ML082110419

From kanterella
Jump to navigation Jump to search
Calculation S-1-FHV-MDC-0705, Revision 5, Fhv System Heating and Cooling and Air Flow Determination
ML082110419
Person / Time
Site: Salem  PSEG icon.png
Issue date: 07/23/2008
From:
Public Service Enterprise Group
To:
Office of Nuclear Reactor Regulation
References
LAR S08-01, LR-N08-0149 S-1-FHV-MDC-0705, Rev 5
Download: ML082110419 (175)


Text

{{#Wiki_filter:Attachment 3 LR-N08-0149 LAR S08-01 RAI Response Calculation S-1-FHV-MDC-0705

CC-AA-309-1001 Revision 3 Design Analysis Major Revision Cover Sheet Design Analysis Analysis No.:

Title:

3 ECIECR No.: 4 Major Revision) Last Page No.' Attach 8-Page 19 of 19 S-i-FHV-MDC-0705 Revision: 2 6 FHV System Heating and Cooling Load and Air Flow Determination mlml m Revision: 0/0 Station(s): 7 Unit No.; a Discipline: 9 Descrip. Cod Salem Component(s): 14 Spent Fuel Pool Ventilation Unit 1 Mechanical, do/Keyword: 0 FHV Safety/QA Class: : Safety-related System Code: 12 FHV Structure: '" N/A CONTROLLED DOCUMENT REFERENCES '5 Document No.: From/To Document No.: FromiTo From To From To From To Is this Design Analysis 8afeguards information? 1" Yes [] No [ If yes, see SY-AA-101-106 Does this Design Analysis contain Unverified Assumptions? 17 Yes I] No I if yes, ATI/AR# This Design Analysis SUPERCEDES: 'a in its entirety. Description of Revision (list affected pages for partials): 1. Revision 6 modifies Attachment 8 to Include the surface of the fuel transfer pool along with the surface of the spent fuel storage pool In calculating both sensible heat and latent heat that Is transferred to the fuel building ventilation system. The revision also makes minor changes to Attachment 8, as desoribed therein. No changes other than the changes to Attachment 8 are made to this calculation by Revision 5. Preparer: 20 T. J. DelGalzo, PE (MLEA) Rnii Mmii. 9/1212007 .1fi Method of Review: 21 Detailed Review [ Alternate Calculations (attached) C Testing ' Reviewer: 22 J. Wledemann (MLEA) T-9/13/2007 PrInl Name 819g Name Dote Review Notes: 20 independent review [ Peer review 0) (For Edtmernl AaralyMe Pliy) External Approver "_ Pri Name Date Independent 3'4 Party Review Reqd? 26 Yes/Nog Exelon Approver: = A. Johnson lu ...... JLQ prim Name 4 na -t t;~~~:i fi " =.". -.'*7 '3-.' I im - i ad It 0

Page I a of 167 REVISION HISTORY Revision Issue Date Revision Description Cover Revises Attachment 8 to include the surface area of the fuel transfer pool 5Sheet and makes other minor changes or corrections to Attachment 8. No other Sheet changes are made to the calculation except for Attachment 8. Emergency SFP temperature has Increased from 150OF to I 800F. The 4 5112/1995 Impact has been addressed by Attachment 8. Incorporated DCP 1EC-3262-01, CD M502, based on input data from Rev. 2 of this document. 3 92/994 Revised to provide leakage data for new pressure relief dampers to make 1 the truck bay part of the FHB. Incorporates DCP 1 EC-3278, CD M51 9. 2 8/3/1993 Revised to remove conservative approach and conservative assumptions. 1 1/281992 Classified as final after revising unit heater capacity and revising FHB _area temperatures, 0 6/1011991 Initial Issue PAGE REVISION INDEX PAGE REV PAGE REV PAGE REV PAGE REV 1 5 4 la 5 4 2 to 148 4 4 149 4 4 150 4.............. 4 151 5 4 152 5 .Attachment 7 4 153 5 . Attachment 8 5 154 5 155 5 156 5 157 5 158 5 159 5 160 5 161 5 162 5 163 5.. 164 5 4 165 4 166 4 167 5 .ej,

W-1 0 PSIRAG CALCULATION CONTINUATION SHEET TITLE FHV Sys Htg/Ctg Load & Airflow Determination Catca - Unit I I mL ORIGINATOR I t DATE C-1-'&- VFR or CKR DATE TABLE OF CONTENTS I iI 1.0 2.0 3.0 4.0 Cover Sheet Table of Contents PURPOSE REFERENCES ASSUMPTIONS & DESIGN DATA CALCULATIONS 4.1 Determination of U-Factors 4.2 Determination of CLTD 4.3 Cooling Load Calculations 4.4 Heating Load Calculations 4.5 Determination of Room Flow Rate Requirements and Room Temperature 4.6 Determination of Room Temperature (@ Design Flow & Calculated Cooling Load) 4.7 Determination of Heater Loads 4.8 Determination of Room Temperature Due to Loss of Heaters (@ Design Flow) 4.9 Determination of Temperature Rise Across Supply Fan IVHE24. 4.10 Determination of Relative Humidity of Air Entering Through Charcoal Filter 2VHE503 (@ Design Flow and Design Temperature) During Accident Mode Of Operation. Page No. 1 4 7 9 13 17 43 81 87 99 103 \\C)5

0S Airflow Determ-Calc-Unit REFERENCE DE-CB.FHV-0021 (Q) ORIGINATOR 0 4...2-L CALCULATION DATE -l7 .*i42 CONTINUATION SHEET VFR or CXR DATE SI I Il TABLE OF CONTENTS (.continued) Pacie No.... 5.0

SUMMARY

OF RESULTS 5.1 cooling Load at Normal Mode 5.2 Cooling Load at Emergency Mode P 5.3 Heating Load at Normal Mode 5.4 Heating Load-at Emergency Mode 5.5 Air Flow Requirements & Room Temperature (Qt 5.6 Heater Loads & Room Temperature at Loss of Heating -$Z 6.0 ATTACHMENTS

1.

DIT-SAL-040 (22 Feb. 91)

2.

Memo of Telephone Conversation L. C. Oyen .- t and S. Dhall (1 Mar 91)

3.

Page 20 of S&L Standard MES-7.2 ro. O.,C*= 0&',- ve,0.o4'. ovei roo\\ IS.t

(0.

HeaLf Gok;-ns ~fzjThick, W/atl a-nd Poos by 14 seP-(.-mbp(r 19,0o Issue. 7-5,eýr , Lundy Ca2cla-ek,*e n No. 886S-O04¢-PED-1. 14-16

S-I-FHV-MDC-O7070 SHEET PSING FHV Sys Ntg/Clg Load & RERNCI Airflow Determ Caic-Unit I E DE-CB.FHV--021 (Q) CALCULATION DATE 4------ CONTINUATION SHEET VFRor CKR-m DATE I-I I U

  • 1
  • 1 Il I

J1 I I I 1.0 PURPOSE The purpose of this calculation -is to: 1.1 Determine the cooling and heating loads at normal and emergency modes for the following areas based on the outside and inside design conditions: a) Spent Fuel Storage Pool, Transfer Pool and New Fuel Storage Pit. b) Fuel Handling Laydown Area. c) Decontamination Pit. d) Sump Tunnel. e) Electrical Equipment Room f) Storage Room g) Truck Bay h) Vent Sampling Enclosure 1.2 Determine the airflow rate for each area in Section 1.1 to maintain the areas at design conditions based on the calculated cooling load at both normal and emergency loads. 1.3 Determine the temperatures in areas indicated in Section 1.1. based on design flowrate ( from Reference 2.3.10) and calculated cooling loads. 1.4 Determine the temperatures (under normal mode).in the Fuel Handling Areas, Truck Bay Area, Storage Room and Vent Sampling Enclosure for the following cases (as applicable): a) Loss of main heating coil. b) Loss of unit heaters. c) Loss of main and unit heaters. 1.5 Determine the relative humidity of the air entering the charcoal filter unit based on the design flowrate in both summer and winter conditions.

I~.I 1 FHV Sys Htg/Clg Load & REFERENCE Airflow Determ Cak-Unit I DE-CB.FHV-0021 (Q) 5 ORIGINATOR Lo z 2 053_____ CALCULATION DATE CONTINUATION SHEET VFR or CKR DATE 051Z-11+- 2.0 B 2.1. DE-TS.ZZ-380 3 (Q) "HVAC Technical Standard - Cooling and Heating Load calculations." 2.2 DE-CB.FHV-00 2 1 (Q) ,,Configuration Baseline Documentation for Fuel Handling Area Ventilation System." 2.3 Design Drawings: 2.3.1 207042 3 No. 1 Unit - Fuel Handling Area Floor Plans El. 84.0,, 100'0, and 116,01 Architectural 2.3.2 207043 3 No. 1 Unit - Fuel Handling Area Floor Plan El. 13010" and Roof Plan Architectural 2.3.3 205958 4 No. I Unit - Fuel Handling Area El. 84'011 LTG.1 Public Add. & Telephone Electrical 42.3.4 205959 16 No. I Unit - Fuel Handling Area - El. i00'0" and 116'0" col. KK to SS. 6.4 to 10.4 Ltg., Public Add. & Telephone Electrical 2.3.5 205960 10 No. I Unit - Fuel Handling Area El. 130'0" Ltg., Public Add & Telephone Electrical 2.3.6 276l No. 1 Unit -,Fuel Handling Area Ventilation-Sections Mechanical 2.3.7 204836 5 No. I & 2 Units - Fuel Handling 2 Area; General Arrangement, Mechanical 2.3.8 207008 12 Service Building, F. H. Area, S. W. and C. W. Int. & Reac. Cont. Exterior and Interior Door Schedule and Details, Architectural

TITLE 1D NO. S-I -FHV-MDC-070 r SHEET FHV Sys.Htg/Clg Load & REFERENCE 4-Airflow Determ Calc-UnitI DE-CB.FKV-0021 (Q) ORIGINATOR T1Llo-3 CALCULATION DATE 1-1 44_ -"Z 7L.&-L4-CONTINUATION SHEET VFRDor CKR DATE w I I 4 -i ¶ i -I I 2A 4 2509q 1 2-1~N,18(Z &7-L U'n,'f-FLA.et Ha-a,d1ir 2.0 (continued) 2.3.9 600074 0 No. 1 Unit - Fuel Handling Area Vent Sampling Enclosure - Heating & Ventilation Arrangement, Mechanical. 2.3.10 2050'321 P&ID; No. 1 Unit - Auxiliary Building Diesel Generator and Fuel Handling Area Ventilation 2.4 ASHRAE HVAC Systems & Applications Handbook - 1987 2.5 S&L Program No. 09.5.041-2.3 - LOAD User's Manual "HVAC Heating and Cooling Load Program." 2.6 ASHRAE Handbook - Fundamentals - 1985 2.7 Salem Generating Station, units 1 and 2, Updated Final Safety Analysis Report (UFSAR), Revision 9. 2.8 Load Data Table - PSE&G Electrical Load Management System Salem Units 1,2 and 3 Generating Stations, Ver. 0.0, Run Date 09/19/90. 2.9 S&L Standard; Electrical, Field; Lighting Intensities for Power Stations - Standard Specification STD-EE-321. 2.10 Ndc7*. 2.113 Buffalo Forge Company Fan Engineering Handbook 2.12 S&L DIT No. SAL-040 (Attachment 1). 2.13 Penn Ventilator Co., Vendor Dwg H-20, Date 02/24/83. 2.14 Memorandum of phone conversation with L. C. Oyen on 3-1-91 (Attachment 2). 2.15 S&L HVACD Standard Book VIII, MES 7.2, Rev. A.

  • w 3) 2.16 ASME/ANSI N509 -

1989 titled "Nuclear Power Plant Air-Cleaning Units and Components."

2.

4,11 k 7 F =6 '*t 0VJ_28 2.19 ASR RAF-ct, .5 A<I0 NO ,FI NITI4Ck L--v6-'-N, f, 14 VUUi l

  • I._

TITLE 10 NO. S-I -FHV-MDC-070m SHEE' FHV Sys.Htg/Clg Load & REFERENCE D7 AirflOw Determ Calc-Unit DE-CB.FHV'0021 M-, OF ORIGINATOR L0ý- CALCULATION DATE 11211 91 9 CONTINUATION SHEET VFR or CKR __A__ DATE 2."20 ASHRAF HANdteo-K. FUNDXM4t4TAL -96q9

2. zi PSIr*G SPECIFICA-o10H 72--GZCow0
3. o*-'

A-'M TPONS/DE9SGN MATAL. 3.1 From Reference 2.7, design conditions are as follows:(00WOWI0) I~i~r summer Winter Outside Air - 95°Fdb/78*Fwb 00F ALL Space/Room - 105OF 600F

  • Ground -

65OF 42 F Spent Fuel Pool Temperature: Normal 120 0 F, Emergency 1500F 7ew Sru*.w ial*, J -N r os &J ,pe_ 9pt*"pe La.4a4 =V -

  • aler?

I *.2-. for +he-pirO. of "%is Qe4:2.4-Pe-..-Z'7.6 3.2 Latitude of Salem is approximately 390N. 3.3 Neat 3bee-in-m Mum-Mar through the iWaiJE and floor slab direetly-ii. "en"as" -with the* groun in..,-. ne=*glected fur,,.ants*r.vafts.m. moTUvsfj> 3.4 The heat loss in summer due to infiltration is neglected for conservatism. 3.5 Velocity of air over the spent fuel pool and transfer pool is 20 3.6 Building component/barrier air leakage = 0 cfm 3.7 All areas are unoccupied, therefore no people heat loads., 3.8 An addittiOnal is% includ i iit,*i*-*l lolngihat;ing -loads and will: be use L. taw i1i W lwan Ld rbal twJUj t;L0%.L.e detenninaticn. oT USED 3.9 Nomenclature and acronyms are in Reference 2.1 unless noted otherwise. 3.10 AHU coil #04wmrccapacity 1,100 MBH, Reference 2.2. 3.11 For all other assumptions, see body of calculation as applicable. 3.12 For the vent sampling enclosure, a lighting load of 2 watts/sq. ft. is assumed. 3.13 The sable tray is assumed te be enerqi-d10% urngnoma mde of Gperat-4on and-25% under eme~rgene mode of ~apratien. D

I STE .N S-k -FHV-MDC-070O SHEET FHV Sys Htg/Clg Load & REFERENCE DE-CB.FHV-0021 Airflow Beterm Calc-Unit I OFEC .HV 0 2 Q 'ORIGINATOR W ~ 42..... I CALCULATION DATE 71___l CONTINUATION SHEET VFR or CKR DATE OS I__,_I 3.13 T-he cable~ tray is assumed to bc energized 100% during~ noa mede Of peration an~d 25% under emerejeney vtde-Of pperatkion. ý 3.14 All lighting loads are assumed to be energized at lo0% capacity during normal/emergency operation. 3.15 The outside air at winter is assumed to be 67-7o% RN 3.16 It is assumed that the fuel handling area crane, new fuel elevator winch, cask handling crane, the skimmer pump and the skimmer pump hoist crane are not in operation in the emergency mode operation. Under normal operation, useage factor as listed in Reference 2.14 (Attachment 2) are used for all the above equipment other than the skimmer pump for which a usage factor of a 50% is assumed. No credit is taken for the components in evaluating the heating load. 3.17 The maximum CLTD values for external walls have been used for conservatism. The latitude-month correction for the month of JuneI has been used. This T--N' corr,, tio--n4 foer the mlI .of Ju..i. eonservp-ti'c -for all walls facing dirootions other-thlan-south. 3.18 No credit is taken for the sensible heat from the spent fuel pool in evaluating the heating load. 3.19 No cooling/heating load is considered for wall mounted exhaust fans where the motor is in the flow path of the exhaust air. 3.20 Infiltration loads are assumed equal for normal and emergency modes of operation. A3.21

  • ivo Ve_.l.obW + 'I V

%.12.45 MP.,, it.Kn['s, g 1,1j;2. ý /A*, c"b1e ."r'ode. -4 o PQ..,a41,0Yj

I ID NO. TITLE 10 NO. S-i. -FHV-MDC-0701 .0 - SIP REFEENC FHV Sys Htg/Clg Load & REFERENCE Airflow Determ Calc-Unit I DE-CB.FHV-O021 (Q) CALCULATION DATE 0 4_._.2 CONTINUATION SHEET VFR or CKR gaga_ DATE 'j./t 4.0 CALCULATIONS 4.1 Determination of U-factors The following are the heat transfer coefficients "U-factors" to be used in this calculation. These values were taken from Reference 2.5 with similar construction detail. SPACE/ROOM U-FACTORS,BTUH/SF- 0 F PAGE NO OF ITEM B Y WINTE REF.2.5/CODE NO 1 Exterior Door a)Insulated Metal Swing 0.156 0.160 A-57/1 b)Telescopic.Metal OVerhead 0.982 1.174 A-57/2 2 Roof Uninsulated (metal) 0.798 1.290 A-22/2 2.1 Roof 18" Concrete, No 0.324 0.383 Insulation S 3 Exterior Wall a)18" Poured Cone. 0.397 0.425 A-20/38 b)24" Poured Cone. 0.331 0.350 A-20/39 c)36" Poured Cone. 0.249 0.260 A-20/41 d)48" Poured Cone. 0.199 0.206 A-21/43 e)60" Poured Cone. 0.166 0.171 A-21/45 f)72" Poured Cone. 0.142 0.145. A-21/47 g)84" Poured Cone. 0.125 0.128 A-21/49 h)Uninsulated Metal 0.982 1.17 A-9/1 Siding 4 Interior Walls (Poured concrete-both sides-unfinished) 0.422 A-52/45 24" 0.297 A-52/47 36" 0.229 A-53/49 48" 0.186 A-53/51 60" 0.157 A-53/53 72" 0.136 A-53/55 84" 0.119 A-54/57 S Concrete Floor with Metal Decking 12" 0.450 0.352 A-58/4 6 Concrete Ceiling with Metal Decking 12" 0.352 0.450 A-60/4. 7 For other "U-Factor" determination, see next page.

4 4i 4 I 'I-- SPSIEG CALCULATION CONTINUATION SHEET FHV Sys Htg/Clg Load & Airflow Determ Calc-Unitt ORIGINATOR DATE VFR orCKR DATE PO3 tYV 1A A coc%', f i A~c~o d hroPC 2.6

  • '[* p. v ;2..

T 7 '-I 4-~ ,/ TITLE \\C vc~~,e Ae.c 1

00. Y'f2.I 0o ~-

'4 covtc.x% eL (011C)A Q' ct 4A I-7ya VeA_.ý ~ ~ c~c~. A(Tc ,ke-SA 4. 2.- C p,: Z1. it) c~) 1 Z 0 (- '\\ \\T.jw ~ '~%.. o o 6-' ( ý-_ o K1ý \\A

I I S-I -FHV-MDC-070 6 SHEET "O, 5 " I FHV Sys Htg/Clg Load & AFERENCE '~iV~EL~E4~~E Airflow Ceterm Calc-Unit I 5EEC DE-CB.FHV-0021 (Q). CALCULATION -DATE 5-1611 = CONTINUATION SHEET VFR or CKR IA.- DATE -1po 1 A (3)ii -~ C~t( ~A$~X ~ \\W\\\\Q) \\ 04~ \\\\00 '~-O'~ /' o'o'0 0IF4 ~3) \\ a

7SS, "PAoo

~44~ID 0.0O 0o L I I-o'V

  • ~

occ .6 =~~ Qaa\\ 10

IT LE 1 0 N O. S-I-FHV-MDC-070

  • SHEET FHV Sys Htg/Clg Load &

REFERENE D-FHV-O02 SHEE Airflow Determ Calc-Unit I DE-CB.FHV-0021 OF ORIGINATOR L OF CALCULATION DATE

-Ie I 124 CONTINUATION SHEET

.VFR or CKR DATE I 4-* E o r-FiKr-rno4 vJcs.%\\\\15 +-- k ; ckvness m Lr 7.5 rvp~ V-I% 0 - L C + Il i Oo 1ý) 0, 0 -3 -c,7 1 c 4-UT - 01 9 (0 I E5 p., P'P\\ L 9 a C.9 h

--~j?/~~

U~.c c )y I-

!F4 TITLE ID "NO... -I-FHV-I4DC-070 5 SHEET F.*V Sys Htg/Clg Load & RE'ERENCE -0. :P s w.i Airflow Detenm Calc-Unit DE-CB.FHV-0021 (Q) ORIGINATOR Lo 1-zO CALULAIONDATE. 5'1 2z/ CONTINUATION SHEET VFRor CKR I 2r 4.0 -/' d4L~t kk. 7 c k-:-\\ izýs c~A-C~\\~-~ ~t, V~AN\\y \\~2~' \\AJ9AAVV Iry z.C ,p Grow 12") o~&tA rj4,60ciW -,,Pi .ý4h7 /j6J~ ~AscV4t ovll~Q C vt ~rI Mo~fuI 0 lr'F 0. ov 4. ct cV%- X y 4 M.e 6WA.~

'7 TI*E

  • O-."

