L-13-245, Response to NRC Request for Information Pursuant to 10 CFS 50.54(f) Regarding Seismic Aspects of Recommendation 2.1 of Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident

From kanterella
(Redirected from ML13254A312)
Jump to navigation Jump to search
Response to NRC Request for Information Pursuant to 10 CFS 50.54(f) Regarding Seismic Aspects of Recommendation 2.1 of Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident
ML13254A312
Person / Time
Site: Beaver Valley, Davis Besse, Perry
Issue date: 09/11/2013
From: Belcher S
FirstEnergy Nuclear Operating Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-13-245
Download: ML13254A312 (115)


Text

FENOC Fi/rstEn 76 South Main Street Akron. Ohio 44308 Samuel L. Belcher Senior Vice President and Chief Operating Officer S e p t e m b e1r 1 , 2 0 1 3 L-13-245 10 cFR 50.54(f)

ATTN: DocumentControlDesk U.S.NuclearRegulatory Commission 11555RockvillePike Rockville,MD 20852 SUBJECT.

BeaverValleyPowerStation,UnitNos.1 and2 DocketNo.50-334,LicenseNo.DPR-66 DocketNo.50-412,License No.NPF-73 Davis-Besse NuclearPowerStation DocketNo.50-346, LicenseNo.NPF-3 PerryNuclearPowerPlant DocketNo.50-440, LicenseNo.NPF-58 FirstEnergy NuclearOperatinq Companv(FENOC)Response to NRCRequest for Information Pursuant to 10 CFR50.54(flReqarding_the SeismicAspectsof Recommendation 2.1 of the Near-Term TaskForce (NTTF) Reviewof Insiqhtsfromthe Fukushima Dai-ichi -

Accident 1.5YearResponse for CEUSSites On March12,2012,the NuclearRegulatory Commission (NRC)issueda fettertitled, "Requestfor Information Pursuantto Title10 of the Codeof FederalRegulations 50.54(f)Regarding Recommendations 2.1,2.3,and9.3 of the Near-Term TaskForce Reviewof Insightsfromthe Fukushima Dai-ichiAccident," to all power reactorlicensees and holdersof construction permitsin activeor deferredstatus.Enclosure1 of the 10 CFR50.54(0lettercontainsa requestfor eachaddressee in the CentralandEastern UnitedStates(CEUS)to submita writtenresponse consistent withthe requested seismichazardevatuation information(items1 through7) within1.5yearsof thedateof the 10 CFR50.54(0letter(bySeptember 12,2013).By letterdatedFebruary15,2013, the NRC endorsed the Electrical PowerResearch Institute (EPRI)Report1025287, SersmicEvaluationGuidance:Screening,Prioritization and lmplementation Details (SPID)for the Resolution of Fukushima Near-TermTaskForceRecommendation 2.1:

Seismic, datedNovember 2012(hereafter referred to as the SPIDreport) Section 4 of theSPIDreportidentifies thedetailed information to be included in theseismic hazard e v a l u a t i osnu b m i t t a l s

BeaverValleyPowerStation,UnitNos.1 and2 Davis-Besse NuclearPowerStation PerryNuclearPowerPlant L-13-245 Page2 By letterdatedApril9, 2013,the NuclearEnergyInstitute (NEl)submitted to the NRCa proposedpathfonruard for NTTFRecommendation 2.1: SeismicReevaluations that requested NRCagreement to delaysubmittalof someof the CEUSseismichazard evaluation information so thatan updateto the EPRI(2004,2006)groundmotion attenuation modelcouldbe completed and usedto developthat information.NEI proposedthatdescriptions of subsurfacematerialsandproperties and basecase velocityprofiles(items3a and 3b in Section4 of the SPIDreport)be submitted to the NRCby September 12,2013,withthe remaining seismichazardandscreening information submitted to the NRCby March31,2014. By letterdatedMay7,2013,the NRCagreedwiththisrecommendation.

The enclosures to this lettercontainthe requested descriptions of subsurface materials and properties and basecasevelocityprofilesfor BeaverValleyPowerStation(BVPS)

UnitNo.1, BVPSUnitNo.2, Davis-Besse NuclearPowerStation(DBNPS), andPerry NuclearPowerPlant(PNPP)as Enclosures A, B, C, and D, respectively.

Thereare no regulatory commitments containedin thisletter. lf thereare anyquestions or if additionalinformation pleasecontactMr.ThomasA. Lentz,Manager is required, -

FleetLicensing, at 330-315-6810.

I declareundelpenaltyof perjurythatthe foregoingis trueandcorrect.Executedon SeptemOer ll ,2013.

Respectfully, SamuelL. Belcher Enclosures A SiteDescription for BeaverValleyPowerStationUnit1 Near-Term TaskForce Recommendation Beaver 2.1 PartialSubmittal Valley Power StationUnit1 SiteDescription for BeaverValleyPowerStationUnit2 Near-Term TaskForce Recommendation 2.1 PartialSubmitalBeaverValleyPowerStationUnit2 SiteDescription for Davis-Besse NuclearPowerStationNear-Term TaskForce Recommendation Davis-Besse 2.1 PartialSubmittal NuclearPowerStation SiteDescription for PerryNuclearPowerPlantNear-Term TaskForce Recommendation2.l PerryNuclearPowerPlant PartialSubmittal

BeaverValleyPowerStation,UnitNos.1 and2 Davis-Besse NuclearPowerStation PerryNuclearPowerPlant L-13-245 Page3 (NRR)

Director,Officeof NuclearReactorRegulation NRCRegionI Administrator NRCRegionlll Administrator NRCResidentInspector (BVPS)

NRCResidentInspector (DBNPS)

NRCResident Inspector(PNPP)

NRRProjectManager(BVPS)

NRRProjectManager(DBNPS)

NRRProjectManager(PNPP)

DirectorBRP/DEP SiteBRP/DEPRepresentative UtilityRadiological SafetyBoard

EnclosureA L-13-245 Site Description for BeaverValleyPowerStationUnit 1 Near-TermTaskForceRecommendation 2.1 PartialSubmittal BeaverValleyPowerStationUnit 1 (28 pagesfollow)

ABSConsulting 2734294-R-015 Revision2 Site Descriptionfor BeaverValleyPowerStationUnit 1 Near-Term TaskForce Recommendation 2.1 Partial SubmittalBeaverValleyPower StationUnit 1 September 9,2013 Preparedfor:

FirstEnergyNuclearOperatingGompany ABSG Consultinglnc. . 300 CommerceDrive,Suite200 . lrvine,California92602

2734294-R-015 Reuision2 9,201.3 September Page2 of 28 SITE DESCRIPTION FORBEAVERVALLEY POWERSTATIONUNIT 1 NTTF RECOMMENDATION 2.1PARTIAL SUBMITTAL BEAVERVALLEY POWBRSTATION UNIT 1 ABSG CONSULTING INC. REPoRT NO. 2734294-R-015 R'IZZO Rnponr No. R9 12-4735 RnvrsroN2 SnprnnnBnR 9,2013 ABSG CottsuLTINc INC.

P^q.uL C.Rrzzo AssocIATES,INC.

AESGonsulting S:U-ocal\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R29?34294-R-015, Rev 2 2013 09 09 BVI Site Description docx rCR

2734294-R-01.5 Reaision2 September 9,201.3 Page3 of 28 APPROVALS Report Name: SiteDescriptionfor BeaverValley PowerStationUnit 1 NTTF 2.1 PartialSubmittal BeaverValley PowerStationUnit I Date: September 9, 2013 Revision No.: 2 Approval by the responsiblemanagersignifies that the documentis complete,all required reviews are complete,and the documentis releasedfor use.

Originators: 9t0912013 Nish Vaidya,Ph.D.,P. Date Independent Technical Reviewer: 9t09t20r3 Hatipoglu Ph.D. Date ical Supervisor Project Manager: NtB{^ Va; 910912013 Nish Vaidya,Ph.D.,P. Date Approver: 9109120t3 ThomasR. Roche,P.E. Date Vice President AEsGonsultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R2\2734294-R-015,Rev 2 2013 09 09 BVI Site Description docx rCR

2734294-R-015 Reaision2 9,2013 September Page4 of 28 CHANGE MANAGEMENT RECORI)

Report Name: SiteDescriptionfor BeaverValley PowerStationUnit I NTTF 2.1 PartialSubmittal BeaverVallev PowerStationUnit I Pnnson Rnvrsrou DnscnrprroNsoF D,q,rn AUTTTORIZING AppRov,q.Ll No. Cu,lxcns/AnnpcrEDP,q.cns CH,l,Ncn 0 Ausust12,2013 OrieinalIssue N/A N/A AddressedLicensing Comments I September 6,2013 NRV NRV Primarilv Editorial 2 September9. 2013 Additional Licensins Comments NRV NRV Note:

t Personauthorizing changeshall sign here for the latestrevision.

rBs Consultlng S : \ L o c a l \ P u b s \ 2 7 3 4 2 9 4 F E N O C B e a v e r V a l l e y \ 3 , l Q R e p o r t F i l e \ R - 0 1 5 \ R 2 \ 2 7 3 4 2 9 4 - R - 0 l 5 , R 2e 2v 0 1 3 0 9 0 9 8 V 1 SiteDescription,docx rCR

2734294-R-015 Reaision2 September 9,201.3 Page5 of 28 TABLE OF CONTENTS PAGE LISTOF TABLES .............6 LrsT oF FTGURES ..................7 LIST OF ACRONYMS .....8 1.0 TNTRODUCTION ..................9 l.l SouncES oFINFoRMATToN ..........9

2.0 DESCRIPTION

OF SUBSURFACE MATERIALSAND PROPERTIES (ITEM3.A) .........11 2.1 SnBSrneucRAPHY ....1I 2.2 SuesunpAcE MATERIALS ANDPnoppnrtEs ....... ............15 3.0 SITESHEARWAVE VELOCITYPROFILEAND NONLINEAR MATERIALPROPERTIES (ITBM 3.8) ..........17 3.1 BnsrsFoRBASE CASE Vpt-octrvPnonllEs ......... .............17 3.2 V, PRopTLES usEDrNBVPS-ISPRA .......21 3.3 NoN-LtueanMerpRtel CunnncrERlsTtcs UspnnlBVPS-l SPRA.... ...22

4.0 REFERENCES

.....27 AESGonsultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 I Q Report File\R-0l 5\R29734294-R-01 5, Rev 2 2013 09 09 BVI Site Description,docx rCR

2734294-R-01s Reaision2 September 9,201.3 Page6 of28 LIST OF TABLES TABLE NO. TITLE PAGE TABLE I SUBSURFACESTRATIGRAPHYAND UNIT THICKNESSES ..........13 TABLE 2 SUBSURFACE MATERIALSPHYSICALPROPERTIES......... 16 TABLE 3 SUBSURFACE MATERIALSDYNAMIC PROPERTIES I6 TABLE 4 GEOTECHNICAL PROFILE, BVPS-ISITE.. ...............I9 TABLE 5 STRAIN.DEPENDENT PROPERTIES FOR SOII.OVERBURDEN ..........23 fESGonsultlng S:\Local\Fubs\2734294 FENOCBeaverValley\3,lQReportFile\R-Ol5\R2\2734294-R-015, docx Rev 2 201309 09 BVI SiteDescription f{]R

2734294-R-0L5 Reaision2 September 9,20L3 Page7 of 28 LIST OF FIGURES FIGURE NO. TITLE PAGB FIGURE I STRATIGRAPHICCOLUMN UNDERLYING THEBVPSSITE ......12 FIGURE2 WELLSUSEDTO OBTAIN DEEPROCK STRATIGRAPHY..IS FIGURE3 VS PROFILES, BVPS1SITE.. ........22 FIGURE4 SHEARMODULUSAND DAMPING. STRUCTURAL BACKFILL....... .........24 FIGURE5 SHEARMODULUSAND DAMPING,TERRACE (20-s0FT DEPTH) ........2s FIGURE6 SHEARMODULUSAND DAMPING,TERRACE (s1-r20FT DEPTH) ....26 AESConsulting S:\Local\Pubsg7342g4FENOCBeaverValley\3 220ll0gOgBVlSiteDescriptiondocx lQRepoftFile\R-Ol5\R29734294-R-0l5,Rev f{3R

2734294-R-01b Reaision2 September 9,201.3 Page8 of 28 LIST OF ACRONYMS ACRONYM TITLE COV Coefficient of Variation BVPS.I BeaverValley Power StationUnit I BVPS.2 BeaverValley Power StationUnit 2 DGB Diesel GeneratorBuilding EL Elevation in Feet EPRI Electric Power ResearchInstitute FENOC FirstEnergyNuclear OperatingCompany FIRS FoundationInput ResponseSpectra FSAR Final SafetyAnalysis Report ft Foot or Feet ft/s Feetper Second GMRS Ground Motion ResponseSpectra ksf Kips per SquareFoot NRC Nuclear RegulatoryCommission NTTF Near-Term Task Force Pcf Poundsper cubic foot RB ReactorBuilding SPID Screening,Prioritization, and ImplementationDetails SSE Safe Shutdown Earthquake SPRA SeismicProbabilisticRisk Analysis SPT StandardPenetrationTest tsf Tons per SquareFoot vp Pressure-Wave Velocity v, Shear-WaveVelocity w.T. Water table Gonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 I Q Report File\R-0 l 5\R29734294-R-0 l 5, Rev 2 2013 09 09 BV I Site Description,docx rCR

2734294-R-0Ls Reaision2 9,201.3 September Page9 of 28 SITE DESCRIPTIONFOR BEAVER VALLEY POWER STATION UNIT 1 NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL BBAVER VALLEY POWER STATION UNIT 1

1.0 INTRODUCTION

With referenceto United StatesNuclear RegulatoryCommission(NRC) Letter datedMay 7, 2013,(NRC, 2013)this Document summarizesthe site geologic and geotechnicalinformation, and presentsthe basecasevelocity profiles for the BeaverValley Power StationUnit I (BVPS-1) site. This informationaddresses Items 3.a."Descriptionof SubsurfaceMaterialsand Properties,"and 3.b., "Developmentof BaseCaseProfilesandNonlinearMaterial Properties"in Section4.0 of EPRI Report 1025287(EPRI, 2013).

The information provided here is consideredan interim product of seismichazarddevelopment efforts. The completeand final seismichazardreportsfor BVPS-I will be provided to the NRC in our seismichazardsubmittalsby March 31,2014 in accordancewith (NRC,2013).

The basecasevelocity profiles presentedhere are utilized as the basisin the site response analysis,which propagatesthe seismichazardat outcroppinghard rock at depth through the overlying site specific soilirock column. The depth of the hard rock layer is defined as the first layer at depth with a shearwave velocity (Vr) equal to or greaterthan 9,200 ftls. The site responseanalysisobtainsthe amplification functions consistentwith the geotechnicalcolumn overlying the hard rock, and developsthe ground motion responsespectrum(GMRS) at the control point elevationwhere the safe shutdownearthquake(SSE) ground motion is applied.

1.1 Souncns oF INnonnaATroN

l. BeaverValley Power StationUnit I UpdatedFinal SafetyAnalysis Report,Revision 27; DocketNo. 50-334,Section2.4Geology,2.5Seismology;Section,2.6 Soil Mechanics, 2.7 SiteDesign Data,and Appendix 28, AppendixZD, AppendixZE, Appendix2F, Appendix2G and 2H.

Gonsulting S:\IocalWubs\2734294 FENOC Beaver Valley\3 lQ Report File\R-015\R2\2734294-R-015,Rev 2 20ll 09 09 BVI Site Description docx rCR

2734294-R-015 Reaision2 9,20L3 September PageL0 of28

2. BeaverValley PowerStationUnit 2 UpdatedFinal SafetyAnalysisReport,Revision20; DocketNo. 50-412,Section2.S, Geology,Seismology, andGeotechnical Engineering, andAppendix2.58 through2.58.
3. BeaverValley PowerStationUnit 2 UpdatedFinal SafetyAnalysisReport,Revision20; DocketNo.50-412,Section3.7- SeismicDesignandSection3.8- Designof Seismic CategoryI Structures.
4. Pennsylvania GeologicalSurvey- Well Logs.

rES Gonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R2V734294-R-015, Rcv 2 2013 09 09 BVI Site Description docx rCR

2734294-R-01.5 Reaision2 9,201.3 September Page1,1of 28

2.0 DESCRIPTION

OF SUBSURFACEMATERIALS AND PROPERTIES(Item 3.a)

The BVPS-I is locatedin ShippingportBorough on the southbank of the Ohio River in Beaver County. The Ohio River Valley is an erosional,flat-bottomed,steep-walledvalley. The bedrock of Pennsylvanianage is a sequenceof flat-lying shaleand sandstoneoccasionallyinter-bedded with coal seams. It is overlain by about 100 feet (ft) thick alluvial granularterracesformed during the Pleistoceneperiod. Plantgradeis elevation(EL) 735 ft and the top of bedrockis at approximateEL 625 ft.

2.1 Strn Srnr.rIcRAPHY The terracedepositsin the site areaare characterizedby three levels: high, intermediate,and low. The low terraceis the most recent,where the upper alluvial deposit is composedof brown silty clay approximately20 to 30 ft thick. The intermediateterraceconsistsof medium clays extendingto about EL 660 ft. The oldest,high terraceis the most abundantdepositat the plant location.

The site stratigraphypresentedhere is basedin part on site-specificgeotechnicalinvestigations reportedin the Updated SafetyAnalysis Report (USAR) (Section2.6.2 and Appendix 2E).

Thirty-five dry sampleborings at the ShippingportPower Stationwere supplementedby 30 additional borings at the Beaver Valley Power Station. Theseincluded l0 dry sampleborings on the high terrace,and the remainingborings locatedin the intermediateand low terrace materials. All borings penetratedapproximately20 ft into bedrock. The geologic profile below the reportedsubsurfaceinvestigationdepth is basedon the analysisof formation tops and bottoms from availabledeepwell logs in the vicinity of the site (within about 7 miles), obtained from the PennsylvaniaGeological Survey. This is supplementedby information from West Virginia and Ohio GeologicalSurveys,as well as the USAR.

Figure 1 presents the stratigraphic soil/rockcolumnunderlyingthe site, andTable I presentsthe stratigraphyextendingto the Precambrian,identifying unit thicknessas estimatedfrom the subsurfaceinvestigationsreportedin the USAR and availablewell logs in the site vicinity. Due fBSConsulting S:U-ocal\PubsV734294FENOC Beaver ValleyU I Q Report File\R-Ol 5W\2734294-R-0 l 5, Rev 2 2013 09 09 BV I Site Description docx

2734294-R-01.5 Reaision2 September 9,2013 Page12 of 28 to the relative proximity of the deepwells to the site, the unit lithologies and thicknessescan be reliably assumedto be very similar to thosebelow the site.

kgend Perird Lithology (l) Pleistocene: Pleistocene:upper tenace:unconsolidated sandand I la, c.l o gravelwith varyingamountsof clay and silt. Lower terrace:30-40'of silt I a9

@ andclay with sandandgraveloverlyinggravels (2) Allegheny:M iddle Pennsylvanian AlleghenyGroup: gray shalewith

)o G. tt r interbeddedsandstones, coal seams,underclaysand a limestonebed q.)

(3) Postville: Lower Pennsylvanian Pottsville Group: sandstone and conqlomerate (4) M auchchunk:Upper M ississippianM auchChunk Formation:red shalewith sandstone 2(E (5). Pocono:Lower MississippianPoconoCroup: sandstone fr conqlomerate w/ shale and FrA (6) Ohio shale:Upper Devonianundivided: interbeddedShale, q.) sandstoneand siltstone.(Equivalentto the Ohio Shale) ilt z; (7) Tulty: Middle DevonianTully Limestone (8) Mahantango: Middle Devonian Mahantango shale (9) Marcellus:Middle DevonianMarcellusShale C) o (10). Onondaga: M iddle Devonian Onondaga Group (Eqv to Needmore I

shale/ Selinsgrove Limestone ): limestones and dolomites (l I). Ridgeley:Lower DevonianRidgeley(Oriskany)sandstone q.) ( l 2). Helderberg:Lower DevonianHelderbergFormation:

ffia o J imestone/qhele (13).Basslsland:Upper SilurianBasslslandGroup:dolomiteand limestone rT.l

+
v)

(14). Salina:Upper SilurianSalinaCroup/TonolowayFormation:

dolomiteand limestone (15). Wells creek:Upper SilurianWells CreekFormation:shalewith SS

++

and LS (16). Lockport: Middle Silurian Lockport dolomite

( l 7). Rochester:M iddleSilurianRochesterShale

\<E (18).Rosehill: M iddleSilurianRoseHill formation:Shalewith

\A=' , A i a -

sandstone (19). Tuscarora:Lower SilurianTuscaroraFormation:SSwith T

conslomerate (20). Queenston:Upper OrdovicianQueenstonFormation:shale, o

siltstoneandSS (2 l). Reedsville:Upper OrdovicianReedsvilleShale 22). Urica,:M iddleOrdovicianUtica Shale

t () 23). Middle OrdovicianTrenton Group (Black River Fm.): Limestone EB (2a).M iddleOrdovicianGull RiverandClenwoodFormations:

i Limestoneand dolomite 25). LowerOrdovicianBeekmantown Group:Dolomite (26). Upper Cambrian Gatesburg Formation: Dolomite and dolomitic sandstone

.o 27). M iddle Cambrian Rome Formation: Dolomite I U 28). Lower CambrianMt SimonFormation:Sandstone Q

H q,) 29) Precambrian Granite FIGURE 1 STRATIGRAPHIC COLUMN UNDBRLYING THE BVPS SITE tBs Gonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O15W9714294-R-015, Rev 2 20ll 09 09 BVI Site Description docx rCR

2734294-R-01,5 Reuision2 September 9,2013 Page13 of 28 The USAR doesnot make referenceto the well data. However, the site stratigraphyconstructed here on the basisof the well datais consistentwith the Regional and Local Geology discussedin Section2.4 andAppendix 28 of the USAR.

