90.

o A1ANS+ Point 80 70 60 50 P.

w 40 OR 30 X

X o

0 a

A2 EDD+ Point X A3 EDD+ Point 20 10 10 20 30 40 50 60 70 80 90 100 Dest. Exam Average Depth (el)

Ch Avg. Depth NDfvs Of(Adj)(2)

Dentanlt.eld:11/1 S/96

100

+Point Coil NDE vs DE Maximum Depth (%)

Adjusted 90 80 0X o

A1 ANS+ Point 70 eo CI I

50 E

X 40 ujOz 30 0X o A2EDD+ Point XA3 EDD+Point 20 10 10 20 30 40 50 60 70 80 90 100 Dest. Exam Maximum Depth (%)

Ch Max. Depth NDEn NE(Ad))(2)

Dcntanl1.std:11/1 8$8

DENTED TUBE SUPPORT PLATE Adjusted NDE 8 DESTRUCTNE EXAMEVALUATlONS Com arison of Anal sis Techni ues, Software and Probes Ad usted NDE Sample Crack Probe Number Number Type Software Analyst Length inches Max Depth Avg Depth Length inches Max Avg Depth Depth Length inches Ma Depth

/o Avg Depth

/o int ANS 100 90.6 0.87 100 96.3 0.17 0.0

-5.

oint int 1 + oint int int int ANS ANS ANS ANS ANS ANS 0.96 1

0.32 1

2.64 2.48 1

1.87 100 72 100 97 100 100 80.8 45.9 85.0 80.0 83.8 81.9 0.66 0.13 2.64 2.45 1.87 1.68 100 84.7 65.2 46.2 1M 86.2 100 84.2 100 80.2 100 85.9 0.30 0.19 0.0 6.8 0.00 0.0 0.03

-3.0 0.00 0.0 0.28 0.0

-3

-0.

10 int ANS 1

280 100 78.8 100 90.1 0.24 0.0 10 int ANS 1

2.30 78 61.1 221 100 71.0 0.09

-22.0

-9.

12 lnt int int ANS ANS ANS 0.86 1

0.62 1.36 97 99 100 0.56 89 89.9 129 87.3 0.694 100 94.9 95.8 76.4 100 80.6 0.17

-3.0 0.06 32 0.07 0.0

-7.

12.

12 int ANS 0.60 57 33.6 0.55 82.8 30.0 0.05

-25.8 12 int int int int oint int int ANS EDD EDD EDD EDD EDD EDD 1

0.28 0.90 2

0.69 2

015 2

2.46 2

225 1.76 58 87.5 0.87 0.66 46.4 0.13 83.6 2.64 78.2 2.45 82.2 1.87 62.4 0.18 90.3 64.8 100 96.3 100 84.7 65.2 46.2 100 86.2 100 842 1M 80.2 0.10

-6.3 0.03 0.0 0.03

-1 0.0 0.02

-7.2

-0.18 0.0

-0.20 4.0 0.0

-2

-7

-2 2.

10 10 int int int EDD EDD EDD 2

1.83 2

2.57 2

2.21 100 100 76 77.7 1.68 2.21 58 76.4 2.56 100 85.9 100 90.1 100 71.0 0.15 0.01 O.M

-2 13.

-12.

12 12 2 3+4) 12 21/43 21/43 lnt int int int int int int EDD EDD EDD EDD EDD 2

0.75 2

0.56 2

1.30 2

0.44 2

0.38 2

1.03 2

0.31 98 99 50 70 89.0 0.56 88.5 1.29 24.4 0.55 59.3 0.18 49.1 0.991 38.4 0.277 88.3 0.694 100 94.9 95.8 76.4 100 80.6 82.8 30.0 90.3 64.8 98 50.3 50 39.4 0.06

-2.0 0.00 32 0.01 0.0 0.20 5.7 0.04

-28.0 0.03

%.0

-0.11

-32.8 12.

-5.

-5.

10/22 int int EDD 2

0.39 0.98 41 28.0 0.122 91.8 0.87 38 23.2 100 96.3 027 0.11 3.0 0.0 int EDD 0.75 93 83.

0.66 1M 84.7 0.09

-7.0 10 10 int int EDD EDD EDD 3

026 3

2.55 3

2.31 70 82 2.56 80.6 61.9 221 44.0 0.13 65.2 46 >

100 90.1 100 71.0 0.13 4.8

-0.01 0.0 0.10

-1 8.0

-2 9

J

-9.

