A00027, Unit 1 Saltwater 1 Inch Half Coupling Weld Failure
ML20087D421 | |
Person / Time | |
---|---|
Site: | Calvert Cliffs |
Issue date: | 07/25/1995 |
From: | BALTIMORE GAS & ELECTRIC CO. |
To: | |
Shared Package | |
ML20087D414 | List: |
References | |
CA00027, CA00027-R00, CA27, CA27-R, NUDOCS 9508100326 | |
Download: ML20087D421 (26) | |
Text
{{#Wiki_filter:,,. .: EN-1-100 Engineering Services Process Overview- Revision 3 Page 115 of131
^
ATTACHMENT 19, CALCULATION COVER SHEET ESP No.: g_s ig gg of3 g 2, Supp No.: - Rev. No.: o Page A of iB INITIATION (Control Doc Type - DCALC) DCALC No.: CA 000 t.t REVISION No.: o VENDOR CALCLEADON(CIIECK ONE): 0 YEs W' NO RESPONSIBLE GROUP: gg RESPONS!Bt2 ENGINEER: ggy g3g CALCULATION ENGINEERING O Civil O Instr & Controls O Nuc Engrg IscimNE: O Electrical (Mechanical O DieselGenProject O Life Cycle Mngmt O ReliabilityEngrg O Nuc FuelMngmt O Other:
Title:
Ww- t hWME /" 4Av (oopua, mh 5:Au.u2r Unit #UNrr 1 O UNrr2 O COMMON Proprietary or Safeguards Calculation OYES O NO Comments: Vendor Calc No.: REVISION No.: Vendor Name: 1 Safety Class (Check one): ISR O AQ ONSR There are assumptions that require Verification during walkdown: AIT # This calculation SUPERSEDES; ' l CALCULATION REVIEW: l RESPONstBtI ENC ~ cR: Q g d,Q DATE: q ,25 '9f INDEPENDENT REVIEWER: q ,gg g j DATE: gggh OR (for l'endor Cales) V l i Owxre ACCEPTANCE REviEWIR: M DATE: pd 9508100326 950808 PDR ADOCK 05000317 P PDR
,, ) ;,; ' ",' , . '=
CALCULATION 1.0 Purpose The purpose of the calculation is to perform an analyses on the 1* half coupling leak on the common discharge pipe in the Unit i Service Water Pump room. This calculation provides the technical justification for continued operation and determination of operability for issue report number IR5028461 (ES199501352). 2.0 References 2.1. UFSAR Chapter 9, Rev 15 2.2 Operations Drawing OM-49 (60708E) Sheet 2 of 2, Rev 64 2.3. FSK-MP-4498 Rev 3 ; 2.4. FSK-MP-4498-2001 l 2.5. USAS B31.1, Power Piping,1967 edition through 1972 addenda (B31.id) , i 2.6 Crane technical paper 410, page 2-14, A-6 2.7. Bechtel Calculation C-1007.3, intake Structure Updated Seismic Analysis from Job No. 6750 2.8. Bechtel Calculation C-1007.1, Auxiliary Building Updated Seismic Analysis from Job No. 6750 l 2.9. NIBCO Bronze & fron valves catalog 5-100-E 2.10 ASTM B-43-84a SEAMLESS RED BRASS PIPE, STANDARD SIZES 2.11 VOGT catalog F-14, forged steel valves and fittings 2.12 BG&E Calc. V-94-002 Rev 0, Autopipe validation calculation. 2.13 M-600 sheet LJ 1, rev 44 2.14 ANSI B16.11 1973 Table 4. - 2.15 Deslan of Welded Structures, O. Blodgett , Cleaviand Ohio 1982. 2.16 No1-Destructive Examination report 95-UT-F-3. i 2.17 Saltwater system flow model simulation Node junction 33 pressure results dated 7/24/95. l I 3.0 inputs ^ 3.1 The applicable code for the saltwater branch piping is USAS B31.1. Allowables are per Table A-2 of B31.1. are: l Materials Hot Allowable Cold Allowable CA00027 Revision 0 Page 1 of 18 i
I
.e * -l., e . \
e i CALCULATION -~ A-106 GRB 15,000 psi 15,000 psi B31.11971 addenda B-43 8,000 psi 8,000 psi B31.1 1971 addenda . 3.2 The seismic accelerations used to evaluate the half coupling loads were taken l from the intake Structure Response Spectra. Although the Saltwater piping is I located throughout the intake structure and Auxiliary Building the intake Structure curves are bounding for the entire Saltwater System for all elevations and zones. All assemblies have fundamental' Natural' frequencies greater than or equal to 20 Hz. A review of the Auxiliary Building and Intake Structure spectra revealed that all assemblies lie within the ZPA range. The 1% damping curves for horizontal and vertical acceleration for all elevations i in the intake structure were reviewed. For conservatism the maximum i acceleration value was chosen for the OBE case, multiplied by 1.875 to obtain i the DBE case, then generically applied in the X, Y, and Z directions as the static I l earthquake load case. The specific value used was for vertical acceleration ( .4 g's
- 1.875 = 0.75 g's). .
