ML12068A194

From kanterella
Jump to navigation Jump to search
Technical Specifications Bases Unit 2 Manual
ML12068A194
Person / Time
Site: Susquehanna Talen Energy icon.png
Issue date: 02/23/2012
From: Gerlach R
Susquehanna
To:
Office of Nuclear Reactor Regulation
References
028401, 2012-10024
Download: ML12068A194 (28)


Text

Feb. 23, 2012 Page 1 of 2 MANUAL HARD COPY DISTRIBUTION DOCUMENT TRANSMITTAL 2012-10024 USER INFORMATION:

GERLACH*ROSE M EMPL#:028401 CA#: 0363 Address: NUCSA2 Phone#: 254-3194 TPRA5qMTPrAT TTXTFrCPMATTrl?',*

TO: GERLACH*ROSE M 02/23/2012 LOCATION: USNRC FROM: NUCLEAR RECORDS DOCUMENT CONTROL CENTER (NUCSA-2)

THE FOLLOWING CHANGES HAVE OCCURRED TO THE HARDCOPY OR ELECTRONIC MANUAL ASSIGNED TO YOU. HARDCOPY USERS MUST ENSURE THE DOCUMENTS PROVIDED MATCH THE INFORMATION ON THIS TRANSMITTAL. WHEN REPLACING THIS MATERIAL IN YOUR HARDCOPY MANUAL, ENSURE THE UPDATE DOCUMENT ID IS THE SAME DOCUMENT ID YOU'RE REMOVING FROM YOUR MANUAL. TOOLS FROM THE HUMAN PERFORMANCE TOOL BAG SHOULD BE UTILIZED TO ELIMINATE THE CHANCE OF ERRORS.

ATTENTION: "REPLACE" directions do not affect the Table of Contents, Therefore no TOC will be issued with the updated material.

TSB2 - TECHNICAL SPECIFICATIONS BASES UNIT 2 MANUAL REMOVE MANUAL TABLE OF CONTENTS DATE: 01/18/2012 ADD MANUAL TABLE OF CONTENTS DATE: 02/22/2012 CATEGORY: DOCUMENTS TYPE: TSB2 A4c0of

Feb. 23, 2012 Page 2 of 2 ID: TEXT 3.3.2.2 ADD: REV: 2 REMOVE: REV:1 CATEGORY: DOCUMENTS TYPE: TSB2 ID: TEXT LOES ADD: REV: 106 REMOVE: REV:105 ANY DISCREPANCIES WITH THE MATERIAL PROVIDED, CONTACT DCS @ X3107 OR X3136 FOR ASSISTANCE. UPDATES FOR HARDCOPY MANUALS WILL BE DISTRIBUTED WITHIN 3 DAYS IN ACCORDANCE WITH DEPARTMENT PROCEDURES. PLEASE MAKE ALL CHANGES AND ACKNOWLEDGE COMPLETE IN YOUR NIMS INBOX UPON COMPLETION OF UPDATES. FOR ELECTRONIC MANUAL USERS, ELECTRONICALLY REVIEW THE APPROPRIATE DOCUMENTS AND ACKNOWLEDGE COMPLETE IN YOUR NIMS INBOX.

SSES MANUAL Manual Name: TSB2 Manual

Title:

TECHNICAL SPECIFICATIONS BASES UNIT 2 MANUAL Table Of Contents Issue Date: 02/22/2012 Procedure Name Rev Issue Date Change ID Change Number TEXT LOES 106 02/22/2012

Title:

LIST OF EFFECTIVE SECTIONS TEXT TOC 18 09/01/2010

Title:

TABLE OF CONTENTS TEXT 2.1.1 4 05/06/2009

Title:

SAFETY LIMITS (SLS) REACTOR CORE SLS TEXT 2.1.2 1 10/04/2007

Title:

SAFETY LIMITS (SLS) REACTOR COOLANT SYSTEM (RCS) PRESSURE SL TEXT 3.0 3 08/20/2009

Title:

LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY TEXT 3.1.1 1 03/24/2005

Title:

REACTIVITY CONTROL SYSTEMS SHUTDOWN MARGIN (SDM)

TEXT 3.1.2 0 11/18/2002

Title:

REACTIVITY CONTROL SYSTEMS REACTIVITY ANOMALIES TEXT 3.1.3 2 01/19/2009

Title:

REACTIVITY CONTROL SYSTEMS CONTROL ROD OPERABILITY TEXT 3.1.4 4 01/30/2009

Title:

REACTIVITY CONTROL SYSTEMS CONTROL ROD SCRAM TIMES TEXT 3.1.5 1 07/06/2005

Title:

REACTIVITY CONTROL SYSTEMS CONTROL ROD SCRAM ACCUMULATORS TEXT 3.1.6 2 03/24/2005

Title:

REACTIVITY CONTROL SYSTEMS ROD PATTERN CONTROL Report Date: 02/23/12 Pagel Page 1 of of 8

.8 Report Date: 02/23/12

SSES MANUAL Manual Name: TSB2 Manual

Title:

TECHNICAL SPECIFICATIONS BASES UNIT 2 MANUAL .

TEXT 3.1.7 3 10/04/2007 Title.: REACTIVITY CONTROL SYSTEMS STANDBY LIQUID CONTROL (SLC) SYSTEM TEXT 3.1.8 3 05/06/2009

Title:

REACTIVITY CONTROL SYSTEMS SCRAM DISCHARGE VOLUME (SDV) VENT AND DRAIN VALVES TEXT 3.2.1 4 05/06/2009

Title:

POWER DISTRIBUTION LIMITS AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)

TEXT 3.2.2 3 05/06/2009

Title:

POWER DISTRIBUTION LIMITS MINIMUM CRITICAL POWER RATIO (MCPR)

TEXT 3.2.3 2 05/06/2009

Title:

POWER DISTRIBUTION LIMITS LINEAR HEAT GENERATION RATE LHGR TEXT 3.3.1.1 4 05/06/2009

Title:

INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION TEXT 3.3.1.2 2 01/19/2009

Title:

INSTRUMENTATION SOURCE RANGE MONITOR (SRM) INSTRUMENTATION TEXT 3.3.2.1 2 04/09/2007

Title:

INSTRUMENTATION CONTROL ROD BLOCK INSTRUMENTATION TEXT 3.3.2.2 2 02/22/2012

Title:

INSTRUMENTATION FEEDWATER - MAIN TURBINE HIGH WATER LEVEL TRIP INSTRUMENTATION TEXT 3.3.3.1 7 10/27/2008

Title:

