A04542, Rev 0 to CA04542, 375 Gal 35% Hydrazine CR Chemical Habitability

From kanterella
Jump to navigation Jump to search
Rev 0 to CA04542, 375 Gal 35% Hydrazine CR Chemical Habitability
ML20210V200
Person / Time
Site: Calvert Cliffs  Constellation icon.png
Issue date: 09/30/1998
From: Gryczkowski G, Mihalcik J, Sommerville I
BALTIMORE GAS & ELECTRIC CO.
To:
Shared Package
ML20210V122 List:
References
CA04542, CA04542-R00, NUDOCS 9908230072
Download: ML20210V200 (55)


Text

r-

,s a

~ 3 Engineering Services Process Overview EN-1-100 Revision 10 o Page 105 of153 ATTACHMENT 19, CALCULATION COVER SHEET INITIATION (Control Doc Type - DCALC)

Page / of g

'bCALC No.: QvyfVL Revision No.:

o Vcador Calculation (Check one): 0 Yes JiT No ESP g5pgfo /gyg Supp No.: C Rev.No.: o Responsible Group: ggtf Respont Mc Engineer: $n) [ eg/<,*

CALCULATION ENGINEERING O Civil O Instr & Controls # Nuc Engrg U " -

O Electrical O Mechanical O Diesel Gen Project O Life Cycle Mngmt O Ifeliability Engrg O Nuc Fuel Mngmt .

O Other:

Title:

J Y Q {. JQo l}ft)gyg*

0 N' fit /L h+M Cd/n NA L /}$6/f4 G U W Unit O UNrr 1 O UNIT 2 pt' COMMON 'O Proprietary or Safeguards Calculation O YES JI6NO Comments: ///)

Vendor Calc No.: g4

  • VendorName:

REVISION No.:

A

/[/j).

Safety Class (Check one):

Q'SR O AQ ONSR

'Ihere are assumptions that require Verification during walkdown:

AIT # #// )

This calculation SUPERSEDES: hg V/

REVIEW AND APPROVAL:

1 Responsible Engineer: he,)[ her/c.jg Independent Reviewer: JAff ,,,ys///r [

Date:

d -

J Date: _7/2,/9 t Approval: 1/4, Mf LL.!K b. -

Date: 33 LA fpq9 l

(

y l

6 9908230072 990817 PDR ADOCK 05000317 OsC _ P PDR

. s

CA04542 Rev.0 Page 2

2. LIST OF EFFECTIVE PAGES Page Latest Page Latest Page Latest Page Latest Page Latest Rev Rev Rev Rev Rev 001 0 002 0 003 0 004 0 005 0 006 0 007 0 008 0 009 0 010 0 011 0' 012 0 013 0 014 0 015 0 016 0 017 0 018 0 019 0 020 0 021 0 022 0 023 0 024 0 025 0 026 0 027 0 028 0 029 0 030 0 031 0 032 0 033 0 034 0 035 0 036 0 037 0 038 0 039 0 040 0 041 0 042 0 043 0 044 0 045 0 046 0 047 0 048 0 049 0 050 0 051 0 052 0 053 0 054 0 055 0 l

i

CA04542 Rev.0 Page 3

3. REVIEWER COMMENTS 1

1 I

.)

CA04542 Rev.0 Page 4.

4. TABLE OF CONTENTS J
01. C O V ER S H E ET. . . . . .. . .. . .. . . . . . . . .. .. . . . .. . . . . . . . . . . .. . .. . . . . . .. . .. . . . . . . . . . . . . .. . . . . . . .
02. LIST OF EFFECTIV E P AG ES ..... .. .. ......... . .. . ..... .... .. . ...... . ... ....... .... .. ...... . .... . ..... . . .. . . ... .. .... 2
03. REVI EWER COM MENTS..... .... . ....... .. . ....... ..... .. .. . .. ..... .. .. .. ..... . . . .. .. .. . ... .. . .. ...... . .. . . ... .. ... .. 3
04. TAB LE OF C ONTENTS .............. . .. . . ... . .. .. .. . .. .. . .............. .. . ... . . .. . . .. . .. . . .. . . .. . ... .. . ...... . ..... ...... 4
05. PURPOSE......................................................................................................................5 06.INPUTDATA...................................................................................................................6
07. TEC HNICAL AS S UM PTION S . . .. . ... .. .. . . .... . . ... . .... . .. .. . .. .. . . . . . . . .. . . . . . . .. . .. . .. .. . .. . ... .. . . . . .. . . . ..

0 8. RE F E REN C ES . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . .. . . . .... . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .

09. M ETHO DS OF ANALYSI S . ... . ... ....... .... . . . . . .... .. ... . .. .... . ..... . . . .. . .. . . .. .. .. . .. . . . . . ... . ... ..... . . .. ... . 14 1 0. C A L C U L ATI ON S . . . .. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11. DOCUMENTATION OF COMPUTER CODES............................ ............. . . ............... 20 12.RESULTS........................................................................................................................21 1 3 . C ON C LU S I ON S . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . .
14. ATTA C H M ENTS . .. . . . . . . . . .. .. . . . .. .. . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ATTACHMENT A: MSDS FOR HYDRAZINE....................... ......... .............................. 23 f

ATTACHMENT B: ARCON96 RUNS FOR AUX BLDG ROOF INLET.............. .......... 27 l l

ATTACHMENT C: ARCON96 RUNS FOR WEST ROAD INLET PLENUM................ 34 ATTACHMENT D: EXCEL SPREADSHEET HYDRAZINE ACID - AUX BLDG ROOF INLET......................... 41 ATTACHMENT E: EXCEL SPREADSHEET HYDRAZINE ACID - WEST ROAD INLET.................................. 46 ATTA CHM ENT F: CORRES PONDENCE........ ................ ....... .... ....................... .. .... 5 0 ATTACHMENT G: CROSS SECTIONAL AREAS........................................ . ............. 54 LA ST P A G E OF REPORT.. .................. .. ....... . . ..... .. . ... . . ...... . . . . . .... ... . ...... . . ... . . .. . ... .. . . . .. . . . . . .. . 5 5 2

m CA04542 Rev.0 Page 5

5. PURPOSF/ I 10CFR50 App.A GDC.19 (Ref.1) requires that a control room be provided, from which actions can be taken to operate the nuclear power plant safely under normal conditions and to maintain it in a safe condition under accident conditions. Release of hazardous chemicals can potentially result in the control room becoming uninhabitable. Thus the NRC requires each utility to assess the habitability of the control room during and after a postulated external release of hazardous chemicals based on the chemical toxicity limit, vaporization rate, and the relevant atmospheric dispersion coefficients (Ref.2). The explosion and fiammability hazard of these chemicals must also be addressed (Ref.2).

Ecolochem, Inc. will use 35% hydrazine solution in the water treatment process. This solution will be stored in 375 gal tote bins at the tank farm, warehouse, and north service building (Att.F).

The chemical habitability of the control room after a chemical release involving hydrazine was determined based on in-house dispersion calculations and toxicity determinations for the current control room configuration with the inleakage points at the control room inlet and exhaust dampers and for the modified control room configuration with the inleakage points at the west road inlet plenum (Refs.3-4). Results indicate that this solution can be stored in a 35% solution at the tank farm, warehouse, and north service building without constituting a toxicological or fire hazard to the control room following a worst case accident for both the current and modified control room configurations.

The results of the toxicity calculations for a 35% hydrazine solution are as follows:

Peak Concentration (ppm)

Tank Farm Warehouse NSB Current Configuratio No Recirculation 0.88 0.25 2.80 With Recirculhtion 0.88 0.25 2.80 Modified Configuration With Recirculation 0.57 0.29 0.84 Toxicity Limit (IDLH) 80 80 80 Note that under the current and modified configurations, the peak control room concentration under worst case conditions is less than the IDLH toxicity limit, the maximum level from which one could escape within 30 minutes without any impainng symptoms or irreversible health effects.

The current calculation incorporates many assumptions which make these results conservative.

(1) A maximum concentration limit (IDLH) was utilized that could be tolerated for 30 minutes without physical incapacitation of an average human. The regulatory requirements of Ref.2 dictate a maximum concentration limit that could be tolerated for 2 minutes without physical incapacitation of an average human. IDLH denotes Immediately Dangerous to Life and Health and is defined as the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects (Ref.5). (2) For the current configuration the maximum control room intake flowrate of 8300 cfm is utilized. This value is twice the normal operating value (Refs.6-8). (3) The control room volume conservatively neglects dead spaces in the control room ceiling and the volume of room A512. (4) The most conservative methodology is utilized: turbulent evaporation.

Hydrazine will not pose a flammability or explosion hazard in the control room, since the peak concentration is a small fraction of the lower explosion limit.

r CA04542 Rev.0 Page 6

/

6. INPUT DATA The following input data is incorporated into this work:

(01) Chemical data for hydrochloric acid:

CAS number 302-01-2 Refs.5,10 Chemical formula NH 2 4 Refs.5,10 Toxicity Limit IDLH (ppm) 80. Ref.5 Odor threshold (ppm) 3. Ref.5 Volume fraction 0.35 Att.F Volume (gal) 375 Att.F Specific gravity (gm/cc) 1.008 Ref.5 Vaporpressure(mm Hg) VP 14.4@25 C Ref.10 Bothng point (Degrees C) TB 113.5 Refs.5,10

. Molecular weight (gm/ mole) MB 32.05 Refs.5,10 Flash Point (Degrees C) 37.8 Refs.5,10 Lower explosion limit (Vol%) 2.9 Ref.10 (02) Physical properties of air per Refs.13,14:

Molecular weight (gm/ mole) MA 28.97 Characteristic length in air (Angstroms) SIGA 3.711 Molecular energy of attraction / Boltzmann constant (K) E/KA 78.6 Mass density of air (gm/cc) RHOA 1.204E-03 Viscosity of Air (gm/cm-sec) MU l.83E-04 Universal Gas Constant (torr-cm3/gmole-K) R 6.24E+04 l (03) The updated control room volume of 234157 ft3was extracted from Ref.18.

(04) Control room damper inflow for the current configuration is extracted from Refs. 7-8 and is defined as 8300 cfm or twice the maximum flowrate.

(05) Control room inleakage for the modified configuration is extracted from Refs. 3-4 and is defined as 3000 cfm.

(06) The Tank Farm / Warehouse / North Service Building (NSB)-Control Room ARCON96 X/Q inputs were derived as follows (Att.B):

(a) Number of meteorological data files: 3 Refs.B2,B10 (b) Meteorological data file names: CC1991. MET Refs.B2,B10 CC1992. MET Refs.B2,B10 CC1993. MET Refs.B2,B10 (c) Height oflower wind instrument (m): 10. Ref.B3 i (d) Height of upper wind instrument (m): 60. Ref.B3 I

(e) Wind speed units type (l=m/s,2 mph,3= knots): 1 Refs.B2,B10 (f) Release type (l= ground,2= vent,3= elevated): 1 L  ;

e Ef5 7

CA04542 Rev.0;

'Page 7 -

~

1(h) Release height (m):J 0.

(h) Building area (m2 )! 1155. Att.G The cross sectional area calculations ap analyzed in Att.G. The calculation of containment cross sectional reca yields 12435.63 ft above the rooftop level building cross sectional area can be calculated to be. For 1938.93 ft,of 91'6".

a west-to-east wind The auxiliary

' directiog the total cross-sectional area of the auxiliary building and the two containments is L 26810 ft . For an capt-to-west wind direction, the total cross sectional area of the turbine building is 27167 ft . For a north-to-south and south-to-north wind firection, the total cross sectional area of the containment and the tybine buildipg is 21016 ft . The cross-sectional area of a single containment of 12435.63 ft or 1155 m will conservatively be used.

(i) Effluent vertical velocity (m/s)
0

)(j) Stack or vent flow (m'/s): 0-(k) Stack or vent radius (m): 6.72 r = SQRT(A/n) ,

2

= SQRT[(375 gal)*(3785.422cc/ gal)/(1.cm)/n*(1.E-4m'/cm ))

= 6.72 m j

. (1) Direction to source (deg): 333 Tank Farm Refs.B12,B14 174 Warehouse Refs.B12,B14 059 NSB Refs.B12,B14 i (m) Source window (deg): 90 Refs.B13-B14 (n) Distance from source to receptor (m): 135 Tank Farm Refs.B12,B14 300 Warehouse Refs.B12,B14 067 NSB Refs.B12,B14 (o) Intake height (m): . 15.62 91.5' + 4.75' - 45' = 51.25' = 15.62 m where 91.5' is the height of the Auxiliary Building roof (Ref.B6),4.75' is the control room exhaust height (Ref.B 13), and 45' is ground level (Ref.B8).~

(p) Grade elevation difference (m): 0 Ref.B1 (q) Primary output file name: CHTFCR.OUT Tank Farm CHWHCR.OUT Warehouse CHNSBCR.OUTNSB l

' (r)JFT file name: CHTFCR.JFD Tank Farm CHWHCR.JFD Warehouse CHNSBCR.JFD NSB

? -(s) Surface roughness length (m): 0.1 Ref.Bl (t) Minimum wind sp' eed (m/s): 0.5 Ref.Bl (u) Sector averaging constant: 4 Ref.B1 I

_E

CA04542 Rev.0 Page 8 (v) Hours in average: 1 2 4 8 12 24 96 168 360 720 Ref.B1 (w) Minimum number of hours: 1 2 4 8 11 22 87 152 324 648 Ref.B1 (x) Horizontal diffusion coefficient (m): 3.12 c y=r/2.15=6.72/2.15=3.12 m (Ref.B1)

(y) Vertical diffusion coefficient (m) 0.

