ML031060603

From kanterella
Jump to navigation Jump to search
Calculation 32-5019398-01, PB-1 CRDM Nozzle Idtb Weld Anomaly Flaw Evaluations.
ML031060603
Person / Time
Site: Point Beach NextEra Energy icon.png
Issue date: 02/26/2003
From: Killian D
Framatome ANP
To:
Office of Nuclear Reactor Regulation
References
32-5019398-01
Download: ML031060603 (50)


Text

20697-6 (2/2002)

A FRAMATOME ANP CALCULATION

SUMMARY

SHEET (CSS)

Document Identifier 32 - 5019398 - 01 Title PB-I CRDM NOZZLE IDTB WELD ANOMALY FLAW EVALUATIONS PREPARED BY: REVIEWED BY:

METHOD: 0 DETAILED CHECK El INDEPENDENT CALCULATION NAME D.E. KILLIAN NAME H.P. GUNAWARDANE SIGNATURE 7 p- /

W2 a - SIGNATURE i n TITLE ADVISORY ENGR. DATE ______ TITLE ENGINEER II DATE __ /_S_ 3 COST REF. TM STATEMENT: ~f4fA CENTER 41629 PAGE(S) 49,50 REVIEWER INDEPENDENCE PURPOSE AND

SUMMARY

OF RESULTS:

Revision 1: This revision is a non-proprietary version of Revision 0.

The purpose of this analysis is to perform a fracture mechanics evaluation of a postulated weld anomaly in the Point Beach Unit I CRDM nozzle ID temper bead weld repair. The postulated anomaly is a l ] inch semi-circular flaw extending 360 degrees around the circumference at the "triple point" location where there is a confluence of three materials; the Alloy 600 nozzle, the Alloy 1 ] weld, and the low alloy steel head. The anomaly is assumed to propagate in each of two directions on the uphill and downhill sides of the nozzle. The analysis predicts fatigue crack growth in an air environment since the anomaly is located on the outside surface of the new weld, just below the bottom of the severed CRDM tube. Flaw acceptance is based on the 1998 with 2000 Addenda ASME Code Section XI criteria for applied stress intensity factor (IWB-3612) and limit load (IWB-3642).

The results of the analysis demonstrate that a [ ] inch weld anomaly is acceptable for a 25 year design life for the CRDM nozzle IDtemper bead weld repair. Significant fracture toughness margins have been demonstrated for each of the two flaw propagation paths considered in the analysis. The minimum fracture toughness margin is 9.57, compared to the required margin of 410 per IWB-3612. Fatigue crack growth is minimal. The maximum final flaw size is [ ] inch. The margin on limit load is 8.47, compared to the required margin of 3.0 per IWB-3642.

THE FOLLOWING COMPUTER CODES HAVE BEEN USED IN THIS DOCUMENT: THE DOCUMENT CONTAINS ASSUMPTIONS THAT MUST BE VERIFIED PRIOR TO USE ON SAFETY-RELATED WORK CODEIVERSION/REV CODENERSIONIREV

_ YES X NO Page 1 of 50

A I LN t A. INI 32-5019398-01 F RAMA RECORD OF REVISIONS Affected Pages Description Date Revision 0 All Original release 9/02 1 All Revision 1 is a non-proprletary version 2/03 of Revision 0.

2

A3 FRAMATOME ANP 32-5019398-01 TABLE OF CONTENTS Section Title PaQe

1.0 INTRODUCTION

...................................... 4 2.0 ASSUMPTIONS ..................................... 5 3.0 WELD ANOMALY .... 6.....................

4.0 MATERIAL PROPERTIES ..... 8....................

5.0 APPLIED STRESSES ..................................... 11 6.0 FRACTURE MECHANICS METHODOLOGY ..................................... 20 7.0 ACCEPTANCE CRITERIA ..................................... 22 8.0 FLAW EVALUATIONS ..................................... 23 9.0

SUMMARY

OF RESULTS ..................................... 47

10.0 CONCLUSION

..................................... 48

11.0 REFERENCES

..................................... 49 3

FRAMATOME ANP 32-5019398-01

1.0 INTRODUCTION

The CRDM nozzle ID temper bead weld repair is described by the design drawing (Reference 1).

This weld repair establishes a new pressure boundary above the original J-groove weld, except in some cases away from the center of the head where the new weld partially overlaps the original weld. There are seven steps involved in the repair design, as depicted in Reference 1. These steps are:

1) Thermal sleeve cutting
2) Roll expansion
3) Nozzle removal and weld prep machining
4) Welding
5) Grinding/machining and NDE
6) Original weld grinding
7) Thermal sleeve re-attachment During the welding process (step 4), a maximum [ ] inch weld anomaly may be formed due to lack of fusion at the 'triple point", as shown in Figure 1. The anomaly is conservatively assumed to be a "crack-like' defect, 360 degrees around the circumference at the "triple point" location. The technical requirements document (Reference 2) provides additional details of the ID temper bead weld repair procedure. The purpose of the present fracture mechanics analysis is to provide justification, in accordance with Section Xl of the ASME Code (Reference 3), for operating with the postulated weld anomaly at the triple point. Predictions of fatigue crack growth are based on a design life of 25 years.

4

A 32-5019398-01 FRAMATOME ANP 2.0 ASSUMPTIONS Listed below are assumptions that are pertinent to the present fracture mechanics evaluation.

1) The anomaly is assumed to include a "crack-like" defect, located at the triple-point location and extending all the way around the circumference. For analytical purposes, a continuous circumferential flaw is located in the horizontal plane at the top of the weld. Another continuous flaw is located in the cylindrical plane between the weld and reactor vessel (RV) head.
2) In the radial plane, the anomaly is assumed to include a quarter-circular crack-like' defect (see Figure 1). For analytical purposes, a semi-circular flaw is used to represent the radial cross-section of the anomaly.
3) It is assumed that the weld residual stresses due to the new repair weld are negligible and therefore can be neglected in the present analysis, as discussed in Reference 5.
4) An RTNDT value of 60 0F is conservatively assumed for the [ ] low alloy reactor vessel head material. This value is commonly used to conservatively represent low alloy ferritic steels.

5

A 32-5019398-01 FRAMATOME ANP 3.0 WELD ANOMALY The anomaly is located in the triple point region as shown in Figure 1 below.

AMAX TRIPLE POINT 206 MIN

(( MAX POSSIBLE LACK OF FUSION ANOMALY)

AS-WELDED SURFACE SHALL BE SUITABLE FOR PT Figure 1. Weld Anomaly in Temper Bead Weld Repair The region is called a T riple point" since three materials intersect at this location. The materials are:

a) the alloy 600 CRDM nozzle material, b) the new [ ] filler weld material,* and c) the low alloy steel RV head material.

  • Per Reference 7, Specification 5.14, Par. A7.4.3, "Filler metal of this classification is used for welding nickel-chromium-iron alloy (ASTM B163, B166, B167, and B168 having UNS Number [ ])." This UNS number is associated with Alloy [ ] material.

6

FRAMATOME ANP 32-5019398-01 3.1 Postulated Flaw The triple point weld anomaly is assumed to be semi-circular in shape with an initial radius of I r as indicated in Figure 1. It is further assumed that the anomaly extends 3600 around the nozzle. Three flaws are postulated to simulate various orientations and propagation directions for the anomaly. A circumferential flaw and an axial flaw on the outside surface of nozzle would both propagate in a horizontal direction toward the inside surface. A cylindrically oriented flaw along the interface between the weld and head would propagate downward between the two components. The horizontal and vertical flaw propagation directions are represented in Figure 2 by separate paths for the downhill and uphill sides of the nozzle, as discussed below. For both these directions, fatigue crack growth will be calculated considering the most susceptible material for flaw propagation.

Horizontal Direction (Paths I and 2):

Flaw propagation is across the CRDM tube wall thickness from the OD of the tube to the ID of the tube. This is the shortest path through the component wall, passing through the new Alloy [ ] weld material. However, Alloy 600 tube material properties or equivalent are used to ensure that another potential path through the HAZ between the new repair weld and the Alloy 600 tube material is bounded.

For completeness, two types of flaws are postulated at the outside surface of the tube. A 3600 continuous circumferential flaw, lying in a horizontal plane, is considered to be a conservative representation of crack-like defects that may exist in the weld anomaly.

This flaw would be subjected to axial stresses in the tube. An axially oriented semi-circular outside surface flaw is also considered since it would lie in a plane that is normal to the higher circumferential stresses. Both of these flaws would propagate toward the inside surface of the tube.

Vertical Direction (Paths 3 and 4):

Flaw propagation is down the outside surface of the repair weld between the weld and RV head. A continuous surface flaw is postulated to lie along this cylindrical interface between the two materials. This flaw, driven by radial stresses, may propagate along either the new Alloy [ ] weld material or the low alloy steel head material.

7

A 32-5019398-01 FRAMATOME ANP 4.0 MATERIAL PROPERTIES The region of interest for the present flaw evaluations is at the triple point, where three different materials intersect. These materials are the CRDM nozzle material, the new weld material and the reactor vessel head material.

The Point Beach Unit 1 CRDM nozzles are made from Alloy 600 material to ASME specification SB-i167 for tubular products (Reference 2). The new weld, as noted in Section 3.0, is made from Alloy [ J type material. The portion of the reactor vessel head that contains the CRDM nozzles is fabricated from [ ] (Reference 2).

4.1 Yield Strength Values of yield strength, Sy, are obtained from the 1989 Edition of the ASME Code (Reference 9), as listed below.