S-1-FHV-MDC-070 SHEET S G FHV Sys Htg/Clg Load & ýREFERENCE DE-CB.FHV-0021 (Q) o Airflow Determ.Calc-Unit \\D B F V 0 2 Q 10 PSI~GOF ORIGINATOR0 41...a CALCULATION DATE.. i-. -.CONTINUATION.SHEET VFR or CKR n 1.. DATE I -)-'I. ___/_ IGrl I j z 7 0 C~ T ~ N '~2. 21~ V.) LM Fv-~ rI4o~~f/3 0 21) ) r~) 102. V~A, R a77 T' A-0 -~ ~O~1w x- -411 US-,9. 40 0 LcLM-u 8 te- ,Rl 2.19 -ra b1 ie-12 \\-\\'2~ 'a-) ~,f~9~ef 24 I.- RJ. 2.3,.7 ) ZL \\tý. co ".& CNM \\ z .~- ('SeA(2 A4) COO~l% g C7~. vOCJ~ CIMS ý6e41)1 .5a Sane a - 24 "car -rekg~~ CL 7-Z) p I'S e.

I TITLE I 0 PSEG CALCULATION CONTINUATION SHEET FHV Sys Htg/Clg Load & Airflow Determ Calc-Unit \\ ORIGINATOR DATE VFRor CKR DATE U I 2q ~-OR -9~ k~' ~Co~3kL ~ ~ ~ 'N ~' 11 V*O.\\\\ ýF 0 (L' V.(ý, %c gt 2-67 A 3 2:o c 43'.. C, -Wjzwu ") 67 0

TITLE ID NO. S-I -FHV-MDC-070,T SHEET ~~~ ~~FHV Sys Htg/Clg Load & REFERENCE D-BFVQ2 Q 0 S G Airflow Determ Calc-Unit I DE-CB..FHV-O021 (Q) O ORIGINATOR Lo I AV CALCULATION DATE CONTINUATION SHEET VFR or CKR f am i

iDAT_,

I .\\,\\ Z - :.'-N ) 'Fo ax JX ~j Q&e~k ~Adk~ ~ Ný ) \\~A~\\ 11 0, 0 ' , = 174 °; C <ric, C *-v(" -+ (I. e - (L-> ,;,.) S-t ý - 0ý 80 2-1 53 4i

W wq v_ 4.3 COOLING LOAD 4.3.1.a Transmission 4

o.

Load for: SPENT FUEL/TRANSFER POOLS and STORAGE PIT 0 z 0 = 1I0

jr-O3>

Z=! A: Space/Room Barrier Transmission A Load Thickness Length/ Width 'A% NUN 'onnLfEsergency Node Type Height Area Factor Remrks (in) (ft) (ft) (sqft) ta tRi Td 4T I 3 !6 IM Roof '-2.Z 43 10o ,,01 .324 E South Watl Il8 13 43 559 .096 -"-I--


-m3M/.

Z EL 117'-0 TO EL 129'-IO E South WattB 42 40 43 1720 .229 120/ 150 105 15/45 5905 /17M

ELV, TO EL129*IO SNorthWatt 26 35 43 1505

.331 -SE TO IL E South Watt 26 35 43 1505 .331.... -I-- r-EL 129'-1-O TO EL 6'-AP E North Watt 20 18 43 774 .397 ,Zfl L'" To EL -M-P E S o u t h u a lt 2 0 1 8 4 3 7 7 4 .3 9 7 / '/ ;. E L i 6 4 - 8 " T O E L 1In * *v EL_ - -0TE' E Ent Watt

  • 72 23 61 1403

.142 l //r 4W . EL 100-o. TO EL 129,-10 E Westait

  • 102 23 61 1403

.110 .j/ .--- /---- EL 100'-0 TO EL 1294-10% E Eat~ll 0 35 -i -Im +,, = 0 .142 IJ1 ;+ EL 129'-,, TO EL I".P E Went Watl ..ZD2'o 35 -W 07O~ .110 I / ý' A 6 &1_ EL 129-TO EL 6' E East Watt 26 17 38 646 .331 --- /----------- I.- 'l / JW' EL164'-8 3 M EL U2-V E West Watl 30 17 38 646 .331 --- / -4*./J -*j EL 164'-4 TO

51. I1W'"

T o -t Tot-..,-_aol/, o qT =A

  • U
  • d where:

qT = Sensible transmission heat toad, TiTUN A = Area of barrier, sq ft U = Coefficient of heat transmission, STUH/sqft-Of NOTES:

1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2. E-External wait; I-Internal watt Watt between Spent Fuel Pool and Transfer Pool Wall height adjusted for ELectrical Room area Fe h~eaf+Ir LSSeS 1~ie Cý.Mvu't j

otn t rite No.:,431a.Fl W3~

  • --+ko *../ 4vca.,Vssra CLTL,L-ta Outside ambient or adjacent space design temperature, IF tR = Space/Room design temperature, "F Td = ta - tR,°F Td = CLTD, for external roof/watt, "F K

w~y.-. 7Z~.; ~

    • ,~~r~*

CoMputations C). -40 xzw tnmn c--,Jrrjlv-ý.Cu Ae-CA Q\\\\ 2-z O00oO t-oo 0 C(1 C) _33oo C 330go~ II, ZO ý?cc- ?, 11 (A~ 'Il31 \\ *ý L 0. '\\- evON-IA2-. e9-% ").i-I TOTAL '~"r'.'r,<"p~r'r' r~n.-,-' ~

7.

~,.,fl--..

4.3.1.b ToWooting 11M Load for: SPENT FUEL/TRANSFER POOLS and STORAGE PIT I I I I I ormal/Emergency Mode Heat Coaputations Reference I source Sensibte Latent I [.(CIS) CqL) 1 II I I TOTALII I~I 3c (9II II I File No. :431b. FW3-* I I /. /.A ~I Il. -4 5 2 z p I.I 0\\n

  • 0 t
77'

.4.3.1.b Total Cooting WL.wd for: WENT ,UELITRANSFER POOLS and STOA, PIT Heat Computations IRfrl Source'~ s~b. Latent I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ S o0_____________________________II~ ~ I -4 0 xiZ M) ~ tf* 1 LAc~ ~5'6~ C~vt ~ at~ cot4 e-$ -4 I.I. C ~5 ZV\\\\,A~ OW~. ~IVIA~ Ar o\\~ XM V Z =CPS 1038 S. _______190 FPO2 (Se-r-r'lotc') vO= t(7k FN~A c~ (oS~( E~ +~k 17-Gvunj~ 0 tzj I) U I 0 ?) 542 Hco~ovM 4 oA i .I U FiLe No,:431b.FW3 -~ ~ p.e~ 'I, im i - iii I I l I

Camputati ons (' -) N \\_-,) oz, \\,ý\\-F-o, \\ - (Z-)" C;"\\ -,,. (u, N t w - 0.;t S-(A o:70.f(6;: AL V. = 0,. ý ( UN* =o 0 - 7 I dAIaz I [y§i 17 -I 'A \\A 6 0 --k TOTAL

Cowwutations (0- 'Lt7 -t o -76 4 ý-I-l Q.1. 1 OG4-e& QLz) NVz Y' qt I, C-,zp", ý,^ ~' 04 N ý'k (t, Aý ) o,ý Ko -= 0-?14 ) I ( Q5 1 J I2. Ue =~ - =2 TOTAL .n:

.' ý -... : 1 "' ". " "- 17". " 2..

I-

  • 4.3.1.b ToMCooLing t Load for:

SPENT FUEL/TRANSFER POOLS and STORAGE PITW i Norml/Emergency Node Heat Computations Reference I I Source Sensible Latent (qS) (qL) 4i 0 0

  • z ini rn.

-t'- I ~AoVo.c *1 i(p lQa) V\\o\\o~{ \\\\~3)q~* ~AA\\A \\~\\~ ~ ~.IA

2.

~ N A= w 6 ( (fo) 1XIo~o N a :~- -4 m 2 Cn I 0 0 New

  • \\

_\\* U) -2z 7 ir 73(24~ "J"C C.O. 7 Nc~ 4 172/ 1 V"\\ONýý-N'A ýJ\\ZQA 25L 1 3 A JP I---- TOTAL 37' Fite No.;431b.FW3 ~c11 938 .. i...*: ;*:o S. -.'c* ~

22 i ....I.:..... CcfPutaticils i I I Rtef oernce Normt/Euergmncy.WadeL -77 \\~% .o w ~ tw, I. T 0 T AL

M W 0 I 0 Z>iC 0-z-i CAOL rn 4.3.2.a Transmission q Load for: FUEL HANDLING LAYDOIM AREA Space/Room Barrier Transmission i Load Thickness Length/ Width AN MUM Norrmk/Euergency Node Type Height Area Factor Remarks (in) (ft) (ft) (sqft) to tR Td qT Roof 20 30 92 2760 .2M8------- ---. 2-3 1?*B 9850-e E North Watt 36 36 96 3456 .249 _s4./-, EL 129'-10 TO EL 165'-10 E South Wail 36 36 96 3456 .249----- --- 14 _-4. EL 129'-10" TO EL 1651-10 E North Watt 20 15 96 1440 .397 /... E EL 165t TO EL t8O' E South WaUt 20 15 96 1440 .397 -t EL 1659-10" TO EL 180"-9 E West WaLL 36 53 30 1590 .249


A*-4 Total

=374 /-?tr A 0 I-M -1 S0 NfW -14 h (3' C1a p M z 4 0 M -0 C'-4 In -M m qT = A

  • U
  • Td where:

qT - Sensible transmission heat toad, BTUH A = Area of barrier, sq ft U = Coefficient of heat transmission, BTUN/sqft-OF NOTES:

1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2.

E-ExternaL walt; I-Internat waLL to = Outside mbient or adjacent space design temperature, tR = Space/Room design temperature, IF Td a ta - tR, F Td a CLTO, for external roof/walL, OF °F Fite Mo.:432a.F113 11 -l. Ir r. ý-- 7M, " 7 !: f - V! I - .. ' 1 7. N. ý'J- -: ill r.-

Computations (Noy~c a v l (('14OTW, A 4-E - ,cICAI Q N,\\10 0 ý- \\-\\ kDO \\13 C ~2AiZ~( C\\~b \\A - Q Y at TOTAL ']' E'.*-, j T F I '*T"T*

  • m.: !::

.*.*,*.-c

  • r-*:,*

4.3.3.a Transanfssio 1mEWLoad for: DEC3NTANIKJATION PIT Sp*ae/Ro= Barrier Transmissont Load Thickness Length/ Width NAN RUN Normat/Emergency Node Type Height Area Factor Remrks (in) (ft) (ft) (sqft) ta tR Td OT E North Wall 36 30 23 690 .249 !I Estialt 114 30 24 720 .094 120 /150 I05 15/ 45 1015 /3046 qT A

  • U
  • Td where:

qT = Sensible transmission heat load, BTUN A = Area of barrier, eq ft U = Coefficient of heat transmission, BTUH/sqft-IF ka4-ta o Outsfde ambient or adjacent space design temperature, OF tR = Space/Room design temperature, OF Td = ta - tR, IF Td CLTD, for external roof/wall, IF WOTES:

1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2.

E-External wall; I-Internal wall File No. :433a.FID3 ý-7 ":- 'T 7:- V:

4.3.3.b W Cooling 4 Load for: DECONTAMINATION PIT w Wormt/Emergency Node Heat Computat ions Reference I Source Sensible Latent I I I (q) (qL) II II -to4-I 984-Ii I IIl I ( I T 0 T A I I II cII/ I I .1 I I I I1 0 W 0l-t OP zj xz m__ mn <c 0 ,-I "-I m m I I I - -~ rm 0 2-0 in m A2A m 09 0 10 z 0 0n 0 i a File No.:433b.FW3 I -4 -.t-~lI;~

  • rr~'r.'(

A 4.3.4.a Transmission U1 for: SUWP TINNEL oz 0 z > m Mah Trarsmission ý Load NU" Normal Node Factor t t t Td qT .331 I6 AmEr .331 .096 120 /50 105 15 1 45 455 / IM5 157 05/1,5 IoS-4o/-01-o-0 32,4/zz Total / a96- - Iosj//_ 14: qT = A

  • U Td where:

qT = Sensible transmission heat toad, BTUR to a outside ambient or adjacent space design temperature, *F A = Area of barrier, sq ft tR a SpecelRoom design teqperature, "F U Coefficient of heat transmission, BTUH/sqft-,F Td = ta - tR, *F Td = CLTD, for external roof/watt, -F NOTES;

1. Dimensions of space/room taken fromRef. 2.3.4, 2.3.7, 2.3.8

'.O

2.

E-External wall; I-InternaL wait Jj'irIIq teo. vwd( WcLII Sa~mLSndQJ-J File No. :434aa.FU3

Computat i ons I~ L-A. vX~ ~ \\o ~\\oo %AN -ýL -'0A\\-L I TOTAL

4.3.5.a Transmission O for: ELECTRICAL EQUIPNENT ROOM Space/Room Barrier Transmission O Load Thickness Length/ Width "AN Nun Normat/Emergency mode Type Height Area Factor Remarks (in) (ft) (ft) (sqft) ta tR Td qT E SouthWall 120 13 25 325 .125 T&"1 4" L-E East Wait 72 13 17 221 .142 --- I----------I, ~ 4/3 E South Watl 36 28 15 504 .249 I /93, Corridor watll IrLOOZ G uEt4D 17 25 425 .157 165 1051-40 _______l Totat a t /-908 qT A

  • U
  • Td where:

qT. Sensible transmission heat toad, STUN A = Area of barrier, sq ft U = Coefficient of heat transmission, BTUH/sqft-IF

  • 54

-33 4-ta = Outside ambient or adjacent space design temperature, tR = Space/Room design temperature, *F Td = ta - tR, *F Td = CLTD, for external roof/wall, 'F &F NOTES: 1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7

2.

E-External wait; I-Internal walt File No.:435a.FW3 .~7r~::7r. .~:: Iz~--~ *':~r.s~

Coqutatioms '~\\ +e~v~ckL A~&}~ Qo~\\\\,% = 4t F3 (H.) C CLFL-Ze "26 C ook Q\\Af. ,,*\\*C A.'T

  • \\
  • OO

\\.o ,I, TOTAL ~.* ~ r ~

Al, I mw 4.3.5.b Totat CooLingrs~m. Load for: ELECTRICAL EQUIPMENT ROOM w IL Normat/Emergency Mode Heat Computatioens Reference I Source -ISensible Latent (qs) (cq) -i 02 0 Z> a r, zz m_rn i2~) ýRO \\A-3,,, rh '°o ('NooV, A-77 S So~ V\\ 0 \\o-~ 1111\\\\rkj tý-A


7 76' 5 ht :

5;rc_4ks ;5 a-n 107*'~ef q0L Iof -fhe-mo~-r joc i - crn~s1eJ. 4-770o.I = 4-776fi VU V. -' 16 azP VIZ. 'n AA 7ý-.( v-o V) 0 -Jr ~A ~)sV'~ _ _/ A ."7 \\-N f ,,,,r 2AS o.. o0 2. o.7T. =l,,a. g4%A-6"; wiys jlk" 0 TAL Z-- 17 ZK -I-= 17 5k,,1-FiLe No. :435b.FW3

0 I 4.3.5 b Totat CoOIting 4MM Load for.- ELECTRIC64L ESJIPMENT ft' He t calptat f aw J efeeicj s o1 r c e S e mi*"", L im"n t I .I I ) - I ( )O I _...7 I A I I .2o07ek 1 2078 se I " o o..I I i "* *,, A. l II I., ~ 114 1 O.oJ

\\.

I -I ".ILe

  • I I ? o 7 I.

I lO-j 2LI RICA I 'P c 2 1 17 q: .0 -03 cc 0 m -4 0 -I !111 fill o i WI m z 0 z 0 0 0 J TOTAL I I -~ ~ m .4 Fite No.:435b.FW3

A Cooputations 0 0 0 zz I* If5 > \\71o 6o 2 +/-+ "z?. - ý = iZv°i "I qzý Vr,ý, &a o lz--ý3-x\\r) \\2o z voN (W;Ný A U J TOTAL

r 1W w w 0z 0 in -40 MZ 0 = z 4.3.6.a Transmission Q Load for: TRUCK BAY Space/Room Barrier Transmission M Load Thickness Length/ Width NAN Normat Mode Type Height Area Factor Remarks (in) (ft) (ft) Csqft) ta tR Td qT E North Watt 36 L~Z 70 '~o 229 -- !4& 7SeNt -0 -Z See Not 3 E West Watt 36 2-W -M10 -M4-0~.249---------...34- -ZWjQfir See Note 3 E Door, West 14 17 238 .982 4 935 / 935 Telescopic metal overhead E Door, North 7 3 21 .156 -*36-_/ metat swing /-4"r Totar zA9I*OL/4*0YF I-qT= A *U *Td where: qT s Sensible transmission heat toad, BTUH A = Area of barrier, sq ft U Coefficient of heat transmission, BTUH/sqft-OF NOTES*

1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2. E-External watt; I-Internal watt
3. walt height adjusted for door area tao-outside mbient or adjacent pace design temperature, *F tR = space/Room design temperature, OF Td = ta - tR, OF Td = CLTD, for external roof/watl, "F

FiLe No.:436a.FW3

Cnplutatiom \\\\'Z' Q), k C,- 'ý-k'\\ \\A \\ "DQ \\04 Z\\o -7ýZ 4z.A = Z 6C>

  • \\)

cvIL. = 2 6 oo -- IL TOTAL

A A I kw w 4.3.7.a Transmission

  • Load for:

STORAGE AREA 0 z 0 Inr 2> Space/Room Barrier Transmission I Load Thickness Length/ Width "AN ,qjU Normal Node Type Height Area Factor Remarks (in) (ft) (ft) (sqft) tat__TdqT E South tl 36 65 30 1950 .249 Se n--e ote 3 E West Watt 36 6 30 1BD .249 4* -,,/* see Note 3 E Door, South 7 3 21 .156 6 -20 /.- 2 metal swing E Door, West 12 9 108 .156 4 67 / 67 Telescopic metae overhea - T a t a L -2686-MM A, 0 M 0-4G II 9.> ,>11 M, M 00 M I -. -C) to 0i V\\ M qT A

  • U Td where:
T Sensible transmission heat toad, BTUN A = Area of barrier, sq ft U = Coefficient of heat transmission, BTUH/sqft-*F NOTES
1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2. E-External wall; I-Internal walt
3. Watt height adjusted for door area ta = Outside ambient or adjacent space design temperature, IF tR a Space/Room design temperature, OF Td = ta -

tR, IF Td z CLTD, for external roof/wall, "F File No. :437a.FW3 A ~ i~C'~" ~NN ~N*~* ~ N Nfl~ V.

Computatfa's 2ooV~ R ( Z \\va "s Qc tboo w %) C-Ic-a \\vo \\.,a 2A~~ \\~&J C=Vt 2A~o *- ~-~\\AVŽ. - 6S TOTAL Fite No. :437b.FW3

a Ah UNO 4.3.8.a Transmi ssion W Load for: VENT SAMPLING ENCLOSURE 0 i0 CC Wo Z ZO! X2. MI1 Space/Room Barrier Transmission M Load Thickness Length/ Width "A" auto onmal. Mode Type Height Area Factor Remarks (in) (ft) (ft) Csqft) ta tR Td qT .5-r-A~PgoF Roof 1.5 725 14.8 -O7.j

O.

OFJ R 2.3.,, E North Watt 1.5 26 8* j---'4 See Note 3 E S o u t h W a lt 1.5 5 9 ' 1 1 '4- -3

  • 8 N "T r'

_____51 gBl E~COMNrAM4ATIOA PIT" E East Uatt 28 10.50 14.8 155 .331 LL-AVT=tO 'NFr E West Walt 1.5 7.50 14.8 72 S-e .ote83 E Door, North 6.50 5 33 .156 -'9"k /-.:t E Door, West 6.50 6 39 .156 ':T o t a I .Oo Io.0L A 0 'WI M 0-> 0 "N1 ___II 2I -n M-et M -ý. U3( N o l -0 CL SP-I 1ZL qT=A

  • U
  • Td where:

qT a Sensible transmission heat load, STUH A a Area of barrier, sq ft U = Coefficient of heat transmission, BTUlH/sqft-IF NOTES:

1. Dimensions of space/room taken from Ref. 2.3.9
2. E-ExternaL wait; I-Internal. mat.(
3. Watl area adjusted for door area tat Outside ambient or adjacent space design temperature, *F tk : Space/Room design temperature. 'F Td = to - tR, *F Td CLTD, for external roof/wall, 'F

-3 CALCULIEL F'T 41t F-vATUtZ.JE F*zaM PA4E 12.1 A\\ "11 z 0 II 0 h 1O 2 I -I 0 \\ I U FadCJ7. Rao~uJ ~dL1~d~ = -14C re 131) Fa'c-/ VWd.A U co 5c./'~~ I File No.:438a.FW3 I 0- -4

Q 00 ~k ) ~-\\- \\j cm Z wq3 VV-off N A ~Lr1~.r9ck. ( bG1f4¶~ TOT AL ~bfl~1$-. w.~zrrr21v~~¶s~

COMarutetfons TOTAL File-No.:438b.FW3

4.4 KEATING LOAD 4.4.1.a Transmission Ml Load for: SPENT FUEL/TRANSFER POOLS and STORAGE PIT 0 o ZJRP J-Ic Z>i Z-1 CALG0 mz Space/Rocm Barrier Transmission I Load Thickness Length/ Width OAK

  • LN Normet/Emergency Node Type Height Arem Factor Remarks (in)

(ft) (ft) (sqft) to tR Td qT Roof z 43 107 4601 .383 0 60/ 60 -60 /-60 -105731/-105731 E South Wall 118 13 43 559 .0971 T 60 I60 ;%1,-%j~3-/~5~ EL 1174'0 TO FtL 1291-100 E North Wa't 26 35 43 1505 .350 0 60 /60 -60 1 -60 -31605 1-31605 EL 1291-100 TO EL 164-P E South WaLt 26 35 43 1505 .350 0 60 / 60 -60 / -60 -31605 /-31605 EL 129'-10 TO EL I"4-v E North Wait 20 18 43 774 .425 0 60 / 60 -60 / -60 -1973* /-19737 EL 14'-8" TO EL lU--@- E South wait 20 18 43 774 .425 0 60/60 -60 / -60 -19737. 1-19737 EL 164-80 TO EL 12'-V E East Watt1 72 23 61 1403 .145 60/60 z~t z ~ j3~j EL 1001-O0 To EL 129610N E West Watt 102 23 61 1403 .110 60 /60 ,-*d - -W EL 100, TO EL 1290-11 E. East Wett 1 2 35 407,r, 3R5 .145 0 60 60 60 / 60 EL 129 -1On TO EL 16480 E West Watl -Af02o 35 'O &43 .110 0 60 /60 60 / -60 E f 1-. lg24-EL 129 TO EL 16-8 E East WaLt 26 17 38 646 .350 0 60 / 60 -60 / -60 -13566 /-13566 EL 164-8 TO EL 182'-" E West Watt 30 17 38 646 .350 0 60 / 60 -60 / -60 -13566 /-13566 EL 164'-84 TO EL 182I-80 T o t a t F44 -j--3417W6-0 0 F b.-" -9,~ m EW o = w w '-.. -¶ C-, ~ -9, I0

0.

