ML20127H244

From kanterella
Revision as of 06:14, 10 July 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Supplemental Reload Licensing Submittal for Monticello Nuclear Generating Plant Reload 6
ML20127H244
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 07/31/1978
From: Brugge R
GENERAL ELECTRIC CO.
To:
Shared Package
ML20127H193 List:
References
NEDO-24133-1, NUDOCS 9211180455
Download: ML20127H244 (24)


Text

__..,__, _ ___ _ __..___.___.._____.___._._.e _ . _ _ _ _ . _ ._ __ _ _ _ . . . _ .

July 1978 ,

i I

i SUPPLEMENTAL RELOAD LICENSING SUBMITTAL FOR r MONTICELLO NUCLEAR GENERATING PLANT RELOAD 6 h

P. H. Henrikson Licensing Engineer gs ay Approved * .{f. (hqs e n ,j" R.O. BruggeN, MMager .

Operating Licenses II

)

y r

NUCLE AR ENERGY PROJECTS DIVISION

  • OENERAL ELECTRIC COMPANY SAN JOSE, CALIFORNt A 95125

- ^ ,

9211180455 780810 *

" ^*ck o5o08"J GENERAL- ELECTRIC db
163 -

= -

wW-wTw9-w~t-- -T- y- ,-r*y- 'y-aNg+- >*- --w^r-w y e-way--o- w m h',. g-we g g*w-agr--- 9w=gy-gCF

NEDO-24133 i

a l 1HPORTANT NOTICE REGARDING CONTENTS OF TllIS REPORT

' PLEASE READ CAREFULLY a

This report was prepared by General Electric solely for Northern States 1 Power Company for NSp's use with the U.S. Nuclear Regulatory Commission (USNRC) .or amending NSp's operating license of the Monticello Nuclear Generatit1 Plant. The information contained in this report is believed

- by Genera- Electric to be an accurate and true representation of the facts i

known, obt *ined or provided to General Electric at the time this repert

, was prepart .

2 i

The only urlertakings of the General Electric Company respecting informa-tion in this document are contained in the contract between Northern States Power Company and General Electric Company for nucicar fuel and related i

services for the nucicar system for Monticello' Nuclear Generating Plant dated December 4,1967 and nothing contained in this document shall be construed as changing said contract. The use of this information except as defined by said contract, or for any purpose other than that for which it is intended is not authorized; and with respect to any such unauthorized use, neither General Electric Company nor any of the contributors to this document makes any representation or warranty (express or implied) as to the completeness, accuracy or usefulness of the information contained in this document or that such use of such information may not infringe privately owned rights; nor do they assume any responsibility for liability or damage of any kind which may result from such use of such infornation.

11

NEDO-24133 TABLE OF CONTENTS EaESC

1. PLANT UNIQUE ITEMS 1 .

l

2. RELOAD FUEL BUNDLES 1 l l
3. REFERENCE CORE LOADING PATTERN 1
4. CALCULATED COPI EFFECTIVE MULTIPLICATION AND CONTROL SYSTDi )

WORTH - NO VOIDS, 20*C 1 j S. STANDBY LIQUID CONTROL SYSTEM SIRITDOWN CAPABILITY 2

6. RELOAD UNIQUE TRANSIENT ANALYSIS INPUTS 2
7. RELOAD UNIQUE CETAB TRANSIENT ANALYSIS INITIAL CONDITION PARAMETERS 2
8. SELECTED MARGIN IMPROVEME!F OPTIONS 2
9. CORE-WIDE TRANSIENT ANALYSIS RESULTS 3
10. LOCAL ROD WITHDRAWAL ERROR (WITil LIMITING INSTRUMENT FAILURE)

TRANSIENT

SUMMARY

3

11. OPERATING MCPR LIMIT 3
12. OVERPRESSURIZATION ANALYSIS

SUMMARY

4

13. STABILITY ANALYSIS RESULTS 4
14. LOSS-OF-COOLANT ACCIDENT RESULTS S
15. LOADING ERROR RESULTS 6
16. CONTROL ROD DROP ANALYSIS RESULTS 6 iii/iv

l NED0-34133 LIST OF ILLUSTRATIONS l

Figure Title Page 1

Monticello. Reload-5 Design Reference Core Loading 7  !

