ML20050C781

From kanterella
Revision as of 18:44, 10 March 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Dynamic Qualification Rept on Two Valves.
ML20050C781
Person / Time
Site: Zimmer
Issue date: 12/24/1981
From:
STRUCTURAL DYNAMICS RESEARCH CORP.
To:
Shared Package
ML20050C776 List:
References
NUDOCS 8204090350
Download: ML20050C781 (209)


Text

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .

E; j

3 i

I

.1 i 3

4 3

)

i

.- f DYNAMIC QUALIFICATION REPORT  !

I ON TWO VALVES l

i Prepared for I SARGENT & LUNDY i 55 E. MONR0E j CHICAGO IL 3

~

Prepared by i STRUCTURAL DYNAMICS RESEARCH CORPORATION i '

, 2000 EASTMAN ORIVE MILFORD, OHIO 45150 .

DECEMBER 24, 1981 '

EXHIBIT "F" 4 i

.~

j

}

I l 1

e

,  ; i 3 m ; 1

)

i 4 3 J 1 J J _j )' l i

I, Structural Dynamics Research Corporation ).)

i I  !

I 8204090350 820407 PDR ADOCK 05000358 .

A PDR 1

_ , _e . i

I SDRC Project No. 10959 l

II l-

'I-DYNAMIC QUALIFICATION REPORT I.. ON TWO VALVES I Prepared for SARGENT & LUNDY 55 E. MONR0E I CHICAGO, IL Prepared by STRUCTURAL DYNAMICS RESEARCH CORPORATION I 2000 EASTMfN DRIVE MILFORD, OHIO 45150

. DECEMBER 24, 1981 EXHIBIT F I '

I I CONTACTS:

SARGENT & LUNDY Mr. Robert Tjernlund Dr. Samir Yassin SDRC Mr. Gary Patrick Mr. Tony Wolfer I_ Mr. Thomas Zurmehly

r r

TABLE OF CONTENTS Page I. QUALIFICATION RESULTS CERTIFICATION AND

SUMMARY

................... 1 l

r--

11. 1N1R00VC110N...................................................... s III. TEST DESCRIPTION.................................................. 6 r

III.1 Test Sequence............................................ 6 III.2 Baseline Testing......................................... 7 III.2.1 Baseline Inspection............................. 7 m III.2.2 S t ro k i n g T i m e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 111.2.3 Leaking Test.................................... 8 III.3 Resonance Search......................................... 9 III.4 S RV Fa ti g u e Ag i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 III.5 SRV + CHG Fatigue Aging.......... ..................... 11 Hl . 6 Upset Condi tion Qual i fication ~ .t. . . . . . . . . . . . . . . . . . . . . . . 12 III.7 Emergency Condi tion Quali fication Test. . . . . . . . . . . . . . . . . . . 13 111.8 Inspection............................................... 14 III.9 Fra gi l i ty Le v el Te s ti n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 III.10 S p e c i me n Mo u n ti n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 III.11 Acc e p ta nc e Cri te ri a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 IV. TEST PRESEf TATION AND RESULTS - FOUR INCH POWELL VALVE. . . . . . . . . . . . 16 IV.1 Mounti ng o f Test Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 I IV.2 Moni tori ng Ins trumenta ti on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IV.2.2 Electrical Monitoring............................

18 20 IV.2.2.1 Chatter Monitors....................... 20 IV.2.2.2 Op e ra b i l i ty Mo n i to rs . . . . . . . . . . . . . . . . . . . 23 IV.2.3 Strain Gages..................................... 23 IV.2.4 P re s s u re Mo n i to ri n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 IV.3 Four Inch Val ve Test Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 IV.4 Ful l Le vel Qual i fi ca ti o n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 IV.5 Resonance Search.............................,............ 72 IV.6 Fatigue Damage Potential Cal culations . . . . . . . . . . . . . . . . . . . . 78 1

I TABLE OF CONTENTS - Continued Page V. TEST PRESENTATION AND RESULTS - 16 INCH ANCHOR DARLING VALVE....... 79 V.1 Mo u n ti n g o f Te s t S p ec i men . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 V.2 Monitoring Instrumentation................................ 81 I V.2.1 Survey Accelerometers....,......................... 81 V.2.2 El e c t ri ca l Mo ni to ri n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 V.2.2.1 Chatter Monitors.......................... 83 V.2.2.2 O p e ra bi l i ty Mo n i to rs . . . . . . . . . . . . . . . . . . . . . . 86 V.2.3 Strain Gages....................................... 86 V.2.4 Pressure Monitoring................................ 90 g

V.3 16" Valve Test Procedure..................................' 91 4

V.4 Ful l Le vel Qua l i fica tio n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 V.5 R e s o n a n c e S e a rc h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 V.6 Fati gue Damage Potential Calcul ations . . . . . . . . . . . . . . . . . . . . 134 VI. APPENDICES........................................................ 135 VI.1 Appendix A - Sa rgent and Lundy Test Plan. . . . . . . . . . . . . . . . . 135 VI.2 Appendix 8 - SDRC Test Log............................... 158 VI.3 Appendix C - Records o f Cali bration. . . . . . . . . . . . . . . . . . . . . . 164 VI.4 Appendix D - Fatigue Damage Potential Calculation Methodology............................................ 191 1

I I

_J IJ I !

l r-1 i

,_. I. QUALIFICATION RESULTS CERTIFICATION AND

SUMMARY

SDRC Report No. 10959 Volume 1 of__1_ Revision Number 0 Date 12/15/81 SDRC Project No. 10959 Dates from 10/20 to 11/12/81 Customer: Sargent and Lundy Engineers Address: 55 East Monroe Street Chicago, Illinois 60603 Test Specimen (s) 4 inch 300# Powell Gate Valve with Limitorque SMB-000 actuator i 16 inch 150# Anchor Darling Gate Valve with Limitorque SMB-2-40 actuator Summary: The two valves were tested separately. Both valves met the acceptance criteria and the required test levels were met or exceeded for all tests. In addition to the required test levels, fragility tests were run on each $!alve to the table limits. No failures or anomalies were recorded for either valve at these higher levels. The 16" Anchor Darling Valve actuator failed after I the SRV aging test (documented on the following page - Record of anomaly). The valve was repaired and the testing sequence was repeated.

I Certification of Results:

I hereby certify that the test specimen (s) have been qualified in full accordance with the Customers Purchase Order and is qualified to withstand without loss of those functions and/or Prepared by: -

pat ric'a structural Integrity for the seismic condition provided in the Purchaser's Specification as presented to SDRC. The test has Reviewed by: m b "**P'" "" * #"*

ony Ff uolfer f Approved by:_Fw/A ' I"* t"" M-Mfdi si;;" "'thfing unf;pgao ' 5 "-" 'o"5 '

_Name and location of Test Facility STRUCTURAL DYNAMICS RISEA::CH CORPORATION Date i S~ J.m FA P.E. Stamp 2000 (ASTMAN ORIVE I MILFORD. OHIO 45150 513 576 2517 t _ . _ _ _ . . . __ J

2 i:

SDRC l Seuc: ural Dynames Research Corporanon 2000 Eas:rnan Onve wford. Ohc 45150 RECORD OF ANOMALY I

Date 11/12/81 Customer item No.

Customer Sargent and Lundy Test item No. 2 SD RC Proposal No. 10959 Engineer Wol fer Description Seismic Test of 16" Anchor Darling Valve REQUIREMENTS:

The Valve Actuator assembly must operate the valve before, during and and after all testing.

4 l DESCRIPTION OF ANOMALY: -

l See following page. g

.T DISPOSITION: _

See following page.

COMMENTS:

l l

l CC: SDRC Fintil Report _;

I SDRC Q.A. Manager l SDRC Sales Department Customer, Mr.,Mg Robert Tiernlund, Dr. Samir Yassin Address Sarcent & Lundy Enaineers 55 F. Monene Street -)

l Chicago, IL 6C603 a

l I>

TF 016 z

r I 3 N

DESCRIPTION OF AN0MALY:

1. The motor brake was disabled per Sargent & Lundy instructions to eliminate overload problems on accelerometers 7, 8, and 9.
2. After completion of the SRV aging test, the actuator was shifted

to manual operation. The valve was then manually operated 1 to 2 turns then returned to its approximate original position. The motor was energized to close the valve. Upon energization, a loud noise was heard and the actuator did not close the valve. It was determined by CG&E and Sargent & Lunoy personnel that the actuator i

had broken. Johnathan Reed of CG&E had CG&E service people come to SDRC to tear down and inspect the actuator. The Worm Shaft, Clutch Gear assembly was found to have failed.*

DISPOSITION:

The actuator was taken to CG&E for repairs. The following parts were replaced.

Part No.

1 - Pc. 41 W.S. Gear Assembly (34T)(Soft) 60-420-0090-1 1 - Pc. 50 W.S. Clutch I 1 - Pc, 47 Split Rings 1 - Pc. 27 Split Ring Retainer 60-501-0018-2 60-553-0010-1 60-553-0011-1 1 - Pc. 89 Snap Ring 5100-81 All testing was rerun with the repaired actuator.

I I NOTE: This failure has been documented in the past by the NRC.

SEE: NRC 1E Circular #78-16 'Limitorque Valve Actuators' I

I t --

4 I

N

' .\ &

i .

~

f

-~_

(

~ .....~ fi,3*:~

53.G. .*i."

"&~

'~T

.: 9,. . . g. ,.

, , -i,.n,swvs e i . ~. p:r.s.. ... -.

>- : ~ -

cr. r .+~ .u

~.wn.m w.s.. .

,, ,l ?',* s * *T -l %

&.".~';=.?

.'?, YL:h. $p'?.$,.n'h.,s.a.p,g ,W *4 ,

.. n'.:. 2./.Aw* -;. .

~'.' .- ,

$5DAOW+ am.%*mhiWk2N.:.~.'. --. . . . - . .. .. )

l FIGURE I.1 l Damaged Actuator Parts I

....,. 4;. .;a g l  ;; ; F%

l 'n.O.

c 5 '% . ' ;d {

[.

-$, .]

'a"

.,0 ! ,_ j i.,',.-+~~ 'j 5 lj ,,.

'Q.-

7 -(#,

3,u'dr- %,.

E ,7 ,. .; gg?

s . ~

. J. 76"

A

, , ' ,- r . , . . D *^

.. . ,.  :. . s m1

. . + +; p-v 9 ; 4- a."...t .

J

.,,J. '

w . . .

c . . , ....

_ . -.** 7 , p,- .' .-

. =

_J km L ,

FIGURE I.2 Damaged Actuator Parts 1<

l r-5 i l

i E II. INTRODUCTION This report documents a full scale tri-axis dynamic qualification test performed by Structural Dynamics Research Corporation for Sargent and Lundy. .The items tested were a 4 inch 300# Powell l

gate valve with Limitorque SMB-000 actuator and a 16 inch 150#

Anchor Darling gate valve with Limitorque SMB-2-40 actuator. This test was conducted at the SDRC* testing laboratory in Milford, Ohio on October 28 through November 12, 1981.

1 Participants in this project were:

SARGENT AND LUNDY i

Mr. Robert Tjernlund Dr. Samir Yassin I

SDRC Mr. Gary Patrick I Mr. Tony Wolfer Mr. Thomas Zurmehly I

I I

t

-m l 6

III. TEST DESCRIPTION III.1 Test Sequence The test sequence for each valve was as follows. Each sequence will be detailed in Sections III.2 through III.9. Deviations from the test sequence will be documented for each valve in Sections IV and V.

a) Baseline Testing b) SRV Fatigue Aging Test g

c) Inspection 5 d) SRV + CHUG Fatigue Aging Test e) Inspection j

f) Upset Condition Qualification Tests g) Inspection (following each of the five upset condition tests) h) Emergency Condition Tests

1) Baseline Test j) Resonance Search k) Fragility Testing i

I I

I I

I I

lr-7 III.2 Baseline Testing The purpose of the baseline test was to provide a data base for evaluating the valve performance during the remainder of the test program. The requirements for the baseline test are specified below:

I III.2.1 Baseline Inspection E Verify that all external bolts are tightened to the manufacturer's specifications. The bolts I checked were: body to bonnet bolts bonnet to yoke bolts - if applicable yoke to actuator bolts limit switch screws l valve flange bolts actuator motor bolt 111.2.2 Stroking Time The opening and closing time for the valve was recorded.

I a) in its normal service condition (valve pressure and voltage according to valve data sheet).

b) in its normal service condition plus and minus l- 10% testing margin specified in paragraph 6.3.1.5 of IEEE-323-1974.

In other words the valve stroking time was determined I for four different conditions:

a) pressure and voltage at normal service conditions -

open and close I b) pressure at normal service condition plus 10% and voltage at normal service condition minus 10%.

I

8 .

c) Pressure at normal condition plus 10% and voltage Il at normal service condition.

d) Pressure and voltage at normal service condition }

plus 10%

III.2.3 Leakage Test Hydrostatic leakage tests were performed according to the procedure outlined in MSS-SP-61-1977.

I I

I I

I I

I I

l l

s' l

I

r-l r-9 III.3 Resonance Search The purpose of the resonance search test was to determine the dynamic characteristics (natural frequencies, cross-coupling effects) of the test specimens. The requirements are defined below, a) test method: Uniaxial sine sweep g b) frequency range: 1 to 100 Hz 5 c) input acceleration 0.2 g minimum d) sweep rate: 2 octaves per minute maximum e) documentation: transmissibility plots (one per direction of excitation per response accelerometer)

I Transmissibility function (s) are calculated using Digital i Fourier Analysis techniques which employ Digital Signal Processing Theory. This technique ratio's the Fourier I spectrum of the component response to the Fourier spectrum of the input motion.

Natural frequencies were datermined by the peaks and the phase angle in the transmissibility plot.

I I

I I -

I I

I t

q 10 III.4 ,SRV Fatigue Aging

-The purpose,of thi; test and the following test was to subject the test specimens to the design life mechanical g

vibration the specigans would experience from the postulated 5 SRV actuation and LOCA events. The requirements for this test are defined below:

a) Test method: triaxial random motion b) Te:t input: white noise generated by SDRC to the following requirements:

- fatigue damata potential demonstrated to be equivalent to Sargent and Lundy supplied time history

- test response spectra en'. elopes required response spectra. Ca taken to avoid excessive conserva-tism between s..e amplitude of the TRS and RRS (i.e. the enveloping must be close)

The equivalent white noise input Nas approved by Sargent and Lundy prior to testing.

c) Tha 'DRC time history consisted of an approximate 2 second trace which is to be repeated for a total of 9000 times. 'There was no delay between subsequent applicat- "

ions of the trace.

d) Demonstration of operability: the test specimens were stroked once every 30 minutes.

a e) Required response spectra: identified in Sections IV and V. '

I

. I

11 i III.5 SRV + CHG Fatigue Aging The requirements for this test are:

a) Test method: triaxial random motion -

b) Test input: white noise generated by SDRC to the following requirements:

- fatigue damage potential demonstrated to be equivalent to the fatigue damage potential of Sargent and Lundy supplied time history I - test response spectra envelopes required response spectra. Care was taken to avoid excessive conservatism between the amplitude of the TRS and RRS (i.e. the enveloping must be close).

I The equivalent white noise input was approved by Sargent and Lundy prior to testing.

c) The SDRC time history consisted of an approximate 2 second trace which was repeated for a total of 1500 times. There was no delay between subsequent applica-tions of the trace.

d) Demonstration of operability: the test specimens were stroked once every 10 minutes, e) Required response spectra: identified in Sections IV and V.

E -

I lI

12 III.6 Upset Condition Qualification Test The purpose of this test and the following test was to demonstrate the ability of the test specimens to function during the most severe loads associated with the upset and emergency plant conditions respectively. The require-ments for the test are:

a) Test method: triaxial random motion b) Number of tests: 5 c) Test input: white noise generated by SDRC to the l following requirements:

- fatigue damage potential demonstrated to be equivalent to fatigue damage potential of the Sargent and Lundy supplied time history

- test response spectra envelopes required response spectra. Care was taken to avoid excessive conserva-tism between the amplitude of the TRS and RRS (i.e. the enveloping must be close)

The equivalent white ncise input was approved by Sargent and Lundy prior to testing.

d) The SDRC time history consisted of a 15 second trace which was repeated for each of the five upset condition ,

tests.

e) Demonstration of operability: the test specimens were '

stroked once per test. The stroking time exceeded the test duration, the test duration was NOT extended as the purpose of this test was to demonstrate functionality during g

the simultaneous application of normal operating plus a postulated dynamic loads.

f) Required response spectra: identified in Sections IV and V. I I

13 ,

I III.7 Emergency Condition Qualification Test

.I The requirements for this test are:

I a) Test method: triaxial random motion I

b) Number of tests: one c) Test input: white noise generated by SDRC to the t I following requirements:

- fatigue damage potential demonstrated to be equivalent to the fatigue damage potential of the Sargent and Lundy supplied time history.

- test response spectra envelopes required response spectra. Care was taken to avoid excessive con-servatism between the amplitude of the TRS and RRS (i.e. the enveloping must be close).

The equivalent white noise input was approved by Sargent and Lundy prior to testing.

d) The SDRC time history consisted of a 15 second trace which was applied once.

e) Demonstration of operability: the test specimens were stroked once per test. The stroking time exceeded the test duration, the test duration was NOT extended, as I the purpose of this test was to demonstrate functionality during the simultaneous application of normal operating plus postulated dynamic loads.

f) Required response spectra: identified in Section IV and V.

I m

I L

14 III.8 Inspection I

An inspection of the test specimens was made at the intervals I

in Section III.1 " Test Sequence". The inspection procedure was:

1) Visually examine specimens for broken or loose parts.
2) Verify that all external bolts were tight (torqued to manufacturer's specifications). The bolts checked were: body to bonnet bolts motor to actuator bolts bonnet to yoke bolts (if applicable) yoke to actuator bolts Bolts were tightened as required.
3) Remove limit switch cover
4) Verify that limit switch is secure (i.e. that limit switch mounting screws are tight). No tightening of any internal screws was permitted without approval of the Consulting Engineers.
5) Replace limit switch cover III.9 Fragility Level Testing Following the resonance search and baseline inspections, fragility level tests were run esing the Emergency Level input at higher levels. The test requirements are the same asSection III.7 Emergency Condition Qualification Test. For each test input, the ZPA was increased by approxi- J mately 1 g for the three axes until the table limits were reached.

I

.J

15 I III.10 Specimen Mounting The test specimens were mounted using fixtures designed by Sargent and Lundy in a manner which simulated the actual l in-service mounting condition as closely as practical. The mounting of the valve and test fixture to the shake table was such that the vibratory input was transmitted without amplification or attenuation.

I III.11 Acceptance Criteria a) A test failure is defined as any occurrence which results in

- failure of the test specimens to stroke; or

- breach of the pressure boundary other than leakage

, at gaskets or packing

- severance of any external portion of the device I b) A test anomaly is defined as any abnormal occurrence other than a failure.

I c) Should a test failure occur the testing shall be stopped.

Any further course of action shall be determined by the I

Consulting Engineers test representative.

lI d) The Consulting Engineers are responsible for determining

,I the acceptability of any test anomaly.

e) The Consulting Engineers reservd the right to modify the l

test procedure.

l I

I l

.IL.

sav.w w m mM, aaw w ad- --wh_,. JAhAa- - --a_ _s______ w_a a - ___a a a . * --.

16 IV. TEST PRESENTATION AND RESULTS - FOUR INCH POWELL VALVE I

I I

I

E I

E.

I I

l' I

I I

I I

.J I

17 i IV.1 Mounting of Test Specimen The mounting of the test specimen is shown in Figure IV.1.1.

.E

.I Z(Vertical) b-b

'4-lt; . -- h. ~~ )

Qi . . v'- . .. .- -

X (N-S)

~9 _,_'_

- ' j ' '., ' -

a-a l M-Q 4 . ,;c- Y (E-W)

- V. e.* d ..

-a .,,._ , ;:. ~.

't

_- c-c lI ~.

t.0 L *:,,~ "s,'f r ..y

.' L :.:

. ~ .y .

3- _

,:.J .: , ' ' .

.a . . _ - - - , _ _

- - . - . . ~ . . --

FIGURE IV.1.1 Mounting of Four Inch Va:ve I 1 1

1 5-1 I_

t

8 i

IV.2 Monitoring Instrumentation I'

IV.2.1 Survey Accelerometers The nine survey accelerometer locations are listed below.

Accelerometer Orientation Location I

1 X (a-a) Horiz-a Horiz-c ** Y

  • 2 Y (c-c) 3 X (a-a) Horiz-a 4 Y (c-c) Horiz-c 5 Z (b-b) Vert on limit switch gear housing (close to terminal block mounting screws) 6 Z (b-b) Vert on end of limit switch terminal block 7 Z (b-b) Vert 8 X (a-a) Horiz-a end of actuator motor 9 Y (c-c) Horiz-c The accelerometer locations are shown in Figure IV.2.1.1.

Transmissibility plots are orovidad in Section IV.S.

I I

I I

l I I

19 I

- I Vert'Up b

J JM lg g

.v. .

,v,

'W '

L Acc f 6

[ s

- - - - - M 'e '

BOX ai u

Acc 16 I b lm Acc #5 ~

Acc .i y Side vieiw II . .

'r r- y I,

M -

E Motor Limit

~

l S e f ,, .

- Acc f3 & 4-

$ 4

b-b c 4 I - Acc 11 & 2-Q N

y

--+

a-a l i _ .

c-c h

n [ O? .

'W~

E t

FIGURE IV.2.1.1 4" Powel Valve Accelerometer Locations I

20 IV.2.2 Electrical Monitoring I

IV.2.2.1 Chatter Monitors -,

Figure IV.2.2.1 shows the locations of 5

the contacts which were monitored during the test.

The data was tape recorded during the SRV and SRV plus CHUG fatigue aging tests for playback if chatter was detected on the SDRC Chatter Monitor which was set up to detect 2 milliseconds of chatter. During the UPSET and Emergency tests, the contacts were monitored on an oscillograph recorder. The monitoring instrumentation is shown in Figure IV.2.2.2.

The valve was tested in the closed position g

for the SRV and the SRV + CHUG tests. 3 During the first set of upset and emergency tests the valve was cycled from closed to open to closed. During the higher level tests and fragility testing the valve was cycled from open to closed to open.

I 1

I I

r ~

21 I

7bp Gm% Top view Rotor il Rotor #2

,- b N hh I H s 1-. -fNJ--

d( c-{' %j--e $ *-l 6 H b

c-I ~

Bottm Gar +vw 7bp View l'~ Rotor i3 Rotor i4 ey%b h d 13 eyWJ-e hd 14 H q 11

% Q%j-e

$d 12 l--ep , %J-e I Above sketch shows position when valve open i

E I

l FIGURE IV.2.2.1 Contact Monitor Points l8

. I. e.

i 22 1 -

I l

I 1 E

]

f:

.g

= --- --

$-2==--m, '~~ >- . l} = i

,t * ,

=~~

. . . . . .c

,.1

  • t- -

= .E .. .

l

.:r h. 97 IMEfM
  1. 4 ac tpl > v k' .! I .

.s ...

!bi i

I g g}-

FIGURE IV.2.2.2 Monitoring Instrumentation i

I I

I I

I

,I 23

[^

lI--

IV.2.2.2 Operability Monitors The opening and closing of the valve were recorded on a brush chart recorder.

m The signal monitored was one leg of the 460 volt input. This voltage was isolated with a Gould high voltage amplifier.

p.

I IV.2.3 Strain Gages 1

The seven strain gage locations are shown in Figures IV.2.3.1-3. The strain data was brush l' recorded and recorded on mag tape.

q -- .

I i

~

[I LI

'I II lI .

I lI

24

-l I'

~r w ,

w . - r w ,,

g bbtor Limit Limit Motor Switch Switch =

- ~

k J t L J I I 3%, A (2 ~1 3 D-<- Gages Il-3 =0 Gages #4-6 f3 I l l l 1 l l h I

I 8 " ~

Location Direction 1 Top of Yoke horiz 90 l 2 Skew 45' 3

  • vert. 0" 4 Bottom of Yoke vert. 0*

5 skew 45*

6 horiz 90*

7 next to yoke-vert O' 'E actuator screw 3 l

.I, FIGURE IV.2.3.1 Strain Gage Locations on 4" Valve

(

&_-maLJ%- m __ ___ J _wm-a--mm _ + - 4.A da.m-a aree a a- _ . __ m--am-.em- -- _ _ _ _ _ - . _.,m__ - - - - - - - - - - - - - - - - - - .

25 I .

I

  • I. . .

? .:

r g e g

's. s FIGURE IV.2.3.2 Strain Gage Locations on Yoke I  ;

y ._ _ _._ .

g- I~-

3 i ., ,

c I h. ,t "*

I, .

~

ll ,

FIGURE IV.2.3.3 Strain Gage at Yoke to Actuator Bolt I: L

t 26Ii IV.2.4 Pressure Monitoring -

i The valve was pressurized with water to 300 psi throughout all testing (See figure IV.2.4.1). ,

I

~

y c., .

' {.

6':. -: . .

s 4p w === .. * '?-

~. ~. y . . ..._.'-

. . .s.' ,

,s

~ hf L.. 3- e.' .- . : . -.

. . I~,"., 'y e 'y ' q_- - ,. . g , . .,

t., ,'

v ,- ,

g. , -.- y '*

.. e  ; 7* i .',',. ',, q. ', '.! ' 5 * * ,

4 .;., ,}

-'_- -; . f.- j[q l** '1,.:..j- l- '- ,-..,;* 9 ~ ; ' , ,,. . ,.

t

  • .yk ." - l.- -y, .

.,(, , A.?  % >. . ,

. 3 '.m , .

_y5

. , . - [. n._., is. ** r. ' '*'

,,,. -. .,.; . ." ' )k.Y d, *g'. S~. , I,.',)

. ,.s. ~',

'g

  • 4, ,. '

.,,e g%. '

  • 7,_ *,

, y' 4 .- 7- ,, ...p 8 . '.

?p..48

. ' '2

.['8

' .-: .. ,- O.-).w,

g- ~ 7. ' . . . .' . # ..,. .- .I

., A - /- -s p,'. - ' ' -m . ' ' .d '). :

.psm;
. .;. .

-7,..

g,. .

g.yp . ,.- . l. . _ ,

, , '.( ,

+,

, . , * .. ,' ,' .g3g,.. .. ,., g, - _ L ... 3,3 . . 1

%. _f**t'. .

q,p a-+ .>, ,e

g.  :

. . .. bQI... . ..4+ ;; .z...4 w+-; _-: .,

. ,, , ~ -

. ..:. g , . , ' _ , -. J.. . , -

a. < .

s

~

.~ . - , ..

~ne . A.

e - . . .,

v<

' , '{ g Q s . '

4' ". -

s .

. . ? ', ^, f < * ^ *p y,r '. ? -* , y.. .

,4.., ,s_.

~ ~ ~ -  ; '- , . ' a ,.y4.- g, - ,.-f'* f .# 1., . ',

f ,

~pg .. ,,. ' ? V ;s , ,.,- . _ q . , .;.

-h *

' ' T ,.$ -

c-

  • c (, ' I.j ~. f., ' l '

',49,p._ y _~ .> q.. 3,,& . t,, . : .;:" -

3,

,y l: x  ; .

s .r :

'p~ t r

~ ;e '.:; - "'

, . g .m

  • i+ y
  • fj- i 3 +

_; ; +- -.;;'  %  ;

e .

- - 1. - E , f J. ., = ' . .i ,qR,_(

-Q, c , x . ",

c '
.

.,,,,,,,,, , '.'- . - _ _ E , h Jf "i ".[, "$ ,' ' . . 4 a ,. **

.ju

.e ',j e.je: ((

f.) ;f ,

y *

.3 . . w. .;... . a v y. +

.z v e,

. i . ....' n ,. p. -: i. . ,,

.> \

l FIGURE IV.2.4.1 )

Water Pressurization System l'

1 I:

I

.J,

)

i

'l l

27 IV.3 Four Inch Valve Test Procedure The test procedure for the four inch valve followed the outline presented in Section III with deviations and addi-tional testing documented below:

c'

1) After the resoiance search, five additional upset level tests were run at a higher level to the combined OBE +

1, SRV + CHUG ZPA.

lI,, 2) One additional Emergency level test was run at a higher level to the combined SSE + SRV + CHUG ZPA.

3) Two fragility level tests were run using the same input at higher levels. The ZPA for the fragility tests exceeded

, ~ the following values in all three axes.

  • 1st Fragility: 4 g's 2nd Fragility: 5 g's

'I

  • NOTE: For actual ZPA's see SDRC Test Log in attached appendix and the individual TRS plots.

I I

I I

I I

I I

28 IV.4 I

Full Level Qualification -

l The required respense spectra provided by Sargent and Lundy  ;

are as follows:

TEST VALVE TABLE DESCRIPTION COORDINATES COORDINATES FIG NO.

SRV a-a X (N-S) IV.4.1 <

SRV c-c Y (E-W) IV.4.2 SRV b-b Z (Vertical) IV.4.3 SRV+ CHUG a-a X (N-S) IV.4.4 SRV+ CHUG c-c Y (E-W) IV.4.S SRV+ CHUG b-b Z (Vertical) IV.4.6 UPSET a-a X (N-S) IV.4.7 UPSET c-c Y (E-W) IV.4.8 UPSET b-b Z (Vertical) IV.4.9 EMERGENCY a-a X (N-S) IV.4.10 EMERGENCY c-c Y (N-S) IV.4.11 EMERGENCY b-b Z (Vertical) IV.4.12 The test response spectra are included as follows:

DESCRIPTION PAGES ,

SRV 1% 42-44 SRV+ CHUG 2% 45-47 3rd UPSET 1% 48-53 EMERGENCY 2% 54-56 3rd UPSET Rerun 1% 57-62 EMERGENCY Rerun 2% 63-65 a Fragility Test 12% 66-68 Fragility Test 2 2% 69-71 I

3

r I

r 29

'I '

The Test Response Spectra were calculated from 1 to 100 Hz j

  • at 1/6 octave intervals. The ZPA for each TRS was determined l by the peak acceleration amplitude on the brush chart recorder. The ZPA values are provided with each TRS.

l f

f-I-

I if I

I I

I

I; ll I

lt 1

30 l

SSE L.J PERCENT DIRECTION 4- Cf SDRC NO.

DAMPING =

1/2SSE HORIZONTAL N-S @ owa.sy: b?A)

DBE I HORIZONTAL E-W cm.sv: E' OBE i VERTICAL one . 5

20. ,

, 1 l ,

... .... ...i . . . . . ,,.. .. .... . .... 4 1-+ ,

7.o i  ; . > i i .,,

i . . . . . . . . . . . ...

i 5.0 :_

  • ~ -

4.0 ..

O 3.0 9

II

, l

! .5[i.-

w -

.=. . :-

- Z 1 fi ! i O 2.0  : : -

-  : 1 r , . 1 , .

E

. a-  ; , . ., '.' .

QJ

,j

...e

.. g

g. .

t 1 . I g

gj 1.0 O

o .' .

.7 .i .i

, . . .,1 ,.i. s. ..,. 1. .

-i =_ i

'- =

.s. . _. .__ _

'i /

.,  ; ,  ;+  :

.3 l' ". : - _:=

!---  ! -f_  ! __

7 _:

l' , . , 1 t-i

,. 1 . .