1 0 009 2' &I - 26a9 9 6C,1.. n~o % M M1 M InM 0 t4j 0I 0 I-a 6 zp qT A *U Td where: qT = Sensible transmission heat load, BTUH A Area of barrier, sq ft U Coefficient of heat transmission, BTUN/sqft-°F NOTES:

1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2. E-External wall; 1-InternaL watt-
  • Wait height adjusted for Electrical Room area ta = outside ambient or adjacent space design temperature, IF tR a Spece/Room design temperature, IF Td = ta - tR, "F 0

0 0 I',' Fite No.:441a.FU3 -4 6 a

  • ~~~~~~~~~~

-- v.>I~r' i-r m

B

&~.1/2y*'-~.K$

T 4.4.1.b 'Total HeatigIM LOGO. fto U'kx UE/TASFER'PbOLS aid STORAGE I U I o0 I I I Heat source ýCcqputatims I N~-w odL Refer.ence: ) ., :....S.. ns-b... Late.....n.t .4 I I.. Y L $e-* IO~L ~:~v ]*; *,', ~~oA &cVk -i -I 4D96 0 ~-t I 44.j-&~-~ II2~o -4'a I.I.. I. I. V\\ oVe, -, 1Q,"--c-. "A-,kA. ýr (k 1 TOTAL 7 0 T A L .. !t1 rtIl r Le wo.:

6 .%v..a?,aJs.t,~ ms 4.4.1.b Total fleatlrWg Load for: SPEN FIJL/TRM$F POOLS -dSTORAGE PIT iI C*. I.*.*:.. 'sj

~lTh~y nea C~UtatJon.

j Referenc.j I Swaible j Latent I I (~) I (~-~ -I I I , az .9p \\ ir

  • I I.
  • I G~\\\\A

=723 A1%C

  • 1 rJ*I to1 0

0 0 -4 0 Fi le ..bT O T A L..." Fi~e NO. :441b. FW r3" " ". -.."= U 2

Conpitati ons (Z o a "^, \\-\\ 0'% S..ý -v-., (ý-D ") GOv o. 7, 76 KH +/- cs C-r-s T-c. !ý. ý 'ti ) 7 772.i1 -3 Fv 0 41-1 -ýVl Uý (o 01-7 7 S-o (Q-004 At w e~-i o -) 4 (-. a -A k CK,.Zl 4ýk \\ý\\ rk \\JA , (?-ju-TOT A L

W W 4.4.2.a Transmission Wi@160 Load for: FUEL HANDLING LAYDOUN AREA 0z 0 >C m,r-4 Space/Room Barrier Transmission S Load Thickness Length/ W~idth "Am KUM Normt/Emergency Node Type Height Area Factor Remarks (in) (ft) (ft) (sqft) ta tR Td qT Roof 20 30 92 2760 .383 0 60 -60 -63425 /-63425 E North WaLt 36 36 96 3456 .260 0 60 -60 -53914 /-53914 EL 1291I10u TO EL 165'-10 E South WaLt 36 36 96 3456 .260 0 60 -60 -53914 /-53914 EL 129' TO EL 1651-10 E North Watt 20 15 96 1440 .425 0 60 -60 -36720 /-36M0 EL 165' TO EL 180' E South Watt 20 15 96 170 .425 0 60 -60 -36720 /P36720 EL 165'-100 TO EL 180'-9" E West Watt 36 53 30 1590 .260 0 60 -60 -24804 /-24804 EL 1¶6'-8= TO EL 182,-8" T o t a 1 -2694% /- %96 < F0 ~ I 0. II-M M " 3-.. -n 4 0l< ~*(D 0-. to CM I~ C.0 qT:A*U*Td where: qT = Sensible transmission heat toad, STUN A = Area of barrier, sq ft U = Coefficient of heat transmission, BTUH/sqft-*F NOTES:

1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2. E-Externat idaLL; 1-Internal watt ta a Outside ambient or adjacent space design temperature, IF tR = Space/Room design temperature, IF Td = ta - tR, *F "11 z

0 12j 0 00 '-a i::: zP 0 'I Fite No. :;2a.FW3 -4

FUEL 'HANLING LYOMAREA 1 [71I i* IiI i Ccmutatiams Normt/~ Rode Reference Latent ~ Sencible I I C~) I ~ r %f--j I ze-co b ýA 01 s I-* \\$.w

a a w 1 4.4.3.a Transmission 1 Load for: DECONTAMINATION PIT Space/Room Barrier Tr.alssion i Load Thickness Length/ Uidth NAN 1" " Normti/Emergency Node Type Height Area Factor Remarks (in) (ft) (ft) (sqft) ta tR Td qT E North Watt 36 30 23 690 .260 0 / 0 60 -60 /-60 -10764/-10764 lEast Watt 114 30 24' 720 .096 120 / 150 60 60 / 90 4147 /6221 T ot at -6617 /-6617 qT = A

  • U *Td where:

.qT = SensibLe transmission heat Load, BTUN A = Area of barrier, sq ft U = Coefficient of heat transmission, BTUH/sqft-OF NOTES:

1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2. E-External watt; I-Internal wall to = Outside ambient or adjacent space design temperature, OF tR = Space/Room design temperature, "F Td = ta - tR, *F File No. :443a.FW3

p w

  • r*

i.* ~.-,.. ~.s'.- 4.4.3.b Total Weating Load for: VE~lTANINATION, P IT- ,U ~~Heat~~~p C tation Source I I -~ [~ q cw" m ~:3 I. I I I I I I I 1 I I I I I, I. I. I: .1 .1 ..I. ~(D4,g-7 I -I !1 NI-A 0-C_ I-I. I. w 0I 0 0 (-4 0 l TOTAL FiLe No. :443b.FZ3 a

Ah Am w V 4.4.4.a Transmissionikuej'Load for: SUMP TUMNEL 0 -I', z I -4 Crn Space/Room Barrier Transmission LOW Thickness Length/ Width NAN Mormi. Node Type Height Area Factor Remarks (On) (ft) (ft) (sqft) ta tR Td qT Floor 12 3 3.33 10 .352 42 60 -18 -63 / -63 Below grade; Pit E North Walt 69 4.5 3.33 15 .171 42 60 -18 -46 1 -46 Below grade; Pit E West Walt 24 4.5 3 14 .297 42 60 -18 -72 / -72 Below grade; Pit Floor 66 5 74 370 .157 42 60 -18 -1046 /-1046 Below grade; tunel E North Walt 69 8.50 5 43 .171 42 60 -18 -131 /,-131 Below grade; tumnel E South Wall 32 8.50 5 43 .297 42 60 -18 -227 /.-227 Below grade; tunnet E East Watt 115 8.5 74 629 .119 120 60 60 4491 / 6737 ta=150-for emergency Mode E West Watt 26 -8.5 41 349 .350 42 60 -18 -2196 /-2196 Below grade; tunnel Floor 72 29 7.75 225 .352 42 60 -18 -1424 /w1424 Below grade; Corridor E South Walt 24 30 7.75 233 .350 0 60 -60 -4883 1-4883 Corridor E West WaLt 30 30 24 720 .350 0 60 -60 -15120 /-15120 Corridor To t a t -20653 /-18407 qT A

  • U
  • Td where:

0 -n 1 m M M -4 S0 I F1I.I ..I >Ti -g

  • -~

~ .- t. ~ m o..c (~.1

  • (~ -...

~. r -. 0 5. m M ml in 0 N 10 NI H I 0. qT = Sensible transmission heat toad, BTUM A = Area of barrier, sq ft U = Coefficient of heat transmission, BTUH/sqft-'f ta =Outside ambient oradjacent space design tempertwUe, "F tR = Space/Room design temperature, "F Td =ta - tR, *F NOTES: 1. Dimensions of space/room taken from Ref. 2.3.4, 2.3.7,.2.3.8

2. E-Externat wait; I-Internal watt File No.:444a.FV3

-4 a

ý.44b Total ReatiM 11 Load for: 5WTNE 'P. .V.

    • i!****:**
l Rest 17Lta Jifr.~

source -4(7 m Q v I-d lI tO~2 k4 i TOTAL E Fite No.:444b.F,3.

AIL w w z 0 o* rn d-I 4.4.5.a Transmission Heating ý Load for: ELECTRICAL EQUIPMENT ROOM Space/Room Barrier Transmission Load Thickness Length/ Width "Au "U" Mormt/Emergency Mode Type Height Area Factor Remarks (in) (ft) (ft) (sqft) ta tR Td qT E South Wall 120 13 25 325 .128 0 /0 60 -60 /-60 -2496 P-2496 E East Wall 72 13 17 221 .145 0 /0 60 -60 /-60 -1923 1-1923 E South Watl 36 28 18 504 .260 0 0 60 -60 -60 -7862 /-7862 Corridor T o t a t -12281 P-12281 0 "11

0 Nl

-4 -z -%,.~ I- -4, -'C,, rt 40 m (0 ~ .-. 0 0~ ~ 2' '-I-m I1M m m 2-0 qT A

  • U* Td where:

qT Sensible transmission heat toad, BTUH A = Area of barrier, sq ft U = Coefficient of heat transmission, BTUH/sqft-°F ta = Outside ambient or adjacent space design temperature, OF tR = Space/Room design temperature, OF Td = ta - tR, °F 0 0J 0 03 H* a z 0 M 0: I3 0 83 NOTES:

1. Dimensions of space/roo taken from Ref. 2.3.1, 2.3.7
2. E-ExternaL wait; I-InternaL wall Fite No.:445a.FW3

?0 ~~1I1L C4L I

'A ptý in \\\\ecA GO\\v~ S.. TOTAL

1 wr w 4.4.6.a Transmission 1 Load for: TRUCK BAY Space/Room Barrier Transmission M Load Thickness Length/ Width

  • A*

Mir Normer Node Type Height Area Factor Remarks (in) (ft) (ft)f (sqft) ta tR Td qT E North Walt 36 70 -200- .229 0 60 -60 See Note 3 E West Watt 36 .6 300.-- .260 0 60 -60 / See Note 3 E Door, West 14 17 238 1.174 0 60 -60 -16765 1-16765 Telescopic metaL overhead E Door, North 7 3 21 .160 0 60 -60 -202 metal swing Tota 1I 40599 50500Q n0 Z-4 z 40 inE 1A qT = A - U Td where: qT Sensible transmission heat Load, BTUH A = Area of barrier, sq ft U = Coefficient of heat transmission, BTUH/sqft-IF NOTES:

1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2. E-Externai waiL; I-Internal wall
3. wall height adjusted for door area ta a Outside ambient or adjacent space design temperature, OF tR = Space/Room design teaperature, "F Td= ta - tR, "F File No. :446a.FW3 1>.....

I II

L v. ~,- 4.4.6.b Totat.Heating Load for: TRUCK. SAY 7Z I Heat I Couainf Rieference I source j JSenstib I ttent I.. I I I. I _ I I I I I I I 'U>.. 1i}~ I 14 ~' I I I I I I I I I I I I 1 I I I I iIIII C*Jo 01 -00 m 0m- -n M -9 ki:%.CaC, -3Zq80 -~2~8O -4 0~ U2 00 .3. 897J I' "n m A 0 0W~ FA 0 000 -J 0 Of' I TOTAL File No. :4/+6b. FWr -1 Fl te Ho. :446b.FW3 I

' 0 pi.,: 4.4.6.b Total HeatigI M~ Load for: TRUCK SAY // o 1wa L/EerurcYNd ZI -e Heat -aua~u Reeec I-rtent Z~ -ource ISen-ib lL atent.I C. ~~V

    • -I i

kA T I .X II. I _..-4 I* a

  • °1*- I I

I,. II

  • " *.::,: c

""I I I: o ° ~' I,~ 1 I Io (0 IIIII I l ! i C-',.* .li I I I I I C",, I I20 '4 4 ~' .0 T1 40 T AL' V Im I Fil Io.:I.6I.FW

Comutations b C*A!, ) 'otv* s~i-V 'sV** C-' \\ = t, \\ 9ý- Oki zvckcjr L-7 11, 32-17ef ,, (ý-X-- -=~ I2~ 'z.- Li O.l 0 4 \\., 0.\\ + a-o*4- ~~24 \\v~ TOTAL

~1L~:. 4.4.6.b TotaL Nestin Load for: lmmh... TIMC. SA UI Heat CqutionsJRfreo J source Jj Sat. [ Lotetit I (~) .1 (40" !20 m -4 Qa N'¶\\~N~ I .1 ~OAMA 4~ ~- \\ + v~v3 - c~O-j. B ýý \\c 0-C'ýý 40' Pps -al \\e~V.. OK~~ 4\\~-~. co-~.- ~\\ 0 16-1 ~o\\x. 1-0 T A L File No.:446b.FW3

A I4.4.6.b Totat Heating '.,Lad for: TRU. SAY Irttin I Se~lbe jlatent, I jNS) (q) I -0 xz m ti I-i7 Z N6c*

Lea, 4,4 LVe.s CL V. O-Qte-A, V 74 \\,V,

~,%AW~CA;. A S, k, \\) -- N V-C-IrZYc Ic 0 %OA o J?~,% Z LQ (I.r-7 ) FCi-l L-Qk-OC-t{ICA 0, -

=

-ýý I x vt IR <9 0 A 1ý3,4 * ý 2 S" TOTAL

~ ~a~f ,..-~.'- I!i .4.4.6.b Total ff" r1 o Load for, TRUcK SAT I I ~I o A -go satis-I I I II I I 4A~'C I' CC '16 I--. ,I 1 I I -I I I c~c..k {AAt~s. 1 .1 I. I Le~Lrh-v. ~ 1 j4 1 ~(O~4 ~ T~\\-tA a.. 14. 1'24 1-4Jo y 2~~tL~ CF T-fls IS A SOLID R L L UP P)0oo-NO LEAVIE-T 0 T A L

4.4.6.b

Totb, Ang A. W Load for:

TRUCK BAY m 1~ Norms t/Emergency Mode meat Computations Reference 1 Source j.,

s. s we SensIbte Latent I

I I (qS) (qL) 0 U 0z 0 -40 Z> in >C: 4rn Z-4 \\ .rx "z.,\\ x 0, ýA Z \\, k, 0 ". ý C.( \\ e 'A \\ýý - (~z\\~ ~&) oAl. ,3ACo0. e -2zý CA r C', \\

  • \\,ý,. w %

L ~ J Z,~J~ /v*ý. (;LX I I.7 '4-C 57-+* 1 2j C-) 0 -J 0 it TOTAL Fi!.e No. :/-./6b. FU3

Computet fons T 1460 / 85"74 0 9f TOTAL

a mmmmmmmmmmm amm*m m 4.4.7.a Transmission 41 Load for: STORAGE AREA Space/Roam Barrier Transmission O Load Thickness Lenth/ Width RAN at) Norse M Type Height Area Factor Remarks Cin) (ft) (ft) (sqft) ta tR Td qT E Soth WatL 36 65 -0* 49o __ 26 0 60 1-6o See Note 3 E vest watt 36 6 2c, -4W.2o '260 0

60. --

60 See Note 3 E Door, South 7 3 21 .156 0 60 -60 -197 / -197 metat swing E Door, West 12 9 108 .156 0 60 -160 -¶01 M-010 Telescopic metal oer**. 7,Tota L -3'5-r'i-'344at 'i W-- 8 0 0z> z_ dr- -4l tA I qT = A U

  • Td where:

qT = SensibLe transmission heat Load, BTUff A = Area of barrier, sq ft U = Coefficient of heat transmission, BTUH/sqft-IF NOTES:

1. Dimensions of space/room taken from Ref. 2.3.1, 2.3.7
2. E-ExternaL walt; I-InternaL wall
3. *alt height adjusted for door area ta = Outside mbient or adjacent space design temperature, OF tR = Space/Room design temperature, IF Td = ta - tR, "F Fite No.:447a.FIJ3 S--

Conputations L N N., 14(o-.f C-aitv \\;:j ~,. \\ m o \\~ TOTAL

r4.7bTOWa Heat~frg.* Load foir: S~EAE

2

~ .*~a.*j ~ ~ J 1%..., I I I I III III I II II I I I .CGmjaiioms* Rjefereioe' Seiible j: Latent (ci) I C- !I t(O ev7A f cf 3 .L6( o - 2,14 W ý, ý-- 0, V. Q ýkl "A \\ SOL I 7 \\J~ a lz C &cc,ý t;ý, ý -ý - 6 v ýý (ýý [c, rsa a CA r-j d,ý. ccp.~,, -ý 2z (j2,q) =.2-1 TOTAL

Caputat iorns (QL -, ) = 2 - i * -ý C'Q "' lo' a ý>5- = S5 C ° A .= \\2ff c I" '0-k3 O 10- ) 2ý ý- f N. " 3-ýt 6L 5o&'cI _yoII kp clo,-r No eave-s TOTAL L I , I Fite No. :446b.FW3

4.4.7.b Ae

M eating &m Load for:

STORAGE AREA w V IINormatl/Emergency Node Reat Comptations Reference J I Source j CtSensible Latent II I (q S) j (qL) I +Z ] I I .I.. 15 "7.4-2 Z -6 I L ~-7.4. C,/ I-1p Q, \\Iz 0 I I I I I IT 0 T A L z 0 Z> Cr,oc,

  • 0 z-COL 0

m o0 Ln _._n. tio -2 NI i -I -4 I-m z 0 4 zm in-4 Fite No. :447b.FW3

4.4.7.b Tot&, 't : .L. or... STO-AGE AR.A... _1 Hea CmqItdCam Itiference-,I t Source Sesbj Ltt I-I.

  • 1-t 0.0 XOO m

~Co\\~-k,. N Ss:~ o-~. 1,~ f\\ Fc4~ ~ '; UC~ Aw Ok7 8Gcr (556 f-2~5~f-4~)~ 6~~f CFM Rea-1VI -1 \\'vA (ýr 14 ýL -C 66~1 TOTAL FiLe No.:447b.FW3

4.4.8.a Transmission it Load for: VENT SAMPLING ENCLOSURE I Space/Room Barrier Transmission 0M Load Thickness Length/ Width "N' nU" Normal Mode Type Height Area Factor Remarks (in) (ft) (ft) (sqft) ta tR Td qT Floor 6 6.75 14.8 100 .352 42 60 -18 -631 / -631 grade Roof 1.5 7.25 14.8 107 E North Watt 1.5 26 4-. 0 60 -60 -6f See Note 3 1,South Wall 1.5 59 !-Ile Xao 60 -(' -4 5e Note 4 - ~ ~. 2 -.I 0 ¢ -F East Watt 28 10.50 14.8 155 .331 ,g60' 60 -;K0 -* o 5--"e -z gofe5 E WestWatt 1.5 7.50 14.8 72 .96a 0 60 -60 ,*,/_ see Note3 E Door, North 6.50 5 33 .160 0 60 -60 -312 /-312 E Door, West 6.50 6 39 .160 0 60 -60 -374 1 -374 T o t a t -8 fI-228W-qT A

  • U Td where:

q7 Sensible transmission heat toad, STUN A - Area of barrier, sq ft U a Coefficient of heat transmission, BTUH/sqft-*F 3~137/-,3137 ta = Outside ambient or adjacent space design temperature, IF tR = Space/Room design temperature, "F Td = ta - tR, °F NOTES:

1. Dimensions of space/roam taken from Ref. 2.3.9
2. E-Externat watt; I-Internal wait
3. Walt area adjusted for door area File No. :448a.FW3 I

, j

4..4.8.b Total Heating LOaW for: VENT SANPLINGENVLOP.RE

  • DI~..

