A04552, Rev 0 to CA04552, 1,100 Tons 100% Benzene CR Chemical Habitability

From kanterella
Revision as of 10:02, 2 December 2021 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 0 to CA04552, 1,100 Tons 100% Benzene CR Chemical Habitability
ML20210V228
Person / Time
Site: Calvert Cliffs  Constellation icon.png
Issue date: 09/30/1998
From: Gryczkowski G, Mihalcik J, Sommerville I
BALTIMORE GAS & ELECTRIC CO.
To:
Shared Package
ML20210V122 List:
References
CA04552, CA04552-R00, NUDOCS 9908230077
Download: ML20210V228 (42)


Text

~.,t-

. Engineering Services Process Overview EN 1-100 Revision 10 Page 105 of153 ATTACIIMENT 19, CALCULATION COVER SIIEET INITIATIONJControl Doc Type - DCALC) Page_/ of 4 L-

'i) CALC No.: CA0Yf(2. Revision No.:

o Vendor Calculation (Check one): 0 Yes )6 No ESP [$/eff/p/ ppg Supp No.: g Rev. No.: o Responsible Group: ggy Responsible Engineer: [,,,) [ px4 CALCULATION ENGINEERING i O Civil O Instr & Controls DIscm y NucEngrg I O Electrical O Mechanical O Diesel Gen Project O Life Cycle Mngmt O IGliabilityEngrg O Nuc Fuel Mngmt O Other:

Title:

//efsgg /fel M/ftfy/

0Wfd A%M ON+/CW HM/fk/W17 Unit O UNIT 1 O UNIT 2 JT COMMON -

Proprietary or Safeguards Calculation O YES

/NO Comments:

p Vendor Cale No.: j). REVISION NO.:

_f/4 Vendor Name: g//)

Safety Class (Check one): ,ld SR O AQ ONSR

'lhere are assumptions that require Verification during walkdown: AIT # ,#8 This calculation SUPERSEDES: gj REVIEW AND APPROVAL:

Responsible Engineer: [fg,el [ hg,d -

Date: /

Independent Reviewer: Z/M_,[,gEfv//[gkk[;m-)g Date: gj" 2///18 Approval:

1A,gyggg[ M f Date: 3o y ;3Sg

'g .,

9908230077 990017 DR ADOCK0500g37

(, 4 l f

CA04552 Rev.0 Page 2

2. LIST OF EFFECTIVE PAGES 1

Page Latest Page Latest . Page Latest Page Latest Page Latest Rev Rev Rev Rev Rev 1

001 0 002 0 003 0 004 0 005 0

, 006 0 007 0 008 0 009 0 010 0 011 0 012 0 013 0 014 0 015 0 016 0 017 0 018 0 019 0 020 0 021 0 .022 0 .023 0 024 0 025 0 j 026 . 0 027 0 028 0 029 0 030 0 '

031 0 032 0 033 0 034 0 035 0 l 036. 0 037 0 038 0 039 0 040 0 041. 0 042 0 l

1 l l

I L.: j

CA04552 Rev.0 Page 3

3. REVIEWER COMMENTS l

J.A.Mihalcik inquired as to the benzene concentration at the intake structure.

An ARCON96 execution was performed for a ground level release 938.38 m from a ground level gx:eptor at the intake structure. The 0-2 hr atmospheric dispersion coefficient wag 1.60E-5 sec/m . The control room 0-2 hr atmospheric dis'persion coefficient was 1.35E-5 sec/m . Thus the benzene concentration at the intake structure can be calculated to be 186 PPM = 157 PPM * (1.60E-5)/(1.35E-5)

This is much less than the IDLH toxicity limit of 2000 PPM and much less than the lower explosion limit of13000 PPM.

1s- .

4 8

Program Titles ~ AR008t94',

Devsloped Fors U.S. Nuclear Regulatory Comuniesi-Office of Nuclear Reactor Regulation - CA0455'2 REV8 Division of Reactor Program Management

~

fgg{

Date June 25, 1997 - 115 00 a.m.

NRC Contactet J. Y.' Lee Phones (301) 415 1080 e-mails jyllenre. gov

' J. J. Hayes Phones (301) 415 3167 e-mail jjhenrc. gov

' L. A Brown Phones (301) 415 1232 e-mails lab 2enrc. gov

. Code Developert J. V. Ramsdell Phonor (509) 372 6316 e-mail j ramsdellepnl. gov

' Cod) Documentations NURB0/CR 6331 Rev. 1 Th3 program was prepared for an agency of the United States Government. Neither -

the United states Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal litbility or responsibilities for any third party's use,' or the results of such uit, of any portion o.f this program or represents that its use by such third party would not infringe privately owned rights.

.{

. Progrtm Run ' 10/ 2/1998 at ;10:03:47

' * * ** * *

  • ARCON INPUT * * * * * * * * * * -

i Number of Meteorological Data Files = 3 Meteorological Data File Names CC1991. MET CC1992. MET.

CC1993. MET H31ght of lower wind instavment (m) = 10.0 H31ght of upper wind instrument (m) = 60.0 Wind speeds entered as meters /second Ground-level' release R31 ease height (m) = .0

.Euilding Area (m'2) = 1.0 Effluent vertical velocity (m/s) = .00 Vznt or stack flow (m"3/s) = .00

. V:nt er stack radius (m) = 190.05 l

Direction .. intake to source (deg)- = 045 Wind direction sector width (deg) = 90 Wind direction window (deg) = 000 - 090 Distance to intake (m) = 938.4 a

Intake height (m). . .0. 1 Tsrrain elevation difference (m) = .0 l Output file names  !

CHBAYIN.out CHBAYIN.jid Minimum Nind Speed (m/s)- = .5

. Eurface roughness length (m) = .10 Sector averaging constant = 4.0 i

Initial value of sigma y = 68.39 Initial value of pigma a . .00 Expanded output for, code testing not selected

. l Total number 9f hours of data processed = 26307 Hours 06 assing data e 416 Hours direction in window = 6223 Hours elevated plume w/ dir, in window a 0 Hours of calm winds = 495 Hours direction not in window or calm = 19173 DISTRIBUTION SIM4ARY DATA BY AVERAGING INTERVAL AVER.'PER, 1 '2 4~ 8 12 24 96 *iB 360 720 l UPPER LIM. fl.00E-04 1.00E-04 1 00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1,00E*L4 1.00E-04 1.00E-04 LOW LIM. 1.00E-08L 1.00E-08 1. DOE 1,00E-08 1.00E-08 1,00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 I

1 s' ,

ABOVE RANOB 0. O. O. D. 0. O. O. O.

, 13 RAIIGE 6710. 7940. 9612.' 11972. 14005.

O. c.

17887. 24615. 2$063. 25169. 24910.

DEI 4tt RAIIGE 0 C. 0. O. O. O. 63. 41. O. O.

' 2ERO .- 19173. 17877. 16095. 13514, 11663. 7697. 527. O. O. O.

' TOTAL X/Os 25891. 25825. 25707. 25406. 25668, 25584. 25205. 25104.

4 MaelEERO 25169, 24910.

'25.95 30,7s - 37.39 - 46.97 54.56 69.91 97.91 100.00 -100.00 100.00

' 95th PERC23871LE X/Q VALUES

.1.60E-05 1.49E-05 1.365-05 1.22E-05 '1.02E-05 7.76E-06 4.785-06 4.18E-06 3.07E-06 3.23E-06

'956 E/Q for standard averaging intervals 0 c. > hours 1.605.,, CAO455 2 REV O l 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.095-05 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 5.54E-06 g A g I" eMwL 1 to e days 3.795-06 4 to 30 days 2.992-06 HOURLY VALUE RANGE MRI X/Q MIN X/O CENTERLINE 3.268-05 3.30E SECTOR-AVERAGE- 2.04E-05 2.07E-07 -

1 NOItMAL PROGRAM COMPLETION {

1 i

l 1

i i

1

~(  ;

J 1

'b

c r.

- CA04552 Rev.0 Page 4

4. TABLE OF CONTENTS 01.COVERSHEET...................................................................................................................1
02. LIST OF E FFECTIVE PA G ES.... .. .............. .... ....... ....... ..... .... ... . ..... .... ............. . . . . . ... . . .. . .. .... 2

. 03. REVI EWER COMMENTS .. . ........ ....... ......... ............ ...... . . . .. .... ... .... . . ... . ............. ..... ... .... . .. . .. 3

04. TAB L E OF CONTENTS................................ ... .......... .. . .... .. ............ ....... .. . . .. ... .. . ..... .. .. ... . . . . 4
05. PURPOSE............................................................................................................................5 06.INPUTDATA......................................................................................................................6
07. TEC HNI CAL A S S UM PTI ON S ................... ............ .......... ..... . ... ..... . ........ . . . . ..... . ... . .. .. . . .. . . 10 1 0 8. RE F E REN C E S . . . . . . . . . . . . . . ... .. ... . . . . . . . . . . . . . . . . . .. .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. . .. . . . . . . . .

1

09. M ETH OD S OF ANALYSIS . ... ..... ...... ....... ...... . .... . . ........ .. ... ... ..... .. .. ........ .......... ... . . .. ... . . .... 13 1 0. C ALC U L ATI ON S . . . . . . . . . . . . . . . . . . . .. .. . . .. . . . . . . . . . . . . .. . . . . .. . ... . . . . .. .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11. DOCUMENTATION OF COMPUTER CODES.............................................................. 19 12.RESULTS.........................................................................................................................20 1 3 . C ON C LU S I ON S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . .. . . .. . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 4. ATTA C H M ENTS . . . . . . .. . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .

A'ITACHMENT A: CHEMICAL DATA FOR BENZENE............................................... 22 ATTACHMENT B: ARCON96 RUN FOR AUX BLDG ROOF INLET........................... 27 ATTACHMENT C: ARCON96 RUN FOR WEST ROAD INLET PLENUM.................. 30 ATTACHMENT D: EXCEL SPREADSHEET BENZENE - AUX BLDG ROOF INLET........ ................................ 33 ATTACHMENT E: EXCEL SPREADSHEET B ENZENE - WEST ROAD INLET.................................................. 37 ATTACHMENT F: CROSS SECTIONAL AREAS........................................................... 41 LA ST PAG E OF REPORT.......... . .. ............ .......... .......... . .... .. ......... ... ... ....... .. . .. . ........ .... . . . .. . .. . . 4 2

+ .,-

I CA04552 Rev.0 '

Page 5 :

' 5. PURPOSE

~10CFR50 App.A GDC.19 (Ref.1) requires that a control room be provided, from which actions

can be taken to operate the nuclear power plant safely under normal conditions and to maintain it in a safe condition under accident conditions. Release of hazardous chemicals can potentially result in the control room becoming uninhabitable. Thus the NRC requires each utility to assess the habitability of the control room during and after a postulated external release of hazardous chemicals based on the chemical toxicity limit, vaporization rate, and the relevant atmospheric dispersion coefficients (Ref.2). The explosion and flammability hazard of these chemicals must also be addressed (Ref.2).

The control room concentration caused by the accidental rete.ase of benzene from a waterway cargo on the Chesapeake Bay is analyzed in this work. The vessel load is assumed to be 1100 tons ofliquified benzene per Ref.10. The major shipping channels are situated some 3500' or more from the Calvert Cliffs site per UFSAR 2.8.1. The chemical habitability of the control

" room after a chemical release' involving benzene was determined based on in-house dispersion

. calculations and toxicity detenninations for the current control room configuration with the

' inleakage points at the control room inlet and exhaust dampers and for the modified control room configuration with the inleakage points at the west road inlet plenum (Refs.3-4). Results indicate that benzene can be transported in 1100 ton quantities in the major shipping channels of the

. Chesapeake Bay without constituting a toxicological or fire hazard to the control room following a worst case accident for both the current and modified control room configurations.

