ML19211A858

From kanterella
Revision as of 11:06, 5 September 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Containment Structures Design Rept,Revision 2.
ML19211A858
Person / Time
Site: Allens Creek File:Houston Lighting and Power Company icon.png
Issue date: 12/31/1979
From:
EBASCO SERVICES, INC.
To:
Shared Package
ML19211A855 List:
References
NUDOCS 7912210194
Download: ML19211A858 (150)


Text

I I I I I CONTAINMENT STRUCTURES DESIGN REPORT g OF THElALLENS CREEK NUCLEAR GENERATING STATION UNIT 1 FOR HOUSTON LIGHTING & POWER COMPANY g I I I I I I'E$$$[IlldL I EBASCO SERVICES INCORPORATED TWO RECTOR STREET NEW YORK, N.Y.

b fREV.2 DECEMBER 1979 . . . . . . _ . ._CONTAINMENT STRUCTURES DESIGN REPORT OF THE ALLENS CREEK NUCLEAR GENERATING STATION UNITS 1 FOR HOUSTON LIGHTING & POWER COMPANY _-COPYRIGHT c by HOUSTON LIGHTING & POWER COMPANY MAY, 1975--REV 1, MARCH, 1977 REV 2, DECEMBER, 1979 ._.EBASCO SERVICES INCORPORATED TWO RECTOR STREET NEW YORK 1634 136'. - . - . , . .. _ _ . _ _ . - - . 5_TABLE OF CONTEN'

-1.0 GENERAL l s 1.1 Ih7RODUCTION 1-1 1.2 CORRELATION TO PSAR l-2*1.3 RESPONSE TO NRC QUESTIONS 1-3

2.0 DESCRIPTION

OF SUPPRESSION POOL DYNAMIC BEHAVIOR AND AFFECTED --STRUCTURES j

2.1 DESCRIPTION

OF SUPPRESSION POOL DYNAMIC BEHAVIOR 2-1 2.1.1 DEFINITION OF LOCA 2.1.2 SAFETY / RELIEF VALVE ACTUATION s ,--

2.2 DESCRIPTION

OF STRUCTURES -2.2.1 CONTAINMENT VESSEL 2.2.2 DRYWELL 2_2.2.3 CONTnINMENT PLATFORMS 2.2.4 CONTAINMEh7 PENETRATION AND P7 PING 2.2.5 SAFETY / RELIEF VALVE PIPING -2.2.6 SUPPRESSION POOL BOTTOM LINER ^3.0 LOADS.3-1 3.1 GENERAL 3.2 LOAD DESGRIPTION DURING DESIGN BASIS ACCIDENT 3.2.1 POOL SWELL LOADS _3.2.2 CONDENSATION OSCILLATION LOADS J 3.2.3 CnUGGING LOADS 3.2.4 NEGATIVE LOAD DURING ECCS FLOODING _, 3.3 LOAD DESCRIPTION DURING INTERMEDIATE BREAK ACCIDENT __3.4 LOAD DESCRIPTION DURING SMALL BREAK ACCIDENT 2 3.5 LOAD DESCRIPTION DURING SAFETY /PILIEF VALVE ACTUATION -3.6 QUENCHER AND QUENCHER SUPPORT LOAD 4.0 LOADING COMBINATICiS 4.1 LOAD SYMBOLS , 4-1 4.1.1 SERVICE LOAD CONDITIONS b kl}[2 4.1.2 FACTORED LOAD CONDITIONS ---1 Rev 2, 12/20/79 _._ . _ , , , _ , , , _ . I I TABLE OF CONTENTS (Cont 'd) P-4.2 LOADING COMBINATIONS 4-5 4.3 TOTAL SUPPRESSION POOL DYNAMIC IDADS 2 4.3.1 DESIGN BASIS (LARGE BREAK) ACCIDENT TOTAL LOADS

4. 3.2 INTER:!EDIATE BREAK ACCIDEhT TOTAL LOADS 4.3.3 S1ALL BREAR ACCIDENT TOTAL LOADS 4.4 PROPOSED SUPERPOSITION OF DYNAMIC LOADS 4-7 5.0 N ALYSIS PROCEDURES 5.1 MET 110DS OF ANALYSIS 5-1 5.2 MATilEMATICAL MODELS 5-4 5.3 COMPUTER CODES 5-9 APPENDIX SA SPECIAL ANALYSIS OF CONTAINMENT VESSEL SliELL 5A-1 2 APPENDIX 5B DESCRIPTION OF STRESS SUIDIARY FOR STRESS 5B-1 INTENSITY CRITERIA APPENDIX 3C DESCRIPTION OF STRESS SUK1ARY FOR CRITICAL SC-1 BUCKLING CRITERIA 6.0 DESIGN PROCEDURES 6.1 STRUCTURAL ACCEPTANCE CRITERIA 6-1 6.2 APPLICABLE CODES, SIANDARDS AND SPECIFICATIONS 6-8 6.3 !!ATERIALS 6-11 6.4 EBASC0/GE/CB&I INTERFACE 6-12~7.0 DESIGN PROCEDURES FOR ASSOCIATED SYSTEMS & COMPONENTS 7-1 ATTACllMENT A - DIGITIZATION OF FORCING FUNCTION FOR CONDENSATION OSCILLATION

" ATTACHMENT B - MULTIPLE SAFETY / RELIEF VALVE ACTUATION FORCING FUNCTION MET 110DS I 1634 138 I ii Rev 2. 12/20/79 I ,. . . . . _ . . . _ _ __1 5+5 LIST OF FIGURES , 1 Figure No. Title 2.1-1 LOCA Event Sequence 7 2.1-2 Nuclear System Safety / Relief 2.2-1 Reactor Containment Building Plan 2 1;2.2-2 Reactor Containment Building Sections 2.2-3 Reactor Containment Building Sections -2.2-4 Containment Vessel Structural Features --{2.2-5 Reactor Containment Building Piping Penetrations _2.2-6 Deleted i E 2.2-7 De le ted a 2.2-8 Deleted d 2.2-9 RHR Piping Plan 2.2-10 Reactor Core Isc'ation Cooling Piping Plan __2.2-11 High Pressure Core Spray Piping Plan - Sheet 1 8 3 2.2-12 High Pressure Core Spray Piping Plan - Sheet 2 2.2-13 Low Pressure Core Spray Piping Plan - Sheet 1 2.2-14 Low Pressure Core Spray Riying Plan - Sheet 2 1!2.2-15 Low Pressure Core Spray Piping Section 2.2-16 Safety Relief Valve Designations lj 2.2-17 Safety Relief Valve Discharge Line 6 Quencher Arrangement 3.1-1 Summary of Postulated Accidents Affecting Mar'< III 2l.St to c.tureg _3.2-1 Loading Sequence for Beams, Pipes & Protuberances at

Ground Floor (El.142.50') - Pool Swell Loading

-3.2-2 Pressure Drop Due to Flow Across Grating at Ground Floor ( El . 142. 50 ') i J 3.2-3 Pressure Loading on Ground Floor Grating-Pool Swell Loadings

i iii Rev 2, 12/20/79 1634 139: ,_ _ _ . _ _ . . .

I' LIST OF FIGURES (Cont 'd) Figure No. Title 3.2-4 Loads at HCU Floor Elevation Due to Froth Impingement and Two-Phase Flow 3.2-5 Drag Load on Protuberances Immersed in the Pool 3.2-6 Drag Loads for Various Geometrics (Slug Flow) 3.2-7 Pool Swell Pressures on Containment and Drywell Walls 3.2-8 Base Mat Radial Pressure Distribution During Bubble Formation 3.2-9 Vent Clearing Water Jet Geometry 3.2-10 Deleted 2 3.2-11 Small Structures In Containment Annulus, Summary of Peak Pool Swell Pressure Variation With Elevation Above Pool Surface 3.2-12 Condensation Oscillation Forcing Function on the Drywell 'Wall 0.D. Adjacent the Top Vent 3.2-13 Condensation Oscillation Load Spatial Distribution on the Drywell Wall, Containment Wall and Basemat 3.2-14 Typical Pressure Time-liistory on the Pool Boundary During Chugging 3.2-15 Peak Pressure Pulse Train in Top Vent During Chugging 3.2-16 Peak Force Pulse Train in Top Vent During Chugging 3.2-17 Average Force Pulse Train in Top Vent During Chugging I 2 3.2-18 Average Pressure Pulse Train in Top Vent During Chugging 3.2-19 Chugging Loads 3.2-20 Suppression Pool Chugging Normalized Peak Underpressure, Radial Attenuation Factor, F 3.2-21 Circumferential Attenuation Factor, F - Drywell, Basemat " and Containment I 3.2-22 Suppression Pool Chugging Spike Duration, d 3.2-23 Radial Plane Attenuation Factor, F Suppression l, Pool Chugging Pressure Spike AmpliMde (normalized) m)0h I iv Rev 2, 12/20/79 I - - . - - . - . - . - -_e M;-_LIST OF FIGURES (Cont'd) ,!Figure No. Title 3.2-24 Circumferential Chugging Spike Attenuation Factor, F -!for Suppression Pool Boundaries - Drywell, Basemat a$5, Containment 3.2-25 Suppression Pool Chugging Normalized Peak Post Chug =Oscillations Radial Attenuation -3.2-26 Circumferential Attenuation Factor, F , for Post-Chug .Oscillation _3.2-27 Suppression Pool Chugging Normalizti Mean Underpressure .and Post-Chug Oscillations Attenuatic i 3.2-2E_Suppression Pool Chugging Normalized Spike Attenuation -3.2-29 Suppression Pool Chugging Spike Duration"d" as a Function of Location in the Pool 3.2-30 Typical Pressure Time-History for Weir Annulus During 2 4 Chugging i 3.2-31 Circumferential Attenuation Factor, F for Amplitude t of Pre-Chug Underprcssure in Weir AnnUYu,s 3.2-32 Vertical Attenuation Factor, F , for Ueir Chuggin; Spike ," Amplitude s 3.2-33 Circumferential Attenuation Factor, F , for Weir i Chugging Spike Amplitudes " J 3.2-34 Underprissure Distribution on the Weir Wall and Drywell .I.D. Wall during Chugging 3.2-35 Mean Pressure Pulse Train on the Weir Wall and Drywell _!.D. Wall During Chugging -3.2-36 Normalized Weir Annulus Pressure Pulse Attenuation 3.2-37 Theoretical Absolute Pressure Transient in Drywell s: Initiated by Vessel Reflood Line Break 3.2-38 Vent Backflow Weir Annulus Water Surge Velocity vs. _Height above Weir Wall -3.2-39 Drywell Top Vent Cyclic Temperature Profile and Area

of Application during Chugging

.~3.3-1 Drywell-Loading Chart for IBA -1634 14I 3.3-2 Containment-Loading Chart for IBA =M Rev 2, 12/20/79 y_ .- , I LIST OF FIGURES (Cont 'd) Figure No. Title.3.3-3 Weir Wall-Loading Chart for IBA , 3.3-4 Drywell-Loading Chart for SEA 3.3-5 Containment-Loading Chart for SBA 3.3-6 Weir Wall-Loading Chart for SBA 3.5-1 Pressure Load Distribution on Containment Wall Due to ADS Actuation - 8 Valves 3.5-2 Pressure Load Distribution on Containment Wall Due to SRV Blowdown - 19 Valves 3.5-3 Pressure Load Distribution on Containment Wall Due to

SRV Blowdown - 1 Valw 3.5-4 Pressure Load Distribution on Containment Wall Due to F AV Blowdown - 2 Valves 3.5-5 Pressure Load Distribution on Drywell Wall Due to ADS Actuation - 8 Valves 3.5-6 Pressu e Load Distribution on Drywell Wall Due to SRV j Blowdos a - 19 Valves E 3.5-7 Pressure Load Distribution on Drywell Wall Due to SRV Blowdown - 1 Valve 3.5-8 Pressure Load Distribution on Drywell Wall Due to SRV Blowdown - 2 Valves 3.5-9 Pressure Load Distribution on Suppression Pool Liner Due to ADS Actuation - 8 Valves 3.5-10 Pressure Load Distribution on Suppression Pool Liner Due to SRV Blowdown - 19 Valves 3.5-11 Pressure Load Distribution on Suppression Pool Liner Due to SRV Blowdown - 1 Valve 3.5-12 Pressure Load Distribution on Suppression Pool Liner Due To SRV Blowdown - 2 Valves 3.5-13 Oscillating Pressure Time Ilistory For SRV Pressure Loads l" On All Suppression Pool Structures 1634 142 I 3.6-1 Quencher Arm Loads 3.6-2 Quencher Base Reaction Loads vi Rev 2, 12/20/79 E

. . . . _, LIST OF FIGURES (Cont'd) Figure No. Title 4.2-1 General Loading Combinations 4.2-2 Containment Vessel Loading Combinations 4.2-3 Drywell (Concrete) Loading Combinations 4.2-4 Pool Area Platforms & Miscellaneous Steel Loading 2 Combinations 4.2-5 Lower Drywell & bottom Liner Loading Combinations 4.2-6 Reactor Building hat Loading Combinations 4.3-1 Mark III: Dynamics Loads Associated with a LOCA on Weir Wall 4.3-2 Mark III: Dynamics Load Associated with a LOCA on Structures at the Ground Floor (F;. 142.50') 4.3-3 Mark III: Dynamics Load Associated with a LOCA on Structures at the HCU Floor (El. 158.75') 4.3-4 Mark III: Dynamics Load Associated with a LOCA on Suppression Pool Liner and Base Hat 4.3-5 Short Term Drywell and Containment Pressure Response to a 1 Steam Line Break (DBA) 4.3-6 Mark III: Dynamic Loads Associated with a LOCA on Drywell 4.3-7 Mark III: Dynamic Loads on Drywell Due to Short Term Design Basis LOCA (Pool Swell Loadings) 4.3-8 Mark III: Lynamic Loads Associated with a LOCA on Containment Wall 4.3-9 Mark III: Dynamic Load In Containment Vessel Due to Short Term Design Basis LOCA (Fool Swell) l2 5.2-1 Overall Drywell Finite Element Model 2 5.2-2 Deleted'5.2-3 Vent Region Large Finite Element Model 5.2-4 Vent Panel Detailed Finite Element Model 5.2-5 Typical Liner Plate Structural System }h*i vii Rev 2, 12/20/79 _ _ . . I LIST OF FICURES (Cont'd) Figure No. Title , 5.2-6 Comparison of Simplified and Rigorous Analysis Displacement Time Histories For An Example Plate 5.2-7 Simplified Equivalent One Degree of Freedom Foiel y 5.2-8 Finite Element Model of The Liner Plate 6.1-1 Stress Limits For Containment Vessel 6.1-2 Buckling Criteria For Containment Vessel I I I I I I I I 1634 144'I viii Rev 2, 12/20/79 I I I 1.0 GENERAL

1.1 INTRODUCTION

l1 This Containment Structures Design Report is submitted in satisf action of the r quests from th e Nuclear Regulatory Commission for additional informa-I tion which were containd in the following documents: a)Letter, W. R. Butler to G. W. Opr ea, Jr. , 4/2/75 b)Lett er, NRC to G. W. Opr ea, Jr. , 4/23/75 c)Lett er, W.R. Butler to G.W. Opr ea. Jr. , 8/1/75 1 Th e purpos e of this report is to respond to the NRC's rquests by providing a comprehensive and organiz ed treatment of the structural design methods I which will be applied to Containment Structur es. This issue of the report is a revision which has been prepared to reflect 2 the current design as of the date of the revision. The information pr es ent ed in this report is, in large measur e, taken from the Allens Creek Nuclear Generating Station - Preliminary Saf ety Analysis I Report Docket No. 50-466. A correlation between these two documents is present d in S ection 1.2. I S ection 1.3 of the report provides a list of the NRC questions which were received by HL&P and directs the reader to the document where responses can be found. A description of the containment structur e and a discussion of the Suppr es-sion Pool dynamic and Saf ety/ Relief Valve blowdown phenomena are present ed in Chapter 2. Chapt er 3 discusses the loads which will be applied and I Chapter 4 discusses load combinations which will serve as the design basis for the Containment Structur es. Analysis procedur es and design procedur es are providd in Chapter 5 and 6, respectively and chapter 7 discusses design proedur es for associate syst en and components. 1 The source of load information is Amendment 43 of Appendix 3B of GESSAR, Interim Containment Load Report (ICLR), Revisions 1 & 2 (CE Documents 2 I 22A4365 and 22A4365AB), and Mark III Interim Asymmetric Chugging Loads (GE Document NEDE-23981). I Il1634 145 1- 1 Rev 2, 12/20/79 I-I I 1.2 CORRELATION TO PSAR The information presented in this report is, in large measure , taken from the Allens Creek Nuclear Generating Station - Preliminary Safety Analysis Report. The following table provides a general guide to the PSAR where much of the information which is presented in this report can be found: Containment Design PSAR Section Report Section 2.1 E9.49, E9.50, E9.51, F9.76, F9.77, 5.2 2.2 1.2, 3.8, 6.2, F9.84 1 5.2.2 3.1-I 3.2 E9.49, F9.76 3.5 E9.50, E9.51, F9.77 1 4.1 3.8.2.3, 3.8.3.3, 3.8.5.3, E3.15 4.2 3.8.2.3, 3.8.3.3, 3.8.5.3, E3.15, K130. 24l2 4.3 E9.49 6.2, M.110.6 l2 4.4-5.1 3.8.2.4, 3.8.3.4, 3.8.5.4 5.2-5.3 3.8 6.1 3.8.2.5, 3.8.3.5, 3.8.5.5 6.2 3.8.2.2, 3.8.3.2, 3.8.5.2 6.3 6.2.1.6 7.0-I I 1-2 Rev 2, 12/20/79 I 1634 146 I I 1.3 RESPONSE TO NRC OUESTIONS I 1.3.1 NRC QUESTIONS CONTAINED IN LETTER, W.R. BUTLER TO G.W. OPREA, JR, 4/2/75 1.Q Provide large siz e plan and section drawings of the containment I which illustrate the structures, equipm ent, and piping in and above the suppr ession pool. All quipment and structural surf aces which could be subjected to suppression pool hydrodynamic loading should be specifically identified and described on these drawings. 1.A S ection 2.2 of this rgort. I 2.Q Provide a graphic chronology of all pot ential pool dynamic loads which identifies the source of the load (i.e. , pool swell froth I imping em ent) , the time interval over which the load is active, and the structures which are aff ected.(Ref erenc e GESSAR Response 3.82)2.A Section 4.3 of this r gort. 3.Q For each structur e or group of structur es provid e the anticipated load as a function of time due to each of the pool dynamic loads which could be imparted to the structure. 3.A S ection 3.0 of this rgort contains the pool dynamic loads used in 2 the containment structures design. The bases for these loads is given in Amendment 43 of GESSAR and the ICLR. I 4.Q For each structur e or group of structur es provid e the total load I as a function of time due to the sum of anticipat ed pool dynamic loads.4.A S ection 4.3 of this r gort. I 5.Q Describe the manner in which the pool dynamic load charact eristic I shown in (4) above is int egrated into the structural design of each structur e. Specify the relative magnitude of the pool dynamic load compared to other design basis loads for the structure. 5.A Section 5.0 and 6.0 of this report discusses structural design proc edures for each structure. In terms of the relative impact of 2 various loads on the design of the structures; pr eliminary analys es I indiente that the pool dynamic loads (pool swell, SRV, discharge, etc.), compared to other loads, control many aspects of the con-tainment vessel design and some of the details of the bottom liner and the. lower drywell designs. 1634 147 1-3 Rev 2, 12/20/79' I I 6.Q Describe the manner by which potential asymmetric loads were con-sidered in the . containment design. Characterize the type and magnitude of possible asymmetric loads and the capabilities of the g affected structures to withstand such a loading profile. Include 5 consideration of seismically induced pool motion which could lead to locally deeper submergences for certain horizontal vent stacks. 2 6.A This question is responded to in Amendment 43 of GESSAR and the ICLR.7.Q Provide justification for each of the load histories given in (3) above by the use of appropriate experimental data and/or analyses. References to test data should indicate the specific test runs and data points and the manner by which they were converted to loads. 7.A This question is responded to in Amendment 43 of GESSAP and the l2 ICLR.8.Q For those structures subject to pool dynamic loads provide your anticipated schedule for completion of the structural design, procurement of materials and actual construction. 8.A This inf ormation is to be provided at a later date. l1 9.Q Discuss your specific plans to be responsiv o the concerns of ACRS As noted in their letter on the Perry Plant the Committee , believes that a more basic understanding of certain phenomena such as oscillations, vent interaction, pool swell, and dynamic and asymmetric loads on suppression pool and other containment structures is required."The Committee emphasizes the importance 'of directing the test and analytical programs toward providing not g only empirical design correlations but also toward more detailed 3 evaluations of the relevant two phase phenomena in order to enable the better application of a specific set of scaled tests to a g range of actual reactor conditions.' If ref erence is to be made g to GE analytical methods development, a finalized breakdown of areas of investigation perf ormed by GE and a time schedule as to their availability is requested. We require that those areas for 2 I which analytical results are available, but not yet submitted to a the staff, be documented for our review as soon as possible. 9.A See the Interim Containment Loads Report (ICLR). 2 I I I (*)Letter, W.R. Stratton, ACRS, to D.L. Ray, AEC dated December 12, 6074. I 1-4 1634 148 I . . _ _ , _ e-1 e 1.3.2 NRC QUESTIONS CONTAINED IN LETTER, NRC TO G.W. OPERA, JR. 4/23/75 'l.Q Specify the number of saf ety reli ef valves, their design flow rat e,-and discharge line size. Provide a listing of operating conditions under which these valves would be operated either manually or auto-7 matically. Describe, with the aid of drawings, the routing of the discharge lire to, and orientation in, the suppression pool, and the d esign of L.,*!.ischarge line exit. l1 1.A S ection 2.1.2 and 2.2.5 of this r eport. 2.Q Provid e the load specificaticn for the suppression chamber structure l to accommodate actuation of one or more saf ety relief valves. -i 1 2.A Section 3.5 of this r eport contains the saf ety/r eli ed valves loads I us ed in the d esign of the containment s t ructur es. The bases for s j these loads are given in Amendment 43 of GESSAR and the ICLR. l2 3.Q Provide the design load capability for the suppression chamber _lstructure. 3.A The containment structures will be designed for the loads given in g2 S ections 3.5 and 4.1 using the load factors given in Figure 4.2-1 l=through 4.2-6. 4.Q Provide justification for the load specification given in (2) above i by the use of appropriate experimental data and analysis. If the J General Electric (GE) Company is responsible for specifying these loads, a stat ement to that ef f ect is suf fici ent. I 2;4.A--This question is responded to in Amendment 43 of GESSAR and the ICLR.j 5.Q Identify, with the aid of drawings, any components or structures -)in the suppression pool r egion, other than the bounding walls of the suppression chamber, and the location of such components relative to the relief valve discharge line exits. Discuss the ==i structural capability of these components to accommodate loads due to relief valve actuation. l 5.A Section 2.2 of this report identifies the piping aff ect ed by 2 d saf ety/ relief valve blowdown. The d esign of this piping is dis-cuss ed in S ection 7.0. _, a l J ," 1634 149_l- 5 Rev 2, 12/20/79 . I 6.Q Estimate the maximum number of single and multiple relief valve openings over the life of your plant. 6.A This question is responded to in Amendment 43 of GESSAR and the 2 ICLR.7.Q Identify the maximum temperature limits of the suppression pool with the reactor at power. This temperature limit should include provisions for the testing requirements of relief valves. 7.A Proposed technical specification changes covering maximum tempera-ture limits and surveillance requirements have been provided to the NRC (letter, I.F. Stuart to E.G. Case " Suppression Pool Tempera-ture Limits", December 20, 1974). As indicated, a 160 F limit is recommended. The final value will be established in the FSAR tech. specs. 8.Q Specify the operator actions that are planned when specified temperature limits are exceeded. 8.A The information referenced in (7) contains this action. 9.Q Present the temperature transient of the suppression pool starting from the specified limits in (1) for the following transients: (a) main steam line isolation;(b) semi-automatic blowdown; and, (c)stuck open relief valve. For purposes of this analysis, the minimum water level should be assumed in the suppression pool. 9.A GESSAR Amendment No. 43 and the ICLR contain the results of these l2 analyses for the GE Std. Plant. Plant unique analysis can be perf ormed for the FSAR if the NRC atill feels that this would be necessary. 10.Q The temperature instrumentation that will be installed in the pool and the sampling or averaging technique that will be applied to E arrive to a definitive pool temperature. 3 10.A The suppression pool temperature instrumentation shall consist of a temperature transducer, temperature monitoring / switching unit, a re-corder, and annunciator. The system monitors local temperatures and not the average. Temperatures can be manually averaged from the re-corder output. Monitoring locations (typically 16 required) shall be within 30 f t 'of each safety relief valve discharge location. For an alarm / scram system, four (4) sensors shall be provided at each monitoring loca-tion, two (2) of which will be for the alarm function. 1- 6 Rev 2, 12/20/79 1634 t50 I . - - - . . __~;!4-_!lt em No.i 1.3.3 NRC Questions Contained in Letter oF W.R. Butler t0 G.W. Opr ea ,;Jr., 8/1/75 1.Q Figur e 3.2-1 of the Containment Structur es Design Report -" identifies a 19 psid drag load at the ground floor level, while Figur e 3.2-2 shows a 9 psid drag load. Clarify the distinction between these two loads: i 1.A Figur e 3.2-1 of the Containment Structur es Design Report 1 pr es ents the impact, drag and f allback loads which are used for the design of beams and other horizontal struc-

  • tural members at the ground floor l evel (El.142.50 ') .

1 Figur e 3.2-3 of this r eport pr esents the drag and f allback !loads used for the design of horizontal gratings. The drag loads on gratings are obtained from the Figure 3.2-2 e and are a function of grating void area. 1 l"'In analyzing the ground floor for these dynamic loads, the drag loads on gratings are conservatively assumed to be acting on the grating for approximately 500 ms (as if I the gratings were locat ed at the pool surf ac e). l2 Amendment 43 of GESSAR Appendix 3B and the ICLR indicat e --that pool swell impact loads on small structures are not 9__dependent upon the shape of the structur e, however, the 1~drag forc es are d ependent upon the shape of the small =s t ruc t ur e. The Figures 3.2-1 and 3.2-6 c.re revised ac-cordingly. =_7_e.J__-\634\S\l._;.1 J 1- 7 Rev 2, 12/20/79 --:-. . . . I 2.Q In a number of instances, your submittal of May 23, 1975, pro vide s generalized methodologies and guidelines for specifying pool dynamic loads (e .g. , p. 3-2 and Figures 3.2-5 and 3.2-6) . The extent to which these are applicable to the Allens Creek containment design should be clarified by supplementing the general information with a description of the particular structures which are affected, their E pertinent design parameters, and the resulting pool dynamic loads. 3 2.A Each of the protuberances' undersides are sloped at 45 to reduce pool swell impact loads by presenting a smooth inclined surface to the flowing water during the pool swell. Additional information is 2 presented in revised Section 3.2.1.3.1. 3.Q Section 3.2.5 of the Containment Structures Design Report indicated that a uniform 10 psid load is applied to the suppression pool bottom liner as a result of pool swell loads. The bottom liner load should be 22 psid at the drywell wall, radially ramping to 10 psid at a point midway between the drywell wall and the containment wall, and a constant 10 psid thereafter.

3. A The information formerly contained in Section 3.2.5 is now in Section 2 3.2.1.5, and it accurately reflects the load definition provided in the w question.I 4.Q ltem #9 of our April 2,1975 letter requested that you-describe your program for responding to the concerns of the ACRS as outlined in the question. Your response indicated that no specific investi-gatica of pressure oscillations due to either high steam mass flux condensation or vent chugging was planned. The NRC believes that g the de velopment of analytical models to evaluate this phenomenon 3 is required to meet the concern of the ACRS.

I 4.A Our response to Item #9 of the April 2,1975 letter is no longer valid. Investigations of pressure oscillations have been performed. Results of 2 g these investigations are reported in the Interim Containment Loads 5 Report (ICLR). E 5.Q Provide a list of piping and mechanical components which could be subjected to suppression pool hydrodynamic loadings or loadings from operation of the primary system pressure relief valves, including detailed drawings and functional description of such piping and com-ponents.g 1-8 Rev 2, 12/20/79 5 1634iSg _- _Y-.. .%_~.._Y 0._$__-_.._-__L~.-.1....2 5.A Figure 2.2-5 (8 sheets) has been revised to more clearly list and show the location of piping and mechanical components which could be subjected lto pool swell hydrodynamic loadings and loadings from operation of the , B primary system pressure relief valves. Section 2.2 also provides de-tailed drawings of the larger lines. sl.6.Q Provide a description of methods and procedures used to define the N-lpool dynamic loads and relief valw actuation loads acting on the B listed piping and components.

6. A A description of the methods and procedures used to define dynamic

-loads and relief valve actuation loads acting on the piping and- I components listed in respons. to item #5 above is provided in 1 Amendment 43 of GESSAR Appendix 3B, Sections 10.1 and 10.2 (LOCA blow-2" down pool swell), Appendix A (relief valve actuation loads) and the .ICLR." tl7.Q Provide a description of methods and procedures, either by analysis or by testing, being used to ensure design adequacy of the listed " piping and components under pool dynamic loads or relief valve -, - I actuation loads. i'7. A The listed piping and components will be analyzed for pool dynamic loads and relief valve actuation loads using standard static and/or q dynamic analytical pipe stress techiques. The computer programs to , be used are PIPESTRESS 2010 (for static analysis) and PLAST 2267 l2., (for dynamic analysis). Both of these programs ha ve been pre viously .described in the PSAR Appendix D-QS.6, Appendix E - Ql-1.16, and

Appendix F - Q2-1.32.

'...8.Q Provide a description of how the pool dynamic loads or valve actuation loads are being concurrently considered and combined -with other operation or accident loads acting on the listed piping .and components. ," l8.A Section 7.0 has been revised to more clearly illustrate the 1$u manner in which the pool dynamic loads or valw actuation loads are being concurrently considered and combined with operation or I accident loads acting on the listed piping and components.

4 , 1634 153 i , L~l'9 Rev 2, 12/20/79. . ,-,. _ - . . - - -

,.__ _ _;. , ,z , , , ,_ - - - - , ._ , te---, ,* I 9.Q Identify design limits used for_ the listed piping and components under pool dynamic or relief valve actuation loads. If analysis or testing has been done, a summary of analysis or testing results and their g comparison with design limits should be provided. If analysis or 5 testing has not yet been done,. a description of the future program to perform such testing or anal sis should be provided. /9.A ACNGS-PSAR Section 3.9 and the response to item #8 of the 8/1/75 NRC g letter to IIL&P provides design limits for the listed piping and com-g ponents under pool dynamic or relief valve actuation loads. All piping and components which will be af fected by pool dynamic lloads and relief valw actuation loads are analyzed by the methods , described in item No. 7. The FSAR will contain the results of these analyses.10.Q It was indicated in the Containment St uctures Design Report that the bottom liner plate will be welded to an embedded grid in the foundation mat.In light of the significant negative pressures upon this liner, describe the procedures for design and analysis including the mathema-g tical model to represent the liner and its anchorage sy s tem, and als E details of the grid system and its embedments. Describe considerations l 2 given to precracking of the concrete, high temperatures, and seismic loads and their effects on the capability of the liner anchorage. 10.A Refer to new Section 2.2.6, Suppression Pool Bottom Liner, and revised 1 Section 5.2.2 Suppression Fool Bottom Liner and Floors Above Pool. I I I I I I 1634 154 I l-10 Rev 2, 12/20/79 I _._.- ,.9 3_,!'ll.Q State whether each equipment hatch and personnel lock protuber-ance will be subjected to bulk pool swell, and whether it i will be provided with a sloping bottom surface to reduce the impact of bulk swell. _, q ll A Refer to new Section 2.2.3.1, Structures Immersed in Pool Water. lI !=12.Q The load combinations to be used in the design of the steel con-tainment as shown in Figure 4.2-2 of the containment structures j design report are different from those given in the PSAR. The 3 load combinations in the PSAR should be revised to be consistent. An explanation should be given for not including R , R and 7 R as defined on page 4-3) in any of the load com81naElons. 8!Sinc (e the categorizations of the loading conditions in Figure " 4.2-4 and in Figure 6.1-1 are different, exact identification of __the relation between the stress criteria and load combinations j should be provided. 2 12.A 1)The ACNGS-PSAR has been modified to be consistent with the l7 information contained in the Containment Structures Design _'Report.__2)As shown in Figure 2.2-5, Containment penetration types I

through IV are connected to the containment by expansion

-bellows . The bellows are designed so as to be incapable of transmitting loads to the containment ve s sel. Type V pene- -trations are used for ECCS pump suction and IIVAC lines. The j IIVAC lines pipe reaction loads are considered to be negligi-ble.The ECCS pump suction lines can impart loads to the containment during either a LOCA, an External Pressure Trcn- , sient (Inad vertent Containment Spray Operation) or SRV blow- _;;" down.Ra, Rps, Re and Rbd will therefore, be considered in the Containment design. Figure 4.2-2 has been re vised to }include Ra, Rps, Re, and Rbd. Figure 6.1-1 has been re vised to show the correlation be-tween load combination and stress criteria categories. -.13.Q In Figures 4.2-3 to 4.2-6, the thermal ef fects in the load com- ~" binations for construction are not listed. An explanation should i be given for this omission. 13.A Construction load combinations should include thermal ef fects. Figures 4.2-3 to 4.2-6 have been modified to include this consid- l1 , eration.j_, 14.Q In Figures 4.2-4 and 4.2-5 cnd under the normal, normal se vere and normal / extreme loading e.ombinations, the listing of T bd'__P and R is different from that in other figures. Speci-hd bd fIcally in all other figures, T and R are listed concurrently, but inFigures4.bd'4ank4.2-5fheyarenot b b=so\~1-11 Rev 2, 12/20/79 =T. , _ , , ,. . , , , ,_.- I listed.An explanation should be given, or necessary corrections made.14.A Figures 4.2-4 and 4.2-5 ha ve been modified to be consistent with the other load combination figures of Section 4.2 in this regard. 15.Q T P and R are the thermal effects, pressure effects lb bd ann, pipe reactIdons, respectively, due to safety / relief valve W blowdown for actuation of one, eight, or nineteen relief valves. Indicate if the simultaneous actuation of several adDeent val ves could cause more se vere loadings. 1 I 15.A Refer to revised Section 3.3. 16.Q For the loads on the lower floor, described in Section 3.2.1 of the report, state whether the drag loads on the grating are applied simultaneously with the impact loads on the beams. !16.A Figure 4.3-7 illustrates the time history of the applied drag loads. The drag loads on the grating are applied 37 ms af ter the impact load on the beam as explained in Section 3.2.1. The 37 ms time lapse between original water impact on beam lower flanges and the water drag on grating is conservatively computed by assuming that the depth of the beam is at least 18" and is travelled by the water in bulk mode with a speed of 40 fps. l1 17 .Q In load combinations involving abnormal and abnormal severe enviornmental loads, the accident is increased by pressure P,The load combina- , a load factor of 1.5 and 1.25 respectively. tions for the upper drywell and the reactor building mat shown in Figures 4.2-3 and 4.2-6 specify load factors of 1.0 for pressures due to safety / relief valve blowdown. P Justify the use and magnitude of he, and pool swell, P lower load factors .fEr these loads, i.e., P and P s*bd ps 17 . A For pool swell loads, P , load factors of 1.25 and 1.5 are shown in Figures 4.2-3 Snd 4.2-6, respectively, under factored load combinations. In the same figures, load factors of 1.25 and 1.0, respectively, are specified for P These factors are based on the unique E.characteristics of SNV loads which can be described as follows: g g a)duration of the load; P acts for a short period of bd time while P, acts for a long period of time. 1 b)extent of application of load on structure; P acts only bd locally while P acts upon the gross structure. These characteristics of P loads are similar to those loads due to jet impingement, whkNh while applied locally, are carried 2 through the structure and absorbed by stif fer members of the gross structure. Since the P 1 ads are not volume type (con-bd I 1-12 Rev 2, 12/20/79 1634 156 I I I tained) loads, they do not enter the equations for overall struc-tural equilibrium (membrane stress type), rather, they are con-I~sidered in the equations which deal with local equilibrium (mem-brane' plus bending stress type). In the case where these local loads (Pbd) produce a local over-l1 I stressed condition, structural material will begin to pick up part of the applied load through small plastic deformations. Since P are of such short duration, any plastic deformation which mkht occur would be limited in the extent of its propaga-I For these reasons, load factors of 1.25 and 1.0 instead of tion.1.25 and 1.5 have been used for the safety relief valve shutdown in the factored load condition. 18.Q The increase in the hydrostatic pressure in the suppression pool due to pool swell, F , is not included in the load combinations for the reactor buil81ng mat shown in Figure 4.2-6. Justify the I omission of this load. l1 18 . A Please note that the symbol F should ha ve been F . F and i d F were inadvertently omitted from Table 4.2-6. Noolswell#does increase the hydrostatic pressure which loads the reactor building mat. Table 4.2-6 has been revised accordingly. g 1 I 19.Q Bar charts in Chapter 4 indicate the independent action of various loads implying that only those loads represented by con-current bars will be considered to act simultaneously. Depending I on the dynamic properties of the structures and the rise time and duration of the loads, a structure may respond to two or more given loads at the same time even though these loads occur at I di f f erent times. Describe your method for accounting this effect.19 . A The applicatn will account for the fact that a structure may con-I tinue to respond to a dynamically applied load beyond the time that the load terminates. This is described in Section 4.4. Where appropriate, time history modal analysis with SRSS combina-I tion of responses or time history direct integration methods will be employed to analyze the containment structures for the complex loadings wnich are applied to them in order to determine maximum responses. 20.Q In Section 6.16 of the report, a value of 0.75 f' was stated as the permissible bearing stress for the factored load combina-tions. ACI 359-74, CC-3421.9 specifieds 0.6f' Justify this .difference. 20.A The report has been ad justed to specify 0.6f' as the permissi-l1 I ble concrete bearing stress for factored load combinations. 21.Q In those load combinations involving thermal ef fects, primary I stresses are added to thermal stresses resulting in combined stresses which could be higher or lower than the primary stres-Due to creep and cracking in reinforced concrete, these ses.I Rev 2, 12/20/79 1-13 I 1634 157 I thermal stresses tend to self relieve. For combined stresses higher than the primary stresses, codes allow higher permissible stresses, acknowledging the self relieving characteristics of thermal stresses. However, when combined stresses are less than primary stresse s, the procedure to account for the self relief varies within the industry. Detail your procedure to account for the self relieving characteristics of thermal stresses when 3 combined stresses are less than primary stresses. g 21.A The procedure is presented in revised Section 6.1.6. l1 I I I E I I I I E I I E E l-14 Rev 1, 7/8/77 1634 158 -,.___

2.0 DESCRIPTION

OF SUPPRESSION POOL DYNAMIC BEHAVIOR AND AFFECTED STRUCTURES 2.1 DESCRlPTION OF SUPPRESSION POOL DYNAMIC BEHAVIOR 2.1.1 DEFINITION OF LOCA

c. Loss-of-Coolant accident (LOCA) is the sudden break of a high energy pipe in the reactor coolant pressure boundary of the nuclear st eam supply sy s t em.

The largest postulat(d break could be either the break of a main steam or a r ecirculation line. This Loss-of-Coolant Accident (LOCA) is the Design Basis Accid ent (DBA). Other small line breaks r esult in Loss of-Coolant accidents, and although their energy release does not r esult in large dynamic loadings, th eir th ermal ef f ects may control the design of structur es. The intermediate break accident (IBA) and small break accid ent (SBA) f all into this cat egory. The siz e of the SBA is defined as that which 2 will not cause automatic depressurization of the reactor. Th e SBA is of concern b ecause it impos es the most s evere t emperatur e condition insid e the d ryw ell . 2.1.1.1 Design Basis Accid ent (DBA) The Figur e 2.1-1 shows the ev ents occurring during a DBA and the pot ential loading conditions associat ed with these events. An instantaneous ruptur e of a st eam or r ecirculation line will cause a r elease of steam within th e Drywell. This st eam pressure will build until the wat er beoseen the weir wall and drywell wall (vent annulus) is depressed past the level of the first row of v ent s. This will permit flow of st eam, wa t er and air to enter the Suppr ession Pool. Th e wa t er in th e vent annulu s will continue to move downward, clearing the second and third rows of vents. During and immediat ely following the clearing of the horizontal vents, a mixture of drywell air and blowdown st eam leaves the drywell and enters the suppr ession pool. The st eam condenses in the pool wat er but the non con-d ensible air forms a large expanding bubble. The expanding air bubble r e-sults in a significant upward displacement of th e pool l ev el. This is called Pool Swell. When the natural buoyancy of the bubble causes it to rise and r educ es the wat er ligament thickness to approximat ely two f eet, the ligament 2 breaks up and is expelled upward in the form of " froth", a two phase mixture of air and water. The whole pool swell process is transitory and the pool l1 will subside to essentially its initial level once most of the drywell air has b een purg ed. The froth mixture is expelled upward in the containment annulus until it r eaches th e HCU floor (+22 f t above the surface of the suppr ession pool HWL). At this elevation the total open area available for upward froth mixture flow is at least 25 perc ent of the total annulus This represents a surface of flow restriction for the two phase a r ea.mixture and reduc es the rat e at which air vents from the volume beneath the HCU floor. The air injection through the drywell vent syst em caus es transi ent pressurization of the annulus space. Both the structures fo rming the containment annulus restriction and the containment s ections up to the HCU floor will experience this pressure. Prior to the froth imping em ent , pool level swell acting like a piston, pressuriz es the air be-tween the wat er level and HCU floor. 2 2-1 Rev 2, 12/20/79 1634 159. . , _ . , _ , . . . . . I As drywell air flow through the horizontal vent syste decreases and the air / wat er suppression pool mixture experiences gravity-induc ed phase s eparation, pool upward movement stops and the "f allback" proc ess starts. During this proc es s, floors and other flat st ructur es experience downward loading and the containment wall theoretically can be subject ed to a small pr essur e in-lE cr ea s e. However, this pressure increase has not been observd experiment- 'ally.l3 I The pool swell transient associated with drywell air venting to the pool

typically lasts 3 to 5 seconds. Following this, there is a long period of j high steam flow rate through the vent sys t en; data indicat es that this steam I will be entirely condensed in the ;gion of the vent exits.