I I Ii caqtatians Ref eterice ,ecnsibe. Latent i *

, *. " *.... I,. ",.,I '

",, l J 4. ti,,r 4o-ý let~ . qqV I' b A w~e. TOTAL

I w 4.4.8.b ToW-- Heating O Load for: w VENT SANPLING ENCLOSURE I I I NormriaEmergency Mode Heat Computations Reference I Source j SensibLe Latent I I I (qS) (qL) 0-z 0 qC, icf O> I-I I I ZA4p ýC ký ") \\" '-' A\\ ~ V "A - G I ý \\rN,, va 'ý,k (ý.ýý-.1ýS7 I0 ), .1 I 0 0 -,4 0 TOTAL TO0TA L FiLe No.:448b.FW3

Coaputeti ons \\rýov Iv N 00, 7 3-IIa-~ AOvey ILn I bY 40YI =40-TOTAL

Ah I ~.4.8.b VENT SAMPLING ENCLOSURE 4.4.6.b Totqa Heating N Load for: VENT SAPLING ENCLOSURE I I Normat/Emergency Mode Computations 0 0 oC, -I-z z-I> Q rn ca 0 -I $a-~ cb c~4#~Weisv-l~ ~~ S+Cd~-re4 in P"-ac, 73 4he. +,tTL calc~d~a~ IeaI.tJ -s Con le)ac sac vs wv,4v-o-0ý,x \\\\,\\ ',ý. -z-&r 0 Lii 0w Iii 0 0 H -I-- TOTAL File No.:448b.FW3 I

I. 4.4.8.b Total. Heating f Load for-VENT SAMPLING ENCLOSURE w Norma i/Emergency Mode Heat Coqiutat ions Reference Source Sensible Latent (qS) (qt) <+ ,Z.-3) !o.8 I I 12.21 I ' I I i I. ~ Vv. I ~ ~ ~ ~ 1 10 8 .iz.~2PjI~4 I-rt O 0j, I I, I I -~v I IZ I~~~~ 0~- T ~ A L o -0' z 0r X2: m M. -I -e S0 J SI I 1.= - Sm (0 CL 'I. m 'I m 0m 0 z 9 0 5-mm.n ýýj 0 n File No. :448b.FW3

4.4.8. b Tott H etihg alP_ MLoad for: VENT SAWmiMG 0S1. o 1 SJibO nats 7o~~~ (~)

  • 1~

22~. Z" coo xI AO-~ .41 + 103 \\-N~ ~ 10.3 ( \\.k ý6 c> -76r,90 TOTAL

L.~ TITLE 4 I 4, ~ I, '1 I m OP C TITLE FHV Sys Htg/Clg Load & Atrflow OeteM Calc-UIiit CALCULATION CONTINUATION SHEET ORIGINATOR DATE VFR of CKR DATE (:, A & (Z1 CLN .4 \\ . WC..N. t~N Ck 1, --r ct OV~ tiL I AV3 0-I -Z3-73 (~V~5c. ~e& .aT ý-Q '( 6 -N- '3-A 27 C-1 kN-^ RIC-,~-

p TITLE ~OPSE9G CALCULATION CONTINUATION SHEET FHV Sys Rtg/Clg Load & Airflow Datem.Calc-Unit I ORIGINATOR DATE VFR or CKR DATE i -rzR V-c- /-: \\M3 I 3,047' 3 -7,3 2-G Ilk\\ / 4 %J ,x%% 16 0 ~& 4v V ~5o z 5o I V \\A (y\\I No4~. .. t ( t4 vA.I~ ~~~ tOA¶ 0 ~ Q\\N A7I ( 0 CCcp te-c. Atto Ac~c~'2-3Z73 2-A a =o/ IF-Y

TITLE FHV Sys.Htg/ ID NO. S-1-FHV-MDC-0705 SHEET 0 PSI G airflow determ. REFERENCE lgA caiG. Unit-1 OF CALCULATION DATE CONTINUATION SHEET PEER REVIEW I 7 II I I JI .Ul JDA T E. NOTE:, THE TRUCK BAY EXHAUST FAN 1VHE23 HAS BEEN REMOVED PER DCP I.EC-3278. THE]TRUCK BAY AREA IS OPEN TO THE FUEL POOL AREA THROUGH A.1O'X30' RECEIVING HATCH IN ITS CEILING AT ELEV. 130'. THE OPENING CAN BE CLOSED BY FLOOR PLUGS BUT THERE ARE NORMALLY' LEFT REMOVED. BECAUSE OF THE LARGE. ýHATCH OPENING, TRUCK BAY CAN BE CONSIDERED A PART OF FUEL BUILDING PROPER. THE COOLING LOAD OF TRUCK BAY AREA IS ADDED TO FUEL HANDLING BUILDING COOLING LOAD TO CALCULATE THE SPACE TEMPERATURE (SEE PAGE 78). 4 DE-APZZ-0002(Q) ATTACHMENT 2 05"32Z7 tOM 9-9i

U ,O PSIEG CALCULATION CONTINUATION SHEET 2-4 9 1 Co '-2 57 3 52_,o ~4A+ -qAz 50 1 7- '97~'t47 A~ ~ v -~97' 3/4 I Lsee AL, e ck ~?A \\ Xcczzev- ) 594%5-S-9 -7 I ýkw ý

p ITITLE I CALCULATION CONTINUATION SHEET FHV Sys Htg/Clg Load & Airflow DetermCalc-Unit I. I ORIGINATOR PATE VFRQr CKR DATE U - r 'A N ~ o~&~ ~ .04-o D-1Z VlVr4 Wv. R

  • M&I

,F -7. l A - t Ci4AI&,,+eA. +a4-al s.,,,W. tocacJ 3,047 1+uk r-I o{yate-ba cl U poaY Ccalcwlj-c4 Sls"isWla Iload 3o47 (-!)-1 3" -A24.Y6 O)k 105 -97) 3-371 C-Prr Aý ,ca.cuJta ed +of--I ,,bjle. -5042 '9+uk

,cu T.Ao*-,,e b2OSa 'Je(t 50

-o__._ 7-Th

ho

-fo,, J 5es -[v eo ,0 ", (,eP.2.310) CI ch'7c, u p= lIrn= Ne*o rv-el 00ro*¢ C.e =Goo n LA-en p L-Ye I S ne.I-ooc-i ! [,9 9044rL

U ~ 0.PSIEG CALCULATION 'CONTINUATION SHEET TITLE FHV Sys Htg/Clg Load & Airflow Detem Calc-Unit I L ORIGINATOR DATE VFRorCKR .DATE L_ I m - 4.*. &ei'e-\\ 'A_ tij oACIA e e& %%ý&* t6L X,- ý'Xl-(~ V~NA. ~NO~L~ ~ i/.t S~ ~Y' \\~w1%~\\o 4~ Qývl ,Z 0'1 NQ ' -- Z 3 7-(~c.A.. -It & 4e. 0, Oz 2Lf x6 0 Got.t1( -1 .23 73 =ý 114 -t /A \\\\. 4 \\0 04

  • .O TW
  • 0 cq7

~- A. ~ ~- ,;z eý cl k- - S:, -

I 4i O PSI G CALCULATION CONTINUATION SHEET ~k // (~) ~ r.(No~Ac.1 QI) Ot~W.. 'iN% A cZSZ~\\'4%% o~ t~ \\N~\\ 2.2. -co. ,* *. *,c.*-

  • 10 Ar) V"r 61

~SC) -~N~f~ N'ýV\\,i ýA~Q-z A, 4N&;4~ \\) X)4: ý, to \\ 4C-t L \\N~o Q ~

-4 TITLE 10t N O).' S-I-FHV-MDC-070 97 SHEET AiFHV Sys Htg/Clg Load c REFERENCE t Arflow Determ Cale-Unit I DE-CB.FHV-O021 (Q) ORIGINATOR CALCULATION DATE -IL CONTINUATION SHEET VFRor CKR 41A-111 DATE 1E I ý-towk \\ -MY kom QAc-cK 4t \\c~c" (t7V?.- ) +

1. c M, ^

c cq 4A I~ Tou*,, 4-9% o,. 2 1 ede-* ý(Oi1 0~A vy 970ooo7 I -3s,5 ?r.0 t+,k p'rhe-( ~- ~-~\\ T ~v)CIfcA.QAC '1 VV\\ ýp .Li, I~4e~ 4y"y 4ýrl_ 0 \\~V t 0AA, z~~- YA ~eAcoj~\\0~dA CqN 3\\AV FQ A

I I TITLE 10 PsI(G "CALCULATION CONTINUATION SHEET FHV Sys Htg/Clg Load & Airflow Detenn Calc-Unit 'ORIGINATOR DATE VFRorCKR DATE (~) ~N V~A~GX r1o~. I 5,3.i.1 ~W'~ o%~A~ ~Ae~QJ~ '~#~ ~X~rq~ V ~ 1 \\ P Lý 4 ~ 1o9 ~"K .1 ~1 S \\, \\"-ý w %ý la KrIj NNIZN* *,\\ V% 40 ý t,0ý4ý 0 NA cv\\4 V\\. s.0 '0

4 'TITLE 10 NO' S-V-FHV-14DC--O7O1 SHEET~ EG Airflow Determ Calc-Unlt 1.RFRNEDE-CB.FHV-0023. (Q) 0 I'~I~h ORIGISyNATORC IAoad L CALCULATION DT CONTINUATION SHEET VFR or CKR .i ,D A T E 4 = A I m. mm f I ~AO& cl7z r-k&- rL, 81075 "\\Ad I (V) C%- Q A%ý. - 2-.-4)

S-1-FHV-MDC-070 r OPSF4G I I III REFERENCE DE-CB.FHV-0021.(Q) CALCULATION .CONTINUATION SHEET S'~4 ~%A\\ W Vk!~h\\%AV&, 4~~(¶~ %I vA\\ / '\\N&4 .It, F *- t't \\ \\cvýý 1 \\;;70 V41q,14 14 *. IQ4 9-k~" 5 ~3.i Wr\\c, '\\- ý 0ýw ,,j^.(A %A Q i \\A %oAtý-, i4fcR- ?- )

  • 1

I ~

a.

TITLE 10 PSIgG FHV Sys Htg/Clg Load & Airflow Determ Calc-Unit Pr CALCULATION CONTINUATION SHEET ORIGINATOR DATE VFRorCKR DATE I Ili I II (A F~ k~tc kC1 0 kAQA 04 o ow tCA',kp 2'- G~)~~Ž2.4 0 ~Z\\AtV ~%kZ ~(OOV~ QO ~A~O~\\4r = *f t - 0P= 2 #

  • qo ttc" (1:

1, -ý 4 . Q \\ \\ .NORE NA ')-\\ V. -o'.Cý ~O'AP% ~t'2,. -~2~'~ C~ 4t ~CCD-o~&) ~

S-I -FHV--14C- 0 7O SHEET FHV Sys Htg/Clg Load Bt EEEC ECBFI-0 '~ O CALCULATION DATE 4, 0R RE i'2/FR NC CONTINUATION SHEET. VFR ar CKR 1 4 4 DATE ~ ~ ~ ZL 004)0 7 ---9,500o ýr-( 0 %AA k '9 F00 -ý9 ':7 5 +0W0W'-A 4he. Jp pod4rt e.. F\\,tivl~ Maic~n-BU14, ~~~~- Ye-% 6y-woa~ ~c .2 !4-e 0-e Ye erhi3g ra hs k e, s4en,o e ~~ ~~ a* 1, fie /t1S'cr be )C 113

P ,q.; 10 PSIEG: CALCULATION .ICONTINUATION SHEET TITLE FHV Sys Htg/Clg Load & Airflow Determ Calc-Unit ORIGINATOR VFR or CKR DATE L .Ill I II I I 7&4. ) VtoAl ~'%A\\~ \\4\\XJL~V' %AA - ~ ~ 4 61O e-o+ss~o -~r* 0 ( T I Ii i +39 750. .%+ 3 9, 7 5 0 +'. 4-%5c30 ~3~o~tiC1 -t z-q/q7~ ~T~3 ~-4WL f~ U ~ 000 ~,5c~o -4~OT4J A +37,75o eo 000 A

a44 F

'I-i 2-

I I I 0 PSIIIG I CALCULATION CONTINUATION SHEET I (%~) J c~\\~( CIo 4, A-1v;5 &A6- \\A~ ~N V. 1g~ I gO.AP t 4W (kNA -4 39 1 75 lo'.avA~.0 " A& ~ cix ~~%AA~ ~tq~\\v~4%\\O& ~,5I~O L ýQk ~: (4~I Nk VtN

I - I. ~ 4 TITLE [ CALCULATION: CONTINUATION SHEET FHV Sys Htg/Clg Load & Airflow Determ.Calc-Unit i iii ORIGINATOR DATE VFR or CKR . DATE II i +0 5F 5e15dL +3q.~750 -,Cl-I So . r... Z.-7 ' A 7 q I~~o 5 "c +3'*,75o a*T-4 63 .Lj .i

i.

2...... 3j * ' 4.. 16.,2,-° ,: I \\A iX t' o,,0* * ",- o "~ i 1-. kxtt, \\-73 0(0+~ ýX--70+\\ It-" t 0 A \\%~j~. c~QiNi% A,. 6L"-. ',,(o\\A A

525 (S~k,

-'~~ k '~ 4K 9q5o o

I ~ U S...,. o IPSIIIG CALCULATION CONTINUATION SHEET TITLE FHV SysHtg/Clg Load & Airflog Oeterr Calc-Unit ORIGINATOR DATE VFR or CKR DATE Q% &\\\\OV. ~ At, 1 + ~I ~ 7% b le-. /

i': *i.*.*

Wo V~~ 3754 -)6.6 5d ~ 0 ~q&)~7f4E 33 (o 4I2 Pl-

4 TIL IN.S-'I-FHV-MDC- 0706* SHEET ...:jjjG FHV Sys Htg/Clg'Load & REFERENCESi-IVMD07 SHT Airfloaw Determ Calc-Unit I DE-CB.FHV-0021 (Q) O,,GINATOR AP Z S CALCULATION 4A+E9L CONTINUATION SHEET VFR or CKR J, .ATE A.,i Iii A 0 '4 /

  • .i. *\\*,....*
  • ,,Q

\\I\\A\\E(0 OýN%. \\ to k V. .k %A**¢ I C>4". JA

  • ~

Q,:,, "\\A ý"OA V00A = ~:~~-~ '- Z3*3C~o k-23,36o 0 tu (t0) 33~{6OO

I ~ U S; CALCULATION ICONTINUATION SHEET TITLE FHV Sys Htg/Clg Load & Alrflow Doterm Calc-Unit 1O NO. S.- t-FHV-I4DC-O7O 5 REFERENCE DE-CB.FHV-0021 (Q) C ORIGIN ATOR I L DATE. VFR orCKR DATE $L L~i__L.J-L ZL~ 1 i-I-I - U I ~ a SHEET OF .4qý 1 & F-I N)~ 2& tlos V.-' 1% 1% U a " !/ 38~ -+7165 .~ 81 i

  • TITLE FHV Sy

-RG -Airf I S CALCULATION rowN-NUATION SHEET VFR s Htg/Clg Load & )w Determ Calc-Unit I INATOR )ATE or CKR )ATE' m I ( NN AL / A,, V, LffiLA-IS~- 0 s;;k I I Ju 5 7041 Nt. t~ A S5'?O-7.?. -q 0A %-O ) (6 -D0) Ac. (10, F- , 32,980 Ov.%- _ 0 k= O'\\~ Q4 C0 lp~A

  • 4

'\\q-)IVwt ýtQ\\ 10 ' 3-2, c'80 '-7(oo -. 550 J)0)

TITLE NO. -FHV-MDC7 SHEET

i'g FHV Sys Htg/Clg Load &

REFERENE DE-CB.FV-OO21 (Q) Airflow Det~em Calc-Unitl "1 B FHI0 2 OF ORIGINATOR ci DAt .:.CALCULATION DAE ) CONTINUATION SHEET VFR or CKR 0 DATE 0 l E I -4 /! 0 1-55o +8871 = r"- 8 = 0 _.*F 6, 7 h-oow.-,

4 TL D NO. S-I -FHV-MDC-070

  • SHEET 0

FHV Sys Htg/Clg Load & REFERENCE E Airflow Detem Calc-Unit \\DE-CB.FHV-0021 (Q) OF ORIGINATOR *. A .-,.CALCULATION DATE L I. CONTINUATION SHEET V TR or C'R 2A 4 (~) 4 - S\\. N V\\ \\k Vos~N. QO\\A \\'~~ \\AIA 0 ýZXA,0,, 0.". ,At?60

  • ~~7 cj.* -4)S.

~e ~. 5-.3. I ~~)~~k~~ 'A \\.O' ~ ic 125 O~ ~~

q.

\\V0"Y~ ~ -31373 0ý 14-0 vCký r, Q () oý (34& .A / ) 5;23

4 TITLE 0 NO. .S E T FHV Sys Htg/Clg Load & REFERENCE Airflow Determ Calc-Unit E DE-CB.FHV-0021 (Q) ORIGINATOR o 2 ,L CALCULATION DATE___ CONTINUATION SHEET VFR Of CKR DATE I* 4 ]1 I ltAI E. I \\Ak ~O~u-V , N 0 N, - c'. A~ A4~) VvA." ýOwk ( ?a8 -"52,3 "-68o =-%-r t P,= o eia-3

I I TITLE .4o PSEG P Cg CALCULATION CONTINUATION SHEET FHV Sys Htg/Clg Load & Airflow Determ Caic-Unit I i ORIGINATOR DATE VFR or CKR DATE L\\-9 ) ,9J 4'0V2 Q L r-; IYH,24 4~ A1tI rot/ I o.02g o T-2 /,:,Y-ý2 d~~~TFv J(f~~- ~~ý fýt'+/-?v) 11 fv -Z, --5, 0 -t O,44'L - = 3.4 ( "TQ@Gk,ý

?- 0 0 0,9 15 19-vt

S-I -FHV-MDC-O7 0 0 PSIEG Il REFERENCE DE-CB.FHV-0021 (Q) CALCULATION CONTINUATION SHEET-FTP~z 3.4-2-1 Y,(114'00,D 2. c4tZv ot4V~ >4 I e-3-, C6 c'- 4L. AtA-4 V,.oL CAi L*- I I tIt =0, 02~ 9 4, )4-0.01 4 LO&

  • =

2 G co-)

  • ALA --

I A_70 () 40 ý7 (ýC,:, QCC,. -?,-\\)

S ID NO. SHEET 4 CALCULATION CONTINUATION SHEET TITLE FHV Sys Htg/Clg Load & Airflow Determ Calc-Unit I ID NO. S-I -FIV-MDC-070 0 REFERENCE DE-CB.FHV-0021 (Q) REFERENCE DE-CB.FHV-0021--(Q) 10 1 OF II I ORIGINATOR PATE VFR or CKR .DATE __L 1 J. w 00o W.' C-0 6&x ~~~%P kA\\ \\14~ 2O:OO V.9-O t2 t 0 K Q~O~ Art4

8 0z -4r 0> coo Z2m -4 0 / HNPLO L4YZMLI ' cvdmIFT E&- enTL-AP)- RAN frhl'Q;Rý /

I i-.TITLE ID NO. k 'j-D -0 HE S- \\ -FHV"MDC-070 E SHEET psp ~ ~FHV Sys HtgIClg Load RFREC i Airflow Detaim Calc-Unit \\ DE-CB.FHV-0021 (Q) ORIGINATOR L o OF CALCULATION OATE --If 1If4.-9 CONTINUATION SHEET VFR or CKR DATE r A-,.* '*.\\ t A \\\\\\ 4 T" f, ,D*. I S~ etQ~vt L4i~LL 4 Oft-. Z444~. (A~) N\\ \\Qy ýc NW~~ .ýZf, v. e"COA ýý -w A.A V

(
) %X\\ %

,ýýt ýuk. %-jcksL = (~ ~~TOR S. ý v-,AA 4jf-ý 0ooD kvcL.. 0\\- ) ýqc0v. ~h\\Z\\ 14.-N-VIA tk \\~) WE '2 + 0c ,e 0l AMS ýK\\Avl

I U 4 CALCULATION CONTINUATION SHEET II (~ \\IPW~p? ,I \\Sze . \\lz-'). "i* xzm \\q~ z~X \\rA k DAVý \\VA AýIýr4, ý47t, ý4Qý- 0.3X I ii!i tn' !X OA , ý T-,ý ~:,A \\1JAZo \\- o~ AkG %~3 N 1 ,t K79 0 o ý4 A I ~Jc1o!

i IITITE ,ONO.S-1%-FHV-MDC-070'S SHEET O PS IG FHV Sys Htg/Clg Load & REFERENCE log Airflow.Determ. Calc-Unlt

  • DE-CB.FHV-0021 (Q)

CALCULATION DATE ORSN. CONTINUATION SHEET.VFR or CKR DATE G. 0 bT R)D Te(ý,~k-UgG V'T4FJ' IROýe-,V-40 Fý'ýMf-4,4 A~~-IN r1~ ~~0 F ~AA~ I /1 ~TA(w-o4AT ->0 A Z -~10 -t4

I I S CALCULATION .CONTINUATION SHEET FHV Sys Htg/Clg Load & Airflow Determ Calc-Unit I ORIGINATOR DATE .VFRor CKR DATE I 4, 11 -1 (a-n,-X ý 44 TR ! cnxo 6' ` ,pt9-----

  • -'t..t--
  • .-.17*
Intp, t~~j AL LA

-A A Y-A t-(a -t, o - -k, ý 4~t coo) - OIL A C t U A (0o -I- " gi 2 5-6 k/pla 2.4, 1 -7 o 6 q4 ( 1-49 1 " L 1 ( i O TITLE L A

  • b

0 PSEG S-I -FHV-MDC-070 6 REFERENCE DE-CB.FHV-0021 (Q) CALCULATION CONTINUATION SHEET

4. 11.1 (do Mýt'ý 00o v

? bc".~- S I EA-'Mi (s to 6 1 ) 8mle-OLA7 Q~r

29. 0 T0A

-Lfz4 IA a M091% ) .fho u-KLA " PkL e-r L' bfVo jý SA-m-Im i-q~ y.16 a~.Y I v A ýo -ri o 6"5.1 0 o ý'aj

r.