TABLE 1 SUBSURFACESTRATIGRAPHYAND UNIT THICKNESSBS AT THE BVPSSITE Top Borrorvr Top Borronn EL EL LrrHolocv Dnprn DnprH (ft) (fr) (fr) (fo Pleistocene:upperterrace:

Unconsolidatedsandand gravel with varying amountsof clay and 735 625 0 ll0 silt. Lower terrace: 30 to 40 ft of silt and clay with sandand gravel overlvins sravels Middle Pennsylvanian Allegheny Group: gray shalewith interbedded 625 550 ll0 185 sandstones, coal seams,underclays, and a limestonebed Lower PennsylvanianPottsville 5s0 350 Group: sandstoneand 185 385 conglomerate UpperMississippian MauchChunk 3s0 300 Formation: red shalewith 385 435 sandstone Lower MississippianPocono 300 -120 Group: sandstoneand 435 855 conslomeratew/ shale Upper Devonianundivided:

-r20 -3,700 interbeddedshale.sandstoneand 855 4,435 siltstone.

-3,700 -3,820 Middle DevonianTullv Limestone 4,435 4,555

-3,820 -3,900 Middle DevonianMahantango 4,555 4,635 Shale

-3.900 -3.935 Middle DevonianMarcellusShale 4,635 4,670

-3,935 -4,150 Middle DevonianOnondagaGroup 4,610 4,885 Shale/Selinssrove Limestone

- 4 , 15 0 -4,250 Lower DevonianRidgeley (Oriskanv)Sandstone 4,885 4,985

-4,250 -4,450 Lower DevonianHelderberg 4,995 5,185 Formation: limestone/shale Gonsulting S;\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R2\2734294-R-015,Rev 2 2013 09 09 BVI Site Description docx rCR

2734294-R-015 Reaision2 September9,2013 Page1.4of 28 TABLE T SUBSURFACBSTRATIGRAPHYAND UNIT THICKNESSES AT THE BVPSSITE (coNTTNUED)

Top Borrou Top Borrona EL EL LrrHolocv Dnpru Dnprn (fo (fo (ft) (fo

-4,450 -4,540 UpperSilurianBassIslandGroup:

5 , 18 5 5,275 dolomiteandlimestone UpperSilurianSalina

-4,540 -5,330 Group/TonolowayFormation  : 5,215 6,065 dolomiteandlimestone UpperSilurianWellsCreek

-5,330 -5,550 Formation:shalewith sandstone 6,065 6,285 andlimestone

-5.550 -5.900 Middle Siluran Lockport Dolomite 6,285 6.635

-5,900 ,5,980 M i d d l eS i l u ran RochesterShale 6,635 6,715

-5,980 -6,170 Middle SilurianRoseHill 6,715 6,905 Formation: shalewith sandstone Lower SilurianTuscarora

-6,170 -6,390 Formation: sandstonewith 6,905 7,125 conslomerate Upper OrdovicianQueenston

-6,390 -7,455 Formation: shale.siltstone.and 7,125 8,190 sandstone

-7"455 -8.265 Unner OrdovicianReedsvilleShale 8 . 19 0 9.000

-8,265 -8,565 M ddle OrdovicianUtica Shale 9,000 9.300

-8,565 -9,305 Middle OrdovicianTrentonGroup 9,300 10,040 (Black River Fm.): limestone Middle OrdovicianGull River and

-9,305 -9,455 GlenwoodFormations: limestone 10,040 10,190 and dolomite

-9,455 -9,645 Lower OrdovicianBeekmantown 10,190 10,380 Groun: dolomite Upper CambrianGatesburg

-9,645 -9,995 Formation:dolomiteand dolomitic 10,380 10,730 sandstone

-9,995 - 1 0 , 6 9 5 Middle CambrianRome Formation: 10,730 11,430 dolomite

- 10,695 - 10,865 Lower CambrianMt. Simon I1,430 I I,600 Formation: sandstone

- 10"865 PrecambrianGranite I1,600 ABSConsulting S : \ L o c a l W u b s V T 3 4 2 g 4 F E N O C B e a v e r V a l l e y \ 3l Q R e p o r t F i l e \ R - 0 1 5 \ R 2 \ 2 7 3 4 2 9 4 - R - 0 l 5 , R e v2 2 0 l 3 0 g 0 g B V l S i t e D e s c r i p t i o n , d o c x

2734294-R-01.5 Reuision2 9,201.3 September Page15 of 28 2.2 SunsunFACEMnrnRrALS ANDPRopnRrrBs The terracematerialsin the plant area(high terracedeposits)consistof unconsolidatedand stratified sandand gravel outwashderived from the melting of glacial ice at the end of Pleistocenetime. The surfacesandand gravel layer is underlainby relatively denseand incompressiblesandand gravel extendingdown to bedrock at approximatelyEL 625. Major structuresof the plant are founded in the high terracesandsand gravel either directly or on compactedbackfill. Thin depositsof mud, silt, and sanddepositedby flood water on the Ohio River and tributary streamsoverlay the terracesandsand gravel.

Bedrock directly beneaththe site is composedof shaleof the Middle PennsylvanianAllegheny Group. This unit is characterizedbycyclic sequencesof sandstonesand shalesinterbeddedwith severalcoal seamsand occasionalthin limestonebeds. The thicknessof this unit underlying the site is approximately75 ftbelow the Allegheny Group is the Lower PennsylvanianPottsville Group sandstoneand conglomeratewith minor shalebeds,and minable coal beds. This formation is between 120 and 230 ft thick in the site area.

The subsurfacematerialspropertiessummarizedhere are basedon the geotechnical investigationsdescribedin the USAR. The borings in the intermediateand low terracematerials retrievedundisturbedsamplesof surfaceclays and silts for physical testing. However, no sampleswere obtainedin the high terracematerials. The propertiesfor this material are basedon StandardPenetrationTest (SPT) blow countsand in-situ geophysicalmeasurements.Properties of the bedrock material are basedon both laboratorytestsand in-situ geophysicalmeasurements.

The remaining subsurfacestratigraphicmaterialsunderlying the bedrock are characterizedby various sedimentarysequencesof the Mississippian,Devonian, Silurian, Ordovician and Precambrianages,consistingof shales,interbeddedsandstones,siltstonesand dolomites and limestone,overlying the Precambrianbasementat a depth of approximately I 1,000ft. Their propertiesare estimatedfrom the sonic data obtainedfrom deep wells.

Tables2 and 3 summarizethe physical and mechanicalpropertiesof the overburdensoils and the bedrockmaterial.

fESGonsulting S:V-ocalWubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O15\R2\2734294-R-015,Rev 22013 09 09 BVI Site Description,docx

2734294-R-015 Reaision2 September 9,20L3 PageL6 of 28 TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIES Tgrcxnnss DnxsrrY SPT Rncovnnv(%)

MarnRr.Lr, Rnncn (ft) (pcf) (blow/ft) R.lNcn AVERAGE Upper TerraceMaterial Silw CoarseSand 0 to l0 t20-125 l0-16 CoarseSand& Gravel 16to 20 t20-125 r6-20 Medium Sand& Gravel (aboveW.T.) 20 to 50 120-125 20-s0 Sand& Gravel (below W.T.) 25 to 50 I 30-140 20-50 ShaleBedrock 60.0to 80.0 155-165 50-100 98 Ref. USAR Section2.6.1 andTable 2.6-2 SPT: StandardPenetrationTest pcf: pound per cubic foot W.T. : Water Table TABLE 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES MnasuREDVELocrrY (ftls)

(t) Mouur,us (ksq trl Dnupnc Potssotrt's MarnRt,u, (z)

(%l f,,a11g COupnnSSIoN Ssnnn ConapnnssroNSunan Upper TerraceMaterial (4)

SilW CoarseSand r000-rs00 5 5 0- 8 5 0 1440 2 . 0- 3 . 0 0.4 CoarseSand& Gravel 2000 600- 900 2448 2 . 0- 3 . 0 0.4 Medium Sand& Gravel 2000 950- 1200 4752 2 . 0- 3 . 0 0.28 (aboveW.T.)

Sand& Gravel (below W.T.) 6000 1 0 5 0- 1 2 5 0 6192 2 . 0- 3 . 0 0.48 ShaleBedrock 12000 5000 1 2 5x 1 0 3 1 . 0- 2 . 0 0.39

l. Basedon BVPS-l USAR Appendix 2D and2G (Refraction,cross-holeand down-hole)
2. Poisson'sratio and Gmax are calculatedby following formula:

v : [(vp/vs)2- 2] I lz(vptvs)2- 2l Gmax : pVs2

). Recommendedvariability in soil is basedon SPT-Vscorrelations(COV :25 percent). An averageCOV of 20 percent is assumedfor soil and bedrock.A COV of 0.1 I is assumedfor deeperrock units basedon the information from deep wells.

4. Compressionmodulus not reported.

ABSConsulting S.tJ-ocal\Pubs\2734294 FENOC Beaver Valley\3 lQ Report File\R-015\R2\2734294-R-015,Rev 2 20ll 09 09 BVI Site Description docx rCR

2734294-R-01.b Reaision2 9,2073 September PageL7 of 28 3.0 SITE SHEAR WAVE VBLOCITY PROFILE AND NONLINEAR MATERIAL PROPERTIES(Item 3.b)

This sectiondescribesthe basisfor the velocity profiles usedin the site responseanalysisto obtain the site ground motion responsespectra(GMRS) and foundation input responsespectra (FIRS). The developmentof the velocity profiles is describedin F.IZZO Report "Probabilistic Seismic HazardAnalysis and Ground Motion ResponseSpectra,BeaverValley NPP, Seismic PRA Project," (P.IZZO, 2013). The GMRS/FIRS are subsequentlyusedin the building seismic analysisin supportof the ongoing seismicprobabilistic risk assessment (SPRA).

3.1 B,r,sIsFoRBmn Clsn Vnlocrry PRoFTLES The shearand compressionwave velocitiesof the overburdensoils and the shalebedrockare basedon the subsurfaceinvestigationsreportedin the USAR, particularly Appendix 2G.

Appendix 2G summarizesthe geophysicalinvestigationsconsistingof cross-hole,up-hole, and down-hole measurementsin five drill holes locatedin the reactorarea.P and S wave velocities were measuredfrom direct arrival times. A limited amount of seismicrefraction survey investigationwas also performedto verify the elevationof bedrock,and to determinevelocity layering.

Variabilities in the shearwave velocities of the bedrock material and the overburdensoil are estimatedrespectively,from velocity measurementsand lab tests,and the StandardPenetration Test (SPT) data.

The deeprock stratigraphyas well as the seismicvelocities of thesestratarelies on sonic logs recordedin the wells in the site vicinity (within 7 miles). Figure 2 presentsthe location of wells utilized here to obtain the stratigraphyas well as the sonic data.

The sonicdatawere convertedto P-wavevelocities(Vp) and S-wavevelocities(V') basedon publishedliterature(Pickett, 1963;Rafavich,1984;Miller, 1990;and Castagna,l993)reflecting the materialtype (limestoneand dolomite, anhydritesand salts),porosity and density,and to a lesserextent,the lithology. Additionally, basedon publishedliterature,Vpff, ratiosof 1.7 AESConsulting S:\Local\Pubs9734294 FENOC Beaver Valley\3 lQ Report File\R-O15\R2V734294-R-015,Rev 2 2013 09 09 BVI Site Description docx rCR

273429+R-015 Reaision 2

September 9,2073 PageL8of28 and2.1 were usedto obtain a coefficient of variation (COV) of about 0. I I representingthe variabilities for the S-wavevelocities.

FIGURE 2 WELLS USED TO OBTAIN DEEP ROCK STRATIGRAPHY AND SHEAR WAVE VELOCITIES Varying unit thicknesses,incompletewell logs, and non-standardlithologic descriptionspresent somechallengesto reliably estimatingcontactlocations. However, the lithologic units in the region are flat lying and for the most part, laterally consistent. Consequently,the velocity structurein the wells examinedis relativelv similar and consistentfrom well to well for similar depths.

Most major structuresof the BVPS-I are founded in the upper terracesandand gravel layers.

The ReactorBuilding is supportedon in-situ soils at EL 681. Other structuresare supportedon fESConsulting S:U-ocal\PubsVTS4294FENOCBeaverValley\3 IQReportFile\R-015\R2U734294-R-0l5,Rev 2201309098V1SiteDescriptiondocx

2734294-R-015 Reaision2 September9,2013 Page19 of 28 compactedbackfill placedon the terracesandand gravel at foundation elevationsvarying betweenEL 703 for the Control Building to about EL 735 for the Diesel GeneratorBuilding.

Basedon the FSAR descriptionof the seismicanalysis,the control point elevationfor SSE is takento be the RB foundationlevel (EL 681).

Table y' presentsthe geotechnicalprofile extendingfrom the Precambrianbasementto the plant grade. It identifies the layer thicknesses,shearand compressionwave velocities,and the uncertaintiesin theseparameters.

TABLE 4 GEOTECHNICAL PROFILE, BVPS.I SITE Elnvarronr Top on Ttotal Vs" v

MarnRrAl, (ftls)

Dnposrr (pcf)

(ft)

Plant Grade (Surface EL 73s) 0 73s StructuralFily Natural and DensifiedSoil 136 730+183" 0.35 0

720 StructuralFill/ Natural and DensifiedSoil 136 1015+254b 0.35 o

680.9 PleistoceneUpper and Lower Terrace( I d) 125 I 100+275 " 0.29 680.9 GMRS EL - SSE Control Pt. Nuc lear Island Foundation Level 66s Ground Wa er Level 665 PleistoceneUpper and Lower Terrace( 1e) t36 I 200+300 " 0.48" (2) 0 625 M. Pennsvlvanian AlleehenvShale 160 5000+1000 0.39" L. Pennsylvanian PoffsvilleSS, 5 5 0" (3) r60 6,026 0.30 conglomerate 350 U. MississippianMauchChunk Shale(4) 155 6,744 0.30 L. MississippianPoconoSandstone 300 155 6,744 0.30 conglomerate(5)

-120 U. DevonianInterbeddedShale, 155 l,l12 0.30

-2,994 Sandstone,Siltstone (6) 155 6,416 0.30

-3,700 M. Devonan Tully Limestone(7) r68 9,856 0.30

-3,920 M. Devonan MahantansoShale(8) t57 9,856 0.30

-3,900 M. Devonan MarcellusShale (9) 151 9.856 0.30

-3,935 M. DevonianOnondagaLimestone, r70 9,856 0.30 Dolomite(10)

-4.150 L. DevonianRidselevSandstone (I I 160 9.856 0.30

-4,250 L. DevonianHelderbergLimestone,Shale t70 9,856 0.30 (12\

-4,450 U. SilurianBassIslandDolomite, t70 8,352 0.30 Limestone(13)

-4.540 U. SilurianSalinaDolomite,Limestone 170 8,352 0.30

-5,034 (14) t70 9,547 0.30 AESConsulting S : \ L o c a l \ P u b s 9 T 3 4 2 9 4 F E N O C B e a v e r V a l l e y \ 3l Q R e p o r t F i l e \ R - 0 1 5 \ R 2 \ 2 7 1 4 2 9 4 - R - 0 l 5 , R e v2 2 0 l 3 0 9 0 9 B V l S i t e D e s c r i p t i o n d o c x rCR

2734294-R-075 Reaision2 September 9,2073 Page20 of 28 Elnvnuon Topon Ttotut Vs" Dnposrr MnreRr,u, (pcf) (ftls) v (fo

-5.330 U. SilurianWellsCreekShale(15) 163 r1.534 0.30

-5,550 M. SilurianLockport Dolomite ( l6) 170 9,015 0.30

-5.900 M. SilurianRochesterShale(17) 163 9.015 0.30

-5,980 M. SilurianRoseHill Shale( l8) 163 9.015 0.30

-6,170 L. SilurianTuscaroraSandstone( l9) r63 8,588 0.30

-6,390 U. OrdovicianQueenstonShale,Siltstone, 163 8,588 0.30

-7.123 Sandstone(20) 163 7.835 0.30

-7.455 U. OrdovicianReedsvilleShale(Zla & 163 7835 0.30

-7,699 2lb) 163 6834 0.30

-8.265 M. OrdovicianUtica Shale(22) 163 6834 0.30

-8,565 M. OrdovicianTrentonLimestone(23) t75 10.520 0.30

-9,305 M. OrdovicianGull River Limestone.

175 10,520 0.30 Dolomite (24)

-9,455 L. OrdovicianBeekmantownDolomite (2s) ll5 10,520 0.30

-9,645 U. CambrianGatesburgDolomite 170 10,520 0.30 Sandstone(26')

-9,995 M. CambrianRomeDolomiteQ7) r75 10.520 0.30

- 10.695 L. Cambran Mt. SimonSandstone (28) t70 10,520 0.30

-10.865 Precambran Granite (29\ t75 10.520 0.30 Notes:

u Variability in Vs of soil is basedon SPT-V, correlations(COV:25 percent). COV is assumed20 percentas averageof soil and rock for the rock at the top and for deeperrock units COV : I I percentis assumedbasedon the information from deepwells.

Appendix2D,2G and 2H of the BVPS-I USAR From this elevationdown, soil parametersare estimatesfrom sonic velocitiesof deepwells exceptunit weight.

Unit weights are typical valuesfrom the literature. Poisson'sratio is calculatedby following formula:

v: [ (Vp/Vs)2- 2 ! / l2(vplvs)2 - z ]

fB$Gonsulting S : \ L o c a l \ P u b s \ 2 7 3 4 2 9 4 F E N O C B e a v e r V a l l e y \l3Q R e p o r t F i l e \ R - O 1 5 \ R 2 \ 2 7 3 4 2 9 4 - R - 0 l 5 , R e v2 2 0 l 3 0 9 0 9 B V l S i t e D e s c r i p t i o n d o c x

273429+R-01,5 Reuision2 September9,20L3 Page2L of 28 3.2 V, PnonrLES usEDrNBVPS-I SPRA In supportof the SPRA project, severalfoundation input responsespectra(FIRS) are developed at foundationelevationsvarying from the intake structuresat EL 637 to the DGB at EL 729.

Theseare basedon truncatedsoil profiles at respectivefoundation levels obtainedfrom the full soil column site responseanalysis.

The site responseanalysisperformedas part of the BVPS- I SPRA usesone BaseCaseprofile, basedon the best estimateinformation in Table 4. However, the analysisrepresentspossible aleatoryvariability in the shearwave velocity profile by using 60 randomizedV5 profiles based on the parameterspresentedin Table 4. The random profile realizationsare obtained using the stochasticmodel developedby Toro (1996), and assumefull correlationbetweenthe shearwave velocities in adjacentlayers. Theserandom realizationsof the V, profile representthe variability in the soil column from the interbeddeddolomite, limestone,and shaleto the top of the argillaceouslimestone(M. Devonian Tully Limestone).

The use of one BaseCaseprofile is justified on the basisthat the site stratigraphyis reasonably uniform and flat lying, the overburdensoils as well as the investigateddepth of bedrockare well characterizedby a number of in-situ velocity measurements,and dynamic laboratorytests,and the reportedboring logs do not indicate significant variability in layer thicknessesand depths.

Figure 3 presentsthe best estimaterepresentingthe BaseCasevelocity profile, and the upper and lower boundsrepresentedby 60 randomizedprofiles utilized in the SPRA site response analvsis.

ABSGonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-Ol5\R2V734294-R-015, Rev 2 2013 09 09 BVI Site Description docx rCR

2734294-R-015 Reaision2 9,20L3 September Page22 of 28 Vs (fUsec) 4000 6000 500 1000 1500 2000 Ea-2soo o

o 3000 Upper-Bound Lower-Bound

-Best Estimate 5000 FIGURE 3 Vs PROFILES'BVPS-I SITB 3.3 NoN-LInn,rn M.trnnrALCHARACTERIsTICS Uspu INBVPS-I SPRA The site responseanalysisperformedas part of the BVPS-l SPRA representsnon-linearmaterial propertiesby utilizingshear modulus degradationand material damping as functions of the seismicshearstrain. Strain dependentdynamic parameterfor the overburdensoils are reported in Appendix 2D, Figure 2D-3 of BVPS-I USAR, and Figure 2.5.4-71of the BVPS-2 USAR.

AESGonsultlng S:\Iocal\,Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O15W\2734294-R-015, Rev 2 20t3 09 09 BVI Site Description docx

2734294-R-015 Reuision2 September9, 2073 Page23 of 28 Table 5 and Figures 4 through 6 presentthe strain dependentstiffness and damping properties of the backfill material and the in-situ overburdensoils. The material-dampingratio is limitedto a maximum of l5 percentin the calculationsfollowing guidancein NRC Regulatory Guide 1.208. The underlying bedrock material is assumedto behavelinearly and the damping ratio for the hard rock half spaceis assumedto be 1.0 percent.

The variability in the dynamic propertiesis propagatedin the site responseanalysisby selecting from 60 setsof randomizedproperty curves shown on Figure 4 through 6. Each of the 60 randomizedVs prof,rles,representingthe aleatoryuncertainties,is paired with one combinationof the randomizednonlineardynamic property curvesfor input to the site response analvsis.