N-411 prescribes that 5% damping be used for natural frequencies less than 10 l Hz and 2% damping be used for frequencies greater than 20 Hz. Between 10 Hz and 20 Hz linear interpolation is to be used to find intermediate accelerations. This evaluation used 1% damping for alllocations and frequencies. Use of lower damping values produces higher accelerations and higher piping loads. Therefore, the damping values are conservative, l All of these approximations of seismic curves are conservative. l 3.3 Design and Operating Conditions for the Saltwater Piping at the half coupling ' I location are obtained from M 601 Class LJ-1 are: pgs.ign Operatino Pressure 50 psi 35 psl Temperature 95*F 95*F 3.4 The intemal pressure of the saltwater pipe in the location of the half coupling was taken as 20 psi. Even though the stated design pressure of the system is 50 psi the half coupling location is downstream of the Service Water Heat Exchanger in the common discharge pipe. This is a once through system that discharges back to the Chesapeak Bay, therefore, the local pipe intemal pressure at the half coupling is substantially less than the normal operating pressure of 35 psi. To accurately determine the pressure at this junction point a , I simulation was run with the approved and verified Saltwater system flow model in all possible lineups. The required l unction node point pressure (point 33), f which corresponds to the tee in question, was printed out for all possible lineups, i The highest pressure found in the simulation run was 19.6 psi, therefore a value of 20 psi was conservatively used in the calculation of the blowdown rate into the room and the minimum wall determination. A.5 BGE c alculation M-90-169, ' Maximum flood height resulting from a pipe tweak in , the ses he waterpump rooms" determined the maximum allowable flooding rate l Into the Service Water Pump room from the Saltwater sys7em to be 447 ! gal / min.. 3.6 The Stress Intensification Factor for threaded joints is 2.3. ) CA00027 Revision 0 Page 2 of 18
.. '=.
CALCULATION - 3.7 The pipe data utilized 'n this analysis, except for material allowables, is taken from AutoPipe Plus Sl(6 ver 4.5 ANSI B31.11967 library. .._ 3.8 The allowables for DBE were taken as 1.2*Sh (OBE allowable). This is conservative since the DBE allowable approaches Sy (yield strength). 3.9 The design temperature of the Saltwater system is 95'F. Since Q cc 1/Vp and p decreases with increasing temperature p at 95'F will be used. Since saltwater is more dense than water this is conservative. Saltwater density used in the determination of the discharge into the room will be 62.0 lbs/ft* (Crane technical paper 410 page A-6) 4.0 Assumptions 4.1 Seismic Anchor Movement (SAM) for this analysis is negligible, and as such are not included on this evaluation. This piping is anchored directly to the Saltwater system main piping run, which is 24' and extremely rigid. , 4.2 Valve weights were selected based on nominal values obtained from NIBCO catalog 5-100-E for bronze and iron valves. For 1 inch valves,5 lbs was used which is 48% higher than the value listed for 1 inch class 125 bronze globe valve style T-211. 4.3 For determination of the Saltwater discharge rate into the Service Water Pump room the opening was modeled as a sharp edged orifice. For the purpose of this calculation p was conservatively assumed to be 0.2 which is the smallest tabulated value shown on page A-20 of Crane technical paper 410, 4.4 The Reynolds number is required to look up tabulated values of Co. However, d for fully turbulent flow (Re > 2x10 ) 'Co' is relatively constant with increasing Re. 4 A value of 0.60 was used for Cowith p = 0.2 and Re > 2x10 . 5.0 Method of Analysis The piping configurations shown in attachment 1 has been modeled using AutoPipe Plus 386 ver 4.5. The piping has been evaluated for deadweight, thermal, pressure, and seismic loads. The code option used is Power Piping B31.1,1967. The stress ratios in . section 8.0 are computed using the following limits: (Symbols as defined by the AutoPipe Manual Appendix 10.) Sustained Stress: St= Pd 2/(D2 -d2 )+3g, g 1,gsg Occasional Stress: Sto= Ssus + Se,occs 1.2S g Thermal Stress: SE (Sb2 + 4 s,2) m sS A CA00027 Revision 0 Page 3 of 18 }
;-.. N.. ,
