ML093570415

From kanterella
Jump to navigation Jump to search
WEP-09-133 Np, Point Beach Unit 1 & Unit 2 (Wep/Wis) Extended Power Uprate License Amendment Request Responses to Request for Additional Information.
ML093570415
Person / Time
Site: Point Beach  NextEra Energy icon.png
Issue date: 12/31/2009
From:
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
NRC 2009-0128 WEP-09-133 NP
Download: ML093570415 (65)


Text

ENCLOSURE2 NEXTERA ENERGY POINT BEACH, LLC POINT BEACH NUCLEAR PLANT, UNITS 1 AND 2 LICENSE AMENDMENT REQUEST 261 EXTENDED POWER UPRATE NON-PROPRIETARY RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION 64 pages follow

Westinghouse Non-Proprietary Class 3 WEP-09-133 NP-Attachment Point Beach Unit 1 and Unit 2 (WEP/WIS) Extended Power Uprate (EPU) License Amendment Request (LAR) Responses to Request for Additional Information (RAI)

December, 2009 Westinghouse Electric Company LLC P.O. Box 355 Pittsburgh, PA 15230-0355

©2009 Westinghouse Electric Company LLC All Rights Reserved

Westinghouse Non-Proprietary Class 3 Page 1 of 63 Point Beach Unit 1 and Unit 2 (WEP/WIS) Extended Power Uprate (EPU) License Amendment Request (LAR) Responses to Request for Additional Information (RAI)

1) Page 2.8.5.6.3-6 of the Point Beach Extended Power Uprate (EPU) Licensing Report (Enclosure 5 to Reference 1) indicates that the small-break loss-of-coolant accident analysis was performed using the NOTRUMP evaluation model. Please provide a copy of the NOTRUMP analysis report that supports the EPU application.

The NRC reviewer provided clarification of this RAI during a teleconference held between Westinghouse, FP&L, and the NRC. It was concluded that the transient response results of the non-limiting breaks, which are not provided in the LAR, will be provided. Transient response results for the limiting 3-inch break for both Point Beach Units land 2 are provided in the small break LOCA LAR Section 2.8.5.6.3. The same response results for the non-limiting breaks are provided below. The following comments apply:

  • Peak cladding temperature transients are not provided for the 6- and 8.75-inch breaks as these breaks experienced little to no core uncovery.
  • Low head safety injection flow figures are provided only for the 6- and 8.75-inch breaks.

LHSI was only modeled for the 6- and 8.75-inch breaks (during RWST injection phase only).

Breaks less than 6-inches in equivalent diameter did not reach the LHSI cut-in pressure.

Westinghouse Non-Proprietary Class 3 Page 2 of 63 Point Beach Unit 1: 1.5-Inch Break 2400-2200-2000-....... .......

28000............ ......................................

. - 1800 . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

100-C/)

l 0 .0 c 10 . . . . . . . . . . . . ................ . . . . .....

1200........................ ........................

1000-800 0 2000 4000 6000 8000 Time (s)

Figure la: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 3 of 63 Point Beach Unit 2: 1.5-Inch Break 2400-2200............................

2000 . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12000 -'. . . . . . . .

.2 1800 . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . .. . . . . . . . . . . .. .

O0 C,,

1 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1200 -

1200. ..............................................

80 02000 2000 4000 4000 6000 6000 800 8000 Time (s)

Figure 1b: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 4 of 63 Point Beach Unit 1:1.5-Inch Break Core Mixture .Level Top of Core Xi

-M 0 2000 Time4000(s) 6000 8000 Figure 2a: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 5 of 63 Point Beach Unit 2: 1.5-Inch Break Core Mixture Level Top of Core 1')-

JL 30-28-

-J X.

2-. ................ . /

M 26.o.

22 - I I. ..I.. ... . .. .. . .._. . . ..

