ML20296A465

From kanterella
Revision as of 22:57, 10 December 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
M - LAKET-PC Weather File Creation
ML20296A465
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 06/27/2020
From: Nevill D
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML20296A616 List:
References
L-002457, Rev 8
Download: ML20296A465 (137)


Text

CALCULATION NO. L-002457 REVISION N0. 8 ATTACHMENT M, PAGE M1 of M17 Attachment M - LAKET-PC Weather File Creation Prepared: ~ W, 0~

Daniel W. Nevill - Sargent & Lund/Le C.

Reviewed: Date .21->->.i*101-z..

Robert W. Youn

( . PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT M, PAGE M2 of M17 c* ATTACHMENT M - TABLE OF CONTENTS Section Page No.

Ml.O Purpose I Objective ................................................................................................... M3 M2.0 Methodology ................................................ .... ................... ... ... ............................ ...... M4 M3.0 Assumptions ...... ................................................... ............ ........................................... M7 M4.0 Design Inputs ........................................................ ............ .... ....... .......................... ...... M8 M5.0 References ............................. ... ...... ....... ..... ......................... ........ ..... ........................... M9 M6.0 Calculations and Results ....................... ..... ................. .......................... .................... M 10 M7.0 Summary and Conclusions ........... ......... ............. ............. ...... ........... ...... ............... ... . Ml3 M8 .0 Limitations ........................ .. ....... ............. ................................................................... Ml4 Appendices .......... .. ........... ........................... ..... ...... ... ....... .............. ........................... M 15 c:

M9.0 (Total Pages - Attachment M ( 15) plus Appendices (2) for a Total of 17 pages)

LIST OFT ABLES -- .-*,.-~. *<<#.~ " .* "-~-- -~ * *--- -~-~-~ -~*** . . * -~~-~~- =-~~~;~=

i

--~~-*- ~---...~~

1 Table No. ! Title Page

---~------------- - - -- - ' - -*-:-::----i M6-1

  • Worst Weather Days  : M 10
  • ----***-****- - ---L ... *-*-*-- ---*---------*-------*-*-***- ..*-*-**-- --- -*--..--*****--**-*-*---***-----**---.!----*___ , __ _

--**----~~~~---* * *-!-0~~~i-~~a~~:;i~~:~;~=k1y**Fi1~5-**---*--****-------*-*-** *---**- - - -*- *---*----*----*-*---- -********--****I**-**** ~-i~-- -J

(_ PROJECT NO. 11333-297

CALCULATION NO . L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M3 of M17

( .. Ml.O PURPOSE I OBJECTIVE The purpose of this attachment is to determine the worst 24-hour and 30-day weather period and the worst 30-day period of net evaporation for LaSalle County Station. The new weather data is compared to the weather data used in the existing : analysis to determine if the new weather data set is more limiting. If the existing weather data is no longer bounding, new LAKET weather files are compiled. This will be used as input in determining the maximum plant inlet temperature and evaporative drawdown of the LaSalle County Station Ultimate Heat Sink, which determines the design basis Ultimate Heat Sink (UHS) performance for 30 days following an accident. Weather data has been provided from January l, 1995 through September 30, 2010.

c

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M4 of M17 M2.0 METHODOLOGY A LAKET-compatible meteorological data file, 'PIALSL95 l O.tx.t', was created consisting of meteorological data for LaSalle County Station and Peoria, IL from January l, 1995 through September 30, 2010. See Design Input M4. l for additional information on this file. Wind speed, wind direction, and dry-bulb temperature data were taken from an on-site meteorological tower at LaSalle County Station. Humidity, precipitation type, cloud height, and cloud cover data were not available from the on-site meteorological tower, and were taken from a National Weather Service observing station at the Peoria, IL airport (approximately 70 miles southwest of LaSalle County Station). This weather data file is input to LAKET [Ref. M5.2], and the worst weather and worst net evaporation time periods are found from the range of dates included in this file.

Based on options selected in the input file, the LAKET run returns a plot file that includes the total evaporation, precipitation, natural lake temperature, lake inlet temperature (same as the plant outlet temperature), and the UHS outlet temperature (same as the plant inlet temperature). Since LAKET returns results in three hour increments, a rolling average over 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> is created using Microsoft Excel [Ref. M5. l] by averaging the UHS outlet temperature of the selected time step along with the previous seven time steps. The worst weather day is chosen as the day with the highest UHS outlet temperature 24-hour rolling temperature average. The worst 30 days of weather is c

determined using a similar methodology, in which a 30-day rolling average of the UHS outlet temperature is calculated and the maximum is chosen as the representative worst weather month.

M2.1 Worst 24-Hour and 30-Day Weather A specific UHS model was created in LAKET (based on Case 3a from Attachment H) with a transit time that corresponds to the three hour time step period. Case 3a is used since it uses a worst I-day plus worst 30-day weather file and represents the worst case scenario of 18-in sedimentation. The following changes were made to Case 3a for determining the worst weather conditions:

  • The date range is changed to match the date range of weather file ' PIALSL95 l O.txt.'
  • The lake initial temperature is set at l 00°F. (Assumption M3 . l)
  • The model is set as open cycle, so the UHS is at the same temperature at the beginning of each 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> interval.
  • Anemometer height is set at 33-ft in accordance with the instrument setup at LaSalle County Station (Design Input M4.2).
  • Lake elevation is fixed at 690-ft (Assumption M3.2) .

3

  • The circulating plant flow is set at 873.0 ft /s for a circulation time of 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> .
  • The plant discharge water temperature (TPRISE variable in LAKET) is set at l00°F (Assumption M3.3). For an open cycle model, this value is the lake inlet temperature.

(. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT M, PAGE MS of M17

  • Effective area and effective volume are set to 57.9% of total area and 63.4% of total volume, respectively, due to the results of Attachment J - UHS Flow Path Analysis.

The UHS outlet temperature for each 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> period corresponds to the environmental effects on the UHS during these three hours. From these results, it can be implied that higher UHS outlet temperatures represent worse (hotter) weather conditions.

M2.2 Worst 30-Days of Net Evaporation For determining the worst 30-days of net evaporation, a UHS model is created in LAKET (based on Case 3c in Attachment H). Case 3c is used since it uses a worst 30-day net evaporation weather file and represents the worst case scenario of 18-in sedimentation.

The following changes were made to Case 3c for determining the worst net evaporation conditions:

  • The date range is changed to match the date range of weather file 'PIALSL95 I O.txt.'
  • Anemometer height is set at 33-ft in accordance with the instrument setup at LaSalle County Station (Design Input M4.2).
  • Lake elevation is fixed at 690-ft (Assumption M3.2) .
  • Initial temperature is set at 40°F as a representative winter UHS temperature (Assumption M3.1).
  • The temperature rise through the plant (TPRISE variable in LAKET) is set at the C.
  • approximate average temperature rise at EPU of-9°F (Assumption M3 .3).

Effective area and effective volume are set to 4 7.10 acres and 216.45 acre-ft, respectively, due to the results of Attachment J - UHS Flow Path Analysis and the Case 3c model area and volume.

The net evaporation is calculated by subtracting precipitation from the total evaporation.

The worst 30 days of net evaporation is determined using rolling averages, similar to the methodology used in determining the worst weather.

M2.3 Weather File Creation for Comparison to Existing Analysis Following determination of the worst weather days and the worst net evaporation days, weather files for input to LAKET are created. For the worst weather input file, conditions from the worst weather day are used as the first day in the new weather file.

Following the first day, the conditions from the worst 30-day period are added to create a 31-day worst weather "month." Precipitation is conservatively set to zero for all time steps comprising the worst weather month (Assumption M3.4). To determine if this new worst weather month is more limiting than the existing worst weather month used in Attachment H, the input file from Case 3a is ran using the new worst weather month. If the new weather month does not result in a higher maximum UHS outlet temperature, the existing worst weather month will be retained as it is more severe.

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M6 of M17

( For the worst net evaporation weather file, the conditions from the worst 30-day period are compiled to create a 30-day worst net evaporation "month." Similar to the worst weather month, precipitation is set to zero for all time steps (Assumption M3.4). To determine if this new worst net evaporation month is more limiting than the existing worst net evaporation month from Attachment H, the input file from Case 3c is ran using the new worst net evaporation month. If the new weather file does not result in more lake drawdown, the existing worst net evaporation month will be retained as it is more severe.

M2.4 Weather File Creation for UHS Analysis If the existing weather file is not bounding, new weather files are created based on the new most limiting day and month determined by this analysis. These weather files use the weather information provided in 'PIALSL9510.txt' with the following changes:

  • The station code is set to zero. This input has no impact on the results of this analysis.
  • The start date and time is set at 7/111900 at 12AM. This input has no effect on the results of this analysis.
  • Precipitation is set to zero for all time steps (Assumption M3.4).

In order to determine the effect of the time of day of the worst weather day on the UHS, eight different worst weather files will be created. The first file will start at 12 AM of the

( worst weather day followed by subsequent files at 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> intervals (e.g. the second weather file starts at 3 AM of the worst weather day). After 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of the worst weather day, the worst 30 days subsequently added to the file. The start of the worst 30 days is selected to maintain a I hour interval between time steps. For example, if the worst 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> day ends at 11 PM, the next time step will be at I 2AM of the beginning of the worst 30 days.

For the worst net evaporation, only one weather file will be created, corresponding to the dates and times determined to be the most limiting.

M2.5 Computer Programs and Software LAKET-PC Version 2.2 (Ref. M5.2] was used to perform the lake transient analysis contained in this evaluation. This was run on S&L PC No. ZD666 I on Windows XP operating system.

Postprocessing of the LAKET-PC results is done using Microsoft Excel 2003 [Ref.

MS . I), which is commercially available. The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis. All computer runs were performed using PC No. ZD666 I under the Windows XP operating system.

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M7 of M17

( " M3.0 ASSUMPTIONS M3.l Initial Lake Tern erature - For the worst weather evaluation, the initial lake temperature is set at 100°F. This is an arbitrary reference value for determining the relative weather severity and does not influence the results of this analysis.

For the worst net evaporation month, the initial lake temperature is assumed to be 40°F.

This is used as a representative value for the lake temperature during the winter since the weather data file begins on January I. This does not influence the results of this analysis as the worst net evaporation month occurs during the summer.

M3.2 Fixed Lake Elevation - The lake elevation when determining the worst weather month and worst net evaporation month is fixed at 690-ft. A constant lake elevation removes the effects of lake level in determining the weather effects on the UHS temperature and evaporation.

M3.3 Station Thermal Boundary Condition - The plant discharge water temperature when determining the worst weather day and month is assumed to be 100°F. Since the lake is modeled as open cycle, the lake starts at this temperature at the start of each 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> time interval. A constant initial temperature allows for isolation of the meteorological effects on the lake.

c When determining the worst net evaporation month, the temperature rise through the plant is assumed to be constant at approximately 9°F, which is the average temperature rise for EPU over the calculated 30 day period (Calculated from Appendix L9.3 of Attachment L - Plant Temperature Rise). A constant temperature rise through the plant removes the effects of the plant heat load in determining the evaporation.

M3.4 Precipitation - When creating the worst weather "month" and worst net evaporation "month," precipitation is set to zero for all time steps. This is conservative when determining the limiting initial UHS temperature.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT M, PAGE M8 of M17

( M4.0 DESIGN INPUTS M4.1 Weather Data File - The LAKET-compatible meteorological data file is developed from weather data from LaSalle County Station and Peoria from 1/1/1995 to 9/30/2010 in Attachment K - Preparation of Hourly Meteorological Data. This file has the following properties:

Name: PIALSL9510.txt Type: ASC text Size: 21,812 KB Creation date/time: 3/9/2012 11 :08 AM CST ( 12:08 PM CDT)

M4.2 Anemometer Height - The anemometer height at LaSalle County Station is 33 feet from Attachment K -Preparation of Hourly Meteorological Data.

M4.3 Plant Temperature Rise - The approximate average plant temperature rise at EPU is calculated to be ~9°F as taken from Attachment L - Plant Temperature Rise (Appendix L9.3: Calculated average of the first 30 days following an accident evaluated in Attachment L) .

M4.4 Effective Area and Volume Percentages - The effective area percentage is 57.9% and the effective volume percentage is 63.4% from Attachment J - UHS Flow Path Analysis.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M9 of M17

( .. MS.O REFERENCES MS.1 Microsoft Office Excel 2003 (11.8120.8122) SP2, Copyright 1985-2003 Microsoft Corporation, Sargent & Lundy LLC Program No. 03 .2.286-1.0, dated 2/2/2004.

M5.2 LAKET-PC Computer Program, Version 2.2, S&L Program No. 03.7.292-2.2, 12/09/2004. Controlled File Path: \\SNLVS5\SYS3\0PS$\LAK29222\

c

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT M, PAGE M10 of M17 M6.0 CALCULATIONS AND RESULTS Analysis of rolling averages detennine the worst day and 30 day period for UHS temperature and the worst 30 day period for net evaporation for the weather file created from LaSalle County Station meteorological data from 11111995 to 9/30/2010. These results are then compared to the existing weather files used in the Attachment H of this calculation.

M6.1 Worst Weather Conditions LAKET input file 'Worst_Weather.dat' was compiled to detennine the worst weather day and 30-day period from 11111995 to 9/30/2010. The top ten worst 24-hour periods and 30-day periods are shown below in Table M6-l. Note that the temperature provided is for comparison purposes only and not representative of the expected actual temperature of the UHS (See Limitation M8.1).

Table M6-l: Worst Weather Days I. T ur~'"""i 24-H.,,,,.o- . 30-Day End Date I Average Temp. 'I End Date I Average Temp.

~ - **-*- . - -- **--- .

(°F)

-**-~*-**- !--- . -.

I (°F)

    • --*****- --*-+---*---**.-- -- -,-

. * ** . 7125101 6:00 AM : 99.609 i 8/20/95 3:00 PM j . 98.867 r~=~--- -7.i~~~(~.~ --~~-~-~~~1=~- - ~~~~~~~-~.::~~--r~-~~-=-- ~~~919_51 ~-:~-~~~~-, -_-.~~~-~-- --*-****

( I =---- *- ~~;~~~~ ;~j~_;;~-

~,---m.ia1o:ooeMU-7/25/01 12:00 AM l 99.526

~{-~~~~1 ~;:~~~ .;_:~-~_:~1 it~~t-_-__

J _____

8 8/21/95 6:00 PM I

__98.864

-ss~s1s- -r -m&*s9ooe~-1---** *98~864 _____

t *- --- 7/-19-/98 *3-:o_o_AM - 99.S1_5__ i- -*- a-1£1195 6:00AM  !- 98.864 1--~ 11251019:00 AM ! *-- -99.488 i a121i9s 12:00 AM i 98.864 -1

~=- . - -~i~~~~1 ~~~~-~~--J- -=~~~1~~1~~-*-*-*_* * **f-=~---af~~~~-~1*~*~6~~~l* -*- * * -~* ~~i---j

  • --**-----*----*--- *- - ---*-r---*--*- ----*-*- *-**!**-----------****-----~---i-----* -*---*----**~

1 Based on this data, a weather file for LAKET was created for the worst (hottest) weather,

' Worst_ Weather.txt'. The worst weather file is created by first inputting the worst 24-hr day (7/25/2001 ending at 6 :00 AM) and then inputting the worst period of 3 0 days (7/21/1995 4:00PM to 8/20/1995 3:00PM) to create a 31-day weather file .

To compare the new weather file with the existing weather file, Case 3a from L-002457 was run using the new weather file. This was done by creating a LAKET input file,

" WorstWeather_ Comparison.dat,' with the same conditions as Case 3a, but an adjusted anemometer height to reflect the setup at LaSalle County Station. As seen in the output file, ' Worst Weather_Comparison.out,' the maximum UHS outlet temperature using the new worst weather file is 105.96°F. From Attachment H, the results from Case 3a using the existing weather file is a maximum UHS outlet temperature of 104.00°F. The new weather file results in a greater UHS outlet temperature, so it will replace the existing worst weather file in the UHS analysis.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT M, PAGE M11 of M17

(

M6.2 Worst Net Evaporation LAKET input file 'NetEvap_ WorstMonth.dat' was compiled to determine the worst 30-day period of net evaporation from 1/1/1995 to 9/30/2010. Using the results from LAKET, the worst ten 30-day periods in terms of net evaporation are shown below in Table M6-2. Note that the net evaporation values provided are for comparison purposes only and not representative of the expected actual evaporation of the UHS (See Limitation M8. I).

Table_M6-2: Worst N fvap<!!ation Days

[ _____:___:_:~::*;~"(els~

E dD t 30-Day Net 1.__ _:_ ____ !~~-~!~.~--~:~o_fil~-~ .:_ 1-----~__, ___1.5~t~-----*-*.

7113/02 6:00 PM 1.568 1----------- - - ------

r 7/14/02 12:00 AM 1.566

~--~* * **---- --** *---**----- .. --.- **---~---*- *------- --*----**--

.. ______?0_~!~~--~~~~-~ ----*~ --- ------~~56~-------*

L 7/13/0212:00PM 1.563 L


1 I - - - - *-- - - - - -- - - -*

7/14/02 3:00 AM , 1.563 c

7/13/029:00AM 1.563

--**-:;;1*3/a2*iiaoAM- -----1~562---- 1


***--*-------------------r-**----------***----*---

~--- 71!_~10~-~-:_9._C!_ AM L----~~~_9___ _

  • -~.. ,- 7/13/~2 3:9~-~~~--~*~_,;.~::. . - .

The worst net evaporation weather file, 'NetEvap_weather.txt,' is created by inputting the weather conditions from the worst net evaporation period of 30 days (6/13/2002 10:00 PM to 7/13/2002 9:00 PM). In order to compare this with the worst 30 day net evaporation period from Attachment H, Case 3c from Attachment H was run using the new weather file. This was done by creating a LAKET input file, "NetEvap_Comparison.dat,' with the same conditions as Case 3c, but an adjusted anemometer height to reflect the setup at LaSalle County Station.

As seen in the output file, 'NetEvap_Comparison.out,' the minimum lake elevation using the new worst net evaporation weather file is 688.63-ft. From Attachment H, the results from Case 3c using the existing weather file is a minimum Jake elevation 0(688.52-ft.

Since the existing weather file results in greater lake drawdown, the existing weather conditions from 6/18/1954 to 7/18/1954 will continue to be used for this analysis.

M6.3 Weather File Creation for UHS Analysis After determination of the worst weather day and month and the worst net evaporation month, weather files are created for use in the UHS Analysis.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M12 of M17 For the worst weather day and month, eight new weather files are created starting at different times to determine the limiting time of day. A summary of the eight created weather files, including the start times and end times used in taking weather data from

' PIALSL95 l O.txt' is presented in the table below:

Table M6-3: Worst Weather 24-Hour/30-Da Files File Na~e l worst 24-hr s;;t--w;;-~i-2""' t~-rt-1=w_o~~~-O-Da~_E_n_d 4_-h-r-En- d--.--W-.o_rs_t_3_0--0-a_y_~--

~t~~~~=l~~~~z-!-l-~~~:~~~*~1~~-=- ~~~:~~~~}H~~ -*1 ~12,21 \1'1i99:9~55- 6~AA2:M~--t~a:1,'2 \09/1 1~9 :95 525~A1

MM --*--*

1-30day_6am.txt I 112.412001 6AM 'I 7/25/2001_5_A_M-i---- le 1-30day_9am.txt 1 7/24/2001 9AM. j 7125/2001 BAM 7/21/1995 9AM 8/20/1995 8AM

...- -- *- - - --**--***- -*--*-- -*--*-*--r*-**----*- *----***-*-*- --*-- **- **** -**--*--- - -- -*-------- - --

-~~*;;=~~;~~~~+~i:~~~~*-lr~----j~;~~;~~-~~~--* *-*~;~~~~-~:~-~~~-~ -~~~~~~~~M_-**-

1-30day_6pm.txt 1 7/24/2001 6PM I 7/25/2001 5~M 7/21/1995 6PM 8/20/1995 5_P_M_-!I l_!-30d~_9pm.txt j 7/24/2001 9PM . J!i25/2001 8PM ~/1995 9PM .,.!~~~95 8PM The worst net evaporation month was determined to be the existing weather file ,

' 30dayevap.txt'. This will continued to be used in the UHS analysis, and no further weather file compilation is needed.

c

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT M, PAGE M13 of M17 M7.0

SUMMARY

AND CONCLUSIONS The worst weather day and 30 days and worst net evaporation 30 days were determined by running LAKET over a range of days spanning from 111/1995 to 9/30/2010. The worst weather day was determined to be 7/25/2001 ending at 6:00 AM, while the worst 30 day period of weather spanned from 7/21/1995 4:00 PM to 8/20/1995 3 :00 PM. A comparison of this weather file with the existing weather file shows that the new weather file based on the weather data from 'PIALSL9510.txt' results in a higher maximum UHS outlet temperature than the existing weather file. Therefore the new weather files summarized in Table M6-3 will be used in the UHS analysis.

For net evaporation, the worst 30 day period was determined to span from 6/13/2002 l 0:00 PM to 7/13/2002 9:00 PM. Comparison of this 30 day span with the previous limiting 30 days, 6/18/1954 to 7118/1954, shows that the 1954 span remains bounding.

Therefore, the existing worst 30-day net evaporation weather file will be used in the UHS analysis.

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO . 8 ATTACHMENT M, PAGE M14 of M17 M8.0 LIMITATIONS M8.1 24-Hour and 30-Day Rolling Average Values - The values for UHS outlet temperature and net evaporation provided in Tables M6-l and M6-2 are merely representative values for use in comparing weather effects over different time periods. These values are not actual expected values for the LaSalle UHS.

(

( __

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M15 of M17

( .. . M9.0 APPENDICES


-.--------====-.. ._.._-N-List of Appendices o_n_-_-::-_-_-_-_-__-_ _-_:_::_:_.

~~-_!_-i_

_-.-0-e-~-_:r- __ _o::._o-f=~-~--ge_s_

2

--L.-*----

Electronic File Listing j c

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT M, PAGE M16 of M17 Appendix M9. l : Electronic File Listing Appendix M9.1: Electronic File Listing A summary of the electronic files and their purposes is provided below:

LaSalle Count)' St!tion I Peoria ~r Fil_e_ _ _ _ __ _ ,__,

File Name i Date

-PiA~S_ -L9_510.txt-* *-*-----**--*-*---------!-3to9~~1*2~12:oa p~~-- -----]

Files for Determining 24-Hour and 30-Day Worst Weather 1 - File Name 1 Date * ~~~....

1Worst Weather.dat -*  : 4/24/201211-26.AM --- - --

[~~~~~-~~~=~~==-1~~~1m~r~

(

1*~---

-*~!{~~~~~~~~1~t-*--*

Compiled Weather Files (Section M6.1 and Section M6.2)

File Name

  • Date t

1

    • --------**-**--*--l*-§~~~6~**~* t~H)~~---*-- * ---**

*-=--~- * *--** --- _,,,*--*- -

Files for Comparison to Previous Worst Weather

- File Name~= I Date *- - - - -- - -*

wo~5t.weath;;~::::-c~-o;ii*8ri5ori~at*---*--r 412612012 1o:12 AM---** *-

-wo7~tweathe*r-~co~-pa~i-son~o~t*--*-*--*-* f4/26/261*21*0:12 AM*-----------

-* ~~~~~0.J.:~.a_!~~~~~~~P.a~.~~~~.~~~~:.~=:*:=-.-..=r~?~/.?~cD?~:i0:*f?_.~~L~::~~=-~~=-**

WorstWeather Comparison.pltX

.. ~=--:o.....-;;:;:~~-~ . ~~-1,MC..* ;:".r...

!'* 4/26/2012

~ ..

10:12 AM

- ~=~=-*-.µ*~

  • ~-- * ~*

Files for Comparison to Previous Worst Net Evaporation Weather


=----Fiie~N3,;;;---. --T0a;--~-~--~*~~j l*-***--*-*-***--*-----*------

NetEvap_Comparison.dat

  • -**-**---*--*-*------*--*-----__._-*-*---**---*-*-* ***-----*------**--*--*-**-----~

! 5/17/2012 3:20 PM kN~~~ap,,,,~omp~!!son . out__* ________J_5117/21?_~2-2~P.M _____ ,

Lt.'.J_~~-~~P..=~°-r.':1.P..~!i~?.~:P~~----~-------*-**--- --l-?I~.?!_2_Q~-~~:~~--"--~* ---***----*-- -- ***

j.!!,etE,~!Ez_Comparison . ~~----~=J.~~E2.;33 PM .. -~-J

( PROJECT NO . 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M17 of M17 Appendix M9. l : Electronic File Listing Weather Files for UHS Analysis

- - ~-"'~~~....... j ~D~at~e~~~~~~~~---.

. :~~I~~:-t=~~i~f-C~~~~~-~~~ "::~~::*_:~~:.-.~=-*:=-.f1}~~~~~~~~~~--~t--.-.-~~-=~~:~-.~-~-~~

-~"f=il~ m e~N-a_ _e=

-~~:.~aciaY.~~-~~~c-.===*=~~==~=r41~~~~~? i2a*-PM*--***-------

1-3oday_9am.txt I 4/26/2012 3:29 PM

-**- -***-------**-*---**---*-*----** ---------1---***----*-*----*-- -----*

. . ~:-~9...~Y.::!.~£'!!.:.~-------** --**--*-----*-***l*-~~?.!_~Q~+/-..~~..9-~~--***----***-*-*****

1-30day_3pm.txt  : 4/26/2012 3:32 PM

  • 1*=~oday:::-5_prr;~~t-==--:======~=~::=r412§{2a*12-~~}~~*~====~

_1_-3_o~y=~l?.':!1*tx~----*- ------ ------L~?~{~-!~-~~J:~-----*- .

30dayevap.txt I 4/06/2006 4:18 PM A more detailed look at the files listed in the tables above is provided below:

Further Detail for Electronic Files l Modif.!d *** ~-** * ~~-~--..!~~~-

'. ~m!

- l!)[! *))<i*y 1z.m'."ixir--*-*- *-*-***-***-*****---- **----*--*****- **-I :r;~o.;;;..:.;:.iii5i201i3;2JP;;

Typt

. * * - -*- ~ -- ****---~:;:;~L-l!S,:?90 i!3% !4.m I!) !*JCd*Y_ll:lm.txt Text Dorumont -lf26i2012 l:)'.) PM 118,2% &a% 1*,)JO 0 i*l'Aw_3am.txt TextDoa;m"'t 4;"2?i:Otl3:25PM ne.296 Se%

I);) !*;.;d*y_)l:m.txt iextOo<um.....,t -lf25/20!2 l:l"F"M llS!~ ~7:: l~.224 I!) i*3i!d&y_5c!m.b.t it:tt Doosr.!ni ~/26/::0l? 3:2ti PM 11e,m 3'.3- H.339

[} 1*30day_6Ci'Tl.txt Text~l!nt "i2?/X*t2 3:33PM  : LS,296 03~* 14,26.l

@ 1

  • 30dai*_9~m . b:t T6lt"<>asn...Af'li: 4[25/2D12 3:~PM ll:i!:-16 ~~t 14.321 01*lC'd01_9pm.t>t ToxtDo<Uncnt -4f25iZO!l J:J4FM ue.295 ae~.:

(!) ?C*daytv~.txt Te>:t Oo..i.Jm~nt .,,6/~00~ .;: !.S ?M ~ 16.003 S5% 17,$90 c

.)NeiE*ap_Comparison.
iat D~iFI* 5/11{2012 J:21JPM 2,523  !!3'/~ ~
~)tle:E*OP_COl'f'O't\'°n.out OlJT Flo 5i17i:O C 3:13 ~ ..:e.:SSJ 951/; l,6?9
  • lHetevop_Cornp<riscn.o!: Pt.TFit 5/!l!Xlll l:lJP/>1 Hl,372 72% 39.(151 ll)HeiEvap_(O.'l\PlriSO<"*.~tX ~LTXF~ 5f!l/1912 l:2JFM l~ . .;i:-:i 76 J,495 0 tletf~a:>_~*1eather. b:t i!Xt Doa...-nent 5/17f:.C. 12 3: 23 PM tt-t,.;so 37',f H,S*t3
,.\H*tf-*a;>_\'iorott*lor.th.d.i DAine 5/!7/2Qll l
QI F"M J57 30~. 222.

illtietfvepjiorstManth.out OUT File 5fl7(N!2 3:(1? PM 11e,09 1 91 1/: ~3 , 3U3

~luetfve:>_\'iorst:-*1orlth.p!t FlTFie 5/17/:012 3:0j FM l6.i174. 556 S0'.'1 5 ,J~,504

'.'1Heif*;op_wm~*l<n:h.p!tx '1.TXFl* 5/ 17/1011 ;:QJFN l,?57,37? iO'I: a7i.9t<

f[J rw.st~SlO. o;t Text Dc~\lnerit J/9fZC12 1.;!;00 PM 21,au,s.z 07*,; 2,742.f.'(12 f.i.h\'c-nt_';iee;tli~.dat O;i.i f1!e -t}24/2<t12 1!:2? AM -!QI +.;7, 223 f:l 1.!o:"orst_\'!eather.out OUT~ile ~f2-4/.2012 ll:Z.6 AJ4 ))5 : 229 92."% 25.+ll

.f-"l Worst_We~mer .plt Pl.TH~ --lfHj)}t~ 11;£6AH 25.37-!,556 31'/ , S,2J.; 1l61

~4h*,*orstj:'eether.pltX RiXFle ~jl-41:012 11:26 AM 2.100."?f:,lj C4o/~ *ilS.900 0 \t.'orst3/eam~ .txt TelCtOc...~ent ~!25/2'3!2 1*):11 AM Ha, 2% SS%  ! .;,341

? 1WorsM'eather_Co.'11;-a.'i50t'l,d3t DAT Fie ~i2ij'10!210:12AM 1.355 a:.% 425 i>) r.ors:\~eolh*r_Co.1ipar~or*. out OOH1e  ;}Z5/20ll 1Q:ll "-M 'i9,0 I? -~So/: ~ . &;~

'-'~ WorsrHeathtr_c~.pit ?lTFie ~f2i,fl!Jt2 E):t2 .'J-1 146,0-l-t 72% -!') ,lll

~1 ~*;cn(,'Je!thc!_Co~on .pltX ?Ln: Fie ~i26f:1J1Z 10: ?2 .:..M 14.030 n% 3,401

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N1 of N20

(

Attachment N - LAKET-PC Methodology Validation

(

Prepared:~ J, tJiv.J} Date "t f3<> /zo1}

Daniel W. Nevill - Sargent & LundlLc R ul J . Szymiczek -

(

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT N, PAGE N2 of N20

( ATTACHMENT N - TABLE OF CONTENTS Section Page No.

Nl.O Purpose ... ... .................... ........... ......... .... .......... .................................... ........ ...... ..... ..... N3 N2.0 Methodology ................................................................................................................ N4 N3 .0 Assumptions .............................. .... ............................................................................... N6 N4.0 Design Inputs .............. ..................... ........ ................... ... ......... .... .................. ................ N7 N5.0 References ........................................................ .... .. .. ......................... .. ......................... N8 N6.0 Evaluations ... ... .................... ............ ................................................ .. .. ......................... N9 N7.0 Summary and Conclusions ...................................... ..... .... .......................................... Nl8 N8.0 Limitations and Open Items ............. .......................................................................... NI 9 c N9.0 Appendices ................................................................................................................. N20 (Total Pages - Attachment N (20) plus Appendices (0) for a Total of 20 pages)

LIST OF APPENDICES I No. I~itle (Total Appendix Pages - 0)

(

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N3 of N20 Nl.O PURPOSE The purpose of this attachment is to evaluate the methodology in the LAKET-PC program and compare it to accepted methods for analyzing UHS cooling ponds. The LAKET-PC method is compared to NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds," [Ref. NS.I). This evaluation reviews the individual equations for heat transfer, wind characterization, and evaporation used in both the NUREG document and the LAKET-PC program.

(

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT N, PAGE N4 of N20

( N2.0 METHODOLOGY NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds" [Ref. N5.1] presents a method for analyzing the performance of ultimate heat sink cooling ponds. It was published in November 1980 and contains the accepted methodology for characterizing the thermal performance of cooling ponds.

The methodology of LAKET-PC is compared to NUREG-0693 based on review of the LAKET-PC manual [Ref. N5.2]. The equations for heat transfer, wind characterization, evaporation, and the iterative method are compared between both documents. LAKET-PC is validated in the process of demonstrating that the method of calculation is equal to the approved method outlined in NUREG-0693.

N2.0.l Lake Stratification - NRC RAJ #6 [Ref. N5.4] asks for additional information about the effects of thermal stratification of the lake.

A method for determining if a lake is stratified is presented in Sargent & Lundy standard MES-11.1 [Ref. N5.7]. This method consists of assuming the lake is stratified with the less dense hot water floating on top of the slightly more dense colder water. If the calculated value for the upper layer depth is close to or beneath the actual lake bottom, then the lake can be regarded as not stratified. The depth of the upper layer hot water is determined using Eq. 1.

C. h = 2 3 ]1/4 f;Q DSL (Eq. N2-1) u [ 4gft6.TB 2 Where:

fi - Interfacial shear coefficient, estimated as one-half of bottom friction coefficient fi = 0.5

  • 8
  • g I Cz2 (Eq. N2-2)

Cz - Chezy coefficient Cz = 1.47

  • H 116 In (Eq. N2-3)

H - lake depth (ft) n - Manning roughness coefficient Q- Circulating water flow (ft Is) 3 Ds - Dilution ratio (total lake flow I circulating water flow)

L- Lake length (ft) 2 g- gravity, 32.2 ft/s J3- Bulk expansion coefficient of water (°F)

P= 4.lxl0"6 * (Tave - 39°F) (Eq. N2-4)

Tave- Average temperature of discharge and receiving water temperature (°F) 6.T - Temperature difference between upper and lower levels (°F)

(_ B - Width of lake (ft)

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT N, PAGE NS of N20

(

For the case where a jet or plume is formed in the lake, the dilution ratio (Ds) is found from the following steps.

Fr= Ud I ~hdg/JD..T (Eq. N2-5) 114 hmax =0.42*.jh;;;(hd/bd) Fr (Eq. N2-6)

D; =l.4.JI+Fr 2 (hdlbd) 114 (Eq. N2-7)

Where:

Fr - discharge Froude number Ud - Velocity at discharge structure ([tis) hd - Depth of discharge structure (ft) bd - Yi width of discharge structure (ft)

Ds *- Dilution ratio without correction for lake bottom If the maximum depth of the plume (hmax) is greater than the depth of the lake, a correction factor is applied to the dilution ratio.

314

( r = (0.75H I hmax) (Eq. N2-8)

Ds = rD; (Eq. N2-9)

Where:

r - Dilution correction factor The upper layer depth (hu) is used to determine the degree of stratification in the lake. If the volume of the lake below the upper layer depth is small compared to the total volume of the lake, then a plug flow model such as LAKET should be valid. When the volume below the upper layer depth is greater than one half the total volume of the lake, a different model that accounts for stratification should be used.

