LR-N05-0424, Attachment 1, Calculation S-1-SJ-MDC-1539, Revision 2, Accumulator Pressure Decay Time During Discharge Test.

From kanterella
Jump to navigation Jump to search
Attachment 1, Calculation S-1-SJ-MDC-1539, Revision 2, Accumulator Pressure Decay Time During Discharge Test.
ML052420526
Person / Time
Site: Salem PSEG icon.png
Issue date: 08/12/2005
From: Chandra V, Duffy J, Jerome Murphy
Public Service Enterprise Group
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
LR-N05-0424 S-1-SJ-MDC-1539, Rev 2
Download: ML052420526 (49)


Text

Document Control Desk Attachment 1 LR-N05-0424 Calculation S-1-SJ-MDC-1539, Revision 2 Accumulator Pressure Decay Time During Discharge Test

(NC.DE-AP.Z-0002(Q), Rev. 12. Form 1) CALCULATION COVER SHEET Page 1of 40 CALCULATION NUMBER: S-1-SJ-MDC-1539 REVISION: 2 TITLE: Accumulator Pressure Decay Time During Dischanrge Test

  1. SHTS (CALC): 40 #ATTI#SHTS: 2c #IDVl50.59172.48 SHTS: 2-/ #TOTAL SHTS: ;5 3 CHECK ONE:

[0 FINAL [1 INTERIM (Proposed Plant Change) El VOID El FINAL (Future Confirmation Req'd, enter tracking Notification number:)

SALEM OR HOPE CREEK: 0 Q-LIST [EIMPORTANT TO SAFETY E NON-SAFETY RELATED HOPE CREEK ONLY: OQ EOQs ElQsh ElF OR ISFSI: E IMPORTANT TO SAFETY El NOT IMPORTANT TO SAFETY 0 ARE STATION PROCEDURES IMPACTED? YES 13 NO El If'yes', interface with the system engineer & procedure sponsor. All impacted procedures should be identified in a section in the calculation body [crca 70038194'0280]. Include an sap operation for update and list the sap orders here and within the body of this calculation.

SI.OP-ST.SJ-0006 SAP order 80017350, op. 0690 El CP and ADs INCORPORATED (IF ANY): l DESCRIPTION OF CALCULATION REVISION (If applicable.):

1. Incorporated the effect of increased stroke times of 13SJ54 and 14SJ54 valves
2. Developed acceptance criterion for each loop separately.
3. Incorporated the effect of dead period in the beginning of SJ54 stroke.

PURPOSE:

Determine the acceptane criteria for the pressure decay in the accumulator during the discharge test done in support of testing of SJ55 and SJ56 check valves.

CONCLUSIONS:

Acceptance criterion for pressure decay time for 11 loop check valves is less than or equal to 25.26 seconds.

Acceptance criterion for pressure decay time for 12 loop check valves is less than or equal to 25.62 seconds.

Acceptance criterion for pressure decay time for 13 loop check valves is less than or equal to 27.13 seconds.

Acceptance criterion for pressure decay time for 14 loop check valves is less than or equal to 27.13 seconds.

The time is measured from the instant when SJ54 valve disc begins to move.

This calculation needs NRC approval before implementation.

Printed Name I Signature Date ORIGINATOR/COMPANY NAME: Vijay Chandra/PSEG 1/ , Aug 8, 2005 REVIEWER/COMPANY NAME: James Murphy/PSEG l Aug 11, 2005 VERIFIER/COMPANY NAME: James Mur PS Aug 11, 2005 CONTRACTOR SUPERVISOR (Ifapplicable) U PSEG SUPERVISOR APPROVAL: (Always required) John Duffy 4 - I s 4 V

(NC.DE-AP.ZZ-0002(O), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 2 CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONTD ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: I VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 l James Murphy Aug 11, 2005 James Murphy Aug. 11,2005 Revision History Revision Date Description No. I 0 Feb 5, 1996 Original issue I Feb. 25, 2005 Added analysis for increased stroke times of 13SJ54 and 14SJ54 valves as a result of DCP's 80017350 and 80037351 2 Aug 08, 2005 Included the effect of dead period during the beginning of the stroke.

Developed the acceptance criterion for each loop.

Page Revision Index Page Revision Page Revision Page Revision Page Revision 1 2 19 2 37 2 _

2 2 20 2 38 2 3 2 21 2 39 2 4 2 22 2 40 2 5 2 23 2 Att. 1 2 6 0 24 2 Att. 2 2 7 0 25 2 _ _ _ _ _ _ _ _ _ __ _ _ _ _

8 0 26 2 9 2 27 2 _ _ _ _ __ _ _ _ _ _ _ _ _ _

10 0 28 2 11 2 29 2 12 2 30 2 13 2 31 2 _ _ _ _ _ _ _ _ _ _ _ _

14 2 32 2 15 2 33 2 16 2 34 2 _ _ _ _ __ _ _ _ _ _ _ _ _ _

17 2 35 2 18 2 36 2 _

TITLE A CC U rUL A -e6? IDNO. HE 4cPA S LE ' u-D ('Ay ____________

o TET T~TOF REFERENCE ORIGINATOR v.-cJ(ANDPA I lv cer4u. 2 0 CALCULATION CONTINUATION SHEET DATE 24lJAt I1996 PEER REVIEW 4tcTl~41=4-25r'2 oq.

J__

pq  ! n( 2oo4 J_

_4 0 DATE CL4 72 3As/c 7.t / 18:ZE26 TA-RLE 6 F CONTPkWr

1. INTPOiDUCTION

.. . .. -1 .- I

- 2 ESCFRjPTl6t' OF Ca,\F-6UR-AhN

3. '- f\ALC-Y w _____SI__ .

.~

I.~ il AO-CUMULA TOS

-3 33

-: C+AEK VfLjVE -S-S SJ5 P T_

.. _. 011 I*1,

.7H . ..

H...

FCTION' LoSs FRACT6S AD NF-R -T Fk-3.5 rlA1 Lo, ... . .

-~~~ I1Ir^.JIIU.I\.J,

. I'lu I juU/4 L-.-4 RUSUL-Trs -2.r

-0

.5:,

. .L* ...

-:G -D0C'UMICSlqS ::hF-FC-FD- ;39 1.7. D1)E S /67JJ:M 00-I N P,E.F.FREIA OCC- 4O A1TACHMENT 2 DE-AP.ZZ-0002(Q) ATTACHMENT 2

ITLEACCUMFVL-AT!6& IDNO. SHEET 0 S G 6USqD He~ F REFERENCE 4OF ORIGINATOR V.CIl 'fI; l VcffZ tI l0V.lhqir 2 OF CALCULATION DATE 2 3JJi5L 3twz2dg m 27A ¶VL2oD CONTINUATION SHEET PEER REVIEW 0 6i .1 DATE _____5 7Z-1-7.

1. ltJ5PKDOC TIONJ ACCUnULfTO, vDUMP TEST IS Do0E lm moDjL uOf.C7 P RoCc§1)u (E S 1 . Op.-S &T. SxJ-ooo64( ) 1?4+ G Fa6R 'AL EV1 tJNr I,f THE PVuPwSE cF THE 1TEfT IS To 7jErNO,\J&TMSTRA f/ILI7)f a-. DIsotS-HAfiQ PiPitiNQ C'HEM4 VPLVES S3 55 Ar) sJ5.

RE F. Li) i- AcCPT-tjC-c CpUdTmI oN w As EST76-BAI KC1)

  • Fi* ACCU4ULToA . PR&SSIWF )ECAY TIME FOR.SA-Lur7 U14IT2,

-- T.f-e iPgE-SSWRU trCiy wTIV flsJAfC VLATC FEQ A

- -S-iTvA1iotJ

- WT THE tJ -RACTC HA-t Is FF AND. THE Accut uL'AL\&WATUfl- I-S DlRIE C T'r T0 T7H E lFg-AC7T6kC4VIT4 ,

. T i{E F ESDJT S CAL tA7TL OpJ *tJ .ACCE PTf-t~cC !CR(TER1O,0 f

- -' Pt)E&LRWE DIECAy TIE WI L'L B?- ERATED FOR c Ni1,

.hc ,~w -LT 1, ACc .f .,t4 .lr611 -rO

.((T H '

THE f LDk LuINE jP.r ..

1S EfR O-M THA tT'7tUJ4Tdt TD~TIW Tt(E G A .s .eCES:AE j14 TT(E? A CCu- rLVTolT (iS 7o A TN- TE&T -J 54~ \ C AC frP40 ( c\A VA lT7 fiSS:UrE DE)Cky-S. THFIe Ts Fc~-tHE PR[ssL.LAZc to frCh-/ F(aiA 70 -,f&T 3- I0(t 1s)c7 IN 7HmS C-hLCbuLfV7TO-rJ, A-i-j fC~ccp'T" -C7Ci7T"R-7i F of, Th(-S P E. ttIPE F CAy TE 1(fAs tEEJ C-leW-c-r1')

StE ForLberhtfiL..S, Fc DE-AP.ZZ-0002(Q) ATTACHMENT 2 DE-AP.ZZ-0002(Q) ATVACHMENT 2

(NC.DE-AP.ZZ-0002(0), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET:

CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONTD ON SHEET:

ORIGINATOR: l DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy Aug 11, 2005 James Murphy Aug. 11,2005 Reason for Calculation Revision The method of testing SJ55 and SJ56 check valves by passing accumulator water to the reactor cavity by opening the SJ54 valve was approved by NRC via relief requests V-24 and V-25 (TAC No. M98259 and M98260). The acceptance criterion specified in these relief requests was applicable for the SJ54 gate valve stroke time of 12.5 seconds. Since then, the stroke times of 13SJ54 and 14SJ54 valves have been increased via DCP's 80017350 and 80037351. Since, the stroke time of SJ54 valve directly influences the accumulator pressure decay time, a revised acceptance criteria are needed for the 13 and 14 loop valves.

Also, it has been discovered that there is a delay time between the. instant the SJ54 valve push button is pressed and the valve disc begins to move. Therefore, the actual stroke time of the SJ54 valves is lower than the value used. The effect of this dead time has been incorporated in this calculation.

To keep the analysis as realistic as possible, the pressure decay time acceptance criterion has been developed for each loop.