[ 1Low Alloy Steel Plate Material (RV Head)

Room temperature 50.0 ksi Operating temperature of 600 0F 43.8 ksi SB-163 Material r 1(used for Alloy [ 1Weld Metal)

Room temperature 40.0 ksi Operating temperature of 600 'F 31.1 ksi SB-167 Material N06600 (Alloy 600 Material)

Room temperature 35.0 ksi Operating temperature of 600 'F 27.9 ksi 8

FRAMATOME ANP 32-5019398-01 4.2 Fracture Toughness 4.2.1. Low Alloy Steel RV Head Material The fracture toughness curve in Figure A-4200-1 of Reference 3 will be used for [

] material. This curve is specifically applicable to SA-533 Grade B Class 1 plate material and SA-508 Class 2 and 3 forging material [3]. Welding Research Council Bulletin 175 [4] states that this curve may also be used for other steels as long as the specified minimum yield strength does not exceed 50 ksi It is therefore appropriate to use the Section Xl curve to represent the fracture toughness of the Point Beach Unit 1 [ ] reactor vessel head.

At an operating temperature of about 600 F, the KIa fracture toughness value for this material 0

(using an assumed RTNDT of 60 OF) is above 200 ksivin. An upper bound value of 200 ksi-4in will be conservatively used for the present flaw evaluations.

4.2.2. Alloy 600 and Alloy F I Materials In Table 7 of Reference 12, Mills provides fracture toughness data for unirradiated Alloy 600 material at 24 *C (75 0F) and 427 TC (800 F) in the form of crack initiation values for the J-0 integral, Jc. Using linear interpolation and the LEFM plane strain relationship between Jc and fracture toughness, KJC Kjc JCE 0

the fracture toughness at an operating temperature of 600 F is derived as follows:

Note: v = 0.3 1 kNlm = I kN/m . 4.448 N/lb x 0.0254 m/in = 0.00571 kip/in Mills [12] Code 19]

Temp. J, Jc E Kjc (F) (kN/m) (kip/in) (ksi) (ksixin) 75 382 2.18 31000 273 600 522 2.98 28700 307 800 575 3.28 27600 316 Since brittle fracture is not a credible failure mechanism for ductile materials like Alloy 600 or Alloy 1 ], these fracture toughness measures, provided for information only, are not considered in the present flaw evaluations. However it should be noted that the fracture toughness measures of these ductile materials is significantly greater than the fracture toughness measure of the low alloy RV head material reported in Section 4.2.1.

9

A FRAMATOME ANP 32-501 9398-01 4.3 Fatigue Crack Growth Flaw growth due to fatigue is characterized by da where CO and n are constants that depend on the material and environmental conditions, AK, is the range of applied stress intensity factor in terms of ksWin, and da/dN is the incremental flaw growth in terms of inches/cycle. For the embedded weld anomaly considered in the present analysis, it is appropriate to use crack growth rates for an air environment. Fatigue crack growth is also dependent on the ratio of the minimum to the maximum stress intensity factor; i.e.,

R = (Ki)min / (K:)max I 1Low Alloy Steel Plate Material (RV Head)

From Article A-4300 of the 1998 Edition of Section Xl with addenda through 2000 (Reference 3),

the fatigue crack growth constants for subsurface flaws in an air environment are:

n = 3.07 CO = 1.99 x 01 0 S where S = 25.72 (2.88 - R ).307 for 0

  • R* 1 Alloy 600 and Alloy F 1Materials (used for Alloy f l Weld Metal)

Fatigue crack growth rates for austenitic stainless steels are used to predict flaw growth in the these nickel-chromium-iron components. From Article C-3210 of the 1998 Edition of Section Xl with addenda through 2000 (Reference 3), the fatigue crack growth constants for subsurface flaws in an air environment are:

n= 3.3 CO= C xS C = lo[ -10.009 + 8.12E-4xT - 1.13E-6xT 2 + 1.02E-9xT 3 l where S= 1.0 for R<O

= 1.0 + 1.8R for 0< R

  • 0.79

= -43.35 + 57.97R for 0.79< R< 1.0 10

A FRAMATOME ANP 32-5019398-01 5.0 APPLIED STRESSES The applied stresses are the cyclic stresses that contribute to fatigue crack growth. Fatigue stresses are obtained from a CRDM temper bead design stress analysis (Reference 6) that considered seven transient loading conditions:

Stress Table Transient Occurrences in 40 years I Heatup and Cooldown 200 cycles 2 Plant Loading and Unloading 3,000 cycles*

3 10% Step Load Changes 2,000 cycles 4 50% Step Load Reduction 200 cycles 5 Reactor Trip 400 cycles 6 Loss of Flow 80 cycles 7 Loss of Load 80 cycles

  • Based on a realistic estimate of plant loading and unloading cycles for a non-load following plant.

To simplify the present flaw evaluations while minimizing conservatism, these transients will be grouped into three sets, as listed below. The bounding stresses for the remaining transients (after heatup/cooldown and plant loading/unloading) will be used to conservatively represent these additional cyclic loads.

Group Transient Cycles /40 Years Cycles I Year 1 Heatup and Cooldown 200 5 2 Plant Loading and Unloading 3,000 75 3 Remaining Transients 2,760 69 Stresses are available from Reference 6 for the four crack propagation paths illustrated in Figure 2. Paths I and 3 are located on the downhill (00) side of the nozzle and Paths 2 and 4 are on the uphill (1800) side. Stresses are reported in a cylindrical coordinate system relative to the CRDM nozzle and include the three component directions (axial, hoop and radial) needed to calculate mode I stress intensity factors for the various postulated flaws. Stresses are provided at four uniform increments along each propagation path.

The length of Paths 1 and 2 is 0.5195" and the lengths of Paths 3 and 4 are 1.4513" (downhill side) and 0.9814" (uphill side), respectively. These path lengths are from a finite element model of an earlier design where the inside surface of the weld was remediated. The horizontal distance between the triple point and the machined weld surface in the present design is

([ ]") / 2 = 0.591" (Reference 1)

Since the actual weld thickness is greater than the analyzed thickness, it is conservative to use the Reference 6 stresses in the present flaw evaluations.

11

A t A WA A9rrAF A o IAM 32-501 9398-01 FRKAMVAI0A AIVC The "vertical" propagation paths extend from the triple point location to the lower portion of the weld at the surface of the enlarged ([ ]") bore. As such, the line is slightly offset from the vertical. It may still be used, however, to represent stresses along this potential propagation path between the weld and head. On the downhill side, Path 3 extends all the way to the bottom of the weld. On the uphill side, Path 4 extends only to the top of the J-groove weld prep (top of butter) since no credit is taken for the integrity of the new-to-old weld overlap in the structural model.

Since stresses are generally higher on the uphill side of the nozzle and the length of Path 4 is less than Path 3 (smaller distance to form a potential leak path), the stresses for Paths 2 and 4 will be used to evaluate postulated flaws at the triple point weld anomaly.

This figure is not pertinent to this document.

Z/z6/p (for legibility concernis) '

Figure 2. Illustration of Crack Propagation Paths on the Finite Element Stress Model 12

A FRAMATOME ANP 32-5019398-01 Table 1. Stresses for Heatup and Cooldown (from Reference 6)

Horizontal Flaw Propagation Paths Triple Point Location Path No: PATH1 Lengths 0.51953 0.51953 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 Location: 0.0 0.0 0.0 0.12988

-- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- sx-- -- SY-- -- sz-- -- SX-- -- SY--

1 0.001 2 2 3 4.4 4 6 5 7.8549 6 8.6 7 10.4 Path No: PATH2 Length= 0.51953 0.38965 0.51953 0.519S3 0.51953 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 Location: 0.0 0.0 0.0 -- SZ--

-- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY--

Time -- sx-- -- SY-- -- SZ-- -- SX--

1 0.001 2 2 3 4.4 4 6 5 7.8549 6 8.6 7 10.4 Triple Point Location Vertical Flaw Propagation Paths Path No: PATH3 Length- 1.4513 1.4513 1.4513 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885 1.0885 1.0885 1.4513 Location: 0.0 0.0 0.0

-- SY-- -- SZ-- -- sx-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- Sx-- -- SY-- --SZ-- -- sx-- -- SY-- -- SZ-- -- SX--

1 0.001 2 2 3 4.4 4 6 5 7.8549 6 8.6 7 10.4 Path No: PATH4 Length- 0.98139 0.24535 0.24535 0.4907 0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139 Location: 0.0 0.0 0.0 0.24535

-- sx-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- sx-- -- SY-- -- SZ-- -- sx-- -- SY-- -- SZ--

1 0.001 2 2 3 4.4 4 6 5 7 .854 9 6 8 3.6 7 1 0.4 Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 13

A Mr5A A A'rfr%tA A kIC 32-5019398-01 P-%Ir- -- - - -

Table 2. Stresses for Plant Loading and Unloading (from Reference 6)

Horizontal Flaw Propagation Paths Triple Point Location Path Not PATHI Length- 0.51953 I

Locationt 0.0 0.0 3.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Time -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- --SX-- --8Y-- --SZ-- -- SX-- --SY-- --SZ--

1 0.001 2 0.3333 3 3 4 3.3333 Path No: PATH2 Length- 0.51953 Location: 0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Time - -sx- - - -SY- - -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- --SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- --SZ--

1 0.001 2 0.3333 3 3 4 3.3333 Triple Point Location Vertical Flaw Propagation Paths Path No: PATH3 Length- 1.4513 Location: 0.0 0.0 I0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885 1.0885 1.0885 1.4513 1.4513 1.4513 Time -- Sx-- -- SY- - -- SZ-- -- Sx-- -- SY-- -- SZ-- -- Sx-- -- SY-- -- SZ-- -- sx-- -- SY-- -- SZ-- -- sx-- -- SY-- -- SZ--

1 0.001 2 0.3333 3 3 4 3.3333 Path No: PATH4 Length= 0.98139 Location: 0.0 0.0 I0.0 0.24535 0.24535 0.24535 0.4907 0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139 Time -- sx-- -- SY-- -- SZ-- -- Sx-- -- SY-- -- SZ-- -- sx-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

1 0.001 2 0.3333 3 3 4 3.3333 Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 14

