ML20084C350

From kanterella
Revision as of 06:35, 18 April 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Estimation of Cable Spreading Room Equipment Floor Loading
ML20084C350
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 05/19/1995
From: Andersen H, Villarreal F
NORTHERN STATES POWER CO.
To:
Shared Package
ML20084C327 List:
References
CA-95-044, CA-95-044-R00, CA-95-44, CA-95-44-R, NUDOCS 9505310491
Download: ML20084C350 (30)


Text

.

. MONTICELLO NUCLEAR GENERATING PLANT 3494 TITLE: CALCULATION / ANALYSIS CONTROL FORM Revision 2 10/12/94 Page 1 of 1 Calculation / Analysis No.: CA o44 Page 1 of lS Revision No.: c.

Title:

Ee+; %4% o f C a bic. %ead o Reem Eo o: ema Fler Lod ~ d U System: kl A Topical S ject Area: G . 7.

Modification No.: dA Vendor Name/ Calc No.: rdA Assigned Personnel (Names & Titles)

Approval: Tob 6;twlb -

Ack.a iC, .Ld Ew.-

a

.i i-Preparation: &J A. \/:llo.<re&( /Caso44 ; Idard D. Anh/Acu. Prf. Eng:nur Verification: Oswa 8nz eM4 fn 6m 6esa Verification:

NA Beferences/ Filing Elle Descriotion/ Location 1,

2.

3.

X Calculation / Analysis file.

Verification Method (s)

Review x Altemate Calculation Test Other E <planation:

^Uomotetion (Signatures) NA Verific 'on/Approvalin Document l'repared B .v.b C . [ Date: 6-/7-95 Verified By: w, a

IM Date: r- / 9 -fa-Verified By: _ -_ _

Date:

Ap.aved By: / Date: r/g/9f 5 'PROCEDUT)s[ FORM CHANGE AND HOLD NOTICE) incorporated: A&

f 'n ADMINISTRATIVE Resp Supv: GSSA N} l Assoc Ref: AWi-05.01 M 2fe4l SR: N Frea: 0 , yrs, USE ONLY ARMS- 3494 IDoc Type: 3042 l Admin Irdtials cjo Date: /o//f /9i/

I I/jae 9505310491 950519 PDR ADOCK 05o00263 S PDR l

J

Calculation No. CA-95-044 Page 2 of13 1

  • l Revision 0 PURPOSE This calculation will estimate the current floor loading on the Cable Spreading Room (CSR) floor based upon current available documentation, field survey results and engineering judgment. This evaluation is performed in support of closure for LER 94-008 (Ref.1).

METHODOLOGY The current floor loading is estimated as follows:

1. Review current drawings for equipment loading on the floor (both top and bottom). .
2. Review documentation for estimation of equipment weights. The most reasonably conservative cable tray weights will be assumed based upon actual cable tray weights and the mean cable tray weights based upon a 95% confidence level.
3. Survey room for confirmation of floor loading assumptions.
4. Draw conclusions based upon best information available.

Note: To ensure that all cable tray weights are properly considered, all cable tray weights will be conservatively increased by 5% for variations and unknowns.

ACCEPTANCE CRITERM No acceptance criteria applies to this calculation. This calculation supports the close-out of LER 94-008 (Ref.1). Floor loading requirements and/or limitations are identified in other documentation, such as reference 2.

INPUTS The following inputs apply to this calculation:

1. Drawings referenced in the Reference section of this calculation.
2. Cable tray weights based upon a query of the MNGP raceway tracking database. This database query is based upon the same methodology as described in reference 18.

This query restricts its scope to those trays located in fire area VI as indicated by reference 22. The CSR is located in fire area VI. See results listed in Attachment 1.

3. Calculations referenced in the Reference section of this calculation.
4. Survey results conducted on 5-12-95 and 5-16-95 identified herein.

Calculation No. CA-95-044 Page 3 of13 l Revision 0 ASSUMPTIONS 1

l

1. Miscellaneous conduits do not impose a significant floor loading.
2. CSR panels have a weight density of 25 pcf per references 3,4, 5 and 6.
3. Acoustic ceiling panels and other miscellaneous equipment (e.g. H&V ducting) hung i from the underside of the CSR floor do not impose an effective load in excess of 5 psf. !

This assumption is based upon building material weights presented in reference 7 for acoustic ceiling panels (Refs. 8 and 9) (i.e. I psf) and the effective H&V ducting weight of 3 - 4 psf per references 9 and 10.

However, in areas where acoustic ceiling panels are not present and relatively little equipment is suspended from the CSR floor system (e.g. the battery rooms), a lower uniform weight for suspended equipment of 3 psfis assumed.

4. No other live load exists on the CSR floor other than attached equipment (e.g. cable trays, conduits, panels, acoustic ceiling panels and miscellaneous equipment hung from the underside of this floor).
5. All cable trays are 2'-0" wide, unless noted otherwise.
6. The weight of a single empty cable tray (covered or uncovered)is 4.23 lbs/fl (Ref.18).
7. All cable tray data reported within the raceway and cable tray database are correct.

ANALYSIS The estimation of equipment (namely CSR panels and cable trays) loading is performed separately as follows. The conclusions drawn from these estimations follow the equipment load estimations.

CSR Panel Weights:

According to references 3,4,5 and 6, the CSR panel weights have been estimated to be 25 pcf. According to survey results, the panel heights are approximately 7 '-6" It is noted that some panels are actually shoner than 7'-6" Therefore, based upon this height and assumed weight density, the floor loading immediately below the panels and within the area plan of these panels is:

(25 pcf)(7*-6") = 187.5 psf According to reference 11, these panels are predominately located on the east end of the CSR. Using information supplied by reference 11, the effective floor area consumed by these panels between the south wall and column line L. is:

' Calculation No. CA-95-044 Page 4 of 13 Revision 0 beam span = L = 23'-1" (Ref. 2 pgs 42 and 43 for beams B6 - B10)

According to references 2,11 and 12, the most heavily loaded beam on the east side of the CSR is located on column line M.. According to references 2 and 12, the tributary width for this beam is 8'-0". According to references 11 and 12, the partial weights of the panels (i.e. C33, C39, C18, C42 and C305, or C28, C30 and C289A) are distributed to this beam. Therefore, considering the width of these panels is 2'-6" and the panel loads are distributed via the floor slab, the effective uniform panelluad from the slab is calculated as follows:

P A B a ,

b "A NB L

According to references 11 and 21, the panelloads (idealized as a point load on a simply supported beam) are located 5'-6 %" north of column line M. and 2'-l1 %"

south of column line M.. Therefore, assuming equalloading due to each set of panels (i.e. essentially the same panel widths), the imposed load on the beam, w w.., on column line M. is,

- ~

r5-

' 6% 'I '2'-l 1 % 'I

%. = %,i 1- + # '"

_ s 8' -0" s . _ ~ s 8'-0" s _[ ~

Since the effective loading on the beam is a function of the ratio of the panel width  ;

(i.e. 2'-6") to the tributary width of the beam (i.e. 8'-0"), the effective loading on this beam is, l

0.937(2'-6")(187.5 psf)

%,,, = * ##

8'-0" l

I i

l l

l 1

. 1 Calculation No CA-95-044 Page 5 of13 l Revision 0 W

A B'

1

(

a b

l RA L R

= .= 8 i

+

V0 0 N -

o e

M0 0 M max Summing moments about point A, the reaction Rn is, ,

[M,=0 wa' -

R, L = 0 2

wa' R" = 2L ,

Summing forces in the vertical direction,

[IQ = 0

< a g

R^ = wa \ 1 2La Determine the maximum moment: -

R, a(2L -a) ,

c= a= .

< R, + R,3 2L  ;

R, c wa*(a - 2L)'

M.= m 2

8L2  ;

r-= - y++y ?w~ .er- .m e.m-- 9 y-e s. p--- msy- =ya.A-.<w,--.w--mw - -.,- y , - -

' Calculation No. CA-95-044 Page 6 of13 Revision 0 Consider an equivalently loaded simply supported beam with a uniformly distributed load which produces the same bending moment on the beam as the above load configuration. This equivalent uniformly distributed load, w 3, is:

w,, L' wa'(a - 2L)*

M==m 8

=

8L' 2

wa (a - 2L)*

w,, = y From reference 11, assume b = 8'-0" Then for L = 23'-1", a = 15'-1" and, w , = 0.77w = 0.77(55 psf) = 42 psf Then assuming a suspended uniform load of 3 psf, the effective uniform equipment loading on the floor is approximately 45 psf.