TITLE ACcUtiv-LAT- IDNO. 9 SHEET PSL tpRESSy5SME MEC 6 I3 0 rPis tI D~vki'4 UP

.rSrFn iDlS>higC7 REFERENCE OF ORIGINATOR VCII!oi~f'il 0 _ _ _ 40 CALCULATION DATE 23 J b_.. _199 CONTINUATION SHEET PEER REVIEW CL-,&

DATE J -CZ I 2.

2 EIc-f jPjOuJ 13F a)wnvgRATIo 1f CO.FiU&IVTOLJ 15 TED H"E. ItI F F -FC. _

3. AxvL ysS
IN TRh SECTlol A m / Th P fm A TlCA-L MODEL of AcCCUM ULALrr

-DENL6POD ~

.... R. ... . ... . IE7 .7iL t.::- .HE

- . EfC-t

-s -leE F LID.-

I. ; . ..

j 7

DE-AP.ZZ-0002(Q) ATTACHMENT 2 DE-AP.ZZ-0002(Q) A1TACHMENT 2

TITLE h)C 'Cuto vLf\ATC( ID NO.HE PRG EsR P,E-A FL_____7G uIC w! 1)I c-SC"F TOF YE HE.FERENCE

_D 7

SHEET ORIGINATOR V.CtIIIWJWrA 0 L_ _ L __40° CALCULATION DATE 23 JA( 199_

PEER REVIEW 6CM 4 .

CONTINUATION SHEET DATE j .

.3. i ACCuMJuLA T6T\S F.IiW"E 2.1!. 1 SHOWS )THE \JftjOVS CI rUAlLIhre2. L G vE L

- -LE VJA ql~.S. E 9N2 3, AF 1too L-;V rL. E LE VA710N 4F: WAJTCPVO L-z 7 I66 37h

- 551 I. o7 L &\JL,ELEV A-oI N = 0 'i wti A \F O°L - 53 2.5 QL 1

. _ LFJT

-EAL~\rTlO N a

= -ATO-jATC7 L vL -1 w 7-H: A CC" ULA 6/I 71 ! t V,,,A = OL()0nE OF WLA7T It TFtE A.C-VrrU-Lf8T4 .(- 3)

- 7!D5 76 z 7-;: . ) , ib5 Z-5 t f-

.og

- -I t T9l5-7 W A -T L C VEwL ZA,INIT 2. 9t 0 6 2, -94t VAIIULT

"'- 941 7 r-

-. _TO T-L VOL-UME OFc) C cv;VLI)T61Ki? 150 4- LCe 5]

- I- TI -NI1 T -N0- VOLU-M7F = I r 9_)41 7 8 -

.t q0F. 3 - t 3 DE-AP.ZZ-0002(Q) ATTACHMENT 2 ATTACHMENT 2 DE-AP.ZZ-0002(Q)

TITLE AVCCUDJLA IDNO. - - C SHEET Q S PR 5ss (, - J) tDU RI14c Nt-01"Gcl T E ST REFERENCE SHEET1 OF ORIGINATOR U. _ D_____ _ _tbP___

CALCULATION DATE 23 JAWI09 _

CONTINUATION SHEET PEER REVIEW I__

DATE j_ _ _ _

F l SuR 3A.. I A Cv ,VLAT6\, ATE LE L G LE v.ATolav

.E C4P,3, -1 )

3 -100%l LCic-(L, E5L qlt

.2-54.: - 6 7p Le\EL)E-(F 88b~f 3-- EL- .- 21 5 6 5 st 7454f I

I EL 7F'oqf DE-AP.ZZ-0002(Q) ATTACHMENT 2

ATE &t I ri.Ii ID NO.:S_ _ SjMrCC- 1.3scSEE Mssu(ri"E 7 Dt*c AYL~

0 rI)E TUST. REFERENCE3 CALCULATION ORIGINATOR V.QiNJm~A c0 DATE 22iMFYXl)

N.4ho 27JVL2,oo-]

Li ___

~L I___

. 40)

CONTINUATION SHEET PEER REVIEW fL-A A A r' ___ __

DATE _ _ _ 5 I oI O _ _ _ __ _ _

pF SSUPIZC4Zd LEv[rL~ ELEVAJiTICAI* 'J*~. -vQLrdME1 RELA~~TIONSHIP AC74lS1)uNr57aI)T PL AT i THAT TIME7IWA EYEC7- vFA TC C(A~65 ,'TICC W~OOL-f) &C gPC-a\PO'A70u (IJ iEV. I. NOWEtVfC D11v'S £y/r

'Tg~s)~THE1 i/ts PIEUI. BULT T-rHtW C-6U:~

Crc i !JQIClCofPaZ qlt: LI IJ ATC-l -IMT. IIJ TC' AlJOtb-TIIYC`-

CorFV:IchJ, THE AKt-c Y6Q Ft4LT70C F 17-.$

4TT4-I? fCRE.

7 HI twF

~rOi~\MVTiO, i Fat&R IfC hL P VP, os *c mEj TO-P,

  • ,-uftITO-T PC EQ t)F-D ~JW-TRI-S .ChLCU~-AriJe1 js D-PZZ-0002(Q) AflACHMENT 2

S cJ- MDUC- J3

- fJAi f"

/47 qC COMPONENT 'ELEVATION STEAM GENERATORS FEET INCHES NARROW RANGE LEVEL TAP (UPPER) 154 7 HI-HI TRIP (67%) 150 2 FULL LOAD (44%) 147 10 NO LOAD (33%) 146 6 FEEDWATER NOZZLE & SPARGER (786% WIDE RANGE) 144 6 LOW LEVEL TRIP (8.5% - 143 7 I NARROW RANGE LEVEL TAP (LOWER) 142 7 TOP OF TUGE BUNDLE (707' UIDE RANGE) 140 3 PRIMARY SIDE INLET & OUTLET NOZZLES CENTERLINE 98 7.25 PRIMARY SIDE MANWAY (BOTTOM) 98 7 REACTOR COOLANT PUMPS RCP CONNECTIONS (SEAL INJECTION, SEAL RETURN, PRESSURE TAPS) 99 11 PUMP DISCHARGE CENTERLINE 97 0 PUMP INLET NOZZLE 91 2.25 PUMP SUClION CENTERLINE 86 8.25 RELIEF VALVE DISCHARGE

.f SURGE UNE CENTERLINE 97 0 VEL

.27.) REACTOR VESSEL REACTOR VESSEL FLANGE II 04 0 BL. SEAL TABLE I 04 0 (17 x.)

RCS HOT LEG - TOP OF PIPE 98 2.50 NOZZI i CENTERLINE 97 0 TOP Or ACTIVE FUEL 92 9.60 I SURGE PRIMARY WATEF II

._O- STORAGE TANK RHR DISCHARGE CONNECTION TO RCS CENTERLINE ' - 97 9.75 RHR SUCTION CONNECTION TO RCS CENTERLINE 96 6 RHR HEAT EXCHANGER OUTLET

- VESSEL FLANGE CENTERLINE 50 6 RHR PUMP SUCTION CENTERUNE 46 10 N0OZLES EL L: EL 97'-0" SAFETY HEAD / =

R TANK 1 Re.AP 0 Z 9

/lla l 1/-l/ PAGEPF171) l4AS1)

TOP OF ACTIVE 1H1Et6;hS;, 4aCzAARm (707) I39 7 FUEL EL 92'-9.60 nW A7'Atq7j RAA W lffCX IIAp-44f1 O, ) 1'35 2 t \ PERA2 lQA£sj: IfikA vUiT (2.) 1 1-B77 I- _ _w rrc-s uN(4vc'ec tl~rz) 1 s6 85'-3"

'I t L g FGUR-

_ RCS COMPONENT ELEVATIONS PRESSURIZER DE-CB .RC-0042 (Q)

RELIEF TANK REYV. O PAGE F17-1 (LAST) '

-LO\N PIy Lctrl 0,y\6~ \6

(NC.DE-AP.ZZ-0002(Q),Rev. 12,Form2) CALCULATION CONTINUATION SHEET SHEET: jI CALCNO.: S-1-SJ-MDC1539 REV: 2 REF: CONTODON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 l James Murphy Aug 11, 2005 James Murphy I Aug. 11, 2005 3.3 .Check Valves SJ55 and SJ56 The flow rate versus pressure drop relationship for these check valves was developed in Ref. [1] and will not be repeated here.

3.4 Gate Valve SJ54 The valve flow loss factor vs. stroke position was developed in Ref. [1] and will not be repeated here. Table 3.1 shows the stroke times and the delay times of each of the SJ54 valves. The gross stroke time is the duration between the instants the push button is pressed and the disc stops moving. The delay time is the period when the motor is spinning and the disc is not moving. The net disc stroke time was calculated by subtracting the delay time from the gross stroke time.

Table 3.4.1 SJ54 Valve Stroke and Delay times Valve ID Gross Opening Reference Delay Time Reference Net Disc Movement No. Stroke Time (sec.) (sec.) Time (sec) 11 SJ54 9.6 Att. 2 0.83 Aft. 2 8.77 12SJ54 10.5 Aft. 2 0.69 Att. 2 9.81 13SJ54 20.5 Notification 1.38 Aft. 1 19.12 20188810 14SJ54 21.3 Notification 1.36 AIt. 1 19.94 20188884 1 1 3.5 Friction Loss Factors and Inertial Lengths of Accumulator Discharge Piping Tables 3.5.1, 3.5.2, 3.5.3, and 3.5.4 show the friction loss factors of the discharge piping. The effective A is shown underneath each table.

Effective A Li where, Li = Length of Ith pipe segment Ai = Flow area of i' pipe segment (See Ref. I page 24 for its use)

TITLET eu MuLATMR6 ID NO. 5-I- S3- MDi - 1535 SHEET 0 PS G EST. REFERENCE O OF ORIGINATOR V'.C.kI(Mri, l XRl- 12 40 CALCULATION DATE 2.4 JA'9195 2gjL 2b, 5 __ _

CONTINUATION SHEET PEER REVIEW r,"4n.\V DATE Z?- . (L6(Že2b5 __

7nAL E 3 ,

I AC(Vl4UL4TCF, DISCH6K/4CC b1lE FtTTiJC7'S V LV-ES 9 iD &I cLELUb- k.F- S-T S IS6 6 7 Zef 2S?2  ; P 2G7 2 4f( 0

</(3 RE 71.