.i 1.0 2.0 3.0 5.0 10. 20. so. 40. so. so.

FREQUENCY (Hz)

FIGURE IV.4.1 Horizontal a-a SRV RRS E

. 5 4 ZPA = .812

- s SDAC i . :. a.:y swes omse- :::es:.oa g

.u Eas- n-: .e TF004-E -

31 SSE L.J PERCENT DIRECTION C-C SMC NO.

DAMPING 1/2SSE HORIZONTAL N-S owa.sv 4TW DB E I"l J .

HORIZONTAL E-W3 cax.sv:

I OBE I VERTICAL om-2 E '

l ,

t N-

. .'a u .

I

. . . .,. .. In- i'

. .# ,. ... e. .. . . s . ,,. . 5 ERe' 2.

ae** ... . + e . * * .6 .. ..3- F t6 ** o . .F 1- -

, , a : - '

I 1.. . ! I

{ l , , - i

.7 , .

, , ,i 1 .

. , ,. , . . . ,, y > .i .

m_

5 . j -

i, I

m .4 i

l D.3 -

l-$

l f'

= = --

!' , i-W '

3 5 -

!E z i  !

'E os- - -

r  : -

1 E c- '

7 . ..: ,i w

i g .. . f. ... . .... . .. ... . .

w .' .  :.

I O '

O

< .07 '.!

I .s 5

.o* ,

_. 5 E

I .c3 t .

T-5

=

_" .----- -m

,a I -,-,, .  : >

1M  ;  :~ !, .

, r . e s . . ,

1 '

1.0 2.0 3.0 5.0 10. 20. 30. 40. 40. 80.

E .

g FREQUENCY CHz)

FIGURE IV.4.2 Horizontal c-c SRV RRS ZPA = .265 g's lIL.

SDRC i e a.Of smics :efes :- D : 2 o*

. ;*, Easraa 0 se j . . . . ... :...-

l TF004-E

~

32 i

DIRECTION h-b SSE L_J PERCENT stRC NO.

DAMPlNG

  • 1/2SSE HORIZONTAL N-S C owa.sv: G69 DBE . HORIZONTAL E-WC cm.sv:

OBE R VERTICAL ,,w g omve:

'. g l l 1 . 3

,1 M

. i ri.

. , , .,. .. . i. t .

.....s .; .i

.. .... .. .... .. . . . . . . ..<. ....3 s.i .. .. .

t 3 . .:

i ', , , , 1, . ,

.  ;.  : . l . ;i . l : ;+

= -

e i+ , ,

  • lc .

w o 7..

I l Z  !  ;

i O

r- 1 -

1 II:  :' , .,  :

w '

.u,..

J w*y . .. .

O .' - ., [ 1 s

o , .

1,,

< s1

,, . , u .. , . , .

l _.. _ _ ._,_ __ _

i - - - -_.

.M .- .

+:

. 8

-Q 1 2 s

-m .

i.,___.

L -

. 'i 1-s 3  !

l' =. x l l .  ;

H,, ,.

..,/ ,: ,' , , ..

i i .

1 p So, so.

l 1.0 2.0 3.0 5.0 to. 20. 30. 40.

FREQUENCY (Hz)

.a FIGURE IV.4.3

. Vertical b-b SRV RRS ZPA = .385 J

l l

SDAC I .::. a. :y 3 es : sw:-:: :: 2:.o,

.:.;; Easraa :-.e I

l l

l TF004-E m

1 t r 33 r

SSE LJ PERCENT DIRECTION 4-Q I 1/2SSE p DAMPING HORIZONTAL N-S @ own.sv Aftd CDRC NO.

DBE .

HORIZONTAL E-WC cm.sy:

OBE R VERTICAL om-I 2

~ J.;,,,

r ._

I 1 .

,= . =

r.

I

. ii.

7 , , i

. . s i,

, ii . i 4 5 5 . . _

.4 '. ij I i 7 m -

/

, I l

OJ ,...' I

.. w _-

I z o.2 r

i

~-

, m 5

- ~

g  :,

,.%m. _ n. . ,

.i .. ,,, ..

m

,o .

I

.p. s.. y=.. y It. . .s.. . .. ... .

J ,

,. m .1 .

o I

t O .07

[ '

[

~

.o s I

i <

.e s  :

.es _

I f __ _._ _

s.. -. "

6- _

I p -

i .02  :

E  ;

.u IX . l . . e l

l ~" '

.01 i

1.0 2.0 3.0 5.0 10. 20. 30. 40. 60. 80.

FREQUENCY (Hz) g l FIGURE IV.4.4 Horizontal a-a SRV+ CHUG RRS ZPA = .564

SDRC

.u.-:. a. :, swc3

Essrae :me =esw:- 0.::= r.o,

( .... - . ::. -

TF004-E

34 SSE LJ PERCENT DIRECTION C-C srRC NO.

1/2SSE DAMPING HORIZONTAL N-S owa.sy: ATal

  • DBEL.J #) '

HORIZONTAL E-W3 cm.sv:

OBE A VERTICAL 1,79 %C om-  ;

1 2 ,

=. .. . . ,.

1 , ,

.; .  ; . ,  ; m; . z-

.7

, . i, .,, > , . , i1

, . . , . . , , ,. i,..m. , .

~ '-

.s ~.-.

. i .: i. . -

_! i e ,e 1

'~

l'"H  ;;  ; . ._"

l  : 'll l r . ,

O .3

, 1

.. =

w - -

7 Z l 5 02  :

H ": 1 CC ', . . .,,. .

r W , . .s'. . . .. . l .. . . . , . .. . . . , .

(..

. i

,J , .i g , .. . . . ,e.4 .. 4..

w .1 .  ;

o .  :

. i Q<,o7 1

i, ,

4

. .i i, . .

-~

.05 __?.. _ _ _ _

.'~ .- + .- -

.04  :

j ,  ! ,

i 43 ,_

.4 . _-

~ -

L -

t'

.02 ,

a.p j ., , , , , -
l

, i i 3j

,- i . .

_g,,,, _,, #

.61 1.0 2.0 3.0 5.0 10, 20. 30. 40. 60. 80.

.a FREQUENCY (Hz)

.a FIGURE IV.4.5 1

Horizontal c-c SRV+ CHUG RRS

)

ZPA = .519 l h SDAC I .: . a. Cyecs :esesca 0: ::*2* oa

. .;;:ss.raa

... .. .s.x-0 se TF004-E

r 35 SSE L_J PERCENT DIRECTION b-b sue 3o.'

1/2SSE DAMPING HORIZONTAL N-S owa. sv: A TM -

DBE L.J '

HORIZONTAL E-WL ) cax.sv:

OBE __ VERTICAL 3 one -

E ,  :%

?.,

' . . :i,g. g f-* , [ ,

.... .... . . ,,. .. 1 .,,. ... .

I

. . . . . . . . ,.... ....+ . . . ... ..

1  :

! 'L m . . ,

r ,

r.

i , Y f' i i 7 , i . i , ,

I

. . . m_ i i , , .i

, . . .j 3 --

.5 . . E

...=

I 4-

  • j:
.- __-= -

1 ' '

w O3 , . _: .

.=

Z  ! E i 5 0 .2 5 j

~ ~ ' -

y , ,

E l

.; J , ..! .,,

W  ; . .g.. .

6 . ..s.

_a , , , . . . . .

m .'

o .

o

< *8 ,

l'  ; l l  ;  ;  ;

l l

-l .

l A5 .

I -

+ w M ;i i

; r; , ,

.c3 ,_ f -- y kN  :

5 ._

F m '

i +, , .

I

I, , , , i .

_ j _1 .

,I ,- e I 1 l

1.0 2.0 3.0 5.0 10. 20. 30. 40. 40. 80.

FREQUENCY (Hz)

I FIGURE IV.4.6 I .

Vertical b-b SRV+ CHUG RRS ZPA = .534 g SDAC i .r. a. Oy ames Deses :- : :0 2 .c 9

.%: Easraa 0-.e t TF004-E

36 h

U2SSE SSE L.J PERCENT _ DIRECTION g-q DAMPING HORIZONTAL N-S s:ac so.

owa.sv:A'/2d l

DBELJ f .

HORIZONTAL E-W em.sy: g OBEM i VERTICAL M o,ys:

. E

.. .l , .. - .,

i

~

I*0' l i ...'

i r i.

!i 5.0 ._ _-

4.0 .

O 3.0 . - _ .

~

g,n p -

4 /'

g -

l W J

. .n'

f. . *

.l-+. '

(

y 1.0 . ,.

o .  : ~ ,

C

< .7

/ , ,

1 l

i ,

_- -_=

i .5 _..__ __. .

( * , i t

w  ;-

.3 -

a .

-a---

, F >

,. . . l i l . W

l Il L ll d 3

l , i i . i

.i a 1.0 2.0 3.0 5.0 10. 20, 30. 40. 60. 80. .

J FREQUENCY (Hz)

FIGURE IV.4.7 I

Horizontal a-a UPSET RRS 1 .

i ZPA = 2.2

' .J I

SDAC i .c. a. :es,cs :esen :- :=r.o- 3 i

.u:...w.Eas a-::t- se l

TF004-E

f~

37 l-T~

SSE Cl PERCENT DIRECTION C-C srRC F .

1/2SSE DAMPING HORIZONTAL N-S owa.sv477d g DBE HORIZONTAL E-W@ cax. sy :

T OBE @ VERTICAL M om-r- l I

.l i,,

10. - -

N"  ;

i ii f '

-+-+-

I

, _ l r 7,g ' '

.  ! i i

. l . 7 . i , , , l , ,  ;

5  :

5.0 ._ 5

_i I

!=

, 4.0 -; _ -

.= lr ' ' "

J 0 3.0 .

  • ' 5  :

il'e Z

02.0 j

E 5

i I N M -

1 4 .

1 R ' "

E lL W l f . .  ! '. l-

,J . g.. . . .s , e s.

g 1.0 . ,-

t g o .

E o ' > - - ' '

<*7 -

, ll l . l ,

. lll  ;  ;. ,  ;

l l l;

'_5 I

.5 _. , .

4 I_

~

4 2

3 -

--:.:=

p,= -- -

l

.2 -

.4

, I I l I T 1- i i 1 1 f l 6 9 9 f f ._

I 1

1.0 2.0 3.0 5.0 10. 20. 30. 40. 60. 80.

FREQUENCY CHz)

I l FIGURE IV.4.8

. Horizontal c-c UPSET RRS l ZPA = 1.4 ut SDRC

! .::. a. :y s-es =eser:- ::-::a .o-

=: Eas -a-: se t TF004-E

38 l

SSEL_j PERCENT DIRECTION hh su c No.

DAMPING HORIZONTAL N-S owa.sv A Tal 1/2SSELJ DBE OBE @ l t

HORIZONTAL E-wLJ VERTICAL @

cm.sv:

om: _

l

20. ", -

v

{ 1 .E

..,.. .. . . . . . o' . . . i ,

i r r ." =

7.0 , , . , . i < - i = i o i ig i i ' . -

3 ---

5.0

~

, 4.0  ! _

."0 3.0 -

. L w ~

2 3 5

O 2.0  !

1 1 CC ,f

w y
. .. 1 ...

4 s .. . } f.n . s.

  • g 1.0 .

O <  %

O .y

  • i,," '

\ l . . , 6 m

, , , . .s . . .

. . . . i. >

, i--._ .

.o

~

.,-d.-

l.

. . ~

, .3 ,_

e.4 _ .

, l' i

9 l 6 1 6

I i l .

1.0 2.0 3.0 5.0 10. 20. 30. 40. 60. 80.

FREQUENCY CHz)

FIGURE IV.4.9 Vertical b-b UPSET RRS ZPA = 2.2 SDAC I .-;."1. Oy

  • 3*'C3 * *!t 1'r CO00 2* C*

. ; *, 2.23 7 a* O*'. e 3

TF004-E s

^ - - - - - - - - - - - - - - - - - - - - - -

F g- -

39 i

g SSE @ PERCENT DIRECTlON g-d su e so.

1/2SSE[] OAMPING HORIZONTAL N-S @' own. sv : /fl4)

I . -

DBEL.J OBE R HORIZONTAL E-W VERTICAL cm. sv :

our -

20.

I I y- . i i 4.

I -, _;

.4 ,.i.. .i . i i , . . .. .,f s ,,.4 ..s. . . . s ... i... . . .* * -

l l r i 7.0 i , ,

i. , i . -

A ,oo 5.0 . ._

4,g

...;6"- f 't

.JN . - 'v , ,

," 1 i

a s,7 y- ,. _

w g m=- __

1

_ _ _ .T. C 2 1 5 02.0 -

= '

=

H 1 1 1 i W

g r n

!J i

w 7 .,. .

y .fi 4 it. p.. . . . . . l .- t-g 1.0 . ,-

o .

o .. I .

f _

_,'___ l; . l. .  ; i

.5, _ _ .

4

.3 - -a

.2

{+" , , , , .

8 .

i i

1.0 2.0 3.0 5.0 10. 20. 30. 40, 60. 80.

FREQUENCY (Hz)

FIGURE IV.4.10 I .

Horizontal a-a EMERGENCY RRS ZPA = 1.99 I SDAC .

.:;;; =...=,.

Eas--aa C se w - ;e t-

_ =.... m = _

TF004-E

40 1/2SSEC SSEIF PERCENT DIRECTION (* - C DAMPING HORIZONTAL N-S stac so.

owa.sy: 4 70) l DBER HORIZONTAL E-W@ cw:. sv :

OBER VERTICAL ons .

~1-

, 1  : ,

,4

=

7.0  !.  ! , .!

~

i 5.0 _ _

l s  :

1 Q .o +,  :

CB 3.0 m- '

w 7.-

Z t _ _

i O 2.0 .

t. ..

1 i-- '

.  ; _-.  ::: 's .

g

,  ; ', t, ,

u

'%,m-w ,

,, , .,. ., m . . ,,..

a .0

, , . . ... m. ...... . .

g 1 . .

o - 'a o *7 1 _

i l l .  ; ' 7J ' . - - - - - .

j ,  ; ,  ;  ;;

.5 !

4 --

.2: ,

f a -- - -

t-l .

il , , ,

l i

' ~

1.0 2.0 3.0 5.0 10. 20. 30. 40. 60. 80 FREQUENCY (Hz) l FIGURE IV.4.11

. Horizontal c-c EMERGENCY RRS ZPA = 1.327 -

SDAC 5 . :_ a. :y smes :esear:-:.: :: no, -"

a 5

_x: =asra-

. .. . m

.c=-

TF004-E

~

r-41 r

ll 1/2SSE SSE @ PERCENT DIRECTlON B-8 DAMPING HORIZONTAL N-S su e 30.

owa. av JTM

'g DBER .

HORIZONTAL E-W cax.sv.

r-OBE R VERTICAL 3 one :

I 20.

I i i r i

! e i . l

( i . . ,. .

.6-

. . f. ,,.

...i

.,i e 4 a< . t. .. ...l- .

I 7.0  ; , , , ,

," , ". . l ; , l 5.0 $, 5 l  !

Q* Eg, , . . .h ,

, k. , , ,

W o 3.0 7._

I Z O 2.0-

< . \  :

g ;i

, ,r ,

sI -

s ' .s .

.i W , . y . ..a. . .y ,

,s .,.

J . g s eg . . y. . . 6. 4-w 1 .0 .

o  :  :

I O * , 1 i , J . l

  • 7

.ll

i

--._.e lJ -

i

l. .  ;

~

'~

.5 ,

_ , ~_ . -

- =

4 5 - ? i4 I 1 I I - 1 g

.3 I

, -- - ,g 1- -

.2 1

! I f I I_

.a 1 l ll . - , i~

+

i t a_ _. > i i - -

l 1 1 1.0 2.0 3.0 5.0 10. 20. 30. 40. 60. 80.

FREQUENCY CHz)

FICURE IV.4.12

. Vertical b-b EMERGENCY RRS ZPA = 1.99 lI S,.=.... D A C

.=,,-.-:,.

. . - .... =- = _

.. w- :: :-

TF004-E

42 I

I CHANNEL -AA I

7 10.00 ,

~

li \!; --+-W a

!  ; /V \ i g flq

~

l ll fll

l

/

A; . J tpi n '. _

s!

' / 4 ____ g

} l

i. i .

Q 0.100 -

g 1.000 LOG 10'FREQ 100.0 g

  • SHOCK RESPONSE 1.0 % DAMP ABS ACC h.NihVN1 3, IHIRD SRU DATA SET-POWELL 1/6 OCTAVE MAXI-MAX Free Aeol Free Asol Free Amol 1.00 0.07 5.01 1.26 25.12 3.26

! 1.12 0.0d 5.62 1.35 28.18 2.44 1.26 0.07 6.31 0.65 31.62 2.78

!  ? 1.41 0. it? 7.08 0.70 35.48 5.08 1.58 0.03 7.94 0.52 39.81 2.55 1.78 0.09 8.91 9.47 44.67 1.83 2.00 0.10 10.00 6.45 50.12 1.33 I 2.24 0 19 11.22 0.43 56.23 1.16 -

l 2.51 0.28 12.59 0.61 63.10 1.34 2.82 0.57 14.13 0.48 70.79 1.54 E 3.16 0.91 15.85 0.66 79.43 1.09 5 3.55 1.11 17.78 1.42 89.13 1.17 ~3 3.98 0.70 19.95 1.30 100.00 1.00 4.47 1.86 22.39 1.90 ACCELEROMETERNO._I___ DAMPING _!__ t DIRECTION E_i_. LOCATION ____

TEST NO.SRM__ OBE______ SSE____.__

i BIAX____ N-J____ E-W_,__ TRIAX_ I a l CO N T ROL _.V__ SU RVEY _ _ _ _

l m

I ZPA (g's) ,d l

I

l r

43 I . l I

I CHANNEL -BA 3

g ng >

I _j w w, ,i

/ y --h gj_4 l ,  ;

iw I i jj

'v e ---:

I 5.000 E-02

,iiii.i iiiiiii 1.000 LOG 10'FREQ 100.0 I 12-NOU-81 00:38:40 SHOCK RESPONSE THIRD SRU DATA SET-POWELL 1.0 */. DAMP ABS ACC 1/6 GCTAUE MAXI-MAX I Free Amol 0.07 Free 5.01 Amol 0.16 Free 25.12 Ampi 1.18 1.00 I  ?

1.12 1.26 1.41 1.58 0.07 0.07 0.07 0.07 5.62 6.31 7.08 7.94 0.23 0.17 0.55 0.42 28.18 31.62 35.48 39.81 1.52 0.86 1.72 1.36 0.07 8.91 0.47 44.67 0.76 I

1.78 2.00 2.24 2.51 0.07 0.07 0.08 10.00 11.22 12.59 0.40 0.42 0.25 50.12 56.23 63.10 0.43 0.44 0.37 2.82 0.09 14.13 0.31 70.79 0.41 l^

I 3.16 3.55 3.98 4.47 0.10 0.10 0.09 0.18 15.85 17.78 19.95 22.39 0.28 0.84 0.99 2.08 79.43 89.13 100.00 0.42 0.35 0.32 ACCELEROMETER NO._ ___ DAMPING _f_

DIRECTION F_"_M___ LOCATION ____

TEST NO._S_6Y__ OBE______

I_ BIAx____ N- ____ E-W___ TRIAX_ SSE-_Z__

CONTROL ____ SURVEY ____

I I

ll ZPA (g's) .13 lI lL l

44 l

l I

CHANNEL -CA ,

7 6 00 i i

i i.

5

/

/

l 1

,' f_ _ _ I' t- /

.WL--

iii /

i i i I.

i I/

/* i

1. _ _..._..

~

5.000  ;

E-02

~

1.000 LOG 10 FRE0 100.0 12-NOV-01 SHOCK RESPONSE 1.0 ?. DAMP ABS ACC -

00:39:50 THIRD SRU DATA SET-POWELL 1/6 OCTAUE MAXI-MAX Free Amol Free Aeol Freo Aeol 1.00 0.08 5.01 0.10 25.12 2.28 1.12 0.08 5.62 0.09 28.18 2.05 1.26 0.08 6.31 0.09 31.62 1.41

? 1.41 0.08 7.08 0.11 35.48 2.30 --

1.58 0.08 7.94 0.15 39.81 0.83 1.78 0.08 8.91 0.19 44.67 0.72 2.00 0.08 10.00 0.16 50.12 0.46 2.24 0.08 11.22 0.19 56.23 0.63 _

l 2.51 0.08 12.59 0.23 63.10 0.55 l 2.82 0.09 14.13 0.50 70.79 0.48 3.16 0.09 15.85 0.57 79.43 0.68 3.55 0.09 17.78 1.21 89.13 0.81 3.98 0.10 19.95 1.57 100.00 2.01 -

4.47 0.10 22.39 3.09 ACCELEROMETRNO.__k___ DAMPING _b_

, DIRECTION eft _ LOCATION ____

l TEST NO._E3_Y_:OBE______ SSE______

l BIAX____ N ____ E-W___ TRIAX_/_

, CONTROL ____ SURVEY ____

J ZPA (g's) .9

_J I

r-45 i

I CHANNEL -AA l 7 5.000 I  !

! +

i i,i Hi lj ~y  !

~

l i %--

!.,- i i! '

f I- 1/

?

L A j is ,/_ i

,,v /

7 l

ur e

,I 1 1 .000 SHOCX RESPONSE LOG 10 FREQ 2.0 % DAMP ABS ACC 100.0 fl.N[U0 4 SRU+ CHUG DATA SET TWO-POWELL 1/6 0CTAVE MAXI-MAX I Free 1.00 Aeol 0.05 Free 5.01 Asol 0.25 25.12 Free Aeol 2.23 l 1.12 0.05 5.62 G.20 28.18 2.34 lgE 1.26 0.05 6.31 0.18 31.62 1.64

? 1.41 0.06 7.08 0.23 35.48 1.66 1.58 0.07 7.94 0.20 39.01 1.09 1.78 0.07 8.91 0.22 44.67 1.04 I 2.00 2.24 2.51 2.82 0.08 0.09 0.11 0.23 10.00 11.22 12.59 14.13 0.22 0.17 0.21 0.32 50.12 56.23 63.10 70.79 0.72 0.79 0.76 1.09 3.16 0.22 15.85 0.50 79.43 0.83 I 3.55 3.98 4.47 0.33 0.22 0.23 17.78 19.95 22.39 0.61 0.87 1.92 89.13 100.00 0.80 0.82 ACCELEROMETER DIRECTION _F_d_NO.__d__ _ LOCATION ____ D AMPING_1 I-T E S T N O . USYt@_t$ 0 B E _ _ _ _ _ _ S S E _ _ _ _ _ _

BIAX____ N-CONTROL _/__S____ _ SURVEY ____

E-lJ___ TRIAX__(

1 I

I .

ZPA (g's) .

I -

.. ~ -- .

46 I

I CHANNEL -BA 7 5.000 e i a

\,, *!

  • = -

jfl u --

l I !.sl 4  ::s g 3

/

!l

_/  ;

5.000 '

c-Oc ___

1.000 LOG 10 FRE0 100.0 SHOCK RESP 0 ISE 2.0 ?. DAMP ABS ACC E g

hh.NbUh1 4 2 SRU+ CHUG DATA SET TWO-POWELL 1/6 OCTAUE MAXI-MAX Free Aeol Free Ampi Free Ampi 1.00 0.09 5.01 1.04 25.12 2.44 J 1.12 0.10 5.62 0.85 28.18 1.89 1.26 0.10 6.31 0.73 31.62 0.88

? 1.41 0.10 7.08 0.83 35.48 0.89 1.53 0.13 7.94 0.80 39.81 0.87 1.78 0.13 8.91 0.62 44.67 0.94 2.00 0.18 10.00 0.55 50.12 1.06 2.24 0.24 11.22 0.71 56.23 0.76 2.51 0.44 12.59 0.63 63.10 1.07 2.82 0.60 14.13 0.56 70.79 1.38 -

3.16 0.90 15.85 0.65 79.43 1.12 3.55 1.43 17.78 0.81 89.13 1.05 3.98 1.29 19.95 1.25 100.00 0.75 4.47 1.92 22.39 3.60 ACCELEROMETERNO.__[___ DAMPING __k DIRECTION _b OL_ LOCATION ..___ _J TEST NO.T)W. @_g0BE______ SSE__

BIAX____ N-S____ E-W___ TRIAX_ d __

CONTROL _ M_ SURVEY ____ g a

I l

a ZPA (g's) .4[

l I

, r-47 CHANNEL -CA l

7 5.000  ;;

i i  ! !/

+

i i

!jT  !/

'1 l l/ \  ;/

/ hs /

3 y.._---

t .

!% U' \ L - #

, r w_,

I i f _,/ .

/

/

I 5.000 o E-02 o 1.000 LOG 10 FRE0 100.0 1E 12-NOV-81 SHOCK RESPONSE 2.0 7. DAMP ABS ACC l5 00:44:30 SRU+ CHUG DATA GET TWO-POWELL 1/6 OCTAVE MAXI-MAX Free Aeol Free Aeol Free Aeol 1.00 0.08 5.01 0.84 25.12 2.54 1.12 0.08 5.62 0.49 28.18 1.60

? 1.26 0.09 6.31 0.59 31.62 1.13 1.41 0.09 7.08 0.38 35.48 1.05 1.58 0.09 7.94 0.35 39.81 0.88 1.78 0.10 8.91 0.35 44.67 0.65 2.00 0.12 0.40 0.77 I 2.24 2.51 2.82 0.17 0.16 0.30 10.00 11.22 12.59 14.13 0.54 0.42 0.52 50.12 56.23 63.10 78.79 0.92 1.00 1.35 3.16 0.54 15.85 0.59 79.43 1.66 I 3.55 3.98 4.47 0.50 0.50 0.54 17.78 19.95 22.39 1.04 1.44 2.67 89.13 100.00 2.66 4.54 ACCELEROMETER NO.__E___ DAMPING _b I- DIRECTION _l[fST_ LOCATION ____

T E S T N O . MD_d>t3 O B E _ _ _ _ _ _ S S E _ _ _ _ _ _ .

sIAx____ N-J____ E-W___ TRIAX_I I_ CONTROL __t(_ SURVEY ____

I I

ZPA (g's) .

48 CHANNEL -AA 7 10.00 ;j x

-__y <

.n;/ 'N;M 3 yv,vsy .___

g Y

Cu' ~

I 0.100 1.000 LOG 10'FRE0 100.0 12-NOU-81 {HOCKRESg0NS[ST 1.0 7. DAMP A8S ACC 00:47:30 HIRD UPS T T 1/6 OCTAVE MAXI-MAX Free Aspi Free Aspi Free Ampi 1.00 0.43 5.01 3.91 25.12 6.35 1.12 0.89 5.62 3.12 28.18 7.41 1.26 0.69 6.31 3.72 31.62 6.01

~

? 1.41 0.88 7.08 3.38 35.48 8.44 1.58 0.92 7.94 2.63 39.81 9.21 1.78 1.39 8.91 4.86 44.67 7.68 2.00 1.38 10.00 4.29 50.12 4.84 2.24 2.68 11.22 4.96 56.23 5.47 2.51 2.79 12.59 6.30 63.10 4.50 2.82 2.41 14.13 5.71 70.79 5.69 3.16 3.45 15.85 5.73 79.43 4.15 .

3.55 3.77 C . 78 8.69 89.13 4.52 3.98 3.14 19.95 6.43 100.00 3.77 g 4.47 2.77 22.39 8.31 l

' ACCELEROMETER ___ DAMPING. _

l D I R E C T I O N _ LOCATION F_ _S _0 ____ ._

TEST NO.,__3___ OBE___1[__ SSE______ '

BIAX ___ N-S____ E-W___ TRIAX_V_

CONTROL __ I SURVEY ____

l I

ZPA (g's) [,

I

49 CHANNEL -84 7 20.00 , ,

/s/\Ls I

s

/

r i

L

\

I _.x f )_/

j/\A/N !4/

/  %

M ~-Q_

t ,/

+

i 0.200 l 1.000 LOG 10'FREQ 100.0 12-NOU-81 SHOCK RESPONSE 1.0 */ D AMP ABS ACC 00:49:40 T5i1RD UPSET TEST 1/6 OCTAVE MAXI-MAX I Free 1.00 Aeol 1.23 Free 5.01 Aeol 2.42 Free 25.12 10.72 Anol 1.12 1.15 5.62 2.55 28.10 7.60

? 1.26 1.58 6.31 2.28 31.62 3.89 1.41 2.50 7.08 2.86 35.48 4.22 i 1.58 1.60 7.94 4.39 39.81 3.09 t 1.78 1.56 8.91 7.64 44.67 3.44 l

2.00 2.28 10.00 10.32 50.12 3.07 2.24 2.99 11.22 9.33 56.23 2.57 2.51 2.17 12.59 9.09 63.10 2.38 2.82 2.01 14.13 13.04 70.79 2.48 3.16 2.46 15.85 11.06 79.43 2.39 3.55 1.99 17.78 14.96 89.13 2.08 3.98 3.09 19.95 10.77 100.00 2.02 4.47 2.42 22.39 11.85 t . ACCELEROMETER NO.__ ___ DAMPING _ _

DIRECTION f.*_N__ LOCATION ____

TCST NO.__3____

I,~ BIAX ___ N,-S____ OBE__/___

E-W___ TRIAX_ SSE___/___

CONTROL _Y__ SURVEY ____

I -

s ZPA (g's) f.h

_.___ . . . - . . ~ . .. - - . -

50 l

1 CHANNEL -CA 7 50.00 3 I

/N_

l

,i  !

i ii

/

w

!/

. ... .i_ _

0.500 /

_ M\A i

!/- l 1.000 LOG 10'FRE0 100.0 12-NOV-81 SHOCK RESPONSE 1.0 */. DANP ABS ACC 00:51:50 THIRD UPSET TEST 1/6 OCTAVE MAXI-MAX Free Amol Free Amol Free Aeol I

1.00 0.47 5.01 0.78 25.12 22.84 1.12 0.49 5.62 0.86 28.18 10.64

? 1.26 0.93 6.31 0.78 31.62 7.55 1.41 0.85 7.08 0.91 35.48 7.91 1.58 1.22 7.94 1.10 39.81 5.73 1.78 1.53 8.91 1.50 44.67 4.51 2.00 1.17 10.00 1.52 50.12 4.12 2.24 1.72 11.22 2.73 56.23 4.11 2.51 0.97 12.59 4.34 63.10 3.82 2.82 1.23 14.13 19.54 70.79 3.37 3.16 1.05 15.85 20.49 79.43 3.87 3.55 0.75 17.78 32.73 89.13 3.95 3.98 0.71 19.95 25.86 100.00 6.81 4.47 0.92 22.39 26.43 ACCELEROMET R 0.__N___ DAMPING _f.

DIRECTION __f.6p-__

LOCfTION ____

T E S T N O . _3_ __ _ O B E _ .V_ _ _ _ S S E _ _ _ _ _ _

sinx____ N-S____ E-W___ TRIAX_ d J CONTROL _ 2 _ SURVEY ____

i ZPA (g's) ,h a

I

51 1

CHANNEL -AA 7 10.00

,--n_;,~

'%&HQ l  :/

/NInNr / rmf i

i 4

3

/  !