This approximated maximum effective equipment loading on a single floor beam is very conservative based upon the following observations:

Concrete block walls forming the battery rooms below the CSR are grouted completely to the CSR floor deck. These walls are sealed in order to support Appendix R and fire protection requirements. The wall configurations were confirmed by field survey.

  • Although much of the panel weights may have been installed prior to the crection of the block walls, the block walls will provide additional vertical support for the floor system during differential pressure loadings such as a Halon system actuation or a postulated, non-design basis tornado event (see references 1 and 2 for more information).
  • By inspection of references 9 and 21, these walls will provide a significant support mechanism ! the C~ . deck. Therefore, a majority of the floor loading due to difle a; r r e es on the floor deck is directly picked up by the concrete block waN be 5 floor deck. This mechanism was conservatively ignored m the enivation of the floor system as documented in reference 2.

Therefore, based upon the actual panel distribution on the floor and the actual support system for the CSR floor deck, this overly conservative value of 45 psf actually represents a maximum live load of approximately 1/3 of the design live load of 100 psf for this floor (Ref.13 Section 12 2.1.5). Therefore, it is reasonable to expect the maximum floor loading out to panels and suspended equipment,

Calculation No. CA-95-044 Page 7 of 13 Revision 0 considering the actual support system for the floor deck system, not to exceed approximately 33 psf.

CSR Cable Tray Weights:

CSR cable tray weights will be determined by two independent methods. The first method will be to examine the maximum anticipated loading based upon the maximum number of stacked cable trays. The second method will be to estimate the maximum cable tray loading based upon a mean cable tray weight with an associated 95% confidence level. The use of both methods should ensure that a bounding load case is developed for the existing as well as for future load conditions.

An additional 5% increase in cable tray weights will be applied for consideration for variations and unknowns.

Method No.1:

According to field survey results and references 15,16 and 17, the following stack of cable trays appear to be the bounding floor load conditions. This assumption is based upon the number of stacked cable trays as well as its location (i.e. near the center of a beam span).

HP402A CJ502 GK404 MK402 EM305A EM305C EM305B In addition, the following cable trays are attached to either the support stands for the above cable tray or are attached to the stack itself:

HP402B IPA 317 IPA 318 IPA 319 2PA406 2PA407 According to references 19 and 20, the weights of these cable trays are as follows. liowever, note that some of the values for multiply designated cable trays have lower than reported values than shown in references 19 and 20. This is due to the potential for double accounting for cable tray

Calculation No. CA-95-044 Page 8 of13 Revision 0 self-weight. In addition, the vertical cable trays are distributed over a distance of approximately 8 ft. Therefore, the weight of the vertical trays will be converted into an equivalent distributed weight.

Cable Tray No. Tray Weight (lbs/ft) (psf)

HP402A 30.9 15.5 CJ502 42.11 21.1 GK404 5.32 2.7 MK402 9.835 4.9 EM305A 24.075 12.0 EM305C 24.075 + 3.09 = 27.165 13.6 EM305B 24.075 + 0.12 = 24.195 12.1 HP402B 30.9 + 0.385 = 31.285 15.6 1PA317 (7')(5.305 lb/ft)/(8') = 4.642 2.3 1PA318 (7')(4.875 lb/ft)/(8') = 4.266 2.I 1PA319 (4')(4.23 lb/ft)/(8') = 2.115 1.1 2PA406 (7')(4.35 lb/ft)/(8') = 3.806 1.9 2PA407 (7'0(4.23 lb/ft)/(8') = 3.701 1.9 m<W , Total: 106.8 Note: The weight of the vertical trays may not be accurate. However, considering the assumptions in method no. 2 below regarding this vertical cable trays, the errors in these weights has no net impact on the overall conclusion of this calculation. Therefore, the above values are acceptable for discussion purposes.

According to this method, the actual weight of the stack of cable trays is 106.8 psf directly below the stack of trays. Increasing this value by 5%

yields an adjusted actual weight of 112.1 psf.

Method No. 2:

This method will employ standard statistical methods based upon the assumption that cable tray weights have a normal distribution. Then considering all cable trays located within the CSR, the mean weight and the standard deviation are: (Ref. 20) mean weight = W= 0.637 lbs/fl/1% fill average fill = 23.302%

standard deviation = c = 0.367 lbs/fl/1% fill To account for variations in tray fill, an additional 5% will be added to the average fill. Then the adjusted average fill is (1.05)(23.302%) = 24.5%.

I I Calc $lation No. CA-95-044 Page 9 of13 Revision 0 W = (0.637 lbs/R)(24.5) = 15.6 lbs/R o = (0.367 lbs/R)(24.5) = 9.0 lbs/R Using reference 14 Table 1.5 (page 1-24), for a 95% confidence level (single tailed), the average weight of a single cable tray is expected to be:

0.95 - 0.5 = 0.45 z = 1.645 w,5 = W + zo + 4.23 lbs/R = 34.6 lbs/ft, or w95 = (34.6 lbs/R)/(2 ft) = 17.3 psf Considering multiple cable tray stacks, the weight of a single cable tray within a multiple cable tray stack is:

" Self Total Weight No. of Mean Standard Trays Weight, W Deviation, zo Weight w95 w95N (N) (ibs/R) (Ibs/ft) (lbs/A) (lbs/ft) (lbs/R) (lbs/ft) (psf) 1 15.6 14.8 14.8 4.23 34.6 34.6 17.3 2 15.6 14.8 10.5 4.23 30.3 60.6 30.3 3 15.6 14.8 8.5 4.23 28.3 84.9 42.5 4 15.6 14.8 7.4 4.23 27.2 108.8 54.4 5 15.6 14.8 6.6 4.23 26.4 132.0 66.0 6 15.6 14.8 6.0 4.23 25.8 154.8 77.4 7 15.6 14.8 5.6 4.23 25.4 177.8 88.9 8 15.6 14.8 5.2 4.23 25.0 200.0 100.0 9 15.6 14.8 4.9 4.23 24.7 222.3 111.2 10 15.6 14.8 4.7 4.23 24.5 245.0 122.5 11 15.6 14.8 4.5 4.23 24.3 267.3 133.7 12 15.6 14.8 4.3 4.23 24.1 289.2 144.6 13 15.6 14.8 4.1 4.23 23.9 310.7 155.4 The above calculation applies to the horizontally mounted cable trays.

However, in order to consider the 5 vertical cable trays, the sum of the statistical weights of the horizontal and vertical weights are calculated as follows:

~

(155.4 psf)(l3 - 5) w,, = = 95.6 psf (l55.4 psf)(5)(7')

  1. " = 52.3 psf (13)(8')

w ror = wa + wv = 147.9 psf

7 . ..

Calculation No. CA-95-044 Page 10 of13 Revision 0 - ,

It should be noted that this total weight is very conservative.. Considering -  ;

that w uis approximately the same weight as for an 8 cable tray stack at 100 psf, this value is reasonable for this analysis. However, considering that these vertical cable trays have very low fill ratios (verified by the field ,

surveys), wv is overly conservative by perhaps a factor of 2. As such, the total weight is actually approximately 25 psfless than the above statistically calculated weight. This is a conservatism which will not be explicitly  ;

considered in the following calculations.

According to this table, the statistical weight of a seven cable tray stack is 147.9 psf directly below the stack. Since the actual stack weight of 112.1 psfis bounded by the statistical weight of 147.9 psf, the statistical cable tray weight will be used.