10 0 2000 4000 6000 8000 Time (s)

Figure 2b: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 6 of 63 Point Beach Unit 1: 1.5-Inch Break Broken Loop Pumped SI F I ow Intact Loop Pumped S1 F I ow 40

  • * °..............

0 CO, M

M* 1(1 . . ... . .......... ..............

0 2000 400 0 6000 8000 Ti me (s)

Figure 3a: Broken Loop and Intact Loop Pumped SI Flow

Westinghouse Non-Proprietary Class 3 Page 7 of 63 Point Beach Unit 2: 1.5-Inch Break Broken Loop Pumped SI F I ow Intact Loop Pumped SI Flow 40-20 Mo Cf, f .....

C,,

S10...........................

0 2000 4000 6000 8000 lime (s)

Figure 3b: Broken Loop and Intact Loop Pumped SI Flow

Westinghouse Non-Proprietary Class 3 Page 8 of 63 Point Beach Unit 1: 1.5-Inch Break Peak Cladding Temperature 1w-ci_

3000 4000 5000 6000 7000 8000 Time (s)

Figure 4a: Cladding Temperature at PCT Elevation (11.75 ft)

Westinghouse Non-Proprietary Class 3 Page 9 of 63 Point Beach Unit 2: 1.5-Inch Break Peak Cladding Temperature 680-660--

640--

6S 0 . ........ ...... ....................................

540- _"'. . . . . . . . . . . . . . . . . . .

50~

520-4000 5000 6000 7000 8000 Time (s)

Figure 4b: Cladding Temperature at PCT Elevation (11.75 ft)

Westinghouse Non-Proprietary Class 3 Page 10 of 63 Point Beach Unit 1: 1.5-Inch Break I nnlh-I UUJ 8001 C,,

E 600-0 400-C,,

200-

............... 'ýIs-.ý I I I I I I I I I I I I n I-m U

0 2000 4000 6000 8000 Time (s)

Figure 5a: ICore Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 11 of 63 Point Beach Unit 2: 1.5-Inch Break Atf.

IUUU 8001 C,,

E 600-0 400-C,,

200"

.. *-- !*r-1 I I I I I I I I I I I I A 2 U

0 2000 4000 6000 8000 Time (s)

Figure 5b: Core Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 12 of 63 Point Beach Unit 1: 2-Inch Break Cn C,,

C,,

a) 0L 0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 6a: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 13 of 63 Point Beach Unit 2: 2-Inch Break C,,

C,,

0-0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 6b: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 14 of 63 Point Beach Unit 1: 2-Inch Break Core Mixture Level Top of Core X.

ciM 0 1000 2000 3000 4000 5000 6000 Ti me (s)

Figure 7a: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 15 of 63 Point Beach Unit 2: 2-Inch Break Core Mixture Level Top of Core X,

0 1000 2000 3000 4000 5000 6000 Ti me (s)

Figure 7b: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 16 of 63 Point Beach Unit 1: 2-Inch Break Broken Loop Pumped SI F Iow

-- --- Intact Loop Pumped Sl F Iow 60 50-*

E* 40" .. .. .. . . .. . .

50............~..............

C,,

c n 20-0 0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 8a: Broken Loop and Intact Loop Pumped SI Flow

Westinghouse Non-Proprietary Class 3 Page 17 of 63 Point Beach Unit 2: 2-Inch Break Broken Loop Pumped SI Flow Intact Loop Pumped SI Flow 60 50-E 0 . .... ...... ....

g 2.. . . .

cn 20- .. . . . . ..

0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 8b: Broken Loop and Intact Loop Pumped SI Flow

Westinghouse Non-Proprietary Class 3 Page 18 of 63 Point Beach Unit 1: 2-Inch Break Peak Cladding Temperature w

cD 0~

E a,

1000 2000 3000 4000 5000 6000 Time (s)

Figure 9a: Cladding Temperature at PCT Elevation (10.75 ft)

Westinghouse Non-Proprietary Class 3 Page 19 of 63 Point Beach Unit 2: 2-Inch Break Peak Cladding Temperature CID a) 0-E 4000 6000 Time (s)

Figure 9b: Cladding Temperature at PCT Elevation (10.75 ft)

Westinghouse Non-Proprietary Class 3 Page 20 of 63 Point Beach Unit 1: 2-Inch Break IUU Y 600- ............................................ ...............