, 1 i i I 0.100 1.006 LOG 10 FRE0 2.0 % DAMP ABS ACC 100.0 12-N00-81 SHOCKRESPONgST THIRD UPSET 1/6 OCTAVE MAXI-MAX 00 54 30 Free Aasi Free Ampl Free Ampi 0.37 5.01 2.67 25.12 5.23 I  ?

1.00 1.12 1.26 1.41 0.73 0.54 0.68 5.62 6.31 7.08 3.02 2.66 2.80 28.18 31.62 35.48 5.29 4.65 5.84 0.70 7.94 2.20 39.81 5.94 I 1.58 1.78 2.00 2.24 1.15 1.37 2.02 8.91 16.00 11.22 3.25 3.02 3.94 44.67 50.12 56.23 5.40 4.25 3.82 2.51 2.47 12.59 4.67 63.10 3.63 2.02 2.13 14.13 4.39 70.79 4.26 I. 3.16 3.55 2.63 3.00 15.85 17.78 4.69 6.14 79.43 89.13 3.45 3.23 3.98 2.06 19.95 5 'A 100.00 2.74 4.47 2.51 22.39 6789 ACCELEROMETERNO._M___ DAMPING __b DIRECTION R._k__ LOCA IDH ____

I" TEST NO._3____ OBE______ SSE______

E-W___ TRIAX_ d BIAX____

CONTROL ___N-[S ___ ____

SURVEY l

l ZPA (g's) [.I u

I

52 CHANNEL -84 7 20.06

_j '" ,

ei s i' Ni i

_a )%_ ,._

~

/ AA$

jg'/ 'Tv i

_/ I i 0.200 1.000 LOG 10'FREQ 100.0 12-NOV-81 SHOCK RESPONSE 2.0 7. DAMP ABS ACC 00:56:30 THIRD UPSET TEST 1/6 0CTAUE MAXI-MAX _

Free Amol Free Aeol Free Amol 1.00 1.05 5.01 2.15 25.12 7.99 1.12 1.07 5.62 2.04 28.18 6.42

? 1.26 1.37 6.31 2.06 31.62 3.62 1.41 1.89 7.08 2.32 35.48 3.53 E 1.58 1.35 7.94 3.44 39.81 2.90 3 d 1.78 1.45 8.91 5.84 44.67 2.75 2.00 2.16 10.00 7.45 50.12 2.71 2.24 2.15 11.22 7.17 56.23 2.37 2.51 1.95 12.59 6.43 63.10 2.24 2.82 1.84 14.13 9.98 70.79 2.18 3.16 1.94 15.85 9.26 79.43 2.29 3.55 1.68 17.78 11.60 89.13 1.98 3.98 2.35 19.95 8.32 100.00 1.99 4.47 1.94 22.39 8.79 ACCELEROMETER NO._ I___ DAMPING _b DIRECTION _E_ _ y _ _

LOCATION ____

TEST NO._d____ OBE__y___ SSE______

BIAX____ N-J____ E-W___ TRIAX_d CONTROL _I__ SURVEY ____

ZPA (g's) f.8

lI l 53 ,

l l

i e

l I

l CHANNEL -CA .

I  ? 50.00 i

i _  !

/ \

) 5 '

if f

- -i. _ /

~

i i i !!! ij i i N/\ >d j/i i/  :

O.500 / !N 1.000 LOG 10 FREQ 100.0 SHOCK RESPONSE 2.0 % DAMP ABS ACC I 12-NOV-81 00:58:40 THIRD UPSET TEST 1/6 0CTAVE MAXI-MAX Free Ampt Free Amol Free Amol 1.00 0.41 5.01 0.63 25.12 16.40 1.12 0.43 5.62 0.73 28.18 10.09

? 1.26 0.86 6.31 0.78 31.62 6.71

?? 1.41 0.76 7.08 0.79 35.48 6.48 l

l 1.58 0.96 7.94 0.98 39.81 5.18 1.78 1.13 8.91 1.33 44.67 4.23 2.00 0.99 10.00 1.52 50.12 3.68 2.24 1.32 11.22 2.61 56.23 3.61 t 2.51 0.90 12.59 4.84 63.10 3.45 l

2.82 1.09 14.13 13.09 70.79 3.31 i 3.16 0.90 15.85 15.71 79.43 3.71

! 3.55 0.63 17.78 20.60 89.13 3.83 3.98 0.66 19.95 21.28 100.00 5.21 4.47 0.76 22.39 20.07 l

l ACCELEROMETER N J._E___ DAMPING _k p DIRECTION _Yf6Lo LOCATION ____

TEST NO._3.____

BIAX____ N-S____ OBE_/____

E-W___ TRIAX_ SSE__[_ _ __

I CONTROL _ M_ SURVEY ____

ZPA (g's) k, b I - -

1 54 1

l l

l l

CHANNEL -AA 7 10.00 .

mp _

+- ";

b/ g

_1=  ?,,,j

_y/

iw l .

fv 0.100 1.000 LOG 10'FDE0 100.d 12-NOV-81 SHgCK RESPONSE 2.0 t DANF ABS ACC -

00:23:20 EMcRGEHCY TEST 1 1/6 0CTAVE MAXI-NAX Free Aapi Free Ampi Free Aeol ,

1.00 0.57 5.01 5.50 25.12 6.75 1.12 1.34 5.62 5.31 28.18 7.53 1.26 1.02 6.31 3.74 31.62 6.10 7 1,41 1.39 7.00 3.56 35.48 7.53 1.58 1.30 7.94 3.45 39.81 6.79 1.78 1.73 3.91 4.70 44.67 6.58 2.00 2.06 10.00 3.14 50.12 5.11 2.24 2.68 11.22 4.70 56.23 6.59 2.51 2.63 12.59 5.24 63.10 6.88 2.82 3.06 14.13 4.98 70.79 8.89 3.16 4.07 15.85 5.96 79.43 7.52 3.55 5.30 17.78 7.45 89.13 6.22 3.98 4.31 19.95 6.64 100.00 4.91 4.47 4.76 22.39 9.06 .

ACCELEROMETER NO._ I___ DAMPING 1 DIRECTION N_ .S_ _ _ LOCATION ___ J TESTNO._l.____OBE______SSE__d___

BIAX____ N,-S____ E-W___ TRIAX_/_

CONTROL _Y__ SURVEY ____

I a

ZPA (g's) .1 i i

l i

55 f*

CHArit1EL -BA

., 7 10.00 s;, x_

' ' l j, , W.-'

, , k .

N-i/%-

/N / V7g ! l if C i

'gq/

i p

~ ------

. -4 _ __

0.100 I

. . . 1.000 LOG 10 FRE0 100.0 2.c % DAMP ABS ACC 1 12-N09-81 00 25:30 SHOCK RESPONSE EMERGENCY TEST 1 1- OCTAVE MAXI-MAX t

= Free Ampi Free Ampi Free Ampi l 1.00 1.11 5.01 1.31 25.12 6.03 1.12 1.06 5.62 1.73 ' 8.18 6.00 I

1.26 2.01 6.31 1.63 31.62 4.12 1.41 3.24 7.08 1.83 35.48 4.67 1.58 2.22 7.94 2.12 39.81 4.08 1.78 2.47 8.91 2.79 44.67 4.06 l

l I 2.00 2.24 2.51 2.82 3.73 3.15 2.47 2.75 10.00 11.22 12.59 14.13 3.16 3.50 3.69 5.!!

50 12 56.23 63.10 70.79 4.34 3.52 3.67 5.35 j

I 3.16 3.55 3.99 4.47 2.75 1.71 1.77 1.53 15.85 17.78 19.95 22.39 5.09 7.20 5.73 7.14 79.43 89.13 100.00 3.38 3.12 2.25 ACCELEROMETER NO._ 1___ DAMPIN0 1 DIRECTION f_'_81__ 1 LOCATION ___

TEST NO._1____ OBE______ SSE__ 7__

BIAX____ N-S____ E-W___ TRIAX__2_

, CON TROL n/___ SURVEY ____

l t

e ZPA (g's) f,b I

56 Il I

CHANNEL -CA )

2

~

20.00 j d'\, ..

" /

j

> i

/ ~~-(t e-- l l

%.2C __

s .>

,.V E n , --

= =./ -K ,r' _

0.200

  • ' aaa UG10' foe 9 100.0 12-NOV SHOCK RESPONSE 2.0 % DAMP ABS ACC ~

99,37.-81 59 EMERGENCY TEST 1 1/6 OCTAVE MAXI-MAX Free Asol Free Amol Free A,no l l 1.00 0.94 5.01 0.90 25.12 13.33 1 1.12 0.95 5.62 0.75 28.18 8.66 1 1.14 1.95 6.31 1.47 31.62 5.20 7.08 1.35 35.48 4.51

? 1.41 1.72 1.58 1.86 7.94 1.76 39.81 5.01 1.78 2.21 8.91 2.00 44.67 4.29 2.00 1.74 10.00 2.31 50.12 3.95

! 2.24 2.20 11.22 2.86 56.23 4.98 l 2.51 1.32 12.59 4.12 63.10 4.30 1

2.82 1.37 14.13 11.25 70.79 5.01 3.16 1.13 15.85 13.82 79.43 4.88 3.55 0.88 17.78 13.02 89.13 7.04 3.98 0.88 19.95 14.26 100.00 9.82 i

4.47 0.87 22.39 15.51 ACCELEROMETER NO. h____ DAMPING _1 J DIRECTION MATi._ LOCATION ___

l TEST NO.__l___ OBE______ SSE__[_ __

l BIAx____ N-S____ E-W___ TRIAX_/_ _

CONTROL __(_ SURVEY ____

1 1

ZPA (g's) k,[

J

r-I 57 I

I I CHANNEL -AA 20.00  ;-

i i

7 .

I  ! fg f/kP' #\!f s l l l j

Nf Q:

~-

.,-e i z e

\ < .J i i e ,4  !

x_

J .

j  !

.._A/

r

.} e__ __

-t--T

,3,, p , ,

I 12-NOV-81 01:01:20 1.000 SHOCK RESPONSE HIGH A-A 2PA UPSET TEST 3 LOG 10'FREQ 1.0 % DAMP A85 ACC 1/6 0CTAUE MAXI-MAX 100.0 Freo Ampi Free Aeol Free Ampi 1.00 0.39 5.01 5.70 25.12 9.61 1.12 0.84 5.62 9.52 28.18 8.41 E 1.26 0.61 6.31 13.9s 31.62 6.9t E 7 1.41 0.91 7.08 10.51 35.48 9.06 1.58 0.92 7.94 9.24 39.81 9.84 1.78 1.47 8.91 17.16 44.67 8.37 l

I 2.00 2.24 2.51 2.82 1.66 3 11 3.34 2.96 10.00 12.73 11.22 12.33 12.59 15.70 14 13 14.55 50.12 56.23 63.10 70.79 6.13 4.57 2.77 3.30 1 3.16 4.34 15.85 13.97 79.43 3 06 l 3.55 4.52 17.70 16.79 89.13 2.75 3.98 3.92 19.95 11.05 100.00 2.73 4.47 3.39 22.39 13.36

~

ACCELEROMETER NO.__ ___ DAMPING _ _

DIRECTIO _ d_ _ LOCfTION ____

TEST NO._ ___ OBE__v___ SSE______

I BIAX____ N-S____ E-W___ TRIAX__V_

CONTROL __V. SURVEY ____

I l ZPA (g's) $,b I-

l 58 I

CHANNEL -BA I

? ~

j i ,! g/\L i vy \ __

i -_ t-W

/ \ m._,: I r

i .

8

_A _ <  ! As' j\g i  %'  ;  ;

f  ;

V I

0.200 3 1.000 LOG 10 FREQ 100.0 g 12-NOV-81 SHOCK RESPONSE 1.0 % DANP ABS ACC 01:03:20 HIGH A-A ZPA UPSET TEST 3 1/6 OCTAVE MAXI-MAX i

g i Free Asol Free Aeol Free Amol 25.12 13.26 1.00 1.40 5.01 2.65 1.12 1.07 5.62 3.59 28.18 8.98 ~

? 1.26 1.22 6.31 3.17 31.62 4.93 1.41 3.14 7.08 3.43 35.48 4.56 1.53 1.60 7.94 5.79 39.81 3.77 1.78 2.44 8.91 9 39 44.67 4.07 2.00 2.39 10.00 12.17 50.12 4.48 2.24 3.14 11.22 10.67 56.23 5.78 2.51 3.11 12.59 11.31 63.10 9.94 2.82 3.39 14.13 15.41 70.79 10.16 3.16 3.27 15.85 14.22 79.43 .' . 21 _

3.55 2.70 17.78 18.12 89.13 5.19 3.98 3.30 19.95 13.29 100.00 4.03 m 4.47 2.49 22.39 14.40 l ACCELEROMETER NO.__ __ DAMPING _k_

DIRECTION f_~M__ LOCfTION ____

TEST NO._18-__ OBE_ X___ SSE____.__ _;

BIAX._.__ N-S____ E-W___ TRIAX_/_

CONTF.ul _[__ SURVEY ____

.I l

m ZPA (g's) k.b J

l

r-59 CHANNEL -CA 7 50.00

,x 3_ (

V4 I .

v _.i

! i i/ i

/ l

,Vl - ,-

0.500 --

1.000 LOG 10 FREQ 100.0 12-N00-81 SHOCK RESPONSE 1.0 % DAMP ABS ACC 01:05:30 HIGH A-A ZPA UPSET TEST 3 1/6 0CTAVE MAXI-MAX I

Free Ampi Free Ampi Free Ampl I  ?

1.00 1.12 1.26 0.53 0.51 1.10 5.01 5.62 6.31 0.80 0.97 0.98 25.12 28.78 28.18 15.66 31.62 11.28 1.41 0.58 7.08 1.01 35.48 12.61 I 1.58 1.79 2.00 2.24 1.42 1.82 1.36 2.00 7.94 8.91 10.00 11.22 1.13 2.00 1.94 3.31 39.81 44.67 50.12 56.23 8.92 6.31 5.17 5.79 4.98 I 2.51 2.82 3.16 3.55 1.09 1.38 1.25 0.89 12.59 14.13 24.67 15.S5 24.39 17.78 36.83 63.10 70.79 79.43 11.18 89.13 12.39 7.60 S.28 3.98 0.91 19.95 35.33 100.00 20.63 4.47 0.95 22.39 32.18 ACCELEROMET N .__M___ DAMPING __

I DIRECTION _ S LOC TION ____

TEST NO._38___ OBE______ SSE______

BIAx____ N-S____ E-W___ TRIAX_V_

CONTROL _1'_ SURVEY ____

I ZPA (g's) 3.b k

60 i

CHANNEL -AA 2 20.00 . -.

f i ^ 'd i y

L f '%.

. i&. / \ _!

w 79 .y ~_

j\ .!

~

[

0.200 .

I 1.000 LOG 10 FREQ 100.0 12-NOV-81 SHCCK RESPONSE 2.0 :: DAMP ABS ACC 01:08 00 HIGH A-A ZPA UPSET TEST 3 1/6 0CTAVE MAXI-MAX Free Aspi Free Ampi Free Am!

1.00 0.34 5.01 4.06 25.12 7.84 1.12 0.69 5.62 6.84 28.18 6.78 1.26 0.51 6.31 9.70 31.62 5.74 7 1.41 0.70 7.08 8.26 35.48 6.81 1.53 0.81 7.94 7.66 39.81 6.90 1.78 1.26 8.91 10.91 44.67 5.54 2.00 1.66 10.00 9.22 50.12 4.71 2.24 2.29 11.22 9.90 56.23 4.07 2.51 2.78 12.59 11.52 63.10 2.72 2.82 2.48 14.13 10.46 70.79 3.18 3.16 3.34 15.85 11.14 79.43 2.85 3.55 3.66 17.78 11.76 89.13 2.67 3.98 2.64 19.95 9.20 100.00 2.71 -

4.47 3.15 22.39 10.35 ACCELEROMETER 0._ ___ DAMPING _

DIRECTION E" __ LOCfTION ____

T E S T N O . _3. A_ _ _ O s E _ x_ _ _ S S E _ _ _

BIAX____. N-S__ _ E-W __ TRIAX_ [ _

CONTROL _ d_ SURVEY ____ -

I 1

I ZPA (g's) k.b

l r-61 i

CHANNEL -84 7 20.00 i  ;

# \I_

s-

' ./ 1 --%

!  % _;/ \

,  ;/?v%)O'

[ \/

l l

I c-0.200 I I 12-NOV-81 01:10:00 1.000 SHOCK RESPONSE HIGH A-A ZPA UPSET TEST 3 LOG 10'FREQ 2.0 % DAMP A85 ACC 1/6 OCTAVE MAXI-MAX 100.0 I Frea Amol Free Amol Free Aeol 1.00 1.16 5.01 2.45 25.12 9.69 I  ?

1.12 1.26 1.41 1.58 1.04 1.12 2.35 1.44 5.62 6.31 7.08 7.94 2.84 2.63 2.93 4.07 28.18 31.62 35.48 39.81 7.54 4.63 4.11 3.48 I 1.78 2.00 2.24 2.51 2.05 2.24 2.22 2.57 8.91 10.00 11.22 12.59 6.91 8.67 8.38 8.18 44.67 50.12 56.23 63.10 3.69 3.91 5.10 7.55 2.82 2.92 14.13 11.70 70.79 8.42

.I 1

l 3.16 3.55 3.98 2.62 2.20 2.62 15.85 17.78 19.95 11.95 14.27 10.57 79.43 89.13 100.00 5.44 4.11 3.51 4.47 2.13 22.39 10.90 ACCELEROMETER NO._ ___ DAMPING 1 DIRECTION .EC_W__ LOCATION ____

l T E S T N O . 3.A _ _ O s E _ _(_ _ _ s s E _ _ _ _ _ _

BIAX____ N-S____ E-W___ TRIAX_ I CONTROL __d_ SURVEY ____

I I

ZPA (g's) .

I-

62 I

I CHANNEL -CA 7 50.00 . i i ym

5

\ l

/ s. -

.V l ,

i i >

f i i I  ; +

!iliI/

i s

-l/

\pk

~

,/ f 0.500 e i: i i 1.000 LOG 10 FREQ 10'0.0 12-NOV-81 ' SHOCK RESPONSE 2.0 % DAMP ABS ACC E 01:12:00 HIGH A-A ZPA UPSET TEST 3 1/6 OCTAVE HAXI-MAX g Free Amol Free Aeol Free Aeol 1.00 0.47 5.01 0.64 25.12 21.77 1.12 0.48 5.62 0.79 28.18 13.40

? 1.26 1.00 6.31 0.86 31.62 9.05 l 1.41 0.87 7.08 0.90 35.48 9.96 1.58 1.11 7.94 1.10 39.81 7.70 1.78 1.34 8.91 1.67 44.67 5.27 2.00 1.21 10.00 1.93 50.12 5.12 2.24 1.53 11.22 2.96 56.23 5.23 2.51 1.01 12.59 4.94 63.10 6.02 '

2.82 1.24 14.13 16.63 70.79 7.08 3.16 1.06 15.85 18.88 79.43 8.38 3.55 0.70 17.78 23.64 89.13 9.67 3.98 0.84 19.95 25.13 100.00 14.92 4.47 0.78 22.39 23.78 l ACCELEROMETER NO.__2____ DAMPIN0_

l DIRECTION M LOCATION ____

TEST NO.1 _8__f87.

l OBE_n[___ SSE------

BIAX-___ N-S____ E-W___ TRIAX_V_ E g

CONTROL _ g_ SURVEY ____ J

_1 I

J ZPA (g's) 3.8 lJ I

63 i

i .

I, CHANNEL -AA I

7 20.00 i

~

g i/ W; " ' \l,s s j

/v 1m i +

v _t

(.Mcp l

,f i

s

--p-f f .[

l

+._

i l 0.200 l l 1.000 LOG 10'FRE0 100.0 12-NOV-81 SHOCK RESPONSE 2.0 % DAMP ABS ACC 1

I 00 30:20 Free EMERGENCY TEST REE-RUN Ampt Free Aspl Free 1/6 OCTAVE MAXI-MAX Aspi l

1.00 0.50 5.01 5.69 25.12 10.63 1.12 0.99 5.62 10.15 28.18 8.50 1.26 0.74 6.31 12.75 31.62 7.41

? 1.41 1.04 7.08 11.58 35.48 9.67 1.58 1.12 7.94 10.44 39.81 9.43 lI l

1.78 2.00 2.24 1.66 2.38 3.30 8.91 10.00 12.33 11.22 14.04 15.96 44.67 50.12 56.23 7.53 6.56 5.14 2.51 4.05 12.59 14.92 63.10 4.26

.E 2.82 3.16 3.54 4.85 14.13 13.15 15.85 13.81 70.79 79.43 4.44 3.82 l3 1- 3.55 5.21 17.78 16.06 89.13 4.06 3.98 3.30 19.95 11.25 100.00 4.57 4.47 4.14 22.39 14.12 ACCELEROMETERNO._[____DAMPINGk DIRECTION .XIS__ LOCATION ____

I" TEST NO._l_8___ OBE______ SSE_f____

BIAX____ N-S____ E-W___ TRIAX_/_

CONTROL _/__ SURVEY ____

k, b l ZPA (c's)

Im

64 i

i CHANNEL -BA 7 20.00 .

i l l ! ! I i i_ fd N '

I  !  ! i,ij

_4--. . '-

{y

'gj }

, ,, -. /h

_jad/ i l

/ i 1._.

O.200 1.000 LOG 10 FREQ 100.0 12-NOV-81 SHOCR RESPONSE 2.0 % DAMP ABS ACC '

00:32 30 EMERGENCY TEST R E -R'.' 1/6 OCTAVE MAXI-MAX Frea Aeol Fre's Ampi Free Amol I

1.00 1.04 5.01 2.80 25.12 11.48 1.12 1.02 5.62 2.86 28.18 8.82

? 1.26 2.10 6.31 2.90 31.62 5.27 -

1.41 2.83 7.08 3.89 35.48 5.29 1.58 1.55 7.94 5.09 39.81 4.25 1.78 1.88 8.91 8.55 44.67 4.70 E 2.00 2.16 10.00 10.50 50.12 5.14 3 2.24 2.96 11.22 10.07 56.23 7.25 -'

2.51 2.80 12.59 9.60 63.10 10.68

2.82 3.97 14.13 13.86 70.79 10.06 E i 3.16 3 55 2.91 3.14 15.85 14.27 17.78 17.08 79.43 89.13 6.02 5.08 g

3.98 2.65 19.95 12.93 100.00 3.73 4.47 2.59 22.39 13.25

~

ACCELEROME R NO._ ___ DAMPING _

DIRECTION LOCATION ___

TEST NO..l_8__Y___ OBE______ SSE__ I_ ,...

E-W___ TRIAX_f_

BIAX____

CONTROL _ __ /_N-S____

SURVEY I

I ZPA (g's) .

.h \

i I

1

_ .. . _. l

65 I

I g CHANNEL -CA 3 2 50.00 i

' ' i j i iii /

i .

i ,ii [ \!

I/

! ,'!!!'! I i l l

k .g M N

I '

ii /

I 5 Y

I pCOC

~ i .v I' I / __,

=_f r. , z. x.

0.500 '!  ! !I 1.000 LOG 10 FRE0 100.0 2.0 % DanP A8S ACC I 12-N00-81 SHOCK RESPONSE 00:34 20 EMERGENCY TEST REE-RUN 1/6 OCTAVE MAXI-MAX I Free 1.00 1.12 Aspl 0.48 0.51 Free 5.01 5.62 Aeol 0.69 0.83 Free 25.12 21.38 28.18 13.39 Aeol

? 1.26 1.01 6.31 0.92 31.62 9.19 I 1.41 1.58 1.78 2.00 0.93 1.14 1.32 1.21 7.08 7.94 8.91 10.00 0.96 1.20 1.79 1.94 35.48 39.81 44.67 50.12 s.69 7.37 6.01 5.12 i

I 2.24 2.51 2.82 3.16 1.51 1.01 1.24 1.06 11.22 12.59 14.13 16.35 15.85 18.79 3.02 5.20 56.23 63.10 70.79 79.43 5.44 7.18 8.48 8.44 3.55 0.73 17.78 24.46 89.13 11.71 3.98 0.85 19.95 25.11 100.00 16.33 I, 4.47 0.79 22.39 23.99 ACCELEROMET R NJ.. M___DAMPIN0_ b m DIRECTION f_kO LOCATION ____

TEST NO../. __ OBE______ SSE__ d__

BIAX____ N- E-W.__ TRIAX_ /

CONTROL _/_S____ _ SURVEY I. ____

I lI l

ZPA (g's) .

1r -

l Im

66 I

I CHANNEL -AA I

7 50 00 i i is" j S'%/ $s\

I I

/ ..

_.h M .I i

5 1__

m

- ygg- ..-

Aq

/

t.. __

- i A./'.

.}

0 500 1.000 LOG 10'FDE0 100.0 .

I N0V-81 SHOCK RESPONSE 2.0 ?. DAMP ABS ACC 06' 08

50 ENERGENCY 4G ZPA TEST 1/6 OCTAVE NAXI-MAX Free Amol Free Aeol Free Amol 1.00 0.58 5.01 6.67 25.12 13.14 1.12 1.15 5.62 11.69 28.10 11.03 1.26 0.89 6.31 16.05 31.62 10.03

? 1.41 1.19 7.08 13.02 35.48 11.61

?? 1.58 1.33 7.94 12.63 39.81 12.37 1.78 2.05 8.91 18.59 44.67 9.46 2.00 2.72 10.00 15.23 50.12 7.53 2.24 3.85 11.22 16.53 56.23 6.97 -

2.51 4.63 12.59 19.04 64.10 5.16 2 62 4.14 14.13 15.79 70.79 4.99 5 3.16 5.63 15.95 17.98 79.43 5.15 3 3 55 6.15 17.78 19.31 89.13 5.39 a 3.98 4.52 19.95 14.38 100.00 5.33 4.47 4.97 22.39 16.74

'~'

ACCELEROMETERNO._d___DAMPINGb DIRECTION 8_ .8- _ _ LOCATION ____

T E S T N O . _l 6sg/Ty 0 B E _ _ _ _ _ _ S S E _ _ _ _ _ _

BIAX____ N-S____ E-W___ TRIAX_d_ J CONTROL __d_ SURVEY ____

m I

I J

l ZPA (g's) I.

I

67 I

CHerar4EL -BA

? 50 00 w._ A I ._ ;.. . . /. .

i i '

_ te

-w~

..v .--

1

/ s/ 3, i 1/

4.

\i f" >

,9

-g -.. yy y

m v _ - :S/ . _.___

I a j -V '

'N/ I I .-

0 500 -

1.000 LOG 10'FRE0 190 0 }

2.0 '.' DAMP ABS ACC I- 12 N00 81 gg711:50 SHOCK RESPGN3g ENERGENCY 4G (PA TEST 1/6 0CTAVE MAXI-MAX Free Asol Free Amol Free A+nt 1.A0 1.28 5.01 4.33 25.12 15.94 1.12 1.63 5.62 4.41 28.18 13.01

? 1.26 1.99 6.31 3.84 31.62 9.04 I. 1.41 1.58 3.40 2.77 7.08 7.94 5.23 7.14 35.48 13.82 39.81 9.02 1.79 2.35 9.91 12.90 44.67 9.27 I 2.00

' 24 2 51 3.32 3.54 3.29 10.00 14.99 11.22 14.88 12.59 13.10 50.12 56.23 63.10 7.42 7.24 9.25 2 82 3.56 14.13 20.77 70.79 9.20 3.16 4.42 15.85 20.48 79.43 7.50 3.55 3.42 17.78 24.81 89.13 6.02

t. 3.99 3.96 19.95 19.05 100.00 5.37 4.47 4 01 22.39 18.91 ACCELEROMETERNO._Y____ DAMPING _k i DIRECTION f.M _ LOCATION ____

'l TEST NOJ_F_M;ddy0BE______ SSE__d_ __

E BIAX____ N-S . . E-W___ TRIAX_

CONTROL _V__ SURVEY ____

I

,I ZPA (g's) Y.I I:'

68 CHANNEL -CA -

t 50.00 ..

-_ -?-M-3

'p, , r-+ ..

i  ! hi /

~

s. -.. .f l}._:

-z-. -._

i  ! i i i C/ e i AN'h A i i MCIL_.

uj --- : _.r:::-

" FN-s+d-?'$  ;

-.a p

0.500 > -

1.000 LOG 10 FREQ 100.0 SPONS SHOCKRgY4GgPATEST 2.0 :. DAMP ABS ACC g.NOV-81 13:10 ENERGEN 1/6 OCTAVE MAXL-MAX Free Amol Free Aeol Free Aeol 1.00 0.57 5.01 0.79 25.12 22.40 1.12 0.58 5.62 1.01 28.18 14.97

? 1.26 1.17 6.31 1.10 31.62 10.53 1.41 1.01 7.08 1.10 35.48 11.36 1.58 1.29 7.94 1.36 39.01 8.09 1.78 1.55 8.91 1.95 44.67 8.29 2.00 1.37 10.00 2.11 50.12 5.91 2.24 1.78 11.22 3.23 56.23 6.21 2.51 1.17 12.59 6.33 63.10 7.72 2.82 1.40 14.13 19.51 70.79 9.64 r 3.16 1.17 15.85 23.50 79.43 10.33 3.55 0.89 17.78 28.90 89.13 14.57 3.98 0.95 19.95 30.94 100.00 19.26 4 47 0.94 22.39 28.01 ACCELEROMETER NO._ N___ DAMPING b DIRECTIOp VCM. LOCATION ____

T E S T N O Jfdesiliry D B E _ _ _ _ _ _ S S E _ _ _ _ _ _

BIAx____ S____ E-W __ TRIAX_ d CONTROL _ __ SURVEY ____

i I

~J ZPA (g's) k.I I

1 I

I a l I

CHANNEL -AA 50 00

, ., - - t +;--

.s . . . .

__.s h= sur y h( -e.

i i' ;f, N ,i. - % i , ,

/ .

\i e i l

,e- 2 . ---

/ ...

./ 1 -

/ ... -

n f\/  !  ;

I 0 500 1.000 I

LOG 10'FRE0 100.0 1 NOV-81 SH0gK RESPONSE I,, 0 16:10 SG 4PA EMERGENCY TEST 2.0 ?. DAMP ABS ACC 1/6 0".TAVE MAXI-MAX I' Free 1 00 1.12 Ampi 0 80 1.52 Freo 5.01 10.69 Ampi Frea 25.12 16.54 Ampi 5.62 16.54 28.18 13.96 1.26 1.12 6.31 21.44 31.62 13.63 l Ii.

? 1.41 1.58 1.78 2.00 1.53 1.67 2.72 7.08 20.40 7.94 20.97 8.91 26.96 35.48 14.86 39.81 44.67 14.13 15.50 3.43 10.00 20.25 50.12 9.79 1

I' I 2.24

' 51 2.82 3.16 5.00 6.04 5.62 7.37 11.22 21.10 12.59 24.13 14.13 18.96 15.85 20.92 56.23 63.10 70.79 79.43 8.97 7.65 6.80 7.53 3.55 8.93 17.78 25.00 89.13 7.58 3.98 7.87 19.95 17.79 100.00 7.08 e

4.47 8.29 22.39 21.37 ACCELEROME R NO. . DAMPING _ b DIRECTION "_E__ _ LOCATION ____

T E S T N O A [cp34 O B E _ _ _ .