A FRAMATIOMMEA AD 32-5019398-01 Table 3. Stresses for 10% Step Load Changes (from Reference 6)

Horizontal Flaw Propagation Paths Triple Point Location Path No: PATHI Length- 0.51953 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Location: 0.0 0.0 SX-- -- SY -- _SZ-- -- SX-- _-SY-- -- SZ-- -- SX-- -- SY-- -- SZ_

Time -- SX-- -- SY-- -- SZ-_ - --SX-- -- SY-- -- SZ-- --

1 0.001 2 0.027778 3 0.0625 4 1 5 1.025 Path No: PATH2 Length- 0.51953 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Location: 0.0 0.0 0.0 0.12988

--SZ- - -- SX-- - SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- 8Y-- -- SZ--

Time -- SX-- -- SY-- --SZ-. - -SX- - -- SY--

1 0.001 2 0.027778 3 0,0625 4 1 5 1.025 Triple Point Location Vertical Flaw Propagation Paths Path No: PATH3 Length- 1.4513 0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885 1.0885 1.0885 1.4513 1.4513 1.4513 Location: 0.0 0.0

-- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- SX-- -- SY--

1 0.001 2 0.027778 3 0.0625 4 1 5 1.025 Path No: PATH4 Length- 0.98135 0.0 0.24535 0.24535 0.24535 0.4907 0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139 Location: O .C 0.0

-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time SX-- -- SY-- -- SZ- - --SX 1 0.001 2 0.027778 3 0.0625 4 1 5 1.025 Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 15

A FRAMATOME ANP

__ 32-5019398-01 Table 4. Stresses for 50% Step Load Reduction (from Reference 6)

Horizontal Flaw Propagation Paths Triple Point Location Path No: PATHI Length- 0.51953 0.51953 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 Location: 0.0 0.0 0.0 0.12988 0.12988 0.12988

-- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

1 0.001 2 0.05 3 0.23333 Path NO: PATH2 Length- 0.51953 0.51953 0.51953 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 Location: 0.0 0.0 0.0 0.12988 0.12988

--SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- x- -- SY-- -- SY- --

Time -- sx-- -- SY-- -- SZ-- --SX--

1 0.001 2 0.05 3 0.23333 TriUle Point Location Vertical Flaw Propagation Paths Path No: PATH3 Length- 1.4513 1.4513 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885 1.0885 1.0885 1.4513 1.4513 Location: 0.0 0.0 0.0

-- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- sx-- -- SY-- -- SZ-- -- SX-- -- SY--

1 0.001 2 0.05 3 0.23333 Path No: PATH4 Length- 0.98139 0.24535 0.24535 0.4907 0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139 Location: 0.0 0.0 0.0 0.24535

-- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- sx-- -- SY-- -- SZ-- -- sx--

1 0.001 2 0.05 3 0.23333 Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 16

A F12AMATOMF AMP 32-5019398-01 Table 5. Stresses for Reactor Trip (from Reference 6)

Horizontal Flaw Propagation Paths Triple Point Location Path No: PATH1 Length. 0.51953 Location: 0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Time --SX-- --SY-- --SZ-- -- Sx-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

1 0.001 2 0.016667 3 0.025 Path No: PATH2 Lengthu 0.51953 Location: 0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Time -- SX-- --SY-- --SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

1 0.001 2 0.016667 3 0.025 Triple Point Location Vertical Flaw Propagation Paths Path No: PATH3 Length= 1.4513 Location: 0.0 0.0 0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885 1.0885 1.0885 1.4513 1.4513 1.4513 Time --SX-- --SY-- --SZ-- --SX-- --SY-- --SZ-- --SX-- --SY-- --SZ-- --SX-- --SY-- --SZ-- --SX-- --SY-- --SZ--

1 0.001 2 0.016667 3 0.025 Path No: PATH4 Length- 0.98139 Location: 0.0 0.0 0.0 0.24535 0.24535 0.24535 0.4907 0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139 Time --SX-- --SY-- --SZ-- --SX-- --SY-- --SZ-- --SX-- --SY-- --SZ-- --SX-- --SY-- --SZ-- --SX-- --SY-- --SZ--

1 0.001 2 0.016667 3 0.025 Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 17

A 'KI14r-32-501 9398-01 Table 6. Stresses for Loss of Flow (from Reference 6)

Horizontal Flaw Propagation Paths Triple Point Location Path No: PATH1 LengtIhh- 0.51953 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Location: 0.c 0.0 0.0 0.12988

-- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- SX-- -- SY- -- SZ-- -- sx-- -- SY-- -- SZ--

1 0.001 2 0.006667 3 0.04034 Path NO: PATH2 Length- 0.51953 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Location: 0.0 0.0 0.0 0.12988

-- Sz-- -- sx-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- Sx-- -- SY-- -- SZ-- -- sx-- -- SY--

1 0.001 2 0.006667 3 0.04034 Triple Point Location Vertical Flaw Propagation Paths Path No: PATH3 Length- 1.4513 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885 1.0885 1.0885 1.4513 1.4513 1.4513 Location: 0.0 0.0 0.0

-- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- Sx-- -- SY-- --SZ-- -- sx-- -- SY-- -- SZ-- -- SX--

1 0.001 2 0.006667 3 0.04034 Path No: PATH4 Length- 0.98139 I0.0 0.24535 0.24535 0.24535 0.4907 0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139 Location: 0.0 0.0

-- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

Time -- SX-- -- SY-- --SZ-- -- sx--

1 0.001 2 0.006667 3 0.04034 Legend for stress indicators: SX = radial stress SY = hoop stress SZ= axial stress 18

A FRAMATOMF ANP 32-5019398-01 ll - ... .. -. -

Table 7. Stresses for Loss of Load (from Reference 6)

Horizontal Flaw Propagation Paths Triple Point Location Path No: PATH1 Length= 0.51953 Location: 0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Time -- SX-- -- sY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- --sy-- -X -- sx-- -- SY-- -- SZ--

1 0.001 2 0.002778 3 0.04444 Path No: PATH2 Length- 0.51953 Location: 0.0 0.0 0.0 0.12988 0.12988 0.12988 0.25976 0.25976 0.25976 0.38965 0.38965 0.38965 0.51953 0.51953 0.51953 Time -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

1 0.001 2 0.002778 3 0.04444 Triple Point Location Vertical Flaw Propagation Paths Path No: PATH3 Length. 1.4513 Location: 0.0 0.0 I0.0 0.36283 0.36283 0.36283 0.72565 0.72565 0.72565 1.0885 1.0885 1.0885 1.4513 1.4513 1.4513 Time -- sx-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ-- -- sx-- -- SY-- -- SZ-- -- SX-- -- SY-- -- SZ--

1 0.001 2 0.002778 3 0.04444 Path No: PATH4 Lengths 0.98139 Location: 0.0 0.0 I0.0 0.24535 0.24535 0.24535 0.4907 0.4907 0.4907 0.73604 0.73604 0.73604 0.98139 0.98139 0.98139 Time -- sx-- -- SY- - -- SZ-- -- SX-- -- SY-- -- SZ-- -- SX-- -- sY-- -- SZ-- -- SX-- --

_Y-_ - Z -- SX-- -- SY-- -- SZ--

1 0.001 2 0.002778 3 0.04444 Legend for stress indicators: SX = radial stress SY = hoop stress SZ = axial stress 19

A 32-5019398-01 FRAMATOME ANP 6.0 FRACTURE MECHANICS METHODOLOGY This section presents several aspects of linear elastic fracture mechanics (LEFM) and limit load analysis (to address the ductile Alloy 600 and Alloy [ ] materials) that form the basis of the present flaw evaluations. As discussed in Section 3.1, flaw evaluations are performed for flaw propagation Paths 2 and 4 in Figure 2.

Path 2 represents a section across the new Alloy [ ] weld metal which is equivalent to the thickness of the CRDM tube wall. Since the weld anomaly is located at the base of the OD of the CRDM tube and is assumed to be all the way around the circumference, a stress intensity factor (SIF) solution for a 360 degree circumferential crack on the OD of a circular tube is deemed appropriate. Therefore, the SIF solution of Buchalet and Bamford (Reference 13) is used in the analysis. However, this solution is applicable for a 360-degree part-through ID flaw.

To develop an SIF solution for a 360 degree part-through OD flaw, an F function is determined based on SIF solutions of Kumar (References 14 and 15). The appropriate F function for an internal as well as an external circumferential flaw in a cylinder subjected to remote tension are determined first. The ratio of the F functions of the external flaw to the internal flaw is considered to be the appropriate multiplication factor for the Buchalet and Bamford SIF solution, to extend its application to an external crack. The materials to be considered for this path are the Alloy 600 tube material or the Alloy [ ] weld metal. A limit load analysis for an external circumferential flaw in a cylinder subjected to remote tension (Reference 15) is also performed for applied loads on the CRDM tube.

An axially oriented semi-circular OD surface flaw is also considered in the evaluation, as illustrated by the schematic below.

Flaw Propagation Path Componept Walt t Semi-Ettipticalo where, a = initial flaw depth = [ ] inch I =2c = flaw length =[ ]inch t = wall thickness = 0.591 inch An axial flaw is considered since the stresses in the CRDM penetration region are primarily due to pressure and therefore the hoop stresses are more significant. The SIF solution by Raju &

Newman (Reference 10) for an external surface crack in a cylindrical vessel is used in the evaluation. The fatigue flaw growth analysis for the axial crack is also performed using the austenitic stainless steel properties.

20

A FRAMATOME ANP 32-5019398-01 The Irwin plasticity correction is also considered in the SIF solutions discussed above. This plastic zone correction is discussed in detail in Section 2.8.1 of Reference 11. The effective crack length is defined as the sum of the actual crack size and the plastic zone correction:

ae =a+ry where ry for plane strain conditions (applicable for this analysis) is given by:

6r gays )

Path 4 represents the interface between the new repair weld and the RV head material. The potential for flaw propagation along this interface is likely if radial stresses are significant between the weld and head. This assessment utilizes an SIF solution for a continuous surface crack in a flat plate from Appendix A of Section Xl (Reference 3). Crack growth analysis is performed considering propagation through the Alloy t ] weld metal or the low alloy steel head material, whichever is limiting.