2 Scram Reactivity Curve for EOC7 8 3a Monticello EOC7 Generator Load Rejection. Without Bypass 9 3b Monticello EOC7 Turbine Trip Without Bypass. Trip Scram 10 4

Monticello Loos of Feedwater lleater 11 5

Monticello Feedwater Controller Failure. Maximum Demand.

With liigh Level Turbine Trip 12 6 Lim..ing Rod Pattern for RWE 13 7 Honticello MSIV Closure, Flux Scram 14 8 Decar Ra tio 15 9 Fuel Doppler Coefficient 16 10 Accident Reactivity Shape Function at 20'C 17 11 Accident Reactivity Shape Function at 286*C 18 12 Scram Reactivity Function at 20*C 19 13 Scram Reactivity function at 286'C 20 v/vi

4 l NEDO-34133 '

i i

l .

1. PLANT-UNIQUE ITEMS (1.0)*

i i

None.

1

] 2. RELOAD FUEL BUNDLES (1.0, 2.0, 3.3.1 AND 4.0)

J Fuel Type Number i

Number Drilled Irradiated 8DB262 220' None

, irradiated BDB250 24 None Irradiated. BDB219L 128 None New BDRB265 52 52 1 k New 8DRE282 60-1 60  !

I Total 484 a

j 3.

REFERENCE CORE LOADING PATTERN (3.3.1)

Nomine1 previous cycle core exposure: 8.89 Owd/t. Nominal core average exposure at end of cycle s14.4 GWd/t including coastdown. Core leading '

i f pat tern s Figure 1.

4 i

j 4.

I CALCULATED CORE EFFECTIVE MULTIPLICATION AND CONTROL SYSTEM WO .

NO VOIDS, 20*C (3.3.2.1.1 AND 3.3.2.1.2) i BOC k,7f i i ,

Uncontrolled

'1.112 Fully Cont rolled 0.9505 Strongest Control Rod Out 0.9859 f R. Maximum Increase in Cold' Core Reactivity with Exposure into Cycle, ok i 0.0 l .

i

( ) refers to areas of discussion in Reference 1.

    • Reference 1:

" General Electric Boiling Water Reactor Generic Reload Fuel i

. Application," NEDE-24011-P-3 and NEDO-24011-2, March 1978.- - '

1 I;

7 p y- , --tmyr9- --ywp g pqry y - 9er- r-ge - M- y v w-wa +rq e g - dewr. w $p: g- .-rip.p-,yg,y,q .g,g-,ggg m pggw,gy-y-.y- ypge-----w-m,wy- gy ,n -gg_ e w-,+y p mn p--y-- -+- -,--ygvg9--*

5. STANDBY LIQUID CONTROL SYSTEM SilUTDOWN CAPABILITY (3.3.2.1.3) ppm Shutdown Margin (ok)

(20*C, Xenon Free) 900 40.03

6. RELOAD UNIQUE TRANSIENT ANALYSIS INPUTS (3.3.2.1.5 AND 5.2)

EOC 7 Void Coefficient N/A* (c/% Rg) -6.98/-8.7 Void Fraction (%) 37.37 Doppler Coefficient N/A (c/'F) -0.257/-0.244 Average Fuel Temperature (*F) 1157 Scram Worth N/A ($) -38.29/-30.63 Scram Reactivity versus Tigne Figure 2 7.