TABLE 5 STRAIN-DEPENDENTPROPERTIESFOR SOIL OVERBURDEN PLBTSTOCENEUPPNNAND PInTSTOCENEUPPNRAND SrnucruRAI, Bncrnlll (1n) Lownn Tnnnacp (1n)

Srn,q,tN LowBn TnRn-q,cn

(%) D,q,N,lplNc D,q,MptNc D,q,Mptxc G/G,"* G/Grr* (r) G/Gn'"*

(%l

("4) ehl 0.0001 1.0000 t.490700 1.0000 1.256800 1.0000 t.017200 0.0003r 6 0.9968 r . 5 7 1 3I 3 0.9977 1.267272 0.9982 1.048590 0.00100 0.9707 1.84200 0.9845 1.501200 0.9925 1.261900 0.0020 0.94r5 2.30495 0.9632 1.797676 0.9812 1.484852 0.00300 0.9123 2.767900 0.94t9 2.094t52 0.9699 r.707805 0.0050 0.8663 3.410786 0.9070 2.547755 0.9412 2.033219 0.0070 0.8216 4.05367r 0.8731 2.994024 0.91l9 2.352291 0.0100 0.7545 5.01 8000 0.8221 3.663427 0.8680 2.830900 0.0200 0.6419 7.00r r36 0.7224 5.221978 0.7805 4.079881 0.0300 0.5292 8.984273 0.6227 6.793721 0.6929 s.328863 0.0500 0.4486 10.89077 0.5466 8.445937 0.6170 6.778340 0.0700 0.3772 t2.56841 0.4783 9.968471 0.5475 8.136644 0.1 0.2102 15.08487 0.3760 12.25229 0.4431 10.17410 0.2 0.1961 I 8 .I 0 5 9 9 0.2774 t5.29141 0.3399 12.95305 0.3 0.1228 2l .05091 0 .I 7 8 9 18.33196 0.2353 15.73201 I 0.0392 26.s9868 0.0587 24.68220 0.0895 22.67120 (l) G/G,"* : shearmodulus(G) normalizedby the low-strainshearmodulus(G.u*).

AESConsulting l Q R e p o r t F i l e \ R - 0 1 5 \ R 2 \ 2 7 3 4 2 9 4 - R - 0 l 5 , R e v2 2 0 l l 0 g 0 g B V l S i t e D e s c r i p t i o n d o c x S:\Local\PubsgT342g4FENOCBeaverValley\3 rCR

2734294-R-01.5 Reaision2 September 9,201.3 Page24 of 28 1

0 .9 0 .8 0.7 0.6 0 .5 0.4 0 .3 0 .2 0.1 0

0.0001 0 .0 0 1 0.01 Shearstrain(%)

20 18 16 14 s 12 Et C

o. 10 E

(!

o I 6

4 2

0 0.0001 0.01 Shearstrain (%)

FIGURB 4 SHEAR MODULUS AND DAMPING, STRUCTURALBACKFILL G/G,nu*: shearmodulus (G) normalized by the low-strain shearmodulus (G.*).

Gonsulting S:\Local\PubsV734294FENOC Beaver Valley\3,IQ Report File\R-015W\2734294-R-015, Rev 2 2013 09 09 BVI Site Description,docx rCR

2734294-R-0L5 Reaision2 September 9,20L3 Page25 of 28 1

0.9 0 .8 0 .7 x

0.6 6

ou Et

(, 0.4 0 .3 0 .2 0.1 0

0. 0.01 Shearstrain(%)

20 18 16

^14 s

-12

'tra 1 0 E

88 6

4 2

0 0.0001 0 .0 0 1 0.01 Shearstrain(%)

FIGURE 5 SHBAR MODULUS AND DAMPING, TERRACE(20-50FT DEPTH)

AE$Gonsulting S.\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-015\R2V734294-R-015, Rev 2 2013 09 09 BVI Site Description docx rc"

2734294-R-015 Reaision2 September 9,20L3 Page26 of 28 1

0 .9 0.8 0 .7 x

0 .6 d

E= ou (9 0.4 0 .3 0 .2 0.1 0

0. 0.01 Shearstrain(%)

20 18 16 14 E 12 ED tr CL 10 E

o I o

6 4

2 0

0.0001 0.01 Shearstrain (%)

FIGURE 6 SHEAR MODULUS AND DAMPING, TERRACE(51-120FT DEPTH)

AEgGottsulting S:\Local\Fubs\2734294FENOC Beaver Valley\3 I Q Repon File\R-0 l 5\R29734294-R-01 5, Rev 2 2013 09 09 BV I Site Description docx rCR

2734294-R-015 Reaision2 September 9,201.3 Page27 of 28

4.0 REFERENCES

Castagna,J.P.,and M.M. Backus,1993,"Rock Physics- The Link BetweenRock Propertiesand AVO Response,"in Eds., Offset-dependentreflectivity- Theory and Practiceof AVO Analysis, Castagna,J.P.,Batzle,M.L., and Kan, T.K., Investigationsin Geophysics(SEG) No. 8, pp.135-171.

EPRI, 1993,"Guidelines for Determining Design Basis Ground Motions," Electric Power ResearchInstitute,Palo Alto, CA, Rept.TR-102293,Vol. 1-5.

EPRI, 2013, "Seismic Evaluation Guidance,Screening,Prioritization and Implementation Details (SPID) for the Resolutionof FukushimaNear-TermTask Force Recommendation2.1:

Seismic,"February2013.

FirstEnergyNuclear OperatingCompany(2012). "Final Report Geology and Geotechnical Information for Site Amplification CalculationsSeismicProbabilisticRisk AssessmentBeaver Valley PowerStation,"Rev. 0, July 2,2012.

Goldthwait,R., G. White, and J. Forsyth,l96l, "Glacial Map of Ohio," Ohio Departmentof Natural Resources,Div. of Geol Survey.

Hough, J.L., 1958,"Geology of the GreatLakes," University of Illinois Press,Urbana,IL.

Miller, S.L.M., and R.R. Steward,1990,"Effects of Lithology, Porosityand Shalinesson P- and S-WaveVelocitiesfrom Sonic Logs," CanadianJournalof ExplorationGeophysics,Volume26, Nos. l &,2, pp.94-103.

Norris, S.E., 1975,GeologicStructureof Near-SurfaceRocks in WesternOhio, Ohio Journalof Science75(5): 225, 1975.

NRC, 2007, RegulatoryGuide 1.208,"A Perforrnance-Based Approachto Define the Site-Specific EarthquakeGround Motion," U.S. Nuclear RegulatoryCommission,March 2007.

NRC, 2013 "Electric Power ResearchInstitute Final Draft Report, 'Seismic Evaluation Guidance: AugmentedApproach for the Resolutionof FukushimaNear-Term Task Force Recommendation 2.1: Seismic,'as an acceptableAlternativeto the March 12,2012 Information Requestfor SeismicReevaluations, May 7,2013."

Pickett,G.R., (Pickett),1963,"Acoustic CharacterLogs and their Applicationsin Formation Evaluatioil,"Journalof PetroleumTechnology,Volume 15,No. 6, pp. 659-667.

ABSConsulting S.\Local\Pubs9734294 FENOCBeaverValley\3lQ ReportFile\R-Ol5\R2\2714294-R-015, Rev 2 201309 09 BVI SiteDescription docx fCR

2734294-R-01.b Reuision2 9,20'l-3 September Page28 of 28 Rafavich,F., C. St. C.H. Kendall, and T.P. Todd, 1984,"The RelationshipbetweenAcoustic Propertiesand the PetrographicCharacterof CarbonateRocks," Geophysics,Volume 49,No. 10, pp. I 622-1636.

RIZZO,2013, "ProbabilisticSeismicHazardAnalysis and GroundMotion ResponseSpectra, BeaverValley NPP, SeismicPRA Project,"Paul C. Rizzo Associates,Inc., Pittsburgh,PA, May 23.2013.

Silva, W.J.,N.A. Abrahamson,G.R. Toro, and C. Costantino(1996),"Descriptionand Validation of the StochasticGroundMotion Model," Rept. submittedto BrookhavenNatl.Lab.,

Assoc.UniversitiesInc., Upton NY I 1973,ContractNo. 770573.

FENOC, "Beaver Valley Power StationUnit I UpdatedFinal SafetyAnalysis Report,"

Revision27,DocketNo. 50-334.

Toro, G. R. 1996"ProbabilisticModels of Site Velocity Profilesfor Genericand Site-Specific Ground Motion Amplification Studies,Description and Validation of the StochasticGround Motion Model," Report submittedto BrookhavenNational Laboratory,AssociatedUniversities, Inc. Upton, New York 11973,ContractNo. 770573,Publishedas Appendix D in W.J. Silva, N. Abrahamson,G. Toro, and Costantino,1996.

Walling, M.A., W.J. Silva, and N.A. Abrahamson(2008). "Nonlinear Site Amplification Factors for Constrainingthe NGA Models," EarthquakeSpectra,24 (l) 243-255.

AB$Gonsulting 5, Rev 2 201 3 09 09 BV I Site Description docx S:\Local\Pubs\2734294FENOC Beaver Valley\3 l Q Report File\R-015\R2\27-14294-R-01 r{oR

EnclosureB L-13-245 for BeaverValleyPowerStationUnit2 SiteDescription Near-Term TaskForceRecommendation 2.1 PartialSubmittal BeaverValleyPowerStationUnit2 (28 pagesfollow)

ABSGonsulting 2734294-R-016 Revision2 Site Descriptionfor BeaverValleyPowerStationUnit2 Near-Term TaskForce Recommendation 2.1 Partial SubmittalBeaverValleyPower StationUnit2 September 9,2013 Preparedfor:

FirstEnergyNuclearOperatingGompany ABSG Consultinglnc . 300 CommerceDrive,Suite200 . lrvine,California92602

2734294-R-0L6 Reaision2 9,20'1.3 September Pase2 of 28 SITE DESCRIPTIONFOR BEAVER VALLEY POWER STATION UNIT 2 NTTF RECOMMENDATION 2.I P ARTIAL SUBMITTAL BEAVERVALLEY POWER STATION UNIT 2 ABSG CONSULTINGINC. REPoRTNo. 2734294-R-016 R'IZ,,ZO Rnponr No. R9 12-4736 REvrsroN2 SrprnuBER912013 ABSG CoUSULTINGINC.

P,q,uLC.Rtzzo AssocIATEs, INC.

AFConsultlng S:\Local\Pubs9734294 FENOC Beaver Valley\3 lQ Report File\R-016WV734294-R-016, Rev 2 2013 09 09 BV2 Site Description docx rCR

2734294-R-01.6 Reoision2 September 9,20L3 Page3 of28 APPROVALS Report Name: SiteDescriptionfor BeaverValley PowerStationUnit 2 NTTF 2.1 PartialSubmittal BeaverValley PowerStationUnitZ Date: September 9,2013 RevisionNo.: 2 Approval by the responsiblemanagersignifies that the documentis complete,all required reviews are complete,and the documentis releasedfor use.

Originators: 910912013 Nish Vai Date Principal Independent Technical Reviewer: 910912013 BulpntFhtipogluPh.D. Date Technical Supervisor Project Manager: 910912013 Nish Vaidya,Ph.D.,P. Date Principal Approver: 9/0912013 ThomasR. Roche,P.E. Date Vice President fESGonsultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-Ol6\R2V?34294-R-016, Rev 2 2013 09 09 BV2 Site Description docx

2734294-R-01.6 Reaision2 9,201.3 September Pase4 of 28 CHANGE MANAGEMENT RECORI)

Report Name: SiteDescriptionfor BeaverValleyPowerStationUnit 2 NTTF 2.1 PartialSubmittal BeaverVallev PowerStationUnit 2 PnnsoN RBvtstoll DnscnrprloNsoF l D,q,rn AuruonIzING AppRov,rt No. CHnrucns/ArrncrED P,Lcns CH.q,Ncn 0 August12.2013 OrieinalSubmittal N/A N/A AddressedLicensing Comments I September6,2013 NRV NRV Primarilv Editorial 2 September"9 2013 Additional Licensins Comments NRV NRV Note:

I Personauthorizingchangeshall sign here for the latestrevision.

lBtGonsultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-O16\R2V734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx

2734294-R-01b Reaision2 September 9,20'13 Page5 of 28 TABLE OF CONTENTS PAGE LISTOF TABLES .............6 LISTOF FIGURES ..............7 LISTOF ACRONYMS ...........8

1.0 INTRODUCTION

.....9 1.1 Souncns oFINFoRMAnoN .....9

2.0 DESCRIPTION

OF SUBSURFACE MATERIALSAND PROPERTIES (ITEM 3.A) .........1I 2.1 Strp,SrnnrrcRApHy 1

.................1 2.2 SuesuRrACE MATERIALS ANDPnopEnuES ........ ...........15 3.0 SITESHEARWAVE VELOCITYPROFILEAND NONLINEAR MATERIALPROPERTIES (ITEM 3.8) ........17 3.1 BasrsFoRBASB CnseVeloctry PRoFILES......... ................17 3.2 V, PnonLES usEDrNBVPS-2SPRA .................21 3.3 NoN-LrupnnMnrentRlCHnnncrERlsrtcs UsenINBVPS-2 SPRA.... .........22

4.0 REFERENCES

....27 AESGonsufring S:\Local\PubsU734294FENOC Beaver Valley\3 lQ Report File\R-016\R2V734294-R-016, Rev 2 2013 09 09 BV2 Site Description docx rCR

2734294-R-01-6 Reaision2 September 9,20'1.3 Pg, a ofz!_

LIST OF TABLES TABLB NO. TITLE PAGE TABLE I SUBSURFACESTRATIGRAPHYAND UNIT THICKNESSES ......I3 TABLE 2 SUBSURFACE MATERIALSPHYSICALPROPERTIES......... 16 TABLE 3 SUBSURFACE MATERIALSDYNAMIC PROPERTIES 16 TABLE 4 GEOTECHNICAL PROFILE, BVPS-2SITE..... ............I9 TABLE 5 STRATN-DEPENDENT PROPERTIES FOR soII, OVERBURDEN .............23 AESGonsulting FENOCBeaverValley\3lQ ReportFile\R-016\R2V734294-R-016, S:\Local\,Pubs9734294 docx Rev 2 201309 09 BV2 SiteDescription fCR

2734294-R-0L6 Reaision2 September9,20'13 Page7 of 28 LIST OF FIGURES FIGURE NO. TITLB PAGE FIGURE I STRATIGRAPHICCOLUMN UNDERLYINGTHE B V P SS r T E ..............12 FIGURE2 WELLSUSEDTO OBTAIN DEEPROCK STRATIGRAPHY.......... .......18 FIGURE3 vs PROFILES, BVPS-2SITE.... ...........22 FIGURE4 SHEARMODULUSAND DAMPTNG.STRUCTURAL BACKFILL....... .......24 FIGURE5 SHEARMODULUSAND DAMPING,TERRACE(20-50 F TD E P T H ) . . . . . . . ................25 FIGURE6 SHEARMODULUSAND DAMPING,TERRACE(51-1 2 0F T D E P T H ) . . . . . . . . . . . . ..............26 fE$Gonsulting S : \ L o c a l \ P u b s \ 2 7 3 4 2 9 4 F E N O C B e a v e r V a l l e y \ 3 , l Q R e p o r t F i l e \ R - O 1 6 \ R 2 \ 2 7 3 4 2 9 4 - R - 0 l 6 , R2e2v0 l 3 0 9 0 g B V 2 S i t e D e s c r i p t i o n d o c x rCR

2734294-R-01.6 Reaision2 9,201.3 September PageI of 28 LIST OF ACRONYMS ACRONYM TITLE COV Coefficient of Variation BVPS-I BeaverValley Power StationUnit 1 BVPS.2 BeaverValley Power StationUnit 2 DGB Diesel GeneratorBuilding EL Elevation in Feet EPRI Electric Power ResearchInstitute FENOC FirstEnergyNuclear OperatingCompany FIRS FoundationInput ResponseSpectra FSAR Final SafetyAnalysis Report ft Foot or Feet ft/s Feetper Second GMRS Ground Motion ResponseSpectra ksf Kips per SquareFoot NRC Nuclear RegulatoryCommission NTTF Near-Term Task Force Pcf Poundsper cubic foot RB ReactorBuilding SPID Screening,Prioritization, and ImplementationDetails SSE Safe Shutdown Earthquake SPRA SeismicProbabilisticRisk Analvsis SPT StandardPenetrationTest USAR Updated SafetyAnalysis Report vp Pressure-Wave Velocity V, Shear-WaveVelocitv w.T. Water table AE$ Consultlng S:\Local\Pubs9734294 FENOC Beaver Valley\3 lQ Report File\R-O16\R2\2734294-R-016,Rev 2 2013 09 09 BV2 Site Description,docx rCR

2734294-R-0L6 Reuision2 September9, 201.3 Pase9 of 28 SITE DESCRIPTIONFOR BEAVER VALLEY POWER STATION UNIT 2 NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL BEAVER VALLEY POWER STATION UNIT 2

1.0 INTRODUCTION

With referenceto NRC Letter datedMay 7,2013 (NRC,2013) this Documentsummarizesthe site geologic and geotechnicalinformation, and presentsthe basecasevelocity profiles for the BeaverValley Power StationUnit 2 (BVPS-2) site. This informationaddresses ltems 3.a.

"Descriptionof SubsurfaceMaterialsand Properties,"and 3.b.," Developmentof BaseCase Profiles and Nonlinear Material Properties"in Section4.0 of EPRI Report 1025287(EPRI, 2013).

The information provided here is consideredan interim product of seismichazarddevelopment efforts. The completeand final seismichazardreportsfor BVPS-2 will be provided to the NRC in our seismichazardsubmittalsby March 31,2014 in accordancewith (NRC,2013).

The basecasevelocity profiles presentedhere are utilized as the basisin the site response analysis,which propagatesthe seismichazardat outcroppinghard rock at depth through the overlying site specific soil/rock column. The depth of the hard rock layer is defined as the first layer at depth with a shearwave velocity (Vr) equal to or greaterthan 9,200 feet per second (ft/s). The site responseanalysisobtainsthe amplification functions consistentwith the geotechnicalcolumn overlying the hard rock, and developsthe ground motion responsespectrum (GMRS) at the control point elevationwhere the safe shutdownearthquake(SSE) ground motion is applied.

1.1 Souncns oF INnoRvlATroN

l. BeaverValley Power StationUnit I UpdatedFinal SafetyAnalysis Report,Revision27; DocketNo. 50-334,Section2.4Geology,2.5Seismology;Section,2.6 Soil Mechanics, 2.7 Site DesignData,and Appendix 28, Appendix2D, Appendix2E, Appendix2F, Appendix2G and2H.

AESGonsulting S:[ocal\Pubs\2734294 FENOC Beaver Valley\3 lQ Report File\R-O16\R2\27]4294-R-016,Rev 2 201-109 09 BV2 Site Description docx rCR

2734294-R-076 Reaision2 September 9,2013 Page1,0of 28

2. BeaverValley PowerStationUnit 2 UpdatedFinal SafetyAnalysisReport,Revision20; DocketNo. 50-412,Section2.5,Geology,Seismology, andGeotechnical Engineering, andAppendix2.58 through2.58.
3. BeaverValley PowerStationUnit 2 UpdatedFinal SafetyAnalysisReport,Revision20; DocketNo. 50-412,Section3.7- SeismicDesignandSection3.8- Designof Seismic CategoryI Structures.
4. Pennsylvania GeologicalSurvey- Well Logs.

AItCancul$ne S:V,ocal\Pubs\2734294 Rev.2 201309 09 BV2 SiteDescription.docx FENOCBcaverValley\3lQ ReportFile\R-016\R2\2734294-R416, lry

2734294-R-016 Reaision2 September9,20L3 PageLL of 28

2.0 DESCRIPTION

OF SUBSURFACEMATERIALS AND PROPERTIES(Item 3.a)

The BVPS-2 is locatedin ShippingportBorough on the south bank of the Ohio River in Beaver County. The Ohio River Valley is an erosional,flat-bottomed,steep-walledvalley. The bedrock of Pennsylvanianage is a sequenceof flat-lying shaleand sandstoneoccasionallyinter-bedded with coal seams. It is overlain by about 100 feet (ft) thick alluvial granularterracesformed during the Pleistoceneperiod. Plant gradeis elevation(EL) 735 ftand the top of bedrock is at approximate EL 625 ft.

2.1 Srrn SrnarrcRAPHY The terracedepositsin the site areaarecharacterizedby three levels: high, intermediate,and low. The low terraceis the most recent,where the upper alluvial depositis composedof brown silty clay approximately20to 30 ft thick. The intermediateterraceconsistsof medium clays extendingto about EL 660 ft. The oldest,high terraceis the most abundantdepositat the plant location.

The site stratigraphypresentedhere is basedin part on site-specificgeotechnicalinvestigations reportedin the USAR (Section2.5.4.2and Appendix 2.58 to 2.5D). Thirty-five dry sample borings at the ShippingportPower Stationwere supplementedby 30 additional borings at the BeaverValley Power Station.Theseincluded l0 dry sampleborings on the high terrace,and the remaining borings locatedin the intermediateand low terracematerials. All boringspenetrated approximately20 ft into bedrock. The geologicprofile below the reportedsubsurface investigationdepth is basedon the analysisof formation tops and bottoms from availabledeep well logs in the vicinity of the site (within about 7 miles), obtainedfrom the Pennsylvania Geological Survey. This is supplementedby information from West Virginia and Ohio Geological Surveys,as well as the UpdatedSafetyAnalysis Report (USAR).

Figure / presentsthe stratigraphicsoil/rockcolumnunderlyingthe site, andTahle I presentsthe stratigraphyextendingto the Precambrian,identifying unit thicknessas estimatedfrom the subsurfaceinvestigationsreportedin the USAR and availablewell logs in the site vicinity. Due ABSGonsulting S:\Local\Pubs\2714294 docx Rev 2 201309 09 BV2 SiteDescription FENOCBeaverValley\3lQ ReportFile\R-016\R2\2734294-R-016, fCR

2734294-R-016 Reaision2 9,2013 September PaseL2 of28 to the relative proximity of the deepwells to the site, the unit lithologies and thicknessescan be reliablv assumedto be very similar to thosebelow the site.

kgend Perird Litltology unconsolidated sandand I ,.. (.) (l ). Pleistocene:Pleistocene:upper terrace: silt. Lower terrace:30-40'of silt

! 4 A gravelwith varyingamountsof clay and tl H i =

q and clay with sandandgraveloverlyinggravels (2). Allegheny:M iddle PennsylvanianAlleghenyCroup: gray shalewith

>rtr interbeddedsandstones, coalseams,underclaysanda limestonebed 0cq (3) Postville:Lower Pennsylvanian PottsvilleGroup: sandstoneand

{.)