21

A FRAMATOME ANP 32-5019398-01 7.0 ACCEPTANCE CRITERIA For bw aloy steel materials such as the reactor vessel head material, the evaluation will be perkxrmed to the IWB-3612 acceptance criteria of Section Xi of the Code (Reference 3). The following considerations are made to address the flaw acceptance criteria for highly ductile materials such as Alloy 600 and Alloy [ ] type materials. The initial flaw depth to thickness ratio for the postulated weld anomaly is about 20%. Fatigue crack growth is minimal for Alloy 600 or Alloy [ I materials in an air environment. The only acceptance criterion on flaw size is the industry developed 75% through-wall limit on depth (Reference 8):

at -<075 t

For the shallow cracks considered in the present analysis, this criterion is easily met.

Another acceptance criterion for ductile materials is demonstration of sufficient limit load margin.

From IWB-3642 (Reference 3), the required safety margin, based on load, is a factor of 3 for normal and upset operating conditions. Stress intensity factors are also evaluated considering the required fracture toughness margin of 41i0 for normal and upset operating conditions.

22

A 32-5019398-01 FRAMATOME ANP 8.0 FLAW EVALUATIONS The evaluation of the postulated external circumferential flaw for propagation along Path 2 is contained in Tables 8 and 9. The fatigue crack growth analysis is provided in Table 8 and a limit load analysis is presented in Table 9.

The evaluation of an external axial flaw for fatigue crack growth along Path 2 is contained in Table 10.

A continuous surface flaw between the repair weld and the RV head is analyzed for fatigue crack growth along Path 4 in Table 11.

The fatigue crack growth analyses (in Tables 8, 10, and 11) uniformly distribute the applied cycles over the 25 year service life by linking the incremental crack growth due to various loading conditions.

23

Framatome ANP 32-501 9398-01 Table 8. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 INPUT DATA Geometry: Outside diameter, Do= in.

Inside diameter, Di= L J in.

Thickness, t= 0.591 in.

Ri/t=[ I Flaw Size: Flaw depth, a= I in.

a/t = I Environment: Temperature, T= 600 F Material Strength: Yield strength, cys = 27.9 ksi PB-i Circ Flaw NP.xls 24 Circ. Input

Framatome ANP 32-501 9398-01 Table 8. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

Variation of F Function between Continuous External and Continuous Internal Circumferential Flaws Using Solutions by V. Kumar et al.

Source: EPRI NP-1931 Topical Report, Section 4.3 for F Function for An Internal Circumferential Crack Under Remote Tension (Ref. 14).

The applied KI equation is given by the expression:

KI c*4(7Tr*a)*F(a/b, RiRo) where C = P/(n*(RoA2 - RiM2) and F is a function of a/b and Ri/Ro or b/Ri.

For this application:

a/b =

b/Ri =

By extrapolation from Table 4-5 of EPRI-1 931, F is estimated to be:

F= 1.11 Source: GE Report SRD-82-048, Prepared for EPRI Contract RP-1237-1, Fifth & Sixth Semi-Annual Report, Section 3.5 for F Function (Ref. 15).

For the external circumferential crack, the expressions for KI and CT are as defined above for the internal circumferential crack.

From Figure 3-11, the F function for:

a/b = 1 RiRo =L is estimated to be, F= 1.25 Multpying Factor:

To estimate the stress intensity factor for an external circumferential crack from the solution for an internal circumferential crack under remote tension, the appropriate multiplying factor is: 1.13 PB-1 Circ Flaw NP.xls 25 SIF Factor

Framatome ANP 32-5019398-01 Table 8. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

CIRCUMFERENTIAL FLAW STRESS INTENSITY FACTOR FOR HEATUP AND COOLDOWN STRESSES Basis: Buchalet and Bamford solution for continuous circumferential flaws on the inside surface of cylinders (Ref. 13)

KI = !(n*a) * [ AO F1 + (2ahr) Al F2 + (a2 /2) A2 F3 + (4a3 )1(3it) A3 F4 ]

where, F1 = 1.1259 + 0.2344(alt) + 2.2018(a/t) 2 - 0.2083(a/t) 3 P2 a 1.0732 + 0.2677(a/t) + 0.6661(a/t) 2 + 0.6354(a/t) 3 3

F3 = 1.0528 + 0.1065(a/t) + 0.4429(a/t)2 + 0.6042(a/t)

F4 = 1.0387 - 0.0939(a/t) + 0.6018(a/t) + 0.3750 (a/t)3 and the through-wall stress distribution is described by the third order polynomial, S(x) = AO + A 1x + A2 x2 + A3 x3 .

Applicablility: RUt = 10 aft< 0.8 A)s Stresses:

Wall Normal/Upset Cond.

Position Stresses [1 x SS* Shutdown

  • Heatup/Cooldown transient (in.) (ksi) (ksi) at 6.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (steady state) 0.00000 using stresses for Path 2 0.14775 0.29550 0.44325 0.59100 Stress Coefficients:

Normal/Upset Stress Loading Conditions Coeff. NU1 NU2 (ksi) (ksi)

Ao Al A2 A3 __

PB-1 Circ Flaw NP.xIs 26 HUCD Circ. Kl

Framatome ANP 32-501 9398-01 Table 8. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

CIRCUMFERENTIAL FLAW STRESS INTENSITY FACTOR FOR PLANT LOADING AND UNLOADING STRESSES Basis: Buchalet and Bamford solution for continuous circumferential flaws on the inside surface of cylinders (Ref. 13)

KI = oJ(n*a) * [ AO F1 + (2a/h) Al F2 + (a212) A 2 F3 + (4a3 )1(3n) A3 F4 ]

where, F1 = 1.1259 + 0.2344(a/t) + 2.2018 (a/t)2 - 0.2083 (a/t) 3 F2 = 1.0732 + 0.2677(a/t) + 0.6661(a/t) 2 + 0.6354(a/t) 3 F3 = 1.0528 + 0.1065(a/t) + 0.4429(a/t) 2 + 0.6042(a/t) 3 F4 = 1.0387 - 0.0939(a/t) + 0.6018(a/t)2 + 0.3750(a/t) 3 and the through-wall stress distribution is described by the third order polynomial, S(x) =AO + Aix + A2x2 + A3x3 .

Applicablility. Ri/t = 10 aft s 0.8 Axial Stresses:

Wall Normal/Upset Cond.

Position Stresses [(6 x PU* PL**

  • Plant Loading/Unloading transient (in.) (ksi) (ksi) at 3.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant unloading) 0.00000 using stresses for Path 2 0.14775 0.29550 ** Plant Loading/Unloading transient 0.44325 at 0.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant loading) 0.59100 using stresses for Path 2 Stress Coefficients:

Normal/Upset Stress Loading Conditions Coeff. NU1 NU2 (ksi) (ksi)

A4 Al A2 A3 _ _ _ _ _ _ _ _

PB-1 Circ Flaw NP.xAs 27 Pl-PU Circ. KI

Framatome ANP 32-501 9398-01 Table 8. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

CIRCUMFERENTIAL FLAW STRESS INTENSITY FACTOR FOR REMAINING TRANSIENT STRESSES Basis: Buchalet and Bamford solution for continuous circumferential flaws on the inside surface of cylinders (Ref. 13)

KI = 4I(n*a)

  • I AO F1 + (2a/x) Al F2 + (a2/2) A2 F3 + (4a3)/(3n) A3 F4 ]

where, F1 = 1.1259 + 0.2344(a/t) + 2.2018(a/t)2 - 0.2083(a/t) 3 F2 = 1.0732 + 0.2677(a/t) + 0.6661(a/t) 2

+ 0.6354(a/t) 3 F3 = 1.0528 + 0.1065(a/t) + 0.4429(a/t) 2

+ 0.6042(a/t) 3 F4 = 1.0387 - 0.0939(a/t) + 0.6018(a/t) 2 + 0.3750(a/t) 3 and the through-wall stress distribution is described by the third order polynomial, S(x) = AO + Aix + A2x2 + A3x3 .

Applicablility. Rit = 10 a/t

  • 0.8 Axial Stresses:

Wall Normal/Upset Cond.

Position Stresses [

x LL1* LL2**

  • Loss of Load transient (in.) (ksi) (ksi) at 0.00278 hours (max. stress) 0.00000 using stresses for Path 2 0.14775 0.29550 ** Loss of Load transient 0.44325 at 0.0444 hours0.00514 days <br />0.123 hours <br />7.34127e-4 weeks <br />1.68942e-4 months <br /> (min. stress) 0.59100 using stresses for Path 2 Stress Coefficients:

Normal/Upset Stress Loading Conditions Coeff. NU1 NU2 (ksi) (ksi)

AG Al A2 A3 .