For thelDBA r eactor blewdown, steam condensation lasts for a period of approximat ely 30 seconds. Potential structural loadings during the steam condensation phase of the accident have been obs erved and are included in the loadings considerd for containment d esign. As the reactor blowdown proceeds the primary systs is depleted of high energy fluid inventory and the steam flow rate to the vent syst e d ecr eas es. This rdue d steam flow rat e leads to a r eduction in the drywell/ containment pressure diff erential which in turn results in a sequential recrvering of the horizontal vents. Suppression pool recovering of a particular vent row oc-curs when the vent stagnation diff erential pressure corresponds to the sup-2 pr ession pool hydrostatic pr essur e at the row of vents. Toward the end of the reactor blowdown, the top row of vents is capable of condensing the redued blowdown flow and the two lower rows will be totally r ecov er d . As the blowdown steam flow decreases to very low values, the water in the top row of vents starts to oscillate back and forth causing what has become known as vent " chug ging . " This action results in dynamic loads on the top vents and on the weir wall opposite the upper row of vents. In addition, an oscillatory pr essur e loading condition occurs on the dry-well and containment. Since this phenomenon is steam mass flux dep)endent (the chugging threshold appears to be in the range of 10 lb/sec/f t it is pr es ent for all break siz es. For smaller breaks, it is the only mode of condensation that the vent systen will experience. Shortly af t er a DBA, the Emergency Core Cooling System (ECCS) pumps auto-matically start up and deliver condensate water and/or suppression pool wat er into the reactor pr essur e vessel. This water floods the reactor core and then cascades into the drywell from the break; the time at which this occurs depends upon break siz e and location. Because the drywell is full of st eam at the time of vessel flooding, the sudden introduction of cool I water causes rapid steam condensation and drywell depressurization. Wh en the drywell pressure f alls below the containmmt pr es sur e, the drywell 3 vacuum r elief syst en is automatically activated and air from the contain-ment ent ers the drywell. Eventually sufficient air returns to equalize the drywell and containment pr essur es; however, during this drywell depr essuri-zation transi ent, there is a period of negative pressure on the drywell s tructur e; a conservative ng;ative load condition is therefore specified for drywell design. I 2-2 Rev 2, 12/20/79)hbh k I I Following vessel flooding and drywell/ containment pr essur e qualization, suppression pool water is continuously recirculat ed through the core by I the ECCS pumps which, taking suction from the suppression pool, create a loop as water cascar.es from the break over the weir wall and through the vents back into the suppr ession pool. The energy associated with the core I d ecay heat results in a slow heat up of the suppression pool. To control suppr ession pool t mperatur e, operators will manually activate the RHR h eat exchangers at 30 minut es post-LOCA. Aft 5 s everal hours, the heat exchangers control and limit the suppr ession pool t sperature inereas e. I The suppression pool is conservatively calculat ed to reach a peak t em-peratur e of 172 F. The increase in air and water vapor pressure at th es e t mperatures results in a pressure loading of the containment. The post DBA containment heatup and pr essurization transient is t erminat ed wh en th e RRR h eat exchangers reduce the pool tmperature and containment pr essur e to noininal values. 2.1.1.2 Int ermediat e Break Accident (IBA) I An intermediate siz e break is defined as a break that is less than the DBA but is of sufficient magnitude to automatically depressurize the primary syste due to loss of fluid and/or automatic initiation of the ECCS systms. 2 o In practic e, this means liguid breaks greater than 0.05 f t and st eam I-br eaks gr eat er than 0.4 ft as det ermind by analysis. In general, the magnitude of dynamic loading conditions associat ed with a I loss of coolant accid ent d ecr ea s es with d ecr ea sing br eak s iz e. How ev er , the int ermediat e break is examined becaus e the Automatic Depr essurization Syst m ( ADS) may be involved. Simultaneous actuation of the multiple saf ety/ relief I valves committed to this syst s introduc es certain containment syst m loads, as discuss ed in S ection 2.1.2. 2.1.1.3 Small Break Accid ent (SBA) Small breaks are defined as breaks not large enough to automatically depr es-surize the reactor. Accid ent termination is dependent upon operator actian I and the duration of the accident is det ermined by operator r esponse. The dynamic loads produced by this class of accident are small. How ev er , there are certain conditions associated with smaller reactor systera breaks that must be considered during the design procesc. Sp ecifically, the dry-I well and weir wall must be designed for the thermal conditions that can be generat ed by a small st eam break (SBA). For a definition of the design conditions, the following sequence of events is postulated. With the reactor and containment operating at maximum normal conditions, a small break occurs allowing blowdown of reactor steam to the drywell which r esults in an increase in drywell pr essur e. Drywell pr essur e continues to I incr eas e at a rat e d ep end ent on the size of the assumed steam leak. This pr essur e increase to 3 psig depresses the water level in the weir annulus until the level reaches the top of the upper row of vents. At this time, I air and steam ent er the suppr ession pool. St eam is condensed and the air passes to the containment free space. The latter results in gradual pres-surization of the containment at a rat e dep endent upon the. air carryov er. Ev entually , entrainment of the drywell air in the steam flow through the I 2-3 Rev 2, 12/20/79 1634 161 I vents results in all the drywell air being carried over to the containment. At this time, containment pressurization ceases. The drywell is now full of st eam and has a positive pr essur e dif f erential sufficient to keep the weir annulus water level depressd to the top vents and chugging can occur. Continued r eactor blowdown steam is condensed in the suppr ession pool. The themodynamic process associated with blowdown of primary systen fluid is one of constant enthalpy. If the primary syst s break is below the RPV wat er 1evel, blowdown flow consists of reactor wat er. Upon depr essurizing from reactor pressure to drywell pressure, approximately one-third of this wa t er flashes to steam, two-thirds resin as liquid, and both phases will be in a saturat d condition at drywell pressure. Thus, if the drywell is at atmosphegic pr essur e, the st eam-and-liquid blowdown will have a t mpera-E ture of 212 F. g If the primary systen ruptur e is located so that the blowdown flow consists of r eactor st eam, the resultant steam t mperature in the drywell is signifi-cantly high er than the saturated t mperatur e associat ed with liquid blowdown. This is because a constant enthalpy decompression of high pressure saturat ed s t eam r esult s in a superh eat condition. For example, decomgr ession of 1,000 g psia satugated steam to atmospheric pressure results in 298 F superheat ed 2 E st eam (86 F of superh eat) . Reactor operators are alerted to the SEA incident by the leak detection syst s, or high drywell pressure signal, and reactor scram. For the purpose of evaluating the duration of the superheat condition in the drywell, it is assum e that operator response to the small break is to shut the reactor down in an orderly manner using selected relief valves and with the RHR heat exchangers controlling the suppression pool t mperature.(This assumes the main condenser is not available, that the RHR st eam condensing mode is not used, and the operators must use the suppression pool for an energy sink. In all probability, the condens er would be available and the suppr ession pool would not be involved in the shutdown). Reactor cooldown rate is as-sumed to be start ed 30 minut es af t er the break and at 100 F/hr. Using these procedures, leads to a reactor cool-down in approximately three to six hours. At that time, the RHR system (in the shutdown mode) maintains the reactor at 212 F or less and the blowdown flow rate is t erminat ed. It should be note that the end-of-blowdown chugging phenomenon discussed in S ection 2.1.1.1 will also accur during a small break accident and will last the duration of r eactor depr essurization. 2.1.2 SAFETY / RELIEF VALVE ACTUATION In addition to loads on the valves and discharge piping, actuation of the saf ety/ relief (S/R) valves causes pressure disturbances in the suppression pool water which results in dynamic loads on the suppr ession pool floor, the weir wall, the drywell and the containment ad jac ent to the pool. Structur es in the pool also experience this loading. Saf ety/ relief valve actuation cat. 5e initiat ed either automatically by a reactor pressure in-crease to the saf ety valve spring setpoints or by an active systs such as ADS in the relief valve mode. , 2-4 Rev 2, 12/20/79 I ... . . ---'J 1--The phenomena which cause these loads is as follows. Prior to actuation, the !S/R valve discharge lines contain air at atmospheric pressure and a column of water in the submerged section. Following S/R valve actuation, the pressure builds up inside the piping and expels the water column. The air follows the ,: water through the holes in the quencher arms and forms a large number of S small bubbles. Once in the pool, the bubbles expand, coalesce and form four large bubbles. Each of the four bubbles expands analogous to a spring and 1 accelerates the surrounding pool of water. The momentum of the accelerated ]water causes the bubble to over-expand and the bubble pressure becomes negative. This negative pressure slows down and finally reverses the motion of the water leading to compression of the bubble. This sequence of expan- ,;sion and contraction is repeated with a maximum f requency of about 12 Hz 5 until the bubble reaches the pool surf ace. The bubble oscillation causes oscillating pressures throughout the pool. The magnitude of the pressure 7 amplitude decreases with time and with distance from the bubble. The dura-j tion of this load is less than 1 second. Multiple SRV blowdown will cause a superposition of the pressure oscillations described above. The superposi-2 tion mechanism is dictated by the nature of the multiple SRV blowdown, s}(coherent or non-coherent superposition in time and space). In evaluating the Mark III structural loads and containment /drywell capa- ]bility it is necessary to properly account for the hypothetical accident __related loads and their sequence of occurrence. In defining the loads for this evaluation, this report addresses the design basis accident (pipe break) and the loads associated with the hypothetical concurrent earthquake, pool , dynamics, and static loading. The ability of the design to accommodate these -loadings, when properly esquenced, constitutes the design basis of the structure. This design basis includes the single failure criterion; i.e., , any single component may fail to act when called upon. c w This report also addresses an additional consideration, namely, the inad-q vertent opening of a single S/R valve (IORV). The opening of a single valve j is not a direct result of the LOCA and, furthermore, is not an expected oc-

  • currence during the accident sequence. However, the loading chart figures show the loads associated with a single cafety/ relief valve actuation as an

, additional load for demonstrating additional capability. J The set pressures and capacities of the safety relief valves and a list 1 of the events that activate the primary system safety / relief valves is .presented in Figure 2.1-2. This figure also lists the number of valves expected to operate during the initial blowdown of the valves and the expected duration of the first blowdown. J

2.2 DESCRIPTION

OF STRUCTURES " 2.2.1 CONTAINMENT VESSEL The Containment Vessel (Containment) is a low leakage free standing steel shell which is designed to withstand the effects of all postulated incidents and accidents. The Containment is a cylindrical pressure vessel 2-with an hemispherical dome and a leaktight steel bottom. The bottom liner plate is welded to a grid embedded in the foundation mat, to the Contain- 'uent walls and to the steel portion of the drywell. The Containment -_2-5 Rev 2, 12/20/79 1634 163'2---.___. I internal diameter is 120 feet, and the total height is approximately 204 lfeet.The cylindrical portion of the Containment is adequately embedded into the foundation mat, but above this the Containment is free standing g with no rigid links to either the Shield Building or the internal struc-g tures. The Containment is shown in Figures 2.2-1 through 2.2-4. 2.2.2 DRYWELL The Drywell is a right circular cylinder of 5 ft thick reinforced concrete 2 with an inside diameter of 73 f t, and is 92 feet high. The Drywell is designed to direct flow, resulting from a break in the ficactor Coolant System Piping, through the horizontal vents and into the Suppression Pool. There are 120 - 27 1/2 inch (inside diameter) horizontal vent pipes. They 2 are arranged in three rows of vent pipes with their centerlines 3 ft 11 in. 8 ft 5 in , 12 f t 11 in. above the Suppression Pool bottom. The vents are distributed equally around the circumference of the Drywell wall. The lower portion vent region of the drywell is approximately 22 it. high and consists of two concentric cylinders fabricated of steel plates with horizontal and vertical stiffeners provided as required by the design. 3 These cylinders will be anchored into the mat, with anchor bolts designed g to withstand and transmit all drywell loading effects. The vent openings 2 will be fabricated of steel plate and connected to the cylinders. The annular space between the cylinders may be filled with non-structural con-crete where required for shielding. A continuous circular ring plate or girder will be provided at the top of the steel portion of the drywell, which will be welded to both concentric cylinders. The cadwelds for the g reinforcing steel of the concrete upper portion of the drywell wall above g will be welded on this ring. The bottom liner of the Containment will be seal welded to the inner and outer faces of both cylinders. The outline of the suppression pool liner is shown in Figure 2.2-4. 2.2.3 CONTAINMENT PLATFORMS The platforms within the Containment and outside the Drywell are designed to allow access to and provide support for equipment and piping. The platform framing is supported by the internal structures and in some cases by the Containment. 2 For those platforms supported on the containment vessel, beam seats welded I to the Containment will be provided with sliding surfaces to eliminate lhorizontal coupling ef fects between the drywell and containment in the E e vent of an earthquake. The platforms which may be subjected to suppression pool dynamic loads have been minimized in surface area to reduce the drag force on these struc-tures.The platforms in this area are shown in Figures 2.2-1 through 2.2-3 and are as folloss: .a)HCU Platform - Elevrtion 158.75 ft 1634 164 1)Equipment areas I 2-6 Rev 2, 12/20/79 , - , , , , ,,,--,,,,,,,,,,n,,-,-- M 5-i-(a) IICU modules (b) CRD mast er controls (c) Containment Personnel Lock -(d) Air station ( e) Instrument Racks , b)Ground Platform - Elevation 142.50 f t f 1)Equipment areas =(a) TIP drive units 3 (b) Floor and Equipment Drain Sumps ]2)Personnel access lock (Drywell) 3)Recirculation pump and motor renoval treck and aluipment hatch =4)Equipment Hatch (Drywell and Containment) 1 The volume between the HCU platform and the suppr ession pool water level is gj d es igna t ed"w etw ell . " j'2.2.4 CONTAINMENT PENETRATION AND PIPING lThere are many piping penetrations and piping runs in the area aff ect ed _5 by suppression pool dynamic loads. The piping penetrations are shown in Figur es 2.2-5 (6 sheets) and the piping runs are shown in Figur e 2.2-9 {2 1 thru 2.2-15. !i" 2.2.5 SAFETY / RELIEF VALVE PIPING , i ThL reactor pr essure saf ety relief systen consists of 19 saf ety/ relief J valves locatal on the main steam lines between the reactor vessel and the l2 first inboard isolation valve within drywell (See Figure 2.2-16). Each 7 saf ety/ relief valve discharges steam through a discharge line to a point.y below the minimum water level in the Suppression Pool.(S ee Figures 2.2-2 ~and 2.2-17). At the end of each discharge line there is a quencher device for directing the steam flow through 4 radial arm spargers about the dis-1 ,{charge pipe centerline. (S ee Figure 2.2-17). 2.2.6_SUPPRESSION POOL BOTTOM LINER , j Figur e 2.2-4 provides detailed information about the grid systaa and the 2 enb edm ent s. The anchor bolts for the grid syst en are embedded well into =t h e ba s e ma t . All reinforced concrete for liner support will be poured 'monolithically with the base mat and will form a rigid stratum into which ," t h e b eams will b e enb aid ed. ._~2-7 Rev 2, 12/20/79 I 1634 165_________ _ _, , . _ , , I I Tt:e methods which will be asployed to analyze the bottom liner including 7 the assumptions which will be made in the preparation of the mathenatical model ar e pr es ent al in S ections 5.1.2 and 5.2.2. I I I I I I I I~I I I I I I 2-8 Rev 1, 7/8/77 163416g .. ,-__. . . . .. 7 I;EVENT POTENTIAL LOADING CONDITION l LOCA OCCURS; DRYWELL COMPRESSIVE WAVE PRESSURE RISES LOADING ON CONT ll JET IMPINGEMENT AND -BUBBLE PRESSURE LOADS ^'!VENTS CLEAR AND VENT AIR / STEAM %VENT CLEARING AND FLOW STARTS VENT FLOW AP ON DRYWELL .;OUTWARD FLOW ON WElR WALL e i I~.;a=j f'-IMPACT LOADS ON LOW FLOORS AND CONTAINMENT _POOL 9 WELLS IN '*A BULK MODE BUBBLE PRESSURE LOADS ON LARGE LOW FLOORS AND ._ADJACENT CONTAINMENT ,_._9.--BREAKTHROUGH _:: y FROTH IMPACT ON POOL SWE LL --HIGH FLOORS _CONTINUESIN A +P FROTH' MODE cOUIPMENT SUBJECT TO SPRAY / SPLASH --'u (CONTINUED) 4_s Rev 2, 12/20/79 i HOUSTON LIGHTING & POWER COMPANY ]Allens Creek Nuclear Generating Station )Unit 1 , d LOCA EVENT SEQUENCE (DBA) FIGURE 2.1-1 4 3 1634 167. _ _ . _ . . .. , , _ _ . . . . . . . . - _ _ , _ - _ . , _ - .__f', FLOW AP ON HCU FLOOR AND FROTH ENCOUNTERS ADJACENT CONTAINMENT FLOW HESTRICTION AT HCU FLOOR INCREASE IN DRYWELL PRESSURE DUE TO VENT , FLOW REDUCTION J*-_y-__DRYWELL AIR ' FALL BACK' LOADS ON

VENTING OVER

-FLOORS AND 5 POOL SUBSIDES CONTAINMENT , i-U_U HIGH G RATE CONDENSATION IN POOL l": U-'#^" BLOWDOWN ENDS LOADS OUE TO CHUGGING -_1r e NEGATIVE PRESSURE ON WElR -ECCS FLOODING OF lREACTOR VESSEL ^'--AND DRYWELL ~ENET AT NS _DEPRESSURIZATION

  • NEGATIVE FLOW AP ON WEIR

, j WALL_-ONG E N r CONTAINMENT PRESSURE LOAD p HEP NOTE: THERE ARE ADDITIONALTRANSIENT LOADS DUE TO PIPE WHIP, JET IMPINGEMENT, SPRAY ACTIVATION, RELIEF VALVES, ETC. Rev 2, 12/20/79 -HOUSTON LIGHTING & POWER COMPANY g Allens Creek Nuclear Generating Station -Unit 1-_;_ _ . . ._ . . - . . _ . . - LOCA EVENT SEQUENCE (DBA) FIGURE 2.1-1 (Cont'd) =.=~-. . . . . . . . -3 FIGUF.E 2.1-2 l NUCLEAR SYSTEM SAFETY / RELIEF j (10% Bypass) a.Set Pressures and Capacities g a" ASME Rated Capacity Relief Pressure Low-Low Set Relief __.Spring Set @ 103% Spring Controller i No. of Pressure Set Pressure Set Pressure No. of Setpoint Valves (psig)(lb/hr each)(psig)Valves Open/Close 7;8 1165 895,000-6 1180 906,000 i-5 1190 913,000-1 1103*1 1033/913 m J 9 1113*1 1073/953 4 1113/1013 9 1123*_* Closing setpoint is 55 to 100 psi below opening setpoint .=b.Duration of Blowdown 'Maximum Number of Valves Duration of Events Resulting in Expected to Operate First Blowdown 5 Pressure Relief Actuation During First Blowdown (seconds);1.Generator Load Rejection 16 10-15 with Bypass _-.2.Turbine Trip with Bypass 16 10-15.;3.Loss of Condenser Vacuum 19 20-25 1 4.Turbine Trip w/o Bypass - 13 5-15-j Low Power 5.Closure of All Main Steam 19 15-25 Isolation Valves ._6.Pressure Regulator Failure - 7 2-5 Fail Open-1634 169.i=Rev 2, 12/20/79 2-_-.-.. . . _ _ _ .-t 4 i=i FIGURE 2.1-2 (Cont'd) b.Duration of Elowdown (Cont'd) Maximum Number of Valves Duration of _,lEvents Resulting in Ex: icted to Operate First Blowdown J Pressure Relief Actuat!.on During First Blowdown (seconds)';7.Loss of Auxiliary Power 16 15-25 8.Feedwater Controller 13 5-10 Failure - Maximum Flow 7-9.Inad,srtent Opening of a --Relfuf Valve ,_!_ , , , i J-3_-i m-__^_-?j. - .!--1!a 7!i_!_i_'Rev 2, 12/20/79 '4 1634 170-. _ _. . . . , e j N i::'!0. ',.".' ,.i- ...s. , , e I y:CW'cn J C;'I~1 *.'s\[N/.-%N s s x g*~h a..'q n v?', ,.<T.' @'n o#3'V- . . . . . < .(f.,A ."w t;'::t -;,. _ s , w1.13"" x

s. .i,...s.'r. ; 7,,m*,' -, '3^ .\ .'/a L /,'/, <g-.f,,,,..<.

x er,r %'9.:r.N e.......,_ s/'?".2"",; g *s.s h, A;}y%p. h, 4 9 >, g -y\y' 1.v M.- 1,r/u...-t-w -.s ,,_.a .s..h='h!Nlf\l7 } #L;; f+.&N_1 M .s .fi.,?,,1..,,~ N ....1... e...\..,.,-f...,_.4 s. ,s-m .... . . .~s.,.,.*~< < . -> ,,,;, ,. < . c < a.~-' " " ,. g ', '. < 1 * .. ' e ,_.'\.~~'..6.im..$ - ]..' N'r y's s~ 't 'dl n;5,",/.;. .'Mejd, yfn.,.4 f i 5 1">.3 - *R' y--..e.,,<\\..*s A. ,",. ' t" L.g:::,~q aM ,y ,."...J.#,'",','a ( A} .. . .-O N n*," ,+ep. 7. , ,~, ,..w'10' j'y~ d ,. 9 ,~ k~..590 ,., o>4 i,*?$s?'"~'w., , ' '- . . .-^\\r s - " %,'s***u.s>..'heehdf.g sta.tt , - \\ \,,,,g Ft% -L'I*/N*.i r g t L./\$l[ ~s--i ai ,/'%MM A.1.aNJ \. J * ; ?.,~'J u..wi. 1 6',\'/I n i d O\*%.I- ( aiersi L As. K, g i pf \ ' i-f ,,-a mm 7 n s ee n.\' '. * * ' c w \\\ , y,,,,'r}f > t-lurt e,!f F/d'( .GF D.i ,#*' h/ ,. g w,, T' *. : 5 D*t a =.r/g' .y/ g~ wa* *'* a' i.at.g c lsx 4? .c v.we;.<x/ .s/.9~ey. . . . , _ x~.'t-/)i---; 1 g * *a's';,".O,, ;" s ,'\ f.;-g,,,,,..., N/y ys_ _ .i s f~* E..n* $.. a.c nos

  • s -.s ,..i 4 ie n., -= e .ro j rr. _*FL it , s r.,, ,,.

.9/10944 #f Aret? al iM.tJ i*/46f ELS 1*sl000%5'L A N E L h6.l?' 1634 171 t,lI a& ACNGS - PSAR )).-e..i 1g...-t MEY PLAN E'Ni.a U"e, j as.iomate emerisie j* '". ... .t.a.sg*, g, =,, sa =g u y/Es"5*rO$sul g,=n;-/"'sPN SM N O 0@ 10$@@ lib".[, *[]*-Y 'Illi_ ; {ebawr.Mh<as-x^, = .n , tr\,/ 'tOIa as at sir'-__.% ux.x ,,., . , '\q ',',,',.EL

  • '\\'s,-g'.T,'a', ;c, g.s. ' ' - * ' ' ' ' '

GEMRAL N0rES: J.M'/%de n sa et, t'"7/k,, s.\s Q IncicaTE5 SalEY, sitta*fD fou:#"M

  1. r't g j.', y s. v., c a: r a ,e, e .v

.=rc =c .er w "2A/ ({3F;Z \g ' #..e N,t,!',Tlha'U,f ' ', *"'.tw ..j" ('f . A 4,<,w ns a..-*^5*i. oe r= coatw .ts.E*is u .t o.'l a 3 ,s.v : r s p w e .*,u t -E--\F"', , , R*,",,,,,' V ,-?-3 4.,,,,,,w\i v 1 j E aim f K+'T C4) f ea m.', '-- % , a ..a,an.,\' we 8%,M *** ' ' 4 .-. b k a*sEn' '*'[* ;.9, 1 t, e: e'/I i.~.".,/-t/'.;(,a f.,..u' s,.t}..as ar *..." f-o...< u 1le.-f.La 4 it.w , ws -+u+-*a e i ;.it,.'t"'-s.t}p'.t;L , Ydf, 5_---"*"*');I.7N',\'-"- u,.r e..,l[, 1-+,-t u-'^P 35'..,,, u ,,,i .b R "'""" i wi. . .., j J%-.id 3 ' T"%"j"d'a,,oa'"5 :

    • WO* 'k , p.e<=+u g T N. yl\...,3 A (W , ,,y**..,o, ,,; -4a.I"J.*NE'*..qM y+..u,-tataasto ator
  • tan a - 'c "o'
  1. pNM _nl"u'r"c'd '5TI='."t'.'v sura:=G:
  2. '"".'I :'0" JJ',L.

3 2.* e/.,-1\,.\ss ,g.eta = a t

  • w i or oc-a >icaci//4 g/fA_ egiem Pta= ti. et is' a '92 er a - vi x,ci Vs/.t ,. , eta, a,,s Vg*h.,r /N rein s m n. u-===wri:. 3cocs{',y,(7 " ,-'"l'"-{

, , SE C 710's$ P90006 d v. ..N-\ // j #'Amm - .-x.,...-E fp *' "" **' , q.m...s....{hl'Y= a..o.-'.'..e.U,w..y f,pj ',"' ... . . , m=-, svamais_ g u ,mu.s , 7".I.,'eUU g's lI I.-. . . . .i ,d'i."A*E'y*" ** lPLAN EL r$ 2.T t 1634 1/2...., , . .,. . . . . . Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 GENERAL ARRANGEMENT - REACTOR CONTAINMENT BUILDING 'PLAN EL 116.17' AND 142.50'

  1. SHEET 1[FIGURE 2.2-1

' .i T N " D""}D*}'3'}g"-o.Ju 2..k fruo_ o o Ju=.,m.r.\r su\#.., y.g a u.-s 2, .e' *.54**:-. . . ., ,.n..-" ' ' . " ,.-s.'M W, ~7~'-~.u . .=.-....N/.,:;,;; 7,-- i (M, r."."- '/p4 ' Mv m 5 A. \s/,="~an',' / 7.__ y = % g ,s ..~ %yi.. . -~/.'/q,s,7ptg./ i,s e ., j. . . . . . . -a, , f..,.x-',k..c**'"',r ,/! .. ..- ~. ,.4 P.....**' %/ ,.\^' /.!.. -..8..-, v L, x;... ... s ,,, ..... (.^ 1, ' 'm.. Ja..c..a ,-,.. . .g._,1/ s f..it ,.4; ,.. .fl- yy,l*r:'je 2 x;ft,; X ); ; a->Qg. ..p'T C. ': sD4 (', y ,_ , , _a ,. !x c w :..O s 1 1 o ,_-. ., r=n:m. , ~~@n ::q L.C.C , ,y-f u s..n\ . .s..; -o ,.'......<,,o 41Nq/4 ,y.o..3 e.-_..-.,s n=;aa\--y pt s O<.,_ = .r.__ ., ,-s, s_..w.p.h , kh.-['-x ,c g M%.-xI---===. . . . . . . - 8-**"-i' k' yg f.2.~Uicn .v D..'.d.T.%' _s...'s s._ w wn= . ..W.m.=.... . , , , , , ,~a ss ,. ...--.-., . ~ .;i:.s, ,6 . Ti -- ;.,,, , _14 , p,.o . .' " " . ~ ~ ' ' =-~3.. -. . . . . . . ,, m. . a.u.-. . . . .. - .004 ( I th PL AN EL 6815. = . , -"'7- '0 ' O d"'..,.. .... . , . , . .. . . .. . . . .. . . ., . . .. . . . . . .. u .,. s. . a .u-..... . . .se.. .c.. ) . S t . .... ..-. , i 1634 173 i. ACNGS - PSAR .5..s h 8 e i g.,.1;...,'?!?n%~MEf PLAN ,: N: , s~a u .vt.,-4. .-J ,'>'~,,.6\./ f ,n/ .P N -/?..'r ,-y s t I%i 4 N*sN 9c 4'I \q+ew N'Q \'\'CENEGAL a.; ? t S; 4 y'* u a , e........, , :. . s . .m .n .< . , n m '..i N L\',Qy -,i ; \ ,. , j c., .-. . . . . . i ,[[4.9 b:ce;*:n nyhj'4_ j e , , ,,5. v/ .. ., ~ -\_, {Tp@,\_.i%s ) pr-- a-,%, i ,,%.a.co. ,. g *. .'p ..)._ 3-, s y if s.<@,j f3].4(=::h_s..-Q2L 3 pr; .:-'(\ {g +'...w 3.,__,g_.,.*t'g y 7;,-e-o ErbU d. hhqO QsFi%afim, d~ E':S'%- n ,,, T~ Tdt'a ~ \t $g3 , ,. O'r 1"" N n=%'}1. . S.n n.w.g 4Mu:L '='~'.0-g.w am v//-.e .. . ' N.,.,.,, ..c.c,.:w 'ma;' @,e. - y_ - - - - - 7, ,,<,.to...<u,. ..s , ,4l , L ( $0'ai~--" ~' g ':2. r -4 i N f/.s .,, q y. I.,/- - ~ ~er .n .r , i t '\'D M 0@]D T y , I OJ&&)]d=.27..:.- <. ...i L IDf'efl8 KATl]es ,._.,,,4*s--..-.._ l.s .,i ..a im a*-5.(Q" .'.Q.,, os , , , _"" " '"" "* ,, ss a = ac,. , ,... ., .. . -, , , . . . , , , ,"***h*PL AN Et.17200' r .o.m = .o a .. . . . . ~ . .....~.u_.___;now > =e /,lQ/1/ss ,...t. . . . .. . ...a.1"*'*"***J Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 GENERAL ARRANGEMENT - REACTOR CONTAINMENT BUILDING p PLAN EL 158.75' AND 172.00' SHEET 2 FIGURE 2.2-1 _J 4 I i'1 , _D**Y'*51 1 ow w.c'J...m!$Md'"*" \- 6ggai=.}\/p"" ,. . .. 9/', Y.t*'""=.:=. -..",."41" uN I*.J;!'.y,,,:;rm va'r.l.m.'N.;"'>s , s.-, , , , , . . . , f/ n'ar '.i....N.-, , , , . . . . . s s~, ,-iil., x , '^ , %'yAa J; g '{,,u._<a , i.y ,r".....,,, i S* 4 '.,",." "%*,'.M..o u ,...e tri.".'e - .=1'75.2'l "~3"b-<'-- t , ,, s , . . . . ,.'.., . p' , ,-,= - .N ~.o a , ,...s'_'"" 490C..Iz-j_-..t , . 75,%,</ ; , -+ ' " .{. , 4 . d' ** / i s - - ../ e-7 . ,, , , . , ,--',4 @ -_(-_ ,.i (i \\., J.,3 is i L ,,,,..o-a- =$Dv , 1*t.r, yghtW p, u . t. a.-s.,,,,_. /g,,..%q ,-f')lMF*". !'t"" , e , 5 7,<l, p** {g 7 , t i-4}[,-..,.oi....m t4 t ym-<a.-q p srx'; L ,t,.,,,, t N--;,,.e.o a Q-f l x ias e -a 17.',','-k I-.% is e . i\'gr.., , , , pyj, s\,'@ #rn' %'",',u_,!TI , ll, J al.:.*.-r=C X f ,.. (1.' g p-Q , ' 3-p.s- --%s /.o. .'e-J'4'x T, ";g . ,4 "'> Hs ,h ,. Ml-, ,.2_p-S'I-.p..--ag ,,. , ~ ., e s s..[x a m , l/h-,,, m- . _ , N ., J g y (-', n=n-,,,,.'/w.E'P'0"y'N I s.u,m a'e a.a,t. a'.sss *e E'" s,;-~/w f s--'._.g}?*,;'." i'.a..m , moe,/-, tou.s e.ios.- d..,3 t.,. ."",.u/,'--5 e ,,,,s.u s.evis,a,s.e.' . m'io ,'.,o, ui. ., _/\'kw.% ~,:= =.m---s , y s,......-""""n ei g'A l', "a !" , ,, m t =s' ' ' ' ' 8'd. . id e;,qg=-'ge_v Lim,e cee,eo' ina=;p..., , , c-.,-a.J.g,,,,,,,,,,,,,,, m etc.o'-*=n,._.~.o. ..PLAN EL 183.2('h nelF*o*, . .?.i __g 1634 1/3 , , -.,!6-ACNGS - PSAR .'i e-ows 4 a,~.160_KU M" i-.\i D "" D "gWy n-l -da MJu 1 1 , 7 N'i. ...-.tff#n '[ l'd.'.4 (,', , (momout-U.d'#' . pg .,. g 'tt6 i g\ se I l**8 I; CmwEna 6(hEllLAL NOTES: ~/'a_.'s'N 'j "",M' 5 8 "E""E "^**5 J$/H~, E~mj['-\ "' Pta?,*^. . . .)f*1%~IdY i\f setw \Et tet.96 g n:33, L~;-, , ,-s , , f fI L %'"'"t~E..')_*Ed'o* I A'f,g**v*I.a**..s&4Q.is=.3% 4.=.'1 l'y*~i"an*.u Ua

    • ~s#. . - .?&(, n'-[N/&., s'--3__A,'.So t er.c to-N .. a'~..., aus **', ' " * *m. 5,w.'f ]%,///-6-Q,4'""c,'.m 7' .'." m' p%i ,=a. . -'a">, m aars as gy', 4,W h*,Q,,.8 y n'.".,, -1""'"'gl ' ;-a'i' 5ll1".'.*'"' f.~55'.=',--s#Emf P48ef L IDEntlFkation rig 4 M De t as.,no.

em ioee.alws i.ewu s. set" - ' " ' ' .,-....n osmios s.soss seerem i.5,ew.e.: nan nau to-s== aast

  • "w plate EL 19s'.8I 2..,m....--

1'34 176. . , _ . . . _ . _ . io_,,..... . . . , , , . . . . . .......Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 GENERAL ARRANGEMENT - REACTOR I CONTAINMENT BUILDING PLAN EL 183.25' AND 192.83' 'SHEET 3*FIGURE 2.2-1 M\f D""D*"~T.5 .Y g 'Niih!'o w)6 D~1/Dx. - . .ms-. . .E'r - <=:w-.-g = .. . +g;;, Faa-.en-i<gpo.1 u_qgdif9 ,=-m*~gsg-s= . .--, ,.-+*=..:.: ., . /<:-. . _G L_4 ,...a.m.=- . ..-fd , E-Q~A,,%.F =7=",a- - -f m --., 1,.....= . , , _ . . . . , o.ac, w ' '- e.y \-O:=. , p1'..,ue.-,e m N#",...~_s ( ,,, _ _ . <-n.-.- - o e L,-!m n./l4 y='n d 'M r,.#'N~-d b'-j'd g... . -'..a ei[-=;-::,=: c)"'=. m+<, = . ..-- w v. - ,-- ;=-... . .-Ahme: .L. a_ , .y=-,x 2.m.= ., ,._...,.3~., F, J.A w-w-.-/)~f.____.]L .3' ' * " .o ,s..,.p' sr.-.f_,.c.=.s--.a= . . . x.- p. an.z!.=.=, wa-. . . . . - -.lN E.c ,'M,y::C. 'i;;'. * .m= . . . . , _ -. . . . = . . ,=,.-: 1 PL AN EL 207.31' I a ,.=Cf-t i 1634 177 9 ACNGS - PSAR , , k $k11-. . . _==_...,_9-'.'a m.m...=_:=,--. _ . _ . _ . --e._.a .. .!~-=\'M,;.,.L=C_:. _ N ,'.,--.'bf , 1,'! t..T'tilo f s-., m ,,,,_ \ , t/.m.,i r,* ~ f g****sm a_,,,...%_N.t\*. . _. . wae.- n,.6 .i, n_ .-- . ..~n:he.s. ,t . n</, ==~'., , s u,,. ,s ..L, m.ts .=c strtElst C.mlNG5 --g-. awos.6 ma e x;.: e.r=,, .,, ,,,, m: 1% T,r.1 w'.> ;d".=: :- --.,.I'N::::tt:7.T 'A r!* r' 'e'gg'gi' *- _-o Nsys ,.. .3* " ' ' "~_.. I'r "'-~ ~_r--------4.4l a-y p.H i '=~yy @E.jL -.g , ,-. . .e_, sr..:.a 1 ms,o m m, : s-4.w w i a, a, ,._t n.c a ,c.. . b... ;' ,7>:=u:-. m. -..,.-,E>4- ., ('6 0 i W,c.. ',':lL'. "*:l'l!!!' .:'., ];f.?,f'f./,,%^:::x".'@:.: %""If'..?R.""*-g i--<"~. , -E'h_r,.!N's<,',..".,".

  • ,".;.. =;',"r

/nw: 2 m q , ,'"/L.' ' -, n.,-e.m.- -.x , al,..__..a e,-3 pgTen="- '.m.m 5 R.g/.n=, ,__, y ,.. , ,= -'.=~.__ . _ ._,-#+...---.= . . . = . . . . . = . . -=,;g r k.a)<=a--,-...s- . . . .@-b-'J's.t.,. - _ . ,_ _ . _ . . .y,, ,,.., k'h N t',;::a 72: L C... :."'.:'.,.. ,,a r As.o g__--p m,<,,,.,,_ . . ,%==.1634 178 PAltflAL P(Ald (L 217E ,........,...~.Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 GENERAL ARRANGEMENT - REACTOR CONTAINMENT BUILDING l PLAN EL 207.33' AND 232.33' '.SHEET 4 FIGURE 2.2-1 I.I I I n s - e 2.2-1, we, seem a,1,te , I I I I 1634 179 I Rev 2, 12/20/79 I i i i t. -9\O D%D Nl', u. uu,-g'k;B" * * * * * ,_. . ,. .e W , s r-t[[- ---"=1Mu a w as , ,, rr--- [s, ..='-K--'. _ _ -__ AMe_ _ = = _.Mflo',_gn d] __., ea .m., x e cname s,. ins t o, ois-u.ao u2un_ ,.m ,__ _ _ __1 :.:,:>- -. _ - _ _ _ _ - - +p.,,,...w.) \ ,, ,,,, ., , ,40.fCC *.';@~s..p y .--"LA'N,-- ==*_,---,__y//s .K Jsj J-f y-w ( /",w;*' \/E,-h,,,,.,,,-'-m.s-*"gr w.-r j-'#'d.,'CI'_i a.. d' =ssa .. otoi... ..-. ,= ,"I__ Aq. . -J-w " " ,m , ,, s. . .-,~ . , m*, . - [i

",, ,,.? ,.t? 7,o[,O.'.'*".'f'
.%.:N'Wd.W/-EE i %, C# * "'" i\' C0%j[',' ", n-'W_, 6 i-. <i.."'u.....,'., wi ,.- m n.=,',--;i ('\_~, b x--t',:: ..ise~-:~e ,1)h;oto fi l-~@)s N-I'nr uw , nem,om.. l$..m i O i llg,_,g;<, s.,.,g. x_,.J'"l L. g,i m, ;.,.,x,g,-o.r!_.;;_a , o.l-m.,..M m/ M.. . .I ' m, .

@Q)a%!"'ge. .n,_,,,-.,o..o.,~4 m.u..c, , ,,...".'a.lw-tr a t.a.,,,,,,g"'c 7"ag,A'"a 6q -.,t.s en oct, ,. . , , , 1r I-E A-Q Z..A.u, s.Qy-%-R*,.",,--- hitf8'"}' ,e,- i PJ.::, - * 'W. . " " 'j>h-su i p Uj~-om n.L, , s i, ,,,, ,n s'y^^'--- - ' J j , x f..,,c.;;-p 2'gg nn n , W"J:'7:;,,.,,,,/': p!l1" "'::4'* ~'%%'r s..,o ,,,,[ ,e+1-+1-%*" s av2._eI Itt-\-,u,, rr p:.{,,,, o n , . <'"'>a,',.<f.., L, , a..~-u.3" i ,. '/f --- i.m.l 7< =u"N-h"*-,,,=_, ,_."w's y 14 ,, , 4_~iyy rg&---s,.am e' .d l, f'1{HU,p)'J'+u nnalt-y QtF,,'. .,. %3=2.f.gE.-'3"____ _ f-/g'"1,,. $7 --p480r_._Me" , t e.um ..m u.v ,q,, .w<--.w , .r.th,.& ,.mst ..:.-e---,1.sO EL m .,, ,---s!I a .. . , j.--te.m.a.u ,,,x u-u ,,uz dy'---=.-, . -h,g_EM T...r. n.-t+'.n..,'i ,f"--si.[-w , , , , , , . __LY---W""'"\u me-'q s ...--w/~ . <, .\, . , , . .- * . . .--i, , .,eg et e.r se ne.'__gg p ,kh t__l'l'#'oo iow\ ' .,c VT,i,}

  • l<n e-v .g. . .i m s , ,'/s.,,,..,u,. d\ a .'OA'l OII*i.vo f= ,m,,,, "M"'fillh I*a*"5=2 h;m. ~.ml;;<

=;.",= j y~m , s .:.r...{SECT 1Cas a A i!s 1634 180 ,-b i Wr ,u.". ML'% (===%7 0" 'm:u 0lll22W" , 4,,,,--.,.._: be ' -' -L_T'" , G,,, m ,,,,,s;. .. . .. 2, ,,-'-a......~s.......~, ,.um... i ca..i <.s ser a n.;icao, 4,-. ,,,,,. . /-g. R&C ,,c.v.or o.:c.1.no. c,a w ar r J- # "~" ' ' ' " ' m,ra.'7t_J1 f1. ..*=.*G*g-**" /I , s (N&m ..r\.<;C.?.' U#h'r 1 e._ _,*W?T 2'?n#** stCTION 00 SECf!ON G-G 4J.at 7 EE~l f if,l:f'::f.'.ti"2.?,;' ' rC *:T *" 4-4, 4#~j. e-%g,y'"""-'gpu-y ,_j-.'._.n,.;, ;,g-*-u, is , c.1 n. o.,= -e' . . .. . .70%'(t l-w"*4 i J'%~,,,NE$O'y%, , , m.I'&I.'n't' *"v4 t i)s. . .,.eu- --3 r (, 9."~f-"/gmi t"s.a.k,,,, 7 (_-l-.2-.-g-f#,p m, e sw ), h ?'7 >, . _ ...s&NM"'2:y,*-y m , 4..,.-t'a'A*M.I"~I. , . . , i i i .\ ao l1 e_'n*5=',,'='-3. j L., L L_.;,,,.....,%.,yg.o,,,-f ,. . . . . . ()__ ., 9....u .CW **'".s .."' " c ,, , ,, ,, ,,,,.w. -.SECilDas C C rev 2. 12/20/79 HOUSTON LIGHTING & POWER COMPANY

  • Allens Creek Nuclear Generating Station i Unit 1{.<GENERAL ARRANGEMENT - REACTOR CONTAINMENT BUILDING - SECTIONS FIGURE 2.2-2

!mgHEM s. - . . .,.-~. . . . . . . EL Sft

  • O'

