AEP-NRC-2011-66, Submittal of Core Operating Limits Report

From kanterella
(Redirected from AEP-NRC-2011-66)
Jump to navigation Jump to search
Submittal of Core Operating Limits Report
ML11305A079
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 10/18/2011
From: Gebbie J
Indiana Michigan Power Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
AEP-NRC-2011-66
Download: ML11305A079 (17)


Text

Indiana Michigan Power INDIANA Cook Nuclear Plant MICHIOAN One Cook Place Bridgman, MI 49106 POWERO AERcom A unit of American Electric Power October 18, 2011 AEP-NRC-2011-66 10 CFR 50.4 Docket No.: 50-315 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Donald C. Cook Nuclear Plant Unit 1 CORE OPERATING LIMITS REPORT Indiana Michigan Power Company, the licensee for Donald C. Cook Nuclear Plant Unit 1, is submitting the Core Operating Limits Report (COLR) for Unit 1 Cycle 24 in accordance with Technical Specification 5.6.5. Revision 0 of the Unit 1 Cycle 24 COLR is provided as an enclosure to this letter.

There are no new or revised commitments in this letter. Should you have any questions, please contact Mr. Michael K. Scarpello, Regulatory Affairs Manager, at (269) 466-2649.

Sincerely, Joel P. Gebbie Site Vice President J RW/jen

Enclosure:

Donald C. Cook Nuclear Plant Unit 1 Cycle 24 Core Operating Limits Report, Revision 0 c: J. T. King, MPSC S. M. Krawec, AEP Ft. Wayne, w/o enclosure MDEQ - WHMD/RPS NRC Resident Inspector M. A. Satorius, NRC Region III P. S. Tam, NRC Washington DC

ýACol kjL~L

ENCLOSURE TO AEP-NRC-2011-66 Donald C. Cook Nuclear Plant Unit 1 Cycle 24 Core Operating Limits Report Revision 0

D. C. COOK UNIT 1 CYCLE 24 Revision 0 D.C OKUI YL 4Rvso Donald C. Cook Nuclear Plant Unit I Cycle 24 Core Operating Limits Report Page 1 of 15

D. C. COOK UNIT I CYCLE 24 Revision 0 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Donald C. Cook Nuclear Plant Unit 1 Cycle 24 design has been prepared in accordance with the requirements of Technical Specification 5.6.5.

The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC in:

a. WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Methodology, July 1985
b. WCAP-8385, Power Distribution Control and Load Following Procedures - Topical Report, September 1974
c. WCAP-10216-P-A, Rev. 1A, Relaxation of Constant Axial Offset Control/FQ Surveillance Technical Specification, February 1994
d. Plant-specific adaptation of WCAP-1 6009-P-A, Revision 1, Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM), as approved by NRC Safety Evaluation dated October 17, 2008.
e. WCAP-126 10-P-A, VANTAGE+ Fuel Assembly Reference Core Report, April 1995
f. WCAP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986
g. WCAP-13749-P-A, Safety Evaluation Supporting the Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement, March 1997 The Technical Specifications affected by this report are listed below:

2.1.1 Reactor Core Safety Limits 3.1.1 SHUTDOWN MARGIN (SDM) 3.1.3 Moderator Temperature Coefficient (MTC) 3.1.5 Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))

3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNAH) 3.2.3 AXIAL FLUX DIFFERENCE (AFD) 3.3.1 Reactor Trip System (RTS) Instrumentation 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits 3.9.1 Boron Concentration Page 2 of 15

D. C. COOK UNIT 1 CYCLE 24 Revision 0 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specifications 5.6.5.

2.1 SAFETY LIMITS 2.1.1 Reactor Core Safety Limits (Specification 2.1.1)

In Modes 1 and 2, the combination of thermal power, pressurizer pressure, and the highest loop average temperature (Tavg) shall not exceed the limits as shown in Figure 6 for 4 loop operation.