N2.1 Acceptance Criteria N2.l.1 Acceptance Criterion Nl - The calculation method in LA.KET-PC for analysis of the thermal performance of cooling ponds shall be consistent with the accepted methodology presented in NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds" [Ref.

NS.l].

N2.l.2 Acceptance Criterion N2 - The LAKET-PC program [Ref. NS .2] is not applicable for stratified lakes. The fraction of lake volume below the upper layer depth shall be less than 50% for the UHS to be considered not stratified [Ref. NS.7].

(_

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N6 of N20 N3.0 ASSUMPTIONS N3.1 Lake Stratification Calculation Inputs - The m1mmum m1xmg zone temperature is assumed to be 100.0°F. The maximum mixing zone temperature is assumed to be 125.0°F. These values are based on values of interest (during the first few days following an accident) from the mixing zone analysis done in Attachment 0.

The Manning coefficient is assumed to be 0.02. This is an approximate, conservative value [Ref. 5.6, Table 3.3.17] based on the surface of crushed stone bedding and rip rap

[Ref. N5.5].

(

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT N, PAGE N7 of N20

( N4.0 DESIGN INPUTS N4. l Accepted UHS Analysis Method - The accepted analysis method for UHS cooling ponds is taken from NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds" [Ref.

NS.l].

N4.2 LAKET-PC Methodology-The analysis method used in LAKET-PC is determined from the LAKET-PC user manual and the computer code [Ref. NS.2].

N4.3 Wind Dependence Functions - Wind dependence functions are taken from MIT Report 161, "An Analytical and Experimental Study of Transient Cooling Pond Behavior," [Ref.

N5 .3].

N4.4 Lake Stratification Inputs - The bases for inputs to the lake stratification analysis are provided in Table N6-4.

c C.

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE NS of N20

( NS.O REFERENCES N5.l NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds," Office of Nuclear Reactor Regulation, Nuclear Regulatory Commission, November 1980.

N5.2 LAKET-PC Version 2.2, Sargent & LundlLc, Program No. 03 .7.292-2.2, 12/09/2004.

Controlled File Path: \\SNLVS5\SYS3\0PS$\LAK29222\

N5.3 MIT Report 161, "An Analytical and Experimental Study of Transient Cooling Pond Behavior," Ryan and Harleman, Massachusetts Institute of Technology, Cambridge Massachusetts, 1973.

N5.4 Request for Additional Information Docket Nos. 50-373 and 50-374, "LaSalle County Station, Units l and 2 - Request for Additional Information Related to License Amendment Request to Technical Specification 3.7.3 Ultimate Heat Sink (TAC Nos.

ME9076 and ME 9077," 6/27/2013.

N5.5 S-79, "CSCS Pond Water Inlet Chutes Plan and Sections," Rev. H.

N5.6 Avallone, Eugene A. and Baumeister III, Theodore, "Marks' Standard Handbook for Mechanical Engineers," 10 h edition.

1 N5.7 MES-11.1, S&L Mechanical Engineering Standard, "Effective Area of Cooling Lakes,"

( Rev. 1.

N5.8 RS-13-002, "Response to Request for Additional Information Related to License Amendment Request to Technical Specification 3.7.3, 'Ultimate Heat Sink' ,"1118/2013.

(

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT N, PAGE N9 of N20

( N6.0 EVALUATIONS N6.1 LAKET-PC Background LAKET-PC is a one-dimensional thermal prediction model first written in 1976 which has been well established in many areas of cooling lake sizing and analysis. The lake simulation model is used to yield water surface temperature as a function of position and time. The inherent assumptions used in the LA.KET-PC model are as follows:

1. Thermal One Dimensionality - A one dimensional model assumes that the temperature is constant at any point along the plane perpendicular to the direction of flow. There are neither cross-stream variations nor thermal stratification with respect to depth.
2. Time Increment - The calculation scheme in LAKET-PC is an iterative process, where the calculation interval can be set to increments of minutes or hours. Weather data input to the model is generally hourly, and so weather data is held fixed for intervals smaller than one hour.
3. Fluid Interactions - The simulation model used in LAKET-PC involves adjacent fluid masses at different temperatures. The horizontal heat conduction due to this temperature difference is assumed to be negligible with respect to the heat rejection at the air I water interface, and is ignored. Similarly, conductive heat loss and frictional retardation at the water I channel interface are ignored.

( 4. Lake Rectangularization - The one-dimensional model assumptions coerce the water body into an idealized rectangular channel. The length of this channel is the flow path length of the actual water body, while the width and depth are computed theoretical values.

5. Global Flow Components - LAKET-PC assumes that all secondary water gains and losses, such as makeup, blowdown, and runoff are distributed globally over the entire lake surface. This is a reasonable assumption for the majority of applications; an actual configuration in which component flow is known to exert a disproportionate local influence will not be modeled accurately on that local scale. However, the net result of the component will be correctly modeled.

The movement of fluid through the one-dimensional channel is envisioned as a series of individual, distinct fluid segments. Each segment has an individual length and temperature, while the width and depth remain constant for all. The channel thus forms a queue of fluid segments, where additions are made at the inlet, and deletions are made at the outlet. This is referred to as a "first in, fust out" queue. Any segment that enters the channel will cause an equal amount to be expelled at the outlet. The program assumes that all segments are uniform in temperature, and each segment is allowed to react independently with the environment.

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N10 of N20

( Heat Transfer Model This evaluation only considers the thermal model utilized in calculating the lake surface temperature, and does not delve into the effects of precipitation, makeup, blow down, or calculation of total dissolved solids.

A) Edinger and Geyer Equilibrium Temperature Heat Transfer Model Both NUREG-0693 and LAKET-PC present thermal models in which the surface temperature of the cooling pond is calculated, as the bulk heat transfer modeled in these equations occurs at the water I air surface boundary. Both thermal models utilize the Edinger and Geyer "Equilibrium Temperature Heat Transfer Model." The equilibrium temperature is defined as the water surface temperature at which the lake is in thermal equilibrium with the environment. At this temperature, the heat removal from the water balances the heat addition, and the net effective heat transfer at the air I water surface is zero. Thus, the equilibrium temperature at any given time is a function only of the current meteorological environment. This is not to be confused with the "natural" lake temperature used in LAKET-PC, which is the instantaneous water temperature in response to the meteorological parameters. The equilibrium temperature is the theoretical steady state solution, while the natural temperature is the actual transient thermal response to the weather conditions.

The equilibrium temperature is used to define the heat transfer (Q) per the following equation:

Q Ts fdQ= fK *dT 0 E where Q =net heat transfer into the water (BTU/:ft2day)

E = equilibrium temperature (°F)

Ts = water surface temperature (°F)

K =equilibrium heat transfer coefficient (BTU/ft2 day °F)

Note that for this equation, K is assumed to be constant. However, when evaluating ultimate heat sinks, which accept high heat loads, the external heat load rejected to the pond will increase the surface temperature significantly higher than the equilibrium temperature. Thus, this equation is an iterative process in which the lake surface temperature is co-dependent on the net heat transfer rate and the heat transfer coefficient.

The surface temperature and heat transfer coefficient is held constant for each time step iteration when calculated in LAKET-PC.

(_

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N11 of N20

( B) Heat Sources Contributing to the Cooling Pond The contributing components for the net heat transfer to the lake, listed below, are consistent between both LAKET-PC and NUREG-0693 .

where:

QsN = net incident short wave solar radiation QAN = net incident long wave atmospheric radiation QBR = net rate of long wave back radiation from the lake surface QE = net rate of heat loss due to evaporation Qc =net rate of heat loss due to conduction and convection QRJ =net rate of heat rejected to the lake by the plant Table N6-l below presents the equations for each component of the net heat load. Note that for both methods, the solar radiation is generally a measured value, while the others are approximated based on meteorological conditions.

Tab~tl: Heat Load Equations I NUREG-0693 i LAKET-PC

. I Measured value ~lculated outside of LAKET-PC c

I (included with weather data) 1 1


1-----*---- 13

- ----6 2 J 1.2x10" (TA+460) (1+0.17C ) I Calculated outside of LAKET-PC 1

1  ! (included with weather data)

-* -======:=::~=--=1:~~I~~i4~~~!~)~~--==~==--=---=--.:=~-. -. :

4

-~ ~~~=~:-.*-.=---==~=t~~~~I§~~~~!.~)

OE I (es - eA)F(w) j (es - ea)F(w) l approximated as: ~(Ts-T o)F(w) a~ -------- ----,-o-_.26(-fs-r~)f:(w) -- ------*- *--*-*--------- --**to . 255(1-~~r;)f:(;)

j

- ----*****--**--*--*-*-*f-**..-----***---------...- ...... _ ___ ..._________,..... ______.... t**"-*--**..*-**-..*-*--*-- * - -*-*-*-*-*

QRJ . I Input based on plant heat load I Input based on plant heat load

1) An additional description of solar radiation and atmospheric radiation can be found in RS-13-002 [Ref.

5.8}.

where:

c =fraction of sky covered by clouds (0.0 - 1.0) (measured)

TA = dry bulb air temperature (°F)

Ts = water surface temperature (°F)

To =dew point temperature {°F) r es =saturated vapor pressure at Ts (mmHg) eA = partial vapor pressure at TA and relative humidity (mmHg)

= 0.255 -0.0085( T, : TD)+ 0.00020{ T, : TD (mmHg/'F) 2 F(w) = wind speed function (see Section N6.2C) (BTU/ft day/mmHg)

Table N6-l shows that the equations for each contributing heat load to the cooling pond are the same between NUREG-0693 and LAKET-PC.

(

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N12 of N20

( C) Wind Function NUREG-0693 The wind function (F(w)) is used to characterize the effect of wind on the evaporative heat loss from the water.

The simple thermal model presented in NUREG-0693 utilizes a form of the wind function developed by Brady, which is solely dependent on the wind speed.

F8 (w) = 70+ 0.7W 2 where F8 (w) =Brady wind function (BTU/ff day/mmHg)

W =wind speed measured 18-ft above the water surface (mph)

However, Section 2.3 ofNUREG-0693 discusses possible over-conservatism in this wind function and also presents an alternative equation. The Brady wind function, presented above, seems to underestimate the evaporative heat flux. Another approach presented by Patrick Ryan in MIT Report No. 161 [Ref. N5.3] and summarized in NUREG-0693 includes the temperature dependence of the water surface when calculating evaporative heat loss. This Ryan function is less conservative than the Brady function, but based on firmer physical grounds. The Ryan function presented in NUREG-0693 is as follows:

where 2

FR(w) =Ryan wind function (BTU/ft day/mmHg)

P = atmospheric pressure (mmHg)

W2 =wind speed measured 2 meters above the water surface (mph)

A comparison of calculations utilizing each of these two wind functions is shown in Fig.

N6-l in Section N6.3.

LAKET-PC LAKET-PC uses two different wind speed functions, one for natural evaporation off a pond at its natural temperature, and another for the forced evaporation off a heated pond with elevated surface temperatures. This is done to capture the effect of different phenomena above forced and natural water surfaces. Both wind functions are taken from MIT Report No. 161 [Ref. N5.3].

The wind speed function for a natural lake is solely dependent on the wind speed:

(_

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N13 of N20 where FLH(w) =Lake Hefner wind function (BTU/fi day/mrnHg) [Ref. N5.3]

Additional heat rejected to the cooling pond will increase the temperature of the water surface, and introduce the effect of free convection due to the temperature differential between the water and the air. Consistent with NUREG-0693, LA.KET-PC utilizes the Ryan wind function (Fr(w)) to account for free and forced convection when the surface of the water is at an elevated temperature. Specifically, LA.KET-PC utilizes the Ryan wind function when the surface temperature is 2.5°F higher than the natural temperature of the lake.

N6.3 Comparison of Calculation Methods There are several simplifying assumptions made when generating the set of equations used for the heat transfer model defined on page 9 of NUREG-0693 [Ref. NS .I]. This includes the approximation that the heat transfer from the back radiation and atmospheric radiation effectively cancel each other out. The model presented in NUREG-0693 also utilizes the Brady wind function (F8 (w)), which is solely a function of wind speed.

However, Figure 2.4 in NUREG-0693 (reproduced below) presents the results from a hypothetical one square foot section of a pond surface subject to constant meteorological conditions utilizing varying levels of rigor in the calculations and wind functions.

(

(

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N14 of N20

(

'."I* 1MPH C 19 0.5 a

H1* 2100 BTU/(FTlOAY)

T,\*00°f T0

  • 70 °F 170 SURFACE i60 TEMP Ts-°F 150 b 130 120

( 110 90~~,,__~---~..._~...._~...______~..._~--~------~-------

1) 2 3 ,, 5 8 7 8 9 10 11 12 HEAT LOAD FROM PLANT- BTU/(fT~OAY} x 1000 Fig. N6-1: Comparison of Calculation Methods where a) Simplified method with equilibrium temperature and heat transfer coefficients based on unloaded pond conditions (not a function of pond temperature).

Brady wind function.

b) Simplified method where atmospheric and back radiation are ignored, but equilibrium temperature and heat transfer coefficients are based on pond temperatures.

Brady wind function.

c) Rigorous method where each contributing heat source is explicitly calculated.

Brady wind function.

d) Rigorous method where each contributing heat source is explicitly calculated.

Ryan wind function (LAKET methodology)

Furthermore, the explicit impact of the wind function on evaporative heat flux is analyzed

( to demonstrate the significant influence of forced evaporation. This is done by PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N15 of N20

( calculating the evaporative heat flux for several lake surface temperatures at the constant meteorological conditions used in Fig. N6-1 (per NUREG-0693). The evaporative heat flux is calculated using the equation given in Table N6-1:

Note that the equation above shows that given a constant water temperature, a decrease in atmospheric pressure will result in a slightly increased heat flux. The constant meteorological conditions used in the calculation are presented below in Table N6-2.