RELOAD UNIQUE GETAB TRANSIENT ANALYSIS INITIAL CONDITION PARAMETERS (5.2)

EOC 7 Exposure 8x8 8x8R Peaking factor (radial) 1.65 1.77 l R-Factor 1.094 1.051

Bundle Power (MWt) 5.567 5.977 Bundle Flow (103 lb/hr) 103.3 101.0 Initial MCPR 1.32 1.32 -

l

8. SELECTED MARGIN IMPROVEMENT OPTIONS (5.2.2)

None (Improved Simmer Margin Evaluation is given in Appendix-A) .

1 l

  • N = Nuc1 car Input Data A = Used in Transient Analysis l 2 i

I

[

a e 1 NEDO-24133

9. CORE-WIDE TRANSIENT ANALYSIS RESULTS (5.2.1) i Cure I'ow e r flov 4 QtA SL v O.D It an s t
  • r; t D iarit t wvre HL. Atl 222J LtJB WJ12 h?Js2 an 81 su n am n y Load kejec t ioti tot 7 100 100 31 L 2 114 1 1163 1197 n. 2 4, . 14 S t rure la wi t hout Bvrue lurt* ine tr a p to( '

103 100 il l . t. 114. ta 1168 1101 0.25/0.75 6two r a- P without k v t-a .

  • Loss of 100 100 100 110.1 118 0 Feedwater 1025 1070 0.16/0.17 rieure .

Heater Teedwater --

100 100 231.9 le M 1:27 IJ69 12<4./1

  • uute Controller Fellure 10.

LOCAL ROD WITHDRAWAL ERROR (WITil LIMITING INSTRUMENT FAILURE) TRANSIENT SUMhARY (5.2.1)

ACPR* LHCR Rod Block Rod Position Litniting  !

Reading ** (Feet Withdrawn) 8x8/8x8R 8x8/8x8R Rod Pattern j 104 3.0 0.068/0.115 13.36/13.46 i 105 3.5 0.096/0.145 i 13.37/13.48 Figure 6

~

106 4.0 0.103/0,171 13.39/13.50 t 107 4.0 0.103/0.171 13.39/13.50 108 l 5.5 0.183/0.236 14.79/14.65 ',

109 6.5 0.231/0.295 15.50/15.36 L

11. OPERATING MCPR LIMIT (5.2) i i

8x8 8x8R '

1.32 1.32 s

,I.

  • Based on initial MCFR of 1.69 8x6R,1.46 (8x8).
    • Indicates setpoint selected.

f.

3

! \.

~-- -

  • NED0-34133
12. OVT.RPPISSURIZATION ANA1,YSIS

SUMMARY

(5.3)

Power Core Flow si v Plant Transient (%) (%) (pstr) (psfR) Response MSIV Closure 100 100 1203 1241 Figure 7 (Flux Scram)

13. STABILITY ANALYSIS RESULTS (5.4)

Decay Ratio: FiEure 8 Reactor Core Stability:

Decay Ratio, x /* 0.574 2 o (Natural Circulation-100% Rod Line)

Channel Hydrodynamic Performance Decay Ratio (Natural Circulation-100% Rod Line) 8x8 Channel 0.088 8x8R Channel 0.065 ai 4

l l ll

-= . _

q ., .

i

, NED0-24133 1

14. LOSS-OF-COOLANT ACCIDENT RESL'LTS (5. 5. 2) j Fuel type BDRB265 I  !

! Exposure MAPLi!GR PCT Local Oxidation

] (%'d / t ) (kW/ft) ('F) Fraction j 200 10.4 2196 0.036 l 1,000 10.4 2199 0.036 j 5,000 10.4 2194 0.035 10,000 10.5 2198 0.035  !