The results of the toxicity calculations for a 100% Benzene cargo are as follows:

Peak Concentration Current Configuration No Recirculation 157 ppm

- With Recirculation 157 ppm Modified Configuration With Recirculation 146 ppm Toxicity Limit (IDLH) 2000 ppm Note that under the current and modified configurations, the peak control room concentration under worst case conditions is less than the IDLH toxicity limit, the maximum level from which

. one could escape within 30 minutes without any impairing symptoms or irreversible health effects. Benzene will not pose a flammability or explosion hazard, since the control room concentration is much less than the lower explosion limit of 1.3 v/v% (13000 ppm) per Refs.5,9.

The current calculation incorporates many assumptions which make these results conservative.

A maximum concentration limit (IDLH) was utilized that could be tolerated for 30 minutes

-Jwi (1)thout physical incapacitation of an average human. The regulatory requirements dictate a maximum concentration limit that could be tolerated for 2 minutes without physical incapacitation of an average human. IDLH denotes Immediately Dangerous to Life and Health and is defined as the maximum level from which one could escape within 30 minutes without any impairing symptoms or ineversible health effects (Ref.5). (2) For the current configuration

= the maximum control room' intake flowrate of 8300 cfm is utilized. This value is twice the normal operating value (Refs.6-8). (3) The control room volume conservatively neglects dead spaces in the contml room ceiling and the volume of room A512. (4) The most conservative i methodology is utilized: turbulent evaporation.

t_

h - .. , - ,.

[.-

L f

L CA04552 Rev.0

' Page 6-6 INPUT DATA -

L 'Ihe following input data'is incorporated into this work:

l, (01) Chemical data for benzene.

CAS number . 71-43 Refs.5,9 Chemical formula - _

CH 6 6 Refs.5,9,10 )

Toxicity LimitIDLH (ppm) 2000. Ref.5 '

- Odor threshold (ppm) 4.68 Ref.5

Volume fraction '

1.00 Ref.10 Volume (gal) 300000 Ref.10

,  : Specific gravity (gm/cc) 0.8794 Refs.5,9,10 Vaporpressure(mm Hg) VP 100.@26.l*C Ref.9 Boiling point (Degrees C TB 80 Refs.5,9 -

Molecular weight,(gm'm )MB 78.12 Refs.5,9,10 -

' Diffusion Coetricient (cm sec) . 0.077 Ref.15 l Lower explosionlimit (Vol%) 1.3% Refs.5,9 (02) Physical properties of air per Refs.13,14:

' Molecularweight(nm/ mole)MA 28.97 Characteristic . engt 2 in air (Angstroms) SIGA 3.711 Molecular energy of attraction / Boltzmann constant (K) E/KA 78.6 Mass density or air (gm/cc)RHOA 1.204E-03

- Viscosity of Air (gm/cm-sec) MU ' l.83E-04

~ Universal Gas Constant (torr-cm3/gmole-K) R ' 6.24E+04 3

L(03) The updated control room volume of 234157 ft was extracted from Ref.18. j

(04) Control room damper inflow for the current configuration is extracted from Refs. 7-8 and is defined as 8300 cfm or twice the maximum flowrate.

(05) Control room inleakage for the modified configuration is extracted from Refs. 3-4 and is defined as 3000 cfm.

(06) The Chesapeake Bay-Control Room ARCON96 X/Q inputs were derived as follows (Att.B):

(a) Number of meteorological data files: 3 Refs.B2,B10

' (b) Meteorological data file names: CC1991. MET Refs.B2,B10 CC1992. MET Refs.B2,B10 CC1993. MET 1.efs.B2,B10  ;

_ (c) Height of lower wind instrument (m): - 10. Ref.B3 (d) Height of upper wind instrument (m): 60. Ref.B3 l (e) Wind speed units type (1=m/s,2= mph,3= knots): 1 Refs.B2,B10

' (f) Release type (1= ground,2= vent,3= elevated): 1 l

l I

w a fl]

! CA04552 Rev.0 -

l' Page 7 l ( .

! (g) Release heifht(m): 0.

2

- (h) Building area (m ): 1155. . . Att.F The cross sectional area calculations ap analyzed in Att.F. The calculat' ion ofcontainment '

l l- cross sectional area yields 12435.63 A above the roodop level building cross sectional area can be calculated to be. For 1938.93 A,of 91'6".- The a west-to-cast wind auxiliary

~directiog the total cross-sectional ama of the auxiliary building and the two containments is 26810 ft . For an -to-wer,t wind direction, the total cross sectional area of the turbine L

buildingis 27167 For a north-to-south and south-to-north - wind irection, the total cross sectional area of the containment and the tpine build' g is 21016 ft(. The c arca of a single containment of 12435.63 ft or 1155 m will conservatively be used.

e 4 (i) Efiluent vertical velocity (m/s): 0 3

l (j) Stack or vent flow (m /s): 0 (k) Stack or vent radius (m): 190.05 l r = SQRT(A/n) 2

'= SQRT[(300000 gal)*(3785.422cc/ gal)/(1.cm)/n*(1.E-4m fe,2)) '

= 190.05 m .

(1) Direction to source (deg): 045 Refs.B12,B14 (m) Source window (deg): 090' Refs.B13 B14

. (n) Distance from source to receptor (m): -1066.8 UFSAR 2.8.1 I l

Per UFSAR 2.8.1, the major shipping channel is a minimum of 3500'=l%6.80 m from the Calvert Cliffs site.

. (o) Intake height (m): - 29.33 91.5' + 4.75' = %.25' = 29.33 m.

I where 91.5' is the height of the Auxiliary Building roof (Ref.B6) and 4.75' is the control

. room exhaust height (Ref.B13).

L - (p) Grade elevation difTerence (m): 0 Ref.Bl i

. (q) Primary output file name: CHBAYCR.OUT l

. (r) JFT file name: CHBAYCR.JFD l L (s) Surface roughness length (m): 0.1 Ref.B1 (t) Minimum wind' speed (m/s): 0.5 Ref.Bl j (u) Sector averaging constant: 4 Ref.B1

. (v) Hours in average: 1 2 4 8 12 24 96 168 360 720 Ref.B1 i

- (w) Minimum number of hours: 1 2.4 8 11 22 87 152 324 648 Ref.Bl s

m I

y r '

I' ~ CA04552 Rev.0 Page 8 l M (x) Horizontal diffusion coefficient (m): '88.39 a y=r/2.15=190.05/2.15=88.39 m (Ref.B1)

(y) Vertical diffusion coefficient (m) >

0.

,(z) Flag for expanded output: n Ref.B1

. (07) Atmospheric dispersion coefficicats from the Chesapeake Bay to the Control Room:

0-' 2 hrs ' 1.35E-05 sec/m3 -

l- 2- 8 hrs. 9.35E-06 sec/m3 :

8- 24 hrs .4.59E-06 sec/m3 24- 96 hrs 3.19E-06 sec/m3 96-720 hrs ' 2.50E-06 sec/m3 -

(Attachment B, Refs.B1, BIO, B15) .

l (08) The Chesapeake Bay - West Road Inlet ARCON96 X/Q inputs were derived as follows (Att.C):

(a) Number of meteorological data files: 3 Refs.B2,B10

-(b) Meteorological data file names: . CC1991. MET Refs.B2,B10 CC1992. MET Refs.B2,B10 CC1993. MET Refs.B2,B10

~

(c) Height oflower wind instrument (m): ' 10. Ref.B3 -

(d) Height of upper wind instrument (m): 60.- Ref.B3 l(e) Wind speed units type (l=m/s,2= mph,3= knots): 1 Refs.B2,B10

. (f) Release type (l= ground,2= vent,3= elevated): -1 (g) Release height (m): 0.

l I .'(h) Building area (m')i 1155. Att.F

! The cross sectional area calculations ap analyzed in Att.F. The calculation of containment p cross sectional area yields 12435.63 ft above the rooftop level,of 91'6". The auxiliary building cross sectional area can be calculated to be 1938.93 ft . For a west-to-east wind i

directiory the total cross-sectional area of the auxiliary building and the two containments is

i. - 26810 ft . For an eagt-to-west wind direction, the total cross sectional area of the turbine building is 27167 ft . For a north-to-south and south-to-north wind firection, the total cross sectional area of the containment and the tybine buildipg is 21016 ft . The cross-sectional
area of a single containment of 12435.63 ft or 1155 m will conservatively be used.

. (i) Effluent vertical velocity (m/s): 0

. (j) Stack or vent flow (m'/s): 0 l

l in l

E. 1

- CA04552 Rev.0

, . Page 9 (k) Stack or vent radius (m): 190.05-r = SQRT(A/x)

= SQRT[(300000 gal)*(3785.422cc/ gal)/(1.cm)/x*(1.E-4m'/cm2))

= 190.05 m '

-.(1) Direction to source (deg): 045 Refs.B12,B14 (m) Source window (deg): 090 Refs.B13-B14 (n) Distance from source to receptor (m): 1136.5 UFSAR 2.8.1 Per UFSAR 2.8.1, the major shipping channel is a minimum of 3500'=1066.80 m from the Calvert Cliffs site. Per Ref.B12, the distance from the control room inlet to the west road inlet is 69.7 m.

(o) Intake height (m): 22.86 The Auxiliary Building roof above the control room and above A512 will be scaled tight.

Most control room inleakage can then be assumed to originate at the Auxiliary Building inlet plenum on the w'est road side (ES199702144). Per Ref.Bl1, the inlet plenum is 54'x10'.with a bottom elevation of 70'. Thus the intake height is 75'=22.86 m.

. (p) Grade elevation difference (m): 0 Ref.Bl

> (q) Primary output file name: CHBAYWR.OUT (r)JFT file name: CHBAYWR.JFD

(s) Surface roughness length (m): 0.1 Ref.B1 (t) Minimum wind speed (m/s): 0.5 Ref.B1

~

(u) Sector averaging constant: 4 Ref.Bl

-(v) Hours in average: 1 2 4 8 12 24 % 168 360 720 Ref.Bl (w) Minimum number ofhours: 1 2 4 8 11 22 87 152 324 648 Ref.Bl (x) Horizontal diffusion coefficient (m): 88.39 ery =r/2.15=190.05/2.15=88.39 m (Ref.B1)

(y) Vertical diffusion coefficient (m) 0.

(z) Flag for expanded output: n Ref.B1 (09) Atmospheric dispersion coefficients from the Chesapeake Bay to the West Road Inlet:

2 hrs - ~ ' 1.26E-05 sec/m3

. 2- 8 hrs 8.75E-06 sec/m3 8- 24 hrs 4.31E-06 sec/m3 24- % hrs 3.00E-06 sec/m3

.96-720 hrs 2.32E-06 sec/m3 (Attachment C, Refs.B1, BIO, B15)

<t

n l .

L l

i CA04552 Rev.0 Page 10

7. TECHNICAL ASSUMPTIONS The following technical assumptions were utilized in this work.

(01) Per Ref.10, the vessel load is assumed to be 1100 tons ofliquified benzene.

Vol = (1100 tons)*(2000lbm/ ton)*(453.592379 gm/lbm)/(0.8794 gm/cc) 3

= 1.134755E+09 cc Vol = (1.134755E+09 cc)/(3785.422 cc/ gal)

= 299769.7 gal ~ 300000 gal (02) The major shipping channels are situated some 3500' or more from the Calvert Cliffs site per UFSAR 2.8.1.

1 (03) Per Ref.15 in a postulated accident. it is assumed that the entire container of the toxic substance ruptures.

(04) An average ambient atmospheric temperature of 30"C and pressure of 760 torr will be used in this calculation. Variation in these parameters shows insignificant impact on the results (Ref.16). TA=30 PA=1 (05) The chemical spill will be assumed to spread in a circular shape with the maximum radius I determined by a spill thickness of I cm per Ref.15.

(06) Based on the characteristics of the chemicals, the following release mechanisms will be assumed: For liquified benzene, the mass transfer is the worst of three methodologies: diffusion  ;

in still air, laminar mass transfer, and turbulent mass transfer.