Examining the floor space used to support cable trays and cable tray stacks, the effective weight on the floor due to this cable tray stack is calculated as follows:

According to reference 16, the centerline of the cable tray stack is located ,

13'-1" cast of column line 8.97. According to reference 21, the center of the cable tray stack is located (24'-l 1") - (13'-1") = 1l'-10" west of column line 10.1. Since this stack is not located at the center of the floor beam, assume an equivalent point load, P, on the span. The maximum bending moment for a simply supported beam loaded at any point of the ,

beam is:

M = Pab L

The equivalent uniform load, w.3, on a simply supported beam which yields the same maximum bending moment is:

w,0 Pab M=

=

g L ,

8Pab w,, = g Then for a beam span length of 20'-3" (Ref. 2, pages 42 and 43 for beam nos. B3 and B4), the equivalent floor loading due to the cable trays is:

w., = 28 psf (conservative) where:

L = 20'-3"

Calculation No. CA-95-044 Page11of13 ,

Revision 0 P = (147,9 psf)(2 ft) = 295.8 lbs/ft a = 1 l '- 10" b = L - a = 8'-5" Adding in the weight of suspended equipment (e.g. ceiling panels, etc.), the efTective equipment loading on this floor due to cable trays is approximately 33 psf. Since the panels located on the floor area west of column line 10.1 are relatively light and are located relatively near the beam end (verified by field surveys), and the vertical cable tray weights were conservatively assumed, a full evaluation of the impact on the effective floor loading due to these panels is not warranted.

Therefore, considering the assumptions of suspended floor loading and vertical cable tray widths, this effective floor loading value of 33 psfis approximately X of the design live load of 100 psf for the CSR floor per US AR (Ref.13) Section 12.2.1.5.

CONCLUSIONS This calculation approximates the maximum effective equipment loading on the CSR floor system to be approximately X of the design live load of 100 psf per USAR Section 12.2.1.5. The resultant maximum effecive equipment loading for a simply supported composite beam floor system is approximately 33 psf. This value considers the supporting mechanism of the concrete block walls below the floor system not considered in reference 2.

E H T_U. R E N E E D S Futurd mo'difications which 1) significantly alters the weight distribution of equipment in the CSR, 2) removes or significantly modifies the concrete block walls forming the battery rooms below the CSR, or 3) adds a significant new load to the CSR floor system should consider the impact on the conclusions drawn in this calculation as well as other calculations supporting LER 94-008 (Ref.1) (e.g.

reference 2). The addition of a few miscellaneous cables or conduits to the CSR will not significantly impact the conclusions of this calculation.

ATTACHMENTS Attachment No.1 - Reference 19 (14 pages)

Attachment No. 2 - Reference 20 (2 pages)

Attachment No. 3 - Form No. 3495 - Calculation / Analysis Verification Checklist (1 page)

Calet$lation No. CA-95-044 Page 12 o<f 13 Revision 0 REFERENCES

1. MNGP LER 94-008," Structural Beam Connections Associated With the Cable Spreading Room Floor Found to be Different Than Design", rev.1
2. NSP Calculation No. CA-94-033, " Qualification of Cable Spreading Room Floor for -

Tornado Loading", rev. 0

3. URS/ John A. Blume and Associates, Engineers Calculation No. 8158-C-A,

" Determination of Equipment Weights by Measurement, Calculation and Similarity",

rev. O, ISEQ # GOH00127 -

4. URS/ John A. Blume and Associates, Engineers Calculation No. 8158-C-G03,

" Evaluation of Existing Anchorage for Cabinets in the Cable Spreading Room, NSP Cabinet Numbers C18, C27, C28, C30, C32, C33, C38, C39, C41, and C42; Blume Item Numbers: 10,12,13,14,15,16,19,20,21 and 22, respectively", rev. O, ISEQ #

GOH00007

5. URS/ John A. Blume and Associates, Engineers Calculation No. 8158-C-G52,

" Evaluation of Existing Anchorages of the Prompt Relief VB-Cabinet, Cabinet I north of Blume Item 010, Cabinets C-47, C-48, and C-19; Blume Item Numbers 113,114, 122,123 and 120, respectively", rev. O, ISEQ # GOH00053

6. URS/ John A. Blume and Associates, Engineers Calculation No. 8158-C-012, .

" Remedial Strengthening of Anchorage for the Following Cabinets in the Cable l Spreading Room: C27, C28, C30, C32, C33, Prompt Relief VB Cabinet, Cabinet #1 ,

North of C-18, C-19, C47, C48; Corresponding Blume Item No's 012,013,014,015, l 016,113,114,120,122,123", rev. O, ISEQ # GOH00064

7. " Manual of Steel Construction", AISC,6th edition l
8. NSP Drawing No. NF-36329 (C-32)," Reflected Acoustic Ceiling Plans", rev. C
9. NSP Drawing No. NF-36310 (C-13)," Office and Control Building Floor Plans", rev.

S

10. NSP Drawing No. NF-36737 (M-536), " Office and Control Building H&V Plan Sections and Elevations, Elevation 928'-0"", rev. H ,

1

11. NSP Drawing No. NF-120072, " Administration Building, Cable Spreading Room Equipment and Penetration Plan", rev. A
12. NSP Drawing No. NF-36546 (C-462), "Oflice and Control Building Floor Plans at Elevation 939'-0" and Elevation 951'-0"", rev. L '

' Calculation No. CA-95-044 Page 13 of13 Revision 0

13. MNGP USAR, rev.13
14. " Mechanical Engineering Reference Manual", Michael R. Lindeburg, P.E., 8th edition, Professional Publications, Inc.
15. NSP Drawing No. NF-120073, " Administration Building Composite Tray Layout Plan", rev. B
16. NSP Drawing No. NF-120074, " Administration Builoing Tray System E, G, L, M and IPPI Layout Plan", rev. B
17. NSP Drawing No. NF-120075, " Administration Building Tray Systems C and H Layout Plan", rev. B
18. NSP Calculation No. CA-94-092, " Cable Tray Mechanical Loading", rev. 0
19. NSP MNGP Cable and Raceway Database QUEL output, dated 5-12-95 (see Attachment No.1)
20. NSP MNGP Cable and Raceway Database output, dated 5-12-95 (see Attachment No.

2)

21. NSP Drawing No. NF-36551 (C-470), " Office and Control Building Floor Framing Plans at Elevation 939'-0" and Elevation 951'-0"", rev. D
22. NSP Drawing No. NX-16991-15, " Fire Hazards Analysis, Plan View Administration Building Elevation 939'-0"", rev. A i

l

)

1 12-MAY-1995 10:36:47

/*****************************************************************************/

/*~ Program: AMNEIGHT1. QUEL /  ;

/* Dascription: Calculates the total weight for cable trays in fire area VI.*/

/* Inputs: TABLE amweight */

  • / j

/* Outputs: TABLE ward 2

/*'By: Ward Andersen */

/* Last Mod: 5-12-95 */ ,

/****************************************************************************/

sat lockmode session where readlock=nolock  ;

dastroy ward dastroy wardi dastroy ward 2 rotrieve into ward (node = ctnode.desig, length = cttray. friction, i fill =ctnode.pfarea) where  :

ctnode.racetype = "T" and i etnode.desig = cttray.desig and ctnode.desig = ctrwyfa. raceway and ctrwyfa.firearea = "VI" (308 rows)

, modify ward to isam on node (308 rows) retrieve into wardi (ctcable.desig, weight = amweight.cweight

  • ctcable.numreel) where i ctcable.bom - amweight.bom (11667 rows)  ;

modify wardi to isam on desig (11667 rows)

/* Calculate the weight per linear foot for the cable trays */

retrieve into ward 2 (ward.all, weightperft = sum (ward 1. weight by '

ward. node where ward. node = ctroute. node and ward 1.desig = ctroute. cable))

(308 rows) ,

/* Some trays in the database have one name for two or more trays */

/* These trays are identified by the following note and note numbers */

retrieve (ctatdnote.all) where ctstdnote.notenum = "119" or ctstdnote.notenum "12[0123]" t inotenulnote 1

l 1

Cole.

  • CA-es- o44 l A A6-+ 1 f R v.o p )c i ef 14 1

4

r-_-____ _ _ _ __ ____ . _ _ _ _ _ _ _ _ _______________________

a a

I 1

\ ------___---_---_______--_____--______-_______--________-___-__--_______________

l

___-__-____-___________-____--___-__________________________-_______; l l 1119 [This tray node consists of two trays, dimensions 3X24.

