ML20006E544

From kanterella
Jump to navigation Jump to search
Review of Flow Peaking & Tube Fatique in Diablo Canyon Units 1 & 2 Steam Generators
ML20006E544
Person / Time
Site: Diablo Canyon  Pacific Gas & Electric icon.png
Issue date: 11/30/1989
From: Hall J, Hu M, Pitterle T
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML16341F559 List:
References
WCAP-12496, NUDOCS 9002230535
Download: ML20006E544 (20)


Text

f

+

k f a

. i.

w N

.y j

w-

~

i.

' h 4

.e

~

+s' es S

4 Q,

.i

+

w f

4 i

4

-~

w e-i

j..

y a

.l

  1. 4-g

]

I s

4:

y

-: e s

g.

4 6

4 y

W, 4

., a p

,,s

~

4 4

'k!

N 1

a.

i p.

'S 4

(

1 4

g 3

u.

4 T

41 h

t e

g_

4 A

9:

e

, j

$=

~~

f y

k

  • w Y-s e'

.g

~'

3

.p,.

,1 g

._t t

+

. 4 y

?

4

.4, 4

g i

w

?.

h W+

f

.g g

4 i

.,4 fv 9

9 e

W b

g 6

A v

4 w

l 3

9 M

p f

s s

sm' p

  • .er 4

-4 3

p 8

7 4

T...

t'

' E e %,-

y

!+

. y N.

s

('

p a

WCAP-12496 SG-8912 002 Review of Flow Peaking and Tube Fatigue in Diablo Canyon Units 1 and 2 Steam Generators November 1989 Authors:

J. M. Hall T.A. Pitterle M.H.Hu A.C. Smith Approved:

b kS x

M. J. Wootien, Manager Steam Generator Technology and Engineering Work Performe'd4JaderShop Qr rs: SF8D-2S201 and SF8D-2620A This document contains information proprietary to Westinghouse Electric Corporation it is submitted in confidence and is to be used solely for the purpose for which it is fumished and is to be returned upon request. This document and such information is not to be reprodvad, trar:smitted, discussed or used otherwise, in whole or in part, without writted authorization of Westinghouse Electric Corporation, Power Systems Business Unit.

Westinghouse Electric Corporation Nuclear Service Division P.O. Box 3377 Pittsburgh, Pennsylvania 15230

This WCAP report has been prepared to supplement the Tube Fatigue Evaluation for Diablo Canyon Units 1 and 2, WCAP 12064 and its corresponding Class 3 version, WCAP 12066. It responds to questions raised during the review of the original tube fatigue tvaluation. The AVB maps included in this report are numbered to correspond to the figure numbers in the original WCAP report.

1

Review of Flow Peaking and Tube Fatigue in Diablo Canyon Units 1 and 2 Steam Generators

Background

During review of the Diablo Canyon tube fatigue evaluation, questions arose concerning the effect of penetration of the AVB's into Row 7 on the flow peaking for tubes R9C60 in SG 1 and R9C35 in SG 3, both in Unit 1. In response to these questions, a complete review of the AVB locations in Diablo Canyon Units 1 and 2 was undertaken. The review has resulted in corrections on the AVB maps and consequent reevaluation of flow peaking and tube fatigue susceptibility at a few tube locations.

Revised AVB Maps Diablo Canyon,1it 1.

The original data was reviewed for consistency with the reference AVB maps.

Additional eddy current data was provided for tubes in the regions which were identified as needing reevaluation. The locations of the AVB's were determined by AVB visible calls, projection, and graphical analysis. In the course of the review, two locations were identified where the AVB's were apparently located incorrectly, as supported by the supplementary eddy current data. An additionallocation was identified in which the AVB's were located using the most conservative interpretation of the data from the standpoint of tube support. In the development of the methodology for tube fatigue evaluation, it has been recognized that an AVB arrangement which is conservative for support, may not be conservative for flow peaking, and vice versa.

The AVB maps have been revised to conform to the current practice. Finally, graphical analysis has enabled determination of the location of AVB's in critical locations. The revisions in AVB positions above Row 7 or which affect flow peaking evaluations are summarized in Table 1.