INSTRUMENTATION POST ACCIDENT MONITORING (PAM) INSTRUMENTATION TEXT 3.3.3.2 1 04/18/2005

Title:

INSTRUMENTATION REMOTE SHUTDOWN SYSTEM TEXT 3.3.4.1 1 05/06/2009

Title:

INSTRUMENTATION END OF CYCLE RECIRCULATION PUMP TRIP (EOC-RPT) INSTRUMENTATI40 Report Date: 02/23/12 Page22 Page of of 8

.8 Report Date: 02/23/12

SSES MANUAL Manual Name: TSB2 Manual

Title:

TECHNICAL SPECIFICATIONS BASES UNIT 2 MANUAL*

TEXT 3.3.4.2 0 11/18/2002

Title:

INSTRUMENTATION ANTICIPATED TRANSIENT WITHOUT SCRAM RECIRCULATION PUMP TRIP (ATWS-RPT) INSTRUMENTATION

'TEXT 3.3.5.1 . 4 08/20/2009

Title:

INSTRUMENTATION EMERGENCY CORE COOLING SYSTEM (ECCS) INSTRUMENTATION TEXT 3.3.5.2 0 11/18/2002

Title:

INSTRUMENTATION REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM INSTRUMENTATION TEXT 3.3.6.1 .4 05/06/2009.

Title:

INSTRUMENTATION PRIMARY CONTAINMENT ISOLATION INSTRUMENTATION TEXT 3.3.6.2 4 09/01/2010

Title:

INSTRUMENTATION SECONDARY CONTAINMENT ISOLATION INSTRUMENTATION TEXT 3.3.7.1 2 . 10/27/2008

Title:

INSTRUMENTATION CONTROL ROOM EMERGENCY OUTSIDE AIR SUPPLY (CREOAS) SYSTEM INSTRUMENTATION TEXT 3.3.8.1 3 12/17/2007

Title:

INSTRUMENTATION LOSS OF POWER (LOP) INSTRUMENTATION TEXT 3.3.8.2 0 11/18/2002

Title:

INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) ELECTRIC POWER MONITORING TEXT 3.4.1 4 07/20/2010

Title:

REACTOR COOLANT SYSTEM (RCS) RECIRCULATION LOOPS OPERATING TEXT 3.4.2 2 07/20/2010

Title:

REACTOR COOLANT SYSTEM (RCS) JET PUMPS TEXT 3.4.3 3 01/13/2012

Title:

REACTOR COOLANT SYSTEM (RCS) SAFETY/RELIEF VALVES (S/RVS)

TEXT 3.4.4 0 11/18/2002

Title:

REACTOR COOLANT SYSTEM (RCS) RCS OPERATIONAL LEAKAGE Report Date: 02/23/12 Pa~ge33 Page of of 88 Report Date: 02/23/12

SSES MANUAL Manual Name: TSB2 Manual

Title:

TECHNICAL SPECIFICATIONS BASES UNIT 2 MANUAL TEXT 3.4.5 3 03/10/2010

Title:

REACTOR COOLANT SYSTEM (RCS) RCS PRESSURE ISOLATION VALVE -(PIV). LEAKAGE TEXT 3.4.6 3 01/25/2011

Title:

REACTOR COOLANT SYSTEM (RCS)'RCS LEAKAGE DETECTION INSTRUMENTATION TEXT 3.4.7 2 10/04/2007

Title:

REACTOR COOLANT SYSTEM (RCS) RCS SPECIFIC ACTIVITY TEXT 3.4.8 1 04/18/2005

Title:

REACTOR COOLANT SYSTEM (RCS) RESIDUAL HEAT REMOVAL (RHR) SHUTDOWN COOLING SYSTEM

- HOT SHUTDOWN TEXT 3.4.9 0 11/18/2002

Title:

REACTOR COOLANT SYSTEM (RCS) RESIDUAL HEAT REMOVAL (RHR) SHUTDOWN COOLING SYSTEM TEXT 3.4.10

- COLD SHUTDOWN 3 -05/06/2009 0

Title:

REACTOR COOLANT SYSTEM (RCS) RCS PRESSURE AND TEMPERATURE (P/T) LIMITS TEXT 3.4.11 0 11/18/2002

Title:

REACTOR COOLANT SYSTEM (RCS) REACTOR STEAM DOME PRESSURE TEXT 3.5.1 3 01/16/2006

Title:

EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC)

SYSTEM ECCS - OPERATING TEXT 3.5.2 0 11/18/2002

Title:

EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC)

SYSTEM ECCS - SHUTDOWN TEXT 3.5.3 2 07/09/2010

Title:

EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC)

SYSTEM RCIC SYSTEM TEXT 3.6.1.1 4 11/09/2011

Title:

PRIMARY CONTAINMENT TEXT 3.6.1.2 1 05/06/2009

Title:

CONTAINMENT SYSTEMS PRIMARY CONTAINMENT AIR LOCK Report Date: 02/23/12 Page44 Page of of 88 Report Date: 02/23/12

SSES MANUJAL Manual Name: TSB2 Manual

Title:

TECHNICAL SPECIFICATIONS BASES UNIT 2 MANUAL TEXT 3.6.1.3 11 ,04/14/2010

Title:

CONTAINMENT SYSTEMS PRIMARY CONTAINMENT ISOLATION VALVES (PCIVS)

TEXT 3.6.1.4 1 .05/06/2009

Title:

CONTAINMENT SYSTEMS. CONTAINMENT; PRESSURE TEXT 3.6.1.5 1 10/05/2005

Title:

CONTAINMENT SYSTEMS DRYWELL AIR'TEMPERATURE TEXT 3.6.1.6 0 11/18/2002

Title:

CONTAINMENT SYSTEMS SUPPRESSION CHAMBER-TO-DRYWELL VACUUM BREAKERS TEXT 3.6.2.1 2 12/17/2007

Title:

'CONTAINMENT SYSTEMS SUPPRESSION POOL AVERAGE TEMPERATURE TEXT 3.6.2.2 0 .1/18/2002

Title:

CONTAINMENT SYSTEMS SUPPRESSION POOL WATER.LEVEL TEXT 3.6.2.3 1 01/16/2006

Title:

CONTAINMENT SYSTEMS RESIDUAL HEAT REMOVAL (RHR) SUPPRESSION POOL COOLING TEXT 3.6.2.4 0 11/18/2002

Title:

CONTAINMENT SYSTEMS RESIDUAL HEAT REMOVAL (RHR) SUPPRESSION POOL SPRAY TEXT 3.6.3.1 2 06/13/2006

Title:

. CONTAINMENT SYSTEMS PRIMARY CONTAINMENT HYDROGEN RECOMBINERS TEXT 3.6.3.2 1 04/18/2005

Title:

CONTAINMENT SYSTEMS DRYWELL AIR FLOW SYSTEM TEXT 3.6.3.3 0 11/18/2002

Title:

CONTAINMENT SYSTEMS PRIMARY CONTAINMENT OXYGEN CONCENTRATION TEXT 3.6.4.1 7 10/04/2007

Title:

CONTAINMENT SYSTEMS SECONDARY CONTAINMENT Report Date: 02/23/12 Pages5 Page of of 88 Report Date: 02/23/12

SSES MANUAL Manual Name: TSB2 Manual

Title:

TECHNICAL SPECIFICATIONS BASES UNIT 2 MANUAL TEXT 3.6.4.2 3 03/10/2010

Title:

CONTAINMENT SYSTEMS SECONDARY CONTAINMENT ISOLATION VALVES'(SCIVS)

TEXT 3.6.4.3 4 09/21/2006

Title:

CONTAINMENT SYSTEMS STANDBY GAS TREATMENT (SGT) SYSTEM TEXT 3.7.1 4 04/05/2010

Title:

PLANT SYSTEMS RESIDUAL HEAT REMOVAL SERVICE WATER '(RHRSW) SYSTEM AND THE ULTIMATE HEAT SINK (UHS)

TEXT 3.7.2 2 05/02/2008

Title:

PLANT SYSTEMS EMERGENCY SERVICE WATER (ESW) SYSTEM TEXT 3.7.3 1 0i/08/;2010

Title:

PLANT SYSTEMS CONTROL Room EMERGENCY OUTSIDE AIR SUPPLY (CREOAS) SYSTEM TEXT 3. 7.4 0 '11-/18/2002

Title:

PLANT SYSTEMS CONTROL ROOM FLOOR COOLING SYSTEM.

TEXT 3. 7.5 1 10/04/2007

Title:

PLANT SYSTEMS MAIN CONDENSER OFFGAS TEXT 3.7.6 3 01/25/2011

Title:

PLANT SYSTEMS MAIN TURBINE BYPASS SYSTEM TEXT 3.7.7 1 .10/04/2007

Title:

PLANT SYSTEMS SPENT FUEL STORAGE POOL WATER LEVEL TEXT 3.8.1 8 05/06/2009

Title:

ELECTRICAL POWER SYSTEMS AC SOURCES - OPERATING TEXT 3.7.8 0 05/06/2009

Title:

MAINE TURBINE PRESSURE REGULATION SYSTEM TEXT 3.8.2 0 11/18/2002

Title:

ELECTRICAL POWER SYSTEMS AC SOURCES - SHUTDOWN Report Date: 02/23/12 Page PageG6 of of 8

.8 Report Date: 02/23/12

SSES MANUAL Manual Name: TSB2 '-7 10 Manual

Title:

TECHNICAL SPECIFICATIONS BASES UNIT 2-MANUAL TEXT 3. 8.3 2 04/14/2010

Title:

ELECTRICAL POWER SYSTEMS DIESELFUEL OIL LUBE OIL AND STARTING AIR TEXT 3. 8.4 3 .01/19/2009

Title:

ELECTRICAL POWERSYSTEMS DC SOURCES - OPERATING.

TEXT 3.8.5 1 12/14/2006

Title:

ELECTRICAL POWER SYSTEMS DC SOURCES - SHUTDOWN TEXT 3.8.6 1 12/14/2 006

Title:

ELECTRICAL POWER SYSTEMS BATTERY CELL PARAMETERS TEXT 3.8.7 3 03/31/2006

Title:

ELECTRICAL POWER SYSTEMS DISTRIBUTION SYSTEMS - OPERATING W TEXT 3.8.8 0 II/18/2002

Title:

ELECTRICAL POWER SYSTEMS DISTRIBUTION SYSTEMS - SHUTDOWN TEXT 3.9.1 0 11/18/2002

Title:

REFUELING OPERATIONS REFUELING EQUIPMENTINTERLOCKS TEXT 3.9.2 1 09/01/2010

Title:

REFUELING OPERATIONS REFUEL POSITION ONE-ROD-OUT INTERLOCK TEXT 3.9.3 0 11/18/2002

Title:

REFUELING OPERATIONS CONTROL ROD POSITION TEXT 3.9.4 0 11/18/2002

Title:

REFUELING OPERATIONS CONTROL ROD POSITION INDICATION TEXT 3.9.5 0 11/18/2002

Title:

REFUELING OPERATIONS CONTROL ROD OPERABILITY - REFUELING TEXT 3.9.6 1 10/04/2007 W

Title:

REFUELING OPERATIONS REACTOR PRESSURE VESSEL (RPV) WATER LEVEL Report Date: 02/23/12 Page77 Page of of 8

.8 Report Date: 02/23/12

SSES MANUJAL Manual Name: TSB2 h [{/'

Manual

Title:

TECHNICAL SPECIFICATIONS BASES UNIT 2 MANUAL TEXT 3.9.7 0 11/18/2002

Title:

REFUELING OPERATIONS RESIDUAL HEAT REMOVAL (RHR) - ,HIGH WATER LEVEL TEXT 3.9.8 0 11/18/2002

Title:

REFUELING OPERATIONS RESIDUAL HEAT REMOVAL (RHR:) - LOW WATER LEVEL TEXT 3.10.1 1 01/23/200,8

Title:

SPECIAL OPERATIONS INSERVICE LEAK AND HYDROSTATIC TESTING OPERATION TEXT 3.10.2 0 11/18/2002

Title:

SPECIAL OPERATIONS REACTOR MODE SWITCH INTERLOCK TESTING TEXT 3.10.3 0 11/18/2002

Title:

SPECIAL OPERATIONS SINGLE CONTROL ROD WITHDRAWAL -. HOT SHUTDOWN TEXT 3.10.4 0 11/18/2002

Title:

SPECIAL OPERATIONS SINGLE CONTROL ROD WITHDRAWAL,- COLD SHUTDOWN TEXT 3.10.5 0 11/18/20.02

Title:

SPECIAL OPERATIONS SINGLE CONTROL ROD DRIVE (CRD) REMOVAL - REFUELING TEXT 3.10.6 0 11/18/2002

Title:

SPECIAL OPERATIONS MULTIPLE CONTROL ROD WITHDRAWAL - REFUELING TEXT 3.10.7 1 03/24/2005

Title:

SPECIAL OPERATIONS CONTROL ROD TESTING - OPERATING TEXT 3.10.8 2 04/09/2007

Title:

SPECIAL OPERATIONS SHUTDOWN MARGIN (SDM) TEST - REFUELING Report Date: 02/23/12 Page88 Page of of 8

.8 Report Date: 02/23/12

SUSQUEHANNA STEAM ELECTRIC STATION LIST OFEFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision TOC Table of Contents 18 B 2.0 SAFETY LIMITS BASES Page TS / B 2.0-1 1 Pages TS /B 2.0-2 and TS / B 2.0-3 4 Page TS / B 2.0-4 6 Pages TS / B 2.0-5 through TS / B 2.0-8 1 B 3.0 LCO AND SR APPLICABILITY BASES Page TS / B 3.0-1 1 Pages TS / B 3.0-2 through TS / B 3.0-4 0 Pages TS / B 3.0-5 through TS / B 3.0-7 1 Page TS / B 3.0-8 3 Pages TS / B 3.0-9 through Page TS/ B 3.0-11 2 Page TS / B 3.0-1 la 0 Page TS / B 3.0-12 1 Pages TS / B 3.0-13 through TS / B 3.0-15 2 Pages TS / B 3.0-16 and TS / B 3.0-17 0 B 3.1 REACTIVITY CONTROL BASES Pages B 3.1-1 through B 3.1-4 0 Page TS / B 3.1-5 1 Pages TS / B 3.1-6 and TS / B,3.1-7 2 Pages B 3.1-8 through B 3.1-13 0 Page TS / B 3.1-14 1 Page TS / B 3.1-15 0 Page TS / B 3.1-16 1 Pages TS / B 3.1-17 through TS /B 3.1- 19 0 Pages TS / B 3.1-20 and TS / B 3.1-21 1 Page TS / B 3.1-22 0 Page TS / B 3.1-23 1 Page TS / B 3.1-24 0 Pages TS / B 3.1-25 through TS / B 3.1-27 1 Page TS / B 3.1-28 2 Page TS / 3.1-29 1 Pages B 3.1-30 through B 3.1-33 0 Pages TS / B 3.1.34 through TS / B 3.1-36 1 Pages TS / B 3.1-37 and TS / B 3.1-38 2 Pages TS / B 3.1-39 and TS / B 3.1-40 2 Page TS / B 3.1-40a 0 Page TS / B 3.1-41 1 Page TS / B 3.1-42 2 SUSQUEHANNA - UNIT 2 TS / B LOES-1 Revision 106

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVESECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Pages TS / B 3.1-43 1 Page TS / B 3.1-44 0 Page TS / B 3.1-45 3 Page TS / B 3.1-46 0 Page TS / B 3.1-47 1 Pages TS / B 3.1-48 and TS / B 3.1-49 1 Page B 3.1-50 0 Page TS / B 3.1-51 3 B 3.2 POWER DISTRIBUTION LIMITS BASES Pages TS / B 3.2-1 and TS / B 3.2-2 2 Page TS / B 3.2-3 4 Page TS / B 3.2-4 1 Page TS / B 3.2-5 3 Page TS / B 3.2-6 4 Page TS / B 3.2-7 3 Pages TS / B 3.2-8 and TS / B 3.2-9 4 Pages TS / B 3.2-10 through TS / B 3.2-12 2 Page TS / B 3.2-13 1 B 3.3 INSTRUMENTATION Pages TS / B 3.3-1 through TS / B 3.3-4 1 Page TS / B 3.3-5 2 Page TS / B 3.3-6 1 Page TS / B 3.3-7 3 Page TS / B 3.3-8 4 Pages TS / B 3.3-9 through TS / B 3.3-13 3 Page TS / B 3.3-14 4 Pages TS / B 3.3-15 and TS / B 3.3-16 2 Pages TS / B 3.3-17 through TS / B 3.3-21 3 Pages TS / B 3.3-22 through TS / B 3.3-27 2 Page TS / B 3.3-28 3 Page TS / B 3.3-29 4 Pages TS / B 3.3-30 and TS / B 3.3-31 3 Pages TS / B 3.3-32 and TS / B 3.3-33 4 Page TS / B 3.3-34 2 Page TS / B 3.3-34a 1 Pages TS / B 3.3-34b through TS / B 3.3-34d 0 Page TS / B 3.3-34e 1 Pages TS / B 3.3-34f through TS / B 3.3-34i 0 Pages TS / B 3.3-35 and TS / B 3.3-36 2 Pages TS / B 3.3-37 and TS / B 3.3-38 1 SUSQUEHANNA - UNIT 2 TS / B LOES-2 Revision 106

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Page TS / B 3.3-39 2 Pages TS / B 3.3-40 through TS / B 3.3-43 2 Pages TS / B 3.3-44 through TS / B 3.3-54 3 Pages TS / B 3.3-54a through TS / B 3.3-54e 0 Page TS / B 3.3-55 2 Page TS / B 3.3-56 0 Page TS / B 3.3-57 1 Pagq TS / B 3.3-58 0 Page TS / B 3.3-59 1 Page TS / B 3.3-60 0 Page TS / B 3.3-61 1 Pages TS / B 3.3-62 and TS / B 3.3-63 0 Pages TS / B 3.3-64 and TS / B 3.3-65 2 Page TS / B 3.3-66 4 Page TS / B 3.3-67 3 Page TS / B 3.3-68 4 Page TS / B 3.3.69 5 Page TS / B 3.3-70 4 Page TS / B 3.3-71 3 Pages TS / B 3.3-72 and TS / B 3.3-73 2 Page TS / B 3.3-74 3 Page TS / B 3.3-75 2 Pages TS / B 3.3-75a and TS / B 3.3-75 b 6 Page TS / B 3.3-75c 5 Pages B 3.3-76 and TS / B 3.3-77 0 Page TS / B 3.3-78 1 Pages B 3.3-79 through B 3.3-81 0 Page TS / B 3.3-82 1 Page B 3.3-83 0 Pages TS / B 3.3-84 and TS / B 3.3-85 1 Page 3.3-86 0 Page TS / B 3.3-87 1 Page B 3.3-88 0 Page TS / B 3.3-89 1 Pages B 3.3-90 and B 3.3-91 0 Pages TS / B 3.3-92 through TS / B 3.3-103 1 Page TS / B 3.3-104 3 Pages TS / B 3.3-105 and TS/ B 3.3-106 1 Page TS / B 3.3-107 2 Page TS / B 3.3-108 1 Page TS / B 3.3-109 2 Pages TS / B 3.3-110 through TS / B 3.3-112 1 Page TS / B 3.3-113 2 SUSQUEHANNA - UNIT 2 TS / B LOES-3 Revision 106