I 1120 lThis tray node consists of two trays, dimensions 3x24 and 3x18.

Mc. 4 CA 044- ,

Ah6+ i I

(

S2x.O I c 7 of 14

I l121 lThis tray node consists of two trays, dimensions 3X24 and 3X12.

(122 IThis tray node consists of three trays, dimensions 3X24.

i o

Uc. -JL CA- 9s - o44 A4ta.cA mace- i R.ev. o fa p 3 of 14 l

l 1123 lThis tray node consists of two trays, dimensions 4X12.

l I

\

l

\ ________________________-_-___---_____-_---________________________________-----

________________________________-______________________-____________i (5 rows)

/* Normalize the tray weight to a 24 inch wide tray for the multiple */

/* tray sections by dividing the tray weight per foot by the tray width */

/* and multiplying by 24 inches. */

replace ward 2 (weightperft = ward 2.weightperft

  • 24 / cttray.dimen1) where cttray.desig = ward 2. node and ward 2. node = ctrwynote.desig and (ctrwynote.notenum = "119" or ctrwynote.notenum = "12[0123)")

(20 rows)

/* Add the empty weight of a 24 inch wide tray to cable weights */

replace ward 2 (weightperft = ward 2.weightperft + 4.23)

(308 rows) &k, g gg, g retrieve (ward 2.all) sort by node AnackmceF 1 Inode llength (fill lweightperfl i_____________________-_______-___001 3.0001 0.0 4.2301 p lc 4 gf gg IlPA303 l

11PA311 l' 3.0001 0.000l 4.2301 l1PA312 -l 5.000l 0.106l 4.3251 l1PA313' l 5.000l 1.1881 5.110l l1PA314 l 5.000l 0.361l 4.660l l1PA315 l 5.000l 0.000l 4.230l t 11PA316 l 7.000l 1.513l 4.990l jlPA317 l 7.000l 17.374l 5.305l l1PA318 l 7.000l 1.6251 4.875l l1PA319 l 4.000l 0.000l 4.2301 l1PA320 [ 4.0001 0.000l 4.230l

llPA321- l 12.000l 1.0821 5.015l l1PA502 l 2.0001 0.000l 4.2301 11PA504 1 3.0001 0.000l 4.2301 l1PA505 1 3.0001 0.000l 4.230l l1PP121 1 18.0001 36.959] 20.560l jlPP122 l 21.000l 39.075l 21.415l l1PP125 l 13.0001 7.875l 6.970l l1PP129 l 12.000l 28.5851 17.400l l2PA405 l 7.000l 0.0001 4.230l l2PA406 l 7.000l 0.1751 4.350l l2PA407 l 7.000l 0.0001 4.230]

l2PA408 l 5.000l 1.6071 5.185l

.j2PA409 l 8.0001 0.000l 4.230l 12PA410 l 25.0001 1.2851 4.570l l2PA411 1 2.000l 9.0001 4.2301

[2PA412 1 6.0001 0.000l 4.230l l2PA413 l 6.0001 0.0001 4.230l 12PA414 l 4.000l 0.106l 4.325l 12PA415 1 4.000l 0.000l 4.2301 ,

l2PA416 l 4.0001 0.1751 4.350l l2PA417 l 7.000l 0.000[ 4.230l t l2PA418 1 3.000l 0.0001 4.230l l2PA419 l 3.000l 0.000l 4.2301 l2PA420 l 7.000l 0.000l 4.2301 l 12PA421 1 7.000] 0.000l 4.2301 l2PA422 1 6.000l 0.000l 4.230l ,

l2PA423 l 7.0001 0.694l 4.4951 12PA424 l 7.0001 17.315l 4.420l l2PA425 l 7.000l 0.000] 4.230l l2PA426 l 7.0001 20.135] 4.990l l2PA427 l 7.000l 0.0001 4.230l l2PA428 l 7.0001 0.1751 4.350l i l2PA429 l 7.0001 0.1751 4.350l l2PA430 l 7.000l 0.0001 4.230l l2PA431 l 3.0001 0.212l 4.3251 j2PA432 1 5.0001 0.0001 4.2301 i l2PA433 l 5.000l 1.8781 5.6901 12PA434 l 5.0001 0.0001 4.2301 l2PA435 l 6.0001 0.0001 4.2301 l2PA436 l 3.0001 0.000l 4.2301 i l2PA437 l 4.0001 0.0001 4.230l l2PA438 l 9.000l 0.673l 4.590l l2PA439 l 7.000l 0.455l 4.565l l2PA440 l 8.000l 1.328] 4.445l l2PA441 l 4.0001 1.2411 5.085l ICJ501 l 13.0001 49.143l 44.8951 lCJ502 l 10.000[ 47.155l 42.110l God c . 4 CA o&&

lCJ503 l 7.000l 34.042] 31.449l lCJ504 l 15.0001 29.283l 27.9251 A 4 ,( ,gf. g lCJ505 l 15.0001 13.7111 20.585l lCJ506 l 4.0001 13.764l 20.2411 @4v. o lCJ507 l 4.0001 13.858l 20.3711 o4 L&

lCJ508 l 4.000l 13.845l 20.346l pay G lCJ509 l 4.0001 13.645l 20.106]

[CJ510 l 4.0001 12.0001 18.3661 lCKS l 0.0001 0.015l 4.3801 I

.lCK501 1 5.0001 25.1491 34.3751 l lCK502 -

1 12.000l 21.2851 29.415l 1

'ICK502E' l 0.0001 0.010l 4.3901 lCK503 l 11.0001 38.152l 49.495l lCK504 l 12.0001 25.868l 31.520l lCK505 l 11.0001 31.737] 38.5001  ;

ICK506 l 13.000l 38.6741 42.925l l lCK507 l 10.0001 47.731l 51.040l l ICK508 l 6.000l 40.8221 43.885l l lCK509 l 15.0001 33.013l 38.3551 )

ICK510 l 4.0001 24.712l 29.480l ICK511 l 4.0001 18.123l 22.0851 lCK512 l 4.0001 0.415l 4.8251 4.975) lCK513 l 4.0001 0.495l lCK514 1 4.0001 0.562l 5.100l ICK515 1 0.0001 0.011] 4.505l lCK522 1 0.000l 0.0041 4.3101 ICK591 1 0.0001 0.008l 4.3251 lCL5 l 0.000l 0.0401 4.8201 lCL501 l 15.0001 22.072l 30.205l ICL502 l 8.0001 22.984l 27.865l lCL503 l 9.000l 23.8411 28.660l lCL504 l 8.0001 20.1181 25.710]

ICL505 l 15.0001 22.9661 27.540l ICL506 l 10.0001 20.7081 24.2601

[CL507 l 10.0001 17.915l 22.0101 lCL508 l 16.0001 27.151l 23.8851 JCL509 l 15.0001 24.683l 24.4001 ICL510 l 4.000l 15.7241 21.910l lCL511 l 4.0001 14.4351 20.340l lCL512 1 4.0001 12.8481 19.0951 lCL513 l 4.0001 12.8211 19.090l lCL514 l 4.0001 13.9541 22.430l lCL515 l 7.0001 12.207l 12.450l lCL516 l 7.0001 12.2071 12.450l lCM501 1 0.0001 0.1201 4.2301 ICN501 l 5.000l 10.558l 13.9001 lCN502 l 8.000l 16.591l 18.875l lCN503 1 7.0001 20.783l 23.765l lCN504 l 7.0001 18.753l 22.1551 lCP501 l 20.0001 5.7281 4.230l lCP502 l 16.0001 13.847l 7.010l lCP503 l 21.0001 16.5131 7.960l '

lCP504 l 12.000l 16.513] 7.9601 lCP505 l 15.0001 19.889l 7.960l lCP506 l 4.000l 19.8891 7.960]

lCP507 l 4.000) 20.2521 7.960]

lCP508 l 4.0001 24.2871 7.9601 lCP509 l 4.000l 15.543l 7.960l lCP510 1 4.000l 9.813] 7.960l ICR501 1 39.000l 23.892l 39.820]

ICR502 l 10.000l 4.5001 8.3701 ICR503 l 10.000l 4.5001 8.3701 lCS501 1 10.0001 10.1281 4.2301 ICT501 1 0.0001 0.365l 4.2301 lCT502 l 0.0001 0.365l 4.230l lCT604 l 12.0001 11.272l 7.030]

lCU602 1 16.000l 7.439l 6.390l Osalc. 4 GA ch&&

lCU603 3.000l 11.272l 7.030]

lCU604 l

l 12.0001 11.272l 7.030] Aume.+ i lCV501 l 11.0001 12.328l 4.4701 gjy , ,

ICV 502 l 5.0001 4.872l 5.1101 lCV503 1 3.0001 11.2721 7.0301 pa w cf of Mr lCV504 l 3.0001 11.2721 7.030l 1 lCW501 1 11.000l 22.1171 4.7101 ICw502 l 5.0001 4.8721 5.1101 l

..;cw503 1 3.0001 11.272l 7.0301 lCW504 -

1 3.000l 11.2721 7.030l .