A particular example of the use ci graphical analysis is the recognition that tube R9C35 in SG 3 is either supported by the AVB between Columns 34 and 35 or the AVB significantly penetrates the tube gap. The eddy current signal locations are compared graphically to permit identification of signals common to the tubes on either side of the subject AVB. The location of the AVB between the tubes can then be determined from these signals. The graphical display used for this analysis is discussed below. The new maps show the revised AVB positions, and include Row 7. The Unit 1 tubes which have been reevaluated are given in Table 2.

Diablo Canyon Unit 2.

The Unit 2 maps, which were prepared from the same type of data base as the Unit 1 maps, were also reviewed. No significant discrepancies were found on the Unit 2 maps. Like the revised Unit 1 maps, Row 7 is included on the revised Unit 2 maps.

2

Where AVB's are present in row seven these are shown. The Unit 2 tubes which have been reevaluated are given in Table 2.

Graphical Analysis of AVB Locations The locations of the EC signals for the AVB's are shown on Figure 1. The Col 34 data is represented by the round symbols, the Col 35 data by the triangles. To show how the data from the next rows correlate, the data from row 33 is shown by the number 33 in an open box and the data for Col 36 is indicated by the 36 in an open circle. The triangles which correspond to the 36 data points must represent an AVB common to both Columns 35 and 36, that is AVB 35-36. Likewise, the circles which correspond to the 33 data points must represent an AVB which is common to both Columns 33 and 34, that is AVB 33 34. The remaining data points for columns 34 and 35, numbered 1 through 10 for reference, must correspond to the AVB which is common to both of them, that is AVB 34 35. There are possible alternate interpretations of the AVB location, however. The three Column 34 indications on the left, numbered 1,2 and 3, may represent the left side of AVB 34-35, with indications 4 through 10 represent;ng the right side. In this case the AVB supports R9C35. Alternatively, if indications 1,2, and 3 are spurious, the indications in Column 35 which correspond to Column 36 indications may also correspond to the AVB 34 35, these are numbered 12 through

14. Indication 11, in row 13, would support this interpretation. This would be the case if AVB's 34-35 and 35-36 are coincident on this side. Using this interpretation of the indications on the left, in conjunction with indications 4 through 10, on the right, AVB 34 35 would penetrate to about 9.2, but would not support R9C35. The latter penetration to 9.2 is the conservative interpretation applied for R9C35 in this evaluation.

Of the two possible interpretations discussec here, the case in which R9C35 is unsupported is the limiting case and is depicted on the AVB map. The alternate case with AVB 34-35 supporting R9C35 was also evaluated as the assumed AVB configuration for assessing tube R8C35.

Flow Peaking Evaluation The flow peaking was evaluated for the tubes affected by the revisions to the AVB maps. Case specific tests were performed for the AVB configurations in the vicinity of R9C35 in SG 3 and R10C53 in SG 4 of Unit 1.

For the case where R9C35 is unsupported, the flow peaking [

]ax, the configuration most closely matches 4j (Figure 2),

although a worst case interpretation, of configuration 1x, was applied. This evaluation for tube R9C35 corresponds to the AVB configuration shown on the AVB Map for SG 3.

For this case, tube R8C35 also experiences flow peaking, and a conservative configuration is 4e of Figure 2.

3

I The case where R9C35 is assumed to be supported, or the AVB [

}"', discussed above, is also included in the tube vibration analysis. The flow peaking configuration for R8C35, for this case, is configuration 8k, Figure 2.

The flow peaking for tube R10C53 was found to be [

)* C The positions of the AVB's near R10C53 were determined by graphical analysis similar to that described above for R9C35. The additional flow peaking tests showed that configuration Sj, which is conservativ6 relative to the actual positions of the AVB's, has a low peaking factor.

Tube Vibration Evaluation.

The susceptibility to flow induced vibration of the tubes with updated support or flow peaking conditions, has also been reevaluated. The results are given in Table 3, which supplements Table 9-2 and 9 3 of WCAP 12064.

The two tubes in Unit 1, which were emphasized in this review, were R9C60, in SG 1, and R9C35, in SG 3. The flow peaking for R9C60 in SG 1 (configuration 4c or Figure

2) is near or greater than that for the North Anna R9C51 ruptured tube configuration.

Consequently, the fatigue usage will exceed one within a few years after the tube becomes firmly clamped by magnetite. Consistent with the basis for selecting cable dampers or orifice plugs for corrective action at Diablo Canyon, this tube had a cable damper installed during the 1989 outage.