- 500- ........................................... ...............

E

-o c400- ........................................... ................

o 300- ........................................... ...............

C,,

M 200- ........................................... ...............

100" ... ...................................... ...............

I I I I I I I I I I I I I I I I I I I I I II I

- . . . . . I . . 1 1 . 1 1 1 =

v/

0 1000 2000 3000 4000 5000 6000 Time (s)

Figure lOa: Core Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 21 of 63 Point Beach Unit 2: 2-Inch Break U,

M 0 1000 2000 3000 4000 5000 6000 Time (s)

Figure lOb: Core Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 22 of 63 Point Beach Unit 1: 4-Inch Break 0n C',

C',

0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 11a: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 23 of 63 Point Beach Unit 2: 4-Inch Break Cl)

Cl) w/

a, 0n 0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 11b: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 24 of 63 Point Beach Unit 1: 4-Inch Break Core Mixture Level Top of Core X

=E 0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 12a: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 25 of 63 Point Beach Unit 2: 4-Inch Break Core Mixture Level Top of Core X-M, 0 1000 2000 3000 4000 5000 6000 Ti me (s)

Figure 12b: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 26 of 63 Point Beach Unit 1: 4-Inch Break Broken Loop Pumped SI Flow Intact Loop Pumped Sl Flow C,,

E 0

0 C',

Cf, 0

0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 13a: Broken Loop and Intact Loop Pumped SI Flow

Westinghouse Non-Proprietary Class 3 Page 27 of 63 Point Beach Unit 2: 4-Inch Break Broken Loop Pumped Sl Flow Intact Loop Pumped SI Flow E

0 C,,

C,,

0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 13b: Broken Loop and Intact Loop Pumped SI Flow

Westinghouse Non-Proprietary Class 3 Page 28 of 63 Point Beach Unit 1: 4-Inch Break Peak Cladding Temperature 540 520-'

500--.

480 . . .. ... . .. .. ... . .. ... .. .. .. .. .. ... .. .. . .. .. .. .. .. ... .. ..

4600 .. . . .. .. .. .. ... . .. ... . ... .. .. .. ... .. . .. .. .. .. .. .. ... .. . .

I, 420 .............................:

  • - 440 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

4600 40 38 . . ....

3601 0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 14a: Cladding Temperature at PCT Elevation (11.75 ft)

Westinghouse Non-Proprietary Class 3 Page 29 of 63 Point Beach Unit 2: 4-Inch Break Peak Cladding Temperature E

a, 0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 14b: Cladding Temperature at PCT Elevation (11.00 ft)

Westinghouse Non-Proprietary Class 3 Page 30 of 63 Point Beach Unit 1: 4-Inch Break I Ilflfl - T I UUU 800-C',

E 600- ........... ... .. .. ...

0 400-C',

200" L.L I g I J.,I I I I n P m 0 0 1000 2000 3000 4000 5000 6000 Time (s)

Figure 15a: Core Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 31 of 63 Point Beach Unit 2: 4-Inch Break C',

E

~0 U_

0 M,

0 *1000 2000 3000 4000 5000 6000 Time (s)

Figure 15b: Core Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 32 of 63 Point Beach Unit 1: 6-Inch Break CO, C,,

Q_

0 1000 2000 3000 4000 Time (s)

Figure 16a: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 33 of 63 Point Beach Unit 2: 6-Inch Break C,,

C,,

C,,

0 1000 2000 Time 3000 4000 (s)

Figure 16b: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 34 of 63 Point Beach Unit 1: 6-Inch Break Core Mixture Level Top of Core a)

-J ..................