ICX501' l 5.000l 14.717l 16.6351 lCX502 l 9.0001 17.957l 19.2751 lCX503 l- 6.0001 18.599l 19.930l lCX504 l 11.000l 30.475l 28.415l lCX505 l 6.0001 19.835l 21.515l lEM3 1 0.0001 0.025l 4.470l lEM301 l 10.0001 0.0001 4.230]

lEM301A l 10.0001 16.855l 17.320l lEM302 l 8.0001 0.0001 4.230l lEM302A l 8.000l 18.683l 20.135l lEM303 1 10.000l 25.862l 22.688l lEM303A l 10.000l 26.4551 4.565l lEM303B l 10.000l 22.901l 6.890l lEM304 l 10.000l 26.961l 23.775l lEM304A i 10.000l 31.175l 4.350l lEM304B l 10.000l 30.9011 6.8901 lEM305 l 10.000l 27.317l 24.0751 lEM305A l 10.000l 38.000l 4.2301 lEM305B l 10.000l 31.175l 4.3501 lEM305C l 10.000l 28.4621 7.3201 lEM306 l 13.000l 26.270l 23.410]

[EM306A i 13.000l 45.000l 4.230]

lEM306B l 13.0001 0.175l 4.350]

IEM306C I 13.000l 28.4621 7.3201 lEM307 l 10.000l 30.933l 26.988l lEM307A i 10.000l 21.000l 4.230]

lEM307B l 10.0001 0.1751 4.350l l lEM307C l 10.000l 21.5071 6.7451 l lEM308 l 14.000l 33.562l 29.6001 lEM308A l 14.0001 37.1751 4.3501 lEM308C l 14.000l 20.507l 6.745l lEM309 l 17.000l 21.305l 20.480l lEM309A l 14.000l 33.1751 4.350l lEM309C l 14.000l 16.1751 4.350l lEM310 l 15.000l 0.0001 4.230l lEM310A l 15.000l 25.226l 22.645l

[

lEP301 l 46.000l 38.358l 25.395l l lER0 RISER I 5.000l 0.133l 4.310l lER2 RISER l 5.000l 0.533l 4.550l lER3 RISER l 5.000l 0.400l 4.470l lER4 RISER l 5.000l 0.133l 4.390l lGJ401 1 12.000l 35.7471 33.635l lGJ402 1 8.000l 22.202l 22.0451 IGJ403 l 7.000l 29.794l 27.8551 JGJ404 l 7.000l 25.575l 24.770l lGK401 1 7.000) 35.727l 32.990l lGK402 l 11.000l 28.189l 25.8051 lGK403 1 5.000l 19.259l 19.1001 IGK404 1 0.0001 0.1021 5.3201 lGK405 l 0.0001 _0.0491 4.740l lGK406 1 0.0001 0.0001 4.230l lGK407 1 0.0001 0.0121 4.350l lGL401 l 5.0001 30.9651 28.325l lGL402 l 8.0001 15.0741 15.970l lGL403 l 12.0001 40.6241 35.610l lGL404 l 12.0001 18.343l 18.355] Q c,4 C u g g lGL405 l 11.000l 26.189l 24.1001 lGL406 l 13.0001 10.3151 11.7201 A+ Leas m ceh i lGL407 l 10.000l 24.533] 23.440l lGP4 1 0.000l 0.010l 4.390l E8V O lGP401 1 6.000l 22.388) 21.155l ,.{ Nh IGP402 lGP403 1

l 7.000l 6.0001 19.9391 17.4061 19.280l 17.5201 I"]F1 lGP404 I 8.0001 34.290l 26.5851

lGP405 l 6.0001 28.222l 25.880l lGP406, -l 0.000l 0.0081 4.325l lGP407 l 0.000] 0.015l 4.370l lGQ401 l 10.000l 0.000l 4.230l .

lGQ403 l 0.000l 0.0181 4.420l lGR401 l 5.0001 22.060l 22.010l JGR402 l 8.000l 31.9701 28.7701 lGR403 l 8.0001 27.6371 25.6201 ,

l lGR404 l 16.000l 25.3921 23.4201 lGR405 l 10.000l 36.0141 31.500l l lGR406 l 10.000l 0.664l 11.490l lGS401 l 23.000l 36.646l 29.420l lGT401 l 23.000l 43.7561 33.810]

IGU401 l 23.000l 29.783l 26.3401 ,

lGW401 l 14.000l 8.6291 10.2001 lHM4 l 0.0001 0.020l 4.390l lHM401 l 16.000) 20.8311 20.0801 IHM401A l 16.0001 0.0001 4.2301 lHM401B l 10.000l 1.7091 5.285) 3 lHM402 1 8.000l 29.8531 28.4351 l l

lHM403 l 9.000l 29.4981 27.3101 I l lHM404 l 4.0001 30.6591 28.2651 l JEM405 l 13.0001 24.791l 23.395l l lHM406 l 10.0001 0.803l 4.8451 lHN401 l 4.0001 30.242l 26.9701 lHN401A l 4.0001 0.175l 4.350l lHN402 l 9.0001 19,319l 18.7611 lHN402A l 9.0001 0.0001 4.2301 lHN402B l 4.0001 0.000l 4.2301 l lHN403 l 6.000l 26.640l 24.284l l lHN403A l 6.000l 0.000l 4.230l l lHN403B i 6.000l 0.000l 4.2301 lHN404 l 6.000l 25.287l 23.2301 lHN404A l 6.0001 0.000l 4.2301 l IHN404B l 7.0001 0.0001 4.230l l lHP401 l 7.000l 22.9881 21.725]

lHP401A l 7.000l 0.0001 4.230l lHP401B l 10.0001 18.5221 4.615l l lHP402 l 12.0001 35.548l 30.9001 l lEP402A l 12.0001 40.000l 4.230l l [HP402B l 12.0001 9.522l 4.615]

lHP403 l 7.0001 21.3501 20.2221 lHP403A l 7.0001 50.0001 4.2301 lHP403B l 6.000l 9.696l 4.7351 lHP404 l 0.000l 0.0821 5.2651 lHR4 1 0.0001 0.0241 4.4401 l lHR401 1 4.0001 12.850l 14.2971

[HR401A l 4.0001 0.1751 4.3501 IHR401B l 3.0001 0.0001 4.230l

[HR402 l 8.0001 16.473l 16,650l lHR402A l 8.000l 1.535l 5.165l

lHR402B l 8.0001 0.349] 4.350l JHR403 1 7.0001 20.006] 19.400l l lHR403A I 7.0001 1.535l 5.165l l JHR403B l 7.000l 0.349l 4.350l l lHR404 l 15.0001 44.794l 38.287l lHR404A i 15.0001 3.0691 5.165l IHR404B l 15.000] 34.8311 4.5201 lHR405 l 13.000l 32.5171 28.693l 0036 di C 4 o%.