(z) Flag for expanded output: n Ref.Bl (07) Atmospheric dispersion coefficients from the Tank Farm / Warehouse /NSB to the Control Room:

Tank Farm Warehouse NSB 3 3 0- 2 hrs 9.17E-5 sec/m 1.06E-3 sec/m' 3.33E-04 sec/m' 3 3 2- 8 hrs 2.84E-04 sec/m 7.74E-5 sec/m 8.34E-4 sec/m 3 3 8- 24 hrs 1.26E-04 sec/m 3.71E-4 'sec/m 24- 96 hrs 8.55E-05 sec/m 3 3.20E-5 2.25E-5 sec/m sec/m'3 2.51E-4 sec/m 3

3 3 3 96-720 hrs 7.22E-05 sec/m 1.88E-5 sec/m 1.80E-4 sec/m (Attachment B, Refs.B1, BIO, B15)

(08) The Tank Farm / Warehouse /NSB-West Road inlet ARCON96 X/Q inputs were derived as follows (Att.C):

(a) Number of meteorological data files: 3 Refs.B2,B10 (b) Meteorological data file names: CC1991. MET Refs.B2,B10 CC1992. MET Refs.B2,B10 CC1993. MET Refs.B2,B10 (c) Height of lower wind instrument (m): 10. Ref.B3 (d) Height of upper wind instrument (m): 60. Ref.B3 (e) Wind speed units type (l=m/s,2= mph,3= knots): 1 Refs.B2,B10 (f) Release type (l= ground,2= vent,3= elevated): 1 (g) Release height (m): 0.

2 (h) Building area (m ): 1155. Att.G The cross sectional area calculations age analyzed in Att.G. The calculation of containment cross sectional area yields 12435.63 ft above the rooftop level of 91'6". The auxiliary 2

building cross sectional area can be calculated to be 1938.93 ft For a west-to-east wind directiog the total cross-sectional area of the auxiliary building and the two containments is 26810 fl . For an capt-to-west wind direction, the total cross sectional area of the turbine building is 27167 fl . For a north-to-south and south-to-north wind girection, the total cross sectional area of the containment and the tybine buildipg is 21016 ft . The cross-sectional arca of a single containment of 12435.63 ft or 1155 m will conservatively be used.

(i) Efiluent vertical velocity (m/s): 0

l CA04542 Rev.0 Page 9 (j) Stack orvent flow (m'/s): 0 (k) Stack or vent radius (m): l 6.72 i r = SQRT(A/x) 2 2

= SQRT[(375 gal)*(3785.422cc/ gal)/(1.cm)/n*(1.E-4m /cm ))

= 6.72 m (1) Direction to source (deg): 354 Tank Farm Refs.B12,B14 162 Warehouse Refs.B12,B14 050 NSB Refs.B12.B14 (m) Source window (deg): 90 Refs.B13-B14 (n) Distance from source to receptor (m): 172 Tank Farm Refs.B12,B14 l 262 Warehouse Refs.B12,B14 i 135 NSB Refs.B12,B14 '

(o) Intake height (m): 9.14 The Auxiliary Building roof above the control room and above A512 will be sealed tight.

Most control room inleakage can then be assumed to originate at the Auxiliary Building inlet plenum on the west road side (ES199702144). Per Ref.Bl1, the inlet plenum is 54'x10' with a bottom elevation of 70'. Thus the intake height is 75'-45'=30'=9.14 m j (p) Grade elevation difference (m): 0 Ref.B1 (q) Primary output file name: CHTFWR.OUT Tank Farm CHWHWR.OUT Warehouse 1 CHNSBWR.OUT NSB (r) JFT file name: CHTFWR.JFD Tank Farm CHWHWR.JFD Warehouse CHNSBWR.JFD NSB (s) Surface roughness length (m): 0.1 Ref.B1 (t) Minimum wind speed (m/s): 0.5 Ref.B1 (u) Sector averaging constant: 4 Ref.B1 (v) Hours in average: 1 2 4 8 12 24 96 168 360 720 Ref.B1 (w) Minimum number of hours: 1 2 4 8 11 22 87 152 324 648 Ref.B1 (x) Horizontal diffusion coefficient (m): 3.12 c y=r/2.15=6.72/2.15=3.12 m (Ref.B1)

(y) Vertical diffusion coefficient (m) 0.

(z) Flag for expanded output: n Ref.Bl

1 CA04542 Rev.0 Page 10 ~

(09) Atmospheric dispersion coefficients from the Tank Farm / Warehouse /NSB to the West Road I Inlet:

Tank Farm Warehouse NSB 3

0 2 hrs 2.15E-04 sec/m 1.10E-4 sec/m 3

3.18E-4 sec/m' 3

2- 8 hrs 1.85E-04 sec/m 8.73E-5 sec/m' 8- 24 hrs 3.22E-5 sec/m 3 2.60E-4 sec/m'3 1.22E-4 sec/m 24- 96 hrs 8.55E-05 6.18E-05 sec/m sec/m

2.25E-5 sec/m' 8.31E-5 sec/m'96-720 hrs 4.91E-05 sec/m' l 93E-5 sec/m' 5.94E-5 sec/m 3

(Attachment C, Refs.B1, BIO, BIS)

I i

i

i CA04542 Rev.0 Page 11

7. TECHNICAL ASSUMPTIONS /

The following technical assumptions were utilized in this work:

(01) Per Attachment F, a 35% Hydrazine Solution is stored in a tote bin of 375 gals capacity in the tank farm, warehouse, or north service building.

(02) Per Ref.15 in a postulated accident, it is assumed that the entire container of the toxic substance ruptures.

(03) An average ambient atmospheric temperature of 30 C and pressure of 760 torr will be used in this calculation. Variation in these parameters shows insignificant impact on the results (Ref.16). TA=30 PA=1 (04) The chemical spill will be assumed to spread in a circular shape with the maximum radius determined by a spill thickness of I cm per Ref.15.

(05) Based on the characteristics of the chemicals, the following release mechanisms will be assumed: For the hydrazine solution, the turbulent mass transfer is the worst of three methodologies: diffusion in still air, laminar mass transfer, and turbulent mass transfer.

(06) For laminar and turbulent mass flow, a wind sped of one meter /sec is assumed. This is consistent with the wind tunnel methodology and the CCNPP data of Ref.B3. Note that per Ref.17 (p.265), a flow with Reynold's Number less than SE+05 is laminar.

(07) The vapor pressure of the spilled material will be adjusted to the ambient conditions via the ideal gas law:

VP(@T.) = VP(@Typ)

  • T, / Typ 1 I

i a

L CA04542 Rev.0 Page 12

8. REFERENCES )

(01)" Control Room",10CFR50, Appendix A, General Design Criterion 19.

(02) " Assumptions for Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release", Regulatory Guide 1.78,6/74.

(03)" Response to RAI: Accident Dose Analysis and Control Room Habitability Analysis for the MHA, FHA, and CEAEE", NRC-98-044. 1 (04)" Response to RAI: Control Room Habitability Analyses and MSLB Analyses", NRC 018.

(05)" Hazardous Chemicals Data Book", Second Edition, Edited by G. Weiss, Noyes Data Corporation. l (06) "Offsite and Control Room Doses Following a LOCA", Bechtel Calculation ~ M-89-33 Rev.3,7/9/91.

(07)" Fan Performance Curve", BGE DWG 12782-35, Rev.0. '

(08) " Control Room Temperature During Normal and Emergency Recirculation Modes of Operation", Bechtel Calculation M-91-24,11/9/92.

l (09) " SAX's Dangerous Properties ofIndustrial Materials", Ninth Edition, R.ichard J. Lewis Sr.

(10) MSDS for Hydrazine, Attachment A.

(11) "The Merck Index", Eleventh Edition,1989.

(12)" CRC Handbook of Physics and Chemistry",66th Edition,1985-1986.

(13) " Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds", W.Lyman, W.Rechl, and D.Rosenblatt, McGraw Hill 1982. -

(14) " Flow of Fluids through Valves, Fittings, and Pipe", Crane Technical Paper No.410,1988. 1 (15)" Toxic Vapor Concentrations in the Control Room Following a Postulated Accidental Release", NUREG-0570,6/79.

(16)"CCNPP Control Room Habitability Evaluation Due to a Postulated Spill of Ethanolamine",

Bechtel Calculation M-94-16 Rev.0,11/10/94.

(17) " Heat Transfer", Seventh Edition, J.P.Holman.

(18)"Modeling of the Control Room / Cable Spreading Room HVAC System Using GOTHIC Software", CA02725,1/8/97.

l 1

i CA04542 Rev.0 Page 13 (BI)" Atmospheric Relative Concentrations in Building Wakes", NUREG/CR-6331 Rev.1,5/97.-

(B2) CCMAIL from Mark Abrams at PLG to G.E.Gryczkowski,3/5/97.

(B3) " Wind Flows and Dispersion Conditions at Calvert Cliffs", Maria Gavrilas and Melissa .

LWieland, BG&E-EP1,9/85.

(B4)" Atmospheric Dispersion Coefficient Calculations from the MSG and ADV to the Control Room",- CA03533,1/17/97.

(BS)" Auxiliary Building and Containment Structures Exterior Elevations East & West", BGE J Drawing 62-047-E, Rev.6 (B6) " Auxiliary Building Roof Plan", BGE Drawing 62-043-E, Rev.12.

(B7) " Containment Liner Plan, Elevation & Penetrations", BGE Drawing 61-740-E, Rev.19.

(B8)" General East and South Elevations", BGE Drawing 62-006-E, Rev.4.

(B9)" Equipment Location Turbine Building Unit 1 Plan Floor El 12'0"", BGE Drawing 60-207-E Rev.11.

(B10)"ARCON96: Atmospheric Relative Concentrations in Building Wakes", CA03940, 8/21/97.

('B1!)" Heating and Ventilation System, Auxiliary Building, El. 69'0", Sections and Details",

BGE Drawing 60-330-E, Rev.14. '

]

(B12) " Wind Tunnel Modeling of CCNPP", CA00748 Rev.0,10/25/95

.(B13)"ARCON95 X/Q Analysis", Bechtel Calculation M-97-02 Rev.0,5/8/97.

(B14)"ARCON95 X/Q Analysis", Bechtel Calculation M-97-03 Rev.0,7/1/97.

(BIS) " Analytical Softw ee Installation Test of ARCON96",'CA03941, 8/21/97.

l l

l l

l I

i

. CA04542 Rev.0 Page 14

9. METHOD OF ANALYSIS This work utilizes three separate methodologies to calculate mass transfer from the spill site to the control room.

(1) The first methodology is diffusion in still air for spills in closed areas and for liquids with

. high boiling points. The method of analysis utilizes the algorithms of Ref.15 to derive the toxic gas concentration inside the control room.

'(1a) Calculation of the Diffusion Coefficient of an air / toxic gas system for dilute gases at low pressures per Ref.13 by the method of Wilke and Lee:

2 DAB = B'*TA"*MR"/(PA*SIGAB

  • OMEGA) where 2

DAB = Diffusion coefficient (cm /sec)

B' = 0.00217 - 0.00050 * (1/MA + 1/MB)"

MA= Molecular weight of air (gm/ mole)

MB= Molecular weight of toxic gas (gm/ mole)

.MR= (MA+MB)/(MA*MB) = Molecular weight of binary gas (gm/ mole) -

TA = ' Airtemperature(K) i

~ Air pressure (atm)

PA = ~

SIGAB = Characteristic length of molecule A interacting with molecule B (A)

= - (SIGA+SIGB)/2

. SIGA = - Characteristic length ofmolecule A (A)

SIGB = Characteristic length of molecule B (A) = 1.18*VB" VB =' - Lebas molal volume (cc/mol)

OMEGA = Collision integral The Lebas molal volume VB can be calculated as follows per Ref.13:

VB = 14.8*(C) + 3.7'(H) + 7.4*(O) + 9.1 *(O in Methyl Esters or Ethers)

+ 9.9*(O in Ethyl Esters or Ethers) + 11 *(O in Higher Esters or Ethers)

+ 12*(O in Acids) + 8.3*(O Joined to S, P, N) + 15.6*(N Double Bonded)

+ 10.5*(N in Primary Amines) + 12*(N in Secondary Amines) + 27*(Br)

+ 24.6*(Cl) + 8.7*(F) + 37*(I) + 25.6*(S) - 6.0*(3-Membered Ring) i

- 8.5*(4-Membered Ring)- 11.5*(5-Membered Ring) - 15*(6-Membered Ring)

- 30* Naphthalene - 47.5* Anthracene + (Molecular weight / density)*(Element) )

4 The collision OMEGA integrq+OMFg

= A/TS C/e +can E/e bfs9plculatg

+ G/e follows per Ref.13:

A=- 1.06036 4 B= 0.15610 C= 0.19300 l D= 0.47635 E= 1.03587.

F= 1.52996 G= 1.76474 H= 3.89411 i TS = TA/(E/KAB)

E/KAB '= SQRT(E/KA

  • E/KB)

E/KB = ~ 1.15*(TB+273.15)

1 j

' CA04542 Rev.0 Page 15 (1b) Surface Area of a Spill Per Ref.15 -

r The rate of mass transfer of a liguid into the atmosphere is directly proportional to the surface area of the spill. Ref.15 approximates the initial shape of the liquid body by a cylinder, with the height equal to the radius of the base.