CALCULATION - The forces and moments generated at point 800 as a result of the above stated AutoPipe run were used to determine the required weld size for the 1' half-coupling. ~ This weld size determination was done in accordance with ref. 2.15 and is contained in attachment 2. A separate calculation was performed in accordance with ref. 2.6 to determine the maximum discharge rate into the Servicewater room assuming the half-coupilng was to fall completely. This discharge rate was then compared to the maximum analyzed flooding rate into the room from the Saltwater system. This calculation is contained in attachment 3. Finally, an unreinforced opening evaluation was performed, assuming the half coupling was completely removed. The methodology described in ANSI B31.11967 section104.3 was used. Based on the lowest minimum wall reading from UT report 95-UT-F-3, and a pipe intemal pressure of 20 psi the minimum required area of reinforcement was calculated for the 30* ma!n pipe run. This required area of reinforcement was then multiplied by a factor of 2.0 to account forinaccuracy in the UT measurement. This conservative area of reinforcement and a corrosion rate of .15'/yr was then used 16 determine the maximum number of months of continued operation the pipe section can sustain before the remaining area of reinforcement provided by the excess run wall falls below the required area of reinforcement. This calculation of the number of months of continued operation immediately follows the attached AutoPipe run. 6.0 Identification of Computer Codes and Computer Program Used: Name: Aut > Pipe Plus 386 Version: 45 Computer: PC# B027 Piping Information: System No.: LJ-1 Material: Carbon Steel, Brass Size: 3/4" to 2" Computer Results: Input File: SWDRAINS.DAT., SWELLDRS.DAT, ASSY3.DAT Output File: SWDRAINS.OUT., SWELLDRS.OUT, ASSY3.OUT 7.0 Conclusions Based on the unreinforced opening calculation the number of months until the opening no longer meets the code requirements is < 13. Based on the forces and moments acting on the half-coupling attachment weld only 3.7% of the existing weld is required to provide adequate structural integrity. Assuming the half-coupling completely fails the blowdown rate of the saltwater system into the Servicewater room will be 246 gpm which is than the maximum analyzed flooding rate of 447 gpm. 8.0 Computations CA00027 Revision 0 Page 4 of 18
a l 's
- l .
,e CALCULATION --
See following AutoPipe Runs, unreinforced opening calculation and attachments. l l l CA00027 Revision 0 Page 5 of 18
;*- 1
. 1 ,, o ;_
,a
- i
\
CALCULATION -
................................................................................ l LEAK 195 NEW REVis10N TO FSK-MP-4498 l 03/14/95 AgtnPIPE+4.50 MODEL PACE 1 l i
l I eteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee se ee
** ** l AUTOPIPE SYSTEM DATA LISTING ee **
ee.....e ee.. **ee.............e eeeeeeeeeeeeeeeee***ee..... l SYSTEM NAME : LEAK 195 PROJECT ID 2 NEW REVISION TO FSK-MP 4498 , 1 1 PREPARED BY : J. BASHOR CHECKED BY : TODD CONNER l PIPING CODE : B31.1-67 AMBIENT TEMP. ( deg F ) : 70.0 COMPONENT LIBRARY : AUTCPIPE MATERIAL LIBRARY : AUT01967 MODEL REVISION NUMBER : 1 I 1 i
\
l l CA00027 Revision 0 Page 6 of 18
_ _ . . _ ~ _ (*. CALCULATION --- LEAK 195 NEW REVISION TO FSE.MP.4498 - 03/14/95 AutoPIPE+4.50 MODEL PAGE 2 POINT DATA LISTING Po!NT .... 0FFSETS (ft }-.- . NAME TTPE X Y Z PIPE ID DESCRIPTION
*** SEGMENT 8 800 Rm 0 0 -2.00 1cS40 801 Bend 0 0.42 0 Short Elbow, Radius = 0.75 inch Bend angle change = 90.00 deg SIF - In = 2.08, out = 2.08 B02 Run 0.44 0 0 803 Valv 0.19 0 0 Weight = 5 lb Surface factor = 1.00, $1F = 2.30 .
804 Run 0.50 0 0 1BR80 805 Run 0.15 0 0 Total weight of enpty pipes : 2 lb l l l l 4 i i 1 CA00027 Revision 0 Page 7 of 18
..' ~ 'r* , , e 1 CALCULATION -
LEAK 195 NEW REV1510N TO FSK MP 4498 - 03/14/95 AutoPIPE+4.50 MODEL PAGE 3 COMPONENT DATA LISTING POINT COORDINATE (ft )- DATA NAME X Y Z TYPE DESCRIPTION
*** SEGMENT B B00 0.00 0.00 2.00 ANCHOR RIBid Thermal movements None 801 W 0.00 -0.35 2.00 USRFLX In = 2.30, out = 2.30, Flex = Automatic B01 0.00 0.42 2.00 Tl B01 F 0.06 0.42 -2.00 USRFLX In = 2.30, out = 2.30, Flex = Automatle 802 0.44 0.42 2.06 WEIGHT 3 lb , No offsets UCRFLX In = 2.30, out = 2.30, Flex = Automatic B03 0.63 0.42 -2.00 804 1.13 0.42 2.00 .