"DEC RI:P, PTrl tow RE CTas f

____ A_ _

AA __ a /) 4 01L60.,F-12 11-

"2.s- o Str 1 -7 3 ld

29 io- C-L O NS l E O - ..

.-1:-t -Yi*P- ~2 7 0o-5Lf 8 Z 54.. L*t o;54S 9t 2K o1?, ./ 9 035k lif6e41 g.9I '10 5F

7 D °O 703-5+ '. 1 O'

a'o37 0T 2 bTCLE &VJ 1. . .

. ;/ O-_ ifo 1kPt OD394 o- 7 1.74t 0 .

/ 2g- 57° 0 -'3 9 f

_ O'05 3 2a 1 7- BP, A4lD.rSCt-LLL6oLS vrs, COLD 0 5

.1 E Al -Tt-7'T

,043S7 .I s a4 I.

.12 ff1 A2

-2 L4 '

29 7 79 1

- A4 -

o 54b - .3 +4 -12

.CoL D LNEC CPc4 73

- 2 &J$3 l p AM+

M -rc A1TACHMENT 2 DE-AP.ZZ-0002 (Q)

DE-AP.Z-0002(Q) ATTACHMENT 2

TITLE A CCtvUVLATtQi IDNO. S-- C J- IDC 5 3 SHEET TSFE PbT. DEcHA REFERENCE Tc- 5OF ORIGINATOR V.Cf,0¢RATf vci'J4)T l _ r 4__

CALCULATION DATE 24Jlw 599 0,3 fq 1os CONTINUATION SHEET PEER REVIEW . ^4.

DATE 722 -s,9 t2= 115_.

____ 5 TMiL- 3 5. 2 12 A CWCaULAIT6 V)S'C/4iH c L iE yTT-IJisJ Vh/L[-vS A11E NOT t-CtuDCD; ??e,. T1?, S ISO. 267241C LII 2 ---72tj2 L12' REF. Loss IAC

/A

--D CS; ff}k65o/g.. .10 A39

'2 L(R LBD'U jy S k--2$O/ ° 1- '.3 °'l l7beV '2OFSa l S.E(K' - / /* O27-

-s 4D2 0 7o9 5D4(3 9 l1/68 482 1C I.3 5 7 LEt-5&4) 0-I / D-'394 1 2/ . g 2 SRP. EZ-0600

( -, 2 OK*76 £S37 10 ATToA27

_____7 ME 23 2 7EEC Rulit S 'n39 t I 64 K.vf<l Z< o- 679 32-S, 2

.8 L-,A Jru *0J (l4 367l46 9{

Aj oA4 35 --

DE-AP.Z7-0002(Q) ATTACHMENT 2

TITLE /flCC V ULAVW, ID NO.s sJ- rnc- /53g SHEET W114 PI1ES&U(W ftcf r REFERENCE ORIGINATOR V.cpfAIJP4l O0 CICA,4A4~ 2. 40 CALCULATION DATE 24 J 9 I __?_. 4 CONTINUATION SHEET PEER REVIEW c11 _ _t_

DATE Z- z--q AL e YJ5 S .

TfltLE 2.5.3

/3 ACMIMULA7QR DISCHMOE LIJI FITT AJC7 5 VALVES ftE WIT I ACLafDC-9 f 57TE /5i6 2C 7 2 4G3 cis) rblI L

PE SCATl1OE:A f

.3\-t -Lo i PI.PE7 4 -0l4~6+ l/g 5S o2/O-3 63 3

3 S&ftLRoA'C, A-- o*o&4' o o42L8/ 2 G97

j SE~S -°8K058 o1  :..o599 5-1

.bt ' 'V . .. . . .6I 4 4 L m; o'3L16a67 6R.F 5~ ~~ :70 11 T5 1rb 57 9 . 5 7 L~p av 07 SRENPOCO 027--- :+<--ZG :D 39 0-5 3-9C

.329 3 2 21

/A C- vr; CoL3LCi *9M3.

b;Jz; 3.27o

> Etlt . b.43t 2 '72 4 A;, -

35 ,33 L4 ' ll - bo-L _i 52 C 1- o , r-)>I 2 4.

°' 54 a

= 9S35§(6 Co L D LF7 P,EA CTC*., A-C[947j RJ. 7 DE-AP.ZZ-0002(Q)

DE-AP.ZZ-0002 (0) ATTACHMENT ATTACHMENT 22

TIrLEA COMULAR l, IDNO.D S J r C c SHEET Q V% &Iu v~lt4i DISCHi c REFERENCE 5 ORIGINATOR V.CIlAaDXA 9.cwft,tfQi. 2. l __ I /

CALCULATION DATE 24 JOI9596 O4 ______ ___

CONTINUATION SHEET PEER REVIEW Q/n4 _ _ I DATE -Z-Z-- Z__ _ ___ I__T_

-T*RLE 3.5.4

.14 flecmu-L-e70\ Dl-su/MdE L1ti Ft T7t/N6 VhfLVES A-Rt N-0 10CLUbDX Rgp. Sx7ts5 fSO, 2C724L1 - ll Lorscg k lD E S CRl P7vO/\

tK = ev A '-

lC 7 ;-P/PE - - 23.5 23 54i-.i-

.D@.3 5

_.: . ., -D --

- F-.

- 5J -

.I- f Jt6to ft:- 1 2/7 o 27

  • 2 L? R EtL 8o& ' CaIB 0, 3. 1!2

.e.

,-,I1- .6f..r. 4 9(7  ?, .-( e .0'7 .1 4

.3,5-6.0 L'7 TU- P t 3. .2.

2 SIR D'$5 f 2.' 7.

/-/Ao~jj

2 x5o o C,'

.. .4

,2 U:TCLR.UN S t' z- 0 y 0' .5- I

-T_, L , MI SC. V 7S, COL b2.C:i7, PuhC-rv,

.1 F2\T 'I T - - T 3Wr.TT ft-5 I 23,5 + 2L - A-w L277I -

0, 0' 9 L

+/- 4'12 CcA P LL:

- Z 2-25 42I P;CT1 f'PvV CE.L72 ATTACHMENT 2 DE-AP.ZZ-0002(Q)

DE-AP.ZZ-0002(Q) ATTACHMENT 2 l

03 PSI(G SITLEAIVhLA7 P/*C*f t tC_ T IDNO.-I -SJ-REFERENCE ID C- 5 39 SHEET OF OF CALCULATION ORIGINATOR DATE V.dllfiA4 24J.4/199, l l V 2 ____DtA_

I __,_

CONTINUATION SHEET PEER REVIEW (t4L\

DATE 2Z-f4' s1tat ___

3.C GO UATIo N s CF OTIM1 Fo INc t-O THM E(16 6 fh'c C/?(/?Cti-7j S C Pf) Er 24 TEXcrf lJ, rA L 6k = (PA -( PrezJc)- q 26pS, V#vrC) d-t -t P A )

(4)

Jw5j7DoIZ 5 (Freon SEC. s*f) (7

-:--. .. -ZA-.

.. .- 4 , ... .. .. . . ... .

... . ... .. IS WA .. * (b)-

, , I- 3 (3)

PAo ( VjAOj T L.L.

u. . .(I . -

Z EL E&V AT1 J cF w h-rrc9 L e -vt;. C I,Jj it CfrtvITy 12; ?7t-

. 1.

I w fr-L CO J)ITtITh-'

\Jl A 934 1 7 £t VN ^ 1 S 50- I4.7 Pf 4CB-3 3 i q .1 P. - B} 4 -7 'f StL, -

. f-l I I--, . 1= 0 -r4 3/ S' "

DE-AP.ZZ-0002(Q)

DE-AP.ZZ-0002(Q) ATTACHMENT ATTACHMENT 22

TITLE ACCUPIULATefit ID NO. -JY>bC-jI3 SHEET PIEssuft? D~cf~j JbugirAJq ISCtiffiH(C TEST REFERENCE 7

,VXW4F41 0 VC!fA v 2 OF ORIGINATOR CALCULATION DATE 24 JMI99 25rr-f 2v~ ocAat 05 CONTINUATION SHEET PEER REVIEW 4L i ,

DATE 7 S 64 _ i___

?ErX PL,-lfvAIrl0,1J 7 Sy M 83 O-1 S '

L _

.,' P'. I t L_

/T-4 L j 1pi A Tre? (CSL0a7 77-7,, )

Ad' T - i

-Vr/ I) c?16-C7Mr e-F- PIP E

-.-t ~-F toli~ A-R E . xt1 F~7)- Plr

  • f/,S/S,)

- If (-  ! II

.- o

( tE:y :P,47C L L-rbI.o -HC, er - ( T 3

.t .A ccELERA-~li N DVE- I .,

(-4/g 3-IlTa,7J tIN TtC ACCw'ML'-ALTe (i )

j z A .P- I.( TaAJ L6t FACTcf<

o tc -AICl-7t LEVE-L EL-F VTE C( riT1 *(

- = ES ItJ H'Ioig. li liq TfHs /tv IU -3 ;-

t _

CU 1 tT7jj LPSS FA CTOYI--,L T FRI 4e rltl-J t-lcR7E'10 tLVES04JP/-ER 9SX PI SWfE bpes-PAcpAss \vaLVESC(

(QQ-

  • S O

\)O'LUV F; t{O(

WATF ItJ *TH: AcCUYAVLA-Tdt) I voL VoraE-CTF N176'P(7',J 14 7HTE AC~ui'LA76A (-Pl) keLA'-rio's (6) rHklovlh (/o) T/,, 5LVSc SVU7I (bL7-y IS .5fl0LS)i ItJ T 1Fl 7Ht~C,~sW)V7C-rP Pf o dVj/?r lis T/AJg FL9 L/oij tu C7 Pc467 CS ATTACHMENT 2 DE-AP.ZZ-0002(Q) ATTACHMENT 2 DE-AP.ZZ-0002(Q)

(NC.DE-AP.ZZ-0002(C), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: l B CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONTD ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: D Vijay Chandra Aug 08, 2005 l James MurphY Aug 11, 2005 l James Murphy l Aug. 11,2005 Table 3.6.1 Computer Program Listing: Analysis of 11 Loop, Check Valve Maximum Lift = 60 Deg.