. V0(m') = ' Q*QF*(0.003785422 m'/ gal)

R0(m) = (V0/x)" {

2 2

A0(m ) = x*R0 ,

The liquid spreads quickly by gravity to a thin pancake on the ground. Its surface area may be '

estimated by the foi owing equation:

2 2 A(m ) = x*(R0 +2*t*(g*V0*(SG-RHOA)/(x*SG))")

where SG = Density of the liquid (gm/cc) 2 g= Gravitational constant = 9.81 m/sec l t= Time (sec) _  !

The surface area, however, does not expand indefinitely as the above equation indicates. The maximum area of the spill in an unconfined space is estimated from the initial volume by  :

assuming a spill thickness ofI cm.

i 2

AF(m ) = V0/0.01 tA(sec) = Time to maximum area

-=. (AF-AO)/SQRT(4

  • n
  • g* V0*(SG-RHOA)/SG) 1 1 The total mass of the liquid can be calculated as follows: i i

M0 = Q*QF*SG*3785.422 gm -

i where Q=- Storage cLuantity (gal)

QF = Volume traction ofliquid or weight fraction of solid i SG = Specific gravity (gm/cc) l (1c) Vaporization Rate in Still Air:

- When exposed to the atmosphere, liquids with boiling points above the ambient temperature will l evaporate by diffusion into the air. The main driving force is the vapor pressure difference, i.e.,  !

concentration gradient, between the liquid phase and the air. The rate of a vapor diffusing into  !

still air is computed from the Fickian diffusion equation in Ref.15 2

VR(gm/m -sec) = VP

  • RHOV
  • 10000. / p
  • SQRT(DAB /(x*t))

. where -

M

- e. .:

E

-l'

(

CA04542 Rev.0 j Page 16 l

l VP(torr) = Vaporpressure of the liquid )

l p(torr) = . . . ' Ambient atmosphericpressure (760 torr)

RHOV(gm/cc) = Vapor density of the hquid '

Time .

t(sec) =: 2

. DAB (cm /sec) = Diffusion coefficient - .

The vapor density of the liquid RHOV is derived from Ref.14 as follows:

' RHOV(lbm/cf) = 144*P'(psia)/(R*T(R))

RHOV(gm/cc) = 144*14.696/(1545/MB*T(R))*(.01601846 gm/cc/lbm/cf) l

= MB(gm/ mole) .* 14.696*.01601846/(10.7292*T(R)) j (Id) The vapor density outside the control room can be' calculated via 2

VD(gm/m') = - VR(gm/m -sec)*AF(m2)*X/Q(sec/m')

' The corresponding vapor density outside the control room in ppm is (Ref.13)

PPM = - (24500/MB)

  • VD(gm/m')

. (1e) The vapor concentration inside the control room at time t can be calculated via the following: dCca/dt = A

  • Cgx7- A
  • Ccn for t<tg  : Ccgi = Cm * (1. - exp(-A
  • t))

for tg<t<tm,x Ccn2 = Cgx7 * { l. - exp[ A * (t-ta)]} + Ceni

  • exp[-A * (t-ta))

for t>tm ., Ccg3 = Ca2

  • exp[-A * (t-t ,x)]

where l 3

Cca = Control room concentration in gm/m or ppm 3

Cgx7.= External concentration in gm/m or ppm A= Fca / Vca = Tumover constant in 1/ min at time t Fca = Control room ingress and egress flow inte at time t Vcn= Control room volume t= Time (min) in = Time at which recirculation starts (min) i t ,x = - (mip)

= .~ Time SG(gm/cc)at which

  • (l.cm)evaporation

/ {VR(gm/m -sec)of* tox[c (0.0001substance m ceaseg/cm ) * (60.sec/ mi

. (If) The spill area, vaporization rate,' and vapor density are time-dependent quantities for diffusion m still air for spills in closed areas. The peak vapor density occurs at the time to maximum area (tA), which should be used under these conditions.

'(2) The second methodology is mass transfer to forced convection for laminar flow per Ref.15.

VD(gm/m3) = VFL *ADC*AF (1. - exp(-A

  • t))

PPM = - (24500/MB)*VD

'~

CA04542 R ' ev.0 Page 17 where /

ADC = - Atmospheric dispersion coefficient (sec/m3)

AF ~ = Final spill area (m2) See 1b.-

MB = l Toxic gas molecular weight (gm/ mole)

. VFL = Laminar evaporation rate (gm/m2-sec)

=.

HDL*MB*VP* 10000/(R*(T(C)+273.15))

Temperature in *C at which VP is determmed T(C)=-~

VP. = ' Toxic gas vapor pressure (mmHg)

TA = - Ambient air temperature (C) -

R= Universal gas constant = 62400 torr-cm3/gmole-K HDL = '

' Laminar mass transfg' *coegent (cm/sec) .

=

0.664*(DAB /L)*Re Sc

- DAB = - i Diffusion coefficient (cm2/sec) See 1a.

L= Characteristic I

= f(4*V0*l.E6/x)gggth (cm)-

V0= Initial volume (m3)-See Ib.

Re=- Reynolds number

=' ' L*VW'RHOA/MU VW =' - Wind velocity (cm/sec) '

RHOA = Mass density of air

' MU = Viscosity of air Sc = Schmidt number

=

MU/(DAB *RHOA) .

A= Fca /.Vca = Turnover constant in 1/ min Fca = Control room ingress and egress flow rate

Vcn= Control room volume t=- Time to maximum concentration = 10000.*SG/ VFL (3) The third methodology is mass transfer to forced convection for turbulent flow per Ref.15.
VD(gm/m3) = VFT*ADC*AF (1. - exp(-l
  • t))

PPM = (24500/MB)*VD

. where ADC = Atmospheric dispersion coefficient (sec/m3)

AF = Final spill area (m2) See 1b.

MB .=-  : Toxic gas molecular weight (gm/ mole)

~ VFT = : Turbulent evaporation rate (gm/m2-sec)-

= HDT*MB*VP*10000) R*

VP = Toxic gas vapor pressur(e mHg) (m(T(C)+273.15))

TA = Ambient air temperature (C) ..

R .= Universal gas constant = 62400 torr-cm3/gmole-K HDT =.. = ' Turbulent mass trangr cgcient (cm/sec) 0.037'(DAB /L)*Re ; *Sc -

- DAB = Diffusion coefficient (cm2/sec) See 1a.

LL = Characteristic I l

= (4*V0*l.E6/x)gggth (cm) l' V0f =: Initial volume (m3)-See Ib.

Re=- Reynolds number

=. L*VW'RHOA/MU -

Wind velocity (cm/sec) <

~

.g VW._ = '

. Ig i o

l. ' -

.CA04542 Rev.0

Page 18 -
RHOA1 = Mass density of air )

. MU = . Viscosity of air Sc = Schmidt number . a

=-

~ MU/(DAB *RHOA) l A=L Fca /.Vcn = Tumover constant in 1/ min  !

Fca = Control room ingress and egress flow rate i

.Vcn= - Control room volume t= Time to maximum concentration = 10000.*SG/VFT

(04) Explosion and Flammability Limits:

Comparison of the maximum concentration of the relevant toxic chemical concentration inside the control room should yield a limiting value with which to compare against the explosion and

' flammability limits.

l I

I i

,., j

o

'CA04542 Rev.0 Page 19

/

10. CALCULATIONS The chemical ccacentration of 35% hydrazine inside the control room for a chemical spill of 375 gal in the tank farm / warehouse / north service building is calculated via EXCEL spreadsheets captured in the following attachments using the methodologies of Section 9:

Attachment D:' 35% Hydrazine Solution for Current Control Room Configuration Attachment E: 35% Hydrazine Solution for Modified Control Room Configuration s.

CA04542 Rev.0 Page 20

/

11. DOCUMENTATION OF COMPUTER CODES This work employed the ARCON96 computer code, which was verified, benchmarked, and documented in Ref.B10. The installation is documented in Ref.B15. ARCON96 implements a i computational model for calculating atmospheric dispersion coefficients (X/Q's) in the vicinity I ofbuildings.

I l

1 l

l I

I i

CA04542 Rev.0 Page 21

12. RESULTS The results of the toxicity calculations for a 35% hydrazine solution are as follows:

Peak Concentration (ppm)

Tank Farm Warehouse NSB Current Configuration No Recirculation 0.88 0.25 2.80 With Recirculation 0.88 0.25 2.80 Modified Configuration With Recirculation 0.57 0.29 0.84 Toxicity Limit (IDLH) 80 80 80 Note that under the current and modified configurations, the peak control room concentration under worst case conditions is less than the IDLH toxicity limit, the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects.

l i

I i

1 1

CA04542 Rev.0 Page 22

13. CONCLUSIONS Based on the spreadsheet results presented in Attachments D and E, use. and storage of a 35%

Hydrazine Solution at the tank farm / warehouse / north service building in a 375 gallon tote bin does not present any control room radiological habitability concems at CCNPP. Hydrazine will -

not pose a flammability or explosion hazard in the control room, since the peak concentration is a small fraction of the lower explosion limit.

The current chemical habitability calculation incorporates many assumptions which make these results conservative. ,

(1) A maximum concentration limit (IDLH) was utilized that could be tolerated for 30 minutes - i without physical incapacitation c f an average human. The regulatory dictate a maximum concentration limit that could be tolerated for without mutes 2 m, requirements physical of Ref.2 i l

~ incapacitation of an average human. IDLH denotes Immediately Dangerous to Life and Health j and is defined as the maximum level from which one could escape within 30 minutes without '

any impairing symptoms or irreversible health effects (Ref.5).

. (2) For the current configuration the maximum control room intake flowrate of 8'300 cfm is utilized. This (3) The control roomvalue is twice the volume conservatively normal neglects operating dead spaces m value. (Refs.6-8) the coni the volume of room A512.

(4) The most conservative methodology is utilized: turbulent evaporation.

i j

l l

l l

'CA04542 Rev.0 Page 23 .

14. ATTACHMENTS /

ATTACHMENT A I MSDS FOR HYDRAZINE I

l i

4 l

Mdterial Safety Data Sheets Collectio' n:

P G :nium Pubil:hing Corp r.tlon 1145 Catalyn Street Sheet No.126 C AOliSQ REV 0 Sehenectady, NY 12303-1836 USA IIydrazine (518)377 8854 cPA6E2/

( Issued: 6/84 Revision: A,4/90 Errata Date: 7/9 Section 1. MaterialIdentification ,

34 Ilydraz!ne

Description:

Prepared by a two step process: 1) reaction of sodium hypochlorite and ammonia to yield sodium ifydrate Anh Y d'"'

hydroxide and chloramine (NH,Cl), then 2) reaction of chloramine, sodium h droxide, and ammonia to yield hydrazine.

sodium chloride, and water. These processes are carried out in the presence of such colloidal materials as glue Genlum NTtoA or starch prevent unwanted side reactions. There are two forms: anhydrous and hydrate. Hydrazine anhydrous is used as a reducing 3 3 agent for many transition metals and some nonmetals, a high-energy rocket fuel, a corrosion inhibitor in boiler feedwater 3 2 3 2 and reactor cooling water, a polymerization catalyst, a chemicd. intermediate for blowing egents, a scavenger for gases, an . .

an:ioxidant, a shortstopping agent; in electrolytic plating of metals on glass and plastics, wastewater treatment, nuclear fuel reprocessing, drugs, agneultural chemicals, photographic developer, fuel cells, dyes, explosives, metallurgy, spandex R 1 HMl,,a fibers, diving eqwpment, pesticides and solder fluxes. Hydrazine hydrate is used as a chemical intermediate, a catalyst, I 4 H 3 and a solvent for inorganic materials. S 3 F 0 Other' Designations: CAS No. 302-012 (anhydrous), H,NNH,: CAS No. 7803-57 8 (hydrate), NH,NHfH,O: hydrazine K 3 R 0 base; diamine; diamide hydrate.

  • Skin PPGt hianufacturer: Contact your supplier or distributor. Consult the latest Chemicolweck Buyers' Guide r"' for a suppliers list. absorption t sec. 8 Section 2. Ingredients and Occupational Exposure Limits Hydrazine,99%

OS!!A PEL (Skin) ACGill TLV (Skin),19X9-90 Toxicity Data *

- 8-hr TWA: 0.1 mg/m' TLV-TWA: 0.1 mg/m' human: Hela cell; 50 mol/L NIOSil REL,1987 DNA inhibition'fC Rat. , inhalation, u

a 1. ppm dose administered intermittently within i Periods over a year showed it is an equivocal tumorigenic agent causmg 120-min ceilin8: 0.04 mElm olfaction tumors Mouse, oral, TD,: 1951 mg/kg ingested continuously over 2 yr affected the lungs, thorax, respiration (tumors), and blood (lymphoma)
  • See NIOSH. RTECS(Mlnl75000, anhydrous: MVE0Mxx10. hydrate), for additional mutative. reproductive. tumorigenic, and toxicity data.

Section 3. Physical Data Bolling Point: 236.3 *F/l13.5 *C,' 245.3 *F/l I8.5 *C at 740 mmt biotecular Weight: 32.06 g/ mot,' 50.08 g/ molt hietting Point: 34.5 *F/1.4 'f,* 61.1 *F/ 51.7 *Ct Specific Gravity (11,0 = 1 at 39 *F/4 *C): 1.011 at 59 *F/15 *C,* 1.03 at Vapor Pressure: 14.4 mm Hg at 77 *F/25 *C* 70 *F/21 *Cf Vapor Density (Air = 1): 1.l

  • Water Solubility: Both are miscible in water i Appearance and Odor: Colorless, fuming, oily, hygroscopic (moisture-absorbent) liquid or white crystals with a penetrating, fishy, ammonia.

like odor.* Colorless, fuming (64% hydrazine hydrate fumes in air), refractive liquid with ammonia-like odor.t Both have a 3- to 4. ppm odor threshold. Sense of smell can be rapidly desensitized, not considered to have good waming properties. Take immediate protective action if odor or irritancy is detected.