PB-I Circ Flaw NP.xIs 28 Rem. Trans. Circ. Kl

Framatome ANP 32-5019398-01 Table 8. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

CIRCUMFERENTIAL FLAW FATIGUE CRACK GROWTH FOR HEATUP AND COOLDOWN TRANSIENT Basis: Aa = AN

  • C0(AKI)'

Transient frequency: 200 cycles over 40 years AN = 5 cycles/year Operating NUI NU2 NU1 Time Cycle a KI(a)max KI(a)min AKI R S C. A3 ry a. KI(a,)max

_(yr.) (in.) (ksilin) (ksllin) (ksl~ln) (in.) (ksllin) 0 0 15.68 0.00 15.68 0.00 1.00 1.96E-10 8.62E-06 0.017 16.17 1 5 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.63E-06 0.017 16.18 2 10 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.63E-06 0.017 16.18 3 15 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.63E-06 0.017 16.18 4 20 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.63E-06 0.017 16.18 5 25 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.63E-06 0.017 16.18 6 30 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.64E-06 0.017 16.18 7 35 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.64E-06 0.017 16.18 8 40 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.64E-06 0.017 16.18 9 45 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.642-06 0.017 16.18 10 50 15.69 0.00 15.69 0.00 1.00 1.96E-10 8.64E-06 0.017 16.18 11 55 15.70 0.00 15.70 0.00 1.00 1.96E-10 8.65E-06 0.017 16.18 12 60 15.70 0.00 15.70 0.00 1.00 1.96E-10 8.65E-06 0.017 16.18 13 65 15.70 0.00 15.70 0.00 1.00 1.96E-10 8.65E-06 0.017 16.19 14 70 15.70 0.00 15.70 0.00 1.00 1.96E-10 8.65E-06 0.017 16.19 15 75 15.70 0.00 15.70 0.00 1.00 1.96E-10 8.65E-06 0.017 16.19 16 80 15.70 0.00 15.70 0.00 1.00 1.96E-10 8.65E-06 0.017 16.19 17 85 15.70 0.00 15.70 0.00 1.00 1.96E-10 8.66E-06 0.017 16.19 18 90 15.70 0.00 15.70 0.00 1.00 1.96E-10 8.66E-06 0.017 16.19 19 95 15.70 0.00 15.70 0.00 1.00 1.96E-10 8.66E-06 0.017 16.19 20 100 15.71 0.00 15.71 0.00 1.00 1.96E-10 8.66E-06 0.017 16.19 21 105 15.71 0.00 15.71 0.00 1.00 1.96E-10 8.66E-06 0.017 16.19 22 110 15.71 0.00 15.71 0.00 1.00 1.96E-10 8.67E-06 0.017 16.19 23 115 15.71 0.00 15.71 0.00 1.00 1.96E-10 8.67E-06 0.017 16.19 24 120 15.71 0.00 15.71 0.00 1.00 1.96E-10 8.67E-06 0.017 16.19 25 125 15.71 0.00 15.71 0.00 1.00 1.96E-10 8.67E-06 0.017 16.20 PB-1 Circ Flaw NP.xls 29 HUCD Circ. FCG

Framatome ANP 32-5019398-01 Table 8. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

CIRCUMFERENTIAL FLAW FATIGUE CRACK GROWTH FOR PLANT LOADING AND UNLOADING TRANSIENT Basis: Aa = AN

  • C,(AKI)'

Transient frequency: 3000 cycles over 40 years AN = 75 cycles/year Operating NU1 NU2 NU1 Time Cycle a Ki(a)max Ki(a)min AKI R S CO, Aa ry a, KI(ae)max (yr.) (in.) (ksl~in) (ksl-in) (ksihin) (in.) (ksl0in) 0 0 15.26 12.38 2.88 1.81 3.68 7.20E-10 1.77E-06 0.016 15.66 C

1 75 15.26 12.38 2.88 ).81 3.68 7.20E-10 1.77E-06 0.016 15.66 C

2 150 15.26 12.38 2.88 '.81 3.68 7.20E-10 1.77E-06 0.016 15.67 3 225 15.26 12.38 2.88 1.81 3.68 7.20E-10 1.77E-06 0.016 15.67 4 300 15.26 12.38 2.88 1.81 3.68 7.21E-10 1.77E-06 0.016 15.67 5 375 15.26 12.38 2.88 1.81 3.68 7.21E-10 1.77E-06 0.016 15.67 C

6 450 15.26 12.38 2.88 1.81 3.68 7.21E-10 1.77E-06 0.016 15.67 C

7 525 15.26 12.38 2.88 ).81 3.68 7.21E-10 1.77E-06 0.016 15.67 C

8 600 15.26 12.38 2.88 ).81 3.68 7.21E-10 1.77E-06 0.016 15.67 C

9 675 15.26 12.38 2.88 3.68 7.21E-10 1.77E-06 0.016 15.67 C'.81 10 750 15.27 12.39 2.88 '.81 3.68 7.21E-10 1.77E-06 0.016 15.67 11 825 15.27 12.39 2.88 1.81 3.69 7.21E-10 1.77E-06 0.016 15.67 12 900 15.27 12.39 2.88 ).81 3.69 7.21E-10 1.77E-06 0.016 15.67 13 975 15.27 12.39 2.88 ).81 3.69 7.22E-10 1.78E-06 0.016 15.67 C

14 1050 15.27 12.39 2.88 3.69 7.22E-10 1.78E-06 0.016 15.67 C1.81 15 1125 15.27 12.39 2.88 3.69 7.22E-10 1.78E-06 0.016 15.67 C).81 16 1200 15.27 12.39 2.88 3.69 7.22E-10 1.78E-06 0.016 15.68 C1.81 17 1275 15.27 12.39 2.88 ).81 3.69 7.22E-10 1.78E-06 0.016 15.68 C

18 1350 15.27 12.39 2.88 1.81 3.69 7.22E-10 1.78E-06 0.016 15.68 C

19 1425 15.27 12.39 2.88 ).81 3.69 7.22E-10 1.78E-06 0.016 15.68 20 1500 15.27 12.39 2.88 ).81 3.69 7.22E-10 1.78E-06 0.016 15.68 21 1575 15.28 12.40 2.88 '.81 3.69 7.22E-10 1.78E-06 0.016 15.68 22 1650 15.28 12.40 2.88 3.69 7.23E-10 1.78E-06 0.016 15.68 C'.81 23 1725 15.28 12.40 2.88 ).81 3.69 7.23E-10 1.78E-06 0.016 15.68 C

24 1800 15.28 12.40 2.88 ).81 3.69 7.23E-10 1.78E-06 0.016 15.68 C

25 1875 15.28 12.40 2.88 1.81 3.69 7.23E-10 1.78E-06 0.016 15.68 PB-1 Circ Flaw NP.xis 30 PLPU Circ. FCG

Framatome ANP 32-5019398-01 Table 8. Evaluation of Continuous Extemal Circumferential Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

CIRCUMFERENTIAL FLAW FATIGUE CRACK GROWTH FOR REMAINING TRANSIENTS Basis: Aa = AN' CJ(AKI)"

Transient frequency: 2760 cycles over 40 years AN = 69 cycleslyear Operating NU1 NU2 NUI Time Cycle a KI(a)max KI(a)min AKI R S CO A3 ry aO KI(ae)max (yr.) (in.) (ksl-in) (ksI~in) (ksi~in) (in.) (ksI4in) 0 0 17.18 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.86 1 69 17.18 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.86 2 138 17.19 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.86 3 207 17.19 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.86 4 276 17.19 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.86 5 345 17.19 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.86 6 414 17.19 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.86 7 483 17.19 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.87 8 552 17.19 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.87 9 621 17.19 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.87 10 690 17.20 9.74 7.45 0.57 2.02 3.95E-10 2.06E-05 0.020 17.87 11 759 17.20 9.74 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.87 12 828 17.20 9.74 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.87 13 897 17.20 9.74 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.87 14 966 17.20 9.74 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.87 15 1035 17.20 9.74 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.87 16 1104 17.20 9.74 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.87 17 1173 17.20 9.74 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.88 18 1242 17.21 9.74 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.88 19 1311 17.21 9.75 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.88 20 1380 17.21 9.75 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.88 21 1449 17.21 9.75 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.88 22 1518 17.21 9.75 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.88 23 1587 17.21 9.75 7.46 0.57 2.02 3.95E-10 2.072-05 0.020 17.88 24 1656 17.21 9.75 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.88 25 1725 17.21 9.75 7.46 0.57 2.02 3.95E-10 2.07E-05 0.020 17.88 PB131 Circ Flaw NP.xls 31 Rem. Trans. Circ. FCG

Framatome ANP 32-501 9398-01 Table 9. Limit Load Analysis for a Continuous External Circumferenital Flaw LIMIT LOAD Basis. GE Report SRD-82-048, Combined Fifth and Sixth Semi-Annual Report by V. Kumar et al, Section 3.5 (Ref. 15).

For remote tension loading, Po = 2143*ao*n*(Rc2-Ri 2 )

where Rc= Ro-a and cO = 27900 psi (conservatively using the minimum yield strength)

Ro = in.

a= in.

Rc = in.

Ri = in.

Then Po= ] lbs A bounding axial tube load on the CRDM tube is the hydrostatic test load:

P = (nRi 2 )*ph where Ph = hydrostatic test pressure

= 1.25 times the design pressure Pd=[ ] psig (Ref. 2)

Then Ph = ]psig and P= E jlbs The limit load safety margin is:

Po/P = 8.47 This safety margin is greater than the value of 3 required by Article IWB-3642 of Section Xl (Reference 3).

PB-1 Circ Flaw NP.xAs 32 Circ. Limit Load

Framatome ANP 32-501 9398-01 Table 10. Evaluation of Continuous External Circumferential Flaw for Fatigue Crack Growth Along Path 2 INPUT DATA Geometry: Outside diameter, Do= [in.

Inside diameter, Di= I I in.

Thickness, t= 0.591 in.

RRt =[ ]

Flaw Size: Flaw depth, Environment: Temperture, T= 600 F Material Strength: Yield strength, Gy5 = 27.9 ksi PB-1 Axial Flaw NP.xls 33 Axial Input

Framatome ANP 32-501 9398-01 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 AXIAL FLAW STRESS INTENSITY FACTOR FOR HEATUP AND COOLDOWN STRESSES Basis: Raju & Newman, "Stress Intensity Factors for Internal & External Surface Cracks in Cylindrical Vessels (Ref. 10)

Kl = (1/Q) * [GoAo ao5 +GI Al a'5 +G2 A2a2 5 + G3 A3 a3 5 ]

where, per Table 4, for an external surface crack and for hR = 0.25, aft = 0.2, 2c1rt = 1, and a/c = 1.0 Go= 1.030 GI = 0.720 G2 = 0.591 G. = 0.513 and Q= 2.464 = (1 + 1.464*(a/c)A1.65) and the through-wall stress distribution is described by the third order polynomial, S(x) = A( + A~x + A 2x2 + A3x3.