OPEN(I,FILE='Acc 11-hoff-60deg.out', STATUS='old')

DATA WOF/0.,.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,1./

DATA CVCV/0., 0.01 94, 0.055, 0.1, 0.146, 0.204,

  1. 0.277,0.3536,0.4613,0.6086,0.767,1./

C PARAMETERS C SINPHM =SINE OF MAXIMUM ANGLE OF CHECK VALVE TRAVEL (NONDIMENSIONAL)

SINPHM=0.866 C AKASQ = SUMMATION KIA**2 [FT**(-4)]

SKASQ=37.12 C SLOA = SUMMATION L/A [FT**(-1)]

SLOA=261.3 C VOTI = DISK MOVEMENT TIME OF SJ54 GATE VALVE (SEC)

VOT1 =8.77 C CONSTANTS GAM=1.3 G=32.174 RHO=1.94 AREA=0.394 DT=O.01 PCAV=14.7*144.

C INITIAL CONDITIONS TIME=0.1 NSTEP=-1 VNAZ=408.3 VNA=VNAZ PAZ=84.7*144.

PA=PAZ Q=.001 ZCAV=127.

WRITE(1,101) 101 FORMAT(T19'TIME', T28'ACCUMULATOR PRESSURE FLOW RATE')

103 FORMAT(T19'(SEC.)',T28' (PSIG) (GPM) ',II)

WRITE(1,103) 31 NSTEP=NSTEP+1 TIME=TIME+DT C CALCULATE ACCUMULATOR LEVEL ELEVATION VWA=1350.-VNA ZA=(VWA+7801.2)/95.76 C CALCULATE ACCUMULATOR GAS PRESSURE PA=PAZ*(VNAZ/VNA)**GAM C CALCULATE SJ54 LOSS FACTOR GVKZ=.15 IF(TIME .LT. VOTI) THEN VOF=TIMENOT1 CALL INTER(VOF,CVND,12,WOF,CVCV)

GVK=GVKZ/(CVND*CVND)

ELSE GVK=GVKZ ENDIF C CALCULATE CHECK VALVE DP VEL=Q/AREA AV2=38.31(VEL*VEL)

(contd.)

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET:

CALC NO.: S-1-SJ-MDCG1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra l Aug 08, 2005 James Murphy Aug 11, 2005 l James Murphy Aug.11, 2005 Table 3.6.1 (contd.)

SINPHI=0.5*(SQRT(AV2**2+4.}AV2)

IF (SINPHI .GE. SINPHM) SINPHI=SINPHM DPCHK=2.*8.98*RHO*VEL*VEL*(1.-SINPHI)

C CALCULATE DERIVATIVES DQDT=(PA+RHO*G*ZA-PCAV-RHO*G*ZCAV-0.5*RHO*SKASQ*Q*ABS(Q)

  1. -0.5*GVK*RHO*Q*ABS(Q)/AREA**2 - DPCHK)/(RHO*SLOA)

DVNADT=Q C CALCULATE VALUES AT NEW TIME STEP QQ=Q+DQDT*DT WNA=VNA+DVNADT*DT IF (TIME .LE. 2.) THEN IF(MOD(NSTEP,10) .EQ. 0)WRITE(1,102) TIME,+(PA/144.-14.7),

  1. Q*7.48*60.

ELSE IF(MOD((NSTEP+10),100) .EQ. 0)WRITE(1,102) TIME,+(PA/144.-14.7),

  1. Q*7.48*60.

ENDIF 102 FORMAT(F23.3,8F17.2)

C UPDATE THE OLD VARIABLES Q=QQ VNA=VVNA IF(TIME .GT. 41.) STOP GO TO 31 END SUBROUTINE INTER(X,Y,N,XX,YY)

DIMENSION XX(N),YY(N)

IF(X .LT. XX(1) .OR. X .GT. XX(N)) GO TO 3 DO 2 J=2,N IF(X .GE. XX(J-1) .AND. X .LE. XX(J)) GO TO 101 GOTO2 101 Y=YY(J-1 )+(YY(J)-YY(J- I))*(X-XX(J- I))/

1 (XX(J)-XX(J-1))

RETURN 2 CONTINUE 3 WRITE(6,1) X,(XX(I),I=1,N) 1 FORMAT(' BEYOND RANGE',G10.4,5X,20G10.4)

RETURN END

(NC.DE-AP.ZZ-0002(0), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 2o CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONTD ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy Aug 11, 2005 l James Murphy Aug. 11, 2005 Table 3.6.2 Computer Program Listing: Analysis of 12 Loop, Check Valve Maximum Lift = 60 Deg.

OPEN(1,FILE='Accl2-hoff-60deg.out', STATUS='old')

DATA WOF/0.,.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,1./

DATA CVCV/0., 0.01 94, 0.055, 0.1, 0.146, 0.204,

  1. 0.277,0.3536,0.4613,0.6086,0.767,1./

C PARAMETERS C SINPHM =SINE OF MAXIMUM ANGLE OF CHECK VALVE TRAVEL (NONDIMENSIONAL)

SINPHM=0.866 C AKASQ = SUMMATION K/A**2 [FT**(-4)]

SKASQ=37.69 C SLOA = SUMMATION L/A [FT**(-1)]

SLOA=256.8 C VOTI = DISK MOVEMENT TIME OF SJ54 GATE VALVE (SEC)

VOT1=9.81 C CONSTANTS GAM=1.3 G=32.174 RHO=1.94 AREA=0.394 DT=0.01 PCAV=14.7*144.

C INITIAL CONDITIONS TIME=0.1 NSTEP=-1 VNAZ=408.3 VNA=VNAZ PAZ=84.7*144.

PA=PAZ Q=.001 ZCAV=127.

WRITE(1,101) 101 FORMAT(T1I9TIME', T28'ACCUMULATOR PRESSURE FLOW RATE')

103 FORMAT(T19'(SEC.)',T28' (PSIG) (GPM) ',II)

WRITE(1,103) 31 NSTEP=NSTEP+1 TIME=TIME+DT C CALCULATE ACCUMULATOR LEVEL ELEVATION VWA=1350.-VNA ZA= (VWA+7801.2)195.76 C CALCULATE ACCUMULATOR GAS PRESSURE PA=PAZ*(VNAZIVNA)**GAM C CALCULATE SJ54 LOSS FACTOR GVKZ=.15 IF(TIME .LT. VOT1) THEN VOF=TIMENOTI CALL INTER(VOF,CVND,12,VVOF,CVCV)

GVK=GVKZI(CVND*CVND)

ELSE GVK=GVKZ ENDIF C CALCULATE CHECK VALVE DP VEL=Q/AREA AV2=38.3/(VEL*VEL)

(contd.)

(NC.DE-AP.ZZ.0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 2 CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy Aug 11, 2005 l James Murphy Aug. 11, 2005 Table 3.6.2 (contd.)

SINPHI=0.5*(SQRT(AV2**2+4.}AV2)

IF (SINPHI .GE. SINPHM) SINPHI=SINPHM DPCHK=2.*8.98*RHO*VEL*VEL*(1.-SINPHI)

C CALCULATE DERIVATIVES DQDT=(PA+RHO*G*ZA-PCAV-RHO*G*ZCAV-0.5*RHO*SKASQ*Q*ABS(Q)

  1. -0.5*GVK*RHO*Q*ABS(Q)/AREA**2 - DPCHK)/(RHO*SLOA)

DVNADT=Q C CALCULATE VALUES AT NEW TIME STEP QQ=Q+DQDT*DT WNA=VNA+DVNADTDT IF (TIME .LE. 2.) THEN IF(MOD(NSTEP,10) .EQ. 0)WRITE(1,102) TIME,+(PA/144.-14.7),

  1. Q*7.48*60.

ELSE IF(MOD((NSTEP+ 10),100) .EQ. 0)WRITE(1,102) TIME,+(PA/144.-14.7),

  1. Q*7.48*60.

ENDIF 102 FORMAT(F23.3,8F17.2)

C UPDATE THE OLD VARIABLES Q=QQ VNA=WNA IF(TIME .GT. 41.) STOP GO TO 31 END SUBROUTINE INTER(X,Y,N,XX,YY)

DIMENSION XX(N),YY(N)

IF(X .LT. XX(1) .OR. X .GT. XX(N)) GO TO 3 DO 2 J=2,N IF(X .GE. XX(J-1) .AND. X .LE. XX(J)) GO TO 101 GO TO 2 101 Y=YY(J-1)+(YY(J)-YY(J-1))*(X-XX(J-1))/

I (XX(J)-XX(J-1))

RETURN 2 CONTINUE 3 WRITE(6,1) X,(XX(I),I=1,N) 1 FORMAT(' BEYOND RANGE',G10.4,5X,20G10.4)

RETURN END

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 2.

CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONTD ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFER: DATE:

Vijay Chandra Aug 08, 2005 l James Murphy Aug 11,2005 James Murphy Aug. 11, 2005 Table 3.6.3 Computer Program Listing: Analysis of 13 Loop, Check Valve Maximum Lift = 60 Deg.

DIMENSION WOF(12),CVCV(12)

OPEN(1,FILE='Accl3-hoff-60deg.out', STATUS='old')

DATA WOF/0.,.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,1 J DATA CVCV/0., 0.0194, 0.055, 0.1, 0.146, 0.204, 0.277,0.3536,0.4613,0.6086,0.767,1./

C PARAMETERS C SINPHM =SINE OF MAXIMUM ANGLE OF CHECK VALVE TRAVEL (NONDIMENSIONAL)

SINPHM=0.866 C SKASQ = SUMMATION K/A**2 [FT**(-4)]

SKASQ=35.83 C SLOA = SUMMATION UA [FT**(-1)]

SLOA=235.6 C VOT1 = DISK MOVEMENT TIME OF SJ54 GATE VALVE (SEC)

VOT1 =19.12 C CONSTANTS GAM=1.3 G=32.174 RHO=1.94 AREA=0.394 DT=0.01 PCAV=14.7*144.