  • Anhydrous t Hydrate (Various concentrations of hydrazine hydrate crist and their physical properties vary respectively).

Section 4. Fire and Explosion Data Flash Point: 100 *F/37.8 *C OC,* Autolgnillon Temperature: Can vary with contact surface! LEL: 2.9% v/v' UEL: 98% v/v' 73 *F/163 *C Oct (64%),

89* F/192 *C OCt (54.4 %)

Extinguishing hiedia: If this material is afire or involved in a fire, do not extinguish unless the flow of material can be stopped. Use water in flooding amounts as fog, or alcoho! foam, carbon dioxide, or dry chemical to dilute spills to nonflammable mixtures and to disperse vapors.

Unusual Fire or Explosion llazards: Hydrazine is a severe explosion hazard when exposed to heat or by reaction with oxidizers. Its v_apor is exceptionally hazardous because once ignited it continues to burn by exothermic decomposition in complete absence of air or oxidant, ne vaport may also travel to an ignition source and Dash back

  • Die combustion of hydrazine yields 148.6 kcal/mol(heat), nitrogen and water are products.
  • nus material may also ignite spontaneously when in contact with porous materials such as wood, asbestos, carth, or cloth.

Special Fire-fighting Procedures: Since fire may produce toxic fumes, wear a self-contained breathing apparatus (SCD A) with a full facepiece operated in the pressure-demand or posiuve-pressure mode and wear a fully encapsulating suit. Apply water from as far a distance as possible. If fire becomes uncontrollable or if containcts are caposed to direct flames, evacuate for a 2500-ft radius. Cool containers with flooding amounts of water. Be aware of runoff from fire control methods. Do not release to sewers or waterways.

' Anhydrous t Hydrate i The autoignition temperature for hydrazine (anhydrous) can vary from 74 *F /23 *C in contact with iron rust, to 270 *F/132 *C in contact with black iron, to 313 *F/l % *C in contact with stainicss sicel. and to 51 R *F/270 *C in contact with gtsss.

Section 5. Reactivity Data _

Stability / Polymerization: llydrazine is stable at room temperature in closed containers under normal storage and handling conditions unuu an inert atmosphere in the absence of UV radiation. Hazardous polymerization cannot occur.This material is neither shock or friction sensitive.

Keep out of direct sunlight. Chemical Incompatibilitics: Ilydrazine is a highly active reducing agent, especially under basic conditions. It is incompatibic with oxidizing agents (including air), acids, some metal oxides (such as iron, copper, lead, molybdenum) and some metals (carbon sicci, copper, tinc). Solutions can attack glass, polyethylene, graphite, chrome plate, rubber, and cork. It ignites spontaneousiy in air in contact with porous materials. Ignites on contact with dmurogen oxide, hydrogen peroxide, ainitrogen tetraoxide, N,2,4,6-tetranitroaniline, rhenium +

alumma, cotton waste + heavy metals, nitric acid, rust + heat, and catalysts. Violent reaction with thiocyanate,1-chloro-2.4-dmitobenzene, thiocartmnyl azidc. Vigorous reaction with henzene-scieninic acid or anhydride, totassium peroxodisulfate, ruthenium (!!!) chloride, and carbon dmaide + stainless steci. Explodes un contact with titanium compounds (at 130 *C), dicyanufurazan, triosygen difluoride, silver compounds, N-halomides, potassium, sodium hydroxide. Forms sensitive explosive mixtures with metal salts, methanol + nitromethane,2.chf oro 5 methyini-trobenzene, sodium, air, sodium perchlorate, and lithium perchlorate. Iluzardous Products of Decomposition: Thermal oxidative decompositio' of hydrazine can produce highly toxic fumes of nit. ogen oxides (NO,) and ammonia (Nil,).

corynym o em on e row hms c.,ro. e Aar summesce.1 mas u, repealuces,e eghoui shr publiside pnm*=ame as fuukshierd

U AU4 M4 itt v u No.126 Hydrazine 7/91 ' PAGE d Section 6. H&lth Hazard Data Carcinogenicity: he ACGlH, NTP, and 1 ARC list hydrazine as, respectively, a suspected, anticipated, and possible (Gro sufficient animal evidence) human carcinogen. Summary of Risks: Hydrazine is poisonous by ingestion, skin contac toneal, and inhalation. De hydrazine concentration considered immediately dangerous to life and health (IDLH)is 80 ppm are local irritants and convulsants that may damage the liver and destroy red blood cells. As well as a systemic poison, [ h sensitizer, his material is corrosive to the eyes, skin, and mucous membrancs. Experimental studies show hydraz \

neoplastigen system, breast, hematopoiectic (a tumor-forming (involved in formation agent, usually of blood or malij;nant), its cells in the living teratogen body organs, (a andfetus. harming subcutaneous ag (benea abdominal pains, incoherency, and black stools, lie died 20 days after his last ex Conditions Aggravated by Long-Term Exposure: Damage to the liver, kidney, and blood (charactenzed by hemoly cell vo!ume). Cancer, fetal malformations, and embryclethhty are observed in laboratory animals. Target Organs: Central respiratory system, liver, kidney, blood, skin, eyes. Primary Entry Routes: Inhalation, ingestion. Acute Effects: An acute may cause vomiting, diarrhea, nausea, dizziness, cyanosis, and convulsions. Hydrazine inhalation causes severe irritation of the eyes, respiratory tract. Eye irritation includes swelling, burning, redness, and discharge. Liquid contact can produce penetrat permanent comeal opacity with visual impairment, Temporary blindness may occur with a severe exposure. Ilydrazine can produce sev to the skin and possible dermatitis. Inflammation of the respiratory tract may lead to bronchitis, pulmonary edema, and even lu Ingestion of hydrazine irritates and burns the entire gastrointestinal tract and is characterized by vomiting, abdominal p tissue ulecration. Chrorde Effects: Repeated hydrazine inhalation produces inflammation of the nasal, tracheal, and bro chronic bronchitis. Repeated skin exposure can cause dermatitis with a characteristic rash.

FIRST AID Eyes: Flush immediately, including under the cyclids, gently but thoroughly with flooding amounts of running water for at leas Skin:

Quickly remove contaminated clothing. After rinsing affected skin with flooding amounts of water, wash it with soap and wa Inhalation: Remove exposed person to fresh air and support breathing as needed. Ingestion: Never give anything by mout convulsing person. Ifingested, have a conscious person immediately drink large quantities of water, then induce vomiting.

Afler first mid, get appropriate in-plant, paramedic, or community medical support.

Physician's Note: Unless the patient is comatose or convulsing, vomiting may be induced if initiated within 30 min after ing unsuccessful diazepam to treat after 2 doses of Ipecac,the decision to lavage should be made on an individual basis. Pyridoxine may be antidotal for coj seizures.

Section 7. Spill, Leak, and Disposal Procedures Spill /Lenk: Design andpractice a spill controlcountcrmeasure plan (SCCP). Notify safety personnel of spills, evacuate all unnej -

nel, remove heat end ignition sources, and provide optimum explosion. proof ventilation. To control the fire hazard, promptly dilute less than 40% hydrazine, Flush diluted hydrazine and contain and collect the liquid. Use sand or noncombustibic absorbent t Place waste in closed disposal containers. Flush spill area with water, but be aware of runoff to sewers and waterways. A 4.3 mg' of hydrazine during a 96-hr test period is the median tolerance limit (TLm 96) at which 50% of Salmo gairdneri survive. Follow ap regulations (29 CFR 1910.120). Disposal: Contact your supplier or a licensed contractor for detailed recommendations. Follow applic Federal, state, and local regulations.

EPA Designations Listed as a RCRA Hazardous Waste (40 CFR 261.33), Hazardous Waste No. U133 Listed as a CERCLA Hazardous Substance' (40 CFR 302.4). Reportable Quantity (RQ): I lb (0.454 kg) (* per RCRA, See,3001)

Listed as a SAR A Extremely Hazardous Substance (40 CFR 355), Reportab!c Quantity (RQ): I lb; Threshold Planning Quantity (T Listed as a SARA Toxic Chemical (40 CFR 3"/2.65)

OSilA Designations Air Contaminant (29 CFR 1910.1000, Subpart Z): Not listed Section 8. Special Protection Data Goggles: Wear protective eyeglasses or chemical safety goggles, per OSHA cye- and face protection regulations (29 CFR 1910.133).

Respirator: Follow OSHA respirator regulations (29 CFR 1910.134) and,if necessary, wear a NIOSH approved respirator. For em nonroutine operations (cleaning spills, reactor vessels, or storage tanks), wear an SCB A. Warning: Air-purifying respirators do not protect workers in oxygen-deficiect atmospheres. Other: Wear impervious gloves, boots, aprons, and gauntlets to prevent skin contact. Butyl rubb recommended for impervious body covering protection. Ventilation: Provide general and local explosion-proof ventilation systems to mainta airborne concentrations below the established OSH A PEL, ACGlH TLV, and NIOSH REL Local exhaust ventilation is preferred sin contaminant dispersion into the work area by controlling it at its source."" Safety Stations: Make available in the work area emergency e stations, safety / quick-drench showers, and washing facilitics. Contaminated Equipment: Never wear contact lenses in the work area: soft lensesi '

may absorb, and all lenses concentrate, irritants. Remove this material from your shoes and equipment. Launder contaminated clothing wearing. Contaminated clothing and equipment are a fire and health hazard. Comruents: Never cat, drink, or smoke in work areas. Pj personal hygiene after using this matenal, especially before eating, drinking, smoking, using the toilet, or applying cosmetics.

Section 9. Special Precautions and Comments Storage Requirements: Store in tightly closed containers in a cican, cool, well-ventilated area with controlled drainage, away from oxidst agents, acids, all incompatible materials (Sec. 5) direct sunlight, and heat and ignition sources. Water sprinkler protected, sheltered, outsid ,

detached storage preferred. Protect comainers from ph electrically ground and bound to prevent staticMaintain sparks.ysical damage. All engineering systems should be of maximum explosion-p an inert atmosphere (mtrogen) over this material to avoid gradual oxidation.

Prevent contamination of hydrazme. Engineering Controls: Prevent liquid contact with eyes, skin, or clothing. Avoid inhaling vapors. Us with proper personal protectivelcar and adequate ventilation. Practice good personal hygiene procedures. Hydrazine is a very sensitive ma that must not be used without full and compicle instructions from the manufacturer.

Transportation Data (49 CFR 172.101.102)

DOT aqueousiShipping Name: Ilydrazinc anhydrous ' or Hytfrazinc IMO Shipping Name: I drazine, anhydrous, or Hydrazine, aqueous solutions.

with more than 64% hy razine by weight.* Hydrazine hydrate,or liydrazine, DOT ID No.: lluzard UN2029,* Class: Flammable liquid,* Corrosive materialt aqueous solutions, with not more than 64% hydrazine by weighti UN2030t / IMO Ilazard Class: 3.3,* 8t DOT Label: Flammable liquid and noison,' Corrosivet IMO Label: Flammable Liquid. poison. Corrosive,* Corrosive, Poisont DOT Packagh Requirements: 173.276 (lloth) IMDG Packacin  : I.* !!t DOT Packaging Exceptions: None (lloth) ID No.: UN202)g .UN2Groug30t /

  • Anhydrous (

t Hydrate MSDS Collection

References:

1 12.14.16.19. 20. 23, 25,26,31, 38. 42. 47-49,52. 73. 84 85. 87, s 8-89. t 00.103, t 09.123,124.126,127,129,131 132 Prepared by: F .J Allison. DS; Industrial liygiene Review: DJ Wilson, CIH; Medical Review: MJ Hardies, MD n r P,,,,e e mi 6, m , m n,ia h ., c, n.e. e 4,,, ,,,,,,,,,,,,,,i ,,,, ,,, ,,,,,,,am ,,,m .,,,,,,,,, o,, p.,4,,h,, , y,,s ., p.a h a 3,,a,,,,n , o. h ui, .r r, o.m h,m r., ih, ,o,c h <. p.,p, .

e,* ,,essame ny uw p, ha,e, a esspeset,1,,, Ai,hu,,gh me,,mehle a e,e he, hera,eben la .hs pepe,ee,e er e,n h ed.wme,,,m. Gen e Puhhsh,ng C,wpma,nm eairade an oanantits. makes ao sep,e,rn,s.iens sad aswmes

  1. ,,4tSPma,0b,1,,, GA ha ht est ,,,am y g g Leh,l.,y ,,I sa h gi,1,,,,,,e.,,,e l,W eppla s.,,e 1,, ,hg p,,Khdat,'8 .n,r lt,1 p.,p,,d ,,f {,3 C.,n,s.g.,r ls tl ,,( ,48 e,r a
e. ,

- --ee .  %

HYDRAZINE C A0G5flZ REV 0 o A cF 2I" e o--

C*"""**"**F"' ***V **ee Cowins Anvi mosom t ring NA2ARDS

10. NA2ARD A$$tl5M[iti CODE j tt rmen Pwnt tourt oc (se Hesere Aaeosoment Henmeek)

La f' Lhnne m As. 4 7% 100% A.p g

==aa,,=-J,,e,/,o,,-f.:n=;eg,- = u ..e to uw A n.e eier. e

e. . , e, u r.e to guw A.enie elie e Av080 WIT y Uset Not portrere we.r ,C.ONT.AC.T.0.em.M.LIQu.lO.AN.D

~ . e,s. e ee re eWop A.PO.R,0.Re.et.pe.o.re e e, e,esus 11. NAZARD CLA$$3flCAfl0N5 u , ,se, ees,.o e, ce,,.useen 2e.u",.'.**,,La,s"e" e- 'e,';::e'", a:r,l; c*o.,.

e,e,

,,es.o . Te.~ . -e,ed ." ceae ee ' seer = ae.wiene.-

.e ese y ec. v. e.= de.or.

e

- e.w s -. e u .e, ,e, in , , e,,, es e se,,e,,0,

~r iu =A.