I 15,000 10.5 2197 1

0.035 l 20,000 10.4 2198 0.036 25,000 10.3 2194 0.035

30,000 10.3 2196 0.036 i

1 Fuel type 8DRB282; other types reported in NED0-24050, September 1977.

Exposure MAPLilGR

' PCT Local Oxidation 1%'d / t ) (kW/ft) _('F) Fraction 200 10.3 2195 0.036 1,000 10.4 2197 0.036

! 5,000 10.4 2193 0.035 l 10,000 10.5 2198 0.035 l 15,000 10.5 2200 i 0.036

20,000 10.4 2198 0.036 25,000 10.3 2199 t

0.036 i 30,000 10.3 2195 0.036 i

i i

l l

e 5 '

~ _ _ _ . _ _ _ _ . ~ . _ . _ _ _i

NEDO-24133

15. LOADING ERROR RESULTS (5.5.4)

Limiting event for 8x8 fuel misplaced, bundle MCPR: 1.07 (f rom an initial CPR of 1.45)

Limiting event for 8x8R fuels rotated bundle MCPR: 1.07 (from an initial CPR of 1.40) 1 (i . CONTROL ROD DROP ANALYSIS RESULTS (5.5.1)

Doppler Reactivity Coefficient: Figure 9 Accident Reactivity Shape functions: Figures 10 and 11 Scram Reactivity Functions: Figures 12 and 13.

w, 6

i Il

~

NEDO 24133

>DNTICEL L O

...I....l..

b2 6 2

. . $.2 59 1l1 2l l se i l2 2l

.............l i l3 i l l l 4(

2l 1 3l1 2l1 2l '

i 44 6 -@- @ '

1l1 1l 3 1 l 1 1 0. ,' 6 42 1e't, 8

g 3'1 28'3 g 28*1 1'

....!....l....l....l....'..

O 4 '

'_g . _ _L ' _

40 1l2 9 ,' 3

. . to2. ' . .3l2 0l1 . .0l

. . . . 4-l l l l l 38 2'1 J;1 2 ,' 1 . . . ..

_2l1 e 1l2 1l

-e_ l .

__ e l l 36 2'3 e _e l 3l1 .....l 0l1 0 2i3l2

..'.......l....l..

1

. . . . . .. . . . . l 34 1'i i 3l2'1 l'1 28i 1 ' ' '

32 6l1 e

1 ,' 2 0 ,' 2 g 0li 1 0l2 0 i

g 1

2 0

g 8 8

i g 'i i L

.................l....l....,....,'....l....l. .

l 30 2'11 ,

e 3' i 6l1 1l2 1l1 1l1 6l l l e o # e e l l l l 2a 2l2 i'2 0l1 0l1 0l2 0lo 1l l l

.-o-i .

l l l l 26 , , ,. , , i

, , , ,i ,i  ; ,. , , ,

74

. , , --o ,

i e e , e , i

  • ,- , 3

. e i e i . .

e i i e I e ,

22 , ,

3

, ,a e i e i g l

i, g 70 e i e a

c. ,

O c . _, , 8

. . O . .,

, i i ,e ,e ,i ,e ,.

l , ,

18 '

t I ' ' '

s e a i 8 ' '

i a .'i

. e I 4 e

is , i i i ,

a l e i e 4 '

i 14 ' ' '

i

.' ' 8 '

); e e i i

e Oi ,

0 e e' 0

a'

. l i i e i i i e i . i e i , a 10 ' ' ' ' ' ' '

i e e '. a e i

08 0 e  % i 0

i i

e e e ,

i ,i , e i , e 06 ' ' ' ' ' ' '

f e 1 4 8 4 l 04 ' @ '

02

...'....e....e..

a f

, e e

-)

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 1

6 LPRM Location (Letter indicates TIP machine) 1 808262 9 LPRM Locattor Conrion location for all TIP machines) 6 808250 O 1RM Locations 2 . BDB2196 f 3 . BDRB205 6 SRM Locations 0 - BORB282 l OVARTER CORE SYMMETRIC