805 1.27 0.42 2.00 WE!CHT 1 lb , No offsets USRFLX In = 2.30, out = 2.30, Flex = Automatic Ntsber of points in the system : 8
~
1 l l l CA00027 Revision 0 Page 8 of 18
CALCULATION - LEAK 195 NEW REVISION TO FSK MP.4498 - 03/14/95 AutoPIPE+4.50 MODEL PAGE 4 PIPE DATA LI5 TING Plpe ID/ Nom / 0.D. - . . . . T h i c knes s ( i nch ) . . . . . Spec Weight (lb/ft ) Material $ch Inch V.Th. Corr Mit t Insu Ling Grav Pipe other Total 1CS40 1.000 1.315 0.133 0 0.02 0 0 1.00 1.68 0 2.05 A106-B 40 18R80 NS 1.385 0.182 0 0.02 0 0 1.00 2.38 0 2.69 BR w l CA00027 Revision 0 Page 9 of 18
,o- . t CALCULATION - LEAE195 NEW REVISION TO FSK.MP.4498 - 03/14/95 AutoPIPE+4.50 MODEL PAGE 5 MATERIAL DATA LISTING Material Density Pois. Tenper. Modulus Expens. Allow. Name Plpe ID lb/cu.ft Ratio deg F E6 pst in/100ft pel A106-8 1CS40 489.0 0.30 70.0 27.90 15000.0 95.0 0.1904 15000.0 BR 1BR80 529.0 0.30 70.0 14.00 8000.0 95.0 0.2923 8000.0 1 i l l l l CA00027 Revision 0 Page 10 of 18
.. 1
, . 4
. 1 l
CALCULATION -- l l l i 1 I LEAK 195 NEW REVISION TO FSK-MP 4498 ' 03/14/95 AutoPIPE+4.50 MODEL PAGE 6 l TEMPERATURE AND PRESSURE DATA i l
.....C ASE 1- -- C A S E 2 --- ---- C A S E 3 ---
POINT PRESS. TEMPER EXPAN. PRESS. TEMPER EXPAN. PRESS. TEMPER EXPAN. NAME pet deg F In/100ft pst deg F in/100ft pal deg F In/100ft
*** SEGMENT B l
B00 50.00 95.00 0.190 ! B04 50.00 95.00 0.292 B05 50.00 93.00 0.292 l i i 1 CA00027 Revision 0 Page 11 of 18
.. 4 .6 t
CALCULATION - l LEAK 195 NEW REVISION TO FSK MP 4498 -- 03/14/95 AutoP!PE+4.50 RESULT PAGE 1 ANALY$13 $UMMARY Current model revision rusber : 1 Static - Date and Time of analysis ............. Nar 14, 1995 3:31 PM Model Revision N & r ................ 1 Nunber of load cases . . . . . . . . . . . . . . . . . 3 Load cases analyzed . . . . . . . . . . . . . . . . . . . GA T1 E 1 Caps / Friction / Yielding considered ..... No Manger design run .............. ...... No Cut short included .................... No We l 0h t o f cont ent s i nc luded . . . . . . . . . . . Yes Pressure stlffening case ............. 0 . Water elevation for buoyancy loads .... Not considered 1 1 1 CA00027 Revision 0 Page 12 of 18
CALCULATION LEAK 195 NEW REVit!f*d TO FSK MP 4498 03/14/95 AutoP!PE+4.50 RESULT PAGE 2 CCCE COMPLIANCE CCMalNATIONS Cenbination Category Method Load Factor Allowable Remarks GR + Max P Susteln sus Gravity 1.00 Automatic Default Max Long 1.00 Cold to T1 Expansion sun Thermal 1 1.00 Automatic Default sus. + E1 Occasion Abs sun Earth 1 1.00 Automatic Default Max Sus 1.00 Max P Hoop Max Hoop 1.00 Automatic Default OTHER U$ER CCM8tNAfl0NS Combination Method Load Factor Remarks GR sus Gravity 1.00 Default T1 Sun Thermal 1 1.00 Default El Sun Earth 1 1.00 Default CODE COMPLIANCE Y Factor ........................... 0.00 Weld efficiency factor ............... 1.00 Range reduction factor ............... 1.00 Design Pressure Fac t or . . . . . . . . . . . . . . . 1.00 Minimun stress ratio used in reports.. 0.00 include corrosion in stress celcs. .... Y Include torsion in code stress ........ Y Include axial force in code stress .... N Longitudinal pressure calculation ..... AxF/ area _ include rigorous pressure ............. Not analyzed i i CA00027 Revision 0 Page 13 of 18