5?C YO~ ~4-92 A

1. I

-T 5-413 ý-s 7kv-" 'B+0- Lt'

t. PrVL-t)k'Aj-

$1D2 e.,IF 1,01 0 0 C) 9 Y +ro---;-l A 70-7 &'T e*rvz % cl'l 0 0 f) A KAY.4 t bi~iL Y

ýpr a p TITLE 0 PSEG CALCULATION CONTINUATION SHEET FHV. Sys Htg/Clg Load & Airflow Determ Calc-Unit L i Ill ORIGINATOR DATE VFRor CKR DATE lfý Im mmll I I ml 4114 S Tri.*M s C-ý A Y..4 4, s ýkaa GaýZ.K s -o I 1 t ý TZ* I) e, (k -1, 0 o ip,\\ý !ý "t A% 9 -cp Wr ~ (6~~ 1-77 S6ZO / ~12-2~c7 7.* z7 Z 7 a - 9 .P i I.-7.1-6 1ý6) I 2-7,5' -Lp s"F 9!;ý. 6Y.4L ýr A t t Ro

T S-t -FHV-MDC-070 0 SHEET o S G'.FHV Sys HtgIýlg Load & REFERENCE 0 Airflow Determ Cale-Unit I DE-CB:.FHV-O021 (Q) OF CALCULATION DATE L 1L22 _X___ CONTINUATION SHEET.. VFR or CKR. nor. DATE Z 9 I I Yg&'evm N Peook Art &_, IT14AMS bojrý A11IIJ -ILI ?

~k-t~

M mc JA I64 v~lis, o't6 Y a.,r, x Ttw V"-" " ' " . 1"5c 0o47 br A SA-*.*-- ~ ~ ~ Y IwL-1 --~ Gc c 0 Y A g Wr us 2 (v 1 tu. r 1

I TITLE S-I-FHV-MDC-070 V 0 PSi RG I FHV Sys Htg/Clg Load & Airflow Determ Calc-Unit REFERENCE DE-CB.FHV-0021 (Q) CALCULATION CONTINUATION SHEET ORIGINATOR DATE VFR or CKR. DATE I I4A(.~ -~ U A A x ~v 00 OxA ?*s-2609(0 - 434-7/, 43494 4,3 A-9 Co-t. > 4.3 4 cý tA-m~-w -ýt T G4-7 8ie t-o.0"-r It t b 5 V4ý -r*t (o4 -47e A -t ~.h~6 64

I U p 4 I I O PSIEG-CALCULATION CONTINUATION SHEET 4.l(~~ 65 U,(SMP TUNNEO ELE.CT9ICALIE&U"7) -& 7 :!:L 4.t~ IA ~~ ~ ~ C 4 /Z\\ o- \\"

I U TITLE O PSI G CALCULATION CONTINUATION SHEET FHV Sys Htg/Clg Load & Airflow Oeterm Calc-Unit ORIGINATOR DATE VFR or CKR DATE I - It, a sizy-e. &- I Sý jt4%v,(,ý 0.,. t ý Oh WL t Wit -ý&V so A -3819 - z 33G o, 9"r AWs= 0o-o) (*L-o)-- IN~T LTI2A1IoN LoAI7 = -G*-,a = - los I t'*, "z -*1-7

I. S-I -FHV-MDC-070

  • SHEET FHV Sys Htg/Clg Load &

REFERENCE Op 0

  • P.9G Airflow,Determ, Calc-Unit DE*-CB. FH'V-O021l, (Q)

O ORIGINATOR L CALCULATION DATE -l.z/i _l_,, CONTINUATION SHEET VFRorCKR 0 DATE I-1 {r 9 ,4. 1 it I ( S 3 8 11 1 6 1 ý 14-70 -4 %--0 im -82cdrF

TITLE S-1-FHV-ZDC-070 o 0 PSIEG II I FHV Sys Htg/Clg Load & Airflow Determ Calc-Unitt I REFERENCE "DE.CB.FHV-0021 (Q) CALCULATION CONTINUATION SHEET-ORIGINATOR DATE VFRor CKR DATE ~4.U t +% BD.cL.. 8R-rit ýJ\\*N%*LVý ., ý*A toss = 160-a 6a-tv. - I - 9 0 (,t. _0) 5TIZA CC -11 q~ CA "Itt+e =-5 50 +F 5 5c 4tv" ý*ZVVK Lý, 2 057 00 ~OPr pý- +rz S ý+IL -M t S; Do 0 0 Vtvý ý- )I 0

4 TITLE' NO. S-I -FHV-MDC-070 F SHEET FHV Sys Htg/Clg Load & REFERENCE DE-CB.FlV-O021 (Q) 0l -P E Airflow Determ Calc-Unit DEC.HV02 (Q OF ORIGtNATOR LO CALCULATION DATE CONTINUATION SHEET VFR or CKR -ided ATE,*r 0 i I I Ito 4 j, cI,) I 550 t 79 " 9* 0

S-I -FHV-MDC-070 SHEET FHVSys.Htg/Clg Load & REFERENCE )-p 0 Airflow DetermCalc-Unit\\ DE-CB.FHV-0021 (Q) OF ORIGINATOR A) CALCULATION DATE t L q CONTINUATION SHEET VFR or CKR _4-_ DATE I ii2 =1 I &1_, 4.1tI C-4-0 \\. Lý s 0,,. ý LL.* ) e* vv Mo. L, 0.0- ) FkiA-LLA I I 4a"- S ýTr-"S-t 3 ',PIC = itr 9 94" '~ Tic*4 ~Ok -,52+ 5T40 a ci t*VL. ?~~* j+~~A1e~ ~oJa~- 4w

TITL.E MID NO. s-i -FHV-MDC-070

  • SHEET FHIV Sys Htg/Clg Load&

REFERENCE 0Airflow Oeterm alc-Unit I DE-CB.FHV-0021 (Q ORIGINATOR L CALCULATION DATE 9-/'91 _/ CONTINUATION SHEET VFR orCKR DATE .Ž*2+/- 4.11,4,4 o-k~ 5.0F 0t I

a A -5.0 SLE3ARY OF RF.LSS: 5.1 Cool fig Lomb in 5TkM at *ormt Nodev f*T75 75 477 119157 -334-So Infi tratioi Peoplo Pool TotaL ImeU~ ruaaititr' Iy E oo iigV1 Va SIbte Swawbeibte sersi bLe IM Sren? fuel

POOL, Pool, Iufe Poot T 495*-

-4402-a 0 1652 0 0 0 0 0 0 2522 42S o.w FsIm Storage-Pit -. Fo J2z 0 I Fuel venidt l. Lftilm Area i 637 0 0 1006 0 0 0 0 5 0 4789 .mintion Pit-- 0 0 0 0 0 a0 0 0 0 0 W Twfmlt -1.03.3 .-= AB-3412 2o..., a 0Vq o a 0 0 a 0 0 0 -66..p-ec-ricat sqfpment It W 25 Z 1t3 0 0 a 0 0 a ma- . 0TAL FIG A5. -95 '2X'- .444'-- a 0 1253 0 0 0 0 a a I22 NS2.- - I 5q9'T 37703 2078 ~.3 5Z sorae" too, -. 1765 -oa-n0 0 a 0 0 0 0 0I 0 0 Trusay '5.2 sa a o 0 I 0 0 o Vent l Ing Enclosire 60 0 0 0 a 0 a 0 0 0 0 0 J0Now 5.2 Cooling Loaft in o1n at egav No:& Came4 Infitrwtbai PcopLe PoOL Total $pacaRol rInmia sion Lighting Trey Sopat Motor Piping Volvo Venael spr SeanilSuat WqT) (qU (qtT) cqe) (qm) (Cc) Cqv) (ch) , (gi jte ,(qiSen) (q,n) ,) ( M Fel to=

PooL, Vnfl r Poot-s45 i4m 0

0 0 .0 0 0 0 00 SSW17. mFFUl Storage Pit It 4 C' I ZGO I Fust Irrtdn LAom Area 3A-16310 0 d a 0 a 0 0 0 0 a beotdenPfttý& -J% 4 o 06 0 0 0 0 a US wimtpunnl g-1i.i 341I2 aa 0 0 0 a 0 0 0 0 gtectriwal EEawipt tom ,u-., 2559 .6598 0 0 10M a 0 0 0 0 'mx2-- TOTAL FE taARM 4958 4"45-4" 0 ~ 0 125 0 0 U 33 6 -11 2-7 7-032 storageto. -1'7(,o 2"- 7165 0 0 0 a 0 0 0 0 0"-'" Tm my 5? ( SW 0 0 0 a 0 0 0 0 0 0 ventESamplng Enclosue 6r-%I 6W0 0 0 0 0 0 a0 0 0 0 0a 4 4 -I NOTES: 1. 15% margin in~cluded 1i-n-tT ( t oat e. 3"732r, ýX.373 5047 z.+l 53o

  • 43 0*60 54.05 I 0793&a 71 l I542 4,

,54o,5 -671It 1 68-A2-0 0J0 -r-z m 4~ 0 PC -4 m 0 CD - 9 2 Csm ICL File No.-.51A.FI5 ,~n z 0 r C ; 0 19 C on m IHI m 4 1

4 5.0 SMIRy Of 01 t LTS:Ccaot) 5.3.1 Meating Loeds at Moatu Mode. in 2lM; CMA Inftltration Peape Pool Total = 0 Isa.p Tfintiison Lightingib Troy ta Itor PipfnW ve YeNSl 94*Drt Unsibte Smubite Seusbie Sensible (47) q() (qCT) (4W) (qn) Ccp) (qv) (qb) (ql) (qsuen) (tSom) (ONSe) (q4E) ~~a~a t~

Pool, 0

a 0 0 0 0 -semB Met Feat Storage Pit "26016 Fuel N ootfng Laydo Arse U%96-163 0 0 0 0 0 0 0 0 0 0 -2511 DecontainatiwonPit '6617 0% 1 0 0 0 0 a 0 0 o 0 D -. 25 S U Terutl -203 3412 0 0 0 0 0 0 0 0 0 -11241 Electrical Equi Rom -1ZS1 2559

s.

0 0 a 0D a 0 a 0 0 -Isms-TOTAL FISR ARM ,U*-44116

QSSW, 0

0 0 0 0 0 a 0 0 .SsOpw-- _-57067 37j703 2047 f-- Storage Rom -z33,

M0 7165 0

1 0 0 0 0 0 0 0 0

j.

0 Truck Bay -3 2.q~ 4g4-min 0 0 0 0 0 ,.~# 0 0 INSW a o Vent Salin Enclosure. -- M7v 680 0 0 a 0 0 0 0 F

  • mst 0

0 '121nW-5.4 MeetIng Loads at Emrgeny Mcoe, itn arrMz Cable Infiltration People Pool Total Ro Tr-anm ln Lighting Troy Sct Notor Plpir* Valv* V0e1L 8 S S enibs.eruible Senible SUmibLa Wq) CqLU (qC$) (ale} (cp) (qV) (qv) (qh} (0) Cqllen) c.4m~a)I (qO~en) (CEUK) '= 0 0 0 o 0

0.

0 0 0 o -a, w MNw Fuel Storage Pit fuel Ma**Lin' Laydom Area -zW 163a8 0 0 1 0 0 0 0 a 0 0 0 '253118 Oecmtwnfalon Pit -6617 409( 0 0 0 0 0 0 0 0 0 .0 1.- 23 Saw-20 3412 a a 0 0 0 0 0 a 0 0 -17241 tletricaL &pfpImt *ow -122 ..25" 0i 0 0 0 0 a 0 0 0 TOTALFI.I AEAS .-A2m1F 4*+44i-am 0

a.

0 0 0 .0 a 0 0 Iu-5 -1570007 'a7703 2c471_ stor~ageor -2.33C0

-*UL 7165 0

0 0 a, 0 0 0 -- wfs0 D 0 tI-Trwcklay -3.21780 ..50IG-a7m 0 0 0 0 0 1 01j Vent SWLing fiacloew'S ~ 68 0 00 0 0 a 0 ot- 'i 1

0)
  • 4"7001

ý-7 675 -9 1075A - 33 5 700 - 7675 -9OZ57 to 1747 -1019 0C, 0>zd e0> Z-I mo m -4 <0 -4 > Kfrm A 1 S .4 0 CI C &-0 -im m z n in 0 03 0 P13 .- 3137 File go.: 53(A.FO* 10 0 I-~S 0 .JMp m

IF* jdo Ah . dIE U w w w -A 5.0 WSWlS OF REULTS:(cont) 5.3.2 Hesting Loads at Norml node, in BTUV: 0 Anh Z> ca Cable Infiltration People PacL Total Sc/Roin Trmisalason Lighting Tray Eqpt Notor piping Valve Veomel or (qT) (qI) (qCT) Cqe) (Wo) (qC) (qv) (ch) (qi)

  • qlSen) (isen)

(qsen) (ble) Spt Fuel Stormae PooL, rmufer Pool Ord 0 0 0 0 0 0 0 0 0 0 0 -50I New fuel StUNGe Pit FRol.Mwdlinlg UM m -Area 6 0 0 a 0 0 0 0 0 0 0 0 -269M Decontaminatio nPit -6617 0 0 0 0 0 0 0 0 0 0 0 -6617 SupTwngt -20W3 0 0 0 0 0 0 0 0 0 0 0 -Z06D5 Electrical Equipaent Rom -121 0 0 0 0 0 0 0 0 0 0 0 -12201 TOTAL FNB ARM -466it 0 0 0 0 0 0 0 0 0 0 0 -da66i-570007 store"oi -2R 33o -4" 0 0 0 0 0 0 0 0 --- 4Ua W J o' 0 -.29341-= Truk Say _-3Z 80 .. WSD 0 0 0 0 0 0 0f 0 0 vent samping Enclosure

  • U-0 0

0 0 0 0 0 0 0 o S.4 Piesing Leeds at fmgecVNode Mok In BTUP: Coble !~~nfiltratlon People Po oa = 9010 Transmisiom Vi to V e-t Veasel $Iw bacionl Sumlible Sensible Semuibt* Usmibta CqT) (qt) (qCT) (qC) ()c) (qh* CW ) (qlien) (WPon) (qu S), (qSM3 Tst FueL Storage Pool, Trusfe Pool and -l4*i5 0 0 0 0 0 0 0 0 0 0 0 -3S55-* New Fuel Store Pit -26&o o Fw antuing Laydeom Arma

2M96 0

0 0 0 0 0 0 0 '0 0 a -2*4996 De*ontmirmatim Pit -6617 0 0 0 0 0 0 0 0 0 0 0 6-617 Unip Tunnrta 20M 0 0 0 0 0 0 0 0 .0 0 0 -203 Electrical Eopint Mm -12Z01 0 0 0 0 0 0 0 a 0 0 0 -12251 TOTAL FM MEAS 266l~ 0 0 0 0 0 0 0 0 0o 0 0 _-'62064 -57oo7 Storagem no= ~ -~ 0 0 0 0 0 0 0 0 a4U5 0 awwi Tru-k By -32 -40 0 0 0 0 0 0 0 0 0 0 0 Vent Somptir Encosure 0 0 0 0 0 a0 0 00 - 26 0'? 60 -5 70oo-7 ) 1911" 0 gP a s- -4 CA M X0 I0r,° - 570007 ot zAo -M 0 0 0 -0 ~H1 :0 I -3137 ~57o~ 5 File No.: 534A1.FiB

/h mEw 5.0 BM W U IMO5 (eont) SS5 MMINS - Flowdtc rqui, m6wn rn own teprstmw A SI I Cileulatnd Total Sensible I Flowate 2t Based on I Rom Tempr-atwe Based on I I 4eolbo I E S I e m D A T a I I C1lir Lod Based an tR I Calculad Seasible Wat I qMM and Desan Flowrate I I Description I... FN IT.O I m~ ly tee. ts 6FI Dmity lbs (F I ). Bf*lI I load (Mr). IM (.10). F I tR Mrma1 IIfnruncv WmR Ik~gM1 Nerual I~uruev fymMýX I M II I Imerg bcy I I I I 1 I I I I I I 1 I I I I A. FiB Areas 1. Fuel Handling Laydainm

2. Decontuiration Pit
3. Spent Fuel Pool, I

Transfar Pool amd Ne I Fel Storage Pit

4. Sump Tuml
5. Electrical Eqpt Room I B. Storae Rom I D. Sapling En*losure 1 19490 I0 15M*

250 1200 1 1%909 1500 1 2700 I I 105 I 97.1 1 97.1 1.0714 1 97 1R 1051 AV I -aw-1.0713 I I 1 97 1 97 1 105 I 9; 9 1 .0713 97 '7 '1 105 1 -. 9 I1 9h - 1.0713 I I 105 1 -0749-1 W0.- 6I .0713 I 1 1 105 1 Ino .0716 I 1.0714 .0713 1.0713 1.0713 1.0713 1.0716 1-2373 I3o47 137326 I 1046-1Z359 13 05o

5405 I

1 50-7e 1 370 I 4 6-I 'I 107q38 4530 1 -&470501 1 W I I 1255o 1 37c 1 mu 1 54 as 5z5-I I *41I&, 1 1441

  1. 1 aut V

13091 311-2.15 -409 -W 97 I?-B Io q9.3 1 o3.5 1 02.9 I102-97 97 I 1 103.21 10I3.2._, -84I -4* I I I I I I I I I I I 1200 °I I I I 105 I 95.0 I .0 I I I I I.0715 I.0716 I I I i I -4095--I] -495k-- i I I I I I -4064-I 200 I I NIM: I. ts(S) - t3l4) = ts(3) - ts() = tRll) Fi e r(laydam am)l Grlall other FI are) File lb.: MLF3. l ToT/\\L, FLOWR4.TE INCLUO)E-TI4E FOLLOW'N4: "1) -F:UEL I4.ANLm IN4 LAYot-2_- Cof-tTMAIo PINA-(O r

3. SPE NT F U E L_ PooL,,ThAN. PEfa PooL AND

'.NFW PLICL 57-OI2ACE pITr 4-LImP "TUNNEL

5.

ELc'-rTI*cA.L E&YtT 1*M .1

IAL W 5.6 IGMIS - Heater loads and room tepeMtues: I I ESIN DATA I REJIiD DTA I Roam Temperature, tR OF I Space/loom I f ,,,L2 &-2 I 1(Iis, Cale.,, I - Irml Mode I earks I Description IHtr Capacity, WI i Htr Capaity, OM i Heater/s i Heater/s ) I I ml Node ,I Noml.Node, I Lost .1 Aailable I I I I

...'*II INain Heating Coil and I

I. F 4B las 14 190 Note 1 1 Unit Heaters lost I I AM Coil # IIIE9 I1"IM I lINK I 46r I I Coil # IHE69 lost I I 34-.7 I Uit Htr # IIIE67 1 N I U1 -46r6 1 1 Mbtrs IW7 & ItIo" lost I I unit Htr # IIM I 'iNow I SI I 570 0 07 I.Storage Now I -I 1 1 4o477 14., I I I Unit ttr # IIIHEGSf 616U 1 ,.4h3i -I-6-- 11 Ht1s IR*66 & lIHE lost I II I 4o477 I I I I I Unit Htr # I4EH-M 6w 1 1619 1 1 1 I~~~ L3 I I~ C. Truck Bay I I/ 0 9g/ 4.5 I I 1 1 I438*' 4-- III I Unit Htr 1i4E6I l# I I Isu-I 1 I I I -r # I414 lost I' q I I I .LSampling Eclosure I I I 1 IOJ 47 3.5 II I unit Htr I# M-I1 1 V39 I -I--- U17%H1tFrIm-M lost I Note: 1. For individual r tempeature, e r-,1 I / o 2, z CC) J-. <0 ii )* = A M' 40 a. -'0 =I F,, M zn t*j 0 10 a z 0 C; 0 -j 0UI I U File No.: 5M.F1 I-7;5- -n 1 '1' r* F 1

AXý,ý&VA e,,V \\ CALC No. b-1-tHV-M1JL-00b Revision No.. 0 o: Date TRANSMITTAL I ,IIASnT& LUNDY] DESIGN INFORMATION -I.- 0 p '*SAFETY-RELATED 03 NON-SAFETY-RELATED DIT No.- 5L - 091/0 CLIENT TON F/GP,. UNT S PagO..L.o- - STATION UNITisLJ) To r SUBJECT JLa Cjcj ý1 I I II I 00 i MODIFICATION OR DESIGNCHANGE NUMBER(S) COS. - e z.. Preparer (Plea print fame) Division Preparer's signature Issue date .148 pi n name)III I I I Il STATUS OF INFORMATION (This information is approved for use Design information, approved for use, that contains assumptions or is preliminary or requires further verification (review) shall be so identified.) LIrn~or~boA - arpovej A,- "-re.. IDENTIFICATION OF THE SPECIFIC DESIGN INFORMATION TRANSMITTED AND PURPOSE OF ISSUE (List any supporting documents attached to DIT by its title, revision and/or issue date, and total number of pages for each supporting document.) f::~ ~J~J0k0 ~ Z,/V, 4-L F"44 e 0-jed I/ k*' S 6L-a-\\ -0tlo lotoi &6 00 1 9 00 ,*I~; ,*,b ee -, t*ec~ C4) ; J A,**,-., I I fA s C~c~t~f¶azss ~2/ I er xý4 12.Z t i j SOURCE OF INFORMATION. caic. no. £- 1 I Report no Rev. and/or date Rev, and/or date Other BU I I I I I IONI DISTRIIBUTION. .) I (+ i i

CALC NO. S-1-M-VNDC70 6 Revision No.: j1.0 SARGENT LUNDYFR.or... L Date," MEMORANDUM OF 9 0 [//iL! TELEPHONE CONVERSATION Date:.__________ Time: 0 e 1-7. Person Called: A C () C"- of__________ (Name) (Company) PersonClbeallng OSLL-of 1___

(Name)

(Company) Project: Ct-f-- '.Sl Project No. 8 " 0 Subject Discussed:- 1 .JLgi?- Summary of Discussion, Decisions and Commitments: zV S~pVature File: W*o /

a a a a a w) m z-4 0c 4 m 0 ci) m z -4 z "11 0 0m 0 m c m 0z I-1z0 0 m TABLE 16 PIPING HEAT LOSS UNINSULATED PIPE AMBIENT TEMPERATURE EM?4SIVXTY OF LAGGING 104 DEG. F. .85 (PIPE HEAT LOSS VALUES ARE 8TU/HOUR-FOOT OF PIPE. LENGTH) PIPE OPERATING TEMPERATURE (DEG. F.) CA u.m NOMINAL PIPE SIZE (IN) .50 .75 1.00 1.25 i.50 2.00 2.50 3.00 4.00 5.00 6.00 8.00 10 00 12.00 14..00 16.00 18.00 20.00 24.00 26.00 30.00

12. 00 36.00 38.00 42.00 4S.00 52.00 200.