(07) For laminar and turbulent mass flow, a wind speed of one meter /sec is assumed. This is consistent with the wind tunnel methodology and the CCNPP data of Ref.B3. Note that per l Ref.17 (p.265), a flow with Reynold's Number less than 5E+05 is laminar. '

(08) The vapor pressure of the spilled material will be adjusted to the ambient conditions via the I ideal gas law: i VP(@T,) = VP(@Typ)

  • T, / Typ l

CA04552 Rev.0 Page11

8. REFERENCES -

(01)" Control Room",10CFR50, Appendix A, General Design Criterion 1.9.

(02) " Assumptions for Evaluating the Habitability of a Nuclear Power Plant Control Room During a Postulated Hazardous Chemical Release", Regulatory Guide 1.78,6/74.

(03)"Res xmse to RAI: Accident Dose Analysis and Control Room Habitability Analysis for the MHA, FF A, and CEAEE", NRC-98-044.

(04)" Response to RAI: Control Room Habitability Analyses and MSLB Analyses", NRC 018.

_ (05)" Hazardous Chemicals Data Book", Second Edition, Edited by G. Weiss, Noyes Data '

Corporation.

(%)"Offsite and Control Room Doses Following a LOCA", Bechtel Calculatiori M-89-33 Rev.3,7/9/91.

(07)" Fan Performance Curve", BGE DWG 12782-35, Rev.0.

(08) " Control Room Temperature During Normal and Emergency Recirculation Modes of Operation", Bechtel Calculation M-91-24,11/9/92.

(09)" SAX's Dangerous Properties ofIndustrial Materials", Ninth Edition, Richard J. Lewis Sr.

(10)"Offsite Accidental Release of Benzene", Bechtel Calculation M-80-32,1/19/81.

(11) "The Merck Index", Eleventh Edition,1989.

' (12)" CRC Handbook of Physics and Chemistry",66th Edition,1985-1986.

. (13) " Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds", W.Lyman, W.Reehl, and D.Rosenblatt, McGraw Hill 1982. j (14) " Flow of Fluids through Valves, Fittings, and Pipe", Crane Technical Paper No.410,1988.

1' (15) " Toxic Vapor Concentrations in the Control Room Following a Postulated Accidental Release", NUREG-0570,6/79.

(16) "CCNPP Control Room Habitability Evaluation Due to a Postulated Spill of Ethanolamine",

Bechtel Calculation M-94-16 Rev.0,11/10/94.

(17) " Heat Transfer", Seventh Edition, J.P.Holman. ,

(18)"Modeling of the Control Room / Cable Spreading Room HVAC System Using GOTHIC  !

c Software", CA02725,1/8/97. i l

h CA04552 Rev.0 Page 12 (BI) " Atmospheric Relative Concentrations in Building Wakes", NUREG/CR-6331 Rev.1,5/97.

(B2) CCMAIL from Mark Abrams at PLG to G.E.Gryczkowski,3/5/97.

(B3)" Wind Flows and Dispersion Conditions at Calvert Cliffs", Maria Gavrilas and Melissa Wieland, BG&E-EP1,9/85.

(B4)" Atmospheric Dispersion Coefficient Calculations from the MSG and ADV to the Control

Room", CA03533,1/17/97.'

(B5)" Auxiliary Building and Containment Structures Exterior Elevations East & West", BGE Drawing 62-047-E, Rev.6 (B6) " Auxiliary Building Roof Plan", BGE Drawing 62-043-E, Rev.12.

(B7) " Containment Liner Plan, Elevation & Penetrations", BGE Drawing 61-740-E, Rev.19.

(B8) " General East and South Elevations", BGE Drawing 62-006-E, Rev.4.

(B9)" Equipment Location Turbine Building Unit 1 Plan Floor El 12'0"", BGE Drawing 60-207-E Rev.11.

(B10)"ARCON96: Atmospheric Relative Concentrations in Building Wakes", CA03940, 8/21/97.

(B11)" Heating and Ventilation System, Auxiliary Building, El. 69'0", Sections and Details",

BGE Drawing 60-330-E, Rev.14. I

'(B12) " Wind Tunnel Modeling of CCNPP", CA00748 Rev.0,10/25/95

- (B13)"ARCON95 X/Q Analysis", Bechtel Calculation M-97-02 Rev.0,5/8/97.

(B14)"ARCON95 X/Q Analysis", Bechtel Calculation M-97-03 Rev.0,7/1/97.

(B15) " Analytical Software Installation Test of ARCON96", CA03941, 8/21/97.

l l

I I

4

e .

CA04552 Rev.0 Page 13

9. METHOD OF ANALYSIS l This work utilizes three separate methodologies to calculate mass transfer from the spill site to

. the control room.

(1) The first methodology is diffusion in still air for spills in closed areas and for liquids with ;

high boiling points. The method of analysis utilizes the algorithms of Ref.15 to derive the toxic i

. gas concentration inside the control room.

(la) Calculation of the Diffusion Coefficient of an air / toxic gas system for dilute gases at low pressures per Ref.13 by the method of Wilke and Lee:

2 DAB = /

B'*TA'5*MR'5 (PA*SIGAB

  • OMEGA) ,

where 2

DAB = . Diffusion coefficient (cm /sec)

.B' = 0.00217 - 0.00050 * (1/MA + 1/MB)'5 MA= Molecular weight of air (gm/ mole)  ;

MB=. Molecular weight of toxic gas (gm/ mole) i MR= (MA+MB)/(MA*MB) = Molecular weight of binary gas (gm/ mole)

TA = Air temperature (K)

PA = Air pressure (atm)

SIGAB = - Characteristic length of molecule A interacting with molecule B (A)

=

(SIGA+SIGB)/2 SIGA = - Characteristic length of molecule A (A)

SIGB = l Characteristic length ofmolecule B (A) = 1.18*VB'"

VB = Lebas molal volume (cc/mol)

OMEGA = Collision integral The Lebas molal volume VB can be calculated as follows per Ref.13: l VB= 14.8*(C) + 3.7'(H) + 7.4*(O) + 9.l*(O in Methyl Esters or Ethers)

+ 9.9*(O in Ethyl Esters or Ethers) + 11 *(O in Higher Esters or Ethers) '

+ 12*(O in Acids) + 8.3*(O Joined to S, P, N) + 15.6*(N Double Bonded)

+ 10.5*(N in Primary Amines) + 12*(N in Secondary Amines) + 27*(Br)

+ 24.6*(Cl) + 8.7*(F) + 37*(I) + 25.6*(S) - 6.0*(3-Membered Ring)  ;

- 8.5*(4-Membered Ring)- 11.5*(5-Membered Ring)- 15*(6-Membered Ring) l

- 30* Naphthalene - 47.5* Anthracene + (Molecular weight / density)*(Element) l L

The collision integrg+OMFg +can939 piculatf,p follows per Ref.13: 1 OMEGA = A/TS C/c E/e b+ G/c i A'= 1.06036 i B= 0.15610 C= 0.19300 D= 0.47635

-E= 1.03587 F= 1.52996 G= 1.76474

-H= 3.89411  ;

TS = - TA/(FlKAB) {

E/KAB = SQRT(E/KA

  • E/KB)

~

E/KB = 1.15*(TB+273.15)

CA04552 Rev.0 '

Page 14

, (Ib) Surface Area of a Spill Per Ref.15 /

a .

? The rate of mass transfer of a liquid into the atmosphere is directly proportional to the surface area of the. spill. Ref.15 approxunates the initial shape of the liquid body by a cylinder, with the height equal to the radius of the base.

V0(m') = . Q*QF*(0.003785422 m'/ gal).

R0(m)=J (V0/x)" -

2 2

' A0(m ) . x*R0 -

The liquid spreads quickly by gravity to a thin pancake on the ground. Its surface area may be estimated by the following equation:

A(m2 ) , 2 n*(R0 +2*t*(g*V0*(SG-RHOA)/(n*SG))")

i where :

SG = Density of the liquid (gm/cc) 2 g= Gravitational constant = 9.81 m/sec t= Time (sec).

The surface area, however, does not expand indefinitely as the above equation indicates. The

' maximum area of the spill in an unconfmed space is estimated from the initial volume by assuming a spill thickness ofI cm.

2

. AF(m ) = V0/0.01 tA(sec) = . Time to maximum area

= (AF-A0)/SQRT(4

  • n
  • g* V0*(SG-RHOA)/SG)

The total mass of the liquid can be calculated as follows:

M0. = Q*QF*SG*3785.422 gm where Q =' Storage quantity (gal)

QF' = Volume fraction ofliquid or weight fraction of solid SG = Specific gravity (gm/cc)

, (1c) Vaporization Rate in Still Air:

When exposed to the atmosphere, liquids with boiling points above the ambient temperature will evaporate by diffusion into the air. The main driving force is the vapor pressure difference, i.e.,

concentration gradient, between the liquid phase and the air. The rate of a vapor diffusing into still air is computed from the Fickian diffus,on i equation in Ref.15 2

VR(gm/m -sec) = VP
  • RHOV
  • 10000. / p
  • SQRT(DAB /(n't))

where

y i

CA04552 Rev.0 Page 15 VP(torr) = Vapor pressure of the liquid p(torr) = Ambient atmospheric pressure (760 torr)

RHOV(gm/cc) = Vapor density of the liquid t(sec)= 2 Time DAB (cm /sec) = Diffusion coeflicient The vapor density of the liquid RHOV is derived from R.ef.14 as follows:

RHOV(lbm/cf) = 144*P'(psia)/(R*T(R)) .

RHOV(gm/cc) = 144*14.696/(1545/MB*T(R))*(.01601846 gm/cc/lbm/cf)

= MB(gm/ mole)

  • 14.696*.01601846/(10.7292*T(R))

(Id) The vapor density outside the control room can be calculated via 3 2 2 VD(gm/m ) = VR(gm/m -sec)*AF(m )*X/Q(sec/m3)

The corresponding vapor density outside the control room in ppm is (Ref.13)

PPM = (24500/MB)

  • VD(gm/m3)

(le) The vapor concentration inside the control room at time t can be calculated via the following: dCcg/dt = 1

  • Cgxt - A
  • Ccn for t<tg Ccai = Cex7 * (1. - exp(-A
  • t))

for ta<t<tm, Ccn2 = Cgx7 * {l. - exp[-A * (t-ta)]} + Ccat

  • eXP[-A * (t-ta))

for t>t mo Ccg3 = Ca2

  • exp[-A * (t-t o)]

where Cca = Control room concentration in g,m/m' or ppm Csxt = External concentration in gm/m or ppm A= Fca / Vcn = Turnover constant in 1/ min at time t l Fca = Control room ingress and egress flow rate at time t VCR = Control room Volume ,

t= Time (min) ta = Time at which recirculation starts (min) t=

m (mip)

= Time at which SG(gm/cc) * (l.cm) evaporation of* toxjc

/ {VR(gm/m -sec) (0.0001substance m ceaseg/cm ) * (60.sec/ m (If) The spill area, vaporization rate, and vapor density are time-dependent quantities for diffusion m still air for spills in closed areas. The peak vapor density occurs at the time to maximum area (tA), which should be used under these conditions.

(2) The second methodology is mass transfer to forced convection for laminar flow per Ref.15.

VD(gm/m3) = VFL *ADC*AF (1. - exp(-A

  • t))

PPM = (24500/MB)*VD .

CA04552 Rev.0 Page 16 where -

ADC = Atmospheric dispersion coefficient (sec/m3)

AF = ' ' Final spill area (m2) See 1b. .

MB = ~ Toxic gas molecular weight (gm/ mole)

VFL = Emminar evaporation rate (gm/m2-sec)

=

HDL*MB

  • VP* 10000./(R*(T(C)+273.15)) -

~T(C)= Temperature in *C at which VP is determined .

VP ' ~ = . ~ Toxic gas vapor pressure (mmHg) .

TA = Ambient air temperature (C) .