2.2 REACTIVITY CONTROL 2.2.1 SHUTDOWN MARGIN (SDM) (Specification 3.1.1)

Shutdown margin shall be greater than or equal to 1.3% Ak/k for Tavg > 200OF Shutdown margin shall be greater than or equal to 1.0% Ak/k for Tavg -*200OF 2.2.2 Moderator Temperature Coefficient (MTC) (Specification 3.1.3)

a. The Moderator Temperature Coefficient (MTC) limits are:

The BOL/ARO-MTC shall be less positive or equal to the value given in Figure 1.

The EOL/ARO/RTP-MTC shall be less negative or equal to -4.54E-4 Ak/k/lF.

This limit is based on a Tavg

.,FPprogram with vessel Tag of 554.0 to 558.0 'F.

Where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for Rated Thermal Power HFP stands for Hot Full Thermal Power Page 3 of 15

D. C. COOK UNIT 1 CYCLE 24 Revision 0

b. The MTC Surveillance limit is:

The 300 ppm/ARO/RTP-MTC should be less negative or equal to

-3.84E-4 Ak/k/°F at a HFP vessel Ta,9 of 554.0 to 558.0 OF.

c. The Revised Predicted near-EOL 300 ppm MTC shall be calculated using Figure 7 and the following algorithm:

Revised Predicted MTC = Predicted MTC + AMD Correction + Predicted Correction*

  • Predicted Correction is -0.30E-4 Ak/k/0 F.

If the Revised Predicted MTC is less negative than the SR 3.1.3.2 limit (COLR 2.2.2.b) and all of the benchmark data contained in the surveillance procedure are met, then a MTC measurement in accordancewith SR 3.1.3.2 is not required.

d. The MTC Surveillance limit is:

The 60 ppm/ARO/RTP-MTC should be less negative or equal to -4.41E-4 Ak/k/°F at a HEP vessel Tavg of 554.0 to 558.0 OF 2.2.3 Shutdown Bank Insertion Limits (Specification 3.1.5)

The shutdown rods shall be withdrawn to at least 228 steps.

2.2.4 Control Bank Insertion Limits (Specifications 3.1.6)

a. The control rod banks shall be limited in physical insertion as shown in Figure 2.
b. Successive Control Banks shall overlap by 100 steps. The sequence for Control Bank withdrawal shall be Control Bank A, Control Bank B, Control Bank C and Control Bank D.

2.3 POWER DISTRIBUTION LIMITS 2.3.1 AXIAL FLUX DIFFERENCE (AFD) (Specification 3.2.3)

a. The Allowable Operation Limits are provided in Figure 3.
b. The AFD target band is +/-5% for a cycle average accumulated bumup

_>0.0 MWD/MTU.

Page 4 of 15

D. C. COOK UNIT 1 CYCLE 24 Revision 0 D. C. COOK UNIT 1 CYCLE 24 Revision 0 2.3.2 Heat Flux Hot Channel Factor (FQ(Z)) (Specification 3.2.1)

CFQ F, (Z) _Q *K(Z)

  • - for P > 0.5 P

FJ (Z) 2

  • CFQ
  • K(Z) for P
  • 0.5 F* (Z)< CF
  • K(Z) for P> 0.5 P

Fw (Z):!_ 2

  • CFQ
  • K(Z) for P*<_ 0.5 Where: P = THERMAL POWER RATED THERMAL POWER
a. CFQ = 2.15
b. K(Z) is provided in Figure 4.
c. F'Q(Z) is the measured hot channel factor including a 3% manufacturing tolerance uncertainty and a 5% measurement uncertainty.
d. W(Z) is provided in Table 1 for +/-5% AFD target band.
e. FwQ (Z)=F C(Z) x W(Z) x Fp The W(z) values are generated assuming that they will be used for a full power surveillance. When a part power surveillance is performed, the W(z) values should be multiplied by the factor l/P, when P is > 0.5. When P is < 0.5, the W(z) values should be multiplied by the factor 11(0.5), or 2.0. This is consistent with the adjustment in the FQ(z) limit at part power conditions.
f. For Cycle 24, Fp = 1.02 for all burnups associated with Note 2a of SR 3.2.1.2.

When no penalty is required, Fp = 1.00.