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Page TS / B 3.3-114 1 Page TS / B 3.3-115 2 Page TS / B 3.3-116 3 Pages TS / B 3.3-117 and TS / B 3.3-118 2 Pages TS / B 3.3-119 through TS / B 3.3-120 1 Pages TS / B 3.3-121 and TS / B 3.3-122 2 Page TS / B 3.3-123 1 Page TS / B 3.3-124 2 Page TS / B 3.3-124a 0 Page TS / B 3.3-125 1 Page TS / B 3.3-126 2 Page TS / B 3.3-127 3 Page TS / B 3.3-128 2 Pages TS / B 3.3-129 through TS / B 3.3-131 1 Page TS / B 3.3-132 2 Pages TS / B 3.3-133 and TS / B 3.3-134 1 Pages B 3.3-135 through B 3.3-137 0 Page TS / B 3.3-138 1 Pages B 3.3-139 through B 3.3-149 0 Pages TS/ B 3.3-150 and TS / B 3.3-151 1 Pages TS / B 3.3-152 through TS /lB3.3-154 2 Page TS / B 3.3-155 1 Pages TS / B 3.3-156 through TS / B 3.3-158 2 Pages TS / B 3.3-159 through TS / B 3.3-161 1 Page TS / B 3.3-162 1 Page TS / B 3.3-163 2 Page TS / B 3.3-164 1 Pages TS / B 3.3-165 and TS / B 3.3-166 2 Pages TS / B 3.3-167 and TS / B 3.3-168 1 Pages TS / B 3.3-169 and TS / B 3.3-170 2 Pages TS / B 3.3-171 through TS / B 3.3-177 1 Page TS / B 3.3-178 2 Page TS / B 3.3-179 3 Page TS / B 3.3-179a 2 Page TS / B 3.3-180 1 Page TS / B 3.3-181 3 Page TS / B 3.3-182 1 Page TS / B 3.3-183 2 Page TS / B 3.3-184 1 Page TS / B 3.3-185 4 Page TS / B 3.3-186 1 Pages TS / B 3.3-187 and TS / B 3.3-188 2 Pages TS / B 3.3-189 through TS / B 3.3-191 .1 LOES-4 Revision 106 TSIB SUSQUEHANNA -

UNIT 2 SUSQUEHANNA - UNIT 2 TS / [] LOES-4 Revision 106

SUSQUEHANNA STEAM ELECTRIC STATION LIST OFEFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Page TS / B 3.3-192 0 Page TS / 8 3.3-193 1 Pages TS / B 3.3-194 and TS / B 3.3-195 0 Page TS / B 3.3-196 2 Pages TS / B 3.3-197 through TS / B 3.3-205 0 Page TS / B 3.3-206 1 Pages B 3.3-207 through B 3.3-209 0 Page TS / B 3.3-210 1 Page TS / B 3.3-211 2 Pages TS / B 3.3-212 and TS / B 3.3-213 1 Pages B 3.3-214 through B 3.3-220 0 B 3.4 REACTOR COOLANT SYSTEM BASES Pages TS / B 3.4-1 and TS / B 3.4-2 2 Pages TS / B 3.4-3 through TS / B 3.4-5 4 Pages TS / B 3.4-6 through TS / B 3.4-9 3 Page TS / B 3.4-10 1 Pages TS / B 3.4-11 and TS / B 3.4-12 0 Page TS / B 3.4-13 1 Page TS / B 3.4-14 0 Page TS / B 3.4-15 2 Pages TS / B 3.4-16 and TS / B 3.4-17 4 Page TS / B 3.4-18 2 Pages B 3.4-19 through B 3.4-23 0 Pages TS / B 3.4-24 through TS / B 3.4-27 0 Page TS / B 3.4-28 1 Page TS / B 3.4-29 3 Page TS / B 3.4-30 1 Page TS / B 3.4-31 0 Pages TS / B 3.4-32 and TS / B 3.4-33 1 Page TS / B 3.4-34 0 Pages TS / B 3.4-35 and TS / B 3.4-36 1 Page TS / B 3.4-37 2 Page B 3.4-38 1 Pages B 3.4-39 and B 3.4-40 0 Page TS/B 3.4-41 1 Pages B 3.4-42 through B 3.4-48 0 Page TS / B 3.4-49 3 Pages TS / B 3.4-50 through TS / B 3.4-52 2 Page TS / B 3.4-53 1 Pages TS / B 3.4-54 through TS / B 3.4-57 2 Pages TS / B 3.4-58 through TS / B 3.4-60 1 Revision 106 TS/B LOES-5 UNIT 22 SUSQUEHANNA - UNIT SUSQUEHANNA TS / B LOES-5 Revision 106

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision B 3.5 ECCS AND RCIC BASES Pages TS / B 3.5-1 and TS / B 3.5-2 1 Pages TS / B 3.5-3 through TS / B 3.5-6 2 Pages TS / B 3.5-7 through TS / B 3.5-10 1 Pages TS / B 3.5-11 and TS / B 3.5-12 2 Pages TS / B 3.6-13 and TS / B 3.5-14 1 Pages TS / B 3.5-15 and TS / B.3.5-16 2 Page TS / B 3.5-17 3 Page TS / B 3.5-18 1 Pages B 3.5-19 through B 3.5-24 0 Pages TS / B 3.5-25 through TS / B 3.5-27 1 Page TS / B 3.5-28 0 Page TS / B 3.5-29 1 Pages TS / B 3.5-30 and TS / B 3.5-31 0 B 3.6 CONTAINMENT SYSTEMS BASES Page TS / B 3.6-1 2 Page TS / B 3.6-1a 3 Page TS / B 3.6-2 4 Page TS / B 3.6-3 3 Page TS / B 3.6-4 4 Page TS / B 3.6-5 3 Page TS / B 3.6-6 4 Pages TS / B 3.6-6a and TS / B 3.6-6b 3 Page TS / B 3.6-6c 0 Page B 3.6-7 0 Page TS / 3.6-8 1 Pages B 3.6-9 through B 3.6-14 0 Page TS / B 3.6-15 3 Page TS / B 3.6-15a 0 Page TS / B 3.6-15b 3 Pages TS / B 3.6-16 and TS / B 3.6-17 2 Page TS / B 3.6-17a 0 Pages TS / B 3.6-18 and TS / B 3.6-19 1 Page TS / B 3.6-20 2 Page TS / B 3.6-21 3 Pages TS / B 3.6-21a and TS/ B 3.6-21b 0 Pages TS / B 3.6-22 and TS / B 3.6-23 2 Pages TS / B 3.6-24 and TS / B 3.6-25 1 Pages TS / B 3.6-26 and TS / B 3.6-27 3 Page TS / B 3.6-28 7 Revision 106 TS/B LOES-6 UNIT 2 SUSQUEHANNA - UNIT SUSQUEHANNA- 2 TS /, B LOES-6 Revision 106