-R= Universal gas constant = 62400 tort-cm3/gmole-K

~

HDL =- Laminar mass transfg' *cogjent (cm/sec)

= Sc 0.664*(DAB /L)*Re

. DAB = Diffusion coefficient (cm2/sec) See la.

L= Characteristicigggth(cm)

=-

(4*V0*l.E6/n)

VO=- Initial volume (m3)-See Ib.

,Re=- Reynolds number

=. L*VW*RHOA/MU

~VW =~ Wind velocity (cm/sec)

RHOA = Mass density of air :

MU =- Viscosity of air-

-Sc = Schmidt number.

=

MU/(DAB *RHOA)

A=' Fca / Vca = Turnover constant in 1/ min Fen = Control room ingress and egress flow rate

.Vcn = Control room volume t= Time to maximum concentration = 10000.*SG/ VFL (3) The third methodology is mass transfer to forced convection for turbulent flow per Ref.15.

' VD(gm/m3) = VFT*ADC*AF (1. - exp(-A

  • t))

PPM = - -(24500/MB)*VD where ADC = . Atmospheric dispersion coefficient (sec/m3)

" Alt = Final spill area (m2) See 1b.

MB =- Toxic gas molecular weight (gm/ mole)

' VFT = Turbulent evaporation rate (gm/m2-sec)

=

HDT* MB

  • 10000./(R*(T(C)+273.15))

T(C)=~ Temperature in *C at which VP is determined

-VP = Toxic gas vapor pressure (mmHg)

TA = = -  ! Ambient air temperature (C)

R =' Universal gas constant = 62400 torr-cm3/gmole-K HDT =' Turbulent mass tranger cgient (cm/sec)

-= 0.037*(DAB /L)*Re ,Sc

DAB = Diffusion coefficient (cm2/sec) See 1a.

L=- Chcracteristic i

= - (4*W*1.E6/n)gggth (cm)

- VO = Initial volume (m3)-See Ib.

L

o .

!' CA04552 Rev.0 l Page 17 l- Re= Reynolds number /

=' L*VW*RHOA/MU VW = Wind velocity (cm/sec)-

l RHOA = Mass density of air .

MU = Viscosity of air Sc = . Sciunidt number

=~ i MU/(DAB *RHOA)

A= Fca / Vca = Tumover constant in 1/ min - -

Fca = Control room ingress and egress flow rate Vca= Control room volume t= Time to maximum concentration e- 10000.*SG/VFT

- (04) Explosion and Flammability Limits:

Comparison of the maximum concentration of the relevant toxic chemical concentration inside the control room should yield a limiting value with which to compare against the. explosion and flammability limits.

i 1

l l CA04552 Rev.0  !

Page 18

10. CALCULATIONS l'

The chemical concentration of 100% benzene inside the control room for a chemical spill of 300000 gal in the shipping channel of the Chesapeake Bay is calculated via EXCEL spreadsheets captured in the followmg attachments using the methodologies of Section 9:

Attachment D: 100% Benzene for Current Control Room Configuration Attachment E: 100% Benzene for Modified Control Room Configuration i

i i

i i

i

l CA04552 Rev.0 Page 19

11. DOCUMENTATf0N OF COMPUTER CODES This work employed the ARCON96 computer code, which was verified, benchmarked, and

. documented in Ref. BIO. The installation is documented in Ref.B15. ARCON% imalements a computational model for calculating atmospheric dispersion coefficients (X/Q's) in tae vicinity

. of buildings.

l 4

I

\

o, 7 ,.

l CA04552 Rev.0 Page 20

12. RESULTS The control room concentration caused by the accidental release of benzene from a waterway cargo on the Chesapeake Bay is analyzed in this work. The vessel load is assumed to be 1100 tons ofliquified benzene per Ref.10. The major shipping channels are situated some 3500' or more from the Calvert Cliffs site per UFSAR 2.8.1. The chemical habitability of the control room after a chemical release involving benzene was determined based on in-house dispersion calculations and toxicity determinations for the current control room configuration with the inleakage points at the control room inlet and exhaust dampers and for the modified control room configuration with the inleakage points at the west road inlet plenum (Refs.3-4). Results indicate that benzene can be transported in 1100 ton quantities in the major shipping channels of the Chesapeake Bay without constituting a toxicological or fire hazard to the control room following

= a worst case accident for both the current and modified control room configurations.

The results of the toxicity calculations for a 100% Benzene cargo are as follows:

Peak Concentration Current Configuration No Recirculation 157 ppm With Recirculation 157 ppm Modified Configuration With Recirculation 146 ppm Toxicity Limit (IDLH) 2000 ppm l I 1

1 l

l 1

i

0. 1 4

l CA04552 Rev.0 Page 21 N

13. CONCLUSIONS Note that under the current and modified configurations, the peak control room concentration under worst case conditions is less than the IDLH toxicity limit, the maximum level from which  !

.one could escape within 30 minutes without any impairing symptoms or irreversible health j effects. '

The current chemical habitability calculation incorporates many assumptions which make these results conservative..

l (1) A maximum concentration limit (IDLH) was utilized that could be tolerated for 30 minutes l without physi, cal incapacitation of an average human. The regulatory requirements of Ref.2 dictate a maximum concentration limit that could be tolerated for 2 minutes without physical

incapacitation of an average human. IDLH denotes Immediately Dangerous to Life and Health -

and is defined as the maximum level from which one could escape within 30 minutes without any impairing symptoms or irreversible health effects (Ref.5).  ;

(2) For the current configuration the maximum control room intake flowrate of 8300 cfm is j

utilized. This value is twice the normal operating value. (Refs.6-8) -

- (3) The control room volume conservatively neglects dead spaces in the control room ceiling and i the volume ofroom A512. 1 (4) The most conservative methodology is utilized: turbulent evaporation. j Benzene will not pose a flammability or explosion hazard, since the control room concentration is much less than the lower explosion limit of 1.3 v/v% (13000 ppm) per Refs.5,9.

\

I l

1 l

CA04552 Rev.0

, Page 22

14. ATTACHMENTS -

ATTACHMENT A ~

CHEMICAL DATA FOR BENZFNE

e ,

4 BENZENE C A0455 2 REV 0 suz DAfC ") I a n w e- w/

          • "**"'"' **'**** C""** G***'******"

nease & Flat NAfARD$ la NAZA40 A$$t$$ MENT CODE tensee 61 Fleen Point 121 C C. (See Henare " Hanshoeay 8 Fle*amM* U"a8

  • A8r. t 8 -7 8%

Fmein en essee Fiemmaans. emeeng vase e pensed Freeeng pore e err A-T U+w SJ Fee Estingdehmg Agenes Dry shamcel.

taant a semen eo es u Fee Esengs.hmg Agones Isot to be Avec sensect se emed and wasar etese posene e.e, Weet weier may be monoceve a

- eeweg em 11. NAZARD CLA$$lFICATIONS wee o. ogen ene.e,en.e e c erie .es .are .epe,tm.esseus e u spem ass-= = Cem.- on

.ir.ies

.p o.er*e"e e P,e.,,.t. me su Co. Fee-. no.de.en.

,,,=,::;r,,y,::' gey,f_ra--n -p-u .e e.,meevap.. - . ~ema.

esemy eso nomin ww c m serem erenose ano mer save owemeremie essence to a stJ ssas seneere namn, ser awk wei, sowoe a ennen ens amen tack Treaopertemem p, m.o, g 8.7 agnenen Tempereews 10gFT Cele 9ery Retng ed nie ecow La Enestesel teasere Gees t Group D F*e ~ . 3 Fleen,nece vape may ap=me e.ng ewooor,v, mas a,en enesesse e,ee ae sisrinsie a mm ao e hoseh

"**/,Q'f *,'",'** i,,e,,*t'***,",9,,,****'***

, ato Aaseems Fe Tonipweeure vare e' ness .~ t n,, . ese. e, . e.e.c e me De. - L.- - i.e. men . . .

(** apoao ma=r-e =. -e=

an - 1 As . F,,, nom. Poe e....  :

Dois nos avessem weier Pohmon 418 Fiesne Tempereews Dam not evensene stenen To.cdy ., 3 Aomes Ts.cey 1 CALL F0sl MEDIC,AL AID Aee8heec E*eCi ~ 3 L CNCMICAL KACTMTY  %

=:..ree.noe.end a

an.nesse.

,e es eeen we,cause needecae encia arenews. en ano p _

"-c--.--e-7J heeen ny unn Cesemen -

_ se

~ -

e,.--

see neecean ... .4 .o a ."** ,,,',,,,e'*'"'"***" FJ 8eemeny Oweng Temeyert Einnes N #A "***'" **"

L u.

@,",,,**,.,*."8*"

  • """"'l*y,,'",,,'""*"' etee. ~ . ,

y - F^ . d'aedt . . 3 ha powiss Exposuro me mmeen ,.s e, e, ,s ,e,e,,,,,,,, . nosemey rw , ..

ua m eaecies se.e. .ne., me ,,. en .ei.

J .m o re m avts. ace, evueus e,== ww shan om "8 #8*"*'8 swnLLonEo ww scam a consuous. na mee.rny es .ireise e ,cwi. osa 7.7 asser neue sneeceers te preeksety Data est eveneme fJ neecs.ny Group at t

12. PilT$1 CAL AND CHEMICAL P90 PERT,68 -=

tLe Physical taene et is C and I seni:

MARnAFUL TO AQUATIC LFE es VEnv LOW CONCENTRATIONS.

Water "***a'"******"****""*a Laced tu um=wn wagas te n Pollution a "" '"

n.

"*"m,'",'.*."."e*a*no*.*.*,*.***e'i===

e

  • "** irsy""'s"1

. o'" C ."3s3 m 13.4 Feeeems Peent

8. MSP08tSE TO DISCNAAGE & LASEL & WATER POLI # TION

- -,- gg u C.so , ~nm.m.o , u e ,-

m. ensue esmmp#egh temmehnEy IJ ChesE I . .n... . m

$ ppm /G hri J^^ 11A CrIBeel Precedrec hosence accese water F10 pee e 48J eam . 4 30 idNims 20 apm/34 avineesh/TL./tep weser St.7 Sposells Grevety:

sJ wanertone Toeieny: Dean nas eveneen o s7e a arc pose

$J Sietoglesi Oeypen Dessend geopp 12 4 Laodd Sietene Teneden 12 men. to anye as e er s/em . e ones sum m arc e a 7 ee Chann Conseserseen Peeenmet it.e used weier anaertecess Tenenem

3. CHEMICAL DE$1GaiAfl0ers t Ot$ERVA4Li CHAAACTERt$ TIC $ hone st e synes/sm . 0.03s him ei 30 C 3 e Co Compouneny Cines - a phyeenes sisee ces empped) Loma 12.3e varer (Ges) speeens erevety: a t etysocerten 4J Celer.Cotoness 119 t Rome of Spee8As Meets of Waper 10nsk 8 8 Ferneuts CeMe 43 Oeer:Atomenc, resher poenerie womase t est SJ les0/Ues Deelenamem 3 tilt te odor; eherectenses odor 1113 Leient penet et V, _

8.4 DOT ID see; 1414 tot Beu/t e De I ces/g .

3S CAS Aerotry Hea 7143-2 3 94 510e afgg 12.13 pleet of h~ _17.e00 ShA/D

. _ e. ,. . _40. . . ..w g

.1 pere ie, - e opni.e. ,,,es i TH ,t

. est 0$

. . . e. m.o ,, or se

.. $,ir,H -0.MoiON r, r,e,,,,s ,s ,,e i,,,

e ,u, ,ee  : z.em ,em -

hyeecerboswnschade nAde e passec poses, thenecal gogpos y esce spleen sheed. Insaseine pwe _00+ %

toyem-- -- - ^ essen asch as escorone g3.33 Meet et puesom 30 el sm/g Tseophone-ares ._00 e % g3Je Lamsung Vehse:Deu act evenstee 4.9 $ymptoms posseeng tapeewre D'aaviset eeutsoort peas. w ey m.oruas. *senassa emeseen - - De e % 13.37 need veper Presswa 3 22 pen