<l.-=-w w ..~~~-,--'d.U---~~, W :::', y,,,g et De8ee*,-^.g w , , a t e g .__ _z-. - -=- - =- ' -- - --- y...~"-.'.,,..m 5 h' 'l--i- , _ .r/_< ._.I... . . _ , -

i E va. or ma J'-urva x--N (s.#^3 #8" l- 57E.=f t
  • ~ ',,oJa'a

,.,gg ca-~m ,,..;.- s .(, g ,.u'f M=an.s 4 =. uw, i lX!!',t*,*"' ' . -h*l7a.,<w q g.g..a (, 3 q_,...;-, , , , , , b 4~m.n...j , ,-g ,.i N tsin. ui hs[====/.n,.,s u.1,..__H-H- TFT. - 34 a _M- i{k;k r M'.i; la -s, ,sy,,<,".~. ! =.m;w....~,.] 1y',,-x..'.. . ...-__r-;. . . .-u ,* w j_<--'a h 8 "-t - d'y F- _ _ . --] --g,gt, .-,-s ,e .'/SE*I==~fD L'""" N.'l'*"M.'**: j y**'.**'*; , i.' ' ' *-/"8 Z:.7:.s t- W$- [C'J, ,,'",' _e rt B'!T-s',"f/,' l Is-. x-I d_,'h^'i e suo 2-..4-e c.- - . , -o,,,.,p , saw . l--, n'n.}M ,5'aw, aos ., +- - -I*Ces-.J', ll* ,""" ' 'esu h.'** or 1.h. .s-_-5 E"{,, 'f..ar'l"'etnmrg:.--'_-:= ,, e.- i q4 o'}#!,"-'sa \.3 2 n.,,, --s., , , 1r t'J nJs C(o.7 0,o'a,. 'i d'"-- ;D. .- ..-mz -rq. f-.y*[i wue ,~T,.>..,3 D++. < . . . . .,,, v , , , , , , ,%*, 1. >. ..cn.-l}g'-s ,,, Bat e Md E1-Tl-.2*'M-. , , F-i+""mn.'mi%'es n =;N21 A"2"', m%r;>x-"q;.,gr -'y" sw .=..\t.+noo .,-W" Is-=L, s 'u\y,, n g &,a..ni , . --, g. . ., goasms-ataceast<,+-.g5 3%-=~t (M n'>A ,=--._;",,3',,'*u<. ., , ,--___~, 1er , akh<\E'S M'I-w u==, k,, m y_ ..<?u.o aim. a -.,_,,g+a ai-,.u...m.~s., so. ret ssam '.I.1%,,ugo*._s_c _E L-kgy I**--,,,,,,.,g_-u r-) M,7. - - -'* ,'<was p".na cd.- ~i ,.M*, .*',P" T \__FT-l';"', N'anus ,..,'-U g- e.i..g/"" 9 (L , n u ,,ur_tlC 'f @$i\'<=i-t,,,,....... 'Eus ,E.'*h;Y!m * ,' 'fM "ou'I' ,-'u,i -.-.'/a-'".i i t ... .__ .,_, MTE.e I SECTIOcu 8 B 1634 182 3*E ,,.ET"p~% ~ 'AC'".',, ,, . , ..., L'n.'l;;'WW'f--]- = ".1'" r_=_)00';."'** ~"* l23,,_ _. ., 6 (r',",'fC'_ , _ .gs-lab.D TA A'/~g's ma =6 gg, ,';--g, dc&...o-I,'"#4"'-2 ,_. d*' L"*' -,i'!"4"*"'t P J{N\r'\',I, -,pMEN7h , i r'W'p..a- - .., y,',wa jat'J'"'" im w_.-/- . . " ' " ,-F-'j>mm 7 ,:>tu g 4.T__, .jptnu e-n nou.,..~.: ".'($}et v ssue1 'IE!M"nc'8T Mic?J*' s.GENERAL NOTcSe ,1 A'E'[" , g z ,g g :c.unc. or tw c.1 i;t.7.<r..;i x[E'Y_..U 'h\mm->p-\e.nr.a-"'."?"'1.d'.,,-F.._..j- ;\_~kI 5,'a#I i._ ._ _J y., e/\m i :-'~u L,yg W SECTION F-F is ,,,_n our-r~Td k EME^e (c-n.~,;*,o,jo.r._3"~mr. -_{(1T't.'";;A' "" "" ,., m_. se m-m _,.1634 183-'rk' "'"AT*~.,3 9 i.,, ian vo .e-o';.. \\'Rev 2, 12/20/79 sECmN E.t HOUSTON LIGHTING & POWER COMPANY Allens Creek Huclear Generating Station -Unit 1 GENERAL ARRANGEMENT - REACTOR CONTAINMENT BUILDING - SECTIONS FIGURE 2.2 3 ! --k'3'}og-9 Jk f i'm ee c fRCE, t SHIELD BLC3 D'ME <_. _ ___C3:!TAtt i VES6EL HEMISFHEF E- HEA C EL SIG 50, i- , - 00'.'y'EL 37.4.00, e 2 , x-t /',/-s'\)J.ELi r ' 'a-r,<..O C d Q.O SPFit V3 Lif E P[ .' .~, pyj.EL EGOOJ I. ,< t ;p t:,e. [_l'gggg-m!-.~L--'m.R All l" EL 250!T"" STIFF RING (TY H s__IR= GOO , . 5-0-.---.O ni 7.--_ ,-p]TOPCF W/.TEk -*, q E' 13G.53'- , fi Ill#---d- - y-'_H i , c E _ i l '. . i T -EL IIS.50@_,---'h NDET Zt pg[g_f-"^~TYPICAL COMTMtI.VESSE'_ SECTION r' . 30'.o ,' t\l'1634 184'i L ACNGS - PSAR l IR GO'O 4(. GCLEAR 'T d~ ~ ~ - ~ - ~ ~ wi-COMT TEE RING ','-y sh ,.,.v 1'WITH ACCESS .--,-o HOLES AS REO'O Y',;._g_--_ EL 11G.54' /lo]j$j d--'YERT TEE STIFF / /'c u.WITH ACCESS g/O _* O@i'M HOLES AS REO'Q i , .. \'&EL llG.17 ' s 1 If.',\y'7" . .. .78/EL 110.1T t _ j T.' HORT STirFS 's/\//'#DET I PART PLAN OF BOTTOM LINER l*=20:0 SECT A NTS TOP OF Ltt1EG 9 Y Bi '---- TEST AN5LE y.*ElllG IT ,___p _,e q,, wic.. >I H fl, SECT D SECT E l'-20 0 UTS--- ~s_. - . _ . _'WEIR WALL#(7RYWE .L/CONTAIN VESSEL ~ '/. ' WALL 5>e TOP OF LlHER it .,-gp g_EtilG.lTy A___i$L'i___- ..g:: Wi4 wlas, wl4;ft DEN$- wh~1 i-'+-1634 185 SECT C NTS Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station f Unit 1 CONTAINMENT VESSEL -

  • STRUCTURE FEATURES FIGURE 2.2-4 pl'o\D**T~" l&.<=y a. . . , ,...e ==x. w-,-v.t..,-1,., cC.~, ~1 i noto<ev.,'cm .n i,,,, m ,e.!/,,)lm,,,,,, I kl I'p.._y.;..____ . _ _ _ _ . _ . _ _ _ _ _ _

_,.__-s.v e...u,/l l\+ M *acaece awoj M 4'lll(.*/'c.ca caut t_/..v.j.W,\C c.,.....,_ m /i"'.'9 ""4.r...v. .w oTAN T v P E I t u u or. au.y ).Y P..tA. toc d S.ic.70m v.A.ELSt.& T.%. c.e CW .8-..f 4 0. (0-'T) L Y f Cones (?v*) COuf W.i as?odo..'u m (m)t.,-Is..VL.To%f g .,*_\Cov*A(T**) IE[j I I- W ..... , f ,_,..,i___,. . - _ , .. .. -, i i..b..V..,,.~_.,s.,.,,.. .- - , ,,.-o- ..-.,a_ i To t . .sn a.&.cyca TYPE II e< e.v..voaa a.c.ven or p.en.L.4E 7..T C.O*e. { "M*4 ho.e e g yggy gg,,,,- m ow I"#IA MN 6 Colut .a.eef.es.o .=* g.E %N ..}[ . [ .a e n. g,v.ey j 4p 8 C,0v.4 -.*4]-W'" ,/p-.u rm f o.c ,.,.,, p ,,.,..~,.o ,,,, N/-a$, k h ,' 'O(\* N NN -..b- w-4-j., g .i g e .. , _/" ' " 3 J_:.~A s' * " '. g.ayc.: M~*C. -s..;,. . ._.c ... . ,__ J r so {.d.cToa e 8.Pa Dee. 10 ( R&.CToA TYPE III ( Loc.r.TY P E o or DT P.=,. tm.T io.4 e.ac.vom gy ,.w.fa.Ticed.s.a.,e L a f.ST Ccaded. L.AE TT9T CO4J f Nr'", ._ __ _ , ,'L (egg m--3. .~.3')[ M".h.~ ~ ~ ~p._ , r:.-1.. .p g-.., ,.. /s~y co ,__/lm(_,,1 ., I f Mr.?. " m,....mm.y m e.r,.M J c. Co.rs**[._oj-.1..-J* * *~e v.A ..v~,*&*' TO ETcim~.eg she.e p F to 4 as.cron TYPE IZ TYPE./(toc. w or t'1634 186 ACNGS - PSAR % 9%t7 6LD E.*z*d.#.Ej

  • " , ,_. ....:. _ .,o.
4*m 7 ane m (,v,3 ss j'1 Il I'fi'~.~,-%% yg w==--f..,_- -n h: w, c-v-'->%f~@$_._._ _._l0 I) )=~r-[*h3U e'*...u..y ,, w A=r,.=.. ,.::

1-y , n.nur s.y"&*3' o AO RID 4 magfoa TYPE 32 s.o isoaton fG caWw]".(,, Asc-on(- o , e m ?,n;\?Nl / mt WA*">'- \Ol l l//~'**a>s0@l_ _ _((I v5 s iI k%-s*. '--sy<, yJ y. sus L~= =.w.= ~L.. _.;***8 m.e-o TYP3 TZ1 (*on t4*e a m mes) ov *au.va.re.

  • ^*;**g m.I.v ,ew.t_a. tow **mac.vo.

l e*ea.c.ma =*cac. ton ..2'e__p]So***'w o.ou e ,- c ,,,3'N'.9. 2* . +x.. ..v~r 3-.-.[ ..lf '" ov,, (li..A sP* " - ** " ' " " t.-l l/*("ql l}2/\]()i_4;}s@.>1 )T 5 x.'. I L'.II,. l .t .' A_,u,.o. . .'/l 8'"l,, a bM......M.U .*co"*47f" N ou, on e.ca r aaew"'ove o.ca*==.t j _.moem ~**oa'-* ~[***- -,-"C*,,,,..- TYPE VII Type VII A A Twa.sk ed v J _-,..,,c..- ..- .._ _ _ . - . ,.. _ . _ ,>-m..[l[]{ "?.?M.,, C",)]g_ll l" f'*,;i-)1634 187 , n_, N er o.,xron/ 1\l 4 Il--art-*'o***** / j. / \ ..'g Rev 2, 12/20/79 L.o-=c==::=r==r.~.1= = * * ~ . HOUSTON LIGHTING & POWER COMPANY

  • Z's , Allens Creek Nuclear Generating Station

" 4 TYPE VIII Unit 1 m mr >REACTOR CONTAINMENT BUILDING $PIPING PENETRATIONS SHEET 1 FIGURE 2.2-5 ..i o*"a*w n %n, oo n o n 2L.a ,<w. ..o._ . , _m_-,,, ,.1- , . ...-..-y i s,c_ _ ..- ~ , .- . . ,~L q,r= c,...y m-.-.,.;g., we g .q.:-,-, , w-_.-\,.3/l'_ . . ' -'r-*tf..' Z **_l\O' .v? *Me ."f"--w __ 7' . L.,. _ .o. - =.m -, _ . . ._--. =.,a-.-ST4 ate .e 4,99._YPE, _DC T ,._S'o e-.eso euze 6_. _,.,-- .yi 'trt ;. , _..;m...,,1(n.=. mi2~~e._ . . , -_._, n,i a. , c..r:.m.

i.-- ,m a c --n ,-,.. = n. .. ,.o.--(_ . .w.... /-i ...j.w .w,, b.'*'." ,< a.c 'I. c*")

l g \ w .vs T***""..M L*'6*'a*'..ac on :v.*> ro w eo.-+ny gva 9 %t--Base.ca,.v omd -oA__g TYPE X (i.et,4.,8W sf.t. cud ca sy )

  • 50*_so .6-Q 069 6%""-~i{5'u on,tv Yt k.Lev scs , ingbo I es. m tc e so N cou v.cw ano)
s- Y_ y ---

g i m 6 g. + -.*-p*.'dl.a.smo. (Tv.)~ "..ggg), , e[ow A&ese p (90f 9mDL9 M TYPE XI TYPE (:.#9,AW.=,.tead c.est ) (808" P ' & s*A*__ i io ( =a.c.a. , y e m g na.c.on .'g, ,.~ r MMurN'n.L, , ,_.L 1\/*Y_s,e e ,[e,,,,,-j cow,==wt.at .m.zrLa %( sies,= a PE. view wtr ) TY XH TYPE.r 1634 188 ACNGSLPSAR S' 8 , L acr*rv a asstaf 8.-~5%**1'*u'"' . ...o_.f.et na..', O k \*?- 4.auc,<m t,,., I M*.s .. ennf ~N' 9 J s>'f W X:[ 7vw.U U _ $ M.aca .w' u* g , \(4a o s om-~~--~~w->p s y,,n,._p.-r n,~~--r 4 f-l, m ,7 L,. %6.c .ao-[<x .o . . . Q'g et=d6"**.s~' I*I ,. '&"" (4,*gc- so. '3 A.A.- " g ,3...TYPE XIII (w ceo .s.euety) ~" TYPE X52II w*47 a twer .' o , I 4L x.. .-m.n:.,.. ,.m- = = ..r--a. . .u _.,--t. g_s j.=r.~.:-.c.., ,,.s..--/.n..x'm ,>,.x.-o , ~,.-- ,---,...-....m x+..c=..do..... . -o 4-U-'g st't i.o*g. 4 s Nt ,44_b ~',a-% A .~r.A., ... _, . .s-.--...m-s , ,.' -s....TYPE M (ends 3.setustyJ

  • TYPE M N..,.e'o. 4 ,o g ac,%" i"-rc z F=. (.e.e4).S W- o. ._s N..SO,N CD*Tas.su.ad?

, , I\.. .._., y n u .~.- -, - c.107 TYPE XIX won e )(stacina c>wsv ) 7-1634 189\/SEISMIC GUIDE LOCATCN TABLE " x,,,, ,..,_ . , __ . , ___ ._.-__,." .t=* * * " ' "' ' ' " * ' " " ' "'""o*'4.HOUSTON LIGHTING & POWER COMPANY ,.W.. w.5.a OhoM (aC7Dft Allens Creek Nuclear Generating Station .--r..m ,c...4.u.g c=Unie 1 a,c,;c, y,e-3l'. m"**.*'.*A:""$$4 r

  • t *'" REACTOR CONTAINMENT BUILDING

~5;H%ou A ao t.ae.c= PIPING PENETRATIONS SHEET 2 FIGURE 2.2-5 D**'T[*,\.N., , 2_e e w u-$llllt I l!llllfll f P*/l~W-It~122=lP/" Wa-" j.f-w:: :rfR=~~ g @ s _ Q= % .h f,-2 m.-n W J> W/e q a. p 4'*a.m-m m._ m ..,... g _ /".c./" C"~7 "j g. g g ~-,"-"1:?c_ m.m,g.s~b...m ..-- . # * 'I O -__ _v.6.4 a.CEv & LOPE D hEVATION AT NcQE sao*t c*llt I l l l I h I']lllrra m, c,a~,.r 'i..u<7.?I ra 2. 0. ./. m+a _w.....L-...IJ".~ . - T o._ ,.-.h .-a-. .a.&7%s.,se%!y1.. r" rA-. . . . ..,._., n~.'~g ( ~. d .. .. .,.m Hih.(? @ W- y 7 % ....M Q&J. _ . . . . e ._a ma o , g2Le_#we,. . ., , g DEVELopf=0 ELEVATION At INSCE. iso-av t!I l i l l h ! ' I i l l lbenum["E an r ,=. . , M[md-93 2 ,-m.o h.m43.'Fe g/Gs]w g'"2O3""iv'"g.g%$J3-gh de z'E n. n--= ._'.unu___, , , , ..i 7A 1 ( J 't 1On., id I /U cevuono eLevAvow AT we.oe. !i w 4 =.2.an.9 0 U ,-e j$lk I i l l*Gra g t" 2$dk.m.3p 4. .g.,-i , , , ,_.'m suet e's _s e b. _ _ _ . , .a woaid Mw se...s e h?I =

  • g\(3 m!u__._m 7', Q"% ,s sem ait uores:

m a s..a-= = = =xw w" m': = =:-. - . , . ,.E.7fQ,y,*,0. -. en . w aw e m .e **u.c. w.o ' " " *i*: v. 's, :.::. '4 ?' s =... ' * -_'s s -,.. - -, nyi*2;i= % w..r w: P "_.i i i i i i i i i i g.,.y ton- -u m-.m.o....'33 m- -u o.drA.p, re.9 m t'I'~ D *f 4-ra., m e 9 gd7 , M . fna ~ '~**z-ag1 g, g-s c .,x a& o.u' . = -c_ _..,-158.75 FT (HCU FLOOR ELEVATION) (--b$ 'J wa j , 4-3 , POOL SWELL LOADS i% s 4'*I<e%..s....i. . . .~'136.58 FT HWL ==g.J J.. .r e*' SRV LOADS E D.m. , , -4 op cowTmMMhuf VES%L R.r.o'.o.a-,eo-m ir.Asm_ano) (b!{k'f"^&%=Dess@1&;QfbR $ L

  • T irL W ~ g* E wM f@ Q@Rev 2, 12/20/79 a g ,_ j Q HOUSTON LIGHTING & POWER COMPANY

-g Allens Creek Nuc e r Generating Station 'REACTOR CONTAINMENT BUILDING PIPING PENETRATIONS SHEET 3_.s . ... c. , mv u. % a . w <. FIGURE 2.2 5 ~h h b D l..i k O l#'# t.f* 1J N^.. g._ *,%n' .v . , '"- T- ,.-$W ,s-\;, , -,a f*/~r, 4 e. to ogg-R r--5}. w,6 e. -* j w.g j'T@ ,.sg., s#Ej A > , s )Wp--* ,'e...>6 e.gwi.u. - -p. cg/.g, 1% -~, . . .'< ' Q"-'n i A. g' [, f' -C e. .sg's 6 w., , , n, s~.r, , a N s._m n' l ./ ...r ': .., r-e u ,'.-a/ / UE<@f D 1lJ v<*.1.u-w s s: 1 I I ,/I PA C.T J.A9 $agi , m y i:h w.-f4 W W'g' $, 46 "a'u ,o - ' 7 ~ ' R ;; , W- '. ,\;, ,'b ..' ,y.pi s 4.s., L :,., y*,;~'"'9.,,;sa ;,: g : N.W , en,:,J , _ , ~ ESR\,\4 an gm'*/'.L<. % ;J, ,* ^ '*'N~'%, "-ET49 4 4'U*T. _ - -_ _ . _ . ** 'f" 7, 8M*l."?_*f , W* ~ + '. Q,$['RM/l 3pf 4",*, y--w x c.~s. 4.w 1.p .r -?g , yv-~ - ~,jm g '.- 3 ,7 , b -bb 'M %M! _'o Q'_e , b$W -h;.m ,w=e c>ML \ \j ifh9M s s ,- s , s,p{.,!\,fifhl , Q , ,.?$1MjTv..,# 4-l,i w as o E s g[?'hj ,Y,. *j'l<, c"', 's q-- ..Q , ,&y<-,c '.'m.1 roe*, e A_--/~-.s , ,__\$;s / GD .2',,.. , , ,~' 7 *~ M\\P.44 AT G. I -h. --sq-\\.. .-#L-' ' **.g.._f G'3h._m_!.>a -7_f M'i(6\>w.H&. .f,.f......, ,\,-A--/y/N --'\99 ,-: ,-tW.','/ -\',.., w.s , ,%-,-'..-1_eZ.p g%'v, ,.{.S/s'd'* l*./,'/.d i/, f"}--j u .'Vp 1634 192'* . .i_ -a to*PL AM AT . ISC.6 pAgt pp f I L ACNGS - PSAR ggy))f S *-~~_, g W Nr- 't j)'f,-s s-a=!.Npf ,,g g, WlQgD' ' 'h'IE*6 j r$'jQ1j:j ,, f' 'QJ ['3"g'~~N iSD9'%PUN p$ 2 ' / f W . <s<Mi'Oit?kRP- 'f pM ,f g 3,., Np][\#k hW2-_Uh, T"d Q. . .,:l 'i s..-, 3 on-p..a.ea m I q'/,,-*r W ;' _, W h.,\NRlggr Q.;*:*-,> / w , h ;l y ,!Wl3W&SV%,'.n ;f ( , p . 4 ' J'urn.s,./--, N 4 ..*, p , h-'h- NJ N ,1 S M N*I peau [[s. .so.c- /'TE*}' ' ' '-_- ' L"2 ;. . . , . , ,.-R.Wj'-UN-'v:_: ,- ~ ,r.,,. _, /-~-%s. . . ., ,f O. s ,e ,, g -I.s~.k 3. s) ,...t x s 1%'*'\Wm.N re m#,, ,g ,['*rm-*, s/>.p-f g-/%. . /isll5:..- o'h (- \)-.,'s- . - __?' , . - ~x.! N'N N /Uf% j [5D4 lO\\s.m'N / %g\WQ/~s.<-\j 1634 193~_m,..m'3B p ,s'A, d' '*"7.e (d > ,.M*WW .HOUSTON LIGHTING & POWER COMPANY 'Allens Creek Nuclear Generating Station 'j Unit 1 ,-3 4 ,f/*/REACTOR CONTAINMENT BUILDING

  • ~PIPING PENETRATIONS m., ,,.SHEET 4 n .oiso-et w ir . .. o-FIGURE 2.2 5 Wm i i.g.o,...-ma'te Level et f* 49 3 f[555$r m =.om C T3D- cv..m.., m e g<.J.. . . . ...

..: -m;7 1..;/* Ex?sY C (IF'-~\*-//./h. _ .h...'--s-- _.u.ozr.W w.v,w.s y 54 iM I 'm .6.oz hv'#-%.., _b ."o/*t il '\l. . . . , , , . _m~-, ,\', s s ,y , 3-\.-J't..]l/, t ca. m see a e ,,'vt ea.s;x,. . . .g,v.,,we=r g,~%....t,,-'f N au n^$J h ca v .e 4'/*84... = Lam--i 1--nil'. , '___. , .*e.==-p e.e 4^~~ ~~U $**.: -7..-....-o,'g', g ,__, , 16 4 194-INCLINEO FutL TRANS.FER TgBE D Scalt : %' i'.o ,!L ACNGS - PSAR w-4>\>" " ' " 's~.\,l~%: D-, ,'6/a~,\,%>*'.NEEE.5 7-E.M I,*J," g bb$"*j , d;;f~Y&[S\'N==~ ['N%o.,%.['nme. .: ' , \ ,, ,/,', \\\-%day CQufAN 4' t h4 T NOEZ.E PENE7EATIQme C% TAIL (peIQJ TyPg XX tca6an '. rt * *'-4 .- '* ' ,'L.,*00* L. r .u., m e. . .o r

  • 2s' ,%> n

\.-.l*p't is.,r"'4.\'4)'N',-ye ~ aO - -. . .1 1 Ri7,Wr, m_ . . - - _ _ - _ . p;_ _s_ _ _.w ,\,.A~ .. O m.'~,/,$ 47 W r j',/^__/~~2~o~+~'-_._ ._m sue 1634 195-7.. a 8004 S[*'NI s;/,.:,, ..P h'a ..HOUSTON LIGHTING & POWER COMPANY ..^Allens Creek Nuclear Generating Station ,.,g q m - wu Unit I ,, w.< ,_ .- .N.h REACTOR CONTAINMENT BUILDING PIPING PEN ETRATIONS SHEET 5.g FIGURE 2.2-5 D'T3 A*D 4\.,b.., a-gg Q,, i l u:.; f..: g-,. .%.g,.... ....=f M. a m - . wm.m..g .A.1 r,T r,-e, r- .M'W ".. .."T, M-... .-. ,._. . . .i.r_..-.;s. ._.. . -,y ,___.,.. . . y.y%_.Q. %.y ..,7 . .9. .@pA.c. ,...,..,._ 1_ . . . . . - _.._.;._,.g__1___.,.:. -,.+..,=2._n... a.:A .m.i 1.h s .d n._-._s-__-__,.., , ,,.5 i ,.;...... c-e.a-r 4 n.,._,,m....c, .,....N-, r.h. .h k-=- r_-.c...o ,,.-c. c... ...w.-.-., ,gs..%..,,,. , . , j ,..n.._.L..5 ur-v_1 ,p_ . , ' _ . ._.c...__,,.,., 9.. .., i. ..t.-u...n, . ..w.m.t.J-.i.u._- , _ -p._~.-...-a,.n. %. v. .s. .= r..n=.-- w---.:1. m..w+mt-t.w-.i . j . i..i.I-'-..-. t1.;. ;. c._-cr n in,.rm-.am.-..--_M--i.b.b, ,p*. sw ~a m. .a* .R.#"_.. . -!.-. we,.#., r r.i --,. . _ -m. w.r.r: ~ .-: .c.... * . -v.wy 2 e._y_q_.-4 4u+._#l.u._.~ . . . . . . __v. .t.p. .,%_....a u_a r s&.,1-t-_n_n_.v n._a_-_.. . ,...z.:_ _..). ... ;,. a,.a.-.,._. . .,-_n-.p it-.go-= .-;-.t.n n. , n n.... . ....--o-1.-~~'t_u, _n -n.".et#1 fT.r.,% t-,dH......_--r s' ..Fnr .t .e ; e _ .D.v 4ysi'~ ~~--~~1;t..---+. r.-.h a.s' ~ ~ ~ ~ '2 T.;m. ~..i ,. _ ,>..e m..w% g__mt-f..t %y a.,_,_,,i ,-. _ .-....--...-.... . . ., y% ; .ya'4. e 1hq'ru. a _i4_.d ..yg . ..rA____e..i 4_-s i..--r...ta th;; 3,,p- - -=W1q_ u 4-.---_~v_a. .J A O.c__3 h==ww.;4,4-__a_.T--->i-"_*P bi LC.".v?8'c* *%*'* s' y___p-*f'._]t"_"*+._p-__!..,__-i h.rb.y ,s ri.b.s i. ' . A.i. - . ._A _#.;,n.d,;. 3 . . +- i.;+-___+-.,N-.2.;-.a, . --.vs r-- :=--..a-t__**--.*. _ _ _._ y.,L =..f.p-y.y. = '9 y a p-4.g.*a***."**?'*a ,* ..,. ; ._. . . _ .__ _.c~,...M.gg : .3 e.:.& ..._..; . _m q...,7 , ,.s..,... .. . _.y.-,.p r_........e.....,-...44.I~f4 __., u_s ,;t.y__-__ r, n en n es as._.e w. . <..n 3.-..,.-;-w m_n n , n_n _ _.'n.-e n.el m,.{..i.y.s e su en 4 4 s, 4_m.u a c wi e_--_q. ., s a me . e w-...* u m r '%C f='.a.6-_.a*qe___1 i i ,* * * * * ' ' * * * ' * * * *. " ' "._5':. m 1_.w_. _'_'__***_'A' i'*'" * ***M- _.-...,.......-_...._... . ._. -.-.o. 4 ..m+._...d--, ,......-%ts..f*%*.5[,* ** T....,,-."l E.E.Y.".'Y."."arL_ ".*.AEfn I**'*T**~,@*" 2**8_*"'.b.-.i wT .c u=+-s.-.i 4 n.J r r' ra.'1:=.- e m.,..e-=..-.6., r..... ...w.a_;, e-_-:...__._..s_y..,_.,_g 9_.____-_, m....K".. ...,*t:.C i 2m s si N~~4 e W Soo@..-g.htwm.r?-. ' -m e...pggg-g...gw p.g.i.u-1._4---<.._****_m m.-.f h.,. . .. .a..e 4-, is.4*.=**]w.*.=..+t.u 1_ya.M~e e tio u.o ao.*e8k _._.*.8 ,,6**8 8__Ja'te t a*.J*21.**1-__e e me. , . t .i. v ,.6....g.4 e e___-s,oo.4 TI+s.r..t *,i e~4_-.e e 4 e e 4 N%nL=r. q.f- a.% .6___--~e_--a.v' ev.,q_-{n*_ g_se..isT.,%g_--.m a is- . . .q..~.{w]--'___w 3.a w..+--p. .re._-ir i.e. ,*4$.___.----. = = =_,~u- - -___.i-4.i_.y i=.._.=.e*_.4 w e e-e----.r.r-T--IA'".?.,i e m.%.W"_.._._- _.w*UT*.""a.X--**;.*75%* ** **

          • 6***--'.*5"o 1.a wa.n._-----~**...g---._m n..,*.*tr'.no n.i.t w h.---'at e-1,e s,,.e.e~~se se s.J.P. *Dem'~

J =.."."" bs'W T.e~'er 'T*WIS 'r*E-'- 1".L. .".rr's m w..-u u w s-m.( u 3 _..w..i.m a---'=_--._d._r',. m.n., 4 H u-a.-e a....__-l.Tre 7_38*, 7-W4. ..NM;;ME 4.%.--.i-..._-'--a. . ,..-m.e s.eq w FL T 4*..e.so 4.4'. T g--_-o.* m al A 'M M.,,e.'.5., 3 s n...w.eia_=**e_._w u e_4*4 nt ut 4 i4 o--sa o u 4.mi 5 n~i.-_-_- - . --4 4 nr ,93 e4 7. i $.m[a EPJ'C.;*,yg% s.d.,..u.T m@'L*tt kia..b. .. __w u sn s...e in ni a a i,- N.Te i n e~r-----ta o.a e.T.--..4 nt nr ee.'4.oh. m[. a.it*2*** ~ Cia"F.^i.e s s c;W't...**'*"**---..no ao.....1;;in.e.c ou.:_._.__**_---_._.--!*d5%Mb iE_p EE" 4*'I 1.*_-- -4.e..4**qv e+.. m_.e..n ..=;.1m.3 4,.: ec ,, e-i_--e..-._~T-a.se s.n a as , ar. . -u .t-.+t 4**.*g~~#4.-'t e s et n- . .ou .=.__e., . ..--.___- O r.-_p___i e't T,'u.;E n...>_.r w.._A hEFG I 86.e.,e erws.s.48 4 4t mat CS48*h.46 c. ra7 ew&.<T we h e.A 64664.!!1634 196 m t- . . . . _ _ . _ _ . _ _ 4-:.:4 n: e m upw.r i 5;-%""=E= :-=_.iti& W K 8 %~w-24 2.. ...9 , m f.,.. t, : -, p-, i r..,,_... , .,+m,,.d G ,,.-.. .<e,,.. .... .,u.,...s.p i m ,._.. ., e.,..____._e, 1 2 ,....m+_____ _ _* z, z...,~...--<.,...... . ...... .C ~.'c--4 11===______a a-.=**=_._..,-S. _____*n'==***!=-_#mI 8"'*_ _ . ..."....ww.c-+=h @'___d'm,*}; -_.q-': r 2 a>-' r**'.et.'.sN..---','**"e*..: , e.la-~_'t_g4__]~J__:_--**a, a., a.=a , ,.i .;"-5-----,f.*',t,.f .. j , , t. , , .!-.-.w.-----.in--il_a ,-------t..4t=-C_-;_._.i____i_cc=___..__:-m_ _-_!-__. _ ___-.-,;-=__.____-.. .4_._.___ _ . _, Y __~_7___T .__!__,. I------[._.'.;.---t--.--..4._._*. ... , , ,.,--. p ._______._t., 1=f**_'.'a*"'a*.,' SUBJECT TO POOL SWELL LOADS 1--y--t-." SUBJECT TO SRV LOADS AND, POOL , w-SWELL LOADS .=.1__.__n**-.t=-,-l~~ ..___ _.._____**$* * *......".'*..'S'*"' * *' " y._._.3-+,.-.-.5 EE* * , h.___e....._j--__ --__. . ___.__, , 1 er**.....k h , N***'**a e--jg*'*'~-_'~~.g-3" s.;ww__.r_,,-- , ,._...,_3#8'#TTis es Fe." " " "" ' _' * *********_F T en es I se...T , a-"'**" L'" t -" I..e e..."*{_e.a.e.s n.n.<.... . . .=--..**-l=___._ . __._,____._.-*--ry-g-e-;;_--rw.-, . ,."~~3~*TH.~=_~ . .-_=--___E;---n.-t-p}..--22 r,.-,, , CL_-r 5 le., 1 0.7'A]l 1 /--,"!=5EE.-, (*n-'*-==--=.. _ _c.t__._.----_-._..---, ,.-,=--=---Rev 2, 12/20/79 c-_.__.__m r-.-.,-- -151-T-~,~QlM--'HOUSTON LIGHTING & POWER COMPANY .Allens Creek Nuclear Generating Station I Unit 1 REACTOR CONTAINMENT Bull-DING PIPING PENETRATIONS SHEET 6 FIGURE 2.2 5 _ _ _ _ _ . . _ . . . . . . ... ... , e a\I:.;;.,-.: .~ ...;;;;.-c'" W WT.S... .L@;r:'llYI,.P.,**,m.

-..... . .-g..r i.-.'.-.5.;w.A. . .. . . - .-
u. ... . . . . . .. , ......<......,..g_j t- F j.,., g' s C 1 r+*g
  • a w .-4 *...___. . .w...u..', h.*.=.* *h.*.__'.'._,.*,.****L, i 4*:.** ". b. .,y-

-s.~~-.?'.*m r*?%. .. ,.y-,,_, ,,-...,. . .1 a. ,. .. _.-., , u,m,,. . < ...=_.<...1.., ,.,. _ ._.-i r_;;;g y)p 9-y r z. -- - --.-.y, o g , D D ,g. g..g. ;.g nn %nw , 3. ..__ ._...-~ ~..--m , p 7 q,_.-l. . . . --e e..,.,..._ . . . -..e,._.,___.__,....,4_#,,....m er;.._.4<;_ __,, i.. .e.e cm...- <p( e.e_., , w4 I-4_.4 es ,..,..=~. -a..,,,4.__F-...g.__t..'a e.4 s.e 4 , ,#.aL e . . a a- ~ - -2, =rt e i a-%.To.Q T g.1 , ,_.-+-w. .. W5's..h 3.'[re't i {e 9'--+--+.i." T~i-4 1 3 M l adeo c.~Ea.-; ;;*se$- ~M+-- --'+.1 i f.p .lt .- t--.. i" a~~-fdh 6-i ,., w.N g.$,d ""[N -[~b.I+-'yl.L .~ * * ~ _ .'*"i--


,. w-A 2t ,,_,7., r%..:--n.~c. .:.K. m$- f' ~ T

4. *.-"= e an.m..*.. ' . -* S & *u*s,9* 'Q A **+
    • '"**t*?. U_. * * * .sw 6.sm -eg***4..t o g.e ,8...__.i 8*2"*'*_ _ _ .'Y'.d alk#J [88 Tl-M"*%- e P.*?an r-fm.** d

',O.N I-[..=s !T.,, t.i~".J..___--~--4T 4 sesti-*.. < . -t at. i , m L.;qs 4.----L._.m ;; -....ny A._. y .we. t ,. -_.-+s.,, [,,.- - _ .*. .t .- ...1.--- _M..,~1.s ..__--=_?p, i..j-- - - -e ,.._2-----, i ,-t-, hj 4.sg5*y _'j a.s..s .4-_----,.. _,_, s.._a.4_ y= *.c.c_,___*L__.[. I-2--!.*m=-._-j'g"_ _ _ _ __@*.Q,*g %*-.*m_,.-.e-o----+---hn. . . ,-. . + , ,t y .,a.-t-+--_~---* -s.-. ,,.., T. , ,.s e.......1,.1.4 1, , 4 i n ...s ,---G7 a-e~'.d.g M.o...Es&ds7.7' '.a..*a. . e.e-r#<-t_:-*--e.-t.e'.-N r c.a t

  • t".1 c.( e-. . . ..r.. ...,---_-, , _ _ , s.* *} =e_ ___-__a'-. ...I-_---, e.* ...._--+ --,______.i, ,, , a-e e%..s %a.7.7 2.-^o'-"~N'i Ei'~~*...x t.--.a_.-_.-.,+. __. . +._4----, , u- ~.~ ia-. i.o.me'Tir c e**,,,_.;;._ ;;--e--.: 1 1 i t , , I t-t---i i i r i-'.*1.l;. m_a-. .u3*ee 's.-.l*w--+g___.- . .par _2._n c.uo m el.e T* .I>4_.-%up* I1t o , .'t.-4-, i gs gh.e M No Tte .,-_p-7-[_d 3 3't.>;..,.1-ITIii.4.-..]..e....iWu.a'48 =..T'*. " . .F e].'.o[)f 4I*.'.?,,,,rt.,..,_m...4 ,,g g- - . - . - - - ,_-, , , f
  • Af 0 t 3..I F.4,IE J_****g*'*_3 i i 82 'jr-i .; .-.M.i._4._,. . ,_.__-r *t .-*,_1 I ,g'3___-_i 5.es ..'_'W.,..'*c rJ., _ -w...g--. . . ..w. ...m,.r emI g^^^-.-.t eP ?ot .
  • '#,.g- .,__1-j-.e e*-r_f&a.M.a~ ~ ~ ~ . .

..t'9.r I .r'. .T.><'-.r. .si.....I#s e= ft.....-#s.. su. =-s.sEade.*-.g gi , 3.-'.es..r..e.s--5a/.3-e T}3-.~.m. _ . ...-, m.,-...1.-m.--+..--.............., ,-.,..... .i .u..-........,.>._.--.-..-. ...-.,....-.--...:.....--2_,..._---.-. n. .....,.._.-......-.,..~. .. . ,.,-_.....__....-..1 m............_,.:...,.<z-: m2---: m..o---m"-, .4..._ _ _ .._._.%_._.____.._. _-t--_.. -..--. .--, m..-<>, t 5 i-, t.F 1634 198 m.l '- 4 mh'= .r ~m ,c:: m. . r.c:ZL d..c h!.~=."~.-i=c r.._:r::. =t:.=.:.t : .: ;;;:r.=: -.w 4*p~ ~. t r +___ Z 1--'Ep;';~-4: rx----+ntx-H , ,;.;gs__-'g_;u__,_ .1__~~{ ~4 g@@g*"-g.O S.]_,*(--959h oo o , , 1--. .= =.._-,. .. . --l_ _ _I;-, ,.I i_4 __..a-_ _ ____'a_4$__ _ _ . .*.1 i i 1.'W .=t - #-v+,. .....m m u--jT;Sp _-t._-_r__p,,_;;,;to [;_..;i ,.-._; q'4*..J..s-r;,l+Q C i-i *,-!d__ ----* SUBJECT TO POOL SWELL LOADS Q CC? * ',* ' ',' ', *--" SUBJECT TO SRV LOADS ANDPOOL t .. _--.4 e i SWELL LOADS _.,'..t____.--;*;--t i-l, 1 i ,..l7_.__ ,_4__.___. _._______..,____, I I 1._..__._.._ . .__.__l_________T'._i 1_1634 199'_. _ _-.Rev 2, 12/20/79

  • HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 REACTOR CONTAINMENT BUILDING pipit 4G PENETRATIONS e SHEET 7 FIGURE 2.2 5

. .1 w., .on s'*;.,..'rf,*r.o.. e' " ' '..u. . c., s. . . ...e ,. ;,;., ., , , , . ,. .a, -. a. n -.._ __ _~g ,; .. .y.ryrf., . - .g.,, t. p ,.-., ew...u.gg,..;;. ,--l,,,r ,, , . , ,. ., s... s ;r. .,--..-.e-.4....-..'.m ,e--s.,=i ,,lw.-.-.w.i.} -... .we .w. =m , m: ,-/a i._'.m..m,..n.n.--c.m=,.=c; ,'-'-..i.e m e-se. .. m. pa.: n. e.e..e-. su w;g.w..v.e.g"-. 33; y, '?'gy** e.ea'rslt 1"JL y ,,,'g," ' g -

f. " *24'..t.es e 4 e sn.*;7.;,qi.;u/

,,.~, mg.r.., l t.eia 158' 'et . 6 B W u t..i i e o s. c e , , , . _ _hi. m.~,y :.m , . a .v..e e g.,s.ggr7 ; e.....s , re c we e....e l z a.c -. ....c..I T iT.~.'Na .a" = -.c.s, .r a '.' s , .s t i . es n-ne r" s** e'*'t .* a. if se.t )f g.n, ,.. ve., e.,--e, e.4 , . . ., ., , , p,.I.p...iw ...4 y.. , .- ') o.. a...v..-e,1.e+ e/er . .i ya se ..,.n m-s a. n-. .e- .e . ek ee a' .. -#I pi. Et 9.r#-f;--. . - ., e. . ...i n..- .,..m we e It m.e= *ne ese u esu == a.m.ar o$,- ~ ~i w as..,.e .,.m- -e .g ee ., E'a**7 #,,'LM.r."o g e., n. .m-.-. .w. .., . . . .ine.ee .es s*r.. 39 8 as9 6 13..e e ==w.m..er 4 m.s 4 sm s es4 e enJ..e.r..*,*. at t e.t 9 ma.c s.n .,.4.=. .. e.e,.w.=.. ma.. .%a. . . - . . -...L..=.A..,.r ,.M* * ' "**8*.'," ' _ *- , iw :.. ..l.n.u.< ....e e r ar.,_i ,.p., w.r..v. m- .-., ? .-,.l1 i n. n n. m..- .'*-";*'.*?~**. .~.?*\e i n., nl, m.- . . ...*e's. . .a.,=.r.e..,..{ .,, 7,< ..-_Hu-e'<,.'~, , t s/w 'a l_r_-t '.8 a-i.**.*~..s#e.a. ~. .., . - ,., l7,6-e; }~lp ia m.:WM. w v..-;,..-s....-.,.-s..., , i.er I .'. .e j I p O I g, _ D'l n 33 a.ee.a .6 ed iew a m*we ,,,, ,; t -t,; j.,. + - e e,... ;, ,.,< . . . -!g 8 m.,=...u. . . . .. -.r w.- - - -t t I t--8<, , , ,. . . ..II>- - + - -gn*gagr,.rw ., ,g ,r....,.,.c,. a.r .- ..e . ., --- t. ,1. L. _,e .M.-e 4 , , , , , , , , , ,.--t----1 4..a......r , i t aa..t_-...~J..mf.,!,..i , , r.s 4 +-'-.. ,4 , , . ,-a-8l .is.--;., , ,- --- -4.,.., i g sa..W .t.e6 a...se .. s , y j , , , ,-; , ,.e.l e e , ,., I e 8-s..r,., 6 .- -', , . + , , , e i e i i.-*i ,.--i t..l, g_-,,,,,-ar .s'." I ' t i ,*,' 'l1_ ..1 I..-b_1-a e i s*- ___".'.',"}*.* i a e i 6 8_ . _ -I y i .J'=.'* re*}-8 as' r .li...f.'" at."7 ! W.il.--F-s,....)i.s,..--tw.11. --'.e.- j Y i-'~~~~'d-T' i.T H-i"--..'-..--0 v.e*gr.rsa

    • * *I n't I a gP t .taf..ab., C

--O"'--b. e f.I'~~._te a I. _ d '_ *u' *L8_ y.s'.ee _s_.-,, s _, , ,,_._Q8 u.s-?....-.r.v,e,._______-__-,__-o_"-'-_ 7;_-.<.-__x----e I.,Q g r e.v g.s. p g -- _,., e ,,g ,, T~F g., , ,.i 5m- . * *_ _ _u.WP , v .-e,. . .,___1_b-eb_ .-a wa...,-e'_.# .-'.,-..-g ~~-_i .m .,F.9 4 . ..* * ~ ~gg ,g g , 1...! _WI'-g a._-T-e--g i s.a v.= a-s> e's i.I 1634 200 f i b*O.Tk"*m' N' =m 'A" *.* M.*.,,LW 74**t*ft."***w 3E.EE :.L5EEC$$:3::=EhTb5$ '--__:::: ,__..I_ . _ .-. _ _ .-i_._._,_._._^_______.___. _ _ _ .*,.:*:*-...-* SUBJECT TO POOL SWELL LOADS

    • SUBJECT TO SRV LOADS AND POOL
  • ~*_.SWELL LOADS

_,__._ _ _ _ _ _ _ _l,____.i_l.-., ,-_. - - -l--., , ,_.__._ _ _l_ _ _,;j____i j----, , , 1--, e , ,l!;._T-';Ill__. _ .,._.._ ., ,____, , , , l ,,__, ,. jl______l ,.,.llll., ,l, i_.-- _ _ .i , , , , i.I:_-:--i i i__- --;l,! ,'IlZ__,____-- _____-lOJ4'C01 r7)Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY a Allens Creek Nuclear Generating Station _Unit I REACTOR CONTAINMENT BUILDING 'PIPING PENETRATIONS SH EET 8 FIGURE 2.2-5 Figure 2.2-6 has been deleted ..1634 202 Rev 2, 12/20/79 I I I I I Ilngue 2.2-7 has been deletea I I I I I I I I Il1634 203 I Rev 2, 12/20/79 I ..h...Figure 2.2-8 has been deleted ,).t , i 1634 204 Rev 2, 12/20/79 n\l i om o g---g g DD D...)'N -3.A too 15 4 bt~*titte rtte i 27. ':'* _ Es...s4M.fu ,yj{ byr, a2m 3**., 4-35$i k.5";cw an.n .e cw.m i***b_.I+hc n: s[%-{k e.1 -8tATF R m-g , U j%~.!%t9 \%n'\=>&a one 3,,,-;m_,Af, s i.(',&g.,. - -_. c .. .<.~mh '* *,. . . . ~8 , , d 3 1\MT PLAN AT [(1,0,7$ l* '*E**W 5 e E ,*.1 % $3 8 4_m.isip q ea yo 6b---*f.l-Oh N$b:#A!_d 3 T N'A:.Fa 'r-.II-[fl i A w e , it4 4,3ng t - -.4. _...I-. . - -,o..3_e. .j. ..-+-...m-- h.x t a e 7"\*" h=a,'gx s".?, f / i!J f. . ' .a 4b. ', , , ,e_lt ,; q;.',/b 7-;, ,, , ,*.#..a 4_p g g, , ,3 4--m..,-7 g ,o,,.,?~~m ,,.A/h>a T-V'7g*t::~~t'L' Lu\1---f-.!, 4 ,t , at=e 1, t.....<.=Ag e-:n-=,_b_ NNN,wp,y,bihe !N[i#4EfN,, s %uu #M up *@'-9f.Mhk oifr/m~,./2,= 9:: j , e... _ . s e -m., , , , _r:::s a --=/T PAAT PLAN AT1L150.75' am" ' * *[ /EEI m'*!?.M J** , a..*a-It" PLAN AT EL l 1634 2pS= = :: '-&i. .ACNGS - PSAR I\5*T D**n:.$, , >*!-5*o**"l4.gp. . . ._r&//won w , pu["w//%~ .5 F--I - nf y 71,MikIII'o n.r ,~ ..e i" A G g7*ege%, ;. ,a=-1 (1 e$i!.v C'O.2;LJt%sQolx 3-- -s , E N A'g, g~-x =e-..es an6settsa m ==r w issset.uk,;.m 4.%,m ,*-+jg 4;ys,c. !i \.A 3 t't .,~.r. ., . x e. .. u , ..x t .. ._..s'T "/S.'a 2" j 1},% a's3L 2' t2,~s.. m=m ng..-' --o'~,, 1'I s qp-as4 s yo ,. . . . . . . . p ; " 9"'@ =,=., J. l"a.'cm ,e , i, mi m ,.m ,v;s- +. ,~ r~ .1.n.-4 . .~I'*ye<1'-_p!!, .. s-. r.s .s (i-N, ,v s--.--, e-gg, h . ... ... , r g4 43"==n earA.e 1634 206_o m m1]_, f ML==.e =r ,, _jn ,...w A U""", 2< * " = ~ *'~" ,,.a .e..Rev 2, 12/20/79 -'~....M" ,,,,,,,,,y g HOUSTON LIGHTING & POWER COMPANY

  • *2**u**Allens Creek Nuclear Generating Station s Ir$'.I o'*lfE'IC.