% Source Locations i J

\

I'igure 1. Nnticello Design Reference Core Loading, Reload-6 7

NEDO-24133 100 46 90 -

- 40 C- 679 CRD 6N PERCENT 80 -

1 - NOMINA L SCR AM CURVE tN (.3) 2 $CR AM CURVE USED IN ANALYSES

_ 33

'1 70 -

m 5M -

C 0 a

$ .1 l 6 -

7b g I 5 E E*

a t;

2 2 y w

40 -

15 30 -

20 - 10 10 -- -

6 1

2 0 l l l 0 1 2 3 4 TIME bec)

Figure 2. Scram Reactivity Curve for EOC 7 8

1 NEUTRON dLUx 2 AVE SURFtLE tfAT FLUX 't yrSSEL PM S RISE (PSI) 150. 3 CCT IV E T E CW 2 54 E T T FLYE FLfN 4 g, 3 Pf_l.I( O L yrgtw_

5 4 Br%5 v t ot FLod s

6 5 100. -

200.

w a

\;

w 50. -

J E 100.

N

~

"ir 3 h

~

A (

0..

0.

4.

I 8.

I 12.

1 -

D.

m i . Su 2d l ti

16. O. 4 TIME (SECl U. 12. 16.

TI T (SEC1 z

m 8

1 LEVELIIVjH-TF-SEP-SKIRT 2 VESSEL SIF" LOW I VOID T8KTivlTT 200' 3 TIp83 r $ 7E*M L N 2 4 f t d m ait- TIvW_ g* 3 m,tR rrpCTIblTT stro werTivfTT w" 3 4 ICI C @ CilWiiT C '

N 4 - 2 100~: s O~ A 2x,g p

/ g

' ~ ~ >t O. >- 3 .- .l. -

r .~_

M -

. 4

-100. - '-

O. 4. 8. 12. 2. n --

16. O. 0.4 0. 8 TIME ISEEI 1.2 1.6 TIME P.iti Figure 3a.

'49nticello EOC7 Generator Load Rejection, TJithout Bypass

~

t _ _ . _ _ _ _ . ___

a T

1 ?.fUTR"'N N '

l l' 'l  ? Pif Sif4 4. tJiM AT FLJn c! V[YT w t1.' NTS P!"E IPS!I

.,jt 1

_ .4 _ 3_Crymt v !* T * : @

g' VIvrF ttN

4 -

3 'U " r o vr rt m

. l 5 9 capn o q rtm

.r.

n 9

, li v.

ll Ml-b '

200.

2 - %}' <

(

I N  % e C 9. __ N

- J -

100.

U.

'N, k

3 J

Q - '

C -u.' - ' ' '

4.

O. L M ' - 24 24E C.. e.

TIME ISEC8

12. IE. O. 4. 8. L2.

M- JE 16.

T!!T (SEC' 2:

C b-. 5 o h3

! O I LEVEt t!'4 -FYJ-LEP-S"IRT I lj) *'

2 vtS5EL 511 NLC6' i VO!D REsri u M8- V 3 TiFINr 9 retN I- e, 23 MER @f!VITY trw prWityyty

<TIv!TT "

a FEEATET TLDT~~ ~~ ~

5 4 icTA'Ti.; uvnr .

I

' N

~93 f . p '_ _ _ m r' 7 %_. .._/

vT L E

!? c. D M  ?

C . \

'7

'/ \

.5 N ^N Q '(,

, j e ~

\

f, - y / D w

~

1 3 ,

1 . -- ._

t

- - - t I e , Na b I

( h -

h w

.ne... .m _ . ___ _ - .

0 2.

4. 8.

7!'E ISEC1

12. 15 O.

0.4 0.8 I

1.2

'\ .

1.0 TI t (SEC Figure 3b.

Menticello EOC7, Turbine Trip Without Bypass, Trip Scran N

NEDO 24133 l' \

- \

v -

w!d! '

tw .

c:el a I c---==,

W L',

,e,.a. m g h b'C - .

m o

-  %,r " ..