2.3.3 Nuclear Enthalpy Rise Hot Channel Factor (FN~ ) (Specification 3.2.2)

FNI

  • CFA * (1 + PFm *(l-P))

THERMAL POWER RATED THERMAL POWER Page 5 of 15

D. C. COOK UNIT 1 CYCLE 24 Revision 0

a. CFA= 1.49
b. PF = 0.3 2.4 INSTRUMENTATION 2.4.1 Reactor Trip System (RTS) Instrumentation (Specification 3.3.1)

The Overtemperature AT and Overpower AT setpoints are as shown in Figure 5.

2.5 REACTOR COOLANT SYSTEM 2.5.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits (Specification 3.4.1)

a. Pressurizer Pressure shall be > 2018 psig +
b. Reactor Coolant System TAVG shall be
  • 580.5°F +
c. Reactor Coolant System Total Flow Rate shall be > 362,900 gpm 2.6 REFUELING OPERATIONS 2.6.1 Boron Concentration (Specification 3.9.1)

The boron concentration of all filled portions of the Reactor Coolant System, the refueling canal and the refueling cavity shall be greater than or equal to 2400 ppm+.

+ These are Safety Analysis values. With readability allowance, the corresponding values are 578.2°F for Tavg, and 2050 psig for Pressurizer Pressure.

+ This concentration bounds the condition of Kff < 0.95 which includes a 1% Ak/k conservative allowance for uncertainties. The boron concentration of 2400 ppm includes a 50 ppm conservative allowance for uncertainties.

Page 6 of 15

D. C. COOK UNIT I CYCLE 24 Revision 0 FIGURE 1 MODERATOR TEMPERATURE COEFFICIENT (MTC) LIMITS 1.0

[ UNACCEPTABLE OPERATION 0.5 1.o-u-

C) 0.0 ACCEPTABLE OPERATION]

V x

-0.5 + 4 +

  • 4 + +

-1.0 - i h I I I 0 10 20 30 40 50 60 70 80 90 100 Percent Rated Thermal Power Page 7 of 15

D. C. COOK UNIT I CYCLE 24 Revision 0 FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 250 225 200 175 CD co, 150 z 125 0

0 a-100 0

Of.

O 75 0

50 25 0

0 10 20 30 40 50 60 70 80 90 100 POWER (% of Rated Thermal Power)

Page 8 of 15

A C. COOK UNIT I CYCLE 24 Revision 0 FIGURE 3 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (RTP) 100 90 x 80 N

70 60 0

50 E 40 E 30

.E 20 0

10 0

FLUX DIFFERENCE (DELTA-I)

Page 9 of 15

A C. COOK UNIT 1 CYCLE 24 Revision 0 FIGURE 4 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.2 (0.0,1.0) (6.0,1.0) 1.0 (12.0, 0.925) 0.8 (D

z 0~

0.6 N

-J 0

z 0.4 4 + 4 0.2 I 4 I. 4 0 A & .1. A 0 2 4 6 8 10 12 CORE HEIGHT (FT)

Page 10 of 15

D. C. COOK UNIT 1 CYCLE 24 Revision 0 FIGURE 5 (Page 1 of 2)

Reactor Trip System Instrumentation Trip Setpoints Overtemperature AT Trip Setpoint Overtemperature AT < AT [K- K(2 I1+r~

_AK+ 2Sj (T-T') + K3 (P-P') - fl (AI)J Where: AT = Measured RCS AT, 'F AT = Indicated AT at RATED THERMAL POWER, 'F o

T = Average temperature, 'F T = Nominal Tavg at RATED THERMAL POWER (

  • 574.0 'F)

P = Pressurizer pressure, psig P = Nominal RCS operating pressure (2085 psig) 1 + rs The function generated by the lead-lag controller for Tavg dynamic 1 + T2S compensation S11, T2 Time constants utilized in the lead-lag controller for Tavg Tl> 22 secs. T2 < 4 secs.