63.2 76.6

93. 1 114. 1 128.4 156. 1 184.7 219.8 274.7 331.8 387.8 491.3 599.1 698.9 764.6 873.8 983.0 1092.2 1310.7 1419.9-1638.3 1747.6 1966.0 2075.2 2293.7 2621.4 2839.8 300.

159.4 193.5 235.5 288.8 325.2 395.9 468.8 558.3 698.4 844.4 987.8 1252.9 1533.1 1818.4 1996.6 2281.9 2567.1 2852.3 3422.8 3708.0 4278.5 4563.7 5134.2 5419.4 5989.9 6845.6 7416.1 400. 285. 1 346.7 422.7 5*19.5 585.6 714.3 847.2 1010.6 1266.9 1534.4 1797.5 2284.7 2833.7 3360.9 3690.4 4217.6 4744.8 5272.0 6326.4 6853.6 7908.0 8435.2 9489.6 10016.8 11071.2 12652.8 1370:7.2 500. 444.5 541.7 662.0 815.2 920.2 1124.7 1336.4 1597.0 2006.7 2434.9 2856.8 3651.8 4551.5 5398.3 5927.5 6774.3 7621.1 8467.9 10161.5 11008.3 12701.9 13548.7 15242.2 16089.0 17782.6 20323.0 22016.6 600. 643.6 786. 1 962.7 1189.2 1342.9 1644.g 1957.8 2343.7 2951.6 3588.2 4216.4 5429.5 6767.2 8026.2 8813.1 10072.1 11331.1 12590.1 15109.1 16367.1 18885.1 20144.1 22662.2 23921.2 26439.2 30216.2 32734.2 700. 889.5 1088.9 1336. 1 1652.7 1870.1 2295. 1 2736.5 3281.4 4141.3 5043.2 5934.5 7681.9 9574.5 11355.8 12469. 1 14250.4 16031.7 17813.0 21375.7 23157.0 26719.6 28500.9 32063.5 33844.9 37407.4 42751.3 46313.9 800. 1190.5 1460. I 1795.2 2224.9 252015 3099.0 3700.6 4444.4 5620.0 6854.9 8076.8 10493.6 13078.9 15512.2 17033.0 19466.3 21899.6 24332.9 29199.5 31632.8 36499.4 38932.7 43799.2 46232.5 51099. f 58399.0 63265.6 900. 1555.4 1911.2 2354.0 2922.8 3314.5 4082.0 4881.3 5870.7 7436.6 9083.6 10721.3 13957.9 17396.8 20633.4 22656.3 25892.9 29129.5 32366.1 38839.3 42075.9 48549.2 51785.8 58259.0 61495.6 67968.8 77678.7 84151.9 1000. 1994.2 2454.4 3028.0 3765.8 4274.4 5272.3 6312.5 7601.6 9644.3 11795.3 13961.8 18176.6 22654.9 26869.8 29504.1 33719.0 37933.9 42148.7 50578.5 54793.4 63223.1 67438.0 75867.7 80082.6 88512.3 101157.0 109586.7 1100. 2517.5 '3103.0 3833.9 4775.2 5424.6 6700.0 8031.0 9681.9 12300.7 1.5061.2 17866.3 23259.9 28990.7 34384.3 37755.3 43148.9 48542.5 53936.1 64723.3 70116.9 80904.1 86297.8 97085.0 102478.6 113265.8 129446.6 140233.9 c-I-A: w ~ 1'1 tQ 'I) ci 0. '~, 1~3 Cn z 0

1, 11 i -

I

USER'S MANUAL "TTACP MMT '4 -- ('\\-o OF-CAM. NO. S-1-M-ONC-070ro Revision No. 0 ae VFR~c14?r Date: Page ý-~ o HVAC HEATING AND COOLING LOAD PROGRAM (LOADHVAC) S&L PROGRAM NO. 09.5.041-2.3 PROGRAM AUTHOR: H..F. Behls SARGENT & LUNDY ENGINEERS June 1990 PLOAD-HVAC

  • "LC,.No.

8-I-FHV-070-Or re I' lot No. RR/iEN MM-or: -'P Datei Page_2 v 0i

1. ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning I

Engineers) Handbook, 1972 Fundamentals Volume, Chapter 22.

2.

ASHRAE Handbook, 1981 Fundamentals Volume

a.

Chapter 22, Ventilation and Infiltration

b.

Chapter 23, Design Heat Transmission Coefficients

c.

Chapter 24, Weather Data and Design Conditions

d.

Chapter 25, Heating Load

e.

Chapter 26, Air-Conditioning Cooling Load

f.

Chapter 27, Fenestration

3.

Brick Institute of America, Technical Note 430, Sept/Oct, 1980.

4. W. Rudoy and F. Duran: Development of an Improved Cooling Load Calculation Method (ASHRAE Transactions, 1975,. Part II,
p. 19).

Note: Paper is basis of ASHRAE's Air-Conditioning Cooling Load Chap0ter::.- in ASHRAE's 1977 and 1981 Handbooks.

5.

R. H. Heilman and R. W. Ortmiller: Effective Solar. Absorption of. Variousi.; Colored Paints (Heating, Piping and Air-Conditioning, June 195P).

6.

Federal Cement Products, Inc.

7.

National Concrete Masonry Association

a.

TEK 2. Estimating U-Factors for Concrete Masonry Construction

b.

TEK 97, Design of Solar Energy Walls with Concrete Masonry.

8.

Portland Cement Association, Bulletin D114.

9.

S&L Form 1709-I, Metal Siding, Roof and Interior Wall Work.

10.

S&L Form 1727-F, Masonry Work.

11.

S&L Form 1729-F, Roofing Work.

12.

S&L Form 1732-G, Swing Hollow Metal Door and Door Frame Work.

13.

S&L Program No'. 09.5.021-1.1, Single-Zone Heating and Cooling Load Program by H. F. Behls, June 1982.

14.

S&L Program No. 09.5.041-1.1, Multiple-Zone Heating and Cooling Load Program by H. F. Behls/S. A. O'Connell, June 1982.

15.

S&L Program No. 09.5.192-1.0, FORTRAN IV Program to Calculate z-Transfer Functions for the Calculation of Transient HeatTransfer through Walls and Roofs by G. P. Mitalas and J. G. Arsenault, National Research Council of Canada, Ottawa, June 1972. PLOAD-HVAC REF-I

CA..M No. 6-t-FHV--DC-070 1 Revision No. A0. Originatom: . Date: 5-tg"11 VFR/I'H'K. Date:- -1 Page 2

16.

System Design Manual - Part I: Load Estimating (Carrier Corp., NY, 4 (Ž Table 3, page 1-19, 1960). "1

17.

.8. Anderson and M. Riordan: The Solar Home Book - Heating, Cooling and Designing with the Sun (Brick House Publishing Co., Inc., Andover, MA,

p. 285).
18.

Passive Solar Design Handbook - Volume Three: Passive Solar Design Analysis (Lost Alamos National Laboratory, U.S. Department of -Energy, DOE/CS-O127/3, July, 1982). PLOAD-AVAC REF-2

SECTION B CODE TABLE - EXTERIOR WALLS CALC. No. S-k-F-NDC-070 5 Revision No. 0 Originator: DateI S.i*! WFRNOX:

Date, I'-u Page 0

o /4r-A 1 Az: 81 - METAL WALLS: Code Nunmber Wall Construction Preengineered Metal Building (Form 1711) with Insulated Steel Panel (Interior) AO, Outside Surface Resistance Al, Steel Siding 82, 3" Insulation (Blanket) B3, 1" Insulated (Rigid) Metal Panel Al, Steel Panel EO, Inside Surface Resistance 2 Preengineered Metal Building (Form 1711) with Drywall AO, Outside Surface Resistance Al,j Steel-Siding B2, 3" Insulation (Blanket) El, 5/8" Drywall EO, Inside Surface Resistance 3 Uninsulated Metal Siding (Form 1709) AO, Outside Surface Resistance Al, Steel Siding EO, Inside Surface Resistance 4 Insulated.Metal Siding (Form 1709) AO, Outside Surface Resistance Al, Steel Siding B1, 1/2".Air Space B2, 1-1/2" Insulation (Blanket) Al, Steel Panel EO, Inside Surface Resistance U-Factor (Btu/Hr-Ft 2-°F) Summer Winter .072 .073 .090 .982 .144 .091 1.17 .148 PLOAD-HVAC A-9

B7 - CONCRETE WALLS, CONT'D: CALC. No. S-t-FHV-MDC-070 g Revision No. 0 Driginator: 4 Date: t VFROCH.M W Date-:*." iq-w--t Page \\t0 O U-Factor (Btu/Hr-Ft 2 _-F) we- ' Sunmmer Winter 'Code Number Wall Construction 42 42-in. Concrete AO, Outside *Surface Resistance C4, 42" Concrete EO, Inside Surface Resistance 43 48-in. Concrete AO, Outside Surface Resistance C4, 48" Concrete EO, Inside Surface Resistance 44 54-in. Concrete AO, Outside Surface Resistance C4, 54" Concrete EO, Inside Surface Resistance 45 60-in. Concrete AO, Outside Surface Resistance* C4, 60" Concrete EO, Inside Surface Resistance. 46 66-In. Concrete AO, Outside Surface Resistance C4, 66" Concrete EO, Inside Surface Resistance 47 72-in. Concrete AO, Outside Surface Resistance C4, 72" Concrete EO, Inside Surface Resistance 48 .78-in. Concrete AO, Outside*Surface Resistance C4, 78" Concrete EO, Inside Surface Resistance 49 84-in. Concrete AO, Outside Surface Resistance C4, 84" Concrete EO, Inside Surface Resistance PLOAD-HVAC A-21 .221 .199 .181 .166 .229 .206 .187 .171 .157" .153 .142 .133 .125 . 145 .136 .128 t r

e SECTION C CODE TABLE - ROOFS CALC. No. 8-f -H-WNC-070.; Revision No. Originator: Date: 58 YFR/12{: W i-1TDae: C-w Page L2T ZF+8 U-Factor (Btu/Hr-Ft 2,°F) Summer .,Winter Cl - METAL ROOFS: Code U.-1k. o ^s r^netv"rti^n 3 Preengineered Metal. Building (Metal Decking with 2-In. ,...Insulation (Form 1711) -A,. Outside Surface Resistance Al, Steel Decking 8.2, 2" Insulation (Blanket) EO, Inside Surface Resistance 2 Uninsulated Metal-Roof 'Same as Siding (Form 1709)] AO,.,Outside Surface Resistance Alo, Steel Decking ED, Inside Surface Resistance. 3 Ul ted Metal Roof T.i.[ as Siding (Form 1709)1 .126 .134 .798 1.29 0::-,." .140 .150 il A9, Outside Surface Resistance A l,.Steel Siding (Decking) U8, 1/2, Air Space 8.2,'1.5 Insulation (Blanket) A.Steel Panel ED, Inside Surface Resistance 4 Metal Decking with Temporary Insulation (Form 1720T .276 .318 AD,

E3, B3, Al, EO, Outside Surface Resistance 3/8" Felt 3/4. Insulation (Rigid)

Steel Decking Inside Surface Resistance 5 Metal Decking with Permanent Insulation (Form 17BT .140 ....150 AO, E2, E3, B3, Al, EO, Outside:Surface Resistance 1/2', Gravel 3/8" Felt 2" Insulation (Rigid) Steel Decking Inside Surface Resistance PLOAD-HVAC A-22

CALC. No. 8-1 -FW-NDC-070 5" Revision No. 0 Or'inator: _. Date: - 1t- 0I1 B7 - CONCRETE WALLS: Page o -D+/-3= Code U-Factor (Btu/Hr-Ft_-°F) 16 Number Wall Construction Summer Winter 34 6-in. Concrete .659 .740 AO, Outside Surface Resistance .C4, 66" Concrete EO,. Inside Surface Resistance .35-8-In. Concrete .593 .658 AO' Outside Surface Resistance

1C4, 8" Concrete

. EO, Inside Surface Resistance 36 10-in. Concrete .540 .593 AO, Outside Surface-Resistance ' C4, 10" Concrete EO, Inside Surface Resistance 37

  • 2-In. Concrete

.495 .540 AOutside Surface Resistance C4' 21" Concrete. 0,JO."Inside Surface Resistance 38 In. Concrete .397 .425 AO, Outside Surface Resistance 'C4, 18" Concrete EO, Inside Surface Resistance 39 24-In.. Concrete .331 .350 AO, Outside Surface Resistance C4, 24" Concrete EO, Inside Surface Resistance 40 30-in. Concrete .284 .298 AO, Outside Surface Resistance C4, 30" Concrete EO, Inside Surface Resistance 41 36-In. Concrete .249 .260 AO, Outside Surface Resistance C4, 36" Concrete EO, Inside Surface Resistance PLOAD-HVAC

,ý_ - CONCRETE INTERIOR WALLS: Code Number Wall Construction 42 6-in. Concrete, Both Sides Unfinished EO, Inside.Surface Resistarce C4,. 6" Concrete .EO Inside Surface Resistance S43 8-In. Concrete, Both Sides Unfinished

EO, Inside Surface Resistance C49.8" Concrete EO, Inside Surface Resistance 44.. 10-In. Concrete, Both Sides
  • )*~r
.Unfinished Inside Surface Resistance 1C4.

00" Concrete ..- EO.I~nside Surface Resistance W4~ ~A*4i%_';*ncret0,-Both Sides usished 'ntide Surface Resistance InieSurface Resistance ,~W~3/4

  • .*6 18 in. Concrete, Both Sides Unfinished cICAM No.

8-1-FHV-MC*-070 5 Revision No., 0 Ori iDtatoe; Date: S 1*I WO Date: t U-Factor (Btu/Hr-Ft 2!-F). Az jz Interior i .535 .491 .454 422 .348 r-%, Insluu Surface Resistnce C4. 18" Concrete EO, Inside Surface Resistance 47 24-in. Concrete, Both Sides .297 Unftni shed EO, Inside Surface Resistance C4, 24" Concrete EO, Inside Surface Resistance 48 30-in. Concrete, Both Sides .258 Unfinished EO, Inside Surface Resistance C4, 30" Concrete EO, Inside Surface Resistance PLOAD-HVAC A-52

D7 - CONCRETE INTERIOR WALLS, CONT'O:

  • Code Number Wall Construction U-Factor (Btu/Hr-Ft 2 -°F)

Interior 49 36-in. Concrete, Both Sides Unfinished EO, Inside Surface Resistance C4, 36" Concrete EO, Inside Surface Resistance 50 42-in. Concrete, Both Sides. Unfinished EO, Inside Surface Resistance C4, 42" Concrete EO, Inside Surface Resistance 51 48-in. Concrete, Both Sides Unfinished EO, Inside Surface Resistance C4, 48" Concrete EO, Inside Surface Resistance 52 54-in. Concrete, Both Sides -Unfinished EO, Inside Surface Resistance C4, 54" Concrete EO, Inside Surface Resistance 53 60-in. Concrete, Both Sides Unfinished EO, Inside Surface Resistance C4. 60" Concrete EO, Inside Surface Resistance 54 66-In. Concrete, Both Sides Unfinished EO, Inside. Surface Resistance C4, 66" Concrete EO, Inside Surface Resistance 55 72-in. Concrete, Both Sides Unfinished EO, Inside Surface Resistance C4, 72" Concrete EO, Inside Surface Resistance .229 CPiC. No. 6-1-FHV-NDC-070 S Revision No. Da e Originator. Dates VFRCIC: Date: Page !S.... .4-57A z.. .205 .186 .170 .157-.,***. .146 .136 PLOAD-HVAC A-53

VD7 - CONCRETE INTERIOR WALLS, CONT'D: W'd e U-Factor (Btu/Hr-Ft 2 -°F) Interior ,i i r

f.

4-inn 111Mllli.ill*l rtu,, vv,,*--, -- w..... W~illJ~ V..--------- 56 78-in. Concrete, Both Sides .Unfinished ED, Inside Surface Resistance C4, 78" Concrete ED, Inside Surface Resistance 57 84-In. Concrete, Both Sides Unfinished .127 UU.. Nio 4 8-I-FWV-tC-070 Revision~ No. 0 Dr*i inator: AC 'Date; T218-! VFRJOI(: Date* -w: Page.%.... .119A ED, Inside'Surface C4, 84" Concrete ED, Inside Surface Resistance Resistance .58 6-In. Concrete,.One Side ..:.Finished EO, Inside Surface Resis -+ C4,

6. Concrete

. *.1*, Air Space " '". ',,Inside Surface Resii 59 8 I on Concrete, One Side Tinished EO, Inside Surface Resi, C4, ý8, Concrete '81-, IsAir Space 11, 5/8" -rywall ED, Inside Surface Resi~ 0 in. Concrete, One Sidi Finished .344 tance stance .326 stance stance e .309 ED, C4, B1, El, EM, .Inside Surface Resistance 10" Concrete 1" Air Space 5/8" Drywall Inside Surface Resistance 61 12-In. Concrete, One Side Finished .294 ED, C4, B1, El, EO, Inside Surface 12" Concrete 1" Air Space 5/8" Drywall Inside Surface Resistance Resistance PLOAD-HVAC A-54

SECTION E CODE TABLE - EXTERIOR DOORS CAM. No. S-t-FHV-M-070 Revision No. 0 Oinator:Lj Date:. PageMC actor (Btu/Hr-Ft 2 -°F) Summer Winter .156 .160 Code Nu*mber Door Construction 1 Insulated Metal Swing Door (Form 1732) AO, Outside Surface Resistance Al, Steel B2, 1-5/8" Insulation (Blanket) Al, Steel EO, Inside Surface Resistance 2 Telescopic Steel Overhead Door AO, Outside Surface Resistance Al, Steel EO, Inside Surface Resistance 3 Wood Overhead-Door AO, Outside Surface Resistance B4, 1-3/8" Wood EO, Inside Surface Resistance 4 Glass Door 1/4" Clear Glass .982 .366 1.04 1.174 .390 1.13 Sa PLOAD-HVAC A-57

SECTION F CODE TABLE - FLOORS =AC No. S-1-FW-NDV-o7o15 Revision~ No. Oi inatol': A4 Date: S-8-q VFR/VMI(: D Page _Z1_A4jjoT U-Factor (Btu/Hr-Ft _ *0. Summer Winter F1 - CONCRETE FLOORS Code Number Floor Construction 1 6-in. Concrete Floor .581 .427 EO, C4, Al, EO V Inside Surface Resistance 6 Concrete Steel Decking .Inside Surface Resistance 2 8-in. Concrete Floor .530 EO2 Inside Surface Resistance C4, 8" Concrete A1, Steel-Decking EO, Inside Surface Resistance

  • 3. Concrete Floor

.-EO,* Inide Surface Resistance

  • 4 *C*O Concrete A1::::. Steel! Decki ng

-Inside Surface Resistance

4 l-2in.; Concrete Floor 10' Inside Surface Resistance C4, :12 Concrete

-Al,.Steel Decking -EO, 'Inside Surface Resistance .487 .399, .374 .352 .450 PLOAD-HVAC A-58

SECTION G CODE TABLE - CEILINGS CAM.C No. S-1-FWJ-MC-07O 5 Revision~ NU 0 GOriinatom ~ Date; -1,1 GI - CONCRETE CEILINGS: Code Number_ U-Factor (Btu/Hr-Ft 2-°F) Summer Winter 1(o1 i Ceilinq Construction 1 '6-In. Concrete Ceiling .427 .581 EO. C4, , E()B Inside Surface Resistance 6" Concrete- .Stel Decking Inside Surface Resistance 21 8-In. Concrete Ceiling EO, Inside Surface Resistance C4, 8" Concrete W Al, Steel Decking .0."EO, Inside Surface Resistance 10-... .!O,:Concrete Ceiling -EOInside Surface Resistance

ZC4, 102 Concrete

.A. Steel Decking ., Inside Surface Resistance

14. 1-in. Concrete Cei-ling*

10j..:Inside Surface Resistance C4,' 12" Concrete A1, 'Steel Decking TO, Inside Surface Resistance .399 .530 .374 .487 .450 .352 PLOAD-HVAC A-60

4 TITLE 1 NO.

  • S-1-FHV-MDC-O705 SHEET FHV Sys Httg/Clg Load &

REFERENCE tll 0 P Airflow Determ Calc-Unit DE-CB.FHV-0021 (Q) OF ORIGINATOR V,_L, L L

  • CALCULATION DATE gLia..