Tube R9C35 in SG 3 was evaluated assuming it to be unsupported. Becausn the flow peaking factor is lower for the revised AVB positions, the stress ratios are reduced compared with the original evaluation and this tube remains acceptable for tube fatigue. Based on a preliminary assessment, performed during the fall 1989 outage, a sentinel plug was installed in this tube. The preliminary assessment was made without the benefit of the subsequent graphical analysis of AVB locations, which showed the penetration of AVB 34-35, or the subsequent flow peaking tests. The recommendation to install the sentinel plug was made as a conservative measure to avoid extension of the outage. The sentinel plug may be removed at the discretion of PGE.

The evaluation of R8C53 showed that this tube is not susceptible to flow induced vibration for either of the cases considered above. As a result of the low flow peaking discussed above, tube R10C53 in SG 4, was also found to be not susceptible to flow induced vibration.

Conclusions.

The reevaluation of the Diablo Canyon Units 1 and 2 AVB maps disclosed one tube that required corrective action, tube R9C60 in SG 1 of Unit 1. During the 1989 outage, 4

a stabilizer was installed in this tube. All other tubes reevaluated in this study were found to meet the acceptance criteria.

The review of the Unit 2 AVB maps confirmed the AVB locations shown originally. The maps were changed to include Row 7. Three tubes were evaluated for flow peaking resulting from the addition or this row. These tubes, R8C35 and R8C64 in SG 1 and R7C34 in SG 3 were found to be not susceptible to flow vibration induced fatigue.

O 5

h b

i Table 1.

Diablo Canyon AVB Map Revisions Above Row 7 or which Affect Flow Peaking Unit 1.

Steam Generator Relocated AVB's 1

11/12,13/14,14/15,15/16,39/40,58/59, 61/62,62/63 2

23/24,25/26,26/27,89/90,90/91 3

33/34,34/35,36/37,37/38, 40/41 - 52/53 4

47/48-56/57 Unit 2.

2 4/5 6

3 i

Table 2.

Tubes Requiring Reevaluation for Flow Peaking and Fatigue Diablo Canyon Units 1 and 2 Unit 1 SG1 R9060 R8C30 SG 2 R8C26 R8C35 RBC92 SG 3 R8C60 R8C35 R9C35 SG 4 R10C53 Unit 2 SG1 R8C35 R8CS4 SG 3 R7C34 7

TABLE 3 DIABLO CANYON UNIT 1 AND 2-TUBES WITH REVISED FLOW PEAKING (12-05-89)

PREVIOUS REVISED l

l l

RSW STRESS RATIOS l

RSW STRESS RATIOS UNIT SG ROW COL RSR l FPEAK FPEAK W DENT WlO DENT l FPEAK FPEAK W DENT wtO DENT

_3, c

_a,c l_

0.20 0.18 0.82 0.76 1 1

1 8

30 0.79 l 0.95 0.85 3.11 2.85 l 9 60(35) 0.959 l I

I 0.09 0.08 0.09 0.08 1 2

8 26 0.816 l 0.24 0.21 0.48 0.44 l 35 0.816 l 0.06 0.05 0.06 0.05 1 92(3) 0.761 l I

I 0.16 0.14 0.16 0.14 l 3

8 60(35) 0.816 1 0.09 0.08 0.40 0.36 l 8

35 0.816 l 0.09 0.00 0.53 0.49 l m

8 35 0.816 1 0.95 0.85 0.38 0.35 l 9

35 0.959 l I

l 0.36 0.32 0.36 0.32 l 4

10 53(42) 1.136 l l

l I

I l

i 1

1 0.19 0.17 0.64 0.58 l 2

1 8

35 0.816 l 0.16 0.14 0.53 0.48 l 64(31) 0.789 l l

I

< 0.10

<0.09

< 0.36

< 0.33 l 3

7 34 < 0.809 l l

FILE = REVISED.WK1

  • Alternate interpretation as discussed in text.

O EC Calls in Column 34 d

EC Calls in Column 35

+4 g y; W y A: H13.

22

+2 Model 51 AVB 3

p h.4 ggfi?psff

'4 N NT #

~ '

[ ns$n

-6

+6

-- %c.

m kr6

[gy ayN,n N

'Ydg:

A fW A %rs<-4,; m qjpqj

i. >; L_6 99?