E conglomerate

.9" (4). Mauchchunk:Upper MississippianMauchChunkFormation:red q

shalewith sandstone 3,(! (5). Pocono:Lower MississippianPoconoGroup: sandstoneand

/, = conslomeratew/ shale tr (6). Ohio shale:Upper Devonianundivided: interbeddedShale, q') sandstoneand siltstone,(Equivalentto the Ohio Shale) tt z ; ()

(7). Tully: M iddleDevonianTully Limestone (8) Mahantango:Middle DevonianMahantangoshale (9) Marcellus:Middle DevonianMarcellusShale

'10).

Onondaga:M iddleDevonian Onondag Group (Eqv. to Needmore I

hale/Selinsgrove Limestone)
limestonesand dolomites l l ). Ridgeley:Lower DevonianRidgeley(Oriskany)sandstone q) il2). Helderberg: Lower DevonianHelderbergFormation:
Limestone/shale (13).BassIsland:Upper SilurianBassIslandGroup:dolomiteand limestone I

( l4). Salina:Upper SilurianSalinaGroup/TonolowayFormation:

I J =

dolomiteand limestone V)

(15) Wells creek:Upper SilurianWells CreekFormation:shalewith SS and LS H (16) Lockport:Middle SilurianLockport dolomite (17). Rochester:Middle SilurianRochesterShale

_<-= (18). Rosehill: Middle SilurianRoseHill formation:Shalewith sandstone (19). Tuscarora:Lower SilurianTuscaroraFormation:SSwith I cnnolomercte tlt (20) Queenston:Upper OrdovicianQueenstonFormation:shale, O

siltstoneandSS E

2l). Reedsville:Upper OrdovicianReedsvilleShale

22) Utica: M iddleOrdovicianUtica Shale il o (23). M iddleOrdovicianTrenton Group (Black River Fm.): Limestone

.s (2a) M iddle OrdovicianGull River and GlenwoodFormations:

Limestoneand dolomite (25). Lower OrdovicianBeekmantownGroup: Dolomite i26) Upper CambrianGatesburgFormation: Dolomiteand dolomitic

-o

andstone 2?). M iddleCambrianRomeFormation
Dolomite I U 28). Lower CambrianMt SimonFormation:Sandstone

?(u

]t 29). Precambrian Cranite FIGURE T STRATIGRAPHIC COLUMN UNDERLYING THE BVPSSITE rFs Gonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-Ol6\R2V734294-R-016, Rev 2 2013 09 09 BV2 Site Description docx rCR

2734294-R-01.6 Reaision2 September 9,20L3 Page1,3of 28 The USAR doesnot make referenceto the well data. However, the site stratigraphyconstructed here on the basisof the well datais consistentwith the Regional and Local Geology discussedin Section2.4 andAppendix2B of the USAR.

TABLE 1 SUBSURFACESTRATIGRAPHYAND UNIT THICKNESSES AT THE BVPSSITE Borrou Top Borrona TOp EL EL Lrruolocv Dnprn Dnprn (f0 (ft) (ft) (fr)

Pleistocene:upperterrace:

Unconsolidatedsandand gravel with varying amountsof clay and 735 625 0 il0 silt. Lower terrace: 30 to 40 ft of silt and clay with sandand gravel overlying gravels Middle PennsylvanianAllegheny Group: gray shalewith interbedded 625 550 110 185 sandstones,coal seams,underclays, and a limestonebed Lower PennsylvanianPottsville 550 350 185 385 Group: sandstoneand conglomerate Upper MississippianMauch Chunk 350 300 385 435 Formation: red shalewith sandstone Lower MississippianPoconoGroup:

300 -120 sandstoneand conglomeratew/ 435 855 shale Upper Devonian undivided:

-120 -3,700 interbeddedshale.sandstoneand 855 4,435 siltstone.

-3,700 -3,820 Middle DevonianTullv Limestone 4,435 4,555

-3,820 -3,900 Middle DevonianMahantangoShale 4,555 4,635

-3.900 -3.935 Middle DevonianMarcellusShale 4.635 4,670

-3,935 - 4 , 1 5 0 Middle Devonian OnondagaGroup 4,670 4,885 Shale/Selins groveLimestone

-4,150 -4,250 Lower DevonianRidgeley 4,885 4,985 (Oriskany) Sandstone

-4,250 -4,450 Lower Devonian Helderberg 4,985 5 , 18 5 Formation: limestone/shale rEs Cottsulting S:\LocalWubs\2734294FENOC Beaver Valley\3,1Q Report File\R-O16\R2V734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx rCR

2734294-R-016 Retsision 2

September 9,20L3 Page14 of 28 TABLB 1 SUBSURFACESTRATIGRAPHYAND UNIT THICKNBSSES AT THE BVPSSITB (coNTTNUED)

Borrovr Top Borrou TOp EL EL Lrruolocv DnprH Dnprn (f0 (fr) (ft) (ft)

-4,450 -4,540 Upper SilurianBassIsland Group:

5 , 18 5 5,275 dolomite and limestone Upper Silurian Salina

-4,540 -5,330 Group/TonolowayFormation: 5,275 6,065 dolomite and limestone Upper Silurian Wells Creek

-5,330 -5,550 Formation: shalewith sandstone 6,065 6,285 and limestone

-5,550 -5,900 Middle Silurian Lockport Dolomite 6,285 6,635

-5,900 -5,980 Middle Silurian RochesterShale 6,635 6,715

-5,980 -6,170 Middle SilurianRoseHill 6,715 6,905 Formation: shalewith sandstone Lower Silurian Tuscarora

-6,170 -6,390 Formation: sandstonewith 6,905 7,125 conglomerate Upper OrdovicianQueenston

-6,390 -7,455 Formation: shale.siltstone.and 7,125 8 , 19 0 sandstone

-7,455 -8,265 Upper OrdovicianReedsvilleShale 8 , 19 0 9.000

-8,265 -8,565 Middle OrdovicianUtica Shale 9,000 9.300

-8,565 -9,305 Middle Ordovician Trenton Group (Black River Fm.): limestone 9,300 10,040 Middle Ordovician Gull River and

-9,305 -9,455 GlenwoodFormations:limestone 10.040 10,190 and dolomite

-9,455 -9,645 Lower Ordovician Beekmantown 10,190 10.380 Group: dolomite Upper CambrianGatesburg

-9,645 -g,gg5 Formation: dolomite and dolomitic 10,380 10,730 sandstone

-g,gg5 -10,695 Middle CambrianRome Formation:

10,730 11,430 dolomite

- 10,695 - 1 0 , 8 6 5 Lower CambrianMt. Simon 11,430 I 1,600 Formation: sandstone

-10.865 Precambriangranite 1I,600 lESGottsulting S.\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R2\2734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx

2734294-R-016 Reuision2 9,2013 September Page1.5of 28 2.2 SunsunFAcEM,+,rnnrALSANDPRopnnrtps The terracematerialsin the Plant area(high terracedeposits)consistof unconsolidatedand stratified sandand gravel outwashderived from the melting of glacial ice at the end of Pleistocenetime. The surfacesand and gravellayer is underlainby relatively denseand incompressiblesandand gravel extendingdown to bedrock at approximatelyEL 625. Major structuresof the plant are founded in the high terracesandsand gravel either directly or on compactedbackfill. Thin depositsof mud, silt, and sanddepositedby flood water on the Ohio River and tributary streamsoverlay the terracesandsand gravel.

Bedrock directly beneaththe site is composedof shaleof the Middle PennsylvanianAllegheny Group. This unit is characterizedbycyclic sequencesof sandstonesand shalesinterbeddedwith severalcoal seamsand occasionalthin limestonebeds. The thicknessof this unit underlying the site is approximately75 ft. Below the Allegheny Group is the Lower PennsylvanianPottsville Group sandstoneand conglomeratewith minor shalebeds,and minable coal beds. This formation is between 120 and 230 ft thick in the site area.

The subsurfacematerialspropertiessummarizedhere are basedon the geotechnical investigationsdescribedin the USAR. The borings in the intermediateand low terracematerials retrievedundisturbedsamplesof surfaceclays and silts for physical testing. However, no sampleswere obtainedin the high terracematerials. The propertiesfor this material are basedon StandardPenetrationTest (SPT) blow countsand in-situ geophysicalmeasurements.Properties of the bedrock material are basedon both laboratorytestsand in-situ geophysicalmeasurements.

The remaining subsurfacestratigraphicmaterialsunderlying the bedrock are characterizedby various sedimentarysequencesof the Mississippian,Devonian, Silurian, Ordovician and Precambrianages,consistingof shales,interbeddedsandstones,siltstonesand dolomites and limestone,overlying the Precambrianbasementat a depth of approximately I 1,000ft. Their propertiesare estimatedfrom the sonic data obtainedfrom deepwells.

Tables2 and 3 summarizethephysical and mechanicalpropertiesof the overburdensoils and the bedrock material.

fBtConsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R29734294-R-016, Rev 2 2013 09 09 BV2 Site Description docx

2734294-R-0L6 Reuision2 September 9,20L3 Page1.6of 28 TABLE 2 SUBSURFACEMATBRIALS PHYSICAL PROPBRTIES Tnrcrcxnss RBcovnnv (%)

Dnnsrrv SPT M.trnnnl Rnxcn (fo (pcf) ftlow/ft) Range Average Upper TerraceMaterial Siltv CoarseSand 0 tol0 t20-125 l0-16 CoarseSand& Gravel 16to 20 t20-125 t6-20 Medium Sand& Gravel (aboveW.T.) 20 to 50 120-125 20,50 Sand& Gravelftelow W.T.) 25 to 50 I30-140 20-50 ShaleBedrock 60.0to 80.0 155-165 s0-100 98 Ref.USARSection2.5.4.2andAppendices 2.5Bto 2.5D pcf: poundper cubicfoot TABLE 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES (t) Mouul,us (ksg {rl DluprNc Polssottt's MnlsunED vnlocrrY (ftls)

M,lrnRIAL (z)

ConnpRnssroN Sunnn CoUpRNSSION SHn^r,n (o/ol ft411g Upper TerraceMaterial (4)

Silty CoarseSand I 000-I 500 5 5 0- 8 5 0 t440 2.0- 3.0 0.4 CoarseSand& Gravel 2000 600- 900 2448 2 . 0- 3 . 0 0.4 Medium Sand&

Gravel 2000 950- 1200 4752 2 . 0- 3 . 0 0.28 (aboveW.T.)

Sand& Gravel (below 2.0- 3.0 6000 1050- 1250 6192 0.48

w. T.)

ShaleBedrock 12000 5000 1 2 5x 1 0 3 1 . 0- 2 . 0 0.39

l. BVPS-2 USAR Section2.5.4.4and BVPS-I USAR Appendix 2D and2G
2. Poisson'sratio and Gmax are calculatedby following formula:

v: [(VpA/s)2-2] lfz(vplvs)2 - 2l G m ax : p Vs 2 J. Recommendedvariability in soil is basedon SPT-Vs correlations(COV :25 percent). An averageCOV of 20 percentis assumedfor soil and bedrock.A COV of 0.1 I is assumedfor deeperrock units basedon the information from deepwells.

4. Compressionmodulus not reported.

AE$Consultlng S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016WV734294-R-016, Rev 2 2013 09 09 BVz Site Description docx FCR

2734294-R-01b Reaision2 9,201.3 September Page17 of 28 3.0 SITE SHEAR WAVB VELOCITY PROFILE AND NONLINEAR MATERIAL PROPERTIES(Item 3.b)

This sectiondescribesthe basisfor the velocity profiles usedin the site responseanalysisto obtain the site ground motion responsespectra(GMRS) and foundationinput responsespectra (FIRS). The developmentof the velocity profiles is describedin F.IZZO Report "Probabilistic SeismicHazardAnalysis and Ground Motion ResponseSpectra,BeaverValley NPP, Seismic probabilistic risk analysis(SPRA) Project," (RIZZO,20L3). The GMRS/FIRS are subsequently usedin the building seismicanalysisin supportof the ongoing seismicPRA.

3.1 Blsrs FoR B.lsn C.LsnVnlocrry PRoFTLES The shearand compressionwave velocities of the overburdensoils and the shalebedrockare basedon the subsurfaceinvestigationsreportedin the USAR Section2.5.4.4,as well as informationtakenfrom BVPS-I USAR Appendix 2G. Appendix}G of BVPS-I USAR summarizesthe 1968geophysicalinvestigationsconsistingof cross-hole,up-hole,and down-hole measurementsin five drill holes locatedin the reactor atea.P and S wave velocitieswere measuredfrom direct arrival times. A limited amount of seismicrefraction survey investigation was also performedto verify the elevationof bedrock,and to determinevelocity layering.

Variabilities in the shearwave velocities of the bedrock material and the overburdensoil are estimatedrespectively,from velocity measurementsand lab tests,and the StandardPenetration Test (SPT) data.

The deeprock stratigraphyas well as the seismicvelocities of thesestratarelies on sonic logs recordedin the wells inthe site vicinity (within 7 miles). Figure 2 presentsthe location of wells utilized hereto obtain the stratigraphyas well as the sonic data.

The sonicdatawere convertedto P-wavevelocities(Vo) and S-wavevelocities(V') basedon publishedliterature(Pickett, 1963;Rafavich,1984;Miller, 1990;and Castagna,1993)reflecting the material type (limestoneand dolomite, anhydritesand salts),porosity and density,and to a lesserextent,the lithology. Additionally, basedon publishedliterature,Vpff, ratiosof 1.7 AFS Gonsulting S:\Local\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R2\2734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx rCR

2734294-R-0L6 Reaision2 9,201.3 September Page1.8of 28 and2.1 were usedto obtain a coefficient of variation (COV) of about 0.l l representingthe variabilities for the S-wavevelocities.

Go earth m 20 FIGURE 2 WELLS USBD TO OBTAIN DEEP ROCK STRATIGRAPHY AND SHEAR WAVB VELOCITIES Varying unit thicknesses,incompletewell logs, and non-standardlithologic descriptionspresent somechallengesto reliably estimatingcontactlocations. However, the lithologic units in the region are flat lying and for the most part, laterally consistent. Consequently,the velocity structurein the wells examinedis relativelv similar and consistentfrom well to well for similar depths.

Most major structuresof the BVPS-2 are founded in the upper terracesandand gravel layers or densifiedsoil. The ReactorBuilding is supportedon in-situ soils and densifiedsoil at EL 681.

Other structuresare supportedon compactedbackfill placed on the terrace sand and gravel at AE$ Gonsultlng S:\Local\Pubs\2734294 docx Rev 2 201309 09 BV2 SiteDescription FENOCBeaverValley\3lQ ReportFile\R-016\R2\2734294-R-016, rCR

2734294-R-076 Reuision2 September 9,2073 Page19 of 28 foundationelevationsvarying betweenEL 703 for the Auxiliary Building to about EL 723 for the Fuel Building. Basedon the Final SafetyAnalysis Report (FSAR) descriptionof the seismic analysis(Section 3.7), the control point elevationfor SSE is taken to be the RB foundationlevel (EL 681).

Table 4 presentsthe geotechnicalprofile extendingfrom the Precambrianbasementto the plant grade. It identifies the layer thicknesses,shearand compressionwave velocities,and the uncertaintiesin theseparameters.

TABLE 4 GEOTECHNICAL PROFILE, BVPS.2SITE Elnvnrron Topor Ttotal Vs" v

MarBRlnl Dnposrr (pc0 (ftls)

(fo Plant Grade (Surface EL 735) 0 735 StructuralFill/ Natural and DensifiedSoil r36 730+I 83b 0.35 720 StructuralFill/ Natural and DensifiedSoil 136 I 0l 5+254" 0 . 3 5" 680.9 PleistoceneUpper and Lower Terrace I d) ( 125 I I 00+275" 0.29" 680.9 GMRS EL - SSE Control Pt. Nuclear Island Foundation Level 66s Ground Wa er Level b

66s Pleistocene Upperand Lower Terracs1le) 136 1200+300 " 0.49 625 M. Pennsylvanian AlleehenvShale(2) 160 5000+1000 " 0.39" L. PennsylvanianPottsvilleSS, 550' 160 6,026 0.30 conslomerate(3) 350 U. MississippianMauch ShunkShale(4) 155 6.144 0.30 L. MississippianPoconoSandstone 300 155 6,744 0.30 conglomerate(5)

-120 U. DevonianInterbedded Shale. 155 7,172 0.30

-2,994 Sandstone, siltstone(6) 155 6.416 0.30

-3,700 M. Devonan Tullv Limestone(7\ 168 9,856 0.30

-3.820 M. Devon an MahantansoShale(8) t57 9,856 0.30

-3,900 M. DevonianMarcellusShale (9) r57 9,856 0.30

-3,935 M. DevonianOnondagaLimestone, 170 9,856 0.30 Dolomite( 10)

-4,150 L. DevonianRideelevSandstone( I I ) 160 9,856 0.30

-4,250 L. DevonianHelderbergLimestone,Shale 170 9,856 0.30 (12'l

-4,450 U. SilurianBassIslandDolomite.

170 8,352 0.30 Limestone(13)

-4,540 U. SilurianSalinaDolomite,Limestone 170 8,352 0.30

-5,034 (14) 110 9,547 0.30 Gonsulting S.\Iocal\Pubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R2\2734294-R-016,Rev 2 20ll 09 09 BV2 Site Description docx rC?

2734294-R-01.6 Reaision2 September 9,201.3 Page20 of28 Elnvlrron Top or Ttot"t Vsu MnrnRrlr, v Dnposrr (pcr) (ftls)

(ft)

-5,330 U. SilurianWellsCreekShale(15) t63 11,534 0.30

-5.550 M. SilurianLockportDolomite(16) t70 9,015 0.30

-5,900 M. Siluran RochesterShale( l 7) t63 9.015 0.30

-5,980 M. Siluran RoseHill Shale(18) r63 9,015 0.30

-6,170 L. SilurianTuscaroraSandstone( l9) t63 8,588 0.30

-6.390 U. OrdovicianQueenstonShale,Siltstone, t63 8.588 0.30

-7,123 Sandstone(20) 163 7.835 0.30

-7,455 U. OrdovicianReedsvilleShale(2la & 163 7835 0.30

-1,698 2lb) 163 6834 0.30

-8,265 M. OrdovicianUtica Shale(22) 163 6834 0.30

-9,565 M. OrdovicianTrentonLimestoneQ3l 175 10.520 0.30

-9,305 M. OrdovicianGull River Limestone, 175 10,520 0.30 dolomite(24)

-9,455 L. OrdovicianBeekmantownDolomite 175 10,520 0.30 Qs)

-9,645 U. CambrianGatesburgDolomite 170 10,520 0.30 SandstoneQ6)

-g,gg5 M. CambrianRome Dolomite Q7\ t75 10,520 0.30

-10.695 L. CambrianMt. Simon Sandstone(28) 170 10,520 0.30

-10,865 PrecambrianGraniteQ9\ 175 10.520 0.30 Notes:

u Variability in Vs of soil is basedon SPT-V, correlations(COV:25 percent). COV is assumed20 percentas averageof soil and rock for the rock at the top and for deeperrock units COV : I I percentis assumedbasedon the information from deepwells.

BVPS-2USAR Section2.5.4.4and Appendix2D,2G and2H of the BVPS-I USAR U

From this elevationdown, soil parametersare estimatesfrom sonic velocities of deep wells exceptunit weight.

Unit weights are typical values from the literature. Poisson'sratio is calculatedby following formula:

v: [ (Vp/Vs)2 -z] tlz(vptvs)2- z l lBSGonsulting S : \ L o c a l \ P u b s U T 3 4 2 9 4 F E N O C B e a v e r V a l l e y UI Q R e p o n F i l e \ R - O 1 6 \ R 2 \ 2 7 3 4 2 9 4 - R - O I 6 , R e v2 2 0 l 3 0 g 0 g B V 2 S i t e D e s c r i p t i o n d o c x

2734294-R-016 Reaision2 9,2013 September Page2L of28 3.2 V, PnorrLESusEDrNBVPS-2SPRA In supportof the SPRA project, severalFIRS are developedat foundation elevationsvarying from the intake structuresat EL 637 to the DGB at EL 729. Theseare basedon truncatedsoil profiles at respectivefoundation levels obtainedfrom the full soil column site responseanalysis.

The site responseanalysisperformedas part of the BVPS-2 SPRA usesone BaseCaseprofile, basedon the best estimateinformation in Table 4. However, the analysisrepresentspossible aleatoryvariability in the shearwave velocity profile by using 60 randomizedV5 profiles based on the parameterspresentedin Table 4. The random profile realizationsare obtained using the stochasticmodel developedby Toro ( 1996),and assumefull correlationbetweenthe shearwave velocities in adjacentlayers. Theserandom realizationsof the V, profile representthe variability in the soil column from the interbeddeddolomite, limestone,and shaleto the top of the argillaceouslimestone(M. Devonian Tully Limestone).

The use of one BaseCaseprofile is justified on the basisthat the site stratigraphyis reasonably uniform and flat lying, the overburdensoils as well as the investigateddepth of bedrockare well charactefized by a number of in-situ velocity measurements,and dynamic laboratorytests,and the reportedboring logs do not indicate significant variability in layer thicknessesand depths.

Figure 3 presentsthe best estimaterepresentingthe BaseCasevelocity profile and the upper and lower boundsrepresentedby 60 randomizedprofiles utilized in the SPRA site responseanalysis.

AESGonsultlng S.\LocalVubs\2734294 FENOC Beaver Valley\3 lQ Report File\R-016WV734294-R-016, Rev 2 2013 09 09 BV2 Site Description docx

2734294-R-0L6 Reaision2 September 9,201.3 Page22 of 28

- l I I

I I

I I

-.1 I

I I

I I

I I

I I

I I

I I

I I

I I

I I

Ea-zsoo I I

o I o I I

I I

I I

I I

I I

I I

I t--

I I

I I

I I

Upper-Bound I t-----

Lower-Bound

- BestEstimate FIGURE 3 Vs PROFILES'BVPS-2SITE 3.3 Non- Lrxnnn MnrBruALCHARAcrERrsrrcs UsnorNBVPS-2SPRA The site responseanalysisperformedas part of the BVPS-2 SPRA representsnon-linearmaterial propertiesby utilizing shearmodulus degradationand material damping as functions of the seismicshearstrain. Strain dependentdynamic parameterfor the overburdensoils are reported in Appendix2D, Figure2D-3 of BVPS-I USAR, and Figure2.5.4-71of the BVPS-2USAR.