. treseNeeenoot chose senseunost Come erd poemene esset 5.3 heuseer 90% _AS + %

Treatment of Espoones SKet such o h cwater lesomed IPF eoep and water. esmewe Roegesu _ 30 + %

esnteneneses enspeng and esse emot EVES auen om peone r el esser emel e tenen sibeoes $J Seerage Tenwereews Open UsHALATIOed esmove kan espoews mimossessy Cet e pnrecian F tres#wg a popes s 0.8 Diert A^ . he seesemoni stoppoiL surq -- , emnrester esygen 44 Veneny prenewe.vecuum 6e Throehead then Venuer. le p en 6$ Short Term tiehedenen LamHg een ter 30 siwt 6.e Teseeny by ^ . Grade 3. s 4 50 as 600 mig /kg LP Lees Tesseny: teukenes S.B taper 10es) erretene Charenteststem N present m hgh concentenant separs may seues emeten el eree-o eespermeory syeeern The enact e henvormy S.O usued er Seed batissil Characteetenes hhnenum heaerd II spese en cacewig and escued to eeniest may seues emerung mis . , el Sio ehm 1807t$

4 to oeer fiveehese a es spe 5 11 IDLM vehee:3.000 ppm 152 ##

C A01;5 5 2 RE V 0 PA6E y BENzme sasso saa SAFETY PROFILE: Poison by ingestion, intraperitoneal, SAFETY PROFILE: Suspected carcinogen with experi-subcutaneous, and intravenous routes. A human terato- mental carcinogenic and tumorigenic data. Poison by gen that causes developmental abnormalities of the intraperitoneal route. Moderately toxic by ingestion.

central nervous system. Experimental reproductive ef. Experimental teratogenic effects. Human mutation data S fects including other teratogenic effects. A habit form- reported. A skin and pye irritant. Combustible when

!ng stimulant, When heated to decomposition it emits exposed to heat or flame. When heated to decomposi-very toxic fumes of 50, and NQ. See also other tion or on contact with acid or acid fumes, it emits benzedrine compounds and SULFATES. -

highly toxic fumes of aniline and chlorine cornppunds.

Reacts explosively with aniline at 240*C/7.6 bar. Can react vigorously with oxidizing materials. To fight fire, BBK760 CAS:5162-7 HR: 3 use water, CO,, water mist or spray, dry chemical. See I-BENZEDRINE SULFATE also ANILINE.

mf: C,,H.NfH,O,5 mw: 368.54 SYNS: (-)-AMPHETAMINE SULFATE D l-AMPHETAMINE SULFATE O LEVEDRINE O 11 PHENYL-2 AMINoPRoPANE SULFATE TOXICITY DATA WITH REFERENCE DOT: UN 1114 scu rat LDLo:160 mg/kg JPETAB 71,62,41 mf: C.H. mw: 78.12 ipr mus LD50:232 mg/kg JPETAB 158,135,67 SAFETY PROFILE: A poison via subcutaneous and 80.093-80.094*, flash p: 12*F (CC), d: 0.8794 @ 20*,

intraperitoneal routes. See also SULFATES. When heat- . autofgn temp: 1044*F, lel: 1.4%, uel: 8.0%, vap press:

ed to decomposition it emits very toxic fumes of SO and 100 mm @ 26.1*, vap d: 2.77, ULC: 95-100. Very sitly sol N O,. In H,O, misc in most org solvs.

SYNS: (6)ANNULENE O BENZEEN (DUTCH) O BENZEN (Polish)

BBL 000 CAS:142-04-1 HR: 3 O BENZIN (oBs.) O BENZINE (oBs.) O BENZOL (dot) O BEN.

BENZENAMINE HYDROCHLORIDE ZOLE D BENZoLENE D BENZoto (ITALIAN) O BICARBURET of HY- ~

DOT: UN 1548 DRoGEN D CARBON o1L O COAL NAPHTHA OCYCLoHExA.

~

mf: C.H,N.ClH mw: 129.60 TRIENE O FENZEN(CZECH) O MINERAL NAPHTHA O motor BENZOL O NCI C55276 O NITRATIoM BENZENE O PHENE O PHE-PROP: Crystals. Vap d: 4.46, d: 1.22, mp: 198*, bp: 245*, NYL HYDRIDE O PYRoBENZol O PYRoBENZoLE D RCRAWAsTE flash p: 380*F (OC), NUMBER U019 SYNS: AN!UNE CHLORIDE O ANILINE HYDROCHLORIDE (dot) TOXICITY DATA WITH REFERENCE O *AN!UNE SALT

  • O AN!UN!UM CHLORIDE D CHLoRHYDRATE skn rbt 15 mg/24H open MLD AlHAAP 23.95,62 DAN 1LINE (FRENCH) O CHLORID ANILINU (CZECH) O NCl C03736 INE HYDROCHLORIDE O SUL ANILINoVA(CIECH) O eye-rbt 2 mg/24H SEV 28ZPAK ,23,72 TOXICITY DATA WITH REFERENCE oms hmn:lym 5 pmol /L CNREA8 45,2471,85 skn rbt 500 mg/24H MOD 26ZPAK ,65,72 mma mus:emb 2500 mg/L PMRsDJ 5,639.85 eye rbt 20 mg/24H MOD 28ZPAx ,65.72 orl mus TDlo:6500 mg/kg (female 812D post): REP sce hmn:lym 50 pmol /L BLFsBY 29b,561,84 TCMUD8 6.361,86 ott rat:emb 79,500 ng/ plate JJATDK 1,190,81 par mus TDLo:4 g/kg (female 12D post): REP NEZAAQ sce ham:fbr 10 pmol /L JNCIAM 58,1635,U 25,438,70 ort rat TDLo:1400 mg/kg (7 20D preg):TER TxAPA9 ihl mus TCLo:5 ppm (female 615D post):TER TXCYAC 42.171,86 l

77.465.85 j ort rat TDLo:130 g/kg/2Y-C: CAR NCITR* NCl-CG TR- ihl rbt TCLo:1 g/m'/24H (female 7 20D post):TER I 130,78 ARToDN 8,425,85 I ort rat TD:238 g/kg/2,Y C: CAR NCITR* NCI CG TR 130,78 ihl rat TCLo:50 ppm /24H (female 714D post):TER ort rat TD:137 g/kg/60W-C: ETA 1 ARC" 27,39,82 JoHYAY 24.363.80 ,

ort rat TD:2163 g/kg/2Y-C: CAR tARC" 27,39,82 scu mus TDlo:1100 mg/kg (female 12D post):TER I orl rat TD:4326 g/kg/2Y C: CAR 1 ARC" 27,39,82 ToxtD91,125.81 l ort rat LD50:840 mg/kg TxAPA9 42,417 n ihl rbt TClo:1 g/m'/24H (female 7 20D post): REP ipr rat LDLo:500 mg/kg NCNsA6 5.11.53 ARToDN 8,425,85 ori mus LD50:841 mg/kg NTis" rB214 270 ihl rat TClo:670 mg/m'/24H (ISD pre /122D  !

ipt mus LD50:300 mg/kg NTis" AD277 689 preg): REP HYsAAY 33.327,68 ihl-rat TCLo:150 ppm /24H (female 7-14D post): REP CONSENSUS REPORTS: lARC Cancer Review: Animal ^Y '

J Limited Evidence IMEMDT 27,39,82. NCI Carci- ,p,, .g. $ mg/kg (male 1D pre): REP TPKVAL i nogenesis Bioassay Completed; Results Positive: rat ,5.3, ,,

NCITR* NCI CG TR 130,78; Results Negative
mous lhl mart TClo:200 mg/m'/78W 1: CAR,BLD EJCAAH NCITR* NCl CG-TR 130,78. Reported in EPA TSCA Inventory. EPA Genetic Toxicology Program. ihl hn$n TClo:10 ppm /8H/10Y I: CAR,BLD TRBMAV DOT CLASSIFICATION: 6.1; Label KEEP AWAY FROM 37,is3.78 FOOD orl rat TDLo:52 g/kg/52W I: CAR MEIAAD 70.352,79 j

CA0455 2 REV 0 334 BBL 250 BENZENE pgg[ [

ihl rat TClo:1200 ppm /6H/10W IiETA FAACAS 25,75.84 A severe eye and moderate skin irritant. Human system-orl mus TDLo:18,250 mg/kg/2Y C: CAR NTPTR' NTP TR- ic effects by inhalation and ingestion: blood changes, 289,86 increased body temperature. Experimental teratogenic ihl mus TCLo:300 ppm /6H/16W 1: ETA TxAPA9 75,358,84 and reproductive effects. Human mutation data report-skn mus TDLo:1200 g/kg/49W 1:NEO sJcAAI 16.275.62 ed. A narcotic. In industry, inhalation is the primary lpr mus TDLo:1200 mg/kg/8W 1:NEO TxAPA9 82,19,86 route of chronic benzene poisoning. Poisoning by skin scu mus TDLo:600 mg/kg/17W 1: ETA KRANAW 9,40332 Contact has been reported. Recent (1987) research par-mus TDLo:670 mg/kg/19W 1: ETA KLwoAz 12,10933 indicates that effects are seen at less than 1 ppm.

thl hmn TC:150 ppm /15M/8Y 1: CAR,BLD stooAW Exposures needed to be reduced to 0.1 ppm before no 52,285,78 toxic effects were observed. Elimination is chiefly ort-rat TD:52 g/kg/1Y-1: CAR AJ1Mo8 4,589,83 through the lungs. A common air contaminant.

ort rat TD:10 g/kg/52W 1: CAR ME!AAD 70352,79 A dangerous fire hazard when exposed to heat or lhl man TC:600 mg/m'/4Y-1: CAR,BLD NUMAG f}a!ne. Explodes on contact with diborane, bromine 271,872.64 pentafluoride, permanganic acid, peroxomonosulfuric ihl man TC:150 ppm /11Y 1: CAR,BLD BLUTA9 28,293,74 SCid, anC I peroxodisulfuric acid. Forms sensitive, explo-ihl mus TC:1200 ppm /6H/10W 1: ETA PAACA3 25,75,84 sive mixtures with iodine pentafluoride, silver perchlo-orl mus TD:2400 mg/kg/8W 1:NEO TxAPA9 82,19,86 rate, nitryl perchlorate, nitric acid, liquid cxygen, ihl hmn TC:8 ppb /4W 1: CAR,BLD NUMAG 316,1044,87 ozone, arsenic pentafluoride + potassium methoxide ihl hmn TC:10 mg/m'/11Y 1: CAR,BLD BJtMAG 44,124,87 (explodes above 30*C). Ignites on contact with sodium ihl mus TC:300 ppm /6H/16W 1: CAR IMMUAM (3),156.84 peroxide + water, dioxygenyl tetrafluoroborate, iodine ihl hmn LCLo:2 pph/SM TAntA2 3,231,33 heptafluoride, and dioxygen difluoride. Vigorous or orl man LDLo:50 mg/kg YAKUD5 22,883,80 incandescent reaction with hydrogen + Raney nickel

. Iht hmn LCLo:20,000 ppm /5M 29zUA8 v,53 (above 210*C), uranium hexafluoride, and bromine ihl man TCLo:150 ppm /1Y 1:BLD BLtTTA9 28,293,74 trifluorlde. Can react Vigorously with oxidizing materi-ibl hmn TCLo:100 ppm 1NMEAF 17,199,48 als, such as Cl,, Cro,, O,, NCIO., O,, perchlorates, (AlCl, ihl hmn LClo:65 mg/m'/5Y:BLD ARGEAR 44,145,74 + FClO.), (H,SO + permanganates), K,0,, (AgClO. +

ort rat LD50:3306 mg/kg TxAPA919,699,71 acetic acid), Na,O,. Moderate explosion hazard when ihl rat LC50:10,000 ppm /7H 28zRAq ,113,60 exposed to heat or flame. Use with adequate ventilation. .

ipr rat LD50:2890 pg/kg 36YrAG ,302,77 To fight fire, use foam, CO,, dry chemical.

ori-mus LD50:4700 mg/k8 HYsAAV 32,349,67 Poisoning occurs most commonly via inhalation of ihl mus LC50:9980 ppm JtHTAD 25,366,43 the vapor, although benzene can penetrate the skin and ipr mus LD50:340 mg/kg ANYAA9 243,104.75 cause poisoning. locally, benzene has a comparatively ort-dog LDLo:2000 mg/kg mMAK 4,1313,35 strong irritating effect, producing erythema and burn-ihl dog LClo:146,000 mg/m' HBTXAC U24,56 ing, and, in more severe cases, edema and even l

_ !hl-cat LCLo:170,000 mg/m' HBTXAC 1,524,56 blistering. Exposure to high concentrations of the vapor ivn rbt LDLo:88 mg/kg JnHD6 -(rupp12),45,77 (3000 ppm or higher) may result from failure of equipment or spillage. Such exposure, while rare in CONSENSUS REPORTS: NTP 7th Annual Report on industry, may cause acute poisoning, characterized by Carcinogens. IARC Cancer Review: Group 1 IMEMDT the narcotic action of benzene on the central nervous 7,120,87; Human Limited Evidence IMEMDT 7,203,74; system. The anesthetic action of benzene is similar to Animal Inadequate Evidence IMEMDT 7,203,74; IARC that of other anesthetic gases, consisting of a prelimi-Cancer Review: Animal Limited Evidence IMEMDT nary stage of excitation followed by depression and, if 29,93,82; Human Sufficient Eudence IMEMDT 29,93,82, exposure is continued, death through respiratory failure.