I l (

BIAX____ N-S____ E-W___ TRIAX_

CONTROL _ M_ SURVEY ____

S S E _ _[_ __

I I ZPA (g's) bk l L

70 I

I CHANNEL -8A 7

50 00

, r y

., , . f ..d I I l  !

![ ._._.

b -- % i . .

N j 3m[" \[ -iz :i

/ \/ _  !  !

}  ! !  !  !

ls!  !

t ,

O.500 1.000 LOG 10 FRE0 100.0 SNOCE EEEEONSE 2 0 % UAUE AES ACC

.j hh[glVh1 3G 2PA EMERGENCY TEST 1/6 0CTAVE MAXI-MAX Freo Amot Free Aeol Free Aeol 1.00 1.56 5.01 6.78 25.12 22.22 1.12 1.36 5.62 4.33 28.18 20.02 1.26 2.92 6.31 5.11 31.62 13.41

? 1.41 4.36 7.08 7.67 35.48 14.01 '

1.58 2.97 7.94 8.95 33.81 '12.64 1.78 3.51 8.91 16.69 44.67 12.98 2.00 4.52 10 00 19.29 50.12 9.74 2.24 5.16 11.22 19.88 56.23 8 92 -'

2.51 4.34 12.59 18.67 63.10 11.31 i 2.8. 5.37 14.13 26.09 70.79 9.95 1 3.16 5.38 15.85 28.88 79.43 8.46 E i 3.55 4.45 17.78 32.29 89.13 8.06 E i 3.98 6.22 19.95 23.52 100.00 5.96 __2 4.47 5.30 22.39 24.41 ACCELEROMET R NO._ ___ DAMPING _k "

DIRECTION _ _M_ LOCATION ____

T E S T N 0 % fogiffy O B E _ _ _ _ _ _ S S E------ E BIAX____ N-J____ E-W___ TR I AX_ V. 3 CONTROL .E_ SURVEY ____ J l

I m

'I

_J ZPA (g's) EO I

l

I r--

71 I

CHANNEL -CA 7 100.0

-. ,/-3

~=

I

/ NA 1 l

i j QJ/

! ,. , +._ -__

i

+__q_g.___

4 / i___

. n./'

T s, ,!_ _! , M ' l.

1.000 1 1.000 LOG 10 FREQ 100.0 12-NOV-81 SHOCK RESPONSE 2.0 % DAriP ABS ACC 00:20 30 SG ZPA EMERGENCY TEST 1/6 0CTAVE MAXI-MAX ,

I Freo Asol Fr so Aaol Free Aeol 1.00 1.09 5.01 1.76 25.12 32.86 1.12 1.09 5.62 2.13 28.18 26.87

? 1.26 2.33 6.31 2.20 31.62 19.88 1.41 2.04 7.08 2.42 35.48 24.08 1.58 2.54 7.94 3.15 39.81 17.64 1.78 3.02 8.91 3.70 44.67 12.83

,I 2 00 2.24

').51 2.69 3.60 2.31 10.00 11.22 12.59 14.81 4.21 8.47 50.12 12.92 56.23 11.81 63.10 12.05

! 2.82 2.82 14.13 40.07 70.79 13.28 I 3.16 3.55 3.90 4.47 2.43 1.58 1.89 1.93 15.85 47.67 17.78 58.68 19.95 56.92 22.39 48.34 79.43 12.76 89.13 15.26 100.00 22.62 ACCELEROMET R NO._ ___ DAMPING _

DIRECTION _EATu LOCATION ____

lI T E S T N N-S____

BIAX____ O .LCTS4Ty CONTROL _V__ SURVEY ____

E-W___ 0 B TRIAX_

E _ _ _ _ _ _ S S E _ _2_ _ _

I I .

l" ZPA (g's) f-

72 IV.5 Resonance Search I

The transmissibility plots from the resonance search are presented in this section. The locations, descriptions and frequencies are listed in Table IV.5.1.

TABLE IV.5.1 Accelerometer Plot Fig. Resonant Frequencies No. Direction No. Description (Hz) 1 X (a-a) Horiz-a IV.5.1 base of yoke --

2 Y (c-c) Horiz-c IV.5.2 --

3 X (a-a) Horiz-a IV.5.3 top of yoke 34.7 4 Y (c-c) Horiz-c IV.5.4 30.6, 33.9, 96.6 5 Z (b-b) Vert. IV.5.5 on ilmit switch gear 48.4, 53.1 housing (close to terminal block mounting screws) 6 Z (b-b) Vert. IV.5.6 on end of limit switch 49.C. 53.1 terminal block l 7 X (b-b) Vert. IV.5.7 36.7. 53.1

! 8 X (a-a) Horiz-a IV.5.8 end of actuator 35.1 -

m tor 9 Y (c-c) Horiz-c IV.5.9 35.1, 42.2, 50.1 63.8, 96.6 I

' I

_I 1

~

l 73 '

(

I,.

I 5.00E 01 I

I

_^ _

-)

h l ll" I 5 00E-03 00  : 00E 02 41 _

000072-000003 FREGE,iP-900E, 40 000072-800000 1x g ,c r'

FIGURE IV.5.1 I - . i m ,

2.00E 02 i

,I - 2% _

)

I _

2 30E-02 g ggg g '

1.00E 00 al .

000072-0000 0 FPEORE,SP.B^0E 49 L

I 0o0072-000000 ty f

i FIGURE IV.5.2 l

it t -

74

-en I i ..

1 00E 01

!Fs 3 4CE 01 1.1 J.is5E 00 31

^'

l 'j) '

i /

!!' QW-

~

7 i 1 00E-03

' h I

1.00E 00 1 00E 02 '

Al _

Q0007'-000000 FREQRESP-BODE 6,00072-000000 1x+ 3:4+ 80 FIGURE IV.5.3 5

% ~"

^8" . _ _ _ . ___ .__ . . .. . h '2.'.- Y I

2 00E 01;  !

1F: 3.055E 0' '3 '

1R= 2.291E 00 ,

(

F= 3.395E O! r et li

?!=,2.633E 00 / \ f'

-p y

~"

3r= 3.661E 01 1 9 082E 00 3.=

/

'8

- .- - - p .

\fp l

2.00E-03 1 00E 00 1.00E 02 000072-000000 FREGRE3P-80DE 000072-000000 1Y+ 4Y+ 40 FIGURE IV.5.4 I

?*

75 r-r~ e 7 l I -evV 1 00E 02 -

. t-

!F= 4.942E 01 IN= 2.663E 00 i 2F= 5.309E 01 --

,- 2M= 2.633E 09 I

A l t. \y-1; k2

/

+

I IO ~0E g_ggg ga 1 00E 02 I,. 000072-000000 FRE0 RESP-BODE 52+ 80 000072-000000 12+

FIGURE IV.5.5 E

, < s-

^#4 p._. __.

I 1F= 4.999E O!

1M= 3 780E 00 5 00E 01 1

I 2F= 5.309E 01 2n= 4.242E 00 i

/7

,22

/

l l

' _. > \[ .

>^

lI 5.00E-03 1.00E 00 1.00E 02

  1. I -

000072-000000 FREQRESP-BODE 000072-000000 12+ eZ+ 40

,I FIGURE IV.5.6

l 1

76

-.w ~f .,

i/s  !

2 00E 01 te=  :.672E 01 730E 00 )

_k 2F= 5 703E 01 2M= 1.637E 00 ' '

^4 N V' 32

]<

2.00E-03 1.00E 00 1 00E 02

  • t'-

800072-000000 FREGRESP-800E 000072-000000 12+ 7Z+ 80 FIGURE IV.5.7

.I

.gg I '

's. ____.~i 5.00E 01 IF= 3.503E 01 IM= 1.607E 01 ItI

as j'

/

\%

t

>h _.

5 E-03!

g egg gg 1 00E 02

~

000072-000000 E l 000072-000000 FREGRE!P-E@x+

IX+ o s0 FIGURE IV.5.8 I

r-77 I

t-I I aer'(KK f L_

5.00E 01 7^ ,a.]' _$

l IF= 3.508E 01 l ,. IM= 6 339E 00 .;5 E 2F= 4.217E 01 l A1 3 2M= 1.581E 00 i -1

,. 3F= 5.070E 01

.2 f 2]

V I 3M= 1.119E 00 .y 4F= 6.383E 01 yi 4M= 2.126E OB I hb9661E01 E SM= 1.277E 01 at t

5.00E-03 1.00E 00 1 00E 02 l

41 _

FREQRESP-BODE 00g72-000000 00 72-000000 11+ 9t+ #0 FIGURE IV.5.9 I -

'I I

I lI l

I

!I I -

70 ~

IV.6 Fatigue Damage Potential Calculations The process of determining the fatigue damage potential (F.D.P.) is describe.d in the appendix of this report. The values presented in this section are for the Sargent and Lundy time histories supplied to SDRC, and for the SDRC equivalent white noise table input.

S&L Time History l TEST TYPE DIRECTION F.D.P. Multiplier SDRC TEST F.D.P.*

a-a 9%,ly 1.02, 3.*%G E49 SRV b-b S305 l.06 3 672 Ed4 c-c 393g g (,pg 3,9 3 7 g 4 6 a-a 14 2t F. t .27 f.59f E'4 7 SRV8 CHUG b-b g4770 (. tO 2.taf7 E d 8 c-c g

t. s qg g< s I.co I.oS8 g +Io- E a-a 3.o E+5". 94 /.5B E E
  • 13 l UPSET b-b 2.42) f*6 .4V 9.4(04 f
  • ll

! c-c 4 871 K+6 ,qg 1.9 48 E +i4 EMERGENCY a-a b-b 284ff*f .46 l.640 f*7 1.oc 1.40Z. E + !4 2.5f6 E *IT l

c-c 4 384 548 .% 4 4$1 f

  • I4 a-a i,686 E+(3

-g HIGH A//5 LEVEL b-b A1/$ 2."722 E+ t 3 UPSET c-c A//$ af,pyy g414 ,

HIGH a-a /

A/$ I. 4 I' I

  • I4 LEVEL b-b Al/S 2 53 E + 13 EMERGENCY c-c Al/S 8(.38 E + IV FRAGILITY a-a M/S 2.18 G *IV TEST 1 b-b g/6 Z,$$ 2 4 83 ~'

c-c f.Z37 6 415 81/ 5 g FRAGILITY a-a g/S l,102 6 +If -

TEST 2 b-b pff$ 4,14 5 G 1/4 c-c M/S 2.Go1 E +IS' N/S - not supplied

  • For Actual F.D.P. , Multiply above values by .001 4 3 I

'I 79

'I V. TEST PRESENTATION AND RESULTS - 16 INCH ANCHOR DARLING VALVE I

f I

I 1

.4 s

l -

E .

E

! 3 I

I

.g

.I t . - - -

80 '

V.1 Mounting sr Test Specimen The mounting of the test specimen is shown in Figure V.1.1.

I

'I. l l Z(Vert)

I

,' ,' ,' jll ' ' ' ' ' . ,

,....,. m b-b

-w aa Y "}

cc FIGURE V.1.1 Mounting of 16 Inch Valve I

I I

__ _ . _ . . . _ __ _ . . _ _ _. _ _ . ._ ~

81 l I i V.2 Monitoring Instrumentatfor; V.2.1 Survey Accelerometers

! The nine survey accelerometer locations are listed

. below.

Accelerometer Orientation Location 1 X (a-a) Horiz-a

~ base of yoke 2 Y (c-c) Horiz-c 3 X (a-a) Horiz-a )>

top of yoke 4 Y (c-c) Horiz-c 5 Z (b-b) Vert on limit switch gear housing (close to terminal block mounting screws)

. 6 Z (b-b) Vert on end of limit switch terminal block 7 Z (b-b) Vert )

8 X (a-a) Horiz-a top of motor mount location 9 Y (c-c) Horiz-c The accelerometer locations are shown in Figure V.2.1.1.

Transmissibility plots are provided in Section V.S.

t I

I I.

,I 3

i

82 j j l r

Acc #7,8, < ,

q E

Motor EI"It Switch

'E g TC -ll Ace E

Ace #3,4

  1. 3,4 Sif ~g

~sr hAcc Acc#1,2 .F L l #1,2

[\ i

/ (\ ik D (

<J G' O 3 L .:,

I Terminal l ""k Terminal e nry Gear Box

> .V-

.v.

.l 3

g m l [ Accd6 w 14 Acc#6 ^

"I Acc# 5 u Accf5 FIGURE V.2.1.1 .,

16" Valve Accelerometer Locations I

w

_ , . . _ . . _ - . ~ . - . . --

83 I l V.2.2 Electrical Monitoring V.2.2.1 _Ch_atter Monitors I f Figure V.2.2.1 shows the locations of

, the contacts which were monitored during the test.

The contact data was tape recorded during the SRV and SRV plus CHUG fatigue aging

tests for playback if chatter was detected on the SDRC Chatter Monitor which was set up to de ect 2 milliseconds of chatter.

i; During the UPSET and Emergency tests, the

' contacts were monitored on an oscillograph recorder. The monitoring instrumentation is shown in Figure V.2.2.2.

The valve was tested in the open position I for the original SRr. The valve was closed for the SRV retake and the SRV + CHUG. The valve was cycled closed to open to closed during the full level and fregility level testing.

I
I L

15 I

'IL

84

-I s -

~

Top Gearbox top View

& 4 H %offf Y 2.

. q 3

[--e ofgb -

i k ed/hI d 6 b 5

3 1

Bottom Gearbox . Top View s

edgh ed 16 h -

efgH kd 15 }-e $ _

eq 10 H offh ,

3kd 9 bk N b a Above contact position shown for valve in open position.

1 1

I FIGURE V.2.2.1 I

Contact Monitor Points I

l I

i l-l 85 I

I, - .

I m _.

, ) *

.=,__  : .

  • - - - . . b l , _ enum , -

5

--- A,. '

gl) C

. p m-a_- - , ~ -

g .- - - .

h

4, M_ ly f, i,I .

lE. -  :

=E __k }7" i4NS .p b. . cfl

, _ mn N. $'.T

'y f

, , ,, g _

I ,

~'

\ '

I FIGURE V.2.2.2 Monitoring Instrumentation I  :

I ,

I I <

t-

[ ., ,.9- , -- .-ws,-_w--- - - - - - -

y.w- - - - - - - - - - - - - - - - - - - - " - - -

86 J \

V.2.2.2 Operability Monitors' The opening and closing of the valve were recorded on a leg of the 460 volt input. -

This voltage was isolated with a Gould high voltage amplifier.

V.2.3 Strain Gages The seven strain gage locations are shown in Figures V.2.3.1-4. The strain data was brush

~

l recorded and recorded on mag tape.

I

~E il
s Jg 4 .,

I I

W- * - -

8-

{ 87 t _I E.

I O [ imit' I l Motor .

Motor Limic I

~

vitch m Switch j 2< MI f --

G A& -

L 1 4h g,

[ 5 b/  :

\

s l- , r

~

J l3

,I

, V S " Direction Location 1 Top of Yoke horiz 90*

2 skew 45' 3

= vert. 0*

4 Bottom of Yoke vert. O' 5

  • skew 45' 6 horiz 90' next to yoke- vert 0*

7 actuator screw I FIGURE V.2.3.1 16" Valve Strain Gage Locations I- - .- .. . . _

_ ==re a____ - _ _ -- , _ - e,. m a - - *A <s -- . e, a m

, , 4 hwh-- - -* -* -"" ~^ " ~'

88 -.

'I g

, h -I ,

6 e -

O..

-}

l '

u . .

.. ~ c FIGURE V.2.3.2 Strain Gage Location on Top of Yoke _

t 3'

1

.t

5 I

I p--- - - - ww y vye-.-----

---c.ww-- --q-----m W -+-,7-, - - - - - - " - ' " - - ~ - - -

89 l l-

.i

yps-l
p. .. .

!I

t .
g. //D l <

i-t I,

bl- .

,1eURe v.2.3.3 p strain cage beatim m Botte d Yde 4

g - -

1 a.

I .

o I FIGURE V.2.3.4 Strain Gage at Yoke to Actuator Bolt l I-

l l

90

.; V.2.4 Pressure Monitoring ,j The valve was pressurized with water 150 psi . ,

i throughout all testing (See Figure IV.2.4.1).

._g-

. -i'

~,- .: - -

_ ...=  ;

i- .

, ._,.3.. 4. .

l 3.de . .L.. , .:

a s % .;r. _

- 8, t

e, t g,

.. .- . .
. .- - a .  ; _.- . .#

.i

- ' 7 . .. _. .

., _, .*-z- - ~. . . ; . , . y, ,

l  :- *-

. , , . . . ' .. **vm -

.-7.. . .

' . . - r . * ;*' ;i ; -

.g ', ~ , . : . ; . , l. - } .; y

. .. ..- , j

- ~. .-  ;.

~. . a,

. .,g.

~;;., .y.-]...,-

- , .  : s- .. . ,. .

,i.

f

..;.; j - v. g ,. ,

u 1 .. . . . ._

+

__ ;\.

. g;l '.. ' - ?.

t. }typ ** -

pp.; ', _, _ , . . . ,

. .. ; a

.g'.'z. g ; ;- . [ . ,4

~

ll ' ' ~

p '; f. y . .

i .' -

. '] Q ' N " ,.i':?Q-} $ G . . '{ .I ..

w.

. . .- ' w2 w

- +

?* - ' -

e -

1  :; .

i

. i. . & m :v:.m~. . . _ .

,. . r. . ..

2-

. .. i
v. k. .

-a.. .

- . y gy, .

.- +

l; fV_:

---~.--~w i

- .- .y . .;

- jfqqy._ 7.- ..

- - ; '. _' t.- +

w L =M J: .gl,

), $ .5

~

sg. g.,  :" .. -

% , jj k175 (,, .N.4 ,; +~ '.'  ?

I k.. . :.. <

. ..-i,. .  ; ,y  :;

P FIGURE V.2.4.1

  • Water Pressurization System

{

I P

)t t

-m.P--ep-wwemt..--u- -i- ---4-- ---------------------_m---_--w=_ ww---m

I 1 91 I

V.3 16" Valve Test Procedure I The test procedure for the 16" valve followed the outline presented in Section III with deviations and additional testing documented below:

1) The baseline and SRV Fatigue aging tests were performed on 11/4/81. After the SRV aging on 11/5/81, the valve actuator failed. The actuator was repaired at CG&E Zimmer.

The baseline and SRV Fatigue aging tests were repeated on 11/11/81 bercre continuing with the Seismic Qualification '

program.

2) Three fragility level tests were run after the emergency level test using the same input at higher levels. The ZPA's for the fragility tests exceeded the following values in all three axes.

1st Fragility: 2 g's I 2nd Fragility: 3.5 g's 3rd Fragility: 5.0 g's l

l

  • NOTE: For actual ZPA's see SDRC Test Log in attached appendix and the individual TRS plots.

I I

I i

I I

i I

-e- - -- -

._I 92 .]

I V.4 Full Level Qualification I The required response spectra provided by Sargent and Lundy  ;

are as follows:

TEST VALVE TABLE DESCRIPTION COORDINATES COORDINATES FIG NO.

.i SRV $

a-a X(N-S) V.4.1 SRV c-c Y (E-W) V.4.2 SRV b-b Z (Vertical) V.4.3 SRV+ CHUG a-a X (N-S) V.4.4 _.

SRV+ CHUG c-c Y (E-W) V.4.5 SRV+ CHUG b-b Z (Vertical) V.4.6 UPSET a-a,c-c X (N-S),Y (E-W) V.4.7 UPSET b-b Z (Vertical) V.4.8 EMERGENCY a-a.c-c X (N-S),Y (E-W) V.4.9 EMERGENCY b-b Z (Vertical) V.4.10 The test response spectra are included as follows:

DESCRIPTION PAGES SRV 1% 104-106 SRV+ CHUG 2% 107-109 .

UPSET 1% 110-115 EMERGENCY 2% 116-118 Fragility Test 1 2% 119-121 Fragility Test 2 2% 122-124 g'

Fragility Test 3 2% 125-127 ~m i

E I

93 )

I i The Test Response Spectra were calculated from 1 to 100 Hz at 1/6 octave intervals. The ZPA for each TRS was determined by the peak acceleration amplitude on the brush chart recorder.

The ZPA values are provided with each TRS.

I The first and second attempts at the upset level test did not envelope the RRS. The *,est was run successfully on the next 5 tests. The TRS supplied in this section are for the first successful upset test.

I I

I~

l ll 1

1 I .

I

\$

1,

'I l,

I l- ..

i 94 _j SSE LJ PERCENT DIRECTION d- 4 '

stac No.

1/2SSE DAMPING HORIZONTAL N-S 2 own. sv. hea)

DBE  ! .

HORIZONTAL E-W cm. av : j OBE R 1 VERTICAL C oars.

~

20.

, l

m. .

.... .. ..... . . . . . .... ....r. .. .

  • b i

' ' ~

7.C , , , , l  ;

, . . . . . .i . i i i i

5.0 . _.

!-r , ~

4 .0

";l Q

l 0 3.0 .-- 1 Z  !  !' i O 2.0  : ':

~-  ; -

t- ,

4 ".

C' l l' , . ,, .".' 1 uJ , . . i . . .. . n. i J . . . . . . . . . . . n .. .n .

gj 1.0 .

Q .

' L; O *y e , . , , .

< l l .

l [s_ _' Y _ j _ _ .i _"

. l l

.5 _.

5 .~s-

  • _- .

I .a -  :

{ - -

y -

.3 ,

t.s - -

=

'z -

_?

~:

- - =

L.

i

.i - '. - -

i 6 li  ; >

, i

m' i  ;

i .

r i . . i I t t i j t f* I I g

s i 3

1.0 2.0 3.0 5.0 10. Co. 30. 40. 60. 80.

FREQUENCY CHz) i FIGURE V.4.1

. Horizontal a a SRV RRS

~

ZPA = .812 SDRC

!  :. a. Oy ames :esea :- S :: 2:.ca -

.:.- :ssraa 0 se -

TF004-E -

95 I SSE L_J PERCENT DIRECTION DAMPING C-C suc so.

1/2SSEC HORIZONTAL N-S C owa.sv 4Th>

DBE HORIZONTAL E-W2 cax. sv :

OBER I ~%

VERTICAL om.

I -

i '.. ".. , . .

I, ,.

. i,.

. .a

.i 3

n. ..

6 , .

I 1o 1 7 i . , > > -

,1. , , . . i i i

_s i y 's_'

i

i '

.s ._

l -

I i - -

m *a .-.  : -

." h' ,

o.3 _

3 5 E w 1..

I Z l  : i O

.2 - -_- f .

H l

~

I aC >

tr  ;'  ; / . .;

..i w .

.. . . f.

i. ... . >
J m .

f O '

.: - w

!E O ,or *1 1

-- f__

.e s _. - ,

. 4 E .e4 5 4,

.os ,1 -

- -:=

t .4_ .

I" 3 r -

i

} .  : ,

g t- # 1 1

.o1 l 1.0 2.0 3.0 5.0 10. 20. 30. 40. 6 0, s o.

l l

FREQUENCY (Hz) i I FIGURE V.4.2 1

1 , Horizontal c-c SRV RRS i I ZPA = .265 g's I

!> SDAC

!I.,

5 .. - -a.

. ;: nsra-0 se y a,es =ese :- :: ::tno-i l

TF004-E

. . .B 96 .J SSE C PERCENT DIRECTION h-b srRC NO.

1/2SSE DAMP!NG HORIZONTAL N-S own. sv: G 89 DBEL.J l .

HORIZONTAL E-WC cm.sv:

OBE R VERTICAL r. M om-

\ "o

. . .,, . +

. ., . .. , .. . , . ,,. ....,. 4 i .

. . . . . , . . . . ,. . .... ... . . . . , r.. ... .. .

s . . . a 6 . M ".

[  ![ l i.  ! \;!!l i

hO -

g.-

Z j O . .

>== '

l (2-  :; , , .'l l W , . .e. .e.

J , i , . . . r. . e W '

O

,/

O

< .47 O, i

,A ; [

l iu i

l i .i i

~

.g. ._

! , , w 1 e

l 1 l l -

_- -q ,

r.4 _

Y -
f. .

l . 1 ,

I; ..i/:i -

i i . .

. l

i .

.0L '

1.0 2.0 3.0 S.0 10. 20. 30, 40. 60. 80.

. 1

~

l l FREQUENCY (Hz) il 3

FIGURE V.4.3

)

Vertical b-b SRV RRS

-I SDRC i .::. a. y :-ics :esea -- :.: :: 2:.oa

.:;; Ear- a-: se l

TF004-E

97 I SSE PERCENT DIRECTION 4-Q srRC NO.

1/2SSE DAMPING HORIZONTAL N-S @ own.sy 4 70)

I DBEl I HORIZONTAL E-WC cm.sv:

OBE R VERTICAL C om-

[%,

t%

t I 1 ,_

a

'M-J ".

I a ,

I i i  ! i 1l 4 i

  • I ;l 'i l l ; !
.  ; , . ." l l
3  !

5 j I

1 1 1 1 J > i O 8 I I E DJ I

W 2. ."I .-

Z  ! 5 O2 I i 'dk M C -'

, f J . .

W  ; , g. L. g, e.

. . i

..s.

J . ., y . k iia .

m.' .

j 0 ' -

I O< .or i

c , . .

i

.o s i~  !

I .e s

~ l
~
,' 1

.es  ; __-L I.

s 2 -. . ^= -

a -

l 5 1

.02 { }

l g~ l f:

E  ;

. . E

,I 1 . '

l "

l .o s l 1.0 2.0 3.0 5.0 10. 20. 30. 40. 60. 80.

FREQUENCY (Hz)

I. FIGURE V.4.4 f

IF Horizontal a-a SRV+ Chug RRS ZPA = .564 I

g- SORC E .- . a. y imes : eses? 0;"::f 3Lc'

. C Ess-aa se TF004-E

l

.j f 98 SSE PERCENT DIRECTION C-C stac so.

1/2SSE DAMP!NG HORIZONTAL N-S own.sv ATAl DBE .

HORIZONTAL E-W3 cm.av: ~l OBER VERTICAL 1,79 % C our-

'. ~

2  :

',  ; .1 E - E t ., .g,. y ,

.... ., ... . ,,. ......, s .,-, .

>. . .. .s..., . .,.

1 - . s.

' ' ~

i['

.7 "u.,['u3 .n'

'I "a ,1 i.

3 i_ s_.

. .i .' .

~f 1 'i '.

E = '_

.5 ._ 5 ' 5 5 m4 '."'~

[ .

,te h 1 1

1

-n__-

,7 w , _

~

Z l  !

O.2 MI M

>= , ." : ,

g i -

W ,". . 6 .. .

J e , .

W *' .

O Q *  : .

Y

< #7 -

l l ,

. . . l ll .;  ;  ;

'~ -

05

.e4 [ "

03 ,_, f

- - - - - - -a in~.  :

6 - _

,gg I  :

. , i. l .
i. , . . i _.

, e g ,- i e i e 1.0 2.0 3.0 5.0 10. 20. 30. 40, 60. 80. ,

FREQUENCYCH4 FIGURE V.4.5 1 1

Horizontal c-c SRV+ Chug RRS

-E  ;

1 ZPA = .519 i

-I SEi D A C

! .::. a. :yn ,cs :esen -: ::-r oa ~

. .::ss:-a-:

. .. . . : a -

se 1

TF004-E

I- *

  • 99 I SSE PERCENT DIRECTION h-b stac no.

1/2SSE DAMPING HORIZONTAL N-S owa. sv A TM I

DBE HORIZONTAL E-W cut. sv :

OBE R VERTICAL 3 om-I ,

.=.

1 . .

I l .

......g i

1 .,.

r

'^

'I 2

, ,  ! . l.ll .f _

l l l l

.5 --

I L_ _=. i n .'  : - :;

."a.3 ..

?,il

-=

w ' 2 -

5 Z  !  !- E  !

2 O.t.

7 :.  ;

e r I'

4' -

C .; , .. -

l w , . .J . . ...e

,j s g .

e w .'  :

I o

  • I_f l l U

< .c 7 -

1 1 .

i 1

Ss. -.

A" g .

5" l
-t- w .

~

=O 3 ,

-" -&-  :=

t . a __. - -

~ ~

h 5 m:3 I l1 - "

i

./

l

. i , ,

MI 1

I 1.0 2.0 3.0 5.0 10. 20. 30. 40. 60. 80.

FREQUENCY CHz)

FIGURE V.4.6

. Vertical b-b SRV+ Chug RRS

, ZPA = .534 l.

S D E:l c 3 . . . .. :, . , ,o =., , ,, : . .--. r .,

.U: Easma- 0 se l

~

TF004-E

-__100- -__.-

.)

SSE C PERCENT DIRECTION stac so.

I j DAMPING 1/2SSE HORIZONTAL N-S 2 own. sv 6,89 DBE{_j l HORIZONTAL E-WM csx. sv :

OBE @ l VERTICAL one:

20.

l

.i '

l 7.0

' g l ,

, , , , , , , ,; ,  ;  ! ,  ; , , y' a

5.0 . _ .

, 4.0 w

O 3.0 w

_- -1_

z  !

=-

g 2.0 _- . f i y  : x  :'

. CT.

,' . T W f . .q..

. E, m a .0 m 1 .

O o 7 '

< l

, , l . , , , . -

.5 __

4

.3 . - - - - - - -,--

t-4 .

l ,

A l . . i i  ! i l t 1 6 1 , , i I 6 1 --== z_ s 1.0 2.0 3.0 5.0 10. 20. 30. 40. 60. 80.

FREQUENCY (Hz) ,

FIGURE V.4.7 Horizontals a-a and c-c Upset RRS '

.g ZPA = 1.0 SDAC I i .r. a. :y imes sma .-:::rs oa -

! .x; En - ar : se i

TF004-E l

101 I ! SSEI I PERCENT DIRECTION stac so.

l <

1/2SSE DBE DAMPING HORIZONTAL N-S HORIZONTAL E-W owa. ev GB P cwx. sv :

OBE @ VERTICAL E om-

, 20. -

I I

F

l:

i . .l .l t . ... ... ... ....

3,,

t I 7.0

,,1, , ,. , ,

,,1

,i s_

i

, i ,,,

M. '. .

5.0 . - . 3 -

E' L f -

{

?O 3.o l[ .:

i _- -

Z  !

9 20 / t. 3 Q

j _

e , ,

W .. , . .

a .0

. . .. ii. . .r. .i y 1 g . .+

I o *,'

1 .

< , ll , , . , , , l l l

.5, __ _

5 I .3

.2 L

.s-.

1

~

1 17 1

, i l 1 , l - i j 1 i e i t t e i 1

  • f I i 1.0 2.0 3.0 5.0 to. 2o. 3c. 4c. eo. eo.

. REQUENCY (Hz)

FIGURE V.4.8 f ,

Vertical b-b Upset RRS

\ u l

ZPA = 1.5 I.

SDAC I .: . a. Oy imes :esea--- 0,: ::: r o*

. . Easraa 0 se

.._ -. :n a-TF004-E

102 l

[ SSE 2 PERCENT DIRECTION scac so. J 1/2SSE DAMPING

, HORIZONTAL N-S @ owa. sv .689 ~

DBE HORIZONTAL E-W2 cm.sv:

OBER VERTICAL R one:

20. E
  • L' .

... i , ,

7.0 , , , , i

, .i ,

,, . , , , , i 6 ,

i 5.0

, 4.0 O 3.0 w _4 _

~

Z 3

[ '

I Q 2.0 ,

w  : v  : .

t < _

~'

/

i .

l C" :l 1 l l W , . . . .,. .i i i

J , . . .. . .t m 1.0 i

0 .