.pa ser. neen. .s e, 6.7 Ogangen Tenipereews hoy ignne T. . Loom 8 .  ; Sis'F (gineel Category moung 6$ Fee ., _ .,

ve.er e., e os e e. v, a u .Edestrieel he= Meeert Nei partnant

, ueen ~~ia 4

weer ehemse prolocaws mei eensee<enseined er.c.oe.d e,- meathne oppsetus et eres freen este de 6 10 Adiatelle Flame Temperature vapor knions er protected locahrt 3 Fire

  • Lapd e Sotd DiwW -- 4 e ,e,,

Co. ,u,,",","g,,

po.ed e.n n.re

,,e,,,,, ,,,,,e, ,,0

.e.

e, ,,,,,n .o.,de g,, g,e,,,,,,,,o,,,,,,,,,,,,,,,, no.te,. .

Consnue coceng efter he has geen sanng.ened. on,e ,, e.,,,,,,, .,

e ta Fieme Tempestwe on, noi evadeon M*"" f= *r- - ~ e Aeasec Tomcacy 3 CALL FOR MEDICAL AIC Acelhets Ellect - . .. , . 3 7 CHEMICAL REACTMTV becovey

( u.,e . .rna =

" ""' 0" " 8"'" 's t neostD. lj *,Q [C,",*,*[ g,, i _

e enm no ha emoped. ,,e eninc. .eu enon emon me e,en ei e.,wmi .e ,,.. - --

e wavvas = *a=un en* myve' ,,0,e,,,,,e,,,,,,,,,,e,e,,,, it.: Nera use c=wmceu

,,,,,,,,,,,,,,,,,,,,,,,,,,, Cee,-v cmechuuan uouro IF SWALLOWED OR IF SEIN IS EXPOSED.

,a s ,, D,ing y, ,e,= some c "*** neu.e is6,el s y h %d '*' etukty (Redl... 3 Exposure man, a.n.,e,0.e d.e -d un ac ,o= = no.pn and ""**'"**-"-8 em ssaec . en y . e.

eoe e,,,,,,e,,,, ,ees, ,,, . ,

e swetLOwmD F a ivt s. had eve ene=.=cwm conscious.

.n es eue .e have pie.wycun* .e=

e o -e=

.a am huwdam === me** =

sonnne,n DO NOT WOUCf WOMITee3 F.4 heulreening Agente der Aside er,d cavoiics riuen e h .eier e.eu.enne lhe soeultne ookman esih calceum hyesenet 12. PHYSICAL AND CMtMICAL PROPitTits te pay mea =Nm w.w is i phrmes swo e is c one 1 eine HARMFUL TO AQUATIC LFt M VEftY LOW CONCENTRATIONS 7.6 inNhner of Pesymergenom Water "*'*******"*"*"'**"**"*

um>=w*d 58.8 5=Lauld= car ** eat 22 os Pollution ******"."e*"no'em.'.**..*"e*.*e.'.e me. .p.e '" *

**",",.'.'.".".'*."..*."C..e.,,

-. ,o , ,.es., ,e-

1. AfSPON$t TO DISCHAAGE 2, LABEL ""

8 WATER POLLiffl0N g, ," , ,,,[ I e,

eoriessee Resect access e.g _- u .

u c- o.r. ..-

e. u A e ,es

-u -, oo soul /ded/Weth .sier

,o

.. . ,so.C . mm

.r.c. ,reses.

yo pe. . set eem .14 7 MN/me 4.3 Weiertc.I Testcay. De not eveneme 13.7 ppecehs wwery, Cheauce ans physsel Domiment  !

84 Seeeegscal Oeygen Demand 1900) /_t oos se 70'C thman icos

[ ]

ta a ueos sortae Tenenm mui p.tr nr j B4 feed Chain Concentresten potentist 12.9 ugued Water interfaceas Teneaem i None Nos potre,i

3. CHEMICAL DE$1GMAfl0NS 4. 08$[RVA8L[ CHARACT[Ri$7tC$
  • ' ar - 18 to vapor (Gee) Specum Grevety:

' cines Not need tt phyeaes siete tes emppedy Lead **el **trioni 8.2 Formeste hem. 1 4.2 Caton Colortese tut litette of Specme feeste of geper (Gee) u moo /uN oemenement a e/soso 44 oen: - f m,e i isi

-- w go e,s. paw -

13.12 Letens Heat of Veportseteost 18 CAS Aeg.ory see.s 30241.#

S28 8th'b

. e_ ,....e, u u no.i se ca Weue. _.u.s sw.

. ~4638 set /g . 194 5 X 908 J/kg

5. HEALTN HA2AAD$ $ $ NIPPING INFotMAfl0N UA4 "*"0***'"'*****""#*"*"'

11 Pereenes Preseeeve t . . - Ammons type gas meet. see-contened weemme estvehm. it is Heat of Seeusom -tis Stu/t et Grades of Purnr Aereous. 354es . .itt em/g . ~6 OF 210' J/kg pemenceoeied er subber gloves, etMhok and sprert esteep sh er must he evedetes .ets ookhone AJ Symeneme Peso.eng Espeews Vapore cause estung. e. sang and besserug of erekis. shan, 12.14 Heat of Poeymerteauest Not pytnant sJ tierees Tempereewe Amnese gg.as Heat et Pueens Osie as evedetwo nose ans evoet synytoms may be seesped inr eeuwel hours Tenporary bhndneet may acts g $ inoR A' Pedded Lamed seuses e eeunas4ke bwn e nel .eehed en et once engeshon er ehtorpton eveugh shan il 36 LWnlUng Velue; Date not avaistdo 94 Venthy Pretenee+emast 13.27 Reid Veper Preesert Dele noi evadebts counes nausea eranset headache Sevese espoews may cause seest BJ Treatmens et Espeevre ces e eacts el ence INHALATION remove e pun es. et.wwe tp sevampmere et dessyed syniptome Keep geet INGESTION gle NOT snihace venutng yve egg

.mies e es r amoneen SMW OR SYt3 .een .nh large amounge el .eler kW sileast 15 pun 6.4 Thresheed umn Vetue 01 som s.3 thert form Inhetsmen Limns t som for 30 mrt 54 Toeieny by . Grace 3, LDee . Sirto 800 mg/eg Ireil 47 Lees feewe rCauses hag seneer m nace 4.0 Verer (Gee) present Cherneterteuet Vapes a manerenefy enmung eum lhes pareannes .e not unumer losereis moorem y hgh seper eenceestene 6.9 usued er Send Wessant cherectweemos severe ena sneena causes escone end e.eespee m,u,,,,,,.,,yg,y,,,,,, .

L CHIMICAL RIACTMTY (Centanued) 9.10 Oder Threshese 4e porn 7,y assier mete (meestene to Preeust) Date not eveestee att IDLM Value' 30 ppm 7A Reecevtiy Groulk Date nel evemenes

%m 566 JUNE 1985

r.

I I

r CA04542 Rev.0 Page 27

) /

ATTACHMENTQ ARCON96 RUNS FOR AUX BLOG ROOF INLET

~

l I

l I

i

.n s e Program Titles ARCON96.

' Developed Fors U.S. Nuclear Regulatory Commission Dffice of Nuclear Reactor Regulation CA04547 REV 0 Division of Reactor Program Management p g pg ,

a MUL I 1

j Dats: June 25, 1997 11:00 a.m. 1 NRC Contacts: J. Y. Lee Phones (301) 415 1080 e-mails jyllenrc. gov J. J. Hayes PTones (301) 415 3167 i e-mail: jjhenre. gov L. A Brown Phone (301) 415 1232 ,

e-mails lab 2enre. gov i

Code Developers J. V. Ramadell Phones (509) 372 6316 l e-mail j,ramsdellepnl. gov j

Code Documentations NURE0/CR-6331 Rev. 1 i Th] program was prepared for an agency of the United States Government. Neither th) United States Government nor any agency thereof, nor any of their cmployees, makes any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such uas,' of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Program Run 7/23/1998 at 07:33:16 esee," ARCON INPUT ********** i Number of Meteorological Data Files = 3 Meteorological Data File Names CC1991. MET CC1992. MET

  • CC1993. MET Height of lower wind instrument (m) = 10.0 Height of upper wind instrument (m) = 60.0 l Mind speeds entered as meters /second Ground-level release Release height (m) = .0 Building Area (m*2) = 1155.0 Effluent vertical velocity (m/s) = .00 Vent or stack flow (m*3/s) = .00 Vent or stack radius (m) = 6.72 birection . intake to source (deg) = 333 tind direction sector width (deg) = 90 Tind direction window (deg) = 288 - 018 Distance to intake (m) = 135.0 Intake height (m) = 15.6 Terrain elevation difference (m) = .0 Output file names CHTFCR.out CHTFCR.jfd Minimum Wind Speed (m/s) = .5 Surface roughness length (m) = .10 Sector averaging constant - 4.0 Initial value of sigma y = 3.12 Initial value of sigma z = .00 Expanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window = 7167 Hours elevated plume w/ dir. in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 18229 DIS'11tIBUTION SUtt4ARY DATA BY AVERAGING INTERVAL AVER. PER. 1 2 4 8 12 24 96 168 360 720 UFPER Litt. 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1CW LIM. 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 b

ADOVE RANGE 0. O. O. D. C. O. O. O.

IN RANGE 7662. ~ 9147, O. O.

11079. 13554. 15606. 19559, 25004 25103.

SEIAN RANGE ' O. O. O.

25159. 24910.

O. O. .C. D. O.

EERO 18229.

~

O. O.

16678. . 14628. 11932. 10062. 6025, 201. 1.

70TAL X/Qs 25891. D. D.

25825. 25707. 25486. 25668. 25584 25205. 25104.

t NON EERO 29.59 35.42 25169. 24910, 43.10 . 53.18 60.00 ' 76.45 99.20 100.00 100.00 100.00 95th PERCENTILE X/Q VALUES 3.335-04 3.29E-04 ,3.19E-04 2.978-04_ 2.45E-04 1.83E-04 1.10E-04 9.83E-05 8.55E-05 7.73E-05 95% X/0 for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />' 3.338 04 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2.845-04

' 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.26E 04 C A0fiS4'2 REV 0 a to 4 days 8.55E-05 4 to 39 days 1.22E 05 P ASE -M

' HOURLY VALUE RANGE MAX X/Q MIN X/0 CENTERLINE 4.59E-04 4.23E-05 SECTOR AVERAGE 2.882-04 2.65E-05

NOR*tAL PROGRAM COMPLETION 4

1 I

  • e  ;

l Program Titles ARCON96. l' Developed Fors U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Division of Reactor Program Management P AiSIE '35)

Dat3s June 25, 1997 11:00 a.m.

NRC Contacts: J. Y. Lee Phones (301) 415 1080 e-mail jyllenre. gov J. J. Hayes Phones (301) 415 3167 e-mail jjhenre. gov L. A Brown Phones (301) 415 1232 e-mails 1 42enre. gov ~

Code Developers J. V. Ramsdell Phone: (509) 372 6316 e-mail j_ransdellopnl. gov l Code Documentations NUREQ/CR-6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legel liability or responsibilities for any third party's use, or the results of such use, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Program Run 7/23/1998 at 07:33:48 I

sees *** ARCON INPUT **********

Number of Meteorological Data Files = 3 Meteorological Data File Names CC1991. MET CC1992. MET CC1993. MET Height of lower wind instrument (m) = 10.0 Height of upper wind instrument (m) = 60.0 Cind speeds entered as meters /second Cround-level release Release height (m) = .0 l

i Building Area (m*2) = 1155.0 Effluent vertical velocity (m/s) = .00 Vent or stack flew (m*3/s) = .00 '

vent,or stack radius (m) = 6.72 Direction intake to source (deg) = 174 Wind direction sector width (deg) = 90 Cind direction window (deg) = 129 - 219 i Distance to intake (m) = 300.0 I Intake height (m) = 15.6 Terrain elevation difference (m) = .0 Output file names CHWHCR.out CHWHCR.jfd Minimum wind Speed (m/s) = .5 Surface roughness length (m) = .10 Sector averaging constant = 4.0 Initial value of sigma y = 3.12 Initial value of sigma s = .00 Expanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window = 7071 Hours elevated plume w/ dir. in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 18325 PISTRIBUTION SUt9%RY DATA BY AVERAGING INTERVAL AVER. PER. 1 2 4 8 12 24 96 168 360 720 UPPER LIM. 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 LOW LIM. 1.00E-07 1.00E-07 1.00E 07 1.00E-07 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E 08

p-

b. 'A.'

ABOYE BANGE 0. O. O. O. O. O. O.

2D MANGE- 7566. O. C. O.

9072. 10905. 13503. 15536. 19375. 24050, l- eBrm RANGE- D. 25104. 25169. 24910.

D. C. O. O. O.

EBRO- 18325. O. 0. O. C.

16753. 14722. 11983 10132. 6209. 355.

TOEAL X/Qs' 25091. O. O.

25025. 25707. 25486 25660. 25584. 25205.

O.

% NON EERO 29.22~ 25104. 25169. 24910.