AFSGonsulting S \Local\Pubs\2734294FENOC Beaver Valley\3 lQ Repon File\R-016\R2V714294-R-016, Rev 2 2013 09 09 BV2 Site Description docx rCR

2734294-R-016 Reaision2 September9,2013 Page23 of 28 Table 5 and Figures 4 through 6 presentsthe strain dependentstiffnessand dampingproperties of the backfill material and the in-situ overburdensoils. The material-dampingratio is limited to a maximum of 15 percentin the calculationsfollowing guidancein NRC Regulatory Guide 1.208. The underlying bedrockmaterial is assumedto behavelinearly and the damping ratio for the hard rock half spaceis assumedto be 1.0 percent.

The variability in the dynamic propertiesis propagatedin the site responseanalysisby selecting from 60 setsof randomizedpropertycurvesshown on Figure 4 through 6. Each of the 60 randomizedVs profiles, representingthe aleatoryuncertainties,is paired with one combinationof the randomizednonlineardynamic property curvesfor input to the site response analysis.

TABLE 5 STRAIN-DEPENDENTPROPERTIESFOR SOIL OVERBURDBN PIoTSToCENEUPPNNAND PInTSTOCENEUPPNNAND SrnucruRAl Bncxnrll LownnTnnnacn(1n)

Srnnlll LownnTnnnrcn(1o)

(%) DnmprNc D,l,uptNc D,q,MplNc G/Gn,"*

("hl G/Grr* (l) (%)

G/G,"* (%l 0.000r 1.0000 1.4907 1.0000 1.2568 r.0000 1.0172 0.000316 0.9968 I . 5 7 1 3I 3 0.9977 r.267272 0.9982 1.04859 0.00100 0.9707 1.842 0.9845 1.5012 0.9925 t.26190 0.0020 0.9415 2.30495 0.9632 r.797616 0.9812 r.484852 0.00300 0.9123 2.7679 0.9419 2.094152 0.9699 1.707805 0.0050 0.8663 3.410786 0.9070 2.541755 0.9412 2.033219 0.0070 0.8216 4.053611 0.8731 2.994024 0.9119 2.35229r 0.0r00 0.7545 5.0rI 0.8221 3.663427 0.8680 2.8309 0.0200 0.6419 7 . 0 0113 6 0.1224 5.221978 0.7805 4.079881 0.0300 0.5292 8.984273 0.6227 6.793721 0.6929 5.328863 0.0500 0.4486 10.89077 0.s466 8.445937 0.6170 6.77834 0.0700 0.3772 12.56841 0.4783 9.968477 0.5475 8.t36644 0.1 0.2702 15.08487 0.3760 t2.25229 0.4431 r0.l74l 0.2 0 .I 9 6 1 I 8 .I 0 5 9 9 0.2774 15.2974r 0.3399 12.9530s 0.3 0.1228 2l .05091 0.r 789 18.33796 0.2353 15.7320r I 0.0392 26.s9868 0.0587 24.6822 0.089s 22.67t2 (l) G/G."* : shearmodulus(G) normalizedby the low-strainshearmodulus(G.u*).

lBSConsulting S.\LocaltPubs\2734294FENOC Beaver Valley\3 lQ Report File\R-016\R2\2734294-R-O16,Rev 2 2013 09 09 BV2 Site Description docx

2734294-R-016 Reaision2 September 9,201,3 Pase24 of28 1

0 .9 0 .8 0 .7 x

0 ,6 c

E o 0 .5 o 0.4 0 .3 0.2 0.1 0

0.0001 0.001 20 18 16 14 tED 12 c

CL 10 E

o G I 6

4 2

0 0.0001 0.001 0.01 Shear strain (%)

FIGURE 4 SHEAR MODULUS AND DAMPING, STRUCTURAL BACKFILL G/G,,'u*= shearmodulus (G) normalized by the low-strain shearmodulus (G,no*).

lEgGonsultlng S:\Local\Pubs\2734294FENOCBeavervalley\3.lQReporrFile\R-016\R2\2734294-R-0l6,R2 e2v 0l30g0gBV2SiteDescriptiondocx rCR

2734294-R-01.6 Reaision2 9,201,3 September Page25 of 28 1

0 .9 0 .8 0.7 x

0.6 c

E o 0 .5 o 0 .4 0 .3 0.2 0.1 0

0.0001 20 18 16 14 E 12 CD c

CL 10 E

(E o I 6

4 2

0 0.0001 0.01 Shearstrain(%)

FIGURE 5 SHEAR MODULUS AND DAMPING, TERRACE(20-50FT DEPTH)

AESGonsulting S:\Local\Pubs\2734294FENOCBeaverValley\3.lQReportFile\R-O16\R2\2734294-R-OI6,R 2e2 v0 l 3 0 9 0 9 B V 2 S i t e D e s c r i p t i o n d o c x rCR

2734294-R-01,6 Reaision2 9,20L3 September Page26 of28 0.000 0.01 Shearstrain (%)

20 18 16 14

e CD 12 c

CL 10 E

o t! I 6

4 2

0 0.0001 0.001 0.01 Shearstrain (%)

FIGURE 6 SHEAR MODULUS AND DAMPING, TERRACE(51-120FT DEPTH)

Goneiiltlng S:\Local\PubsU734294FENOCBeaverValley\3.IQReportFile\R416\R2\2734294-R-016, Rev 2 201309 09 BV2 SiteDescriptlondocx rG

2734294-R-016 Reuision2 September 9,201.3 Page27 of28

4.0 REFERENCES

Castagna,J.P.,and M.M. Backus,1993,"Rock Physics- The Link BetweenRock Propertiesand AVO Response,"in Eds., Offset-dependentreflectivity - Theory and Practiceof AVO Analysis, Castagna,J.P.,Batzle,M.L., and Kan, T.K., Investigationsin Geophysics(SEG) No. 8, pp. 135-171.

EPRI, 1993,"Guidelines for Determining Design Basis Ground Motions," Electric Power ResearchInstitute,Palo Alto, CA, Rept.TR-102293,Vol. 1-5, 1993.

EPRI, 2013, "Seismic EvaluationGuidance,Screening,Prioritization and Implementation Details (SPID) for the Resolutionof FukushimaNear-Term Task ForceRecommendation2.1:

Seismic,"February2013.

FirstEnergyNuclear OperatingCompany(2012). "Final Report Geology and Geotechnical Information for Site Amplification CalculationsSeismic ProbabilisticRisk AssessmentBeaver Valley Power Station,"Rev. 0, July 2,2012.

Goldthwait,R., G. White, andJ. Forsyth,l96l, "Glacial Map of Ohio," Ohio Departmentof Natural Resources,Div. of Geol Survey.

Hough, J.L., 1958,"Geology of the GreatLakes," University of Illinois Press,Urbana,IL.

Miller, S.L.M., and R.R. Steward,l990, "Effects of Lithology, Porosityand Shalinesson P- and S-WaveVelocitiesfrom Sonic Logs," CanadianJournalof ExplorationGeophysics,Volume26, Nos. 1 &2, pp.94-103.

Norris, S.E., 1975,GeologicStructureof Near-surfaceRocksin WesternOhio, Ohio Journalof Science75(5): 225, 1975.

NRC, 2007,RegulatoryGuide 1.208,"A Perforrnance-Based Approachto Define the Site-Specific EarthquakeGround Motion," U.S. Nuclear RegulatoryCommission,March 2007.

NRC, 2013 "Electric Power ResearchInstitute Final Draft Report, 'seismic Evaluation Guidance: AugmentedApproach for the Resolutionof FukushimaNear-TermTask Force Recommendation 2.1: Seismic,'as an acceptableAlternativeto the March 12,2012Information Requestfor SeismicReevaluations, May 7,2013."

Pickett,G.R., (Pickett),1963,"Acoustic CharacterLogs and their Applicationsin Formation Evaluatiofl,"Journalof PetroleumTechnology,Volume 15,No. 6, pp. 659-667.

Consulting S.\Local\Pubs9734294 FENOC Beaver Valley\3 lQ RepoA File\R-O16\R2V734294-R-016,Rev 2 2013 09 09 BV2 Site Description docx rCR

2734294-R-01.6 Reaision2 September 9,201.3 Page28 of28 Rafavich,F., C. St. C.H. Kendall, and T.P. Todd, 1984,"The RelationshipbetweenAcoustic Propertiesand the PetrographicCharacterof CarbonateRocks," Geophysics,Volume 49,No. 10, pp. I 622-1636.

RLZZO,2013, "Probabilistic SeismicHazard Analysis and Ground Motion ResponseSpectra, BeaverValley NPP, SeismicPRA Project," Paul C. Rizzo Associates,Pittsburgh,PA, May 23, 2013.

Silva, W.J.,N.A. Abrahamson,G.R. Toro, and C. Costantino(1996),"Descriptionand Validation of the StochasticGround Motion Model," Rept. submittedto BrookhavenNatl. Lab.,

Assoc.UniversitiesInc., Upton NY I 1973,ContractNo. 770573.

FENOC, "Beaver Valley Power StationUnit 2 UpdatedFinal SafetyAnalysis Report," Rev 20, DocketNo. 50-412.

Toro, G.R., 1996,"ProbabilisticModels of Site Velocity Profilesfor Genericand Site-Specific Ground Motion Amplification Studies,Description and Validation of the StochasticGround Motion Model," Report submittedto BrookhavenNational Laboratory,AssociatedUniversities, Inc. Upton, New York 11973,ContractNo. 770573,Publishedas Appendix D in W.J. Silva, N. Abrahamson,G. Toro, and Costantino,1996.

Walling, M.A., W.J. Silva, andN.A. Abrahamson(2008). "Nonlinear Site Amplification Factors for Constrainingthe NGA Models," EarthquakeSpectra,24 (l) 243-255.

ABSGonsulting S.\Local\PubsU734294FENOC Beaver Valley\3 lQ Reporr File\R-016\R2V?34294-R-016, Rev 2 2013 09 09 BV2 Site Description docx rCR

EnclosureC L-13-245 for Davis-Besse SiteDescription NuclearPowerStation Near-TermTaskForceRecommendation 2.1 PartialSubmittal Davis-Besse NuclearPowerStation (25 pagesfollow)

ABSGonsulting 2734296-R-008 Revision2 Site Description for Davis'Besse NuclearPowerStation Near-Term Task Force Recommendation 2.1 Partial SubmittalDavis-Besse Nuclear PowerStation September9, 2013 Preparedfor:

FirstEnergy NuclearOperatingGompany ABSG Consultinglnc. . 300 CommerceDrive,Suite200 ' lrvine,California92602

2734296-R-008 Reaision2 September9,201,3 Page2 of25 REPORT SITE DESCRIPTIONFOR DAVIS-BESSENUCLEAR POWER STATION NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL DAVIS-BESSENUCLEAR POWBR STATION ABSG CONSULTING INC. RnpOnTNo. 2734296.R-OO8 RIZZO Rrponr No. Rg 12-4737 RnvrsroN2 SrprnnnnER 9, 2013 ABSG CoxsuLTrNGINC.

Pnur C.Rrzzo AssocIATES,INC.

AESGonsulting S:\Local\Pubs\27U2%FENOC Davis-Besse\31Q ReportFile\R408\R2\2734296-R-008, Rev, 2 2013 09 09 DB Site Descriptiondocx ft,}R

2734296-R-008 Reaision2 September 9,201.3 Page3 of25 APPROVALS Report Name: SiteDescriptionfor Davis-Besse NuclearPowerStationSite NTTF Recommendation 2.1 PartialSubmittal Davis-Besse NuclearPowerStation Date: September 9, 2013 Revision No.: 2 Approval by the responsiblemanagersignifies that the documentis complete,all required reviews are complete,and the documentis releasedfor use.

Originators: 910912013 Nish Vaidya, Ph.D., Date Independent Technical Reviewer: 9109120t3 letf Hatipoglu Ph.D. Date ecluiical Supervisor N'g,L Va; Project Manager: 910912013 Nish Vaidya, Ph.D., Date Principal Approver: 910912013

. Roche,P.E. Date Vice President rEs Gonsultlng S:\Local\Pubs\27%296FENOC Davis-Besse\31Q Report File\R408\R2\2734296-R{08, Rev 2 2013 09 09 DB Site Description.docx rCR

2734296-R-008 Reaision2 September 9,201.3 Page4 of25 CHANGE MANAGEMENT RECORI)

Report Name: Site Descriptionfor Davis-BesseNuclearPower StationSite NTTF Recommendation2.1 Partial Submittal Davis-BesseNuclear Power Station Rnvtstotrr Pnnsox DnscnlprroNs oF D,lrn AurHonIzING AppRovall No. CHnucBs/AnpncrED PAGES CHlncn 0 August12.2013 OrieinalIssue N/A NiA AddressedLicensing Comments I September 6, 2013 NRV NRV Primarilv Editorial 2 September9. 20t3 Additional Licensing Comments NRV NRV Note:

l Personauthorizingchangeshall sign here for the latestrevision.

fBtGonsulting S:\Local\Pubs\27g296FENOC Davis-Besse\31Q ReportFile\R-008\R2\2734296-ROO8, Rev 2 2013 Og 09 DB Site Description.docx

2734296-R-008 Reaision2 September 9,20'1.3 Page5 of 25 TABLE OF CONTENTS PAGE LISTOF TABLES .......6 LISTOF FIGURES .......,........7 LISTOF ACRONYMS ............8 1.0 TNTRODUCTTON ...........9 1.1 Sounces oFINFoRMATToN ............9

2.0 DESCRIPTION

OF SUBSURFACE MATERIALSAND PROPERTIES

( I T E M3 . a ). . ...............11 2.1 SrreSrnancRAPHY .....1 I

2.2 SussunpAcE MATERTALS ANDPnopEnrrEs ........ ...........

14 3.0 SITESHEARWAVE VELOCITY PROFILEAND NONLINEAR MATERTAL PROPERTTES (rTEM3.b).. ................16 3.I Bnsrsron BnsECnseVelocrry Pnoplr.Es ......... ..........

16 3.2 V, PRoTTLES usEDrNDnvrs-Bessp Nuclpnn PowEnSrauox SPRA.... ...20 3.3 NoN-LtNean MnTERTAL CHanncrERrsrrcs Ussnm DBNPSSPRA........21

4.0 REFERENCES

..........24 fESConsulting S:\Local\Pubs\27342%FENOC Davis-Besse\31Q Report File\R08\R2\2734296-R-008,Rev 2 2013 OgOg DB Site Descriptiondocx fCR

2734296-R-008 Reaision2 September 9,201.3 Page6 of 25 LIST OF TABLES TABLE NO. TITLE PAGE TABLE I SUBSURFACESTRATIGRAPHYAND UNIT THICKNESSES .......13 TABLE 2 SUBSURFACE MATERIALSPHYSICALPROPERTIES......... I5 TABLE 3 SUBSURFACE MATERIALSDYNAMIC PROPERTIES I5 TABLE 4

SUMMARY

SITEGEOTECHNICALPROFILEFOR DBNPSSITE ...........19 TABLE 5 STRAIN-DEPENDENT PROPERTIES FORBED ROCK..........22 llSCffiuftlrtg S:\Local\Pubs\:27A2$ ReportFile\R{D8\R2t27342SRfl8,Rev.2 201309 @ DBSiteDescription.docx FENOCDavis-BesseB.lQ ffr

2734296-R-008 Reaision2 September 9,201.3 Page7 of25 LIST OF FIGURES FIGURE NO. TITLE PAGE FIGUREI STRATIGRAPHICCOLUMN UNDERLYINGTHE DBNPSSITE ...12 FIGURE2 WELLSUSEDTO OBTATNDEEPROCK STRATIGRAPHY.......... ......,17 FIGURE3 BASECASESHEARWAVE VELOCITYPROFILE DBNPSSITE ................21 FIGURE4 BEST-ESTIMATE AND RANDOMIZEDSTRAIN.

DEPENDENTSHEARMODULUSAND DAMPING.......... .....,23 lSGonsultlng S:\Local\Pubs\27%2%

FENOCDavis-Besse\3 1QReporiFile\R-008\M\27342S-R-m8, Rev 2 201309 09 DBSiteDesoiption.docx rc\fe

2734296-R-008 Reaision2 September9,2013 PageI of25 LIST OF ACRONYMS ACRONYM TITLB COV Coefficient of Variation DBNPS Davis-BesseNuclear Power Station EL Elevationin Feet EPRI Electric Power ResearchInstitute FIRS FoundationInput ResponseSpectra ft Foot or Feet ft/s Feetper second FENOC FirstEnergyNuclear OperatingCompany FIRS FoundationInput ResponseSpectra GMRS Ground Motion ResponseSpectra NRC NuclearRegulatoryCommission NTTF Near-Term Task Force SB ShieldBuilding SPID Screening, Priori tization, and ImplementationDetails SSE Safe ShutdownEarthquake SPRA SeismicProbabilisticRisk Analysis SPT StandardPenetrationTest su Undrained ShearStrength tsf Tons per squarefoot USAR UpdatedSafetyAnalysis Report vp PressureWave Velocity V, ShearWave Velocitv ABSGottsulting S:\Local\Pubs\2734296 Rev 2 2013 09 09 DB Site Description.docx ReportFile\R{08\R2\2734296-R-008, FENOC Davis-Besse\3.1Q f{]f?

2734296-R-008 Reaision2 September 9,201.3 Page9 of25 SITE DESCRIPTIONFOR DAVIS-BESSENUCLEAR POWER STATION SITE NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL DAVIS-BESSENUCLEAR POWER STATION

1.0 INTRODUCTION

With referenceto the United StatesNuclear RegulatoryCommission(NRC) Letter datedMay 7, 2013 (NRC,20l3) this Document summarizesthe site geologic and geotechnicalinformation, and presentsthe basecasevelocity profiles Items 3.a. "Description of SubsurfaceMaterials and Properties,"and 3.b., "Developmentof BaseCaseProfiles andNonlinear Material Properties"in Section4.0 of Electrical Power ResearchInstitute (EPRI) Report 1025287(EPzu 2013) for the Davis-BesseNuclearPower Station(DBNPS) site.

The information provided here is consideredan interim product of seismichazarddevelopment efforts. The completeand final seismichazardreportsfor DBNPS will be provided to the NRC in our seismichazardsubmittalsby March 31,2014 in accordancewith (NRC, 2013).

The basecasevelocity profiles presentedhere are utilized as the basisin the site response analysiswhich propagatesthe seismic hazard at outcropping hard rock at depth through the overlying site specific soil/rock column. The depth of the hard rock layer is defined as the first layer at depthwith a shearwave velocity (Vr) equal to or greaterthan 9,200 ftls. The site responseanalysisobtainsthe amplification functions consistentwith the geotechnicalcolumn overlying the hard rock, and developsthe ground motion hazad at the building foundation levels.

1.1 SouncBSoF InnonnnATroN

l. Davis-BesseNuclear Power StationNo. I Updated SafetyAnalysis Report, Rev. 29 Section2.5: Geologyand Seismology;Appendix2C - Geology,Seismology,Subsurface Conditions,and GeotechnicalDesignCriteria,DocketNo. 50-346(Toledo-Edison20l2).

December2012.

Gonsultlng S:\Local\Pubs\27A2%FENOC Davis-Besse\3.1Q ReportFile\R{08\R2U734296-R408,Rev 2 2013 09 09 DB Site Desqiption.docx rCR

2734296-R-008 Reuision2 September 9,201.3 Pase1.0of 25

2. Davis-BesseNuclear Power StationNo. I UpdatedSafetyAnalysis Report, Section3.7 -

SeismicDesign,Rev. 29 Section3.8 - Designof SeismicClassI and ClassII Structures, DocketNo. 50-346(Toledo-Edison2012).December2012.

3. Ohio GeologicalSurvey- Well Logs.

AE$Consulting S:\Local\Pubs\27%296 FENOC Davis-Besse\31Q ReportFile\R{08\R2\2734296-R{08,Rev 2 2013 Og09 DB Site Desoiption,docx

2734296-R-008 Reaision2 9, 2013 September Page1.1.of 25

2.0 DESCRIPTION

OF SUBSURFACEMATERIALS AND PROPERTIES(item3.a)

The DBNPS site, locatedon the southwesternshoreof Lake Erie in Ottawa County, Ohio, lies in the Lake Plains sub-provinceof the Central Low Land Physiographicprovince. The site bedrock consistsof horizontally stratified, sedimentary,argillaceousdolomite containinginterbedded gypsum,anhydrite,and shaleof the TymochteeFormation. Approximately 15 feet (ft) of glacial till and glaciolacustrinedepositsoverlay the site bedrock. The plant gradeis at elevation(EL) 584 ft, and the top of rock is at a nominal EL 555.0ft.

2.1 Strn Srru,rrcRAPHY The site stratigraphypresentedhere is basedin part on site-specificgeotechnicalinvestigations reportedin the Updated SafetyAnalysis Report (USAR) (Section2.5.4 and Appendix 2C). Of the 5l rock core borings, four borings penetratedto a depth of about 195 ft from the surfaceand were terminatedin the Upper Silurian Greenfieldformation underlying the dolomite bedrock of the TymochteeFormation. The remainingrock coreswere terminatedat a depth of about I 15 ft, a few feet below the Tvmochtee. J The geologicprofile below the reportedsubsurfaceinvestigationdepth is basedon the analysis of formation tops and bottoms from availabledeepwell logs in the vicinity of the site, obtained from the Ohio Geological Survey. The units and thicknessdown to the Middle Ordovician were obtainedfrom deepwells locatedabout 2-3 miles west of the site in Ottawa County, while the units and thicknessesbelow the Middle Ordovician are interpretedfrom deeperwells located about 15-20miles to the south of the site in SanduskyCounty, along with somewells about 35 miles southwestof the site in Wood County. Due to the relative proximity of thesedeepwells to the site, the unit lithologies and thicknessescan be reliably assumedto be very similar to those below the site.