U *7

' 1

< , l . . , , , , , , , 2 l, "

.5 __ _

~

4

.3 ,

_i__ - _ _ .

_4___.

., Y- --

I i

i .

i

. E iI

i , e . 4 l 1.0 2.0 3.0 5.0 10. 20, 30, 40. 60. 80

_3 FREQUENCY CHz)

JE FIGURE V.4.9

. Horizontals a-a and c-c Emergency RRS ZPA = 1.0 1

I S D I:l C i .r. a. y s 'es :etesi- 2.::: 2 ca

.:;;:2sraa ! e 1

TF004-E --

103 I SSE@ PERCENT DIRECTION srRC NO.

1/2SSE p DAMPING HORIZONTAL N-S I DBE L.J HORIZONTAL E-WR cm.sv-own. sv GB9 OBEl l VERTICAL Y om: ._

i 20.

!' l , l .

....i

~

e .. .

i , .

1

,'i l's i I-

,  ;' l i , i , l ," l i

. >>l . .

2  :

5.0 I

t  : -

4.0 L' .

O 3.0 . -, _-

I Z O 2.0 I

l

< 1 . ,'

'N E. C W

l k'

5

.g..

J s s . . . . .+. *

  • g 1.0 -

O '

I O -

,  ; , , l ll

,  ; l . . . .

^

.5 - _.

4

.3 l

-~:

r 2 1

, , i

. 3 -

i I i e I 1.0 2.0 3.0 5.0 10, 20. 30. 40. 60. 80.

FREQUENCY (Hz) ll FIGURE V.4.10 Vertical b-b Emergency RRS ZPA = 1.5 g

SDAC E .::. z. :y i es :nn :-:: .: no-

.x:En - -: se

....s.-

I TF004-E

104 .J I

J

-h l

CHANNEL -AA

, 10.00 -

J z..

~

I i Ai i /'\f: \ i j l  ! .v/ \i A l i

i /  !

\i l l ll },\l,-

j Wuv l

g

/

7

/ ,  :

/ r 0.100 ~'

1.000 LOG 10'FREQ 100.0 SHOCK RESPONSE 1.0 % DAMP ABS ACC -E 12-0EC-81 15: 42:50 SRU RETEST 161N SET THREE 1/6 OCTAVE MAXI-MAX m

g Free Aapi Free Aeol Free Amol 1.00 0.11 5.01 1.83 25.12 3.87 1.12 0.12 5.62 2.49 28.10 2.92 1.26 0.14 6.31 1.22 31.62 6.51 1.41 0.16 7.08 1.74 35.48 9.16

, 1.58 0.19 7.94 0.89 39.81 3.55 .-

1.78 0.23 8.91 1.05 44.67 2.88 2 00 0.27 10.00 0.82 50.12 1.68 2.24 0.31 11.22 0.74 56.23 1.77 E 2.51 2.82 0.64 1.06 12.59 14.13 0.84 0.83 63.10 70.79 2.00 1.77 '5 3.16 1.07 15.85 0.77 79.43 1.43 3.55 2.11 17.78 2.11 89.13 1.40 3.98 1.58 19.95 2.67 100.00 1.90 4 47 3.82 22.39 3.22 -

ACCELEROMET R NO._ __ DAMPING.._ g DIRECTION _k _ _ LOCATION ____ _g T ESTN BIAX____ O . 5 E-W___

N-f____ AF_ _ TRIAX__ O s E _ _ _ _ _ _ s s E _ _ _d_ _

CONTROL __V_ SURVEY ____ ..

o.

., g

I-i.

105 I t I

I '

CHAtitlEL -8A 5.000

. A i xi i .

i i i i  ![ ]/ \!  ! i I i l

l l h.

(i

~

jv%  ; v-

~ -' p__._

l1

! m i/\fjC

' h Y I l / _ ._

5.000 iiiii I E-02 iiiii 1.000 LOG 10 FREQ 1.0 % DANP A9S ACC 100.0 12-DEC-81 SHOCKRgFONe{HSETTHREE SRU RET T1 1/6 OCTAVE MAXI-MAX 15:44: 10 Free Anol Free Aeol I

Free Aeol 1.00 0.08 5.01 0.17 25.12 2.64 1.12 0.08 5.62 0.25 28.18 3.04 T 1.26 0.08 6.31 0.23 31.62 1.77 1.41 0.08 7.08 0.78 35.48 3.86 I 1.58 1.78 2.00 2.24 0.08 0.08 0.08 0.09 7.94 8.91 10.00 11.22 0.47 0.45 0.57 0.52 39.81 44.67 50.12 56.23 2.44 1.35 0.77 0.69 2.51 0.10 12.59 0.30 63.10 0.65 2.82 0.12 14.13 0.38 70.79 0.62 1 3.16-3.55 0.15 0.22 15.85 17.78 0.47 1.11 79.43 89.13 0.56 0.61 3.98 0.17 19.95 1.76 100.00 0.60 4.47 0.30 22.39 3.99 ACCELEROME R NO._ ___ DAMPING _b l DIRECTION __ LOCATION ____

l TEST NO. __ OBE______

sIAx____ N-}____ E-W___ TRIAX_ SSE__d_ __

CONTROL __Y_ SURVEY ____

l l

l t

f ZPA (g's) ,3 Y I

g l

i 1

106 I

.J

-l ,

j

.)

CHANNEL -CA 10.00 '

7 i/\

! i / \

!  ! ! i i f i.I i i

!  !  !!!  !!! / I N !!/

r l ._ OL

}\

! !/

st i

0.100 1.000 LOG 10 FREQ 100.0 12-0EC-81 PONSE 1.0 % DAMP ABS ACC ~E 15:45220 SHOCKRg*$T161NSETTHREE SRU RETE 1/6 0CTAVE MAXI-MAX g

Free Aeol Free Aeol Free Amol 1.00 0.09 5.01 0.16 25.12 4.02 -

1.12 0.09 5.62 0.14 28.18 2.72

? 1.26 0.09 6.31 0.17 31.62 1.81 1.41 0.09 7.08 0.15 35.48 2.05 1.58 0.09 7.94 0.27 39.81 1.44 .

1.78 0.09 8.91 0.36 44.67 1.20 2.00 0.09 10.00 0.30 50.12 0.80 2.24 0.09 11.22 0.28 56.23 0.80 2.51 0.10 12.59 0.49 63.10 0.69 2.32 0.10 14.13 0.98 70.79 0.81 3.16 0.09 15.85 0.95 79.43 0.66 3.55 0.08 17.78 2.31 89.13 1.44 3.98 0.10 19.95 2.56 100.00 1.96 4.47 0.12 22.39 6.04 -

ACCELEROMETERNO._k__ DAMPING _f_

DIRECTION E _I_ LOCATION ____ .

TEST NO._(8 __ OBE______ SSE______

BIAx____ N ____ E-W___ TRIAX_/_ f CONTROL ____ SURVEY ____

-l ZPA (g's) ,38

..h

-I

I- '

107 I-CHANNEL -AA t 10.00

7. % -.__. - _ .

[ [ '"y

'~

r

  • 5

\

l

.  ! - l -lI, i i

. i .

/ YN i .sel : .;

,3 [ I_.__ e +C1

' \v- .m m - ,

~

l \i V_ / ,___

i)'

7 0.100 LM 1.000 i i LOC 10 FREQ i

100.0 12-DEC-81 lHOCKRgsgEND DATA SET 2.0 7. DAMP A8S ACC 15 24 20 RU+CHU 1/6 0CTAVE MAXI-MAX I Free 1.00 1.12 1.26 Aeol 0.08 0.09 0.09 Free 5.01 5.62 6.31 Amol 0.59 0.52 0.51 25.12 28.18 31.62 Frea 4.89 4.87 2.97 Aeol 1.41 0.10 7.08 0.53 35.48 3.88 I, ,

1.58 1.78 0.12 0.14 7.94 8.91 0.40 0.55 33.81 44.67 2.50 1.97 2.00 0.16 10.00 0.38 50.12 1.30 2.24 0.24 11.22 0.39 56.23 1.16 2.51 0.30 12.59 0.47 63.10 0.99 I' 2.82 3.16 0.55 0.65 14.13 15.85 0.59 0.78 70.79 79.43 0.88 0.96 3.55 0.84 17.78 1.19 89.13 1.02 0.49 2.23 I 3.98 4.47 0.56 19.95 22 39 6.00 100.00 1.26 l

ACCELEROMETERNO._[___ DAMPING _b

,=f DIRECTION M_*.S _ _ LOCATION ____

T E S T N C .S.8_V_tf.8'ag D B E _ _ _ _ _ _ S S E _ _ _ _ _ _

l l j B I A X _ _ _ _ N ,S _ _ _ _ E - W _ _ _ T R I A X _ /_

l CONTROL _Y__ SURVEY ____

~

d ZPA (g's) . 75~ ,

l l

108 _

.J

.j CHANNEL -BA a

, 10.00 J 3: j y y

!  !  ! / deg i i  : T

i  !! .g .

I N#-

A fi i 1

c__

tr r r(_.

y a .

~

/ '

! e i

' i i

0.100 1.000 LOC 10 FREQ 100.0 _

12-DEC-81 "HCCK RESPONSE 2.0 % DAMP ABS ACC 15:25 30 RU+ CHUG SECOND DATA SET 1/6 0CTAVE MAXI-HAX Free Aeol Free Aeol Free Amol

' 1.00 0.13 5.01 1.04 25.12 4.86 1.12 0.14 5.62 0.66 28.18 4.12 1.26 0.14 6.31 0.74 31.62 2.45

? 1.41 0.14 7.08 1.18 35.48 2.37 1.58 0.17 7.94 1.08 39.81 2.55 .

1.78 0.21 8.91 0.76 44.67 2.75 2.00 0.26 10.00 0.68 50.12 2.77 2.24 0.31 11.22 0.70 56.23 1.68 2.51 0.37 12.59 0.67 63.10 1.35 "

2.82 0.63 14.13 0.70 70.79 1.16 3.16 0.77 15.85 0.73 79.43 1.18 3.55 1.27 17.78 1.07 89.13 1.15 3.98 0.96 19.95 2.33 100.00 0.93 -

4.47 1.77 22 39 6.20 i ACCELEROMETERNO._[____ DAMPING _b "

DIRECTION E_.W__ LOCATION ____

T E S T N O .S.Aff _4*J O B E _ _ _ _ _ _ S S E _ _ _ _ _ _

B I A X _ _ _ _ N - S _ _ _ _ E- W _ _ _ T R I AX J/_

CONTROL d__ SURVEY ____

ZPA (g's) .7$ .

I

109 I

\

CHArir4EL -CA

, 10.00 ijf ii / \.

i i ii / 'q  ! i ii f f !l! l

/

(f

_ . f . _::::

7 x_/

~-~

./ i i I 0.100 1.000 LOG 10'FREQ 100.0 I 12-DEC-81 15:27:20 SHOCK RESPQ"SE SRV+ CHUG Set 'O DATA SET 2.0 % DAMP ASS ACC 1/6 0CTAVE MAXI-MAX Free Aeol Free Aeol Free Aeol 1.00 0.10 5.01 0.88 25.12 4.92 1.12 0.10 5.62 0.55 28.18 2.69 31.62 I 1.26 0.10 6.31 0.55 1.55

?

1.41 0.09 7.08 0.48 35.48 1.42 1.58 0.11 7.94 0.49 39.81 1.54 1.78 0.15 8.91 0.50 44.67 1.36 2.00 0.16 10.00 0.41 50.12 1.15 I 2.24 2.51 2.82 3.16 0.23 0.33 0.34 0.73 11.22 12.59 14.13 15.85 0.41 0.63 0.97 1.26 56.23 63.10 70.79 79.43 0.96 0.89 0.89 1.27 l 3.55 0.59 17.78 2.96 89.13 1.86 l 3.98 0.60 19.95 3.60 100.00 1.72 4.47 0.64 22.39 5.98 I ACCELEROMETER NO.__N___ DAMPING _b DIRECTION _Vf6f_ LOCATION ____

TEST N O . {4.EtC_4.se 0 B E _ _ _ _ _ _ S S E _ _ _ _ _ _

BIAx____ N-S____ E-W___ TRIAX_d CONTROL _/_ SURVEY

. l.

ll -

ZPA (g's) .

I lg- .

110 J

~

J g

CHANNEL -AA 7 10.00 J u s .

. rG t c' A,;/ ..'t i i i/Uf

\ i ';

j-  % ,.7U V

(!  ! /W !/

'I 7 l pv

+ )

~'

! j  ! i 0.100 i I ~l 5 1.000 LOG 10 FREQ 100 0 E 1.0 % DAMP ABS ACC 12.DEC-81 g5 48:20 SHOCKRESPON"fEST16IN.

THIRD UPSET 1/6 0CTAVE MAXI-MAX Free Aspl Free Aaol Free Ampi ~

1 00 1.49 5.01 2.49 25.12 2.39 1.12 2.60 5.62 2.22 28.18 2.26 -

1.26 1.67 6.31 2.51 31.62 1.47

? 1.41 2.63 7.08 2.82 35.48 1.75 1.58 2.78 7.94 2.32 39.81 1.71 1.78 3.72 8.91 4.12 44.67 1.59 .

2.00 3.49 10.00 2.48 50.12 1.72 2.24 5.17 11.22 3.81 56.23 3.08 2.51 2.82 3.24 2.86 12.59 14.13 4.32 4.87 63.10 70.79 2.32 E 3.16 3.24 15.85 4.80 79.43 2.65 2.45 5 3.55 4.19 17.78 4.20 89.13 1.89 3.98 3.65 19.95 3.70 100.00 3.14 4.47 2.38 22.39 5.06 ACCELEROMET,5R,NO._d___ DAMPING _[_

DIRECTION F_'_t _ _

T E S T N O . _3_ _ _ _ O_ SSE___

LOCAT ____

B E _ _2_I O N h

5 BIAX____ N-S____ E-W___ TRIAX__[ _

CONTROL _V__ SURVEY ____ '

4 1 ZPA (g's)  !, f 1

I-i Ill I

1 CHANNEL -BA 7 10.00 I, ~

." /t ' .

A _</x __ t .is-' t i . .i

- N)- }&  !

+-,___

4 _.___

I~

0.100

. 1.000 LOG 10 FREQ 100.0 DEC-81 K RE" 1.0 % DAMP ABS ACC 12.50:40 g5 H hD UPh N EEST 16 IN. 1/6 OCTAVE M XI-MAX I Free 1.00 Aeol 1.58 Free 5.01 Aapi 2.11 Free 25.12 Anni 2.01 1.12 1.57 5.62 2.71 28.18 1.78 I  ?

1.26 1.41 1.58 2.45 3.82 2.28 6.31 7.08 7.94 2.33 1.82 2.24 31.62 35.48 39.81 1.53 2.39 1.99 1.78 2.53 8.91 2.33 44.67 2.18 I 2.00 2.24 2.51 2.82 3.15 3.31 2.52 3.62 10.00 11.22 12.59 14.13 3.48 3.54 3.45 4.20 50.12 56.23 63.10 70.79 1.74 1.54 2 23 3.34 Il l

5 3.16 3.55 3.98 3.33 2.24 2.38 15.85 17.78 19.95 3.54 4.89 4.05 79.43 89.13 100.00 1.82 1.28 1.14 4.47 2.07 22.39 3.76 ACCELEROMETp"RNO._E___

W_

DAMPING _b_

DIRECTION lop TION ____

T E S T N O . _ E_______ _O B E _ X. _ _ _ S S E _ _ _ _ _ _

l BIAX____ N-S____ E-W___ TRIAX_1d CONTROL _ M_ SURVEY ____

ZPA (g's) eY lY l

l

112 ,j

.l 1

CHANNEL -CA 20 00 3

?

ll i

i 1 x! t2 e i

i' 3. ;,tj

! i

! !9< p. ,

J m/ N 3 m /T \ J

/

i v %s._s--./ v j

x_. '#

h ._',/

.is

/ 3

/ i

.. ._._ _ =

+_

i -

l ' I i 0.200 1.000 LOG 10'FREQ 100.0 12-DEC-81 SHOCK RESPONSE 1.0 % DAFP ABS ACC -

15 52r50 THIRD UPSET TEST 16 IN. 1/6 0CTAVE MAXI-MAX Free Amol Free Ampi Free Amol 1.00 1.42 5.01 4.66 25.12 7.22 1.12 2.06 5.62 3.27 28.18 4.70

? 1.26 2.36 6.31 4.12 31.62 3.50 1.41 2.81 7.08 8.02 35.48 4.23 1.58 5.10 7.94 6.63 39.81 3.26 1.78 5.47 8.91 10.73 44.67 2.88 2.00 4.15 10.00 11.67 50.12 2.97 2.24 7.08 11.22 8.04 56.23 2.93 2.51 4.04 12.59 11.99 63.10 3.01 2.82 4.32 14.13 10.05 78.79 3.15 -

3.16 4.05 15.85 8.95 79.43 3.29 3.55 4.26 17.78 10.31 80.13 4.96 3.98 4.08 19.95 9.27 100.00 4.20 4.47 5.87 22.39 8.56 DAMPING _f_

DIRECTION _p{$7__ACCELEROMET LOCAT R JN ._h___

, TEST NO._3______ OBE___/___ ION ____

SSE__

i BIAX____ N- E-W-__ TRIAX_d_ __ -

CONTROL _/_S____ _ SURVEY ____ _

  • =

ZPA (g's) k, _

l 113 t

I-CHANNEL -AA It

^

5.000

,/

/ X,

'sg f / (if

/~sqA ,

\ :j"g-- i,

_. _ _ r _yy I

i i i i i._. _

E-02 1.000 LOG 10 FREQ 100.0 2.I] % DAMP ABS ACC hh2. "H"CKRESPON"ihST16IN.

H RD UPSET 1/o OCTAVE MAXI-MAX I Free 1.00 1.12 Asol 1 19 2.09 Free 5.01 5.62 Aeol 1.86 1.89 25.12 28.18 Free 1.98 1.73 Aeol 1.26 1.39 6.31 2.06 31.62 1.44 I 7 1.41 1.58 1.78 2.00 2.01 2.17 3.03 3.46 7.08 7.94 8.91 10.00 2.55 2.15 2.90 1.84 35.48 39.81 44.67 50.12 1.57 1.49 1.49 1.52 I 2.24 2.51 2.82 3.16 4.94 3.04 2.51 2.52 11.22 12.59 14.13 15.85 3.09 3.09 3.75 3.75 56.23 63.10 70.79 79.43 2.64 1.89 2.07 1.88 3.55 3.47 17.78 3.25 89.13 1.47 3.98 2.58 19.95 2.75 100.00 2.30 4.47 2.22 22.39 3.84 ACCELEROMETER NO.__N____ DAMPING _k

l. orRECT10N p_d _ _ t0C TEST NO._3____ OBE___pT10N ___ SSE___

__ E-W __ TRIAX.2__

stAx____

CONTROL _I__ N-J__ SURVEY ZPA (g's) f, f

.-- . . . _ - . . _ ~ - --.. .

114 _]

~!

J

-I .. )

CHANNEL -8A

-I J

5.000 .

./N i

/.k[N!bf[k

! I

\ I  ! #

-)

v

-/ . si.f _Nj y ,,

.----.. -.-== -~

.h I  !  ! I ..,

i 5.000 -

E-02 >

~

1.000 LOG 10 FREQ 100.0 -

2.0 % DAMP ABS ACC h,0hC-81 5:40 $ HOC.K RE*PONSETHIRDUP$ETTEST16IN. 1/6 0CTAVE MAXI-MAX Free Anol Free Aeol Free Aeol 1.00 1.22 5.01 1.77 25.12 1.84 1.12 1.27 5.62 2.16 28.18 1.43

? 1.26 1.94 6.31 2.00 31.62 1.33 1.41 3.00 7.08 1.49 35.48 1.97 -

1.58 1.97 7.94 1.89 39.81 1.79 1.78 2.07 8.91 1.89 44.67 1.95 2.00 2.81 10.00 2.63 50.12 1.53 2.24 2.44 11.22 2.65 56.23 1.25 ..

2.51 2.20 12.59 2.47 63.10 2.07 2.82 2.98 14.13 2.97 70.79 2.96 3.16 2.70 15.85 3.08 79.43 1.63 3.55 1.97 17.78 4.00 89.13 1.20 3.98 1.81 19.95 3.44 100.00 1.07 4.47 1.75 22.39 2.97 ACCELEROMETERNO._____ DAMPING __b DIRECTION LO ATION ____

TEST NO._h__E_ ___ OBE_W__ ____ SSE______

sIAx____ N,-S____ E_u___ TRIAx.v_

CONTROL _E__ SURVEY ____ _l .

l I

e 1

ZPA (g's) ,9 i

I-115 I

I I I '

CHANNEL -CA 7 10.00 , ,

~

i

s _ _: '

~& w '

f_(_ _

_ ., k I. ~ -,. d 7

> L 4-. _ -

l

+

-}__.._

I .

~

O.100 -

1.000 LOG 10 FREQ 100.0 12-0EC-81 K RE N 2.0 % DANP ABS ACC 15.59:40 D UP ST 16 IN. 1/6 0CTAVE MAXI-MAX Free Aeol Free Ampi Free Aspi 1.00 1.23 5.01 3.80 25.12 6.23 I  ?

1.12 1.26 1.41 1.58 1.73 2.03 2.36 3.84 5.62 6.31 7.08 7.94 4.45 3.85 5.53 5.04 28.18 31.62 35.48 39.81 4.58 3.56 3.71 3.20 I, 1.78 2.00 2.24 3.94 3.34 5.30 8.91 10 00 11.22 7.44 8.35 7.26 44.67 50.12 56.23 3.82-3.08 3.01 2.51 3.74 12.59 8.96 63.10 2.96

' 82. 3.96 14.13 7.90 70.79 2.86

, 3.16 3.63 15.85 7.70 79.43 3.13 i

3.55 3.24 17.78 7.65 89.13 4.15 3.98 3.45 19.95 7.77 100.00 3.54

. 4.47 4.46 22.39 6.64 i ACCELEROMET RNO._[___ DAMPING _b DIRECTION _ fS11 LOC ION ____

TEST NO. 3____ OBE _ __ SSE__

E_w___ TRInx d_ __

sInx__._Nj-CONTROL ____ SURVEY ____

\ .

( ZPA (g's) 1. [

l

(

I-l .. -._

116 .J 1

I I:

CHANNEL -AA

__J 7

10.00 -

  • j L [s g'

i --

\/N.' 'I

./ \:

b i

,i r i/

\!/\l N4. . ![

+ ._,___

i  !

I 0.100 1.000 LOG 10'FREQ 100.0 '

SHOCK RESPONSE 2.0 7. CAMP A8S ACC 12-DEC-81 FIRST EMERCtNCY TEST 16 IN. 1/6 0CTAVE MAXI-MAX 15:29:50 ,

~

Free Aept Freo Ampi Freo Ampi 1.00 1.56 5.01 2.43 25.12 2 72 1.12 3.30 5.62 2.26 28.18 2.44 1.26 2 32 6.31 2.31 31.62 2.26

? 1.41 2.93 7.08 2.64 35.48 2.09 1.58 2.58 7.94 2.14 39.81 1.82 E 1.78 3.47 8.91 2.89 44.67 1.74 -3 2.00 3.79 10.00 2.12 50.12 1.90 2 24 4.46 11.22 4.23 56.23 3.25 2.51 3.15 12.59 4.70 63.10 2.93 2.82 2.69 14.13 5.24 70.79 3.19 .

3.16 2.82 15.85 4.23 79.43 3.19 3.55 3.74 17.78 4.38 89.13 2.61 3.98 2.85 19.95 4.61 100.00 4.22 L 4.47 2.52 22.39 4.45 7

ACCELEROMETERNO._N___ DAMPING _b DIRECTION E_S___ LOCATION ___ "l TEST NO.l_____ OBE______ SSE__7 __ E BIAX____ N-S____ E-W___ TRIAX.2 '

CONTROL _/__ SURVEY ____

]

g ZPA (g's)  !.Y 1

I

1 i . . . . _ . _ _ - . _ _ . . _ _ _ .._ _ . .

l. 117 I

I(

i CHANNEL -8A It 7 5.000 4J' y >% iV

"_ U_ i H,,,.i/

, ~ .8 I

_~~

L h.s$gy ! /

/ -

l I .-

f I 5.000 E-02 1.000 LOC 10 FREQ 100.0 I- 12-DEC-81 15:32,00 SHOCK RESPONSE FIRST EMERt,ENCY TEST 16 IN.

2.0 :: DAME" 48S ACC 1/6 0CTAVE MAXI-M*'<

I Free 1.00 Aeol 1.35 Free 5.01 Aeol 2.23 Free

-25.12 Aeol 2.01 I  ?

1.12 1.26 1.41 1.58 2.25 2.79 3.58 2.35 5.62 6.31 7.08 7.94 2.21 2.38 2.15 2.09 28.18 31.62 35.48 39.81 2.59 1.98 2.53 2.28 1.78 2.48 8.91 2.42 44.67 2.27 2.00 3.43 10.00 2.68 50.12 1.84 2.24 2.99 11.22 2.66 56.23 1.85 2.51 2.62 12.59 3.26 63.10 1.87 2 82 3.54 14.13 3.02 70.79 2.47 I 3.16 3.55 3.98 4.47 3.28 2.27 2.19 2.17 15.85 17.78 19.95 22.39 3.71 4.46 3.87 3.76 79.43 89.13 100.00 2.00 1.54 1.61 ACCELEROMET R NO.__ __ DAMPING _k DIRECTION W_ _ LOCATION ___

TEST NO.__}___ OBE______

I' BIAX____ N-S____ E-W___ TRIAX_ SSE__ /_[ _

CONTROL Y__ SURVEY ____

I i

~

ZPA (g's) f. f

118 _}

i

_l' ] l

-l '

CHANNEL -CA =

7 20.00 .

i  ! ! ! ! i j ;y s- ,

t- . ;

~'

s.,

j~  ! t

/  ; 3 g

U::..

4 I

0.200 ~

1.000 LOG 10 FREQ 100.0 12-0EC-81 SHOCX RESPONSE 2.0 *: DAMP ABS ACC 15:34'10 FIRST EMERGENCY TEST 16 IN. 1/6 0CTAVE MAXI-MAX ..Ju Free Aeol Free Aeol Free Aeol _.

1.00 1.19 5.01 4.17 25.12 7.71 1.12 1.77 5.62 4.31 28.18 5.27 1.26 2.60 6.31 4.60 31 62 4.86 ..E

? 1.41 2.66 7.08 5.92 35.48 4.81 "g 1.58 4.01 7.94 6.54 39.81 4.28 1.78 4.09 8.91 9.53 44.67 4.03 2.00 3.58 10.00 11.41 50.12 4.09 -

2.24 5.46 56.23 4.13 11.22 10.48 2.51 3.91 12.59 13.01 63.10 4.12 -

2.82 4.35 14.13 13.53 78.79 3.99 3.16 3.97 15.85 12.57 79.43 4.13 3.55 3.34 17.78 12.02 89.13 6.08 ,E 3.98 3.65 19.95 10.43 100.00 4.11 .J 4.47 4.35 22.39 7.65 ACCELEROMET R N ._ ____ DAMPING _

DIRECTION .01 LOCATION ____

TEST NO._l____ OBE______ SSE___d _ ,

BIAX____ N-CONTROL _ /_ _S SURVEY _ _ _ _ E -il _ _ _ T R I A X _ V.

i e

l .

we 1

ZPA (g's) f.7 --

I. . . _ . _ . _

I 119 I i CHANNEL -AA

? 20.00 ,

i i i i

! ! I t

n/ \

.. n ./ 1  %

\_-f'

,[ '

~ ~

l _

~

I 0.200 1.000 LOG 10'FRE0 100.0 SHOCK RESPONSE 2.0 % DAMP ABS ACC lbOEC-81 TWO G FRAGILITY 16 IN. 1/6 0CTAUE MAXI-MAX 10:02:10 Free Aspl Free Aspi Free Aeol 1.00 1.28 5.01 2.44 25.12 4.67 1.12 2.52 5.62 2.68 28.18 4.10 1.26 1.88 6.31 2.89 31.62 3.67 I  ? 1.41 1.58 1.78 2.00 2.73 2.24 3.55 3.86 7.08 7.94 8.91 10.00 4.00 3.67 5.97 4.56 35.48 39.81 44.67 50.12 3.27 2.76 2.74 2.87 2.24 4.68 11.22 7.70 56.23 3.17 2.51 3.38 12.59 10.04 63.10 3.15 2.82 2.80 14.13 10.14 70.79 3.33 3.16 3.01 15.85 10.50 79.43 2.84

, 3.55 3.95 17.78 9.11 89.13 2.77 3.98 3.05 19.95 9.15 100.00 3.50 4.47 2.43 22.39 9.05 ACCELEROMETERNO._N___ DAMPING _k_

I DIRECTION R d__ LOCATION ____

T E S T N N-S____

sIAx____ O J.5tgJ.ry 0 s ETRIAX_

E-W___ _ _ _ _ _ _ S S E _ _ _[__ _

CONTROL _ I_ SURVEY ____

e l

ZPA (g's) k.f "m- m o ~

120 _J

-I

! -I J CHANNEL -8A 7 10.00

~

.- T --

, ./:

\_-

/ g _ ;-% g  :;r 3/ws g

_j  %;,f Y N_s g

/

1. _ ..

4 i 'I~

0.100 1.000 3

LOG 10 FREQ 100.0 E

12-DEC-81 SHOCK RESPONSE 2.0 % DAMP ABS ACC 16:04:30 TWO G FiiAGILITY 16 IM. 1/6 OCTAVE MAXI-HAX Free Aeol Free Aapl Free Aeol 1.00 1.16 5.01 2.10 25.12 4.26 1.12 1.59 5.62 2.71 28.18 4.22 1.26 2.92 6.31 3.08 31.62 3.31 1.41 4.63 7.08 3.30 35.48 3.88 1.58 3.05 7.94 3.99 39.81 3.16 '

1.78 2.90 8.91 4.97 44.67 3.53 2.00 3.35 10.00 5.09 50.12 3.39 -

2.24 3.69 11.22 5.02 56.23 2.90

2.51 3.32 12.59 6.48 63.10 2.67 s l 2.82 3.51 14.13 6.44 70.79 2.97 E I

3.16 3.55 3.73 2.66 15.85 17.78 6.99 9.58 79.43 89.13 2.36 2.45 g

i 3.98 2.16 19.95 7.86 100.00 2.11 ,

4.47 2.39 22.39 7.35 l

l ACCELEROMET ___ DAMPING.

DIRECTION _gRNO. W

_____ LOCATION ____

T E S T N O J_6*isdh O B E _ _ _ _ _ _ S S E _ _ _ _ _ _

BIAX____ N-CONTRO L . /_S _ _ _ _ E -lJ _ _ _ T R I A X _(_

_ SURVEY ____ '

l -

l

\

ZPA (g's) k.l -

l --

-I l

\

121 I'!

l i

CHANNEL -CA 7 50.00 ,

ii!isjs/Nd i !I

.K.  !

l l

, l ![

., \i -

I  % J%

m .j m _ e-a

,J..% %; '

d' 1  !