J 4g. s.,j d e;';@s".spS'

' WC h g WNw#Fim

.d Correlate with Signals

% ' D O y:

.*, m m D

~

gky g*r gem in Column 36

%h'%~pQ

' Qqqw.#. L.,,.,

.g My ^

"Q 9d

+10 g

..4 w.-

_-. g wr u jf.

g e

  • , m. _

-w

_a vt#

~ #'% 7 p

w,,

WW s~

W L n.,;p?. f W.; p~' ; w m

. gyw

$T.4,. P ~w/

A

%s. ~

v:+

A i

..."i?

  • Q %r; J.-

. s;s, y;&,,,

..,(

p{,.Qy c;p g ' 4

  1. ' y,?.

fa.~.x n.

~

s y

agr gdJ,:~

D.

8' apjfr gpggp6R106 6 l@fgp 3

.g _

4 gj+

ag'

~..eky-.mm f.Sy,%

y

  • %g[~Q.

L q2y7,y

'e w&v 4;ge

[-

Q3, M[%gg mg;0g4'g[sQ4 4!Q*'

n

..qp g,

r.y{.

. y.

g$4 y

gf.

R9 f

'- gg.

g' y)-

7 j7

~

v...

.gf

+

m' V 't> w ' # * ',p.t 9K.,,

g

,e"

6

, 46J A*gg.m g.

3.,

.w

. n',n

.x, t.;py A

.+

TEg}@eg gM.{,D.g w

E o +^

~.

3: p.y dM.

$P pj- ^ '

O-p' 4

^ -

,n

,N j/

9$yg

'4h b.

^k %g N

43gj@#SN i'

ay-4, y ny"%

gy gy

gym, a

e, 4.

'7 %

N Correlate with Signals *~

g$8""

~ '#

^#

"trnb ' N y, M.,

sp[p'&s ^" 7.g)%agg...,.....

m~ g n% -

n&

9',Q, ' e s

'p W 'R71 p

in Column 33 t

g 4.d

., e, 3.,

-~

m p.-

t. ggg-.

a;,&p W

A.

y 92"NF wm

'. 5 ? "

.r. p. s

'2 W. e g'E.W dd6W

.-(( t' g' ' '

..W r

^-

%%+

Q.yfr,..;f;,,..

+

e:v -

h'

.x 3

QL5

..; :::Dd ~

I

..t-

. ?14 7

qq

,jf s.>;3f g$/f/

wy uM

,g.

w4..c.

p2 : %.y

....g,),'p:

. ~ -

. m+yv....t

..:/, :, s.m. a.. + -

%l'

'?.lb"*hy4g@+.etp

-i' v_

y9.

..,W, 4-lin en

  1. u s

aM ~ w s",f '

@W 4

&:Q g.

W '

p Q+i.s

- A, e F.a.

W'

  • Projection based on t,hese 1

. ~

.1 Ly S.A.

y.

e.

m y

9%tF" signals is 8.8 x

b.-

h<N' s pYM Note that the R9C35 EC indication at the apex shows gpq T7g F

o i

the length of the reported single indication.

l gg jd "4%g 7%p

.c. '

y

-. a n se q;

~.' -

s

~

~

~v.p g

~

.. /. y

^

a$r bn '

Figure 1.

y J.

A.

  • /

l'A.:. ~ -

~ :

b Ml Diablo Canyon Unit 1, SG 3 m

r;

  1. ! F AVB 34-35 es.;

c

m...

g

r.
ae&

g: p j s

3

l l

Figure 2 Flow Peaking Configurations Type of AVB Peaking insertion Factor

. a,c n o i a 11 1

X.