l 26.0001 55.5351 5.165l Mabd I IHR405B 26.000) 27.5221 4.615]

flHR405A

, lHR406 l l

0.0001 0.0271 4.400l g""* O lIP3260 1 0.000l 0.012l 4.350l lIP3261 l 0.0001 0.0241 4.470l 8) dh @

lIP3262 1 0.000l 0.0121 4.3501 Ia)o lJE301 1 17.0001 45.665l 34.2551 1

  • lJE302 l 17.000l 26.245l 20.120l l lLK401 .' 'l 10.000l 18.524l 19.712l lLK401A l 10.0001 0.1061 4.3251 JLK401B l 3.000l 16.000l 4.230l lLK402 l 8.000l 20.0071 21.545l JLK403 l 12.000l 39.749l 37.135l lLK404 l 12.000l 19.364l 20.175l '

lLK405 l 11.000l 28.3381 27.370l lLK406 1 13.000l 15.865l 16.9801  ;

lLK407- l 10.0001 10.871l 12.770l JLP401 1 12.000] 22.451l 21.715l lLP402 l 10.0001 13.2561 14.8651 l lLP403 l 7.000l 14.8381 15.840l  !

lLP404 l 10.000l 22.648l 22.325l ,

jLP405 l 10.0001 17.616l 18.180l lMJ401 l 5.000l 19.931l 19.325l lMJ402 1 8.0001 17.317l 17.310l  ;

lMJ403 l 12.0001 35.481l 31.100l  ;

lMJ404 l 12.0001 9.216l 12.185l  !

lMJ405 l 11.000l 31.262l 23.775l lMJ406 l 13.000] 23.826l 17.1801 lMJ407 l 10.000) 34.3091 21.190l lMJ507 1 0.000l 0.429l 8.5501 IMK401 l 7.0001 39.336l 33.9001 l lMK402 l 11.0001 7.0851 9.8351  ;

lMK403 l 5.0001 8.962l 11.1301 i lML401 l 5.0001 7.7161 10.225l .

lML402 l 8.0001 24.693l 22.395l #

lML403 l 6.000l 30.613l 27.150l lML404 l 7.000l 31.565) 27.870l ,

lML482 1 0.000l 0.0001 4.230] l lMP401 1 7.0001 1.3391 5.210] ,

32.184l 19.6951 )

jMP402 l 7.0001 lMP403 l 6.000l 39.884l 20.935l lMP404 l 8.0001 34.830l 21.3001 lMP405 l 6.0001 30.689] 19.375l ,

lZA501 l 0.0001 2.8881 9.3731 lZA502 l 0.000l 4.986l 12.9701 IZA503 1 0.000l u.293l 13.8611 lzA504 l 0.000l 0.293l 13.8611  ;

lZC501 l 0.000l 0.0151 4.763l  ;

i lzos01 l 0.0001 0.014l 4.8461 IzD502 l 0.0001 0.015[ 4.896l (308 rows) retrieve (ward 2.all) sort by weightperft:d l node llength (fill tweightperfl .

______________________l l l_______________________01 lCK507 l 10.00 47.731l 51.040l  !

lCK503 l 11.000l 38.152l 49.495l lCJ501 1 13.0001 49.143l 44.8951 ,

lCK508 l 6.0001 40.822l 43.885l l lCK506 l 13.000l 38.674l 42.9251 -

lCJ502 l 10.000l 47.155l 42.110[

lCR501 l 39.000l 23.8921 '39.8201 lCK505 l 11.000l 31.737l 38.500l gg

  • g 3_qg op I lCK509 l 15.000l 33.013l 38.355l lHR404 l 15.000l 44.794l 38.287l A 46,$ ,,,ap g JLK403 l 12.000l 39.749] 37.1351 i lGL403 l 12.000l 40.624l 35.610l Rev. o lCK501 1 5.000l 25.149l 34.3751  !

lJE301 l 17.0001 45.6651 39.3361 34.255l 33.9001 Ia}' 9 ab Ub '

lMK401 1 7.000l l lGT401 l 23.000l 43.756l 33.8101 .

I

>lGJ401 l 12.0001 35.747l 33.6351 lGK401 .' 1 7.000l 35.727l 32.9901 lCK504 l- 12.000l 25.8681 31.520l lGR405 l 10.000l 36.014l 31.500l lCJ503 l 7.0001 34.04.11 31.449l

'lMJ403 l 12.0001 35.481l 31.100l lHP402 l 12.0001 35.548l 30.900l

JCL501 l 15.0001 22.072l 30.205l lEM308 l 14.000l 33.562l 29.600l JCK510 l 4.000l 24.712l 29.480]

lGS401 l 23.000l 36.646l 29.420l JCK502 l 12.000l 21.2851 29.415l lGR402 l 8.0001 31.970] 28.770l lHR405 l 13.000l 32.5171 28.693l lCL503 l 9.000l 23.8411 28.660l JHM402 l 8.0001 29.8531 28.4351 lCx504 l 11.000l 30.475l 28.4151 lGL401 l 5.000l 30.965l 28.325l IHM404 l 4.0001 30.659l 28.2651 JCJ504 l 15.000l 29.283l 27..c251 lML404 l 7.000l 31.565l 27.870l lCL502 l 8.0001 22.9841 27.865l lGJ403 l 7.0001 29.7941 27.855l lCL505 l 15.0001 22.9661 27.540l lLK405 l 11.000l 28.338l 27.3701 lHM403 l 9.000) 29.4981 27.3101 IML403 l 6.0001 30.613l 27.1501 lEM307 l 10.000] 30.933] 26.9881 lHN401 l 4.0001 30.2421 26.9701 lGP404 l 8.0001 34.290l 26.585l lGU401 l 23.000l 29.783l 26.340l lGP405 l 6.000l 28.222l 25.880l lGK402 l 11.000l 28.189l 25.8051 lCL504 l 8.000l 20.118l 25.7101 lGR403 l 8.000l 27.637l 25.6201 lEP301 l 46.000l 38.358l 25.395l lGJ404 l 7.0001 25.575l 24.770l lCL509 l 15.000l 24.683l 24.400l lHN403 1 6.0001 26.640l 24.284l lCL506 l 10.000l 20.708l 24.260l lGL405 l 11.000l 26.189l 24.100l lEM305 l 10.000l 27.317l 24.0751 lCL508 l 16.000l 27.151] 23.8851 jEM304 l 10.0001 26.961l 23.7751 lMJ405 l 11.0001 31.2621 23.7751 lCN503 l 7.0001 20.7831 23.7651 lGL407 l 10.0001 24.533l 23.4401 lGR404 l 16.000l 25.392l 23.420l jEM306 l 13.000l 26.270l 23.4101 lHM405 l 13.000l 24.791l 23.395l JHN404 I 6.000l 25.287l 23.230]

lEM303 l 10.000l 25.862l 22.6881 JEM310A l 15.0001 25.226l 22.6451 lCL514 1 4.0001 13.954l 22.4301 JML402 l 8.0001 24.693l 22.395l lLP404 l 10.000l 22.648l 22.3251 lCN504 l 7.0001 18.753l ~22.1551 (gjg* 4 ggg ,qg _ ,44, lCK511 1 4.0001 18.123l 22.0851 lGJ402 l 8.0001 22.202l 22.0456 )(ga,L ,gh [

lCL507 l 10.0001 17.9151 22.010l JGR401 l 5.0001 22.060l 22.0101 gav. o lCL510 l 4.000l 15.724l 21.910l r lHP401 7.0001 22.988] 21.725] 10 oT lth l

12.000l 22.4511 21.715l f* }L lLP401 l lLK402 l 8.0001 20.007] 21.5451 lCX505 l 6.0001 19.835l 21.515l

'llPP122 l 21.000l 39.075l 21.415]

lMP404 .." 1 8.000l 34.830l 21.3001 lMJ407 l 10.000l 34.309l 21.190l l

,lGP401 l 6.000l 22.3881 21.1551 l lMP403 l 6.000l 39.884l 20.935l lCJ505 l 15.000l 13.711l 20.585l llPP121 l 18.000l 36.9591 20.560l  ;

lEM309 l 17.0001 21.3051 20.4801 i lCJ507 'l 4.0001 13.858l 20.371l l lCJ508 l 4.0001 13.845l 20.346l lCL511 l 4.0001 14.435l 20.340l lCJ506 l 4.000l 13.7641 20.241l i lHP403 l 7.000l 21.350l 20.222l JLK404 l- 12.000l 19.364l 20.175l <

lEM302A l 8.000l 18.683i 20.135l lJE302. l 17.000l 26.2451 20.120l

.lCJ509 l 4.0001 13.6451 20.106]

lHM401 l 16.000l 20,831l 20.080) .