0 1000 Time2000(s) 3000 4000 Figure 17a: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 35 of 63 Point Beach Unit 2: 6-Inch Break Core Mixture Level Top of Core 7-CID 0 1000 4000 Ti me2000(s) 3000 Figure 17b: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 36 of 63 Point Beach Unit 1: 6-Inch Break Broken Loop Pumped Sl F I ow Intact Loop Pumped Sl F I ow 70 60 . . .

S50 ... ..........................

E 0 30 . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

CL, 5 20 . ................

0 1000 2000 3000 4000 Time (s)

Figure 18a: Broken Loop and Intact Loop Pumped High Head SI Flow

Westinghouse Non-Proprietary Class 3 Page 37 of 63 Point Beach Unit 2: 6-Inch Break Broken Loop Pumped SI F I ow Intact Loop Pumped SI Flow 70-S60--**

Ci) 50 . . . . . . . . . . . . ....

E 40 . . . . . . . . . . . . . .

o 30 ...........................

C',20-1= 20 -. . . . . . . . . . . . . .

0 1000 2000 3000 4000 Time (s)

Figure 18b: Broken Loop and Intact Loop Pumped High Head SI Flow

Westinghouse Non-Proprietary Class 3 Page 38 of 63 Point Beach Unit 1: 6-Inch Break C,,

E

-o 0

M, 0 1000 2000 3000 4000 Time (s)

Figure 19a: Low Head Safety Injection Flow

Westinghouse Non-Proprietary Class 3 Page 39 of 63 Point Beach Unit 2: 6-Inch Break E

0 C,,

0 1000 2000 3000 4000 Time (s)

Figure 19b: Low Head Safety Injection Flow

Westinghouse Non-Proprietary Class 3 Page 40 of 63 Point Beach. Unit 1: 6-Inch Break 1400-1200 ....................................................

C,,

1000 . .............................................

-2c 800................... ...... :...... 'i"*:"

- 600............................... .....................

600

- 6 0 ... .. .. .. ... .. ... ... .. .. .. ... .. ... .. ... .. .. ... .. .... .. ..

C',

M* 200 .. . .

00... . . ........................

-200 ' I I I I I I I I I I I I I 0 1000% 2000 3000 4000 Time (s)

Figure 20a: Core Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 41 of 63 Point Beach Unit 2: 6-Inch Break 1400 1200---

12600 ........................................................

800 03 100 - . ...

C,,

o:: 600-0 0-. ...................................................

-200 I I I I I I I I 0 1000 2000 3000 4000 Time (s)

Figure 20b: Core Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 42 of 63 Point Beach Unit 1: 8.75-Inch Break 0n C,,

C,,

0l 0 1000 2000 3000 4000 Time (s)

Figure 21a: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 43 of 63 Point Beach Unit 2: 8.75-Inch Break C,,

M)

M~

0 1000 2000 3000 4000 Time (s)

Figure 21b: Pressurizer Pressure

Westinghouse Non-Proprietary Class 3 Page 44 of 63 Point Beach Unit 1: 8.75-Inch Break Core Mixture Level Top of Core XJ 0 1000 2000 3000 4000 Time (s)

Figure 22a: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 45 of 63 Point Beach Unit 2: 8.75-Inch Break Core Mixture Level.

Top of Core X)

-J 0 1000 2000 3000 4000 Time (s)

Figure 22b: Core Mixture Level

Westinghouse Non-Proprietary Class 3 Page 46 of 63 Point Beach Unit 1: 8.75-Inch Break Broken Loop Pumped SI F Iow Intact Loop Pumped SI Flow lug C,,

80- .....................................................

E

0. . .. .. .. . .. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . ... .

0 0- . . . . . . . . . . . .

C,,

C,,

20-U 9 3 0 1000 2000 3000 4000 Time (s)

Figure 23a: Broken Loop and Intact Loop Pumped High Head SI Flow

Westinghouse Non-Proprietary Class 3 Page 47 of 63 Point Beach Unit 2: 8.75-Inch Break Broken Loop Pumped SI Flow Intact Loop Pumped SI Flow l100 80 -.. . . .. .. ... . ... .. . . . . . . . . . . . . . . .