C INITIAL CONDITIONS TIME=0.1 NSTEP=-1 VNAZ=408.3 VNA-VNAZ PAZ=84.7*144.

PA=PAZ Q=.001 ZCAV=127.

WRITE(1,101) 101 FORMAT(T19'TIME', T28'ACCUMULATOR PRESSURE FLOW RATE')

103 FORMAT(T19'(SEC.)',T28' (PSIG) (GPM) ',1I)

WRITE(1,103) 31 NSTEP=NSTEP+1 TIME=TIME+DT C CALCULATE ACCUMULATOR LEVEL ELEVATION VWA=1350.-VNA ZA=(VWA+7801.2)195.76 C CALCULATE ACCUMULATOR GAS PRESSURE PA=PAZ*(VNAZNNA)**GAM C CALCULATE SJ54 LOSS FACTOR GVKZ-.15 IF(TIME .LT. VOT1) THEN VOF=TIMENOTI CALL INTER(VOF,CVND,12,VVOF,CVCV)

GVK=GVKZ/(CVND*CVND)

ELSE GVK=GVKZ ENDIF C CALCULATE CHECK VALVE DP VEL=QIAREA (contd.)

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 23 CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murhy Aug 11, 2005 James Murphy Aug. 11, 2005 Table 3.6.3 (contd.)

AV2=38.3/(VEL*VEL)

SINPHI=0.5*(SQRT(AV2**2+4.)-AV2)

IF (SINPHI .GE. SINPHM) SINPHI=SINPHM DPCHK=2.*8.98*RHO*VEL*VEL*(1.-SINPHI)

C CALCULATE DERIVATIVES DQDT=(PA+RHO*G*ZA-PCAV-RHO*G*ZCAV-0.5*RHO*SKASQ*Q*ABS(Q)

  1. -0.5*GVK*RHO*Q*ABS(Q)/AREA**2 - DPCHK)I(RHO*SLOA)

DVNADT=Q C CALCULATE VALUES AT NEW TIME STEP QQ=Q+DQDTDT WVNA--VNA+DVNADTDT IF (TIME .LE. 2.) THEN IF(MOD(NSTEP,10) .EQ. 0)WRITE(1,102) TIME,+(PA/144.-14.7),

  1. Q*7.48*60.

ELSE IF(MOD((NSTEP+10),100) .EQ. 0)WRITE(1,102) TIME,+(PA1144.-14.7),

  1. Q*7.48*60.

ENDIF 102 FORMAT(F23.3,8F17.2)

C UPDATE THE OLD VARIABLES Q=QQ VNA=WNA IF(TIME .GT. 41.) STOP GO TO 31 END SUBROUTINE INTER(X,Y,N,XX,YY)

DIMENSION XX(N),YY(N)

IF(X .LT. XX(1) .OR. X .GT. XX(N)) GO TO 3 DO 2 J=2,N IF(X .GE. XX(J-1) .AND. X .LE. XX(J)) GO TO 101 GOTO2 101 Y=YY(J-1)+(YY(J}-YY(J-1))*(X-XX(J-I))f I (XX(J)-XX(J-1))

RETURN 2 CONTINUE 3 WRITE(6,1) X,(XX(I),I=1,N) 1 FORMAT(' BEYOND RANGE',G10.4,5X,20G10.4)

RETURN END

(NC.DE-AP.ZZ-0002(0), Rev. 12,Form2) CALCULATION CONTINUATION SHEET SHEET: 24 CALCNO.: S-1-SJ-MDC-1539 REV: 2 REF: CONTD ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra l Aug 08, 2005 James Murphy l Aug 11, 2005 I James Murphy Aug. 11, 2005 Table 3.6.4 Computer Program Listing: Analysis of 14 Loop, Check Valve Maximum Lift = 60 Deg.

DIMENSION VVOF(12),CVCV(12)

OPEN(1,FILE='Accl4-hoff-60deg.out', STATUS='old')

DATA VVOF/0.,.05,.1,.2,.3,.4,.5,.6,.7,.8,.9,1.1 DATA CVCV/0., 0.01 94, 0.055, 0.1, 0.146, 0.204,

  1. 0.277,0.3536,0.4613,0.6086,0.767,1./

C PARAMETERS C SINPHM =SINE OF MAXIMUM ANGLE OF CHECK VALVE TRAVEL (NONDIMENSIONAL)

SINPHM=0.866 C SKASQ = SUMMATION K/A**2 [FT**(-4)]

SKASQ=34.76 C SLOA = SUMMATION UA [FT**(-1)]

SLOA=222.5 C VOT1 = DISK MOVEMENT TIME OF SJ54 GATE VALVE (SEC)

VOTI =19.94 C CONSTANTS GAM=1.3 G=32.174 RHO=1.94 AREA=0.394 DT=0.01 PCAV=14.7*144.

C INITIAL CONDITIONS TIME=0.1 NSTEP=-1 VNAZ=408.3 VNA=VNAZ PAZ=84.7*144.

PA=PAZ Q=.001 ZCAV=127.

WRITE(1,101) 101 FORMAT(TI9TIME', T28'ACCUMULATOR PRESSURE FLOW RATE')

103 FORMAT(T19'(SEC.)',T28' (PSIG) (GPM) ',II)

WRITE(1,103) 31 NSTEP=NSTEP+1 TIME=TIME+DT C CALCULATE ACCUMULATOR LEVEL ELEVATION VWA=1350.-VNA ZA=(VWA+7801.2)/95.76 C CALCULATE ACCUMULATOR GAS PRESSURE PA= PAZ*(VNAZIVNA)**GAM C CALCULATE SJ54 LOSS FACTOR GVKZ=.15 IF(TIME .LT. VOT1) THEN VOF=TIMENOTI CALL INTER(VOF,CVND,12,WOF,CVCV)

GVK=GVKZ/(CVND*CVND)

ELSE GVK=GVKZ ENDIF C CALCULATE CHECK VALVE DP VEL=QIAREA (contd.)

(NC.DE-AP.ZZ-0002(Q). Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 25 CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONTD ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 l James Murphy Aug 11, 2005 James Murphy Aug. 11, 2005 Table 3.6.4 (contd.)

AV2=38.3/(VEL*VEL)

SINPHI=0.5*(SQRT(AV2**2+4.}AV2)

IF (SINPHI .GE. SINPHM) SINPHI=SINPHM DPCHK=2.*8.98*RHO*VEL*VEL*(l.-SINPHI)

C CALCULATE DERIVATIVES DQDT=(PA+RHO*G*ZA-PCAV-RHO*G*ZCAV-0.5*RHO*SKASQ*Q*ABS(Q)

  1. -0.5*GVK*RHO*Q*ABS(Q)/AREA**2 - DPCHK)/(RHO*SLOA)

DVNADT=Q C CALCULATE VALUES AT NEW TIME STEP QQ=Q+DQDT*DT WVNA=VNA+DVNADT*DT IF (TIME .LE. 2.) THEN IF(MOD(NSTEP,10) .EQ. 0)WRITE(1,102) TIME,+(PA/144.-14.7),

  1. Q*7.48*60.

ELSE IF(MOD((NSTEP+10),100) .EQ. 0)WRITE(1,102) TIME,+(PA1144.-14.7),

  1. Q*7.48*60.

ENDIF 102 FORMAT(F23.3,8F17.2)

C UPDATE THE OLD VARIABLES Q=QQ VNA=WNA IF(TIME .GT. 41.) STOP GO TO 31 END SUBROUTINE INTER(X,Y,N,XX,YY)

DIMENSION XX(N),YY(N)

IF(X .LT. XX(1) .OR. X .GT. XX(N)) GO TO 3 DO2J=2,N IF(X .GE. XX(J-1) .AND. X .LE. XX(J)) GO TO 101 GOTO2 101 Y=YY(J-1)+(YY(J)-YY(J-1))*(X-XX(J-1))f I (XX(J)-XX(J-I))

RETURN 2 CONTINUE 3 WRITE(6,1) X,(XX(I),I=1,N)

I FORMAT(' BEYOND RANGE',G10.4,5X,20G10.4)

RETURN END

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: A2- co CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: _______ _ CONTO ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: l VERFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy I Aug 11, 2005 James Murphy Aug.11,2005

4. Results All four loops were analyzed inidividually with their own specific data and geometrical input. For 11 loop, two analyses were run for pressure decay time calculation (one for the check valve free case and other with check valve having maximum lift 60 degrees). Table 4.1 shows the time history of pressure decay and the discharge flow rate of 11-accumulator for the 60 degree check valve lift. Table 4.2 shows the pressure decay time history and the discharge flow rate of 21 -accumulator for the free check valve case.

For 12, 13, and 14 loops, the pressure decay analyses were done for the case where the maximum lift for the check valves is 60 degrees. Table 4.3 shows the time history of pressure decay and the discharge flow rate of 12-accumulator for the 60 degree check valve lift. Table 4.4 shows the time history of pressure decay and the discharge flow rate of 13-accumulator for the 60 degree check valve lift. Table 4.5 shows the time history of pressure decay and the discharge flow rate of 14-accumulator forthe 60 degree check valve lift.

For all cases analyzed, the flow rate exceeded 3537 gpm (corresponding to 20 ft/s velocity in 0.394 ft2 aea pipe), the minimum flow rate required for full disk lift.

Figure 4.1 shows the plots of pressure decay time history of 11 accumulator and Figure 4.2 shows the discharge flow rate time histories of 11 accumulators for the two cases analyzed (check valves are free and the check valves maximum lift is 60 degrees).

From the tabular data, the following results are obtained for 60 degree maximum lift cases.

For 11-accumulator, the pressure decay time from 70 psig to 35 psig is 26.76 seconds.

For 12-accumulator, the pressure decay time from 70 psig to 35 psig is 27.12 seconds.

For 13-accumulator, the pressure decay time from 70 psig to 35 psig is 28.63 seconds.

For 14-accumulator, the pressure decay time from 70 psig to 35 psig is 28.63 seconds.

As per the recommendation of the saferty evaluation report docket No. 50-311 dated January 2, 2004 (Relief Request RR S2-RR-03-VO1 and RR S2-RR-03-V02) and docket Nos. 50-271 and 50-311 dated March 12, 1999, the acceptance criterion for the pressure decay time is 1.5 second less than the calculated pressure decay time for the 60 degree check valve lift case.