Unie 1.RHR PIPING PLAN FIGURE 2.2-9 , 9 5.k N ~f 1 RA--g{=4@D-"" l I_e E F'A_er 5': g 8 1., tit e% 'h.b'i Y e IA A CITAsL Jan /'e,..4 eo 1....-' E',", ,.E'- 1, k F 0,4 be /A L*j -a ,9 80Se ts # "~-/$Ji/ uTo' ewe \ !&'d I'5/ maut./w.....-I?*f"'l, 4..s.\=,,. [. .-y)_ ' , - , n.,-J=i u n;= w % K.;2...B.?="_-%<_.i-ms:....Ia'_e_aA;, , , . ,.p! O r 3,, , ,, ,,'/_.;q/Ai j... . !7, r5"- "' 68 -.m..-f.7;--P iws_ .- sis e-%Fg{~.h. . 7.+1_g1. , , , . , x 1*,#14 46 68'al'),! .,1 f}I w g-f #9 IO-9 4 00 4(pg gg igg gg. . . . . . . . ..., IL Et a,6.75 l'8'-*" Sa'u0!$,,li ,=Ie-/1~M AN ASC!;)\\/,. to . .. .....<, .t l

o. !']\. .1634 207 ACNGS - PSAR ls...'e r-r.ts-//wa set e ,y.e .isemuel g@4',@ fD. [.iN.a.l 6 D D n n I ,,-*'*-4 f,-<Y<4 h({*a.,-, i ja e u.u., a.a , r ~. l y g-s I~ jN;$.T'saw . e1.,t s, -W.tv . are m.we s ..s,a

%ffw a f u sue. f s ,,,,,,,_em( a. sin.esi,_%j o.,w v u%,-s~-N M * ",0 , f , ,,, ,%A $...$_.. ..,I .';'S ,-..,.. . .. :....,..'#*een.N N* .lgf't 8'y W.. ..[p_;.;w;g;i;u. u . .e."h,8 7 * , ;p-= >, , rew ee e seen ,_. 81b y esq_,g , a w .e-a6. w _ . , I",-$6fl M oM nw eeta w a,'-.e......., a/g.esw e en n g..,_,. . . . . . ,,,,."*~" t.3-7/ q.,.~, r.:==~~-- -.e..orn m . m , E.-~su -5~ , . . . . . . . + 4 ' --f, $ 5*->-V' ;,. ,pMp, 3-' ' **')H H=-".se,;/f setwee m, j/_e.v e t ** %M'f----.8. ) ..----..8t h * ** * * ' _lILa,,l_q -i s'3. , PL.N EL 142 50, M5fGN BA'dD UPCN FOLLOWING VENDOR DRAWING $' x.=:==wdh=1=:=. =..

=?= =~' r. ,' *

%.,-,, s ..-u ww.,-,--...-..-.m.EL ilt)0 W i.!MM.M=,=~1,s_, ,-. , . . . . . . , , .. , .,- , 2_......--sm=,m.=.x. .l--4__g_u ,%.c won .,, ,/.. ., n. a. _ -,/_ _ - * * *

  • y 4-w'w ,~~4'. .s/.Q-v," ,yyby=-\, ,: , m ,., ,......a...e mm.8. 4. . .,.A>n. ...... e x<. . . ... . . . __'a*'e,i.h p. /'.'.' ".s g , erw .i-=>+y.-4 u s-.....l/*l .A-#'" i.na/--" ,.,,,w,,,r n a . n...p n yn..)\\.\4}g*'~ "I W.','.,,..~,-.xx x-M?."i Rev 2, 12/20/79 , s ,.e .m x" ' ' ' " N'HOUSTON LIGHTING & POWER COMPANY 8" " Allens Creek Nuclear Generating Station

<t is ts , , .Unit 1 e.....iwi ,s...n.e.. u , RE ACTOR CORE ISOLATION COOLING - PIPING PLAN FIGURE 2.2-10 . r..'g J m*%00 1~**4 6 2E22 17 R-G EL 1%'-G 2E-7.2- Foi 4-3\'S 1's 9%;,;e n Q J2A D\f Q.'12:i 9 ,%\.'~n n m __: L(a7 e-<Ls..-ylN z.V//\'4$'-bh]O 2E22 F0lt-SS i L_PLAh3 EL I4

I/4 = l'- o FOR COMT OF PIPI J SEE PLAM EL leo.

i!% Low see. PLAu ._M-12i7ot (o9) !L ACNGS - PSAR .PLAIM Ewc) El 134*-lo ,&., o FACE OF TOP FLANGE g&L 1%'-7h/ REACTOR & REACTOR SR. ELL CONTAIN MENT 2E22-12-?tR SS BUILDING.g g STEEL CONTAINMENT _PENETRATION M-SoJ EL 140'-O ,.*2E22 l? 2OR SS 2E22 2416R 53 M" 2E-22-4-2GR 53 e7 Q SHlet.O'*c es-t's y-ESulLDING--,Jg WALL f)__.'Y ,<p%-s.. - *'-, 7A a, 2E22-12-GR % 2E22- F023 53. 2E2212-l9R-SS 1634 210 Rev 2, 12/20/79 s" HOUSTON L'GHTING & POWER COMPANY Allens Creek Nuclear Generating Station ABOVE Unit 1' (04)'"6 i."'We! Rug CogggqAY -s FIGURE 2.2-11 o ...__.. -- - __h$I dq u"s Actot a I ofthe JW n 1f 4 sec. -n_-!h.0-sh ,a g'*,.al7'%.=tacta *sse - - - ..-s si tett p_ w s f't f*et e-j"y~r'*n*S5 I / /???'I V'ss one,s t eat Lffk vo tsas xsc<ond ' ' 'o t M A Cf,L,.5" ,L.~r . sist*w -.,or so a .w'*t N u' 4 %,ns3 j+n v u6 $$ +. . .u . ,2 .....,!,"' ti"a'.uis..I ,op, s s/8lb',e.a;no -~y*h i..K[/SN'S".' ' _ _ _ _ _ t q'L s ret car, l-X f 2 4 C%~- 7,\, ,.;e'.~3"$om aw#/= =66_L-__.t__1_/c.*% .%bfRAftose.N f u u etos w ,f *,y$ , , s n-< t. e m ..o i , 4;-es in-io s. 8.,l2'.O ,d~.f f i 7:u s ...

  • >/kl.l-est >ss s

..-i e,f.sw 0,f /]';~d N tF- treet c.o rsm e r 1-.:$Ue$$ 'h%/[','Q (5 I ~ '/--- weto evitmur. aaLL /'4 N.e 4 r,wuu.tv<.a-si j e / ,/ hyp - 'y ,D ;~_mc i I.9- / ,o rejt . . . t ay.c of ^ W Aj i 4~s 1 ~.lIl pp.-L JvA.n-sv ,..u/ r #Ta,., ,. af a ,vr g='!i$$, ht w *** ' / "' " ' ~ '7l %.u.~r m n. . s.tu.

-sa tw .t r u , s>-an m.u -nnmi> in et.i; ooc

_w. .o sce cas* o.r >m %C. -g u.:. ua s.xcc Rev 2, 12/20/79 ' ':'HOUSTON LIGHTlHG & POWER COMPANY Allens Creek Huclear Generating Station Unit 1 1634 211 HIGH PRESSURE CORE SPRAY --PIPING PLAN - SHEET 2 FIGURIi 2.2-12 --.--- .. 5'1 s vvou vom_m.-- - -6A 7A 90-22'-G_2'- 6__-BA-..6~~ZEti-Foll Si --"$C ZEll-1213R $1 SEE NOTE I C T 5E , , PLAN AT ell 52.5d I' I40'**tE11 Fo34-51 tgtl.t 11R gl [~g, EL l47'- O \\1 ,'IEll-Foot Si !#MitlS Og 7) 3 \\\\/I E<'~A m.1~Ja.. q A 7 ,]_r-ag.%g.P LADCER To EL.l52.50' '\..~' ---" T*\A O%'--~' ',s-LACOER To ELilG.17' \/4*p j-r_ _b i{ '^',/fo- ~ZEZl-4 ilR44 ")h,3 ,.id' k'*/,7 0h 5 IEll I4 2RSi G'- 5 g N/1Eli 4-13Sgt '_4'- 3 1 Ell-1114R 5'. 9 g_G'- 3E'/-/L 'g o t I , tu" 5.R. ELL p 9 PENETRATION M 44 e I$Ro y. i 3 g 4 tEll-it-isRsi ,%.f#c[O , goo 1W^O p I<>I ,e j%o p y'a+#c,<\\c CRYWELL i , 1 7 P L AN AT EL I4 2.50 1 0 Rev 2 12/20/79 s HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 LOW PRESSURE CORE SPRAY PIPING PLAN - SHEET 1)e4 2 eicuae 2.2-i3 ....- . ___._._6a 7a erl1 8 1... .._ c c!t - m ... , u .. . i, i . . . i e ti u. . . C.,![ -.i s.u **p g~15 b;* 1,3* * " ** ' 8 l , g" ,' M 7'lffM^' "M (h,i,7E,b.,hT.>J'f'd,;;r.:t: y i; t k p aff EL T-] lI- T 4 'e* * *~ ' :*, c:! c ;. yW'd's_Lun 'i#*o-g_\tii* ' tu n+.,, i. . ,""** ",1 l..\ .;.-> , [w .-4**t.10*.t',*f", Y ' \ --*3.%1"'4;-'y 8teditat oes an at ,#4--,, ,'p+. 4e h#*a t\r. .; c \ , I ,-s w..w ha>i.c', 6 g!#-w.1. , ,a+-, An's h. i P- t** w gi s./.e't *c , =we sv a. mn s n t.#p'*%86 1404 hl%:.u.y"j,,s'"-., u.-pl...-'{*', , , 7.....4 E._\f-**t g a e. sat,P.e >t'.*.m"*y,. . z t, y ,'*~ go es , s, '* r e-{\. ., . . . ,#,,..,. A?=,n. . . t <,. %. ... .-, a, g,af.a

  • m s. - w

, , fv g s?a-.1-e*#'**_. . m [ - ./ 5 o.s.c q.ca.,*-"6-%,gg,,,,,,g, , be see% --*3r s', g g, geg,, 8 ,..u..u!~,'f%v%t e4 h., ,.E Li 1-se w I.J, ., i . .. . a / .s g/ x < '/!?-i g e ,*,l.g.i. m . . ce-, , , , . , - - ..' .u/m~.s'i., jf;i n-.'h_~?L AN M EL .52 'O >RU EL 172.29 ~., c.Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 LOW PRESSURE CORE SPRAY jh}k k '.Z)PIPING PLAN - SHEET 2 FIGURE 2.2-14 -..---- -- .. \__,,_T o o n , o N A l}b L f lD "" lD" lD'9'Qj I-%SHIELD ButLDIMG i'\c 2'O SQ AIRTIGHT HATCH T FOR VALVE MOTOR REMOVAL-- , FLOOR EL 164. 00' f ,1 l i b,/s a.-pE21- FCl3 -St IE' !- Foo S- 51 %( r-lE21-FOl4 -Si -PLATF EL IS2.5d \9,-lEll 114R-51 il 54f-r,---7,-~m u..2Etl-12 3R-Si

  • Vt.14ds .2E212-25 5)#

Fr[~Y m=:. -L'EL I44' o i.,, 2E2l 2 22RSI-1 Ell 4 26R 51 i FL EL I41.So " ,l.'P N-tE21 4-12R Si i U_, , , ,.-,7 o.~a.,_, 3'ZE21-lZ-13R bl 2E11 Fon141 1 Ell-l1- 14 R-Si --i\SECTION C-*gg}4}}4 M - 121 l, ( 2) ( (P- , AO4GS - PSAR I/4 3T-0_, g EL.173'loh Pt.ATF EL., Mt.G' STEEL CONTAINMENT We E L. lG5'6 IE21 5R.Si DRYWELL.-PLATF EL 158.'15' _E L . lS4'- G c EL.150' 3 PEMETRATlou M-42 -___PLATF EL I42.50 PEUETRATIOM M 44 ELI40'-O R0 S&t_N W L 1 %'-4 _ME21-It-15R 5) PLAIN END EL 134'-10 215__<< -G-ggfg 1 HOUSTON LIGHTING & POWER COMPANY Allens Creek Huc e r Generating Station j LOW PRESSURE CORE SPRAY PIPING - SECTION FIGURE 2.2-15 . . _ _ _______._il,1 j 0*V9 (346.5') V10 (4.5*) a#3 I1180)(M 90)F041E - MPL IDENT s 8 i V8 (328.5 ) 1123- PRESSURE SWITCH SET POINT We) J D (1165) - SPRING SET point (psag) 8 I#0'I V7 (310.5 ) x\\ \\* \,a.a.F051A j F0470/ \%\.'1073'(1180) D A\/ 1113 (1190) ~~8 c w X-/4 V6 (292.5*) V13 (67.5') F041K'/V10 V14\F041A' V3 1123 (11651 ~lN U 11 (1165)j V5 V15\, V8 V12 x j f Vis VS (274.5') \y33 l m F047F f V3 V17 g V14 (35.5') , 1113 (1180) -K \xlF047G g V18_ + - 1113(1180) w l-----1'90 2)'-, v j v J V4 (256.5') 4 RPV V15 (133.5 ) F041F'1%F041G q)1123(1165) 1123l1165) J\\'#^4 V} (238.5') [\%V16 (121.5*) \\F051G F0518 1113 (1190) 8/(139.5 )V2 (211.5 ) 1-8 F041B/l g V18 (157.5 ) l1123(1163) i F051C.j V1 (193.5') V19 (175.5') '"'F0478 F041C 1113 (1180) 1123 (1165) 18(0 J]LEG END: ADS = _J NOTES: 19 S/R VALVES Rev 2, 12/20/79 $HOUSTON LIGHTING & POWER COMPANY '=Allens Creek Nuclear Generating Station Unit 1 NOTES: ' LOW-LOW SETPOINT VALVES e/A 71A SAFETY RELIEF VALVE DESIGNATIONS l O J 't GIU d FIGURE 2.2-16 ___, j-.---, - - - - - , , - , , , , , I^^j ^His WW*--#p l2' 3/ 3C (T Y Ql

  • i I'+,\,'h <lp , :'-, I'6's-%~f\e , g oo p a eg.o_ - -_ p. -,-9'1 ORYWELL WALL

_ _ .--,\\x f,-go holf,/ 'j'/,'//4,3\W (Tre.: 502 ,-Y /j -- V E N T H OL E ,a. ' 'lj',-~/I/,<Y//\TYP)'=4 s o\//m./ / /l/.-#\'g/, ,,/ ;fj/P L A N V 11- W //, g I/ X<f'/ '/.'//\///'/\l / / /,//' //<'/.\l/, f--N\g/, s ,//\l/'/,//.\l\I- PIPE SLEEVE & i VENT'f'\SUPPORT 16"S/80 - l, , , , s Y N,/HOLE (T Y P)x',/ .x_______, , ys i[WP'x N ,-',N--------, I-l / /[!'/.//:/il.,C//// .ly3 I 7/,\-~'5: I./ '/!'ll,-//, e O h, (0 I. ,/',/,'/ ,- nf,\/, 4 s., ,-..--__j!l9'? ;E-:-'-...(j/lsd!- - - - - - - - l/'/, n , a: s'? lI'i 1\3 ,i/,/'/,] / ' ' j ' ' /,// /////'I J P_.17 .50], ,Rev 2, 12/20/79 E L E VAT 1001 HOUSTON LIGHTING & POWER COMPANY I Allens Creek Nuclear Generating Station Unit 1 SAFETY RELIEF VALVE DISCHARGE LINE AND QUENCHER ARRANGEMENT FIGURE 2.2-17 5 1634 217 . . . . . . ____i_;3.0 LOADS-3.1 GENERAL i-Following a LOCA or during the blowdown of a safety relief valve, tran- -sient loads are imposed upon suppression pool structures and structures located imaediately above the pool. In this section the loads considered 'in the structural design are identified and the particular way they are accounted for (as applied loads on the structure) is briefly explained. -Figure 3.1-1 summarizes the accidents that influence the design of various 2_j structures. -3.2 LOAD DESCRIPTION DURING DESIGN BASIS ACCIDENT The occurrence of a DBA suf ficient to engage the pressure suppression system _is marked by air purging f rom the Drywell f ollowed by steam. This generates -a dynamic response of the suppression pool water which, in tu rn , imposes , J dynamic loads on the structures. The f ollowing sections cover the detailed lloads description for the containment structures under DBA which eventually i2 9 will induce pool swell, steam condensation oscillation and the chugging j phenomena in the suppression pool. Figures 4.3-6 and 4.3-8 show the suc- , cessive loading sequence on the drywell wall and the cor.'.ainment wall 1-respectively under the Design Basis Accident. 3.2.1 POOL SWELL LOADS ']3.2.1.1 Ground Floor The loading imposed on the ground floor (lower floor) beam flanges from the ." bulk" mode of the pool swell has a total duration of 500 milliseconds

  • (0.5 sec) with a peak pressure of 115 psid after 4 ms (the total pulse 2-lasts approximately 7 ms) and a constant pressure due to flow drag there-after (Figure 3.2-1).

_j During the same 500 ms. period the solid area of the grating is subjected to a constant " drag type" f orce in the upward direction. The intensity of the drag load is determined from ue pressure differential plot (Figure w 1 3.2-2) and is a function of grating ' void" area. Based on this curve, and J using a grating with 70 percent void area (applicable to the ground floor grating), a 9 psid pressure is obtained. This load represents the drag _i force of water flowing through the grating and is applied to the grating's j solid areas 37 milliseconds af ter the initial water " contact" with the beam lower flange (Figure 3.2-3). The 37 ms time lapse between original water impact on beam lower flanges and water drag on grating is computed by 1 s;assuming that a minimum of 18 inches depth of the beam is travelled by the ~water in bulk mode with a speed of 40 f t/sec. _All impact and drag forces described above are assumed to act uniformly on all ground floor structural members in the containment annulus. l2.,;1634 218.3-1 Rev 2, 12/20/79 ,-- - _ .- I I 3.2.1.2 HCU Floor and Steam Tunnel 2 At the end of the 500 ms period the " froth" mode of the pool swell begins to a f fe ct the HCU floor above. The pressure-time variation has a peak of 15 psid followed by 11 psid uniform differential flow pressure. These pressures are applied on all solid areas, beams, grating, steel plates or concrete slabs, steam tunnel floor etc. , and act for a duration of 4.0 seconds (Figure 3.2-4). The distribution of pressures is assumed to be uniform in both the radial and circumferential directions for the entire llCU floor. 3.2.1.3 Drywell and Containment Protuberances, Miscellaneous Structures 2 and Piping Uniform pressures associated with pool swell are assumed to act on the projecting surfaces of all containment vessel and drywell protuberances g on all miscellaneous structures and piping within and up to an elevation 5 30.0 feet above the suppression pool, as follows: 1 3.2.1.3.1 Structures Immersed in Pool Water Those structures whose minimum dimension exposed to pool swell loads is 20 inches or less are defined as "small structures". Vent clearing water jets with velocities 60 feet /see within 3 feet of the 2 vent exit and 30 feet /see thereafter produce drag loads on small structures and piping prior to air bubble entering the pool. The water jet geometry similar for all vents is depicted in Figure 3.2-9. -Immediately following vent clearing and during bulk pool swell stage,lstructures within the pool above the bottom vent elevation can experience 5 2 loads in outwards or upward directions calculated using appropriate drag coefficient and a pool swell velocity of 40 ft/sec. The outwards flowing water is not considered a load condition for the Containment Shell. All large protuberances are provided with sloping undersides for which figure 3.2-5 is applicable. These structures whose bottom surfaces are immersed in the pool, their pertinent design parameters and pool loads are identified below: Ra dial Upward Downward Structure Pro jection Width Force (Psidl Force (Psidl 1.Floor Drain 7'-0" 14'-3" 41 17& Sump / Pump =Platform 2 5 2.TIP Drive 7'-0" 14'-3" 41 17 g Platform 3.Personnel Lock 6'-6" 10'-0" 41 13 4.Equipment Hatch 0 0 0 0 I 3- 2 Rev 2, 12/20/79 1634 219 . .. .. _ _ _ __-The 41 psid load in the above tabulation includes drag eff ects and the 2 LOCA bubble pressure and is assumed to act for 500 ms. Downward loads due to f allback commence 500 ms af ter termination of the upward loads , and are assumed to act for 3.0 seconds. The loads induced during I'condensation and chugging in the suppression pool shall also be included j2'utilizing appropriate mathematical formulation. j During f allback drag forces are calculated for water velocity of J5 f eet/ sec.Loads on quencher supports are defined in Section 3.4. 3.2.1.3.2 Small Structures at Pool Surf ace 2 All small st ructures , protuberances or piping whose underside is at pool I surf ace or slightly immersed do not experience the pool swell impact. They are subjected to drag forces due to 4U feet /sec. Water flow and to 21.8 , psid air bubble pressure ef f ects combined. The acceleration drag f orce shall also be considered. 3.2.1.3.3 Structures up to a Maximum Elevation of 30 feet Above Pool 1 Surface The loading condition of small structures is depending upon their elevation-o above the pool surf ace. In the category of small structures are included all piping, various supports, bracing, protuberances , cable trays, ducts or anything projecting into the containment annulus. The majority of the struc-- tural elements at HCU and ground floors may be categorized as small, however, the loading condition f or these floors was described separately in Sections 3.2.1.1 and 3.2.1.2 for better definition. 2 i Essentially, as defined in Section 2.1.1.1, the structures could be situated either in the " bulk mode" region up to and including 16.0 f eet above the pool or in " froth mde" region which extends to 30 feet above the pool

  • 2 a)For bulk impact and flow drag on structures up to 16 feet above the lpool, the load time history depicted in Fig. 3.2-1 applies.

-b)for structures located beyond 19 feet above the pool but below the i hCU floors, the f roth impingement data shown in Figure 3.2-4 should 2.be used.This impingement load shall be applied unif ormly to all small structures with the time history shown. c)Interpolate linearly with height the peak impact pressures and lduration of Figures 3.2-1 and 3.2-4 f or structures located between !2 lb and 19 f eet above pool surf ace. Drag load intensity is in- 'dependent of structure elevation, while drag load duration is shorter as the structure is at higher elevation. 1634 220 3-3 Rev 2, 12/20/79 _ _ _ _ _ _ _ _ . . . . I., d)All other small structures located between HCU 11oor and 30 feet 1-I above' the pool will be subjected to drag loads resulting from pool swell " froth" flow. The froth density may be considered ,.3 18.8 lbm/ft and maximum velocity 50 feet /sec. at elevation 10.5 feet decelerating to zero at elevation 30 feet above the pool. 2 3.2.1.4 Containment and Drvwell Walls During the pool swell, the containment vessel wall and the drywell outer wall are subjected to the loading conditions sumuarized below: a)A 10 psid on containment and a 21.8 psid on drywell peak bubble pressures which are constant below the suppression pool surface 1 2 g and decrease linearly to zero over 18 feet above the pool. The pressitres are a triangular pulse type for a duration of 500 milli-W seconds and are superposed on the normal hydrostatic pressure. b)A 11 psid peak uniform pressure between the top of the pool water and HCU floor. This pressure corresponds to the upward pressure 2 of 11 psid on the floor (See Section 3.2.1.3) and has a duration of 4.0 seconds. Both pressures are assumed to be uniformly

  • distributed circum-l1 ferentially on the Containment and Drywell walls and their vertical distribution and time histories are shown in Figure 3.2-7.

c)Above the HCU floor, a static, uniform pressure of 5 psid is applied to all exposed surfaces. 12=3.2.1.5 Suppression Pool Bottom Liner and Base Mat During the pool swell a downward pressure with a peak of 21.8 psid at drywell wall and of 10.0 psid at containment wall is acting on the sup-pression pool bottom liner. The pressure is uniformly distributed in the I circumferential direction and its time history and radial distribution is l2 shown in Figure 3.2-7 and Figure 3.2-8, respectively. 3.2.1.6 Ueir Wall There is no load on Weir Wall during the vent clearing. Once flow of air, steam and water droplets are established in the vent system, there will he a static pressure reduction in the weir annulus that leads to a 10 psi out-ward uniform pressure on the weir wall. The pressure, a rectangular pulse ,*type starts at the time the top vent clears and lasts for 30 seconds.

  • For the purpose of Containment Evaluation (structural response determin-ation) the 10 psid pressure described in Section 3.2.1.4a may be considered as applied on half of the containment periphery (see note 1 of Figure 3.2-7).For combination of this load case with other ioads see Section 9'4.3.1.1.2.

1634 221ly..3-4 Rev 2, 12/20/79 E - . . - - . __-_--3.2.2 CONDENSATION OSCILLATION LOAD DESCRIPTION Following the initial pool swell transient during a LOCA when the drywell -air is vented to the containment free space, there is a period of 0.05 to 1.5 minutes (depending upon break size and location) when high steam mass _flows through the top vents and condensagion oscillation occurs. Vent steam mass fluxes of up to 25 lbm/sec/f t" occur as a result of either --a main steam or recirculation line break. All suppression pool boundarys will be subject to this type of load. The condensation oscillation forcing function to be used for design is defined as a summation of four harmonically related sine waves: A(t)0.8 sin (2rx r x f(t)) P(t)=2_,+ 0.3 sin (4rx r x f(t)) ,+ 0.15 sin (C.. r x f(t)) Eqn (3.1))9~+ 0.2 sin (8x x r x f(f)) J (psid) where:.P(t)pressure amplitude for a cycle beginning at time t and -=_ending at t+T p A(t)peak-to peak amplitude variation with time =, 5.5{3.395-0. +7.688(logt)g06t+1.15logt-7.987(logt)~ =-1.344(logt)4l Eqn (3.2)_f( t )fundamental frequenc- variation with time =0.8l2.495-0.225t-0.742logt+10.514(logt) =- 9.271 (log t) +3.208(logt)'} Eqn (3.3)'_time (sec), 3 C t $ 30, time from initiation of LOCA blowdown t=_period (sec), On 76T , time from the beginning of each r =p^cycle 1/f(t)T=p._A typical condensation oscillation forcing function on the outside fece of the drywell wall adjacent to the top vent has been calculated f or 4 cycles --and is shown in Figure 3.2-12. Equation 3.1 has been calculated and digitized in Attachment A. ~The spatial distribution of the forcing function amplitude over the wetted surface of the suppression pool is shown in Figure 3.2-13. The amplitudes shown are the maximum values determined from Eqn (3.1) normalized to 1.0 --_ at the top vent centerline. .._.3- 5 Rev 2,12/20/79 --_ . . . . . I'3.2.3 CliUGGl% LOAD DESCRIPTION During vent chugging, drywell pressure fluctuations result if significant quantities of suppression pool water are splashed into the drywell when the returning water impacts the weir wall. This can result in a 2, 2 psid across the drywell wall. Such a bulk drywell pressure fluctuations is negligible when compared to the peak positive drywell pressures used for drywell design. W in addition to the bulk drywell pressure fluctuations, high amplitude pressure pulses are observed when the steam bubbles collapse in the vents during chugging. The dominant pressure responses in the suppression pool i during chugging is characterized by a prechug underpressure, an impulse l(pressure spike), and a post chug oscillation as shown in Figure 3.2-14. Although it is expected that chugging will occur randomly among the vents, j synchronous chugging in all top vents is assumed. Each vent is expected lg to be periodically exposed to tne peak observed pressure spike. The pool t g boundary load definition considers that the chugging loads transmitted to i the drywell wall, weir wall, basemat and containment are the result of

several vents chugging simultaneously at dif f erent amplitudes.

I'3.2.3.1 Chugging Loads Applied To Top Vent Within the top vent, the peak pressure pulse train shown in Figure 3.2-15 is applied f or local or independent evaluation of vents. Although some variation is observed in the pressure distribution from the top to the 2 bottom of the vent, it is conservatively assumed that during the chugging event the entire top vent wall is simultaneously exposed to spatially unif orm pressure pulses. Because some net unbalance in the pressure distribution gives rise to a vertical load, the peak force pulse train lshown in Figure 3.2-16 is applied vertically upward over the projected 5 vent area concurrently with the peak pressure pulse train to evaluate local ef f ects at one vent. For global ef f ects, the average force pulse

train shown in Figure 3.2-17 is applied vertically over the projected larea of all top vents concurrently with the average pressure pulse train within the vent shown in Figure 3.2-16.

3.2.3.2 Fool boundary Chugging Loads The chugging load applied to the pool boundary (drywell, basemat and contain-ment) is described by the typical forcing f unction shown in Figure 3.2-14. The forcing function consists of a pre chug underpressure defined as a half , sine wave, a triangular pulse (pressure spike) loading characterized by a j time duration"d" and a post-chug oscillation described by a damped sinusoid. lj The impulse is at its maximum magnitude and duration near the top vent on the l 5 drywell wall due to the localized nature of the phenomena. The amplitude of j the pre chug underpressure and the post chug oscillation are also maximum at g'this location. The asymmetric and the axisymmetric chugging loads shall be lg'used f or the considerations of the local and the global eff ects respect-ively.For asymmetric loads, spatial variations in pressure amplitudes are !accounted f or by using radial and circumf erential attenuation f actors. Forlaxisymmetric loads, no horizontal attenuation is considered. g34223i"'<o'I 3-6 Rev 2, 12/20/79 _ _ _ _ _ _ _ -. _ _ __For local (asymmetric) los. considerations on the pool boundary: lPre-chug Underpressure .I peak amplitude - Figure 3.2-19 .;" di s t ribu t ion i.l op (psid) = -5.8 F F,, sin rt 0<t < 0.125 sec j q , 0.125'where: F p radial attenuation factor (Figure 3.2-20) =F circumferential attenuation f actor (Figure 3.2-21) =u time from beginning of underpressure (seconds) t=Pressure Spike ., t peak amplitude - Figure 3.2-19 l.distribution ',.The spike is a triangular pulse at l0.125 second lt=B m d palse duration (given as a j=function of radial location ilin Figure 3.2-22) l':*d d_J yj_B pulse amplitude, psid l=!I t'C (psid)100 F F=SP SC'I where:lF gg radial attenuation factor (Figure 3.2-23) =F SC circumferential attenuation factor (Figure 3.2-24) =Post-chug oscillation .peak amplitude - Figure 3.2-19 l.1-distribution !.g ,-0.557/ 2et A P (psid) 6.5 F F e sinl 1=9o r (f 1634 224l.-. ., 3- 7 Rev 2, 12/20/79 -.__ I wnere: radial attentuation factor (Figure 3.2-25) F=R circumferential attenuation factor (Figure 3.2-26) F i=g time from beginning of oscillation (0.125 second + spike t=duration)period of oscillation 0.08 to 0.1 second f 7=lThe profiles in Figures 3.2-21 and 3.2-26 represent the peak observed value

at one vent, with the other vents chugging at the mean value.

For global (axisymmetric) load considerations on the pool boundary: i I Pre-chug underpressure .!t. mean amplitude - Figure 3.2-20. distribution - Figure 3.2-27 lPulse (spike) .. mean amplitude - Figure 3.2-20. distribution - Ffgure 3.2-28. duration - Figure 3.2-24 Post-chug oscillation .mean amplitude - Figure 3.2-20 .distribution - Figure 3.2-27 .No horizontal attenuation for this loading .3.2.3.3 Chugging Loads Applied to Ueir Annulus The pressure pulse generated inside the top vents during chugging propagate toward the weir annulus. The dominant pressure response in the weir an-g nulus (weir wall, basemat and inside drywell vall) during chugging is g characterized by a pre-chug underpressure, defined as a half sine wave, followed by a pressure pulse train, as shown in Figure 3.2-30. Both the local and the global effects shall be considered. The asymmetric and the ixisymmetric chugging loads shall be used for the considerations of the local and the global effects respectively. For asymmetric loads, spatial variations in pressure amplitudes are accounted for by using radial g and circumferential attenuation factors. For axisymmetric loads, no g horizontal attenuation is considered. I 1634 225--I 3- 8 Rev 2, 12/20/79 I i Weir annulus chugging loads apply only to surfac2s below the weir water level during chugging. These loads (asymmetric and axisycanetric) are not coincident with pool boundary (drywell, basemat, containment) loads. Peak weir loads result when the steam bubble collapse occurs in the top vent while the peak boundary loads occur when the steam bubble collapse in the pool.For local load considerations, the peak amplitudes are applied, and for global considerations the mean amplitudes are applied. For local (asymmetric) Ioad considerations on the weir annulus: Pre-chug Underpressure .peak amplitude - -2.2 psid.. distribution AP (psid)-2.2 F F sin rt ,0<t< 0.00="" 0.0S where: F vertical attenuation factor = 1.0 =, 2 F circumferential attenuation factor (Figure 3.2-31) =time from beginning of underpressure (seconds) t=Pressure Pulse Train .. peak amplitude - 43 psid. distribution (Figure 3.2-30) P ,,-12.0 psid or -P , whichever has the smaller absolute ='value.F 43 i F (psid)=I w we-where: F vertical attenuation factor (Figure 3.2-32) =F circumferential attenuation factor (Figure 3.2-33) =For global (axisymmetric) load considerations on the weir annulus:. Pre-chug Underpressure. mean amplitude - Figure 3.2-34 .: distribution no vertical attenuation .{1634 226 3-9 Rev 2, 12/20/79 I. Pressure Pulse Train. mean amplitude - 15 psid (Figure 3.2-35). distribution - Figure 3.2-36. duration - Figure 3.2-35. No horizontal attenuation for this loading 3.2.3.4 Top Vent Temperature (Cycling) Profile During Chugging During chugging the water le vel in the weir annulus fluctuates over a 4 foot band centered at about the top vent centerline. The weir wall and the inside drywell wall then are subjected to steam tempersture (230 F) above the top vent and cold pool temperature (100 F) near the lower vents, with a transition region in-between, where the temperature flue-tuates due to the chugging process. For evaluation of local ef fects, the cyclic temperature profile during chugging is shown in Figure 3.2-39. The cycling temperature ranges from 100 F to 230 F; and the period is equal to the chugging period, which randomly varies from 1 to 5 seconds. The areas of application are:. 4 foot horizontal band on the weir wall and inside drywell,. the upper inside vent surface,. and an area of the outside drywell wall just above each top vent, as shown on Figure 3.2-39. The duration of the thermal cycling is identical to the duration of chugging (see bar charts, Figure 3.3-1). As the event proceeds, the .T reduces in amplitude due to bulk pool temperature increase. As part of the design calculation, this bulk pool temperature should be considered. 3.2.4 NEGATIVE LOAD DURING ECCS FLOODING I Somewhere between 100 and 600 seconds following a LOCA (the time is dependent on break location and size) the ECCS system will refill the reactor pressure wssel.Subsequently, cool suppression pool water will cascade from the break to the drywell and start condensing the steam in the drywell. The rapid drywell depressurization produced by this condensation will draw non-condensable gas from the containment free space via the drywell vacuum f breakers.It is during this drywell depressurization transient that the I'maximum drywell negative pressure occurs. l 3.2.4.1 Negative Drywell Pressure For design purpose, a conservative bounding end point calculi. tion was l performed which assumes that drywell depressurization occurs before a significant quantity of air can return to the drywell via the vacuum.' i 1634 227 I

  • relief system.

This theoretical conservative calculation yields a drywell negative pressure of 21 psid. 3.2.4.2 Inward Load Due to Negative Drywell Pressure Due to negative drywell pressure discussed above, reverse water flow in the horizontal vents will lead to inward acting impingement loads on the weir wall.A simple, steady-state flow analysis leads to flow velocities ap-proaching 40 ft/sec if it is assumed that a 21 psi negative differential exists between the drywell and containment. This leads to a total impingement force on the weir wall of 12,800 lb. per vent applied over the projected area of the vents. This number is based on a simple jet impingement analysis which assumes that the force on the weir wall corresponds to a change of the horizontal momentum of the water flowing through the vents. Inis same negative drywell condition can theoretically result in the flow 2 of water over the weir wall into the drywell. Using the hypothetical drywell depressurization time history shown in Figure 3.2-37, a peak velocity of 25 feet /sec can be calculated at the top of the weir wall. This velocity is decreased due to the ef fects of gravity with elevation and the spreading of the flow field so that the maximum elevation reached is 11 feet above the top of the weir wall as shown in Figure 3.2-38. Structures in the path of the water are designed for drag loads using the following equation: CAh D 2g c where: Drag Load Force, lbf F=Drag coefficient C=D 2 Projected Area hormal to Flow, Ft A=3'Specific beight of Water, 62.4 lbm/ft =2 Newton's constant, 32.2 lbm-f t /lbf-sec g=c Velocity of fluid, f t /sec . V=s.s wad DESCRIPTION DUkIhu INTERMEDIATE BREAK ACClbi.h1 3.3.1 DRYWELL LOADS The loading conditions caused by an intermediate break are less 'than those in a DBA or small break; however, they are examined because actuation of the nDS can be involved. Figure 3.3-1 is a bar chart for this condition. 1634 228 3-11 Rev 2, 12/20/79 , I 3.3.2 CONTAINhENT LOADS Figure 3.3-2 shows the bar chart for the containment during an intermediate break that is of sufficient size to involve the ADS system. Since these breaks are typically quite small and because there is a two minute time delay on the ADS system, all the drywell air will have been purged to the containment prior to the time the ADS relief valves open. Thus, the conts ament will experience the loads from multiple relief valve actuation coup 2d with the 5 psi pressure increase produced by the drywell air purge and pool heatup. Since the former are pressure oscillations whose magnitude is not dependent upon the datum level, these loads are additive. Section 3.5 defines the loading magnitudes which are assumed for the S/R valve , discharge. l3.3.3 WEIR WALL LOADS Figure 3.3-3 shows the bar chart for the weir wall during the IBA. Thelsafety relief valves loads associated with ADS activation are discussed in Section 3.5. Such a LOCA (IBA) will induce very small pressure differential j across the weir wall. Chugging loads on the weir wall under IBA are the same; as those specified in Sections 3.2.3.3 and 3.2.3.4 for weir wall under DBA g il3 case., 3.4 LOAD DESCRIPTION DURING SMALL BREAK ACCIDENT 3.4.1 DRWELL LOADS /"!A small steam break can lead to high atmospheric temperature conditions in g;the drywell. Figure 3.3-4 shows the bar chart for this accident. 3 ,g 3.4.J.1 Drywell Temperature I i For drywell design purposes, it is assumed that the operator reaction to the 'small break is to initiate a normal shutdown. Under these circumstances, the! blowdown of reactor steam can last for a 3 to 6-hour period. The cor-i responding desogm temperature is defined by finding the combination of

primary system pressure and drywell pressure which produces the maximum

!superheat temperature. Steam tables show that the maximum drywell steam 'temperature occurs when the primary system is at approximately 450 psia and the containment pressure is at a maximum. >lDuring an SBA the continuing blowdown of reactor steam will cause all the

air initially in the drywell to be purged to the containment free space.