Hoop Stresses:

Wall Normal/Upset Cond.

Position Stresses [61 x SS* Shutdown

  • Heatup/Cooldown transient (in.) (ksi) (ksi) at 6.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (steady state) 0.00000 using stresses for Path 2 0.14775 0.29550 0.44325 0.59100 Stress Coefficients:

Normal/Upset Stress Loading Conditions Coeff. NU1 NU2

_ (ksi) (ksi)

AO A2 A3 PB-1 Axial Flaw NP.xls 34 HUMD Axial Kl

Framatome ANP 32-5019398-01 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 AXIAL FLAW STRESS INTENSITY FACTOR FOR PLANT LOADING AND UNLOADING STRESSES Basis: Raju & Newman, 'Stress Intensity Factors for Internal & External Surface Cracks in Cylindrical Vessels (Ref. 10)

KI = 41(nt/Q) * [GusAO aa5 +G1 Al a"5 +G2 A2 a2 5

+ G3 A 3 a3 5 ]

where, per Table 4, for an external surface crack and for t/R = 0.25, aft = 0.2.2l/n = 1, and a/c = 1.0 Go = 1.030 G1 = 0.720 G2 = 0.591 G3 = 0.513 and Q= 2.464 = (1 + 1.464*(a/c)AI.65) and the through-wall stress distribution is described by the third order polynomial, S(x) = AO + A1 x + A2x2 + A3X3.

Hoop Stresses:

Wall Normal/Upset Cond.

Position Stresses [61 x PU* PL**

( (ksi) (ksi) at 3.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant unloading) 0.00000 using stresses for Path 2 0.14775 0.29550 ** Plant Loading/Unloading transient 0.44325 at 0.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant loading) 0.59100 using stresses for Path 2 Stress Coefficients:

Normal/Upset Stress Loading Conditions Coeff. NUI NU2 (ksi) (ksi)

A2 A3 PB-I Axial Flaw NP.xAs 35 PLPU Axial Kl

Framatome ANP 32-5019398-01 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 AXIAL FLAW STRESS INTENSITY FACTOR FOR REMAINING TRANSIENT STRESSES Basis: Raju & Newman, "Stress Intensity Factors for Internal & External Surface Cracks in Cylindrical Vessels (Ref. 10) 3 KI = -4(I/Q)* [Go Ao a 55 +G A a1 5 +G2 A2 a25 + G3 A3 a 5]

where, per Table 4, for an external surface crack and for UR = 0.25, aft = 0.2, 2c/n = 1, and a/c = 1.0 Go= 1.030 GI = 0.720 G2 = 0.591 G3 = 0.513 and Q= 2.464 = (1 + 1.464*(a/c)A1.65) and the through-wall stress distribution is described by the third order polynomial, S(x) = AO + Aix + A2x 2 + A3x3.

Hoop Stresses:

Wall Normal/Upset Cond.

Position Stresses 6 x LLI

  • LL2** *Loss of Load transient (in.) (ksi) ( k at 0.00278 hours (max. stress) 0.00000 using stresses for Path 2 0.14775 0.29550 ** Loss of Load transient OA4325 at 0.0444 hours0.00514 days <br />0.123 hours <br />7.34127e-4 weeks <br />1.68942e-4 months <br /> (min. stress) 0.59100 using stresses for Path 2 Stress Coefficients:

Normal/Upset Stress Loading Conditions Coeff. NUI NU2 (ksi) (ksi)

AO Al A2 A3 PB-i Axial Flaw NPxls 36 Rem. Trans. Axial Kl

Framatome ANP 32-6019398-01 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

AXIAL FLAW FATIGUE CRACK GROWTH FOR HEATUP AND COOLDOWN TRANSIENT Basis: Aa = AN

  • C0(AKI)"

Transient frequency: 200 cycles over 40 years AN= 5 cycles/year Operating NUI NU2 NU1 lime Cycle a KI(a)max KI(a)min AKI R S CO Aa ry ae KI(ae)max (yr.) (in.) (ksl'1n) (ksWin) (ksi'in) (in.) (ksiNin) 0 0 13.79 0.00 13.79 0.00 1.00 1.96E-10 5.64E-06 0.013 14.44 1 5 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.65E-06 0.013 14.44 2 10 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.65E-06 0.013 14.44 3 15 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.65E-06 0.013 14.44 4 20 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.65E-06 0.013 14.45 5 25 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.65E-06 0.013 14.45 6 30 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.65E-06 0.013 14.45 7 35 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.66E-06 0.013 14.45 8 40 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.66E-06 0.013 14.45 9 45 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.66E.06 0.013 14.45 10 50 13.80 0.00 13.80 0.00 1.00 1.96E-10 5.66E-06 0.013 14.45 11 55 13.81 0.00 13.81 0.00 1.00 1.96E-10 5.66E-06 0.013 14.45 12 60 13.81 0.00 13.81 0.00 1.00 1.96E-10 5.66E-06 0.013 14.45 13 65 13.81 0.00 13.81 0.00 1.00 1.96E-10 5.66E.06 0.013 14.45 14 70 13.81 0.00 13.81 0.00 1.00 1.96E-10 5.67E-06 0.013 14.46 15 75 13.81 0.00 13.81 0.00 1.00 1.96E-10 5.67E-06 0.013 14.46 16 80 13.81 0.00 13.81 0.00 1.00 1.96E-10 5.67E-06 0.013 14.46 17 85 13.81 0.00 13.81 0.00 1.00 1.96E-10 5.67E-06 0.013 14.46 18 90 13.81 0.00 13.81 0.00 1.00 1.96E-10 5.67E-06 0.013 14.46 19 95 13.81 0.00 13.81 0.00 1.00 1.96E-10 5.67E-06 0.013 14.46 20 100 13.82 0.00 13.82 0.00 1.00 1.96E-10 5.67E-06 0.013 14.46 21 105 13.82 0.00 13.82 0.00 1.00 1.96E-10 5.68E-06 0.013 14.46 22 110 13.82 0.00 13.82 0.00 1.00 1.96E-10 5.68E-06 0.013 14.46 23 115 13.82 0.00 13.82 0.00 1.00 1.96E-10 5.68E-06 0.013 14.47 24 120 13.82 0.00 13.82 0.00 1.00 1.96E-10 5.68E-06 0.013 14.47 25 125 13.82 0.00 13.82 0.00 1.00 1.96E-10 5.68E-06 0.013 14.47 PB-1 Axial Flaw NP.xls 37 HUCD Axial FCG

32-5019398-01 Framatome ANP Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

AXIAL FLAW FATIGUE CRACK GROWTH FOR PLANT LOADING AND UNLOADING TRANSIENT Basis: Aa = AN

  • C,(AKI)"

Transient frequency: 3000 cycles over 40 years AN = 75 cycleslyear Operating NU1 NU2 NU1 a KI(a)max KI(a)min AKI R S CO Aa ry a, Kl(a,)max Time Cycle (in.) (ksi4in) (ks1in) (ksi'Jin) (in.) (ksi4in)

(yr.)

0 14.01 10.15 3.87 0.72 2.30 4.51 E-10 2.93E-06 0.013 14.73 0

75 14.02 10.15 3.87 0.72 2.30 4.51E-10 2.93E-06 0.013 14.73 1

14.02 10.15 3.87 0.72 2.30 4.51 E-10 2.93E-06 0.013 14.73 2 150 3 225 14.02 10.15 3.87 0.72 2.30 4.51E-10 2.93E-06 0.013 14.73 14.02 10.15 3.87 0.72 2.30 4.51E-10 2.93E-06 0.013 14.73 4 300 375 14.02 10.15 3.87 0.72 2.30 4.51E-10 2.93E-06 0.013 14.73 5

14.02 10.15 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.73 6 450 10.15 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.73 7 525 14.02 600 14.02 10.16 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.74 8

675 14.02 10.16 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.74 9

750 14.03 10.16 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.74 10 825 14.03 10.16 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.74 11 900 14.03 10.16 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.74 12 975 14.03 10.16 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.74 13 14 1050 14.03 10.16 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.74 1125 14.03 10.16 3.87 0.72 2.30 4.51E-10 2.94E-06 0.013 14.74 15 1200 14.03 10.16 3.87 0.72 2.30 4.51E-1 0 2.94E-06 0.013 14.74 16 1275 14.03 10.16 3.87 0.72 2.30 4.51E-10 2.95E-06 0.013 14.75 17 1350 14.04 10.16 3.87 0.72 2.30 4.51E-10 2.95E-06 0.013 14.75 18 1425 14.04 10.16 3.87 0.72 2.30 4.51E-10 2.95E-06 0.013 14.75 19 1500 14.04 10.17 3.87 0.72 2.30 4.51E-10 2.952-06 0.013 14.75 20 1575 14.04 10.17 3.87 0.72 2.30 4.51E-10 2.95E-06 0.013 14.75 21 22 1650 14.04 10.17 3.87 0.72 2.30 4.51E-10 2.95E-06 0.013 14.75 23 1725 14.04 10.17 3.87 0.72 2.30 4.51E-10 2.95E-06 0.013 14.75 24 1800 14.04 10.17 3.87 0.72 2.30 4.51E-10 2.95E-06 0.013 14.75 1875 14.04 10.17 3.87 0.72 2.30 4.51E-10 2.95E-06 0.013 14.76 25 38 PLPU Axial FCG PB-1 Axial Flaw NP.xls