C',

E v 6. .. . . . .:-" * -" * . . . . . . . . . . . . . . . . . .m . . . . . . . . . . . . . . . . . . . . . ..

60, O* "4.- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Cn 0 .' * *"° " " . . . . . . .° ° ° " °.

. . . . . . . . . . ° . . .... . . . . . . . . . .° "

0 I I I I I I I "1 I I I I I I I I 0 1000 2000 3000 4000 Time (s)

Figure 23b: Broken Loop and Intact Loop Pumped High Head SI Flow

Westinghouse Non-Proprietary Class 3 Page 48 of 63 Point Beach Unit 1: 8.75-Inch Break C,,

E 0

M, 0 1000 2000 3000 4000 Time (s)

Figure 24a: Low Head Safety Injection Flow

Westinghouse Non-Proprietary Class 3 Page 49 of 63 Point Beach Unit 2: 8.75-Inch Break C,,

E

-o C,,

C;,

0 1000 2000 3000 4000 lime (s)

Figure 24b: Low Head Safety Injection Flow

Westinghouse Non-Proprietary Class 3 Page 50 of 63 Point Beach Unit 1: 8.75-Inch Break C,,

E C,,

C',

0 1000 2000 3000 4000 Time (s)

Figure 25a: Core Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 51 of 63 Point Beach Unit 2: 8.75-Inch Break 1400 1200 . .. .. ... .. .. ... ... .. ... .. .. ... .. ...

-- 1000-

  • E 800-60-0

-400.........................................................

C,,

C,,

M 200-. ..... . .

0......................... ...............................

-Il ~ I I I , I I I I , I I I I , I I I I

-200 0 1000 2000 ~ 3000 4000 Time (s)

Figure 25b: , Core Exit Vapor Flow

Westinghouse Non-Proprietary Class 3 Page 52 of 63

2) For the Point Beach nuclear steam supply system, please provide the following information:

a) Core Rated Thermal Power Core Rated Thermal Power 1 1800 MWt b) Power uncertainty, %

Power Uncertainty 1 0.6 %

c) Total Core Peaking Factor, FQ 1 FQ 1 2.6 d) Hot channel enthalpy rise factor. FAH F6l 1 1 1.68 e) Hot assembly average power factor, P HA PHA 1 1'.2 1

Westinghouse Non-Proprietary Class 3 Page 53 of 63 f) Most limiting top and bottom skewed axial power shapes The Point Beach EPU SBLOCA analysis analyzed a limiting top skewed 13% axial offset axial power shape. Bottom skewed power shapes are more favorable in SBLOCA analyses as the core does not uncover to these regions. Further, bottom skewed power shapes result in more voiding and therefore increased core level swell. As such, bottom skewed axial power shapes are not analyzed in SBLOCA analyses.

The hot rod axial power shapeanalyzed in the Point Beach EPU SBLOCA analysis is provided in the figure below.

Hot Rod

'4-a, 0

0~

L..

0)

C 0 2 4 6 8 10 12 Elevation (ft) g) Full power loop mass flow rate, lb[ml/sec Full Pwr9391.2 Ibm/sec per loop Rate I

Westinghouse Non-Proprietary Class 3 Page 54 of 63 h) Core mass flow rate, Ib[ml/sec The percent core bypass flow analyzed is 6.5% (reflects thimble plugs removed). Therefore, the core mass flow rate can be calculated by subtracting the bypass flow from the total system flow (18782.4 Ibm/sec x 0.935 = 17561.544 Ibm/sec).

i Core Mass Flow Rate 1 17561.544 Ibm/sec i) Thou!F Thot = 611.327 -F J) Tcald. F Tcod II I s542.673 'F k) Safety iniection Flow delay time, sec SSIl Delay Time 28 sec