12 int EDD 3

1.42 89.9 1.29 100 80.6 0.13 0.0 12 2 3+4 12 21/43 21/43 10/22 int int int int int EDD EDD 3

0.53 3

0.20 3

1.00 3

029 3

0.16 76 82 63 43 49 0.55 0.18 50.9 0.991 35.1 0.277 33.4 0.122 82.8 30.0 90.3 64.8 98 50.3 50 39.4 38 23.2

-0.02 0.02

-8.3 0.01

-35.0 0.01

-7.0 0.04 11.0 6.f

-8.i O.t

-4.:

10.:

Mean Standard Deviation 0.06 0.11

-52 10.61

-2.(

6.8(

Oentanl1.sld:SORT TABLE2 11/1886

i Pre1imimuy NDE Uncertainties Length

~ Mean = 0.06", Std. Dev. = 0.11" Average Depth Mean = -2.0%, Std. Dev. = 6.8%

Maximum Depth Mean = -5.2%, Std. Dev. = 10.6%

qme'uuobp96.ep5. &wecabet lb. 1990

NDE Sizing for equal HvVSCC at Dented Tahe, TSP Intersections Conclusions

+ Point Coil Provides Acceptable Crack Sizing for Tube Integrity and Potential Future ARC Applications

~ Uncertainty on length < 0.1" and average depth about 7 %:

+ Point Coil Meets EPRI Appendix H ents for Sizing Formal Appendix H qualiQcation to be performed vrith Gnal report of sizing quali6cation efforts.

ARC Concepts for Indications at Dented TSPs NRC/UtilityMeeting November 20, 1996 Presented By:

T. A. Pitterle Nuclear Services Division Westinghouse Electric Corp.

ARCs to be Developed ARCs Based on Negligible SLB TSP Displacement

~

WCAP-14707

- Packed crevices prevent SLB TSP Displacement

- Presence of denting demonstrates packed tube to TSP crevices ARC for Axial Indications at Dented TSP Intersections

~

Near term ARC Axial ID or OD cracks within dented tube TSP intersection

~

Longer term ARC Axial cracks extending outside TSP Longer Term ARC for Circumferential Indications at Dented TSP Intersections Small ID or OD circumferential cracks detected by + Point but not confirm y

second coil

~

Confirmed circumferential cracks left in service

ARC far Axial Cracks Within Dented TSPs Tube Burst Prevented by TSP.for Crack Length Within TSP

~ Normal operation and SLB conditions (WCAP-14707)

Potential for Tube Burst Negligible and Limited to Crack Growth Outside TSP for PWSCC Indications

~ Current growth data would indicate growth outside TSP limited to about 0 2>t

~ Further growth studies to be performed

- Sizing qualified for PWSCC axial indications

~ Freespan burst probability for about 0.2" outside TSP is negligible

- Estimated at < 10 for a very large number of indications Tube Repair Based on LimitingSLB Leaimge to WithinAllowable Limits Low leakage rates for cracks within TSP

~ More significant leakage for crack tips near edge of TSP and outside of TSP

~ Leakage must be combined with that f'rom other ARCs when comparing to allowable limit Indications Extending Outside the TSP Would be Repaired

SLB Lealmge Model forAxial Cracks at Dented TSPs Utilization ofW" Lealrage Model

. Effective crack length for length within TSP

- Crack opening limited by hard magnetite resulting from denting

- Contact pressure is high enough to deform tube Analyses required to develop lower bound of contact pressure Crevice loss coeKcient

- Develop from leak tests performed on tubes/TSP removed from retired Dampierre-1 SG and EPRI tests for throughwall cracks at dented TSPs

- Dampierre-1 tests show very low leak rates for throughwall hole in packed crevices

- EPRI tests show essentially no leakage for throughwall cracks within dented tube at TSP intersection Free Span Le@rage Expected to be Applied for Length of Crack Outside L'

Short lengths due to limited crack growth rates Anticipate Monte Carlo Armlyses for Projected EOC Leak Rate Operational Assessment Statistically account for crack growth in length and depth as well as NDE uncertainties

Longer Term ARC Induding Axial Cracks Extending Outside TSP Implementation ofARC for cracks within 'ISP permits development ofzzMre acnuate growth rates for crack length and depth

~ Principle need to develop ARC including lengths outside TSP Repair Basis

~ Allowable length outside TSP as required to limit tube burst probability to acceptance limit

- Burst probability must be combined with other implemented ARCs such as GL 95-05 ARC for ODSCC at non-dented TSP intersections