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Page TS / B 3.6-29 5 Page TS / B 3.6-29a 0 Page TS / B 3.6-30 2 Page TS / B 3.6-31 3 Pages TS / B 3.6-32 and TS / B 3.6-33 2 Page TS / B 3.6-34 1 Page TS / B 3.6-35 3 Pages TS / B 3.6-36 and TS / B 3.6-37 2 Page TS / B 3.6-38 3 Page TS / B 3.6-39 7 Page TS / B 3.6-40 1 Pages B 3.6-41 and B 3.6-42 0 Pages TS / B 3.6-43 and TS / B 3.6-44 1 Page TS / B 3.6-45 2 Pages TS / B 3.6-46 through TS / B 3.6-50 1 Page TS / B 3.6-51 2 Pages B 3.6-52 through B 3.6-55 0 Pages TS / B 3.6-56 and TS / B 3.6-57 2 Pages B 3.6-58 through B 3.6-62 0 Pages TS / B 3.6-63 and TS / B 3.6-64 1 Pages B 3.6-65 through B 3.6-68 0 Pages B 3.6-69 through B 3.6-71 1 Page TS / B 3.6-72 2 Pages TS / B 3.6-73 and TS / B 3.6-74 1 Pages B 3.6-75 and B 3.6-76 0 Page TS / B 3.6-77 1 Pages B 3.6-78 through B 3.6-82 0 Page TS / B 3.6-83 3 Page TS / 8 3.6-84 2 Page TS / B 3.6-85 4 Page TS / B 3.6-86 through TS / B 3.6-87a 2 Page TS / B 3.6-88 4 Page TS / B 3.6-89 2 Page TS / B 3.6-90 3 Pages TS / B 3.6-91 through TS / B 3.6-95 1 Page TS / B 3.6-96 2 Pages TS / B 3.6-97 and TS / B 3.6-98 1 Page TS / B 3.6-99 3 Page TS / B 3.6-99a 0 Pages TS / B 3.6-100 and TS / B 3.6-101 1 Pages TS / B 3.6-102 and TS / B 3.6-103 2 Page TS / B 3.6-104 3

/8 LOES-7 Revision 106 TS SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT 22 TS / B LOES-7 Revision 106

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Page TS / B 3.6-105 2 Page TS / B 3.6-106 3 B 3.7 PLANT SYSTEMS BASES Page TS / B 3.7-1 3 Page TS / B 3.7-2 4 Pages TS / B 3.7-3 through TS / B 3.7-5 3 Page TS / B 3.7-5a 1 Page TS / B 3.7-6 3 Page TS / B 3.7-6a 2 Page TS / B 3.7-6b 1 Page TS / B 3.7-6c 2 Page TS / B 3.7-7 3 Page TS / B 3.7-8 2 Pages B 3.7-9 through B 3.7-11 0 Pages TS / B 3.7-12 and TS / B 3.7-13 2 Pages TS / B 3.7-14 through TS / B 3.7-18 3 Page TS / B 3.7-18a 1 Pages TS / B 3.7-18b through TS/ B 3.7-18e 0 Pages TS / B 3.7-19 through TS / B 3.7-24 1 Pages TS / B 3.7-25 and TS / B 3.7-26 0 Page TS / B 3.7-27 4 Pages TS / B 3.7-28 and TS / B 3.7-29 3 Pages TS / B 3.7-30 and TS / B 3.7-3-1 1 Page TS / B 3.7-32 0 Page TS / B 3.7-33 1 Pages TS / B 3.7-34 through TS / B 3.7-37 0 B 3.8 ELECTRICAL POWER SYSTEMS BASES Page TS / B 3.8-1 1 Pages B 3.8-2 and B 3.8-3 0 Page TS / B 3.8-4 1 Pages TS / B 3.8-4a and TS / B 3.8-4b 0 Pages TS / B 3.8-5 and TS / B 3.8-6 3 Page TS / B 3.8-6a 1 Pages B 3.8-7 and B 3.8-8 0 Page TS / B 3.8-9 2 Pages TS / B 3.8-10 and TS / B 3.8-11 1 Pages B 3.8-12 through B 3.8-18 0 Page TS / B 3.8-19 1 Pages B 3.8-20 through B 3.8-22 0 Page TS / B 3.8-23 1 Page B 3.8-24 0 Revision 106 TS / B LOES-8 SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT 2 2 TS / B LOES-8 Revision 106

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVESECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Pages TS / B 3.8-25 and TS / B 3.8-26 1 Pages B 3.8-27 through B 3.8-35 0 Page TS / B 3.8-36 1 Page TS / B 3.8-37 0 Page TS / B 3.8-38 1 Pages TS / B 3.8-39 through TS / B 3.8-46 0 Page TS / B 3.8-47 1 Pages TS / B 3.8-48 through TS / B 3.8-50 0 Pages TS / B 3.8-51 through TS / B 3.8-53 1 Page TS / B 3.8-54 0 Page TS / B 3.8-55 1 Pages TS / B 3.8-56 through TS / B 3.8-59 2 Pages TS / B 3.8-60 through TS / B 3.8-64 3 Page TS / B 3.8-65 4 Page TS / B 3.8-66 5 Pages TS / B 3.8-67 and TS / B 3.8-68 4 Page TS / B 3.8-69 5 Pages TS / B 3.8-70 through TS / B 3.8-83 1 Pages TS / B 3.8-83A through TS / B 3.8-83D 0 Pages B 3.8-84 through B 3.8-85 0 Page TS / B 3.8-86 1 Page TS / B 3.8-87 2 Pages TS / B 3.8-88 through TS / B 3.8-93 1 Pages B 3.8-94 through B 3.8-99 0 B 3.9 REFUELING OPERATIONS BASES Pages TS / B 3.9-1 and TS / B 3.9-2 1 Pages TS / B 3.9-2a through TS / B 3.9-5 1 Pages TS / B 3.9-6 through TS / B 3.9-8 0 Pages B 3.9-9 through B 3.9-18 0 Pages TS / B 3.9-19 through TS / B 3.9-21 1 Pages B 3.9-22 through B 3.9-30 0 B 3.10 SPECIAL OPERATIONS BASES Page TS / B 3.10-1 2 Pages TS / B 3.10-2 through TS / B 3.10-5 1 Pages B 3.10-6 through B 3.10-32 0 Page TS / B 3.10-33 2 Page B 3.10-34 0 Page B 3.10-35 1 Pages B 3.10-36 and B 3.10-37 0 Page B 3.10-38 1 Page TS / B 3.10-39 2 TSB2 Text LOES.doc 2/17/2012 SUSQUEHANNA - UNIT 2 TS / B LOES-9 Revision 106

PPL Rev. 2 Feedwater- Main Turbine High Water Level Trip Instrumentation B 3.3.2.2 B 3.3 INSTRUMENTATION B 3.3.2.2 Feedwater - Main Turbine High Water Level Trip Instrumentation BASES BACKGROUND The feedwater - main turbine high water level trip instrumentation is designed to detect a potential failure of the Feedwater Level Control System that causes excessive feedwater flow.