X X

Y K

Ac

-~'

C OSCCP C

.COCCO 00000000 t n 1' e t, t i 4j cr :

o I

OCCCD l

00000000 it i 4

1 i

i i

3)b d y CEUO0550 00000000 h

8k 5 5 5 h:5.2 5 5

c,:c c e c o.c.:

0cp 0000000:i Iddd$5d $ $

: :: : : :c 5J' t:.c c Ps cc De
ccOOOOO C0000000 e1'1 ei
e. t,

KX X

X X 1 40 55s M' 000000 00000000 10


.---.-x.-

--._-n--

-.-.-_--~.--.,--

II eeOOOG il GGOOOG a 9990003-GGOOOG 2 eeeOOOi GGGGGO; GGOOOG 8

900000i GGGGOO;__

GGOOO6 2 eeeOOGi GGGGGG;__

GGOOOG s

eeOOOGi--

GGGGGG T

GGOOOQ gggggg; g99999 T

GGOOOG eeeOOOi--

GGGGGG T

GGOOO6 eeeOOO e

GGGGGG 7

999000 GGGGGG3 GGOOO6 _l e990003 GGGGGO2 GGOOOG g

GGOOOe eeeOOOi GGGGOO

.gGGOOOG j__ 990000iT GGGGGO S

999996 990000iT GGGGGO2__

GGOOO6 0000011 GGGGGO GGOOOe eeeOOii GGeeGO2__

d GGOOOG l____

AAOOO e GGGGGO GGOOOG 8

999000i1-GGGGGGT--

8 3 T

Q GGOOOO 999000i3-GGGGGGT

_GGGGGG e e

GGOOOG T

9990003 9990003 GGGGGGI-- lB I

GGOOOO 9900003 GGGGGO 2

GGOOOO 9900007 GGGGG63__ h]I GGOOOO T-~

T GGOOOO T GGGGGO :

9900003--

GGOOOO 990000 GGGGGGI - OG T

-~

GGOOOO eeeOOOif-GOGGGGi T

T

-~

GGOOOG 89eOOGiE GGGGGG 2 T

-~

eeOOOGii GGGGGOT-~

l GGOOOO T-~

T-~

GOOOOOii GGGGGGi--

gE GGOOOO eeOOOOi?

GGGGOOT-~

GGOOOO GGOOOO 3 eeeOOGii GGGOOO a 15"I f!

GOOOOGi-- GOGGGG a 3

OOOOOG-T J i gl

~

l }s

___ j. g j

ei :1 ei.i -

ei :i ei.i.

ri:iei.i.

3

b OOOGGG :

O O O O G O,-

O O O G G G 0000G01 OOOGGO :

0o0990 0000G01 T GGGOOO : :

0o0990 OOOOGOT-- OOOGGG "

OOOGGQ OOOGGG I OOOGGG OOOoGG OOOOGO OOOGGO i 0o0g99 OOOGGO i 0o0g99 e

OOOOGG T

T OOGGOO i o00g99 OOOOGG T--

OOGGOO i 0o0990 OOOOGG T

OOGGOO i--

OOOGGO 7

OOOOGG OOGGOO i__

OOOGQO7 g

OOOOGG3_;

e OOGGOO i__

0o0900 2

.gOOOOGG OOGGOO 1__

0o0g997--

l:gOOOOGG OOGGOO i

oooggg ElOOOOGG deOOOOGG OOOGGG I

OOOGGOT T--

BOOOOGO7 OOOGGO i

0o0990 l$0000603--

OOOGOO i

0o0g997 s

OOOGOO E--

OOOGGO dOOOOGOT--

000G00 1__

0o0999 O O O O G O e

jb T--

000900 1__

oooggo e OOOOGO 000G00 1

0o099g ;

=!

s OOOOGO OOOGOO i

0000gg7

- hI T

OOOGOO E

0000G0 2 OOOOGO 000080 OG T

OOOGOO i

0o0900 2 OOOOGO OOOGQO I

OOOGGO c OOOOGO T

GGGGGO li_

OOOGOO z OOOOGO 1

OOOGGG i_ -

OOOGGG :

I OOOOGO TT-GGOGOO 11_

0o0999 gg GGGOOO OOOGOO i

0o09997 l'