Table N6-2: Constant Weather Parameters Parameter Symbol Value

-.-*------*--------*-*-----*---------**-*--- --~-----*** -*-*- - - -

Dew Point Temp (°F) Td 70

>----------*----------- -****--------**--*---*- *---*----*-*--- *---------*-r--*---*---*-----*

~~~f~~-~~~l------*------1--~~-- --l2~-

-~ind Speed measured at 18-ft (mph) w 2 Wind Speed corrected at 2-m (mph) W2 1.7 Atm Pressure (mmHg) P 760.137

--**--------**----**--***. ******--*-*-- ---**-*----*--*..-*-*-----~..-----***--*-- f--*--*---*------

Partial Vapor Pressure at TA and R~ (mmHg) 18.772 c

The calculation of the evaporative heat flux and each contributing term is conducted below in Table N6-3.

Table N6-3: Calculation of Eva orative Heat Flux Water Surface Temperature (°F) Ts 150 135 I 120 105 90

~-~~!~~e~-~-8-Eor_~_~!_~J~~Hg) -~-- ~92.27~ 1~:~31 ~~.97~

[-------------- -- --- -----------* *-------- -------- - ---- -----

_____ _ 36.100 _

Brady Wind Function F 11 111) 72 *80 72 80 72 .80 72 80 72 80 (BTU/Wday/mmHg)

  • - -----1---------

Bp* * . .

I Ryan I Lake Hefner Wind Function 1

F (W) 120 85 106.97 90 39 61 76

~ *;B~__j_~-;~~----

134 06 1

~;~;~;i::~;#~~~ (sTUlfrday)*-------~-~- ~-~;~;~ -+--;~~-- -~ *006-(usmg Brady Wind Fune.) J EB


t--------- ------- --------f---*------

  • I
  • j
  • I

*-------*-* - -- - - 1_ _ _ _____

Ev~porative Heat Flux (BTU/tfday) 0 23 261 13 588 7 355 3 453 1 070 (Using Ryan I Lake Hefner Wind Fune.) ER * *

  • I * . *
1) Per the methodology in LAKET-PC, the Lake Hefner wind function is used instead of the Ryan wind function when es approaches eA.

Results from Table N6-3 are presented in Fig. N6-2.

(_

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N16 of N20 25,000 ~------------------------------

- - Evaporation w/ Brady Wind Fune.

  • *
  • Evaporation w/ Ryan and Lake Hefner Wind Func.'s 20,000 +-=================~-----------.~--

i ns

~ 15,000 + - - - - - - - - - - - - - - - - - - - - - - - - . L . . . - - - - - -

)(

I ii:

ns GI

c

~ 10,000 +-------------------~-----~,IC.----

i

[

ns w

O+-----.....-----.....-----.....-----.....-----~---~

90 100 110 120 130 140 150

(

Water Surface Temperature (°F)

Fig. N6-2: Evaporative Heat Flux Calculation Results Fig. N6-2 shows that the Ryan wind function (which accounts for forced evaporation due to elevated pond temperatures) results in significantly higher evaporative heat flux values at elevated water temperatures. As UHS cooling ponds are expected to see significant heat rejection, the surface temperatures will be notably higher than the natural lake temperature and thus, accounting for this effect when calculating evaporation is necessary. The results in Fig. N6-2 are consistent with the results presented in NUREG-0693, shown in Fig. N6-l. The differences in evaporation calculated with either of the two wind functions are negligible for lightly loaded cooling ponds (where the lake temperature is relatively close to the natural lake temperature). However, when the heat rejection to the pond is increased and the resulting water temperature increases significantly beyond the natural lake temperature, the effect of the Brady vs. Ryan wind functions becomes apparent. The increased evaporative heat flux shown in Fig. N6-2 will result in lower water temperatures, as shown by Cases c) and d) in Fig. N6-l.

N6.4 Lake Stratification The calculation of the upper layer depth was done for the UHS at LaSalle in order to determine the degree of stratification. The following table shows the calculation of the upper layer depth, which is done according to the methodology presented in Section N2.0.1. This calculation is done for varying values of temperature rise through the plant

(, since this value changes significantly during the first few hours following an accident.

-... The temperature difference between the upper and lower layers is calculated as the PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N17 of N20 difference between the plant outlet temperature and the 'mixing zone' of the UHS located near the plant outlet. The temperature of a mixing zone comprising 10% and 20% of the UHS area is determined in a Section 06.9 of Attachment 0.

T a ble N6-4 : C a Icu Ia f100 of U1p1 er L a)'er De~ th

Parameter Symbol Units Hour 1 Hour4 Hour& Basis Gross Lake Area A Acres 81 .32 81 .32 81 .32 Alt. 0, Table 02-1 Gross Lake Volume v Acre-ft 340 340 340 Alt. 0 , Table 02-1 Average Deoth H ft 4.18 4.18 4.18 =V/A Flow Rate a cfs 86 86 86 Alt. 0, Desi9!!.!.!}~
  • Plant Inlet Temperature T; oF 102.00 101 .73 102.62 Case 3a_6AM from Alt. 0 Temperature Rise through Plant llTp oF 25.95 35.8 22.43 Att. P, Appendix P9.2 Plant OuUet Temperature To "F 127.95 137.53 125.05 =T; + lffp Minimum Assumed Mixing Zone Assumed Tm "F 100.0 100.0 100.0 Temoerature tJ.T Between Plant OuUet and Mix. Zone AT OF 27.95 37.53 25.05 =To-Tm

~ake Length L ft 5500 5500 5500 Main BodY., Design II'!~

LakeWid!!)_ B ft 644 644 644 =A' 43560 IL Width of Discharge Structure Bd ft 8.0 8.0 8.0 Ref. N5.5 UHS Depth with 1.5 feet of Depth of Discharge Structure hd ft 3.5 3.5 3.5 sedimentation Discharge Velocity vd ft/s 3.071 3.071 3.071 =QI (Bd

  • hd)

Maximum Assumed Mixing Zone I

T oF 125.0 125.0 125.0 Assumed TemQerature Assumed Manning Roughness Coeff. n (-) 0.02 0.02 0.02 Ref. N5.6, Table 3.3.17 Bulk Exeansion Coefficient B OF 3.53E-04 3.53E-04 3.53E-04 Eq. N2-4 Discharge Froude Number Fr (-) 2.91 2.52 3.08 EQ. N2-5 Maximum Plume Depth hmax ft 4.43 3.82 4.68 4.38 Eq. N2-6 Eq. N2-7 Dilution ratio (uncorrected)

Dilution Ratio Correction. Factor D*

r

(-)

(-)

- 4.17 0.77 3.66 o.86 ,_0)4 EQ. N2-8 Dilution Ratio (corrected) D, (-) 3.22 3.16 3.25 Eq. N2-9 Chezy's Coefficient c, (-) 93.29 93.29 93 .29 Eq. N2-3 lnterfacial Friction Coefficient f; (-) 0.015 0.015 0.015 Eq. N2-2 Upper Layer Depth hu ft 2.49 2.28 2.57 Eq. N2-1 Test for Lake Stratification

-Gross Volume v Acre-fl 340 340 340 Alt. O, Table 02-1 Interpolation of Table 7.1 in Volume Below Upper Layer vb Acre-ft 143.2 159.9 136.4 Main BodY.

Fraction of Lake Volume Below hu (-) 0.42 0.47 0.40 = Vb/V As seen in Table N6-4, the most conservative calculated upper layer depth for the LaSalle UHS is 2.28 ft. Using this depth, the fraction of the UHS below the upper layer depth is 47%. According to MES-11.1 [Ref. N5 .7], LAKET is applicable to a certain lake if this fraction is less than 50%. Therefore, LAKET is acceptable for analyzing the LaSalle UHS.

(

\___

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO . 8 ATTACHMENT N, PAGE N18 of N20 r'

\ N7.0

SUMMARY

AND CONCLUSIONS The methodology used in LAKET-PC is entirely consistent with the thermal model presented in NUREG-0693 and the wind speed functions presented in MIT Report No 161, which is also referenced and cited in NUREG-0693. The use of the Ryan wind function (LAKET-PC) over the Brady wind function (NUREG thermal model) results in lower lake temperatures. This is due to the fact that the Ryan wind function accounts for the effect of forced evaporation at water temperatures significantly higher than ambient air temperatures. However, NUREG-0693 fully endorses the use of the Ryan wind function as a more accurate, although less conservative, method for calculating evaporative heat flux. Thus, Acceptance Criterion Nl is met.

In Table N6-4, it is determined that the fraction of lake volume below the calculated upper layer depth is 4 7%. Acceptance Criterion N2 requires that the lake volume below the upper layer depth be less than 50% for the lake to be considered not stratified.

Therefore, Acceptance Criterion N2 is met.

(

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N19 of N20 N8.0 LIMITATIONS AND OPEN ITEMS None.

C.

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N20 of N20

( N9.0 APPENDICES None.

c PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT 0, PAGE NO. 01of042

( 01.0 PURPOSE/OBJECTIVE The purpose of this attachment is to revise the existing Ultimate Heat Sink (UHS) analysis to include the weather selection methodology from Rev. 2 of Regulatory Guide 1.27 [Ref. 05.8] and a more realistic heat release to the UHS based on Revision 4 of L-002453 [Ref. 05.4]. This attachment includes analysis for only the Current Licensed Thermal Power (CLTP) (3559 MW1).

Revision 7 included analysis for both CLTP (3559 MW1) and Extended Power Uprate (EPU) (3998 MW1) power levels. Since Revision 7 plans for EPU have been cancelled, therefore only the CLTP power level is analyzed in this attachment. The results in Revision 7 remain conservative as they utilize a more conservative UHS heat load than used in Revision 8. Rev. 8 shows that the acceptance criteria are met using Rev. 2 of Reg. Guide 1.27 [Ref. 05.8).

The results of this attachment serve as an update to the current UHS design basis at LaSalle. See Section 1.1 of the main body of this calculation for further description on the history of this calculation.

(__ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 02 of 042

/~

\ 02.0 METHODOLOGY AND ACCEPTANCE CRITERIA The Sargent & Lundy (S&L) LAKET-PC computer program [Ref. 05.2) is utilized to detennine the combined impact of decay heat, initial UHS temperature, and allowable sediment accumulation in the UHS. Based on the allowable UHS initial temperature (Design Input 04.5), the maximum UHS temperature is determined for average sediment accumulations of zero (0), six (6), twelve (12), and eighteen ( 18) inches.

02.1 Worst Weather File Creation 02.1.1 Regulatory Guide Criteria Reg. Guide 1.27, Rev. 2 [Ref. 05.8] describes a method for considering meteorological conditions in the design of the UHS. A synthetic weather file is created using weather data from the critical time period due to design of the UHS (33-45 hours for the LaSalle UHS), the worst 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, and the worst 30 days. The synthetic weather file can be combined in this order, or alternatively the worst consecutive day period of the sum of these times can be used as the design basis. This calculation explores both options, each starting with the worst critical time period corresponding to the UHS transit time. For the LaSalle UHS, the critical time period unique to the design of the UHS is the transit time, which depends on the level of sedimentation. The transit time is -33 hours, -39 hours, -42 hours, or -45 hours for 18 inches of sedimentation, 12 inches, 6 inches, and 0 inches, respectively (see Section 06.3).

02.1.2 LAKET-PC Model for Weather Screening

( In order to find the worst weather periods, a specific UHS model was created in LA.KET-PC with a transit time corresponding to the three hour time step period. The model is open cycle, which means water exiting the lake is discarded and new water enters the lake at predetermined conditions independent of the existing lake conditions. The UHS is set to the same initial temperature at the beginning of each three hour time step. Since initial conditions are the same for each time step, there are no residual effects due to the weather from the preceding time step. The UHS outlet temperature for each 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> period corresponds to the environmental effects on the UHS during these three hours. From these results, it can be concluded that higher UHS outlet temperatures represent worse (hotter) weather conditions.

The LAKET-PC models 'Worst_Weather_l 10.dat' and 'Worst_ Weather_l20.dat' were used to find the worst weather based on a UHS initial temperature of 110°F and 120°F, respectively. The weather file analyzed is 'PIALSL95 l0.txt', which is documented in Attachment M of this calculation. The weather data spans from January 1995 to September 2010. 'Worst_Weather_l 10.dat' and

'Worst_Weather_120.dat' are based off the input file 'Worst_Weather.dat', which was developed in Attachment M of this calculation to determine the worst meteorological conditions based on an initial UHS temperature of 100°F. The following changes were made to 'Worst_Weather.dat' for the new input files:

  • 'Worst_Weather_l 10.dat' changes from 'Worst_Weather.dat':

o Lake initial temperature set to 110°F o TPRISE (plant discharge water temperature) parameter set to 110.0°F

  • 'Worst_Weather_120.dat' changes from 'Worst_Weather.dat':

o Lake initial temperature set to l 20°F o TPRISE (plant discharge water temperature) parameter set to l20.0°F

.Ip-------------------

I ----------------------

PROJECT NO. ----------------------

11333-297 -----------....-------.

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 03of042 The worst weather with an initial UHS temperature of 110°F and l 20°F is considered since the approximate average temperature of the flow from the plant input to the UHS over the first several days following an accident falls between these temperatures. Additionally, these temperatures ensure that the Ryan wind function is used throughout the entire weather screening since they remain greater than 2.5°F above the natural lake temperature at all times.

The results from 'Worst_Weather_l 10.dat' and 'Worst_Weather_l20.dat' can be used to determine the worst weather over any time period using a similar methodology as outlined in Section M2.0 of this calculation. The rolling average of the lake temperature over the time period in which the worst weather conditions are being determined is calculated for each time step. The time periods with the highest rolling average are considered to have the worst weather. These periods of time are applied to the design event in order to determine the period that results in the highest UHS temperature. A synthetic weather file is created using the worst weather time periods that are required for each case as outlined in Table 02-2.

02 .1.3 Lake Area and Volume - The lake area and volume remains unchanged from that described in Section 12.1.2 in Attachment I. A summary of the initial lake levels is provided in Table 02-1, below.

Table 02-1: Initial Lake Level Effectiv Lake Effective Sediment Area Volume e Elevation Area Level (acre) (acre-ft) Volume (ft) (acre)

(acre-ft)


----------r--*------- ---------*-*-*-* - - - - - ---*--*r-------- - -* -- - -- --*-**

18-in 689.98 81 .32 340 .0 47 .08 215.59 12-in 689.98 82.12 380.5

- 47 .55 241 .24

( 1----*---~~-~-t--~~~~~-i----- *-*--*- **-------- **-----------*

82.96 422 .1 48 .03 267.64 f--**--- -----* *- - - -----*--

83.80 463 .5 48 .52 293.89 The remainder of the drawdown curve (from a lake elevation of 689-ft through 685-ft) remains the same as given in Table 7.1 of the main body of this calculation with respect to the total lake volume and surface area. The effective volume and effective area are updated using the percentages determined in Attachment J (effective volume is 63.4% of total volume and effective area is 57.9% of total area).

02.l.4 Plant Temperature Rise - The UHS heat load has been revised for this attachment to include the effects of the Residual Heat Removal (RHR) heat exchangers. The new heat load on the UHS for CLTP operation is determined in L-002453 [Ref. 05.4]. The plant temperature rise is dependent on the VHS heat load, and the calculation of the new plant temperature rise is documented in Attachment P.

02.1.5 LA.KET Case Runs - There are several different types of cases that are run. These include the worst weather cases, the worst net evaporation cases, worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> plus 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> plus 30 day cases, and diurnal wind exponent cases.

A) Worst Temperature Cases - The worst temperature cases determine the maximum UHS outlet temperature based on an initial UHS temperature equal to the proposed Technical Specification (TS) temperature limits for the UHS (see Design Input 04.5). These cases determine if the UHS outlet temperature will remain below the limiting temperature of 107°F (see Design Input 04.1). Cases are run at varying start times due to the variable allowable UHS temperatures (see Design Input 04.5).

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 04 of 042

( B) Worst Net Evaporation Cases - The net evaporation cases use the same input file as the corresponding worst weather case, but are run with the most limiting 30-day net evaporation weather file. These cases are run at all levels of sedimentation. The limiting weather file begins at 12:00 AM, so the initial temperature is set to the TS initial UHS temperature limit of 104.53°F (Design Input 04.5). The most limiting net evaporation weather was detennined to be 6/18/1954 to 7/18/1954 in Attachment M , and this weather is used for the net evaporation cases in this attachment. Additionally, sensitivity cases are run to determine the effect of changing the wind power law exponent.

C) Worst 33 Hour- 24 Hour - 30 Day Cases - Rev. 2 of Reg. Guide 1.27 [Ref. 05.8] gives two alternatives for selecting the worst weather data. The first alternative consists of finding three critical time periods: I) the time period in which the UHS will reach a maximum following a shutdown (for this case it is the UHS transit time), 2) the worst 1-day weather period, and 3) the worst 30-day weather period. These three time periods, which do not have to occur contiguously, are combined to produce a synthetic weather period.

Alternatively, the worst 33-consecutive-day (transit time + 1 day + 30 days) weather period may be used as the basis for the worst weather period. For the LaSalle UHS, the consecutive 33 day period is chosen starting with the worst weather period corresponding to the UHS transit time.

To determine which of these alternatives is most conservative, cases are run using both methods and the results are compared.

D) Wind Sensitivity Cases - In the NRC Request for Additional Information (RAI) [Ref. 05.3], more information is requested regarding the diurnal effects of wind speed. This case determines the effects on the maximum UHS outlet temperature when considering a diurnal wind power law exponent based on the analysis performed in EC 394434 [Ref. 05 .10]. Case Wind_375 is run to determine the results of

(_ adjusting the 375 feet wind speed at the meteorological tower to 2 meters above the UHS [Ref. 05.12]

based on wind tunnel testing as documented in EC394434 [Ref. 05.10].

A list of all cases run for this analysis is shown below:

Table 02-2: List of LAKET Cases Case Name Time Period J Sedimentation Level Worst Temperature Cases Start Time Weather File I

Case 1a- 12AM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 0:00 WW_0-6 .22 .txt Case 1a 3AM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 3:00 WW 3-6.22 .txt

. ..* - - -**-**-*~ ..-......-*-*--- - --*------*-..*------------ - - -----*----*------ -- - *----

Case 1a_6AM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 6:00 WW_6-6.22 .txt Case 1a_9AM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days I 0 in. 9:00 WW_9 .txt Case 1a 12PM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 12:00 WW_12 .txt Case 1a_3PM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 15:00 WW_15.txt Case 1a_6PM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in . 18:00 WW_18-6 .22 .txt r------*-*---=-*----*-

Case 1a 9PM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days I 0 in. 21 :00 WW 21-6.22.txt

  • --*--- *----**-*- -=---*-**-- -

Case 2a 12AM -~;~rst 42t;;-u~~-~~~t3oci*~-y;-r--*--? i~:--- - - 0:00 WW_0-6.22 .txt Case 2a_3AM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days j 6 in. 3:00 WW_3-6 .22 .txt Case 2a_6AM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 6:00 WW_6-6.22 .txt I

- 6 in . 9:00 WW_9.txt Case 2a_9AM wo.r:_st 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 12:00 WW_12.txt Case 2a- 12PM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days ; 6 in.

(_. PROJECT NO. 11333-297

c CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 05 of 042

. . J;edimentation Start .

Case Name Time Period Level Time Weather File Case 2a 3PM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 15:00 WW 15.txt

--*-*..**-*--------=-**- --*-*--- -***--*--**---*-*---- - - - - - - - ------- - - -- -- --*------- *-*--- -- - --

Case 2a_6PM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 18:00 WW_ 18-6.22.txt Case 2a_9PM worst 42 hour4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br />s+ next 30 days 6 in. 21 :00 WW_21-6.22.txt Case 3a 12AM worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />s+ next 30 days 18 in. 0:00 WW 0-6.22.txt

>--*--*-*---**--- --*---- ~-*--*-*------*--- *----- -- - ------ - --*--- -- ---- -

Case 3a_3AM worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />s+ next 30 days 18 in. 3:00 WW_3-6.22.txt Case 3a_6AM worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />s+ next 30 days I 18 in. 6:00 WW_6-6.22.txt

_ ___Case 3a -~-~---* _ wo~~~-- ho~!s +~~t 30 __:1_<!.Y~ ----~8._in_._ __ *---~~~~--- ~- WW_9.txt Case 3a_ 12PM worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />s+ next 30 days 18 in. 12:00 WW_12.txt Case 3a_3PM worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />s+ next 30 days 18 in. 15:00 WW_15.txt Case 3a 6PM

  • ---- -----=-----*- *--- ----*-*---------

worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />s+ next 30 days  ! 18 in. 18:00

--**-*-- -*-----4-----*-- - - --- --*-- - - f------=--

WW 18-6.22.txt Case 3a_9PM worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />s+ next 30 days 18 in. 21 :00 WW_21-6 .22.txt Case 4a_ 12AM worst 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br /> + next 30 days 12 in. 0:00 WW_0-6.22.txt Case 4a_3AM worst 39 hour4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br />s+ next 30 days 12 in. 3:00 WW_3-6 .22.txt


c~-;~-4~=6AM"*-- ---- --;~~~ *39*h~~*~;~~;13*0- ci~*;;r--*---1-2-;,--*- ----6:00*--- *--ww~i:s~22~;t Case 4a_9AM worst 39 hour4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br />s+ next 30 days 12 in. 9:00 WW_9.txt Case 4a_12PM worst 39 hour4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br />s+ next 30 days 12 in. 12:00 WW_12 .txt t----------i---~

Case 4a_3PM worst 39 hour4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br />s+ next 30 days I 12 in. 15:00 WW_15 .txt

--*-***-********-*--***-------*********- **- -----****--***----****-----*******--**---=-r-----**-**--- -------***-*- -*----*****--*-**-**-- - --- **---**- -*

c Case 4a_6PM worst 39 hour4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br />s+ next 30 days i 12 in. 18:00 WW_ 18-6.22.txt Case 4a_9PM worst 39 hour4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br />s+ next 30 days 12 in. 21 :00 WW_21 -6.22.txt


*------**---- ---------~<!!_~_'.Jet Evapora_t_i_on_c_a_s_e_s_ _ *~-*---~-------*---

Case 1c worst 30 days for evaporation 0 in. 0:00 30dayevap.txt

~*----------1-----------__,>--------+-----1-------t Case 2c worst 30 days for evaporation 6 in. 0:00 30dayevap.txt Case 3c worst 30 days for evaporation 18 in. 0:00 30dayevap.txt

--*-*-*-..-*-*----***-*----*-*--~- ------*-*--*-*--**------*-*-*-*--- -*-- - --*--***--* --**---......*- -*----*--* *-*-----*- ---*----

Case4c worst 30 days for evaporation 12 in. 0:00 30dayevap.txt t--~~-~~~~-i-~-~~~~

NetEvap-0.1 worst 30 days for evaporation 18 in. 0:00 NetEvap_0.1.txt NetEvap-0.2 worst 30 days for evaporation 18 in. 0:00 NetEvap_0.2.txt

-~-*~-~-~~~--~~~------~~~~-~~....._~-~--'~---~~-t Worst 33 Hours + 24 Hours + 30 Day Cases 2::~~~~~~=~,:~~~~

- hours+ worst 30 days I

~~--~-: =~~I~';~- 6AM.txt

~ 33 _24 _30_6AM 2 worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />s+ worst~ 18 in. 6:00 WW_33-24 - hours + worst 30 d~ys 1 6AM2.txt Wind Sensitivity Cases


~-a_5-e Diu~~~I_______ wor5-!.-~-~-~~~~~.:_~e~!-~?.__?ayQ ______~~-~-* --** -----~.:_~ --- _____ D_iu_rn_a_l.~~----*-

Case Wind_375 worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />s+ next 30 days i 18 in. 6:00 Wind_375.txt

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 06 of 042

( Sedimentation Start Case Name Time Period Weather File Level Time Mixing Cases


*-*-- ---*-** -**- -- **---*-*-*-- ----*- -*--**-**- -* --- ----**---- -~--*-*------- ~-----*-

Mixing -10% Mixing-10% 18 in. 6:00 WW_6-6.22.txt Mixing-20% Mixing- 20% 18 in. 6:00 WW- 6-6.22.txt Mixing - 10% - 9AM Mixing -10% - 9AM 18 in. 9:00 WW_9.txt

- ~---- -- -

Mixing -20% - 12PM Mixing -20% -12PM 18 in. 12:00 WW_ 12.txt 02.2 UHS Mixing RAI #4 [Ref. 05.3), asks for a detailed analysis that conservatively accounts for fluid segment mixing and corresponding lower water surface temperatures. LAKET-PC [Ref. 05.2] currently does not have the capability to simulate this mixing; however, the included lake effectiveness compensates for this effect by simulating the resultant stagnant lake areas caused by mixing. To provide additional assurance, the effect of UHS mixing is determined using LAKET-PC [Ref. 05.2] results with modifications made outside of LAKET-PC in Microsoft Excel [Ref. 05.5].

The existing UHS thermal model consists of a plug type model developed in LAKET-PC [Ref. 05.2]. The simplified diagram of the LaSalle VHS model is shown on Figure 02.1. The model effective area and volume are 57.9% and 63.4% of their total values (see Attachment J).

(

From Plant -

~ Effective Volume/Area -- To Plant Figure 02.1 - Existing UHS Model To simulate the effect of entrance mixing, the existing model is modified as shown in Figure 02.2. This new model is similar to the two stage model described in the MIT Report 161 [Ref. 05.7, Figure 3-9] as presented in Figure 02.3. The mixing zone with various sizes has been created outside of LAKET-PC

[Ref. 05.2]. The discharge temperature out of the mixing zone is calculated for each time step (one hour) by assuming complete mixing of the plant discharge water and the mixing zone water. The effects of evaporation and other heat transfer are conservatively ignored. According to MIT Report 161 [Ref. 05.7, Section 6.5.l] the mixing region is typically small (<10% of the total area), therefore the two sensitivity cases are developed with 10% and 20% mixing zones. In these cases the mixing zone area/volume is subtracted from the nominal LAKET-PC model. For the purpose of the mixing zone sensitivity runs the 6AM case with 18" of sedimentation (Case 3a_6AM) is selected as the nominal case.

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 07 of 042 From Plant -

Mixing Zone - Effective Volume/Area -- To Plant Figure 02.2 - Modified UHS Model for Mixing Effects T

le 1: I

.__.Ti I

0 )

llloi ml

)1 Qo

..__ t _ _ _ _> ~----1 I Qo

( I Fully Mixed Area I Plug Flow Area A2 Al Figure 02.3 - MIT Report 161 [Ref. 05.7) Two Stage Pond 02.3 Acceptance Criteria 02.3.1 Acceptance Criterion #1 - Peak Temperature - The maximum plant inlet temperature from the UHS shall remain equal to or less than 107°F.

02.3 .2 Acceptance Criterion #2 - UHS Drawdown - There are no specific acceptance criteria for maximum UHS lake drawdown. However, for the worst 30-day evaporation period, the maximum lake drawdown is detennined for input to calculation L-001355 [Ref. 05.6].

02.4 Limitations Same as main body of calculation.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0 , PAGE NO. 08 of 042 02.5 Identification of Computer Programs Postprocessing of the LAKET-PC results is done using Microsoft Excel 2003 [Ref. 05.5], which is commercially available. The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis. All computer runs were performed using PC No. ZD6661 under the Windows XP operating system.

LAKET-PC Version 2.2 [Ref. 05.2] was used to perform the lake transient analysis contained in this evaluation. This was run on S&L PC No. ZD6661 on the Windows XP operating system.

c PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 09 of 042 03.0 ASSUMPTIONS 03.1 Effective Area and Volume at Different Sediment Levels - The effective area and volume percentages detennined in Attachment J are detennined for 18-in of sediment. It is assumed that these percentages apply to the other sediment levels analyzed in this evaluation. Since changes in sediment level change the depth of the lake evenly throughout the entire lake (see Section 6.2 of the main body of this calculation),

the percentages of effective area and volume will negligibly change with sediment level.

03 .2 UHS Inventory for Fire Fighting - It is assumed that all UHS inventory for fire fighting is used immediately following an accident. This is conservative as it decreases the volume of water in the UHS.

03.3 UHS Transit Time - For weather sorting, the weather file is sorted in three hour increments. For compatibility the transit time for 18-in, 12-in, 6-in, and 0-in of sedimentation is assumed to be approximately 33-br, 39-hr, 42-hr, and 45-hr, respectively. See the UHS transit time calculation in Section 06.3.

03 .4 Other - All other assumptions are the same as the assumptions in the main body of calculation.

c c PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 010 of 042 04.0 DESIGN INPUT 04.1 Maximum Allowable UHS Temperature - The maximum allowable VHS temperature is 107°F [Ref.

05.9].

04.2 General Seepage Rate - A seepage rate of 0.2 ft3/s is retained from Design Input 4.3 of the main body of this calculation. In Rev. 7, the spent fuel pool makeup flow was added to detennine the total VHS seepage rate, but this is no longer added in Rev. 8 (see Section 06.2).

04.3 VHS Inventory for Fire Fighting Following an Accident - Following an accident, 440,400 gallons of water from the UHS must be available for fire fighting [Ref. 05.1, Section 9.2.6.3].

04.4 Anemometer Height - For the worst net evaporation weather data, which is from the Peoria weather data spanning from 1948 to 1996, the anemometer height is 20-ft (as taken from input files for the worst net evaporation cases in previous revisions). For the worst weather data, which is taken from the LaSalle Station weather data spanning from 1995 to 2010, the anemometer is at a height of 33-ft (See Attachment K).

04.5 Proposed TS Limits - The proposed TS temperature limits for the UHS for each of the event start times are provided in the proposed TS changes [Ref. 05.9]. These temperatures plus an uncertainty of 0.75°F are used as the initial UHS outlet temperature in the LAKET-PC model. Due to an initial iteration in the LAKET-PC code, the initial forced temperature input in the input file may differ from the values in Table 04-1. However, the initial VHS outlet temperature in the output file will match the value in Table 04-1.

c T abl e 04-1: P ropose dTSL'1m1ts Event Start Time Proposed TS Proposed TS Limit Plus I

Limit Uncertainty (0.75°F)

  • ------ -*--*------* ------**-----*---*r--

0:00 103.78°F 104.53°F 3:00 101.97°F I 102.72°F 6:00 101 .25°F 102.00"F 9:00 102.44°F 103.19°F 12:00 104.00"F 104.75°F 15:00 104.00"F 104.75°F 18:00 104.00"F 104.75°F 21 :00 104.00"F 104.75°F 3

04.6 CSCS Volumetric Flow - The total plant flow during the UHS analysis is 29,300 GPM (65.3 ft /s) for the 3

first 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> of the event (Ref. 05.11, Attachment C]. The total plant flow is 38,600 gpm (86.0 ft /s) after 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> [Ref. 05.1 l, Attachment C]. The total flow after 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> is based upon the cumulative flow contribution from thirteen CSCS pumps operating at design flow conditions (eight Residual Heat Removal (RHR)-Service Water pumps, 4,000 gpm each; three Diesel Generator (DG) pumps, two at 1,300 gpm and one at 2,000 gpm; and two High Pressure Core Spray DG pumps, 1000 gpm each) (See Attachment D). Prior to 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br />, two RHR Service Water pumps and one of the 1,300 gpm DG pumps are not in operation [Ref. 05.11, Attachment C].

04. 7 Other - All other design inputs are the same as the design inputs in the main body of calculation.

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT 0, PAGE NO. 011of042 c

05.0 REFERENCES

05.1 LaSalle County Station Updated Final Safety Analysis Report (UFSAR), Rev. 19.

05.2 LAKET-PC Computer Program, Version 2.2, S&L Program No. 03.7.292-2.2, 7/31/2013. Controlled File Path: \\SNL VS5\SYS3\0PS$\LA.K29222\

05.3 NRC Request for Additional Information, Docket Nos. 50-373 and 50-374, "LaSalle County Station, Units 1 and 2 - Request for Additional Information Related to License Amendment Request to Technical Specification 3.7.3 Ultimate Heat Sink {TAC Nos. ME9076 and ME 9077)," ADAMS Accession No.

Ml3099A206, 6/27/2013.

05.4 L-002453, "UHS Heat Load," Rev. 4.

05.5 Microsoft Excel 2003, Sargent & Lundy LLC Program No. 03.2.286-1.0, dated 02/02/2004.

05.6 L-001355, "LaSalle County Station CSCS Hydraulic Model," Rev. 005A.

05.7 MIT Report 161, "An Analytical and Experimental Study of Transient Cooling Pond Behavior,"

Ryan and Harleman, Massachusetts Institute of Technology, Cambridge Massachusetts, 1973.

05 .8 Regulatory Guide 1.27, "Ultimate Heat Sink for Nuclear Power Plants," Rev. 2.

c 05.9 RS-12-084, "Request for a License Amendment to LaSalle County Station, Units 1 and 2, Technical Specification 3.7.3, 'Ultimate Heat Sink'," NRC Docket Nos. 50-373 and 50-374, ADAMS Accession No. ML12200A330, 6/12/2012.

05.10 EC 394434, "UHS Wind Correction Exponent Evaluation," Rev. 1.

05.11 SEAG 13-000074, "LaSalle County Station Transmittal of Design Information {TODI) for VHS Analyses," Rev. 0.

05 .12 SEAG 13-000080, "LaSalle Station Transmittal of Design Information {TODI) for Cale L-002457 with WSR of Intake Flume," 9/30/2013 .

C. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 012 of 042

( 06.0 CALCULATIONS 06.1 Calculation of Plant Temperature Rise The CSCS temperature rise across the plant is computed in Attachment P. The heat rejected to the UHS is determined for an operating scenario that considers a LOCA on one unit and a reactor SCRAM for the non-LOCA unit coincident with a loss of the cooling lake. Both RHR heat exchangers are in service for the LOCA unit. For the non-LOCA unit one RHR heat exchanger is in suppression pool cooling mode (and later shutdown cooling mode) while the other RHR heat exchanger is in fuel pool cooling assist mode.

See Appendix P9.2 of Attachment P for the results of the plant temperature rise.

06.2 Seepage Rate The seepage rate is determined from a UHS seepage of 0.2 ft3/s (Design Input 04.2). Revision 7 included a constant flow of 600 gpm for spent fuel pool makeup (See Design Input 14. l ). Instead of spent fuel pool makeup drawn from the UHS, the spent fuel pool is cooled through the use of the RHR heat exchanger

[Ref. 05.4, Attachment DJ. The heat load rejected by the RHR heat exchanger to the UHS is calculated in L-002453 [Ref. 05.4], and included in the plant temperature rise calculated in Attachment P. Therefore, no additional seepage flow is added to account for spent fuel pool makeup flow.

06.3 UHS Transit Time c The UHS transit time for each sedimentation level can be determined using the effective volume and the UHS flow rate. This calculation is shown in Table 06-1, below.

Table 06-1: UHS Transit Time Calculation Symbol O*in 6-in 12-in 18-in Basis Eff. Volume (acre-fl) v. 293.89 267.64 241 .27 215.59 Table 02-1 Conversion (113/acre-ft) c ~560 43560 43560 43560 Volume (ft3)

-- - v 12,801,848 11,658,398 10,509,721 9,391,100 =V0

  • C Flow Rate (ft /s) 0 Oa1s 65.3 65.3 65.3 65.3 Design Input 04.6 Volume Removed in 16 hrs (ft0

)

Va1s I 3,761,280 3,761,280 3,761,280 3,761,280 =0 816

  • 16 hr
  • 3600 s/hr Transit Time (s) ts1s 57,600 57,600 57,600 57,600 =16 hr* 3600 s/hr I

Flow Rate (ft0 /s) QA16 86.0 86.0 86.0 86.0 Design Input 04.6 Remaining Volume (ft°) VA16 9,040,568 7,897,118 6,748,441 5,629,820 = V

  • Vs1s Transit Time (s) tA16 105, 123 91 ,827 78,470 65,463 =VA1s I OA1s Total Transit Til)'le (s) t 162,723 149,427 i 136,070 123,063  : t915 + tA16 Total Transit Time (hr) t 45.2 41 .5 37.8 34.2 = t I (3600 s/hr)

For weather sorting, the weather file is sorted in three hour increments. For compatibility, the transit time for 18-in, 12-in, 6-in, and 0-in of sedimentation is assumed to be approximately 33-hr, 39-hr, 42-hr, and 45-hr, respectively (see Assumption 03 .3).

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 013 of 042

( 06.4 Weather File Creation 06.4.1 Worst Weather Screening Rolling averages of the lake output results from the weather screening files 'Worst_Weather_ 11 O.dat' and

'Worst_Weather_120.dat' were computed for varying lengths of time: 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />, 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br />, 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br />, and 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br />. Besides the 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, these time periods represent potential transit times for the LaSalle UHS depending on the level of sedimentation. The time with the highest rolling average corresponds to the start time of the worst weather period over the time span that is under consideration.

Since LAKET-PC cases are made at varying accident start times and sedimentation levels, the worst weather periods are determined for various start times over multiple time periods. These results are shown in Tables 06-2 and 06-3.

T a bl e 06-2 : W orst W eat her Peno . d s - 110°F I mtlal .. Temperature Start Time 24 Hour 33 Hour 36 Hour 39 Hour 42 Hour 45 Hour 12AM 6/23/09 8/18/95 8/18/95 8/18/95 8/15/95 8/18/95 3AM 6/23/09 8/18/95 8/18/95 8/18/95 6/22/09 6/22/09 6AM

,..________ _______ 6/22/09 7/24/01 6/22/09 6/22/09

--**--*--t*-***-**-****-------*--*----**-*- -- ..... _____ _ -*-----*-**

6/22/09

,_... 6/22/09 9AM 7/24/01 6/22/09 i 6/22/09 6/22/09 6/22/09 8/17/95 12PM 6/22/09 6122109 I 6/22/09 6/22/09 6/22/09 8/17/95 3PM 6/22/09 6/22/09  ! 6/22/09 8/17/95 8/17/95 8/17/95 6PM 6/22/09 -8i11*11*at**a11111a-- 8/14/95 8/17/95 8/17/95

( 9PM 6/22/09 8/11/10 I 8/14/95 8/14/95 8/14/95 8/14/95 T a bl e 06 3 : W orst W eat h er P eno . d s- 120°F I mtia . . I T emperature 33 Hour j 36 Hour i 39 Hour 1

Start Time 24 Hour 42 Hour 45 Hour


*---- -01*1-a/95--r-011*a-i~is-h11-3;9*5*

- 8/15195-- *--8/18/95 --*

~-----------

12AM 6/23/09 3AM . 8/18/95 8/18/95--i S/18/95 I 8/18/95 . 8/18/95 i 8/18/95 .

6AM 7/24/01 .. 8/1.8/95: . 6/22/09 i 6/22/09 6/22/09 6/22/09


*--*-------**- - *-*-----*** l *-***--****- -..:_..+---*---**--*- --*-*-*- - -------------

9AM 7/24/01 6/22/09 6/22/09 6/22/09 6/22/09 8/17/95 12PM 6/22/09 6/22/09 I 6/22/09 6/22/09 8/17/95 8/17/95

,......3PM 6/22/09 6/22/09  ! 6/22/09 I 8/17/95 8/17/95 8/17/95

-::~----------*--*-* i-~!i~*~):~ - :-~:~~:~~~ **-I *-8/26/95 8/26/95' : 8/26/95 8/17/95 8/17/95 .

- ***'***-*-:r--* ..:. .-.-

8/14/95 811.7/95 8/14/95 In cases in which different worst weather periods are determined, the differences in the rolling average of the worst time periods are negligible. For example, the rolling average of the 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> starting at 3AM on 6/23/2009 for an initial temperature of 110°F was determined to be 107.980°F. For the 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> starting at 3AM on 8/18/1995, the rolling average is 107.977°F. This is typical of all time periods in which the differing initial temperature causes a change in the worst weather period. Therefore, it is concluded that the 110°F and 120°F screenings produce essentially the same worst running average periods.

In addition to determining the worst time span corresponding to the UHS transit time, it is also important to check for the worst weather for shorter time periods. It is possible that in screening based on transit time, a short span of bad weather can be missed if it is quickly followed by relatively mild weather.

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 014 of 042 Because of this, the worst weather periods for 9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> and 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> have also been determined.

Table 06-4: Worst Weather - 9 Hour and 12 Hour Period 9 Hour 12 Hour 110°F 120°F 110°F 120°F

_11___! 712~~ 9A~-** **------- 7/22/019AM 6/23/09 6AM 6/23/09 6AM

-~~3/099AM 6/23/09 9AM 6/23/09 9AM 6/23/09 9AM

3) I 6/23/95 9AM 6/23/9S 9AM 6/23/9S 6AM 6/23/95 6AM Due to the prevalence of the 6/22/2009 - 6/23/2009 in the 9 and 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> periods in Table 06-3 and the UHS transit time periods in Tables 06-2 and 06-3, LAKET-PC runs at each starting time are run starting on 6/22/2009 in addition to the worst weather periods found in Tables 06-2 and 06-3 . This ensures that the worst 9 hour1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> and 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> weather periods align with the initial accident heat loads exiting the UHS.

06.4.2 Weather File Creation Weather files are created for each run based on the worst weather periods determined in Section 06.4.1.

For the cases in Table 06-5, the worst weather file is created by inputting the worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> time (the transit time for 18 inches of sedimentation) period as determined in Tables 06-2 and 06-3 plus the following 31 days. An additional 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> is added since LAKET-PC requires a weather file comprised of weather input in multiples of 24 .

The weather conditions are taken from the file 'PIALSL9510.txt', creation of which is documented in

( Attachment K. The table below gives a summary of the start and end times used for creating the weather file based on a 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> transit time. The 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> transit time is used since it corresponds to the case with the most sedimentation (18 in.), which is expected to produce the most limiting temperature.

Table 06-5: Worst Weather Files File Name Start Time End Time WW_O.lxt 8/18/199S 12AM 9/19/199S 11PM WW 3.txt 8/18/199S 3AM 9/20/199S 2AM WW_6.txt 8/18/1995 6AM 9/20/199S SAM 7/25/2009 8AM WW_9 .txt 6/22/2009 9AM WW_12 .txt 6/22/2009 12PM 7/2S/2009 11 AM

- -*-----*--*-*- - --*---*-----***-- --*-*----------- ------ -- -- -*****-*---**~*-*---- ----

WW_1S .txt 6/22/2009 3PM 7/2S/2009 2PM WW_18 .txt 8/11/20106PM 9/13/2010 SPM WW_21 .txt 8/11/2010 9PM 9/13/2010 8PM WW-:0-6 .22 .txt 6/22/2009 12AM 7/24/2009 11 PM WW_3-6 .22.txt 6/22/2009 3AM 7/2S/2009 2AM WW_6-6 .22 .txt 6/22/2009 6AM 7/2S/2009 SAM

-WW_18-6.22.txt 6/22/2009 6PM 7/25/2009 SPM I WW_21-6 .22.lxt 6/22/2009 9PM 7/2S/2009 8PM The file listings for these weather files are presented in Appendix 08.1.

PROJECT NO. 11333-297

CALCULATION NO. l-002457 REVISION NO. 8 ATIACHMENT 0, PAGE NO. 015*of 042

( 06.4.3 Worst Weather Comparison For times at which 6/22/2009 is not chosen as the worst weather period for 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> in Table 06-2, cases are run using the given worst weather period and using the 6/22/2009 weather period. This. is only done for the 18-inches of sedimentation cases (approximately 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> transit time), as these cases are expected to be the most limiting. The results are shown in Table 06-6, below.

Table 06-6: Worst Weather Comparison Initial Maximum Case Start Time Temperature Temperature 12AM

-case 3a)2J\"M---**----**--r---6/22/2Cio912AM------ -- -*- --*104.~F--- ~-- 104:53-;F: __ _

Case 3a_12AM-8.18 8/18/1995 12AM 104.53°F 104.53°F 3AM

_M

_c_a_se_3a.d3.A _________ -+l___6_J2_2__12_~0_9_3~M_ __ _ ___10_2.12°_F__________1_o_s._1_s_F_ _~

0 Case 3a_3AM-8.18 8/18/1995 3AM 102.72°F 104.60°F 6AM Case 3a_6AM 6/22/2009 6AM 102.00°F 106.15°F 6PM c - ~~~;~:~~~------*- -+/-- ----~-~~;_;;_ _ _ ~ ____;_~:_:~_:_::__

9PM

___ ---~-~;_:~:_:: ---

Case 3a_9PM 6/22/2009 9PM 104.75°F 104.75°F Case 3a_9PM-8.11 8/11/2010 6PM 104.75°F 104.75°F As seen in the results of Table 06-6, the 6/22/2009 cases result in an equal maximum temperature (when the maximum temperature is the initial temperature) or higher maximum temperature for all time periods.

Therefore, all cases will be run using the 6/22/2009 weather data as it produces the most limiting results.

Cases with differing levels of sedimentation use the same weather files . This is acceptable since the weather files consist of the worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> plus the following 31 days and any extra time needed to make the number of entries in the weather file a multiple of 24. Due to the extra time added after the 31 days, these weather files are the same for the longer transit times of the lower sedimentation cases.

06.5 Comparison to 33-24-30 Case As described in Section 02.1.5, Rev. 2 of Regulatory Guide 1.27 [Ref. 05 .8] gives two alternatives for selecting the worst weather data.

To determine which of these methods is most conservative, cases were run using weather files created using both alternatives. The UHS transit time for 18 inches of sedimentation is approximately 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> (See Section 06.3). Therefore, a synthetic weather file period of 33 days is created consisting of the worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> plus the worst 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> plus the worst 30 days. The worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> and worst 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> time periods are determined from Tables 06-2 and 06-3 . The worst 30-day time period was determined in Attachment M. Three different cases are run, one starting at 9 AM and the other two starting at 6 AM.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 016 of 042

( Two 6 AM cases are run, one starting at the worst weather time period of 8/8/1995, and the other starting at 6/22/2009. These weather files are summarized in Table 06-7.

Table 06-7: 33-24-30 Case Weather Files File Name 33* hr Start 33-hr End Time 24-hr Start Time 24-h* End Time t 311-day Start Time I 30-day End I

Time 1

--612~

Time WW_33 6/22/2009 6/23/2009 6/22/2009 7/21/1995 aJW,9. .

30.txt 9AM SPM 6PM SPM 6PM BAM WW_33-24 8/18/1995 8/19/1995 6/22/2009 6/23/2009 7/21/1995 8/22/1995 6AM.txt 6AM 2PM 3PM 2PM 3PM I SAM WW_33-24 6/22/2009 6/23/2009 6/22/2009 6/23/2009 7/21/1995 8/22/1995 6AM2.txt 6AM 2PM I 3PM 2PM 3PM I SAM

1) An extra 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> is added to make the entries in the weather file a multiple of 24 Case 3a_6AM and Case 3a_9AM use the worst 33-consecutive-day weather period, and the weather files used for these cases are described in Table 06-5.

A comparison of the results of these cases is provided in Table 06-8, below.

T a bl e 06 -8 : 33 24 30 C ase C ompar1son

-~-~-~~-----*-----**----*-- *-* - ----J------- ~-~ath_:_~~-----L__!~~;;~~;~!!__l_____r.;~~~~;~~--

6AM Cases C. -

WW 33-24-30-6AM I WW_33-24-30-6AM.txt 102.00 104.73 WW_33-24-30-6AM2 WW_33-24-30-6AM2.txt 102.00 105.93 Case 3a_6AM l WW_6-6.22 .txt 102.00 106.15 9AM Cases WW_33-24-30 WW- 33-24-30.txt 103.19 105.21 Case 3a_9AM WW_9.txt 103.19 105.31 The results in Table 06-8 show that the cases run with the 33-consecutive-day weather period result in a higher maximum temperature. Since this is more conservative, the 33-consecutive-day weather period is used for the worst weather cases.

06.6 Maximum Allowable Lake Temperature LAKET-PC [Ref. 05.2] is run to determine the UHS response to the heat load developed in Attachment P.

Cases are run at four different sedimentation levels: 0 inches, 6 inches, 12 inches, and 18 inches. The time of day which the transient is assumed is critical when determining the maximum allowable initial temperature of the UHS. To account for the time of day at which the UHS transient may start, eight start times are used for all sedimentation levels.

Each case is run with an initial temperature corresponding to the Technical Specification limits (see Design Input 04.5). Limiting weather data was determined in Sections 06.4 and 06.5, and the weather file dates are outlined in Table 06-5 . The results of the LAKET runs are provided in Table 06-9.

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 017 of 042

+/-

Table 06-9: Worst Temeerature Cases Sediment 1 Initial UHS Maximum Plant Inlet Case Weather Data Level (in.) 1 Temp. (°F) Temp. (°F)

Case 1a_12AM WW_0-6.22.txt 0 104.53 104.53

--- Case 1a~JAM-f wW_:3~22.W ___ -- 1 02.72- - ----*--1. .-72-*----

~-~-as_e_1-_a__6A_~ - -~-6--~.22.txt ~---~- --~~2~~0- _ - - >----~-03_._12______

Case 1a_9AM WW_9.txt I 0 103.19 104.33 Case 1a_12PM WW_12.txt 0 104.75 104.97 Case 1a_3PM WW_15.txt 0 104.75 104.75 Case 1a_6PM WW_18-6.22.txt 0 104.75 104.75 I

Case 1a_9PM WW_21-6.22.txt 0 I 104.75 104.75 Case 2a_12AM WW_0-6.22.txt 6 104.53 105.21

_____104.54 _________.

1--;;--!

Case 2a_3AM

- -*-*---r-----

WW 3-6.22.txt 6

--r----:------

, 102.72 Case 2a_6AM WW_6-6.22.txt _J_ 6 L_.!02.00 103.21 Case 2a_9AM WW_9~;- 1~;- 9 ----- 104.42 --

Case 2a_12PM WW_12.txt 6 104.75 104.99 Case 2a_3PM WW_15.txt 6 104.75 104.75 Case 2a_6PM WW_ 18-6.22.txt 6 104.75 104.75 Case 2a_9PM WW_21-6.22.txt 6 104.75 104.75 Case 3a- 12AM WW_0-6 .22.txt 18 Ii 104.53 104.53

- - - - ----------*-*----- ~----**----- r- -----*--- - -~------*-------

t Case 3a_3AM WW_3-6.22.txt 18 102.72 105.75

=-ca_s~-3-~~~~~=- _ w~~~~~~~.::'.<!___ :.--::=-~~--~- -]----~?~~~=-===~ 06.15 -=~-~=-~

Case 3a_9AM WW_9.txt 18 103.19 105.31 Case 3a_12PM WW_12.txt 18 104.75 105.05 t-------T-----*--T-----t-------~----------~

Case 3a_3PM WW_15 .txt 18 I 104.75 104.75 Case 3a_6PM WW_18-6.22.txt 18 I 104.75 104.75 I

I Case 3a_9PM WW_21-6.22.txt 18 104.75 104.75 lf-------i---------+----+----------------~-

Case 4a_12AM WW_0-6.22.txt 12 104.53 105.86 Case 4a 3AM . WW 3-6.22.txt 12

f. 102.72 105.97 r._________.::_____ _ _ _ .1____________,::_ _ .,_______

Ca~-4a-6AM j ww-6-6.22.bct,__ __ 12___ 102.00- 105.33 __ __ _

_______...::.______ .-----*--=---- --- ---- - -------*-**-----+------------->-- -*-**------~--- --*

\ 103.19 104.54 Case 4a 9AM ' WW 9.txt

+... .-..-..12. -.. ---- ---1---------. .- . .....-----* -*------*-*-----------*. . . _. _. .

j Case4a_12PM I WW_12 .txt I 12 j 104.75 105.01

(__ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 018 of 042

( Sediment Initial UHS Maximum Plant Inlet Case Weather Data Level (in.) Temp. (°F) Temp. {°F)

Case 4a- 3PM WW- 15.txt 12 104.75 104.75 Case 4a_6PM WW- 18-6.22.txt 12 104.75 104.75 I

Case 4a_9PM j WW_21-6.22.txt 12 104.75 104.75 The results in Table 06-9 show that no cases exceed the maximum allowable plant inlet temperature of 107°F (Design Input 04.1). The most limiting case is 'Case 3a_ 6AM', which corresponds to 18 inches of sedimentation and an accident start time of 6AM.

06.7 Maximum Net Evaporation Cases le, 2c, 3c, and 4c are run to determine the maximum expected VHS drawdown at different sedimentation levels. These cases are run using the worst 30-day net evaporation weather period, which was determined to be 6/18/1954 to 7/18/1954 in Attachment M. The results of these cases are presented in Table 06-10.

In addition to Cases le through 4c, two additional cases were run to determine the sensitivity of the net evaporation to the wind power law exponent used by LAK.ET-PC [Ref. 05 .2] . The power law equation is defined as [Ref. 05 .2]:

( (Eq. 06-1)

Where:

v 1 =wind velocity at LAKET evaluation height (knots) v2 =wind velocity at anemometer height (knots) z 1 = LAK.ET evaluation height (2 meters= 6.562 feet) z2 =Anemometer height (ft) a = Power law exponent The default exponent used when adjusting the wind from the anemometer height to the 2-meter height used in the LAK.ET-PC calculations is an exponent of 0.3 [Ref. 05.2]. The wind input to the weather file

' 30dayevap.txt' was altered to simulate an exponent of 0.1 in case 'NetEvap-0.1' and an exponent of 0.2 in case 'NetEvap-0.2'. The weather files with the adjusted wind speeds are 'NetEvap_O.l.txt' and

'NetEvap_0.2.txt'. These results are summarized in Table 06-10.

Table 06-10: Worst Net Eva~oration Cases c w th t Sediment [ Initial Lake Maximum UHS ase ea er 0 a a Level (in.) Temp. (°F) Drawdown {ft) r--------*-------- *--- -**--*--*-**-*-***-*- - - ----*****--*- r- ---- --**------******----*----**-*-**-**------

Case 1c 30dayevap.txt I 0 104.53 1.42

- 1 1 I

I J

Case 2c 104.53 1.42

- - I 30dayevap.txt t*-- 6_

Case 3c 30dayevap.txt 18 I 104.53 1.42 Case 4c I 30dayevap.txt I 12 I 104.53 1.42 C.

I I

~*

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 019 of 042

(

Case I Weather Data Sediment Initial Lake Maximum UHS Level (in.) Temp. (0 f) Drawdown (ft)

NetEvap-0.1 NetEvap_0.1 .txt 18 104.53 1.47 NetEvap-0.2 NetEvap_0.2.txt 18 i 1 o 4.53 1.45 As seen in the results from Table 06-10, the maximum UHS drawdown is around 1.5 feet. Please note that more limiting UHS drawdown of 2.27 would exist with consideration of inventory loss due to spent fuel pool makeup as documented in Section 17 .1 of Attachment I. Reducing the power law exponent increases the UHS dra~down, but the change is relatively small.

06.8 Wind Sensitivity Cases To determine the effects of a diurnal wind power law coefficient on the maximum UHS temperature, a weather file was created for a LAKET-PC run to incorporate the coefficients detennined in EC 394434

[Ref. 05.10]. The base weather case of 'WW_6-6.22.txt', provides wind speed values at a height of 33 feet. The adjusted wind speed at 2 meters was found using Eq. 06-1 and the power law exponents (a) from EC 394434 [Ref. 05.1 O]. These adjusted wind speed values were inserted into 'WW_6-6.22.txt' to create the new weather file, 'Diurnal.txt'. The LAKET-PC run ' Case Diurnal' was run to detennine the maximum UHS temperature using the diurnal wind speed exponents.

For Case Wind_375, wind speeds were taken from EC 394434 [Ref. 05.10] as measured at an anemometer height of 375 feet. These wind speeds were multiplied by a wind speed ratio of 0.405, which is the

( calculated multiplier to adjust the wind speed from 375 feet at the meteorological tower to 2 meters (6.56 feet) above the UHS [Ref. 05.12] . These wind speeds were then converted to knots for entry into a LAKET weather file. These adjusted wind speed values were inserted into 'WW_6-6.22.txt' to create the new weather file, 'Wind_375.txt'. The LAKET-PC run Case Wind_375 was then run with this weather file and the results are reported in Table 06-11.

Table 06-11: Wind Sensitivity Runs I Case I Weather Data Sediment Level (in.)

Initial Lake Temp. (0 f)

Maximum UHS Temperature (0 f)

Case 3a_6~M j WW_6-6.22.txt 18 j 102.00 106.15

  • --------*---------*-* -------*-------*-*-***-*- ** *--**-**---**--*--*-+..- ---****--*--*---**-**-***-*-*--***--*--*----*--****--*

Case Diurnal I Diurnal.txt 18 I 102.00 105.08

    • ---*--*-*--**--***--- **-**+*-- --*-**--*****--******--*--- **-**-- **-***-*-***---t--*---**---*--**--*-** -----*------------- ***

Case Wind_375 I Wind_375.txt 18 I 102.00 104.34 As seen in Table 06-11, the maximum UHS temperature from the diurnal case remains below the maximum UHS temperature of Case 3a_6AM, which uses a constant wind speed coefficient of 0.3.

Therefore, the use of a constant coefficient of 0.3 is conservative.

The maximum UHS temperature of Case Wind_375 also remains below the maximum UHS temperature of Case 3a_6AM.

06.9 UHS Mixing ,

To detennine the effect of mixing at the plant discharge into the UHS, several sensitivity cases were run in

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 020of042

( LAKET-PC [Ref. 05.2]. These cases include a mixing region that is 10% the size of the UHS and a mixing region at 20% the size of the UHS. Microsoft Excel [Ref. 05.5] is used to calculate the temperature in the mixing zone, and LA.KET-PC is used to calculate temperature for the remaining UHS.

06.9.1 Non-Mixing Zone UHS Area and Volume - For these LAKET-PC runs, the area and volume of the UHS not in the mixing zone is needed. These values were calculated as 10% of the total UHS area and volume for the 10% sensitivity run and 20% of the total UHS area and volume for the 20% sensitivity run. The effective area is 57.9% and the effective volume is 63.4% as determined in Attachment J. The UHS drawdown curves for these cases are summarized in Table 06-12.

. -- i Table 06-12: UHS Drawdown Curves for Mixing Zone Sensitivity Runs Total Area Total Volume Effective Area Effective Volume Elevation (acre-ft) (acres) (acre-ft)

(acres) 10% Mixing Region

-~------

689.98 73.19 306.00 42.38 194.00

  • ----------* ~-- ---*-*-- *-- - *---*-***-- *- - - ------ - - - --

689 71 .78 234.72 41 .56 148.81 688 70.34 163.71 40.72 103.79 687 26.73 91.98 15.48 58.32 686 20.00 I 54.00 11 .58 34.24 l

685 12.08 39.42 6.99 24.99 20% Mixing Region

( 689.98 689 65.06 63.80 272.00 208.64 37.67 36.94 172.45 132.28 688 I 62.52 145.52 36.20 92.26 687 23.76 81.76 13.76 51 .84

--- ---- -----*-- t-------*-- *-*- -- ............ *- -- - - - -*- ---*- -

686 17.78 48.00 10.29 30.43

  • -*-- -- -*---- - +-- -----**-*-- - -*-- **- -*--**-*---*- - -- ---- - -

685 10.74 35.04 6.22 22.22 06.9.2 Mixing Zone Temperature - The case 'Case3a_6AM.dat' is selected as the nominal case for the UHS mixing sensitivity runs. The temperature of the mixing zone is determined in Microsoft Excel, and then LAKET-PC is run to determine the impact on the UHS temperature in the non-mixing zone portion of the UHS. Multiple iterations of the LA.KET-PC analysis are needed as these results are used in calculating the mixing zone temperature. The change in the mixing zone temperature between time steps is input as the FPLANT variable in LA.KET-PC. Iterations are run until the desired convergence in the mixing zone temperature is achieved.

Additional cases are run for 10% mixing starting at 9AM and 20% mixing starting at 12PM. This is to account for the reduced UHS transit time due to the reduced UHS volumes determined in Table 06-12.

The Microsoft Excel [Ref. 05.5) equations used for the UHS mixing analysis are given in Appendix 08 .2.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 021of042

(

'* 06.9.3 Results - The full Microsoft Excel [Ref. 05.5) results for the 10% mixing zone and 20% mixing zone cases are provided in Appendix 08 .2. A summary of these results are provided in Table 06-13.

Table 06-13: UHS Mixing Sensitivit ~Runs I Sediment I Initial Lake Maximum UHS Case I

Weather Data Level (in.) I Temp. (°F) Temperature (°F) 6AM Cases Case 3a_6AM WW_6-6.22.txt 18 102.00 106.15 (0% Mixing)

I Case 3a 9AM (0% MiXing)

WW_9.txt 18 I 103.19 105.31 I

Mixing - 10% - I WW_9.txt 18 103.19 104.67 9AM _L - - I 12PMCases

      • ---*---- -------*--------*--r*-*- ---*---*-..-........ _._ -*-*- *..-**-----T___.._________...__.*-- -----....--*----- ---

cig~ '.::~1;:iM I ww_12.txt 1s 104.75 10505 _

Mixing-20%- WW_12 .txt 18 104.75 105.05 12PM

(_

!--- I As seen from the results in Table 06-13, the highest maximum UHS temperature occurs when no mixing zone is considered. For the 12PM case, the maximum UHS temperature occurs three hours following the accident. The UHS discharge to the plant at this time has not been through the mixing zone, which accounts for the temperature being identical between the mixing and non-mixing cases. It is considered conservative to run the cases in LAKET without adjusting the results for a mixing zone at the inlet of the UHS.

(_ PROJECT NO. 11333-297

CALCULATION NO. l-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 022 of 042

( 07.0 RESULTS AND CONCLUSIONS 07 .1 Maximum Allowable Lake Temperature Summary Table 06-9 provides a summary of the maximum URS temperatures for the maximum allowable initial temperatures given in the Tech Specs (see Design Input 04.1). The highest URS temperature is 106.15 from Case 3c_6AM, which corresponds to an accident start time at 6:00 AM and 18 inches of sedimentation. This remains below the maximum allowable URS outlet temperature of 107°F. Figure 07 .1 shows the URS inlet temperature and URS inlet temperature over the 33 day worst temperature event for Case 3c 6AM.

07.2 Maximum Net Evaporation Summary Table 06-10 provides a summary of the maximum lake drawdown for the worst net evaporation cases.

These results show that there is a maximum URS drawdown of approximately 1.5 feet occuring at a sedimentation level of 0, 6, or 18 inches. In addition, it is shown that there is a small increase in the URS drawdown when the power law exponent for the wind speed adjustment is decreased. Please note that more limiting URS drawdown of 2.27 would exist with consideration of inventory loss due to spent fuel pool makeup as documented in Section 17.1 of Attachment I Figure 07.2 shows the URS drawdown over the worst 30 days for net evaporation from Case le.

07.3 Compliance with Acceptance Criteria 07.3. l Acceptance Criterion #1 - Peak Temperature-As shown in Table 06-9, the maximum URS temperature is not greater than 107°F for any of the worst weather cases. Therefore, Acceptance Criterion #I is met.

07.3.2 Acceptance Criterion #2 - URS Drawdown - The maximum expected lake drawdown for the cases evaluated is given in Table 06-10 and summarized in Section 07.2. This will be used in calculation L-001355 [Ref. 05 .6].

C. PROJECT NO. 11333-297

('-

n ,,.--.'\

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 023of042 Figure 07.1, Case 3a_6AM: UHS LOCA Temperature Transient Worst 33-Day Temperature Period (d = 18", t = 0600 hrs, Ti= 102.0°F 150 * .--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-,

--UHS Inlet Temperature

--UHS Outlet Temperature 140 ~------------------------------------------------4 130 -II*-----------------------------------------------~

120-l-lct------ -- -- - - - - - -- - - -- - - - - - -- - -- - - - - - - - - - - - - - - - - 1

~

i 110

~QI c.

E 100

~

BO+-~~-~~-~~~-w-~'-'_,_..._~~~~~~~~~~~~~~~~~--'lr-4--~~~~~~~~----1 10-1--~~~~-~~~~~~~~~-~~~~~~~~~-~~~~--~~~~~~~~~~---1 60-r--------,,---------,-------,---------.-------.-------.---------t 0 5 10 15 20 25 30 35 Days Following Accident I PROJECT NO. 11333-297 I

0 n 1\

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 024of042 Figure 07.2, Case le: UHS LOCA Drawdown Worst 30 Day Evaporation Weather Period (d = 0", t = 0000 hrs, Ti= 104.53°F)