The USAR doesnot make referenceto the well data. However, the site stratigraphyconstructed here on the basisof the well data is consistentwith the Regionaland Local Geology discussedin Appendix2C of the USAR. Figure 1 presentsthe stratigraphic soil/rockcolumnunderlyingthe AFSGottsulting S:\Local\Pubs\2734296FENOC Davis-Besse\31Q Report File\R{08\R2\2734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx

2734296-R-008 Reuision2 9,2013 September Page1.2of 25 site,and Table,l presentsthe stratigraphyextendingto the Precambrian,identifying unit thicknessas estimatedfrom the subsurfaceinvestigationsreportedin the USAR and available well logs in the site vicinity (approximately2 to 3 miles).

FTY b tc rd FIGURE T STRATIGRAPHICCOLUMN UNDERLYING THE DBNPSSITE Gonsulting S:\Local\Pubs\27342%

FENOC Davis-BesseB1Q ReportFile\R{08\R29734296-R-008,Rev 2 2013 Og09 DB Site Description.docx rce

2734296-R-008 Reaision2 September9,2013 Page1.3of 25 TABLE 1 SUBSURFACESTRATIGRAPHYAND UNIT THICKNESSES AT THE DBNPSSITE Top Borrovr Top Borronn ELBv,q,rtoN ELnv,q,rIoN LrrnolocY DnprH DnprH (ft) (ft) (fo (ft)

Pleistocene:glaciolacustrine;stiff, fissured, 575 565 0.0 l0 desiccated,gray and brown silty clay Pleistocene:glacialtill; hard,fissured, 565 555 l0 20 desiccated,gray to brown sandyclay Upper Silurian Tymochteeformation:

55s 460 20 ll5 arsillaceousdolomite 460 370 Upper Silurian Greenfieldformation: dolomite ll5 205 370 30 Middle Silurian Lockport Dolomite 20s 545 30 -20 Middle Silurian RochesterCNiagrian)Shale 545 595

-20 -l0s Middle Silurian Clintor/CataractGroup:

595 680 interbeddeddolomite, limestoneand shale

-105 -685 Upper Ordovician Queenstonformation: shale, 680 t260 siltstone.and sandstone

-685 -850 Upper Ordovician Eden formation: shalesand r260 1425 limestones

-850 -l 630 M. Ordovician Trenton formation: limestone r425 2205 Middle Ordovician Black River (Gull River)

-l 630 -1680 2205 22s5 formation: limestoneand dolomite

-r680 -1690 Middle OrdovicianGlenwood(Willis Creek) 22s5 2265 formation: sandstones.carbonatesand shales

-1690 -1750 Middle OrdovicianSt. Peter(Willis Creek) 2265 2325 formation: sandstone

- t 75 0 -183s Lower Ordovician to Upper CambrianKnox 2325 2410 formation: dolomite

-1835 -1975 Middle CambrianConasaugaGroup/Kerbel 24t0 2550 formation: sandstone

- t 9 75 -2175 Middle CambrianRome formation: dolomite 2550 2750

-2175 -2285 Lower to Middle CambrianMt. Simon 2750 2860 formation: sandstone

-2285 PrecambrianGranite 2860 rBs Gonsulting S:\Local\Pubs\2734296 Rev 2 2013 09 09 DB Site Descriptiondocx FENOC Davis-Besse\31Q ReportFile\R408\R2\2734296-R-008.

rCR

2734296-R-008 Reuision2 9,201.3 September Pase'14of 25 2.2 SunsunFACEM.LrnruALSANDPnopnnrtEs Surfacesoilsconsistingof marshorganic and beachsedimentsoverlay the glacial deposits. The upper glaciolacustrinedepositin this stratigraphyis composedof stiff, fissured,desiccated,gray, and brown silty clay. The lower till depositis composedof hard, fissured,desiccated,and gray to brown sandyclay. The thicknessof glacial depositsin Ottawa County averages25 ft.

Below the glacial deposits,the Upper Silurian Tymochteeformation is reportedto be about 80 to 100 ft thick. The Tymochteeformation is a soft to hard, thinly beddedto massive,laminated, argillaceousdolomite. The lithology of the Greenfieldformation underlying the Tymochteeis similar to the Tymochteeformation. Consequently,the contactbetweenthe Tymochteeand Greenfieldformations is difficult to detect,but basedon resultsof the borings, it is locatedat an approximateEL 460 ft at the site.

The stratigraphybelow the Tymochteeand the Greenfieldformationsconsistsof an approximately2,250 ft thick sequenceof various sedimentaryrocks, predominantlylimestones, and dolomites,with interbeddedshalesand sandstonesof various thicknesses.Theseformations overlay the Precambriangranite basement.The top of the Precambrianbasementexists at approximateEL -2200 ft.

Tables2 and J summarizethe physical and the mechanicalpropertiesof the overburdensoils and the bedrockmaterial.

tBSGonsulting S:\Local\Pubsu7342%FENOC Davis-Besse\3.1Q ReportFile\R408\R2\27342S-R-008,Rev. 2 2013 09 09 DB Site Descriptiondocx

2734296-R-008 Reaision2 September 9,201.3 PageL5 of25 TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIES THrcxxnss DBnsrrv Qc SPT RncovnRY(%)

MnrnnI.u, RAxcn (ft) (ucf) (tsfl ftloilft) R.Lncn Avnn^q.cn LacustrineDeposits 6.0 to 10.0 r25 3.5 t2 GlacialTill 6.0 to 10.0 132- t36 8.0 40 Approx.

BeddedDolomite 10.00 1 5 0- 1 5 2 750 95 - 100 98 MassiveDolomite 8.0to 10.0 l s 0- 1 5 2 I 500 95 - 100 98 BeddedDolomite 60.0to 80.0 1 5 0- 1 5 2 750 95 - 100 98 Notes:

Q, : Unconfined CompressiveStrength pcf: pound per cubic foot SPT: StandardPenetrationTest tsf : ton per squarefoot Ref. USAR Section2.5.1.8 TABLB 3 SUBSURFACEMATERIALS DYNAMIC PROPERTIES Mn.lsunEDVELocrrY (ftls) (t) Ellsrrc Moour,us(ksO(" Dnuprnc Polssox's MnrnRtal, CorrlpnnsstoN Sun,lR COUpNNSSION SHr,q.n V"l Rq.rIo Lacustrine (2) (2) (2) (2) (2) (2)

Deposits (2)

Glacial Till 5100-6100 64 x 103 23 x 103 0.04-0.05 0.4 BeddedDolomite 12700 6700 5 5 0x 1 0 3 212 x 103 0.01-0.02 0.3 (a)

MassiveDolomite 1r400-14600 5700-7500 1 . 3 - 1 . x8l 0 6 ( a ) 0.6-0.7x106 0.01-0.02 0.3 BeddedDolomite l r400-r4600 5700-7500 5 5 0x 1 0 3 212 x 103 0.01-0.02 0.3 Notes:

(l) USAR Sec2.5.1.7(SeismicRefraction)

(2) Not Reportedbecauseno major sffucturesfounded on the deposits (3) USAR Sec.2C.4.5(Basedon in-situ wave velocities),ksFkip per squarefoot (4) USAR Sec.2.5.1.8and Table2C.4-2(Basedon Lab Tests) fESGonsultlng Q ReportFile\R4O8\R2\27342SR-008.Rev, 2 2013 09 09 DB Site Descriptiondocx S:\Local\Pubs\27U2%FENOC Davis-BesseB.1

2734296-R-008 Reuision2 September 9,2073 Page16 of 25 3.0 SITE SHEAR WAVE VELOCITY PROFILE AND NONLINEAR MATERIAL PROPERTIES(Item 3.b)

This sectiondescribesthe basisfor the velocity profiles usedin the site responseanalysisto obtain the site ground motion responsespectra(GMRS) and foundationinput responsespectra (FIRS). The developmentof the velocity profiles is describedin Paul C. Rizzo Associates,Inc.

(RIZZO) Report "Probabilistic SeismicHazardAnalysis and Ground Motion ResponseSpectra, Davis-BesseNPP, SeismicProbabilisticRisk Assessment(SPRA) Project,"(RIZZO,2013). The GMRS/FIRS are subsequentlyusedin the building seismicanalysisin supportof the ongoing SPRA.

3.1 Bnsrs FoRB,lsn Clsn Vnloclry PRoFTLEs The shearand compressionwave velocities of the overburdensoils and the dolomite bedrock are basedon the subsurfaceinvestigationsreportedin the USAR. Twenty-six seismicrefraction shot points and 140 seismicrecordingswere obtainedto determinethe in-situ S-waveand P-wave velocities of the site bedrockmaterial and the soil overburden. Thesemeasurementswere substantiatedby dynamic testing of soil and rock samples. Variabilities in the shearwave velocitiesof the bedrock material and the overburdensoil are estimatedrespectively,from velocity measurementsand lab tests,and the StandardPenetrationTest (SPT) data.

Although the deeprock stratigraphyis derived from well logs within about 2-3 miles of the Site, the seismicvelocities of thesestratarely on sonic logs recordedin the wells in SanduskyCounty (15-24 miles from the Site) and Wood County (35 miles from the Site). Figure 2 presentsthe location of wells utilized hereto obtain the stratigraphyas well as the sonic data. The wells identified with yellow pins were only usedfor stratigraphiccorrelation,while the wells identified with red markerswere also usedfor seismicvelocitv data. J The sonicdatawere convertedto pressure(P)-wavevelocities(Vo) and shear(S)-wavevelocities (V,) basedon publishedliterature(Pickett, 1963;Rafavich,1984;Miller, 1990;and Castagna, 1993)reflecting the material type (limestoneand dolomite, anhydritesand salts),porosity and density,and to a lesserextent,the lithology. Additionally, basedon publishedliterature,VpN.

lESConsulting S:\Local\PubsV734296 FENOC Davis-Besse\31Q ReportFile\R-008\R2\2734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx f{OR

2734296-R-008 Reaision2 September9,201.3 PaseL7 of25 ratios of I .7 and2.1 were usedto obtain a coefficient of variation (COV) of about 0.1 representingthe variabilities for the S-wavevelocities.

Go [eearth o FIGURE 2 WELLS USED TO OBTAIN DEEP ROCK STRATIGRAPHY AND SHEAR WAVE VELOCITIES Varyingunit thicknesses, incompletewell logs,andnon-standard lithologicdescriptions present somechallenges to reliablyestimatingcontactlocations.However,the lithologicunitsin the regionareflat lying andfor the mostpart,laterallyconsistent.Consequently, the velocity AE$Gonsultlng S:\Local\Pubs\27A2% FENOC Davis-Besse\3.1QReport File\R408\R2\27342S-RS8, Rev. 2 2013 Og 09 DB Site Description.docx

2734296-R-008 Reaision2 September 9, 201.3 Page18 of 25 structurein the wells examinedis relatively similar and consistentfrom well to well for similar depths.

Most major structuresof the DBNPS are foundedin the dolomite bedrockat foundation elevationsvarying between540 for the Shield Building (SB) to about 550 for the Auxiliary Building Area 8. Accordingly, the SB foundation level (EL 540) is defined as the control point elevationwhere the FIRS are developed.

The velocity profile presentedhere is basedon resultsof site investigationsreportedin the USAR to the investigateddepths. Twenty-six seismicrefraction shot points were usedto determinethe in-situ shearwave and compressionwave velocities of the bedrock and till material. Additionally, 9l cross-holemeasurements obtainedseismiccompressionwave velocitiesat various depths. The in-situ measurementswere supplementedby dynamic laboratoryteststo obtain the dynamic compressionand shearmodulus,damping,and Poisson's ratios. Below the investigationdepth,the deeprock stratigraphiesas well as the velocity profiles are estimatedfrom availabledeepwell information in the site vicinity (RIZZO,2012).

Table 4 presentsthe summarygeotechnicalprofile identifying the layer thicknesses,shearand compressionwave velocities,and uncertaintiesin theseparameters.

AFSConsulting S:\Local\Pubs\2734296 FENOC Davis-Besse\3.1Q Rev 2 2013 09 09 DB Site Descriptiondocx ReportFile\R08\R2V734296-R-008,

2734296-R-008 Reaision2 September 9, 20L3

-lQ Pnop nf ?1 TABLE 4

SUMMARY

SITE GEOTECHNICAL PROFILB FOR DBNPSSITE Et Bv.lrton LnYnn Ttot"t V.t'l SOIURoCK DESCRIPTIoN tr (ft) No. (ncfl (ftls) 585 Plant Grade 585to 565t' I G laciolacustrineDeposits 125 5ll+92tot 0.4(o/

565to 555 2 GlacialTill 132-136 643+ll6(*, 0.4(ol 555to 548 BeddedDolomite 3960+695('l J l5l 0.31(6) 548to 540 MassiveDolomite 4948+891(

540 RX FIRS - SSE Control Point elevation 540-528 )a MassiveDolomite l5l 4948+891(

5 2 8t o 5 1 8 39701715\')

5 1 8t o 5 0 8 J a

BeddedDolomite l5l 5790+1042\') 0.3I (6) 508to 460(') 4071 460to 370\') 4 GreenfieldDolomite(UpperSilurian) 176 5.672 0.31 370to 30 5 LockportDolomite(Middle Silurian) t76 8.782 0.3r 30 to -20 6 Shale 138 8,682 0.27

-20to - 105 lnterbeddedDolomite, Limestone,and 7 t76 8,615 0.27 Shale

-105to -685 I Shale,Siltstoneand Sandstone r42 6.514 0.30

-685to -850 9 Shaleand Limestone 176 5,996 0.29

- 8 5 0t o - 1 5 3 0 l0 Limestone 176 10,894 0.29

- l 5 3 0t o - l 5 8 0 ll Limestoneand Dolomite 176 10.712 0.31

-l 580to -1590 t2 Sandstones. Carbonates. and Shales r42 r0,212 0.30

- I 5 9 0t o - 1 6 5 0 r3 Sandstone t45 10,212 0.30

- 1 6 5 0t o - 1 7 5 0 t4 Dolomite 176 9,049 0.34

- 1 7 5 0t o - 1 8 7 5 l5 Sandstoneand Dolomite Sandstone t45 7.616 0.30

- l 875 to -2075 I6 Shale,Siltstone,Sandstone, and Dolomite 176 9,483 0.34

-2075 to -2185 T7 Sandstone t45 7,337 0.30 Notes:

(l)

Velocity databetweenEL 503 ft and EL 482.5ft is unavailable.Availableparametersfor stratum3 are assumed applicablethroughoutthe entirelayer. Above EL 482.5 ft, a COV - 0.18 is usedfor the velocity variability estimates.Below EL 482.5ft. a COV-0.1 is used.

(2)

Beginning from EL 482.5ft and below, the Poisson'sratio and dry unit weight valuesare basedon literaturedata and engineeringjudgment. A 5 percentwater contentis assumedfor the materialsin the soil column.

(3)

Exceptotherwisenoted,V. presentedhere is the bestestimateweightedaveragevaluesbasedon the Well Log P-wave velocity.

(4)

Basedon SPT-N valuesfrom 32 boreholesin Units 2 and 3.

(s)

Obtainedfrom cross-holemeasurements in Units 2 and3.

(6)

Assumptionbasedon Unit I data. Water table EL is approximately575.

(7) l0' of CompactedBackfill, consistingof lacustrinesoils and till is assumedto have the samevelocitiesas ABSConsulting S:\Local\Pubs\27342%

FENOC Davis-Besse\31Q ReportFile\R{08\R2\2734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx f{\R

2734296-R-008 Reuision2 September 9,20L3 Page20 of25 3.2 V, PnonrLESusEDrN DAvrs-BEssENucLn.q,RPownR SrATroN SPRA The site responseanalysisperformedas part of the DBNPS SPRA usesone Base Caseprof,rle basedon the information in Table 4. However, the analysisrepresentspossiblealeatory variability in the V, profile by using 60 randomizedV* profiles basedon the parameters presentedinTahle 4. The random profilerealizations are obtainedusing the stochasticmodel developedby Toro (1996), and assumefull correlationbetweenthe shearwave velocities in adjacentlayers. Theserandom realizationsof the V, profile representthe variability in the soil column from the interbeddeddolomite, limestone,and shaleto the top of the argillaceous dolomite.

The use of one BaseCaseprofile is justified on the basisthat the site stratigraphyis reasonably uniform and flat lying, the overburdensoils as well as the investigateddepth of bedrock are well characterizedby a number of in-situ velocity measurements, and dynamic laboratorytests,and the reportedboring logs do not indicate significant variability in layer thicknessesand depths.

Figure 3 presentsthe best estimaterepresentingthe BaseCasevelocity profile and the upper and lower boundsrepresentedby 60 randomizedprofiles utilized in the SPRA site responseanalysis.

Note that upper bound V, is limited to the velocity of the hard rock of 9,200 fl/s.

Gonsulting S:\Local\Pubs12734296 FENOC Davis-Besse\3.1Q Rev 2 2013 09 09 DB Site Descriptiondocx ReportFile\R408\R29734296-R-008, rCR

2734296-R-008 Reaision2 9,201.3 September Pase21 of25 BestEstimate Upper-Bound I

Lower-Bound CL o

o FIGURE 3 BASE CASE SHEAR WAVE VELOCITY PROFILE DBNPSSITE 3.3 Non-LTNEAR M,lrnnrAl, CHARAcrERrsrrcs UsnnrNDBNPSSPRA The site responseanalysisperformedas part of the DBNPS SPRA representsnon-linearmaterial propertiesby utilizing shearmodulus degradationand material damping as functions of the seismicshearstrain. The Davis-BesseUSAR doesnot report non-linearpropertiesof the AESGonsultlng S:\Local\Pubs\27A2% FENOC Davis-Besse\3.1Q Report File\R408\R2\127342S-R-008,Rev 2 2013 09 09 DB Site Desoiption docx rCR

2734296-R-008 Reuision2 September 9,201.3 Pase22 of 25 subsurfacematerials. Therefore,the modulus degradationand material damping curvesused herearebasedonNUREG/CR 6728. Non-linearityof shearmodulusand dampingis expressed in terms of the shearmodulus degradationand material damping as functions of the seismic shearstrain.

Tuble 5 and Figure y' presentthe strain dependentshearmodulus and damping for the dolomite bed rock units underlying the site. The material-dampingratio is limited to a maximum of 15 percentin the calculationsfollowing guidancein USNRC RegulatoryGuide 1.208. The dampingratio for the hard rock half spaceis assumedto be 1.0 percent.

TABLE 5 STRAIN-DEPBNDENTPROPERTIESFOR BED ROCK Srn.ArN(" 1 G/G Dnuprllc (o l 1.00E-04 0.997 3.247 3.16E-04 0.997 3.247 r.00E-03 0.997 3.247 3.40E-03 0.997 3.247 6.80E-03 0.974 3.871 8.80E-03 0.966 4.105 1.31E-02 0.932 4.596 2.528-02 0.8s0 5.566 3.048-02 0.824 6.025 4.98E-02 0.726 7.577 8.05E-02 0.624 9 . 16 8 1.32E-01 0 . 51 3 I 1.099 2.ttE-01 0.4t6 1 3 . I3I 3.25E-01 0.329 15.650 5.70E-01 0.242 18.843 9.43E-01 0.161 21.73r Note:

G/Gmax : shearmodulus (G) normalizedby the low-strain shearmodulus (Gmax)

AB$Gonsulting S:\Local\Pubs\27H296FENOC Davis-Besse\31Q ReportFile\R-008\R2P734296-R-008, Rev 2 2013 09 09 DB Site Descriptiondocx

2734296-R-008 Reaision2 September 9,20L3 Page23 of 25 Rock Layers I

0.9 0 .8 0 .7 0.6 x

Eo.s o

0 04 0 .3 0.2 0.1 0

0. 0.01 0.1 Shearstrain(%)

Rock Layers 20 18 16

^14 Erz ctl

.= 10 CL E8 8o 4

2 0

0.0001 FIGURE 4 BBST.ESTIMATE AND RANDOMIZED STRAIN.DBPENDENT SHEAR MODULUS AND DAMPING The variability in the dynamic propertiesis propagatedin the site responseanalysisby selecting from 60 setsof randomizedproperty curvesshown onFigure 4. Each of the 60 randomizedVs profiles, representingthe aleatoryuncertainties,is paired with one combinationof the randomizednonlineardynamic property curvesfor input to the site responseanalysis.

lBs Gonsulting S:\Local\Pubs\27342%FENOC Davis-Besse\3.1Q Report File\R{08\R2\2734296-R408 Rev. 2 2013 09 09 DB Site Description.docx rCR

2734296-R-008 Reaision2 September9,201.3 Pow4 tfE

4.0 REFERENCES

Castagna,J.P.,and M.M. Backus, 1993,"Rock Physics- The Link BetweenRock Propertiesand AVO Response,"in Eds., Offset-dependentreflectivity - Theory and Practiceof AVO Analysis, Castagna,J.P.,Batzle,M.L., and Kan, T.K., Investigationsin Geophysics(SEG) No. 8, p. 135-17l, 1993.

EPRI, 2013 "Seismic Evaluation Guidance,Screening,Prioritization and ImplementationDetails (SPID) for the Resolutionof FukushimaNear-TermTask ForceRecommendation2.1: Seismic,"

February2013.

FirstEnergyNuclear OperatingCo (2012) "Final Report Geology and GeotechnicalInformation for Site Amplification CalculationsSeismicProbabilisticRisk AssessmentDavis BesseNuclear PowerStation," Rev. 0, July 2,2012.

Gotdthwait,R., G. White, and J. Forsyth,1961,"Glacial Map of Ohio," Ohio Departmentof Natural Resources,Div. of Geol Survey,1961.