Therefore, the valve passing acceptance criteria for the check valves are as follows:

Acceptance criterion for pressure decay time for 11 loop check valves is less than or equal to 25.26 -

seconds.

Acceptance criterion for pressure decay time for 12 loop check valves is less than or equal to 25.62 seconds.

Acceptance criterion for pressure decay time for 13 loop check valves is less than or equal to 27.13 -

seconds.

Acceptance criterion for pressure decay time for 14 loop check valves is less than or equal to 27.13 seconds.

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 27 CALCNO.: S-1-SJ-MDC-1539 REV: 2 REF: CONT'DON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy I Aug 11, 2005 James Murphy Aug. 11, 2005 Table 4.1 11 Accumulator Pressure and Discharge Flow Rate Time History (Check Valve Maximum Lift =60 deg)

TIME ACCUMULATOR FLOW RATE PRESSURE (SEC.) (PSIG) (GPM) 0.110 70.00 0.45 0.210 69.99 331.13 0.310 69.96 486.85 0.410 69.93 638.29 0.510 69.89 814.87 0.610 69.83 1040.08 0.710 69.76 1271.14 0.810 69.68 1500.05 0.910 69.59 1722.89 1.010 69.48 1917.43 1.110 69.36 2088.16 1.210 69.23 2239.23 1.310 69.10 2375.40 1.410 68.95 2500.59 1.510 68.80 2616.95 1.610 68.65 2725.73 1.710 68.49 2827.71 1.810 68.32 2923.51 1.910 68.15 3013.92 2.010 67.97 3099.09 3.010 66.04 3717.72 4.010 63.93 4063.75 5.010 61.79 4211.16 6.010 59.72 4246.59 7.010 57.74 4230.09 8.010 55.87 4176.19 9.010 54.11 4105.84 10.010 52.45 4018.54 11.010 50.90 3930.78 12.010 49.44 3846.08 13.010 48.07 3764.53 14.010 46.78 3685.92 15.010 45.56 3610.05 16.010 44.40 3536.72 17.010 43.31 3465.76 18.010 42.27 3397.02 19.010 41.28 3330.35 20.010 40.34 3265.63 21.010 39.45 3202.74 22.010 38.60 3141.56 23.010 37.78 3082.00 24.010 37.01 3023.96 25.010 36.27 2967.37 26 7 26.010 35.56 2912.14 W ppE'SufftETlt- EL 7 C 27.011 34.87 2858.20/

28.011 34.22 2805.48 29.011 33.60 2753.93 30.011 33.00 2703.47 31.011 32.42 2654.07 32.011 31.87 2605.66 (contd.)

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form2) CALCULATION CONTINUATION SHEET SHEET: 2-CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 I James Murphy l Aug 11, 2005 James Murphy_ Aug. 11, 2005 Table 4.1 (contd.)

33.010 31.33 2558.20 34.010 30.82 2511.65 35.010 30.33 2465.96 36.010 29.85 2421.10 37.010 29.39 2377.03 38.010 28.95 2333.71 39.009 28.52 2291.11 40.009 28.11 2249.20 41.009 27.72 2207.96

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 2 9)

CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy Aug 11, 2005 James Murphy I Aug. 11,2005 Table 4.2 11 Accumulator Pressure and Discharge Flow Rate Time History (Check Valve Free)

TIME ACCUMULATOF Z FLOW RATE PRESSURE (SEC.) (PSIG) (GPM) 0.110 70.00 0.45 0.210 69.99 331.13 0.310 69.96 486.85 0.410 69.93 638.29 0.510 69.89 814.87 0.610 69.83 1040.08 0.710 69.76 1271.14 0.810 69.68 1500.05 0.910 69.59 1722.89 1.010 69.48 1917.43 1.110 69.36 2088.44 1.210 69.23 2244.83 1.310 69.10 2391.19 1.410 68.95 2529.92 1.510 68.80 2662.33 1.610 68.64 2789.15 1.710 68.47 2910.80 1.810 68.30 3027.64 1.910 68.12 3140.28 2.010 67.94 3248.70 3.010 65.86 4083.23 4.010 63.53 4587.00 5.010 61.13 4836.43 6.010 58.78 4922.30 7.010 56.54 4926.44 8.010 54.42 4869.63 9.010 52.45 4783.51 10.010 50.61 4668.92 11.010 48.90 4551.15 12.010 47.31 4437.40 13.010 45.83 4328.29 14.010 44.44 4223.55 15.010 43.14 4122.85 16.010 41.91 4025.89 17.010 40.76 3932.38 18.010 39.68 3842.07 19.010 38.65 3754.73 20.010 37.68 3670.15 21.010 36.77 3588.15 22.010 35.90 3507.44 23.010 35.07 3417.51 24.010 34.29 3324.09 25.010 33.55 3231.29 26.010 32.86 3140.28 27.011 32.19 3051.35 28.011 31.57 2964.53 29.011 30.97 2879.73 30.011 30.40 2796.88 (contd.)

(NC.DE-AP.ZZ-0002(0). Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 30 CALC No.: S-1-SJ-MDC-1539 REV: 2 REF: - CONTD ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VER IFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy I Aug 11, 2005 James Murphy Aug. 11, 2005 Table 4.2 (contd.)

31.011 29.87 2715.87 32.011 29.36 2636.63 33.010 28.87 2559.07 34.010 28.41 2483.13 35.010 27.97 2408.74 36.010 27.55 2335.84 37.010 27.15 2264.40 38.010 26.76 2194.36 39.009 26.40 2125.71 40.009 26.05 2058.40 41.009 25.72 1992.44

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 3 CALC NO.: S-1 -SJ-MDC-1539 REV: 2 REF: ._CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy l Aug 11, 2005 James Murphy Aug. 11,2005 Table 4.3 12 Accumulator Pressure and Discharge Flow Rate Time History (Check Valve Maximum Lift = 60 deg)

TIME ACCUMULATOR FLOW RATE PRESSURE (SEC.) (PSIG) (GPM) 0.110 70.00 0.45 0.210 69.99 301.90 0.310 69.97 443.15 0.410 69.94 581.47 0.510 69.90 719.06 0.610 69.85 911.44 0.710 69.79 1123.51 0.810 69.72 1336.27 0.910 69.63 1546.00 1.010 69.53 1750.23 1.110 69.42 1928.19 1.210 69.31 2083.43 1.310 69.18 2220.47 1.410 69.04 2344.12 1.510 68.90 2458.16 1.610 68.76 2564.62 1.710 68.60 2664.64 1.810 68.45 2758.91 1.910 68.28 2847.87 2.010 68.12 2931.91 3.010 66.27 3552.77 4.010 64.23 3923.24 5.010 62.14 4115.87 6.010 60.09 4175.89 7.010 58.12 4179.19 8.010 56.25 4146.63 9.010 54.48 4087.07 10.010 52.81 4017.04 11.010 51.25 3933.06 12.010 49.77 3848.67 13.010 48.39 3767.14 14.010 47.08 3688.53 15.010 45.85 3612.67 16.010 44.68 3539.36 17.010 43.58 3468.44 18.010 42.53 3399.73 19.010 41.54 3333.12 20.010 40.59 3268.45 21.010 39.69 3205.62 22.010 38.83 3144.50 23.010 38.01 3085.02 24.010 37.23 3027.06 25.010 36.48 2970.55 26.010 35.76 2915.40 27.011 35.07 2861-55 KE S&IE-psE L C, 5k 'Ti -Y27-12 e7 28.011 34.42 2808.93 >

29.011 33.79 2757.47 30.011 33.18 2707.11 31.011 32.60 2657.81 (contd.)

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 32.

CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy Aug 11, 2005 James Murphy Aug. 11, 2005 Table 4.3 (contd.)

32.011 32.04 2609.50 33.010 31.50 2562.15 34.010 30.99 2515.70 35.010 30.49 2470.13 36.010 30.01 2425.37 37.010 29.55 2381.41 38.010 29.10 2338.21 39.009 28.67 2295.73 40.009 28.26 2253.94 41.009 27.86 2212.81

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 33 CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: __CONT'D ON SHEET; ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 l James Murphy Aug 11, 2005 l James Murphy I Aug. 11, 2005 Table 4.4 13 Accumulator Pressure and Discharge Flow Rate Time History (Check Valve Maximum Lift = 60 deg)

TIME ACCUMULATOF FLOW RATE PRESSURE (SEC.) (PSIG) (GPM) 0.110 70.00 0.45 0.210 69.99 165.51 0.310 69.98 243.73 0.410 69.96 321.31 0.510 69.94 398.14 0.610 69.92 474.18 0.710 69.89 549.43 0.810 69.85 623.95 0.910 69.81 697.79 1.010 69.77 781.38 1.110 69.72 899.98 1.210 69.66 1024.42 1.310 69.60 1148.73 1.410 69.53 1271.91 1.510 69.45 1393.65 1.610 69.36 1513.77 1.710 69.27 1632.12 1.810 69.17 1748.59 1.910 69.06 1863.04 2.010 68.95 1966.00 3.010 67.61 2599.23 4.010 66.03 3035.70 5.010 64.29 3346.58 6.010 62.49 3558.90 7.010 60.67 3724.33 8.010 58.87 3821.96 9.010 57.10 3883.04 10.010 55.39 3899.61 11.010 53.75 3887.52 12.010 52.18 3859.46 13.010 50.69 3824.28 14.010 49.28 3779.19 15.010 47.93 3728.39 16.010 46.65 3670.69 17.010 45.43 3609.19 18.010 44.28 3547.07 19.010 43.19 3484.65 20.010 42.14 3418.66 21.010 41.16 3351.48 22.010 40.21 3285.91 23.010 39.32 3222.16 24.010 38.47 3160.15 25.010 37.65 3099.79 26.010 36.88 3040.97 27.011 36.13 2983.62 T 1E 86 e 28.011 35.42 2927 66J PP Sc5 E 7 TE E- 28 3 Ser.

29.011 34.74 2873.01 30.011 34.09 2819.60 31.011 33.46 2767.36 (contd.)