- =

can e wl r ExWWu .

$$h! E Win I i E6K2

~%mnm j m

{u ~ ~ mis _ _ __

Y p;

~

m

  1. W-6 o

u w V M- "c i Q

N N.I lt o

Y

- c &

m

. $ . Y E l e

  • ao D t, c  !

. . d . .

'd D l K R K. ~ o

. 4 i

  • s
I' l$1 SIN 3CdC3111 A!1)d3d 9 v 1 U 5 r '

5 48 '

5 E'

  • d v i e d 1

?

a 'g .o, xd ]

4 I a i gkgw 3d t O i Eu f@. 2 .

g a

th, ,;

S'

{. e '~.w 9 -

S ~

k.

[yy e.%

w Cak a C 5 E,

g; ha VlS W$9%

  • va ,

ww3w aaF 4 e

- nn g ,m, v,

,g e ~D e ~0 o =

n W ^ - N

- O, l Y V d 3 8 8 "E

\

\

x

e P

.g

\ .

'N i - C

  • b .,. .

R *

r. .

.O o

. . . .O S

8 8 8 8 8 o 1031tf8 E AN3383d1 i f

11 I

P 1 'EUTPSJ qi t!(

f.i 2 84E 5'57;f E Mf 47 FLUX 1 VESTL FN FISF IPS!!

150. j[ ,

-3 .1 R I'8M_F l Pa m. 2 5:s E f f YR VE F L N 4 LGt !%t I '> t1 3 P{ ( { { F V-.4. yF- T(rw

( r 5 4 errtOS vc.,vt f tN 5

1' 6 I

t g gg M7,[ - # \

h' .Y g J

' \

N t

b So, N b 1 N? \ 25. - 1 / \

r _.3 tm: f-3

, f ay 3 ,

0. - 1-1 N;N~  :
0. 10. 20. 30.
25. .t-
40. o. a T!*C (SECl 30. 20. 30.

trME (Tcp ua' Z

M N 8 I LEVEllIN@t-PEF-5EP-SMIRT i g$g^

2 VESSEL STEsMLOW veroacqigvgry 2 3 Tim!T $7EWLOW g* 2 00rFLER FK W T]v[M **

4FEL M TEN 3 $(sof sar2 TiV177 W 5 4 304 Hari.u r "

u N 3 \'  ;

100.

i 5, c. 24 M .j _

_r ) __ '

{

50. .

n

{ .1.

  1. j, /t E V '

\ y

>- g

c. . ... ,

u i

0. 10. 20.

a 43 2. i.

1

30. 40.

~

TIME t'ICI D. 3. 6.

9' 12' TIRE (SEC1 L

Figure 5. i Monticello Feedwater Controller Failure, Maximum Demand, with High Level Turbine Trip [

i i

k i

_ _ _ _ _ ._ _ _ _ . . _ _ _ . _ . _ __ . . . _ _ . .-_.-.m.__._

.______,_,3,,, _

l .',

NEDO-24133 s

I, t

1 1,

l 01 03 05 07 OD 11 13 01 36 i

, 03 32 32 i

j 05 14 6 14 07 32 32 . 32 09 6 0 6 i 11 32 32 32 13 36 14 6 14 i

NOTES: 1. ROD PATTERN IS 1/4 CORE MIRROR SYMMETRIC,

, UPPER LEFT OUADRANT SHOWN ON MAP

2 NUMBER INDICATES NUMBER OF NOTCHES WITHDRAWN OUT OF 48. BLANK IS A

< WITHDRAWN ROD

, 3 ERROR ROD AT 9.9 Figure 6. Limiting Rod Pattern for Fb'E 13 a

4 NEDo-24133 e

O E

I  %

yEU c f L c'y e >.= 7:

$WWW

  • UEE3 tfG m - t, d ph7 v 3 V Wwere v C, t:1 - otA ggy- -

AR 6.

-~ P,nw a .