With excessive feedwater flow, the water level in the reactor vessel rises toward the high water level, Level 8 reference point, causing the trip of the three feedwater pump turbines and the main turbine.

Reactor Vessel Water Level-High, Level 8 signals are provided by level sensors that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level in the reactor vessel (variable leg). Three channels of Reactor Vessel Water Level instrumentation are input to the Integrated Controls System (ICS) to provide the Reactor Vessel Water Level High, Level 8 trips of the Feedwater Pump Turbines and the Main Turbine. The channel trip signals are evaluated independently in each of the three ICS distributed control logic cabinets located in the Computer Room using a two-out-of-three channel coincident trip logic configuration, to provide the Level 8 trips of the feedwater pump turbines. The feedwater pump turbine trip initiation signal is provided with redundant trip paths to the individual feedwater pump turbine ICS cabinets located in the turbine building. The Level 8 trip of the Main Turbine is provided directly by the ICS via a hardwired discrete contact two-out-of-three channel coincident trip logic inputting to the main turbine electro-hydraulic controls.

A trip of the feedwater pump turbines limits further increase in reactor vessel water level by limiting further addition of feedwater to the reactor vessel. A trip of the main turbine and closure of the stop valves protects the turbine from damage due to water entering the turbine.

APPLICABLE The feedwater - main turbine high water level trip instrumentation is SAFETY ANALYSES assumed to be capable of providing a turbine trip in the design basis transient analysis for a feedwater controller failure, maximum demand event (Ref. 1). The Level 8 trip indirectly initiates a reactor scram from the main turbine trip (above 26% RTP) and trips the feedwater pumps, thereby terminating the event. The reactor scram mitigates the reduction in MCPR.

(continued)

SUSQUEHANNA - UNIT 2 TS / B 3.3-55 Revision 2

PPL Rev. 2 Feedwater - Main Turbine High Water Level Trip Instrumentation B 3.3.2.2 BASES APPLICABLE Feedwater - main turbine high water level trip instrumentation satisfies SAFETY ANALYSES Criterion 3 of the NRC Policy Statement. (Ref. 3)

(continued)

LCO The LCO requires three channels of the Reactor Vessel Water Level-High, Level 8 trip instrumentation to be OPERABLE to ensure that no single instrument failure will prevent the feedwater pump turbines and main turbine trip on a valid Level 8 signal. Two of the three channels are needed to provide trip signals in order for the feedwater - main turbine trips to occur. Each channel must have its setpoint set within the specified Allowable Value of SR 3.3.2.2.3. The Allowable Value is set to ensure that the thermal limits are not exceeded during the event.

The actual setpoint is calibrated to be consistent with the applicable setpoint methodology assumptions. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between successive CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable.

Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter reaches the setpoint, the associated device changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. A channel is inoperable if its actual trip setpoint is not within its required Allowable Value. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environment errors (for channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.

(continued)

SUSQUEHANNA - UNIT 2 TS / B 3.3-56 Revision 0

PPL Rev. 2 Feedwater - Main Turbine High Water Level Trip Instrumentation B 3.3.2.2 BASES (continued)

APPLICABILITY The feedwater - main turbine high water level trip instrumentation is required to be OPERABLE at >_23% RTP to ensure that the fuel cladding integrity Safety Limit is not violated during the feedwater controller failure, maximum demand event. As discussed in the Bases of LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR),"

sufficient margin to these limits exists below 23% RTP; therefore, the requirements are only necessary when operating at or above this power level.

ACTIONS A Note has been provided to modify the ACTIONS related to feedwater - main turbine high water level trip instrumentation channels.

Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition.

Section 1.3 also specifies that Required Actions. of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable feedwater - main turbine high water level trip instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable feedwater -

main turbine high water level trip instrumentation channel.

A.1 With one channel inoperable, the remaining two OPERABLE channels can provide the required trip signal. However, overall instrumentation reliability is reduced because a single failure in one of the remaining channels concurrent with feedwater controller failure, maximum demand event, may result in the instrumentation not being able to perform its intended function. Therefore, continued operation is only allowed for a limited time with one channel inoperable. If the inoperable channel cannot be restored to OPERABLE status within the Completion Time, the channel must be placed in the tripped condition per Required Action A.1. Placing the (continued)

SUSQUEHANNA-UNIT2 TS / B 3.3-57 Revision 1

PPL Rev. 2 Feedwater - Main Turbine High Water Level Trip Instrumentation B 3.3.2.2 BASES ACTIONS A. 1 (continued) inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue with no further restrictions. Alternately, if it is not desired to place the channel in trip (e.g., as in the case where placing the inoperable channel in trip would result in a feedwater or main turbine trip), Condition C must be entered and its Required Action taken.

If the failure only affects the trip function of a single main feed pump, an option is always available to remove the affected component from service and restore OPERABILITY. This is acceptable because removing the component from service performs the safety function.

The Completion Time of 7 days is based on the low probability of the event occurring coincident with a single failure in a remaining OPERABLE channel.

B. 1 With two or more channels inoperable, the feedwater - main turbine high water level trip instrumentation cannot perform its design function (feedwater - main turbine high water level trip capability is not maintained). Therefore, continued operation is only permitted for a 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> period, during which feedwater - main turbine high water level trip capability must be restored. The trip capability is considered maintained when sufficient channels are OPERABLE or in trip such that the feedwater - main turbine high water level trip logic will generate a trip signal on a valid signal. This requires two channels to each be OPERABLE or in trip. If the required channels cannot be restored to OPERABLE status or placed in trip, Condition C must be entered and its Required Action taken.

If the failure only affects the trip function of a single main feed pump, an option is always available to remove the affected component from service and restore OPERABILITY. This is acceptable because removing the component from service performs the safety function.