NTP Carcinogenesis Studies (gavage); Clear Evidence: The chronic, rather than the acute form, of benzene mouse, rat NTPTR* NTP TR 289,86. EPA Genetic poisoning is important in industry. a is a recognized Toxicology Program. Reported in EPA TSCA Inventory. leukemogen. There is no specific blood picture occur-On Community Right To Know List. ring in cases of chronic benzol poisoning. The bone OSHA PEL: TWA 1 ppm; STEL 5 ppm; Pk 5 marrow may be hypoplastic, normal, or hyperplastic, the ppm /15M/8H; Cancer Hazard changes reflected in the peripheral blood. Anemia, ACGlH TLV: TWA 10 ppm; Suspected Human Carcino. leucopenia, macrocytosis, reticulocytosis, thrombocy-gen (Proposed: TWA 0.3 ppm; Confirmed Human topenia, high color index, and prolonged bleeding time Carcinogen); BEI: 50 mg(total phenol)/L in urine at may be present. Cases of myeloid leukemia have been end of shift recommended as a mean value TePorted. For the worker, repeated blood examinations DFG TRK:5 ppm (16 mg/m') Human Carcinogen are necessary, including hemoglobin determinations, NIOSH REl.LTWA 0.32 mg/m5; CL 3.2 rng/m'/15M white and red cell counts, and differential smears.

DOT CLASSIFICATION: 3; Illbel: Flatnmable Liquid Where a worker shows a progressive drop in either red or white cells, or where the white count remains below SAFETY PROFILE: Confirmed human carcinogen pro- <5,000/mm, or the red count remains below 4.0 mil- I ducing myeloid leukemia, Hodgkin's disease, and lym. lion /mm,, on two successive monthly examinations, the phomas by inhalation. Experimental carcinogenic, neo- worker should be immediately removed from benzene plastigenic, and tumorigenic data. A human poison by exposure. Elimination is chiefly through the lungs, inhalation. An experimental poison by skin contact, when fresh air is breathed. The portion that is absorbed intraperitoneal, intravenous, and possibly other routes. is oxidized, and the oxidation products are combined Moderately toxic by ingestion and subcutaneous routes. with sulfuric and glycuronic acids =d eliminated in the

Q e e

CA0455 2 REV 0 ,

PA6E U BENZENECARBOTHIOAMIDE BBM250 335 i

urine. This may be used as a diagnostic sign. Benzene CONSENSUS REPORTS: Reported in EPA TSCA has a definite cumulative action, and exposure to a Inventory. EPA Extremely Hazardous Substances List.

relatively high concentration is not serious from the Arsenic and its compounds are on the Community point of view of causing damage to the blood-forming Right To Know List, system, provided the exposure is not repeated. In acute / '

poisoning, the worker becomes confused and dizzy, OSHA PEL: TWA 0.5 m',g /(As)m' complains of tightening of the leg muscles and of ACGlH TLV: TWA 0.2 mg(As)/m' pressure over the forehead, then passes into a stage of.

excitement. If allowed to remain exposed, he quickly SAFETY PROFILE: A deadly poison by ingestion and becomes stupefied and lapses into coma. In nonfatal intravenous routes. See also ARSENIC COMPOUNDS.

cases, recovery is usually complete with no permanent When heated to decomposition it emits toxic fumes of disability. In chronic poisoning the onset is slow, with g,*

the symptoms vague; fatigue, headache, dizziness, nau.

sea and loss of appetite, loss of weight, and weakness BBL 825 CAS:4547 69-7 HR: 3 are common complaints in early cases. Later, pallor, nosebleeds, bleeding gums, menorrhagia, petechlae, BENZENE-1,3-BIS (SULFONYL AZlDE) and purpura may develop. There is great individual mf: C.H,N.0,5 a mw: 288.26 variation in the signs and symptoms of chronic benzene C.H,(S O,N,),

  • "8' SAFETY PROFILE: An explosive. Upon decompdsition For occupational chemical analysis use OSHA: #12 or it emits toxic fumes of SO, and NO,. See also EXPLO.

NTOc4: Hydrocarbons, Aromatic,1501; Hydrocarbons, SIVES and AZIDES.

B6 126 C,1500.

bbl.d,0 BBM000 CAS:98-80-6 HR: 3 CAS:122-781 HR: 2 BENZENEBORONIC ACID BENZENEACETALDEHYDE mf: C.H,BO, mw: 121.94 mf: C.H.O mw: 120.16

~

PROP: Needles from H,0. Mp: 216*. Sol in MeOl

PROP: Olly, colorless liquid that polymerizes and grows more viscous on standing; odor similar to lilac and ETOH; silly sol in H,0 and Et,O. ~

hyacinth. Has been crystallized, mp: 33-34*, d:(25/25) SYNS: ACIDE PHENYLBoRIQUE (FRENCH) O BoRoPHENYLIC 1.023-LO30, reft index: 1.525-1.545, bp: (10) 78', n ACID D FHENYLBoRIC ACID D UsAF Bo 2 (20/D) 1.524-1.528, flash p: 154*F. Sitly sol in water; sol in alc, ether, and propylene glycol. One part is sol in TOXICITY DATA WITH REFERENCE two parts of 80% alc forming a clear solution. orl rat LD50:740 mg/kg 14KTAK 693,64 lpr.mus LD50:500 mg/kg NT!s" AD277-689 SYNS: rEMA No.2874 O HYACINTHIN O PAA O PHENYLACETAL.

im mus LD50:320 mg/kg cstNx Nx.o2033 DEHYDE (rCC) O PHENYLACETIC ALDEHYDE D PHENYLETHANAL ivn dog LDLo:450 mg/kg BANMAC 135,314.51 O s-ToLUALDEHYDE O o TOLUIC ALDEHYDE ort rbt LDLo:600 mg/kg 14KTAK . 693.64 TOX1 CITY DATA WITH REFERENCE skn rbt LDLo:4500 mg/kg 14KTAK ,693,64 skn hmn 2%/48H rcTxAV 17.377,79 ipr gpg LD50:284 mg/kg DANMAC 135.314,51 ort rat LD50:1550 mg/kg FCTxAV 17,377,79 orl mus LD50:3890 mg/kg rcTxAV 17.377.79 CONSENSUS REPORTS: Reported in EPA TSCA ort gpg LD50:3890 mg/kg FCTxAV 17,377,79 Y' CONSENSUS REPORTS: Reported in EPA TSCA SAFETY PROFILE: Poison by intravenous and intraperi-Inventory. toneal routes. Moderately toxic by ingestion. Mildly toxic by skin contact. See also BORON COMPOUNDS.

SAFETY PROFILE: Moderately toxic by ingestion. IIu- When heated to decomposition it emits acrid smoke and man skin irritant. Combustible liquid. When heated to irritating fumes.

decomposition it emits acrid smoke and irritating fumes. See also ALDEHYDES.

BBM250 CAS:2227 79-4 HR: 3 BBL 750 CAS:98-05-r, HR: 3 BENZENEARSONIC ACID C'H m 3 21 mf: C.H,AsO, mw: 202.05 SYNS: BENzoTHIAMIDE D BENzoTmoAMIDE O THloBENzAM-PROP: Colorless crystals from water. D: 1.760, mp: 160'

" ^" ^"'

decomp. Sol in water. TOXICITY DATA wtTH REFERENCE SYNS: PHENYL ARSENIC ACID D PHENYtAR5oNIC ACIO b ' '

orl rat TDLo:6300 mg/kg/15W C: ETA Bs!BAC 54.1027,78 TOXICITY DATA WITH REFERENCE orl rat TD:13 g/kg/38W-C: ETA ARToDN 55.34.84 ort rat LDLo:50 mg/kg JPETAB 93,287,48 ort rat TD:13,300 mg/kg/38W C: ETA ARToDN 55.34.84 orl mus LD50:270 pg/kg ctDND 80,93.44 orl mus LD50:95 mg/kg THERAP 8,237,53 ivn rbt LD50:16 mg/kg JPETAB 80.93,44 ipr mus LD50:500 mg/kg PCJoAU 11.1383,77

1

.e ..: ., ,-  !

i CA04552 Rev.0 i Page 27 ,

ATTACHMENT B ARCON96 FILES FOR AUX BLDG ROOF INLET 1

i l

1

.. l 1

l l

., 4 ,

Program Title ARCON96.

Developed Fors U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation CA0455 2 REV 0 Division of Reactor Program Management PA6E DatS: June)S, 1997 11:00 a.m. j NRC Contacts: J. Y. Lee Phones (301) 415 1080 e-maili jyllenre. gov J. J. Hayes Phones (301) 415 3167 e-mail jjhenre. gov L. A Brown Phones (301) 415 1232 e-mails lab 2enre. gov Code Developer J. V. Ramsdell Phones (509) 372 6316 e-mail j_ramsdellopnl. gov Code Documentations NUREG/CR-6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal li:bility or responsibilities for any third party's use, or the results of such use, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Program Run 8/17/1998 at 14 59:14 ese** *

  • ARCON INPt7T * * * " * * "*

Number of Meteorological Data Files = 3 Meteorological Data rile Names CC1991. MET

~

CC1992. MET CC1993. MET Height of lower wind instrument (m) = 10.0 Height of upper wind instrument (m) = 60.0 Cind speeds entered as meters /second Ground-level release Relesse height (m) = .0 Building Area (m*2) = 1155.0 Effluent vertical velocity (m/s) = .00 Vent or stack flow (m*3/s) = .00 V;nt or stack radius (m) = 190.05 Direction .. intake to source (deg) = 045 Cind direction sector width (deg) = 90 Eind direction window (deg) = 000 - 090 Distance to intake (m) = 1066.8 Intake height (m) = 29.3 T;rrain elevation difference (m) = .0 Output file nanes CHBAYCR.out QIBAYCR.jfd Minimum Wind Speed (m/s) = .5 Surface roughness length (m) = .10 Sector averaging constant = 4.0 Initial value of sigma y = 88.39 Initial value of sigma s . .00 Expanded output for code testing not selected Total number of hours of data processed = 26307 Hours of missing data = 416 Hours direction in window = 6223 Hours elevated plume w/ dir. in window = 0 Hours of calm winds = 495 Hours direction not in window or calm = 19173 DISTRIBUTION SIM4ARY DATA BY AVERAGING INTERVAL AVER PER. 1 2 4 8 12 24 96 168 360 720 UPPER LIM. 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1-.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 108 LIM. 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 l

i

r=

  1. 4 4 ,,

ADOVE RANGE 0. O. O. 0.' O. O. O. O. O. O.

t IN RANGE 6718. ~1948. 9612. 11972. 14005. 17868. 24610. 25063.

l BEIAN RANGE 0. 25169. 24910.