{The peak superheat temperature is 330 F. This temperature condition exists until the RHR shutdown cooling is completed in approximately g i three hours. At this time, after three hours, the pressure in the reactor 5 pressure vessel is 150 psia and the corresponding superheat temperature is 310 F.This will exist for three hours. These superheat temperatures correspond to drywell atmosphere only; separate analyses are required to determine transient response of the drywell wall to the elevated steam temperatures. 1634 229 I 3-12 Rev 2, 12/20/79 I . . . . _i 3.4.1.2 Drywell Pressure ,!Wit h t ne neactor and containment ope rating at maximum normal conditions,!a small break occurs allowing blowdown of reactor steam to t he dry we ll . !Tne re sulting drywell pressure increase leads to a high drywel. pressure !signal that scrams the reactor and activates the Containment Isolation !Sys te m.Drywell pressure continues to increase at a ra te de pe nde nt on the size of the assumed steam leak. This pressure incre ase to 3 psig l, de pre sse s tre wate r le vel in the weir annulus until tre le ve l re ache s

t he top of t he upper row of vents. At t his time , air and steam enter the

!suppression pool. S te am is conde nse d and the air passes to t he containme nt lf ree spa ce . T te latter results in gradual pressurization of the containme nt at a rate de pendent upon the air carryove r rate . Eventually, entrainment of t he drywell air in the steam flow through the vents results in all drywell air being carried over to the con tainme n t . The drywell is now full of steam 'and a positive pre ssure diffe rential sufficient to keep t he weir annulus i wa te r le ve l de pre sse d to t he top vents is maintained. Continued reactor i blowdown steam is condensed in the suppre ssion pool. ,!3.4.1.3 C hugging;!During a small break accident the re will be chugging in the top vents. !Applicable chugging loads and temperature profile on t he drywell and vents lare discussed in Sections 3.2.3.1, 3.2.3.2 and 3.2.3.4. The Mark 111 drywell (cesign does not re quire t he combination of the SBA the rmal loading condition "'wit h t he 21 psi negative pre ssure load. l3.4.2 CONTAINMENT LOADS 'No containment loads will be gene rated by a small break in the drywell that are any more se ve re t han t he loads associated with t he in te rme dia te or DBA !bre ak .Figure 3.3-5 is the bar chart for this case . .The re are unguarded RWCU line s in the containme nt that can re lease steam to j t he containme nt free spa ce in t he e ve nt of a rupture . The RWCU isolation }valve s and flow limite r for this system are de signed to te rminate t he blow- , down be f ore significant containme nt pre ssurization can occur. Typically a l2 psi pressure increase may occur. 'Ste am re le ase d by a pipe break in the con tainme nt may stratify and form a pocke t of steam in t he upper re gion of the containme nt . T he steam tempe ra- -g ture will be at approximately 220 F whereas the air tempe rature will be at approximately its initial pre-break tempe rature . This te mpe rature strati-fication will be accounted for in the de sign . 3.4.3 WEIR WALL LOADS !The loading sequence for the weir wall during a small steam line bre ak 'is essentially the same as for t re drywe ll wall with t he exception that t he re 'will be no pressure dif fe rential across the weir wall ot he r than hydrostatic ' p re s su re . Apart f rom t hat, t he information in Se ction 3.4.1 applie s Figure 3.3-o s hows t he bar chart for the weir wall during the SL.h'3-13 Rev 2, 12/20/79 .._ _ _ _ _ _ ..a muw I 1 2 3.5 SAFETY RELIEF VALVE ACTUATION LOAD DESCRIPTION During a SRV actuation, a high pressure air bubble is injected in the suppression pool, at the discharging point (located 6.5 feet above the =suppression pool bottom liner and 5.0 feet radially outward, from the Drywell wall). The pressure from the air bubble is transmitted through the water to all pool structures. This bubble, oscillates and subjects all pool structures to time dependent positive (pressure type) and negative (suction type) distributed loads. I The oscillating pressure reaches its maximum negative amplitude in the 2 first cy..le and its maximum positive amplitude immediately following in the second cycle. See Figure 3.5-13. Loading of the Containment Drywell and g suppresslaa pool liner due to this oscillating pressure load is discussed 3 below. Alter the maximum negative and positive peaks, the oscillation decays 2 linearly with time and the amplitudes become one third of the maximum values at the fift' aeaks following the corresponding maximum peaks. The total pressure loau duration is 0.75 sec, and the frequency of oscillation is 1 5 to 12 cycles per second. The time history of SRV blowdown pressure load is identical for all structures bordering the suppression pool or otherwise lsubmerged. 5 I1 Four possible loading cases for SRV blowdown will be analyzed. I a)8 valves ADS actuation b)All 19 valves discharging simultaneously. c)Single valve blowdown (first and subsequent actuation) ld)Two valves (first actuation) 1 All pressures for these load cases will be algebraically superimposed with the hydrostatic pressure. 3.5.1 CONTAINMENT WALL Each of the four load cases (Section 3.5) has a unique distribution of pressure loads on the Containment wall. A description of the pressure load distributions in the circumferential and vertical directions follows: I a)8 ADS valve actuation. The plan distribution is slightly asymmet-1 ric, but since the variations in pressure values are very small a constant pressure is recommended for design. The vertical ldistribution is constant over three quarters of the pool height 5 decreasing linearly to zero thereaf ter (Figure 3.5-1) . 2 b)When 19 valves discharge simultaneously, the pressure is uniform and axisymmetric circumferentially and constant up to three quarter of the pool height with linearly decreasing to zero at pool . surface (Figure 3.5-2). 1634 231 I Rev 2, 12/20/79 3-14 I . . . _ _ . .a.J B 1 c)One (1) valva blowdown. Circumferentially the pressure is distributed over a sector of 172 with decreasing magnitudes from the center- ,=line of the sector (centerline of the discharging line) toward its 2 extremities (?igure 3.5-3). m 1~~_d)Two (2) valver blowdown. The circumferential pressure distribution over half of the containment is similar to one valve. Complete 2 description is}provided by Figure 3.5-4. --One and two valves blowdown pressures described in (c) and (d) above ~could be considered as acting anywhere around the containment i periphery. Thetr combination with other loads shall be such that l2 , the most conservative loading cond!M ons are obtained. _For all of the above lond cases the pressure time history is the same

except that the positivi and negative amplitudes are varying with the particular load case and with the distance of the structure surf ace to 2 the source of load.(Fipure - 3.5-13 )

-_j On any containment wall p7otuberance in the suppression pool, oscillating pressure acts upwards, dognwards or circumferentially depending on the pro- _tuberance surf ace subjected to the loads. The maximum positive and negative amplitudes can easily be ditermined from Figure 3.5-1 through Figure 3.5-4 2 i once the location of the 16aded surf ace is given. ]3.5.2i, DRYWELL UALL ANDiSUPPRESSION POOL BOTTOM LINER '5 There I;re many similarities between the SRV pressures on drywell, suppres-sion pool bottom liner (bascicat) and those on the containment wall. All , j the procedures describing the application of SRV loads on containment wall -2 and its protuberances are valid and must be used in establishing the pres-sures on drywell and bottom li,ner. In general, the vertical pressure ]distribution on the drywell ar7 the radial pressure distribution on the 1 bottom liner are either consta t, or have a linear variation. _.3 The circumferential distributic*j of pressure is assured by multiplying the vertical or radial diagrams *by the factors defined in the Figures 2 J 3.5-5 through 3.5-12. 1 t i 3.5.3 WEIR UALL'I" The bubble pressure is transmitte*,' through the vents to the weir wall, e and is applied over the projected { area of the vent. "'he pressure values q can be determined at every vent 1cyation from the vertical and circumfer- 'ential pressure plots established *'or drywell wall. It is assumed that ,_there is no attenuation of such prc.ssure across the vents or weir annulus. _,:;l3.6 0UENCHER AND OUENCHER SUPPjnT LOAD 2~The loads on quenchers and their su[prts were specified by General Electric -, in the report InterimContainmentLo$dsReport (Rev. 2). The summary tables indicate all loads which may occur at13 must be considered in the design. For consistency and since it isadvisablejtokeepalltheseloadsgroupedto-gcther-we adopted a similar format. i 1634 232.3-15{Rev 2, 12/20/79

i'._-_-

I t 1 The Figure 3.6-1 provides location of various forces applied on the indi vi-2" dual quencher's arm and the Figure 3.6-2 shows the resultant f orces at quencher 's base. This base, or pedestal must transmit these reactions to 1 the base mat. 2 The quencher arm load are given in Table 3.6-1 and the quencher base loads in Table 3.6-2. I I I I I I I~I I I I I.I~1634 233 g 3-16 Rev 2, 12/20/79 .TABLE 3.6-1 l2 QUENCHER ARM LOADS (Reference Figure 3.6-1) l2 Load Description Air clearing - (1bs) +16,460*(Location F , any direction normal to arm can J1ine) 7 Adjacent S/R - (lbs) +974 (Location F - horizontal direction) 3 LOCA vent - (lbs) 1,P66 (Location F , horizontal direction) 3 Arm weight - (lbs) 390 (Location F , downward direction) Earthquake load , at SSE (Location F , vertical direction) Earthquake load, at SSE (Location F , horizontal direction) b..*Due to single valve subsequent actuation. j/1634 234- .3- 17 Rev 2, 12/20/79. _ .b . . . . . . . _ _ _ _ -: TABLE 3.6-2 2 i MARK III QUENCHER BASE REACTION IDADS (Reference Figure 3.6-2) ll{Air Clearing Water Clearing !Lateral Loads - (1bs) !_i F - Air and water clearing 28,510 8,553 b , IDCA vent i,r.*er clearing 10,240 10,240*-j!2 F - SSE Earthquake load (quencher mass)(la ter)!- SSE Earthquake load (water mass) F - I nlet line load 10,855 10,855 1 7 j F - Total base 1steral reaction load y_Vertical Loads - (1bs) 1 I J F, - Air clearing +11,344+4,651-Transient wave +9,000-3,700--15,000+2,400 Pool swell -14,742-14.742 Quencher weight +3,940+3,940-__SSE Earthquake load (later)2 ,-F - Inlet line load +10,855+10,855 f Water cleaG ng +150,000/-2,000 -F - Total base vertical reaction load y , Lateral Moments Transferred to Base Plate - (f t-lbs) -._M, - Air and water clearing 37,524 I?,257 Pool swell 17,751;/,751 Moments resulting from lateral loads - -5 2. 64 x [ F b (learing] air clearing) + LOCA vent c 102,300 49,614 j 1 1634 235--]3-18 Rev 2, 12/20/79 J=a.-m- - . - .*.__l i I TABLE 3.6-2 (Cont'd) 2.32 x F (earthquake, quencher mass) 6.67 x Fg (inlet line) 72,402 72,402 3.00 x F (earthquake, water mass)(later)_M - Total base lateral reaction moment 1 Vertical Moments Trans ferred to Base Plate - (ft-lbs) M - Air clearing 105,6]P 31,6P5 b Multiple valve actuation 0 C LOCA vent clearing 8,047 P,047 M g - Inlet line moment 25,P36 25,F36 M - Total base vertical reaction moment 139,501 65,56P 1 1 I I 1-I I I I-1634 236 1--3-19 Rev 2, 12/20/79 0 O O f g P@e a alrl ilrtA, 2 , I FIGU"E 3.1-1 SI:: CIA"Y OF POSTULATCD ACCIDENTS AFFECTI:'C 'IAW III ST"I'CTU"ES (DPA)(IT.A)(S"A)Large Internediate Snall I Structure"reak Pareak 3reak Y X X Drywell.""cir Uall X X Containnent X X Y Suppression Pool Floor X X-Structures in Suppression Pool M X-Structures at the Suppression X M-Pool Surface Ftructures Tietween the Pool X--Surface and the IICU Floor c.t ruc tures at the UCI' Floor I--Elevation I';otes: 1.T indicates accident virh significant loading conditions 2.For concurrent S/" valve events, see appropriate har charts I I I I Il1634 237 Rev 2, 12/20/79 I M K C A 0 -'M 0 B 0 L 4 L A F M E H T C ,V E DS/NF A M 5)S A3 y)S E 5 E F P CI 2. O NP 3Y 0 AD.T 0 R N GI 0 g I C 1 E A F B O ,V K US E L TM SE OA UV C A D)S RE B A M E PB 0 L C 0 O N RR 5 L L A OO A FF F R E 56 M B-22 U 33 ST EO S RR E GG..A I I C UP R FF TL U)O S L M EE C A T C EE, D N R U C SS(O E RI U S (T TR R E C F SD T PI ,V SI O E FA N S P T I T N L D M AL L Y A O 0 I GN L FC L NO F D D I 1 M (I C L D L D A A R E A A O O E AS N A L L M E M I T E M O L SG L T G I 9 I C N T C A O DN NP C A R E HY I P D I 8 AP A M T L P E M S R M I OT M O I 7 TA AF y g SM E I\ ' t{g %I 6 O O DI X BS N P R M O 0\P R\SP F (6 d\\E P\I 5 RA R , S O T D\C N M I\I 4 IGI P5 S NE A V)P 5/1/RO-3 1/I 3 OT/4 M/l'2/E L .MLG EI I F I TW j I/EYE/HRE/T D (S M/'1/--O g b D g 0 M 0 1 56 $ . $" so m$m0E g<,r~[cQo M 1O $z CQdzo p oOm @Jz-n[or[1g~O !a e L^ ,g.N 's cs; " o 8$ mgc znm mO g y-o w@M"&V Nuc ec@> nm" D o$c oyQ: o o h Ufr r".$ n S cmA F $ -- I I I 20 18 NOTES: 1. LOAD TO BE APPLIED ONLY TO SOLID AREA I. OR DURATION OF LOADS SEE FIG 3.2-3 OF THE GRATING 16-3. THERE ARE NG 6MPACT LOADS ON GRATING I*14-I j 12-:i P I i! 10-5 I$0 8 5 8-6-4-I 2-I!O I 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 OPEN MEA FRACTION Rev.1, 7/3/77 I HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Units 1 & 2 f}}}PRESSURE DROP DUE TO FLOW ACROSS GRATING AT GROUND FLOOR (EL.142.50') FIGURE 3.2-2 M M M M M M M M M M M M M M M M M M M.30-THE TIME ORIGIN CORRESPONDS TO CLEARING OF DRYWELL TOP ROW OF VENTS (COINCIDENTAL WITH THE IMPACT ON BEAM LOWER FLANGE) o E j20-O z w.y*!!'E USE FIG. 3.2-2 TO DETERMINE THIS VALUE N O A E 3 10-j l!E o 1 0$hO$$3$1000 i A-E n 37 500 O*r!C<>TIME (Milliseconds) O wO mm>2 J 5 00?d m 37MS WATER TRAVEL TIME USE FIG. 3.2-2 AND REDUCE w m z- 0 ., (BEAM DEPTH ASSUMED 18) ACCORDINGLY TO THE yr o So LOWER FALLBACK SPEED r :o eg.rO il m" Oz Y" e 19 o f2;z er i;0 O'I.< i i.,\(1 l W[-L t L,.([.20-7 i e FROTH IMPINGEMENT (UPWARD LOAD ON FLOOR ONLY) , 15-, o G Q.<,i ,0-/t O'$?';E NOT 5-<0 0.5 0.6 1.0 THE TIME ORIGIN CORRESPONDS TO CLEARING OF DRYWE TOP VENTS (APPROXIMATELY 1.00 SECOND AFTER LOC

  • L ..L_?.I f L'1634 241: L

.f I!.AP (11 PSID)

1. DATA BASED ON HCU FLOOR LOCATED APPROX 20 FT ABOVE POOL SUF. FACE (HWL)10.0 0 3.0 4.0 4.5\&_T l APPROXIMATELY 1.0 PSI FALLBACK I AND WATER ACCUMULATION Rev.l. 7/8/77 HOUSTON LIGHTING & POWER COMPANY Allens Creek Huclear Generating Station Unit 1 LOADS AT HCU FLOOR ELEVATION

-DUE TO FROTH IMPINGEMENT TWO-PHASE FLOW FIGURE 3.2-4 1634 242 I 30<1 I d DETERMINE THIS $$VALUF. FROM THE I gyy CURVES BELOW m SEE A E2 I e I_Q 0.5~T (SEC)DIFFERENTIAL PRESSURE VARIATION WITH TIME 26-I FLOORS DURATION 0.5 SEC I 1.5 P g A-7: I 5 N/%E/[<1 22--I__gxsgxxxxx 2\a A hP"/b/2-g 5 g 10-e3-[~ ARRANGEMENT A )_ ARRAN5EMENT8 I I'b/2/w s p-I s C MENT B e I 16-If I 14-ARRANGEMENT A 12 -I 10 I I I O 10 20 30 40 I RATIO a/b NOTE: POOL SWELL WATER UPWARDS Rev 2,12/20/79 VELOCITY 40 F/SEC. HOUSTON LIGHTING & POWER COMPANY I Allens Creek Nuclear Generating Station Unit i DRAG LOAD ON PROTUBERANCES I IMMERSED IN THE POOL FIGURE 3.2 5 I 1634 243 (REF: ELU/O MECHANICS, VICTOR L. STREETER,5th ED. MC GRAW HILL) BASED ON V = 40 fps BASED ON V = 35 fps I BODY DRAG COEFFICIENT

  • PR ESSUR E PRESSURE SHAPE C DIFFERENTIAL (psil DIFFERENTI AL (psi)

D (SWE LL)(FALL BACK) I CIRCULAR CYLINDER 1.2 FLOW DIR-13 10 ECTION I ELLIPTICAL 0.6 0 2:2 7 s CYLINDER}ELLIPTICAL 0.32 0 4:i 4 3 CYLINDER 4 ELLIPTICAL 3.2s 0 8:i 3 2 CYLINDER 4 SOUARE 2.0 22 17 TRIANGLE 2.0 A 1200 22 17 t TRIANGLE 1.72 120 19 14 0 TRIANGLE 2.15 90 23 18 0 TRIANGLE 1.60 90*17 13 TRIANGLE 2.20 60 24 18 TRIANGLE 1.39 60 15 12 0 TRIANGLE 1.8 30 19 15 TRIANGLE 1.0 30*11 8 SEMITUBULAR 2.3 b 25 19 SEMITUBULAR 1.12 12 9 I'THESE DRAG COEFFICIENTS ARE CONSERVATIVE BECAUSE

  • 'THEY ARE FOR LOW REYNOLD'S NUMBER FLOW CONDITIONS 1 A P ICABIL Y N BE DEMONSTRATED I Allens Creek Nuclear Generating Station Unit 1 DRAG LOADS FOR VARIOUS GEOMETRIES I (SLUG FLOW)

--FIGURE 3.2-6 I 1634 244 II l, D"*'T~*n!\Ti!{_oo o dJ...:a PRESSURE PS h!i 20.0-*f'CONTAINMENT SHELL 50 PSID'STATICALLY APPLIED %+--/*0~4-_HCU FLOOR*--11.0 PSID PEAK ELEVATION PRESSURE%%, h d-j na F" TOP O F*-- \w E POO L SURFACE " ADD y\'HYDROSTATIC PRESSURE CEN R LINE TOP 'PRESSURE PSID SUPPRESSION POOL b-20.0 BOTTOM LINElR


,;ly>l, , ,'/10,0_________ .

/_10.0 PSID PEAK BUBBLE i PRESSURE (1) la. DISTRIBUTION ON CONTAINMENT WALL , O r 7 + 0.1 TIME AFT c. INITI AL , NOTE (1); FOR THE PURPOSE OF CONTAINMENT STRUCTURAL RESPONSE EVALUATION THIS LOAD MAY BE CONSIDERED ASYMMETRICALL .-DISTRIBUTED OVER HALF OF THE CONTAINMENT PERIPHERY. !:: 1 s_i i i t\, 1 6 3 4,<,4 3 n'<*. .D**D*0 7'[\!I Cw W ,.L u 5.0 PSID STATICALLY APPLIED ,,,,,,,,,,,,'/'/////--*DRYWELL 7 11.0 PSID/EF TIME 1.5 5., a u o o o d. " FROTH" PRESSURE TIME HISTORY

/11.0 PSID PEAK/HCU FLOOR PRESSURE h.//-P/d h a d/+E/e[/ OP OF POOL

, W E/T m"-//SURFACE[[f y ADD~--*HYDROSTATIC '[j PRESSUR E 21.8 PSID-[ QOFTOP VENT f:///U k SUPPRESSION 'INE 21.8 PSID PEAK BUBBLE PRESSURE

b. DISTRIBUTION ON DRYWELL OUTER WALL T + 0.5***I FOR y $ y T = 1.0 sec.

FOR y > y,, T = 1.0 + (y . y,)/40 (sec) BBLE PRESSURE TIME HISTORY WHERE r = DELAY DUE TO FINITE POOL SWE LL VELOCITY y = HEIGHT ABOVE BASEMAT ft. y, = INITI AL POOL DEPTH ft.(BASED UPON 40 fps POOL SWELL VE LOCITY) 7'YMAX "Yo + 18 f t b Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY .'Allens Creek Nuclear Generating Station '-Unit 1 POOL SWELL PRESSURES ON ~CONTAINMENT AND DRYWELL WALLS FIGURE 3.2-7 - . . . _ _ . . _ . _ . __:=5..=.-r_b/:[/~21.8 PSI;I h'~a e:s 2!;$E d;$, 4 10 PSI---------_ _ .____$8 k i i#l8 f i 9 I;I/lfflf////////////////////l L/2 q':: ,?J BASEMAT RADIAL DIMENSION i NOTES:__f 1. FOR PRESSURE TIME HISTORIES SEE FIG. 3.2-7C 7 2. ADD HYDROSTATIC PRESSURE TO

THE BUBBLE PRESSURES h J l a Rev.1, 7/8/77

-HOUSTON LIGHTING & POWER COMPANY i Allens Creek Nuclear Generating Station Unit 1 BASE MAT RADI AL PRESSURE DISTRIBUT'N ]jh}k 2k7 DURING BUBBLE FORMATION _-FIGURE 3.2-8 s i. _ _ _ _ _ . . _ . _ . . . . . . . , , , , , - - - - , - - ,-e i._-:T..DRAG LOAD DURING VENT CLEARING (OUTWARD DIRECTION ONLY 60 OR 30 F/SECWITHIN WATER JET) !?PRESSURE BUBBLE PRESSURE (OUTWARDS AND UPWARDS i y/DIRECTION SEPARATELY CONSIDERED) 21.9 PSID_-s (Vlm\DRAG LOAD DURING POOL SWELL (OUTWARD j'AND UPWARD DIRECTIONS FOR ALL STRUCTURES) !TIME OR! GIN , TIME (SEC) COINCIDES WITH 0 1.0 5.0 LOCA 3 INITIATION

'60 F/SEC 30 F/SEC__DRYWELL'REGION~~REGION WALL g=8 I 0 0 12--~~f THE WATER JET IS NOT A LOADING I=,__/CONDITION FOR THE CONTAINMENT STRUCTURE
k I" VENT I I;CONTAINMENT WALL l______i I?- - - - - ~ ~

_/10 I, m'j_13.0'--NOT TO SCALE --7 J Rev.1, 7/8/77 HOUSTON LIGHTING & POWER COMPANY -Allens Creek Huclear Generating Station Unit 1'l VENT CLEARING WATER JET GEOMETRY 1634 248;FIGURE 3.2-9 9 d=_______. . . . . _ _ _ - - .4__T..~1._Figure 3.2-10 has been deleted ,.__.1634 249-'- . _ _ M M M M M M Q W W M M M M M M MMW W M M , NOTE: 1. CURVE B-C-D APPLIES TO 1 HORIZONTAL RUNS OF PIPING

2. CURVE B A-E APPLIES TO BEAMS

" AND SMALL FLAT STRUCTURES

3. ONLY DRAG LOADS ARE APPLIED NOTE 2 ABOVE THE HCU FLOOR FROM VELOCITY DETERMINED BY E e A DECELERATION WITH ELEVATION.

115 NO FROTH IMPACT. NO DRAG LOAD ABOVE 30 FT. , FOR DURATION -SEE FIGURE 3.2-1 7 LrJ G'N O.FOR DURATION OF APPLIED LOAD BETWEEN 18 AND 19 FEET, DETER-W E 60 PSI C MINE BY LINEA *1 INTERPOLATION O@ 00------%OF VALUES SHOWN ON FIGURES g\3.2-1 AND 3.2-4 NOTE 1 g$n.FOR DURATION [g g g m I tc<lSEE FIGURE 3.2-4 IS y T$"N 30-lCC 50 r yw> m'* %O?Gls 2!!$lv$ mmcllB 15 PSI AT HCU OZm$kO l i$O 5o 1 FLOOR p m-" m :E T E-fy 0 I wc m 18 19 L:oj>n jg"Am]@5m HEIGHT FROM POOL SUHFACE FT =mm8>*; n nr<rE"O>r aI og NOTE: NOT APPLICABLF TO THE STEAM TUNNEL OH f m 2rH z EXPANSIVE HCU FLOORS 3 4 r. . . ., ,. , . . . , . . _ .. . . . . _ _ . . . . . . . _ . . . . . . . . . . _ ,. . . . . . . . - - - - - n.u*-*..-7*--<n--.__,-,f o e--3-m--*=2 r 5_I oo%>4O')E o-a ca 2 u.--O-~_mz~ci o-, s N.6__p z-_..cc'i A j~n<w@y ,_~1-_e_J-_*: m-Y5 I J_-N..-=l If I I I o'---=-T**N"**"" m i i 2 J (P!Sd) 3BnSS3Hd Rev 2, 12/20/79 1 HOUSTON LIGHTING & POWER COMPANY ".Allens Creek Nuclear Generating Station , Unit 1 1634 251'CoNDeNsATN. osCiLL soRCiNo

FUNCTION ON THE DRYWELL WALL

~'0.D. ADJACENT THE TOP VEN T _FIGURE 3.2 12 j.__ _ _ . . . . . . . . _ . _ _ , m--A i-b Q.- - ~y-%I-FREE SURFACE g_i~<.~-\LINEAR ATTENUATION 1 FR E SURFACE Y\,1.0 0.15 ,,______TOP l. D.i VENT-*.3: 1.0--+-a=-, J f=-!d 4 d-/[u$~;<-=-a a/c s z d:-:s , m-/e z , , g 2-,/ s a--8 8--73-/v U-:-[0.24 BASEMAT 0.15 f 0.15:*-0.24," "" , ,, ,, ,,,,,,,,,r y v v """^LINEAR ATTENUATION FROM i DRYWELL WALL TO CONTAINMENT WALL ??;-;=-..Rev 2, 12/20/79-i HOUSTON LIGHT!NG & POWER COMPANY i Aliens Creek Nuclear Generating Station " Unit 1*-CONDENSATION OSCILLATION LOAD -SPATIAL DISTRIB. ON THE DRYWELL ..-1634 252 WALL. CO"T^i"ue"T WALL & BASea^T FIGURE 3.2-13 .. .@. _ _ . . _ . . . . . - . . -_-,.k g PULSE (PRESSURE SP!KE) , b'8 E s$[POST--CHUG OSCILLATION j (Beat SIN St)E E o.N/v v~m d__--am .SEE TABLE 4.1 PRE-CHUG UNDERPRESSURE ABw$, AND d-WHERE w = r/0.125 a = -0.55/7 -S = 27/r.I Rev 2. 12/20/79 HOUSTON LIGHTING & POWER COMPANY , Allens Creek Nuclear Generating Station Unit 1 1 v J 't d}TYPICAL PR ESSURE TIME. HISTORY ON 147A'THE POOL BNDRY.DURING CHUGGING FIGURE 3.2-14 __ . _ . . ---M M M^: M G U H C D M N O C E S M 4 M M M S G U H C c e N s M.m E c e E s 4 W5 T id l s b EO p BT 8 1^_M I s id D1 c O;e;_d.s R m p_c.E 6 8 e.P 2;3 s.m.M.>_G c 2 H m id 1.e U s.s p C 0 0'T: 1 l c 3 6 e M I: '" s S R m 8 F c e s id m s M p 0 4 0 4 4 5 4 cle s m; 5 M EE$3t$24-I M Nm# w' gN3R3 M 20$ oZ C S ! b P mo m= noI2z<- ->=S n*I ? $-0 Ps D -

  • va*oa

--'C*" M'mmN T mE5 Cbm M>E _z hot <@4 8M O nI OO ZO bA Ngb n5E* [^-M . .. _ _ _ . . . I b JL<e a=u O e<=" a'm S=u 8 d'z w3 c we ,-e'o'a o n e a i a ri, NlE g g o o e=E 8 o o o y>m ei-o$__E u.a m , S B E o g 8, S v v v n" a .(91) 30niridWV Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 PEAK FORCE PULSE TRAIN IN 3 4 ,2 5 ,.3 TOP VENT DURING CHUGGING s l FIGURE 3.2-16. _._. W t u u s u W A-A G W U H C D N N O C E S M 4 M s n u W r u S u G u W U H C c c e Ne s W s E m E 5 4 VO RT lb 1%0 E 0 1 B 1=3^W i m D: O c. r.s.d R c: E 5#A u 2 : P m: W 2 G c e 1 h: U s H m 0 0 C 0 T 3 3, 5 cl: e S 2 W IR m s: Fl8 c*e s m lb 0'0 0 W 4 0,: 1 c 4: 9 ,*e s ,m*S W 3@s3n.2'B u u u W ,;15j xC ~: D W Z C. oz CEdj P ,oxm" nOI .>Z<-o>=n .," [o ; .s. a 5= M o1a" p .*s><am O m T rvm iy_Z z n i u- UA UC--l h_,<yi OE go b_zO I-W T5@r wyi N I T-N W N W A: W G U H C D N W O C E S W: W W S W G U H C c Nc e E u s W m E 5 W O 4 T 1 T B1 id E%s p D=7 W I: c : O..d.R u is d E n p: c.'P 5 5 e..2 :.s..1.m..:._W G c 2..e: 1_U s H m id_s.C 0 p._T 3 O ol'c:_'S G e W IR: m s_F e 8 m-c e s m id s M 0 p 4 4 1 m'c 4: 2 e s e m- S-W 3E,. $ab$s4 .'_M E < N* gNN Q*M I0c_ 2* O;>-@;r z _ g , gmM or '>z <- m4 o za 2?:5-wei=; ~M><m:gm mm gE _ D;t$ g? 2z o ,O" < zi o m o gco o.-.T~oCgm

  • Lc o W M.Dwh NtN.n.W..--

--e-W-N W W W m W W IWus'W W 1WuW N W PRE-CHUG UNDERPRESSURES PULSE (SPIKE) AND POST-CHUG OSCILLATION AND DURATION DURATION "d" AND FREQUENCY PEAK (A)MEAN (A)PEAK MEAN PEAK (a)MEAN (B),-5.8 PSID-1.3 PSID 100 PSID 24 PSID 16.50 PSID 12.2 PSID DRYWELL WALL 125 MS 125 MS 8 MS 8 MS 10-12 Hz 10-12 Hz-1.3 PSID-0.6 PSID 3 PSID 0.7 PSID 11.7 PSID 11.00 PSID CONTAINMENT 125 MS 125 MS 2 MS 2 MS 10-12 Hz 10-12 Hz-1.8 TO-0.78 TO 10 TO 2.4 TO 12.1 TO 11.29 TO BASEMAT-1.3 PSID-0.6 PSID 3 PSID 0.7 PSID 11.7 PSID 11.0 PSID 125 MS 125 MS 4 TO 2 MS 4 TO 2 MS 10-12 Hz 10-12 Hz p EO#['0 Y O w = n/0.125 =g O*t to h jC D a = -0.65/r P = Be -0.55 SIN (T FOR 0.08 < t <.1 SEC. 7.3C'O O W OO= 2n/r g s a iE E C.-5..o..O__A'Nr o h a s ia_\/""&8 is CD 5" P = AS IN(O. "*5*'"n 5._ , - , - - - - - .____U a_-\__7.5ft.0.22 9 3 ft.TOP VENT 4.-,, s,-n 2ft.f) 1.0-^_J 4 H 3 2-d$uJ 2 cc 2 8-0.31 BASEMAT 0.22 0.31'__Rev 2, 12/20/79 -.HOUSTON LIGHTING & POWER COMPANY Allens Creek Huclear Generating Station Unit 1 SUPPRESSION POOL CHUGGING NORMAllZED PEAK UNDERPRESSURE RADIAL ATTENUATION FACTOR, F a FIGURE 3.2-20 1634 259 m .*..W , , , , , i N i N E O R I T U U i W I N I 8 S S B 0 E RO 1 R TI i S T P R I A i E DU W D EL N RA U UV G SE i uE D id S s R A p W ll C PO 8 i-E L L 5 R AC -i I I O P , TR , i T F NT W O EE D 0 , 9 E RM E s.Z D EM I U F Y L T MS A i I L UA M W: P C S R R i R E M I O O T A CF N i O..N 1 2 3 i)-s W i g e e r e d-_----_-(0 H-_----_-W i U T M i l Z A W i W i 0 e 9-W i M i i e i M 1 8 i 0 1-i M--------M ,)1 1 0 0 0 0 6, j 2 0 8 6 4 2 0 1 7< " . [3aNM .u M z e 5OZ g g y o p.ogmn@, Z<h[* n :w g2- a,O$ j g-.[- .c3. -.M 0 gcE mmmh >r>d m$ > b . n n>nuom'c .<Mp-n-,> mar*nOZHbE@-5 n5e:0 m w.M b ~ M-g#NCa h' . . . _ . . - _$W s 5 5 u\illllll.N 1 Illlll't I i i i- - - - -N h$>e____ll h es-d y__d ,$"k:~---, q 3.3---I a m.(/N N-_*--T g i N a i Nl[*--9 a i i i=lel__i I 5$dlI n--Q gy I__'1 I I I i t i$i@v N N v e.e.o E i i 7 , pael) 31N3A dO1 IAIOWd 3DNV1SIG Rev 2,12/20/79 z HOUSTON LIGHTING & POWER COMPANY Allens Creek Huclear Generating Station Unit 1 SUPPRESSION POOL CHUGGING SPIKE DURATION, d FIGURE 3.2-22 1634 261--- . . ... _ .___E 3-$8 U'L Ill!!ll;-o o 3 9 E 3 8>-n.8 0 o e R>Ill 3$<.r=g" o._$-'a./--h o s cs " 5'I,-I".!$-c.I$$a.d a$--$1 0 g.l.-l1-l$--1 I-t C j g ,-t i a , I I f fllll, D@9 N N w to to o e*g a e a e" O'._y (281) 3 IN3A dO1 WOud 33NV1SIG _-~Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY -Allens Creek Nuclear Generating Station -Unit 1 RADI AL PLANE ANNENUATN. FACTOR, FSR, SUPPRESSION POOL CHUGGING a PRESS. SPIKE AMPLITUDE (NORMALIZED) FIGURE 3.2-23 1634 262 W I WN O'I T W I N p 8 d U is 0 B RO 0'1 0 TIT 1 S I A 8 F DU W L O E i R A D U V A r S E O S D L 8 E W R A K PO A L E L P A C I I O TR'T NT W E E D l 0 9 RM E Z EM I F Y L MS A UA M'W: C S R R R E I O O'T CF N O.2'N 1)s W'd'e e r'g e-~-1----(f 0 H-~-f---W T U'M.._I.'Z..A.W'_._...'.__._'_W'0___...l 9_-_W'_8_W 8 i i i W l 1 0 8'-W'i_'--------W 6 4-2 0 8 6 4 2 1 1 1 1 0 0 0 0-0 4 NO "- ~" "oQ$ of W xOwgZ Cox!za , o m* noiE< -EI n3: Z arR oSk5* " aE 'f-: -W Ompr mxmzHgr n E 8 EOu,' m dNmpdde m>njx n mom ; .c m EprIhIDa" Ozd. i o oO 8 Eo.o.a<cm! n_m wIE W CuA Nwu-h . . . _ _ _ __.-U=a_, 7.5 ft._.1.0 0.25_--3ft.TOP VENT q,;;_'r_.~2ft._h)1.0--_--J N H-n 5 J 2$E n<~$$~c 0 0.32 BASEMAT 0.25_.-0.32_'Rev 2, 12/20/79 --HOUSTON LIGHTING & POWER COMP, NY -Allens Creek Nuclear Generating Statici Unit 1-SUPPRESSION POOL CHUGGING NORMALIZED PEAK POST CHUG OSCILL. RADI AL ATTENUATION F ACTOR, F g FIGURE 3.2-25 ._,-1634 264 __W____i_W ,__,__id p ,_s W 5 ,_6 0 F i 8_1_O ,_A ,_D W O.L ,__K_A..E.W P..O ,...T..D ,.E Z.W 0 I L i 9 A M ,: R , S O E W T N , O.N 1 , ,), s W , g e e r e d------_-(-_----_-0 H W , U T , M , Zl W , A , , W , , 0'i 9-W , , , W , , ,'N i 8 ,.0'1 ,~W , , ,--------W G 4 2., 0 8 6 4 2 0 1 1 1 1 0 0 0 0~t3osye wf< o o D t-W u Iocw4oZ r5_z .zO r Sm" nar?Z -.o.E 2 ,,n; ; zca [ 0 : a I *w g s' 'c=.-W o mnETmmmzi_ gr >dm$ka5Z i-9hnao? m2 mom o i y co om0 CZ o--f oCm m w~w L e T-W cus N&L i x J _.v__9 m_7.5 ft.1.0 0.45 t 3 ft._TOP VENT Q,-ll-" 2ft._h)1.0.a d><Z 3 w a E a Z W I 3 H>z@0.5 BASEMAT 0.45@0.45-0.5'1634 266 Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY -Allens Creek Nuclear Generating Station Unit 1 SUPPRESSION POOL CHUGGING NORMALIZED MEAN UNDERPRESSURE & POST CHUG CSCILLATIONS ATTENUATN. FIGURE 3.2-27 _ _ _ . . .._...___ _ _ =7~-0.03 /_ -.-7.5 ft.0.2 0.4 0.0 0.0 1.0;0 2 i!!'d SPIKE PEAK PRESSURE $0---" TOP VENT q,>a.O-2 E o E z 9 y-6 8 d a<c s.u-8 3 5!E 5-10 ce z BASEMAT O e 0.1 0.03_,#0.03-0.1___I-1634 267 Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY -Allens Creek Nuclear Generating Station Unit 1 SUPPRESSION POOL CHUGGING -NORMALIZED SPIKE ATTENUATION FIGURE 3.2-28 _ _w- - - . . _ _ _ . - - U a-f 6 2.0 7.5 ft.4^2 4 6 8 4.5 ft.2'll=DURATION (muc) g--h" TOP VENT q,~" 0 0.5 ft.g bl'> c.H H s -4 s O E a:<L&2 -6 Z 9 8 E> -8 ua NOTE: APPLIES TO BOTH u"s PEAK AND MEAN PRESSURES , 4.0 BASEMAT 2.0-2.0 4.0_1634 268 Rev 2, 12/20/79 HOUSTON LIGHT!NG & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 SUPPRESSION POOL CHUGGING SPIKE DURATION "d" AS A FUNCTION OF LOCATION IN THE POOL FIGURE 3.2-29 _ _ _ _ . . _ _. . _ - _ _ . . . __-.-_i PRESSURE PULSE TRAIN _tl'[--40 MSEC t 30 MSEC_t_25 MSEC i , ,i'il P j_PR E-CHUNG UNDER-PRESSURE j -_3}j 0.277 P j w f 34 P j W L TIME, t<P 2 12 MSEC 0.08 5 5 28.5 8 8 12 12 14 SEC MSEC MSEC_ MSEC MSEC , MSEC, MSEC , MSEC MSEC ,;;__-, NOTE: EACH PULSE IS TRIANGULAR WITH THE RISE TIME EQUAL TO ONE-HALF THE PULSE DURATION. ___1634 269-HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 TYPICAL PRESSURE TIME-HISTORY FOR __WElR ANNULUS DURING CHUGGING FIGURE 3.2-30 _- . _ - - M M M M M M M M M M M M M M M M M M M 1.6--NOTES:-~~1. CIRCUMFERENTIAL PRESSURE DISTRIBUTION FOR ASYMMETRIC LOAD EVALUATION

2. NORMALIZED TO PEAK OF -2.2 psid 1.2---1.0---o S u.0.8--0.6---3$'I 0<m 3 hO g." 0.4---c n*O O Z*OC n Si?%5c 5 omm x- o o m_ m s x 2 2 m O mc m ed 4---e 0.2 m z oz c mmd fra:o o"~i.a Ek$$o O U LW bEr a**0 i ii e i iii i l i i i i 1_i ie i i e e i e s ie i e i i I zg 3. g-180-90 0 90 180 s m mcc.5>o>n gm3 yQ AZIMUTH (degrees)

N oo:r. m c mZ o r 8>c z cn 4 .. ... _ _ _ _. _ . _ _ _ _1 NORMAL POOL WATER LEVEL 7.5 , ._.-6-WEIR ANNULUS WATER LEVEL WHEN CHUGGING LOAD OCCURS 4-~.;eJ 2_$~$llll'lQ OF TOP VENT l'j i , o P-b 5_4_DRYWELL s 12 0-6-NOTES: 1. WEIR CHUGGING SPIKES. VERTICAL ATTENUATION ~~2. NORMALIZED TO PEAK AMPLITUDE OF 43 psid BASEMAT l I#I Il3 0.2 0.4 0.6 0.8 1.0'NORMALIZED PEAK PRESSURE \Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 VERTICAL ATTENUATN. FACTOR, Fw ._FOR WEIR CHUGGING SP!Kc AMPLITUDES FIGURE 3.2 32 ._ _ _ _ _ . _ _ . . . . _ . . W i W e N O T e I U W.IRO B N 0 8 1 TI i S T I A e D U id s W EL p RA 3 UV 4 S E F i S D O E RA K i W PO A L L E e P AC I I O i TR T NT i EE D 0 W RM E 9 Z EM I e F Y L MS A UA M i W: C S R R e R E I O O T CF N i O.e.N 1 2)s i e W i d e r g e-~------(--------.0 H W e I T U M Z i A W i i e W e...i_._0.I 9..-W i.i..i W e i W e i 0 8 1'-W e i i'--------W 6., 1'2 0 8 6 4 2 0 1 1 0 0 0 0 y H'3 ode W O o}W x GOZ r E!zo , oOgm n >Z<--h[e n " Z n e2 o.3g .j o3 E: -W ORCsnm" z45r > Am E> -GOM n i n$ s._M oI@ r n mm CicDm-5c25 'sg N n W . . . _ _ . _ _ _ _ __.._-__-.-d_.6'm-&__-?s g P MEAN * -0.65 sin xt/0.08 _h FOR 0 < t < 0.080 sec. <w_E TIME-0.65'O.080 sec. __--_ . .1634 273-Rev 2, 12/20/79 HOUSTON LIGHT!NG & POWER COMPANY _Allens Creek Nuclear Generating Station Unit 1__UNDERPRESSURE DISTRIB'N ON THE -WEIR WALL & DRYWELL l.D. WALL DURING CHUGGING __FIGURE 3.2-34 _ ._. . _ . . . W_W W.: A G W U H C D y N O W C E S M I:l.', M____M..........S.._M.G._U.H..C c.c e N s e m E s M E5 d 4 WO i'1 TT'k E'1 B 2-=D: c>M I m id O e*i s R p c 5 e E 1A 2 : s P m: 2 G c 1 M U e<s i 8=" id H m d s C p s 0'(p l\lc T 3: 1 S 4 h e-R s M I:/m F;8 c e s m is 0 id d s*-p 4 p M I m.5$'G.,': c 1 e 3-s'c 5 e 0s 8m M$$ $3b$24;- Guz.NwO W E4 E$}*W O@ Q!@g, ZOg-o:m nE-o z <- >2 "c,R o.$3=a T2S

    • ..gm=c m. O*<E$-C w* dn2 $p%

o 2 W m=-p o-g C pO 9c o'sO 3O ;A .7a u W . . . . .__4 WEIR ANNULUS POOL SURFACE ELEVATION DURING CHUGGING 2!_ _ _ _ _l~l i 0- TOP VENT q t-----'_d _]lI;=L98 i-2-i s$>0--4-2 O k 2-6-O MEAN AMPLITUDE 15 psid - DURATION 5 msec H._q$j-8-THIS ATTENUATION ALSO APPLIES TO THE CIRCUMFERENTIAL --10-DIRECTION-12---1 I I IlV 0.2 0.4 0.6 0.8 1.0 NORMALIZED PRESSURE 1634 275 Rev 2. 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 NORMAllZED WEIR ANNULUS PRESSURE PULSE ATTENUATION FIGURE 3.2-36 ._ M M I 8-1_M'N O TI 6 A M I 1 Z I L A U Q E M I 1 E R 4 U S S E_O M R RE S TL P EV RW'TO EO KO I CO AB WL FA P~W A_2 B I 1 M-m'-M M S 0 S A P I 1)W E O C O T E T Y S L L S S M I E W'(F S D R E EPS O VAN L M I ORE F T D K 8 R N C EI O A W C B M T'N E V 6 M_M'A M RE T E T S I 4 AS WE S SN M CE'CD E N O C'2 M'M-~--~0 5 0 5 0 6 0 2 2 1 1 W WED$ men.JJW3>KO

-M~ &[NN-? :< '.rN$ sM" o M 1Oe 5 E C 0.z dZo g.m o yZ4 t[*Oa$ c"r a j m $.o3 F: HIm8*>C<kZah o$ g>c Do Csm 5'g24'-M g 0igmFr n r mmTr oo E$ mN nbCm$ 7 N M

- - -. _ _ _..20-MAXIMUM WATER HEIGHT, V = 0 10 WATER ASCENDING S~d 0<!!l: a: G TOP OF WEIR WALL WATER. DESCENDING INTO O DRYWELL WEIR ANNULUS a.-10-O E DOWNWARD.UPWARD O VELOCITY ' ~ VELOCITY u.>__I m I-30--40 I i f f-40-20 0 20 40 VELOCITY (fps) 1634 277 Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit i VENT BACKFLOW WEIR ANNULUS WATER SURGE VELOCITY VS. HEIGHT ABOVE WEIR WALL FIGURE 3.2- - - -_ . . . . _ . _ . _ _ _ _ l i-=_l:--CYCLING FLUID TEMPERATURE I ~TIME HISTORY l--*0 j o 230 F.E 20-1 I l I=a H I l-_<cc Ilwlla--E I'w 100ll*ll~a:,: , a::I: I-::_E 0.2P 0.2P 0.2P 0.4P=-.O I I-0 P 2P_1 < P < 5 seconds a_-AREA OF APPLICATION $:.i.i. '..a.-.._,'N. *-2 ft." ,* S*'* ' Nh f a_'I S's'd,N4 [v N, 2h 9y ,' gG##i ggs i'@g]'2 ft.--u ttttttN'], ,3 ,,,_,--++w +-s~_,; ,k' ' ' 'd-2 ft.TOP VENT v'&ds'&$Nfolhx}'k $'3," s'" #'%)i t-.le e.s's' s a__--,, m-s s.*4, ,..OUTSIDE DRYWELL INSIDE DRYWELL WEIR WALL;.d'.$'WALL WALL J v 1634 278 ,:-Rev 2, 12/20/79

HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1--DRYWELL TOP VENT CYCLIC

" J TEMP. PROFILE & AREA OF APPLICATION DURING CHUGGING FIGURE 3.2-39 2!-2_ _ _ . . _ _ . . . .. . . W W W W'M'W W'-'M M W W M M M W W WIN WI!W W STRUCTURE: DRYWELL ACCIDENT: INTERMEDIATE BREAK (IBA) n LOADS DUE TO SEISMIC ACCELER ATION OF THE STRUCTURES AND LOADS DUE TO SEISMIC INDUCED POOL SURFACE WAVES HYDROSTATIC PRESSURE NOTE: POOL DUMP INCLUDED AFTER ADS SINGLE 5/R VALVE ACTUATION 6-8 LOW SET-POINT 2 S/R VALVES ACTUATED ADS ACTUATED" O (4-25 sec)" p 5 2 DRYWELL AIR PURGED TO CONTAINMENT = 3 psig O DIFFERENTIAL PRESSURE ON DRYWELL OF 3 psid O O E k POOL HEATUP RAISES CONTAINMENT PRESSURE TO 5 psig Q DRYWELL PRESSURE DIFFERENTIAL MAINTAINED AT 3 psid 9 illCONDENSATION CHUGGING w OSCILLATION ,*@o~i Sr l" M 45$I p Zh* TIME SCALE DEPENDENT UPON BREAK SIZE. MINIMUM VALUE OF t = 2 min. ] mp az e c 2So=. [ O 1 I-$ 5;o~'"_. o @1.0 t't + 10 L['TIME AFTER EVENT, min. a" n 1 5'" ADD S/R :*VNAMIC LOAD TO STATIC LOAD DUE TO DRYWELL AIR 'PURGED TO CONTAINMENT. VAPOR PRESSURE AT 140 F. <::=z-<. . _ . _. . . - -- W W W W W M M M M M M M M M M M W W W STRUCTURE: CONTAINMENT WALL ACCIDENT: INTERMEDIATE STEAM LINE BREAK (IBA) LOADS DUE TO SEISMIC ACCELER ATION OF THE STRUCTURES AND LOADS DUE TO SEISMIC INDUCED POOL SURFACE WAVCS HYDROSTATIC PRESSURE NOTE: POOL DUMP STARTS AFTER ADS SINGLE S/R VALVE ACTUATION 6-8 LOW SET POINT ADS ACTUATED ** 2 S/R VALVES ACTUATED (4-15 SEC)*

  • g 3 I z 8 O I Olc I 2 DRYWELL AIR PURGED POOL HEATUP RAISES CONTAINMENT PRESSURE TO 5 psig h TO CONTAINMENT = 3 psig DRYWELL DIFFERENTI AL PRESSURE MAINTAINED AT 3 psid 9l1 r$8 CONDENSATION 0 4 CHUGGING b OSCILLATIONS c O[U" 5::ls is a i_&3 $Q{* TIME FOR ADS ACTUATION IS DEPENDENT ON BREAK SIZE. MINIMUM VALUE OF T = 2 min.