(continued)

SUSQUEHANNA - UNIT 2 TS / B 3.3-58 Revision 0

PPL Rev. 2 Feedwater - Main Turbine High Water Level Trip Instrumentation B 3.3.2.2 BASES ACTIONS B.1 (continued)

The 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> Completion Time is sufficient for the operator to take corrective action, and takes into account the likelihood of an event requiring actuation of feedwater - main turbine high water level trip instrumentation occurring during this period. It is also consistent with the 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> Completion Time provided in LCO 3.2.2 for Required Action A.1, since this instrumentation's purpose is to preclude a MCPR violation.

C.1 With the required channels not restored to OPERABLE status or placed in trip, THERMAL POWER must be reduced to < 23% RTP within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. As discussed in the Applicability section of the Bases, operation below 23% RTP results in sufficient margin to the required limits, and the feedwater - main turbine high water level trip instrumentation is not required to protect fuel integrity during the feedwater controller failure, maximum demand event. The allowed Completion Time of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> is based on operating experience to reduce THERMAL POWER to < 23% RTP from full power conditions in an orderly manner and without challenging plant systems.

If the failure only affects the trip function of a single main feed pump, an option is always available to remove the affected component from service and restore OPERABILITY. This is acceptable because removing the component from service performs the safety function.

SURVEILLANCE The Surveillances are modified by a Note to indicate that when a REQUIREMENTS channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> provided the associated Function maintains feedwater - main turbine high water level trip capability. Upon completion of the Surveillance, or expiration of the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions (continued)

SUSQUEHANNA - UNIT 2 TS / B 3.3-59 Revision I

PPL Rev. 2 Feedwater - Main Turbine High Water Level Trip Instrumentation B 3.3.2.2 BASES SURVEILLANCE taken. This Note is based on the reliability analysis (Ref. 2)

REQUIREMENTS assumption that 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> is the average time required to perform (continued) channel Surveillance. That analysis demonstrated that the 6 hour6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> testing allowance does not significantly reduce the probability that the feedwater pump turbines and main turbine will trip when necessary.

SR 3.3.2.2.1 Performance of the CHANNEL CHECK once every 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels, or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.

Agreement criteria which are determined by the plant staff based on an investigation of a combination of the channel instrument uncertainties may be used to support this parameter comparison and include indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside its limit, and does not necessarily indicate the channel is Inoperable.

The Frequency is based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal checks of channel status during normal operational use of the displays associated with the channels required by the LCO.

SR 3.3.2.2.2 A CHANNEL FUNCTIONAL TEST is performed on each required channel to ensure that the entire channel will perform the intended function.

(continued)

SUSQUEHANNA - UNIT 2 TS / B 3.3-60 Revision 0

PPL Rev. 2 Feedwater - Main Turbine High Water Level Trip Instrumentation B 3.3.2.2 BASES SURVEILLANCE SR 3.3.2.2.2 (continued)

REQUIREMENTS The Frequency of 92 days is based on reliability analysis (Ref. 2).

This SR is modified by two Notes. Note 1 provides a general exception to the definition of CHANNEL FUNCTIONAL TEST. This exception is necessary because the design architecture of the ICS (e.g. digital control blocks and logic) does not facilitate complete functional testing of all required logic blocks, which input into the combinational logic. (Reference 4) Performance of such a test could result in a plant transient or place the plant in an undo risk situation.

Therefore, for this SR, the CHANNEL FUNCTIONAL TEST verifies acceptable response by verifying the change of state of the logical blocks, which input into the combinational logic. The required logical blocks not tested during the CHANNEL FUNCTIONAL TEST are tested under the LOGIC SYSTEM FUNCTIONAL TEST, SR 3.3.2.2.4. This is acceptable because operating experience shows that the logical blocks not tested during the CHANNEL FUNCTIONAL TEST normally pass the LOGIC SYSTEM FUNCTIONAL TEST, and the testing methodology minimizes the risk of unplanned transients.

Note 2 provides a second specific exception to the definition of CHANNEL FUNCTIONAL TEST. For the Feedwater- Main Turbine High Water Level Trip Function, certain required channel logical blocks are not included in the performance of the CHANNEL FUNCTIONAL TEST. These exceptions are necessary because the circuit design does not facilitate functional testing of the entire channel through to the combinational logic. (Reference 4) Specifically, testing of all required logical blocks could lead to unplanned transients. Therefore, for this circuit, the CHANNEL FUNCTIONAL TEST verifies acceptable response by verifying the actuation of circuit devices up to the point where further testing could result in an unplanned transient.

(References 5 and 6) The required logical blocks not tested during the CHANNEL FUNCTIONAL TEST are tested under the LOGIC SYSTEM FUNCTIONAL TEST, SR 3.3.2.2.4. This exception is acceptable because operating experience shows that the devices not tested during the CHANNEL FUNCTIONAL TEST normally pass the LOGIC SYSTEM FUNCTIONAL TEST, and the testing methodology minimizes the risk of unplanned transients.

(continued)

SUSQUEHANNA - UNIT 2 TS / B 3.3-61 Revision 1

PPL Rev. 2 Feedwater - Main Turbine High Water Level Trip Instrumentation B 3.3.2.2 BASES SURVEILLANCE SR 3.3.2.2.3 REQUIREMENTS (continued) CHANNEL CALIBRATION verifies that the channel responds to the measured parameter within the necessary range and accuracy.

CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The Frequency is based upon the assumption of an 24 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.

SR 3.3.2.2.4 The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required trip logic for a specific channel. The system functional test of the feedwater - main turbine valves is included as part of this Surveillance and overlaps the LOGIC SYSTEM FUNCTIONAL TEST to provide complete testing of the assumed safety function. Therefore, if a valve is incapable of operating, the associated instrumentation would also be inoperable. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 24 month Frequency.

REFERENCES 1. FSAR, Section 15.1.2.

2. GENE-770-06-1, "Bases for Changes to Surveillance Test Selected Instrumentation Technical Specifications,"

February 1991.

3. Final Policy Statement on Technical Specifications Improvements, July 22, 1993 (58 FR 39132)
4. NRC Inspection and Enforcement Manual, Part 9900: Technical Guidance, Standard Technical Specification Section 1.0 Definitions, Issue date 12/08/86.

(continued)

SUSQUEHANNA - UNIT 2 TS / B 3.3-62 Revision 0

PPL Rev. 2 Feedwater - Main Turbine High Water Level Trip Instrumentation B 3.3.2.2 BASES REFERENCES 5. PLA-2618: NRC Inspection Reports 50-387/85-28 and 50-88/85-(continued) 23.

6. NRC Region I Combined Inspection 50-387/90-20; 50-388/90-20.

SUSQUEHANNA - UNIT 2 TS / B 3.3-63 Revision 0