! i 0.500 -~

'I.

1.000 LOG 10'FREQ 100.0 1 0 C-81 HOCK RESPONSE WO G FRAGILITY 16 IN.

2.0 % DAMP ABS ACC 1I0(ei30 1/6 OCTAVE MAXI-MAX Free Aeol Free Ampi Free Aapi

.l'

?

1.00 1.12 1.26 0.93 0.92 1.72 5.01 5.62 6.31 4.61 5.23 6.27 25.12 13.08 28.18 10.65 31.62 9.79 1.41 2.21 7.08 10.04 35.48 8.87 3.95 7.94 11.45 1,58 39.81 7.83 l 1.78 3.96 8.91 18.49 44.67 7.08 2.00 3.54 10.00 23.68 50.12 7.03 2.24 5 67 11.22 20.83 56.23 6.34 2 51 4.13 12.59 26.50 63.10 6.53 2.82 4 24 14.13 24.29 I' 3.16 3.55 3.87 3.70 15.85 26.92 17.78 23.01 70.79 79.43 89.13 5.89 5.61 7.97 3.98 3.97 19.95 19.48 100.00 6.00 4.47 4.15 22 39 14.50 ACCELERONETER NO._.E___ DAMPING _h_

DIRECTI0ij _EC&I_ LOCATION ____

TEST NO.J h lJy0BE______ SSE__[_ __

~

111 A X _ _ _ _ N -J _ _ _ _ E - W _ _ _ T R I A X _

lr CONTROL . E_ SURVEY ____

( .

f ZPA (g's) h. [

r

122 d l

-li I

CHANNEL -AA 50.00 l

~

! i J

! I j k ~;

y-v e' \. . .,

i  ; ', - 4 m w <_r i r---- .>

r 'sy W

/

f4 e 0.500 ~

1.000 LOG 10'FRE0 100.O SHOCK RESPQNSE 2.0 % DAMP ABS ACC 1 12-DEC-81 15:36 50 SECOND FRAw1LITY 16 IN. 1/6 OCTAUE MAXI-HAX Free Aeol Free Aeol Free Aeol 1.00 1.39 5.01 7.02 25.12 12.89 -

1.12 2.66 5.62 7.90 28.18 6.82 1.26 1.95 6.31 9.03 31.62 7.81 -

? 1.41 2.67 7.08 9.31 35.48 7.72 1.58 2.28 7.94 8.02 39.81 6.68 ._

1.78 3.53 8.91 11.09 44.67 6.34 2.00 3 88 10.00 9.94 50.12 5.36 ',

2.24 4.66 11.22 11.10 56.23 6.09 2.51 3.45 12.59 15.04 63.10 4.60 -'

2.82 2.89 14.13 14.60 70.79 4.45 3.16 3.59 15.85 13.66 79.43 4.67 3.55 4.64 17.78 17.91 89.13 4.38 3.98 3.12 19.95 19.21 100.00 4.69 4.47 3.83 22.39 20.04 ACCELEROMETER NO._ ___ DAMPINO..k DIRECTION _M_"3__ LOCATION ____ .E T E S T N O .1/Repi/ty 0 B E _ _ _ _ _ _ S S E _ _ _ _ _

BIAX____ N ,S____ E-W___ TRIAX_V. 'l CONTROL _Y__ SURVEY ____ __

ZPA (g's) 3.5 -

^\

o

l 1

123 I- L

\

l CHANNEL -BA

? 20.00 .

i i i '

! ! l /~'v ~

I /' L :