~~~~~~~~~~~--,

690.2,...-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

690.0 -r-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~--1 689.8  ;~~~ ........~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--!

689.6 +-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~--!

g

~ 689.4 cu GI iii

~ 689.2 ~~~~~~~~~~~~~~~~~~~::::::~"";::::::::::::::-~~~~~~~~~~~~~~~~~~~~~~~

689.0 +-~~~~~~~~~~~~~~~~~~~~~~~~~.,...-~~~~~~~~

~~~~~~~~~--!

---~~~~~~~~~~~----I 688.8+-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-~~~~~---i 688 . 6-r-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,

-,-~~~~~~~~~~---!

688.4-t--~~~~~-r--~~~~--,r-~~~~--,.~~~~~-.-~~~~~

0 5 10 15 20 25 30 35 Days Following Accident I PROJECT NO. 11333-297 I

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 025of042

( 8.0 APPENDICES No. Title No. of Pages 08.1 Electronic File Listing 5 08.2 UHS Mixing Results and Equations 4 c

C. PROJECT NO. 11333-297

ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 026 of 042 Appendix 08. l - Electronic File Listing APPENDIX 08.1 - ELECTRONIC FILE LISTING Weather Files File Name li Size Date PIALSL9510.txt . I 21,301 KB 3/09/2012 11 :08 PM CST


*--*- -*---*--*--*-**---***** *-----*--*---- -----f- -**----***-- ---*-- ---- *----**-----***- ---*- **-*-*

WW 33-24-30.txt I 123 KB 9/5/2013 8:58 AM CST

~*-=---*----**-*-***-------------!----*----*-- ----------------------*--

WW 33-24-30-6AM .txt

- i' 123 KB 9/5/2013 9:09 AM CST WW 33-24-30-6AM2.txt J 123 KB 9/5/2013 9:08 AM CST

  • --~---------*-***------------------~------- * - -- -- *- * - - - - -*-*-*- - -

WW_O .txt I 123 KB 1/28/2013 8:35 AM CST

. INW=-3~tx- t _____. ____,_, ___, _________i** 123*KB*----*r112s12a* 1*3*8:37A"M_c_ST____,___

WW 6.txt I 123 KB ~ 1/28/2013 8:38 AM CST

~WWwvj_~~~!--12.txt

~=.~~~*~=~~~=~-=-~=~~~*=-=**r~~~~~~ 123 KB

--~:~=1-.i1/28/2013

'-~~~~?~~~-~:38~~~-~~f~~~~~:=:

8:39 AM CST

--=------*----------*---r-***--*----~-*---*------*--------

WW_ 15.txt 1 123KB 1/28/20138:40AMCST

- *-------*-- - -- ----* I -- ----

WW_ 18.txt I 123 KB 9/5/2013 10:23 A~._ c_ _ _

s ,T -t WW 21 .txt 123 KB 1/28/2013 8:42 AM CST

>-----=--------------*----**----*--*------*--*--i---------- *--****-------- --**---*

J WW 0-6.22.txt J 123 KB 1/28/201311 :07 AM CST

- -- -*----= -----*- *-**-*--***---***-*--***--M---*----M

  • --*- *-**-**--**-*HOM**--------*-- --*-*---*--**-----*---*-----**-*-*--*--*---H*--

ww 3-6.22.txt I 123KB 1/28/201311:08AMCST ww 6-6.22.txt i 123KB l


*-*---****-*-**-*. ****-*-****-*-*--**- -- *- -*----*-1-- * - - --**------*- ------****----------*-*----**--

1/28/201311:09AMCST

-ww-:1-8~6.22:~t---- **"**-**------ -*-*- *----**--r12:3Kii-*- 1 *1128/2o138A°1AM-CITT-**--*- -

WW 21-6.22.txt

~--=----------------*-----__J i____

123KB j 1128/201311 :09AMCST NetEvap_0.1.txt f - - * -*- - * - - - -* - - - - ----**- * - * - - *

  • t - - - -*- - -

I 116KB I 9/4/201310:10AMCST NetEvap_0.2.txt j 116 KB 9/4/2013 10:11 AM CST

~0~1~~~r;.~t---~~~---*-~=--}~-~:~-- I ~;:6;~6~~~~~~ :~ ~*:*-~----_.-._.~_

Weather Sorting Files

- Worst Weathe~~--;o-..~d-:-~-e-------.-.... ~. -~-i~-:--*---_-_-J-:-1 it-~:-'2_0_1_2_1_0_:1_i_A_M_C_ S_T_____-___- _..._

--_j. ----

.::~::=~~;:~:~=:~~::~-------~~~.~:0-, ~;: :~:: :~: :~ 6:~---

---=---:::.___,__, ______,__ ___+ - -..

_vy_ or_ st-=-Wea!~~-::-12~:.~!----------1-'.-~---------~ 113_01_2_ 01~~:52 _ PM_~S.~-----

_\IV_?rst__Wea_th_~~~_?._~~~~..- ---*------j'-- 29_9_K_B.___ ,_!!151_3,_ 01_3_~-~~~-~~!____ _

Worst_Weather_120.pltX 1 2,697 KB 7/15/2013 3:31 PM CST Worst Weather Comparison .

[ , I .

File Name I Size

  • I Date

- -- --*-----*-*---*------------j*-*---*--*- ---*-- - - - - - - -- ---

Case3a_12AM-8.18.dat  ! 6 KB I 9/18/2013 4:53 PM CST Case3a 12AM-8.18.out *ti 129 KB l -g/18/2013 5:02 PM CST

,_,_ _..=..__ ....- - - -- - --- - - * - - - - - *-------------~---*--------*-----**-**-

Case3a_ 12AM-8.18.pltX 47 KB I 9/18/2013 5:02 PM CST PROJECT NO. 11333-297

ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 027 of 042 Appendix 08. l - Electronic File Listing Case3a 3AM-8.18.dat 6 KB 9/18/2013 4:51 PM CST Case3a_3AM-8.18.out 129 KB 9/18/2013 5:05 PM CST

- 47 KB 9/18/2013 5:05 PM CST Case3a_3AM-8.18.pltX Case3a 6AM-8.18.dat -- ~ ----- ~/18/2013 * - -----------*- 4:51 PM CST - -

- - -=--------*-----*-----

r Case3a_6AM-8.18.out 129 KB 9/18/2013 5:06 PM CST Case3a 6AM-8.18.pltX 47 KB 9/18/2013 5:06 PM CST

>-*- - =-- - - - - - - - -------1---*--*---*--- -*---..-*-----*--*----

Case3a 6PM-8.1'1 .dat , 6 KB 9/18/2013 4:52 PM CST C3'e3a 6PM-a.11 .out 29 KB 9/18/2013 5:07 PM CST

---*--------=-----------*-**--*--*---------- ---*-*-----*--**-***--*----- --*--*----**--- - -- -..

Case3a_6PM-8.11 . pltX 4 7 KB 9/18/2013 5:07 PM CST 1

~--**-*-*-**-

6 KB 9/18/2013 4:52 PM CST Case3a_9PM-8.11.dat Case3a_9PM-8.11 .out 129 KB 9/18/2013 5:09 PM CST Case3a_9PM-8.11 .pltX 47 KB 9/18/2013 5:09 PM CST 33-24-30 Com arison I _____

File Name Size Date

_"!!!_=?._~~~4-3~da! ________ _ _ __________ l__~_!S_~-------I- 9/1 ~~013 4:5~_!:'.~_csr___ _

WW_33-24-30.out 129 KB 9/18/2013 5:11 PM CST WW 33-24-30.pltX 47 KB 9/18/2013 5:11 PM CST

--**--**-*= -***"*-*-* -*"-**-*--*-*-*--**-*"***-**--***

c WW_33-24-30-6AM .dat 1 6 KB 9/18/2013 4:58 PM CST 3

_l/VW=~~:~-3~~~~~~!.----*-----*--~-- 1~~ KB _s11 a120~~~ cs~-*--

WW_33-24-30-6AM .pltX 47 KB 9/18/20135:11 PM CST WW_33-24-30-6AM2 .dat 6 KB 9/18/20 13 4:58 PM CST

-WW_33-24-30-6AM2.out 1

129 KB I 9/1-S/2013 5:11 PM CST

- -..-*----*--i-*-------- ------*------*---

WW_33-24-30-6AM2.pltX 47 KB 9/18/2013 5:11 PM CST Worst Weather Files c PROJECT NO. 11333-297

ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 028of042 Appendix 08. l - Electronic File Listing Case1a 12PM.out 129 KB 9/18/2013 5:20 PM CST

--.. -*-- --*-*= ---*----*-*. ***-**--..****-*-*--*-.*~-----*-*-*--***-*--- ------- --*--*--- ----*--*--**..---------------------*-**--*---

Case1a_12PM.pltX 47 KB 9/18/2013 5:20 PM CST

--~~~~~--~~~~~*-+~--~~--~~~~~~~~~-*~

--~~-=-9-~~'.:~~:~~----*-*. *-------*----------l--6~~---- ~~~~~~~-~-~-~:~:..~~~----*-. -*

Case1a_3PM .ou~--- -- . --*--------*---~~-~9 K~---- -~~/2~13 5:20 PM CST ___ _

Case1a_3PM.pltX 47 KB 9/18/2013 5:20 PM CST Case1a 6PM.dat 6 KB 9/18/2013 4:47 PM CST

-*----=--*----*-----.. .--..--*----- - - - - - - ------- -- ------- *----

Case1a 6PM.out I 129 KB 9/18/2013 5:20 PM CST

--c;;1a=6PM.pltX I 47 KB 9/18/2013 5:20 PM CST I 6 KB Case1 a 9PM.dat

  • -**---*-*= ---*----.......................... ___ .________________..... -*r-..----*--* 9/18/2013 4:47 PM CST

+ --- --..-*---*-----*-------------*--*-

-~ase1a_~M .ou~-*-*------- ~29 _KB I 9/18/~~~-~-5:2~~M C~----

-- ~~se1a_9PM :f~~---- *-----*-----..-----..-l-~~~~-----~~~~~~3 5~~0 P~--~~T _______

Case2a_ 12AM.dat 6 KB 9/18/2013 4:49 PM CST l

j Case2a 12AM.out 129 KB 9/18/2013 5:24 PM CST


*---------*----*i--:-=-:-:- - - - - - - - - - - -- ------------

ca::_2a-=~ 2AM_:P.~------------*-----*---_j_4 7 K-~---~~/18/_20~3 5:24 ~~- ~~!_ ___ _

Case2a 3AM.dat

,....-----=------*-*----..--- ---- *--*--------*-- _______ __

Case2a 3AM .out

µ 6 KB 129 KB D__________________

9/18/2013 5:27 PM CST 9/18/2013 5:27 PM CST

  • ----*---=--*------*-*-.. -*............. _, __________________,,,,_, ..,,_..!_________________ -------*-------------*---..--..**--**--

,_case2a_3AM.pltX . 47 KB I 9/18/2013 5:27 PM CST

. . Case2a

.---- --=-----*-*-........... KB ~/18/2013 1__6, ...___________

6AM.dat_............................. _...._, ____________ . ,_.........._.[ __._,........._. _______ ,,,,______PM 4:48 CST ,__,...........

Case2a_6AM.out 129 KB 9/18/2013 5:23 PM CST

( ~~~ --~-1:~~ --~~~~:~J]t-=

Case2a_9AM.out Case2a 9AM.pltX

- - - ---=------*-*---*--*--*---*-***-*-*-*----*-*--*--------***-*-

Case2a 12PM.dat I 129 KB 47 KB 9/18/2013 5:23 PM CST 9/18/2013 5:23 PM CST

..-----* -*--- ----*--*--*--*--------~----_..............---*~---~*--*..-

6 KB


=---*-*--**---**-*-------*. -*-**-*---------*-*--*---- - - - - - --------*------------------*--*---

9/18/2013 4:49 PM CST Case2a 12PM.out 1 129 KB 9/18/2013 5:24 PM CST


=----*---*-*-**--*-*-*--------*-- ------*-*--*-*---*!----*------- *-*-. *-----**----*----- - . ----..- . . . . -.. .

. ~;;~~::~~~~~--*-* ---*---*-----* -*-**-*---***-*j**~?K~~------- --:;~-~~~~*:*~;~-~~~~-----------

case2a 3PM.out \ 129 KB 9/18/2013 5:23 PM CST *-

- - - ---*-*----*-------------*--*---- *-j-*--------- ---------------------*--*--*-.

Case2a 3PM.pltX 1 47 KB 9/18/2013 5:23 PM CST

- ca;;2a- 6PM~ci;1*--------------- *----16-t<8______ - 91181201-3 4:49-PMcsr*-----*--


*---=------*-------*---*--------*-*--*-*-*- *----t--*----- - --*---- - -- -- -- -

  • Case2a 6PM.out

=---*----.. -*--*--------..----------.. *---*--*1----*------*----,____

I 129 KB

_ 47 KB 9/18/2013 5:23 PM CST 9/18/2013 5:23 PM CST Case2a_6PM.pltX Case2a_9PM .dat I 6 KB 9/18/2013 4:49 PM CST

- ----- -*-**-*-*---.. .- . *--*----*--------..*--1-------*--*-*-*---..-*-*---..**--*------*---**--------

Case2a_9PM.out \ 129 KB 9/18/2013 5:24 PM CST Case2a_9PM.pltX I 47 KB 9/18/2013 5:24 PM CST

  • -**---*-*-*--*----*------.. -*- ----**--.... -... - ------..--*--*--*-**"**--*1.. ---*- *--*-*--*-- - --- ** ...-*------------*---*---*----****-----"- **-

Case3a _ 12AM .dat I 6 KB 9/18/2013 4:52 PM CST

  • -------- - - -**-**-----*. *------ ------- -*-------*t -**--- -----~---*--------*------*-*------*--*----..

Case3a_12AM.out  ! 129KB , 9/18/20134:55PMCST c PROJECT NO. 11333-297

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 029 of 042 Appendix 08.1 - Electronic File Listing Case3a_3AM.pltX 47 KB 9/18/2013 5:04 PM CST


*--*-..-*-*-*-*---------***--**-*. --*--*------- ----*--------1-----*---****--*-***--- - - - * --***-*--

Case3a_6AM.dat 6 KB 9/18/2013 4:51 PM CST Case3a_6AM.out 129 KB 9/18/2013 5:06 PM CST

  • --*--*------***-*-*-------*-*-----*--*-***-**-*--***-*- -*--r --***--*-**-*--**--**-*--*--*--*-**-*-*---- * ---*-------

f-cas~~a_6~~:E1tX_ _____________ f,~ KB - - - _?!18/20_~-~ : 06 PM CST__ _

Case3a_9AM.dat 6 KB 9118/2013 4:52 PM CST

- ----------- -- ----~--*---- -- . -

Case3a 9AM .out 1*- 129 KB 9/18/2013 5:14 PM CST

~----~ -----------------*-

Case3a_9AM.pltX 47 KB 9/1812013 5:14 PM CST Case3a 12PM.dat I 6 KB 911812013 4:53 PM CST

--***---=-*-----------*-----*------------.. 1--**--*---*--**-**-*-*--**---*--- -----**---*---*-*

Case3a_ 1~£>-~.:. ° . -~---*--*------***----~ . ~~~-K~-- --~(~.~1201 ~-?._:3.~~-~-CST__ ___ __ _

Case3a_12PM.pltX I 47 KB 9/18/2013 5:29 PM CST

>--- - --* -- T -* -- --

C85938 3PM.dat I 6 KB 911812013 4:51 PM CST

- -*-----=--*--***-***---*-****----- --*--*-----------1*-*------*------*-- ****------**--**--*--*----*----*-----*-*

Case3a_3PM.out . 129 KB 911812013 5:30 PM CST Case3a_3PM.pltX I 47 KB 9/18/2013 5:30 PM CST Ca-~~3a_6PM.dat---------------i--6-KB___ _ _ .9/18/20-13 4:52 PM CST

-c~~-e3a~~-----------~=J:-12-9 KB-= -911~120-13 5:07-PM-~--~-'..==-=--=-_.

~~:-~~=-~~-~~~tX ____________._______] __~!. KB__________ ...?!.!__8.~~!__~~:9_7-_ ~-~.~~'.._______ _

~ase3a_9PM .dat = = = D KB 9118/2013 4:52 PM CST Case3a 9PM.out 129 KB 911812013 5:09 PM CST

-**-*----****- ::............................................... _.. ,, ... _.. __ ,.______________,_______ 1***-***-*-*..-----*--- - -*---**-- -*-*--**-------*---~------** *-* ..----*-*- - -

-~~se3a_9~~:£1tX _____________ _I __~_ KB _ ____ ?118~~~!__~~-:09 ~~~~! __ _

( Case4a_12AM.dat Case4a_12AM.out 6 KB 129 KB 9/18/2013 4:57 PM CST 911812013 5:36 PM CST

- - - - - - - - - -*- *----*----+------- --*-------*-*--**---

Case4a_12AM.pltX 47 KB 9/18/2013 5:36 PM CST Case4a_3AM.dat - I 6 KB 9/18/2013 4:56 PM CST r---------*-*-*---***-*..*-*--*-*-"'*........---*----*-----------**--..,-- ---..- - - - - - ___........ - ....-----*-----*-..*-----*-....--

~:::::=~2~

. Ca;e4~

~~ ------------------+:~~K~~---

-6AM ----*-------*----- ----1-*G

.dat -KB______

-*~7~:7~~~ ~ :: ~: :~ *~~f----

-9/18/20134~7-PM- CST _____ _

-*--*-*----**= -*********--**********-*******--*-******---- -**-*----*-***-**-----*-**1-*****-********-*- -*--***--**- -*------******------

Case4a_6AM.out ~* 129 KB 9/18/20.13 5:35 PM CST

~=~~=-~AM.pltX ----*------- -- .. I ~'.-~~----'--?!_~12~~~~:3~~-CST____ _

Case4a_9AM.dat

  • ----------*----*---*** ----------~-*---*- ----

! 6 KB 9/18/2013 4:57 PM CST Case4a_9AM.out i 129 KB 9/1812013 5:35 PM CST c~~e4a~9AM .pltX - -- -- --* I 47 KB -----1 9/1812013 5:35 PM CST

-*--*------*- ---*-----*** -------*----- +---*----+---------*--*--*---*--*-**------

Case4a_ 12PM.dat 1 6 KB I 9/18/2013 4:57 PM CST Case4a 12PM.out 129 KB 9118/2013 5:36 PM CST


*-'.:'- **-*--------**- * ------ --+-*-*--**--*-----****--*--*-*-----* -*--*---*---***---- --

Case4a_12PM.pltX I 47 KB 9/18/2013 5:36 PM CST Case4a 3PM.dat I 6 KB 9118/2013 4:57 PM CST


=**-*-****---*------*--***-**-*- -**-**-****-*--**-*--- -+-*-*-*******--*--*- --*-- ---*- - - ----*--**--*------- *--- -

-~as_e4~~1'.'._~~~~----*---------L~~~-~~*----- -~~!__8~~~~~-~:~~~--cs~-*----

Case4a_3PM.pltX I 47 KB 9/1812013 5:35 PM CST

~~e4a_~PM . d~t________ _[~K~- 9/1812013 4:5JPM CST __

Case4a 6PM.out i 129 KB 9/18/2013 5:35 PM CST

-c-~;~a~6PM-~~iiX *--------------1-471<8-----*--. --91-18/2o135~35-PMc_sr____._

1

( PROJECT NO. 11333-297

ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 030 of 042 Appendix 08.1 - Electronic File Listing

(

Case4a 9PM.dat I 6 KB I----*-- -----------*----*-*---***-*----

9/18/2013 4:57 PM CST Case4a _9PM .out 129 KB 9/18/2013 5:35 PM CST Case4a_9PM .pltX 47 KB 9/18/2013 5:35 PM CST Worst Net Evaporation Files

,__._ _ __F le_N__a_m_e_______ _J_size_ _ .__ _,_

__i_ o_at_e..___________

Case1c.dat j 6 KB 9/18/2013 4:48 PM CST

- -- . r.;:;::-*- - -- - -- - - - - - - --

Case1c.out 1 125 KB 9/18/2013 5:43 PM CST

  • -- - ------*-----**---*----***-*-*-*_J.__ ____________ - - - - - - -- -------*---------

Case1c.pltX I 52 KB 9/18/2013 5:43 PM CST

~~~=-=-:::=====1-~,~~~~~~

Case2c.pltX J~~~B 9/18/2013 5:43 PM CST Case3c.dat 6 KB 9/18/2013 4:53 PM CST Case3c.out 125 KB 9/18/2013 5:43 PM CST Case3c.pltX i 43 KB 9/18/2013 5:43 PM CST

- - - -*----*------*--------*--*-------i-:-*------ -----------------

fa:~_:-====+.-,~=-~~~:~;~~-==

    • -~~se~.~:P.~ ----*****---** *..--***----------- .. - ...*-** -*+43 ~~-**-*-*-- ..- -~!18!~~1.~--~:~~-~~ -~-~!.__._____.........

NetEvap-0.1.dat I 6 KB 9/20/2013 2:46 PM CST

- - ---f

(

NetEvap-0.1.out 1 125 KB 9/20/2013 2:47 PM CST

~~~::~~: ~~~:--=~~-~=~~=~-~*==----r :~KtB -----= -~~~::-:~*~:t~=~=

"NetEv;p-o.2 .o~--*-------lrn*KB---t--t 9i2012013 2:4i PM CST____ _

- - - *---------*---*---*-----*-"*-------i-:------*-*-*--- - - - -* -- -- --------

NetEvap-0.2.pltX I 43 KB 9/20/2013 2:47 PM CST UHS Mixing Files File Name l!Size I Date

-**~-*-----------*-------***--*-*------**-*--*---- l * - - - - - - - -..---*-.J-*------- --**---*---* -- **-*--*-

Mixing-10%.dat I 6 KB I 9/18/2013 6:02 PM CST

~~~~====~~~~

~:~:~i6~~~----*----*- ---*-----~-~~~i~---*-~:~::~}:~ i~~~~ ~:i----

--*--*--*---------*------.. .. . .....--- -*-*-***. . . . . -.. .--..-*--t-*- . ---*-.. . ... . . ... . . **-- ------*-..*-*-*- -----..*--*-*-**

Mixing-10%-9AM .dat ~ 9/27/201312:42 PM CST I 129 KB PM CST Mixing-10%-9AM.out

-*--*-----* -*-------------*-*-*------*--*-...............---1--. .. *---*. **--............I,_.9/27/201312:42

-~~~n.~~~.:'~.9-~~~P'~---* *---------*--- - ------ *-I***~!-~~--------- * --~~~~~~-~~~~~~0'~ ~~!.____---

!Jlixi~-20:;0-1_~~M.d~-------*----..*--~~~----- 9/27/201312:27 PM C~!__ __ _

Mixing-20%-12PM.out ] 129 KB 9/27/201312:27 PM CST

'-----*- - - - -..-*-*-*----- - - - - -i----- - --- - - - --- - -- - - - - --

Mixing-20%-12PM.pltX I 47 KB I 9/27/2013 12:27 PM CST

(_ PROJECT NO. 11333-297

ICALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT 0, PAGE NO. 031 of 042

(

Appendix 08. l - Electronic File Listing Wind Sensitivicy Files File Name Size J Date


***6 *1<0-*-*-*--19i2ai201 i2:47 PM- cs*r *-*- -

CaseDiurnal.dat


------i------*-- -- ---*-

CaseDiurnal .out 129 KB , 9/20/2013 2:47 PM CST CaseDiurnal.pltX 47 KB 9/20/2013 2:47 PM CST 6KB 9/20/2013 2:40 PM CST Case Wind_375.dat Case Wind- 375 .out 47 KB 9/20/2013 2:40 PM CST Case Wind_375.pltX 129 KB 9/20/2013 2:40 PM CST C. PROJECT NO. 11333-297

0 . n ~I I CALCULATION NO. L-002457 REVISION NO . 8 ATTACHMENT 0, PAGE NO. 032 of 042  !