(NC.DE-APZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 3 CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy Aug 11, 2005 James Murphy Aug. 11, 2005 Table 4.4 (contd.)

32.011 32.86 2716.25 33.010 32.29 2666.20 34.010 31.73 2617.16 35.010 31.20 2569.09 36.010 30.69 2521.93 37.010 30.19 2475.65 38.010 29.72 2430.21 39.009 29.26 2385.57 40.009 28.82 2341.69 41.009 28.40 2298.54

(NC.DE-AP.ZZ-002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET: 35 CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy Aug 11, 2005 James Murphy Aug. 11, 2005 Table 4.5 14 Accumulator Pressure and Discharge Flow Rate Time History (Check Valve Maximum Lift 60 deg)

TIME ACCUMULATOR FLOW RATE PRESSURE (SEC.) (PSIG) (GPM) 0.110 70.00 0.45 0.210 69.99 159.52 0.310 69.98 234.93 0.410 69.97 309.78 0.510 69.95 383.94 0.610 69.92 457.37 0.710 69.89 530.06 0.810 69.86 602.06 0.910 69.82 673.42 1.010 69.78 744.56 1.110 69.73 850.40 1.210 69.68 970.47 1.310 69.61 1091.35 1.410 69.55 1211.33 1.510 69.47 1330.04 1.610 69.39 1447.32 1.710 69.30 1563.04 1.810 69.20 1677.06 1.910 69.10 1789.29 2.010 68.99 1899.45 3.010 67.69 2546.68 4.010 66.12 2985.03 5.010 64.41 3303.10 6.010 62.63 3519.77 7.010 60.82 3693.01 8.010 59.02 3799.00 9.010 57.26 3869.68 10.010 55.54 3896.98 11.010 53.90 3892.90 12.010 52.32 3866.93 13.010 50.82 3835.78 14.010 49.40 3793.13 15.010 48.04 3745.87 16.010 46.75 3691.39 17.010 45.52 3632.00 18.010 44.36 3569.68 19.010 43.25 3507.99 20.010 42.20 3445.49 21.010 41.20 3379.10 22.010 40.26 3312.62 23.010 39.35 3247.83 24.010 38.49 3184.80 25.010 37.67 3123.46 26.010 36.89 3063.71 27.011 36.14 3005.46 ke., 'fj:263£'c 28.011 35.42 2948.62 EJ e rStu(1 5.>W 5S 29.011 34.74 2893.13 30.011 34.08 2838.90 (contd.)

(NC.DE-AP.ZZ-0002(Q), Rev. 12, Form 2) CALCULATION CONTINUATION SHEET SHEET:

CALC NO.: S-1 -SJ-MDC-1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy Aug 11, 2005 James Murphy Aug. 11, 2005 Table 4.5 (contd.)

31.011 33.45 2785.88 32.011 32.85 2734.00 33.010 32.27 2683.20 34.010 31.71 2633.44 35.010 31.17 2584.67 36.010 30.66 2536.83 37.010 30.16 2489.88 38.010 29.69 2443.79 39.009 29.23 2398.51 40.009 28.78 2354.01 41.009 28.36 2310.25

11 Accumulator Flow Rate (gpm)

  • 6000 5000 C_ __11 ______ ______ 111-11" LA LA 4000 =~~~~~~~~~~~~~~~~~~~~~4

_=________==__= _A C 0.

co 3000 IL

__ __J _ _- - - _ _ _ _ t 0 r"1 L"

I 2000 P co 1000 0

0 5 10 15 20 25 30 35 40 45 Time (sec) l Flow Rate (Check Valve Maximum Lift = 60 deg)l I - Flow Rate (Check Valve Free)

FI67 I 2Z /1- ACCOuPMLJ To79. DIS cHf- ,1g Ft.otv /?Am.

11 Accumulator Pressure 80 70 its,,

60 3

C-l 50 la E 40 U)

I- V Yt - N' 30 20 10 0

0 5 10 15 20 25 30 35 40 45 Time (sec)

Accumulator Pressure (Check Valve Maximum Lift = 60 deg) V

- Accumulator Pressure (Check Valve Free) e',

F/ci 4#' I/- ACetrrUtLaTdZ P FSSt'C 7/ -SHISrc

(NC.DE-AP.ZZ-0002(Q), Rev. 12. Form 2) CALCULATION CONTINUATION SHEET SHEET:

CALC NO.: S-1-SJ-MDC-1539 REV: 2 REF: CONT'D ON SHEET:

ORIGINATOR: DATE: REVIEWER: DATE: VERIFIER: DATE:

Vijay Chandra Aug 08, 2005 James Murphy Aug 11, 2005 James Murphy Aug. 11, 2005

5. Conclusions As calculated in Section 4, the acceptance criterion for pressure decay from 70 psig to 35 psig in the accumulators is as follows:

Acceptance criterion for pressure decay time for 11 loop check valves is less than or equal to 25.26 seconds.

Acceptance criterion for pressure decay time for 12 loop check valves is less than or equal to 25.62 -

seconds.

Acceptance criterion for pressure decay time for 13 loop check valves is less than or equal to 27.13-seconds.

Acceptance criterion for pressure decay time for 14 loop check valves is less than or equal to 27.13 seconds.

The time is measured from the instant when SJ54 valve disc begins to move.

6. Documents Affected Procedure SI1.OP-ST.SJ-0006 will be revised after this calculated is issued and approved by NRC..
7. Design Margin The calculation established the acceptance criterion for the pressure decay time to ascerain the valve functionality. A design margin is not applicable for this calculation.

CC TITLE 1Cu D) LTA IDNNO.C J- 1S SHEET 0 SI<7 REFERENCE 4 ORIGINATOR V-cclgufM'l Oc CitlW3&A I

l Vr-iih-10 _ 40OF CALCULATION DATE Q2 JAr5uI36 25PF.eVL  ; n2r2 _ _

_D CONTINUATION SHEET PEER REVIEW CL4( jLt DATE iZ- l____57 ______

8. REFERENCES,
  • 1. PS E(q (cALC. s S3-.tc -I3Sq) j -e .
2.- DP\ AWINtj( 2o 7L6LA fban4 -2I

!..3 )sfP 107632 Re-.44.00 4~. A 0 -mv , T )7 A P Rc C-;s v -P 51Iz L EF\J E' -L V S - VO L Uwl E-cuf,,eJFS a.,Ivr1 IN . . . . . . .

61 I

. .,; . E7.. ....

, . LovcKfiLLR- v-v 1 ""I

,. .. G. ..

?QocD i .. SJ ST. S3- 00o° 2°

-E t (q683 R 1;, ATT 2

.... 7. DF 6hw2 0 9 9z A '7)1- I.

fLU~f

-8 \V 2 4 V25 By t4RG C'D FoR rt) 9 -S2T I, j(79 gCuE~~T* fi1?-t' ^^uFA)Lh rr (j %Sc

.T-4 2z o),. - -1Et SEC tZ-D. 9-

~.

-9 ST-UPes- CA-LC . 26G72 4 l,0cm 4 1A1~ 5 E Ct .C 26 7 2 4 C6 t l i

.TP-1 SfE5 CbC- 2 6742ttl3 l,~

- jS. -T 5f5 CA-L *

14. ST,¶1S5 Cgr. 2 7274/je "

DE-AP.ZZ-0002(Q) ATTACHMENT 2 DE-AP.ZZ-0002(Q) ATVACHMENT 2

Document Control Desk Attachment 2 LR-N05-0424 INSERVICE INSPECTION PROGRAM RELIEF REQUESTS S1-RR-04-VOI and V02 SALEM GENERATING STATION UNIT 1 FACILITY OPERATING LICENSE NO. DPR-70 DOCKET NO. 50-272

Document Control Desk Attachment 2 LR-N05-0424 Salem Unitl Inservice Test Program VALVE RELIEF REQUEST Sl -RR-04-VOI COMPONENTS: 11SJ55, 12SJ55, 13SJ55 and, 14SJ55 FUNCTION:

These check valves are located in the discharge lines from the respective safety injection accumulators. The valves perform an active safety function in the open and closed positions. The valves must be capable of opening during a large break Loss of Coolant Accident (LOCA) to provide a flow path for Safety Injection (SI) accumulator discharge to the Reactor Coolant System (RCS) cold legs when reactor pressure drops below accumulator pressure. The valve must be capable of closure to prevent divergence of safety injection and recirculation flow subsequent to the accumulators dumping their contents. This valve also functions as an RCS pressure isolation valve.

This function prevents exposing the SI accumulators to RCS pressure that would compromise accumulator pressure boundary integrity.

CATEGORY: AC CLASS: 1 TEST REQUIREMENTS:

Open & Closed Position - Check valves shall be exercised at least once every 3 months in accordance with the requirements of OMa-1988, Part 10-4.3.2.1.

BASIS FOR RELIEF:

During power operation, these valves are maintained in the closed position by RCS pressure on the downstream side of the valve disk. Quarterly exercising these valves to the full or partially open position during power operation is impracticable because the only flow path is into the RCS. The operating accumulator pressure cannot overcome normal operating RCS pressure to establish flow. Full stroke exercising these valves at cold shutdown is impracticable because of' the potential for low temperature over pressurization due to insufficient expansion volume in the RCS to accept required flow.

This testing could also result in the intrusion of nitrogen into the core, which could interrupt the normal circulation of cooling water flow. The associated motor-operated isolation valve (one per accumulator) cannot be partially stroked, but must complete a full stroke before changing direction. This could cause a complete discharge of the water volume in the accumulator and possibly inject nitrogen into the reactor coolant system, causing gas binding of the residual heat removal pumps and a subsequent loss of shutdown cooling. These valves are also verified to close by leak testing per plant technical specifications for Pressure Isolation Valves (PIV\s). Reverse exercising these check valves at any time other than refueling is burdensome without a commensurate increase in the level of quality and safety. The valves are normally in the closed position. Accumulator pressure is continuously monitored to ensure that an adequate nitrogen blanket is maintained and to verify the lack of RCS inleakage.