Hough,J.L., 1958,"Geology of the GreatLakes,"Universityof Illinois Press,Urbana,IL, 1958.

McQuire,R.K.,W.J. Silva,and C.J.Costantino,200l,NUREG/CR-6728TechnicalBasisfor Revision of RegulatoryGuidanceon Design Ground Motions: Hazard-and-Risk-consistent GroundMotion SpectraGuidelines,Risk Engineering,Inc., Boulder,Colorado,October2001.

Miller, S.L.M., and R.R. Steward,l990, "Effects of Lithology, Porosityand Shalinesson P- and S-WaveVelocities from Sonic Logs," CanadianJournalof Exploration Geophysics,Volume 26, Nos. l &, 2, p.94-103,1990.

Norris, S.8., lg7s,Geologic Structureof Near-surfaceRocks in WesternOhio, Ohio Journalof Science75(5):225, 1975.

NRC, 2007,RegulatoryGuide 1.208,"A Perforrnance-Based Approachto Define the Site-Specific EarthquakeGround Motion," U.S. Nuclear RegulatoryCommission,March 2007.

'SeismicEvaluation NRC, 2013"Electric PowerResearchInstituteFinal Draft Report, Guidance: AugmentedApproach for the Resolutionof FukushimaNear-Term Task Force Recommendation 2.1: Seismic,'as an acceptableAlternativeto the March 12,2012 Information Requestfor SeismicReevaluations, May 7,2013."

Pickett,G.R., (Pickett),1963,"Acoustic CharacterLogs and their Applicationsin Formation Evaluatiof,,"Journalof PetroleumTechnology,Volume 15,No. 6, p. 659-667,1963.

ABSConsulting ReportFile\R{08\R2\27342S-R-008,Rev 2 2013 09 09 DB Site Descriptiondocx S:\Local\Pubs\27A2%FENOC Davis-Besse\3.1Q f{]e

2734296-R-008 Reaision2 9, 201.3 September PqK t! lf@

Rafavich,F., C. St. C.H. Kendall, and T.P. Todd, 1984,"The RelationshipbetweenAcoustic Propertiesand the PetrographicCharacterof CarbonateRocks," Geophysics,Volume 49,No. 10,

p. 1622-1636,1984.

RIZZO 2012 "Geology and GeotechnicalInformation for Site Amplification Calculation, SeismicProbabilisticRisk Analysis,Davis BesseNuclearPower Station,"ReportR2 l2-4734 DB Site Info to EPRI," Revision0, Paul C. Rizzo Associates,Inc., Pittsburgh,PA, June29, 2012.

R:IZZO,2013, "Probabilistic SeismicHazardAnalysis and Ground Motion ResponseSpectra, Davis-BesseNPP, SeismicPRA Project,"Paul C. Rizzo Associates,Inc., Pittsburgh,PA, April 19, 2013.

Toledo Edison, 2012 "Updated SafetyAnalysis Report, Davis-BesseNuclear Power StationNo.

1, DocketNo: 50-346,LicenseNo: npf-3, Revision29, December2012."

Toro, G. R. 1996"ProbabilisticModels of Site Velocity Profilesfor Genericand Site-Specific Ground Motion Amplification Studies,Descriptionand Validation of the StochasticGround Motion Model," Report submittedto BrookhavenNational Laboratory,AssociatedUniversities, Inc. Upton, New York 11973,ContractNo. 770573,Publishedas Appendix D in W.J. Silva,N.

Abrahamson.G. Toro and Costantino,1996.

ABSGonsulting S:\Local\Pubs\2734296 Rev 2 2013 09 09 DB Site Description.docx FENOC Davis-Besse\31Q ReportFile\R408\R2\2734296-R-008, rc\r?

EnclosureD L-13-245 for PerryNuclearPowerPlant SiteDescription Near-TermTaskForceRecommendation 2.1 PartialSubmittal PerryNuclearPowerPlant (27 pagesfollow)

ABSGonsulting 2734298-R-008 Revision2 Site Descriptionfor PerryNuclearPowerPlant Near-Term TaskForce Recommendation 2.1 Partial SubmittalPerryNuclearPower Plant September9, 2013 Prepared for:

FirstEnergy NuclearOperatingGompany Inc. . 300 CommerceDrive,Suite200 . lrvine,California92602 ABSG Consultinq

2734298-R-008 Reaision2 September 9,201-3 PaRe2 of 27 REPORT SITE DESCRIPTIONFOR PERRY NUCLEAR POWER PLANT NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL PERRY NUCLEAR POWER PLANT ABSG CONSULTINGINC. Rrponr No. 2734298-R-008, RIZZO Rnponr No. R9 12-4734, RnvrsroN2 SnprrnnBER 912013 ABSG CoNSULTTNG INC.

Paul C.Rtzzo AssocrATES, INC.

AESGonsultlng S:\Local\Pubs\2734298FENOC Perry\3 1Q Report File\R-008\R2\2734298-R-008, Rev 2 2013 Og 09 PY Site Description.docx rCR

2734298-R-008 Reuision2 September9,20L3 Pnop 1 nf)7 APPROVALS Report Name: Site Description for Perry Nuclear Power Plant NTTF Recommendation2.1 Partial Submittal Perry Nuclear Power Plant Date: Septemb er 9, 2013 Revision No.: 2 Approval by the responsiblemanagersignifies that the documentis complete,all required reviews are complete,and the documentis releasedfor use.

Originators: 9109t20r3 Nish Vaidya,Ph.D., Date Princinhl Independent Technical Reviewer: 910912013 len[ HatipogluPh.D. Date echnicalSupervisor NtEd^ Va; Project Manager: 910912013 Date Approver: 910912013 Thomal6R. Roche.P.E. Date Vice President ABSGonsulting S:\Local\Pubs\27H298FENOC Perry\3.1QReportFile\R-008\R2t2734298-R-008, Rev 22O13OgOgPY Site Descriptiondocx

2734298-R-008 Reaision2 9,20L3 September Page4 of27 CHANGE MANAGEMENT RECORI)

Report Name: SiteDescriptionfor PerryNuclearPowerPlant NTTF Recommendation 2.1 PartialSubmittal PerryNuclearPowerPlant Rnvrstotrl Pnnson DnscruprroNsoF No.

D,lrn AurnonrzlNG AppRovnll CHnucns/AnnBcrED PAGES CH,lNcn 0 August12.2013 OrieinalIssue N/A N/A AddressedLicensing Comments I September 6, 2013 NRV NRV Primarilv Editorial 2 September.9 2013 Additional Licensing Comments NRV NRV Note:

t Personauthorizingchangeshall sign here for the latestrevision.

ABtConsultlng S;\Local\Pubs\:2734298 FENOC Perry\3 1Q Report File\R408\R2\2734298-R{08, Rev. 2 2013 09 09 PY Site Descriptiondocx

2734298-R-008 Reaision2 September 9,201.3 Pase5 of27 TABLE OF CONTENTS 1.1 Sounces oFINFoRMATToN ................9

2.0 DESCRIPTION

OF SUBSURFACE MATERIALSAND PROPERTIES

( I T E M3 . a ). . . . . . . ............1I 2.1 SrreSrnnrrcRApHy .............1 I

2.2 SuesunpAcE MATERTALS ANDPnoppnrrEs ........ I4 3.0 SITESHEARWAVE VELOCITYPROFILEAND NON-LINEAR MATERTALPROPERTTES (rTEM3.b)... ...........16 3.1 BnsrsFoRBASE CASE VplocrryPnorrlEs......... ..........16 3.2 V, PnonLES usEDrNPNPPSPRA .....19 3.3 NoN-Ltt'leeR MaTERIALS CHnRacrERrsrrcs UsEorNPNPPSPRA..........21

4.0 REFERENCES

...26 fESGonsufrlng S:\Local\Pubs\27%298 FENOC Perry\3.1QReportFile\R-OO8\R2\273429E-R-008, Rev.2 2013 Og 09 PY Site Description.docx rCR

2734298-R-008 Reaision2 September 9,201.3 Page6 of 27 LIST OF TABLES TABLE NO. TITLE PAGE TABLE I SUBSURFACE STRATIGRAPHY AT THE PNPPSITE...........I3 TABLE 2 SUBSURFACE MATERIALSPHYSICALPROPERTIES.

P N P PS I T E . . . . . ..........rS TABLE 3 SUBSURFACE MATERIALSDYNAMIC PROPERTIES.

P N P PS I T E . . . . . ..........rS TABLE 4 GEOTECHNICAL PROFILE,PNPPSITE ......I8 TABLE 5 STRAIN-DEPENDENT PROPERTIES FORPNPP SUBSURFACE SOILS ..........21 AE$Gonsultlng S:\Local\Pubs\2734298FENOC Perry\3 1Q Report File\R408\R2U734298-R408, Rev, 2 2013 09 09 PY Site Descriptiondocx rCR

2734298-R-008 Reaision2 September 9,201.3 Page7 of27 LIST OF FIGURES FIGURE NO. TITLE PAGE FIGUREI STRATIGRAPHICCOLUMN UNDERLYINGTHE P N P PS I T E . . . . . ..........12 FIGURE2 DEEPWELL STRATIGRAPHY/SHEAR WAVE VELOCITIES, PNPPSITE ...17 FIGURE3 SPRAVs PROFILE,PNPPSITE..... ...20 FIGURE4 SHEARMODULUSAND DAMPING,LACUSTRINE SOIII,S, PNPPSITE .......22 FIGURE5 SHEARMODULUSAND DAMPING.UPPERTILL" pNppsrrE.....  :...............:...........

.....23 FIGURE6 SHEARMODULUSAND DAMPING,LOWERTILL, P N P PS I T E . . . . . ................24 AESConsuftlng S:\Local\Pubs\27%298FENOC Perry\3 1Q Report File\R408\R2\2734298-R408, Rev 2 2013 09 09 PY Site Descriptiondocx rCR

2734298-R-008 Reuision2 September 9,201,3 PageI of27 LIST OF ACRONYMS ACRONYM TITLE COV Coefficient of Variation DGB Diesel GeneratorBuilding EL Elevation EPRI Electric Power ResearchInstitute FENOC FirstEnergyNuclear OperatingCompany FIRS FoundationInput ResponseSpectra ft Foot or Feet ft/s Feetper second GMRS Ground Motion ResponseSpectra Ksf Kips per squarefoot NRC Nuclear RegulatoryCommission NTTF Near-Term Task Force pcf Poundsper cubic foot PNPP Perry Nuclear Power Plant RB ReactorBuilding SPID Screening,Prioritization, and ImplementationDetails SSE Safe Shutdown Earthquake SPRA SeismicProbabilisticRisk Analvsis su Undrained shearstrength SPT StandardPenetrationTest Tsf Tons per squarefoot USAR UpdatedSafetyAnalysis Report vp Pressure-wavevelocities V, Shear-wavevelocities AESGonsultlng S:\Local\Pubs\27%298 FENOC Perry\3.1QReportFile\R{08\R2u734298-R408, Rev 22013Og 09 PY Site Description.docx

2734298-R-008 Reaision2 September 9,20L3 Page9 of 27 REPORT SITE DESCRIPTIONFOR PERRY NUCLEAR POWER PLANT NTTF RECOMMENDATION 2.1 PARTIAL SUBMITTAL PERRY NUCLEAR POWER PLANT 1.0 INTRODUCTTON With referenceto United StatesNuclear RegulatoryCommission(NRC) Leffer dated May 7, 2013 (NRC, 2013) this documentsummarizesthe site geologic and geotechnicalinformation, and presentsthe basecasevelocity profiles for the Perry Nuclear Power Plant (PNPP) site. This information addressesItems 3.a. "Description of SubsurfaceMaterials and Properties,"and 3.b.,

"Developmentof BaseCaseProfilesandNon-linearMaterial Properties"in Section4.0 of EPRI Report 1025287(EPRI, 2013).

The information provided here is consideredan interim product of seismic hazarddevelopment efforts. The completeand final seismic hazardreportsfor PNPP will be provided to the NRC in our seismichazardsubmittalsby March 31,2014 in accordancewith (NRC,2013).

The basecasevelocity profiles presentedhere are utilized as the basisin the site response analysis,which propagatesthe seismichazardat outcroppinghard rock at depth through the overlying site specific soil/rock column. The depth of the hard rock layer is defined as the first layer at depth with a shearwave velocity (Vs) equal to or greaterthan 9,200 feet per second (ft/s). The site responseanalysisobtainsthe amplification functions consistentwith the geotechnicalcolumn overlying the hard rock, and developsthe ground motio nhazard and the groundmotion responsespectra(GMRS) at the building foundationlevels.

l.l Souncn SoF InnoRnaATIoN

t. PerryNuclearPowerPlantNo.l UpdatedSafetyAnalysisReport,Rev 17, DocketNo.

50-440,Section2.5: Geology,Seismologyand GeotechnicalEngineering;Appendix2c -

Geology,Seismology,SubsurfaceConditionsand GeotechnicalDesignCriteria,October 20t1.

AB$Gonsulting S:\Local\Pubs\2734298 Rev 2 2013 09 09 py Site Descriptiondocx FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-ooB, rCR

2734298-R-008 Reaision2 9,20L3 September Page1,0of 27

2. PerryNuclearPowerPlantNo.l UpdatedSafetyAnalysisReport,Rev 17,DocketNo.

50-440,Section3.7- SeismicDesign,Section3.8 - Designof CategoryI Structures, October201l.

3. Ohio GeologicalSurvey- Well Logs.

Canrrlltlm S:\Local\Pubs\27g291tFENOC Peny\3.1Q Report File\R408\R2\273429&R{08, Rev. 2 2013 09 09 PY Site Description.docx FCR

2734298-R-008 Reaision2 September9,20L3 Pagel1gf 2!

2.0 DESCRIPTION

OF SUBSURFACEMATERIALS AND PROPERTIES(ITEM 3.a)

The Perry Nuclear Power Plant (PNPP) site, locatedon the shoreof Lake Erie in Lake County, Ohio lies onthe northwesternflank of the Appalachiangeosyncline. Bedrock directly beneath the site belongsto the Ohio ShaleFormation (Upper Devonian). To the south,theseDevonian strataare overlain by successivelyyoungerPaleozoicsedimentsand Pleistoceneglacial deposits respectively. Approximately 30 feet (ft) of very densetill overliesthe bedrock. In turn, the till is overlain by about 25 ftof poorly compactedlacustrinedeposits. Both the till and the lacustrine depositsare of Pleistoceneage. The plant gradeis at elevation(EL) 620 and the top of bed rock is at approximateEL 565.

2.1 Strn SrRq.rrcRAPHY The site stratigraphypresentedhere is basedin part on site-specificgeotechnicalinvestigations reportedinthe UpdatedSafetyAnalysisReport(USAR) (Section2.5.4.2and Appendix 2E). Of the borings advancedas part of the site investigation,two deepborings penetratedto depthsof 395 ftand73A ft and were terminatedin the Huron Shaleformation. Other borings terminatedin the overlying Chagrin Shalebedrock.

The geologic profile below the reportedsubsurfaceinvestigationdepth is basedon the analysis of formation tops and bottoms from availabledeepwell logs in the vicinity of the site (within 4 miles), obtainedfrom the Ohio GeologicalSurvey. Due to the relative proximity of thesedeep wells to the site, and the flat lying natureof the deposits,the unit lithologies and thicknessescan be reliably assumedto be very similar to thosebelow the site.

Figure / presentsthe stratigraphicsoil/rockcolumnunderlyingthe site, andTable I presentsthe stratigraphyextendingto the Precambrian,identifying unit thicknessas estimatedfrom the subsurfaceinvestigationsreportedin the USAR and availablewell logs in the site vicinity.

AESConsultlng Rev 2 2013 09 09 PY Site Description.docx S:\Local\Pubs97H298FENOC Perry\31Q ReportFile\R-OO8\R2\2734298-R-008, f{]t

2734298-R-008 Reuision2 September9,2073 Page12 of 27 kgend Period Lithology

l. Lacustrine:Pleistocene LacustrineDeposits:Very frnesandy,clayeysihand silfyclay a-l 2. Glacial Drift Pleistocene:Glacial drift
3. Chagrin Shale:Devonian Ohio Shale.Chagrin Shale:Gray silty to clayey shale with sand shale laminae.

H r;

n

4. Heron Shale:DevonianOhio Shale.Heron Shale:Black to brown shalewith sifty and sandv laminae.
5. Delew&Col.: DevonianDelaware and ColumbusFormations:Hard,dense,

(,)

chertv limestone.or a dolomitic limestone

6. Oriskany: DevonianOriskany Sandstone:Fine to medium-grainedsandstone LA 7. Helderberg:L. Devonianto U. SilurianHelderbergLimestone.

fi q Cd Lr

8. Bass Island:U. SilurianBass Island Group:argillaceous,dolomitic limestoneand calcareousdolomite p 9. Salina:U. SilurianSalinaGroup: interbeddedevaporiteand carbonaterocks I

IT 10.Lockport:M. SilurianLockportGroup:Dolomite

11. RochesterShale:M. SilurianRochester"Packer"Shale ffi a 12. Clinton:M. SilurianClinton Croup: Dolomite, limestoneand shale
13. Medina:M. SilurianMedina Formation:Sandstone

{l+ r

14. Queenstown:Upper Ordivician QueenstownFormation:Shale,sihstoneand sandstone
15. Reedsville:Middleto Upper OrdovicianReedsvilleFormation:Fine-grained I o shale.limestonesand lolomites
16. Trenton: M. Ordivician Trenton Limestoneand Dolomite 1[ 17.Chary:MiddleOrdivicianCharyFormation Glenwood): Limestone (BlackRiver/GullRiver/
18. Copper Ridge:L. Ordivician Copper Ridee Formation:Dolomite g

T TI 19.Conasauga: U. CambrianConasauga Formation: Limestoneandsandstone

20. Rome: M. CambrianRome Formation:Dolomite O

E

21. Shady:M. Cambrian Shadyformation: Dolomite I

-l O.

22.Mt Simon:M. CambrianMt. SimonFormation:Sandstone

+rt Q C) l.i

23. Precambrianregionalty-metamorphosed silicategranulites schists,gneisses,marbles,and calc-FIGURE I STRATIGRAPHIC COLUMN UNDBRLYING THE PNPP SITE Consulting S \Local\Pubs12734298 FENOC Perry\31Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 09 PY Site Descriptiondocx rCR

2734298-R-008 Reuision2 September 9,2073 Page13 of 27 TABLE 1 SUBSURFACESTRATIGRAPHYAT THE PNPPSITE Top Borrom Top Borrom EL EL Lrruolocv Dnprn DrprH (ft) (f0 (f0 (f0 PleistoceneLacustrinedeposits:very fine sandy,clayey silt and silty 625 594 0 31 clav 594 565 Pleistocene:glacialdrift 3l 60

- 135 DevonianOhio Shale. ChagrinShale:gray silty to clayey shalewith 565 60 760 sandshalelaminae

-l35 -660 DevonianOhio Shale. Huron Shale: black to brown shalewith siltv 760 1285 and sandvlaminae

-660 -970 DevonianDelawareand Columbusformations:hard. dense.chefi t285 I 595 limestone.or a dolomiticlimestone

-970 -980 DevonianOriskanySandstone:fine- to medium-grainedsandstone I 595 I 605

-980 -r 030 L. Devonianto U. SilurianHelderbergLimestone 1605 l 655

-r030 -l 130 U. SilurianBassIslandGroup: argillaceous, dolomiticlimestone,and I655 1755 calcareousdolomite

-r 130 -r 830 U. Silurian SalinaGroup: interbeddedevaporiteand carbonaterocks 1755 2455

-l 830 -2080 M. SilurianLockportGroup: dolomite 2455 2705

-2080 -2110 M. Silurian Rochester"Packer" Shale 2705 2735

-2t10 -2290 M. SilurianClintonGroup: dolomite,limestone,and shale 2735 2915

-2290 -2305 M. SilurianMedinaFormation:sandstone 2915 2930

-2305 -2505 Upper Ordivician QueenstownFormation: shale,siltstone,and 2930 31 3 0 sandstone

-2505 -3945 Middle to Upper OrdovicianReedsvilleFormation: fine-grained 31 3 0 4570 shale,limestones, anddolomites

-3945 -4435 M. Ordivician TrentonLimestoneand Dolomite 4570 5060

-4435 -4615 Middle Ordivician ChazyFormation(Black River/Gull River/

s060 5240 Glenwood): limestone

-4615 -47t5 L. Ordivician CopperRidge Formation: dolomite 5240 5340

- 4 7t 5 -4930 U. CambrianConasaugaFormation: limestoneand sandstone 5340 5555

-4930 -4910 M. CambrianRome Formation: dolomite 5555 559s

-4910 -5160 M. CambrianShadyformation: dolomite 5595 5785

-5160 -5300 M. CambrianMt. SimonFormation:sandstone 5785 5925

-5300 Precambrianregionally-metamorphosed schists,gneisses,marbles, s925 and calc-silicatesranulites lBSGonsulting S:\Local\PubsV734298 Rev 2 2013Og09 PY Site Desuiptiondocx FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-008,

2734298-R-008 Reuision2 September 9,2013 PaseL4 of 27 The USAR doesnot make referenceto the well data. However, the site stratigraphyconstructed here on the basisof the well datais consistentwith the Regional and Local Geology discussedin the USAR (Section2.5.1.2).

SunsunFACEMarnruALS ANDPnopnRTrES The lacustrinedepositsbelow surfacesoils averagein thicknessof 25 ft and are composedof a very fine sandy, clayeysilt, and silty clay. The underlying soil layer is a very densePleistocene glacial drift till composedof native material with someice-transportedgranitic erratic.

Composition of the till varies from place to place,but in generalis heterogeneous, dense,boulder clay with interspersedrock fragmentsranging from large boulders,cobbles,and pebblesdown to sandsize. This unit is an averageof 30 ft thick and overliesthe uppermostbedrock.