~

i  ! i

,r~ --

..... _ 3-G

/ l l

~~~

/\ - A ._! e  ;

I-

[ l .!  ! j i

~

I.. 0.200 I I

1.000 LOG 10 FREQ 100.0 I 12-DEC-81 15:39i00

$ HOCK RESPONSE SECOND FRAGILITY 16 IN.

2.0 % DAMF ABS ACC 1/6 OCTAVE MAXI-MAX I. Free 1.00 Aeol 1.46 Free 5.01 Aeol 6.97 Free 25.12 10.76 Aeol

?

1.12 1.24 5.62 6.92 28.18 11.37 1.26 2.69 6.31 8.64 31.62 8.19 I 1.41 1.58 1.78 2.00 4.67 3.11 2.50 3.47 7.08 7.94 8.91 12.76 10 00 12.29 8.27 9.21 35.48 39.81 10.26 44.67 9.05 7.79 50.12 7.37 2.24 3.57 11.22 11.15 56.23 5.46 1' '

2.51 2.82 3.16 2.84 3.50 3.77 12.59 12.20 14.13 11.65 15.85 11.30 63.10 70.79 4.74 5.36 79.43 4.37 3.55 3.23 17.78 14.59 89.13 4.30 3.98 3.27 19.95 13.54 100.00 4.30 I- 4.47 4.81 22.39 13.32 ACCELEROMETERNO._____DAMPINGN_

DIRECTION E_W__ LOCATION ____

i

) <

T E S T NN-S____

BIAX____ O .%_FMJy E-W___0 B TRIAX_

E _ _ _ _ _ _ S S E _-_[ _

l CONTROL _ I_ SURVEY ___

I- -

i ZPA (g's) 3. b 1

124 _]

-I h

-I

~

CelANNEL -CA

? 50.00 i

'm A I i[m

% i  !

/ i

~~_

/

\_, vi esf

/ x__:

/

=.

/ i i

__/ I i 0.500 .. ____

1.000 LOG 10'FREQ 100.0 12-DEC-81 SHOCK RESPONSE 2.0 % DAMP ABS ACC 15 41:00 SEC0hD FRAGILITY 16 IN. 1/6 OCTAVE MAXI-MAX ..

Free Aeol Free Aeol Free Amol 1.00 0.76 5.01 5.18 25.12 16.63 1.12 0.93 5.62 7.34 28.18 12.43

? 1.26 1.57 6.31 9.48 31.62 12.03 1.41 1.97 7.03 13.91 35.48 11.29 1.58 3.48 7.94 15.00 39.81 11.00 -

1.78 3.65 8.91 25.03 44.67 10.04 2.00 3.24 10.00 32.24 50.12 7.35 .

2.24 5.27 11.22 25.18 56.23 7.19 2.51 3.98 12.59 32.23 63.10 7.65 .

2.82 4.04 14.13 29.29 70.79 7.78 3.16 3.56 15.85 36.92 79.43 7.64

[

3.55 3.72 17.78 27.99 89.13 10.48 3.98 3.95 19.95 23.06 100.00 7.40 5' 4.47 3.83 22.39 13.68 E I

ACCELEROMETERNO._N___ DAMPING DIRECTION _V.!!1r _ LOCATION ____ g T E S T N N-S____

O .1fteril E-W___

ty O B ETRIAX__

_ _ _ _ _ _ S S E _ _ _d _ _ .

BIAX____ '

CONTROL I__ SURVEY __ _ _

-I 1

ZPA (g's) [.1 ..

125 I

I, CHANNEL -AA

t. 50.00 -

I, . ~

i _i iii ji i i

/
w/N.,,. _

s/ ,

l q,k. i_'

j  ;

i  !/

W_ / i i '

! i I

0.500 1.000 LOG 10 FREQ 100.0 12 DEC 81 SPON" 2.0 % DAMP ABS ACC SHOCKRgAGIL${YTEST16IN.

THIRD F 1/6 OCTAVE MAXI-MAX 16IO9:00 l

I. Free 1.00

  • 1.12 Aeol 1.36 2.73 Free 5.01 15.15 5.62 20.42 Aeol Free 25.12 19.04 28.18 14.72 Aeol 1.26 1.90 6.31 18.83 31.62 15.22

? 1.41 2.10 7.08 17.71 35.48 11.74 l

1.58 2.01 7.94 16.44 39.81 9.64 1.78 3.50 8.91 19.25 44.67 9.08

, 2.00 3.16 10.00 15.92 50.12 8.39 2.24 3.24 11.22 !6.96 56.23 8.44

_ 2.51 2.80 12.59 17.67 63.10 5.86 2.82 3.77 14.13 18.06 78.79 6.05 3.16 3.91 15.85 15.87 79.43 5.06 17.78 24.29 3.55 5.09 89.13 5.29 3.98 5.79 19.95 23.51 100.00 5.86 l" 4.47 8.62 22.39 19.44 l

ACCELEROMETERNO._E___DAMPIN0k ll- DIRECTION 16 1 _ LOCATION ____

T E S T N O .3. fcard7f 0 B E _ _ _ _ _ _ S S E _ _ _ _ _ _

I<IAX____ N-S____ E-W___ TRIAX_/_

. CONTROL _r___ SURVEY ____

ZPA (g's) ,j

'{___ _ _ __

126 l:

..] l i

-I

-E CHANNEL -8A 5

.J 7 50 00 i

i il .

4  !  ! i i i ii

j;3 ;ym_q',e y

'N; a

i i J_ f i I  !

m_

1' , i

/ \ j v$/~

\  ! i 0.500 1.000 LOG 10'FREQ 100.9 12-DEC-81 SHOCK RESPONSE 2.0 % DANP ABS ACC S 16.11 00 THIRD FRAGILITY TEST 16 IN. 1/6 0CTAVE MAXI-MAX .5 Free Ampi Free Ampi Free Ampi 1.00 1.61 5.01 11.42 25.12 17.11 1.12 1.15 5.62 11.21 28.18 19.30 - - .

i

? 1.26 2.59 6.31 13.67 31.62 14.62

! 1.41 4.30 7.08 13.75 35.48 13.49 1.58 2.94 7.94 13.95 39.81 11.45

~

1.78 2.99 8.91 19.18 44.67 10.57 2.00 3.45 10.00 17.14 50.12 9.26 2.24 3.58 11.22 17.09 56.23 7.14 2.51 2.97 12.59 18.65 63.10 7.25 -

2.82 3.60 14 13 13.52 70.79 6.02 3.16 3.15 15.85 14.33 79.43 6.67 i 3.55 3.66 17.78 16.28 89.13 6.03 3.98 3.50 19.95 20.55 100.00 6.17 4.47 7.21 22.39 18.71 ACCELEROMETERNO._I____ DAMPING _k l DIRECTION f_ _M_ _ LOCATION ____ ~5

, TEST ,

l N ON-S____

BIAX____ .lfJesillt0 BE_

E-W___ __

TRIAX _ _ _ S S E _ _[_ _ _

CONTROL _ d _ SURVEY ____ -

l

_l

-I 1

ZPA (g's) b. O --

-I

I- I 127 ,

I- f.

CHANNEL -CA 7 50.00 ,

j j

. l/N/ N, i  ;

i i I/

~

'K j

% n I- '

%eAC-ijs ,

,_ s/ >

I-

/ i

/

l 0.500 1.000 LOG 10'FREQ 100.0 I. 12-DEC-81 16:13:20 SHOCK RESPONSE THIRD FRAGILITY TEST 16 IN.

2.0 % DAMP ABS ACC 1/6 OCTAVE MAXI-MAX Free Amol Free Aeol Free Asol 1.00 0.71 5.01 4.64 25.12 15.56 1.12 0.84 5.62 6.32 28.18 12.46 I  ? 1.26 1.41 1.58 1.78 1.50 1.95 3.19 3.26 6.31 7.08 7.94 8.91 8.27 12.79 13.28 23.25 31.62 10.67 35.48 10.87 39.01 10.35 44.67 10.25 2.00 2.99 10.00 28.60 50.12 7.57 2.24 4.99 11.22 24.22 56.23 7.04 2.51 3.71 12.59 30.06 63.10 7.35 2.82 3.67 14.13 29.56 70.79 7.21 r 3.16 3.25 15.85 34.38 79.43 7.60 I 3.55 3.98 4.47 3.24 3.66 3.59 17.78 27.51 19.95 23.35 22.39 16.69 89.13 12.11 100.00 8.09 ACCELEROMETERNO._E___DAMPINGk I.. D I R E C T I ON .Virl__ LOCATION ____

T E S T N O .3.fotsibfy O B E _ _ _ _ _ _ S S E _ _ _ _ _ _

. B I Ax_ _ _ _ N-S __ _ _ E-id_ _ _ T R I A X _d CONTROL _/__ SURVEY ____

f k

, .5 l ZPA (g's) (, h

128 a i

V. 5 Resonance Search The transmissibility plots from the resonance search are

-I presented in thi section. The locations, descriptions ~

and frequencies are listed in Table V.5.1.

TABLE V.5.1 Accelerometer Plot Fig. Resonant Frequencies No. Direction No. Description (Hz) 1 X (a-a) Horiz-a V.5.1 base of yoke 20.2, 35.5, 41.2 56.9, 95.5 2 Y (c-c) Horiz-c V.5.2 96.7 3 X (a-a) Horiz-a V.5.3 top of yoke 20.2, 36.7, 49.6 4 Y (c-c) Horiz-c V.S.4 58.2, 95.5 g

51.9, 58.9, 93.3 5 5 Z (b-b) Vert. V.5.5 ,, is,it s,iten gear housing (close to teminal block mounting screws) 6 Z (b-b) Vert. V.5.6 on end or timit s.iten --

terminal block 7 X (b-b) Vert. V.5.7 -- N 8 X (a-a) Horiz-a V.5.8 top mounting loca- 20.7, 35.9, 41.2 tion of motor 58.2, 95.5 9 Y (c-c) Horiz-c V.5.9 35.5, 52.5, 58.9 64.6 i I

r The amplification of the transmissibility plots in the "Y" or c-c direction is due to slight table rocking in the frequency range of 10 to 20 Hz. There were no test item resonances in

~

the c-c direction in this frequency range.

l 1

~5 ,

g

I. 't 129 I '.t m

    1. k>kkV

.__...~.

l 5.00E 01

., M/' l -

I 8 IF= 2.018E O!

IM= 1.331E 00 2F= 3 548E 01 +

l 5

2M: 2.233E 00 '

I 3F= 4.121E 01 3M= 9.496E-01

-/ j ,,6 j

4F= 5.689E 01 Il 4M= 5.340E-01 /

5F= 9 550E 01 .

5M= 1.433E 01  !

8 j

5.00E-03 A1:16If4UALVEXk!3. '

I- 000072-000000 000072-000000 FRE0 RESP-BODE IX+ IX+ 80 FIGURE V.S.1 i -

M a gg y I._ b

,___ ~ _ _

2 00E 01 I' !F= 1 718E 01 1;1= 2 136E 00 p2

  1. ,: Uis n A w

h l' 2.00E-03 1.00E 02 A1:16 If( UALUE 1XMlaS. 00f 00 000072-000000 FRE0RE5P-80DE 060072-000000 1Y+ 2Y+ 80 t

FIGURE V.5.2 I-i I-

l a

130 -s ,

.g i

askyyvK \ \s (. =

2.00E 01 IF= 2.018E 01 --

IM= 4.057E 00 g 2F= 3.673E 01 l4 2M= 5.365E 00 _

3F= 4.355E 01 3M= 1.002E-01 Y I

/ /~ '

f 4F= 5.821E 01 a 4M= 2.033E 00 [

5F= 9.550E 01 r 5M= 9.082E 00 .m at g

2.00E-03 1.00E 00 1.00E 02 -

A1 16 IN VALUE XMISS_

000072-0 % 006 FREGRESP-BODE

000072-000000 1X+ 3X+ $0

.g FIGURE V.S.3 -6 3

11 askhK \ /)

2 00E 01 IF= 5 138E 01 -

1M= 3.616E 00 i

K: inh n 3F= 9.333E 01 A'h* L ..]

1 3M= 7.579E 00 4

2.00E-03

~

1 00E 00 1.00E 02 A1:16 IN UALUE XMISS.

E 8888H:888888 FREgSP-8 FIGURE V.5.4

-l ,

-I

I \ 131 I L Ah

- - f '

1.00E 01 --

- ~ - ____ _

l I~

1.00E-03 A1:16INUALUEXkffS. I O .E 02 000072-000000 FRE0 RESP-BODE 000072-000000 12+ 5Z+ #0

- FIGURE V.5.5 E ~

acK i I 1.00E 01 1F= 9.836E 01 IM= 6.733E 00

^ I I

I lh5-l _

M_ M N V 1 N

1.00E-03--

= A116[NUALUENffs.

000072-000000 FRE0 RESP-B0DE 000072 M0000 12+ 6Z+ 40 l

FIGURE V.5.6 I

I

132 .)

-I i r

1 00E 01 i i .E' gi

_e,

I 1

1.00E-03 I

A1-16INUALUEXkIf3. -

000072-000000 FRE0 RESP-B0DE 000072-000000 12+ 7Z+ 80 P

~I FIGURE V.5.7

-SkkkKK v s 1 2.00E 01 1F= 2.065E 01 j p g

trt 9.082E 00 .

_5

! f ~

2F= 3.589E 01 2M= 5.107E 00 3 ) les 3F= 4.121E 01 j

g 3M= 1.512E 00 '4[

9 4F= 5.821E 01 4Ms 3.991E-01 yg 5F= 9.550E 01 5M= 6.429E 00 i

-e 2.00E-03 '

Al16INVALVEXkIfs.

000072-000000 FREGRESP-BODE 000072-000000 IX+ 8X+ #0 m

-I

\

FIGURE V.5.8

.g

I-4 133

-eKKKK iX 2.00E 01 I d i

1F= 3.548E 01 IM= 4.057E 00 o

. E O f 3F= 5.88aE 01 I' 3M= 4.782E 00 4F= 6.457E 01 4M= 3.365E 00

.e I.

l 2.00E-03 1.00E 02 A116INUALUEX0ISS.

i 000072-000000 FRE0 RESP-BODE

/ 000072-000000 1Y+ SY+ 30 I FIGURE V.5.9 IL 3

l<

I-A I

A - -

134 -I;

' -I l V.6 Fatigue Damage Potential Calculations The process of determining the fatigue damage potential

-I (F.D.P.) is described in the appendix of this report. The -

values presented in this section are for the Sargent and ,j Lundy time histories supplied to SDRC, and for the SDRC equivalent white noise table input. ,

S&L Time History ,3 TEST TYPE DIRECTION F.D.P. Multiplier SDRC TEST F.D.P.

  • E a-a 446.19 /. o t '{.I S S E <IO SRV 6- b $3c$.0 /. o G 2.464 E *S c-c 3 q 3fl.o J.oG 7.277 5 46 '

a-a I431Z.o I . Z"7 /.096 E 49 SRV& CHUG b-b g V370.0 1. I O /.6'f 2 5*9 3 c-c I.I98 E*8 l.CO 7.954 E 49 ..

a-a M/6 S.63Y E d 14 .j UPSET b-b pJ/$ %4SG 6 */4 c-c y/$ 3,4ZS E

  • 14 a-a Af/S l,Bsc g+ IS b-b A//5 E 4 IS l EMERGENCY c-c

/ ,,f/8 I . 2*fD E t IS

]A l A//6 l FRAGILITY a-a g/$ l.179 E 4 ff

']

f TEST 1 b-b M/$ 9.44 2 E + ly c-c W/S I.306 E + IC FRAGILITY a-a M/S (.404 5 t is TEST 2 b-b M/S "/.77f E + IV c-c W{s I.466 E+lf f v

FRAGILITY a-a Af/$ l. 48(1 f t if TEST 3 b-b M/S ' 7. 00 al E e i# '

l c-c Af/.S l.GbD E

  • l4 -

N/S - not supplied E For Actual F.D.P., Multiply above values by .0014 3 m5

-I 1

\

l I

k 135 i.

VI.1 Appendix A - Sargent and Lundy Test Plan l.

The original test plan was used as a guideline for the I,. test program. During testing there were changes to the plan. These changes are documented in Sections III, IV and V of this report.

i I~

Ii: .

I' lE

3 IL t

It l'

I, I

r I-1 -- - -- -

. 136 J

. 1

, -I l Specification For --

Dynamic Test of Two Motor-Operated '

Valve Assemblies j ^

t

  • .a s

LaSalle County Station Units 1&2 Commonwealth Edison Company -

I Wm. H. Zimmer Nuclear Power Station Unit 1 Cincinnati Gas & Electric Company

'I Nuclear Safety-Related

^

Prepared By Component Qualification Division Sargent & Lundy Engineers

  1. =

1

-I 1

Page 1 w----- --- - - - - m __ __ _ _ _ _ __ - - - --------w - -- -

E, m_ m, M M. M_

1 m W ,

m M Mm .

m _m mM ,

m ,

m_m Project Nos. Approval Pags 4130-15 -

Specification For Dynamic Testing of Two 4266-10 Motor-Operated Valve Assemblies 4267 10 LaSalle County Station - Units 1&2 Commonwealth Edison Company Wm. H. Zimmer Nuclear Power Station - Unit 1 .

Cincinnati Gas & Electric Company Rev. Date Reason For Issue Prepared By Reviewed By Approved By D.

-( \

,7 .

03 10-09 -81 ind.iu\ 1 y s - '

55in Y4(Ck j jk N /t4/A[

Inc_cr F es b T Oi lo-a3-sa c_I nL cornme_nks

~

M -__ Qjk .

u c l

e M

Page 2 ,

d

l

- E 138 --

Table of Contents

_j'Ei l

~ll 2 1.0 Purpose )

2.0 Introduction 3.0 Identification of Test Specimens 7E 4.0 Responsibilities ]g 5.0 Instrumentation 5.1 Control Accelerometers J 5.2 Response Accelerometers ,

S.3 Contact Chatter Monitors 5.4 operability Monitors ,

5.5 Strain Gauges 6.0 Test Sequence ,.

7.0 Test Requirements ..

l 7.1 Easeline Testing I l  !

7.2 Resonance Search Test 7.3 SRV Fatigue Aging 7.4 SRV+CHG Fatigue Aging _

7.5 Upset Condition Qualification Test 7.6 Emergency Condition Qualification Test 7.7 Inspection 7.8 Specimen Mounting  !

8.0 Acceptance Criteria

~1 9.0 Documentation .,.

10.0 References s

_3

-I

\

Jg Page 3 I

e --=

t 139 1.0 Purpose I. The purpose of this specification is to define the technical requirements, documentation requirements, quality assurance requirements, and outline the responsibilities for the dyna-mic testing of two motor operated valve assemblies.

l I,

2.0 Introduction A great amount of work has been done in demonstrating the i

adequacy of motor operated valves to function during postula-I; tee seismic evenes. This previeus work has seen 11mitee to in-vestigating the effects of the relatively short duration dynamic i

l i seismic loads having a frequency content of 1-33 Hz. The objec-l tive of this program is to demonstrata. the adequacy of motor operated valves to function during postulated SRV actuation and LOCA. events in addition to the previously investigated seismic events. This will be accomplished by testing two repre-sentative valves using a dynamic input which simulates the amplitude, frequency content, and duration for the most severe combination of seismic, SRV actuation, and LOCA loads.

1 It'i w.

3.0 Identification of Test Specimens 3.1 16 inch 1508 Anchor Darling, gate valve with.Limitorque SMB-2-40 actuator 3.2 4 inch 3005 Powell gate valve wi'th Limitorque SMB-QOO actuator gL c

l Page 4

140 .)

4.0 Responsibilities =

4.1 The Consulting Engineern shall be responsible for pro-viding the Test Lab: .-

J

- test specimens

~

- design of the test fixture

( - valve drawings and ,

- wiring diagrams as required s

- defining the test input 4.2 The Test Lab shall be responsible for .,

- fabrication of test fixture

{

- providing the electrical hardware (motor control center) required for operating the valves

- providing the hardware (expansion tank and piping) required for leakage tests

- conducting the test in accordance with the require- .

ments of this specification.

5.0 Instrumentation .

The following instrumentation shall be used.

5.1 Control Accelerometers 9

Three control accelerometers shall be used to determine the actual input to the test specimens.

5.2 Response Accelerometers I

Nine response accelerometers per specimen shall be used.

Their locations shall be as defined below as shown in i Figure 1 .

l Page 5 ..

i ..

l

~

. 141

(

~

Accelerometer orientation Location l 1 Horiz-a '

> base of yoke I-2 Horig-c 3 Horiz-a

> top of yoke 4 Horiz-c ,

5 Vert as close as practical to the limit switch 6 Horiz j> mounting screws i

7 Vert 8 Horiz-a ) end of actuator motor 9 , Horiz-c /

l 5.3 contact Chatter Monitors The test specimens utilize a four train, rotor type, geared limit switch which consists of four rotary type drum l

swi.tches each having four contacts (a total of 16 contacts per specimen) . The requirements for the contact chatter monitors are: ,

iE a) f ur nta t chatter monitors per specimen shall be l 3' used b) they shall be wired one contact per monitor and the following guidelines shall be followed in selecting W contacts to be monitored:

- each rotary drum switch shall be monitored lg

,~E (i.e. one monitor per rotary drum switch)

- each contact location (i.e. distance between I

contact and gear frame) shall be monitored.

~

{ -

.a,. .

l 142 J c) the contact chatter monitoring system shall be set '

up in such a manner that should contact chatter occur exceeding 2 msec it shall be detected and the duration of such chatter shall be recorded. This may be accom-plished by use of a chatter box along with a recording ,

oscilloscope (triggered automatically or manually) .'

or any other acceptable technique. ,

~

5.4 operability Monitors The opening and closing time of each specimen shall be recorded. This may be accomplished by using a brush recorder to monitor the voltage across the limit switch, -

or any other acceptable means to the Consulting Engineers. -

5.5 Strain Gages '

Each test specimen shall be instrumented with strain gage:

..g I

to determine the stress state versus time at the following locations .

- lower portion of one yoke leg

- upper portion of same yoke leg

- one of the yoke-actuator bolts Any changes required to be made in the test specimens in i

l order to instrument them shall be approved by the Consult- ,,

ing Engineers. -

6.0 Test Secuence 1 a) Baseline Testing b) SRV Fatigue Aging Test c) Inspection a Page 7

I .

143 I

. d) SRV & CHG Fatigue Aging Test

' e) Inspection f) Upset Condition Qualification Tests g) Inspection (following each of the five upset I condition tests) h) Emergency Condition Tests .

1) Baseline Test j) Resonance Search 7.0 Test Requirements 7.1 Baseline Testing The purpose of the baseline test is to provide a data base for evaluating the valve performance during the remainder of the test program. ' The requirements for the baseline test are s'pecified below:

7.1.1 Baseline Inspection

' verify that all external bolts are tightened to l

the manufacturer's specifications. The bolts to be checked are: body to bonnet bol'ts bonnet to yoke bolts yoke to actuator bolts

" limit switch screws N' actuator P.otor screws l~

valve flange bolts 1

f 1

Ba,. . .

144 .

7.1.2 Stroking Time * >

Determine the opening and closing time for the valve:

a) in its normal service condition (valve pres-sure and voltage according to valve data sheet) . -

b) in its normal service condition plus and minus

.g

, 10% testing margin specified in paragraph 3

/

6.3.1.5 of IEEE-323-1974.

In other words the valve stroking time shall be F determined for three different conditions:

a) pressure and voltage at normal service condi-tion b) pressure and voltage at normal service condi- V tion minus 10% ~

l c) pressure and voltage at normal service condi-tion plus 10%

'g

.3 7.1.3 Leakage Test Perform hydrostatic leakage tests according to the procedure outlined in MSS-SP-61-1977. 'a

'g_

7.2 Resonance Search i l The purpose of the resonance search test is to determine the dynamic characteristics (natural frequencies, cross-I coupling effects) of the test specimens. The require- ,., ,

ments are defined below.

a) test method: uniaxial sine sweep i b) frequency range: 1 to 100 Hz page 9 1

I 145

~

_ c) input acceleration: 0.2 g minimum d) sweep rate: 1/2 octave per minute maximum e) documentation: tra.smissibility plots (one per direction of excitation per response accelerometer) 7.3 SRV Faticfue Aging The ptrpose of this test and the following test is to subject the test specimens to the design life mechanical vibration the specimens would experience from the postu-lated SRV actuation and LOCA events. The requirements for this test are defined below:

a) test methods triaxial random motion b1 test input: white noise generated by the Test Lab I/ to the following requirements:

- fatigue damage potential demonstrated to be equivalent to consulting Engineers supplied time history

' - test response spectra envelopes required response spectra. Care shall be taken to avoid excessive t

conservatism between the amplitude of the TRS and I ,

RRS (i.e. the enveloping must be close)

The equivalent white noise input'shall be approved by the Consulting Engineers prior to testing.

l l

c) the consulting Engineers time history will consist of g-

. an approximate 2 second trace which is to be repeated for a total of 9000 times. There shall be no delay f

between subsequent applications of the trace.,

i

. 146 E

d) demonstration of operability: the test specimens' shall be stroked once every 30 minutes e) required response spectra: identified in Table 1 f) required time histories: identified in Table 2

/ . ,

g) documentation: "

1

^'

- digitized trace of shake table motion in all three directions s

- sample TRS from each control and response accel- _;

erometer

- log of valve stroking durations 7.4 SRV + CHG Fatigue Aging The requirements for this test are:

a) test method: triaxial random motion '

~

b) test input: white noise generated by the Test Lab to the following requirements:

- fatique damage potential demonstrated to be equivalent to the fatigue damage potential of l Consulting Engineers supplied time histcry '

7 i

- test response spectra envelopes required response

.- s spectra. Care shall be taken to avoid excessive conservatism between the amplitude of the TRS and ,

RRS (i.e. the enveloping must be close).

The equivalent white noise input shall be approved by the Consulting Engineers prior to testing.

1 Page 11

i* 147

t. .

I i

- test response spectra envelopes required response spectra. Care shall be taken to avoid excessive conservatism between the amplitude of the TRS and

- RRS (i.e. the enveloping must be close)

The equivelent white noise input shall be approved by the Consuiting Engineers prior to testing.

d) The Consulting Engineers time history will consist of a 15 second trace which is to be used once for each of the five upset condition tests.

demonstration of operability: the test specimens e)

I. o.. shall be stroked once per test. Should the stroking time exceed the test duration the test duration SHALL ,

NOT be extended, as the purpose of this test is to .

demonstratefunctionalitydbingthesimultaneous application of normal operating plus postulated dynamic I loads. ,

f1 required response spectra identified in Table 1

- g) required time histories: identified in Table 2 l1 h) documentation:

- digitized trace of shake table motion in each of the three directions

- sample TRS from each control and response accel- ~

t erometer (from one test only) h - log of valve stroking durations m

L- Page 13

~

~

148 .-

- I 7.6 Emergency Condition Qualification Test -

. The requirements for this test are: ,

a) test method: triaxial random motion g b) number of tests: one

-lj l '

a c) test input: white noise generated by the Test Lab to th'e following requirements: /

- - fatigue damage potential demonstrated to be equivalent to the fatigue damage potential of Consulting Engineers supplied time history. ,

I

- test response spectra envelopes required response spectra. Care shall be taken to avoid excessive .a

~~

'} - conservatism between the amplitude of the TRS and

^

l RRS (i.e. the enveloping must be close).

The equivalent white noise input shall be approved by (

, the Consulting Engineers prior to testing.

~

d) the Consulting Engineers time history will consist of a 15 second trace which is to be applied once.

( -

e) demonstration of operability: the test specimens s shall be stroked once per test. Should the stroking time exceed the test duration, the test duration SHALL NOT be extended as the purpose of this test is to demonstrate functionality during the simultaneous ,

i application of normal operating plus postulated dynamic ,

loads. s

'f) required response spectra: identified in Table 1

_g) required time histories: identified in Table 2  !

'Page 14

I-t 149 -

h) documentation: -

- digitized trace of shake table motion in all three directions t - sample TRS from each control and response accel-erometer

. - log of valve stroking durations 7.7 Inspection An inspection of the test specimens shall be made at the

- intervals in section 6.0 " Test Sequence". The inspection procedure is:

11 visually examine specimens for broken or loose parts.

2) verify that all external bolts are tight (torqued

) to manufacturers specifications). The bolts to be checked are: body to bonnet bolts bonnet to yoke bolts yoke to actuator bolts Bolts may be tightened as required 31 remove limit switch cover l

41 verify that limit switch is secure (i.e. that limit switch mounting screws are tight). NO TIGHTENING OF ANY INTERNAL SCRIMS IS PERMITTED without approval of I. -

the Consulting Engineers.

l 1

51 replace 'imit switch cover 1

. 7.8 Specimen Mounting The test specimens shall be mounted using fixture designed by Consulting Engineers in a manner which simulates the lI- Page 15

150 ectual in-service mounting condition as closely as prac-tical. The mounting of the valve and test fixture to the shake table shall be such that the vibratory input is transmitted without amplification or. attenuation.

8.0 Acceptance criteria

.i a) A test failure shall be defined as any occurrence which

- failure of the test specimens to stroke; or

- breach of the pressure boundary .ther than leakage at gaskets or packing

- severance of any external portion of the device '

bl A test anomaly shall be defined as any abnormal occurrence other than a failure. s c) Should a test failure occur the testing shall be stopped. .

Any further course of action shall be determined by the Consulting Engineers test representative.

d) The Consulting Engineer's are responsible for determining the acceptability of any test anomaly.

, el The Consulting Engineers reserve'the right to modify the test procedure 9.0 Documentation A test report shall be prepared by the Test' Lab. This report -

shall include: I a) details of the test procedure b) transmissibility plots i

Page 16

I 151

) c) test response spectra plots -

~

r d) documentation demonstrating how the fatigue damage poten-i tial of the white noise inputs was shown to be equivalent

/ l to the fatigue damage pot ntial of Consulting Engineers supplied time histories f.

el digitized

  • trace of white noise input .

f) photographs of test set-up

,' g) description of monitoring techniques hl test log

.- il all pertinent measurements and observations j) results with a description of any abnormalities or mal-

[' funetions

.h kl identification of all test equipment and instrumentation g' including last calibration date.

Ten copies of this test report shall be submitted to the Con

  • sulting Engineers.

I t

t t

l Page 17 L.

~

- 152 10.0 References -

, a) IEEE-323-1974 "IEEE Standard for Qualifying Class lE

) Equipment for Nuclear Power Generating '

Stations." ,

C

/ )

b) IEEE-344-1975 "IEEE Recommended Practicos for Seismic Qualification of Class lE Equipment for ,

Nuclear Power Generating Stations."

c) IEEE-382-1980 "IEEE Standard for Qualification of Safety- ',

Related Valve Actuators."

di MSS-SP61-1977 " Pressure Testing of' Steel Valves" i el Sargent & Lundy (IE Form MSS-6.2B " Standard Specification for Seismic Quali- ,5 fication criteria for Category I (Essential) v Equipment Installed in Nuclear Power Plants." -

i f) Sargent & Lundy Calculation CQD-000233 " Time History Dyna-I mic Analysis of Piping Systems for Test Motion Input Generation" ,

i!

l .

g) Sargent & Lundy Calculation CQD-000234 " Fatigue Damage Evaluation For Test Input Time Histories" -

1

,l

~

,l Page 18 l

l

- . -. . -- --. - _ _ . - -~ .

} 153 l l

~

r I

l FIGURE 1

[ .

( Acceleror.eter Lccation E- /

R . .

I ,-

Q actor

~,

limit Switch p '

t

^y {^ j compartment _Ei-- - -

y,,ggg,1 7

b 1 I 4--- 8: horiz-a

-l m 9: horiz-c l3: horiz-a g _,

horiz-c ex:,

d, g 4: . ,13 ,

N 3: horiz-a I.

i l '

4
horiz-c b

ri is DL e

g JD 1: horiz-a 1: horir:a -

w  !. v 2: horiz-c y 'ig 2: horiz-c

( k pN o[ he a;A aNa I- -

l.' .

) {, .

] .

p.

I I' -

l ab ab

=c 1 j- a 7 .

I'~ c page 19

154 F

~

g TABLE I

~

REQUIRED RESPONSE SPECTRA Test Phase Table or Figure No.

i 16" Anchor Darling Valv

. 4" Powell Valve Vert. Horizontal Vert. Horizontal L b-b a-a c-c b-b a-a c-c '

SRV Aging 1 2 3 '4 5 6 SRV + CHG. Aging 7 8 9 10 11 12 Upset Condition 13 14 15 16 17 18 Qualification

.)

Emergency Condition 19 20 21 22 23 24 Qualification 1 Note: Direction a-a Horizontal-Along Pipe Axis b-b Vertical .

c-c Horizontal-Perpendicular to Pipe Axis J

'I C'

01 Jg J

l JI r

'I Page 21 .-

O

~

.i 155 l

Specimen Data Sheet I. 1 16 inch 1508 Motor Operated Gate Valve I

~

I Actuator:

I Manufacturer - Limitorque Model - SMB-2-40 Serial No. - Tag fW-18176 I'\ I Power - 3 phqse 60 cycles 460 volts Horse Power - 5.3, RF". r 3609 Full load Amps - 7.55 Locked Rotor Amps - 62.5 Ij' ,

Approx. Weight - 660 lbs.

h valve:.

~

Model - 0.S.&Y carbon steel gate valve with weld ends I ~N' Serial No. - E-5811-031, Tag (E22-F015 Normal Pressure - '

Seat Test Pressure - 300 psi

'/

Bolting Data: Torque (Ft-Lbs)

Nominal Quantity Description Max.

50 Body / Bonnet 24 5/8--llUNC-2Ax3- 35 120 Yoke legs 4 7/8-9UNC-2Ax5- 100 2 3/4-10UNC-2AX5-h - 100 s, P,acking Gland Foll Limotorque Oper. 8 3/4-10UNC-2Ax3- 90 100

' Il '

Total Assembly Weight - 1250 lbs. (Approx.)

Max. Opening or Closing Time - 16 secs.

g I

l l. Page 20

- _ ~ . . _ . _ . _ _ _ _ _ _ _ _ . _ . . _ _ __

156 TABLE 2 '

List of Information in Tape in Sequence: Read 4 (6x, F12.0) '

FILE VALVE CASE DIRECTION ~

i SIZE 1 16" SRV A- B 2' 1506 B 3 Anchor C sg Darling . g

~

. '? i 4 4" \- SRV' A S 3004 B C

h @> A j/M -

6 Powell 7 16" SRV + CHUG A g 8 150# B A=Along Pipe Axis CE 9 Anchor C Darling (Horiz)

B= Vertical j 10 4" \* g SRV + CHUG A g.1\ (up-down) .p 11 3004- - a g w, 12 Powell C cH_

i 13 16" UPSET A C=.1.er to Pipe 14 150# B Axis (Horiz) ..

l 15 Anchor c \

Darling 16 4" UPSET ^ 'E 17 300g a Tape No.2303 ..g 18 C Powell 19 16" EMERGENCY A

I 20 1500 B ,

1 21 Anchor C Darling -

22 4" EMERGENCY A ['

23 3004 B -

24 Powell C g

.I

-1 1

Pace 22 Final Page .

I _. _._

i . 157 II, .

c) the Consulting Engineer's time history will consist I of anapproximate 2 second trace which is to be repaated fc a total of 1500 times. There shall be no delay between subsequent applications of the trace.

I',' d) demonstration of operability: the test specimens shall be stroked once every 10 minutes e) required response spectra: identified in table 1 f) required time histories: identified in Table 2 l- g) documentation:

- digitized trace of shake table motion in all three

- sample TRS from each control and response accel-erometer

- log of valve stroking durations 7.5 Upset condition Qualification Test The purpose of this test and the following test is to demonstrate the ability of the test specimens to' function during the most severe loads associated with the upset

  • and emergency plant conditions respectively. The require-ments for this test are:

a) test method: triaxial random motion I b) number of tests: 5 c) test input: white noise generated by the Test Lab to the following requirements:

- fatigue damage potential demonstrated to be equivalent to fatigue damage potential of Con-

- sulting Engineers supplied time history Page 12

ea_,,_,a ___e_._ _ _ m - -s- -, - - - -- --- -s-- - - - -,u-- - --.a --- a n a-e -

= , 4,m-e.- Je -ee- .m.s-41Na em-4*a- -e - mm he -

158 j I

VI.2 Appendix B - SDRC Test Log '

e I  !

s

.g

_a 3

.1 :

.I ;,

3

.E

.g .

II.

-I

j. j , 159 i

lli B"h ?S a

-a l 5 c 3 4 Q kN I de dm d@d 9 9d ao bo tt

~'

gs (h v u D t t'+ to g tf1

. d d m' M

. y S -. .

l gr 3 T 'y m 46d *k

~ O e,o ode 5:n uO k w e< dd ed ddd

  • w d s: d a d 5w . . .

. ci d ei Io 1 m

(( aw . .

ho d u

G 7:*- *

- 4 e

=3 sts te e* E Q g g c eV 4 6 L b y N

> S i & > >=>*> >+ a .

  • a s . P @ Q e < a g C B . .E e d + g w , s * < a a w$ D.D 3 m M d DD D ^ ^ e k $ t

- d, iE :3, 5 5 h " = T' h'- 7>

't g

2 k

N u w we h >e>t W W Z M ,q " ~h l l t T h 3 g} h v=- g

s m >. u ~

s * ,

E;, M  % 9 X A g' d m e

  • + .

M o N W .> b m k m W o.-

gI S oc h u o o g o N mo i

k 2

i 9 *'

R E E I d t k N N., P U h N P. C 'e m r e o o ~~ s a m > > ys g s g & A f S u; d o o 4 C l c^ '-

g. e .- - ~ - -

CA b

e. 3

+

$ k $ k k kN N k N k$

t tt D '$ 0 m m hhD.7)'e h_ y ttdt r e r r e - m - r m s - h s m NN ] ~~

m - e - -

'1 ,o O . pg NNNN  %%%  % '=%,,NN,, ==s NN NNN N N%%

db k k k .k k k,k kkk k

"noe.- -

160 f x

$1 2 e I

'#e C '- oo d u%e 1 d 4. %u ar .

00 M M W b.

d .

N '.

Qn2 a

d o m 40 ja 5 kS [ ei el A sW 27 wn ~ %d ,

$3x dd c6W

-]

E u v v ta a a Y =-

.} 2 21 :2 =2

=

t; g

> 4 4 W

> h -

.g i .

4- y- h-3 m

.,h

%=.

5 A

2

_e m

c .,

r g.e e

gop ,'

3u 71l "

.y s T d@f f e ,

w d

+ ,

+ ~ ~

.bC 'C b o u

i 2 we s. a '

c.  :- F . ..

M $ %Q tN &g ,

!. 6 4 hn & 4; 4 f,.

2 q .5 g 6 "es c )~tbt ~ ~ ~

g

w ,-

-w mum umm-- --em= . eau.eami-m% m., #-

161 v 9 9 BJ .9 ' -

a g be c k u r e # 9g I,

' be g d bo bo g u e<

m m $ '

N N "l >g ah e4 a-, > :t . d e> >> u- > - -

s

- a d . .

s _

< si

~ =

I 3 tw d b m N a m *. > ~

d *, b 5 Q r

h b b N m e e .

r r b b 7 %Q s n e - e-gyg l

C hQ .

w Y - $_

01 - --

s m

t S ..

ae 3 .

t g 4 4 $

l J W % d s L l i -

lf5 -O QTJ g sw 2 5 t h h PC 1 4 J.

bt hh b th a a4 t h - X l '~M y 5 2 e s s e w h yt e g it i# i,N E

( I e

Y s

4 v

" ?

e T

  • Ii 0 s

TT } gp -

s s s ss 3 D 3h k

.e f j hh E ,I {, s

! m g

N d 'N N _ N

_ _ _ - e -,

g .

M 5 d SS d, & $ Ey , 4 4 , e l l.

]

  • ;. Y ( f 'd > 4 0 i e

v a x i s M

'3 d e t- W ww N .3 )

eg m<r j h L7 g," - > u c.*

j 2 -

e

=

i m u ,

+ $. e k 6. .- eV 0 46 ks o c w uu e s e u ~ u t..

l 3 2 9$t t t 9. @.. c ,

r ~ um s u w -

R tr.

n o ao x o t% 6; e e y N ~ .. .. - .

u

  • o o be.

g d e co

- ~

m s y d v >d bu u N ..

y n~

k U

g C .s -..-,

. ~ -- g ---

4 g -

g C a c c a c a c c sa sn 4 Tg gJ C ~E SS$$ ss s 4 R e g ssssss ss 3

-o 2t RRRQD

= d e d c =ct == Q y s 4 q

= = ~ = = = = =gst D 4 t % c d ::::- :: . D :::::: ::::. w sssss.ssssss e lt

- $ 2 'eEE - N -

m . . _I R >

kkkb h

~

k q g >w

- y . . . . .

_ q c1 dd 4 -

  1. ~

_- a g

a D p g -

d O

? Q SV

- ~ ~: );

g S.-

7 ' N N '

> dk $d -

a b-

- < .: s

.  : 2 4 2 ,.

~R _

_,b e

g g ..

)

3 e.e - -

g L u k L @-s s s.e . ,

  1. h h h h E *: ?: $ I
  • e g k g g- g fl.

4 h =%

- i.

.l(

  • e l.e i..d.i. e 7 e

f.

tj

'e

)) h hk kd i

w ,

i i

=e'1m4" t

3 1 h h 'I I Ill m e . #e ~ .. 4

+ < ,

.l '

g e .,

4 m g Do d e b o - ec d d 0 m o d r p ..

c'- a m

y **

Q 1

c .o :: .t -y-~g -

t

, e.

e u g o .J

, .o -

@ . C & & & CE4 a g g

gdpwwwwww 'l 2 w s 2 .t d E E c
::::.

<$~

ws.::.c c<es

.::: .::::b '::: ::: A Ob :::: ::

l

i . . - - -

' 164 VI.3 Appendix C - Records of Calibration I

I E'

I

. E I

E E

I' t

i i,.

I I

l I :

E

'- ~ w

- - - s- --_--- , , _e - - - ,- - aa _ .. ___ _ , _ _

e e m-,- .-w - ee- -s e-e whN-. m- eny,,

165 =

l MINICOMPUTER  ;

.)

I s b l m

3 3

11 15 9

e 9

3 il

_!g 1

-I i

I Y'

  • A# S 's & h % s A 5ha&E 5 W" i

! I h:@[ N m if edh,sh&Mhas h&m&6,e ms6,4&2 E &W S ~j' %S  ?$,p Ei M l,,j/ y p a.

... m .. w . n - -. n .a m n . n u , ,

'z ) "

6 E ~ !'"' G655DRdi?;ff!d'4+fnidN I w.e ] #o *P$CR'of. TR#:fr Calibration 4%y%%%  % ~ .-

. k Certificate I I bh,$,,',',',1

" [ N [ [ M ' O M'N ab ?<" Asset na: W S&

~

'e stN ll $ ' [ E% "-

S CI.S M fc. 'e

' M) f ' kk N b k

/'I [ tis'is toiert'ify th5[the AM # __ described abb've hIk 'belin I% '

i! 7

[y # gdrggy SDRC instrumentation Services per procedure.ADC /.14-t N M using the refe'rences listed below and has been found tole withinT D .

g s V s.

j_the tolerance specified6 y s,-

e j

(', , ., k -

g Q 3 ' -Q L] p. -

l 4 U C liiedleferences O' sed ^

W i -3 E J .'* ' 'Las7 Cal Datet ~*'

M ,4 h i: <

,Y~,$

)

c'i KYeLU k C- $100 A- "

CbLib'KNTDK A 'i ~, w - %2- i.. p (.

+ .~s -Trucutr ro z wu

  • i r .? ro1 ~- - =-. s + <

,Y l'EMT19*/CM71*W3X~7 9 L .C'nJ '"fl% 1-. fl G -: , ,

{ . '^~7%fDti G-l4 - - - .- .

h'i .= - . . . .. , - - .

,; - n. a- u a a r ,e c.. m n.-=. m.s. m . g,

_,gp j ; Channel : Frequency;::"qN Ret,JQ/v{ /i -' Q.Outp01. Y % f&rori.. g E

g

} ,,

. ,0.cg:,,37g-y,,- y;,~; gyg 3 pg ,

y* kJ

- A' -

-) A _D .C t- ggg,7 C

-mom * ?33  ; !, n I'Q 1 0 h 7

0

{

-A A D.C. s - g gM,~ g D.C[T,$"Q'd&$K.Q*9 9g.

~

Q-Z.pd.99g f, ,: ,7g W.Q y' . . . l l

kN

g. _-

'D.C:4 73 M GNh ..Tp,V M/' MMO'o .

' s , -j - D.C.f} -G'gdKW.% %);;jyg = Qj,g:'

/

Di*

')

N I B:- D.Cf l tl.E[N [/ SU-! w .+ ' f, 7 99

,06 l l

. j. - B -i D.C ' -$ . 8 , ' '. - /l?16' ,22

~

{

,,j g h c D.C. &.1201'i - +, /2 03 . / '/ f  ;

/

v

.O If n D.C. .1201( '

, /102. 08 cr f' + /, T O / 04-

, g r- D.C. +1.8 }