TT-OOOGGO i__

oooggg,

GGG@OO TT I

GGGGOO a

OOOGGO :

googgo ; 31 l a4 3 }3 g. 3 ___i =' e - dl i ,i ;, i... m ei m .i. 12 2

I' OOOOGG i[i 1. OOOOGO 1__ OOGGGO I; OOOOGG s OGDGOO OOOOSO ~ 000G00 1 GGGOOO H 000080 OOOGOO 1 GGGGOO fi 000090 OOOGOO s OOGGGO n 00009G 000000 5 OOGGGO n 00009G OOOGOO I___ OOOGOO 8 000090 OOOOGO OOOGOO 3-OOOGOO --- 000080 OOOOGO f OOOGOO 000000 OOOGOO 2 000090 2__ g OOOOGO i OOOGOO i 000000 "}OOOOGG OOOGOO OOOOGG T T OOOGOO i OOOOGG OOOOGG hOOOOGG T OOOGOO i-- "I T T OOOGOO i 000090 ll OOOOGG ~-- 000090 OOOOGO !__ 'OOOGOO i__ OOOOSO aOOOOGO OOOGOO i OOOOOS T-~ d]OOOOGO T OOOGOO s 000000 h OOOOGO 000000 i 000000 -~ jb T -~ OOOOGO OOOGOO i 000000 2 i I T OOOOOO 000000 3 000000 a il eeOOOO T: 000e00 i OOOOOe T! OOOOOG c OOOOGO T-- OOOGOO i-- eeeOOO - 00 OOOOGO T-- 0000G0 3 000000 -~ T OOOOGO 00000Q 3 OOOOOO c OOOOGO 8 000000 2 000090 OOOOOG a 000000 : 4 ji 5 00000G OOUGOO 8 000008 2 OOOOGO TT-- OOOGOO i OOOOOG e 45 d OOOOGO 3 OOOOGO R OOOOOO T OOOGOO i-- dl OOOOGO x 1h I l e i iy i - l }! l 4 j m :iy -i - j s iy -i - 3g m t.. 13 I

I-OOOGGO 1__ l '. 8G0000 3.1_ OOGGGG i__ OOOG90 : OOGGGG : OOOGGG --- 000990 OOGGGO i OOOGGG OOO9GO i OOOOGO i OOOGGG I 0009G0 : OOQGGG l OOOGGG G8 GOGO .I OOOGGG i OOOGGG i 0009G0 i__ 0096G0 1__ OOOGGG ___ 000900 i__ 009G00 8 OOOGGG 000900 i OO9 GOO i OOOGGG r OOO99G i 009G00 1 OOOGOO i g 000990 i 000000 1 OOOGGO i gOOO99G 1 OO9 GOO i OOOGGO i__ gg OOO99G i 000G00 1 OOOGGG i {tO0099G OOGGOO OOOGGG t l 000990 T - 00e000 ? ooogee ?-- T l2 000e99 @OOO il OOOGGG p]000990 9000 11_ OOOGGG s 000990 5 0000

1 OOOGGG I

f 0009G0 9000 m i OOOGGG OOOeeO l 0000 11 OOOeee r-- l,S; OOOeeO i ee9000 s ; OOOeee = 000990 1 GGOOOO li_ OOOGGG i l 000990 8 00G000 11 OOOGGG i__ gg OOOGeG S.__ OOOGee -- GOGOOO * : OOOGGG OOeGOO i__ OOOGee r-- 00099G i _DOGGGO

  • OOOGGG i

g 000080 8 ,@,G G G O O s OOOGGG 1 OOOGGG l J! OOOeeG 5 O-@@OOO 8 000990 8 GeGOOO s s OOOGGG t ))' 1 -~ OOOGOO T G00_000 11_ OOOGCFG T-- e z 090000 _s__ l OOOGOG _a__ l gk5 k s

d E.1 11-el :I SI 1 -

_el :i :l l - s m y 14 1

OOI-~ h i-OO s-OOOO ~- OOn : 000 8 ~ ~ MO 1 80eGee x _ 000 O n 898000 : 900 0 8 : 00 : 00 8808061[ OO E OCE_ ) 00 " : 90 8 00 a ~ 00 OO ~ OO 8 OO c OO : OOOOOO e O : 00 : _000000 g o c OO : ~~~~00 2 : 1 8 } s980000 00 : -90 ~ ~ gal 8 88 800 OO : 000000 OO e[ 090800 00 : ~OO : p3 888000 2 OO : -90 ~ ~ ~ 888000 s 00 : OOOl_ OO 000900-- 09080011 000 8 OO : 000008 OOO 8 00 O n OOO 5 00 O c j OOO 8 00 2 O n 0001_ OO E O1_ If,f 000 8 OO s 0 : 1 a OOOI_ OO E 05_ l g' 000 8 O s O z il OOO 8 O s GCE ]f OOO 5 OO s : e : I la 8 OOO0 8 OO i = 1 11 8 0000 8 O E 01 i 1] 5 0 8 00 a i f. f f d,}f el r le ia l= cl: lelal= el: lelal= E 15