CONTINUATION SHEET VFR or CKR, I DATE ý2. r J A7TAO.*HMENT t~iw W(A otxc'- cw C ~XI ~ 4.: ~ '4. 1 .. 4..* I OL o Y - * -z-A-o -oL 4 9l -0 L. \\., -*-7

2.

V jL )' ( ,t> 14 LA-.e, c-c- 'I. I,V 5-o -,C I {rfu" ri "2..

TITLE i'D'No.* s- -FHV-MDC-O7O7 sP FHV Sys Htg/Clg Load & REFERENCE Airflow Determ Calc-Unit I DE-CB.FHV.OO'21 ORIGINATOR DATE CALCULATION* AE CONTINUATION SHEET VFRorCKR I DATE II I A TT A-ý I p'54.5 S r -RDv a-I ý ýx q 0-" b'L"l 4)4 4. 00 It~~t I .-qo ueý c-~,A OA-b -+f uvo

P.2 A'TTkcHMEWT-r p !5k ee+ 14 1 Heat Gains for Thick Walls and Roofs Simple calculation method extends A SHRAE methodology to heavier construction. External walls and roofs of wall and roof constructions used in buildings gain heat through commercial buildings have been convection from outside air as listed in the ASHRA.E Handbook. well as by radiation from the sun. These are limited to about I ft This heat is transferred to the thick concrete walls and 6 in. thick building interior by conduction concrete roofs. While this range is through the walls, which also alter-quite adequate for commercial nately store and release heat. Thus, buildings, much heavier construc-the process is very complex. To en-tion is used in some buildings. For able design calculations with corn-example, external walls in nuclear parative ease, the 1989 ASHRAE power plants are typically more Handbook of Fundamentals, than 2 ft thick concrete and roofs Chapter 26, provides the following are I ft or more thick concrete. For procedure, which is used through-such constructions, no guidance is out the industry. Heat gain is cal-provided by the ASHRA.E Hand-culated by the following formula: book. My research has resulted in a simple calculation procedure thac extends the ASHRAE methodol-ogy to such heavy constructions. This procedure and its basis are briefly described in the following. Research The one-dimensional transient heat conduction equation was nu-merically solved for solid concrete walls 1.5 to 4 ft thick, and solid con. crete roofs I to 2 ft thick, with and without external insulation. The ron one side ofthe wall/roof Wa-s considered to be at a constant ten-p-erature; this temperature was 78 q-UA(CLTD) (1) where q - heat gained by the room, Btuh A -surface area of wall or roof, sq ft CLTD - cooling load tempera-ture difference, F U - overall heat-transfer coefficient, Btuh per sq ft per deg F Values of CLTD for a variety of By ff. MOHAMMED SHAH, Senior Engineer, EESUnden Associates, Inc.' Darien, Conn. /e

  • Heating/P~ping/Atr CondUfloning
  • Sepotember1 Tabl 1 SmmaY of some typlcal ca cu atlons done&dtri~gCT o ~i coctewas~ and~*~.-.....

.. ._______Mean per deg F. Q LTD F Mean

  • TpeCocree lsIatM

,.F TF -, 14 M';.VAX Mean CTu - T.) .Roof -- 0.03 ... 107 78 1.08 4.0 35.2.: 23.2. 29.2

Roof 1

0

6.1'7. :107 78 1.08 4.0 34.0 24.5.29.2 oRoof 10

'.107 78 1.08.4.0 43.8 -15.2 29.5 ,:,Roo* .l15Ls 107 78 1.08..4.034.6 `24.1. 29.3 Roof..0

  • Ndn

.. :07 78 1.08, 4.0 `.31.4 :27.3.29.3 ,.wa ; '; 9 one. 0" 7

1.

.4.0 "26.0 185. 22.2 Wagl 0;, 0 i-t*'s.

  • J_

0.50 -1.0 :i1.o 9.9 10.4

  • a2l2.-0 None :"" 115 104 L46 '4.0 "12.8 "'9.8 `'11.3 Wall.. '"-o: 2 "100" C"

78 1.46 4.0 23.8 20.7 22.2 Wa *I 2.0 "': n Ai `4'-"1l5 .78 .1.46 4.0 39.0 35.6 37.3 "Wag "-,'3.0 None 100 '. 78 1.46 4.0 '22.6 22.2 '22-4 'Wag 4.0 N None 100 78 1.08 4.0 22.4 22.4 22.4 29.0 29.0 29.0 -.29.04 11l.0 270 37.0 22.0 '22.0 I 990 151

R'S 19 1 12: 42 A TT/NC HMENT .2 oP z) S14EST 14-gIeat gain calculations le Table 2-Calculated CLTO for dark horizontal roofs. Roof description... oncrete Insulation ,oIar tkns. 1 IhickSolar fircenes Imcknem* LId~kmt in. In. 1 2 3 4 5 7 o 10 11 12 3 14 15 16

17. 19 19 20 21 22 23, 24 12 2

33 33 32 31 31 30 29 28 26 26 25. 25 24 25 26 27 28 29.31. 32 33 34 34 34 12 1.. .33 32 31 30 29 27 26 25 24 23 23 24 24 26 V7 29 31. 32".34 35 35 35: 35.34' 12 0 36 34 31 28 25 22 20 18 16 15 16 17 20.23 27 31 36 39-42 43. 44 43":41 39. 18 0 35 35 34 34 33 32 30 29 28 27 25

25. 24 24 24.25 2627 29 30 32 33:34, 34.

24

0.

30 30 31 31 31 31 31 31 3! 31 30T.1 29 2? 2a-' 28 -27 27 27 28 28 28.29" 30. or 104 P in various runs, thus simu-lating aesign room temperatures. The air on the other side of the wall/roof was at the sol-air temper-xcures listed in Table I of the ASH-RAE Handbook and thus varied with time. In some runs, higher sol-air temperatures were also used. In-side and outside air film heat-transfer coefficients were varied in the range that may be expected in practice. The heat transferred from the wall to the room air was calcu- !ated at each.nstant: the CLTD at ~ch Instant was then. calculated Equation I. Computer runs ere continued until calculated CLTDs were repeated in 24-hr cy. cles. In TablL 1, a suninmary of some typical calculations for walls and roofs is presented. The mean sol-air temperatures and mean CLTDs are 24-hr mean values. hi and h. are in-side and outside air film heat-t.ansfer coefficients, respectively. In Table 2, the calculated CLTDs fur varluu 1hvrl-uuza JM Io4a orc limtcd. All of thoo a*o for darl-roofs and the sol-air temperatures listed in Table I in the ASHRAE Handbook. Note that all CLTDs listed in the Handbook for, various roofs and walls were also calculated using the sol-air temperatures from this source. All eghlcuation* were dorne fnr Mean CLTD = Mean T,. - (: (2) where T,. = so]-air temperlture T, -room air temperature Thus, the 24-hr mean heat gain can be calculated with Equation I. using the mean CLTD from Equa-tion 2. Study of Table I also shows that for walls 2 ft thick or thicker, the extreme values of CLTD do not dif-fer much from Ohu ui-aa CLT D given by Equation 2. 1: should be realized that due to the large ther-mal lag of these walls, these high CLTD.s will be reached only if the sol-air temperatures remain at the peak values for more than one day. This will occur only rarely. Hence, the mean CLTD from Equation 2 will generally be the maximum CLTD. Footnote 4 of Tables 29 and 31 in the ASHRAE Handbook list CLTD values to ba used For'roois andl wallc wt'ih Ael~irianal in-sulation, which takes them beyond the range of ;hose tabies. Study of those listed CLTD values show that they are exactly in accordance with Equation 2. Thus. the present research has shown that" the calcu-lation method given by ASH&AE room temperature and outside air temperatures. Calculation procedure For heavyweight concrete walls 2 ft thick or thicker, with or without insulation, use the foilowing "un-corrected" CLTDs (in accordance with Footnote 4 of Table 31 in the ASHRAE Handbook): N, 11; NE,' 17; E, 22; SE, 21; S, 17; SW, 21; W, 22: NW, 17 (letters represent wall orientation, numbers are CLTDs). These CLTDs are to be adjusted for color. latitude, room tempera-ture, and outside air temperature as described in Footnote 2 of that table. For the hor'3i2-oil roof cons~ru-c' - %ions listed In Table 2, t1ltLn~lzi" CLTD and theii adjust it for color,) Iatitude7,6bom temperatrire,"and uiitside "air 'temiperature ':s de-scribed in Footnote 2 of Table 29 in: the ASHAAE Handbook.. For horizontal, uninsulated roofs thicker than 2 ft and insulated -roofe more than 1.5 ft thick. u

  • 99 F Rq the uncorrected CLTD (according to Footnote 4 of Table
29) and then correct it according to Footnote 2 of that table.

Conclusion The calculation procedure given for heavy walls and roofs was de-rived from computerized solutions heavyweight concrete of 140 lb per . walls/roofs is also applicable to of the governing heat-transfer cu ft density. The insulation con-heavyweight walls/roofs, with or equation and is in agreement with sidered had a density of 15 lb per cu without insulation. ASHRAE's recommended pro-ft, thermal conductivity of 0.024 Table 1 also shows that very cedure for lightweight wails and Btuh per ft per deg F, and specific large changes in the inside and out-roofs with thick insulation. Its use heat of 0.17 Btu per Ib per deg F. side film heat-transfer coefficients will result in simple, reliable calcu-have comparatively small influence lations, eliminating the need for ults nn the CLTDT. It also shows avee-guesswork and conservatism, he results listed in Table I ment with the ASHR-AE method which had to be resorted to until show that: for correcting for variations of now. P 152 Heating/Plping[Air Conditioning 9 September 1990' "L- ._d l l

Client / cA)i 1'ý/(5 PaZ Prepared by Projeot t., (Reviewed b Prof. No. Equip. No. Approved by y 'Data 2-1.4¶. 14"4 r-evo( --z I'Jo/s t c-u-9 rece (P c4 Crc.'-'~i I~S~lJbO 4 ; C/eC~re-Q-AQ Le,~S 12kt f, -m WEL IL 5are dq-P/&A p/eV"AZOO eo c~ ~L ~ /oC~~,5#'con !S eejyeJ-s Re re^,Ce-rlke* /ooj Lti pro Vi ce C~~~~ 0%~j.'&f

J SARGE~UNDY J I Catos. For Client 4%1 m ~Ee r~ zss Project _ lh ))0. / lProj. No. Equip. No. Prepared by Reviewed by Approved by ýhee+ 14 4 d- ý4 TS -sz z 10 -2 10q "H 1F'If4l J~Le~~ Reja.'C (a... t ?~~ 2,) - 4e_ 120 1I~t 6 c}~-t / Re., A 6ý3O) _*.. ? 2. Aq-bL rc W AC A 20P30) A/6, s) 5J&.L- -2091 7, A-- / rA.4I. R'e V. (a.) S"4-1. 2O7ciq/Z OA.6 /* e V, I*7 /+- 177(,j -7 "7. 22 OK;t / f2 41-q93ZRe. Z Re io

SARGENT&LUNDY U ICa/.rJ~, Fo Safety-RelatedNo-astRead I Approved by (PI /7 It p. -f ~0 j)lc.) o,.e-6.) O,,,6 e.) un ; I)L)n7& (j2 O..;t L4,

  • .) O.;&
  • .') l),;b I...) Uo~&

/ I I .2; 2 3.2 3Z z1E -70 A,,p. S. S,-, Z St4,- _Tc.- al. e C-. AJo ,,J L ~-T S-ico Aic '.,/:, L. - tso,

  • c*.- z,*...-@=/

0 g~ ffeclela0Ao)Je4Lc L - SIC j,

4.

.r (,)JOf, 5T 20 ~kp~r.~r~ CIClý. -dOo A~~,f

F!s o.* Pro. Opr W GEffCaics. For J-ee4 L. C-,Jc JkA/-z C [~~~MUNDYj Flec&r..j /?cro.. F"HeV Re E Satety-Related Non-Safety-Relate as Cli~ent P L1 1 f ~ ~ /e r/JPC? j. Prepared by Project Reviewed/ by Prof. No. Sf,7O Equip. No. Aprvdby .,o -o- ~ ATT&,OMENT~p" .'/, 1,Joes Fro C Dc~4s r-ip~,-%G TZ 1e Ae GSa 4 A 0 Jop i 5 9

2)

Ato. 0o: C e~LaZI4-I. I Cw i 0 as Ca eCcJ~- (i,e-.. - T1-ere C~" 5t -0~3.~ Cr-VO1 ~e CoAre C**, er-

I t Icuen. pmW -C ger t .lcs.Prepaoe by Projet O 4 0. !dby Date nDate Prol. No. & sr, L !autD. No. "Approvd by Date ATTKCsme 14Nr 7 ,L;& 4-os -4ecq'fe "k& JS

1. Q.I, Not pIC~b.

I FY) U 2 ~&1V C" Asure-1o c~(a~ooe ~44 1 o. 15o,0.5-70 / .A+$. m. A,5-uvr 2.5* f, O~c4ble-s

. 575 Ao.Z5 =144 wv 4t*S Ca T

2Y -4 Z, X5 Z 15 9(* Asst44Gq ,6OX-z5 ccble cT Cv..r*7 (See eg- -x lJ*/I x4 X4I c,ss)n 60 o y.fl 'fC'(lS S~n 7 !575(,0.-- ed ý4a ~ ze -z 7 WilI 1- -J 0i S s~I 4~! L (44 -8J X-x*C(( A~suln-54 y oe 4-mys ?,,I I~ cable-s ..4 6oŽ(O - S v 35Of : ye Assxmc-7-5'010 4P ctibte$ Ce,~st k

Cates. For .4eJ-L C ¢L

  • 1 c r SARGNT&LUNDTJ Fe&iZf

~,~P~Q~ CtIl en t t %, Is t. -t i .e.E /-c -t -, C - Prepared by P je' t A.)D. Reviewed by Pr°. NE. ,quip. No.. Approved by 12 "w:l., "K /-/ 7.-" ýz an; S E IA. s,. 44 144-cl-Iec -l -4y,'6Aec 4-o E¢e* °'cwi "tt I.

f Al AnAIA CiMH r a (fe. Io-1 01F she.4- %4 q IEEE. OLTEC TER NAT 1ONAL H IN IMPACT OF INCREASED SPENT FUEL POOL EMERGENCY TEMPERATURE ON FHV SYSTEM AT SALEM UNIT 1 DURING THE SEPTEMBER TO MAY OUTAGE MONTHS for PUBLIC SERVICE ELECTRIC AND GAS COMPANY by Indresh Rampall, Ph.D. Holtec International Holtec Project 20890 Holtec Report HI-931098 Report Category: I m.......--OMPN This~~~~~~~~~~~~~~.. umn p.p... n tepoet f oteItratoa n t Cheat' -9 ist9eMdol nQnehnwihtepramneo okb ~flote&br it d~gnt&)subaniieits kpr6cdox pvlictlo .D.

A2 of1A swwr Woor @1 Eu... HOLTEC INTERNATIONAL REVW AND CERTIF[CATION LOG DOCUMENT NAME: Impact of Inreased Spent Fuel Pool Srgenoy Tempematur on FfV System at Salem Unit 1 During the September to May Outage Months HOLTEC DOCUMENT ID, NUMBER. EI-931099 HOLTEC PROYeCt NUMBER: 20890 CUSTOMHERCLIENT: Public Sevice Electric and Gas Company ISSUE AUTHOR & REVIEWER & QA APPROVED NUMBEfR DATS DATE MANAGER & DATE & DATE ORIIn;AL 4M4tA af#---2 REVISION 2 PLEVISION 3 RBVISION 4 REVISONS REVISION 6 This docu~m t conforms to the requirements of the deslg specification and the applicable sections of the goveming codes. Nole: Sinatumr and printed names are required in the review block.

  • Must be Project Manager or his designee.

p II l I. ~.. 4?.' :;

A/ AT'r1"c.stg/,Jr;t B HOLTEC IN17ER~NATIONA S;4 r If CALCULATION SHEET Page-Report No..t f..-mba-,075. Other BY !IA /4 Project 19Il Preft ared By Date Reviewtd'By r " Date 0 Th.A S¶wew&-c Af~ 4t ~Ct~A~orp.4&s$ g~A~ Ut if. c4~p~A1.ve4J-4Iv4 i-v 4144T A4rc Re-tý tw. ,Mot,,

  • 4k

)14I Q+) CC 4 4v qqF; tX) Jk 4b 4~~ "W41-P tLI a~ ) I..._ a* KeTV r ",*0 At,4,&. 4 M.. .:-~ ~ ~ ~ ~ ~ ~~~4 ....oy .(, .T,,,.40-.*,..,,,. I A A: I 'As shown in technical specification (TS) 3.9.3, fuel movement is permitted 100 bouts after reactor shutdown du*ng the typical refueling outage period from mid-October to mid-May. While refueling is possible at anytime, a refueling outside of the typical period is not anticipated. Hence, the month of September is eliminated from this analysis.

Projectlod N7 0 ,9q0 Prewd~y A AIrrACtHsl-r*,T*f'l. or HOLTEC INTERNATIONAL tes is o j) CALCULATION SHEET Page 2. Rev. RopontNo. S-1-J~yMZ*679 Ohig m ý,W Ký-of~y f Dale Z' D SCo PS g AssompTION T"~ L'f t ivcý ~ c A A~ 44~. ~ I NA4 ok-{k4v-ww,ýs ~y 7~ ~ .L4 J ib-W -4k ?Sr k 4 CvJ6o4,14'- Pou-IT Q4zý 3. - iAoLJA ~-i. I to~ 414 iv4y ttV 111 ofaf -1' kil-7%R uPs1. amlfr ý IA-A~4~ ) ,.° SvMMAP-Y OF g5I.SvANT bATA Fr-fM F.544 ( 3-7 Co) Awv RSP A17 CIF wL%4

  • 'e 4

F& W krmvý- MAX) /asOF, 40 o (c) clvo 466;~ A), "7 kz*AF~5

i:-'*

i .v Pii*-* ~

A~ I ATrACH'1vviI7 a Swr I S. HOLTECINTERNATIONAL (rý t oF To/i DF lap CALCULATION SHELT, Page-" . Rev. e-port No-S-1FaL. b Other F I Date .Ree BY Date Praje'No2 o m . s... i WN rd B (z)q ply ( F e.~ FLUv OJ/4 Pf Sj-5daAA (X#,e, C/C OdlvdA, I C 0.4 re-I r (3) SFP Surface Am The dimensions of the surface of the SFP are 28.5 feet by 39 feet Reference [1 ] Paragraph 4.5 Asp - 1111.5 fW2 Reference [1] Paragraph 4.5 The dimensions of the surface of the Fuel Transfer Pool (FTP) are 16 feet by 28.5 feet Asw = 456 fe Reference [4] Total surface area at 1801F As = Asp + AST - 1111.5 ft + 456 ft = 1567.5 ft2 (4) Area of Wall Between SFP and Transfer pool Aw 1 1720 fl? Page 17 of calculation package Uw - 0.229 BtuI/i 2 hr OF Page 17 of calculation package (5) Tem.erature Rise Across Blower ATa = 2.1'F Page 100 of calculation package ( T F........ u$w Ji~.

  • I 9

"I.,.

,&IATTAcsmr-wr swt rf-r HOLTEC INTERNATIONAL OF I 4F i %f) p CALCULATION SHEET Page Rev 12 I~po N. therEVe Project Nc.- 911 (PSW4

  • '*.r'
--J W --

-do,


A - -

Propsad By Ditt Ravie~ d By I Date 4.0 I5LJJP TL'JWZ L. ,496A Z4&4VL.ArUWN.. 7/.AA4?-Q 4011% IU i Tk"414te) Totol SkMWA 414khýx Alý-~~ ~ ~ ~ lh,

  • "IiA

+P 0a. MApfO&L& Mowqk-(P. IO K Air Fl4iw i't M 9"1d um V" C Fr (? ( 7' Z.9I

  • s.0c gkl T

mfh 'M Sf's).

  • .u~t4,- -

Projet No --ZPq 4PS ey~ le nI Ib Prie-ared By Dt A I ArrAcH Mfý4 rS JEC INTERNATIONAL r oF i) CALCULATION SHEET Report* N. 8-Da her Revie~d By Date v m -Q..___ 5-0 9CloN7AMllAJAlvtN P17-MEA C.4tlc4A7IbNV, SP8p /6lTA1&4,4 F* ES+k4 S FkPI h 4Lvq4& o// -TD 7 6 7 6.,?8-AIAV I v 2) -4 £ V Q.* LI * .*i*i I S. 4... .... :.y*;.-

I Projeet.No-2 &i~q#~(zs ~ Prip'mvd By Date I ArrAc' mrI' 8T ,TEC INTIRNATIONAL CALC LTON SHEET Rovieed-By Dft lot) $*r t T* .6" $) i P e R.' e 0 LI AM IJ.ozl 4.0 SpEwNr Fv, l fPrvi A,& ~e 74 1' ('vw A-1~4 f$ 17 ýAEA CAL4.44Ar*'OA kwk V Lvý S AlhA La&Jf 4L44 4,k4.