S Laplace transform operator, sec-K, < 1.35*

K12 _ 0.0230/°F K13 _ 0.001 0/psi f, (AI) = -0.33 {37% + (qt - qb)} when qt - qb < -37% RTP 0% of RTP when -37% RTP < qt - qb < 3% RTP

+2.34 {(qt - qb) - 3%} when qt - qb > 3% RTP where q, and qb are percent RATED THERMAL POWER in the upper and lower halves of the core respectively, and qt + qb is total THERMAL POWER in percent RATED THERMAL POWER.

  • This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.

Page 11 of 15

D. C. COOK UNIT I CYCLE 24 Revision 0 D. C. COOK UNIT 1 CYCLE 24 Revision 9 FIGURE 5 (Page 2 of 2)

Overpower AT Trip Setpoint Overpower AT** AT. [K4 - K5 lJ LI+T'SJl T - K6 (T- T")--f 2 (AI)]

Where: AT = Measured RCS AT, OF ATo = Indicated AT at RATED THERMAL POWER, OF T = Average temperature, 'F T" = Nominal Tav9 at RATED THERMAL POWER ( <562.1 OF)

K4 < 1.172

  • K5 > 0.0177/°F for increasing average temperature ; K5 = 0 for decreasing average temperature K6 > 0.0015/°F for T greater than T" ; K6 = 0 for T less than or equal to T"

+rS The function generated by the rate lag controller for Tavg dynamic compensation T3 = Time constant utilized in the rate lag controller for Tavg 'r3 Ž>10 secs.

S = Laplace transform operator, sec-fp(i) = 0.0

  • This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.

Page 12 of 15

A C. COOK UNIT 1 CYCLE 24 Revision 0 D. C. COOK UNIT 1 CYCLE 24 Revision 0 FIGURE 6 Reactor Core Safety Limits 660 650 2400 psia.1*W ~UNACClEPTABLE OPER MTON 640 " 2250 psia__;i* * *..

M. 630

> 620 610 1840 psia>

Cl) n/ 600 590 ACCE TABLE OPER *,TION 580 570 0 0.2 0.4 0.6 0.8 I 1.2 Power (fraction of rated thermal power)

DESCRIPTION OF SAFETY LIMITS PRESSURE Power Tavg Power Tavg Power Tavg (PSIA) (frac) (*'F) (frac) (frac) (4F) 1840 0.02 620.86 1.136 586.17 1.2 577.94 2000 0.02 632.79 1.094 600.31 1.2 586.52 2100 0.02 639.85 1.068 608.72 1.2 591.77 2250 0.02 649.96 1.031 620.83 1.2 599.40 2400 0.02 659.52 0.996 632.42 1.2 606.63 UNIT 1 Reactor Core Safety Limits Page 13 of 15

A C. COOK UNIT 1 CYCLE 24 Revision 0 D. C. COOK UNIT 1 CYCLE 24 Revision 0 FIGURE 7 Unit 1 Cycle 24 Predicted HFP ARO 300 PPM MTC Versus Burnup

-ZOSE.4M

-ZOSE.04 42.18E-04

-2.20r=-04 4--

14000 15000 Is=00 17000 18000 Cyci, Bumup (MWOImTU)

Burnup (MWDIMTU) MTC (pcm/cF) MTC (Ak/krF) 14000 -20.660 -2.0660E-04 15000 -20.985 -2.0985E-04 16000 -21.289 -2.1289E-04 17000 -21 .587 -2.1587E-04 18000 -21,887 -2.1887E-04 Page 14 of 15

D. C. COOK UNIT 1 CYCLE 24 Revision 0 TABLE 1 DONALD C. COOK UNIT 1 CYCLE 24 W(Z) FUNCTION Node Heigl1 Bu-up (MWD*hlTU)

Point IttI 150 1000 2000 3000 400. 5000 6 000 7000 0005 8000 10000 12000 14000 10000 13000 18980 1 '0.o 10000 10000 1,00 1000 10000 1.0000 10-0 150000 1.0000 1 0o0o 1.0000 1.000 c10O 10M000 t1o0000 1000 2 0.20 1. 10000 1.0 100000 100001 .000 0000