e e s.. CALCULATION - LEAK 195 NEW REVit!ON To FSK MP 4498 -- 03/14/95 AutoPIPE+4.50 RESULT PAGE 3 EAATHQUAKE LOAD CASE $ 3 Nupber of load cases analysed 3 1 Load case 1 - E1 X-Multiplier = 0.750 Y Multiplier = 0.750 2-Multiptlers 0.750
. 4 l
1 1 l l l I l 1 l l 4 a I l l CA00027 Revision 0 Page 14 of 18
l l CALCULATION ~- i 1 LEAK 195 NEV REVISION TO FSK-MP-4498 - 03/14/95 AutoPIPE+4.50 RESULT PACE 4 l l RESTRAINT REACTIONS Polni Load FORCES (lb ) MOMENTS (ft lb ) name conbination X Y Z Result X Y Z Result I i 800 Anchor ca 0 12 0 12 0 0 8 8 T1 0 0 0 0 0 0 0 0 E1 9 9 9 15 -4 -6 10 12 1 l l 1 l 1 1 i l
~
1 l l l I l l l l l l l CA00027 Revision 0 Page 15 of 18 1 l l
.. , s l . 1
- 1
. . j CALCULATION l
LEAK 195 NEV REVis10N TO FSK MP.4498 -- 03/14/95 AutoPIPE+4.50 RESULT PACE 5 AsME / ANSI B31.1 (1967) CCCE COMPLIANCE (Mements In ft.lb ) (Stress In psi ) Point Load in PL. Out-Pl. Torsion s.l.F Eq. Load Code Code name combination Moment Moment Moment In Out no. type stress Allow. l
- Segment B begin
- I B00 Max P HOOP 283 15000 GA + Max P 0 8 0 1.00 1.00 susi 810 15000 Cold to T1 0 0 0 1.00 1.00 ( 8) DISP O 22500 sus. + E1 4 18 6 1.00 1.00 OCC 1873 18000 801 N- Max P HOOP 283 15000 GA + Max P 0 8 0 1.00 1.00 SUST 810 15000 .
Cold to T1 0 0 0 2.30 2.30 ( 8) Disp O 22500 sus. + E1 1 14 6 2.30 2.30 OCC 2269 18000 i l 801 N+ Max P HOOP 283 15000 CR + Max P 8 0 0 2.30 2.30 susi 1748 15000 Cold to T1 0 0 0 2.30 2.30 ( 8) otsP 0 22500 sus. + El 14 1 6 2.30 2.30 OCC 3208 18000 801 F. Max P HOOP 283 15000 l CR + Max P 7 0 0 2.30 2.30 SusT 1608 15000 Cold to T1 0 0 0 2.30 2.30 ( 8) Disp O 22500 Sus. + El 13 5 0 2.30 2.30 OCC 3221 18000 801 F+ Max P HOOP 283 15000 GR + Max P 7 0 0 1.00 1.00 susi 749 15000 Cold to T1 0 0 0 2.30 2.30 ( 8) DISP O 22500 l sus. + E1 13 5 0 2.30 2.30 OCC 2361 18000 802 - Max P HOOP 283 15000 CA + Max P 3 0 0 1.00 1.00 susT 398 15000 l Cold to T1 0 0 0 2.30 2.30 ( 8) DISP O 22500 l sus. + E1 6 3 0 2.30 2.30 OCC 1156 18000 1 802 + Max P HOOP 283 15000 CR + Max P 3 0 0 1.00 1.00 Susi 398 15000 . Cold to T1 0 0 0 2.30 2.30 ( 8) Disp O 22500 sus. + El 6 3 0 2.30 2.30 OCC 1156 18000 l 803 Max P HOOP 283 15000 C4 + Max P 2 0 0 1.00 1.00 Sust 283 15000 Cold to T1 0 0 0 2.30 2.30 ( 8) Disp 0 22500 Sus. + E1 4 2 0 2.30 2.30 OCC 761 18000 ) l i l l l CA00027 Revision 0 Page 16 Of 18
~~
0
.o CALCULATION -
LEAK 195 NEW REVISICW TO FSK MP 4498 - 03/14/95 AutoP!PE+4.50 RESULT PAGC 6 ASME / ANSI B31.1 (1967) CODE COMPLIANCE (Moments in ft.lb ) (Stress in pal ) Point Lead In-PL. Out Pt. Torsion S.I.F Eq. Load Code Code name combination Moment Moment Moment In Out no, type Stress Allow. 804 Max P HOOP 207 8000 GR + Max P 0 0 0 1.00 1.00 Sust 68 8000 Cold to T1 0 0 0 2.30 2.30 ( 8) DISP 0 12000 Sus. + E1 0 0 0 2.30 2.30 OCC 99 9600 s05 Max P HOOP 207 8000 CR + Max P 0 0 0 1.00 1.00 SUST 55 8000 Cold to T1 0 0 0 2.30 2.30 ( 8) DISP 0 12000 Sus. + E1 0 0 0 2.30 2.30 OCC 55 9600