35.13 42.73 52.90 60.53 75.73 98.59 100.00 100.00 100.00 95th PERCENTILE X/Q VALUES 9.17E-05 8.93E-05 0.65E 0.09E.05 6.65E 05 4.83E-05 2.90E-05 2.47E-05 2.20E-05 2.02E-05 /

95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> - 9.175 05 2 to 8 houra .7.74E 05.

8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 3.20E-05 . C A0054e2 REV 0 1 to 4 days 2.252-05 4 to 30 days- 1.88E-05 P A6E 3/

HOURLY VALUE RANGE MAX X/Q MIN X/Q CENTERLINE 1.14E-04 1.05E-05 SECTOR-AVERAGE- 7.14E 6.55E-06 NORMAL PROGRAM CIMPLETION i

i,

e ..

Program Titles marvm96.

Developed Fors' U.S, Nuclear Regulatory t'a==ission C A0 tis 4<2 REV 0 offics of Nuclear Reactor Regulati-

- Division of Reactor Program Management P A SE JL Datas June 25, 1997' 11:00 a.m.

} /

NRC Contacts
J. Y. Lee Phones (301) 415 1000 e-mails syllenre. gov J. J. Hayes Phone: (301) 415 3167 e-mails jjhenrc. gov L. A Brown Phone: (301) 415 1232.

e-mails lab 2enrc. gov Code Developers J. V. Ramsdell Phones (509) '372 6316 p-mails j,yamsdellepnl. gov

Code Documentations. NUREG/CR-6331 Rev. 1 1he program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their esployees, makes any warranty, expressed or implied, or assumes any legal' liability or responsibilities for any third party's use, or the results of such us , of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Program Run 7/23/1998 a

't 07:32:33 eees**

  • ARCON INPUT ""* **"*

Wrmber of Meteorological Data Files = 3 Meteorological Data File Names CC1991. MET CC1992. MET' CC1993. MET Height of lower wind instrument (m) = 10.0 Height of upper wind instrument (m) ~= 60.0 sind speeds entered as meters /second

' Ground-level release Release height (m) = .0 Building Area (m*2) = 1155.0 Effluent vertical velocity (m/s) =- .00 Vent or stack flow (m*3/s) = .00 Vent or stack radius (m) = 6.12 Direction .. intake to source (deg) = C59 Eind direction sector width (deg) = 90 Wind direction window (dog) = 014 - 104 Distance to intake (m) = 67.0

- Intake height -(m). - 15.6 Terrain elevation difference (m) = .0

' Output file namesi CHNSBCR.out CHNSBCR.jfd -

Minimum Wind Speed (m/s) = .5 Surface roughness length (m) . .10

. Sector averaging constant = 4.0 Initial value of sigma y . 3.12 Initial value of sigma s . .00 Rapanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window = 5333

. Hours elevated plume w/ dir. in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 20063 DISTRISITf!ON SUpsutY DATA BY AVERAGING INTERVAL AVER. PER.' 1 2 4 8' 12 24 96 168 360 720

-UPPER LIM. 1.00E-02 1.005-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 1.00E-02 14N LIM. 1.00E-06 1.00E-06 1.00E-06 3.00E-06 1.00E-06 1.00E-06 1.00E-06 1.00E-06 1.iOE-06 1.00E-06 i-

4 . .

~'ABOVE RANGE 0. O. O. O. .

'O.' O. O. O. O. C.

IN RANGE 5828. 1130. 8854. 11232. 13252. 17178. 24362. 24911. 25169. 24910.

CELON RANGE 0. O. D. C. O. D. O. O. O. O.

EERO 20063.. 18695. 16853, 14254. 12416. 8406. 843. 193. O. D.

. TOTAL X/Qs t

25891. 25925, 25707. 25486. 25668. 25584. 25205. 25104. 25169. 24910.

4 NON SERO 22.51 27.61 34,44 44.07 51.63 67.14 96.66 99.23 100.00 100.00 95th PERCENTILE X/Q VALUES 1,06E-03 1.03E-0 9.79E-04' 8.92E-04 7.37E-04 5.45E-04 3.24E-04 2.76E-04 2.26E-04 1.99E-04 954 X/O for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.06E 3 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 8.34E-04 -

CA04n2 EV 0 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> '

1 to 4 days 3.71E-04 2.518-04 pgg{_

4 to 30 days, 1.80E 04 HOURLY VALUE RANGE MAX X/Q MIN X/Q CENTERLINE 1.48E-03 1.38E-04 SEC MR. AVERAGE 9.29E-04 8.65E-05 NORMAL PROGRAM COMPLETION l

1 l

l l

l i

l 1

l 5

L::

CA04542 Rev.0

, Page 34

/

ATTACHMENT C ARCON96 RUNS FOR WEST ROAD INLET PIPNUM w'

f I

I I

l l

l l

Program Title ARCON96.

Developed Fors U.S. Nuclear Regulatory Commission l Of fice of Nuclear Reactor Regulation Division of Reactor Program Management C A04542 REV 0 l j

Datat June 25, 1997 11:00 a.m. PAu NRC Contacts: J. Y. Lee Phones (301) 415 1080 e-maili jyllenrc. gov J. J. Hayes Phones (301) 415 3167 e-maili jjhenrc. gov L. A Brown Phone: (301) 415 1232 ~

e-mails lab 2enrc. gov Code Developer J. V. Ramsdell Phones (509) 372 6316 e-mail j_ramsdellopnl. gov Cod 3 Documentations NUREG/CR-6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither th) United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal lir.bility or responsibilities for any third party's use, or the results of such ure, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

i Program Run 7/23/1998 at 07:33:30

  • e*e*** ARCON INPUT **********  !

Number of Meteorological Data Files = 3 Meteorological Data File Names CC1991. MET CC1902. MET CC1993. MET Height of lower wind instrument (m) = 10.0 Height of upper wind instrument (m) = 60.0 sind speeds entered as meters /second Cround-level release Release height (m) = .0 Building Area (m*2) = 1155.0 Ef fluent vertical velocity (m/s) . .00 Vent or stack flow (m'3/s) = .00 Vent or stack radius (m) = 6.72 Direction .. intake to source (deg) = 354 Cind direction sector width (deg) = 90 Cind direction window (deg) = 309 - 039 Distance to intake (m) = 172.0 Intake height (m) = 9.1 Terrain elevation difference (m) = .0 Dutput file names CNTFWR.out ,

I CNTFWR.jfd Minimum Wind Speed (m/s) = .5 Surface roughness length (m) = .10 Sector averaging constant = 4.0 Initial value of sigma y = 3.12 Initial value of sigma z = .00 Expanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window = 1470 Hours elevated plume w/ dir, in window = 0 Rours of calm winds = 495 Hours direction not in window or calm = 17926 DISTRIBUTION SUht4ARY DATA BY AVERAGING INTERVAL AVER. PER. 1 2 4 8 12 24 96 168 360 720 UPPER LIM. 1 00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 LOW LIM. 1.00E-07 1.00E-07 1.00E-07 1.00E 07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 t

E.

i AsovE RANGE 0. O. O .' O. O. O. O. O. D. O.

IN RANGE 7965. 9453. 11343. 13855. .15936. 19755. 25017, 25101. 25169. 24910.

[EIAN EANGE 0. O. C. O. 0.' O. O. O. O. O.

EERO 17926. 16372. 14364. 11631. 9732. ,5829. ISS. 3. D. O, TOTAL X/Qs -25891. 25825. 25707. 25486. 25668. 25584. 25205. 25104. 25169. 24910. j

% NON SERO 30.16 36.60 44.12. 54.36 ~62.09 77.22 99.25 99.99 100.00 100.00 l l

95th PERCENTILE X/Q VALUES j ;

2.15E-04

  • 2.10E-04 2.05E-04 1.93E-04 1.60E 04 1.21E-04 7.67E-05 6.76E-05 5.83E-05 5.28E-05 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> - 2.155-04 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.05E-04 ~

8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 8.50E-05 54'2 E V O j 1 to 4 days 6.185-05 i 4 to 30 days 4.913 05- PASE 3G  !

HOURLY VALUE RANGE

' MAX X/Q MIN X/Q CENTERLINE 2.998-04.. 2.88E-05 SECTOR-AVERAGE- 1.87E-04 1.80E-05 NORMAL PROGRAM COMPLETION

  • l l

l l

2

)

i l

1 l

1 I

k e ,:

Program Titles- ARCON96.

Developed For 11.S.' Nuclear Regulatory Consnission C A0li5fi2 REV D

' office of Nuclear Reactor Regulation -

Division of Reactor Program Management PAGE 37 Dates June'25, 1997 11:00 a.m.

> - NRC Contactse J. Y. Lee Phones (301) 415 1080 e-mails syllenre. gov J. J. Hayes Phones (301) 415 3167 e-stail t jjhenre. gov L. A Brown Phone '(301) 415 1232 e mails lab 2enre. gov Code Developers J. V. Namsdell Phones'(509) 372 6316-e mail j,,ramsdellepnl. gov

~

I.

' Code Documentations NUREG/CR-6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

_' employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such u33, sf any portion of this program or represents that fto use by such third party would not infringe privately owned rights.

Program Run '7/23/1998 'at.07:34:03' I l

..e.e.. ARCon INPUT ..........

)

-Number of Meteorological Data Files = 3-Meteorological Data File Names  ;

CC1991. MET

' CC1992. MET i CC1993. NET Height of lower wind instrument (m) =- 10.0 Height of upper wind instrument (m) = 60.0 Cind speeds entered as meters /second Ground-level release

- blesse height (m) =- .0 Building Area (m*2) .

= 1155,0 Effluent vertical velocity (m/s) = .00 Vent or stack flow ..(m*3/s) = .00 Vent or stack radius (m) .. =' 6.72 Direction intake to source (deg) = '162 Cind direction sector width (deg) = 90 Cind direction window (deg) =- 117 - 207 Distance to intake (m) = 262.0 Intake height (m) = 9.1 Terrain elevation difference.(m) =. .0 output file names 1

CHWHWR.out CHWWWR.jfd ]

i Minimum Wind speed (m/s) =- .6 surface roughness Inngth (m) =. .10 l Sector averaging constant, a 4.0 l l

2nitial value of sigma y' = 2 3.12 ]

' Initial value of sigma-s- = -. 0 0 j tupanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window .

= 5698 Hours, elevated plume w/ dir. in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 19698  !

DISTRIBtff!ON CUP 94ARY DATA BY AVERAGING INTERVAL 2 4 8 12 24 : 96 168 360 720

' AVER. PER. -1 IIPPER LIM, 1.00E-03 1.00E 03 1.00E 03 1.00E-03 1.00E-03 1.00E 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1DW LIMP 1.00E 07' 1.00E-07 1.00E-07 1,00E-07 1.00E-07 1.00E-07 1.00E 07 1.00E+07- 1.00E-07 1.00E-07

ABOVE RANGE 'O. O. O. D. D. D. O. O. O. O.

IN RANGE .6193. 7584 9475. 12141. 14358. 18559. 24524. 25030, 25169. 24910.

SEIAN RANGE. O. O. O. 'O. O. D. O. 0. C. O.

EERO 19690. 10241. 16232. 13345. 11310, 7025. 681, 74. O. O.

. TOTAL K/Qs 25891. 25825. 25707. 25486. 25668. 25584. 25205. 25104. 25169. 24910.

% 310N SERO - 23.92 29.37 's6.06 47.64 55.94 72.54 97.30 99.71 100.00 '100.00 95th PERCENTILE X/Q VALUES 1.105-04 1.06E-04 1.015-04 9.30E-05 7.56E-05 .24E-05 3.00E-05 2.61E-05 2.30E-05 2.07E-05 /

95% X/O for standard averaging intervals -

0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.10E-04

-c A0ll54'Z REV 0 2 to I bours 4.735-05 O to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 2.22E-05 1 to 4 days 2.25E-05 PA6E 34 4 to 30 days 1.938-05 MOURLY VALUE RANGE MAK X/Q MIN X/Q CENTERLINE 1.44E-04 1.44E-05 SECTOR-AVERADE 9.02E-05 9.02E-06 MORMAL PROGRAM COMPLETION L

a s Program Title ARCON96.

Developed For U.S. Nuclear Regulatory Commission

  • Office of Nuclear Reactor Regulation-Division of Reactor Program Management C A0G542 REV 0 Datas June 25, 1997 11:00 a.m. j P A G.E M NRC Contacts: J. Y. Lee Phone (301) 415 1080 e-mails jyllenrc. gov J. J. Hayes Phone: (301) 415 3167 e-mails jjhanre. gov L. A Brown Phone (301) 415 1232 e-mails lab 2enrc. gov Code Developer J. V. Ramsdell Phones (509) 372 6316 e-maili j_ramsdellepnl. gov Code Documentation NURE0/CR-6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such u;c, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Program Run 7/23/1998 at- 07:32:59 sees *** ARCON INPUT **********

Number of Meteorological Data Files = 3 Meteorological Data File Names CC1991. MET CC1992. MET CC1993.HET Height of lowe r wJ ad instrument (m) = 10.0 Height of upper wind instrument (m) = 60.0 i Wind speeds ettered as meters /second l Cround-level ralease kelease height tm) = .0 Building Area (m*2) = 1155.0 Effluent vertical velocity (m/s) = .00 Vent or stack flow (m"3/s) = .00 Vent or stack radius (m) = 6.72 Direction . intake to source (deg) = 050 Wind direction sector width (deg) = 90 Cind direction window (deg) = 005 - 095 ,

Distance to intake (m) = 135.0 Intake height (m) = 9.1 Terrain elevation difference (m) = .0 out put fils names CHNSBWR.out CHNSBWR,jfd Minimum Wind Speed (m/s) . .5 Surface roughness length (m) . .10 Sector averaging constant = 4.0 Initial value of sigma y = 3.12 Initial value of sigma . .00 Expanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window = 5965 Hours elevated plume w/ dir. in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 19451 DISTRIBITTION SUbt4ARY DATA BY AVERACING INTERVAL AVER. PER, 1 2 4 8 12 24 96 168 360 720 UPPER LIM. 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 LOW LIM. 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 1.00E-07 f

4

s e ABOVE RANGE 0. O. O. O. O. D. O. O. O. O.