.000 1.0000 1.000 11.0)0 000 1.0000 1.0000 1.0000 1.0000 1C0000 0.40 1.0000 1.0000 I.0 1.00000 100 1000 a 1, 1.0000 1. 050 1.000 1.00000 1.0000 1.0000 1000 1.0000 1.0000 4 0.060 1.0000 1.0000 1.0m0 1t000 1,0000 1000D 1I0 0 0000 1 -00001.0000 1.0000 1,0000 1.0000 1 1.00

-0000 1.0000 1>000 5 0.00 1.0.000 1.0000 1.0000 1;0000 1.0000 LO000 10000 1.0000 1.00 .000 .1.000 1.0000 1.0000 1.0000 I.0000 I110co0

  • 1.00 1.0000 1.0000 1.0000 1, 1.0000 10000 1,oo10 1.000 100 1.000o 1.0000 1.00m00 .1.00D 1.0000 1.0000 .1.0000 7 1.20 1.0034 1,0970 .10%0 1:0901 1.0971 1.090M 1t0!0 1.103W 1.100 1.100 -1:1122 1.1175 111220 1.1280 1.1333 1.1359 a 1.40 .1.0930 1.097P 1,0%95 10560 1.0576 .1,0992 11013 1.1037 11064 1,1091 1.1118 1 1167 1t121.4 1.1264 1.1314 1.1330 9 A1.00 1:00 1.0n75 10503 1:0070 1.0970 1.0094 1.1014 1.1030 1.1000 1.1085 1.1110 1.115 H:11098 1.1243 1.1288 1.1310 10 1.00 1.0933 1.0074 L.0505 1.0971 1.0980 1.095.4 t.101 1.1032 1.1053 1:1076 1 .1097 1.1137 A111176 1.1216 'E1125 -1.1275 11 2.00 .1,0979 1.097"2 .100 0 1.0918 15 I75 1.1006 1.1023 1.1042 1.1002 1,1080 1.1115 1M148 1.1182 11216 t.1223 12 2.20 1.0972 1.0007 1.004 1.0067 1.0974 1.0984 1.0587 1.1012 1.1028 1(1044 1.1060 1'133 1.1115 1.1143 11171 .1.1184 13 2.40 1.0953 1.05D0 1.0D55 10001- 10967 1.0070 1.050 1.055 1.1010 1(023 1,1035 111057 1.1078 M15 A11130 11t30 14 2.00 1.0M02 1.0550 1.0551 1,055 1.0958 1 0964 1,0972 1.050 1.0939 1,0099 :1.1006 1:1022 1.1036 1 1040 11004 1.A071 15 :2.80 '1.0938 1.0539 1.0540 1.0503 1.0946 1.0050 10954 1.0559 10964 10969 1:0974 1,0032 1.09850 1,00 1(004 1.1008 16 3.00 :1.09M 1.093 1.002 1.0930 1.05M2 1.0934 10935 10536 1.053 1.0039 1,0939 1.041 1.0041 1,0942 1.0942 1.043 17 320 1.0%05 1.009 1.0912 1.02?14 1.0015 1.0514 09512 1 0911 10.5059 1.0907 1,040 1.080 1.0893 1=087 10051 1.0808 18 3140 410854 1,0597 I1.035 1.0-89 1.050 1.0055 1.0581 1,086 1.0l 1.0076 1,0071 .0L02 1.0855 10947 1,0940 1.0830 19 2.60 1:08,92 10807 1.0500 1.0089 1.0554 1,0887 1.0878 A1.D00 1:.091 1:0853 1.0848 1.840 1.0852 100863 1ODUP 1:0872 20 3.00 '01.00 1000 1.0555O 1,0098 1.0M92 1.0883 t0673 10302 1 0852 1.0845 1,0841 1.0847 1.0007 1.0856 1.091 1.0525 21 4.600 1.0884 '1.0091 10355 1.0894 1.0388 1.0879 1.0008 1.0550 .0948 1-0842 004M1 1.0056 1t0889 1t0936 1.0509 1,055 22 420 1.0875 1,0005 1.0890 U8895 1.035 1,0075 I 0055 1,0055 LU 1.094.045, 10507 i.0010 :1:0914 1-0572 1:1010 115I037 23 4.46 1.0071 1.0379 1.093 1.0881 1.0970 1.071 1.0002 1.0054 1,0894 10547 1092 1.099 1.0035 1,1000 .1.1000 1:1030 24 4.60 1.0051 1.0098 1.0074 1:0875 1.0873 1.0359 1.0005 1.00I 108595 1.0002 1.00 1.0500 1.0964 11037 t 1095 .1.1 123 25 4.80 .1.0950 108055 1.0'2 1.0855 1,0865 1.00 1.050 10007 1,0871 1.0278 1.0890 1.0931 1.0950 1.1064 11125 1:1153 26 5.00 .1003U 1,0842 L047 1:0852 1,0855 10055 1.0954 1.0370 1.075 1.0051 1,090 1.0952 1.1013 11087 1.148 1.1178 27 5,20. 