*** Segment a end ***
CA00027 Revision 0 Page 17 of 18
- 1
, e 1 CALC'ULATION s ~
P De i 2.(SE + P .y) P 20 Design Pressure (psi) Do 12.75 Outside diameter (In) SE 15000 Alicrwable Stress (psi) y 0.4 Coefficient for ferritic steel Lie 13 Service We (months) rate 0.15 Corrosion Rate (k%r) A 0.1025 Corrosion allowance (in) tmh 0.1710 Requlred min wall IAW Eqn (3) 104.1.2 (in) Evaluation of Reinforement Requirements The required reinforcement is: 1 lAs=ta.di l tmh 0.17 Required min wall IAW Eqn (3) 104.1.2 (in) d 0.961.D. of 1" sch 80 pipe (in) 2.00 uncertainty correction factor d1 1.914 A7 0.33 Required reinforcement area (In^2) Area available for reinforcement lAi + Az + As + A< + As k As I Ai = (2. da - di) .(7i- ta) d2 is the greater of di or (tb-A)+Th +d1/2 tb 0 Thickness of branch (in) A 0.1625 Corrosion allowance (in) Th 0.36 Actualwallin header (in) d2' 1.1545 (in) d2" 1.914 (in) d2 1.914 half width reinforcing zone (in) A1 0.36 area provided by excess run wall (in) in this instance A2 through A5 are zero since the branch connection is assumed to fail Excess reinforcement A1-A7 0.03 Therefore this is acceptable. I l l l CA00027 Revision 0 Page 18 of 18
,i - .. ULTRASONIC THICKNESS MEASUREMENT NDE-5400-CC REV0 1.NDE Report No.: 95-UT F-3 2.Date: 03/15/95 3. Unit: 1 4. Sys. No. 012
- 5. M.O. No.: IRO 028 461 6. RFO/PM: N/A 7. ISO /DWG.No. N/A
- 8. Examiner: EDDIE NOUSTON 9. Certification Level 1-T 10. Initials:
Examiner: N/A Certification Level: N/A Initials: N/A
- 11. Component: SERVICE WATER HX/ SALT WATER COMMON RETURN LINE.
- 12. Configuration: TEE 13. Location: 12' TB , SERVICE WATER ROOM
- 14. Material: STEEL 15. Material Temp.: 54.2 *F 16. Cal Block Temp.: 56.6 *F 17.Couplant TypelBatch No.: _SONOTRACE 40. BATCH # 093104 EQUIPMENT DATA Transducer. 18. Size: 0.312" 19.Freq.: SMHZ 20. Style: DUAL 21. Serial No.: 129219 Instrument 22. Brand /Model: PANAMETRICS 26 DL PLUS 23. Serial No.: 91037108 COMPONENT
- 24. Nominal Diameter: 30" 25. Nominal Thickness: 0.375" 26. Grid Size: 0. 5 "
- 27. Datum Location: N/A Grid: 28. Start: Row 001 Column A 29. Finish: Row 016 Column O Test Equipment Used: Digital Thermometer:
- 30. Brand /Model: OMEGA 873F
- 31. Serial No.: T-136995 32. Cal. Due Date: 06/03/95
- 33. CALIBRATION BLOCK SN l CCU-07 l l
ACTUAL 0.500" N/A N/A 0.100" TIME +/- < 2% of initial Conditioi lNITIAL 0.500" N/A N/A 0.100" 1539 N/A CAL CHECK N/A N/A N/A N/A N/A N/A FINAL 0.499" N/A N/A 0.100" 1620 YES
- 34. Remarks: GRIO DATA SHEET NUMBER: 95 UT F 3B OATA SHEET NUMBER: 95 UT F 3A READING TAKEN AS PER ENGINEERING. j
- 35. Number of Attached Data Sheets: 1 Number of Attached Grid Data Sheets: 1 0 I 5 b f*' v
- 36. Prepared By: k idd Certification Level: /'I Date: [ 6 l
- 37. Reviewed By: A # F~b+ Certification Level: vrE Date: 0-2 5 *7 e
- 38. Received By:(Print) I b"VJ'# Signature:
% Date: 7I I
... #-12 200 ** *
- e a .