. As required to limit leakage to acceptable limit Tube Burst Considerations rj

~ Burst potential limited to length outside TSP

. Based on length and depth of crack outside TSP

~ Monte Carlo analyses for operational assessment burst probability SLH Lealmge

. Modeling similar to ARC for cracks within TSP

~ Plan to assess leakage for cracks outside TSP based on projected throughwall crack lengths

- Requires growth rates for maximum depth and associated length as well as growth rates on total length and average depth

- Could use number of length of deep crack sections in a model similar to that developed for circumferential indications Number and length of deep sections developed from pulled tubes and NDE sizing analyses of Geld indications Growth rate in depth applied Qrst to deep sections until throughwall mme~.mp~dwr L1. l994

ARC Concepts for Circumferential Indications Option Based on + Point and UT Inspections

~

Detection and sizing by + Point inspection

- Sizing in angle and depth

- Adequate sizing supported by two pulled tube exam results

~

Confirm crack associated with local dent or major axis of ovality by UT examination

~

In situ test largest indications to confirm structural and leakage integrity at EOC Repair largest indications in situ tested

- For example, indications ) 90 (TBD) or ( 90'ith PDA > 50% (TBD)

Support next operating cycle usi'ng approximate growth rates (angle, PDA, volts) developed from current and prior cycle data

~

Tube pull for largest indication Second Option Based on + Point and Pancake Coil Inspection

~

NDD by pancake coil as basis for defining short and shallow indications

- Lack of flaw behavior as basis for NDD call

~ None or negligible C-scan indication with negligible implied depth from phase response and lack or phase rotation with frequency

~

Pancake coil NDD replaces + Point sizing and UT inspection of Option I

~

Repair indications confirmed by pancake coil

~

In situ testing of largest pancake coil confirmed indications, growth analyses and tube pull same as Option 1

Plant W, R11C61 -1H; Circumferential Crack Profile Evaluation 100%

904/o 80o/o 70%

80og I

50/

40%

30%

20%

10%

0%

x-indi

. is visib!

es noisy d liat calino a

I

, ~

t; signal Q gizqd

.+

I

~

~

~

~

~

~

~

~

P

/'.

E 0

Q I/

i I

0%

f a

l

~

~

I I

~ ~

~

~

~,

~

~

~

+

a

~ I 1

Average Depths:

Destructive Exam:

60' 3%

Crack:

40.5%

+Point Probe:

360':

Crack:

80 mil HF coil 360':

Crack:

Crack Length:

Destr. Exam

+Point Probe 80 mil HF coil 9.9%

54.0%

8 So/D 38 0%

65'6'1

~Dearr. Exam

- -+ - -+Point 0

80 mil,HF Analysis:

+Point Probe 300 KHz 80 mii HF coil 300 KHz Calibration:

Based on field standard, all probes 0

10 20 30 40 50 Circumferential Extent {')

60 70 80 90

Plant Y Tube R14C69, TSP 1H 100%

90%

80%

70%

6-UT-Crack1

~

~ o

~

UT - Crack 2

~ - +Point, Analyst C o 80 mil HF. Analyst C

~ Destructive Exam - Crack 1

~ Destructive Exam - Crack 2 60%

5p 40%

30%

20%

10%

P%

4r i

s I

I I'

I I]-

I I

I II.I..

I I I.I 0KII.I I

I I

I I

,O~ '

I

\\

Q

\\

l l

I

~

t

~ ~

I Joe

~

~

~

~

~

~

~

~

~

~

~

~

UT-Crack 1:

UT Wrack 2:

+Point;Crack 2:

80 mil HF -Crack 2 DE-Crack 1:

DE.Crack 2:

Max.

Depths 50.0%

44.2'IS 69.0'5 52.0%

500/e 21,0%

Oegr.

Crack Area Angle 1.5'k 21'.64is 10'9 31 55'4'6 3'

2'.8'k 2.4'.4%

Avg.

Depth UT.Crack 1:

28.7'k UTrack 2:

23.3'4 iPt Gimbated.Crk 2: 39.8'A rPoint-Crack 2:

50.91S 80milHF-Crack2:

40.1'h DE-Crack 1.

37.3'5 DE-Crack 2:

6.0%48 0

'0 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 CfrcumferentIaI Extent (')

PGECIRC.xls 11/18/96:3:33 PM

4 HII. DENT POSITION OF CIRC. CRACK (SEGMENT 2)

.14 BELOV TOP Qf TSP

/ /

1.13 BELOM TOP OF TSP

/

1'

(

I I

POSITION OF CIRC. CRACK (SEGMENT 3) i I2 NIL DENT ROM ll COL 69 1ST SUPPORT PGE S/G 12 OVALITY PLOT

l L

'