1.0023 1.0826 1.0831 1:0035 1.0943 1.0851 1,0860 1.00 1.0095A 1.00-1 1.0520 I.090 .11031 81103 1A115 161189 28 5A4O '1.0808 1.0810 1.0813 I0920 1.08259 1.040 1;09,54 1.0870 1J0997 1.0507 1.0930 1.00.2 1:1043 11114 1,1170 1.1205 20 5.00 1.0702 1.0791 1.0793 10.00 1.0811 :t0826 IR094 10303 1.0880 t.010 1.0935 1.0330 11050 1,1117 1.1178 1.1208 30 0b30 .1:0G71 1.0770 I:077 1.0780 1.0793 1.0811 1.0332 1.0955 1.0881 1.0908 1.0M5 10991 1.1050 1 1113 1..1173 1.1202 31 6.00 1.0752 1.0748 1.0750 1.0759 1.0"74 1-07504 1017 1.0844 1,0872 1.D001 1t0930 1.090 1.1042 1-1102 1:115 :1:1187 32 6.20 1.0730 1.0724 1.0724 1.0732 1.,0749 1.07t1 I 1.0520 I0727 1.0157 M.68 1.091 0 1.09 1>1023 a 1 102  ;(1 31 1.10t63 33 6.40 1.0709 1.0499 1-.005 1.0702 1.0710 1.0741 1:0770 1.0902 1.0932 100695 .10901 1.0R57 1:1006 1.1054 :1,1104 1.1120 34 6.60 1.0691 1.0070 1.0609 1.072 1.0607 10711 1.0741 1.0774 1.0809 1044 100877 1.0931 .1.097 1-1015 1.1066 1.1089 35 6.80 1.0695 1.0054 1.0645 1:0649 1.0664 1.I'97 1.0715 1.0747 1.0781 1.0814 1.0344 1.093 .110930 1.0965 1>1005 1.1024 20 7.00 1.0649 1.0037 1.0631 1.0035 1.0940 10068 1,0692 1.0720 1.0750 1.0740 1.0807 1.0855 1.0897 1.0930 1.0092 1.1004 37 .7.20 .1,030 1.0620 1.0916 1:0521 1,0634 1.0053 1.0597 1.0705 1.0734 1.0763 1.0792 1.0844 1.0893 1-0943 1.0954 11018 3 . .40 1.004 1.0590 1.0555 1.0010 1.0630 :1.0607 1.0689 1.0723 1W758 1,7902 1.0924 1.0873 1:0912 1.0545 1.0585 1.1005 39 :7.60 1.00M 1.0020 1.0M26 1.0637 1.0059 10096 1.0719 1.0753 1.079 10922 1.0851 1.0894 1t0921 1.0540 1.069 1t0983 40 7.80 1.0933 1.0075 I.007 100590 1.0709 .. 0732 1.07600 1.079 1.0920 1.0M47 1,0871 10504 1.0921 1.0930 1.0948 1:0957 41 9.00 1.0732 1.0729 1.0T31 "1.070 0750 t1.0777 10900 1.00,24 t.00w 1.0970 1.0039 1.500m 1.015 1.0512 1,0918 .0522 42 *0.0 '1.0T7 1.0778 1,0781 1.0789 1.0802 1.0.9 0937 1.0855 1.0373 1t0996 1.0500 1.0,05 1.0804 *1.0335 1.0004 '.1.0882 43 8.40 1.0824 1.0325 1.0635 1.0310 1.0346 10A57 1.070 1.0M2 1.0053 110502 .1.0907 1.0905 .U10890 1.0800 1.0951 '1.0844 44 8.60 1.;067 1.0870 1.0874 1.0M00 109M5 .1.0801 t0697 1.0902 1.0900 .1050 1.0590 1.0902 1.0800 1.0394 1.0848 1.0840 45 .80 -1.0907 1.0912 1.0917 1.0920 1.0921 1.0521 t.0015 t.0917 1>0915 1.0912 1.0909 1.00MM 1-0901 1.0595 1.0392 1.0890 46 9.00 1.0544 1,0552 1.0957 1.0957 1.0953 t1.045 10030 1.0506 1.0M17 1.0909 .1.0905 .1.0908 1.0924 1.0547 -.1.09062 1.0W9 47 9.20 1.0979 1.0587 1.094 1.0902 1096 1.0970 1,0954 1.0 30
  • 1.0023 1.0011 1.0005 1t015 1;0947 1.0993 1.1024 1..102 48 9.40 1.1008 'i.1015 11026 11025 11017 1A1004 1.0590 1.0972 1.0557 1.0945 1.0540 1.052 1.005 "1>103M 1.'1070 1:1085 49 .9.90 11035 1.1048 1.1059 1.1005 11053 1.1041 1:1027 1.1012 1.0599 1.0083 '1.083 (.05 11025 1;1076 1,1105 1.t125 50 .0.80 1.1051 1.1075 1.1097 1.1000 1:1095 .1D076 .102 1.1049 :1.1037 1-1027 :1.1023 1.1035 1.1067 1.1113 1.114 1.M115 51 10.00 1.1087 1.1103 1.1116 1.1121 1.1117 1.1109 1.1097 . 1.1084 1.1073 1:1064 1.1060 1.1M 1.1103 1.1147 :11178 .1.11-52 10.20 1.1105 1.1122 :1.1137 1:1143 1:1142 1,1135 1:1126 11114 :.1104 1.1096 1.1093 1.1104 .1:1133 1.1173 :1:1202 1:1215 53 15140 1:1119 1:113 1.1155 1,110 1.1162 l %