l 02 : M O 01 OOi T [I -~ eeeeOOg OO? eO-~ eeeeeO OOOsi e07 OI OI_ oE C1 0 O O n i 00? 007 Oil OOi Oor g 07 OOi Oo a OT OOOT e07 07 OOOi eo?- OT 000?- eso? l} 07 OOO? Oe07 ~ t 8 ei OOOi OeOF I al 07 000? eeeceoi? 00 8 2 07 900?- eeeeeo?? Ig OOii OOO? eeeeeori ( OO s i OOO? 007: a OCi OOO? or i OOi 900? ei OOTi OOO? e07 O OT; OOO[_ eo[ ]gg OO s 90 00 { 2 OCT OOi 07 i i 005_ 011 O l [s__1i 01 Osa eo O s On g oo e g g 00 0 3 : on 5= 1 OOT1 GOii oi Il { 000 0 a }hg e 00001 O : a : 1_ Oii osi g gj o mg i-i. l } esiti-i. l} = i; i;i i i l j j@ 16 -~

g r ___800999: 988800 1_ e9eeee E_ OOOO __ eeeeeO t 999880: m 000000 : 898880: OOOO -OO s 0000: OOO ] --OO t OOOO: s OOO 9e0000 OOOO 000 GeeeOO [I 990000 5 000000 1 } OO -- 90eeOO e ee8000 -- d 4 00 1 898e00 [_ 0e8000 1_ ~ OO e '008000 : 998000 e OO I 'GGGGOO ?? 000000 7 {} 4 OO I E o i-eGeOOO ii eeeOOO E t a gggggo -i gggggo ? 1 3" O E 899900 i OOOOOO i 00 I OGO I-898000 : 900000 e 000 e 898000 ?- 900000 j OOO.s.._ 89eOOO i_ 000000 7 000 1 898000 s OOOOOO E a 000 8 898000 t 098880 i_ 000 8 898000 E_ 800000 1 g 000 s 898000 090900 5 ja OOO T GOOOOO I OOOOOO F }f OO T 898000 i 009900 E 00 888900 5_ 000000 5 { 1 _ 00 8 808000 2 00 }l OO s 898000 5


OO i

,y bij OO s 898809 000000 t 00 11 80eeeO E 080000 5I {jh O n 99eeOO s OOOOOO e a 11 llg I 0 7 eeeeOO ii-000000 T I . gag,ge O t_ eeeeeO g 1.:!. i<l. 1.1.;l]' l,}' - i i = 4. i. ei iei i. ei i=ii. g.. 17

eeeeOO: MOO 89e90O i-1 eeeOOO x 89eOOO i_ 989000 1 ~ 000000 eeeeOs t 999000 1 00 1 eeeeee t 0900001_ OO x 8989ee t 009900 ; 980000 s 898900 t 098000 } GeOOOO il 896900 i_ 008000 1_ 980800 1]; 899900 e 996000 g O 89eeOO eeeOOO 0 5 89eOOO i 000000 [~ 880900 1 898000 t 008000 eeeeee r 8 7-e9eOOO e00000 e 898000 i e99000 7 1 3l988800 880090 51 999900 i_ 008000 [_ 00 [ f eseOOO li 899000 1_ 000000 11 Eg eseOGG e : 898000 eeeOOO l* 00011 999999 i_ 000000 7 00 11 898000 t 09eeOO E OO

  • 898000 t

008000 i_ 000 8 898000 t 808800 i_ g OOO s_ 999000 09e000 n j'a OOO T 898000 s 000000 F 00 1 eeeeOO 000000 i_ l* f 000 1 899999 5_ OOOOOO E[ 1 00 8 898eOO il 000G00 11 gj 00 8 898000 000000 11 g g 000 s 898000 999900

== j 000 1 eeeOOO il 800000 5 }]a OOO n 898000 s 008000 a e 000 1 _eee990 E eeeeee r- }!

1 1_ eeeeee n

eeeeee s lf l h l 'el: lei i. eir le i 1 e I: lei-i. 18 - _ _ _.. -. _. -.}}