E oi clE I I U*A rn "/-2. 3 1.0 r r + 10 min. w gio--9 N Lh Tu o r = TIME AFTER EVENT CD S>E EQ CD O 5m Q 5' *** ADD S/R DYNAMIC LOAD TO STATIC LOAD DUE TO DRYWELL g O AIR PURGED TO CONTAINMENT VAPOR PRESSURE AT 140 F a%-E<. . - _ . . . _ . . _ _ _ -== a m S E V-A L-W E-E V m C E A L F T R N U E 0 S V m 1 L ,+O R E O P t P P D U E C T m U A D L , A I E N)V C E , B I L.m I M*.(S S*I U D T E L E N S U T-E O N A-m ID T N U.E A T in C U C m , C R D I A 2 n)A S E S A i K D W D B=m A A.A D G t , m , O O IN F T L S L E D T G O N L , R A N E E-N R I D G E W D O-B E U U V Y.-E A E T R H L E R T A A C A't m.T S F U P V R DF L A E E O "0 A T M M T T4 L I R C AD U D A O U F 1 WE T E C E M L I A UT M C D E R U U V L N D A m EE T L A A I E R R C L I N V M M M D E I A R WT S I R Z L S.T O U E:N E (S-E H P I CE/S I T M S S m R: T F U E I R D K TP U N O D L S A A A T E L G E C D N V O E T R N R SO UI O O I L P I O S B O A RC T P A D p m T C A V)R N T V SA R E Tc A O D.A T E T e P Ns U L O I 5 O N E E N O2 U T-C P -O N , 0 L M T (4 1 C m I S WT A E NN C E E I N E A R SD D MIA C U E D N A T M S OA O G P YO-S E L U L N E TI D DC m I R E 8T DNR EO P S C REA VT E C O I 6A AVE L L A iD T T W L C C E E A e U T S V T U G S m O O E RR D M U/S R I S P D D T D A Y DI*R O H AA L*m ul*m i Z9 @o O49@<w~N'5 s e s 8cUO r Od8 p.uogm o%E4-u h E*n2." E y-., f =ig w(8--ce. ~-a r m u_$ iE E>rr*r0$1g nIg<- o" _ ? 5Cmen"wL n , s u n&Uz.NO" u C _unsus unum muss umus ammu m usur unus m m mimi umu muni m m mumu m e m.-STRUCTURE: DRYWELL _.ACCIDENT: SMA LL STEAM BREAK (SBA) LOADS DUE TO THE SEISMIC ACCELERATION OF THE STRUCTURES AND LOADS DUE TO SEISMIC INDUCED POOL SURFACE WAVES HYDROSTATIC NOTE: 1. THE WElR ANNULUS WILL BE CLEARED TO THE TOP OF THE UPPER VENTS WITiliN A FEW MINUTES OF THE ACCIDENT. (TIME IS BREAK AREA DEPENDENT)

2. POOL DUMP INCLUDED (AUTO AT 30 min.)

ORYWELL ATMOSPHERE TEMPERATURE = 330 F 2 NOTE: DURING COO LDOWN WITH CONDENSER ISO. O SINGLE S/R VALVE LATED. S/R VALVES ARE OPERATED PERIOD-b-ACTUATION: ICALLY FOR UP TO THREE HOURS.


________q o NOTE: CHUGGING CAN LAST UNTIL BREAK ISOLATEDOR lo DEPRESSURIZED. (NOTE TWO TYPES OF LOADS)

___________y U NOTE: NEGATIVE LOAD DUE TO FLOODING TO COOLING OF DRYWELL POST ACCIDENT IS NO g g MORE SEVidRE THAN THAT FOR THE LOCA RELATED EVENT <C 9 CONTAINMENT PRESSURE R AISED TO 3 p:i. m DRYWELL PRESSURE DIFFERENTIAL RAISED TO 3 psid 5'n S$$k DRYWELL PRESSURE DIFFERENTIAL MAINTAINED AT 3 psid w j Sy CONTAINMENT PRESSURE INCREASED TO APPROXIMATELY 5 psi

  • z[m nl-!C D b"E o'n??-!;;"?. hb C9 C i I l'~A:o z o rn c)- ~ s*1.0 min.3 hr.6 hr., w n--Po p"?jj TIME AFTER EVENT g 3. ~n" V S o n.m"O S. k m?:s-<--_ _ . . _ . .

.-STRUCTURE: CONTAINMENT WALL ACCIDENT: SMALL STEAM BREAK LO ADS DUE TO THE SEISMIC ACCE LERATION OF THE STRUCTURES AND LOADS DUE TO SEISMIC INDUCED POOL SURFACE WAVES HYDROSTATIC NOTE: POOL DUMP INCLUDED (AUTO AT 30 minj SINGLE S/R VALVE ACTUATION NOTE: DURING COOLDOWN WITH CONDENSER ISOLATED S/R VALUES ARE OPERATED PERIODICALLY FOR UP TO TilREE HOURS. g b CHUGGING: NOTE: CHUGGING CAN LAST UNTIL BREAK ISOLATED OR VESSEL DEPRESSURIZED. b O Z O U DRYWELL AIR CARRY OVER RAISES @PRESSURE DIFFERENTI AL = 3 psid 5<C k CONTAINMENT PRESSURE RISES TO 5 psig BECAUSE OF POOL HEATUP. O DRYWELL PRESSURE DIFFERENTIAL MAINTAINED AT 3 psi. ?X ee<8[G P z o a n rj z E sc s 2! E L@$@gg f .-!D*az i i-x m-c[6b 5 1 min.3 hr.6 hr.@u.>- . . , 7>5 j TIME AFTER EVENT o a.c=5$" N n p CO 1 e a d 2. *U Z 4.- - --_ _ __ -uses messer summen unsus amener' ~ uses ' ' ungus "' asser ' ' ' auge asses - unums asses - espus maus 'usar unser umme-STRUCTURE: WEIR WALL ACCIDENT: SMALL BREAK ACCIDENT (SBA) LOADS DUE TO SEISMIC ACCELERATION OF THE STRUCTURES AND LOADS dud TO SEISMIC INDUCED POOL SURFACE AND WAVES. HYDROSTATIC NOTE: THE WElR ANNULUS WILL BE CLEARED TO THE TOP OF THE UPPER VEFRS WITHIN A $FEW MINUTES OF THE ACCIDENT. 9!-ATMOSPHERE TEMPERATURE O Z SINGLE S/R VALVE ACTUATION NOTE: DURING COOLDOWN WITH CON-O DENSER ISOLATED, PERIODICALLY FOR UP TO THREE HOURS. g____________ Z NOTE: 3 CHUGGING CHUGGING CAN LAST UNTIL BREAK ISOLATED OR VESSEL DEPRESSURIZED (3-6 hrs) g______________a a M O as.m.y H s e,-t 55 5 I I I*n{g}1 min.3 hrs.6 hrs.[f, o'TIME AFTER EVENT _>,-ON N 5 iO 4 L@$.*:u D h S N m i%*as-<.- - . .- - . - - . - - - - - - . . . . . _ _ . - NOTE: REFER TO FIG 3.5-13FOR OSCILLATING PRESSURE TIME HISTORY. .-...SUPPRESSION 5'-5" POOL WATER +14. 3 PSID .(-8. 5 PSID) -_LEVEL A A Y 20'-5 BOTTOM LINER: , \-..HYDROSTATIC PRESSURE ELEVATIO;J ._\[!CONTAINMENT 8 VESSEL'/,-!-.1.00 CIRCUMFERENTIAL MULTIPLYING FACTORS FOR i VERTICAL PR ESSURE \_DISTRIBUTION {-Rev.1, 7/8/77 PLAN-HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 PRESSURE LOAD DISTRIBUTION ON CONTAINMENT WALL DUE TO ADS ACTUATION - 8 VALVES FIGURE 3.5-1 i 1(d4 285. _ _ . 3 (J Oa 5~5 "i##Ee yg+18.6 PSID OR -9.9 PSID E<ra 1'JL ik in ,,_bl=Em=a0 2:;k._--m-.[ir/HYDROSTATIC PRESSURE ELEVATION O I_ __y_1.00 CIRCUMFERENTIAL MULTIPLYING FACTOR FOR I VERTICAL PRESSURE lDISTRIBUTION 0lCONTAINMENT VESSEL NOTE: PLAN REFER TO FIG. 3.5-13 FOR Rev 2, 12/20/79 OSCILLATING PRESSURE HOUSTON LIGHTING & POWER COMPANY TIME HISTORY. Allens Creek Nuclear Generating Station Unit 1 PRESSURE LOAD DISTRIBUTION ON CONTAINMENT WALL DUE TO SRV BLOWDOWN - 19 VALVES FIGURE 3.5-2 3634 286 __ __V a A...+20.1 PSID (-8.5 PSID) SUBSEQUENT ACTUATIONS +9.6 PSID I-5.8 PSID) --FIRST ACTUATION ,-g._g gSUPPRESSION POOL WATER LEVEL ,7 A M h Y W i i i D;: r 20' 5+C^g: C1:: ,,.ELEVATION- -SYMMETRICAL ABOUT DISCHARGING LINE s%i E.##'CONTAINMENT VESSEL '4'0 9%o RYP1 8 CIRCUMFERENTIAL MULTIPLYING -_,[og FACTORS FOR VERTICAL PRESSURE DISTRIBUTION --_A.NOTE: REFER TO FIG. 3.5-13 FOR OSCILLATING PRESSURE --TIME HISTORY- _Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek duclear Generating Station Unit 1 PRESSURE LOAD DISTRIBUTION ON CONTAINMENT WALL DUE TO SRV BLOWDOWN 1 VALVE FIGURE 3'5-3 .--1 6,3_4. 2 8 / -__ _. . _ _ _ _ _ l i I I+11.6 PSID (-6.9 PSID) 5'-5 , g{SUPPRESSION POOL g WATER LEVEL s k HYDROSTATIC PRESSURE 1.~U 20'-5+#*->I ,, k 1 T y : SYMMETRICAL ABOUT THE MIDPOINT BETWEEN TWO DISCHARGING LINES

  1. o $ 9 h 0# 9 D J 0 9'0. sy y CONTAINMENT VESSEL lClRCUMFERENTIAL MULTIPLYING E FACTORS FOR VERTICAL PRESSURE DISTRIBUTION I I NOTE: REFER TO FIG. 3.513 i FOR OSCILLATING PRESSURE TIME HISTORY.

Rev 2, 12/20/79 i HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Section Unit 1 I PRESSURE LOAD DISTRIBUTION ON CONTAINMENT WALL D' E TO SRV BLOWDOWN - 2 VALVES FIGURE 3.5-4 !1634 288_ . _ _ . . . . _ _ _ _ . -NOTE:-;REF ER TO FIGURE 3.5-1L .: OSCILLATING

PRESSURE TIME HISTORY.

4 a m CONCRETE DRYWELL _$5 1 55'h$OUTSIDE DRYWELL

INSIDE DRYWELL
o ">: 36.5' RADIUS 41.5' RADIUS

~SUPPRESSION POOL +17.4 PSID , WATER LEVEL TOP OF STRUCTURAL STEEL A A]/a n--10.4 PSID. 5' 5" , , , s Y"_' '1ST ROW D I O[--s OF VENTS ,r--%-"[2ND ROW 4.6" 21'-11" 20'-5"%_4----OF VENTS+-'y e 5 d'ir 2%>3RD RCW 4'-6" BOTTOM LINER %: g E LEV.116.17 _OF VENTS u%i y n;< - - -3'- 11 ": 9~%W6WgE%%WWWS*9?%WW(#@WNN , NEGATIVE POSITIVE ELEVATION , PRESSURE PRESSURE DISTRIBUTION DISTRIBUTION =:--=_k-_J 1.00 CIRCUMFERENTIAL

MULTIPLYING FACTORS

-OF VERTICAL PRESSURE I DISTRIBUTION e*--*,:--._-llJ ADD HYDROSTATIC PRESSURE =;ALGEBRAICALLY i JL Rev 2, 12/20/79

HOUSTON LIGHTING & POWER COMPANY u Allens Creek Nuclear Generating Station PLAN"I', PRESSURE LOAD DISTRIBUTION

,.j ON DRYWELL WALL DUE TO ADS ACTUATION - 8 VALVES FIGURE 3.5-5 1634 289--s L mf 5'a 5 d-a OUTSIDE DRYWELL -i" INSIDE DRYWELL i 2 5e$TOP OF STRUCTURAL SUPPRESSION POOL 2O STEEL" WATER LEVEL @\r A A A'-9.9 PSID 5' 5" 9".0" r 1ST ROW POOL DEPTH Y-: OF VENTS I 20'-5"'r't 8.6 PSID%r V_ 2ND ROW 4,-6" OF VEr!TS , 7 ,,+--:~a_ 3RD ROW 4 6"" OF VENTS-BOTTOM LINER +-->,r\<Y Il3'-11"*'l I y v ws ws-. . wcsawwwwcewamunwmwemwuwgramawswwr<we NEG TlVE POSITIVE I PRESSURE: PR ESSURE 1 '8" ELEVATION DISTRIBUTION lDISTRIBUTION l i i 1.00 CIRCUMFERENTIAL MULTIPLYING FACTORS OF VERTICAL PRESSURE %-4_.%DISTRIBUTION /ADD HYDROSTATIC PRESSURE ALGEBRAICALLY f\YlPLAN Rev 2, 12/20/79 NOTE: HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station REFER TO FIGURE 3.5-13 FOR OSCILLATING Unit 1 PRESSURE TIME HISTORY, CN CRYWELL WALL DUE TO SRV BLOWDOWN 19 VALVES FIGURE 3.5-6 1634 290 ._!Y 4 o-.3 INSIDE OF DRYWELL !-12.0 PSID '- - -28.2-.a'[#lPSID ". . 'a OUTSIDE OF DRYWELL

4--8.1 PSID i ;:

13.5llPSID'.g;j a.)_SUPPRESSION POOL WATER LEVELg ,_j 5'-5" L/c , z 1: J+-- --o-;~*-3---->A 4-M SEE NOTE 4 1+- - - - *lA r%YAWATAWAVc4VAMWMV4 VANS 1AWMc6YAWA16WM {VENTICAL PRESSURE DISTRIBUTION J SECTION A-A )~. $yMM. ABOUT '-OIECHARGE LINE A+)9,@$";c8 o 0 N9-.O TYP.i CIRCUMFERENTIAL =MULTIPLYING FACTORS OF VERTICAL I PRESSURE DISTRIBUTION I A +I'l ,^_-_!, NOTES: PLAN VIEW 1.PLAN DISTRIBUTION OF PRESSURES CAN OCCUR AT ANY AZlMUTH. 2.ADD ALGEBRAICALLY THE HYDROSTATIC Rev 2, 12/20/79 PR ESSURE. 3.SEE FIGURE 3.513 FOR PRESSURE TIME HOUSTOM LIGHTING & POWER COMPANY _';HISTO RY.Allens Creek Nuclear Generating Station _.Unit 1 4.THE VALUES 13.5 AND -8.1 PSID RESULT FROM FIRST SRV DISCHARGE.THE OTHERS PRESSURE LOAD DISTRIBUTION _, ARE FOR SUBSEQUENT DISCHARGES. ON DRYWELL WALL DUE TO j SRV BLOWDOWN - 1 VALVE FIGURE 3.5-7 \ ()bb:. . _ .-. _ . _ ._.i- ,. , . . .._j'/?-OUTSIDE OF .'.INSIDE OF- * . , DRYWELL'. , DRYWELL;-O. _ w 'SUPPRESSION _POOL WATER ,* T-~.LEVEL J a 5'-5" , , 2L e-4-8.1 PSID: 9;e-%'e-~1 e W , t-+' w ww-,w w%v4w w VERTICAL PRESSURE DISTRIBUTION

  • _.SECTION A-A A dE-"-SYMMETRICAL LINE
-o$-4 9 2 o%.8 q2?g CIRCUMFERENTIAL e'MULTIPLYING FACTORS OF VERTICAL PRESSURE DISTRIBUTION

__A ==E-: I ,-1634 292 NOTES: PLAN VIEW)1.PLAN DISTRIBUTION OF PRESSURES CAN OCCUR AT ANY AZIMUTH. Rev 2, 12/20/79 i 2.ADD ALGEBRAICALLY THE HYDROSTATIC HOUSTON LIGHTING & POWER COMPANY i PR ESSUR E. Allens Creek Huclear Generating Station Unit 1 1 3.SEE FIG.3.5-13 FOR PRESSURE TIME PRESSURE LOAD DISTRIBUTION i HISTORY.ON DRYWELL WALL DUE TO 'SRV BLOWDOWN - 2 VALVES FIGURE 3.5-8 .x_ _ _ . . - . . . _ . _ _72=___POSITIVE PRESSURE DISTRIBUTION 4 NEGATIVE PRESSURE DISTRIBUTION !-~. _)g b.-p-i , 4'-7%m_13'10%"_CONT. VESSEL--* '--i//- +,./-m n a a a n ,6 n*.: DRYWELL*i f p 6 a , G/'~" g.-*m.a a un m.-*-!-8.5 PSI';" 3. > -._y 1r ir if'r 1r ,r ir 1r ,r u 1r y ,'j SUDPRESSION POOL LINER _RADIAL PRESSURE DISTRIBUTION !"-9-a-ir-1.00 CIRCUMFERENTIAL MULTIPLYING FACTORS

  1. OF RADIAL PRESSURE DISTRIBUTION

,==-e-n-4__n 1r}h3k PLAN=j NOTES:-1.REFER TO FIG. 3.5-13 FOR OSCILLATIONS Rev 2, 12/20/79 PRESSURE TIME HISTORY. =,.HOUSTON LIGHTING & POWER COMPANY j 2.THE PRESSURE VALUES CORRESPOND TO Allens Creek Nuclear Generating Station MAX. VALUES OF 8 VALVES LOAD. Unit 1 i PRESSURE LOAD DISTRIBUTION =-3.ADD HYDROSTATIC LOAD ALGEBRAlCALLY' ON SUPPRESSION POOL LINER 'DUE TO ADS ACTUATION - 8 VALVES FIGURE 3.5 9 ,'l--- - - - - - - - _ _ _ . _ _ _ _ . . . . . . . _ . . _ .: ,]POSITIVE PRESSURE DISTRIBUTION J'~CONTAINMENT--> m 6 ,.,0 4-NEGATIVE.[PR ESSUR E

  • -";DISTRIBUTION

\- #%.A': DRYWELL l n A a a a A a n-A a n ,!Q--O p o. .E E+y q.-a c.'."-=if'P 1'v ,r ir y y y ,7 ,,*^f-3.j-SUPPRESSION POOL LINER --POSITIVE PRESSURE DISTRIBUTION y!a__!\l3 m 1.00 CIRCUMFERENTIAL

j MULTIPLYlf G FACTORS OF RADIAL PRESSURE DISTRIBUTION 7 i P-T!-m'\7/l\i v PLAN 1 i NOTES
1634 294 1.REFER TO FIG. 3.5-13 FOR OSCILLATING

,'PRESSURE TIME HISTORY. '3 Rev 2, 12/20/79 2.THE PRESSURE VALUES CORRESPOND TO )DESIGN LOAD FOR 19 VALVES. HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station " 3.ADD HYDROSTATIC LOAD ALGEBRAlCALLY. -PRESSURE LOAD DISTRIBUTION 2 ON SUPPRESSION POOL LINER !DUE TO SRV BLOWOOWN - 19 VALVES FIGURE 3.510

- - - , - , _ . . .

F)"" L POSITIVE PRESSURE DISTRIBUTION I CONTAINMENT NEGATIVE PRESSURE DISTRIBUT <ag...' ' .' /4'-7 %" 4*-7%" 9'-3" 8 i;:::: s-..'+25.0 PSI', ,-.a* .2. . --...., N_/"4. ' '*o m m_ym u..2 ft m*E-b A$~n.", ,r u y 3r r e u v ,r u o a.4 s. .-10.7 PSI-A-BOTTOM LINER RADIAL PRESSURE DISTRIBUTION FOF. SUBSEQUENT SRV ACTUATION SYMMETRICAL LINE o q ' %,?o 4 9,.$ $lk 4 4 CIRCUMFERENTI o.,,, MULTIPLYING FACT OF RADIAL PRESS 0.272 9 TYP.DISTRIBUTION '0.21-_l*T'Nhh 9 D , , A b PLAN e W NOTES: 5 1.REFER TO FIG. 3.5-13 FOR OSCILLATING -PRESSURE TIME HISTORY. i e 2.ADD HYDROSTATIC LOAD ALGEBRAICALLY. ') t} }', ,!- CONTAINMENT POSITIVE PRESSURE DISTRIBUTION N NEGATIVE PRESSURE DISTRIBUTION '-....g DRYWELL 4 71/2" 4'-71/2" 9'.3"-';;;,'+13.5 PSI r,'. i s- ,'...+12.0 PSI 1 , .* *-)\s a'/.n..y.,, , , , en a en.., y o , u o ,r ,r r v r";, , N~-7.2 PSI-8.1 PSI , T BOTTOM LINER RADI AL PRESSURE DISTRIBUTION FOR FIRST SRV ACTUATION E 36u a6 Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1.PRESSURE LOAD DISTRIBUTION ON SUPPRESSION POOL LINER DUE TO SRV BLOWDOWN - 1 VALVE FIGURE 3.511 I-NEGATIVE PRESSURE DISTRIBUTION 13'-10 % , 4'-7 %_, , I POSITIVE PR ESSURE+13.5 PSI 0'DISTRIBUTION /I'Y ,/.A 1r/d c: DRYWELL/I n+11.6 PSI y y a-6.9 PSI y y r y y ,r ,r y v v-r<I A , f BOTTOM LINER -8.1 PSI RADIAL PRESSURE DISTRIBUTION I SYMMETRICAL LINE ,, o.h o o o o 5k'I o-CIRCUMFER ENTI AL o*_MULTIPLYING FACTORS

  • 9 TYP.OF RADIAL PRESSURE I Dg%DISTRIBUTION I 0.210 0.172 0.172 I-.--'I i I PLAN NOTES: 1.REFER TO FIGURE 3.5-13 FOR OSCILLATING Rev 2, 12/20/79 PRESSURE TIME HISTORY.

HOUSTON LIGHTING & POWER COMPANY I 2.ADD HYDROSTATIC LOAD ALGEBRAICALLY. Allens Creek Nuclear Generating Station Unit 1 PRESSURE LOAD DISTRIBUTION ON I SUPPRESSICN POOL LINER DUE TO SRV BLOWOOWN - 2 VALVES FIGURE 3.512 I E L B L B OU OB))C P Y X E F Y C S S O A (T N N R M T TE A O I F P X NU E E S 3 EQ K M/EDE A*1 A LNR T BEF R BP N G UE A I A BD C N D\I Y C N (N O E I T, U U Q B E I R R F T S tIll! l !,I liI 1lIlle8ll.I" S D E R E U R T U C . S S U S E RP TC R S P 8 L Y R B)P O O Y O N F T P E S (NI V C.O I Y E E I N G)S SW E A V S 0 R.C I j 5 E f T.0 RI A C E I 0 N P S E D S E S S P E E O S O U V R 0 R P I A 6. E K T S R U<A LU S 0 N A R L C S I E L P U A E E R_D (RH P.&.OT X C E F K.A S S A M SP E 5 EC P).P.E 1 IL 2 M....V.I 0..., P1.P U.T AO M A T I NG Y N , I E 5..M R I E.N ON MR.E.K TE D U SE A I N T E H W C~A P T U EE MR (.MB.X I UT..S.T E M.A U I H.*5 M S 1 P[I L X C HA A A.+: , 2 0 4 TV ME./.3 S...1.E....f T.'----~=O N]-0 0 0 0 0 0 0.>.0 8 6 4 2 2 4.Wd N O.5 -.1++++--.2+.0 0 ,:c3 5c$ e3 gcOz c t 5 <' g uSh O Z CO%EO 0$m I[! nsL z* e a5;j*$'j; -i E g" DEo T$$t yEm G oN g<rMoZ mN$ c Qamo %r n o Ugng$" m6jmw w I I e/- -I\, N 4'/d~~~,~~[4 Y*e s,l(h'JITOP VIEWI'qjI , I I'NOTES: 1) LOADS APPLY TO 90*-90 CONFIGURATION ASWELL AS 120*-80 800 0 I 1 2) F,, Fb AND F, ARE GIVEN IN TABLE 3. 6-1 I 34.3" %c I I: u I}ELEVATION VIEW 'Rev.1,7/8/77 I HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 QUENCHER ARM LOADS FIGURE 3.6-1 I -_m-ORTHOGONAL INLET LINE LOADS F; ,_AND M; FOLLOW THE RELATIONSHIP F'.M.-.+1 5 1.0^F, M,!F;WHERE: F, = 10,855 LBS 3 g M, = 25,836 FT-LB i p---b U i.a_a 3 E F;____**1 o nll: s'm a M M, g@N d d Il#F,-F b A j ('j ' =2\J J4 CM b-g h\/n d_--I I (_-Fg N i Mg-_-Q]M, 3 NOTES: 1) LOADS F , F , AND Fg MAY ACT b e IN ANY HORIZONTAL DIRECTION.

2) MOMENTS M, AND Mg MAY ACT 1 IN ANY VERTICAL PLANE.

~1634 300'3) FOR VALUES USE TABLE 3.6-2 7 d Rev.1, 7/8/77 HOUSTON LIGHTING & POWER COMPANY -2 Allens Creek Nuclear Generating Station Unit I'j QUENCHER BASE REACTION LOADS FIGURE 3.6-2_ _ _ _ . . . . - . - - . , _ . - __9 j l i 4.0 LOADING COMBINATIONS -!4.1 LOAD SYMBOLS _--i The following loads will be considered in the design of the Containment i Structures. Included in this list are all the loads specified in the j ASME Code, Section III, Division 1, Subsection FE-3110, 1974 Edition, including Addenda through Summer 1974 and ACI-ASME Code, Section III, 2 Division 2, Subsection CC-3220, 1975 Edition. ,-!#4.1.1 SERVICE LOAD CONDITIONS !Service load conditions are any conditions encountered during construc-j tion and in the normal operation of a nuclear power plant including re-fueling. Included in such conditions are any anticipated transient conditions during normal and emergency startup and shutdown of the nuclear , j s t e am supply, safety and auxiliary systems. Also included are environmental loads which are expected to occur in frequently. "}a)Normal Category

This category includes all loads which are expected to be applied during the normal plant operation, startup, shutdown and refueling

-=I condition. _.=D - Dead loads or their related moments and forces, including any permanent equipment loads, and prestressing load, if any. Buoyancy force. due to normal groundwater level, wherever ap-plicable, shall also be included. 2..-- Live loads or their related moments and forces, including any L movable equipment loads and other loads that vary with intensity and occurrence. L - Live loads occurring during periods other than normal or con-

  1. struction (refueling, including polar crane loads, test, post-ac cid en t ) .

o-T - Thermal ef fects during normal plant operation or shutdown con-o dition, based on the most critical transient or steady-state con- =!dition. If the plant is not in operation, T represents ambient 4 temperature (construction, test. refueling, post-accident). T - Thermal ef fects due to safety / relief valve blowdown (one, two bd 19 SRV operation) additional to T . 1 or_a g P - Pressure ef fects during normal plant operation or shutdown con- =-o-dition, based on the most critical transient or steady state con-3 dition.}P - Pressure effects due to safety / relief valve blowdown (one, two l1 bd-or 19 SRV operation) additional to P . Both the direct and t h}k)k feedback ef fects are considered, 2_4-1 Rev 2, 12/20/79 '._.-----i mummi-s--imse ii-ii im I I R - Pipe reaction during normal plant operation or shutdown con-g dition, based on the most critical transient or steady state con-di tion.- Pipe reaction due to safety / relief valve blowdown (one, two or bd 19 SRV operation) additional to R . g R - Pipe reactions during periods other than normal or accident r ( refueling, post accident.) I F - Hydrostatic pressure due to normal water levels in the pools. n (Suppression Pool, Fuel Pools, etc.) B - Buoyant forces due to Probable Maximum Flood. 2 H - The lateral earth pressure under normal conditions b)Construction Category This category includes all loads which are expected to be applied I during plant construction. 5 T - Thermal ef fects during plant construction. c L - Live 1 ad during plant construction c c)Testing Category This category includes all loads applied during structural integrity or leak tightness testing P - Pressure effects during testing d)Severe Environmental Category This category includes environmental events and the resulting loads which will only inf requently occur. F,qo -Loads generated by the operating basis earthquake W -Loads generated by the design basis wind H' -The lateral earth pressure under earthquake conditions in excess of the normal lateral earth pressure H. 4.1.2 FAC70 RED IDAD (DNDITIONS lactored load conditions are those conditions resulting from a design =basis accident. a)Abnormal Category 'This category includes the ef fects resulting from a postulated high energy pipe break. 4-2 Rev 2, 12/20/79 I g . .___i J_."!e P -Pressure equivalent static load within or across a com-a partment and/or buildir.g, generated by tre pos tula te d break, and including an appropriate dynamic factor to _account for tre dynamic nature of tre load. I j P~bd T-Pressure , tempe rature and reaction ef fects due to 8 ADS bd R-peration during inte rmediate bre ak accident, additional 2-s bd i to Pa, Ta and Ra P -1__Pool swell loads including pressure type forces and i reactions from pool swell forces on structures and pro-J jections and feedback effects .P Steam condensation oscillation loads including the dire ct -c I and tre feedback effe cts '2 P c ".Ciugging loads including tre dire ct and tha feedback ef fe cts 3 P -De sign exte rnal pressure e}T, -Tre rmal loads unde r tte rmal conditions gene ratea by tre postulated break and including T a T -The rmal ef fects unde r trermal conditions during events , e!causing exte rnal pressure R -Pipe reactions unde r tre rmal conditions gene rated by g tre postulated break and including R R -Pipe reactions due to pool swell. I j R -Pipe reaction unde r tie rmal conditions during ewnts causing e xte rnal pre ssure . l Y -Equivale nt static load on tre structure gene rated by the r]reaction on tie broken high ene rgy pipe during the postu-laced break, and including an appropriate dynamic factor -to account for tie dynamic nature of tie load. !#Y.-Je t impingement equivalent static load on a structure 3 gene rated by tie postulated break, and including an _i appropria te dynamic factor to account for tre dynamic j na ture of t te load. ?Y -Mis sile impact equivalent static load on a structure m;gene rated by or during tie postulated break, like pipe ~whipping, and including an appropriate dynamic factor to account for tre dynamic nature of tie load. i-F -Increase of tre laydrostatic pressure in tre suppre ssion d pool during accident (from tre upper pool dump, pool swell). F -Hydrostatic pressure gene rated by post accident pa i 4-3 Rev 2, 12/20/79

1634 303--____ .

I flooding of the containment b)Extreme Environmental Category This category includes the occurrence of environmental events which are highly improbable. F,qg - Loads generated by the Safe Shutdown Earthquake W- L ad generated by the design basis tornado specified t for the plant. Tornado loads include loads due to the tornado wind pressure, the tornado-created dif f erential pressure, and the tornado generated missiles. 2 I I I I I I I I I I I 1634 304 4-'Rev 2, 12/20/79 I I 4.2 LOADING COMBINATIO::S Tte general loading combinations for tin containm nt structures , which will be subje ct to tte dire ct 'e f fe ct of tte suppre ssion pool dynamic loads, are I given in Figure 4.2-1. Figures 4.2-2 through 4.2-6 show specific load com-binations for tte containuent ve s se l, t te upper concre te drywell, tre plat-forms and miscellaneous steel in the pool area, tre lower steel drywell and ,,~bottom liner, and tie reactor building mat. For those structures which I might be subje ct to the indire ct (feedback) ef fect of tre pool dynamic loads, appropriate PSAR 6eetions shall be re fe rre d. Tre biological shield wall, tte RPV pe de stal, and platf orms locate d inside the drywell gene rally fall into I this category. Each loading combination was grouped into one of eight categories as follous: a)Te s t Tre containme nt structures will be de signed to resist loads applied during eitter containment or drywell pressure te s ting. b)Construction Category Tre containne nt structures will be cb signed to resist specified loads I applied during construction. c)Normal Category This category include s loads which are expected to be applied dur-ing tre normal plant ope ration, startup, s hutdown and re f ue ling. d)Se ve re Cate gory This category include s the events in tre Normal Cate gory plus the I ef fe cts of se ve re environmental plenomena such as OBE and Design Basis Wind. e)Extre me Cate gory This category includes tre events in tre Normal Category plus tre ef fects of design bases natural plenomna such as SSE and Tornado I Wind and Missile s. Tie combination of plant re f ue ling and extre me environnental plenomena are not conside red as a design basis. f)Abnormal Category This category includes the ef fects of the Design Basis Accident, 2 Inte rmediate Break Accident, Small Break Accident and accidents I which cause external pressure . g)Abnormal /Se ve re Category I This category include s the effects of tre postulated simultaneous occurre nm of tte De sign Basis Accident and tre OBE. In addition, tre combination of tre ef fects of tte post accident flooding of tie I containcent and the OBE are conside re d. 4- 5 Rev 2, 12/20/79 I I h)Abnormal /Extrem Category This category includes tir effects of cle postulated simultaneous 2 occurre nce of tin Design Basis Accident and tie SSE. I I I I I I I I I I I I 1634 306lI 4-Sa Rev 2, 12/20/79 ,. , , , , , , , , , - , , - , - , . '. 9&'.4.3 TOTAL SUPPRESSION p0OL DYNAMIC LOADS

l The complexity and rapid succession of transient loads associated with the

-pool swell, steam condensation oscillation and chugging, and the need for " superposition of these loads requires load organization in proper chrono- [_logical sequence. Such a chronological sequence associated with a i particular structure or structural element defines the " total" load applied -to the component. The load symbols defined in Section 4.1 stand for total load rather than individual load. t____The total loads during the pool swell stage under a Design Basis LOCA have !further been developed here for the drywell and the containment vessel m walls due to the fact that these two structures will be subjected to a wide variety of loads which might either be a direct impact or an indirect i;load transmitted through certain attached structural camponents. An important element in organizing the loads in succession is to establish _;an origin in time frame to which all the loads can be referred. No pool swell in the bulk mode can start before the air is injected into the pool . -In the process of clearing the first vent row the pool in the containment annulus raises by approximately 10 inches but this is not considered to -be part of the pool swell . The first row of vents uncovere 1.0 second af ter the LOCA and this is the time origin of the pool swell (Figure 1 4.3-5).The same figure shows that the wetwell pressure begins to increase _: 1.5 seconds af ter the LOCA occurs, corresponding to the approximate time 2 when the air bubble breakthrough takes place. .-Although less complex than the sequence of pool swell loads under a DBA, the 8 relief valve ADS actuation loads associated with an Intermediate Break Accident also requires the definition of total l oad s . s 4.3.1 DESIGP BASIS (LARGE BREAK) ACCIDEFT TOTAL LOADS 4.3.1.1 Pool Swell Total Loads , The total loads associated with drywell and containment structures are described in bar charts (Figures 4.3-6 and 4.3-8) and are also shown ,_schematically on the structures in the subsequent sections. In addition,-bar charts are presented which show the succession o~ loads for the weir well (Figure 4.3-1), the grcund floor (Figure 4.3-2,, the UCU floor 1 (Figure 4.3-3) and the suppressior. pool bottom liner (Figure 4.3-4) . E-.4.3.1.1.1 Drywe ll The bar chart which indicates the succession of loads for the drywell is 2 shown in Figure 4.3-6. The dynamic loads on the drywell during the pool swell stage are shown on Figure 4.3-7. The maximum elevation predicted ]to be reached by the top of the water swelling in the bulk mode is ap-i proximately 154.33 feet or 18.0 feet above the pool normal level. Although the hydrostatic pressure may not be linear on the drywell wall due to the _bubble interference, the case shown corresponds to a bubble injection in [the middle of the pool. This condition results in a minimum bubble contact -area with the drywell wall, and will determine the worst hydrostatic pres- _sure distribution. _The bubble pressure of 21.P psig constant over the pool 1 2 1634 307 7 4-6 Rev 2, 12/20/79 J- - ..__.,. I.1 he ight is to be added to tre 11ydrostatic pressure . 4.3.1.1.2 Containme nt Figure 4.3-8 and Figure 4.3-9 are tre bar chart and total load seteme , g respe ctively, f or tre containmnt ve ssel and are similar to those g provided for the drywe ll. Tre major difference is the additiot.a1 5.0 1 psid pressure will not be used f or drywell design. 4.3.1.2 Condensation Oscillations Total Loads The total loads acting on tre drywell, tre containm nt and the base mat E during tre steam condensing oscillation staga under a Design Basis LOCA g shall include only loads applied directly on tre suppression pool boundary as de scribed in Se ction 3.2.2. 4.J.A.J Ghugging Total Loads Tte total loads acting on tre drywell wall, weir wall, case mat and 2 containment shall include only loads applied directly on tre suppre s sion g pool bounuary as de scribed in Se ction 3.2.3. 4.3.2 INTERMEDIATE BREAK ACCIDENT TOTAL LOADS Unde r inte rme diate break accident which eventually will actuate the B-valve ADS, t re total loads acting on tre drywell, tie containne nt and tre weir walls shall include those compone nt loads & scribe d in se ctions 3.3.1, 3.3.2 and 3.3.3 re spe ctively and tre corresponding oscillating pressure s induced by tre valve actuation as de scribed in Section 3.5 and Figures 3.5-1 and 3.5-5. Furt ha rmo re , f or drywell design purposes, a 15.0 psig de sign pre ssure for drywell and a 5.0 psig for containcent shall be as sume u. .4.3.3 SMALL BREAK ACCIDENT TOTAL L0 ADS Unde r small break accident, tre total loacs acting on tte drywell, tre g containment and tre weir walls shall only inclu& those compone nt loads g e scribed in Sections 3.4.1, 3.4.2 and 3.4.3 re spe ctive ly. 4.4 PROPOSED bUPERPOSITION OF DYNAt1IC LOADS For all linear elastic structures a time history modal analysis will be pe rf orced in order to de te rmine t te appropriate dynamic load f actor (DLF). E Af te r tte proper DLF is obtained, the maximum response is & te ruine d by 3 using a linear elastic static analysis. Tre algebraic supe rposition takes into conside ration maximum and minimum responses which will occur during tre total load. Tre combination of total load, other loads and seismic loads, which has conside red the three directional ef fe ct via the utilization 2 of SRSS ne thod itself, will be combined by tte absolute sum ( ABS) me t hod , except wtere NRC requirements pe rmit use of SRSS ce thod (e .g. NUREG-0484) . E A time history analysis (dire ct integration ce thod) will te used f or non-- 3 linear structure s. Tre total loads will be combined with tre otter loads be f ore tre non-linear analysis is ma& such that unique peak maximum or minimum re sponse s are found. 1634 308 4-7 Rev 2, 12/20/79 I e)1 Figure CEh La4 DING C LOAD CATECORY PPs STRESS Pee ggI gg) Lr(1}(t!!?tT A D L le To Tc Ta Tbd Te Po Pt Pe FSd Pe Pch no tr'15T a a a a Come t ruc t ion a a Norne t a a s a a a a a a a E a a a a a Seve re a a a a a Environmental a a a a a a a a a a a Estreme a a a m (Environmental a a a a a a a Onormal a a a (7)m a a E a a a a a a t a a a a a a a e a a a a a a Absormal/a a m (7)a a a levere a a a a a a a s s a a a a z a a a a a a a a a a a a-Abnotes t / a a m (T)a a a En t rees a a a a a a s a a a a a x a.a a a s a a a a-hotee r g 1) Both cases of L. Lc, tr, M and M' having their full vs.uo or being completely ..sbeent will he sonaldered. e 2) The monimum values of YJ. Tr, and Ye will be used etauttaneously unless a time history is prfossed to justify otherwise. Ja 3) Local stresses due to the concentrated toed Tr YJ. and To any exceed the allowables pr:4 4 -*d there is no lose of function.

6) The waimus values of Ts, Fa and Ra will be used etauttaneously unless a time history le prformed to justify otherwise.

, q 3) To be associated wt:h earthquake loada only. g'6) Sis.gle S'Y blowdawa loed, first actuation only, 3 7) Due to short tera accident duration (approxiestely 100 sec., till the recovery of all vente) fa has the ef fect of therast shock or ty

  • is this load combiution.
8) While Pps applies only to large Break (DBA) Short Tere 14CA case Psc applies to both DBA sad IRA and Pch applies to all three accidents (DRA, 18A and $8A); however, these three loads will not occur stamaltaneously.