The bedrock immediatelybeneaththe site belongsto the Upper Devonian Ohio ShaleFormation extendingto a depth of about 1250 ft. Becausethe site sits on the northwesternflank of the Appalachiangeosyncline,the rocks dip gently to the south at an angle of about 5 degrees.The membersof the Ohio Shaleare, from oldest to youngest,the Plum Brook, Huron, Chagrin, Cleveland,and Bedford shalemembers. In the PNPP site area,the upper membershave been erodedaway to exposethe Chagrin Shale. The Chagrin Shalemember is about 700 ft thick and is composedof dark-grayto medium-graysilty or clayey shaleoccasionallycontaininglight gray sandyshalelaminae. The underlying Huron Shaleis a black to dark brown shalewith lesser amountsof thinly beddedlight gray silty and sandylaminaethan the Chagrin Shaleand is estimatedto be about 525 ft thick below the site.

The stratigraphybelowthe Huron Shaleconsistsof an approximately2,250 ft thick sequenceof various sedimentaryrocks predominantlylimestonesand dolomites with interbeddedshalesand sandstonesof various thicknesses.Theseformationsoverlay the Precambriangranitebasement.

The top of the Precambrianbasementexists at approximateEL -5300 ft.

The subsurfacematerialspropertiessummarizedhere are basedon the geotechnical investigationsdescribedin the USAR. Samplesof the overburdensoils and bedrockretrieved from the borings were subjectedto static and dynamic laboratorytests. Propertiesof the subsurfacematerialsand bedrockmaterial presentedhere are generallybasedon both laboratory testsresultsand in-situ geophysicalmeasurements.

AESConsulting S:\Local\Pubs\27%298 FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 09 PY Site Description,docx rC?

2734298-R-008 Reaision2 September 9, 201.3

'1,5 Pase of 27 Tables2 and 3 summanzethe physical and mechanicalpropertiesof the overburdensoils and the bedrock material.

TABLE 2 SUBSURFACEMATERIALS PHYSICAL PROPERTIBS,PNPPSITE AvrcRncn Tnrcrnnss Dn'nsrrY Su SPT RncovnRY(%)

MlrnRrlr, (f0 (pcf) (tsf) (blow/ft) Range Average LacustrineDeposits 28 t22 - 129 0.75 5 to 15 GlacialTill 29 t32 - l4l l.0 to 5.5 15to 100 Chaerin Shale 1000+ 1 5 0- 1 5 2 130 >95 Huron Shale 1 5 0- 1 5 2 130 >95 Su: Undrained shearstrength SPT: StandardPenetrationTest Ref. USAR Table 2.5-57 and2.5-61 Ref. USAR Sections2.5.1.2and2.5.4.2 TABLE 3 SUBSURFACBMATERIALS DYNAMIC PROPERTIES,PNPPSITE MnlsuRED VELocrrY (ftls) (l) Mooulus (ksf) (3) Dnupmc PoISSon'S Mlrnnral CoupRnssroN Sun.ln CoupnnssroN Sur.ln ("hl Rauo LacustrineDeposits r200-s000 600-1200 3 6 . 0- 1 7 0 . 0 13.0- 57.6 3 . 7- 7 . 1 0.33-0.49 GlacialTill 5900-7800 1900-2600 427.8-823.7 1 4 8 . -32 9 6 . 6 3 . 0- 4 . 5 0.44 Chagrin Shale 10400 4900 3079 I135 t . 0- 2 . 0 0.36 ChaerinShale(2) 9000 4000 2082 756 r . 0- 2 . 0 0.38 Huron Shale

( l ) USAR Table 2.5-21(CrossHole)

(2) Basedon Down hole measurements (3) USAR Table 2.5-21(Basedon in-situ wave velocities)and Table 2.5-60 AE$Gonsulting S:\Local\Pubs\27g298 FENOC Perry\3 1Q Report File\R-008\R2\2734298-R-008, Rev 2 2013 09 09 PY Site Descriptiondocx fl,^\R

2734298-R-008 Reaision2 September 9,2013 Page16 of 27 3.0 SITE SHEAR WAVE VELOCITY PROFILE AND NON-LINBAR MATERIAL PROPERTIES(ITEM 3.b)

This sectionpresentsthe shearwave velocity profiles usedin the site responseanalysisto developthe GMRS in supportof NTTF Recommendation2.l:Seismic,and the on-goingPerry NPP seismicprobabilisticrisk assessment (SPRA). Thesevelocity profiles are basedon the site information as reported inRlZZO Report "Probabilistic SeismicHazardAnalysis and Ground Motion ResponseSpectra,PerryNPP, SeismicPRA Project,"(F{IZZO,2013).

3.1 Bnsts FoR B,tsn,C.q,sB Vnloclry PROFILES The shearand compressionwave velocities of the overburdensoils and the shalebedrock are basedon the subsurfaceinvestigationsreportedin the USAR. The geophysicalmeasurements includedsevenseismicrefractionlines,in situ cross-holevelocity measurements in seven borings,and one down-holemeasurement in Boring l-33. Measuredvaluesof the compressional and shearwave velocities (Vr) and unit weight valueswere then usedto calculatethe elastic moduli values. Thesemeasurementswere substantiatedand supplementedby dynamic testing of soil and rock samplesto obtain the dynamic compressionand shearmodulus,damping,and Poisson'sratios.

Variabilities in the shearwave velocitiesof the bedrockmaterial and the overburdensoil are estimatedrespectively,from velocity measurementsand lab tests,and the StandardPenetration Test (SPT) data.

The deeprock stratigraphyas well as the seismicvelocities of thesestratarelies on sonic logs recordedin the wells in the site vicinity (within 4 miles). Figure 2 presentsthe location of wells utilized here to obtain the stratigraphyas well as the sonic data.

The sonicdatawere convertedto P-wavevelocities(Vp) and S-wavevelocities(Vr) basedon publishedliterature(Pickett, 1963;Rafavich,1984;Miller, 1990;and Castagna,1993)reflecting the material type (limestoneand dolomite, anhydritesand salts),porosity and density,and to a lesserextent,the lithology. Additionally, basedon publishedliterature,Vp/V, ratiosof 1.7 and 2.1 were usedto obtaina coefficientof variation(COV) of about0.1 representingthe variabilitiesfor the S-wavevelocities.

ABSGonsulting S:\Local\Pubs\2734298 FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 09 Py Site Descriptiondocx rCR

2734298-R-008 Reuision2 9,201.3 September Page1.7of 27 FIGURE 2 DEEP WELL STRATIGRAPHY/SHEAR WAVE VELOCITIES, PNPP SITE Varying unit thicknesses,incompletewell logs, and non-standardlithologic descriptionspresent somechallengesto reliably estimatingcontactlocations. However, the lithologic units in the region are flat lying and for the most part, laterally consistent. Consequently,the velocity structurein the wells examinedis relatively similar and consistentfrom well to well for similar depths.

AESGomultlng S:\Local\Pubs\27U29EFENOC Perry\3.1QReport File\R40l\R2\273429&R-008,Rev. 2 2013 09 09 PY Site Description.docx r]CR

2734298-R-008 Reuision2 Septenfuer 9,2013 PageL8 of 27 Most major structuresof the PNPP are foundedin the shalebedrock at foundation elevations varying betweenEL 561 for the ReactorBuilding to about EL 564 for the Control Complex.

Accordingly,the RB foundationlevel (EL 561) is definedas the control point elevationwhere the foundationinput responsespectra(FIRS) are developed.

Table 4 presentsthe summarygeotechnicalprofile identifying the layer thicknesses,shearand compressionwave velocities,and uncertaintiesin theseparameters.This model representsthe natural material. The soil/rock column at the Diesel GeneratorBuilding (DGB) replacesthe lacustrinedepositsand the upper till by engineeredbackfill.

TABLE 4 GBOTECHNICAL PROFILE, PNPPSITE Elnvarron L,q,ynn (ft) SotilRocx DnscRrPTroN Ttotatlpcr; Vs (ftls) tr No.

620 Plant Grade (Ground Surface EL 620) 625to 612' la LacustrineDeposits 122' 827+207" 0 . 3 3^

613to 624 Ground Water EL 6l 5 to 605 lb LacustrineDeposits 122' 927+207 ts 0.49^

605 to 594 1c LacustrineDenosits l2g' 827+207" 0.47^

594to 586 2a GlacialDrift - UpperTill 132' 890+225" 0.44^

5 8 9t o 5 6 5 2b GlacialDrift - Lower Till l4lc ll85+4468 0.44^

A 5 6 5t o 5 1 0 3a DevonianChagrinShale 152 4772+477 0.36 561 -

GMRS EL SSE Control Point Nuclear Island Foundation Level 5 6 5t o 5 1 0 A 3a DevonianChasrinShale 152 4772L4778 0.36 5 1 0t o 3 9 2 8 3b DevonianChagrinShale r52 s213 0.32 5l0 to 392 3c DevonianChagrin Shale 152 5203 0.30 392to-135 4a DevonianHuron Shale 152 5203 0.30

-135to -470 4b DevonianHuron Shale r52 6187 0.28

-660 DevonianD&C Limestone r68 6187 0.28 5a

-709 5b D&C Limestone 168 10540 0.30

-970 6 DevonianOriskanvSandstone 151 r0540 0.30

-980 l Dev-Sil HelderbergLimestone 168 l 0540 0.30

-l 030 8 SilurianLimestoneDolomite 168 10540 0.30

-1 r30 9a Silurian SalinaCarbonateRocks 150 10s40 0.30

-l r93 9b SilurianSalinaCarbonateRocks r50 8577 0.26

-1455 9c Silurian SalinaCarbonateRocks r50 7152 0.30 fBSConsulting S:\Local\Pubs\2734298 FENOC Perry\31Q ReportFile\R-008\R2U734298-R-008, Rev 2 2013 09 Og PY Site Descriptiondocx rce

2734298-R-008 Reaision2 September 9, 20L3 Pase1.9of 27 Elnvlrron LA,ynR (ft) Sort lRocK DESCRTprtoN Ttotat1pct1 Vs (ftls) tl No.

-l 830 l0a SilurianLockportGroup t70 t1784 0.30

-2015 r0b SilurianLockportGroup t70 7979 0.30

-2110 SilurianDolomite,Limestone, l2 170 7979 0.30 Shale

-2290 l3 SilurianMedinaSandstone r57 7979 0.30

-2305 I4 Ordivician QueenstownShale- 157 7979 0.30 Notes for Table 4:

A. Crosshole test B. Back-calculationfrom stiffnessparametersadoptedin USAR C. In-situ testresults D. Table2.5-61of the USAR E. From this elevationdown, soil parametersare estimatesfrom sonicvelocitiesof deepwells exceptunit weight.

Unit weightsare typical valuesfrom literature. Coefficientof variation(COV) : l0 percentfor seismicwave velocities. Poisson'sratio and Gn'u*are calculatedby following formula:

v: ([Vp/V,]t-z) I (ztvptv,f -2)

G*u* : P V.2 3.2 V, PnontlEs usEDrN PNPP SPRA In supportof the SPRA project, foundation input responsespectra(FIRS) are developedat the RB foundationelevation(EL 561) as well as the DGB supportedon backfill at EL 615. The FIRS at the RB foundation level is basedon truncatedsoil profiles obtainedfrom the full soil column site responseanalysis.

The site responseanalysisperformedas part of the PNPP SPRA usesonly one BaseCaseprofile, also basedon the information in Tsble 4. However, the analysisrepresentspossiblealeatory variability in the shearwave velocity profile by using 60 randomizedV, profiles basedon the parameterspresentedin Table 4. The random profile realizationsare obtainedusing the stochasticmodel developedby Toro ( I 996), and assumefull correlationbetweenthe shearwave velocities in adjacentlayers. Theserandom realizattonsof the V, profile representthe variability in the soil column from the Devonian D & C Limestoneto the top of the lacustrinedeposits.

The use of one BaseCaseprofile is justified on the basisthat the site stratigraphyis reasonably uniform and flat lying, the overburdensoils as well as the investigateddepth of bedrockare well characterizedbya number of in-situ velocity measurements,and dynamic laboratorytests,and the reportedboring logs do not indicate significant variability in layer thicknessesand depths.

ABtGonsulting S.\Local\Pubs12734298 FENOC Perry\31Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 OgPY Site Descriptiondocx f16]R

2734298-R-008 Reuision2 September 9,201,3 Page20 of 27 Vs ffUsecl 2000 4000 6000

-l

'l 200 I

400 I

g I 5 800 o

CL o

I 1000 I

'l 1200

...... S P R AL B R a n d O m V S I

1400 - . SPRAUB RandomVs

-SPRA Best Estimate 1600 FIGURE 3 SPRA Vs PROFILB' PNPP SITE Figure 3 presentsthe best estimaterepresentingthe BaseCaseprofile along with lower and upper boundsrepresentedby the 60 randomizedprofiles consideredin the SPRA site response analysis.

AESGonsultlng S:\Local\Pubs\2734298 FENOC Perry\3.1QReportFile\R-008\R2\2734298-R-008,Rev 22013Og 09 PY Site Description,docx

2734298-R-008 Reuision2 9,201,3 September Pase21 of 27 3.3 Non-LtNEARM,q,rnntALSCHARACTERTsTIcs Usnu rN PNPP SPRA The site responseanalysisperformedas part of the PNPP SPRA representsnon-linearmaterial propertiesby utilizing shearmodulus degradationand material damping as functions of the seismicshearstrain. The dynamic propertiesfor eachlayer in the model are basedresultsof resonantcolumn testsreportedin Section2.5.4.2of the USAR. Non-linearityof shearmodulus and damping is expressedin terms of the shearmodulus degradationand material damping as functions of the seismicshearstrain.

Table 5 and Figures 4 through 6 presentthe strain dependentshearmodulus and damping for the overburdensoils. The material-dampingratio is limited to a maximum of l5 percentin the calculationsfollowing guidancein NRC RegulatoryGuide 1.208. The bedrockbelow the overburdensoils is assumedto behavelinearly and the damping ratio for the hard rock half space is assumedto be 1.0percent.

TABLE 5 STRAIN.DEPENDENTPROPERTIESFOR PNPPSUBSURFACESOILS Sunnn LlcusrRrnn (EPRI UppnRTrr,t (EPRI Lownn Trlr, (EPRI Srn q,rN PI:5) PI:8) PI:6)

(%) G/G-u* EI%I GlG t1%l G/G ET%I 0.0001 1.000 1.00 1.00 1.00 1.00 1.00 0.0003 1.000 1.10 L00 1.10 1.00 1.10 0.0010 0.977 1.50 0.98 1.50 0.98 1.50 0.0030 0.895 2.80 0.91 2.10 0.90 2.80 0.0100 0.745 5.20 0.77 s.00 0.75 5.10 0.0300 0.533 9.20 0.57 8.70 0.55 9.00 0.1000 0.303 14.20 0.34 13.50 0.31 14.00 0.3000 0.143 r8.70 0.17 17.90 0 . 15 18.40 1.0000 0.041 22.30 0.06 2t.60 0.0s 22.r0 3.0000 0.030 25.20 0.04 24.50 0.03 25.00 G/G-o*: shearmodulus(G) normalizedby the low-strainshearmodulus(G*r*)

(: Damping in percent Gonsulting S:\Local\Pubs\2734298 FENOC Perry\3.1QReportFile\R-008\R2\2734298-R-008, Rev 2 2013 Og 09 PY Site Descriptiondocx rCR

2734298-R-008 Reaision2 September 9,201.3 Page22 of 27 0

0.0001 0.01 Sherr Strrin [Yo]

Ero ctr E,'t E

d o10 5

0 D 0001 001 Shcrr Struin[Yol FIGURE 4 SHEAR MODULUS AND DAMPING, LACUSTRINE SOILS,PNPPSITE G/G.o: shearmodulus (G) normalizedby the low-strain shearmodulus (G.r*)

Ref. EPRI, 1993,PlasticityIndex , PI : 5 fESConsulthU S:\Local\Pubs\27il298 FENOC Peny\3.1Q Report File\R408\R212734298-R-008,Rev 2 2013 Og 09 PY Site Descriptiondocx rCR

2734298-R-008 Reuision2 September 9,201.3 Pase23 of 27 OE T

(,

c' 04 30

.tE Ero s

E r..

a'*

E o

o10 5

FIGURB 5 SHEAR MODULUS AND DAMPING, UPPERTILL, PNPPSITE G/G.u*: shearmodulus (G) normalizedby the low-strain shearmodulus (G-r*)

Ref. EPRI,1993,PlasticityIndex , PI : 8 AEgConsulting S:\Local\Pubs\27%298FENOC Perry\3.1Q Report File\R408\R2\2734298-R408, Rev. 2 2013 Og 09 PY Site Description.docx rCR

2734298-R-008 Reaision2 September 9,20L3 Page24 of27 OE E

E g

e' 04 Ero ED E ,re.

cL '-

E rt oro 0.001 FIGURE 6 SHEAR MODULUS AND DAMPING, LOWER TILL, PNPPSITB G/G,nu*:shearmodulus (G) normalizedby the low-strain shearmodulus (G.o)

Ref. EPRI, 1993,PlasticityIndex , PI : 5 AESGonsultlng S:\Locaf\Pubs\27H298 FENOC Perry\3 1Q Report File\R40ilR2\2734298-R-008,Rev. 22013Og 09 PY Site Description.docx rCR

2734298-R-008 Reaision2 September 9,20L3 Page25 of 27 The variability in the dynamic propertiesis propagatedin the site responseanalysisby selecting from 60 setsof randomizedproperty curves shown on Figures 4 through 6. Each of the 60 randomizedVs profiles, representingthe aleatoryuncertainties,is paired with one combination of the randomizednon-lineardynamic property curves for input to the site responseanalysis.

Gonsultlng S:\Local\Pubs\2734298FENOC Perry\3.1QReport File\R-0Oel\R2\2734298-R-008, Rev. 2201309 @ PY Site Description.docx rG

2734298-R-008 Reaision2 September 9,2073 Page26 of 27

4.0 REFERENCES

Castagna,J.P.,and M.M. Backus,1993,"Rock Physics- The Link BetweenRock Propertiesand AVO Response,"in Eds., Offset-dependentreflectivity - Theory and Practiceof AVO Analysis, Castagna,J.P.,Batzle,M.L., and Kan, T.K., Investigationsin Geophysics(SEG) No. 8, p. 135-r7t.

EPRI, 1993"Guidelinesfor DeterminingDesignBasic GroundMotions, Volume 1: Method and Guidelinesfor EstimatingEarthquakeGround Motion in EasternNorth America," Report EPRI TR-l 02293,November,I 993.

EPRI, 2013 "Seismic EvaluationGuidance,Screening,Prioritization and ImplementationDetails (SPID) for the Resolutionof FukushimaNear-TermTask ForceRecommendation 2.1: Seismic,"

EPRI Report 1025287,February2013.

FirstEnergyNuclear OperatingCo, "Updated SafetyAnalysis Report,Perry Nuclear Power Plant No. 1," Rev 17,DocketNo.: 50-440.

FirstEnergyNuclear OperatingCo (2012)"Final Report Geology and GeotechnicalInformation for Site Amplification CalculationsSeismicProbabilisticRisk AssessmentPerry Nuclear Power Plant,"Rev. 0, July 2,2012.

Goldthwait,R., G. White, and J. Forsyth,l96l, "Glacial Map of Ohio," Ohio Departmentof Natural Resources,Div. of Geol Survey.

Hough, J.L., l958, "Geology of the GreatLakes,"University of Illinois Press,Urbana,IL.

Miller, S.L.M., and R.R. Steward,1990,"Effects of Lithology, Porosityand Shalinesson P- and S-WaveVelocitiesfrom Sonic Logs," CanadianJournalof ExplorationGeophysics,Volume26, Nos. l &2, p.94-103.

Norris, S.E., 1975,Geologic Structureof Near-surfaceRocks in WesternOhio, Ohio Journalof Science75(5):225, 1975.

NRC, 2007, RegulatoryGuide 1.208,"A Perfoffnance-BasedApproach to Define the Site-Specific EarthquakeGround Motion," U.S. Nuclear RegulatoryCommission,March 2007.

NRC, 2013 "Electric Power ResearchInstitute Final Draft Report, 'Seismic Evaluation Guidance: AugmentedApproach for the Resolutionof FukushimaNear-Term Task Force Recommendation 2.1: Seismic,'as an acceptableAlternativeto the March 12,2012 Information Requestfor SeismicReevaluations, May 7,2013."

AFGottsulting S:\Local\Pubs\2734298 FENOC Peny\3 1Q ReportFile\R-008\R2\2734298-R-008, Rev 2 2013 09 09 PY Site Descriptiondocx

2734298-R-008 Reaision2 September 9,2013 Pase27 of27 Pickett,G.R., (Pickett),1963,"Acoustic CharacterLogs and their Applicationsin Formation Evaluatior," Journalof PetroleumTechnology,Volume 15,No.6, p. 659-G67.

Rafavich,F., C. St. C.H. Kendall, and T.P. Todd, 1984,"The RelationshipbetweenAcoustic Propertiesand the PetrographicCharacterof CarbonateRocks," Geophysics,Volume 49,No. 10,

p. 1622-1636.

R.IZZO,2013, "Probabilistic Seismic HazardAnalysis and Ground Motion ResponseSpectra, PerryNPP, SeismicPRA Project,"Paul C. Rizzo Associates,Inc., Pittsburgh,PA, May 15,2013.

Toro, G. R. 1996"ProbabilisticModels of Site Velocity Profilesfor Genericand Site-Specific Ground Motion Amplification Studies,Description and Validation of the StochasticGround Motion Model," Report submittedto BrookhavenNational Laboratory,AssociatedUniversities, Inc. Upton, New York 11973,ContractNo. 770573,PublishedasAppendix D in W.J. Silva,N.

Abrahamson,G. Toro and Costantino, 1996.

fBSConsulting S:\Local\Pubs\2734298 FENOC Perry\3,1 Rev 2 2013 09 09 py Site Descriptiondocx Q ReportFile\R-008\R2U734298-R-OOs, rce