Appendix 08.2 - UHS Mixing Results and Equations K l A B c 0 E F G H I ft3 J

1 =MAXCB5:B746l =MAXCC5:C746) =MAXID5:0746l Mixina Zone Vol=- =lnout1E5"43560"0.1 Plant Tout Mix Terna Vnew= =65.3"60"60 =66"60"60 ft3 2 10%Mlxina TNat TIN TOUT

("Fl PlantDT LAKETDT Convergence OT LAKETDTl1 LAKETDTl2 3 New LakeT 2.3c ('FJ ("Fl ('Fl

=05 =SUM(H5:H749) =SUM115:17491 =MAX J6:J749) 6780.91066338037 6601 .35172096316 4 4. 11694749635391

-05+H5 = 1$2"E5+G4" 1$1-1$2 1$1 25.95 =GS-05 =ABS LS-15 4.12 5 163 89.1909 106.123 102.003

= 1$2"E6+G5" 1$1-1$2 1$1 32 .2 =G6-06 =ABS l6-16 6.86 6.66469652036913 6 183.041666667 69.4723 110.516 101.636 =06+H6

=07+H7 = 1$2"E7+G6" 1$1-1$2 1$1 35.16 =G7-07 =ABS l7-17 13.07 13.0655417737156 7 163.083333333 90.0218 114.694 101 .624

-06+H8 - 1$2"E8+G7" 1$1-1$2 1$1 35.8 -G6-08 -ABS L8-18 16.59 16.5674470293705 6 183.125 90.6614 118.317 101 .727

=09+H9 - 1$2"E9+G8" 1$1-1$2 1$1 25.36 -G9-09 -ABS l9-19 17.64 17.639166059468 9 183.166666667 91 .5572 119.772 102.132

- 1$2"E10+G9"11$1-1$2 1$1 22.43 =G10-010 -ABS l 10-110 17.99 17 .96569074667 45 10 183.206333333 92.4975 120.614 102.624 =010+H10

= 1$2"E11+G10" 1$1-1$2 1$1 21.26 =G11-011 =ABS l11-111 18.16 16.1588049767235 11 183.25 93.373 121 .196 103.036 =011+H11

= 1$2"E12+G11" 1$1-1$2 1$1 20.32 =G12-D12 =ABS l 12-112 16.27 18.2671261051142 12 163.291666667 94.1185 121 .585 103.315 =D12+H12

= 1$2"E13+G12" 1$1-1$2 1$1 19.39 =G13-D13 =ABS l13-113 18.32 18.3200076256199 13 183.333333333 94.7224 121 .764 103.464 =D13+H13

-014+H14 - 1$2"E14+G13" 1$1-1$2 1$1 16.57 =G14-D14 =ABS l14-114 18.41 18.4110056860162 14 163.375 95.1096 121 .813 103.403

- D15+H15 - 1$2"E15+G14" 1$1-1$2 1$1 17.96 =G15-D15 -ABS l15-115 18.57 18.5665631208804 15 183.416666667 95.2859 121 .703 103.133

=016+H16 = 1$2"E16+G15" 1$1 -1$2 1$1 17.45 =G16-D16 =ABS l16-116 16.76 16.7760036366959 16 183.458333333 95.2445 121 .451 102.671

=017+H17 = 1$2"E17+G16" 1$1-1$2 1$1 16.98 =G17-D17 =ABS l 17-117 18.97 18.9696153589219 17 183.5 95.0577 121.074 102.104

- 1$2"E18+G17" 1$1-1$2 1$1 16.64 =G18-016 -ABS l 18-116 19.07 19.0701161296132 Ta 183.541666667 94.6666 120.615 101 .545 =016+H16

=G19-019 -ABS L 19-119 19.24 19.2432379495646 19 183.583333333 94 .5514 120.066 100.826 =D19+H19 = 1$2"E19+G18" 1$1*1$2 1$1 16.35

=020+H20 = 1$2"E20+G19" 1$1-1$2 1$1 16.17 =G20-020 =ABS l20-120 19.33 19.3325460173627 20 163.625 94.2603 119.47 100.14

= J$2"E21+G20" 1$1-J$2 1$1 22 .29 =G21-021 =ABS L21-121 20.53 20.5311853302293 21 183.666666667 93.9183 119.936 99.4062 =D21+H21

=022+H22 = J$2"E22+G21" 1$1-J$2 1$1 19.27 -G22-D22 =ABS L22-122 20.81 20.8097457619266 22 183.706333333 93.6113 119.531 96.7207

= J$2"E23+G22" 1$1-J$2 /1$1 17.13 =G23-D23 =ABS L23-123 20.58 20.5752106731427 23 183.75 93.2993 118.625 98.0447 =023+H23

=D24+H24 - J$2"E24+G23" 1$1-J$2 1$1 15.6 =G24-D24 =ABS L24-124 20.06 20.0604562300453 24 183.791666667 92.9655 117.441 97.3606

= J$2"E25+G24" 1$1-J$2 11$1 14.46 =G25-D25 =ABS L25-125 19.41 19.4062193905123 25 183.833333333 92 .6697 116.138 96.7276 =D25+H25 13.79 =G26-026 -ABS l26-126 16.7 18.6972751326943 26 163.875 92.3989 114.64 96.1396 -026+H26 - J$2"E26+G25" 1$1-J$2 /1$1

-G27-027 -ABS L27-127 18.06 18.0568116875153 27 183.916666667 92.1258 113.615 95.5546 =027+H27 I= J$2"E27 +G26" 1$1-J$2 1$1 13.42

=026+H26 - J$2'E26+G27" 1$1-J$2 1$1 13.22 =G28-028 =ABS L28-128 17.35 11 .3501530S459n 26 183.956333333 92.0281 112.52 95.1697

=D29+H29 = J$2"E29+G28" 1$1-J$2 /1$1 13.05 -G29-029 -ABS l29-129 16.54 16.54425585071 29 184 92.1694 111 .592 95.0521

=D30+H30 = J$2"E30+G29" 1$1-J$2 /1$1 12.8 =G30-D30 =ABS L30-130 15.68 15.6829268201775 30 164.041666667 92.5473 110.831 95.1515

=D31+H31 = J$2"E31+G30" 1$1-J$2 1$1 12.52 =G31-D31 =ABS l31 -131 14.53 14.5262854333635 31 164.083333333 93.1978 110.308 95 .7779

=D32+H32 - J$2"E32+G31" 1$1-J$2 1$1 12.27 =G32-D32 -ABS L32-132 13.47 13.4681312105406 32 184.125 93.9705 109.969 96.5194

-D33+H33 - JS2"E33+G32" 1$1-J$2 1$1 12.1 =G33-D33 -ABS l33-133 12.53 12. 5337067960865 33 164.166666667 94 .8213 109.869 97 .3392

-034+H34 - J$2"E34+G33" 1$1-J$2 /1$1 11 .96 =G34-D34 =ABS L34-134 11 .75 11.7463564692429 34 184 .208333333 95.7017 109.938 98.1883 99.82 =035+H35 = J$2"E3S+G34" 1$1-J$2 1$1 11 .88 =G35-D35 =ABS l35-135 10.46 10.4836679316764 35 164.25 96.5625 109.55

=D36+H36 = J$2"E36+G35* 1$1-J$2 1$1 11.79 =G36-036 =ABS l36-136 9.58 9.6146194n31524 36 184.291666667 97.3197 110.167 101 .264

=037+H37 = J$2"E37+G36" 1$1-J$2 1$1 11.71 =G37-037 =ABS l37-137 8.85 8.88439809897515 37 164.333333333 97.9185 111.083 102.741

=D36+H38 = J$2"E36+G37" 1$1-J$2 1$1 11 .65 -G36-036 =ABS L38-138 6.22 8.27055260429391 38 164.375 96.3195 111.904 104.248

=D39+H39 = J$2'E39+G38' 1$1-J$2 1$1 11 .58 =G39-039 =ABS L39-139 8.86 8.90858195779592 39 164.416666667 98 .5568 113.037 104.316

-D40+H40 - J$2"E40+G39" 1$1-J$2 1$1 11 .51 -G40-040 -ABS l40-140 9.55 9.59792457235467 40 164.456333333 96.5639 113.623 104.132

-D41+H41 - J$2"E41 +G40' 1$1-J$2 1$1 11 .45 =G41-D41 -ABS L41-141 9.98 10.0364989203799 41 184.5 98.412 113.831 104 .067 I PROJECT NO. 11333-297 I

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 033 of 042 Appendix 08.2 - UHS Mixing Results and Equations 0% Mixing Results {partial) 0% Mixing T Nat TIN TOUT (Of) (Of) (Of) Actual Time 7/1/1900 12:00 AM 89.19 127.95 102.00 06:00 AM 7/1/1900 01 :00 AM 89.47 133.84 101.64 07:00 AM 7/1/1900 02:00 AM 90.02 136.78 101.62 08 :00 AM 7/1/1900 03:00 AM 90.68 137.53 101.73 09 :00 AM 7/1/1900 04:00 AM 91 .56 127.49 102.13 10:00 AM 7/1/1900 05:00 AM 92.50 125.05 102.62 11:00 AM 7/1/1900 06:00 AM 93.37 124.30 103.04 12:00 PM 7/1/1900 07:00 AM 94.12 123.64 103.32 01:00 PM 7/1/1900 08:00 AM 94.72 122.85 103.46 02 :00 PM 7/1/1900 09:00 AM 95.11 121.97 103.40 03:00 PM 7/1/1900 10:00 AM 95.28 121.09 103.13 04:00 PM 7/1/1900 11 :00 AM 95.24 120.12 102.67 05:00 PM 7/1/1900 12:00 PM 95.06 119.08 102.10 06:00 PM 7/1/1900 01 :00 PM 94.87 118.19 101 .55 07:00 PM 7/1/1900 02 :00 PM 94.55 117.18 100.83 08:00 PM 7/1/1900 03:00 PM 94.26 116.31 100.14 09:00 PM 7/1/1900 04:00 PM 93.92 121 .70 99.41 10:00 PM 7/1/1900 05:00 PM 93.61 117.99 98 .72 11 :00 PM 7/1/1900 06:00 PM 93.30 115.17 98.04 12:00 AM 7/1/1900 07:00 PM 92.98 112.98 97.38 01 :00 AM 7/1/1900 08:00 PM 92.67 111.19 96.73 02:00 AM

( 7/1/1900 09:00 PM 7/1/1900 10:00 PM 92.40 92.12 109.93 108.97 96.14 95.55 03:00 AM 04:00 AM 7/1/1900 11 :00 PM 92.03 108.39 95.17 05:00 AM 7/2/1900 12:00 AM 92.19 108.10 95.05 06:00 AM 7/2/1900 01:00 AM 92.55 107.95 95.15 07:00 AM 7/2/1900 02:00 AM 93.20 108.30 95.78 08:00 AM 7/2/1900 03:00 AM 93.97 108.79 96.52 09:00 AM 7/2/1900 04:00 AM 94.82 109.44 97 .34 10:00 AM 7/2/1900 05:00 AM 95.70 110.17 98.19 11:00AM 7/2/1900 06:00 AM 96.56 110.90 99.02 12:00 PM 7/2/1900 07:00 AM 97.32 111.53 99.74 01:00 PM 7/2/1900 08:00 AM 97.92 112.02 100.31 02 :00 PM 7/2/1900 09:00 AM 98.32 112.68 104.88 03:00 PM 7/2/1900 10:00 AM 98.56 116.65 105.91 04:00 PM 7/2/1900 11 :00 AM 98.56 117.36 106.15 05:00 PM 7/2/1900 12:00PM 98.41 117.20 104.59 06:00 PM 7/2/1900 01:00 PM 98.21 115.25 103.65 07:00 PM 7/2/1900 02:00 PM 97.96 114.29 102.96 08:00 PM 7/2/1900 03:00 PM 97.58 113.42 102.18 09:00 PM 7/2/1900 04:00 PM 96.94 112.29 101 .11 10:00 PM 7/2/1900 05:00 PM 96.35 111 .26 100.13 11 :00 PM 7/2/1900 06:00 PM 95.83 110.38 99.37 12:00 AM 7/2/1900 07 :00 PM 95.38 109.58 98.61 01 :00 AM 7/2/1900 08:00 PM 94.99 108.89 97.96 02:00 AM 7/2/1900 09:00 PM 94.47 108.34 98.94 03:00 AM 7/2/1900 10:00 PM 94.04 108.90 97.62 04 :00 AM 7/2/1900 11 :00 PM 93.81 107.80 96.69 05:00 AM

( PROJECT NO. 11333-297

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 034 of 042 c 10% Mixing Results (partial)

Appendix 08.2 - UHS Mixing Results and Equations 10%Mixlng TNat TIN TOUT Plant Tout Mix Temp Vnew= 235080 309600 ft3 /hr Convergence LA KET LA KET

!°Fl (°F)  !°Fl (°F) Plant OT LAKETDT OT OT 11 0Ti2 7/1/1900 12:00 AM 89.19 106.12 102.00 127.95 106.12 25.95 4.12 0.00 4.12 4.12 7/1/1900 01 :00 AM 89.47 110.52 101 .64 133.84 110.52 32.2 8.88 0.00 8.88 8.88 7/1/1900 02:00 AM 90 .02 114.69 101 .62 136.78 114.69 35.16 13.07 0.00 13.07 13.07 7/1/1900 03:00 AM 90.68 118.32 101 .73 137.53 118.31 35.8 16.59 0.00 16.59 16.59 7/1/1900 04:00 AM 91.56 119.77 102.13 127.49 119.77 25.36 17.64 0.00 17.64 17.64 7/1/1900 05:00 AM 92.50 120.61 102.62 125.05 120.61 22.43 17.99 0.00 17.99 17.99 7/1/1900 06:00 AM 93.37 121.20 103.04 124.30 121.19 21 .26 18.16 0.00 18.16 18.16 7/1/1900 07:00 AM 94.12 121.59 103.32 123.64 121.58 20.32 18.27 0.00 18.27 18.27 7/1/1900 08:00 AM 94.72 121.78 103.46 122.85 121 .78 19.39 18.32 0.00 18.32 18.32 7/1/1900 09:00 AM 95.11 121 .81 103.40 121 .97 121 .81 18.57 18.41 0.00 18.41 18.41 7/1/1900 10:00 AM 95.29 121 .70 103.13 121 .09 121 .70 17.96 18.57 0.00 18.57 18.57 7/1/1900 11 :00 AM 95.24 121 .45 102.67 120.12 121.45 17.45 18.78 0 .00 18.78 18.78 7/1/1900 12:00 PM 95.06 121.07 102.10 119.08 121 .07 16.98 18.97 0.00 18.97 18.97 7/1/1900 01 :00 PM 94.87 120.62 101 .55 118.19 120.62 16.64 19.07 0.00 19.07 19.07 7/1/1900 02:00 PM 94.55 120.07 100.83 117.18 120.07 16.35 19.24 0.00 19.24 19.24 7/1/1900 03:00 PM 94.26 119.47 100.14 116.31 119.47 16.17 19.33 0.00 19.33 19.33 7/1/1900 04:00 PM 93.92 119.94 99.41 121 .70 119.94 22.29 20.53 0.00 20.53 20 .53 7/1/1900 05:00 PM 93.61 119.53 98.72 117.99 119.53 19.27 20.81 0.00 20.81 20.81 7/1/1900 06:00 PM 93.30 118.63 98.04 115.17 118.62 17.13 20.58 0.00 20.58 20.58 7/1/1900 07:00 PM 92 .99 117.44 97.38 112.98 117.44 15.6 20.06 0.00 20.06 20.06 7/1/1900 08:00 PM 92.67 116.14 96.73 111 .19 116.13 14.46 19.41 0.00 19.41 19.41 7/1/1900 09:00 PM 92.40 114.84 96.14 109.93 114.84 13.79 18.70 0.00 18.70 18.70 7/1/1900 10:00 PM 92.13 113.62 95.55 108.97 113.61 13.42 18.06 0.00 18.06 18.06 7/1/1900 11 :00 PM 92.03 112.52 95.17 108.39 112.52 13.22 17.35 0.00 17.35 17.35 7/211900 12:00 AM 92.19 111 .59 95.05 108.10 111 .60 13.05 16.54 0.00 16.54 16.54 7/2/1900 01 :00AM 92.55 110.83 95.15 107.95 110.83 12.8 15.68 0.00 15.68 15.68 7/2/1900 02:00 AM 93.20 110.31 95.78 108.30 110.30 12.52 14.53 0.00 14.53 14.53 7/2/1900 03:00 AM 93.97 109.99 96.52 108.79 109.99 12.27 13.47 0.00 13.47 13.47 7/2/1900 04:00 AM 94.82 109.87 97.34 109.44 109.87 12.1 12.53 0.00 12.53 12.53 7/2/1900 05:00 AM 95.70 109.94 98.19 110.17 109.93 11 .98 11.75 0.00 11 .75 11 .75 7/2/1900 06:00 AM 96.56 109.55 99.82 111 .70 110.30 11 .88 10.48 0.00 10.46 10.48 7/2/1900 07:00 AM 97.32 110.19 101 .26 113.05 110.88 11 .79 9.61 0.00 9.58 9.61 71211900 08:00 AM 97.92 111 .08 102.74 114.45 111 .63 11 .71 8.88 0.00 8.85 8.88 7/2/1900 09:00 AM 98.32 111 .90 104.25 115.90 112.52 11.65 8.27 0.00 8.22 8.27 7/2/1900 10:00 AM 98.56 113.04 104.32 115.90 113.22 11 .58 8.91 0.00 8.86 8.91 7/2/1900 11 :00AM 98.56 113.62 104.13 115.64 113.73 11.51 9.60 0.00 9.55 9.60 7/2/1900 12:00 PM 98.41 113.83 104.07 115.52 114.10 11 .45 10.04 0.00 9.98 10.04 7/2/1900 01 :00 PM 98.21 114.13 103.74 115.13 114.32 11 .39 10.58 0.00 10.53 10.58 7/2/1900 02:00 PM 97.96 114.26 103.35 114.68 114.39 11 .33 11 .04 0.00 11 .00 11 .04 7/2/1900 03:00 PM 97.59 114.06 103.10 114.37 114.39 11.27 11 .29 0.00 11 .24 11 .29 7/2/1900 04:00 PM 96.94 114.00 102.20 113.41 114.18 11 .21 11.98 0.00 11 .94 11 .98 7/2/1900 05:00 PM 96.35 113.71 101.42 112.58 113.85 11 .16 12.43 0.00 12.40 12.43 7/211900 06:00 PM 95.84 112.93 101 .33 112.43 113.55 11 .1 12.22 0.00 12.20 12.22 7/2/1900 07:00 PM 95.38 112.85 100.74 111.78 113.18 11 .04 12.44 0.00 12.43 12.44 7/2/1900 08:00 PM 94.99 112.55 100.07 111.06 112.74 10.99 12.67 0.00 12.66 12.67 7/2/1900 09:00 PM 94.47 112.08 99.20 110.14 112.20 10.94 12.99 0.00 12.99 12.99 7/2/1900 10:00 PM 94 .04 111 .52 98.41 109.30 111 .59 10.89 13.18 0.00 13.17 13.18 7/211900 11 :00 PM 93.81 110.94 97.80 108.64 110.97 10.84 13.17 0.00 13.17 13.17

(_ PROJECT NO. 11333-297

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 035 of 042

(

Appendix 08.2 - UHS Mixing Results and Equations 20% Mixing Results (partial) 20%Mlxlng T Nat TIN TOUT Plant Tout MixTemo Vnew= 235080 309600 ft3/hr LAKET LAKET LA KET

{°F) ("Fl ("F) (°F) Plant OT LAKET OT Convergence OT OT 11 OTl2 OT 13 7/1/1900 12:00 AM 89.19 104.06 102.00 127.95 104.06 25.95 2.06 0.00 2.06 2.06 2.06 7/1/1900 01 :00 AM 89.47 107.18 101.64 133.84 107.17 32.2 5.54 0.00 5.54 5.54 5.54 7/1/1900 02:00 AM 90.02 110.27 101.62 136 .78 110.27 35.16 8.65 0.00 8.65 8.65 8.65 7/1/1900 03:00 AM 90.68 113.12 101.73 137.53 113.12 35.8 11.39 0.00 11 .39 11 .39 11 .39 7/111900 04:00 AM 91 .56 114.62 102.13 127.49 114.62 25.36 12.49 0.00 12.49 12.49 12.49 7/1/1900 05:00 AM 92.50 115.71 102.62 125.05 115. 71 22.43 13.09 0.00 13.09 13.09 13.09 7/1/1900 06:00 AM 93.37 116.61 103.04 124.30 116.61 21 .26 13.57 0.00 13.57 13.57 13.57 7/111900 07:00 AM 94.12 117.35 103.32 123.64 117 .34 20.32 14.03 0.00 14.03 14.03 14.03 7/1 /1900 08:00 AM 94.72 117.91 103.46 122.85 117.92 19.39 14.45 0.00 14.45 14.45 14.45 7/1/1900 09:00 AM 95.11 118.34 103.40 121 .97 118.34 18.57 14.94 0.00 14.94 14.94 14.94 7/1/1900 10:00 AM 95.29 118.63 103.13 121 .09 118.63 17.96 15.50 0.00 15.50 15.50 15.50 7/1/1900 11 :00AM 95.24 118.78 102.67 120.12 118.79 17.45 16.11 0.00 16.12 16.11 16.11 7/1 /1900 12:00 PM 95.06 118.81 102.10 119.08 118.82 16.98 16.71 0.00 16.71 16.71 16.71 711/1900 01 :00 PM 94.87 118.76 101 .55 118.19 118.75 16.64 17.21 0.00 17.21 17.21 17.21 7/1/1900 02:00 PM 94.55 118.59 100.83 117.18 118.59 16.35 17.76 0.00 17.76 17.76 17.76 7/1 /1900 03:00 PM 94.26 118.35 100.14 116.31 118.35 16.17 18.21 0.00 18.21 18.21 18.21 7/1/1900 04:00 PM 93.92 118.70 99.41 121 .70 118.70 22.29 19.29 0.00 19.29 19.29 19.29 7/1/1900 05:00 PM 93.61 118.62 98.72 117.99 118.62 19.27 19.90 0.00 19.91 19.90 19.90 7/1/1900 06:00 PM 93.30 118.27 98.05 115.18 118.26 17.13 20.22 0.00 20.22 20.22 20.22 7/1/1900 07:00 PM 92.99 117.71 97.38 112.98 117.71 15.6 20.33 0.00 20.33 20.33 20.33 7/1/1900 08:00 PM 92.67 117.03 96.73 111 .19 117.03 14.46 20.30 0.00 20.31 20.30 20.30 7/1/1900 09:00 PM 92.40 116.29 96.14 109.93 116.29 13.79 20.15 0.00 20.15 20.15 20.15 7/1/1900 10:00 PM 92.13 115.53 95.56 108.98 115.52 13.42 19.97 0.00 19.97 19.97 19.97 7/111900 11:00 PM 92.03 114.78 95.17 108.39 114.78 13.22 19.61 0.00 19.61 19.61 19.61 7/2/1900 12:00 AM 92.19 114.08 95.05 108.10 114.08 13.05 19.03 0.00 19.03 19.03 19.03 7/2/1900 01 :00 AM 92.55 113.44 95.15 107.95 113.44 12.8 18.29 0.00 18.10 18.29 18.29

(_

7/211900 02:00 AM 93.20 112.90 95.78 108.30 112.90 12.52 17.12 0.00 16.95 17.12 17.12 7/2/1900 03:00 AM 93.97 112.01 97.07 109.34 112.53 12.27 15.46 0.00 9.78 15.46 15.46 7/2/1900 04:00 AM 94.82 111.78 98.71 110.81 112.35 12.1 13.64 0.00 8.24 13.64 13.64 7/2/1900 05:00 AM 95.70 111.86 100.40 112.38 112.35 11 .98 11.95 0.00 7.47 11 .95 11.95 7/2/1900 06:00 AM 96.56 111 .90 102.41 114.29 112.56 11 .88 10.15 0.00 8.72 10.15 10.15 7/211900 07:00 AM 97.32 112.56 103.10 114.89 112.80 11 .79 9.70 0.00 9.21 9.70 9.70 7/2/1900 08:00 AM 97.92 112.91 103.59 115.30 113.06 11 .71 9.47 0.00 9.42 9.47 9.47 7/2/1900 09:00 AM 98.32 112.97 104.23 115.88 113.36 11 .65 9.13 0.00 9.69 9.13 9.13 7/211900 10:00 AM 98.56 113.36 104.40 115.98 113.63 11 .58 9.23 0.00 10.07 9.23 9.23 7/211900 11 :00 AM 98.56 113.69 104.37 115.88 113.86 11 .51 9.50 0.00 10.55 9.50 9.50 7/2/1900 12:00 PM 98.41 113.61 104.66 116.11 114.10 11.45 9.44 0.00 10.98 9.44 9.44 7/2/1900 01 :00 PM 98.21 114.00 104.45 115.84 114.28 11 .39 9.83 0.00 11.45 9.83 9.83 7/2/1900 02:00 PM 97.96 114.20 104.21 115.54 114.41 11 .33 10.20 0.00 11 .91 10.20 10.20 7/2/1900 03:00 PM 97.59 113.83 104.42 115.69 114.55 11 .27 10.13 0.00 10.38 10.13 10.13 7/2/1900 04:00 PM 96.94 114.11 103.69 114.90 114.58 11 .21 10.89 0.00 12.17 10.89 10.89 7/211900 05:00 PM 96.35 114.14 102.92 114.08 114.53 11.16 11.61 0.00 13.48 11 .62 11 .61 7/211900 06:00 PM 95.83 114.08 102.19 113.29 114.40 11 .1 12.21 0.00 14.38 12.21 12.21 7/2/1900 07:00 PM 95.38 113.94 101.49 112.53 114.21 11 .04 12.71 0.00 15.00 12.71 12.71 7/2/1900 08:00 PM 94.99 113.75 100.81 111 .80 113.95 10.99 13.14 0.00 15.36 13.14 13.14 7/2/1900 09:00 PM 94.47 113.45 100.00 110.94 113.64 10.94 13.64 0.00 15.69 13.64 13.64 7/2/1900 10:00 PM 94.03 113.13 99.26 110.15 113.27 10.89 14.02 0.00 15.81 14.02 14.02 7/2/1900 11 :00 PM 93.81 112.81 98.65 109.49 112.88 10.84 14.22 0.00 15.71 14.22 14.22

( PROJECT NO. 11333-297

I CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT 0, PAGE NO. 036of042 Appendix 08 .2 - UHS Mixing Results and Equations

(

10% - 9AM Mixing Results (partial) 10% Mixing *9AM TNat TIN TOUT Plant Tout Mix Temp Vnew:: 235080 309600 ft3 /hr Convergence LAKET LA KET (oF)  !°Fl (oF)  !°Fl Plant OT LAKETDT DT DTl1 DTi2 7/1/1900 12:00 AM 89.81 107.31 103.19 129.14 107.31 25.95 4.12 0.00 4.12 4.12 7/1/1900 01 :00AM 90.70 111 .82 103.54 135.74 111 .83 32.2 8.28 0.00 8.88 8.28 7/1/1900 02:00 AM 91 .65 116.17 103.99 139.1 5 116.16 35.16 12.18 0.00 13.07 12.18 7/1/1900 03:00 AM 92 .53 119.97 104.35 140.15 119.97 35.8 15.62 0.00 16.59 15.62 7/1/1900 04:00 AM 93.29 121 .55 104.57 129.93 121 .55 25.36 16.98 0.00 17.64 16.98 7/111900 05:00 AM 93.90 122.43 104.67 127.10 122.43 22.43 17.76 0.00 17.99 17.76 7/1/1900 06:00 AM 94.30 122.97 104.56 125.82 122.97 21 .26 18.41 0.00 18.16 18.41 7/1/1900 07:00 AM 94.49 123.23 104.25 124.57 123.22 20.32 18.98 0.00 18.27 18.98 7/1/1900 08:00 AM 94.46 123.21 103.74 123.13 123.21 19.39 19.47 0.00 18.32 19.47 7/1/1900 09:00 AM 94.28 122.97 103.13 121.70 122.97 18.57 19.84 0.00 18.41 19.84 7/1/1900 10:00 AM 94.10 122.58 102.54 120.50 122.58 17.96 20.04 0.00 18.57 20.04 7/1/1900 11:00AM 93.80 122.05 101.78 119.23 122.05 17.45 20.27 0.00 18.78 20.27 7/1/1900 12:00 PM 93.52 121.41 101.06 118.04 121 .41 16.98 20.35 0.00 18.97 20.35 7/1/1900 01 :00 PM 93.19 120.70 100.29 116.93 120.70 16.64 20.41 0.00 19.07 20.41 7/1/1900 02:00 PM 92.89 119.94 99.57 115.92 119.94 16.35 20.37 0.00 19.24 20.37 7/1/1900 03:00 PM 92.59 119.16 98.86 115.03 119.16 16.17 20.30 0.00 19.33 20.30 7/1/1900 04:00 PM 92.29 119.43 98.17 120.46 119.43 22.29 21 .26 0.00 20.53 21.26 7/1/1900 05:00 PM 91 .98 118.87 97.49 116.76 118.87 19.27 21 .38 0.00 20.81 21 .38 7/1/1900 06:00 PM 91 .72 117.86 96.88 114.01 117.86 17.13 20.98 0.00 20.58 20.98 7/1/1900 07:00 PM 91 .46 116.60 96.27 111.87 116.61 15.6 20.33 0.00 20.06 20.33 7/1/1900 08:00 PM 91 .37 115.29 95.86 110.32 115.29 14.46 19.43 0.00 19.41 19.43 7/1/1900 09:00 PM 91 .54 114.08 95.72 109.51 114.08 13.79 18.36 0.00 18.70 18.36 7/1/1900 10:00 PM 91 .90 113.07 95.80 109.22 113.07 13.42 17.27 0.00 18.06 17.27 7/1/1900 11 :00PM 92.56 112.31 96.21 109.43 112.31 13.22 16.10 0.00 17.35 16.10 7/2/1900 12:00 AM 93.34 111 .79 96.75 109.80 111 .78 13.05 15.04 0.00 16.54 15.04 7/2/1900 01 :00 AM 94.19 111.45 97.36 110.16 111 .44 12.8 14.09 0.00 15.68 14.09 7/2/1900 02:00 AM 95.08 111 .29 98.20 110.72 111.29 12.52 13.09 0.00 14.53 13.09 7/2/1900 03:00 AM 95.95 111 .29 99.03 111 .30 111 .29 12.27 12.26 0.00 13.47 12.26 7/2/1900 04:00 AM 96.71 111.42 99.76 111 .86 111 .41 12.1 11 .66 0.00 12.53 11 .66 7/2/1900 05:00 AM 97.32 111 .60 100.32 112.30 111 .60 11 .98 11 .28 0.00 11.75 11 .28 7/2/1900 06:00 AM 97.73 111 .45 100.81 112.69 111 .83 11 .88 11 .02 0.00 10.48 11 .02 7/2/1900 07:00 AM 97.97 111 .22 101 .99 113.78 112.24 11 .79 10.24 0.13 9.61 10.11 7/2/1900 08:00 AM 97.98 112.05 102.79 114.50 112.71 11 .71 9.92 0.15 8.88 9.77 7/2/1900 09:00 AM 97.83 112.52 103.82 115.47 113.29 11 .65 9.46 0.07 8.27 9.40 7/2/1900 10:00 AM 97.64 113.44 103.63 115.21 113.69 11 .58 10.05 0.03 8.91 10.08 7/2/1900 11 :00 AM 97.40 113.88 103.35 114.86 113.93 11.51 10.58 0.12 9.60 10.70 7/2/1900 12:00 PM 97.03 113.94 103.26 114.71 114.10 11 .45 10.83 0.28 10.04 11 .11 7/2/1900 01 :00 PM 96.40 114.08 102.43 113.82 114.04 11 .39 11 .61 0.27 10.58 11 .88 7/211900 02:00 PM 95.83 113.90 101 .60 112.93 113.81 11.33 12.21 0.22 11 .04 12.43 7/2/1900 03:00 PM 95.32 113.36 101 .23 112.50 113.53 11 .27 12.31 0.17 11.29 12.47 7/2/1900 04:00 PM 94.88 113.09 100.59 111 .80 113.17 11.21 12.58 0.13 11.98 12.71 7/2/1900 05:00 PM 94.49 112.69 99 .97 111 .13 112.74 11 .16 12.77 0.06 12.43 12.83 7/2/1900 06:00 PM 93.99 111 .78 99 .77 110.87 112.35 11 .1 12.59 0.03 12.22 12.55 7/2/1900 07:00 PM 93.56 111 .56 99.18 110.22 111 .91 11 .04 12.72 0.06 12.44 12.66 7/2/1900 08:00 PM 93.35 111 .22 98 .66 109.65 111.44 10.99 12.77 0.08 12.67 12.69 7/2/1900 09:00 PM 93.37 110.82 98 .32 109.26 110.98 10.94 12.66 0.09 12.99 12.57 7/2/1900 10:00 PM 93.57 110.43 98 .10 108.99 110.56 10.89 12.47 0.13 13.18 12.34 7/2/1900 11 :00 PM 93.97 110.09 98 .03 108.87 110.21 10.84 12.18 0.18 13.17 12.00

(__ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 037 of 042 Appendix 08.2 - UHS Mixing Results and Equations 20% - 12PM Mixing Results (partial) 20% Mixing* 12AM T Nat TIN TOUT PlantTout Mix Temp Vnew= 235080 309600 ft3/hr LA KET LA KET LA KET

!°Fl (°Fl  !°Fl ("Fl Plant OT LAKETOT Convergence OT OTl1 OT 12 OTl3 7/1/1900 12:00 AM 90.05 106.81 104.75 130.70 106.81 25.95 2.06 0.00 2.06 2.06 2.06 7/1/1900 01:00 AM 90.84 109.98 104.96 137.16 109.98 32.2 5.02 0.00 5.54 5.02 5.02 7/1/1900 02:00 AM 91 .48 113.15 105.05 140.21 113.14 35.16 8.10 0.00 8.65 8.10 8.10 7/1/1900 03:00 AM 91 .91 116.02 104.92 140.72 116.03 35.8 11 .10 0.00 11 .39 11.10 11 .10 7/1/1900 04:00 AM 92.14 117.48 104.59 129.95 117.48 25.36 12.89 0.00 12.49 12.89 12.89 7/1/1900 05:00 AM 92.14 118.42 104.07 126.50 118.42 22.43 14.35 0.00 13.09 14.35 14.35 711/1900 06:00 AM 91 .99 119.08 103.45 124.71 119.08 21 .26 15.63 0.00 13.57 15.63 15.63 7/1/1900 07:00 AM 91 .84 119.51 102.85 123.17 119.51 20.32 16.66 0.00 14.03 16.66 16.66 7/1/1900 08:00 AM 91 .58 119.72 102.08 121 .47 119.71 19.39 17.64 0.00 14.45 17.64 17.64 7/1/1900 09:00 AM 91.33 119.73 101.34 119.91 119.73 18.57 18.39 0.00 14.94 18.39 18.39 7/1/1900 10:00 AM 91.04 119.60 100.56 118.52 119.61 17.96 19.04 0.00 15.50 19.04 19.04 7/1/1900 11:00 AM 90.77 119.37 99.84 117.29 119.36 17.45 19.53 0.00 16.11 19.53 19.53 7/1/1900 12:00 PM 90.50 119.02 99.12 116.10 119.02 16.98 19.90 0.00 16.71 19.90 19.90 7/1/1900 01 :00 PM 90.23 118.61 98.42 115.06 118.61 16.64 20.19 0.00 17.21 20.19 20.19 7/1/1900 02:00 PM 89.95 118.13 97.73 114.08 118.14 16.35 20.40 0.00 17.76 20.40 20.40 7/1 /1900 03:00 PM 89.71 117.63 97.11 113.28 117.63 16.17 20.52 0.00 18.21 20.52 20.52 7/1/1900 04:00 PM 89.47 117.75 96.50 118.79 117.75 22.29 21 .25 0.00 19.29 21.25 21 .25 7/1/1900 05:00 PM 89.41 117.50 96.08 115.35 117.50 19.27 21.42 0.00 19.90 21 .42 21 .42 7/1/1900 06:00 PM 89.60 117.04 95.94 113.07 117.04 17.13 21 .10 0.00 20.22 21.10 21 .10 7/1/1900 07:00 PM 89.99 116.47 96.01 111.61 116.47 15.6 20.46 0.00 20.33 20.46 20.46 7/1/1900 08:00 PM 90.67 115.88 96.41 110.87 115.88 14.46 19.47 0.00 20.30 19.47 19.47 7/1/1900 09:00 PM 91.46 115.35 96.94 110.73 115.35 13.79 18.41 0.00 20.15 18.41 18.41 7/1 /1900 10:00 PM 92.34 114 .88 97.54 110.96 114.89 13.42 17.34 0.00 19.97 17.35 17.34 7/1/1900 11 :00 PM 93.25 114.52 98.17 111.39 114.52 13.22 16.35 0.00 19.61 16.35 16.35 7/2/1900 12:00 AM 94.14 114.24 98.77 111.82 114.24 13.05 15.47 0.00 19.03 15.47 15.47 7/2/1900 01:00 AM 94.92 114.01 99.24 112.04 114.01 12.8 14.77 0.00 18.29 14.77 14.77 17.12 14.27

(

7/211900 02:00 AM 95.55 113.80 99.54 112.06 113.81 12.52 14.26 0.00 14.26 7/211900 03:00 AM 95.98 112.97 100.40 112.67 113.69 12.27 13.29 0.00 15.46 13.29 13.29 7/211900 04:00 AM 96.24 112.91 101 .39 113.49 113.67 12.1 12.26 0.00 13.64 12.12 12.26 7/2/1900 05:00 AM 96.27 113.22 102.14 114.12 113.71 11 .98 11 .57 0.00 11.95 11 .43 11 .57 7/211900 06:00 AM 96.13 112.95 103.45 115.33 113.66 11 .88 10.43 0.00 10.15 10.58 10.43 7/2/1900 07:00 AM 95.96 113.57 103.52 115.31 114.03 11 .79 10.51 0.00 9.70 10.87 10.51 7/211900 06:00 AM 95.73 113.68 103.44 115.15 114.15 11.71 10.71 0.00 9.47 11 .25 10.71 7/2/1900 09:00 AM 95.40 113.62 103.68 115.33 114.27 11.65 10.60 0.00 9.13 11.41 10.60 7/211900 10:00 AM 94.61 113.96 102.97 114.55 114.30 11 .58 11 .33 0.00 9.23 12.11 11 .33 7/211900 11 :00 AM 94.27 114.03 102.31 113.82 114.25 11.51 11 .94 0.00 9.50 12.65 11 .94 7/211900 12:00 PM 93.80 113 .71 102.10 113.55 114.18 11.45 12.08 0.00 9.44 12.64 12.08 7/2/1900 01 :00 PM 93.39 113.77 101 .50 112.89 114.04 11.39 12.54 0.00 9.83 12.99 12.54 7/2/1900 02:00 PM 93.02 113.69 100.94 112.27 113.86 11.33 12.91 0.00 10.20 13.21 12.91 7/2/1900 03:00 PM 92.55 113.12 100.72 111.99 113.66 11.27 12.94 0.00 10.13 13.03 12.94 7/2/1900 04:00 PM 92.15 113.09 100.14 111 .35 113.42 11.21 13.28 0.00 10.89 13.23 13.28 7/2/1900 05:00 PM 91.96 112.97 99.62 110.78 113.14 11.16 13.53 0.00 11 .61 13.31 13.53 7/211900 06:00 PM 92.00 112.76 99.26 110.36 112.85 11 .1 13.60 0.00 12.21 13.19 13.60 7/2/1900 07:00 PM 92.23 112.61 98.93 109.97 112.55 11.04 13.63 0.00 12.71 13.00 13.63 7/211900 08:00 PM 92.66 112.34 98.62 109.81 112.26 10.99 13.45 0.00 13.14 12.63 13.45 7/211900 09:00 PM 93.27 112.10 98.91 109.85 112.01 10.94 13.10 0.00 13.64 12.11 13.10 7/211900 10:00 PM 93.94 111 .87 99.08 109.97 111 .80 10.89 12.72 0.00 14.02 11.65 12.72 7/2/1900 11 :00 PM 94.66 111 .68 99.36 110.20 111 .63 10.84 12.27 0.00 14.22 11 .22 12.27 PROJECT NO. 11333-297

r ~ ~

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 038 of 042 Appendix 08.2 - UHS Mixing Results and Equations 150 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

---Plant Outlet Temperature

- - Mixing Zone Temperature

- - - Plant Inlet Temperature 140 il~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-==============='=======--~

130-lf--l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~---1 E 120

~I Cl)

I-110 IJ' .. ,,

~

4it::"'--.~

-=---

.. .. I * ,.