4 i I e 1634 309. l\..28 L atm flons YW%L III n*II*II us ebd te are Pn rd Poe Yr Yt Ye reso r ga w we e n pe.,rke a s--a a a a a a a a a 5ay a a a Refueling s a or a a a or a a a a or a a a or a SRV s a or a a a or a Ae rvellwg a..e or a a a er a a a a er a x a or a StV~a a a s a a large treek Short tere LOCA (2) (3) (6) a a s a a a a latermediate Break ADS s a a a a Seell Broek (6) a a a a Long Ters LOCA u a a a Esternal Pressure LOCA a a a a a a a a a Short tore LotA (6) (2) (3) a a a a a a latermediate areek ( A Ds) a a a a a g Sestl steek (6) a a a a Lies term LOCA (4) a a a a hegati.e pressure LOCA 'a a a Poet Accident flooding " s a a a a a a a a short teru LOCA (2) (3) (6) a a a a n a latermediate treek LEA (A055 m a a a a a 5 sell break (6) a a a a a Long T. ore LOCA (4) s.....t. r .. e.r . .._.,.163.4 710..-e i.i I i<-!CATEGORY I STRESS (1)(1)(1)\CRITERI A D L Lc Lr To Tc Ta Tbd Te Po Pt Pa Pbd P'1.0 Test 1.0 1.0(3)1.0 1.0 1.0 1.0 1.0 Construction 1.0 1.0(8)1.0 1.0 1.0 1.0 1.0'tormal 1.0 1.0 1.0 1.0 1.0 1.0.Severe 1.0 1,0 1.0 1.0 1.0 1.0 Environmental 1.0 1.0 1.0 1.0 Extreme 1.0 1.0 1.0 1.0 1.0 1.0 ravironnental Abnormal 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Abnormal / 1.0 1.0 1.0 1.0 1.0 1.0 Severe 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Abnormal / 1.0 1.0 1.0 1.0 1,0 1,0 Extreme 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1..'o t e s :

1) Both cases of L. Le and Lr, luiving their full value or being completely absent will be considered.
2) The maximum values of Ta, Pa and Ra will be used simultaneously unless a time history is performe
3) A 1.25 load f actor is used for the crane live load during 1257. rated capacity test.
4) Single SRV blowdown Icad, first actuation only.

b) An additional load combination called "sccident load at penetration sleeve" is listed in PSAR Sec

6) These load combinations have been crossed out because they are not governing.
7) While Pps applies only to Large Break (DBA) Short Term LOCA case, Psc applies to both DBA and IBA accidents (DBA, IBA and SBA); however, these three loads will not occur simultaneously.
8) The snow or wind load on the shell will be considered as part of the construction live load only F does not provide protection during containment erection. Snow and wind shall not be combined in t 4 o" e h i e-^': 1634 311 o

.s.Figure 4.2-2 'CONTAIMfENT VESSEL 'f.0ADING CQiB1 NATIONS IDAD SYMBOL Pps Psc Pch Ro Ra Rbd Re Rr Rps Fn Fd Fpa Feqo Feqs Remarks 1.0 1.0 Crane Test l1.0 1.0 1.0 1.0 1.0 SRV (6)(6)1.0 1.0 1.0 1.0 SRV 1.0 1.0 1.0 Re fueling 1.0 1.0 1.0 1.0 SRV (6)(6)(6)(6)1.0 1.0 1.0 1.0 1.0 (4) (5) Short Term LOCA 1.0 1.0 1.0 1.0 1.0 Intermediate break (ADS) 1.0 1.0 1.0 1.0 1.0 Small break (4) 1.0 1.0 1.0 (2) Long term LOCA 1.0 1.0 1.0 External Pressure l1.0 1.0 1.0 Post Accident Flooding 1.0 1.0 1.0 1.0 1.0 (4) (5) Short Term LOCA l 1.0 1.0 1.0 1.0 1.0 Intermediate Break (ADS) l1.0 1.0 1.0 1.0 1,0 Small break (4) 1.0 1.0 1,o (2) Long term LOCA 1.0 1.0 1.0 External Pressure to justify otherwise, on 3.8.2.3.2.1. nd Pch applies to all three the shield building a same loading equation. m I634 3I4 ,.,$. i.f t il I CATECORY STRESS CRITEsIA D L 1m Lr To Te Ta Tbd Te Po Pt Pa Pbd Pe" Test 1.0 1.0 1.0 1.0 u Construction 1.0 1.0 1.0 , at Normal 1.0 1.0 1.0 1.0" 1.0 1.0 1.0 1.0 1.0 1.0 m T~Severe 9 1.0 1.0 1.0 1.0Environmental 1.0 1.0 1.0 1.0 1.0 1.0-6 1.0 1.0 1.0'e-w" Extreme 1.0 1.0 1.0 1.0lEnvironmental 1.0 1.0 1.0 1.0 1.0 1.0 Abnormal 1.0 1.0 1.0(6)1.5 1.25 1.0 1.0 1.0 1.0 1.5 1.25-1.0 1.0 1.0 1.0 1.5 1.25 1.0 1.0 1.0 1.5 1.0 1.0 1.0 1.5 o Abnormal / 1.0 1.0 1.0(6)1.25 1.0 Severe 1.0 1.0 1.0 1.0 1.45 1.0" 1.0 1.0 1.0 1.0 1.25 1.0 m 1.0 1.0 1.0 1.25 1.0 1.0 1.0 1.25 a 1.0 1.0 1.0 s." Abnormat/1.0 1.0 1.0(6)1.0 1.0 g Extreme 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 , 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 v Notes: 1) Both cases of L. Le and Lr, having their full value or being completely absent will be considered.

2) The maximum values of Yj, Yr. and Ye will be used simultaneously unless a rime history is performed to justify otherwise

%'3) Local stresses due to the concentrated load Tr, fj, and Ya may exceed the allowables provided there is no loss of functi

  • 4) The maximum values of Ta, Pa and Ra will be used siamitaneously unless a time history is performed to jus tify otherwise.

." 5) Sinale SRV blowdown load, first ac tuation only, 6) Ta has the effect of thermal shock only (duration approx.100 seconds). w Z 7) This load ccabination was erased out because it la not governlag.

  • d 8) While Ppa applies only to Large Break (DBA) Short Term LOCA case, Psc applies to both DBA and IBA and Pch applies to all

}accidents (*1BA. IBA and SBA); however, these three loads will not occur simultaneously. w t: 1634 313 , u. ?H 2 M g l g yla 2 Figure 4.2-3 'FFER taWELL (CONCRETE) LOADING CGtBINATIONS (8) LOAO SYMBOL

  • (Ro ar Ra Rbd Re Rps Fra Yr Y1 Ye rego regs Remarks 1.0 1.0 1.0 5/RV g 1.0 1.0 1.0 1.0 1.0 SRV 1.0 1.0 Refuellag 1.0 1.0 1.0 1.0 1.0 SRV.5 1.0 1.0 1.0 1.0 1.0.5 1.0 1.0 Large Break short Tern LOCA (2) (3) (5)

Intermediate Break, ADS 1.5 1.0 1.0 1.0 small Break (5) Long Tern LOCA (4) 1.0 External Pressure .25 1.0 1.0 1.0 1.0 1.0 1.25.25 1.0 1.0 Short Tern LOCA (2) (3) (5) 1.25 ,25 1.0 1.0 Intermediate Break, ADS 1.25 ses11 Break (5) 1.0 1.25 Long Tern LOCA (4) 1.0 1.25 Negative pressure 1.0 1.0 1.0 Post Accident Flooding _ _ _ _ . _ _ _ _ _ ...0 1.0 1.0 1.0 1.0 1.0 Short term accident (2) (3) (5) 1.0 1.0 1.0 1.0 Intermediate Break, ADS 1.0 small Break (5) Long term LOCA (4) 1.0 Negative pressure .bree.1634 314. f I i>fl,,_..00L AREA PIATEFO

    • LOADI Pp CATEGORY Ps STRESS (1)(1)(1)CRITERI A D L Le Lr To Te Ta nd Te Po Pt Pa Pbd Pe Pc e!/*NO'Test Construction S 1.0 1.0 1.0 1.55 1.0 1,0 1.0_1.0 g ormal 1.5S 1.0 1.0 1.0 1.0 1.0 1.0 Bl , e on f I S 1.0 1.0lSevere 1.5S 1.0 1.0 1.0 1.0 Environmental 1.5S 1.0 1.0 1.0 1.0 1.0 1.0'v 1.55 1.0 1.0 1.0 1.0 1.6S 1.0 1.0 1.0 1.0%Extreme 1.65 1.0 1.0 1.0 1.0 1.0 1.0 Environmental

'-lI:.0 I..0.65.0.0 (6) .1:8:ESt:f:f:l': a--I 1.6S 1.0 1.0.1.0 1.0..l!I!Il li$ I!$"'liU 1:8 li$ li$li e e--u 1.0 1.0 i[g5 t.g }.g 1.0 1.0 1d 1:g 1,g 1,g Severe 1. u i.o i.o n21.0 1.0 i.o i.i 1.7S 1.0 1.0 1.0 1.0 1.0 1.0 v Extreme , 1.0*1.0 Abnormal / 3*'Notes: 1) Both cases of L. Lc, Lr, H, and li' having their full value or being cogletely absent will be considered. , 2) The maximum values to Yj, Yr, and Ya vill be used simultaneously unless a time history is performed to justi !3) Local stresses due to the concentrated load Yr. Jy, and Ya may exceed the allowables provided there is no le

4) The maximum values of Ta, Pa and Ra will be used simultaneously unless a time history is performed to justif
5) Single SRV blowdown, first actuation only.

l6) Ta is thermal shock in this load combination

7) These load combinations were not governing.
8) While Pps applies only to Large Break (DBA) Short Term LOCA case, Psc apples to both DBA and IBA and Pch app accidents (DBA, IBA and SBA); however these three loads will not occur simultaneously.

I I E e i.~r-Ul*aevision to the Containment structure Desian 'ccre s/1/78 ,!!2 I i 1634 315 9%D**D*D~r. 4.2-"~AND MISCZllANEOUS STEEL -COMBINATICMS D SYMBOL)Ro pr Ra Rbd Pe Spe Fn Fd Fra Yr YJ Y's Tego Feas Remarh RIQU1FID 1.0 1.0 1.0 1.0 1.0 , (7)1.0 3,o 1.0 1.0 1,o 1.0 1.0 1.0 1,o Spy 1.0 1.C 1.0 Pefuelinn 1.0 1.0 3,9_1, 1.0 1.0 1.0 g,o$,y.g 1:8 j 1.0 1.0 1.0 1.0 f.arge Break Short term LOCA (2) (J) (3) l,::. ': "dtf'1?i!

  • 1**')^ *I.)1.0 ong Tera (4 1.0 1.n-External Fressure

.k*b:::- ~" 1o I:8 1FIWaIrtM6fC 131 ("~'o.0 1.0 small areak (5) l .' )1.0 1.0 Lens ter= 1,0CA (4)

  • 10 1.0 . .f'.h hI 'If*f y'y{*odipa I'0 1.0 1'Id k3EbmeIIItbieff{jf}(5)

}}.0 1.0.MtIve p$Mbit.) Ed'1.0 1.0 1.0'O e ressure. . .otherwise. of function. therwise, es to all three , r 1634 316 i 9 o./hhhh[CATECORY STRESS (1)(1)(1)CRITERIA D L Le Lr To Tc Ta nd Te Po Pt Pa Pbd P u Test 1.0 1.0 1.0 1.0 m>Construction 1.0 1.0 1.0 1.0 1.0 1.0 1.0" m Normal 1.0 1.0 1.0 1.0 1.0 1.0 m 1.0 1.0 1.0 1.0 seyere 1.0 1.0 1.0 1.0 1.0 1.0 Environmental '1.0 1.0 1.0-, 1.0 1.0 1.0 1.0 j-Extreme a Environmental S 1.0 1.0 1.0 1.0 1.0 1.0 e: 1:8 1:8 1:8("i.o h8 EB**f**h Abnormal 1.0 1.0 1."~li 1.0 1.O(7)1:8 1:8 1:8 1:8 1:8 1:8-1.0 o Abnormal / 1.0 1.0 1.0-1.0 1.1.0 1.j Severe g u 1.0 1.0 1.0(7)1.0 1.0 isnor-u;g;gl:g [:8l g 1:8 I<Extreme 0'0.1.0 1.*0.0 w_ _ _Notes 1) Both cases of L. Lc and Lr, having their full value or being completely absent will be conside

2) The maximum values of Tj, Yr and Ye will be used simultaneously unless a time history is perf
3) local stresses due to the concentrated load Yr. Tj, and Ya may exceed the allowa' ales provided. story is perf
4) ne maximum values of Ta, Pa and Ra vill be used simulataneously unless a th
  • 5) ney do not apply for bottom liner.
6) Single SRV load. first actuation only.
7) Ta is thermal shock in this load combination.
8) These load combinations erased out because they were not governing.
9) While Pps applies only to Large Break (DBA) Short Term IDCA cas9 Psc appites to both DBA and accidents (DBA, IBA and SBA); however, these three loads will not occur simultaneously.

E e."*n;;R 3+ Revision to the Containment Structure Design Report 3/1/73 \f.!L 1634 317 ?.I 1 D**D*N D'Y Figure 4.2-5 -J-(MER CRYWE11 (STEEL) & BOTTQt LINER 14ADING CDGINATIONS Ppa thAD STXBOL Pse (5)(5)(5)Pch Ro Rr Ra Rbd Re Rpe Fn Fd Fpa Tr Yj Tm Feqo Feqe Remarks 1.0 1.0 1.0 1.0 1.0 s/nyl*(8)1.3 1.0 1,0 1.0 1,0 1.0 1.0 SRV 1.0 1.0 1.0 Refueling 1.0 1.0 1,0 1.0 1.0 1.0 1.0 SRV 1.0{;@1.0 1.0 1.0 tarte break Short Tern 14cA (2) (3) (6) g,{8{.g I:0 1.0!alH"If!!i'(ll**k ^"l*1.0{;g g*a 1.0 1.0 Id"}[ere14CA(4) 1.0 1.v' t .M ~Tu 1.u a.o.sf*g j gy k*.h.!lSes11 Break (6) i*1.0 1.0{.g Long term LOCA (4) I h I Ac i !!'Yfoding 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Short Tern LOCA (2) (3) (6) I;R {8 1.0 Intermediate Break. ADS 1.D , 1.0 smallareakg)h 1.0 nit 1N"Phassu }.0 1.0 1.0 b to justify otherwise, are is no loss of function. med to justify otherwise. I and Pch applies to sti three .I 1634 N .s i i n i I D**]D" D'S'J"f D ,%N o'f M\4 Figure REACTOR B0 thADING C LOAD S Pps(8)CATEGORY Pac STRESS (1)(1)(1)CRITERIA D L Le Lr To Tc Ta Tbd Te Po Pt Pa Pbd Pe Pch Ro 1.0/*Test 1.0 1.0 1.0 Construction 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Normal 1.0 1.0 1.0 1.0 1.0 1.0 1.0 , g 0 1.0 Severe 1.0 1.0 1.0 1.0 Environmental 1.0 1.0 1.0 1.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 e' 1.0 o g 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0/s-g,g,,,, Environmental y 1. 0[1.0 1.0 1.0 1.0 1.0 (7)1:8 l.,!l.!!l.!E 1.0 1.0 1:8...\, 1::8 1:8 2 25 8 18 1.0 1.5 t.0* = = *!il!lill:8'illli$lill_o-1.ls e--" 1:0 ,:0-1.0 S*V1.0 1.0 1.0" 1:8 1:8 1:81.0 f:8 f:8 g.g 1.0 Abnormal / 1,0 1,0 1.p 1.0 1.0-Extrema 1.0 1.0 1.0 1.0 N 1.0 1.0 e Notest Both cases of L Lc, Lr, H, and B' having their full value or being completely absent will be considered. I)The maximum values of Tj, Yr and Ya vill be used minultaneously unless a time history is performed to justify 2)local stresses due to the concentrated load Yr. Tj, and Ta may exceed the allowablea provided there is no loss g 3)The maximum values of Ta, Pa and Ra will be used simultaneously unless a time history is performed to justify o <4)" 5) This load combination was removed because it 1 not governing,.6) Single SRV blowdown load, first actuation only. g Ta has the effect of thermal shock. y 7)While Pps applies only to Large Break (DBA) Short Term I?)CA case Psc applies to both DBA and IBA and Fch app 11 g 8)accidents (DBA. IBA and SBA); however. these three loads will not occur simitsneously. g., la , a~'l 1634 319!J A 8..2-6 DG MAT INATIONS 30L.Sa Pbd Re RPe Fn Fd Fee Yr Yi Ya Feco Fees W Vt 8 peserks 1.0 1.0 1.3 1.0 5/RV (5)1.0 1.0 or 1.0 1.0 1.0 1.0 or 1.0 sRV 0 1.0 1.0 or 1.0 Refueling 1.0 1.0 or 1.0 1.0 1.0 1.0 or 1.0 SRV , 1.0'l.0 1.0 1.0 1.0 1.0..{,g Large Break Sho t Tergt4CA (2) (3) (6) 1.0 1.0 1.0 f')p>.$ }.8 li$':1 I lrl.lUf'[2h 4 & (') '" *':o: " *1.f,.o Sr..1.0.w Te,.ee k<1 i or m.0 1.0 1.0},h ID p,g g idee 5'E[*odina g 1.0 1.0 1.0 1.C 10 10 1:8 1.0 1:8 g:g IM:U s-li nMtem 122 m t.g i.0 reek m'-1.0 1.0 1:8 imJ:t ,m!') -hervice.function.erui.e.to all three l\gy 520'. M M M M M M M M M M M M M M.M M SEISMIC - STRUCTUR AL ACCELER ATION LOADS- POOL SLOSHING LOADS (AS APPLICABLE) HYDROSTATIC LOADS JET IMPINGEMENT AND PIPE SUPPOHT RE ACTION o R ANDOM LOADS E DUE TO*$CHUGGING 9 N , INW ARD LOAD !OUTWARD LOAD DUE TO POST LOCA Z DUE TO VENT FLOW e 10 pm.*E CCS F LOODING $OF DRYWELL -OUTWARD LOAD (UNIFORM) DUE TO e NOT SIGNIFICANT VENT CLE ARING E 4>T m- THE WEIR WALL WILL EXPE RIENCE THEftMAL k>h 4 PIPE WHIP LOADING OURING A SMALL STE AM BHE AK-m to 3C$ -4*- THE WE!H WALL MUST BE DESIGNED FOR HEAC7 ON s jF*k H MISSILES e LOAlth rHOM HV PIPE SUPPORTS AND FOH Pii'.SSURE LOADS HESULTING FROM HELIEF VALVE '.JTUATION O F^~7 rZ SONIC WAVE e] 0$?d y~@g>g c2 Z o 0.1 1 5 30 too 600 Lp4 rn om 3. ol*] 9*TIME AFTE R LOCA (sec) Z 4 3 la.E>*T 2 OO 5O POOL U 3%4>xm N x>l- m SWELL>$*um n IO mO V Q o E y 1.o-4$>Z m N O M M olt M M/DA E N UHO DOI T S D NL A AU O M M LK C U D A C H C B A A L WL H NAE WFT M OO A DT W E R A M Il5 N O>TS AD VA EO M L L 3 E--T S C 2-H' A 3 TP D M T I N A A A C M E O S2 2 L E1 2 CM R-3-NI E N S T AI D-E F RM R E A M B O U O-E U T G I I M R TD F I E OE T RN e P 5 PGl1-L-Y IS L-M-NE E-AD W-S-S E S-GC E: E L-NN H E U YT A O P T I O T O M T A R H P-C N)E U G G'1 E U-R R A T NI-T U t OO-F S H S D( S R SE EV WD-G P M I HI OAD-E S W P LON-N D E A Y F LA A L P L B XN E B EO-D U D B-I M N ,4" C30- mW i 5-u A-s4 2O O<S 3-C 4<MI I 1 S M S E S M z9hgO Oz 0<3 Wa m. HN mQM I e w4OZ r h f%o P ao h " Ogy>2<-M~~-tra. n~ . , c1o*' ?= 3 I w * . 03 C2 ' "-im7 CI U4Z>I^Q roy awOn >4mO ~M 4Im s 1 N ~Io OZ*dcn c">a-~-ONoc g TrOo" g r r"o.a v c OC7m u.,y 1 CVw uNN h-o t M N LO LI T M A A F , L OU TM EU UC DC M S A DR AE OT LA DW M RD 4 AN-2 WA 3 N K E WC R OA DB U M I G F*I 5>*M--4 2-3 E H U M I-G F)K S A C O M)R L D H E T A E F W P A Y P T L (U E M)L S I-M-G AE 0 T A R 2.I R N-D O U-T-I SC L-WD U L M OA R E-LOT W-FLS S-N S E-O L-R O-SU M DI O AC P.OU LH-TT 4 N S.2 EE.3_M M V )D E I E SH R G N A U NA W G T PI P P I H M X F G l E (U M I p/l 1*6 E W DlA-E D I 5-M I C, 1 M S I E S M 0 4 zO P 5 z 8 oz 5 y J_ $<" T "NQu" M g8U o Coz o " a *mm O h >2<-S o>[" O r z*o o:*ai* [.E2 C2g m.m^ C o<z ov rsO pyOO>4mO s?-M bC room _cOCm0 >d aim

  • m1 > On> O Hx-n m! Gc y ~o-2I u9w I n T M go#

<if~ bD.NORMAL LOADS E( E E SEISMI i i.COMPRESSIVE e NEGLIGlBLE WAVE E 8_6 S 5 m i I O 0.1 1.0 z..,% _.D""]D"}'9~}'S'oh_J1 AL J d aJu DEADWElGHT- POOL SLOSHING - NEGLIGIBLE STEAM CONDENSATION OSClLLATION ITIAL CHUGGING UBBLE e 21.8 PSID PEAK FIG. 3.2-8 OAD DOWNWARD LOADS DUE TO FALLBACK e NEGLIGIBLE AND WATER ACCUMULATION I I i l I 1.5 5.0 to 30 100 POOL SWELL PERIOD TIME (SEC) _}k*Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station d Unit 1 MARK lil: DYNAMIC LOADS ASSOCI ATED WITH A LOCA ON SUPPRESSION POOL LINER AND BASE MAT FIG.URE 4.3-4 -M M&M&5&-.50 IST ROW OF VENTS CLEARED 44.7 PSIA DESIGN PRESSURE OF ORYWELL L -- __ -- - _. I_ _1 2ND ROW OF VENTS CLEARED I 40-3RD ROW OF VENTS CLEARED s 3RD ROW OF VENTS RECOVERED DRYWELL g y_2ND ROW OF VENTS RECOVERED 3 25.7 PSI A (DYNAMIC) DESIGN 5 PRESSURE OF WETWELL 1ST ROW OF VENTS U y I---- - -RECOVERED N a I 19.7 PSIA DESIGN PRESSURE !$-WETWELL OF THE CONTAINMENT l7 I i ,i 20-_____#___., CONTAINMENT -- I , 8 r i hC 4 n O _@4 m i$J a""*O to-ALL ECCS OPERATING 1 y>I 0 ea WETWELL - THE VOLUME IN THE mZ-fC (CONTAINMENT BETWEEN THE POOL -4 5 -4 x- 0 N SURFACE AND THE HCU FLOOR"TI Q @ $cb2 d I k MINIMUM ECCS OPERATING I_-t z@KH-m r 'I=lO I I I m ENO E I l! I l i lll I I I I t i lll l I I I I II'l i I I I I lit md y' s o 3o i igo 2 3 4 56 tot 20 30 40 50 102 u go.h$EM!@TIME (SEC) CONDENSATION 'm mmr 2m POOL SWELL lOSCILLATION CHUGGING> r-m^m ,____________y.___.____.. _____ g _.#m>e[o g NOT ES: 1. ALL ABOVE ** DESIGN PRESSURES ** ARE c2 O I ASSOCIATED WITH POOL SWEL L ONLY. D2[Z[2. SHORT TERM ACCIDENT LASTS UNTIL m THE VENTS ARE RECOVERED. -<6 3_ ,__, , ,)e d-_-2OMh*f gl9 3, g T'J_6'j w~~'7-rJ_.QH2 gm mmgg-92Orm m E M mm OOEommK <m

  • zmO O __ = m

-Qk<m o5m gz " MH G 0mEmz >zD m5m m S D A O O$&3mgCmm Emm HO L A C O L Ed* m* m m9o mm -N mQt o m Ohbgm G{y I S.s E D C 3 $ o b x $m S 0g $ mcoH S D ah e ammW 0C" dO TO A O L L L 2n>xo z<O70$ y-E W S L O 5=mp$ z jm O m5= mm$ Endo P.,.,_~_-.7 o o'"-".m a_.mg 2EzO ,..Om gOrWEmrF n i-.-..cwa uN%s-r DEADWElGHT ,- POOL SLOSHING (AS APPLICABLE) VALVE ACTUATION RAISE OF PRF.SSURE IN CONT. TO 5 PSIG NEGATIVE LOAD DUE TO LOCA ECCS FLOODING PORT REACTION LOADS 1.8 PSIG DURING VENT CLEARING STEAM CONDENSATION OSCILLATION ES AT ELEV. CHUGGING SWELL PRESSURE DURING VENT CLEARING e FIG. 4.3-7 URE DUE TO

  • PEAK 11 PSID AT HCU FLOOR FIG. 3.2-7d j h3[k DOWNWARD LOADS DUE TO FALLBACK AND e NEGLIGIBLE WATER ACCUMULATION I I f I l 5 10 30 100 600 END OF. POOL SWELL TIME AFTER LOCA (SEC)

Rev 2, 12/20/79

  • -HOUSTON LIGHTING & POWER COMPANY Allens Creek Huclear Generating Station t Unit 1 MARK lil: DYNAMIC LOADS ASSOCIATED WITH A DESIGN BASIS LOCA ON DRYWELL FIGURE 4.3-6 3D "#~Dl#D)N Y Td_ _ -...\ IM\__ ..-

V~~%M Ti REFUEllHC POOL <..*DRYWELL STRUCTURE ,'f, , h _y.,.,4#-4.c-S'e s': '~, y-f t~f ~f f f f t>.y~~-, , UPPER CONTAINMENT PRESSURE N HOT RECOMMENDED 'FOR DRYWELL DESIGN ' -'-.,. .--a t_'.\ Y--... , , .--FV M t*-p_ ,. ---~ " i N > N=W u-HCU FLOOR EL.158.75 yl* 1 t t ie4ttt--er-_._~ #~ ~, MAXIMUM WATER LEVEL # /'DURING POOL SWELL 4 '/*->._" E L. 154.33 , ,, GROUND FLOOR [_, s~D.N{[, i~gNORMAL POOL LEVEL

    • \*&f TOP VENT ROW

_f_=_., i\~*NORMAL---Y POOL'EL.136.58.#-. /,+/-,=f HYDROSTATIC LOAD 1634 329 i 1 j FIRST ROW OF VENTS CLE ARED I h- --y - -, ql -21.8 PSID A 30 PSID DRYWELL l-DESIGN PRESSURE i N N DRYWELL PRES 5URE -5 PSID---. _.__ # ' " s-FIG. 4.3.5 h-=k CONTAINMENT PRESSURE !, h.l 15 P519 I.g11 PSID~{FIG. 3.2 4 I._,___ ___ +A 11 PSID---FIG. 3.2 7d @S->p 115 PSID*DRAG ON BEAMS FIG. 3.2-1 ]-w , i x x , m h-DRAG ON GRATING FIG. 3.2-3 w N 21.8 PSID'N FIG. 3.2 7c w II Rev 2, 12/20/79 lHOUSTON LIGHTING & POWER CCMF ANY l0.1 1.0 1.5 5 10 TIME AFTER LOCA (SEC) Allens Creek Huc e r Generating 5:Sion POOL SWELL- INTERVAL ' MARK 111 DYNAMIC LOADS ON DRY-WELL DUE TO SHORT TERM DESIGN BASIS LOCA (POOL SWELL) FIGURE 4.3-7 W!!.le e N w n JL 1ti%NORMAL DEADWEl EXTREME SEISMIC (INCLUDES POOL A SING PRESSURIZATION COMPRESSIVE WAVE G NOT SIGNIFICANT OUTWARD WATE R JET IMPINGEMENT p g DURING VENT CLEARING 8 a 0, ADDITIONAL HYDROSTATI z 9 M U E Q O 10 2" INITIAL BUBBLE LOAD g m d a 6 e d 2-UPWARD REACTIONS FROM STRUCTURES AT EL.142.50 I I 0.1 1.0 1.5 FIRST VENT CLEARING __/.1634 331 I>iT + HYDROSTATIC LOAD ELERATION) - POOL SLOSHING (AS APPLICABLE) E S/R VALVE ACTUATION .~THE CONTAINMENT TO S.O PSID DUE TO DRYWELL AIR PURGE j LOADING DUE TO POOL SURFACE RISING 18 FT. ADOVE NORMAL LEVEL I PEAK PRESSURE STE AM CONDENSATION F IG. 3.2-7.C LOADS PRESSURE INCRE ASE IN WET WELL DUE TO 11 PSID PE AK PRES $URE FLOW RESTRICTION AT HCU FLOOR ' FIG. 3.2 7d LOPJG TERM POST LOCA HEAT UP TO MAXIMUM WATER FALLBACK REACTIONS UPWARD REACTIONS FROM STRUCTURES AT EL.158.75 I I I I I 2.0 3.0 5 10 30 100 610 hr TIME AFTER LOCA (SEC) POOL SWE LL =1634$32 Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY 'Allens Creek Huclear Generating Station Unit 1 k MARK lil: DYNAMIC LOADS A550CIATE'b WITH A LOCA ON CONTAINMENT WALL FIGURE 4.3-8 k i e om o mng p eJuk.S.tk:n J w e Ju;FIRS_STEEL e CONTAINMENT .VESSEL SHELL 4-4-4-*HCU FLOOR EL.158.75 W: MAX. WATER LEVEL

DURING THE POOL

, SWELL N]7 EL.154.33%-N%2==GROUND FLOOR , M; ,, EL.142.50*\NORMAL POOL [LEVEL~EL 136.58 TOP VENT-'-CENTER LINE

HYDROSTATI

_\=~\,=}'\-:~\:<.!1634 333.. Jl om o g-J W W Ju o Ju ,..LlAl a ROW OF VENTS CLEARED \5 PSID CONTAINMENT PRESSURE 7 k--- .- .-s--/, F IG. 4.3-5 il 15 PSIDs__'h[\-FIG. 3.2-4 d 11 PSID FIG. 3.2-7d =h 115 PSID FIG. 3 2-1 DRAG ON BEAMS g L=-eDRAG ON CRATING FIG. 3.2-3 7*4-d PRESSURE-10 PS;D FIG. 3.2-7c 1634 334[--0.1 1.0 1.5 5.0 5.5 10 TIME AFTER LOCA (SEC) Rev 2, 12/20/79 HOUSTON LIGHTlHG & POWER COMPANY Allens Creei: Nuclear Generating Station r:: Unit 1 MARK lil: DYNAMIC LOAD IN CONTAINMT. 'VESSEL DUE TO SHORT TERM DESIGN BASIS LOCA (POOL SWELL) FIGURE 4.3-9 -, I I I-I I I I I I u -. a - m ., se, e.1 ,,, s g I I I I I I I 1634 335 I I I 5.0 ANALYSIS PROCEDURES The finite element method will be used for the static and dynamic analysis of the structures subjected to LOCA-related pool swell, steam condensation I oscillation and chugging and the SRV blowdown loads. The dynamic analysis model will consist of axisymmetric shell elements to represents complete containment building, underlying soil medium and other Category I structures. ANSYS computer program will be used. The asymmetric loads will be specified ?by using appropriate number of Fourier Harmonics. The result of this analysis will then be used for the design of the containment structures. Dynamic analysis of interior floors subjected to pool swell loads will also be perf ormed by the finite element method. Conventional techniques (equivalent static loads) of structural analysis will be employed for the static analysis. The containment vessel static analysis is based on small deflection-thin elastic shell theory and the dynamic analysis is a classical eigenvalue I problem for both axisymmetric and non-axisymmetric cases. The weir wall will be analyzed by employing conventional methods of struc-tural analysis. 5.1 METHODS OF ANALYSIS 5.1.1 DRYWELL Static analyses of the drywell will be performed for loading combinations l2 I presented in Section 4.2. Dynamic analysis of the drywell subjected to transient loads will yield the equivalent static loads factors for sub-sequent use in the static analysis. A detailed description of the struc-2 tural models used in the drywell analysis is presented in Section 5.2. The drywell will be represented by three-dimensional finite elements. Advantage will be taken of geometric and load symmetry so that only one I half of the drywell vill be modelled and rppropriate symmetry boundary conditions will be used. The stiffening effects of the top slab and upper pool walls will be accounted for. 5.1.1.1 Time History Analyses a)The potential amplification of the LOCA-related loads as well as the I SRV blowdown oscillating pressures will be investigated by perform-2 ing a time history dynamic analysis on an overall soil structure in-teraction model (Section 5.0) to yield the dynamic load factors. The symmetric as well as the asymmetric loads will be input to the I structure and time-histories of displacements, forces and accelera-tions will be determined. Critical responses will be identified (mass accelerations and pressure) and subsequently applied to the overall three-dimensional model. 1634 336 5-1 Rev 2, 12/20/79 i b)The local ef fect of the chugging loads will be investigated on a 2 local model of a panel (Section 5.2.1.4) limited by adjacent vertical and horizontal stif feners. This forms e substructure which g will be properly correlated with the above model and will be sub-E jected to the same load time histories. The maximum dynamic re-sponses will be selected and statically combined with other effects to calculate local and secondary stresses. 5.1.1.2 Three Dimensional Static Analyses The total stresses and displacements of the structure are determined from the three dimecsional static analysis. Symmetric at,d non-symmetric loads of static origin together with equivalent static forces from seismic and lother dynamic analyses of the structures will be applied to the structural model. Whes ever applicable, reactions from structural steel framing," proturberances etc. will be simultaneously applied with the other loads consistent with the appropriate load embinations. All static analyses g will use the finite element method of structural analysis. Analytical 3 results will be obtained as follows: a)Shell or plate in-plane (axial) and out of plane (shear) forces, bending moments and the general state of stress associated with these forces and moments will be determined from the drywell overall model (Section ',.2.1.1) for the design of the reinforced concrete portion of the drywell . The corresponding general state of stress for the steel portion of the drywell will be determined from the vent region large model (Section 5.2.1.3). The transfer g of internal forces from the overall model (concrete plus steel) g to the local vent region large model (steel only) is made by assuring compatibility of displacements at the steel-concrete interface. The vent region large model w.*.11, therefore, be " loaded"lwith external forces, mass forces and associated interface forces 5 and displacenents.* b)For discontinuity ef fects of large penetrations, substructures (finer mesh local models), are subjected to external forces and mass forces plus boundary conditions obtained from the corresponding larger finite-element models to which the substructures belong. Since the general primary membrane stresses include the effects of structural discontinuities which have been considered in the vent g region large model end, therefore, they cannot be determined in g" pure" form, a set of cross sections at the vent level are selected to evaluate the primary membrane stress by averaging local membrane stresses.* This substructure approach is commonly used when local regions in a large structure are of interest. The approach is not less accurate than a single larger model incorporating the substructure. Comparison of the two sets of single point-constraint forces at the mar support points demonstrate the validity of this technique. 163L 337l5-2 Rev 2, 12/20/79 I I The closely spaced nodal points of the detailed local model (Section 5.2.1.4) can adequately record the stress which can be foreseen in these regions. This model cannot, however , determine peak stresses in the true sense. Further investigation for peak I stresses will be made in areas of unusual geometry and in areas of high stress concentrations. 5.1.1.3 Buckling Analysis As described previously (Section 2.2.2), the lower portion of the drywell is a composite steel structure consisting of three contiguous layers, outside I and inside steel shells connected by the core made of vertical and horizon-tal stiffeners. I The ASME Boiler and Pressure Vessel Code, Section III methods for buckling analysis do not apply to such a structure. A detailed buckling analysis will be perf ormed instead on using methods which have been applied in the aerospace industry for the analysis of shell structures. The buckling stress analysis will be investigated in three steps: I a)General stability of the whole shell with core and shell plates acting together. b)Panel stability of the facing plates (inside and outside) between I stiffeners. Buckling of the panel may result from insufficient support. This analysis will determine the adequacy of the panel in relation to local instability. c)Face-sheet wrinkling - the facing plate buckling like a plate on an elastic medium, which is also a local instability effect. 5.1.2 POOL LINER The pool liner consists of a stainless steel elad carbon steel plate welded to a grid pattern of beams embedded in str . 'tural concrete. The two basic loads which will considerably affect the liner are the temperature and the negative component of SRV blowdown loads. A nonlinear dynamic analysis will be perf ormed on a typical plate subjected to the worst loading condition. The bottom liner and its anchorage may be subject to a net negative pressure load as a result of the pool's dynamic response to SRV dis-I charge line blowdown. This negative pressure can produce significant deformations, strains and stresses in the liner plate as well as an 1 uplif ting force on the anchorage system. These effects may potentially I be amplified due to the dynamic nature of the applied loads. The geometry of the thin liner plate and the relatively large displacements which are anticipated make the conventional linear analysis methods inappropriate and require that a non-linear dynamic analysis be per-I, formed. Elevated pool temperatures during various modes of reactor operation may, in some cases, cause local buckling of the liner plat 1 2 in the absence of hydrostatic pressure during the SRV blowdown. There-I I fore, procedures for the analysis of post-buckling behavior of the liner plate due to this thermal load are also discussed below. 5-3 Rev 2, 12/20/79 I I 5.1.3 FLOORS ABOVE THE POOL A complete dynamic analysis will be perf ormed on floors subjected to direct impact and impulsive loads due to pool swell as well as the f eedback eff ect 2 due to steam condensation oscillation and chugging. The time history re-sponses of the reactions will be generated and a f requency investigation I will be made to determine if dynamic amplification will occur on the 3 supporting structure. 5.1.4 CONTAIR1ENT VESSEL A presentation of the containment vessel' analyses is contained in Appendix A. 3.2 MaTtiDIATlCat MODELS Various uathematical models are prepared for static and dynamic analyses. Different models are prepared for different types of analysis f or two reasons: a)Economical considerations - balancing degree of precision acceptable with degree of complexity of the model. b)Limitation of existing computer hardware to deal with large scale dynamic models in a convenient and practical manner. 5.2.1 DRYWELL MODELS Three models are Used in the drywell analysis: a)An overall drywell model for static analysis, b)A vent region large model for static analysis p c)A vent panel detailed model for static and dynamic analysis. 5.2.1.1 Overall Drywell Finite Element Model The drywell and concrete internal structures which include a right-cylindrical wall, an upper pool, steam tunnel and attached appendages will be statically analyzed using the following model. , a)An overall three dimensional finite element model consisting of beam, shell and plate elements is generated f or half of the drywell structure cutting along 0 - 180 line (Figure 5.2-1). For the static analysis, the f ollowing assumptions are made: 1)ho openings on the drywell wall is included; 2)Element properties of the upper concrete portion are based on the noneracked section; 3)Element properties of the lower steel portion are based h on an equivalent sandwiched section; Rev 2, 12/20/79 5-4 I I 4)Bottom of the drywell wall is assumed to be fully re-straine! by the base mat. I'This overall model will be subjected to symmetric and asymmetric loads-all statically applied, including the equivalent static loads obtained from I the dynamic analysis. 2 5.2.1.2 Vent Region Large Finite Element ?fodel A large finite element model is developed to compute in further detail the global behavior of the lower drywell in the vent region. The model is composed of plate and shell elements in bending and incorporates I inside and outside shells and the two-direction stiffeners (circumferential and vertical). The model is composed of 10 rotational symmetric segments, each segment consisting of 166 grid points and 308 plate elements (Figure 5.2-3). Although the vents are not considered as structural I elements for the purpose of this analysis, the shell panel centers are connected by the vent sleeve. I Compatibility of displacements and forces at the interface of this model with the overall model described in Section 5.2.1.1 is enforced to assure accuracy in the analysis. At the foundation level the plates are assumed I to have a built-in behavior with all translational and rotational degrees of freedom restrained. 5.2.1.3 Vent Panel Detailed Finite Element Model 2 A detailed local model (for one panel only) is prepared to aid the study of secondary stresses in the vicinity of the vent opening and of the local amplification due to SDV pressures (see Figure 5.2-4).

  • be I model is composed of triangular shell elements and includes the inside and outside shells connected together by the vent sleeve. The model uses a fine mesh.