O. O. O. O. 19. 68. 41.

I D. O.

LSERO 19173. 17877. 16095. 13514. 11663. 7697. 527. O. O. O.

TOTAL X/Qs 25891. 25825. 25707. 25486. 25668. 25584. 25205. 25104. 25169. 24910.

% NON BERO 25.95 30.78 37.39 46.97 54.56 69.91 97.91 100.00 100.00 100.00 95th PERCENTILE X/Q VALUES: ',

-1.355-05 1. 3 0E- 0$' 1.165 05 1.04E-05 0.61E 6.52E-06 4.02E-06 3.50E-06 3.26E-06 2.70E-06 959 X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.35E-05 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 9.355-06 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> - 4.593-06 CA0455 2 REV 0

_ 1 to 4 days, 4 to 30 days 3.195-06 2.50E-06 PA6E 47

' HOURLY VALUE RANGE

MAX X/Q - MIN X/Q CENTERLINE 3.04E-05 2.27E-07 EECTOR-AVERAGE '1.915 05 1.425-07 WORMAL PROGRAM COMPLETION n.

I l

'l I

I I

CA04552 Rev.0 Page 30

.) )

ATTACHMENT C ARCON96 FIT.RR FOR WEST ROAD INLET PLENUM

g... 3

, s , . , ,

program Titlei ARCON96; CA0455 2 REV 0 .

Developed Fors - U S. Nuclear Regulatory Commission PA6E g

, Office of Nuclear Reactor Regulation.

(- Division of Reactor program Management P ... . ..

i

. Datas ' June 25, 1997 11:00 a.m. j NRC Contacts: J. Y. Lee phone (301) 415 1000- i e-mail jy11enre. gov - l J. J.'Nayes . Phone 1301) 415 3167 1

- o-mail jjhenrc. gov -

L. A; Brown l Phones: (301) 415 1232  !

e-mails lab 2enrc. gov Code Developer: J. V. Ramsdell Phones.(509)~372 6315 e-malli j ,ransdellepnl. gov..

Code Documentations.. NUREG/CR 6331 Rev. 1 The program was prepared for an agency of the United States Government. Neither the thiited States Government nor any agency thereof, nor any of their l employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such ' )

us2, of any portion of this program or represents that its use by such third ]

party would not infringe privately owned rights.

Program Run.. 8/17/1998 at 14:59:28 l eeeee e' e ' ARCON INPW * * * * ** * * *

  • Number of Meteorological Data Files = 3 l
Meteorological Data File Names CC1991. MET CC1992. MBT' ,

CC1993. NET i Height of lower wind instrument (m) = 10.0

- Height of upper. wind instrument (m) . '= 60.0-Wind speeds entered as meters /second-I

. Ground-level release  ;

JRe) ease height (m) = .0 l Building Area (m*2) . .= '

?.155.0 Effluent vertical velocity (m/s) = .00 -  !

Vent or stack flow (m'3/s) = .00 I

' vent' or stack radius (m) = 190.05

' Direction ..-intake to source (des) = 045 1 tind direction sector width (deg) =. 90 . I

' wind direction window (deg) = 000 - 090 Distance to intake (m) = 1136.5 Intake height - (m) = 22.9 Terrain elevation difference (m) = .0 o

output file names CHBAYWR.out

'CHBAYWR,jfd Minimum Wind speed (m/s). ~= .5 Surface roughness length (m) = .10 Sector averaging constant = 4.0 l

Initial value of sigma y . . 88.39 l

' Initial value of sigma s. ,. .00

" Expanded output for code testing not selected l

-Total number of hours of data processed = 26307 Hours of missing data. =- 416 Hours direction in window _ _

= 6223-Hours elevated plume w/ dir..in window =- 0'-

Hours of calm winds = 495 Hours direction not in window or calia' = -19173 DISTRIBtTTION SL294ARY DATA BY AV$ RAGING INTERVAL AVER.,pBR. 1- 2 . 4 8 12 24 96 168 360 720 UPPER LIM. 1.00E-04 1.00E-04 1.005-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04

'104 LIM.

1.00E-08 1.00E-08 1.00E-08 1.00E-08, 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 1.00E-08 i i

F f e 1 _1 , .

ABOVE RANGE - O. D. O. O. O. O. O. O. O. O.

IN RANGE . 6718. 7948. 9612. 11972. 14005. 17863. 24595. 25063. 25169. 24910.

BEIDI RANGE - O. O. O. D. O. 24. 83. 41. O. O.

SERO 19173. 17877. 16095. 13514. 11663. 7697. 527. O. O. O.

10TAL 1/Qs 25891. 25825. 25707. 25406, 25668. 25584. 25205. 25104, 25169. 24910.

l% NON SERO 25.95 30.78 37.39 46.97 54.56 69.91 97.91 100.00 100.00 100.00 95th PERCEgrtILE x/Q 'VAWE8 /

.1.26E-05 1.20E-05 1.08E-05 9.71E-06 8.03E-06 6.11E-06 3.78E-06 3.275-06 3.05E-06 2.52E-06 j 95% X/O for standard aversging intervals

. O to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.265-05 C A0f,5 5 2 RE V 0

'2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 8.755-06 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4.315 1 to 4 days -3.005-06 P A G E 3r_

>4 to 30 days 2.325 06 HOURLY VAWE RANGE ,

. MAX X/Q MIN X/Q l CENTERLINE 2.95E-05 1.915-07 l sEeToR-Av5 RAGE 1.85E-05 1.19E-07 l WonMAL PROGRAM COMPLET10N

.a 1

I i

1 l

j i

l 1

4 i

CA04552 Rev.0 Page 33 . .

J ATTACHMENT D EXCEL SPREADSHEFT BEN 7FNE - AUX BLDG ROOF INLET l

4

BENZENE-BAY-CR CA0455 2 REV 0 P AGE $f A B C D E F G 1 BENZENE 2

3 CHEMICAL C6H6 4 IDLH (PPM) IDLH 2000 5 ODOR THRESHOLD (PPM) OT 4.68 6 STORAGE QTY (GAL) Q 300000 7 STORAGE PURITY (FRACTION) QF 1.00 8 SPECIFIC GRAVITY (GM/CC) SG 0.8794 9 VAPOR PRESSURE (TORR-C-R-K) VP 1.00E+02 26.1 538.65 299.25 10 BOILING POINT (C-K-R) TB 80.093 353.243 635.8374 11 MOLECULAR WT (GM/ MOLE) MB 78.12 2 DIFFUSION COEFF (CM2/SEC) D 0.077 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 15 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 16 CHAR LENGTH AIR (A) SIGA 3.711 17 PRESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 19 MASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S) MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 8300 25 WIND VELOCITY (CM/SEC) VW 100 26 MAXIMUM TIME (MIN) Tmax 455.928 450.062 27 CONTROL ROOM FACTOR CRF 1.00000 CRF = 1.-exp(-FCR*Tmax./VCR) 28 29 LEBAS MOLAL VOLUME 30 C 14.8 6 88.8 31 H 3.7 6 22.2 32 O 7.4 0 0 1 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 I 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 35 O IN HIGHER ESTERS & ETHERS 11 0 0 36 O IN ACIDS 12 0 0 37 O JOINED TO S, P. N 8.3 0 0 38 N DOUBLE BONDED 15.6 0 0 39 N IN PRIMARY AMINES 10.5 0 0 40 N IN SECONDARY AMINES 12 0 0 41 BR 27 0 0 42 CL 24.6 0 0 43 F 8.7 0 0 44 1 37 0 0 45 S 25.6 0 0 46 3-MEMBERED RING -6.0 0 0 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 l

Page1

1 BENZENE-BAY-CR P A6E J[

A B C D E F G 49 6-MEMBERED RING -15.0 1 -15 50 NAPHTHALENE -30.0 0 0 51 ANTHRACENE -47.5 0 0 52 OTHER 0.0 0 0 l 53 LEBAS MOLAL VOL VB'(CC/MOL) VB' 96 54 55 DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE

~

56 CHAR LENGTH B (A) SIGB 1.18*VB'^1/3= 5.4030 57 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 4.5570 58 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 406.2295 59 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SORT (E/KA*E/KB)= 178.6887 60 TSTAR T* TA/(E/KAB)= 1.6965 61 COLLISION INTEGRAL CONSTANT A 1.06036 62 B 0.15610 1 63 C 0.19300 64 D 0.47635 65 E 1.03587 66 F 1.52996 67 G 1.76474 68 H 3.89411 69 COLLISION INTEGRAL OMEGA ATP^ 8 + Cle^(T*D) + Ele ^(T* F)+ G/e^(T*H ) 1.1421E+00 70 B-PRIME B' 2.0612E-03 O.00217-0.00050*SQRT(1/MA+1/MB) =

71 MOLECULAR WElGHT MR (MA+MB)/(MA*MB) l l 4.7319E-02 72 DIFFUSION COEFF (CM2/SEC) D B'*TA^ 1. 5'M R^0. 5/( PA*S I G AB ^2

  • O M EGA)= 9.9789E-02 ,

73 l 7.7000E-02 I l l 74 VAPOR DENSITY (GM/CC) RHOV 3.1848E-03 MB*14.696*0.01601846/(10.72*TVP) 75 l l 76 INITIAL MASS (GM) MO 9.9867E+08 Q*QF*SG*(3785.422 CC/ GAL) 77 VOLUME (M3) VO 1.1356E+03 Q*QF*(3.785422E-3 M3/ GAL) =

78 SPlLL RADIUS INITIAL (M) RO (V0/PI)^0.33333 = 7.1235E+00 79 SPILL AREA INITIAL (M2) AO Pl*RO^2 = 1.5942E+02 80 SPILL AREA FINAL (M2) AF VO/0.01 = 1.1356E+05 81 DELTA SPILL AREA (M2/SEC) DA 3.7390E+02 SQ RT(4*Pl*9.81 *VO*(SG-R HOA)/SG))

82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 3.0330E+02 83 CHARACTERISTIC LENGTH (CM) L SQRT(4*VO*1.E6/PI) 3.8025E+04 84 l 85 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR 86 BAY 87 ADC (S/M3) ADC 1.35E-05 88 TIME (SEC) T 1 10 303.2955 320 89 AREA (M2) A MIN (Pl*RO^2+T*DA.AF) 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760* SORT (D/Pl/t) 91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A 92 PPM INSIDE CR PPM (24500/MB)*VD 93 BAY 94 CASES T ADC A VR VD PPM 95 1 1.35E-05 5.33E+02 6.56E-01 4.72E-03 1.48E+00 96 10 1.35E-05 3.90E+03 2.07E-01 1.09E-02 3.42E+00 Page 2

C A045 5'2 REV 0 BENZENE-BAY-CR p

A B C D E F G 97 303.2955 1.35E-05 1.14E+05 3.77E-02 5.78E-02 1.81 E+01 98 320.0000 1.35E-05 1.14E+05 3.67E-02 5.62E-02 1.76E+01 99 100 VAPOR DENSITY INSIDE CONTROL ROOM - FORCED CONVECTION l 101 REYNOLD NUMBER RE L*VW*RHOA/MU 2.4963E+07 102 SCHMIDT NUMBER SC MU/(D*RHOA) 1.9783E+00 103 {