Dn.nkrda,9swn-3A
~ . + -l e .., ,% .a. w w -p. - . .. .
i l f .- .
~ ^ ' ^ ^
h,n . .
-6.- . ~ + . . . 'i . i-1 4 - - ~ ~ ~..
e e -.
.f .f. .f. . . .
- f. .f -
.f.
4 Ijlft , llf!. fltl .J((f -llll- -l }f l. .
~ , a , , _ .
l
/. } - ~ ^N. . _ .} . _.. _
__p ; . j . [ .. .p ._ . 4 - [' ._. _x gj l 4 1
-1 _
i l a i l-li -:.t2 1 --
.p 7--( . .I r - - -
p ,L . . f- ,!~f;f. ,f f _ h .~ f ! 3 , , .
~. .
i l f! 'l!
' M2% litf !!ti f!(( ~ !G lVi . L ' a& WZar M-Yir&
lh{ .t 4 H ._l M 79 A
/sa l -
m< A/tpL'd I b l l.l_f
+..
3.-- .ii! -. t i ! - p:;
;i } i, i 1
ffb}{Vf55 A - GT/A .
@l/E N flND$1 ].. JWEd&U/)x i ' YM. 95!!!f-l1A . $ ; t -i i F . ; i !
F t6 l-t- 7 ;7 .i g r { - l 1i II { l ohi
. .i. .
i ., t. i t,3 ,t ,t i L.
,t ,g .I 1i e - }i - -
j -i }h~ , e i
' l}: f- f , +n . ;: +- -.-g .p+ r.+.e- ,,.
i -l - t
.-+- -f , - .-.!-- f l!- li .; . , ,
h - t t : ,t+ +-
!+t I
( 4 t. ii
+.
1
.tt , +pt-l i ii i!{l, ,i .! .} - .s t '-
i i
;i r ., ;t i; .t ji i
til L I i
- i. , 1, i.i4 }i;i } .
} .1 j i ! i i1 -i i ;- . .o j !;;i tY f ( wl' 2 v ...t...,.,- _1-.e {.
4 .
._4_. +1 gl_ .L - . _L. L _a_L. 4%. 4_
fij. q.pi_F. ..i iH._ .# _
!l . ..i l -g i ]4s +a !3 4 ,73 4
i ,- i . ! i i ,1 - ,. I! ! !-! , i fi Iii! I! !.
!f' ! {l6 .i,i 't l iI ' I IiI j-f( . - - - - - - -
1 +i ' i6 il j j . l {. i g [- ) 4 ,
'f '
fi hk ft I hhAh fI! ' ! h . -{, A hI + ' h' I !! '
,,, 7"[ f _
i . si . .. . . .. , n., ,,
-f=. ~G:: , GTAAtidwerda i 9C-t)f-f-3B --~ . . . ~ .p . + . .a. ^'-" ~ ;2 .
l' p { :E
, ~ ~
U 1 .
+
t . p
,,K 3 . -.
L m & ; b Pi IG; ::V - Ts 1 ( u %:y:n14 . _ . _ . t . . . _. _ _ . I .s
- - - 4 _ ~ . . 111.
803 -~ 1 I Y gy) ;-. q.
- i. ; iq q !
[ ;. . gd5 1 l jil
! - l.
I, i: _: :
~ ~ ~ ]',
J .t : .
!l t
1I 1 ' l : r . I M6 .I
} ,! q 1 t. .i -ji . . . _ ... c,p 1 .t. q.
Lt i pd : :- z-
~ - '
T, . : :p
.: , i ' 1:3 1 :!- J d)'/
t- 4- 4 ii 6
)
I t i' .i [ tI'
' ..-tnnwm+m-mmmw rs-Q- 609't '
h ig,p { ' l Qt ihogyg,h/
~~
A09 .l .p${ Y , tl u 7 L. j , , _ 1 t
.Gembu ?[ .f. ,'q- ;![v l oio r -{
o y . 7t ) lt, i tti -f-O// -!, -+--- . 1I L I
! 1 !' l -j a; . .
p/2 .-+ l t [ L Ju -
~ ~
- i lli i! ! 1 !
i
1 .-f * '
0/3 ~ l itl ff ll 4 - li I t ... r J, L o, - .. . tu t
.L t ~ ~
BNi__._ ' t u-1_.__!I' l _.L ?[! q l' ! t 4i t i.r, vvc er4#@,'+~. - 4' i
- , 3 i
}
1 A@c - s gj5 - 3 ; e p .- __- . _. ._.
; J-'-
- . $pt.:f
- ~
jij!