  • A0

= -. S7 AA,/A.,, 463 £A1 A4/- ýv'q BAIA,~- o 1 9I0 F: S FP LW(tU Tv* m--. 1, 4. 75- .23e o I, ) I (o kk )o = 11j.Uv SWlAs-4ý. Or AI \\. *. t *. [1,, " -o. 5 ' t,,'7tD* A t -l1.; A.,.. i5--- l C -- 1* **"'** Z. r V- .....::- - -r-t:*:L.070.,. R i

Calculation Page ( 5"7 of 167 S-1-FHV-MDC-0705, Revision 5 Page _9.- of 19 Prepared by:

  • Reviewed by:"°o (C) Sensible heat galn from pool surface (Btulhr)

As shown on page 19 of Attachment 8, the highest mean temperature during the outage period from January 1977 to December 1981 was 61.9 0F (in May) and the highest maximum temperature was 84'F (also In May2). This is considered to be very conservative for the period between mid-October and mid-May. When 2.1 OF of fan heat Is included, the inlet air temperature of this evaluation becomes 86.1 OF. In addition, this calculation is based on an assumed maximum room ambient air temperature of 1050F. 06 = (UN + Fe* UR) *

  • (tw - tR)

Reference [6] page 45, Eq. 46 Where: UN Natural convection film coefficient for air over horizontal water surface 0.5 (tw - tR/ Lp) 0.25 (Btu / hr.ft2.OF) Reference [6] page 46, Eq. 47 = 0.5 [(180-10D5y28.5] 0,' 0.637 Btu/ft2 hr OF U= Radiation heat transfer coefficient (Btu / hr-,f2 O'F) 0.1713 [(Twl 100)4 - (R/ 100)1] / (tw - tR) Reference t6] page 46, Eq. 48 = 0.1713* [{(460+180yI10O} - {(460+105)/100}41 1(18D-105) 1.504 Btuft hr °F Fe = Proportionality factor 0.96 As = Total Water surface area ft2 = 1567.5 f The dimensions of the surface of the SFP are 28.5 feet by 39 feet, The dimensions of the.surface of the Fuel Transfer Pool (FTP) are 16 feet by 28.5 feet. Lp = the most conservative length for the combined pools Is to use the common width of 28.5 feet This length Is used for the analysis. 3 tw = Water surface temperature =180 OF tR = Room ambient air temperature = 105 OF (room temperature is conservatively assumed to be a design maximum) Tw = tw + 460 TR = tR + 460 2oA maximum temperature of 86*F was recorded in April but is considered an anomaly since the peak temperature in March was 76"F and the peak temperature in May was 84F. In view of these values, minimum flow rate and maximum exit temperatures are re-evaluated for 84F. 3 Revision 0 to Attachment 8 used 56 feet for the equivalent length of the SFP alone. This was considered a reasonable SFP length. For the combined pools, the common width is the most conservative (i.e. smallest) value. The difference in the coefficient UN when using 56 feet or 28,5 feet is approximately 18% (with 28.5 feet being larger). Either value would have produced acceptable values for this analysis,

Calculation Page i of 167 S-I-FHV-MDC-0705, Revision 5 Page - ID of 19 Prepared by: 7h Reviewed by: %,Y Qs = (0.637 + 0.96*1.504)

  • 1567.5 * (180-105) = 244,629 Btu/hr Therefore, the total summer cooling duty becomes: 22,825 + 11,260 + 244,829

=278,714 Btu/hr The formula for air density (p) is taken from Reference [51 as: p = 1.325

  • bx / Tx, where bx = barometric pressure in Inches Hg

= 30" Hg Tx = air temperature in degrees Rankin = 459.6 + 86,1 = 545.7=R pee.t= 1.325

  • 30 / (459.6 + 86.1)

= 0.0728 Ib/ft3 Minimum flow Q, (at 86.1°F) required to maintain the room at or below the maximum assumed temperature of 1050F is derived from the cooling load q. as follows: q 1 = 01*I/v

  • CP (tA - tR)

Reference [61 page 27, Eq. 20 = Q* P86.1

  • Cp (M - t) re-arranging this equation:

Q, q, I PS.I1 Cp (tA-tR) where: qs = total cooling load = 278,714 Btu/hr CP = 0.24 Btutib'F tA = assumed room ambient air temperature = 105°F tR = ventilated air temperature = 86.10F solve for Q,: Q, = 278,714 / (60

  • 0.0728
  • 0.24 * [105 - 86.1=F]) = 14,067 cfm; < 15,990 cfm available.

Re-arrange the above to calculate the room temperature at design flow rate: - 80.10F + 278,714 / (60

  • 0.0728
  • 0.24
  • 15,990) = 88.1 OF + 15.8 OF = 102.7 OF In view of the above, a 1050F maximum room temperature for the SFP area during refueling operations can be assumed. As shown on page 19 of Attachment 8, the actual ambient temperature Is likely to be 10"F to 20°F lower (based on review of mean temperatures).

TV" ir

Calculation Page 1*Tq of 167 S-I-FHV-MDC-0705, Revision 5 Page AL.. of 19 Prepared by: Reviewed by:. 7.0Spent Fuel Pool Area Evaporation Rate and Humidity Calculations Inlet Air Humidity (Based on 84°F db / 70F wb)4 From ASHRAE Charts [2] WsA (humidity ratio) = 0.0123 lb H20 / lb dry air RH (relative humidity) = 50% Evaporatlon Calculation Pw (vapor pressure of water at 180*F) = 15.31" Hg PAs (vapor pressure of water at 102.7=F) = 2.095" Hg Assume a relative humidity of 95%; PAS = 0.95

  • 2.095 = 1.99 In Hg hf (latent heat of vaporization at 180 OF) = 989 Btu/Ibm (steam tables)

Evaporation heat load (QL) = A * (95 +0.425V) * (Pw - PAs) Ref. [6] page 44, Eq. 41 where A = pool surface area, V= 20 fpm and Pw and PAs are shown above. (See page 19 of calculationB) Evaporation heat load (QL)= 1567.5 ft2

  • 103.5 * (15,31 - 1.99) = 2,151,000 Btu/hr Evaporation rate (mv) = QL I hfg 2,161,000 Btu/hr/989 Btuilbm = 2185 Ibm/hour Air mass-flow rate = 15,990 cfm
  • 60
  • 0.0727 = 69,748 Ibm/hr WROOM (room humidity ratio) 0.0123 + 2185 / 69,748 0.0436 lb H2011b dry air The water mole fraction = (0,0436/18) / (0.0436/18 + 1/28.8) = 0.0652 Partial pressure of water vapor = 0.0652 x 29.9 = 1.95, Hence, relative humidity of the room at 102.7 OF = 1.95/2.095 = 93.1% (close to assumed relative humidity of 95%).

4 The design basis summer-time condition for SGS is 950F dbF/80F wb, which is effectively 50% relative humidity. Since the peak May temperature of 84F is used for this analysis, 50% relative humidity will be assumed to be consistent with the design basis selection. s Basic equations from this section are developed and are further defined in Reference [6], starting on page 43. Further definitions of terms are given in Reference [6]. ~4 W JJ Vý47

Calculation Page 44Q of 167 S-1-FHV-MDC-0705, Revision 5 Page _ of 19 Prepared by:. Reviewed by: Relative humidity of air at 105OF Is 35% for all rooms except the SFP [see sheet 103 of 167 of the main body of this calculation) Relative humidity of air from SFP area = 93.1% (paragraph 7.0 above) Therefore, the effective RH of exit air before the charcoal bed (3500 0.35 + 15,990

  • 0.93)/(3500 + 15,990) = 82.6%

8.0-Summary and Conclusions The total heat load from the SFP and transfer pool can be accommodated at the assumed outside air, water and room ambient temperatures and design flow rates. 8.1 Peak Outage Coolina Requirements Item Transmission Lighting Sensible Total Minimum Room (Btufhr) (Btulhr) (pool) (Btulhr) Flow* Temperature** (Btu/hr) (cfm) (rF) Sump-767 3412 4179 211 94.1 Tunnel Decon-PIT 3014 4094 7108 359 88.8 SFP 22,825 260 24,620 278,714 14,067 02.7 Room 2285 11 4 8

  • flow rate required to maintain assumed maximum room temperature of 105"F at design airflow rates for each room I

8.2 Pool Surface Evagoration and Humidity Results Item Peak Outage Season Evaporation Rate (Ib/hr) 2185 SFP Room Relative 93* 1 Humidity (%) 93__ Relative Humidity at 82.6 Charcoal Inlet (%) f J 4E, -4~~~"~1/2 I A.

Calculation Page (6 ( of 167 S-1-FHV-MDC-0705, Revision 5 Page of 19 Prepared by:. k--> Reviewed by: 9.0 References [1] S-C-SF-MDC-1240, Revision 1, SFP Thermal Hydraulic Calculation (HOLTEC Report HI 92492 dated 5-9-93) (2] ASHRAE Handbook of Fundamentals (19R89) [3] PSEG Report "FHV System Heating and Cooling Load and Airflow Determination, Unit 1" (S-1-FHV-MDC-0705, Revision 2, August 3, 1993) [4] Drawing 204803, Contalnment/Fuel Transfer Building Layout [5] Marks Standard Mechanical Engineering Handbook, Ninth Edition, Chapter 14 [6] HVAC TECHNICAL STANDARD DE-TS.ZZ-3803 (Q) "Cooling and Heating Load Calculations." I .- ~. ~r -~

, m

= = i 1

'Calculation Page ( of 167 S-i -FHV-MDC-0705, Revision 5 Page 9 Prepared byj. Reviewed.by: 1 Page Intentionally Blank I,.~. ? K:

Calculation Page IýS of 167 S-1-FHV-MDC-0705, Revision 5 Page _S of 19 Prepared by*. Reviewed brj. Page Intentionally Blank I 2 a - -MWWMý ý

Page Calculation Page A t of 167 S-I-FHV-MDC-0705, Revision 5 Page __ . of 19 Prepared by: "C Reviewed by: Intentionally Blank I

  • 1*1

..'i.a ~ 'f.-.

'1 r A, Cý"-GJ r 8 ~Hr ~ OF APPENDIX A TELEFAX FROM PSE&G ON MAXIMUM AMBIENT AIR TEMPERATURE DURING SEPTEMBER TO MAY OUTAGE MONTHS

'SE\\T BY: 10-16-S3 ; 3*.6. F SE&G E&.0B-HiLT-C I.NTER.NATIJNL.:

1. 2 PUBLIC SERVIC.

-LECTRIC & OAS' COMPANY (A ) t ZVGXXZRCZNG I PLANTO ETTUKENT ,EPDoTMEU $ALZEt/ROPMlZZ QU O1EUTING STATION$ JIMOOCIW 3PRIDG2,9 NJ~ 09O38 TL1AZZWY IXZZ TO. gig Jjrýý94-d#l P-AM (24L;- / 1'~ ~*JLAJeJ$ FAX NO.: 1 151-,, 10 ADRESSZ EXT.

  • f A

FROM: t~u 'a FAX NO, : (iogi -329-1218 ADDRESSR ZXT,.. (ANDATORY) NWIIOER OF PAGES FOLLOWING THIS TRAMTTAL DATE/TIME SENT: Aoe 19, q -ý IF DIFFICULTY IN RECEPTZON PLEASE CONTACT THE SENDER. C k. A.a. r**-.-*.-

.,jr BY 10-1-8-3 : 3*:71VP P-95 E& B-fHOLTEC INE,.AT I QVL -,* 2 /2 T&BLE 2.3-12 A I A-c.r4MC'Jr B I (q5 ~FOr 14) TMOSUAUL KEAS mN mcm8EKs j~hmu1 9~~277 - bwomD~ 2.981. SHr i oF 6,F1 ArrLELCLAI 1s1ai~d. C* Cblued flwrly a10=Y HWM Muam W12mlno ws m *Xo.C2 HourlY 90=1 ums li&um Mtnla Jan rob AvgE NaY Jun Jul Aug Sep oct 1Bov 28.2 304& 41.7 52.9 74.8 76k. S 54,3 46.2 36.5 60 62 76 86 84 g0o 94 89 76 71. 67 27 39 4$ 45 33 25 _4 27.4 29.2 42.1 53.0 £*3.1 69.7 /6.0 75.S 68.5 46.3 35.2 64 69 at 97 91

  • 94.

go 93 .82 76 70 98 03 .6 2 25 30 4) 30. 22 2 A=401 53.1 94 02 03.4 (1) sensor e6lh:t 33 Leet., .(2) Source, U.S. Depu*art: of Comseros,,

  • Local Wmtoogi2.rms Dat Am=l Suwaa*y Vit Couparativ Data
Wlluuon, D'.2wav.zu NC)AA&,

bvtranmwAet 1DaV'ServL**e, 1977-2-98%. N A t, tiA Revision 13 / L 1,, t EWe"iJJM. +. .Y + --. r*.+-Y.+

NC.CC-AP.ZZ-0010(Q) FORM-I CERTIFICATION FOR DESIGN VERIFICATION Reference Number: S-1-FHV-MDC-0705, Revision 5

SUMMARY

STATEMENT A line-by-line check of Attachment 8 was performed for this revision. The revision follows the same methodology as the current revision and results are comparable. The revised Attachment 8 is updated to include increased heat load resulting from adding the surface area of the spent fuel transfer canal. The individual named below in the right column hereby certifies that the design verification for the sub-ject document has been completed, the questions from the generic checklist have been reviewed and addressed as appropriate, and all comments have been adequately incorporated. SAP Or-der/Operation final confirmations are the legal equivalent of signatures. Ted DelGaizo Design Verifier Assigned By (print name of Manager/Director)" Design Verifier Assigned By (print name of Manager/Director)" J. Ko Wiedemann / D-12-07 Name of Design VerifierV / Date Name of Design Verifier/ Date Name of Design Verifier' / Date Design Verifier Assigned By (print name of Manager/Director)" Design Verifier Assigned By (print name of Manager/Director)* Name of Design Verifier* / Date

  • If the Manager/Supervlsor acts as the Design Verifier. the name of the next higher level of technical management Is required In the left column.

Page I of I Nuclear Common ,Rev. I

l NC.CC-AP.ZZ-0O10(Q) FORM-2 COMMENT / RESOLUTION FORM FOR DESIGN DOCUMENT REVIEW/CHECKING OR DESIGN VERIFICATION (SAP Standard Text Key "NR/CDV2") DOCUMENT NO.IREV: S-1-FHV.MDC-0705, Revision 5 COMMENTS

1. Section 6.0 - Typo In pressure and formula for minimum flow required.
2. Section 6.0 - Revise summary statement after calculation of minimum flow and exit temperature that design requirements for 1050 F are satisfied.
3. Section 7.0 - Air density term should be based on 95-F.
4. Section 8.0 - Include clarification the supply air is at 600 F and use of 00 F is not realistic.

RESOLUTIONS All comments incorporated. ACCEPTANCE OF RESOLUTION Resolution of comments is acceptable. J. K. Wiedemann 9/12/07 T. J. DelGaizo 9/13/07 SUBMITTED BY DATE RESOLVED BY DATE Page 1 of 1 o Nuclear Common Rev. I

NC.CC-AP.ZZ-001O(Q) FORM-2 COMMENT I RESOLUTION FORM FOR DESIGN DOCUMENT REVIEWICHECKING QR DESIGN VERIFICATION (SAP Standard Text Key "NRfCDV2"1) REFERENCE DOCUMENT NO. /REV. S-1-FHV-MDC-0706 / R5 COMMENTS

1. Page Revision Index: Instead of having pages 2 through 148" as three separate line items, have one line Item 02 - 148".
2. Section 1.0, Footnote 1: Refueling can technically occur anytime. The mid-October to mid-May time frame is just for a minimum 100 hour decay time prior to beginning core offload; from mid-May to mid-October, the minimum decay time Is 168 hours. The period between October and May would cover the typical outage period. Revise footnote to clarify.
3. Section 3.0, Item 2: Provide basis for air flow, that is the number of supply and exhaust fans running.
4. General Comment (6.OC-+ end): The original calc often did not provide the equations and/or references for some of the parameters. From a technical rigor perspective, please provide equations where lacking. Also, reference to section/page In main calc for select equations/inputs should be Included, namely Qs, UN, UR, Fe, QL. NOTE: Response to Comment 6 will Impact the response to this comment
5. Section 6.0(C): Sensible heat Is determined based on a 105"F room temperature. Calculated room temperature Is 102.0=F. As such, state up front that a room temperature of 105°F Is assumed. (The statement at the end of this section validates the assumption). NOTE: Response to Comment 6 will impact the response to this comment.
6. Section 8.0(C): The correlation for UN comes from page 21 of the main calc, and.is based on Tech Standard DE-TS.ZZ-3803. This correlation could not be validated. Also, the characteristic length (Lc) is stated as the SFP length in the Tech Standard; the value of 56 ft, which likewise comes from page 21 of the main caoe, also could not be validated.

A separate reference on heat transfer suggests the following correlation for Nusselt Number (Nu), based on the Rayleigh Number (Re) for this condition (Ra - 4E120): Nu = 0.15

  • Ral°, which results in the following correlation for UN: UN = 0.239
  • dT. This results In about a 25% higher UN, and an exit temperature slightly above 1051F.

Revise to use the above correlation, or provide Justification for the correlation and characteristic length used.

7. Section 5.0(C): The statement In brackets after Q6 Is calculated is incorrect. Actual, the smaller characteristic length of the FTP results In a higher Uq, as UN is proportionalto 1/103. A separate UN for the FTP should be calculated or revise the justification for using the SFP UN. Note that if the correlation from the Comment 6 Is used, the characteristic length cancels out.
8. Section 6.0(C): In the paragraph providing the basis for 84=F outside air temperature, revise discussion on Tech Spec refueling outage period per Comment 2.

[Note: Ideally, this discussion, along with the density calculation, should be Included in Section 3.0; however, I understand why It was Included here.]

9. Section 6.0(C): In last paragraph, revise I'a sentence of last paragraph to say: "in view of the above, a 105°F maximum room temperature for the SFP cooling area during refueling operations can be assumed=.

The current statement could Imply the outage IDHM calcs are done based on 105°F; the revised statement allows for flexibility (e.g., the 2R16 IDHM calc Is based on an assumed I10°F room temperature). Furthermore, revise this sentence to provide the number of supply and exhaust fans running that this Is based on (see Comment 3).

10. Section 7.0, Page 10: Revise to be based on peak outage outside air temperature of 84"F. Note that since there's no basis for the humidity at this temperature, one option Is that you could, conservatively assume the specific humidity at 84"F to be that for the design basis conditions (95°F db t 78°F wb); or a reasonable relative humidity can be assumed.

Page 1 of 3 4 1,*" I i ' "1"* i > * = JiL .'ý**:j

NC.CC-AP.ZZ-0010(Q) FORM-2 COMMENT I RESOLUTION FORM FOR DESIGN DOCUMENT REVIEWICHECKING 2a DESIGN VERIFICATION (SAP Standard Text Key "NRICDV2") REFERENCE DOCUMENT NO. /REV. S-1-FHV-MDC-0705 / R5

11. Section 8.0: Recommend deleting as per our discussion. Evaporation rate at winter conditions adds no value wrt the purpose of Attachment 8.
12. If Section 8.0 Is kept in, equation for humidity ratio Is missing the molecular weight of water vapor (18) In the numerator-i.e., w = (mole frac/1 -mole frac)* (MW

/MW,'tr)).

13. Sections 9.0 and 10.0 will need to be revised If evaluation of summer and winter conditions are being removed.
14. Section 10.0: The main focus of this revision is the FHB ambient temperature and humidity during refueling, as a basis for the IDHM calcs. A statement needs to be added regarding the peak FHB ambient temperature and humidity, along with the number of supply and exhaust fans running that this Is based on.
15. Page 19: Unhighlight September peak of 89°F and highlight May peak of 840F. Also revise note on bottom to reflect October to may and 84°F.

Page 2 of 3 NMI' ~ V.

NC.CC-AP.ZZ-0010(Q) FORM-2 COMMENT I RESOLUTION FORM FOR DESIGN DOCUMENT REVIEW/CHECKING OR DESIGN VERIFICATION (SAP Standard Text Key "NRICDV2") REFERENCE DOCUMENT NO. /REV. S-1-FHV-MDC-0705 / R5 RESOLUTION

1. Comment Incorporated.
2. Comment Incorporated, footnote revised to reference discussion In section 6.0 (C).
3. Comment Incorporated, new reference added to page 99 for basis of air flow. Page 99 indicates that the calculation Is based on a single supply fan (IVHE24) at 19,490 fin, with 16,990 cfm supplied to the SFP room, end a 2.1 "F Increase In air temperature due to added fan heat.
4. References have been added.
5. A statement has been added to Indicate that the calculation is based on an assumed 105°F.
6.

UN = Natural convection film coefficient for air over horizontal water surface. The formula used In the calculation Is Eq.47 from the Tech Std. This equation is equivalent to a simplified equation for free convection to air at atm press. from a heated surface (horizontal plate) as shown In Table 7-2 of the seventh edition of "Heat Transfer" by J.P. Holman. The value for Lp used In the calculation for SFP surface length has been Increased to add the length of the transfer pool.

7. Statement has been deleted because the transfer pool length Is used In the revised Lp term.

B. Discussion has been revised to Include a discussion of refuellngs beyond the typical outage window.

9. Sentence has been revised to address the assumed temperature of 105"F.
10. Assumed humidity Is described In #3 footnote.
11. Comment Incorporated.
12. Not applicable.
13. Sections have been revised.
14. The main focus of this revision Is to add the Increased heat load from the transfer pool (assumed to be at 180°F). The conclusion has been revised to state that assumed temperatures can be met at the design conditions.
15. Page 19 Is revised to "line out" the statement that refers to using 839F. No further changes are required, ACCEPTANCE OF RESOLUTION Kevin King 9118/07 John Wiedemann 9118/07 SUBMITTED BY DATE RESOLVED BY DATE Page 3 of 3}}