Framatome ANP 32-5019398-01 Table 10. Evaluation of an External Axial Flaw for Fatigue Crack Growth Along Path 2 (Cont'd)

AXIAL FLAW FATIGUE CRACK GROWTH FOR REMAINING TRANSIENTS Basis: Aa = AN

  • C0(AKI)n Transient frequency: 2760 cycles over 40 years AN = 69 cycleslyear Operating NUI NU2 NUI Time Cycle a KI(a)max KI(a)min AKI R S CO Aa ry a, KI(ae)max (yr.) (in.) (kshlin) (kslin) (ksi-in) (in.) (ksislin) 0 0 15.02 8.66 6.35 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 1 69 15.02 8.66 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 2 138 15.02 8.66 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 3 207 15.02 8.66 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 4 276 15.02 8.66 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 5 345 15.02 8.66 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.91 6 414 15.02 8.67 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 7 483 15.02 8.67 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 8 552 15.03 8.67 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 9 621 15.03 8.67 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 10 690 15.03 8.67 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 11 759 15.03 8.67 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 12 828 15.03 8.67 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 13 897 15.03 8.67 6.36 0.58 2.04 3.99E-10 1.23E-05 0.015 15.92 14 966 15.03 8.67 6.36 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 15 1035 15.03 8.67 6.36 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 16 1104 15.04 8.67 6.36 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 17 1173 15.04 8.67 6.36 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 18 1242 15.04 8.67 6.36 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 19 1311 15.04 8.67 6.37 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 20 1380 15.04 8.68 6.37 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 21 1449 15.04 8.68 6.37 0.58 2.04 3.99E-10 1.24E-05 0.015 15.93 22 1518 15.04 8.68 6.37 0.58 2.04 3.99E-10 1.24E-05 0.015 15.94 23 1587 15.04 8.68 6.37 0.58 2.04 3.99E-10 1.24E-05 0.015 15.94 24 1656 15.05 8.68 6.37 0.58 2.04 3.99E-10 1.24E-05 0.015 15.94 25 1725 15.05 8.68 6.37 0.58 2.04 3.99E-10 1.24E-05 0.015 15.94 PB-1 Axial Flaw NP.xls 39 Rem. Trans. Axial FCG

I Framatome ANP 32-5019398-01 Table 11. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 INPUT DATA Geometry: Plate thickness, t= 0.981 in.

Flaw Size: Flaw depth, a= I]in.

alt =L Environment Temperature, T= 600 F Material Strength: Yield strength, ay, = 27.9 ksi PB-1 Cylind Flaw NP.xls 40 Cylind. Input

32-5019398-01 Framatome ANP Table II. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Cont'd)

PLATE SURFACE FLAW STRESS INTENSITY FACTOR FOR HEATUP AND COOLDOWN STRESSES Basis: Analysis of Flaws, 1995 ASME Code, Section Xl, Appendix A (Ref. 16)

KI = [ Ao Go + Al GI + A2 G2 + A3 G3 I 4(nafQ) where Q= I + 4.593*(a11)A1.65 - qy and qy= [(AOGo+A 1 GI +A 2 G 2 +A 3 G 3 )aCy]2 16 For an = 0.0 (continuous flaw) aft <= 0.1 Go = 1.1945 GI= 0.7732 G2 = 0.5996 G3 = 0.5012 Stresses are described by a third order polynomial fit over the flaw depth, S(x) = AO + A1(xla) + A2(x/a) 2 + A3(xla)3 Radial Stresses:

Wall Normal/Upset Cond.

Position Stresses [61 x SS* Shutdown

  • Heatup/Cooldown transient i.) (ksi) (ksi) at 6.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> (steady state) 0.00000 using stresses for Path 4 0.24535 0.49070 0.73604 0.98139 Stress Coefficients: a= [

Normal/Upset Stress Loading C nditions Coeff. NU1 NU2 (ksi) (ksi)

AL A2 A3 _ _ _ _ _ _ _ _

PB-I Cylind Flaw NP.xis 41 HUCD Plate Kl

Framatome ANP 32-5019398-01 Table 11. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Cont'd)

PLATE SURFACE FLAW STRESS INTENSITY FACTOR FOR PLANT LOADING AND UNLOADING STRESSES Basis: Analysis of Flaws, 1995 ASME Code, Section Xi, Appendix A (Ref. 16)

K1 = [Ao Go + A1 GI + A2 G2 + A3 G3 ]'I(7raIQ) where Q= I + 4.593*(aA)Al1.65 - qy and qy= [(AoGo+Al GI +A 2 G 2 +A 3 G 3 )IaCy]2I6 For a/l= 0.0 (continuous flaw) alt <= 0.1 Go = 1.1945 G.= 0.7732 G2 = 0.5996 G3 = 0.5012 Stresses are described by a third order polynomial fit over the flaw depth, S(x) = AO + A 1 (xla) + A 2(xla)2 + A3 (xla) 3 Radial Stresses:

Wall Normal/Upset Cond.

Position Stresses [E x PU* PL**

  • Plant Loading/Unloading transient (in.) (ksi) (ksi) at 3.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant unloading) 0.00000 using stresses for Path 4 0.24535 0.49070 ** Plant Loading/Unloading transient 0.73604 at 0.333 hours0.00385 days <br />0.0925 hours <br />5.505952e-4 weeks <br />1.267065e-4 months <br /> (plant loading) 0.98139 _ using stresses for Path 4 Stress Coefficients:

Normal/Upset Stress Loading Conditions Coeff. NUI NU2 (ksi) (ksi)

AD A2 A3 PB-1 Cylind Flaw NP.xls 42 PLPU Plate Kl

32-5019398-01 Framatome ANP Table 11. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Cont'd)

PLATE SURFACE FLAW STRESS INTENSITY FACTOR FOR REMAINING TRANSIENT STRESSES Basis: Analysis of Flaws, 1995 ASME Code, Section Xi, Appendix A (Ref. 16)

K1= [ AO Ga + Al GI + A2 G2 + A3 G3 ] 4taOwQ) where Q = I + 4 .593*(aI)AI .65 - qy and qy= [(AO Go + A1 GI + A2 G 2 + A3 G3 ) I'Uy. ]2 /6 For al = 0.0 (continuous flaw) a2t <= 0.1 Go= 1.1945 GI = 0.7732 G 2 = 0.5996 G3= 0.5012 Stresses are described by a third order polynomial fit over the flaw depth, S(x) = AO + A1 (x/a) + A2(xIa) 2 + A3(x/a) 3 Radial Stresses:

Wall Normal/Upset Cond.

Position Stresses [61 x LL1* LL2**

  • Loss of Load transient (i. (ksi) l(ksi) at 0.00278 hours (max. stress) 0.00000 using stresses for Path 4 0.24535 0.49070 ** Loss of Load transient 0.73604 at 0.0444 hours0.00514 days <br />0.123 hours <br />7.34127e-4 weeks <br />1.68942e-4 months <br /> (min. stress) 0.98139 using stresses for Path 4 Stress Coefficients: I in.

Normal/Upset Stress Loading Conditions Coeff. NU1 NU2 (ksi) (ksi)

AO Al A2 A3 PB-I Cylind Flaw NPxls 43 Rem. Trans. Plate Kl

Framatome ANP 32-501 9398-01 Table II. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Cont'd)

CONTINUOUS SURFACE FLAW FATIGUE CRACK GROWTH FOR HEATUP AND COOLDOWN TRANSIENT Basis: Aa = AN

  • CO(AKI)"

Transient frequency: 200 cycles over 40 years AN = 5 cycles/year Operating NU1 NU2 Time Cycle Q Ki(a)max Kl(a)min AKI R S CO Aa qy Q(a,) KI(ae)max a

11. % (ksil4in) (ksiin) (ksl'in) (in.) (ksiNin) 0 0 1.000 17.32 0.00 17.32 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.42 1 5 1.000 17.32 0.00 17.32 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.42 2 10 1.000 17.33 0.00 17.33 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.43 3 15 1.000 17.33 0.00 17.33 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.43 4 20 1.000 17.33 0.00 17.33 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.43 5 25 1.000 17.34 0.00 17.34 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.44 6 30 1.000 17.34 0.00 17.34 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.44 7 35 1.000 17.34 0.00 17.34 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.44 8 40 1.000 17.34 0.00 17.34 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.45 9 45 1.000 17.35 0.00 17.35 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.45 10 50 1.000 17.35 0.00 17.35 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.45 11 55 1.000 17.35 0.00 17.35 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.46 12 60 1.000 17.36 0.00 17.36 0.00 1.00 1.96E-10 1.20E-05 0.204 0.796 19.46 13 65 1.000 17.36 0.00 17.36 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.46 14 70 1.000 17.36 0.00 17.36 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.47 15 75 1.000 17.37 0.00 17.37 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.47 16 80 1.000 17.37 0.00 17.37 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.47 17 85 1.000 17.37 0.00 17.37 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.48 18 90 1.000 17.38 0.00 17.38 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.48 19 95 1.000 17.38 0.00 17.38 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.48 20 100 1.000 17.38 0.00 17.38 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.49 21 105 1.000 17.38 0.00 17.38 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.49 22 110 1.000 17.39 0.00 17.39 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.49 23 115 1.000 17.39 0.00 17.39 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.50 24 120 1.000 17.39 0.00 17.39 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.50 25 125 1.000 17.40 0.00 17.40 0.00 1.00 1.96E-10 1.21E-05 0.204 0.796 19.50 PB-I Cylind Flaw NP.xls 44 HUCD SS FCG

Framatome ANP 3Z-5019358-01 Table 11. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Contd)

CONTINUOUS SURFACE FLAW FATIGUE CRACK GROWTH FOR PLANT LOADING AND UNLOADING TRANSIENT Basis: Aa = AN

  • C0 (AKI)'