!j f -, l 9 2l: ~
1i200!LASG2- J 10ll 2 0 S B i & TOOL 2527 pic \ C00% 10.6/S
- ~
' i. D00X l0.517 i i i[ 'Oy5 0,S?2 $0$la.5&'#10W QSSY . . ,,yhszt t ? EW , r.psm pot.s ;dsn [ . . ; 590y :l0.-GW0pv/4ts2qnofassi ll p y a oor a:sg 1 j ~ ~ ~
I. 600 d572 Old Mf26 i l j. ! #? 1 : .T g l(. ( L g l b} tll tli j f. li. t l , is2$ w - ~.
%?$2fibiyas da_ int Brifk/t 6ffilGRfHMiAbb$~A2f[p$fabwa f u ,'.,,.,,-
P k // 4 t r e ew 9= l
\ =N g ;
rs!
%,. ,~m, - 1 PQ / % ~
X. Rg bL 4
+
e, a g tSe Attachment 2 Calculation CA00027 REQUIRED WELD SIZE DETERMINATION FOR 1" HCPLG Forces and Moments from AutoPipe run: Fx := 9 sheer ht Fy := 21 Teneson et Fz := 9 sheer et Mx := 48 Bending h.ef My := 72 Tortion in et Mz := 216 Bendng in-bf Treatina the weld as a line in accordance with Blodaett section 7.4-7 d := 1.75 demeter of a 1* 3000 m half-couprmg is 1.75" 2 x-d 4 Sw = 2.405 Jw :=
- Jw = 4.209 4
Aw := x d Aw -5.498 1 2 2 M := (Mx + Mz ) M = 221.269 Resultant moment acting on weld 1 2 V := (Fx p,2)2 V = 12.728 Resultant shear acting on weld P.=21 Tension force acting on weld T.= My 875 T =63 Torque acting on weld ib .= E tb = 91.993 Bending stress acting on weld Sw fv := V fy = 2.315 Shear stress acting on weld
^*
fp .= 1 fp = 3.82 Longitudinal stress acting on weld Aw ft := 1 ft = 14.967 Tortional stress acting on weld Jw
.-e *, e gi17 1
2 2 2 fweld := (fb , gy2,pp , gg }2 weld = 93.31 Combined stress acting on weld - The minimum strength wold rod BGE will allow for a carbon steel to carbon steel weld is E40xx series Therefore, the minimum allowable ist := 13600 3 Thus, the allowable stress per inch for the weld Ira: = .707 t fa = 9.615 10 I** The required weld size is: w= w = 0.0097 fa Since USAS B31.1 requires the minimum throat on the cover fillet weld to be 3/16": 3 - wactual = 16 wactual = 0.265
.707 By taklog credit for the cover fillet only the percentage of weld required to carry the forces and moments is: =0.037 Only 3.7 percent of the existina weld is reautred wactual i
I l l 1 I l
y o. > W% Attachment 3 Calculation CA00027
'~
SALTWATER SYSTEM BLOWDOWN RATE INTO THE SERVICEWATER ROOM Flow from a square edaed orifice; where: dl := 1.75 diameter of 1" half <oupling. Ref. ANSI B16.11-1973 Table 4. C:30.6 Ref. Crane technical paper 410 page 214:"..For nozzles & orifices discharging to atmosphere C values may be taken from page A-20 if P is taken as upstream pressure." Since d2 le the diarneter of the straight run of pipe, which is ndt p is approx. 0. As p increases C increases which results in an increase in fkm. In order to facilitate calculations $ will be conservatively assumed to be 0.2 (smallest tabulated value). The Re number is required to look up tabulated values of C. However, for fully turbulent flow (Re> 2x10^4), C is relauvely constant with increasing Re. A value of
.60 we be used for C wkn p = 0.2 and Re 2x10^4.
p := 62.0 The design temperature of the saltwater system is 95 degrees F. Since Q la piWh.e: to il p, and p decreases with increasing temperature, p @ 95 degrees F will be used. (since saltwater is rnore dense than water this is conservative) P .= 20 P le taken as 20 psl as stated in the calculation input 3.4 2 Q := 236 dl C* From Crane technical paper 410 Equation 3-21 page 3-5 i P Q = 246.297 opm Shce the calculated discharge rate from the 1* half. coupling (assuming it completely faits)is less than the maximurn analyzed floodeng rate of 447 gpm tNs size hole at this location is accectable from a room flooding standpoirt
,-. .- , , _ - .}}