IN RANGE 6460. 7712. 9395. 11745. 13756. 17618. 24509. 24994. 25169 24910.

BEIOf RANGE 0. D. O. O. O. O. O. O. O. O.

EERO 19431. 18113. 16312. 13741. 11912. 7966. 696. 110. O. C.

TOTAL X/Qs 25891. 25825. 25707, 25486. 25668. 25584. 25205. 25104. 25169. 24910.

% NON EERO- 24.95 29.86 36.55 46.08 53.59 68.86 97.24 99.56 100.00 100.00 95thPERCENTILEp/OVALUES ,

I 3.18E-04 3.11E-04 2.99E-04 2.75E-04 2. 2 8 E- 04 1.73E 04 1.06E-04 8.93E-05 7.55E-05 6.55E-05 95% X/Q for standard averaging intervals 3.18E-04 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 2.60E-04 .h k k.

yQ I 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.22E-04 1 to 4 days 8.31E-05 PA6E O 4 to 30 days 5.94E-05 HOURLY VALUE RfNGE MAX X/Q MIN X/Q CENTERLINE 4.63E-04 4.30E-05 SECTOR-AVERAGE 2.90E-04 2.69E-05 NORMAL PROGRAM COMPLETION i

F

' CA04542 Rev.0 Page 41 ATTACHMENT D EXCEL SPREADSHFRT .

HYDRA 7.IrIE - AUX BLDG ROOF INLET I 1

I

HYDRAZINE-375-CR CA04542 REV 0 P AGE (/L-A B C D E F G 1 HYDRAZINE HYDRATE 2

3 CHEMICAL N2H4 4 IDLH (PPM) IDLH 80 5 ODOR THRESHOLD (PPM) OT 3 6 STORAGE QTY (GAL) Q 375 7 STORAGE PURITY (FRACTION) QF 0.35 8 SPECIFIC GRAVITY (GM/CC) SG 1.008 9 VAPOR PRESSURE (TORR-C-R-K) VP 1.44E+01 25 536.67 298.15 10 BOILING POINT (C-K-R) TB 113.5 386.65 695.97 11 MOLECULAR WT (GM/ MOLE) MB 32.05 12 DIFFUSION COEFF (CM2/SEC) D 0 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 15 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 16 CHAR LENGTH AIR (A) SIGA 3.711 17 PRESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 19 MASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S) MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 8300 25 WIND VELOCITY (CM/SEC) VW 100 26 MAXIMUM TIME (MIN) Tmax 2418.985 2418.985 27 CONTROL ROOM FACTOR CRF 1.00000 CRF = 1.-exp(-FCR*TmaxWCR) 28 29 LEBAS MOLAL VOLUME 30 C 14.8 0 0 31 H 3.7 4 14.8 32 0 7.4 0 0 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 35 O IN HIGHER ESTERS & ETHERS 11 0 0 36 O IN ACIDS 12 0 0 37 O JOINED TO S, P, N 8.3 0 0 38 N DOUBLE BONDED 15.6 0 0 39 N IN PRIMARY AMINES 10.5 2 21 40 N IN SECONDARY AMINES 12 0 0 41 BR 27 0 0 42 CL 24.6 0 0 43 F 8.7 0 0 44 1 37 0 0 45 S 25.6 0 0 46 3-MEMBERED RING -6.0 0 0 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 Page 1

HYDRAZINE-375-CR CA0454 2 REV 0 PAGE D A B C D E F l G 49 6-MEMBERED RING -15.0 0 0 50 NAPHTHALENE -30.0 0 0 51 ANTHRACENE -47.5 0 0 52 OTHER 0.0 0 0 53 LEBAS MOLAL VOL VB'(CC/MOL) VB' 35.8 54 55 DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE 56 CHAR LENGTH B (A) StGB 1.18*VB'^1/3= 3.8890 57 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 3.8000 58 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 444.6475 59 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SQRT(E/KA*E/KB)= 186.9473 60 TSTAR T* TA/(E/KAB)= 1.6216 61 COLLISION INTEGRAL CONSTANT A 1.06036 62 B 0.15610 63 C 0.19300 64 D 0.47635 65 E 1.03587 66 F 1.52996 67 G 1.76474 68 H 3.89411 69 COLLISION INTEGRAL OMEGA A/T*^B +Cle^(T*D)+ Ele ^(T* F)+Gle^(T*H) 1.1623E+00 70 B-PRIME B' O.00217-0.00050*SQRT(1/MA+1/MB) = 2.0418E-03 71 MOLECULAR WElGHT MR (MA+MB)/(MA*MB) l 6.5720E-02 72 D1FFUSION COEFF (CM2/SEC) D B'*TA^ 1. 5* M R^0. 5/( PA*S ! G AB ^2 *O M EGA)=1.6461E-01 73 l l 1.6461 E-01 74 VAPOR DENSITY (GM/CC) RHOV MB*14.696*0.01601846/(10.72*TVP) 1.3114E-03 I 75 l

76 INITIAL MASS (GM) MO 5.0081E+05 Q*QF*SG*(3785.422 CC/ GAL) 77 VOLUME (M3) VO Q*OF*(3.785422E-3 M3/ GAL) = 4.9684E-01 78 SPILL RADIUS INITIAL (M) RO (V0/PI)^0.33333 = 5.4078E-01 1 79 SPILL AREA INITIAL (M2) AO Pl*RO^2 = 9.1874E-01 I 80 SPILL AREA FINAL (M2) AF VO/0.01 = 4.9684E+01 81 DELTA SPILL AREA (M2/SEC) DA 7.8214E+00 SQ RT(4 *Pl *9. 81 *VO*(SG-R H OA)/SG))

82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 6.2348E+00 83 CHARACTERISTIC LENGTH'r'M L SQRT(4*VO*1.E6/PI) - 7.9536E+02 84 l 85 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR l 86 TF NSB i WH l 87 ADC (S/M3) ADC 3.33E-04 1.06E-03 ! 9.17E-05 l 88 TIME (SEC) T 1 10; 6.2348 40 i 89 AREA (M2) A MIN (Pl*RO^2+T*DA,AF) t 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760*SQRT(D/Pl/t) 91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A l i 92 PPM INSIDE CR PPM (24500/MB)*VD i j

93 TF i 94 CASES T ADC A i VR VD PPM 95 1 3.33E-04 8.74E+00i 5.69E-02 1.66E-04 1.27E-01 96 10 l 3.33E-04 4.97E+011 1.80E-02 2.98E-04 2.27E-01 Page 2

1 t e a e HYDRAZINE-375-CR CA0454 2 REV 0 PAGE YI A B C D E F G 97 6.2348 3.33E-04 4.97E+01 2.28E-02 3.77E-04 2.E8E-01 98 40.0000 3.33E-04 4.97E+01 8.99E-03 1.49E-04 1.1tE-01 99 NSB j

100 1.06E-03 1 8.74E+00 5.69E-02 5.27E-04 4.03 E-01 101 10 1.06E-03 4.97E+01 1.80E-02 9.47E-04 7.245-01 102 6.2348 1.06E-03 4.97E+01 2.28E-02 1.20E-03 9.17E-01 103 40.0000 1.06E-03 4.97E+01 8.99E-03 4.74E-04 3.62E-01 104 WH -

105  !

1 9.17E-05 8.74E+00 5.69E-02 4.56E-05 3.48E Di 106 10 9.17E-05 4.97E+01 1.80E-02 8.19E-05 6.26E-55 I 107 6.2348 9.17E-05 4.97E+01 2.28E-02 1.04E-04 7.93E-0,2_ l 108 40.0000 9.17E-05 4.97E+01 8.99E-03 4.10E-05 109 3.13E-C 2_ l 110 VAPOR DENSITY INSIDE CONTROL ROOM - FORCED CONVECTION ~

111 REYNOLD NUMBER RE L*VW*RHOA/MU 5.2214E+05 112 SCHMIDT NUMBER SC MU/(D*RHOA) 9.2536E-01 113 l

114 TURB MASS TRANS COEFF(CM/S) HDT 0.037*(D/L)*RE^0.8*SC^0.33333 2.7997E-01 115 TURB EVAP RATE (G/M2-S) VFT HDT*MB*VP*1.E4/(R*TVP) 6.9451 E-02 116 VAPOR DEN INSIDE CR(GM/M3) VD VFT*ADC*AF*CRF 117 PPM INSIDE CR PPM (24500/MB)*VD 118 CASES ADC VD PPM 119 TF 3.33E-04 1.15E-03 8.7C-0 i '

120 NSB 1.06E-03 3.66E-03 2.80E+00  ;

121 WH 9.17E-05 3.16E-04 2.42E-01 '

122 123 LAM MASS TRANS COEFF(CM/S) HDL 0.664*(D/L)*RE^0.5*SC^0.33333 9.6769E-02 124 LAM EVAP RATE (G/M2-S) VFL HDL*MB*VP*1.E4/(R*TVP) 2.4005E-02 125 VAPOR DEN INSIDE CR(GM/M3) VD VFL *ADC*AF*CRF 126 PPM INSIDE CR PPM (24500/MB)*VD 127 CASES ADC VD PPM 128 TF 3.33E-04 3.97E-04 3.04E-01 129 NSB 1.06E-03 1.26E-03 9.66E-01 130 WH 9.17E-05 1.09E-04 8.36E-02 131 laminar turbulent 132 Time to peak (sec) = t=1/ER/.0001*SG 419908.6 145139.07 133 Time to peak (min) = 6998.48 2418.98 134 Time to peak (br) = 116.64 40.32 135 136 Turbulent Evaporation without Recirc Inlow(cfm) 8300 8300 8300 8300 ADC 137 TF Time (min) 20 2418.98 2448.98 2478.98 3.33E-04 138 PPM 0.45 0.88 0.30 0.10 139 Turbulent Evaporation without Recirc Inlow(cfm) 8300 8300 8300 8300 ADC 140 NSB Time (min) 20 2418.98 2448.98 2478.98 1.06E-03 141 PPM 1.42 2.80 0.97 0.33 142 Turbulent Evaporation without Recirc Inlow(cfm) 8300 8300 8300 8300 ADC 143 WH Time (min) 20 2418.98 2448.98 2478.98 9.17E-05 144 PPM 0.12 0.24 0.08 0.03 Page 3

HYDRAZINE-375-CR PA6E A B C D E F G 115 146 Turbuler;t Evaporation with Recirc Intow(cfm) 8300 3000 3000 3000 ADC 147 TF Time (min) 20 2418.98 2448.98 2478.98 3.33E-04 148 PPM 0.45 0.88 0.30 0.10 149 Turbulent Evaporation with Recirc Inlow(cfm) 8300 3000 3000 3000 ADC 150 NSB Time (min) 20 2418.98 2448.98 2478.98 1.06E-03 151 PPM 1.42 2.80 0.97 0.33 152 Turbulent Evaporation with Recirc Infow(cfm) 8300 3000 3000 3000 ADC 153 WH Time (min) 20 2418.98 2448.98 2478.98 9.17E-05 154 PPM 0.12 0.24 0.08 0.03 1

Page 4

4 .. .

CA04542 Rev.0 Page 46 ATTACHMENT E EXCEL SPREADSHEET HYDRA 7INE - WEST ROAD INLET.