Westinghouse Non-Proprietary Class 3 Page 55 of 63

1) High pressure safety injection (HPSI) flow rate (lb[ml/sec) vs reactor coolant system (RCS) pressure (psia)

Table I-1 High Head Safety Injection (HHSI) Flows vs. Pressure, Minimum Safeguards, Spill to RCS Pressure (Breaks < 8.75 in. diameter)

RCS Pressure Spilled Flow Injected Flow (psia) (Ibm/sec) (Ibm/sec) 14.7 65.79 60.40 114.7 63.49 58.29 214.7 61.13 56.12 314.7 58.47 53.68 414.7 55.73 51.16 514.7 52.86 48.52 614.7 49.76 45.67 714.7 46.54 42.72 814.7 43.14 39.60 914.7 39.59 36.33 1014.7 35.38 32.46 1114.7 30.70 28.16 1214.7 25.22 23.10 1314.7 18.32 16.74 1364.7 13.53 12.29 Table 1-2 High Head Safety Injection (HHSI) Flows vs. Pressure, Minimum Safeguards, Spill to 0 psig Containment Pressure (Breaks 8.75 in. diameter)

RCS Pressure Spilled Flow Injected Flow (psia) (Ibm/sec) (Ibm/sec) 14.7 71.09 65.46 114.7 72.75 61.48 214.7 74.45 57.31 314.7 76.10 52.79 414.7 77.81 48.00 514.7 79.61 42.87 614.7 81.53 37.32 714.7 83.56 31.16 814.7 85.78 24.17 914.7 88.33 15.96 934.7 88.90 14.10 934.71 88.90 0.00

Westinghouse Non-Proprietary Class 3 Page 56 of 63 m) HPSI runout flow rate A specific runout flow value was not required for input in the small break LOCA analysis; however, estimated runout flow can be determined by summing the injected and spilled flows at 14.7 psia from the tables provided in Item 1.

n) Low pressure safety iniection flow rate (lb[ml/sec) vs RCS pressure (psia)

Low Head Safety Injection (LHSI) Flows vs. Pressure, Minimum Safeguards, (Upper Plenum Injection)

RCS Pressure Injected Flow (psia) (Ibm/sec) 14.7 235.2 24.7 224.8 34.7 214.2 44.7 202.8 54.7 190.8 64.7 178.3 74.7 164.9 84.7 150.7 94.7 133.3 104.7 113.9 114.7 90.9 134.7 0.0 o) If charging flow is part of the emergency core cooling system (ECCS), provide the flow vs pressure for this pump curve also Only high head and low head safety injection flows were analyzed in the Point Beach EPU SBLOCA analysis. The charging pumps at Point Beach are not part of the ECCS.

p) Head flow curves for the ECCS pumped injection assuming a severed iniection line.

High head safety injection flows for a severed accumulator line are provided in Item I, Table 1-2.

q) Active Core height, ft Active fuel Height I [ ]a,c

Westinghouse Non-Proprietary Class 3 Page 57 of 63 r) Peak linear heat generation rate, kw/ft Peak Linear Heat Generation 17.6888 kW/ft Rate s) Average linear heat generation rate, kw/ft Core Average linear heat generation 6.7995 kW/ft Rate t) Number of fuel rods Number of Fuel Rods per Assembly 179 Total Number of Fuel Rods in the 21659 Core u) Number of fuel assemblies Number of Fuel Assemblies

  • v) Fuel rod pellet diameter and inside and outside radius of cladding Radius Diameter Pellet 0.18295 in 0.3659 in Cladding Inner 0.1867 in 0.3734 in Cladding Outer 0.211 in 0.4220 in w) Radiological waste(1 ) storage tank (RWST) max temperature, OF Temperature

(*F)

RWST, Maximum 100 RWST, SBLOCA 100 Analysis (1) It is assumed that the NRC intended to request the Refueling Water Storage Tank (RWST) temperature.