100 I ....

90 _,_ _ _ __ _ _ __ _ __ __ _ _ __ _ __ _ _ __ _ _ __ _ _ ___]

80-i-~~~~~~~~-r-~~~~~~~~--.--~~~~~~~~--.-~~~~~~~~-r~~~~~~~~--1 0 2 3 4 5 Days Following Accident Fig. 08.2-1: Five Day Temperature Profile for the 10% Mixing Case I PROJECT NO. 11333-297 I

r . ~ ~

I CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT 0, PAGE NO. 039 of 042 J Appendix 08.2 - UHS Mixing Results and Equations 150-,---~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.

- P l a n t Outlet Temperature

- - Mixing Zone Temperature

, * * *Plant Inlet Temperature 140 ~

130 '"

E 120 .,,,.

e?

I

/

~CD 0.. I

~

E 110

-1 100 , - ..  ; .. - .. , .. ..

---I 90-t-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ao;~~~~~~~~~~~~~~~~~~-;~~~~~~~~~-::--~~~~~~~~-.-~~~~~~~~_J 0 2 Days Following Accident 3 4 5 Fig. 08.2-2: Five Day Temperature Profile for the 20% Mixing Case I PROJECT NO. 11333-297 ------ I

(\ n .f "\

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 040 of 042 I Appendix 08.2 - UHS Mixing Results and Equations 108

--3A_6AM

- -10%Mix 106 - *

  • 20% Mix 104 -I

/1

.:1-I 102 I \

Li:"

I:- 100

~

.a

~

a.

E 98 -

I-96 94 92 90 0 2 3 4 5 Days Following Accident Fig. 08.2-3: Plant Inlet Temperature for 6AM Cases I PROJECT NO. 11333-297 I

('- . rJ .~

I CALCULATION NO. L-0024-57 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 041of042]

Appendix 08.2 - UHS Mixing Results and Equations 150-.------------------------------------------------~

- P l a n t OuUet Temperature

- - Mixing Zone Temperature 140 * * *Plant Inlet Temperature

- Case 3a 9AM - Plant Inlet Temp. -

130~-*-- -- - - - -- -- - - - - -- - - -- - - - - -

E 120

~

E

~

GI c..

~

I-110

""\

  • - " ~.. -~ -- ~ ~ --

- -/

~~--.. -~- --..-.... -

--~

100 -

-~ ............ / ,, ~

' " '~ -..-

90~ - - - - - - - -- - - - - - - - - -- - - -- - - - -

BO *t------------.-- ---------r----- -----..,...------ ----.----------- 1 0 2 3 4 5 Days Following Accident Fig. 08.2-4: Case Mixing- 10% - 9AM Results I PROJECT NO. 11333-297 I

'~

(' ~

(CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 042 of 042 I Appendix 08.2 - UHS Mixing Results and Equations 150~~~~~~~~~~~~~~~~~~~~~~~~-::~~~~~~~~

- P l a n t Outlet Temperature

- - Mixing Zone Temperature 140 - * *

  • Plant Inlet Temperature
  • Case 3a 12PM - Plant Inlet Temp. -

130 4 - * - - -- -- -- - - -- -- -- - - - - - - - - - - - - - - - -

t 120 - - --

~ /

~

Q.

~ 110 I I ......

100 I

, __ _ ~

-~~ .. .......__ - -.. -----.. ..--

- --- - - - - .,, ----~..... - - -- --

. -,~

..... r --,.- ..., * ..:.- * .., ...... - ... ... .. .. /'" .. .... .. .. ,, ,

...... _~.. f 90~- -- -- - - -- -- - - - - -- -- -- -- -- -- -- -- -- -- -- -- -- -- - - --

801------------,------------.------------.-----------.------------t 0 1 2 3 4 5 Days Following Accident Fig. 08.2-5: Case Mixing - 20% - 12PM Results I PROJECT NO. 11333-297 I

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P1 of P58

( '* .. .

- ~*

. ~ . *' ... ~...:. :.*. . . . ... .. .

'Attachmen*t P ~Plant Temperature Rise forRev. 8 Prepared : j)~ .(AJ. N;;d Daniel W. Nevill - Sargent & Lund/LC Date . ,*:

~

., . ~-.

.. ' ' .~* :. *. . '

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P2 of PSS

( . ATTACHMENT P - TABLE OF CONTENTS Section Page No.

P 1.0 Purpose ...... .................................................... ..................................................... ........ P3 P2.0 Methodology .............. .... ....... ..................................................................... .................. P4 P3.0 Assumptions ....... .................... ........................................................................ ....... .... ... PS P4.0 Design Inputs .............................. .................. ................. .... ........................................... P6 P5.0 References ........... ............................ ............. ........... .......................... ................ ........... P7 P6.0 Calculations ............................................. ............. ... ..................................................... P8 P7.0 Summary and Conclusions ..................... ........... .... ...... ................. ................ ................ P9 P8.0 Limitations and Open ftems ........................................ ................................... ............ PI 0 P9.0 Appendices .............. ................... ... .................. .. ................. ............... ......................... Pl I

(

(Total Pages - Attachment P ( 11) plus Appendices (4 7) for a Total of 58 pages)

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P3 of P58

( Pl.O PURPOSE The purpose of this attachment is to determine the Core Standby Cooling System (CSCS) temperature rise across the plant based on the new heat load to the Ultimate Heat Sink (UHS) determined in Revision 4 of L-002453 [Ref. PS.I). This temperature rise is to be used in the LA KET-PC [Ref. P5.3] model of the LaSalle County Station UHS.

c

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P4 of P58 c* P2.0 METHODOLOGY The plant temperature rise is used in LAKET-PC [Ref. P5.3] to compute the rise in water temperature caused by the heat rejected to the UHS during the postulated accident.

The total heat load rejected to the UHS is determined in Attachment D of L-002453 [Ref.

P5. l]. The heat rejection rate is determined for an operating scenario that would maximize the heat load to the UHS. This scenario considers a Design Basis Loss of Coolant Accident (LOCA) on one unit and a reactor SCRAM on the non-LOCA unit coincident with a UHS design event (loss of the cooling lake) occurring I 00 days after refueling of the non-LOCA unit. Both Residual Heat Removal (RHR) heat exchangers are in service to remove reactor heat on the LOCA unit. For the non-LOCA unit, one RHR heat exchanger is placed into suppression pool cooling mode (and later shutdown cooling mode), while the other RHR heat exchanger is placed into fuel pool cooling assist mode 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> after the initiation of the event.

Once the total heat load rejected to the UHS is known, the temperature rise through the plant is determined by the following heat transfer equation:

(Eq. P3-l) c where :

!:!. T = plant temperature rise [°F]

Q =heat rejection rate to the UHS [BTU/hr]

Cp =specific heat capacity of water [BTU/(lbm-°F)]

m =mass flow rate [lbm/hr]

The mass flow rate is determined by converting the Core Standby Cooling System (CSCS) volumetric flow rates of 65.3 ft3/s and 86.0 ft3/s (Design Input P4.2) to a mass flow rate at a 3

density of 62.0 1bm/ft (Assumption P3. I).

P2.1 Computer Programs and Software The analysis performed herein utilizes Microsoft Excel 2003 [Ref. P5.4], which is commercially available. The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis. All computer runs were performed using PC No.

ZD666 l under the Windows XP operating system. Excel Add-in function STMFUNC is used to calculate the thermal properties of water and steam at varying operating conditions

[Ref. P5.5] . The Excel Add-in function STMFUNC has been validated and approved for use in accordance with the S&L Quality Assurance (QA) program .

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE PS of P58

( . P3.0 ASSUMPTIONS P3. l Water Properties - The properties of water are evaluated at a temperature of I 00°F and atmospheric pressure. The density and specific heat capacity of water at I 00°F and 1 atm are 62.0 lbm/ft3 and 0.998 BTU/lbm-°F, respectively [Ref. P5.5].

c

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P6 of P58 P4.0 DESIGN INPUTS P4.1 Total Heat Load - The total heat load rejected to the UHS fol.lowing a LOCA for one unit and a reactor SCRAM for the non-LOCA unit is detennined. in Attachment D of L-002453

[Ref. PS.I].

P4.2 CSCS Volumetric Flow - The total plant flow during the UHS analysis is 29,300 GPM (65.3 ft3/s) for the first 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> of the event [Ref. P5 .2, Attachment C]. The total plant flow is 38,600 gpm (86.0 ft3/s) after 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> [Ref. PS.2, Attachment C]. The total flow after 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> is based upon the cumulative flow contribution from thirteen CSCS pumps operating at design flow conditions (eight Residual Heat Removal (RHR)-Service Water pumps, 4,000 gpm each; three Diesel Generator (DG) pumps, two at 1,300 gpm and one at 2,000 gpm; and two High Pressure Core Spray DG pumps, 1000 gpm each) (See Attachment D). Prior to 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br />, two RHR Service Water pumps and one of the 1,300 gpm DG pumps are not in operation [Ref. PS.2, Attachment C].

(

( PROJECT NO. 11333-297

CAL CUL.ATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P7 of P58

( .. P

5.0 REFERENCES

P5. l L-002453, "UHS Heat Load," Rev. 4.

P5.2 SEAG 13-000074, "LaSalle County Station Transmittal of Design Information (TODI) for UHS Analyses," Rev. 0.

P5.3 LAKET-PC Computer Program, Version 2.2, S&L Program No. 03.7.292-2.2, 7/31/2013.

P5.4 Microsoft Excel 2003, Sargent & Lundy LLC Program No. 03.2.286-1.0, dated 02/02/2004.

P5.5 STMFUNC (Steam Table Function Dynamic Link Library) S&L Program Number 03.7.598-2.0, dated 5/15/2003.

c C. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P8 of P58

( P6.0 CALCULATIONS P6.1 Total and Integrated Generated Heat Load Rejected to the UHS The total heat load rejected to the UHS following a LOCA for one unit and a reactor SCRAM for the non-LOCA unit is determined in Attachment D of L-002453 [Ref. P5. l].

These values are integrated in order to determine the heat load rejected to the UHS over the entire event. The integration uses the average total heat load between the current time step and the preceding time step.

Exceptions to this method occur at two separate time steps. One exception to this method is for the integrated heat load at 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br />, which is when fuel pool cooling begins. The heat load rejected to the UHS increases at hour 16 due to inclusion of the fuel pool heat load. Therefore, at the 16 hour1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> time step only the UHS heat load from the preceding time step (15.21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) is utilized for integration.

The other exception occurs at the 4.13 hour1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> time step. Sensible heat is rejected to the UHS until 3.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> (12,600 seconds) after the design basis event [Ref. P5. l]. To account for the sensible heat load rejected to the UHS between the 3.33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> and 4.13 hour1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> time step, the heat load at 3.33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> is conservatively used for the UHS heat load integration.

c* These results are presented in Appendix P9. l for MUR PU and are used to determine the temperature rise through the plant. The equations used in Excel for this calculation are included in Appendix P9.3.

P6.2 Plant Temperature Rise In order to facilitate the creation of a LAKET-PC [Ref. P5 .3] input file, the plant temperature rise results are determined in one hour increments. This requires linear interpolation of the integrated total generated heat load found in L-002453 [Ref. P5.1] to determine the integrated total generated heat load at hourly intervals. The plant temperature rise is calculated in Excel using Eq. P3-1 . The results of this calculation are shown in Appendix P9.2, and equations used in Excel are included in Appendix P9 .3.

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P9 of P58

( P7.0

SUMMARY

AND CONCLUSIONS The CSCS temperature rise across the plant following a postulated accident is determined in hourly intervals in order to be used as input to LAKET-PC [Ref. PS.3]. These results are given in Appendix P9.2.

c

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P10 of P58

( P8.0 LIMITATIONS AND OPEN ITEMS PS.I Limitations None.

P8.2 Open Items None.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P11 of P58 P9.0 APPENDICES LIST OF APPENDICES

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P12 of P58 Appendix P9.l : Integrated UHS Heat Load

(,_

I Integrated I

Total UHS Total UHS Time Time Heat Load H tL d UHS Heat (seconds) (hours) (Btu/s) ~tu/~:, I Load

[Ref. P5.1] I t. (Btu)

--O~OOOE.;:oO-- -*----0~00 ______-**-1~9iE:~04--f7~1-oE~o7 ! -o~oOE+Oo-6 .oooE+01 0.02* - 6.32E+04 I 2.2aE+oa I 2.49E+06 1.200E+02 0.03 7.64E+04 I 2.75E+08 I 6.68E+06

    • 1-~aooE-:;_*o 2---o~os- -* 7.7SE-:;~-2. 7SE+oa r 1n E.;07-
  • -*--*-------*---***- --*--------- -** ---*----~-;--r*--*------~-------------

2.400E+o2 0.01 7.asE+04 1 2.a3E+08 I 1.60E+07 3moE~02 - 0.08 7.95E+o4 2.a6E+aa 1 2.01E+o1

- 3.600E+02 0.10 8.05E+04 I 2.90E+08 j 2.55E+07 4 .200E +02 0.12 8.15E+04 J 2.93E+08 L


*-****-****-*****---*-- ****-******-*. **** *-**-----*-***-*---*****---**-******----*---**-l*--*--*-******- -**-----------*-- ***********-*-*--*-

3.04E+07

  • 4 :800E~oi ---- 0~13----* --8~24"E~o4- i--2.97E~OO---l-i53E:07 "

-~~01E+03 1.75 _ 1 .~1E+05 4.73E+08 I 7.21E+08 .

r, 9.152E+03 2.54 1.47E+05 5.29E+08 I 1.12E+09


*- -------- -*-*-**-**--- --------~-*-- -----

.200E+04 3.33 1.44E+OS 5.19E+08 l 1.53E+09

  • 485-E~o4 - --- * **4~* *1*3--- - * * * * *
  • 9: 9*BE:;04-i---*3:*59*E~OS____f1.94"E~o9__ _

1.!_70E~*-4:9-2__ =~~+ 3.39E+aai2.22E~~

C. 2.055E+04 I 5.71 8.95E+04

-***-***--*---- ------***-*------**----*--*-*****--------..----*----**-.. r----------

2.340 E+04 6.50 8.57E+04

3.22E+08 3.09E+08 i 2.48E+09

--1-----*--**---**---

! 2.73E+09 2~626E+04 7.29 8:26E+04 *1 2.97E+08 i 2.97E+09 7.99E~ 04 I 2.88E+08 I t-a.*aa--

. 2.911E+04 8.09 3.20E+09 J~ 96E+04 *-- l .69E+04 2.°7YE+OS  ! 3.43E+09

......... ,,,,________ ,_______,. ___~ ....- ...*---*-*-*--*-... - -- ---,-*-**--*---*-*- --* --**-**..--.--...- -----*---.L-*- ---*--*-------

r- £_~~1-~E~---*r-*3.85E;o9 _

3.481 E+O~ 9.67 7.46E+04 2.68E+08  ! 3.64E+09

~266"E:o4 1 1*0. ~~-.-----7.268°04

  • .~};~~~f1~=:1 ~-~f~q+/-~~~--j. _ ;:i~~i~=

4.621E+04 12.84 6.81E+04 . 2.45E+08 I 4.45E+09

~ 4.906E+04 13.63 6.i-1804-* I 2.41E+o81 4.64E+09

~~~ -~~

L~~~~E+~~~.=~~T.~:?.~=~-*[~~~~~~i~~~~----L~=~-~~-~~-=1~~~-~~~~-

  • 11f::t-~~~~

l~~~~i:~--~~- -~;li:~t-i;~~f-H;::6~

~;o1E+04 119:;7-! B.47E+04 I 3.0sE+os I 6.39E+09-;

ri}:;;~-_§!---l-fgt;~U~f.~

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P13 of P58 Appendix P9.1: Integrated UHS Heat Load


-~----.--~*------~ ......

(

(__ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P14 of P58 Appendix P9.l: Integrated UHS Heat Load

( .....-~~~...--~~~.....,-.~-~---,.*

Total UHS I Total UHS Integrated I UHS Heat J

Time I Time Heat Load Heat Load (seconds) (hours) (Btu/s) I Load

~9*~-1 __!~~ ~~~:~~ -~:~:~-J~10 l

1.887E+05 ___52.42 __. -~-?6E+04 __ -~4E+_~---* l 1.39E+10_

. *.1.916E+05 53.22 5.65E+04 2.03E+08 ' 1.41 E+10 I

_... ____ _ __ **----- --*--* - -*--***- - - ____ _ __j _ _ ___ _

1.944E+05 54.00 5.63E+04 2.03E+08  ! 1.42E+10 1.973E+05 - ~~

2.001 E+05 55.58 5.60E+04 I 5.62E+04 .. i _3.02E+08__J __'. .44~+~~-

2.02E+08

-* ------ --- -- *- *-- --- ----*------ ---r---* ---- --

2.01E+08 i 1.46E+10 i 1.47E+10 2.030E+05 56.39 5.58E+04 "2.058E:--o5 57.17"-. 5.57E+04 I 2.00E+08 i 1.49E+10

- ----- ---*-*-- *--**-----;--t~. *---------- __

2.087E+o5 2.115E+05 57.97-58.75 5.56E:o.;-t-2.00E+o8 5.54E+04 1.99E+08 1 1.50E:-10

..t______ ,_ _

L 1.52E+10 2.144805-* ---59.56 -*--. -*5 :53E:;o4--,---1~99*E-+08-**1 1~54E+10 2.172E+05 60.33 5.51 E+04 I 1*.98E+08- I 1.55E+10 2.201E+05 61 .14 5.50E+04 ,- 1.98E+08 I 1.57E+10

  • - *- - - **-*--------*---*--*- *----**1 ------ - - - -****

2.229E+05 61 .92 5.48E+04 I 1.97E+08 I 1.58E+10

-*- *-*-------- -*-*-***"*--*-*--*-*** . ***-*- -- **- -******-- *t*"--*---*-"*--*- -*---*-*- *

. 2.258E+05 62.72 5.47E+04 I 1.97E+08 I 1.60E+10 '

1*2 :286805 --63.50- 1sA6E+04 t-1.96E+08 i 1.61E+10 '

    • 2:315E:o5- 64~31-. -r-*****5~44E"~o4---1*****1- . 9s8aa*--1*-1:s3E+ 1 ...-...*-------**** -*-*-**-*"*-*"*-*****-**""'*l*- *--****---*--****--J ... ..._ ...._,___,_.______+--- --*--........*

5.43E+04 i 1.95E+08 I 1.65E+10

(

2.343E+05 65.08 2.372E+OSr . 65.89 --5.41E~o4=[1.~+08_l ~~~E+10

~401§_::~~ 6.~~-~~E+O~+OB µ aaE+'."__

i ~~:t~ --!~i~---.-- ~:~~:~ I~ ~~~~i-H-~~~-

t 2 .486E+05 - """69:o6___,t_s.36E+o4 "2.s15E+05 69.86 - *-S .34E+o4-*1 I 1.93E+08 1 . 92E~08T1.i4E+10 .

l *2:*5*43e~as * * -* - *1*a:54****** * . ...5-:-33E:i:o4*- -1* . .1 :92E~-cia-*- . 1~75E-;1a***

I 1.12E+10-!

t*2:57"2E+05 *--71~44** --***1* *-5:32E~o4"" *t*-* 1*:*91*E~a8*--1-. *1-~77*&10-

  • I £6~oE*o~ --.-~2.2c. ~~E*o~~ 1.91E'".;o8- 2:.?~_E+10 . 1 I 2. :!~~~~---J*~:~~--- =J~~~:~~i~~~~~;~-*~-~1-~*~~~-

~r~~~*~-~~-i~~~~~~~~-~~~:iR 686E*os 74.61 5.44E+04 l 1.96E+08 , 1.83E+10

p. 8ooE+os . 77.78 *--~.:.22~+o4 t°1.90E+o!l _!1~E+101 i/*--*-~::~~~:ci~ -----i~:~:-**- --~~*i~i:~1--l--~~::~-:~:--+ ~: :-~::~ii--

*- -* ___,__..............t **----***---"*"

  • f- 1 .88~~~Li i.- -~885E+~~ --~0. 14 -t-~:21E+04__

1 1.94E+10 2.914E+05 80.94 5.20E+04  : 1.87E+08 1.95E+10

'"~**-~~~=*= -~ -~~ ~ ." * * =-~~- ~--=~~*~~-'"~~~ *~ ..

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P15 of P58 Integrated UHS Heat Load

________ _,. , __,_.--* - -*----,1----.

Appendix. P9.l:

Total UHS Total UHS ! Integrated Time Time Heat Load H t L d I UHS Heat (seconds) (hours) (Btu/s) ea oa

  • Load

[Ref. P5.1] (Btu/hr) I (Btu)

-~*942E+O~- S1.72 **--i---~-~1-9-~--~?-_4-.*+-_-_-~- ~E+08 ..b~7_E+10 2.971E+05 82.53 5.18E+04 1.86E+08 l 1.98E+10

~-~~;F- ~~- =-g::fo~]=+/-~~

3.056E+05 84.89 -~~E+04 ~~ . 85E+o~J~?2E+10 3.oasE*os __!l.!;,s! _ ----~E+O* _T_1.:asE *oa__J._3_. 04E*_1_0__

3.113E+05 86.47 5.12E+04 1.84E+08  : 2.05E+10 3142E+os 87.28 ~.11'E+o4 1.84E+08 I 2~o 3.170E+05 88 06 5.10E+04 1.84E+08 I 2.08E+10

---*-. ---- ------ . - - -- ----~----- ------i *-- *--

~~.~~9E~~~- --~8.8?_ f--~.:~E+04 -L-1.:.~~E+~~-~-_10E+1~--

-~221E+~_s_ 89.64 ... 5.08E+04 _  ! 1:83~+08 j 2.11 E+10 3.256E+05 ___?0.44__ 5 . 07E+o4-T1. 83E+~ 2.13E+10 91 .22 5.06E+04J1.82E+08  ! 2.14E+10

  • -3.284E+05 3.313E+05 92.03 5.05E+04

-.---;-----**----+-

. 1.82E+08 I 2.16E+10

-_3~341-E"~~~ -*-* 92~8.~~-- -~*-5:*0~~ -l=_1.-0*1i;o8*-ri*1*7E~o

__3,37~.:_os_ ~-_5:~_E_*~--~~~C~E:'.1~

c ~i~~~*- ~47.

3.455E+05 9~~7

-=i--~Z-1 j~~~~---H:i~~

5.00!=+04 l._!.80E+08  ! 2.23E+1_0

-t~$.1~~=t~1~t~~i~~~i 3.569E+05 99.14 4.97E+04 i 1.79E+08 i 2.28E+10 I

+

3.598E+05 99.94 4. 96E~04 1.79E+08 I 2.30E+10

- **- *--- *- *- ***-* ...... - -. - . --- ..*-* ....... __ --- *-r. *-***....... ----- . _. _,- -* --- -------

-i~i~~-~:~~- ---~-6~~~~-- --1* -- i:-::~~~ - J ;~~:~} - j~:~~~+b I

-~~}~:~ _~HdI _ :~;~ &;;..___J+/-~;~~

3.740E+05 103.89 4.92E+04 l 1.77E+08 i 2.37E+10

i. 769E+05 104.6 9 - - - rEcO.L 1.i7E+Oa  ;-2.38E+10 t 3.797E+05 105.47 4.91E+04 I 1.77E+08  ! 2.40E+10

~~:.-~~ttf=8:~;:-A~R~!:::~1 L3:9-12":>_"_5_f '-""c~=i--~~*E_*~=r ,~~E_c<J_* J__2c*~E*, ~

~}~~1~I~11~~:~J?;-J ~:~~i

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P16 of PSS c*

Appendix P9.l: Integrated UHS Heat Load Total UHS Total UHS ] integrated Time Time Heat Load I UHS Heat (seconds) (hours) (Btu/s) Heat Load Load (Btu/hr)

[Ref. PS.1] I (Btu)

  • ~-+-~~~--',__~*~--I C.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P17 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Total UHS I Integrated Time Time Heat Load Heat Load I UHS Heat (seconds) (hours) (Btu/s)

(Btu/hr) i Load I (Btu) 5.109E+OS 141 .92

[Ref. P5.1]

4.63E+04 1.67E+08 I

3.03E+10

(

C. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P18 of P58

( Time Time (seconds) (hours)

C.

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P19 of P58 Appendix P9. l: Integrated UHS Heat Load Tobi UHS f I Integrated Total UHS Time Time Heat Load I,

  • UHS Heat Heat Load i Load 1

(seconds) (hours) (Btu/s)

[Ref. PS.1) (Btu/hr) j (Btu) 1.215E+o5 20-2.-o-8 --1-4*-_3 _2_E_+o4 1.56E+o8 1 4"7>1 E+1a

- -**- - - * --*---**--*-- --------- --*--*----+--*- --

7.304E+05 202.89 4.32E+04 1.56E+08 I 4.02E+10

- ---- - --- - - --- ------* -..- *- - --* ---- --+-- ---*-

7.332E+05 203.67 4.32E+04 1.55E+08 i 4.03E+10


--*-** *--- - - -- ---- *----- - -- - - - - i . . . - - ---

7.361 E+05 204.47 4.31 E+04 1.55E+08 I 4.04E+10 7.389E+05 205.25 4.31 E+04 1.55E+08 I 4.06E+10


 !'---------- --*- ------- - -- - -*--r--:-:- - --*

7.418E+05 206.06 4.31E+04 I 1 . 55E+O~ 4.07E+10 7.446"E~o5" -*---206:83- *--4~0E:;:-04*-~--*1:*55*E~08 1* -4~0BE~*1a-7.475E+05 201.64 4.3oE+o4 "1:55E~8 I 4.o9E+10

+~~~::~-~-- - - - ~ci~~~~---- --1~~-~-:~: I ~ : :~~~~i-ti. ~ ~~~~~-

I

-*-*--**-----*- **--* --- -*--*-*-***-- --*-**--*------1-- ..*---*-------*-*---i---*- -----

7.560E+05 210.00 4.29E+04 I 1.54E+08 i 4.13E+10 7.589E--;-05 21?81 - 4.29E+04 1.54E+08  ! 4.14E+10 7.617E+05 211 .58 4.29E+04 1.54E+08  ! 4.15E+10

-7_546-805~ - 212:Jg 4 28E+04- I ., 54E+08


*-- --------- *---*- ----*-----*- --*---*-***--*- --1---------

"IWE_;;o

~#:~-~ ~!~~:+-?i~i~~ ~~~~-t~~;:~

c i-7.76oE ~05** --**2-15*_55 - *--*4_-21E:-a4 *-r----1.-54E"~oa*----1-4~2*2-E+10-1-7.788E +o5 7.817E+05

--7 .845E+o5--217~92

-216.33-217.14 4.27E+04 4.26E+04 tI 1.s4E+os 1.54E+08

--425E;64* - ;_-s-3E+o8 !4. 25E+10 j

i 4.23E+10 4.24E+10

  • -*M- ---~- *---*--****- '----- --H***- *-H-** --****-H- ---*---**---*H *-- --**-- *-*---*----r------- -------

_7 8:0~-~8 7~ _ 4 :1f;~+04 ~-~E+08 i 426E+~-

,__!.:~~~~~ 21_~ _4.26E+04 I 1.53E+?8  ! 4.28E:+-10

~~:~-1 ~i~ --¥,_~:~:-+~:~-f*:~~-

8. 102E+~L-~25 . 06 ~.24E+04 I 1 . ~2E+08  ! 4.36E+10 8.130E+05 L 225.83 4.23E+04 I 1.52E+08

*1- ----

i 4.37E+10 l


*--**-*-r*-* ~ *------

8.159E+o5 226.64 4.23E+04 1.52E+08 i 4.38E+10 1[a:{~~~f- iif ~- l=f~IH 3a1E;o51~230~5a-** t**4*:*22E~o_4 - r1.52E~~=~ ! {44~~~~j ..

- ~ ~if ~:+::ii~~~

L~*E?-~- +.~~J-.-~~~~~J.. ."~~2 E~~L. 1

  • 5 ~~:~~ l .~:~~~:.!~

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P20 of P58 Appendix P9.l: Integrated UHS Heat Load 1

Total UHS T 0 tal UHS 1 Integrated Time Time Heat Load H tL d UHS Heat (seconds) (hours) (Btu/s) (:tu/~:) I Load

_ __ (Ref. P5.1]~ I (Btu)

~~~~BE~-~~ --~3:~- ..1.--~-~-E+O_~- 1 .52~+0~~~E+1~

{~_~;:_~~---1~!: f~ - ~l~~t~~~- ___  ;: :~-~;~;1:: :;_::~~-

8.444E+05 234.56 r 4.21 E+04 1 .5~E+08 , 4.50E+10 8.472E+05 235.3f 3 f i .20E+04 1.51E+08 I 4.52E+10 a.501 E+05 236.1*4 *- 4.20E+04 -1 .s1 E+oa I 4.53E+10 8.529E+05 236.92 4.20E+04 1.51 E+08 4.54E+10

- - - -* - -- - *** ------t c: PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. B ATTACHMENT P, PAGE P21 of P58 c:

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P22 of P58 Appendix P9.I: Integrated UHS Heat Load

. Total UHS Total UHS i Integrated Heat Load Hea t L oa d ,i UHS Heat I

Time Time (seconds) (hours) (Btu I s ) (Btu/hr) J Load

[Ref. P5.1] . 1 (Btu) 1.052_E_+-06-t---2-9-2 .-2-2-- 4-.*0-6_E_+_04- +l- 1.46E+OBT5.36E+10

  • ----**-*--**- *-*-*--*--1----*---- - -- - **-+--- --*

~~~~~+06 .. --~~3. ~~-

1.os8E+o6 293.89 4.:.~~~~~! __ 1.46E+O~ ! ~7E+10 _

4.06E+o4 r 1.46E+o8 -r


**-*-*-* ........---**--*----1---------*----l------*--..----

s .39E+1 o

1. 061 E+06 294.72 4.06E+04 I 1.46E+08 l 5.40E+10

~.064E+o~ -~?..?..:~~-- ~.:.~?-~_+o~_J_ 1.46E+o8 I s .41E+10

--- --- *--- _ 296.39 1.067E+06

_____ .,_ _L-4.05E+04 . -----t--- I 1.46E+08 . i 5.42E+10

+ - --- -

1.070E+06 297.22 I 4.05E+04 I 1.46E+08 i 5.44E+10 1 .072_E+O~- ~178 ~1 .4£E+~5.44E+-10

~ 1.075E+06 1.078E+06 298.61 299.44 4.05E+04

---*-*-- * --*--- .----*----- ........---*-::-t-:-*--

  • 4.05E+04
  • 1 :oa-1*E~o6 - ---300~28--- **--*4:osE~a4 *-r-1~46E:-o8-r-~*48E~-1-o 1.46E+08 1.46E+08
  • -------r'- - ---1 I

J 5.46E+10 5.47E+10 1.084E+06 1.087E+06 301 .11 301 .94 4.04E+04 4.04E+04 1.46E+08 1.46E+08 j

~*-------;.-----

5.49E+10

! 5.50E+10

-*--*- -* ------ - - -----------+.---------*-+-=-*. - -- - !

1 090E+06 302.78 4.04E+04 I 1.45E+08 I 5.52E+10

!+~~~ I =~-- i~:~-H~~:~{~:~

  • ~~::-~~:1F --~~:!::-T~:::::H~!::~--

1

(

' *'07E*06

-1.1o9E+06 -*- -308~6---

  • -;
    ,E~00 - 30889 30li4.03E+04 r j 1.45E+08 i 5.58E+10 r 4 *03°ii
    o4*** I--1~4sE+oa---:-s. 59E+10--

403E;04--;.. 145E+Oa_ i_s s0E+ 10-iiiti~£~m~t~ii!~li¥.~

1.127E+06


* ---- 313.06ji%

  • 02E+04 I 1.45E+08 i 5.67E+10

... ~:-~.~?._§~-~~- * * * **--~~-~: ~}__,__* - --~.:-~~~~~~--- --!.... -~ .: ~~-~-~~-*-l. __?.:_6._7-~_+..~.~-

314.44 i 4.02E+04 I 1.45E+08 I* ---

1.132E+06

. _ -----* -------1-------- 5.69E+10 1.135E+06 -~~5. 2~-- 4 . 02E+O~ 1.45E+08 j _:>.70E+10 1.138E+06 316.11 4.01E+04 I 1.45E+08 l 5.71E+10 1.141E-:;-05* *3*15:-g-4-- - 4.o1i:+o4---!-1:44E;oo-t s-:-12"E-:;.-10 .

,--1~1-.44E~a~--r--*-311~~~= -~4_-a1*i:~?*4 **-r--1*~44E~aa-*-*r s.i:3E~1a..

, 1 . 14~E*O~-t318.62_ 4.01E+04 _L2:~~~5.75E+10 I I+:;~~~ --¥i~b{J~~!++~~~~: -I ~-i~~~j l::T"15~~~J2Cl:i:l j~:OiE~Cl_~T1~~E~OB-tS~~SE~~

L~~~~~?!.L -~ ~~~?~,,i~4;,oo~~::-1_J,* 44E_,:~~~1.5..!.2~:'.o=

l. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P23 of P58 Appendix P9.l: Integrated UHS Heat Load

( --:~1

~ * ----------...----.

Total UHS I T0 tal UHS  : Integrated Time Heat Load I H tL d I UHS Heat (seconds) (hours) (Btu/s)

[Ref. P5.1]

ea oa (Btu/hr) J i Load (Btu) 1.161E+06 322.50 4.00E+04 1.44E+08 [ 5.80E+10

-**1~16"4E+o6- - - 323.33-* - 4~oo'E~a4 - 1.4.i"E+o0- 1 i81 E+1*a*-*

  • -*- ---- - *---*- -***- * ---*---- --------~ .. --

-;;~~~~- i~~-- ---~~~:~-- -+~~~: * -t+~i;~~-

~:2!!E+06 _E3..:~ -~_. oo_~~~~----~:.~4E+08 j_5.85E.~10~

+*~~{~ ----~~~%~---* --- ~:*i~~:~~ ---~~1~~-~: *-i*+~i~-:~-~-

1~ 181 E+~ *328.Q6-- - 3.99E+~4-~44E+oa 1 *5.B8E+10 1.184E+06 328.89 3.99E+04 I 1.44E+08 I 5.89E+10

~~~-~~=-~1TIFf+..~~~1 t

- 1.192E+06 -°331 .11 3.99E+Q4, - 1.44E+08 *1 5.93E+10 1.1s5E+06 331.94

  • 3.99E+04 I 1.43E+08 i s.s4E+10 1

*-*-*---*--"* *-*--**------*--t------- ---j---~

!.:_!9_~E+~?- ---~~~~8___ -*-~:_?.~~-~04 **-~---1.:~~-~-~~-.. J-~.:~~E+_~..