4 4

a l

I i

l i

i

r i,-,,

HYDRAZINE-375-WR PA8E $

A B C D E F G 1 HYDRAZINE HYDRATE 2

3 CHEMICAL N2H4 4 IDLH (PPM) IDLH 80 5 ODOR THRESHOLD (PPM) OT 3 6' STORAGE OTY (GAL) Q 375 7 STORAGE PURITY (FRACTION) OF 0.35 8 SPECIFIC GRAVITY (GM/CC) SG 1.008 9 VAPOR PRESSURE (TORR-C-R-K) VP 1.44E+01 25 536.67 298.15 10 BOILING POINT (C-K-R) TB 113.5 386.65 695.97 11 MOLECULAR WT (GM/ MOLE) MB 32.05 12 DIFFUSION COEFF (CM2/SEC) D 0 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 15 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 16 CHAR LENGTH AIR (A) SIGA 3.711 17 PRESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 19 MASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S) MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 3000 25 WIND VELOCITY (CM/SEC) VW 100 26 MAXIMUM TIME (MIN) Tmax 2418.985 2418.985 27 CONTROL ROOM FACTOR CRF 1.00000 CRF = 1.-exp(-FCR*Tmax./VCR) 28 29 LEBAS MOLAL VOLUME 30 C 14.8 0 0 31 H 3.7 4 14.8 32 O 7.4 0 0 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 35 O IN HIGHER ESTERS & ETHERS 11 0 0 36 O IN ACIDS 12 0 0 37 O JOINED TO S, P, N 8.3 0 0 38 N DOUBLE BONDED 15.6 0 0 39 N IN PRIMARY AMINES 10.5 2 21 40 N IN SECONDARY AMINES 12 0 0 41 BR 27 0 0 42 CL 24.6 0 0 43 F 8.7 0 0 44 I 37 0 0 45 S 25.6 0 0 46 3-MEMBERED RING -6.0 0 0 l 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 l

Page 1 l

F HYDRAZINE-375-WR i

PAGE N A B C l D E F G 49 6-MEMBERED RING -15.0 0 0 50 NAPHTHALENE -30.0 0 0 51 ANTHRACENE -47.5 0 0 52 OTHER 0.0 0 0 53 LEBAS MOLAL VOL VB'(CC/MOL) VB' I 35.8 54 55 DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE 56 CHAR LENGTH B (A) SIGB 1.18*VB'^1/3= 3.8890 57 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 3.8000 58 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 444.6475 59 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SQRT(E/KA*E/KB)= 186.9473 60 TSTAR T* TA/(E/KAB)= 1.6216 61 COLLISION INTEGRAL CONSTANT A 1.06036 62 B 0.15610 63 C 0.19300 64 D 0.47635 65 E 1.03587 66 F 1.52996 67 G 1.76474 9_ H 3.89411 69 COLLISION INTEGRAL OMEGA A/T*^ B +C/e^(T* D)+ Ele ^(T*F)+G/e^(T*H) 1.1623E+00 70 B-PRIME B' O.00217-0.00050*SQRT(1/MA+1/MB) = 2.0418E-03 71 MOLECULAR WElGHT MR (MA+MB)/(MA*MB) l l 6.5720E-02 72 DIFFUSION COEFF (CM2/SEC) D BTA^ 1. 5 *M R^0. 5/( PA*S I GAB ^2*O M E G A)= 1.6461 E-01 73  ! l l 1.6461E-01 74 VAPOR DENSITY (GM/CC) RHOV MB*14.696*0.01601846/(10.72*TVP) 1.3114E-03 75 l l 76 INITIAL MASS (GM) MO Q*QF*SG'(3785.422 CC/ GAL) 5.0081 E+05 77 VOLUME (M3) VO Q*QF*(3.785422E-3 MS/ GAL) = 4.9684E-01 78 SPILL RADIUS INITIAL (M) RO (V0/PI)^0.33333 = 5.4070E-01 l 79 SPILL AREA INITIAL (M2) AO Pl*RO^2 = 9.1874E-01 80 SPILL AREA FINAL (M2) AF VO/0.01 = 4.9684E+01 81 DELTA SPILL AREA (M2/SEC) DA SQ RT(4*Pl*9.81 *VO*(SG-RH OA)/SG)) 7.8214E+00 82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 6.2348E+00 83 CHARACTERISTIC LENGTH (CM) L SQRT(4*VO*1.E6/PI) 7.9536E+02 84 {

85 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR 86 TF NSB WH 87 ADC (S/M3) ADC 2.15E-04 3.18E-04 1.10E-04 88 TIME (SEC) T 1 10 6.2348 40 89 AREA (M2) A MIN (Pl*RO^2+T*DA,AF) 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760*SQRT(D/Pl/t) 91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A 92 PPM INSIDE CR PPM (24500/MB)*VD 93 TF 94 CASES T ADC A VR VD PPM 95 1 2.15E-04 8.74 E+00 5.69E-02 1.07E-04 8.17E-02 .

, 96 10 2.15E-04 4.97E+01 1.80E-02 1.92E-04 1.47E-01 l

Page 2

HYDRAZlNE-375-WR CA0454 2 REV 0 PAGE #

A B C D E F G 97 6.2348 2.15E-04 4.97E+01 2.28E-02 2.43E-04 1.86E-01 98 40.0000 2.15E-04 99 NSB 4.97E+01 8.99E-03 9.61E-05 7.34E-02  ;

100 3.18E-04 8.74E+00 5.69E-02 1 1.58E-04 1.21E-01 101 10 3.18E-04 4.97E+01 1.80E-02 2.84E-04 2.17E-01 102 6.2348 3.18E-04 4.97E+01 2.28E-02 3.60E-04 2.75E-01 103 40.0000 3.18E-04 4.97E+01 8.99E-03 1.42E-04 1.09E-01 15 WH 105 1 1.10E-04 8.74E+00 5.69E-02 5.47E-05 4.18E-02 106 10 1.10E-04 4.97E+01 1.80E-02 9.83E-05 7.51 E-02 107 6.2348 1.10E-04 4.97E+01 2.28E-02 1.24E-04 9.52E-02 108 1 40.0000 1.10E-04 4.97E+01 8.99E-03 4.92E-05 3.76E-02 109 l

  • 110 VAPOR DENSITY INSIDE CONTROL ROOM - FORCED CONVECTION 111 REYNOLD NUMBER- RE L*VW*RHOA/MU 5.2214E+05) 112 SCHMIDT NUMBER SC MU/(D*RHOA) 9.2536E-01 113  ! l 114 TURB MASS TRANS COEFF(CM/S) i HDT 0.037*(D/L)*RE^0.8*SC^0.33333 2.7997E-01 115 TURB EVAP RATE (G/M2-S) j VFT HDT*MB*VP*1.E4/(R*TVP) 6.9451 E-02 116 VAPOR DEN INSIDE CR(GM/M3) l VD VFT*ADC*AF*CRF 117 PPM INSIDE CR i PPM (24500/MB)*VD 118 CASES i ADC VD PPM 119 i TF 2.15E-04 7.42E-04 5.67E-01 120 i NSB 3.18E-04 1.10E-03 8.39E-01 121 l WH- 1.10E-04 3.80E-04 2.90E-01 122 l 123 LAM MASS TRANS COEFF(CM/S) 1 HDL 0.664*(D/L)*RE^0.5*SC^0.33333 9.6769E-02 124 LAM EVAP RATE (G/M2-S) l. VFL HDL*MB*VP*1.E4/(R*TVP) 2.4005E-02 125 VAPOR DEN INSIDE CR(GM/M3) i VD VFL *ADC*AF*CRF 126 PPM INSIDE CR i PPM (24500/MB)*VD 127 CASES ADC VD PPM 128 '

TF 2.15E-04 2.56E-04 1.96E-01 I 129 NSB 3.18E-04 3.79E-04 2.90E-01 130 WH 1.10E-04 1.31 E-04 1.00E-01 )

131 laminar turbulent 132 Time to peak (sec) = 't=1/ER/.0001*SG 419908.6 145139.07 133 Time to peak (min) = 6998.48 2418.98 134 Time to peak (hr) = 116.64 40.32

.135, 136 Turbulent Evaporation with Recirc Inlow(cfm) 3000 3000 3000 3000 ADC 137 TFITime(min) 20 2418.98 2448.98 2478.98 2.15E-04 138 PPM 0.13 0.57 0.39 0 139 Turbulent Evaporation with Recirc Inlow(cfm) 3000 3000 3000 3000 ADC

,140 NSB Time (min) 20 2418.98 2448.98 2478.98 3.18E-04 141 PPM 0.19 0.84 0.57 0.39 142 Turbulent Evaporation with Recirc Inlow(cfm) 3000 3000 3000 3000 ADC 143 WH Time (min) 20 2418.98 2448.98 2478.98 1.10E-04 144 PPM 0.07 0.29 0.20 0.13 Page 3

CA04542 Rev.0 Page 50 ATTACHMENT F CORRESPONDENCE l l

1 l

}

,. $ S; i

i i

\

e > , ,

CADt;5gg ggy 0 P AGE St

) / -

g BECHTEL POWER CORPORATION TELEPHONE CALL-Jamal K. Ghaben By: Of: NOPS Route / Copy R. Patel h h 115 S. Levin "h To: Evelyn Eshelman Of: CCNPP Chemistry D. Patton -

Date: 11/3/94 Tirne: 2.00 PM

Subject:

CCNPP Control Room Habitability, Inventory of Job No: 11865 Chemicals File: M I contacted Evelyn to establish the amounts of chemicals currently in use, and the chernicals (ETA) to be stored in the future at CCNPP. The following input was provided:

  • 11ydrazine is procured in concentrations of 35% in a 350 gallon tote bins. This chemical will be located in Warehouse No. 3, the Tank Farm, and the North service Building.
  • Morpholine is procured in concentrations of 99% in a 280 gallon tote bins filled only with 170 gallons of Morpholine. A total of eight totes four of which are full on site at a time. This chemical will be located in Warehouse No. 3, the Tank Farm. and the North service Building.
  • Ammonia is purchased in concentrations of 28 30% and diluted to 11% in the tank. This chemical will be located in Warehouse No. 3, the Tank Farm.
  • ETA will be procured in concentrations of 85% in a 350 gallon totes. This chemical will be located id Warehouse No. 3, the Tank Farm, and the North service Building.

The above information will be utilized in performing the analysis currently underway for the CCNPP Control Room Habitability by considering a chemical spill due failure of the largest container for each chemical.

-  :=

mi.cni3:;;&: ii.:. sc.;s...s.:en 3:.%;.ygs,.:r:gggryg4ggyM

reolochem. ine.

CA04'5Q REV 0 Ecolochem,Inc. EP= 2"= = P PA6E n.

06 %

Wednesday,/ A pril24,)996 ~

.:.bRfClK0W5K1, M . Jack Bills Baltimore Gas and Electric Co. kegn3{ you fRovibE Calvert Cliffs Nuclear Power Plant g g,g,tgt, ggm gg;4tgji 1650 Calvert Cliffs Parkway, Rte 2 Lusby, MD 20657

/

CVA!u ATIOJ Fort T@ 4y naCMordcd Phone:(410) 495-2434 pgg g5 de3atMd N Ss FAX: (410) 495-6628 g 3 gggg ja usE WM Ne OM l

~

Dear Jack,

Oh N

~ h4a d' y,hff ,

Attached are MSDS sheets for the chemicals and reagents that'we plan to use at the Calvert Cliffs Plant. The bulk chemicals used in the water treatment process are '

E hydrochloric ccid and hydrazine. The other MSDS sheets are for silica, carbon hydrazine, and dissolved oxygen test kit reagents.

y, We would like to store up to 1000 gallons of 20% by weight hydrochloric acid in

_ two 500 gallon polyethylene tanks in separate polyethylene containment basins. This "*

amounts to a maximum of 9206 pounilidacid 561ujf6ii of which 1800 pounds is hydrochloric acid. These chemicals would be stored underneath the RO trailer and surrounded by the trailer skirting. The acid solution would be drawn from the tank by suction to the metering pumps located inside the RO trailer. Should the acid line fail, the vacuum on the suction line would be lost and the acid would return by gravity to the storage tank. At 100 gallons per minute average product water flow rate, about 20 gallons of the acid solution would be consumed per day. The acid tanks would be refilled by hose from non-pressurized vessels on a delivery truck. A higher percentage of hydrochloric acid solution could be considered, but we prefer the 20% solution due to its low vapor pressure and fuming characteristics.

Hydrazine would be delivered in stainless steel tote bins, and would need a forklift to be changed out. The tote bins have a maximum volume of 375 gallons and we would only need one in service at a time. The solution in the tote bins is 85% by weight hydrazine and the total weight of hydrazine solution is 3210 pounds, of which 1125 pounds is hydrazine. The hydrazine solution will be drawn from the tote bin by suction in a manner similar to the acid system. At 100 gallons per minute average product water flow rate, about i gallon of hydrazine solution would be used per day. Due to the low volume of hydrazine used, we are trying to find out if hydrazine is available in smaller bins.

C ADI,5/i2 REV 0 PASE 63 j We are still researching the specl0cs on longer trailers to accommodate the space required for your instrument panel and silica analyzers. The design will be either a longer trailer or a separate enclosure.1 will get back to you with the details as soon as they are available.

Please call me at (800) 446-8004 if you have questions.

Richard Hildebrand Engineering Manager Attachments -MSDS sheets for:

Hydrazine (Olin) l Hydrochloric acid (Olin)

I Activated Carbon (deoxygenation catalyst media)(Envirotrol)

Anion ion exchange resin ORA-402)(Rohm and Haas)

Cation ion exchange resin OR 122) (Rohm and Haas)

Dissolved oxygen CHEM 4t vacu vlais (Chemetrics)

- Dissolved oxygen CHEM-et ULR vacu-vials (Chemetrics) f Hydrazine CHEM-et and hydrazine ULR CHEM-et vacu-vials (Chemetrics)

Carbon dioxide titrets (Chemetrics)

Carbon dioxide neutralizer solution (Chemetrics)

Carbon dioxide activator solution (Chemetrics)

Molybdate reagent for silica (Hach) ,

Oxalic acid reagent for silica (Hach) l Amino acid reagent for silica (Hach) l Silica standard solution (Hach)

~

I e

page 2

CA04542 Rev.0 Page 54 ATTACHMENT G CROSS SECTIONAL AREAS

CA0Y547 REV 0 W-94 g -

pgp y g A* ?S*CG67' R6K$7

% kyf ) C = /52S~' 24f47 Al*% g d=$6M/(2nrkyr)

~ =23w. 59?f  ;

$ *ll lou = 2,Jt.Yun l= Y!&tF7 '

Ar, J' 217r '

S=L4 =tsz..ggyj .

4, tg:<

l Arnd6 .

~

Jh.= Gs?,r) Off.r- ur)= *?2Ch<~./t' b dar * }L Y K C 3 N ~

du= G20k'-WC-(CG we m2a) se.y l) = (13en.s Jf' b)21 = 1*kt;re- 06 4 = 268/0,/1ff' St h /XL J W L D/f G : E'-2 w krg =OS8 aa,,'fDL5-fis)"

ais.

s77

.[am)' = 27(G7,of, ff .

G^dkMan.f"/~ fit &4dd A/L&!6: s-95 x smy ,

Ars = C+sessarp -w.<) Clez.ir') = rzo.g.s .xr 7wn xce.m

&m'* /l$.5r*C.5 $

e .:.,

^

Aprx=28iG& N'

.e.--