Transient frequency: 3000 cycles over 40 years AN = 75 cycles/year Operating NUI NU2 Time Cycle a Q KI(a)max KI(a)min AKI R S CO Aa qy Q(a,) KI(a,)max (yr.) (in.) (ksiN'1n) (ksiNin) (ksI4in) (in.) (ksiblin) 0 0 1.000 18.25 12.08 6.17 0.66 2.19 4.29E-10 1.30E-05 0.227 0.773 20.76 1 75 1.000 18.25 12.09 6.17 0.66 2.19 4.29E-10 1.30E-05 0.227 0.773 20.76 2 150 1.000 18.26 12.09 6.17 0.66 2.19 4.292-10 1.30E-05 0.227 0.773 20.77 3 225 1.000 18.26 12.09 6.17 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.77 4 300 1.000 18.26 12.09 6.17 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.77 5 375 1.000 18.27 12.09 6.17 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.78 6 450 1.000 18.27 12.10 6.17 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.78 7 525 1.000 18.27 12.10 6.18 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.78 8 600 1.000 18.28 12.10 6.18 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.79 9 675 1.000 18.28 12.10 6.18 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.79 10 750 1.000 18.28 12.10 6.18 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.80 11 825 1.000 18.29 12.11 6.18 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.80 12 900 1.000 18.29 12.11 6.18 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.80 13 975 1.000 18.29 12.11 6.18 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.81 14 1050 1.000 18.30 12.11 6.18 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.81 15 1125 1.000 18.30 12.12 6.18 0.66 2.19 4.29E-10 1.31E-05 0.227 0.773 20.81 16 1200 1.000 18.30 12.12 6.19 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.82 17 1275 1.000 18.31 12.12 6.19 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.82 18 1350 1.000 18.31 12.12 6.19 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.83 19 1425 1.000 18.31 12.12 6.19 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.83 20 1500 1.000 18.32 12.13 6.19 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.83 21 1575 1.000 18.32 12.13 6.19 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.84 22 1650 1.000 18.32 12.13 6.19 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.84 23 1725 1.000 18.33 12.13 6.19 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.84 24 1800 1.000 18.33 12.13 6.19 0.66 2.19 4.29E-10 1.32E-05 0.227 0.773 20.85 25 1875 1.000 18.33 12.14 6.20 0.66 2.19 4.292-10 1.32E-05 0.227 0.773 20.85 PB-1 Cylind Flaw NP.xls 45 PL-PU SS FCG

32-5019398-01 Framatome ANP Table 11. Evaluation of a Continuous Surface Crack for Fatigue Crack Growth Along Path 4 (Cont'd)

CONTINUOUS SURFACE FLAW FATIGUE CRACK GROWTH FOR REMAINING TRANSIENTS Basis: Aa - AN

  • C,(AKI)n Transient frequency: 2760 cycles over 40 years AN = 69 cycleslyear Operating NU1 NU2 Q KI(a)max KI(a)min AKI R S C. Aa qY Q(a,) KI(a,)max Time Cycle a (ksi'Jin) (ksinin) (kslian) (in.) (ksi4in)

(yr.) tin.)

0.775 20.64 0 0 1.000 18.17 12.31 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 1.000 18.17 12.31 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.64 1 69 18.18 12.31 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.65 2 138 1.000 18.18 12.31 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.65 3 207 1.000 1.000 18.18 12.31 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.66 4 276 1.000 18.19 12.32 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.66 5 345 1.000 18.19 12.32 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.66 6 414 1.000 18.19 12.32 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.67 7 483 1.000 18.20 12.32 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.67 8 552 18.20 12.33 5.87 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.67 9 621 1.000 1.000 18.20 12.33 5.88 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.68 10 690 1.000 18.21 12.33 5.88 0.68 2.22 4.34E-10 1.03E-05 0.225 0.775 20.68 11 759 1.000 18.21 12.33 5.88 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.69 12 828 1.000 18.21 12.33 5.88 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.69 13 897 1.000 18.22 12.34 5.88 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.69 14 966 1.000 18.22 12.34 5.88 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.70 15 1035 1.000 18.22 12.34 5.88 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.70 16 1104 1.000 18.23 12.34 5.88 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.70 17 1173 1.000 18.23 12.35 5.88 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.71 18 1242 1.000 18.23 12.35 5.88 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.71 19 1311 1.000 18.24 12.35 5.89 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.71 20 1380 1.000 18.24 12.35 5.89 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.72 21 1449 1.000 18.24 12.35 5.89 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.72 22 1518 1.000 18.25 12.36 5.89 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.73 23 1587 1.000 18.25 12.36 5.89 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.73 24 1656 1.000 18.25 12.36 5.89 0.68 2.22 4.34E-10 1.04E-05 0.225 0.775 20.73 25 1725 46 Rem. Trans. SS FCG PB-1 Cylind Flaw NP.xls

A FRAMATOME ANP 32-5019398-01 9.0

SUMMARY

OF RESULTS The flaw evaluation results for 25 years of fatigue crack growth are as follows.

9.1 Propagation of a Continuous External Circumferential Flaw Along Path 2 a) Fatigue crack growth analysis:

Initial flaw size, a,= ]in.

Final flaw size, af=[ ]in.

Stress intensity factor at final flaw size, K1 (aeg) = 17.9 ksi~jin Fracture toughness Kia = 200 ksi-Vin Fracture toughness margin, Kia / K1 = 11.2 > 4110 b) Limit load analysis:

Limit load, PO ] lbs Bounding axial tube load, P(appl) = [ ] lbs Limit load margin, PO / P(appl) = 8.47 > 3.0 9.2 Fatigue Crack Growth of a Semi-Circular External Axial Flaw Along Path 2 Initial flaw size, a,=[ ]in.

Final flaw size, af[=in.

Stress intensity factor at final flaw size, K, (ae,) = 15.9 ksitin Fracture toughness KI, = 200 ksi4in Fracture toughness margin, Kia I K, = 12.6 > 410 9.3 Fatigue Crack Growth of a Continuous Cylindrical Flaw Along Path 4 Initial flaw size, a,=[ in.

Final flaw size, a,= ] in.

Stress intensity factor at final flaw size, K,(aef) = 20.9 ksi4in Fracture toughness Kia = 200 ksi4in Fracture toughness margin, Kia I K, = 9.57 > 410 47

A 32-5019398-01 FRAMATOME ANP

10.0 CONCLUSION

The results of the analysis demonstrate that the [ 3inch weld anomaly is acceptable for a 25 year design life of the CRDM IDtemper bead weld repair. Significant fracture toughness margins have been demonstrated for both of the flaw propagation paths considered in the analysis. The minimum fracture toughness margins for flaw propagation Paths 2 and 4 have been shown to be 11.2 and 9.57, respectively, as compared to the required margin of 410 for normal and upset operating conditions per Section Xl, IWB-3612 (Reference 3). Fatigue crack growth is minimal. The maximum final flaw size is [ I inch (considering both flaw propagation paths). A limit load analysis was also performed considering the ductile Alloy 600/Alloy [ ] materials along flaw propagation Path 2. The analysis showed limit load margin of 8.47 for normal and upset operating conditions, as compared to the required margin of 3.0 per Section Xl, IWB-3642 (Reference 3).

48

A 32-5019398-01 FRAMATOME ANP

11.0 REFERENCES

1. Framatome ANP Drawing 02-5019702E-2, "Point Beach Unit I CRDM Nozzle ID Temper Bead Weld Repair.!
2. Framatome ANP Document 51-5017195-05, "Point Beach 1 & 2 CRDM Nozzle ID Temper Bead Weld Repair Requirements," September 2002.
3. ASME Boiler and Pressure Vessel Code, Section Xl, Rules for Inservice Inspection of Nuclear Power Plant Components, 1998 Edition with Addenda through 2000.
4. Welding Research Council, Bulletin No. 175, "PVRC Recommendations on Toughness Requirements for Ferritic Materials," New York, August 1972.
5. Framatome ANP Document 51-5012728-03, 'Weld Anomaly Considerations in the CRDM ID Temper Bead Weld Repair," October 2001.
6. Framatome ANP Document 32-5020244-01, "Point Beach 1 CRDM Temperbead Bore Weld Analysis," February 2003.
7. ASME Section II, Part C, "Specification for Welding Rods, Electrodes, and Filler Metals,"

1999 Addenda.

8. Framatome ANP Document 38-1288355-00, "Flaw Acceptance Criteria."
9. ASME Boiler and Pressure Vessel Code, Section 1I1,Rules for Construction of Nuclear Power Plant ComDonents. Division 1 - Appendices, 1989 Edition with No Addenda.
10. I.S. Raju and J.C. Newman Jr., "Stress Intensity Factors for Internal and Extemal Surface Cracks in Cylindrical Vessels," Transactions of the ASME. Journal of Pressure Vessel Technologv, pp. 293-298, Vol. 104, November 1982.
11. T.L Anderson, Fracture Mechanics: Fundamentals and Applications, CRC Press, 1991.
12. W.J. Mills, "Fracture Toughness of Two Ni-Fe-Cr Alloys," Hanford Engineering Development Laboratory Document HEDL-SA-3309, April 1985.
13. C.B. Buchalet and W.H. Bamford, "Stress Intensity Factor Solutions for Continuous Surface Flaws in Reactor Pressure Vessels," Mechanics of Crack Growth, ASTM STP 590, American Society for Testing and Materials, 1976, pp. 385-402.
14. EPRI Topical Report, EPRI NP-1 931, "An Engineering Approach for Elastic-Plastic Fracture Analysis," Research Project 1237-1, prepared by V. Kumar et al of General Electric Company, July 1981.

49

A FRAMATOME ANP 32-5019398-01

15. General Electric Report, SRD-82-048, 'Estimation Technique for the Prediction of Elastic-Plastic Fracture of Structural Components of Nuclear Systems," by V. Kumar et al, Contract RP1237-1, Combined Fifth and Sixth Semi-Annual Report, March 1982.

50