LdV' ' '

r - rv m se g/ nj g -

g a i 7'f -

l

/ "

5 U a

. 1 n m O

=

= (# \

m . u ,

l

.d vi

~

- . ~

.t.

g .

N g a s a o .

. a n ,

te I$Ib1 0 0d C AllAjj)tf3d O U

w C

p=d g

  • 2b  % =_) b ' M o

r" 6. v a  ; -rl .-.

E w'J[ w l k "IwsI da+ O U

%u2d

    • j M h lb ,

OaMi o E

rep l E t* G d l an-t We dWc[iij s

- co m), .n ,,, ,4 1,

-~-,-

2_ W rv 0

    • % b M b

~

M D

_ M b0 N L4.

p W r e / _, .c

=

y x, -

y, -

e _

~

, %m z -

y s g si s . .

a. -

.s s-g o g m w u o a n n .,, ,

14 y.

4

  • NED0-24133

=

12 1.0 - ULTIMATE STABILITY LIMIT 08 .

k h

5 9

Q 06 tt NATURAL CIRCULATION O

j 04 10C% ROD LINE l

I

{

l

_ OPE R ATIONAL DESIGN GUIDE 0.2 0 l l l 0 20 40 oo go ,gg PERCE NT POWER l

i j Figure 8. Decay Ratio

! 15 l

1 l l

NEDO 24133 0

0

-6 -

C

-10

, -O E

W

.V b -16 -

8 C

5

  • t 8

_2o __

IN 1/A*C (MILLIONTHS)

O k BOUNDING VALUE FOR 280 calle COLD O BOUNDING VALUE FOR 200 cal /g HSB

- 25 '{

O CALCULATED VALUE - COLO D CALCULATED VALUE - HSD

- 30

-3b o 400 a)o 1200 1000 2 coo 2400 FUE L TEMPERATURE fCl Figure 9.

Fuel Doppler Coef ficient 1

16

, 2 i.

, , NEDO-24133 l

l J

- 1e i

5 i

i 1

12 -

1 I

O 1

I 10 -

h z I h -

e e 8 -

5 COLD ST ARTUP

! > O BOUNDING VALUE FOR 200 cal /g 5 O CALCULATED VALUE D

5 m

6 -

{

i Yy i

l 2 -

1 i

0L 0 4 8 12 16 20 ROD POSITION ttt OUT) l l

l Figure 10. Accident Reactivity Shape at 20*C l

17 i

u

t NEDO-24133 a

1 14 1

l

12 -

I l 1

} _n

- 1e -

I

)

E o i 2

4  !

$ i e@s

- \

i 1 g

q 4  !

i

> j t i i

' 2 '

D w

>, c 6 -

i O- 4 4 -

I HOTSTARTUP O BOUNDING VALUE FOR 280 cal /g 2 - __ O CALCULATED VALUE l

0' l l l O

4 l 8

12 tG ROD POSITION ttt OUT) 20 Figure 11.

Accident Reactivity Shape Function at 286'C 18

)

._T . - -

! ; ,0 )

4  :

NED0-24133

$0 i

l i

70 1

eo -

COLO STARTUP

, 60 -

i _

O souNoiNo vALUE FOR 200 cel/g

[

O O CALCULATED VALUE 2

s e .o __

e_

2 b

5 a: so -

20 -

i

, 10 -

Os i i i 0 2 4 6 8 10 ELAP$ED TIME tasc) l l

l l Figure 12. Scram Reactivity Function at 20'c l l

19

1 , NEDO-24133

, o 140 .

i I

s I

120 -

HOT STARTUP i 100 - O BOUNDING VALUE FOR 280 cal /0 O CALCULATED VALUE J =

i 5 Z

80 -

t x

  • a 4

i s

~

y 60 -

E f

40 -

4  !

3 20 -

0_ -

0 2 l 4

6 8 ELAPSED TIME (esci 10 i

Figure 13.

Scram Reactivity Function at 286*C 20

__ . _ _ _ _ , - , - _ t__