Westinghouse Non-Proprietary Class 3 Page 58 of 63 x) RWST capacity, gallons, and boron concentration Boron Concentration (ppm)

RWST, Minimum 2800 RWST, Maximum 3200 Capacity (gal)

RWST, Post-LOCA 289,504 Analysis RWST, SBLOCA Analysis 164,624 y) Accumulator minimum pressure (Dsia)

Pressure (psia)

Accumulator, Minimum 700(1)

Accumulator, SBLOCA 695 Analysis

ý') Without uncertainties.

z) Accumulator minimum liquid volume, ft 3, and maximum boric acid concentration Liquid Volume Boron Concentration (ft 3) (ppm)

Accumulator,. Minimum 1100 N/A Accumulator, Maximum N/A 3100 Accumulator,,SBLOCA 1118 N/A Analysis I

Westinghouse Non-Proprietary Class 3 Page 59 of 63 aa) Volumes and heights of the following regions, each identified separately:

i) Lower Plenum ii) Core iii) Upper plenum below the bottom elevation of the hot-leg Volume (ft 3)

Lower Plenum [ ]a,c Core [a,c Upper Plenum Below the Bottom Elevation of the Hot Leg [ ]a,c Height (ft)

Lower Plenum [ ]ac Core 11.9375 Upper Plenum Below the Bottom Elevation of the Hot Leg [ ]a,c bb) Elevation data i) Bottom elevation of suction leg horizontal leg piping ii) Top elevation of cold-leg at reactor coolant pump discharge iii) Top'elevation of the core (also core height) iv) Bottom elevation of the downcomer Elevation (ft)

Bottom of Suction Leg Horizontal Piping [ac Top of Cold Leg at Reactor Coolant Pump Discharge [a Top of the Core (also Core Height) [ ]a'c(11.9375)

Bottom of the Downcomer I]a,c (1 All elevations referenced from the bottom of the reactor vessel.

Westinghouse Non-Proprietary Class 3 Page 60 of 63 cc) Loop friction and geometry pressure losses from the core exit through the steam generators to the inlet nozzle of the reactor vessel 10% SGTP 0% SGTP Loss Loss Coefficient (ft/gpm2 ) Coefficient (ft/gpm 2)

Upper Plenum to Hot a~c SAME Leg Nozzle Hot Leg Nozzle [,C SAME Hot Leg ]a,c SAME Steam Generator Inlet [a,c SAME Steam Generator Tubes, Inlet to U-Bend [,],c Steam Generator U- a,c a,c Bend [

Steam Generator Tubes, U-Bend Outlet Steam Generator a,c SAME Outlet Pump Suction Leg [a,c SAME Cold Leg [,C SAME Cold Leg Nozzle ]ac SAME Intact Cold Leg to [axc SAME Broken Cold Leg I _I dd) Locked rotor reactor coolant pump (RCP) k-factor 0% SGTP Loss Coefficient (ft/gpm 2)

Locked Rotor (Forward [ ]a,c Flow)

Locked Rotor (Reverse [ ac Flow) ee) Mass flow rates, flow areas. k-factors, and coolant temperatures for the pressure losses provided (upper plenum, hot-legs, steam generators, suction legs, RCPs. and discharge legs). Please include the reduced SG flow areas due to plugged tubes. Please also provide the loss from each of the intact cold-legs through the annulus to a single broken cold-leg.

Please also provide the equivalent loop resistance for the broken loop and separately for the intact loop.