I

Document Control Desk Attachment 2 LR-N05-0424 ALTERNATE TESTING:

These check valves shall be full stroke exercised to the open position during refueling utilizing a reduced pressure, partial accident flow test method. This controlled method is performed with the reactor vessel head removed. The test method establishes accumulator pressure of 70 psig, accumulator level between 96 and 100% and refueling cavity level between 125.5 and 126.5 feet. After establishment of the fixed parameters, the test then measures the time interval required for the pressure in the associated safety injection accumulator to drop from an initial pressure to 35 psig. Engineering calculation S-1 -SJ-MDC-1 539 Rev. 2, "Accumulator Pressure Decay Time During Discharge Test" establishes the test conditions and acceptance criterion and concludes that this methodology is adequate in determining the associated check valve disk moves to the full open position. Information from other nuclear stations was reviewed regarding partial flow, full stroke exercising using a calculational method. The testing performed at Salem provides a valid methodology for verifying the open function even though the test method differs from the various methods reviewed. Approval of the methodology described above (and in calculation S-1 -SJ-MDC-1 539 Rev. 2) will allow for establishing acceptance criteria if changes are made to accumulator motor operator discharge valve stroke times.

In attempting to utilize the guidance of NUREG 1482, Section 4.1.2- "Exercising Check Valves with Flow and Nonintrusive Techniques", nonintrusive equipment was used during informational testing. These valves are Darling Valve & Manufacturing Co. "Clear Waterway" swing checks that are fabricated without a backstop. The valve design permits the disk to move sufficiently out of the flow path without contacting the valve body. Nonintrusive testing using acoustic and magnetic technology provides sufficient data for monitoring degradation on a periodic basis; however, full open acoustic indication is not detected nor is expected to show on the test trace. Nonintrusive testing does not verify full stroke exercising, however occasional use of this equipment during the pressure decay test provides useful condition monitoring information.

This method of forward flow check valve testing complies with the guidance provided in Generic Letter 89-04, Attachment 1, Position 1.

Regarding reverse flow exercise testing, these valves shall be verified in the closed position during the process of performing seat leakage testing at the frequency specified in Unit I Technical Specification (TS) 4.4.6.3 and Unit 2 TS 4.4.7.2.2.

The open stroke frequency change was previously approved in NRC Safety Evaluation April 15, 1994 (TAC Nos. M88144 and M88145)

The use of the alternate testing methodology was previously approved in NRC Safety Evaluation March 12, 1999 (TAC Nos. M98259 and M98260) 2

Document Control Desk Attachment 2 LR-N05-0424 Salem Unit I Inservice Test Program VALVE RELIEF REQUEST S1-RR-04-V02 COMPONENTS: 11 SJ56, 12SJ56, 13SJ56 and, 14SJ56 FUNCTION:

These check valves are located inthe discharge lines from the respective safety injection accumulators downstream of the branch connection from Residual Heat Removal System (RHR). The valves perform an active safety function in the open position. The valves must be capable of opening during, a large break Loss of Coolant Accident (LOCA) to provide a flow path for Safety Injection (SI) accumulator discharge to the Reactor Coolant System (RCS) cold legs when reactor pressure drops below accumulator pressure. The valve must also be capable of opening to provide a path for low head safety injection and cold leg recirculation flow. This valve also functions as an RCS pressure isolation valve. This function prevents exposing the SI accumulators and RHR system piping to RCS pressure.

CATEGORY: AC CLASS: 1 TEST REQUIREMENTS:

Open & Closed Position - Check valves shall be exercised at least once every 3 months, in accordance with the requirements of OMa-1 988, Part 10-4.3.2.1.

BASIS FOR RELIEF:

During power operation, these valves are maintained in the closed position by RCS pressure on the downstream side of the valve disk. Quarterly exercising these valves to the full or partially open position during power operation is impracticable because the only flow path is into the RCS. The operating accumulator pressure cannot overcome normal operating RCS pressure to establish flow. Full stroke exercising these valves at cold shutdown is impracticable because of the potential for low temperature over pressurization due to insufficient expansion volume in the RCS to accept required flow. This testing could also result in the intrusion of nitrogen into the core, which could interrupt the normal circulation of cooling water flow. The associated motor-operated isolation valve (one per accumulator) cannot be partially stroked, but must complete a full stroke before changing direction. This could cause a complete discharge of the water volume in the accumulator and possibly inject nitrogen into the reactor coolant system, causing gas binding of the residual heat removal pumps and a subsequent loss of shutdown cooling.

These valves are also verified to close by leak testing per plant technical specifications for Pressure Isolation Valves (PlV's). Reverse exercising these check valves at any time other than refueling is burdensome without a commensurate increase in the level of quality and safety.

ALTERNATE TESTING:

These check valves shall be full stroke exercised to the open position during refueling utilizing a reduced pressure, partial accident flow test method. This controlled method is performed with the reactor vessel head removed. The test method establishes accumulator pressure between 3

Document Control Desk Attachment 2 LR-N05-0424 67 and 70 psig, accumulator level between 96 and 100% and refueling cavity level between 125.5 and 126.5 feet. After establishment of the fixed parameters the test then measures the time interval required for the pressure in the associated safety injection accumulator to drop from an initial pressure to 35 psig. Engineering calculation S-1 -SJ-MDC-1 539 Rev. 2, "Accumulator Pressure Decay Time During Discharge Test" establishes the test conditions and acceptance criterion and concludes that this methodology is adequate in determining that the associated check valve disk moves to the full open position. Information from other nuclear stations was reviewed regarding partial flow, full stroke exercising using a calculational method.

The testing performed at Salem provides a valid methodology for verifying the open function even though the test method differs from the various methods reviewed. Approval of the methodology described above (and in calculation S-1 -SJ-MDC-1 539 Rev. 2) will allow for establishing acceptance criteria if changes are made to accumulator motor operator discharge valve stroke times.

In attempting to utilize the guidance of NUREG 1482, Section 4.1.2 - "Exercising Check Valves with Flow and Nonintrusive Techniques", nonintrusive equipment was used during informational testing. These valves are Darling Valve & Manufacturing Co. "Clear Waterway" swing checks that are fabricated without a backstop. The valve design permits the disk to move sufficiently out of the flow path without contacting the valve body. Nonintrusive testing using acoustic and magnetic technology provides sufficient data for monitoring degradation on a periodic basis; however, full open acoustic indication is not detected nor is expected to show on the test trace.

Nonintrusive testing does not verify full stroke exercising however occasional use of this equipment during the pressure decay test provides useful condition monitoring information.

The valves shall be partial stroke exercised at cold shutdown during normal RHR shutdown cooling operations.

This method of forward flow check valve testing complies with the guidance provided in Generic Letter 89-04, Attachment 1, Position 1.

Regarding reverse flow exercise testing, these valves shall be verified in the closed position during the process of performing seat leakage testing at the frequency specified in Unit 1 Technical Specification (TS) 4.4.6.3 and Unit 2 TS 4.4.7.2.2 The open stroke frequency change was previously approved in NRC Safety Evaluation April 15, 1994 (TAC Nos. M88144 and M88145).

The use of the alternate testing methodology was previously approved in NRC Safety Evaluation March 12,1999 (TAC Nos. M98259 and M98260) 4

Document Control Desk Attachment 3 LR-N05-0424 INSERVICE INSPECTION PROGRAM RELIEF REQUESTS S1-RR-04-VOI and V02 SALEM GENERATING STATION UNIT I FACILITY OPERATING LICENSE NO. DPR-70 DOCKET NO. 50-272 General Approach Proposed For Full Open Testing Of Accumulator Check Valves

Document Control Desk Attachment 3 LR-N05-0424 General Approach Proposed For Full Open Testing Of Accumulator Check Valves PSEG procedure S1.01P-ST.SJ-0006 (Q), Inservice Testing Safety Injection Valves Mode 6, provides instructions necessary to perform Inservice Inspection and Testing IAW Technical Specification 4.0.5 for the following Safety Injection (Accumulator) check valves:

o 11SJ55 and 11 SJ56 - 13 Accumulator Discharge to Cold Leg o 12SJ55 and 12SJ56 - 14 Accumulator Discharge to Cold Leg o 13SJ55 and 13SJ56 - 13 Accumulator Discharge to Cold Leg o 14SJ55 and 14SJ56 - 14 Accumulator Discharge to Cold Leg The testing procedure involves open-stroke testing each tank's discharge check valves with the reactor depressurized and the vessel head removed. The initial tank liquid volume is set to 96 - 100%, and initial tank pressure is set at 70 psig. Flow is initiated by opening the tank motor operated valve (MOV). Per the procedure, the valve is to be stroked fully open, left in the open position until the Accumulator reaches a pressure of 35 psig, and then closed. Tank pressure is set low enough to prevent injection of nitrogen gas into the reactor coolant system (RCS). Velocities achieved should also be sufficient to fully stroke the valves, according to calculation.

The bases for the testing are captured in Calculation No. S-1-SJ-MDC-1 539 Rev.2, Accumulator Pressure Decay Time During Discharge Test. The purpose of this calculation is to establish a mathematical model of test conditions to develop acceptance criterion for establishing the valves tested go full open. The description below describes the calculation with reactor head removed as is currently performed during testing.

The following parameters are fixed by procedure:

o The Unit is in Mode 6 (Defueled) with the Upper Intemals installed.

o Safety Injection Accumulators are at a fixed and defined pressure.

o Safety Injection Accumulators are at a fixed and defined level.

o Refueling Cavity is at a fixed and defined level.

o Acceptance criteria - Maximum blowdown time in seconds.

o Failure of testing to result in corrective action for both SJ55 and 56.

During valve stroking, Accumulator pressure and level measurements, which are acquired from inputs from normal plant instrumentation, are recorded. Based on the measured level and pressure change with time, the relationship between the check valve disc angle, flow rate and pressure difference are calculated using information supplied by Westinghouse Letter PSE 530 for full lift velocity for the valves being tested. The loss factor for the MOV isolation valve as well as friction losses associated 1

Document Control Desk Attachment 3 LR-N05-0424 with the piping system is calculated. Equations of motion are then solved simultaneously.

The calculation solves six unknown variables simultaneously using a FORTRAN computer program. The following are calculated to determine flow and pressure at a point in time under a variety of disc angles:

o Accumulator level elevation o Accumulator gas pressure o MOV loss factor o Check valve Delta P o Derivatives o Values at new time step 2