1.201 E+O~ 3~_3~~- ~~~E+04 _j 1.43E+08 i 5. 96E+1~

1.204E+06 334.44 3.98E+04 I 1.43E+OB I 5.97E+10

~~L~~~~~~~~-. =~-~~~~~=*- *=-~~?~~~~~.~J~:=*~~~~~~~~-~~j:.=~_?_sE~~~-- I 5.99E+10 I

(

1.209E+. 06 335.83 f 3.98E+04 1.43E+08

- 1 . 21~~:06 336:67 :98804 I 1.43E+08 I 6.01E+10 1.215E+06 337.50 3.97E+04 l 1.43E+08 l 6.02E+10 1.21BE-;:-oo j38~33-*1 3g]E+04 -*1 LiiE+0B i S:o3E+10 1".221E-;66- ---339:11- *--*3.97E;04 , -* 1 .43E~os*t-6:o4E+10 1~224E+06 - 340.00 - 3.ITTE:o4--J---1.43E-:;:08- t6 .osE+10 1.226E+o6___340: 3.97E+04 I 1.43E:;QBT 6.o6E+10 r

  • -***-*-*-****-.. . . . . . * -**. ................................. .r . . . . ............... -................. r--***--***........ . ................_.1....... - ........... ...*-*******-*

1.229E+06 341 .39 I 3.97E+04 l 1.43E+OB ! 6.07E+10 i 232E+06 342.22 I 3.97E+04 J------r:- ***-****-**-****-***-..***.J..- ---*********-**-**-**

1.43E+08 I 6.08E+10

.235E+06 343.06 3.97E+04 j 1.43E+08 i 6.10E+10

- - - -* ---*-*- - -*------***1*- - - * - - --- --

l 1~~~~;: -~~~~~--*- *--{~!~~%~----r--+:ii~:%i*-j-~ ~ ~-~~~--

f1}4~E+~~-- *345~28--* ---3~~6E+~~J1.43E+o8*- I ~~1o 11 .246E+06 346.11 3.96E+04 I 1.43E+08 I 6.14E+10

    • -------..---***** *-----***- -- *---- --------+----*--- . ****--r*-**-*-*,**-*

1.249E+06 346.94 3.96E+04 i 1.42E+OB i 6.15E+10 m::~H:r:J~:~f~~:~r:-H~n P~~{~~Et~I~~FFq~~~ES°i~~

L~~~~-~~J-~51 ;~~..J.~.,~*-~~E+~~-L .2;~~~°.~~J ~~

  • 2~i::~~1 .

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P24 of P58 Appendix P9.1: Integrated UHS Heat Load

( Total UHS 1 t 1UHS i Integrated I

I' Time Time Heat Load H:a~ Load UHS Heat (seconds) (hours) (Btu/s) (Bt /h ) 1 Load

~~ ~~:~~_1:~2~~~~:*,~-

1.272E+06 1.275E+06

- -- 353.33 354.17 3.95E+04


µ--

3.95E+O~*-t 1.42E+OB 1.42E+08

-  ;-*--- I I

6.24E+10 6.25E+10

+

I


- ----*--;- ~*---

1.278E+~ 355.00 3.94E+04 I 1.42E+08 6.27E+10 1.281E+06 355.83 3.94E+04 I 1.42E+08 6.28E+10

<~~~6~~ -i~HF=[~~~~-1 ~i~¥o 1.289E+96 1.292E+06 358.0~

358.89 3.94E+04 3.94E+04 I

i

~.42E+08 1.42E+oai 6.32E+10 1 6.31E+10 1.295E+o6 ---359~72- **--3.94E+o4 -***-1-.*42E";OBT-*6~33"E;10-ti l-1:"298E~o6-- - -366-:56__, _ ""3~93E;04* --1*~42E;Oa--1 ***6.35E"~1o-t°1."3oOE+06 361 .11 - 3.93E+04 1.42E+08 6.J5E+10 1:--- -

J

--...,-----11 L~* 39_3~_:_o_~-- -~~~:~~- - -j--3.~~E+?~0-~2E~~-i-~-: 37~~-~~

~~~~:~;b~ -** - ~~+~~----* ...--i:1~;~1--*-*t ---- ~~1~~:~~--t.~J1~~~~~-

1.312E+06 364.44 3.93E+04 T1.41E+08 I 6.40E+10

-1~315E-:o6-* -*--36-5.2"8"*-***--3.93E~o4******r--1A1E+o8..T6~41E+ 1o*

( 1~~:~--- :~f- ~:~::~:=-~it~::'.~

tt~ii~~ ~ iii{~+/-~~f:~~

f 1.332E+06 370.00 3.92E+04 I 1.41E+08_j 6.48E+10 I 1~33SE+o6 *3. 92E~o4_T_w_E+OB 1

370.83 la.49E+101

--- - - - -- ------- - - - . .....- .._.. ----**----*-... _.......... *r..*** ******- **--*-*-- ** *-**--*-**-*..***'-*********-*---**---** --*---*}

--- *-* .- -- . ... -371 1.338E+06 .67

  • --***--............._.3.91E+04 **-*-----*. *-.. ...-..rI . ..6.50E+10

__ ..*-***-**................'t -****1.41E+08 . . .....________, __ .

1.340E+06 372.22 3.91E+04 1.41E+08 I 6.51E+10

~~;~~!-~=~{~1~-i~-Vi-~~i~

~-~;::~µ~= +;;;1~~};:~~~

_.1.357E+06 1.360E+06 f 1 .3~.~E+~j ~?8.s1 =- 3.~o'E;Q4-~i 377.78 t

    • -**----*............ _3.91E+04

_. . .................... 1***-*....376.94 3.90E+04 I 1.41E+08 j 6.59E+10 I 1.41E+08

_ _ . ..... **--*. *--****""+*-* l 6.58E+10

  • -..***-*-*---***-..-*--t---""""*--*--****....

1.40E+oa  !-6."6o"E:-1tj 11.3:~~ ;6~__1- - - ~~~:~~---- -- -~::-~~~~:---- - - - - ~- :1~~-;ci:---~-~:~~-~~-6-** I 1

L1~312E~~-~~=*3a1~*11~1~-i90E~*a4-*-t1.4aE~§8-*r 6~-s4E~10-1 L~~-32~~?~,1-~~-~~-~L~~:?3.~.+~~~=L_1_. 40~+~~ -~~~~~1~

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P25 of P58 Appendix P9.l: Integrated UHS Heat Load Total UHS Total UHS I Integrated Time Time Heat Load Heat Load  ! UHS Heat (seconds) (hours) (Btu/s) i Load

[Ref. P5.1] (Btu/hr) I (Btu)

- - - r -*

1.377E+06 382.50 3.90E+04 1.40E+08 I 6.65E+10

  • ----*-- --*-*--- ** --- - -*-------r----*- - -***

1.380E+06 383.33 3.90E+04 1.40E+08 ! 6.67E+10


- -- - - * --+*-- -

  • 1 383E+06 384.17 3 . 89E+~4 1.40E+08  ! 6.68E+10

. -------------------- ---- --*--*--* - ---** ----* ---*-~--r---- ----- - --

1 . 386E+~~- ~5.00 3.89E+04 1.40E+08 \ 6.69E+10

-~~_?~-~~~- ---~~-~3 3~9~_+04_4_-2.:_~~+0~. 70~+~

1 1.392E+06 386.67 3.89E+Oi4.40E+08 6.71E+10

--**-**-----* **---- *-**--* --**--*-*--** -*----*-*-***- * **-*l--.--..- - -*

1.395E+06 387.50 3. 89E+~4 1.40E~i 6.72E+10 1.397E+06 38806 3.89E+04 1.40E+08 i 6.73E+10 1.400E+06 388.89 3.89E+o4 1 .40E+08 ,- 6.74E+10

-.. ---** ---* --****- ----- ---*-**-**- ---- *--- - - -- -t- *--**- ----

-~1~~~~: ~:;i!~ i~7~--1~~--j-N~~~~-

_1.:.~?..~~. ~.9~. 39~~9 3.88E+<!_4_1.4~E+08  ! 6.78E+10

-;~~~~* 6:- ---~~~~~!- ~~~~;6: +-+~%::6i-*l- -*~. :~i:-~%


*-..**-*-**----.. -**-**-*-*-----* *-*- -***---**;-*--** -- -**-- t*--*- ***--*--***

1.417E+06 393.61 3.88E+04 J_ 1.40E+08 i 6.81E+10 33

  • 1.420E+o6 394.44 3.88E+o4- I - 1:4oE+oa I 6.a2E+10

...-1~423"E;a5*.. *-**-395~28-"' " *-*3~37*E;04-r***1 . 3SE~o8_1_6.83E~W*-* .

-- - -*--- - ---l -*-***-----*-**---L..____..___ ,_,,___ w_

~~~6E~ ~~~ 3.:.~-:~~.J . 1.39E+08 I 6.85E+10

~.42_~+06 396.94 3.87E+04 1 1.39E+08 j 6.86E+10 l*i~-;~~-~~~%~=3*~~~~~~~

~~ii:~~j:~

H.46~§.~9.~_!_ 405. ~6-

~ Ji=:f - ~i~lii~ tij%~~

! 6. 98E+~*~--1

  • ---*--*-tr-____._ _.,_ ------*- -l -----

3.86E+04 -+-1.39E+08 h.463E+06 406.39 3.86E+04 1.39E+08

.-------* *---~*

i 6.99E+~

i 7.03E+1~~

~~:t~T:-~~:~~~=J. 2?~~~.i-~:-j*.

1.474E+06 409.44 3.85E+04 j. 1.39E+08

-~T~2!~~~~-

1.480E+06

- --~~~~i.411~~3.~~:=t2~~~:~~~9~

.11 J 3.85E+04 I 1.39E+08 I 7.05E+10

  • -------t----*-*-*-** -*-.--- **----*****i----*-- "1'"*---*-

1.483E+06 I 411.94 I 3.85E+04 i 1.38E+08 -A.--.:..~ i 7 . 07~E+10 J

........... ,_..,,_.... _,*...;o;:.._"".;""'~...,.-~- H.- - :..:l-..,.,-,~"t,:;..a.t~.-:.;.~;k...:;....... ....r.:;:;.;~*-* .... '-

C. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P26 of P58 Appendix P9.1: Integrated UHS Heat Load Total ~T~~ UHS . jintegrated Time (seconds)

Time (hours)

Heat ~~~d (Btu/s)

[Re!:_P5.!!

lI ~

eat oa

~Btu/hr) * (Btu)

L d 1 I'

UHS Heat Load 1.486E+06 412.78 3.85E+04 I 1.38E+08  ! 7.08E+10 1A'8-9E+o6 *- *4-13_s1 -* -3~4-E:+o4-t--uaE:oa--17~o9E+10-


- ----**- ---* -------* *-**-------r-------

.*-*1.491E+06

  • -----**-- ----I -----****- 414.17

--**- *- *--............ 3.84E+04

_________ ,._ ---.... 1.38E+08 ! 7.10E+10

- -- -..--..--..*-r------ ----

1.494E+06 415.00 3.84E+04 1.38E+08 I 7.11E+10 1.497E+06 1.38E+08 I 7.12E+10

  • ------- --- - ...415.83 3.84E+04
  • - - --* **- **-*----* -- **--**-----"-}-*---*-

1.500E+06 416.67 3.84E+04

.......*--**---- ---* .............. ... ----*--*- ---*-**--..*--*.. -- -** ___ ,......____,,_____.__,....J.. -

1.38E+08 l 7.13E+10 **------...

1.503E+06 417.50 3.84E+04 1.38E+08 I 7.14E+10 1.506E+06 418.33 3.84°E+04-- ---~38E+08 J 7.15E+10

  • - --+------+-------1-----*-t---

1.509E+06 419.17 3.84E+04

  • 1.38E+08 i 7.16E+10 1t,~ffi~ ~-1~: ~4j~~t-{¥.~;:. -1.=rf~:Tf.

1.517E+06 421~

- - - - --------i--::-:-=-

3_. 83E+04 _ 1 . 38E+0~~20E+1~

f1.520E+06 422.22 3.83E+04  : 1.38E+08 j 7.21E+10 Ffi!~~~-~~~:-=:~~~f~~l~~~F

. *;52gE+06- 424fl 3.a3E+04 i-1~38E+08 j 7.24E+10

  • -*-****N***---*--* ___..,, ____ 0 ** *----***---1-*----**--*--+*--*-----*-

0* ~~*~~:~-~~:* * *--~i~~~~--- . 1* -*-*~:-~~~~}-* t" *"-~-~~~~~~--* i*- +-i~~:~--*

-~-~*-------*-*-h c

~~:..SJlE:ofi _ 426.94 __ 3~~~. 38E+08  ! 7.27E+10

~~;
:~i .

---~~~i~ --;~~~::~i-+--+~:~;ci~--~--~-*----*------***--

........__...................... .........-*----****- ......._,...............-- *-----*-**+-***-*-**---*- . **-----~*-*--

~~::~~

i

--~:~~r+~: --:~~:~~- -~-:::~: ""f~-~:::*r-!~~-1 1.546E +06 429.44 3.82E+04 I 1.38E+08 7.31 E+10

..................... .... ..................... ....... ....... .- . ..................... .. .. _......... ........ L ..............- -.. *- - **-*******-- ...+..................----******. . 1

~*~~:-t-~:!~--=t:~f::i~-:!~-t!::::~~

"1":5i3°3E;06° ---*434~-7-- --3.-82E"~o4-----r-*1-:37E+OB-T7 .37E+16"'

0

  • 1*_s66E-;a5**---**435~ 0-0-*- -* -**-** ia1E-;04----1--* -1 .37E';o8 * - *1-- *1:3aE*~10--*
  • --*-..**--- -------* . -----l*--*-*---------*---*

1.568E+06j 435.56 3.81E+04 l 1.37E+08 i 7.39E+10 F~72Ec_o6D36 '~p~2~+0_~1__1,3i_E+~_::G:40E+1E_.

t~:~~;tR!!t~-fH~!:~;_t,~~E~

1.583E+06

.......... ... ...-...-...... .. . . .............439.72 II

. . . . ..-- --**-*-**1]*... . . .3.81E+04

. . ...- -..*-------..................1.37E+08 1*

. ****---*-*--- . -.........;i..............

7.45E+10

~**~-:-~~~:ci;j~:-~~~;~-:~1~.r=.:~*:~ ~~b~---:t**-~*:.~i~~~---*t* *f1~~;~1~~- !

1.591 E+06

-"'-.. - .~*".;;.:.

I 441.94

~..; .v1.:.....::_..._-.,.-..-~,.. ;,~ ...,-

[ 3.81 E+04

  • . _,._...;:._~.:. -< .*

l

  • ..:c,;:.... ....,.... ~:?1. * * ~, .. h,,.._,,,.

1.37E+08 i 7.48E+10 ]

~"""-** *~-" -~::> ,......_I -** ...::- ~.*- .:.. - ~...c. - .~-

C. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P27 of P58 Appendix P9.1: Integrated UHS Heat Load

( Tot;luHs li I integrated I

Time Time Heat Load Total UHS ! UHS Heat (seconds) (hours) (Btu/s) Heat Load I Load

[Ref. P5.1] (Btu/hr) i (Btu) 1~594E+06

  • 442.78 3.81E+04 t' 1.37E+08 l 7.49E.;:j()

1.597E+06 I 443.61 3.80E+04

  • --*- * - --- ------- - -i---:-- --*- r - -- - -*

--*---*-*-l----- **-

1.37E+08 j 7.50E+10

-~~~E+~?._. *---~--:~4-~---* ._3 . 8~_E+04 _ .~37~-~_?~- +---7 .51 E~~-~-

~:~;:i -~:~ =-f::;: ~~~

1.603E+06 445.28 3.80E+04 1.37E+08  ! 7.52E+10 1.~6 - 448.33 3.80E+04  ! 1.37E+08 I 7.57E+10 1.617E+06 449.17 3.80E+04 1.37E+08 j 7.58E+10

- - -**-****- - ****----*---*- * ***- **----*---*- ***-----*---t---*- ---

1.620E+06 450.00 3.80E+04 i 1.37E+08 I 7.59E+10

- 1~62°3E+a6-- --* *-450~83---* -isoi~04- *- 1-1~-3:;*E~oa-1*-1~60E-~-1-a-1~2SE+06 451".3 9 V9-E+04 I 1 ~378-08 I 7.61E+10 I

-*r- 1 . 37E+0~63E+W 1:628E+06 452.22- 3.79E+04 1.37E+08 i 7.62E+10 1.6:31E+o_6_ *** 453.06 *-- -3.79E+04

      • -----*-------* *------*-------* -**-*--- ------+--*- --***---*-*-*--+*-*------*--**-**-

_:.-;~;-=~~~~- +/-;~--~-~;~~~~;~

    • i~1~~;6~.:i-* ** ~~:-~~---* *---i~i~~~~----1--~~~~~~-~~-1--~:~~:-~*~---*

1.645E+06 I 45~_ 94 3. 79~~_]6E+ow. 7.68E+10 1.648E+06 457.78 3.79E+04 I 1.36E+08 i 7.69E+10 1~651E+o6t4-s*a~61 --*-3~79E +o4! - -1 :36-E+o8 -r--1.11 E;10

---**---------r*---*------- *-----*--- ----;----- ***-----**-L*--- - ---*

1.654E+06 459.44 3.78E+04_j_ 1.36E+08 I 7.72E+10 1'. 6s7"E:o6 460.28- -

  • 3.1ai:-:04 1 --*1-~36E+o8-r?. 13E+10 **

f~~~,--*i

  • -------*---**-----*-** li-i -~~i~-f -i~~:~~ -R-i~:1~--

**----*----*-****-** *- -**-*-**... ***-------*-***-*----r*--- ------*-*****---***-**-t***-*--*-** -*****---***-*-****-

7.76E+10 1.665E+06 462.50 3.78E+04 1.36E+08 I I 1.677E+06 465.83 3.78E+04_j_ 1.36E+08 I 7.80E+10

~~!i!Jt!f~l!jltitt.~it,11

~H~ii~** --~~ :: --J--H~~:~-+-H~~+H~i~-

i ~::.?.?~~':~~ '~-~32 . ,_:J---~~~f~~=-~t~i:3~!:.o~ J_~a_9~.~ oJ

( PROJECT NO. 11333-297

CALCULATION NO. l-002457 REVISION NO. 8 ATTACHMENT P, PAGE P28 of P58 Appendix P9.l: Integrated UHS Heat Load

( - ---,-*- - - -..... Total UHS I Integrated Time Time Heat Load Total UHS , UHS Heat (seconds) (hours) (Btu/s) Heat load Load (Btu/hr) (Btu)

[Ref. P5.1]

1----- -t- *- - - -- ---t-- - -- - i-- - - - t 1.702E+06 472.78 3.77E+04 I. 1.36E+08 I 7.90E+10

. *--- -1.-- *-

1.705E+06 473~ _E7E+~--~- 1.36E+08 __-!-2:-~E+10 1.708E+06 474.44 3.77E+04 I 1.36E+08 I 7.92E+10

  • 1:~11E:ci6 ---4-7528 i 77E+04 J06E~o8---r?.93E~1o-1.714E+06 476.11 3 .76E+~ 1.36E+08 I 7.94E+10

~ :H~~:6~-r-1~~~i~*-- :=~~**--t--~~~~-B :~::~~

U22E:a~478.33 3.76E+o4 I. 1.35E+oa i 1.91E:10 1.725E+06 479.17 3.76E+04 I 1.35E+08 7.99E+10 J

i

- ----- ------ - --*- *-- *- ---**--- -*----'------ - ----f-:.-:---- *--

1.728E+06 480.00 3.76E+04 1.35E+08 I 8.00E+10

.1~131-E:;: --*4acis3_____ - i7-6E~o4-- *--1~35E+o-a--*-1--a-~a181-a 1.734E+06 . 481*.~ 3~~04 1.35E+08 I 8.02E+10 1 :!~!_E*OJ 4~0-* --~!_~E+?4 __t_1:~5E+08 i 8.03E+10

-~~~-~~~~- r--- --

---~-~-~~~t-- !~ii~-:~--t-+~~:~----r--~~~~:~- - .

-~: ~:~:~~=r--- ::~~~----' ~~~~~;~----r*--+~;~:6-:---l-i.6~::~ ~


*- -*- -- -- --*--**------ *---*--**---***--*------------ ------,-..- --- . - --*-t--- -**--- ---

(_

1.751 E+06 486.39 3.75E+04 i 1.35E+OB J 8.08E+10 1 . 754E+~~87~ 22 *3 .75E+04 1.35Wa- j 8.09E+10_

~57E+~~- -~*~8. 0~ _ _ _ 3.75E_-+:_?_~-- 1 ._35E+~~-+~_:_~~_:'.:~

1.759E+06 488.61 3.75E+04 1.35E+08 I 8.11E+10

-- --- ----- ---M- -----**--------1**---------*- -- ----- -*-*--**- -*-r- ---***- - *- --

489.44 J 3.75E+04 1.35E+08 ! 8.12E+10 ra.*1481-o 1.762E+06 1.i65E+06 l"- 490.~r 3.75E+04 1-1-.J-SE+OB 1 76BE+00 --491 .1*1 - f 3 .Y5E+04-1*-*1:-;*5E+OB l 8.15E+10

  • *--*--**--**---..***--*-.. . -*-*--*-..----*-**-***-**-*****r*-*-----...*****-**--*--*-***-*-*r *-*-*-*--***- -- -- ***-*- _ ...... .i. -*----- *-*-- ---**--*
  • ~: ii:-~~ci~ *- -~~~:~i-- *-j~~~~~~1--t--H~~:6{--*!*- ~~:~~--

r1.777E+O~ 493.~1 . _ 3.7~+04 -r~ 1.35E+08 8. 1~E+10 1 3.74E+04 I 1.35E+08 l 8.19E+10 1

1 1.779E+06 494.17

- *-- - ---*-- *--- --*-------*---***--*-*-*-----*---*i *-*--*---*- - . ---*t-*-- - *-*---

1.782E+06 495.00 3.74E+04 ~ . 35E+OB i 8.20E+10 1.7a58o6 I 495.83 .-*mE~] 1 . 35E-~~ l ~. 21E+10 1.78BE+06 496.67 3.74E+04 l 1.35E+08 I 8.22E+10

~. ~:m~~t~HF=-~~~l~~!%~~~Z~}~--

1.796E+06 498.89 3;2~~~il=1~5E+cIBJ-* 8.25E+10 I

(

r~~~ffJl~~E!~t~!:IJ~il~

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P29 of P58

(

I 8.40E+10.

-~---+-~-*~-t--~---t-~---+---

509.44 3.83E+04 1.38E+08 1.834E+06

-1.836E+06 - -*- -------*-**---- - - --*- ---r---.--. 8.41E+10 510.00 3.80E+04 1.37E+08 I

.....-----*-*- ------*--*. *-- -------- - - -..--+---*--- *--*-*

~~39E+06 510.83 3.78E+04 1.36E+08  ! 8.42E+10 1.842E+06 511 .67 3.76E+04 1.35E+08 i 8.43E+10 1.845E+06 512.50 3.75E+04 1.35E+oa-ra.44E+10

---*---- ----- *-- - - - - - - - - l ----- -

-jE~m~~i~1~-~i1~~-

c

~:~59E+06 516.39 3.72E+04 1.34E+08 j 8.49E+10 1.862E+06 517.22 3.72E+04 1.34E+08 8.50E+10 1.865E+06 518.06 3.72E+04 1.34E+08 I 8.52E+10

. . .- -- . --*-** -------*-- -- -----*-*r*-*-*-*-r . --*-*-..-*-*-**

1.868E+06 518.89 3.72E+04 1.34E+08  : 8.53E+10

--*--*-..-*-----*-* __, __................ .. _._ . . . -*-* -*-*----.... _.......T-*---*--*- --**--j--*--*-*-..-**- *-

1. 871 E+06* 519.72 3.72E+04 1.34E+08  ! 8.54E+10

...----*-- ** -*------- -------*---i-----.:.::..._i_:_____

1

_1.873E+06 ~?~~~-+ 3.71E+04 i 1.34E+oa_ _L~.:54E+10 1.876E+06 521.11 3.71E+04 i 1.34E+08 i 8.56E+10

                  • --***-*-*--*----*-**-*-- **--..*-***-**-*********-*-******-*-.---***-------*---*. *-*---..****+-**-------'""*-*-- *-***-**-********~----***. . ***-**-***-- ---*--

1

~~E~OO

'*~~~T!~n~s --s2sqs11E:o.-=:

~~iii~ ~C~i!';
;o~

~:;;;::_ -~~ -t :~: --~_::::~: ~::~ !