104 TURB MASS TRANS COEFF(CM/S) HDT 0.037*(D/L)*RE^0.8'SC^0.33333 7.7843E-02 1 105 TURB EVAP RATE (G/M2-S) VFT 3.2566E-01 HDT*MB*VP*1.E4/(R*TVP) 106 VAPOR DEN INSIDE CR(GM/M3) VD VFT*ADC*AF*CRF 107 PPM INSIDE CR PPM (24500/MB)*VD 108 CASES ADC VD PPM 109 BAY 1.35E-05 4.99E-01 1.57E+02 110 111 LAM MASS TRANS COEFF(CM/S) HDL 0.664*(D/L)*RE^0.5*SC^0.33333 8.4333E-03 112 LAM EVAP RATE (G/M2-S) VFL 3.5281E-02 HDL*MB*VP*1.E4/(R*TVP) 113 VAPOR DEN INSIDE CR(GM/M3) VD VFL *ADC*AF*CRF 114 PPM INSIDE CR PPM (24500/MB)*VD 115 CASES ADC VD PPM 116 BAY 1.35E-05 5.41 E-02 1.70E+01 117 laminar turbulent 118 Time to peak (sec) = t=1/ER/.0001*SG 249257.0 27003.73 119 Time to peak (min) = 4154.28 450.06 120 Time to peak (br) = 69.24 7.50 121 122 Turbulent Evaporation without Recirc Inlow(cfm) 8300 8300 8300 8300 ADC 123 BAY Time (min) 20 450.06 480.06 510.06 1.35E-05 124 PPM 79.52 156.58 54.06 18.67 125 126 Turbulent Evaporation with Recirc iniow(cfm) 8300 3000 3000 3000 ADC 127 BAY Time (min) 20 450.06 480.06 510.06 1.35E-05 128 PPM 79.52 156.58 54.06 18.67 Page 3

f .. 4. ,

CA04552 Rev.0 Page 37 ITTACHMENT E EXCEL SPREADSHERT BEN 7FNE - WEST ROAD INLET 1

- )

BENZENE-BAY-WR CA0455 2 REV 0 PAGE 3F A B C D E F G 1 BENZENE 3 CHEMICAL C6H6 4 IDLH (PPM) IDLH 2000 5 ODOR THRESHOLD (PPM) OT 4.68 6 STORAGE QTY (GAL) Q 300000 7 STORAGE PURITY (FRACTION) QF 1.00 8 SPECIFIC GRAVITY (GM/CC) SG 0.8794 9 VAPOR PRESSURE (TORR-C-R-K) VP 1.00E+02 26.1 538.65 299.25 10 BOILING POINT (C-K-R) TB 80.093 353.243 635.8374 11 MOLECULAR WT (GM/ MOLE) MB 78.12 12 DIFFUSION COEFF (CM2/SEC) D 0.077 13 14 MOLECULAR WT AIR (GM/ MOLE) MA 28.97 15 MOL EN ATTR/BOLTZ CON AIR (K) E/KA 78.6 16 CHAR LENGTH AIR (A) SIGA 3.711 17 PRESSURE AIR (ATM-TORR-PSI) PA 1 760 14.696 18 TEMPERATURE AIR (C-K-R) TA 30 303.15 545.67 19 MASS DENSITY AIR (GM/CC) RHOA 1.20E-03 20 VISCOSITY OF AIR (G/CM-S) MU 1.83E-04 21 R(TORR-CM3/GMOLE-K) R 6.24E+04 22 23 VOL-CR (CF) VCR 234157 24 Q-CR (CFM) FCR 3000 25 WIND VELOCITY (CM/SEC) VW 100 26 MAXIMUM TIME (MIN) Tmax 455.928 450.062

]

27 CONTROL ROOM FACTOR CRF 0.99709 CRF = 1.-exp(-FCR*TmaxWCR) 28 29 LEBAS MOLAL VOLUME 30 C 14.8 6 88.8 31 H 3.7 6 22.2 32 O 7.4 0 0 33 O IN METHYL ESTERS & ETHERS 9.1 0 0 34 O IN ETHYL ESTERS & ETHERS 9.9 0 0 35 O IN HIGHER ESTERS & ETHERS 11 0 0 36 O IN ACIDS 12 0 0 37 O JOINED TO S, P. N 8.3 0 0 38 N DOUBLE BONDED 15.6 0 0 39 N IN PRIMARY AMINES 10.5 0 0 40 N IN SECONDARY AMINES 12 0 0 41 BR 27 0 0 42 CL 24.6 0 0 43 F 8.7 0 0 ]

44 1 37 0 0 45 S 25.6 0 0 46 3-MEMBERED RING -6.0 0 0 47 4-MEMBERED RING -8.5 0 0 48 5-MEMBERED RING -11.5 0 0 j i'

Page 1 I

J

BENZENE-BAY-WR C A045 5 2 REV 0 P AGE Ti A B C D E F G 49 6-MEMBERED RING -15.0 1 -15 60 NAPHTHALENE -30.0 ;0 0 61 ANTHRACENE -47.5 '0 0 62 OTHER 0.0 0 0 63 LEBAS MOLAL VOL VB'(CC/MOL) VB' 96 64 66 DIFFUSION COEFFICIENT: METHOD OF WILKE AND LEE 66 CHAR LENGTH B (A) SIGB 1.18*VB'^1/3= 5.4030 67 CHAR LENGTH A-B (A) SIGAB (SIGA+SIGB)/2= 4.5570 68 MOL EN ATTR/BOLTZ CON B (K) E/KB 1.15*(TB+273.15)= 406.2295 69 MOL EN ATTR/BOLTZ CON BA (K) E/KAB SQRT(E/KA*E/KB)= 178.6887 60 TSTAR T* TA/(E/KAB)= 1.6965 61 COLLISION INTEGRAL CONSTANT A 1.06036 62 B 0.15610 63 C 0.19300 64 D 0.47635 66 E 1.03587 66 F 1.52996 67 G 1.76474 68 H 3.89411 69 COLLISION INTEGRAL OMEGA A/T*^B + Cle ^(T*D)+ Ele ^(T*F)+ Gle^(T*H) 1.1421 E+00 70 B-PRIME B' O.00217-0.00050*SQRT(1/MA+1/MB) = 2.0612E-03 71 MOLECULAR WElGHT MR (MA+MB)/(MA*MB) l 4.7319E-02 l

72 DIFFUSION COEFF (CM2/SEC) D B'*TA^ 1. 5*M R^0. 5/(PA*SI G AB ^2 *OM EGA)= 9.9789E-02 73 l l l 7.7000E-02 74 VAPOR DENSITY (GM/CC) RHOV 3.1848E-03 MB*14.696*0.01601846/(10.72*TVP) 76 l l 76 INITIAL MASS (GM) MO Q*QF*SG*(3785.422 CC/ GAL) 9.9867E+08 77 VOLUME (M3) VO Q*QF*(3.785422E-3 M3/ GAL) = 1.1356E+03 78 SPILL RADIUS INITIAL (M) RO (V0/PI)^0.33333 = 7.1235E+00 79 SPILL AREA INITIAL (M2) AO Pl*RO^2 = 1.5942E+02 80 SPILL AREA FINAL (M2) AF VO/0.01 = 1.1356E+05 81 DELTA SPILL AREA (M2/SEC) DA SQRT(4 *Pl*9.81 *VO*(SG-RH OA)/SG)) 3.7390E+02 82 TIME TO MAX AREA (SEC) tA (AF-AO)/DA = 3.0330E+02 83 CHARACTERISTIC LENGTH (CM) L SQRT(4*VO*1.E6/Pl) 3.8025E+04 84 l 86 VAPOR DENSITY INSIDE CONTROL ROOM - DIFFUSION IN STILL AIR 86 BAY 87 ADC (S/M3) ADC 1.26E-05 82 TIME (SEC) T 1 10 303.2955 320 89 AREA (M2) A MIN (Pl*RO^2+T*DA.AF) 90 VAPORIZATION RATE (GM/M2-S) VR VP*RHOV*10000/760*SQRT(D/Pl/t) 91 VAPOR DEN INSIDE CR(GM/M3) VD VR*ADC*A 92 PPM INSIDE CR PPM (24500/MB)*VD 93 BAY 94 CASES T ADC A VR VD PPM

,_96 1 1.26E-05 5.33E+02 6.56E-01 4.41 E-03 1.38E+00 96 10 1.26E-05 3.90E+03 2.07E-01 1.02E-02 3.20E+00 Page 2

~

i t1ENZENE-BAY-WR P ASE YO A B C l D E l F G 97 303.2955 1.26E-05 1.14E+05 3.77E-02 5.39E-02 1.69E+01 98 320.0000 1.26E-05 1.14E+05 3.67E-02 5.25E-02 1.65E+01 99 100 VAPOR DENSilY INSIDE CONTROL ROOM - FORCED CONVECTION 101 REYNOLD NUMBER RE L*VW*RHOA/MU 2.4963E+07 102 SCHMIDT NUMBER SC MU/(D*RHOA) 1.9783E+00 l 103 l

104 TURB MASS TRANS COEFF(CM/S) HDT 0.037*(D/L)*RE^0.8*SC^0.33333 7.7843E-02

'35 TURB EVAP RATE (G/M2-S) VFT HDT*MB'VP*1.E4/(R*TVP) 3.2566E-01 106 VAPOR DEN INSIDE CR(GM/M3) VD VFT*ADC*AF*CRF 107 PPM INSIDE CR PPM (24500/MB)*VD 108 CASES ADC VD PPM 109 BAY 1.26E-05 4.65E-01 1.46E+02 110 111 LAM MASS TRANS COEFF(CM/S) HDL 0.664*(D/L)*RE^0.5*SC^0.33333 8.4333E-03  !

112 LAM EVAP RATE (G/M2-S) VFL HDL*MB*VP*1.E4/(R*TVP) 3.5281E-02 l 113 VAPOR DEN INSIDE CR(GM/M3) VD VFL'ADC*AF*CRF '

114 PPM INSIDE CR PPM (24500/MB)*VD 115 CASES ADC VD PPM 116 BAY 1.26E-05 5.05E-02 1.58E+01 117 laminar turbulent 118 Time to peak (sec) = t=1/ER/.0001*SG 249257.0 27003.73 119 Time to peak (min) = 4154.28 450.06 120 Time to peak (hr) = 69.24 7.50 121 122 Turbulent Evaporation with Recirc Inlow(cfm) 3000 3000 3000 3000 ADC 123 BAY Time (min) 20 450.06 480.06 510.06 1.26E-05 124 PPM 33.03 145.68 99.19 67.54 125 126 Turbulent Evaporation with Recirc Intow(cfm) 3000 3000 3000 3000 ADC 3 127 BAY Time (min) 20 450.06 480.06 510.06 1.26E-05 I 128 PPM 33.03 145.68 99.19 67.54 l

l l

Page 3

. ., , 1 l

1 l,

i CA04552 Rev.0 i Page 41 ATTACHMENT F CROSS SECTIONAL AREAS I

I i

l l

l l

l l

C A0fiS5 2 REV 0 W-94 j WY-~ PASE 92_

. ana lg l

[ f, b ?E*CG67' W$7

, kys< ) 'C =l sis ' asFgy

-/t v,s ,-

7*

,c - -

  1. 147 d*N WH[2Dr/$ipf) 4%16e , .

~ #23svr it -

8 "l3 '<lott = 2,Jr.Yun l= f74ts7 '

Au g a 29,.,9 <

ses =gz.. egg

_ g,g.t

uw

- l

~

e Ai = t(Ls-c<l) = StVfJS -}f'

~

k= Qi7,r) Off.r- ur)= 725)x~/f' b6ar'JLY3CC3 N' du= Gio' war*-9t'c)-(G k 1 ) = {f38,9s 4' m.h pe.y bpr = 2*8tre- 046 = 2GBlo,/9ff'

~'

\

h brg = 038, aas@33'kf)* auss N7? h= 27/G7,n(, ./f'

.ign CoffENacyrJ 14A4/l A/LNd6: s-p5 x 594 i Ars = we Gness -ri.d Orz.ir9 = rico.95 yL ansc w.m -

Acrm

  • ll$}CC3 $

g .,, , Aprx=24olbi%lY ree:r t

_