ICX503 l 6.0001 18.599l 19.9301 lLK401- l 10.0001 18.524l 19.712l JMP402 l 7.000l 32.184l 19.6951 lHR403 l 7.000l 20.006l 19.4001 - -

lMP405 l 6.000l 30.689l 19.375l

-lMJ401 1 5.000l 19.9311 19.3251 1 lGP402 1 7.0001 19.9391 19.280l ICX502 l 9.000l 17.9571 19.275l lGK403 l 5.0001 19.259l 19.100l '

lCL512 l 4.0001 12.848l 19.0951 lCL513 l 4.000l 12.821l 19.090l lCN502 l 8.0001 16.591l 18.875l lHN402 l 9.000l 19.319l 18.761l

  • lCJ510 l 4.000l 12.000l 18.366l lGL404 l 12.000l 18.343l 18.3551 lLP405 l 10.0001 17.616l 18.1801 i lGP403 l 6.0001 17.406l 17.520] -

l1PP129 l 12.000l 28.585l 17.4001  !

IEM301A l 10.000l 16.855l 17.320l '

lMJ402 l 8.000l 17.317l 17.310]

lMJ406 l 13.000) 23.826l 17.180l lLK406 l 13.0001 15.8651 16.9801 JHR402 l 8.0001 16.4731 16.6501 lCX501 l 5.000l 14.717l 16.635l 4 t

lGL402 l 8.0001 15.0741 15.970l lLP403 l 7.0001 14.838l 15.840l l lLP402 l 10.000l 13.2561 14.865l s lHR401 l 4.0001 12.850l 14.297l lCN501 l 5.0001 10.558l 13.9001 lzA503 l 0.0001 0.293l 13.861l .

0.293l 13.861l j lZA504 l 0.000l IZA502 l 0.000l 4.986l 12.970l lLK407 l 10.000l 10.871] 12.7701 lCL515 l 7.000l 12.207] 12.450l lCL516 l 7.000l 12.207l 12.450l lMJ404 l 12.0001 9.2161 12.185l lGL406 l 13.0001 10.3151 11.720l

'lGR406 l 10.0001 0.664l 11.490l g, g g eg g lMK403 1 5.0001 8.962l 11.130l lML401 1 5.000l 7.716l 10.225l A4xiLv eek i lGW401 l 14.0001 8.629l 10.200l lMK402 l 11.000l 7.085l 9.835] Eeu . o lZA501 1 0.000l 2.8881 9.373l r U m 14-lMJ507 1 0.000l 0.429l 8.550l lCR502 l 10.000l 4.5001 8.370l l lCR503 l 10.0001 4.5001 8.370l lCP503 l 21.0001 16.5131 7.960l lCP504 l 12.0001 16.513l 7.9601 1

. _ - , _ _ _ _ _ , , __.,..i

' Ll CP505 15.000l 19.8891 7.960l ICP506.' ' ll 4.000l '19.8891 7.9601 lCP507 1 4.000l 20.2521 7.960l lCP508- l 4.0001 24.2871 7.960l

'lCP309 l 4.0001 15.5431 7.960l lCP510 l 4.0001- 9.8131 7.9601 lEM305C i 10.000l 28.4621 7.3201 lEM306C l 13.000l 28.462l 7.320l i lCT604 l 12.0001 11.2721 7.0301

,lCU603 1 3.000l 11.2721 7.0301 '

ICU604 l 12.0001 11.272l 7.0301 lCV503 l 3.000l 11.272l 7.0301 lCV504 l 3.0001 11.272l 7.0301 lCws03 1 3.0001 11.2721 7.030l lCws04 1 3.000l 11.2721 7.0301 lCP502 l 16.000l 13.847l 7.0101 l1PP125 l 13.0001 7.875l 6.9701 lEM303B l 10.0001 22.9011 6.890l IEM304B l 10.000l 30.901l 6.890l lEM307C l 10.000l 21.507l 6.7451 lEM308C l 14.000l 20.5071 6.7451 lCU602 l 16.0001 7.4391 6.390l l2PA433 l 5.0001 1.8781 5.6901 0.102] 5.3201 lGK404 l 0.0001 l1PA317 l 7.0001 17.374l 5.3051 lHM401B l 10.0001 1.7091 5.285l 1

lHP404 l 0.0001 0.0821 5.2651 IMP 401 l 7.0001 1.339l 5.2101 l2PA408 l 5.0001 1.607l 5.185l lHR402A 1 8.0001 1.5351 5.1651 lHP.403A l 7.000l 1.535l 5.1651 lHR404A i 15.000l 3.069] 5.1651 lHR405A l 26.0001 55.5351 5.1651 11PA313 l 5.000l 1.1881 5.110l ICV 502 1 5.0001 4.872l 5.110l 4.872l 5.1101 lCws02 1 5.0001 ICK514 l 4.0001 0.5621 5.100l l2PA441 1 4.000l 1.2411 5.085l l1PA321 l 12.0001 1.082l 5.0151 11PA316 l 7.0001 1.513l 4.9901 12PA426 l 7.000l 20.1351 4.9901 ICK513 1 4.000l 0.4951 4.975l

]zD502 1 0.0001 0.015] 4.896l l1PA318 l 7.0001 1.6251 4.8751 IzoS01 1 0.0001 0.0141 4.8461 lEM406 l 10.000l 0.8031 4.845l lCK512 l 4.0001 0.4151 4.825l lCL5 l 0.0001 0.0401 4.8201 Izc501 l 0.000l 0.0151 4.7631 IGK405 1 0.0001 0.049l 4.7401 lHP403B l 6.0001 9.696l 4.735l ICws01 l 11.0001 22.1171 4.7101 11PA314 l 5.000l 0.3611 4.660l lHP401B l 10.0001 18.5221 4.615l lHP402B l 12.0001 9.522l 4.6151 lHR405B l 26.000l 27.522l 4.6151 ()(4 CA#36*C+&

l2PA438 l 9.000l 0.6731 4.5901 l2PA410 1 25.000'l 1.285l 4.5701 Agg g "',gp g 12PA439 l 7.0001 0.455l 4.565l lEM303A l 10.0001 26.455l 4.565l pay , o lER2 RISER l 5.0001 0.5331 4.5501 lHR404B l 15.000) 34.8311 4.520l pa% 11 dfkk lCK515 1 0.0001 0.011l 4.505l I 12PA423 l 7.0001 0.694l 4.495l ,

lCV501 1 11.000l 12.3281 4.470l l' lEM3 l 0.0001 0.025l 4.4701 1

' l ER3 RISER 'l 5.000l 0.400l 4.470l lIP3261' I 0.000l 0.024l 4.4701 12PA440 l 8.000l 1.328l 4.445l

'jHR4 l 0.000l 0.024l 4.4401 l2PA424 l 7.000l 17.315l 4.4201 lGQ403 l 0.000l 0.018l 4.4201 lHR406 1 0.000l 0.027l 4.400l lCK502E l 0.000! 0.010l 4.390l lER4 RISER I 5.0001 0.133l 4.390l lGP4 1 0.0001 0.010l 4.390l JEM4 l 0.0001 0.020l 4.390l lCK5 1 0.0001 0.015l 4.380l lGP407 l 0.000l 0.015; 4.370l l2PA406 1 7.000l 0.175l 4.350l l2PA416 l 4.000l 0.175l 4.350l l2PA428 1 7.0001 0.175l 4.350l