8~~t~- --1~H~--- -~~~*~-H£~~-H-~~~:~l Gj~~i~~~~-

tL--"------;--r-** ~ l L~ . 2..~~~~~~l~~~~~~.~J...~~.~- 7~~:2~~**.L--~ ~~~~~~~-~~L.~~~9E +~°-J

~~~~--

- -----:-r--. l ~ii~ . ----+----i

~ H if~I

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P30 of P58 Appendix P9.l: Integrated UHS Heat Load

c. Time (seconds)

Time (hours)

Total UHS Heat Load (Btu/s)

Total UHS ~tegrated H t L d I UHS Heat ea oa - j ~~.ad I

1-------1---- [Ref. P5.1] (Btu/hr)~!

1.919E+06 533.06 3.70E+04 1.33E+08

-*-----f----*- --

I 8.72E+10 1.922E+06 533.89 3.70E+04 1.33E+08 I 8.73E+10

--- -*-*--*-----*-*--*-**- . -- *-*-* - ----* --**-----r---*--

1.33E+08 8.74E+10 1.925E+o6 534.72 3.70E+04 1

1.928E+06 535.56 3.70E+04 1.33E+08 i 8.75E+10 1.930E+06 536.11 3.70E+04 1.33E+08 I 8.76E+10 1.933E+06 536.94 3.69E+04 _,_ --*-*

1.33E+08 la.77E+10

..----.. ---~-----***-*-

1.936E +06 537.78 3.69E+04 1.33E+08 i 8.78E+10 1.939E+06 538.61 3.69E+04 I 1.33E+08 -+ 8.79E+1o

+/-:~~~h1~~~+;i~@r

~~E+o6 ~~1..:_~.t~~~9E+04_-i-.2_23E+08

- {* ~ ~~~*-

i 8.82E+10_

t 1 . ~~E+oa_~~4E~~o 1~ .950E~06 - 54_~, 3. 69E+0~+_1_:33E+08 I 8.83E+10 L~.:.~53E,,,:':~ _ _342:5o -+2~~E+04 If+;~~-~~~- -*-~;t~*~-~1---f.~~~-~1--- 1 --~~~~~~-~~---1 }~-~-:~~ .

.~.~~~~+06 *--~-4-~ . oo_ **-t*~~~-+-°-~---1*-..}~.~~~-~~~-.j ~:.8!.E +2_?_

!**+:~~~~~~*- --*--~-1-~::-i* *-* -- !: ~*~~~~~--*

  • t--+H-~-:~;-1-!:%6~~*~-~--

( [T970E"~_6 - ~~7.22 3.68E7o4 I 1 .33_E~08 ~;io

!- ~.9~~~~~~..J--~~8.06 _ 3.68E+0~-~:33E+08_~.:.~~E+~~-

l I 1.33E+08 I 8.93E+10 1.976E+06 I 1- ................--*---1---*-*

548.89

  • -----*-.. *-----~------
    • ---.----*-*-*-~68E+~j~3E+08 3.68E+04

. -*--**---*-r-:-----*--

  • L~~~~9E+O~--t- 549.:!~ _~~ . 94~_+10

~i~l~i:1:* i-i~f~i~~A~it~~

n~:~3E_:-~~+-~~~?..! __j~_BE+0~---,-~-~~~+08 *-f..!_~~-E+1 O_

~~:~~~-~-1:~~-N~~~ f!~:~~-

.~mt~T1t?:~=r~i~ii=~!~i~i#~~~~

fb~o~~~~o6!-ss9~11 . ~f. 3.67E+o4j 1 .32E+o8f9.~6E_+1oj J 2.016E+06 ' 560.00 I 3.67E+04 i 1.32E+08 i 9.07E+10 I r2:0:i9E-~o6** 1 *--5*50i:3-*--* 1 ---i61E+o4*-*-r-*:1~3-2E~oa-**r9.*oaE~1-o -I l~~~~=~~~l~;~~r~:;~~T~~f::~J

(, PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P31 of P58 Appendix P9.l: Integrated UHS Heat Load

.Tutaj UHS

  • 1~otal U~S I Integrated Time Time Heat Load H t L d I UHS Heat (seconds) (hours) (Btu/s) ea oa i Load

[Ref. P5.1] (Btu/hr) I (Btu)

-~- --l~-

_2 . ~2~~~9.?._ 56~:9.~ . -~~?._'.E~~. *- -~

  • 32~~08 -L~11E+10 2.030E+06 563.89 3.67E+04 1.32E+08  ! 9.12E+10

--554~*2-** t! --1~32E+08 - r--9.14E+10 i.o33"E+o6" 3.67E+04 2.036E+06 565.56 3.67E+04 1.32E+08  ! 9.15E+10 1.32E+08 I 9.16E+10 2.039E+06 566.39 3.67E+04 2.042E+06 567.22 + i.66E+04 1.32E+08  ! 9.17E+10

        • --*-- . -**---*--- ----*-..**-*-----**-. . *-*-**-*-*-*-***----- -**-*--------*----+-----****---*-*****--*--
2. 044E +06 567.78 3.66E+04 1.32E+08 j 9.18E+10

~2.oill~o6 568.61 3.66804-- 1-:32E+08 l 9.19E+10 .

2.05oE+o6 569.44-~6E+04 o2E+o8 T 9.20E+10

___........-..*--- -----------*--*--*--*--*-- ----*------+--*-- *- *---

' 2.053E+06 570.28 3.66E+04 I 1.32E+08 l 9.21 E+10

      • -****-*-**--*-----*---** *------****-*-**-.*-*--** **-----*-*---*-*-------***-**-* *-*-**-*-**------~-*--*-t*----*----*--**---

' -~

  • 056E+?~ ~: 11 3.66E~~~~+08--!. 9 . 2~E+10 2.059E+06 571 .94 3.66E+04 I 1.32E+08 I 9.23E+10 I 2~062E+06 5Y2.78 3.66E+o4_1_1 ~32E+08 i 9.24E+10

~!~!f~~-~!:f~~!ff:~;~

t:H~~ ~;r*-+/-~~~~~:~j=g~~~H~f

o?~~E:o6 -- 577.~~- -=~.:.~5E+o4'1"-1~2E;O~- i 9.30E+10 2.082E+06 578.33 3.65E+04 I 1.32E+08  : 9.31E+10

. --***-*-- - - -- **----*--*. -* *- *- . *-*-*-*----i**--*---..-----*- ---l------*-

2.084E+06 578.89 3.65E+04 1.32E+08 ! 9.32E+10

-***....................... ****---*-**-* ---*-******. ***-**-*-*-..........L ......... ......._..___****---+-*-*..........-..-.. ......

2.087E+06 579.72 3.65E+04 1.32E+08 j 9.33E+10

[H~:-i r*--*- *---- ~~1~~~~-+ *---- ---- - r -*- -------'--- -*-*

H~~-~*!i~:iri-ti~~~F~~~ ~if1=i~~;i]~

I I, 2.1~-~-:~?

2.124E+06 5~~~!-

590.00 I 3.~~4_ I 1 . ~2~_::?!__[ 9.46E~~J 3.64E+04 T"T31E+OB i 9.47E+10 I

[£L~=:{~~-!ff+~:~f£1WaFf~I~I~

i !*.~~~~:,,oN~.. =~5~.~ ~~.9.~= .~~:~~.~::9~=J,_~~~+08

= J.~.5oE:'.~J C. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P32 of PSS Appendix P9.1: Integrated UHS Heat Load

( ---

Time

  • - *----*-.....-T-ot;IUH5- r*~ta' ~Hs j 1ntegrated Time Heat Load H t L d ! UHS Heat (seconds) (hours) (Btu/s) ea oa l Load

[Ref. P5.1] (Btu/hr) I (Btu) 2:'136E+o6 593.33 ~4E+04

  • 1.31E+os I 9.51E+10
    • - * - - -- --**-* -- ------..*-* ----*-----L- ****--*--

2.139E+06 594.17

___3.64E+04

. ______ ------t-------- 1.31E+08 ! 9.52E+10 2.141 E+06 594. 72 3.64E+04 1.31 E+OB j 9.53E+10 2.144i=-;Q6- --** 595~55-* :54.E:;o-4.... .. . -:1:31E~a0-r9~54E~*10

__2.. 14!._E+~~ -~.?~: 39 ___ ___3. 6~§_+_~~- - __ 1.31E+08 I 9.55E+10

-*2.150E+06

- --------..*- "'"""'-597.22 ""'"'-"" -**-*- 3.64E+04

-*--......... _____. _____.,_"tI___9.56E+10

..... .- .........-J.... _,.1.31E+08 ,, __ ..____.. _.

2.153E+06 598.06 3.64E+04H+.31E+08 i 9.57E+10 2.156E+06 S98.ag- 3:64E+04 1 .3~ i 9.58E+10 2.159E+06 - 599.72 3.64E+04 - 1.31E+08 i 9.60E+10 11~~----fo{T.-=~~~~~~~:~-,

2.167E+06 601 .94 ' 3.63E+04 1.31E+08 I 9.62E+10 60US-~3.63E+04

~ ~!l:~!F1-:~!:f1-F-~:~!~: H:::~~ I 2.170E+06 i 1.31E+08  ! 9.64E+10 81i;:-65* 65:83-- - 3.63E;04-- 1.31E';00--i9:6a-E~w-*

c

- ----+-*-**-----------

+.

w._ ___ ,,,_, __.... ......... "" __ _ ...._ .. ___ .. _____ , _ _ __ ,, ____ _._........ .. - *--*- *. ....

184 E+06 ~~~~~ 3..?_~E+04 ~- 1.31 E+OB 9.69E+10

  • H 2.187E+06 607.50 3.63E+04 I 1.31E+08 I 9.70E+10 2~90E+06 608.33 - 3 . 63E~Q4"! 1.31E+08 I 9.71E+10

~

I ~:~~=~~~F-*t~-~l--+*~riH~~~-

2 19aE~06 -510~6 3.63'E~"o4i __ _1"31E+o81" 9 i4E+10 201E+06

____ 611.39-

, __ ............... ........... ***-"""'""""""""' ____,3.63E+04 I 1.31E+Mi 9.75E+10-

_ ............................ ... -+ ""'"""'"""

ill~~-jti!*-r~:iti;~tlJ;t~J!lt 2.213E+06 614.72 3.62E+04 I 1.30E+08

---**-----*----- - -..-..*-****--**--------- - *-----**-***-*****- ---**..******** ***-- *-***---**--****-*--*--*-*-t**-*-..---*---- **------

I 9.79E+10

..~~~E+O~ ~~.56_ _2:~~_':~::__1 1.30E+08 j 9.80E+10 I I 9.81E+10

--r 2.218E+06 616.11 3.62E+04 1.30E+08 2.221E'+o6 - 616.94 3.62E+04 1.30E+oa 9.a2E+10-

-*- - --- ----------- -*--------t-**- - ----*--i-*-..- . ..-----

1

- -~~~::F~~:~-- - -~{:~:=t--:-:~:~:i:-:!:~--

2.2J3E+06 .--*520.28 3.62E+o41 1 .30E+Os- ! 9.s6E+10!

--~~3-~?.-~§~:tj~°-:~~ *- t=~~?.E..~~~-~]~~~~i:: ~~~~§-~::*1JJ;_a.+/-.~ii~J 2.23~~:.~L -~~;*~---~3..~-~--~oE~~~asE+1?._J

" ~~~~-1 E+,~~L~.6.?.~~~ . ~=.\~.:.* 6~~+~~'~ .t ..1 .3_~~:°'~~:.~~E;:.~_~J

(. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P33 of P58 Appendix: P9.J: Integrated UHS Heat Load Time Time Total UHS Heat Load T Total UHS II Integrated UHS Heat (Btu/s) Heat Load (seconds) (hours) Load (Btu/hr) I (Btu)


_-_____ ----------r--*-

[Ref. P5.1] _j__

2.244E+06 623.33 3.62E+04 1.30E+08 I 9.90E+10

  • ----*----*-- *-*------.-..- -*----**~-*--*
  • -13ei*E~o8 T-9~91 E+1a-3.61E+04 2.247E+06
  • - - 624.17 2.250E+06 625.00 3.61 E+04 1.30E+08 9.92E+1 O i 1.30E+08 t

2.253E+06 625.83 3.61 E+04 1 9.94E+10 2.255E+06 626.39 3.61E+04 i 1.30E+08  ! 9.94E+10 2.258E+06 627.22 --3.61E+04 ~.30E+08 9.95E+W 2.261E+06


628.06 628.89 3.61E+04 3.61 E+04

- ---1.30E+08 1.30E+08 1 9.96E+10 I

9.98E+10 2.264E+06

- I --

2.267E+06 _h 629.72 3.61E+04 1.30E+08 II 9.99E+10

---*----r- - --

2.270E+06 630.56 3.61 E+04 1.30E+08 l 1.00E+11 2.273E+06 631 .39 3.61E+04 1.30E+08 I 1.00E+11 2.275E+06 631 .94 3.61E+04 I 1.30E+08 I 1.00E+11 v21*E*~

1 632.78 3 61 E+04 1 , 30E+08 1 , OOE.,,

2281E+o6 1-633.61-- 3.61E+04=t=T3-o"E: oar 1.00E:11--

I

~----~--

_2. 284E+O~ 634~~-- ~.~_!:~04 1.30E+08 ! 1.00E+1 ~-

2.287E+06 635.28 3.61 E+04 I 1.30E+08 i 1.01 E+11 I 2.290E+06 636.11 3.60E+04 i 1.30E+08 I 1.01 E+11

....2.292E+06 ' 636.67 .... -~~04 l 1.01 E+11

-***---****--*-***-- * ****-****-*****-- **- *- ***-* -*-*****------ --**-l **--*-*-**** ----******-* *--~*---**********-****--*

I 1 . 30~+08 2295E+06 637.50 3.60E+04 1. 1.30E+08 I '01~

2.298E+06 638.33 3.60E+04 ~ 1.30E+08 1.01 E+11

-*----- --*---------*'"--------*- --*-*---*-t------

--*~

2.301E+06 639.17 3.60E+04 : 1.30E+08 ! 1.01E+11 t ~}~-:~:

  • -*------**-*-- *-*---*--*-*- -* ---**--- *--*-----t *--**-**--**--*-**--j-**- --------

+.~~~~:~: * * *-~~~: ~~ ~-:~::: i ~: ~~::fr-

~l!!;~:~=~t~= ~i~~i=~~~t~~~=F~tll~~~

2.318E+o6 - 643.89 __ ,_3~6oE+o4-=JuoE+o8 I 1.02E:+11 1

- - ----- - ~-------

2.321E+06 644.72 3.60E+04 1.29E+08 I 1.02E+11


*-***--*----**--* *- *****--- *--**-* - * ***--****-**-**-*-*****-****- -*--****r *****--*--**---

2.324E+06 645.56 3.60E+04 1.29E+08 1.02E+11 C.. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P34 of P58 Appendix P9.1: Integrated UHS Heat Load I

  • ----~-*----~ * --~
  • i TotalUHS Total UHS I Integrated Time Time Heat Load Heat Load I UHS Heat (seconds) (hours) (Btu/s) Load J

[Ref. P5.1) (Btu/hr) (Btu)


i-*- - - - -

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P35 of P58 Appendix P9.l : Integrated UHS Heat Load e_* .-~~~ ----~~---~~~~--~~~-.,-

Tota I UHS Total UHS I Integrated Time Time Heat Load , H t L d I UHS Heat I ea oa I

I Load

--:~;~:::

(seconds) (hours) (Btu/s)

[Ref. P5.1] (Btu/hr) * (Btu)

~~:~t~: ----~~~*-:4_1_- - * -- t:*tµ~:~:

__-+

  • -~.4~~E+O~ -~~5.0~~~: -~*~~E+O~--t 1.2-~_~:cia*-1_!_._~~~~~--

2.469E+06 685.83 3.56E+04 ' 1.28E+08 I 1.07E+11

--~87:~~-- - --~~~~-~:':.?~- -~-:_?.~~~~ --_l~!E+11 _

~i;i_ ~-:~-i~ -_:~:j!~~i-:Jf; _::_:i_

2.478E+06 688.33_ . 3.56E+04 I 1.28E+08 I 1.07E+11 2.489E+06 691 .39 1--~--~-1----~~~

3.56E+04 1.28E+08 I 1.08E+11 c

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P36 of P58 Appendix P9.l: Integrated UHS Heat Load

- *- -rota1 uHs 1 1 1nt~rated Time Time Heat Load Total UHS 1 UHS Heat (seconds) (hours) (Btu/s) Heat Load 1

  • Load

[Ref. P5.1] (Btu/hr) (Btu)

!----+------------

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P37 of P58 Appendix P9.l: Integrated UHS Heat Load

( Total UHS Total UHS II Integrated Time Time I Heat Load UHS Heat i

(Btu/s) Heat Load (seconds) (hours) Load (Btu/hr)

[Ref. P5.1] I (Btu) 2.677E+06 743.61 3.52E+04 1.27E+08 I 1.14E+11

-* *--~---~- - -*j*- - - ----*- *- *-* ~---*~---~:-------

2.680E+06 744.44 3.52E+04 1.27E+08 I 1.15E+11

-2.683E-:;:-06 '"7 45.28 -----*i52E+04- ,-1 . 27E .;oaf1~1 SE;11-

-*2 689E+06 2.692E+06 746.94 747.78

-3.52E+04 3.52E+04 I

-6a6E~05*- --145~1-1 -- - --3.siE~a4-r--:;-:-2"?E+08 T-1-~1*5E~11

---*---- ----- 1.27E+08 i 1.1SE+11 1.27E+08 ! 1.15E+11


* - --+----

_2.694E+06 74S..33 . 3. 5~~m+08 I 1.15E+11 I 1.15E+11 l

2.697E+06 749.17 ~ . 52E+04 1.27E+08 2.700E+06 750.00 3.52E+04 ' 1.27E+08 I 1.15E+11

--- *-*-**-*-*- --**-----*--- -------*- i - ----*---,---------

2.703E+06 750.83 ~ 3.52E+04 , 1. 27E+08 I 1. 1SE*11

  • ----*----*--*--*- ----* ------* -----..*---- ----+-------- -*--t-----*-*-*-

-~?6E+06 751 .67 j 3.52E+04 1.27E+08 i 1.15E+11

~

  • 709E:'~ 752~ 3.52E +04 1.27E+0."._-f-2:.' 6E +11 2.712E+06 753.33 3.52E+04 1.27E+08 ! 1.16E+11 2.714E+06 753.89 3.51E+04 1.27E+08 j 1.16E+11 2.717E+06 2.720E+06
        • ------**----- ----- --*- ~-****-**- --*--*--*-*-i-----**- -----*- *---,---***--*----*--*-*

754.72 3.51E+04 I 755.56

  • 3.51E+04 ' 1.26E+08 i 1.16E+11 '

-- -~*

1.27E+08 ! 1.16E+11

  • - * -*-**-*----*-**---*--****** ------- - *--**------------!--------*--+-----*----

2.723E+06 756.39 3.51 E+04 1.26E+08 i 1.16E+11

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P38 of P58 Appendix P9.I: Integrated UHS Heat Load

( ---r;--rT~t;-UHS - ;otal UHS I integrated I Heat Load

.1 Time Time . Heat Load UHS Heat i

J

_ I .

seconds) (hours) (Btu/s) (Btu/hr) Load

~ef. P5.1] i (Btu) __

!.~~~~~H- ---~13.8~---** ~~~oE+o~___ L.!:!~E+9~--L~sE+11

.788E+06 774.44 3.50E+04

-i 2.791E+06 775.28 3.50E+04

  • -**-*---*--r----*- ---... *- - *--**-***- ---*--*- "--**- - -------

I I 1.26E+08 1.26E+08 ~

i 1.18E+11

  • 1.18E+11 Di;:~~~~~;_fH:~:;: 1:_~:::~:-

2.794E+06 776.11 3 . SOE+O~ 1 . 26E+O~ 1 . 19E+1~

2.803E+06 778.61 3.50E+04 I 1.26E+08 1.19E+11 2.806E+06 77.9~

  • 3.50E~04 1 '*26E +08 1.19E+ 11 i.------- -- ---

1.26E+08 I 1.19E+11 i .808E+06 780.00 3.50E+04

-- **- *- -.. -**-*- .. -*-***- "**--..--........---*-**-*- -..*-r-.. ----=--+----

2.811 E+06 780.83 3.50E+04 ~ 1.26E+08 1.19E+11

--.--*---*- *- *-- ---*-*-***-**-*-* -- * ---**~*--* *----- ***- * ---**---*- *--

2.814E+06 781 .67 3.50E+04 I 1.26E+08 I 1.19E+11 2~817E.;{IB ~.5*0-- **-3.5oE+O~-i*

n -------------

1.26E+08 *r-u9E+11 2.820E+06 783.33 3.50E+04 1.26E+08 I 1.19E+11

,. - .--- -- * --*-**-*- ----* - --*-- - - - --+- ---

M

,J!;::t~:;_~_+/-j_;_~=L~~~;~~_

2.823E+06 784.17 3.50E+04 I 1.26E+08 I 1.20E+11

-,------t- ------, - ---***--*

I 2.831 E+06 786.39 1-- 3.49E+04 l 1.26E+08 I 1.20E+11

( B~:f~:-~{~~T-~::::-r:-~~::=

Q:~4~~+06 t~!88~~-- .2~~E::_~~J ___:~26E+08 __J__~.:20E~~-- 1 lb*~}~i~~;~.l~rn:

~48E:o6 .. 791 .11 _

. -i-~49~-. :~;~~~ . ~.*-*- ~.-~~::~:-H-i~::~~

1.26E+08 j 1 .20E+1~-

2;_~~_'.~~---~~:~.. ~ I 1.26E+08 I 1.21E+11 C.. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P39 of P58

(

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P40 of P58

(

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P41 of P58

(

<~.

( __

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P42 of P58

(

C.. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P43 of P58

(

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P44 of P58

(

( PROJECT NO . 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P45 of P58

(

c

( PROJECT NO. 11333-297

CALCULATION NO . l-002457 REVISION NO. 8 ATTACHMENT P, PAGE P46 of P58 Appendix P9.2: Plant Temperature Rise Results

( r::inglendlng I Fl Rt *::egrated ~eat Rate I Temperature Pia:]

-~: {;~ _ b;~ ~;~::; ::~:q Ri:*;}

Time I Time 1* ow a e UHS Heat . per I

__1!.§_t __],.12.__+--~§;9_____ .?;?.?!_:_1_0_ ~~+08 _ _  !.54

=-~it_t~11l:=.l=~=-~-~~~=~~-~t~l~iti.lt _H;f~~j--_;:~~--:=.

~t }~= -ittif.i~~-~tiij!~~- }:ft=~

322 323 86.0 5.81E+10 1.44E+08 7.52 c

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P47 of PSS

(

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P48 of P58

(

c

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P49 of P58

(

c

(. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P50 of P58

(

(

PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P51 of P58

(

c:

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P52 of P58

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P53 of P58

(

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P54 of P58 Appendix P9.2: Plant Temperature Rise Results

(

(

(_ PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATIACHMENT P, PAGE P55 of P58

(

c

(. PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P56 of P58

(

( PROJECT NO. 11333-297

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P57 of P58 Appendix P9.3: Excel Equations

( Integrated UHS Heat Load Equations A B c D 1 Time Time Total UHS Heat Load Integrated UHS Heat Load 2 Seconds Hours BTU/hr BTU 3 0 =A3/3600 70974500 0 4 60 =A4/3600 227506921.442497 =(C3+C4)/2*(84-B3)+03 5 120 =A5/3600 275031004.627322 =(C4+C5)/2*(85-84)+04 6 180 =A6/3600 278889380.509937 =(C5+C6)/2*(86-85)+05 7 240 =A7/3600 282644648.1597 48 =(C6+C7)/2*(87-86)+06 8 300 =A8/3600 286299374.760107 =(C7 +C8)/2*(88-87)+07 9 360 =A9/3600 289856095.608311 =(C8+C9)/2*(89-88)+08 10 420 =A10/3600 293317314.115603 =(C9+C10)/2*(810-89)+09 11 480 =A11/3600 296685501 .807169 =(C10+C11 )/2*(811-810)+010 12 540 =A12/3600 343523098.322145 =(C11+C12)/2*(812-811 )+011 13 600 =A13/3600 346712511.413607 =(C12+C13)/2*(813-812)+012 14 3451 =A14/3600 441783283.320893 =(C 13+C14)/2*(814-B 13)+013 15 6301 =A15/3600 473170223.236624 =(C 14+C 15)/2*(815-814)+014 16 9152 =A16/3600 528760943.735491 =(C15+C 16)/2*(816-815)+015 17 12000 =A17/3600 519091778.17 4626 =(C 16+C17)/2*(817-816)+016 18 14850 =A18/3600 359428890 =(C 17)*(818-817)+017 19 17700 =A19/3600 339095598 .333333 =(C18+C19)/2*(819-818)+018 20 20550 =A20/3600 322295431 .666667 =(C 19+C20)/2*(820-819)+019 21 23400 =A21/3600 308557015 =(C20+C21 )/2*(821-820)+020

-22 23

-26260 29110

- - --- -297328342.

=A22/3600

=A23/3600 777778 287571967.777778

=(C21 +C22)/2*(822-821 )+021

=(C22+C23)/2*(823-822)+022 c*

24 ~.1960 =A24/3600 276985259.444444 =(C23+C24)/2*~824-823)+023 25 34810 =A25/3600 268393440 =(C24+C25)/2*(825-824)+D24 26 37660 =A26/3600 261201865 =(C25+C26)/2*(826-825)+025 27 40510 =A27/3600 254949342 .777778 =(C26+C27)/2*(827-826)+026 28 43360 =A28/3600 249681781.666667 =(C27 +C28)/2*(828-827)+027 29 46210 =A29/3600 245278781 .666667 =(C28+C29)/2*(829-828)+028 30 49060 =A30/3600 241448815 =(C29+C30)/2*(830-829)+029 31 51910 =A31/3600 238054990 =(C30+C31 )/2*(831-830)+030 32 54760 =A32/3600 234938259.444444 =(C31+C32)/2*(832-831)+D31 33 57610 =A33/3600 469308546. 541219 =(C32)*(833-832)+D32 34 60460 =A34/3600 407852051 .111111 =(C33+C34)/2*(834-833)+D33 35 63310 =A35/3600 362828250.483871 =(C34+C35)/2*(B35-834)+034 36 66160 =A36/3600 329583531 .935484 =(C35+C36)/2*(836-835)+035 37 69010 =A37/3600 305037949.52381 =(C36+C37)/2*(B37-B36)+036 38 71860 =A38/3600 286794408.27957 =(C37 +C38)/2*(838-837)+D37 39 74720 =A39/3600 273077790 =(C38+C39)/2*(839-B38)+038 40 77570 =A40/3600 262786654.784946 =(C39+C40)/2*(840-839)+039 41 80420 =A41/3600 256810372.258065 =(C40+C41 )/2*(041-840)+040

( PROJECT NO. 11333-297

('. t='.. *~

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P58 of PSS Appendix P9.3: Excel Equations Plant Tempera tu.re Rise Equations Al B ICIDIEIFI GI H I IJI K ILIMINI 0 I P IQ 1 S Flowrate 65.3 cfs Mass Flow =$D$1'$D$2'3600 lbmfhr S Flowrate 86 els Mass Flow =$L$1'$L$2'3600 lbmlhr 2 Density-- - - - 62 lbmfft3 cp =cpt(14.3,1oo) BTU/lbm-F Density 62 lbmlft3 cp =cpt(14 .3,100) BTWibrii--F 1 A s r*~-cT o . * ** .i.: e* 1 *,,F 1 i

p .

! S1arung Ending Flow : J i Time Time Rate :  ! Heat Rate perTimes1ep ; Plant Temperawre !

I 1 , (hr) . (hr) * (cfs) : Integrated Generated Heac Lo.id (BTU) i (BTU:br)  ! Rise (Deg F)  !

-ri~?2~~3~~=- ~~* ~lF::~[.~]iI~I~~~~~t~[fil~~-

~ :83 =?A .-1 ':SS.3 i =FORE CA.ST (SBJ, mf~Jf~:i~+/-r~~Ji~fil1Ei:~~~~~11f:l~~J:~~}H1R~1~¥J~~~~;]1s~tt~T:~==~--1~g~~3i ~~J~-~~~t~3=jl OF FSET(Total!SDS3:SDS1003W.TCHi$BUu!al!S6S'.i:SSS1 OC*3. 1)-1 .0,2).0FFSETlTotal!SES3:SSS1OC*3.f.I~TCH(S84. Tola11SSS3:SSS i0lo3,i !- t0.2))i=(04-03ViB4-A4) (=SE4!SHS1lSHS2

~r~~:I~~Uliili~Rtfi!i!lmi~~!flli~~Itf~l*~!1ilil~!iflt~~~~i~i?-~~iti!~l S '=87 :i.,B+ 1 *=65.3 i =FOREC;,;.ST(S68.0FFSETiTolal!S053:SDS 1Q03.MATCHi$68.Tolal!S8S3:$ 651003,1'-1.0.2l,OFFSET(Tolal'58S3.SBS1003.lrlATCHi$8S,Total!$SSHBS1003.1)-1.0,2)i i :(D8-07~'188-A8l '=SES.'SHS 11SHS2  !

~~~~~-~~~~~~,~-::~fEJ¥~I~TRf~llfil~~t~~~~f~:~~1~;~~~*c~~~~;~;Ii_~g~~~~~;It~i~\~~~1~1~¥~i~tlfJ.~~~i:il~~£~~~L_]it~~~i~L~[Ji~~~~~~k3 11 !:S10 =A11+ 1 .: 6:.J  :=FOREO.ST(SB 11,0FFSET(Total1SDS3:SDS 1003,l.IATCH(~S11,T Cl31!5SS3:$6S1003.1;-1.0,2:.0FFSET(TIJ!31!SS~3: S6$ 1003.l.i.".TCH(S811.T otaJ!S6S3:58S 10ii3, 1)-1.0.2))  !=(011-010)1(81 1-A11} r=SE111SHS11SHS2  !

Jihu-~~ ~Fi-2+1=_~-:6:3=E~~§~sT~~f?;Qtf.~~}(i'oiafls[~isQrn*§]~TCH]~J-2~E~)iSBSlSf~i_O~~T~1 .Q,~Om~f.;tailf8$3ss(ifa.§_~:ift.TCHiSS12J~§}f.iss3l~~o§f1J.!;:'~2.!L_]-iID_!?.:_ti'11ji[~jI~21--r~sE1 2f~f~~F -l Jl.j=B 12 ::.;.t3+1 .=6:..3 i=FOREC.".ST($813,0FFSET(Totall$DS3:ms1001.MATCH(S813,Ti;taHSBS3:SBS 1003.1} 1,0,2i,OFFSETtT*ilal!SSS3:SBS1003J;l;.TCH(S813,Tola l!~8$3:SBS1003, 1j-1.0,2)) ' =\01'.i-012~~813-A13\t=SE 131$HS1i$HS2 !

-rn~:~~~=:mf.~~I~[E~!*;.~~~~M!~~-~]:!~ijt~~l~~:~~~~~}~¥~~~~~:~1~~H~tI~~~~~~;:.H~f.~i~~fi~~iHffi]~)~~}~~fJ~l{f~1t~;}{ffW~~=f~~~:;.~~;_.J:fR~~~~~~I~r;.

16 i=B 15 *:.J..16*1 '=65.3- *- .,i=FORECP.ST(SB10.0FFSET(Toial!SD53:WS 1003.1.lATCH(rn16 Tolal!38S3:SSS1003.1'-1,0.2),0FFSET(T Qial!SSHSS~ 1003,f;l~.TCH(SB 16,Tu!al!$8S3:SBS1003.1}-1.0.2)) l:(D1 f.-015¥{B16-A 16l r:SE1&SHS11SHS2 j:(017-016)1(817-!.17) ;=SE 17/SHS1t>HS2 i

. .. - ... .. *- - * ..- *** .. * ** .. _, ***** *- - * - - - -* - * - .. * - - - -***- .... ** *-*-* .. . L . * *- - - **-- **--.... * -*- _ :J *- *~ ----*** * * .. - . - . ----- -* -- - - -*** - . *- - -**-*- .. .. -*- - **- -- *- *- - *----*- - -*- *- --- **--*-*- - --*----**--*..~ -

=55J i=FORECAST(S617.0FFSET!Toial!SOS3:SDS 1003.l.mCHiS81 i .Tolal1SBS3:$8S1003.1;-1.0.2),0FFSET(T v!al!SSS3:SBS1003.Ut.TCH(SBi 7,Tola1!$8SHBS1003.1r1,0.2:i 1i '=B16 =..:0.1?*1

-ti~ri!C£"lfl.~~~~?I.::~::~_O:RTcA;s.:t~~1~~0J. I~ttrr_o-:~l5-Qlts'9§i@)i~l.cB(~s~i§~fOI~_ s_e.s::;_.:~.~@_.-3.~-8Pli:9£Is1fii~_1~~§t~~. Ij§~j~~1~.11~f?.J.~~~s}I~Iio.}D_':-1.o1. il_:=-i;j~!!-0J_ ii1s1*a:}J_8f~:;. ifi~is.:.- p. syj~i.!_=J 191:818 *:.;19* 1 :et. i=FORED..ST(SB19,0FFSET(Toial!SDS3:SD51003,l;l;,rcH(S8i9,T otal1$8S3:5851003,1)-1 0.2),0FFSETiT*)!Jl!SBS3:SBS 1003,l:IATCH(S819,Tolal!SSS3:5SS1003, 1}-1,0.2})  ::(0 19*018h181~A19) 1=SE 19/$PS1i'SPS2 i

_a_1_L . ~:?o~l . _:~ ___J.;E9.~~¢~Il~s.2.o;QfLSfulo_!j1!So~;~. g§_i~~3J~Tftli~.~-~Q.Jita1 11 ~~~~~~~~lo!3j;j:o.2i~~f~rt\ii~!!l~i..*3~S.~s.}.O.~i1:~0!~~~0.f ot~'~.:~~~;sss_1Q~1J:T@t=~1(0}0-019i;\~~~Q[l~io~J:5-E~~§L~l.

IB _:8_20 . _:~.~-~l -..-~_Sj _*-**~:fq£l~g~m~-~~,<?£~?!=I!!~tal!S9~S};~Q:5_~~~1!,!.~I.0..\S§?~lotal ~~3.:~.8_5!Q.Ql,!):!Q,~1"~f~E!i!.2l.~~-~g§.e~!O..~~f:l::!0.!l,§.§!1.J:o!al!$_8~_3:SB5-1Jl.Q_3J./:1 .0.2[L . __ t(Q21 -020Y-f?._21+/-:2~Lr~2 11S~_s~~s.u

_:B.?_1__ . =f~l._ ._ =-~~ ---.1.:f_qfl_E_G~Ii~B.~.9£F.?.E!l~o~!?Q.~~Q~.~q~,':Li.,~C.!:!i~?.?_?J~!al~S!l~~:~~?-1_0_03.1 ;-~~.2~.()_E_F1~J!~tal!S8}:,S.~SJ.Qp_~~~iS?_~.:!~~~~~}.:_SBS1003c'!l:.!:91ll __ rJQ~g~ 1 y(B~+/-.~L 1.=iE_22~PJ.~i~~LJ.

_ill::_B2_~____ _:-:~3-~~*---~=-~~ .--l~f.Q£l.E~~:S!l~~_3.,gf_F~~JJToia~§Q~}~~l0_~3l~!.l_C~~~~~.!ol~~~~~:§_§S1003clC,Q.?h9£f~£i:!!2.i~l!$8~S§JQQ.~l:i:::!..~[§~?.3_:.!.o_~l~~~3-:.§.8_5_1~~1~.J:~.0.2)L__j.:(D23*022Ii~3E]L!~§E2~~~£:§.L !.

l:J:B_2~ _;:.~~~.:.:!5___ J=f O_f!~~.ST(S82'!,_QF£_S~!!.!~ial!SQ_s_~~~~~~q3.fl.A.TCH(SE1:1,!.C_l~!!.~S~~~ 1003.1 ~* 1 .0,2l,Oif.SET~ 01a1 1 s~s~~Bi!~3,1,l;,!._G_!:i[~~~'!J-~'~BZ3~~_s-~03, 1;-1Jl,2J)___ [:f'24*D23J!!~24N.41J=~?~P51/SP~?_J

'25 l :Jl1i. _.::'\22~1._ =SL_.J.:.F_O_R_~".S!J.S_g?.?.,_qff~E!.\T~t~U.~Q§}J_Q§_10g_3J:ttI.9_H~8_2~Jyl3J!3_~?_3J..BS 1Q~.1}.~j)j,Qf.~~i!)lal!S8~~~S!_O~~.g:JCH\~_~5~!*B~!§.31!!2.!9.Q?...!}:!:.fl..~L.J:iQ.2~--02~~182~£~Lr=smi§m_¥'§1_ !

T6l:S25 =;26+1 .=S6  !=FOREO.ST(S826.0FFSET(T oial!SDS3:$DS 1001W.TCH(SB26 Tolal!$BS3:$8$1003. 1 }- 1,0,2i.OFFSET(Total!SSHSBS1003,l:l~.TCH(S826,Tvlal!58S3:SBS1003,1)-1.0.2)) i=(025-025}1(62&,!.26) '=sE26.1$P$11SPS2 !

1IJ~a}~--==~~2-7-~f~:~;~==-:Eo~E§~t\~~?7§£i':~~Ilf~ia11§p_ff§P.~}9Q_3J~::J?B.I~~If!~!a!~~S3:§.s~~~~~~ilI.O:?.iRfts~1!I~~~?.s.~:~~~~~~3Ji~,~~!1J?§:fi.J2~:1f{s~0JB.I1§o3,1J:I@C:::}ioii:P.~~ii~I~I! _ .r~I?Z!ff.~~~~f::J:

J.H=~2-~ ..-~:£:?_6_*1. __...:~-~~---** *-i ::FQ~~£:~i:!~~?.,9!£S_~~T~i~[§~_g~D_S_!O~~~~C!iJ~Bf~J~la_ll}~_s~~~.~~Q~~~~:~,0,2),9.£.~§_E!tTotal!S?_~3~§~~~_oJ~l.t~,!~~_(?.8.~J,!ola~§~g§~_!_003. 1;:1,!l1)L_L'1Q~8:Q?.?11~1!-~Sl___~~~~~~1.~P.S_?____i

~:8_2~..- *:c~~~~ ::e~-* . .i ~£_Q!<_~~!~T~5~.?5'-9£.F.~~~!O.~!~°-~~§.!~.~;:I:~~.!.~tS§3~'.~ol~!S_BS}:§.~~-~00},_1).-~c(l*2),~F£~E_TJJ~t~l'.S~:~~~~!~~31~*~H.~S_B~,!~a!§.~§~:§BS1p~3.1 )-1~02)) -~=JQ?!_Dl§Yl~~~Af~L~~~~~~tg__~

~ = B29 =.tJ0* 1 *=B!i J:FOREC:t.ST(SS30,0FFSETiTotaJIS053:SDS 1003,1.WCH(S830,Tolal 1SBS3:SBS1003.1)-1,0,2),0FFSET(Tola1!5853:S6S 1003,l;\A .TCH($630.Tolal'SBS3:SBS1003.1}-1.0,2}) i=(030-029ViS30-.!JO/ j=SE30/SPS1i$PS2 i 31 1:~.~~=:~HE~~~s.L:J~oR~,?.f_\?[31,0ff~g(T~~~§_0~§~@jli~i'cE~?Ii;!.~~~el~J§li@j~i:@§~F~~!~Tota@§A:~~fi§@¥.f£7di:~~}~'fu[~s3:S8~1:§'gii.r}0.2i)--:J;io31-0~0YiS31:t:~jr*r:SE3~~¥i@:Ps2 *--1

~~~1___. _;._=}.32*_!___. :§.L_ .l:FO£l~_(;f~]?~32,0£f_~~!~~~!~Q§!.:~Q5~~~~-*!:l!:l<;!ii~§32,To~ 1.S.~S]~~il.Q.0_'.0):_!,Co.2!.9f£§fi:.(!2!.JJ!~§~U~~1_9-~};~!CH(~J.,_T_~[$_~g_S_§_SJ.QQ:J..:o}_Ll)J..f1_-_ .l_:(Q}_2-031ii(Bl?.:.~.2l (=SE3~E~~f§L1 1 =.?..~.L*-. ::.3~.::'_1_ __ .:~~ .... _. i~f9.J3.~C:.*~I(~§l~.,.Qf .FgJJT~.!_aj@E~S.Q.5-1._~Ql..~lATC~~~~~.T utaE§_Bn.:~_6_.s ~9-.01,1,: !,Q,_21:_0f£1_~[.?~~§_il§lj)l_.S_!Q2_1!~.TCH. (. L63.E~.laJ~~g§E§.!QY.3.,_iJ.:.!:Q:.?L_]=(Q33-D32. V@l?.+/-:_3.})~.?E.~¥'~~!~r:§L *.~.

~§~_3 . __ . _:::_J_:*~ -- ~~---..L:.F Q~~~T(SS~ 4,Qf.~§.!ff?!_3~~i?.:?.~1QD]J:lL.Tc.!'£8-3.:!J~~~~~~§~pp_~!E_!:~.l:2~ET(T_?iai!SSS3§l!~l~~'.l: L!JCHLS.~~:.!olal!SSS3:~§100]_2[l:_O_:?)L __ l:!P.l4:Q.~~(834-'.':.3:'.L ..J.':.~~~~~_!?£:5..?..__ J.

PROJECT NO. 11333-297