Westinghouse Non-Proprietary Class 3 Page 61 of 63 Mass Fiow 0% SGTP 10%SGTP k-factor Coolant

  1. Rate Flow Area (in 2) Flow Area (in 2) (ft/gpm2 ) Temperature (Ibm/hr) (OF)

Upper Plenum 1 to Hot Leg [ ]a,c a,c SAME [ ]a'c 611.1 Nozzle 2 Hot Leg Nozzle [ ]c [a,c SAME ax 611.1 3 Hot Leg [ ]a,c [a SAME [ ]a,c 611.1 Steam Generator Inlet ]a,c [ SAME [ 611.1 Steam Generator Tues Ile[t Ja~c [ ]a,c [ ]a,c [ ]ac577.0 Tubes, Inlet to U-Bend Steam 6 Generator U- [ ]a,c [ x[ a[ 577.0 Bend Steam 7 Generator ax ]a,c a'c ax 577.0 Tubes, U-Bend Outlet Steam 8 Generator [ [ a,c SAME [ ]a,c 542.7 Outlet 9 Pump Suction ]a,c [ ]axc SAME [ ]a,c 542.7 Leg 10 Cold Leg [ ]ac [ ]ac SAME [ ]ac 542.9 11 Cold Leg Nozzle [ ]axC [ ]a,c SAME [ ]ac .542.9 Intact Cold Leg Not 12 to Broken Cold Modeled [ ]a,c SAME [ 542.9 Leg

Westinghouse Non-Proprietary Class 3 Page 62 of 63 Loop Resistance Data Loss Coefficient Analysis Parameter (ft/gpm 2)

Broken Loop:

Upper Plenum to Hot [ (t)]aMc Leg Large Break -The conditions that could Broken Loop:

lead to a buildup and potential Hot Leg to precipitation of boric acid in the core Downcomer at Cold (2)]a,c only exist for a hot leg break when cold Leg Inlet leg SI injection is terminated. Intact Loop:

Upper Plenum to (3) ]a,c Downcomer at Cold (

Leg Inlet Broken Loop:

Small Break -The conditions that could Upper Plenum to (4) ]a,c lead to a buildup and potential Cold Leg precipitation of boric acid in the core only exist for a cold leg break while the Intact Loop:

system pressure remains above the Upper Plenum to LHSI cut-in pressure. Downcomer at Cold Leg Inlet (1)Summation of #1 - #3 from Q2.ee response.

(2) Summation of #4 - #11 from Q2.ee response.

(3) Summation of #1 - #11 from Q2.ee response.

(4) Summation of #1 - #10 from Q2.ee response.

if) Capacity of the condensate storage tank 11Condensate Storage Tank, SBLOCA Analysis' 11Condensate Storage Tank, Post-LOCA Analh (1) Point Beach has an unlimited water supply to the Auxiliary Feedwater pumps from Service Water (Lake Michigan).

Westinghouse Non-Proprietary Class 3 Page 63 of 63 gg) Flushing flow rate at the time of switch to simultaneous injection Flushing Flow Rate11 ) (Ibm/sec)

Flushing Flow at HLSO, SBLOCA 18 Flushing Flow at HLSO, LBLOCA 40 (1) Flushing flow is calculated as tsi - mbod, hh) Capacities and boron concentrations for high concentrate boric acid storage tanks Capacity Boron Concentration (ft3) (ppm) 1 Boron Injection Tank, Minimum( ) N/A N/A 1

Boron Injection Tank, Maximum( ) N/A N/A Boron Injection Tank, SBLOCA N/A N/A Analysis(_) NIAN/A (1) BASTs at Point Beach are not used for ECCS injection.

3) Please provide the sump temperature vs. time following recirculation. How does this impact precipitation? Is the boric acid concentration in the vessel below the precipitation limit based on the minimum sump temperature at the time the switch to simultaneous iniection is performed? Please explain.

Consistent with the interim methodology agreed upon with the NRC staff, all calculations are conservatively done at [ a temperatures and pressures for aqueous boric acid solution.

Performing the boric acid calculations at [ 1 aCtemperatures and pressures maximizes boil-off, and thus maximizes the rate of concentration of boric acid in the inner vessel region.

Taking credit for a [ ]a,c sump temperature would create [ ]a,c conditions in the core. This would reduce boil-off and slow the rate of concentration of boric acid in the core region. Additional details of long term cooling (LTC) analysis are provided in Section 2.8.5.6.3.4:

Post-LOCA Subcriticality and Long-Term Cooling of the LAR.