1.1155 1.51 1.1141 (1.2,2 1-1125 1.1121 1.1133 1.1156 1.1180 .1.1211 1.1222 54 10.60 t.1212 1.1231 1.1247 1:1250 1.1243 1.1229 1.1209 1.1188 1.1108 1.1152 1.1144 1.156 1.1"1 1.1250 1.1209 1.1305 55 10.00 .1,1189 1.1208 1.1224 1:1229 1.127 1>1218 1 1250 1,110 1.1178 1:1168 1.1162 1.1170 1A110 1.1233 1.1259 1:270 56 11.00 1 0000 1.0000 1.0000 1.01000 0 1000 0000

-. 1.0000 1.0000 1,000 1.0000 1.0000 1.0000 1.000 1.0000 1.0000 1,000D 57 11.20 1:0000 1,0000 1.0000 1.0000 1.0000 1.0000 10000 1.00 1.0000 1.0000 1.0000 t00 1.00 1000 1.0000 1.0000 10005 53 11.4 1000.OO 1.0000 1.00(k 1.0000 1.00 1.0000 10000 1.0000 1000 1.0000 1.0000 1.0OO O 1.0000 0000 1000 1.0000 50 11.00 1.0000 1.0000 1.0000 1.0000 1.0000 .1-0000 I 0001 .0 1000 1.0000 1.0000 1.0500 1,0000 1,0000 (.0000 t0000 60 11.00 .0000 1.0000 110000 1.0005 1. 100 t10000 0 1.0000 0 1,00

. 0000 1.0000 1.0000 .1000 1:0000 1.0000 10005 01 .12.00 1.0000 1.0000 t 1.0001.00 e,00 10000 1*00 106000 ( 0 1.0000 10 1.000 1.0000 1060b .0 100 Top and bottom 10% of core emcluded.

Page 15 of 15