!2PA429 l 7.000l 0.175l 4.350l lEM304A l 10.000l 31.1751 4.350l lEM305B l 30.000l' 31.175l 4.350l lEM306B l 13.000l 0.175l 4.350l JEM307B l 10.000l 0.175l 4.350]

lEM308A l 14.000l 37.175l 4.3501 '

lEM309A l 14.000l 33.175l 4.3501 lEM3090 l 14.000l 16.1751 4.3501 lGK407 l 0.0001 0.012l 4.3501 lHN401A l 4.0001 0.1751 4.3501 lHR401A l 4.0001 0.175l 4.3501 lHR402B l 8.000l 0.349l 4.350l lHR403B l 7.0001 0.349l 4.350l LIP 3200 1 0.0001 0.012l 4.350l lIP3262 1 0.0001 0.012] 4.3501 11PA312 l 5.000l 0.1061 4.325l l2PA414 1 4.000l 0.106l 4.325l l2PA431 l 3.000l 0.212l 4.3251 lcK591 l 0.000l 0.008] 4.325]

lGP406 l 0.000l 0.008l 4.325]

ILK 401A l 10.000l 0.106l 4.325l JcK522 l 0.0001 0.004l 4.3101 lER0 RISER l 5.000l 0.1331 4.3101 l1PA303 l 3.000l 0.0001 4.230l l1PA311 l 3.0001 0.000l 4.2301 l1PA315 l 5.0001 0.000l 4.230l l1PA319 l 4.0001 0.0001 4.230l l 11PA320 1 4.000l 0.000l 4.230l 1 l1PA502 l 2.000l 0.000] 4.230]

l1PA504 l 3.000l 0.000l 4.230]

l1PA505 l 3.0001 0.0001 4.2301 '

l2PA405 l 7.000l 0.0001 4.230]

12PA407 l ;7.0001 0.0001 4.230l l2PA409 l 8.0001 0.000l 4.230]

l2PA411 l 2.000] 9.000l 4.230]

l2PA412 1 6.000l 0.000l 4.2301 l2PA413 l 6.000l 0.000l 4.2301 l2PA415 l 4.0001 0.000l 4.2301 12PA417 l 7.000l 0.000l 4.2301 l2PA418 1 3.000l 0.000l 4.230l &(c . di GA N 12PA419 l 3.0001 0.000l 4.230l l2PA420 l 7.0001 0.000l 4.230l /V4adamteb i 12PA421 l 7.000l 0.000) 4.230l 6.000l 0.0001 4.230] R8N c) l2PA422 1 12PA425' l 7.0001 0.0001 4.2301 gpIb l2PA427 l 7.000l 0.0001 4.230]

4.230l E"}^ II l2PA430 l 7.0001 0.0001 12PA432 l 5.0001 0.000l 4.2301 1 J2PA434 l 5.0001 0.000l 4.2301 l l2PA435 l 6.000l 0.0001 4.2301 l l

  • 2PA4'3 6 .

1, 3.000l 0.0001 4.2301 2PA437 l 4.000l 0.0001 4.2301 CMS.01. l 0.0001 0.1201 4.2301 CP501 l 20.000l 5.728l 4.230l CS501 l 10.0001 10.128l 4.2301  ;

'CT501 1 0.0001 0.365) 4.230l  ;

~

.CT502 l 0.0001 0.365l 4.230l EM301- l 10.0001 0.0001 4.2301 EM302 l 8.000l 0.0001 4.230l EM305A l 10.000l 38.0001 4.2301 EM306A i 13.0001 45.0001 4.2301 '

EM307A l 10.000l 21.0001 4.2301 EM310 l 15.0001 0.000l 4.230l GK406 l 0.0001 0.000l 4.230l GQ401- l 10.0001 0.0001 4.2301 HM401A l 16.0001 0.0001 4.2301  ;

HN402A l 9.0001 0.0001 4.230l HN402B l 4.000l 0.0001 4.230l l

'HN403A l 6.000l 0.0001 4.2301 HN403B l 6.0001 0.000l 4.230l HN404A l 6.000l 0.0001 4.230l  ;

HN404B l 7.0001 0.0001 4.230l HP401A l 7.0001 0.0001 4.230l  :

HP402A l 12.000l 40.000l 4.2301 HP403A l 7.000l 50.0001 4.2301 ,

-HR401B l 3.0001 0.000l 4.2301 i LK401B l 3.000l 16.0001 4.230[ l r

ML482 l 0.0001 0.0001 4.2301

_____________________________________________l 308 rows) ,

ontinue ,

i C_o.i c. .

  • CA o44 l Ah66,4 i ftev . o l pga. 14 c8 la.

i

12-MAY-1995 12:42:09 Cale,. 4 C,4 -O- o44- ,

ExOcuting . ..

A k e k m . 4 7.

. 49.o doctroy ward 3' 1,f 7 continue Ex3cuting . ..

r trieve into ward 3 (ward 2.all, oneper=0.00, difsq=0.00)

(308 rows) continue Ex:cuting . ..

modify ward 3 to isam on node (308 rows) continue ExOcuting . ..

dalste ward 3 where ward 3. fill < 3 (114 rows) continue Exscuting . . .

r place ward 3(oneper=(ward 3.weightperft-4.23)/ ward 3. fill)

(194 rows) continue Exocuting . . .

retrieve (average = avg (ward 3.oneper))

lavorage l j__________j l 0.637l __ o c, , 17, {d\ Ck/Q g , ,s,,.,g ,c. )

l__________l (1 row) continue Executing . ..

replace ward 3(difsq= ward 3.oneper - 0.637)

(194 rows) continue Exocuting . . .

replace ward 3 (difsq= ward 3.difsq* ward 3.difsq)

(194 wus)

. continue Executing . . .

retrieve (cnt = count (ward 3. node))

Icnt l l_____________l 7 l 1941 m  :' 444 i_____________i 6 (1 row) continue Executing . . .

retrieve (s = sqrt (sum (ward 3.difsg) /194) )

is I i__________;

l 0.3671 Ci- (.\w/I.)

l__________l (1 row)

, continue l

t

-,Ex; outing.. . . . - $ c,4 c4 95- @ .

t retricva .:(afill == cyg (ward 3. fill)) AAAme 1. ,

Rau. o

.lGbill. I z42 g__________i l . 23.302l aw, (:\\ (,,7d 79 l__________l  !

(1 row)'

continue ,

r h

\

k r

l

'l R

l l

I 4

1 i

l 2

-em+e u-e- -ew e -

9

  • MONTICELLO NUCLEAR GENERATING PLANT 3495

. TITLE CALCULATION / ANALYSIS VERIFICATION Revision 3 09/22/94 CHECKLIST Page 1 of 1 Place initial by items verified. CA - 96 - 044-Attachment 3 Page 1 of i REVIEW Verified g21

1. Inputs correctly selected.
2. Assumptions described and reasonable. M
3. Applicable' codes, standards and regulations identified and met. QG-
4. Appropriate method used. M
5. Applicable construction and operating experience considered. ffh
6. Applicable structure (s), system (s), and component (s) listed. fl
7. Formulas and equations documented, unusual symbols defined. 46
8. Detailed to allow verification without recourse to preparer. /5-
9. Neat and legible, pages all correctly numbered. 28 Signed by preparer.

,28 10.

11. Interface requirements identified and satisfied. Z
12. Acceptance criteria identified, adequate and satisfied. 26-
13. Result resonable compared to inputs. f$7-ALTERNATE CALCULATION
14. Alternate calc results consistent with original.
15. Items 1-4 above verified. (Required by ANSI N.45.2.11)

TESTING l 16. Testing requirements fully described and adequate.

l 17. Shows adequacy of tested feature @ worst case conditions.

18. If test is for overall design adequacy, all operating modes considered in determining test conditions.
19. If model test, scaling laws and error analysis established.
20. Results meet acceptance criteria, or documentation of acceptable resolution is attached.

OTHER (Explain)

FIN AL DOCUMENTATION (Verify applicable items included)

21. Alternate or check cales.
22. Summary of test results.
23. Comments (errors, discrepancies, recommendations).

l l 24. Method of olution of comments.

Compleicd By: %jM Date: D /9- Y 3087 (PROCEDURE / FORM DHANGE AND HOLD MOTICE) incorporated: M A/nts Frea: 0. Yrs

FoR ADMINISTRAUVE
Resp Supv: GSSA 7M i Assoc Ref: AWi-05.01.99 ZFr4SR: N

' 7:'e UsE ONLYPW ARMS: 3495 ' 'IDoc Type: 3042 l Admin inttials: t'i+ Date: m// r/W j

1/crs