. C n c_ ~1_g

_f 799 ', 0 4 - C )

b. ; D D.C. &.1201 -

4, / goy.- ,yg f ,,

?.3 i

.; .  !. D D.C. ' .1201 ., /Jo 4 , y,f - p ,

(' I n D.C.

D.C.

+1.8

-1.8

+ /.103

/.794

',/7

. 22. ' $

f ..

l

.Q Q hA,.<

l j,

-->>n es._.

~

.'s-R_C .

c "mdEsU i Cahbrated By um - N I, -

alm-mm-.-a.Ro.2 .m8

,_,( q.nwqp wy ,mn,.wy ,,,,y ,,w y -

l x

l

1

-l ,

CONTROL ACCELEROMETERS .

l e

01 gI I

.il :

~I /

JI 1

JI

'l l

JI II ll >

~

JI

e I 5 ~..

lI l

C ._. _ . T d Structural Dynamics Research Corporation 2000 Eastman Drive lg Milford, Ohio 45150

'3 513 576 2400 i

l I) l CERTIFICATE OF CALIBRATION This is to certify that the _/re,/c-o, ,y'e,.

1 described below has been calibrated by the staff of SDRC Instrumentation Services within the range below and l has been found to be within the tolerance specified.

, l

. Iten kee*leronY*> Date A ly IC; / W Manufacturer 8< B Serial No. S3 70 Model No. 3 a F /'5 Notes C Si n Arne) x censsnodo i n n ~ v 4. -

<r

-u ve ,

Frequency Inputy Output 5 Error lg M l. o o /69.3 33

\

~)0 n 10 9. Y 3. C .

E SO 4 Io 'f.3 W. 3 soo e lott. 3 v. 3 ~

%6 ' /64r. '7 af, y -

coo 4 /o3.7' 2.>

/k I' /mA V. o l '. c. >

9 se 1)N . I 15 .

1

I' Structural Dynamics Research Corporation By W8 &

1 1 _ _

. j

_g M

t.= '.

O-

-)..-ta 3 Stractural Dynamics Research Corporation 5 2000 Eastman Drive Milford, Ohio 45150 B 513 576 2400 g

}

CERTIFICATE OF CALIBRATION --

This is to certify that the lee.ler o, ./,- Y described below has been calibrated by the staff of SDRC Instrumentation Services within the range below and -

has been found to be within the tolerance specified. j Iten ACE Aredos~cie' Date tluly M .19 Fr .'

MCS Manufacturer Serial No. S3 ~7 W

[ S 3 -> q belNo. 3GPA ,

]

Notes ( h Ao a e l Y

~

.s e w .1 'tr a rts g

99.3 -

i

_, i Frequency Input + Output  % Error -,

16 1.06 i nn . 0 7 .&V -

Do o /d/. f 0. 6 50 't / o o,F 3.G s$,

too or I03. V 't 4 9oo Sdd

'i 103.3 14 d.1 4.I

3. )

'}i i te l 6 D . ~7 T. 5

~

91 't Ioily' 5.l 3p /04 7 M,i I

i.

ll

)

-E Structural Dynamics Research Corporation II By Yd M [

I...

l e' .

E, -- q l C.=d - -Ld Structural Dynamics Research Corporation 2000 Eastman Drive Milford, Ohio 45150 i 513 576 2400

/ CERTIFICATE OF CALIBRATION This is to certify that the MO FleMETER_ 2 described below has been I! I calibrated by the staff of SDRC Instrumentation Services within the range below and has been found to be within the tolerance specified.

Item Acc e d e 'o ~ede- Date '7 !T /

Il Manufacturer OdR Serial No. 53'24 Ii.i- Model No. ~70 # d Notes d ahmal t ze m J-rty ja a.1 -/c I

Frequency Input (j/ Output  % Error

/a 1.6 o lo3.C 3. T 9O Lo G. o lo3. 9' 3. 7 g 4. 7 So ir /d 4. F ly /d o 't / or. F g. '/

E D00 to r/>x. H E.3 Roo ** Ic5. D s. I~

,l lk t, i os, g g. 4-9k et le4. 9 9. C 2lt Ir 120.4 90e3 I

I  !

Structural Dynamics Research Corporation by Wh Y)

mma -- --.maa__. J _-. _w._ _ _, a_ $ A _ 3-,_. _ a m. ----_ a .___._- _ c- a m---- .--____

-,-, ,w .om, ,.,a m,,, ,,

'u' =- me--h w . .e=4mh.-

171 ,

j

-I SURVEY ACCELEROMETERS l

-I I

)

i

/-

d 1

i i

3

.1

s-0>A

]I if

.:g

. .)

j i

-I

-p,- - ----e--, - ,g.-,_ - - _ - . w -,. - - , -. - - -a- m- - - , ,_,- -----m -------------- _ -- ---- - - - _ - -

g c~=.,, ,

e . ,. a Structural Dynamics Research Corporation 2000 Eastman Drive l Milford Ohio 45150 513 576 2400 l CERTIFICATE OF CALIBRATION I I This is to certify that the arrebnwid calibrated by the staff of SDRC Instrumentation Services within the range below and described below has been has been found to be within the tolerance specified.

g.

af'800 Date N~O -

Iters ,

Manufacturer 'KB Serial No. 21b7

~~ ~ ' - ~ '

Model No. M *

  • Notes y d.[M, M , M --

l .

Frequency input @ Outpu(wh 5 Error .

l 6 10

'1D 4

'R9 43.5 -1.4

.6 l 416 .S >

15

~20 scoo .l w

.-- .s g

ICD m2.2. 2.$

@ lot.B t.9

@ 21.6 t."1

' 10 lenb 2."I D%

7U- 1lL'1

, s' <r i,q.2. ,

34 3 I Structural Dynamics Research Corporation By

a

(= -

y e-:. '$

e- -

.- w Structural Dynamics Research Corporation _E 2000 Eastman Drive 5 Milford, Ohio 45150 513 576 2400 .

CERTIFICATE OF CALIBRATION E

This is to certify that the sfobismo4. described below has been -

calibrated by the staff of SDRC Instrumentation Services within the range below and has been found to be within the tolerance specified. ?l Item ^ f'8 00 Date N ~$

f Manufacturer M Serial No. T768 -

Model No. M '

Notes & 'i'1b, M mlb~ A'2-J Frequency Input @ Outpu1(,mY)  % Error 6 to M.b -/T ,l 10 <

ico.S .5 15 MS .B l

~20 100 0 .*>

l Sb en4 .I 'g ICO ct.4 t.\

20b std.S 2.5

% utA 2.1 il If 10 2.4 3I 1 2L @ 3.5; _J SL 'I ItSA f$.1

.1 Structural Dynamics Research Corporation By M

-l

I C~' --3 %

e- -na Structural Dynamics Research Corporation

! I 2000 Eastman Drive Milford, Ohio 45150 513-576 2400

' CERTIFICATE OF CALIBRATION This is to certify that the arro001smuid, described below has been calibrated by the staff of SDRC Instroentation Services within the range below and has been found to be within the tolerance specified.

I.

Item punkd Date N~O lI i

Manufacturer N Serial No. T M:4 l Model No.

Notes 326

, ate dMf: ICD 6 ml h OD 1

s

  • i I  % Error Frequency Input @ Outpu1(,d) 6 1D @.4 ~\. \

10 i 30t3 ."1 l 15

'2D 1017

\CDC 2.1

-h S 10 04 M ICD tole.$ 56

@ MS M l @ 104D 3.4 10 10 5.9 s.g I  %

fK. 'I 29 lito e3 rt.*J I

i I

I Structural Dynamics Research Corporation l

By M [ I M - - - -

J e q ._, m e . ,. e Structural Dynamics Research Corporation

-l >

j 2000 Eastman Drive '

Milford, Ohio 45150 .

513 576 2400 CERTIFICATE OF CALIBi!ATION i !

This is to certify that the arrabinW 4, described below has been -E 5

calibrated by the staff of SDRC Instrumentation Services within the range below and '

has been found to be within the tolerance specified.

.a b>A M Date TO~O <

Item --

1 Serial No. 2710 Manufacturer TCB Model No. ~3Cf6 . 1 Notes

,6t/ d b ,* M M b- *b -

~

N Frequency Input @ Outpu(,mh 5 Error 6 1D 41.1 - .h E m

IO i @.6 .S .

15 m.$ -1.t 20 41.1 -1.7 _l SD m.% -b Ico 101.2 .t .l

-@ 106. 4 n.o .

t.1 E 9e ted.6 _g it 1e4.9 t.5 2L uaB s.1 S' <r no.7 go.3

~

I Structural Dynamics Research Corporation By Wh

-I

d I i j%

I i Gb" t =1 td Structural Dynamics Research Corporation 2000 Eastman Drive I Milford, Ohio 45150 513 576-2400 I CERTIFICATE OF CALIBRATION This is to certify that the Ad65Z6%O5/ETEf _ described below has bee.:

calibrated by the staff of SDRC Instrumentation Services within the range below and has been found to be within the tolerance specified.

! Iten kddEIOC NEWL Date $ E IV; lVSl Manufacturer EddEl/dd Serial No. AMO3 Model No._ II8/A W5 Notes kl/- Pik$ db~ = /O'/4xlYt AnR d%<<%50 =/mnVfk- -

l 0 (/ 'G E Frequency Input Output  % Error I .

XD//s 50

/ 00 m J

/6. +o

/0.28 3,rc )c f,7 0

=

l /00 /O.30 2.9 _

2 00 /0.34- 3,3  :

/0 32 l SCO lt /D.30

' 3 . I_

f.9 RK l0.40 3,7 11 I .

4K s/ /0.6 4- 4./

I Ii Ir Structural Dynamics Research Corporation By [ 6, ll __

I _ _ .. -- - - _ .

-l d j%

_Structural _,a

w. L -Dynamics Research Corporation

-l 2000 Eastman Drive fMf ord, Ohio 45150 _

l 513 076 2400 1 CERTIFICATE OF cal.IBRATION

.ji This is to certify that the /ddE2EdhM4 described below has been _3 !

E calibrated by the staff of SDRC Instrumentation Services within the range below and has been found to be within the tolerance specified.

dfdf/ 2 0M E M gage k r 29, /ff/

Item Manufacturer U Udd Serial No. $fO9 _

Model No. 22f/ A -

Notes /lM buabHYu *

/Or /Ax lll4 - N' ~

bw b+s$wY = /90 m / / d.-

[ t f. //

3 Frequency Input Output  % Error A 0 $2- l. 0 0 c, /0,3[a y jg $o ~

~5D 0 /O. 2 $ f. S~

/0.32

/00 3.I ~g

/0.28 20n 2,7

~ 300 l0 30 2.9 -

It /0 30 2.7 5 2K /O.03 ,3 4[~ v /O. d0 3,7 .h I

~

DI Structural Dynamics Research ' Corporation By fh. m I

E '

j .

l G~3 m e_- ,gg l

Structural Dynamics Research Corporation 2000 Eastman Drive Milford. Ohio 45150 I 513 576 7400 E CERTIFICATE OF CALIBRATION iG This is to certify that the ortohd calibrated by the staff of SDRC Instrumentation Services within the range below and described below has been has been found to be within the toicrance specified.

Item Tf'8k Date N ~O Manufacturer M Serial No. 2'776 Model No. M Notes a#i41Mn H5 m1 a~ 47 l

Frequency Input @ Outpu(mY)  % Error 6 1.0  %.O -35 10 <

ert.o -2.s

.g ,

E 15 41?; -22

% m.4 .)

W T1A -1.6 ICD lco.o .5

.bD Ibl .*J 1.8 l 10 tot 5 c.o A M.1 17 1

  • 18 3 c2 l

I Structural Dynamics Research Corporation By Wah Y

~. . . . - . _ . _

' .J

^

Q. ' *:- . , K -

u --

- t. a Structural Dynamics Research Corporation ,

2000 Eastman Drive Milford, Ohio 45150 513 576-2400 CERTIFICATE OF CALIBRATION This is to certify that the &to00ld described below has been calibrated by the staff of SDRC Instrumentation Services within the range below and has been found to be within the tolerance specified.

Item 0f'800 Date N~O Manufacturer M Serial No. aT74 Model No. M -

M Notes W d' b *. IM D m

I

% Error I

Frequency Input (ql Outpu1(vat) 6 ID tcDo .3 10 i ico.o .3 15 mo .3

  • 2D tci.3 1o

@ 101 ~i 1.4 h ICO M1 3.4 -5

  • 20b ti2.5 2.2 g

% 102A ~2.t -g 10 ICIA- ~2 I 2E iod.2. 39 .

1 'I tio.B to.5

-I 1

l Structural Dynamics Research Corporation '

By M

-I

I ,

Q "-

7 .}. m- :

W -Ad Structural Dynamics Research Corporation 2000 Eastman Drive Milford Ohio 45150 513-576 2400 CERTIFICATE OF cal.IBRATION This is to certify that the sto001d described below has been calibrated by the staff of SDRC Instrumentation Services within the range below and I, has been found to be within the tolerance specified.

Item St'Ob Date ~T&8 Manufacturer M Serial No. 5381 Model No. M M

Notes W$d4 d'. 21ml a -

, I Frequency Input @ Outpu1(mY)  % Error 6 1D c2.3 2.1 to < a.s i.3 15 ota ao t

. '2D K32.'$ 10

@ KHb 4.S 10D tcss?- 50

'206 W.% Ab fE0 EH.4 4.2.

til Ittd 4.1 I "M- ICbb g.4 l ' & 'I 11 2 .4- t2.2.

I I

t I Structural Dynamics Research Corporation By M d 1

I

e a..u_ _ _ , - ._ _ s,,-- _ a a 2 a, 2_

m.m. -e -*_ w 6sh +wN- as -_m- - -+-- m.

181 j

-I J RECORDING EQUIPMENT I

I

~I m3 1

I l

_I

.)

JI!

il Jg

~

Jg

--w- '

l t

~~

- ex .. s p r-- ,

~ ~

S

_ . _ . _ . _ . _ . m"S

[s ,-.

g . .p. x.,cs..m7 r, a r.w.n m w cm2r;;7pmce. _. .qr Cert. No.

I'  %

8'*'*D'"'"'=*C""" Date lo - 9' 71 0 g2 I1 4's r,, ce '

Certificate of Calibration -[ h, r

l '

l* Manufacturer So f)L 0 Model M MO .[ >

S/N 4/O7 I l

[I Asset No:

b.'

This is to certify that the dMW /E60/4M described above has been' . N calibrated by SDRC Instrumentation Services per procedure

' ' [Y[

'S '

I.I using the references listed below and has been found to be within- D the tolerance specified. -2 -

l

\

a wn ' '=r' ~,- "'

cen n

\

~

\?. kra nrst-M/7E~ s#c o n GartvEXATOC y

).,: i s S /

t .. . .

Frequency Ref input : Output  % Error h Channel

}, [\

O, tV) -', .',kg lY) (V) *70 s, UC o 1 1 Y 1 b.C . S.O .S. O f f., I00As 2.0 i->,5 20- 2.0 o (

1

, l: I b .c . S'O'W:2S 6.0 o .

h' G 100 Ae- 2.0 h-s S/0 20 o L sl. 3 c .c . d o' 2r s.o o ( ,

ll (hg f .

+

too M2 b.C .

2. 01. . a Ad lo 25

/. 4 6.0

-5 0

.n f6 l

\

g iD~J /oo #a 0 '

/o 2, 0 I

2. 0,- u

~,f : 3 b.C. J'. b 15 50 o k*~

k' 5 *- 10 014 e 2. D nn /0 /. ? -lo h l \ \' j..'

-g l:

G b. c.

ion ne 2.06 3 d.o' 25

/o S.0 2.o o

o y

e , ,_ 4 4

iI p, kA

{...

t- .s m o s-,,, p . ;h 4 l  ;..

o -. -.~ . -

yx ,smsinw rv soo n v/a%.

g%g.s,

,l (' [.^J" C 4 calibrated By

............,...u.......'. .

s, m*g . e,-g

-r-Q,wr ...sw s n w  ; g ,.. . .; e n . _ . g n . g n.,,

1 .,

wan - an a

- r. <* -

3 -

il  : A' Q r ,I N C @ > L { y. @%,

a;  % g, 4

gvtg 4 .mes .f.i py b.sy

+

i<=m%.

i 9 e t p 2K,se'<=r 7wg g,p# '<h,I 4%

P

&4435fdhRfdkR$@$f in g

45 rAbnamhhhsm,se er,.G.tisRrme;,,mmm t

p.n.-. .n- .n.=. a.xs.ww-_m. ,.,m s% n.

. ' * ;i; 3

fh ' f -

l

-c-- .=

g 1q..f e p n p ro .< Oate, ./o- re . e -wi u w...Ag <

w

/

e #.'CMertificate y -

of Calibration., x sCwQ W 6 V. . j- g q'h

,,,ce . .

~

L hiMariu actb!er W b0HL S

~

Model IAO ~ * **

  • L b

'y .

({FAs's'st No:

SIN 3i77 ' '

'A $ $'.

I* *

/ hl[l's;t dertif tiik the Nsts# AEWA6& described ab'ove has *' ~ =been . 1 ~~s ~

calibrated bf SDRC Instrumentation Services per procedure 1 j

,. % +3 N , using the references listed below and has been found to be withird. 3 .

he-loferance specified i ,,, ,,

u - ,

(9  ; -

., ' C CNified References t[sedY .4 ? . l Date~ '. ~

i N h.

4 FLt/rE v 'KIMA LMidbt7'DZ- 1.ast4Ca/19 /9/-% - p 9 .

,9 -u,+.. r n w 1-. . .  ? .  % 1 . + t _

l (y v. .

..m - - - -

r , .n E

\ .

( _ -

J

., .. ~ ~ . , < .

. . + -

l

,3 -

J - Channet . . Frequency ' ,Refeinj>ur ^_.- Output . 1% Error- [ $ ,

Chnnnel's II-6 rn11brnted n'IioYlown .

~

h, *! ICO BAL adiusted for mi5bN h e n trovement. l

~

h -

' center'_h-n  !.

ZERO~adi usted to l

PEN POSITION control adinN dIto center oer .

Q I Prenmolifier BALANCE adiu;ite'd for zero pen deflectic nd .

-sp )5 , - . q _

! when SENSITIVITY X1' control-is rotated. ~

q SPAN ddi usted for exact 1v ~25. divisions wher i2. 5 v . c. v t.

.(..{ N{'_ applie'd to input terminalaf DAMPING control adiusted for sine-wave'25 d iv'is' ions A .k b-I E

. @ 5 p-o when 1 Hz sicnal apol led to input terminal's . 3 C} Amolitude resoonse checked at 10 divisions ( 10-'100Hzl } )

and 50 divisions (4-40HM N RT and LEFT LIMITS adiusted to 2 divisions outside r> .. .

4

-->B'Ej:<j 9,,

y:

chart edste when -3V.d-c applied to input te rminals.

~

t .

, I a

-QSDRC y- + l

. n - -- e Ed O U y = w m = 1.= =. = -- x.c.= = =..d !% .m.,== hn u

~., g v g m .; g m.u .gwwmwym.mgpwauyy Cahbrated By k l

5

,, 4 U -!

En l

l

I Y

dr-f'g, h m,, A ,,st a a gm m ass b >mm Ya aa > G!Ea a ,>msa jc 'p , .

a .

s*e s w u 2 a u = . m ~=-= - ~ ~ m m a a n a l h kn ;,F Cert. No.

~


Date /o - ,' 4 -ri Ey

.g a t.

. Certificate of Calibration s - . .~.t

'(p.,am 3 aK.

/ '

3 *ryc*,e s ,

1 t l Manufacturer ' MONEYWfl4 Model efff V/M/f o### h' T,-J J'* Asset No: SIN 4 FYI M 3 ry i33' P '

MEdOAdfA described above das been O O f.

9 5.,~ calibrated This is to by cerIify that the Sennces per procedure

/f #

SDRC Instrumentation -' ~-

_bi F d '

~

using the (eferences hsted below and has been found to be within e 'I

- the tolerance specified.' , t y% ^

~

M~

.h.,f k f, Certified References Used , Last Cat Date . g.

P-I I; p

ij I.

'(

~

~

_1" h ..i

.y

}

l., -. -

l y enarinei:: Frequency y. ne<Japu~i- .1 output = % error

~ "9,'

j l..' vi m o xarx nnoicEWeV-rios excon w t .

h E

10~ 14Rt N . A L L CHAN'h/ CkEO fdf COMxEC 7' v esio:.in e m e m o m % ,e iiamm a d Ef Q ,. ?: CAL fnT EY h]'.

I  %

"'5 (,

irsis n e ex omon iae Wa o r sins s .:r > or s a is knwnns.

~

ca @Y + *~j' w

.r o 9 g fp,U. g,i 7 [ii

%,y

'l '

-tgh

{fae-L H

I r..'$h - l)...

Tb lI t %;  % 4Y lI Mla.sanc f . . . _ _ _ . _

o

$r8

.% g

$YUlOE Cahbrated By ,

5 h

.  %.Li., %c.#m.,.m@.am. , . ,.3,c

. ,,,,,g pwsaqimga:Egyau.

.. ,,,, e ,,,,.3, c . .. ,e .,J -

l i

SDRC FM RECORDER CALIBRATION EQUIPMENT: HoweMeu_ "N I4s14 TH WN -

SERIAL NUMBER: cottblLHT712 ,

CALIBRATION INTERVAL: 5 MourAr P CALIBRATED BY: (IM [D!

DATE: 8 6-B\ O' D '

CHANNEL 0 VDC INPUf N 4l

'PC 2.B::tib VDC INPtIT MI 4t carrier VJ1s. output.Vdc carrier (33 output Vdc 1 tc8.c45 .2. sm.227 1413 2 .CCD 41.0 .24o 1 41 S -

3 .oa3 .6 242. I 413 E 4 .043 S 21t i 41 3 s . M\- .4 .2t? 1.414 s 037 .5 .247 i.414 -

7 .tc6 .

+ 1.2 .25 3 1.4l4. - -

8 0'fl 4 .2. ,22.% i.414 9 .0"b .B . 2 71 ( . 414 In .00 4.5 222. l .41S 11 .CED -!.I .224 I.41S 12 . 0E .6 .'241 1.414 13 .623 .L i . I ,22b (.414-14 .W 2. 24'D I 414 18i N w \10)CE. CRANMEL VO)C.E. C.H A M M E L_ '

16 17 -

18 19 20_ -_

23 22__ _

l 23 _._ ..

24. _ _ = ___

2:. . . , ,

26 ___ ._

_ 27 .

2a E 1&k ua och SDRC CALIBRATIC.

02LA 'J >

w'tW'ao muagts mmg w z u u .L ;141 v u. ~

icit .tdic. Re-6 a o ib.

, _ _ _ , a w. - --- - - - - - - -

-we em ..m. -s *-m I

- ,.e me 187 MULTIMETER

.I 1

1 I .

I ~

I

'I I

I I

I I .

I

i = = - = - - - --:--

SDRC FM RECORDER CALIBRATION EQUIPMENT: dahr 145.14. AUM ik SERIAL NUMBER: bl4bSS .

CALIBRATION CALIBRATED BY: k ~N [b INTERVp[l* la AdMl10 l DATE:soJ 5 All L l

CHANNEL 0 VDC INPUT 2 M B VDC INPUT carrierOGhd outputVdc[mh carrier (GE) outputVdci 1 m.495 -2 75r.2co I.4 11 ._

2 101.rch -l asi.2M 1.415 -

3 is 04 41 is.256 t.46 l,

~'

4 viel +1 s.A6 14 6 s 15.061- -3 151.26 L4t2. j, s iMas -l tst.1.25 1.46 7 id.ch -2 151.17 5 f.442.

8 15 MZA -1 til.110 1.4t2_

9 tot.obt  :

-1 151.ltf I.46 in K.ON +1 15t h I.4 11 i1 Itt.t6L 151.722 _

12 13 UIMA E.@

+3

-3 c.22 r9.mK L4ts 1.4 W J

14 18.@ +1 151. # 7 1.AW

,s ld

=

17 18 19 20 21 22 -

23 - - -

24 25 .

g 26 __ _ - - -E 27 _ _ _ _

?R SDRC CALIBRATION -

Q }'.a l u.=-. -

Structural Dynamics Research Corporation 2000 Eastman Drive Milford, Ohio 45150 513 576 2400 CERTIFICATE OF CALIBRATION This is to certify that the -2@' 2t<< described below has been E.. calibrated by the staff of SDRC Instrumentation Services within the range below and R

I has been found to be within the tolerance specified.

& dartri Date bmud IT* AEl Item l

Manufacturer- I"k Serial No. 767 N I Model No. ROS%

Notes cabbed an ntwAl. u A."'b.

i -

a Frequency Input Output 5 Error 10041 hV \tco4 404 '

fc/ \ IV t.ccob 4 IOY to cce 4C6

'f itD/ tCo.cA #

T \Cbnd  %.% -O i

IV .97)9 .o\

gy m \DV d@9 .c4

+ ttel m.qq . 0)

% Ybn- (CD.\\ + .\\

l K.o_

O \ \l<L .%% .tA k lbla. 9.%B .07_

  • \tC(,ct @.48 .02.

VDHL \%h toD.1\ +.\\

E l 1  % 1.Cotb 4%

f( DC- \%k itOc6 4&

l 1 wdh (tkitw_ in en partrn

\h 1.ttce + .ca esearch Corporation Structura Dygam I' By ,

v hil /[

.y I

2 - .z. -- 2 -

._-n, "* * '*

STRAIN GAGE CONDITIONING 1

I I

Il I

I

. 1

I il 1

~

4

-k

%1 ,

. )

-I

-I, 1

y7.y__,_, - _ _ _ _ __, -_.___y,_ __, _, _- , _, ___ __,

(

d g /

_d GIDhh.h h h '" NDh*.d_T.9tthhhMrshas ' w. k I[ .

wa.ua m ....-.w.-.n. m m a;ig n .x g y m $

Cert. No.

"*'W "

  • Date OO .20; /98/ I k

i k; .

Certificate'of Calibration R

,,,..e p >

b 5 .

g>

1

( h$ Manufacturer Y/MA Model O/d O i'

(',. Asset No:

SsN & h i M#/ /8/& _ described above has been  !'

't > f, This is by J calibrated toSDRC certify that the Services per procedure instrumentation  %

, using the references listed below and has been found to be within ,>

F.)' the tolerance specified.

L  !

' Certif e nces used . 1.ast Da

~ '

.9 q Channel [ Frequency Ag -
6 44 Output '% Error -. _q

/

7

'.] . rf. ..C- ; a \

1

=G:.'h y .

)

1 39, irl5W 4,4/

l t.) \

l

.% L 57;7R #fM3 .. 0 I

b 3 gf.g4 'G7FA4/ $

,w*

N

0 4 d?f.87 /ifI/

Y

$ S Sf.14 * /7h43 h

  • G t1

\ J, -

$9.P4 /74.6 /

7  ?

d s'],6f J74 6/ '$*~~

8 /7MZ

. 5 9. 84 l1 9 X9,76 /7f 4/

1 ma nus d>

i 1

r.: io g

.wei; wo, 2550g m or, .um ll ->a F E _D R _C E + T+

n f/ h "O b"~st caiierated By b  !.h h i

g e" " : . 1.=r. = = . .:.:.= c. = .2 = z ~z.1mit;u=W w //.

3 Q"gwnet siad' - t,.<e g w m- w we'+ g wneam> wnrsian g g ,fy wf, wA+&v W}'{@gw}';k/*%C*'~kiprE*ks,}';ib/i a %g/. we u l

, v . ,

1 E

l.

- .-. . . . - - - . - - - . ..-- _ . . . - - - . - - . ~ .- ..

191 VI.4 Appendix D - Fatigue Damage Potential Calculation Methodology ,

l

-I !

J J

.J 3

LI

.I

.J

.I LI

..I I

I

-I

-I

-I

I 192 I 1 The Fatigue Damage Potential values for this test were calculated with the SDRC Fatigue Software. The technique used was to acquire a time history (real time or analytical) and then count cycles vs.

amplitude of the table input displacement. The results of this I cycle count are then applied to the following equation:

10 u F.D.P.= I 2njAj i=1 where A is the cycle amplitude n is the number of cycles of amplitude A during the event The exponent of 4.3 is a number provided to SDRC by Sargent and Lundy. To make the numbers appear larger than 1, the actual I F.D.P. calculated is multiplied by 1000" . The SDRC Fatigue software calculates ten amplitude ranges based on the maximum amplitude cycle of the time history. The basic operation of the Fatigue program is included in this Appendix.

The time histories supplied to SDRC by Sargent and Lundy were modified with a multiplier when the F.D.P. was calculated. These I multipliers are listed in Sections IV.6 and V.6 and were provided by S & L.

The F.D.P. numbers for the Sargent and Lundy and the SDRC time histories were compared. The SDRC time history F.D.P. exceeded l the required F.D.P. in all instances. This was due to the fact that SDRC was also required to envelop a required response spectrum.

g In order to envelope at all frequencies, some of the 1/6 octave 5 bands were higher then the RRS. This increased the overall amplitude of the input.

'i I i

I OPERATION OF THE FATIGUE PRGGRAM ,,

This discussion will assume the analyst has one or more strain time histories recorded on a magrietic tape. This description will follow the Fatigue Procedural Flowchart illustrated in Figure 1. Refer to the command descriptions for detail explanations of each of the commands mentioned in this discussion.

Generally, the first operation would be to digitize the strain time history and store it in a file on the

-I Bulk Storage Device. Initially the analyst examines the time history via the Examine Signal (ES) command to determine proper range and filter settings; etc. If the hardware includes a GR2501 Micro .

Processor, the Scope Commr:a (SC) may be used to view a real time display of your histories. Then the analyst must setup the conditions for data acquisition. This is accomplished via the modify and list conditions (MC/L C) commands. Figure 2 illustrates the data acquisition conditions list. Once .

the analyst has exrmined the history and set the appropriate conditions, he/she would employ the i

Generate File (GF) command to digitize and store the histories. There are several standard commands available to the user to examine the digitized histories, these are as follows: Query File (?F); Read ,3 File (RF); Change File (CF); Delete File (DF). The user also has available the Display Processor to a

3 view the digitized histories. Entry to the Dispiry Processor requires issuing a caret character'(A). Refer to the display section of t t?s manual for available commands. .

Once the analyst is satisfied with the digitized histories he/she would exit the data acquisition task a and enter the analysis portion of the program (/F).

The first operation of the analysis is to search the time history sequencially for peaks and valleys and ,,

store this information in memory. This is accomplished by employing the Search for Peaks (SP) command. The Number of Peaks (NP) command can be executed following the SP command to

( display the number of peaks contained in the history. Currently, the maximum number of peaks that can be stored in memory is 4096. At this point, the analyst has the capability of storing the peaks

~

contained in memory to a file on the Bulk Storage Device. The Write inputs @ device (Wi@d) g command will execute this function. The user would employ the Read inputs O device (RI@d) 'g command to reverse this procedure, i.e. read peaks from a file on the Bulk Storage Device into memory. (NOTE: After execution of the Wi@d command, the peaks still reside in memory for continued analysis.) These read / write commands allows the user to replace the usually voluminous time history files with peak / valley files which are usually a factor of ten (10) times smaller in size.

The procedural flowchart indicates that the analyst is at a point where there are several possible l 5

directions to precede with the analysis. We will first discuss the rainflow path.

Executing the Generate Rainflow (GR) command, the analyst can determine the number of closed g cycles (hystersis loops) of the input data (peaks) versus amplitudes. Mean values of these closed cycles .E are also calculated. This information may be displayed at the terminal in the combined form of a histogram and a listing via the plot Cycles (PC) command. Displaying the amplitude with mean information; the Output Triangle (OT) command is executed. Figures 3 and 4 illustrate the outputs ,

of the PC and OT commands respectively.

We will now backup and proceed down the life estimation path of the flowchart. There are parallel pathes to transverse before the execution of the life or damage estimate command. There isn't any necessary order required, but each path must be complete. The Select Analysis type (SA) command 4 1 f

SDRC F ATIGUE REFERENCE MANUAL l I

__m_. _.___ _ _

I (

allows the analyst to chose an appropriate analysis type which more closely characterizes his data and/or his past experience with various fatigue analysis techniques. These arialysis options are as follows: {

1. Strain-life criterion with or without mean stress effects.
2. Strain-life criterion using Neuber's Rule for stress concentrations with or without mean stress effects.
3. Stress-life criterion with or without mean stress effects.
4. Stress-life criterion with stress amplitudes modified via the Goodman Equation.

The SA command requires that the user specify the type of input data.

If the input data is anything other than micro-strain, the analysis must input a calibration curve which relates his data to micro strain. This is accomplished via the Read Load @ device (RL@d) command.

I The analyst may wish to write this information to the Bulk Storage Device. The Write Load @ device (WL@d) command will execute this function. The user may change any number of the coordinate pairs by issuing the Change Load (CL) command. Once the analyst has input the calibration curve, he can plot his information on the display via the Output Load (OL) command. Figure 5 illustrates the output from the OL command.

The remaining task for the analyst before the estimation can be made is the choice of a material.

l I There are currently forty (40) materials in the materials data file, MATDAT.DAT. The material properties of the selected material are read into memory by employing the Read Material 'lD' (RM'ID') command. Issuing this command without an 'lD' will list on the display the materials available in the materials file. By using the operating system's editor the user may add to this materials l file. The Query Materials (?M) command will list on the display the properties of the current material.

l Figure 6 illustrates the output of the RM and ?M commands.

The analyst has the capability of plotting either a strain-life or stress-life curve once the material properties have been read into memory. This is accomplished via the Plot Strain / Stress (PS) command.

I Figures 7 and 8 illustrate these outputs respectively. The OL and PS commands have the option to cursor a maximum of five (5) coordinate pairs. This facilitates accurately reading points of interest from these curves.

l The analyst is ready to issue the Generate Estimate (GE) command to calculate a damage ratio versus input amplitudes plus total damage based on the information that he has input. This information is displayed in the form of a combined histogram and listing by issuing a Plot Damage (PD) command.

Figure 9 illustrates the output of the PD command. Since a rainflow count is inherent to the damage estimate calculations a PC or OT command may be given.

I I,

I<

I7 .

s i

2 SORC FATIGUE REFERENCE MANUAL

I 1

.)

-I

.1 c -I ES 7F MC .. J LC  ;

RF GF

_J  !

CF _

  • .J DF Data Acquisition WlOd SP NP ,

C RIOd

..P Rainflow Life Estimate RLed ?M GR SA -- WLed OL RM CL PS PC OT GE PD

' Hardware must have GR2501 pP. ,

Figure 1 Fatigue Procedural Flowchart SOAC F ATIGUE REFERENCE MANUAL 3 1

-I

apamm ammiamm_uma ammt mu imums man amm aus amm aus ums uma uma man m ._mmej 1 1.D. LABEL 81 17 *S.A.E. SUSPENSION

  • 2 1.D. LABEL 12 9 *CHECKCASE*

3 ANALYST NAME 4 *SDRC* i 4 TRIGGER TYPE 0 h l

5 TRIGGER LEVEL 0 6 COUPLING CODE 1 7 DATA TIME (SEC) 3600 I 8 REC / REP RATIO 1.0000  !'

9 SAMPLING FREQ. 1000.0 10 FILTER FREQ. 100.00 '

11 INPUT RANGES 1 8.0000 2 8.0000 3 8.0000 4 8.0000 i 12 SCALE FACTORS i 1 1000.0 2 1000.0 3 1000.0 4 1000.0

  1. i s s 0

s 4

? -

h Figure 2 i'

. :R 3

c-n 9 E FILENAME: FRD ANALYST SDRC 3 CHAN NO.i 4 DATE i 111579 .

5 i

1E4 I 1 0F PERCENT g i AMPLITUDE CYCLES OF TOTAL  ;

s L ______________________________

y 0 1E3 1 9.99E 01 254 20.3 G

2 2.00E 02 919 73.3 3 3.00E 02 53 4.2 C 1E2 4.00E 02 4 11 0.9 Y -

5 5.00E 02 13 1.0 C

. 6 5.99E 02 2 0.2 L 1El -

7 6.99E 02 1 0.1 E

8 7.99E 02 0 0.0 S - 9 8.99E 02 0 0.0

' 10 9.99E 02 0 0.0 12345678910 AMPLITUDE MIN. VALUE: -9.99E 02 .

LOAD (i_BS)

MAX. VALUE: 3.45E 02 l NUMBER OF CYCLES VS AMPLITUDE RANGE S.A.E. SUSPENSION q CHECKCASE en Figure 3 m- M m' m m' M' W M NNM N N M }M M M~b

manfamsEmmel amm A mus. mus. sum uma amm mum aus .ams m m _mem .ama uma m e c.

I AMPLITUDE 1 9.99E 01 i 2 2.00E 02 i 3 3.00E 02 l

! A 4 4.00E 02 i M 5 5.00E 02 P 6 5.99E 02 L i 7 6.99E 02 I 8 7.99E 02 I i g 9 8.99E 02 0 10 9.99E 02 D

7 6 E

6 4 1 l 4 12 30 4 3 l 1 22 53 235 556 41 6 2 3 E

l 3 15 9 91 124 3 5 3 4 1

N 9 7 5 3 1 0 1 2 3 4 5 6 7 8 9 10 l, $ COMPRESSIVE- MEAN TENSILE ,

i l

E S.A.E. SUSPENSION ,

111579

$ ;l

  1. Figure 4 O. ]

>l

m. m E

8.1E 03 i a

a  :

N i / _..

/ i 7  !

R e

LOAD (LBS) r 4

1 0

0 3.4E 03 6.7E 03 1.0E 04 MICRO-STRAIN DATE: 111579 CALIBRATION CURVE

. i y Figure 5 l

YM

, , , , e i t i M- M' M- M- M- M M M 'M M M 'M 'M M'M'M M

sus _ mus_ ame_ mus ums mmm. sum. mas uma em num amm .mme _mme lums am aus ~mus ..sma MATERIALS CURRENTLY LISTED IN MATERIAL LIBRARY FILE MANTEN A B C E F A538A*2 A5388*2 A5380*2 AM350*5 GAINEX*3 H11 RQC100*1 10862 10051009 4

1815 1945 1020 1040 1144 1541F 30364 30310 4130 4140 ,

4142 4340 5160 52100 9262 9500 950X 980X 1100AL 2014T6 2024T351 2024T4 5456H311 7075T6 T1

  1. ?M
  • MATERIAL PROPERTIES *
  • haTERIAL ID = MANTEN FATIGUE STRENGTH COEFF, PSI = 17/000.000 FATIGUE STRENGTH EXPONENT = 0.076 ELASTIC MODULUS, PSI .

= 30200000.000 FATIGUE DUCTILITY COEFF, IN/IN = 1.020 FATIGUE DUCTILITY EXPONENT = -0.688 CYCLIC STRENGTH COEFF, PSI = 182000.000 CYCLIC STRAIN HARDENING EXP = 0.136 R

YIELD STRENGTH, PSI = 78000.000 j ULTIMATE STRENGTH, PSI = 117000.000 2 #

i 5

! ~

Figure 6 l

i

.}

~

g R4) .)

L&J. -

e a

t.a_

E -

TW

/  %

g J e.-e

/ LAJ Chc LaJ D D GG dh .

5" Wm go ,

)r O '

3 C/> I J Z h -

. G - 2 NM M h -

o

-z ._

m=

- u, t; -

G C= ,, ,

J 9-== t.aJ LaJ C/> (#) 8.a ..

nC#) *-*

L2.8 3 r

u OC .

l i

e.-e r

= e-o W_

C/)

\ >=#3 C C E GN

- a >-- G Q_ C/) LAJ ~

GD La.a r og

  • 8.aJ t% "'

0- tr)

G) v 2"" -

I G -*

LAJ .'

LA.3 m E-b Z .. ..

G_-

QC A\

-3 l

, p EZ .G. .

l st#) G V*"* N -

t.a.8 4.aJ 0- 0 -- --

GG een EC I

~1 soRc F ATIGUE REFERENCE MANUAL 9

~

l

l me t amm_ sus __ sum _ aus_ sus.. ammt man amm uma mas aus aus _sms _ sum .muu uma m _sms; s  !

, 1E 6 l  !

l  !

i l' l

N STRESS w%- ~

AMPL. -~-

(PSI) ~_ ._ i

~__  !

i' s

a HEAN STRESS = 0.

I I 5 1E 4 E 1E 0 1E 2 1E 4 1E 6 LIFE, REVERSALS TO FAILVRE, (2NF)

HATERIAL: HAllTEli  ;

j DATE....: 111579 STRESS-LIFE CURVE .

E

  1. Figure 8

~ '

s

o I

i I O AtlALYSIS TYPE: STRAIN-LIFE W/ MEAN FILENAME: FRD18 ANALYST: SDRC i

ilEUBER N/F= 2.88 CHAN NO.: 4 DATE  : 111579 l

! MATERIAL I.D.: MANTEN 5 3E-3 # OF DAMAGE  % TOTAL D

i AMPLITUDE s CYCLES RATIO DAMAGE  !

y A

! M 1 7.99E 02 254 2.05E-05 0.3

  1. A 2 1.60E 03 919 1.45E-03 20.8 G 3 2.40E 03 53 1.20E-03 17.2 E _ 4 3.20E 03 11 6.96E-04 10.0 l

__ 5 4.00E 03 13 2.41E-03 34.6 R

6 4.80E 03 2 6.16E-04 8.8 ,

A __ 7 5.59E 03 1 5.81E-04 8.3 I 8 6.39E 03 0 0.00E-01 0.0 I 9 7.19E 03 0 0.00E-01 0.0 .

0 10 7.99E 03 0 0.00E-01 0.0 12345678910 AMPLITUDE BLKS TO FAILURE: 1.43E 02 l

MICRO-STRAIN i TIME TO FAILURE: 1.43E 02 HRS l

! DAMAGE RATIO US AMPLITUDE RANGE ,

S.A.E. SUSPENSION i CHECKCASE . l 3 Figure 9 f

l M m ' M" M' M' M M M M M

'M N]M M M M -~ M b

I 1 l

CYCLE COUNTING  !

The preceding section showed some fairly simple examples of the importance of the sequence of '

l I. events in an irregular loading history, in order to access the fatigue damage for complex histories it is j necessary to reduce them into a series of discrete events employing some type of cycle counting l procedure. For purposes of illustration, consider the strain history shown in Figure 25.

I coIS - 0 D ooo -

g ocoS 2 o

' ~

-coos -

a a o

-oom i F ,

pg4

-oois -a a e

so - 9.

9 so -

f1 f .

3 m - r o 8-

$ e 6 -ro -

. l ,

-.o -

-so$ U

l. Tmat --,-

l . Figure 25 i

The corresponding stress time history is quite different from the strain and no clear functional i relationship exists between them because of the non-linear (plasticity) material reponse. Events C D

'E3 and E D have identical mean strains and strain ranges but have quite different mean stresses and stress ranges. Following the elastic unloading (B-C), the material exhibits a discrontinuous accumulation  !

of plastic strain upon deforming from C to D. When point B is reached, the material " remembers" its prior deformation (i.e., A-B), and deforms along path A-D as if event B-C never occurred.

I in this simple sequence, four events that resemble constant amplitude cycling are easily recognized:

I A-D A, B C, D-E, and F G. These events are closed hysteresis loops, each event is associated with a I. strain range and mean stress. Of the various counting techniques in use (rainflow, range pair, level crossing and peak counting), rainflow (or its equivalent range pair) has been shown to produce superior fatigue life estimates. The apparent reason for the superiority of rainflow counting is that it combines load reversals in a manner that defines cycles by closed hysteresis loops as illustrated in Figure ~26.

mm ,

l D cv D c e

g 1

G 1

  • a

__ m ,

i g- Figure 2e l

I -- 20 sonc FATIGUE REFERENCE MANUAL

-I.1 The strairwtime history is plotted so that the time axis is vertically downward, and the lines connecting strain peaks are imagined to be a series of " pagoda roofs." Several rules are imposed on rain " dripping down" from these roofs so that cycles are defined. The following rules govern the manner in which ..

rain flows:

1. Plot the history so that the largest strain magnitude occurs as the first and last peak or valley.

This eliminates half cycles when counting.

2. Rainflow is initiated at each peak rad is allowed to drip down and continue except that, if it initiates at a maximum (points A, B, D, G) it must stop when it comes opposite a more positive peak than the maximum from where it started. Rainflow drioping from B must stop opposite J

g ,5 0 because D is more positive than B. The converse rules are La necessary for rainflow initiated at a minimum (pcints A, C, E, F). _.

3. Finally, rainflow must stop if it sncounters rain from the roof above as in going from C to D.

Events A-D ane D-A are paired to form on full cycle. Event B C is paired with the partial cycle formed l from C-D. Cycles are also formed from E D and F-G. Rainflow counting requires a great deal of =

bookkeeping and is idealy suited to a digital computer.

LI 11

< . 11 il

.,a 1

w 4

I

-I l

~

,-