Boundary conditions are obtained from the three I dimensional finite element analysis of the vent region (?fodel described in Section 5.2.1.2). 2 5.2.2 SUPPRESSIO?' POOL BOTT0!! LINED AND FLOO"S AEOVE POOL Several simpler models are prepared for the pool liner and structural members of the floors immediately above the pool. The model for the pool liner takes into consideration only one plate between the supporting beams which are considered fixed. The model is I composed of plate elements in bending and is used for static and dynamic analyses.Section 5.2.2.1 further elaborates about the simplified model. 1 Except for HCU floor, all other floor structural members (radial beams) l2 are modelled as linear finite elements, using simply supported boundary conditions at the containment vessel and fixed condition at drywell wall..ir HCU floor structural members, a f ree-end boundary condition will be I assumed at the places where no support is provided at the containment vessel side. '2)h.5-5 Rev 2, 12/20/79 5.2.2.1 Mathematical Model of the Liner Plate The embedded steel grid and its anchorage system is very rigid compared g with the plate itself. The re fore , the possible dynamic pressure loading I amplification due to system vibration will be primarily governed by the dynamic characteristics of the plate itself and the participation of the rigid embedded anchorage system may be neglected. The model for this lanalysis includes the liner plate supported on non yielding anchorage and N the fill-in concrete only. Figure 5.2-5 shows this system for a typical rectangular liner plate supported by the grid. The fill-in concrete is g assumed to resist (in compression) only the downward motion of the plate 5 after contact with the concrete takes p1rce. The uniformly distributed S/R V oscillating pressure is added algebraically with the hydrostatic h pressure. Concurrent seismic motions will also be considered. From the time when the negative (uplif t) pressure is less than the hydrostatic head, B the plate will be assumed to have made contact with the concrete and the fill-in concrete's contribution to the plate's response will be considered throughout each positive pulse of the pressure cycle. This structural problen requires a non-linear dynamic analysis based on the large deformation plate theory. It is felt that the system's behavior requires consideration of large deformations even under pres-sures as low as 2 psid for places where a 1/4 inch plate will be used. I 2 In order to solve this complicated non-linear problem in a practical manner, alternate ways were investigated for possible simplification. As a result of an evaluation of the input pressure frequency content g and the natural frequencies of the plate system, it was established g that an equivalent one degree-of-freedom system simplified model will adequately represent the liner plate. This is because the system's dynamic respor.se is largely dominated by the first fundamental mode . lThe theoretical formulation of the simplified equivalent model is pre-5 sented in paragraph (a). To further demonstrate the reliability of the simplified equivalent model, a rigorous analysis using a finite element model and the MARC-CDC computer program was performed and the results of the simplified and rigorous analysis were compared. Such comparison for a sample plate lshowed good correlation of results (see Figure 5.2-6) and confirmed E the applicability of the simplified method of analysis. Once it was established that the simplified equivalent model will yield conservative and applicable results, this method of analysis was used to decennine the critical frequency of the oscillating pressure for the liner plate's maximum response. a)Simplified Equivalent Model The mathenatical formulation of the simplified equivalent single degree-of-freedom model can be achieved either by the " assumed modes" me thod or by Galerkin's method (Reference 5-1). The algorithm of the "assur ed modes" formulation is briefly described below (refer to Figure 5.2-7) 1634 34I I 5-6 Rev 2, 12/20/79 I. I I.I Assume the response of the continuous system (plate) in the following form: W (x, y, t) = c(x, y) W (t) I where c(x, y) is the assumed fundamental mode shape (an admissible function satisfying the boundary conditions in static mode), and I W (t) is a time-dependent generalized coordinate, which in this case represents the displacement at the center of the plate. The kinetic energy T(t), and potential energy, V(t), can then be formu-lated in terms of the generalized coordinate and its time derivatives I as: 1/2 M h (t) A (t) T (t)=I e ()V (t)=K WdW - q W (t) 2 I e e o The stretching terms required for large deformation theory are incor i 2 I porated in the formulation of strain energy. The equivalent loads, q,, may include the pressure and thermal loads. Therefore, I the potential energy becomes a non quadratic function of 1 the generalized coordinate (W (t)). Finally, the equation of motion of the simplified equivalent system can be obtained by the Lagrange equation: d 8V 2 E [8T ] ~ OT8 77 p=0[05 ]The fill-in concrete can be incorporated in the above formulation by representing it as a very stiff gap element which restrains the plate element 's downward movement. The structural damping in terms of the ratio of the critical damping could also be included, by adding a damping term in the above equation of motion which becomes: W (t) + 2 fw 0 (t) + w W (t) I l_ q(t)2=M*e where f= critical damping ratio"n(E)he[ linear definition] " M e The solution of the equation of motion is found by the Runge-Kutta I method and by the Adams-Bashforth Fourth-Order Method (Reference 5-2). To perform the analysis of the simplified equivalent one degree-of-freedom model, an in-house computer program, DYN/ PLATE, was developed. I# 4 54""' ' "'- I Data pertaining to the SRV pressure curve and properties of the system are used as input while the program generates the equivalent mass and stiffness of the system and calculates as output the frequencies , (linear definition), reaction, displacement, and stresses at various j integration time intervals. i I b)Mathematical Formulation of the Plate for Thermal Static Analysis The same , system used for the dynamic analysis (Figure 5.2-5) is also considered for thermal static analysis. This analysis includes the 2 determination of the critical buckling temperature and the post-buckling behavior of the liner plate, if any. The mathematical formulation of the post-buckling behavior is based on the minimum potential energy criteria (Reference 5-3). by assuming a 1 buckled shape compatible with the boundary conditions, the potential energy of the system can be formulated in terms of the generalized coordinates. In order to arrive at an equilibrium state in the post-buckling range the large deformations have to enter the formulation of the potential energy. The contribution of the thermal load in the potential energy is introduced in the stress strain relationships. Then, the post-buckling equilibrium is achieved by minimizing the potential energy with respect to the generalized coordinates. The minimum potential energy condition results in a relatively simple cubic algebraic equation which is solved f or the values of the generalized coordinate corresponding to post-buckling equilibrium. From there on simple elasticity relations yield the state of stress 2 at various points on the plate. An in-house computer program (POST / BUCKLE) was developed to read in the input data, solve the cubic equation and print out the post-buckling stresses. a.2.3 CONTA1R1ENT VESSEL MODEL Refer to Appendix 5.A for Containment Vessel model information. a.3 CU1PUTER CODES 5.3.1 STATIC AND DYN#11C ANALYSIS Three finite element computer codes will be used to perform the analyses discussed in this section. All three are commercially available through I computer service organizations, are well documented and are commonly used 3 in commercial nuclear, aerospace, chemical and other industrial applica-tions.I a)ANSYS ANSYS is a large scale general purpose finite element computer code 2 f or the solution of a wide range of static as well as dynamic 5 problems.5-8 Rev 2, 12/20/79 I I , The program has a large library of finite elements including 2 node and 4 node axisymmetric shell elements with the capability of I specifying asymmetric loads through Fourier harmonics. The program 2 analyzes the dynamic problem via direct integration approach with reduced degree of freedom, if desired and specified by the user. b)NASTRAN NASTRAN is a well known general purpose computer program designed I to analyze by the finite element technique, the behavior of elastic structures under a wide range of loading conditions. The program is large and can handle any size and shape of structure of linear or nonlinear material. The non-linear behavior is re-presented by piece-wise linear approximations. Dynamic analysis includes f requency and mode shape determination and transient I capabilities. The element library has a wide range of linear, plate and shell elements for which full material characteristics and load conditions can be described by the user. c)STARDYNE The STaRDYNE system is usef ul cost ef f ective program which can be I used to investigate a wide variety of linear static and dynamic problems.Based on the finite element method the program has static and dynamic capabilities. Although its library and the size of the problem handled is smaller than the NASTRAN and ANSYS it is 2 well suited to smaller, less complicated structural problems. 5.3.2 OUTPUT POSTPROCESSlhG COMPUTER PROGRAMS The standard information output of NASTRAN, STARDYNE or ANSYS does not l2 always display stresses or dispiacements in a form ready to use in conjunc-l2 tion with the particular stress criteria (ASiE for example). It is there-I f ore necessary to use an output postprocessing program in order to sort out and select with information of interest. The following in-house postprocessing programs will be used: a)Stress Summary for Stress Criteria 2 I This program selects the NASTRAN output stresses in steel plates, organizes them per ASME definitions and compares them with allowable stress intensities defined by AS1E Code Subsection NE. In order to make such a comparison the stress intensities are calculated for I each plate element assuming that*out-of plane normal stresses are zero. This assumption is justified because of the small value of the load intensity at the plate surf ace. A description of ASLENE is given in Appendix 5.B. I m A 344 5-9 Rev 2, 12/20/79 I b)Stress Sumuary for Critical Buckling Criteria The program reads the calculated stresses from NASTRAN output and I compares them with critical buckling stresses which are determined 3 for the structure, at various locations, and for different types of panels. A description of this program is given in Appendix 5.C. c)Maximum Acceleration and Displacement and Response Spectra Generation While ANSYS will not ge nerate the output data in the desired format,lin-house computer programs will be provided to perform the necessary 5 postprocessing. For cases where the direct input to the ANSYS code becomes cumbersome, 2 then in-house pre processor will be written to simplify the input preparation. Description of all these in-house pre and post processers will be provided in the FSAR. REFERENCES 5-1.Meirovitch, L.," Analytical Methods in Vibrations", The MacMillan Co., 1967 5-2.Beckett, R. and Eart, J.," Numerical Calculations and Algorithms", 1!!cGraw-Hill Book Co. ,1967. 5-3.Timoshenko, S.P. and Gere, J.M. , " Theory of Elastic Stability". I I I I I I 1634 345 3 5-10 Rev 2, 12/20/79 , s 7 ..I I i#r!'Y a n'I a , , y * ## '* +

  • e' "*

f, ' Y 5 N C]f-* *a, i i.,4:1, s W , s ses' y s', e 7 , n aszas e e a n-i as: sus t_ _

,.I-l8
+-si ts i s: to ,-j ej amis-s_ge" grig. e3; ass o* .e e P *I-E.'-y, e e'ac 'ss as., p.,.o; .au, 3__w)i;.a n?s'?'8t 'e6 ,-: .a.... ,,.. . . m.u h 4 et 86 al 8 dr',, \"?*; _.,m 2,*..,. .y , u w. ..n i t y-,..~,,,-r= k , , 4 pas.n soeu J g sa m ,, m- %,Y,, y\* P/j' , ,*m#0 an M V ,\ **oh*'s5.h?'ES C gm/'",n+ N\'d."., , D [+"" A~S m r=n m r_g..s)G g/-.T.y a ,.a v 1 LIM'***W"<*5<es<a<ss m se V n.t,Slb }=r*.m m==,#SECT 044)=, sg , p awm>>se#35 s nis.1.,**g"**. * ,*a-,277."i_i!epTus 31 3 x m J O'e ,..I= k =". ,, 1;**,, p >6A 42 a_".,." A=: w./'=<=W;.i".*&" fsm- --", g.., , ,. E):: a)

"/d EI 4 #'=-lW~lh. p y*

  • -8 , ,,= l ,, f L ..c*..s ,-,-..y ,,, ,ll3 k., l! .., k,*#%.m* T)'ac)m_y o u, ,, , ,, (7 ,, ,, T)T7)R,!lsuy M ass es a ses ,, , ,._et e r_a w m 3w un ad Ed M En 46;;}{..tr.n=h .d*

7 , e v, a~~w ,q- u,-e-a auxit e e.a a-pF gy:%g34 es.r.c. s em g.g p,,,*CJu.O**.u e.2*.n,.P_AN AT EL 223 -g . p, g g y g ,.4.-.,.a m.e s'us ss esa e ,ses*e an . *, s v u s en m e m ss 9*[ei G G so f4@G,=-,a a e er, a.m r y r i+.,., ,y.,, n .re s s . o 47.ae ar 4e+, . s 2 2, as s c:s;s-,a e--.j e i-.s s a u a a w s n. , , ,-.[[I-,,'l*; _******' ,'_,,, ,'e , .,.....,,r u.e ie-scs , 3!,[ g - F 5,?'-4--*g s s, s s%s**8**S u , . % P 25' .. -t n , m m e, ,, , ,..4,....11 gg=.[g g a y w e , t siz]*,ar.,is...,c,:,_w-,-, , 4., 4-, a**a~u.. ,.m m- ., r ,*e t e rs- 'NY5 l'ITs a5"- R j.*L'SECT'L PLAN Hrv; AT EL l%35, a Q Q f3, Q 6, Q w 3 m mr=,"3* 5 l-"" 3*"".yp e, e c2 s2.c m N--, m~- . . , , .

  • ., 4,..~ , .n6.d a w_tie ut u;af*-.-g , M 5,,,.{.,.yj w'e6*'* a G a4 m m v'2'(., o n a w w o L e so.j'l et is.a.24 w u<644 6e 62 3 3%-s w s.as w ilSECT rr, s 5,_1ust u co

, ,-c*a so 6.*__s ur ,-s.m-n w h 3 m,%*ers._n t ,o m sas r_g i".....,aw 9.:8 s~.m 5 ,.@p p q q.9.Tn t w w w 7Ja , , ., ,-. .D-' '1634 346~"',: L _ __ . .vr..

  • so'_r t 'i.$_ _ ._J '%_3.*,W.*.*,'t.'

'W** , 5 "S' . a e', s .t , s *- Sa6L.o . s n ',. <'s'y , , , , jl-,,l,l .u ,. .I i, I, .i.., i.......<-i , ,, ,.4, , s.4-,)e e<,.-ei...e , a 6 s a n n.s., ,.m ,.o , , ,.,,.., o n ..-a mn .37 36 E&S M Es 50 3 g.7 4 4 9 8.e -68)at , m ,.*,, , ,..e., a e a es o a.e c. e r m aan ,-I w m-e w i.so e, e er w w e.e at e,.cs n a w.4 can ,.* *n ,+w ,,.,, s.,.4.n 4., s*e ,, ,,, ,, m n ,, y y,3 ta.. .m m : a . .a w .. m m .n 2 i in v.m 4.4i w m. , a y, sr." ' = " " SECT EC*).n ,2.n 22.re as a mi set u.M'h ft. _W* 2 3 3 05,'t 6r l . c . . :iy] 6,.x

r,_ mr"'""'"*=r f-,,,;c n n a , t ,. .., ,=r'. unq x y.d"" * * * * ' '

r= ..'SECT C:n;.t 4.n, 2@=>r!!-,, ,., , s._. nu. o ., W 4.3 d* _ h6 7s , 10 69 (G.)P N=I%***-!.%1 ,.,...in. a m r. .N%, ,,.e e ,.,..%ee e!*"***=>;.I--. , ,. t--.*m* is ,,+=4, a a w new.a-,,, p,/p.{gg ,_,,.rn, y, i..---.w=>s6=.=+,=.s., y.;,- , .3.1.a.u m ... >= c ., e,<h',e3 3 a,,.,#[816.I.8E9*EE 4?I 79 59 Ji=p_~e-..=3 ,,=m w+S E CT A co.) ', , , s et. f w ', ,. e.'s eir[5mh4 .. re ,, g 1..m..y.y, q. ._-4-.SECT't pun AT EL 13075' PL AN AT EL l54 31' , n my33,23lq y..-_ _ ,;,.mm,_;7743. g .-.p.q.g m.k._/m., 3 ,, w v%n m_,,, s .x v.m v.,. ,. m%,,;7;,_...--.., ,.. .,_.a sie na vt ws n, n.st, nt Mr vio 34 ,.,rt h 5@8'*'*'*T i a a r a.,.a..t."'""**" ' " " i 3 h"M%.h".n ,, m m.,, m 3 3 m ,.i w w m**.6.s, G, 5 G.m.., ,,- - . ...-~ ,.__...,.......... , .,,,@fg 4)SECT BCw)4@4@@e e e 9>i_._...,...0 by e all Saa b (sel b hp E[9 h k9 th hj*n.c, n.-. > ..-e.,_a.,,' i'r 9 A w$es, p.m er 6***.*<>w w.a e sa u e.,s-,.,3 J e<i$, 9*A 9 6 0 0 8 9 i$[~-1p'y<go mo A o o-..-........ .,.&A%em o a.,_, s ,,,..s , a e, , a ,.,,- , .-x, a w.a w u su _.: ,, a as Fe e@A@@9 sv O 4 a m m m m m ,,, m s.,-ir-m m.9 A O 4 4 9 O.e.@O, 9 9. .f 16 }[lhk7 a*-m...,, m..., , , u.a Q 4 4.6e 4 a e r, 69..e..x+. . = .ot n.. . . _o,_q_.r_s,_u_u, v i.M is)zu3 ou 41)n,ra S mm.W a4 m, s a a#a:n s c.u_ce HOUSTON LIGHTING & POWER COMPANY 6;o;%,;_m 1. _. ,o'a.w w w 9 w w<w;w w e w n 3 Allens Creek Nuclear Generating Stat. ion C m,_w a.,__g,_o._c1_.=_c._r.m -., m ew G 1 Ge_tw m m a m ,e m**=Unit 1 , o m.m ,o m m ,. .... ., ... . , . . . . --OVERALL DRYWELL FINITE DEVELOPED ELEV. G:s.) ELEMENT MODEL FIGURE 5.2-1 I I I I I I I I I I Figure 5.2-2 has been deleted I I I I 1 I I 1634 348 E Rev 2, 12/20/79 I i'k (ok km o h^51 89 127: O@@@I 43 87 125:@@@@-{9'h h\147 148 ,,,,,1, m ,, ,,,-sg ns.47 m a 1o S e@,,,gm g g@2 e ~N " 3g@2.g ,e, 53 25 m =' m*'q-x@$"g@,a@E@@@@I 7<"'h h@A@@m@e , N im , Q 20 21 M , 19h 57 33 165 166 177)3'/k,/189 15 f (@@@@@@-i E" h1 13 g'h 175/188"3 5" 11 h Y' 3 h"53.t 1#, bk, j @ k M ' _ ) 1172L'!,." 41 76"; i u -._-a--e _ . _ _ . _b G.52',_G.52'6.52'6.52 1 , OUTSIDE SHELL MODEL I.!, 1634 349 W m%i165 14 'a 52 90 128 k a@@@@~'163 y--12* 3- - --, 88 126:@@@@-{>161 10 '-h@\88@162 O'71 2 28 29 29 2 E 27 EC 59 2@ ='"- @@ 7 >= 8 8['@@ 'esh 8'25 , 258 25")27 81 82 29 h h h h h'153 8i i160lhy 55 58 20 f,, h h 291#"" 1 32 33 70 71 103 IW 146 14 Jy h 253$27 (27 89}* '" i@O 8 8 f 7.@@@@- o<=@=*,=h @[('44 x[ 63 75 , 75 120 88'28 /, 82@!1@@ 'T@ #2 a=@i,h26>,4 49 250 27 a7 28 286 Y M[,$33_4~ 118 A gg 42 80:@@@@"- 153- 2'-=116!5.73'5.73*,_ _5.73'5.73'_,_, INSIDE SHELL MODEL 1634 350.f HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuc e r Generating Station , VENT REGION LARGE FINITE ELEMENT MODEL (TYPICAL FOR 36*) SHEET 1 FIGURE 5.2-3 f~ll!29mrn39.321&_m 3--16 15 17 18 16 54 r1 55 56@@@@@@@(E 28 27 29 30 28 66 65 67 68 20 13 21 22 20 58 57 59 60_@@@@@@@@1 32 31 3'3 at~E 70 E9 71 72;24 23 2s 2G 24 62 y__63 m___@@@@@@@@36 35 37 38 36 74 73 75 76 r i , 1634 151 i.agw /p" *B" D 'A A Uh u o o Ju o Ju.[54 92 S1 93 94 92 130 129 131 132 130@@@@@@O@1' '3 105 106 104 142 141 143 144 142 66 104 u 58 96 95 97 98 96 1*H 133 135 136 134@@@8 8 8 8 8 70 108 107 139 110 108 14b 145 147 143 146 6'-100%101]100 138 117 139 140 138@@8 8 8 8 8 8 4 112 111 113 114 112 150 149 151 152 150 ENT MODELS 1634 352 , HOUSTON LIGHTING & POWER COMPANY Allens Creek Huclear Generating Station Unit 1 t.VENT REGION LARGE FINITE ELEMENT MODEL SHEET 2 FIGURE 5.2 3 , I!l.I j 47 123'9 161@@@@86 48 1 10 162 45 121 7 159@@@@46 122 51 8.160 81 43 5'339^157 52@@@g" TOP 44 2 120 6 158 78 41 117 3 155@@@@'80 42 118 t, 4 156 HORIZONTAL STIFFENER MODELS }h)k o m g o g 9 g-J o wJ\\oju.J].h m i L- ..fm 9, p g-J we ju w Ju...3 13 : 14 51 '52 89 : 90 127'128@@@@11 12 49 50 87: 88 125 126 127-9 10 47:: 48 85: 86 123,'124 165@@@@@7'8 45';46 83 84 121 '122@@@@-,2.5 6 43, 44 81'82 114 120 jg@@@@ATE MODEL 3 4 41: 42 79 80 117 118 8@@@1 2 39'40 77, 78 115'116 VERTICAL STIFFENER MODELS 1634 354 f HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuc en Generating Station "'e"tet?#E?At "SHEET 3 FIGURE 5.2.3 !!bk okb)km., e m 2 , a n n 9 g r ;& 5[ ' l @ @:s ,'S$f' a (3 /i.~ N~.c f'Nn j\cys).cin w k[hNQfikR,l?@I*y:f@: '*,.,@@,, ,,=;' g ? ^'g', ,, ,1 ,g var a'.,,, ,,,/@l'"2 38 ,@@"'/ @ a eSe m< ga@@/@g'#@0'N.sf ,,%, 6.3 h-114 102 e.139'115 115)h ,1'.: ee y e e %exe/e w i-,2, ,,, 137 125 122 113 i '. i 100 98 8i OU FSIDE SHELL PANEL MODEL Az 210 225 226 23 l7 1E 29 JC~'i> ]e(s O 8A#6("e'" , g/g 8 8.s g ,..e,:*" ),,eers:: ,--, i. i.i , ,,,, ,ea ,,/u,'e ,,, ,,, e g n,"l,,2os 1EO m@.,g-g , ,,, e ,,.,,,"'m e m g ,,, , 42< is >g g}"">>e@ gs,13. ,., g w@@,, i.7-.g ," ,, ii i , O ,,, m e e , g m ,, t'150 134 133 121 120 110 109 di INSIDE SHELL PANEL MODEL [1634 355' 2 3 4~~5 6 10 11 12 13 14@@@,=.22 2 23"-~; 4'I *, 26 , 2 , 35~ 3 I_ ._ _ __ _ . .39 40 41 42%55 56 57 58 8@@@x 51[!86 87 C3 89 90 102 103 104 105 106 z@@@@~08 114 115 116 117 118 g; ,,@@@@.177 128 129 130 131 80 143 144 145 146 147 8 8@@159 160 161 152 163 175 176'"@@@@~201 2C2 203 204 205 718~119 2:0'221 222 2 3 4 5 6 VENT PIPE MODEL -OO O g'{J o o ju o Ju 1 Alr0_2 HOU5 TON LIGHTING & POWER COMPANY Allens Creek Huc eo Generatins Station VEllT PANEL DETAILED FINITE ELEMENT MODEL FIGURE 5.2-4 . _____._.__.___d b t)l9(t)y}/ \w.w.wh.enpry/\ \'BACK UP CONCRETE =a::-____.__ . ___-Rev.1, 7/8/77 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 TYPICAL LINER PLATE 1634 357 STRUCTURAL SYSTEM __FIGURE 5.2.5


, _ _ . . . . . , . . -

r i f'5 , 1!, 2.0--1. 5-5.!!f$1.0-e f u~l G o<DISPLACEMENT y 0. 5 -BY RIGOROU 5 ( .1T = 0.00 .I i I I I I I I 3 0.010__)1634$5B+ .RESPONSE TIME HISTORY 'FOR SIMPLIFIED MODEL \IME HISTORY ANALYSIS 5SEC.),.,..g g.;. . ...... . . .. . ..,.020 0.030 0.040 0.055 1\\\TIME (SECONDS) 1634 359'Rev.1, 7/8/77 !HOUSTON LIGHTING & POWER COMPANY !Allens Creek Nuclear Generating Station Unit i COMPARISC,T. O, SIVPLIFIED AND R..GROUS AN ALYSIS DISPLACEMENT T.ME HISTORIES FOR AN EX AMPLE PL ATE FIGURE 5.2-6 . .KeW*Jg g q(t)[W'(t)Me 2 W e 1.J C, 1634 360 Rev.1, 7 / 8/77 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit i SIMPLIFIED EQUIVALENT ONE DEGREE OF FREEDOM MODEL FIGURE 5.2 7 !\NNk##>#<>+%g*h#\IMAGE EVALUATION \TEST TARGET (MT-3) ' En DE d 1.0['lE S EE lE I.I I.8 -1.25 1.4 g ,=s..=, 9['I#4%#'%4 h/_.k i.A*\_=_ - _ _, A+++/%+'*o ,.e . ...<e.1,. TEST TARGET (MT-3) 1.0$ En Ela_5 5 En m na-* !!Nl,lp M l.25 1.4 1.6<6">,>>4%+4*S$;%b-_L$g{?[4:.i_ _ _ _ _ . _ _ _ M--

  1. ++s A h a*, . e . . _ 1.

TEST TARGET (MT-3) 1.0 58EDM g a gg m ml,j D bb Ja 1.25 1.4 1.6 e 6"#,/%%s 4%/'%4 fh)7 43)S\d'*W,,;p9>./I I'f-*N ,___m u* d<>>+t,/)h 5 f+%+imieE Evituarios TEST TARGET (MT-3) 1.0 5EME!4 i 5 El E23 m as* $Nlj 4 1.25'l1.4 j l i.6 s,,=*,s*s i+ i/+sp.+I[>j;pe$43 k!'^.,, I'f* - " ', _ , , , . _ _ _ . . . . _ -. _ _ .Y}\AXES OF~-SYMMETRY 10 11 12 / -m , , ,-h-5 6 i 8 7:-C.af 2 3 4 s'4-'I 6 1 2 II 1 2 3- X by=lRev.1, 7/8/77 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 FINITE ELL' MENT MODEL OF THE LINER PLATE 1635 00}FIGURE 5.2 3. _ . -o,i._.w__APPENDIX SA li SPECIAL ANALYSIS OF j CONTAII21Ehi VESSEL SHELL !, The following are technical descriptions of the methods of shell j analysis to be employed by CBI for specified dynamic loads on the , -;Containment Vessel. _l2-SA.1) INTRODUCTION There are seven pressure transient loadings specified which are time l2___oriented. They are as follows: 1 3 a)ADS Actuation - 8 valves ]b)SRV Blowdown - 19 valves _.c)SRV Blowdown - 1 valve (first and subsequent actuation) 1 2 j_d)SRV Blowdown - 2 valves (only first actuation)

j e)Pool Swell and associated loads i j f)Steam Condensation Oscillation and associated loads

-g)Chugging and associated loads /CBI will do a time dependent shell analysis for each of the above. This is in lieu of a beam modal analysis. In this manner the non-axisymmetric 'pressure cases will be properly evaluated. The stresses and deflections _obtained due to transient loads will be added to stresses and deflections due to other loads employing the r.ethod of superposition. SA.2) ASSUMED GEOMETRY OF CONTAINMENT VESSEL 2_The assumed geometry for the major potion of the containment vessel is a thin 1 shell of revtlution with circumferential stiffener rings. Since these stif-j fener rings are thin, each will be assumed to act at single points along the shell and have their principal axis normal to the shell surf ace. In , ad dition , the rings are assumed to have little or no torsional resistance. ?Where longitudinal stringers are required, the. will be included in the l_analysis and their structural action will be simulated by assuming that the i shell behaves as an orthotropic shell of revolution. The degree of ortho-J tropy will be dictated by their spacing. All dead loads will be assumed to act as added mass. 1 j It is assumed that the attached piping is sufficiently flexible such that 2 it does not affect the shell analysis. _1635 002=_, SA-1 Rev 2, 12/20/79 -:-_"-_. o I SA.3 ) DETERMINATION OF THE DYNAMIC RESPONSE !2 The determination of the natural frequencies will provide information regarding the general expected behavior of the shell under dynamic lloads.CBI computer program 1374 will be used to determine the natural 5 f requencies of a shell of revolution f or any specified Fourier harmonic. For each harmonic those modes which exhibit significant participation will be selected and used in the final solution. For the specified vessel and loading conditions a . detailed study is required for the determination of the loading description. Since each transient specified will have a different pressure distribution both cir-l2 cumferentially and longitudinally, a Fourier analysis of the transient g must be made at discrete locations. CBI Program 775 will be employed to B determine Fourier content. Since the pressure transient has a plane of symmetry, the loads will be depicted in the form of a function of a cosine g Fourier series. The coefficient functions for each harmonic then represent 5 the radial pressure loading exerted on the shell for that particular har-monic.For each transient a Fourier Series representation of the prescribed loading versus time will be generated. A comparison of the Fourier repre-lsentation to the actual loading curve will be made to assess the accuracy of 5 the Fourier loading generation. Each cransient represented by a Fourier distribution will be evaluated and tabulated such that the results can be used directly as input f or the shell program 1374. This code will be then used to determine the response in each harmonic. In addition, the following inf ormation will be obtained. Circuiferential Deflection ;i g-Radial Deflection = Longitudinal Deflection 94 Longitudinal Rotation gp lLongitudinal Force Np B Longitudinal Moment Mp All at various elevations Circumferential Force Ng vrs. Azimuth g Circumferential Moment Mg g Inplane Shear Ng4 Twist M g4 j Each SRV blowdown loading has a frequency variation of 5 to 12 Hertz. A modal time history analysis using Program 1374 will evaluate this frequency 2 range at each half-Ilertz interval to determine the critical stress inten-sities and buckling ratios f or each loading case. 5A.4) DETERMINATION OF S11 ELL ADEQUACY FOR ALL SPECIFIED LOADING I It will be assumed that the theory of superposition for spacified loading l2 combinations is valid for this vessel. Using Program E1773, CBI will add the stresses due to the pressure transient loading, seismic 'oading, 5A-2 Rev 2, 12/20/79 1635 003 g _. . . . . . . _ !(4'nldead load, etc . as required by the loading combinations given in the. .'specification The stresses due to pressure transients will be added to lthe stresses jue to seismic loads using the methods described in Section l,_'_j 4.4 The summed stresses will be compared with the allowable criteria __.specified to determine the adequacy of the vessel. "'?j SA.5)ANALYSIS OF SilELL PROTUBERANCES 3" SUBJECTED TO POOL SWELL LOADS ']The shell protuberances will be analyzed under equivalent static loads provided in the Design Specification, unless a dynamic analysis is j performed for typical protuberances. The protuberance reactions so r determined will be used in a Bijlaard type analysis as outlined in =WRC 107.-!)e i S N If!-, e.-;j-I.;I-+)'_., ,'--, iiii 4..__@+--6 S-j 1635 004 ,-.-s 5A- 3 Rev 2, 12/20/79 7!---_ . _ . . _ I LIST OF CB&I PROGRAMS USED FOR DYNAMIC ANALYSES E 1374 - General purpose dynamic shell analysis. lE 1779 - Post processor program which will rum the harmonics, calculate 2 maximums and store data on tape for use by program E1775. 5 E 1775 - Computer code which produces the summed stress intensities 2 at any given location for total loads per Design Specification. E 781 -General purpose static shell analysis; if vertical stiffeners are required this program will generate the corresponding stiffness matrices to be input to program 1374. E 775 -Fourier Series Summation Program. 2 I I I I I I I I Il" 1635 005 5A-4 Rev 2, 12/20/79 I . _ . _ _ . !_d i?.m!*APPENDIX 5B ]DESCRIPTION OP STRESS SU?CIARY IUP STRESS INTENSITY CRITERIA _This is a computer program which post processes calculated stress output -of NATTRAN static structural analysis. Stresses are arranged according to -stress categories per ASME Boiler and Pressure Vessel Code Section III, subsection NE. Safety factors (SF) are then computed by comparing cal-culated 2 nsses with allowable stresses for the various stress categories. Since tha iswer drywell structure will be modeled by plate elements, the --output stresses will be two-dimensional. Stresses in the third direction =(out-of plane) are small and will be neglected. Calculated stresses (primary _and local) will be represented by 'x,'y, xy, while'z, yz, and T 7 T zx are assumed to be zero. For each stress category, a stress intensity will be =calculated after all pertinent loads are combined. Stress intensity is represented by S, and is calculated as follows: 2#}1 Q('x'v)# + 4'x + 'v+7=xv_2 2#a )2 + 4 y(e-2 f 2'x + 't=x-v xv-.2 2 1/2<G(ax'y)# + 4 7 7=xy_-_+S is defined as the maximum value of the absolute valves of * , '., and _27.'a$The procedure used to calculate a and r for the different stress categories is outlined belEw,: a , Y*Y (i)Primary local membrane plus primary bending stress (P + P) For each element, stress output for each loading condition without 'thermal loads falls into this category. Stress output of NASTR AN

-includes stresses at the top and bottom " fibers" of the element.

Primary local membrane plus primary bending stresses,'x,'y,'xy;will be obtained directly from NASTRAN output. -" (ii)Primary local membrane stress (P ) l For each element, primary local membrane stresses 'x,'y, and 7xy 5 will be obtained by averaging the outer fiber and inner fiber stresses described in (i) above. 2-a?1635 006 SB-1 4--_.. I (iii) General primary membrane stresses (P,) The average stresses across any cross section of the structure for each loading condition without thermal loads fall into this category.

  • Af ter selecting cross sections of interest, general primary membrane stresses ax, 8y, and 7xy will be obtained by averaging the results E of (ii) above.

g (iv)Local primary membrane and bending plus secondary stresses (P +Pb + Q) The calculated primary local membrane plus primary bending plus secondary stresses,'x, a , and 7 y xy are obtained from the same procedure as that of (i) for loading condition with stresses due to thermal loads included. I I I I I I I I I I I 1635 007lI I I APPEt! DIX SC I DESCRIPTIO!! OF STRESS SU!DfADY FOR CRlTICAL BUCKLI!!G C"ITERIA 2 This is a computer program which post process s calculated stresses of I!ASTRA! static analysis and compares these stresses at various locations I with the critical buckling stress for the panels. The panel plates in the lower drywell were grouped according to dif ferent 2 critical stresses, as follows: {TopPanel Outside Plate <Middle Panel I dBottomPanel { Middle Panel Top Panel I Inside Plate Bottom Panel For each of the above vertical sections, the panel stresses will be I calculated at various circumferential locations and cocpared with the , critical buckling stress for that panel. 'I Since the critical stresses will be calculated for individual loads such as axial compression, shear, circumferential compression and bending, the calculated stresses will be organized to correspond to these individual types of load. To illustrate, assume the calculated stresses to be: a'I the circumferential compressive stress; a', the axial compressive stresi, I and;7'the corresponding shear stress. They will be transformed into indiviEual calculated stresses corresponding to the individual types of load by the follcwing formulae to include the Poisson effect. x_Pa'ex.e y I , 1 - P'"y -F"ic"y=I , 1 - F'" f f xy xy where # is Poisson's ratio. For the combined loading condition, the following buckling criterion is utilized.,(2rxy \2 2a 2a x , v (1'c rx'c ry\7crxy/I 1635 008 I.SC-1 Rev 2, 12/20/79 I Compliance with this criterion for combined stresses will be expressed by the safety f actor (SF.) which is defined as: SF 1=2a+ 2a+j[2 r k,2 x y xy'crx' cry (7 crxy)Uhere the value of the critical circumferential =, compressive. stress. 'c ry the value of the critical axial compressive =stress r the value of the critical shear stress =SF ist be greater than 1 The critical stresses ,5*, ,@ , andinEIEst1E#Iange a,IEe*tomputed from the critical r are calculated from the elascic buckling stresse / anE #*>.The critical , , buckling stresses in the buckling stresses in the elastic range corrected by the following formulae: 'er= 'yp +a' -Y(cyp + a')2 - 4e ayp a' 2c ,#'VD= #yp/2 +t'-(+t' ) - 2ct' Oyj Cr C where c = 0.96 for structural steel and is yield compressive ,YP stress.I I I I~I , m s 009 I ,c., I I I 6.0 DESIGN PROCEDURES 6.1 STRUCTURAL ACCEPTANCE CRITERIA 6.1.1 CONTAINMENT VESSEL SHELL Tre steel containment will be de signed for the ef fects of loading combinations given in Se ction 4.2, Figure 4.2-2. Tre allowable stress levels for tie various de sign loadinb conditions are i given he rein. Tte evaluation of tte margins of safe ty inhe rent in ete de - I sign could be expanded wlen a comparison be tween calculated stre sses and allowable stresses becomes available . Tre ef fects of repeated reactor shutdowns and startups during plant life I should have no bearing on tte Containment margins of safe ty sinm reactor startup and shutdown do not normally have neasurable effects on the Contain 2 1 ne nt stress distribution. Tte ef fe cts created by SRV blowdown into lI tiu pool may produce cyclic stresse s in tte containm nt stell. Paragraph NE-3131(d) references Paragraph NE-3222.4(d) that provides an exemption f rom requiring a cyclic analysis if all limits on pressure cycle s I and fluctuations, te mpe rature dif ferences, and mchanical load range s (including earthquake ) are not exceede d. Af ter final establishment af tiu above cycle s and range values, it can le de te rmined wte the r or not a cyclic I analysis is necessary. Tre allowable stresses utilized in tre Containmnt de sign will be based on t re requiremnts of tte ASME Co& , Se ction Ill, Subsection NE (July,1974). 1 I The Figures 6.1-1 and 6.1-2 show a representative example of tte stre ss limits which will be used f or t te various loading conditions. Figure 6.1-1 lists tre stre ss limits while Figure 6.1-2 indicate s the buckling crite ria I f or tre ve ssel s te ll. Following an accident the re may be a reed for containmnt flooding to re-2 I cove r f uel f rom tle re actor. Flooding capability is provided by tre essen-tial se rvice cooling wate r system, through tte RHR System. Tre ability of tre containa nt to withstand loadings associated with flood-I ing is not a normal design condition for tte containme nt. Tre re is no need 1 for containment flooding to be a & sign basis for any BWR in order to provi& adequate core or containant cooling for short or long term post accide nt re cove ry. Tre structural de sign crite ria fur tre steel containuent ve sse l are consis-tent with tre provisions of Regulatory Gui& l.57 ( issued June ,1973) ex-1 I ce p t with re spe ct to the compression stress limits specified in Article C-1-b(2) o' tle Guid. for tre load combination of accident recovery flooding plus OBE.Justification f or compression stress limits of Figure 6.1-1, som of which ,2 are higlur than those outlined in Regulatory Gu1& l.57 Article C.1-b(2), is flooding ;' based on tre extremly low probability that simultaneous Containmnt I 1 6-1 Rev 2, 12/20/79 1635 010 I I plus OBE would ever be experienced and therefore the stresses of the Article 1 C.1-e are justified. , The load combinations of Figure 4.2-4 and Stress Criterion Category are correlated in Figure 6.1-1. 6.1.2 BOTTOM LINER [2 g In addition to thermal and SRV discharge loads, the relative top of mat I displacement obtained from the mat analysis will be used to evaluate the g bottom liner's acceptance. The allowable stress / strains utilized will be in accordance with those specified in the ACI-ASME Code, Division 2 (Janu-I ary 1975), Subsection CC 3720. The bottom liner is not considered a struc-tural element in the sense of strength but it is so considered in the sense of leak-tight integrity. 6.1.3 BOUNDARIES The boundaries for the steel containment consist of those defined in Para-g graphs NA-3254 and NE-ll32 of the ASME Code Section III, and the additional g boundaries listed below: a)The steel containment shell and dome including the portion of the lshell embedded in the concrete mat foundation but not including the 5 associated anchorage steel b)The attachment weld of the bottom liner plate to the steel Contain-ment shell c)The attachment welds of the crane girder, piping supports, walkway or platform supports, and other attachments to the shell of the stcel containment The bottom liner plate is outside of the boundaries for the steel contain-ment.Boundaries of jurisdiction of the Containment Vessel Bottom Liner will be in accordance with the ACI-ASME Code, Section III, Division 2, Subsection CC, as article CC-1140 and will terminate at the weld which connects the liner plate to the containment vessel shell. 6.1.4 STEEL INTERNAL STRUCTURES The structura. elements of the steel internal floors and platforms will be 'analyzed in accordance with Section 5.1.3, and designed in accordance with i AISC Specification, Part I or Part II as applicable. I 1635 011 6-2 Rev 2, 12/20/79 I .___...______.____.__---m-9 1 i-i i~Except as noted further below, the stress intensity limits for the lower drywell design will be within the stress licits specified in the ASME Code, ,;-Section III, Subsection NE, and Regulatory Guide 1.57 (with exception noted

in Section 6.1.] for the Post-Accident Flood Case). These stress limits are as outlined for the containment vessel in Figure 6.1-1 and 6.1-2.

~5_1)The buckling criteria for the lower drywell shall consist of checking that the primary compressive stress does not exceed one-half of critical buckling stress for.all lo& ding conditions , except those in combination with full SSE where stress may be " 60 percent of critical buckling. 2~}6.1.5 CONCRETE FOUNDATION MAT 3_!lThe allowable stress limits for the concrete mat foundation are identical i those given in Section 6.1. 6. I 1/6.1.6 CONCRETE DRYWELL f The design criteria for the drywell relating to stresses, strain, gross 5 deformation, factor of safety and other parameters that identify quantita-tively the margin of safety have been br; afly discussed in Section 5.1.5 .3 In general, the design criteria is based on the provisions of the Joint g Committee ACI-ASME Code Section III Division 2. (-.Hence, in this section the fundamental structural acceptance criteria for j the drywell are listed in more detail. J!The criteria for the drywell as demonstrated by the design calculations _]shall consider factored as well as service-load conditions. For the j f actored load condition, the following requirement shall be met:

a)The summatinn of external and internal forces and moments satisfy

, y the laws of equilibrium and will not bring the section to a J general yield state.

]b)Tensile yielding in the reinforcement is only acceptable when j thermal gradient temperature effects are combined with Item (a) provided that the temperature-induced forces and moments reduce as yielding in the reinforcement occurs and the increased concrete

,]cracking does not cause deterioration of the drywell. The following are the design allowables for the drywell: !-In order to keep the structural components basically elastic under service load conditions and within the range of general yield under factored loads,--the allowable stresses and strains to be used are specified in Article j i CC-3400 of the ACI-ASME Code and these limits shall not be exceeded when !subjected to the loads given in Figure 4.2-3. {7~A)Stresses for Factored Loads '1)Concrete Stresses 1-l}~w-6-3 Rev 2, 12/20/79 =a_. , , , , , I'1.1) Compression 1 Altovables: (a)Membrane conpression ( primary) 0.60 f'c ( b) Membrane plus bending compression 0.75 f'c ( primary) 2 ( c)Membrane compression ( primary plus 0.75 f c secondary)( d) Membrane plus bending compression 0.85 f'g ( primary plus secondary) 5 The preceding allowables shall be reduced, if necessary, to maintaia the structural stability. 1.2) Tension Concrete tensile strength shall not be relied upon to resist flexural and membrane tension. 1.3) Shear If the calculated shear is greater than the allowables given below, then reinforcement shall " provided in accordance with Article CC-3520 of the ACI-ASME s Je.(a)Rsdial Shear An example of this type of shear is the shear caused by self-constraint of a cylinder and base slab during pressurization of the containment. Refer to Article CC-3421.4 of the ACI-ASME Code for allowable levels of radial shear.( b) Tangential Shear An example of this type of shear is the shear forces resulting when the containment is subjected to earthquake motion. Refer to Article CC-3421.5 of the ACI-ASME Code f or allowable levels of tangential shear. However, under no conditions shall the tangential snear stresses carried E by the concrete, V , exceed 40 psi and 60 psi f or loading '2 5 c conditions involving earthquake ef fect under Abnormal / Severe Environmental and Abnormal / Extreme Environmental crnditions respectively. c)Shear in Brackets and Corbels Ref er to Article CC-3421.8 of the ACI-ASME Co e 2 I 6-4 Rev 2, 12/20/79 I I I 1.4) Bearing Bearing stresses shall not exceed 0.60 f',, except as provided below: I (a) When the supporting surface is vider on all sides than loaded area, the permissible bearing stress on the loaded area may be multiplied byyA /A , but not more than 2 2 9 (square root of the supporting surface area / loading I surface area).(b) When the supporting surf ace is sloped or stepped, A, I may be taken as the area of the lower base of the largest frustrum of a right pyramid or cone contained wholly within the support and having for its upper base the loaded area, and having side slopes of 1 vertical to 2 I horizontal. 1 2)Reinforcing Steel Stresses 2.1) Tension (a) Average tensile st-ess: 0.0 f (b) The design yield strength of reinforcement shall not exceed 60,000 psi.(c) The tensile strain may exceed yield then the effects of thermal gradients through the concrete section are I included. The maximum tensile strain in the steel will not exceed in this case the level at which the compatible compressive str tin in the concrete develops stresses beyond the allotable strength of the concrete. 2.2) Axial Compression I (a) For load resisting purposes the stress shall not exceed 0.9 f .y (b) The strains may exceed yield when acting in conjunction with the concrete if the concrete requires strains larger than the reinforcing yield to develop its capacity. B)Stresses for Service Loads 1)Concrete Stresses 1.1 ) Compr ession Allowables: I.6-5 Rev 2, 12/20/79 I I (a) Membrane coc,pression(I) (primary) 0.30 f'( b) Membrane plus bending compression (I) 0.45 f( primary)

1 I 2 ( c) Membrane Compression ( primary plus 0.45 f'I secondary) 3 ( d) Membrane plus bending compression 0.60 f'(primary plus secondary)

The preceding allowables chall be reduced if necessary, to maintain the structural stability. 1.2) Tension Concrete tensile strength (membrane and/or flexure) shall not be relied upon to resist the external loads and moments or the forces and moments resulting from internal self-constraint.

1. 3) Shear, Torsion, and Bearing Ref er to Article CC-3431.3 of the ACI-ASME Code.

1 2)Reinforcing Steel Stresses and Strains 2.1) Tension (a) Average Tensile Stress: 0.5 f 1 2.2) Axial Compreesion (a)For load resisting purposes the stress shall not exceed 0.5 f .y ( b) The stress may exceed that given in Item (a) for compati-lity with the concrete but this stress may not be used E for load resistance. 5 1 The values given in 2.l(a) and 2.l(a) above may be increased by 33 1/3 percent when temperature effects are combined with other loads. Further-2 more, the 33-1/3 percent increase for stress allowable applies also to test condition in which the temporary pressure load is included. I (1)Members subject to stresses produced by temperature forces combined with other loads may be proportioned for stresses 33 1/3 percent greater than those specified above, provided that the section thus re-1.quired is not less than that required for the combination of the other ', ,l2 3 loads in the loading combination. '1635 015 I 6-6 Rev 2, 12/20/79 I _.,..,. . . . . . _ . _ _ . . -: 2 a C)Design for Flex - , 3._g,/ Shear Loads _1) As s ump tions -4 :u Loads shall be as specified in ACI-ASME Code Sect: , Division 2 Section CC-3511.1. '.'2) Assumptions for Service Loads uhall be as specified in ACI-AFFE _Code Section IT: ~ ~ ' s ' 'n 2, Section CC-3511.2. D)Design for Shear Reinfo.to higher allowable stresses as specified through ACI- __ASME Code, Section III Division 2. _j (b) Thermal stresses decreasing the membrane stress will not be included in the combined stress. ,__%i 16>3'5 016 , 6-7=__ _ . . . . .. I 6.2 APPLICABLE CODES, STANDARDS AND SPECIFICATIONS Ttu de sign, fabrication, ere ction, inspe ction and te sting of tte stee l Containant will comply with tie requirements of tie following with exceptions as noted: 6.2.1 CODES, STnNDARDS AHD SPECIFICATIONS a)Am rican Socie ty of Mechanical Engineers (ASME) Codes.- Boile r and Pre ssure Vessel Code , Se ction II, " Mate rial Spe cifications"- Boile r and Pre ssure Vessel Code , Se ction III, " Nuclear Powe r 2 Plant Components", Division 1, addenda through Summer 1974 and update s of NE 3133 through the Winte r 1975 adi anda. '- Boile r and Pressure Vassel Ccde , ACI-ASME Section III, Div 2," Coda for Concre te Reactor Vessels and Containments", issued in January 1975.- Boile r and Pre ssure Vessel Code , Se ction V, "Nonde s t ructive 2 Examination".- Boile r and Pre ssure Vesse1 Code , Se etion IX, " Welding Qualifica-tions*b)Am rican Institute of Steel Construction (AldC): 1"Spe cification for the Design, Fabrication and Erection 2 of Structural Steel or Buildings - 1969, Feb. 7th Edition", and Supplements through No. 3 of June ,1974. c)At:e rican Socie ty for Te sting and Mate rials ( ASTM): Various ASTM specifications supplecented by the furt te r requiremem cf ASME Se cticn III as noted in Se ction 6.3.1 d)Steel Structure Painting Council (SSPC): SSPC-SP Near White Blasting Cleaning SSPC-PA Shop, Field and Maintenance Painting e)Tim containme nt certified design specificition for purchase will be prepared by tre Archite ct-Engineer and will specify tie re quireme n ts f or mate rials , de sign crite ria , fabrication, ere ction, inspe ction , quality compliance , and initial structural acceptanm te s ting. f)NRC Gene ral Design Crite ria and Regulations 1)Gene ral Design Crite ria (GDC): f]GDC 50 - Containmant Design Basis V I I 6-8 Rev 2, 12/20/79 I -... . . _ _ . - -

I-J_--GDC 51 - Frac:ure Pre vention of Containment Pressure Boundary'GDC 52 - Capability for Containment Le akage Rate Te s ting CDC 53 - Provisions for Containment Inspection and 2 Te s ting c 2)Regulation Title 10, Part 50, Appendix J: " Reactor Containment Leakage Testing for Wate r

-Cooled Power Plants."_, 3)Regulatory Guide s - Compliance as indicated in Appendix C of 1 the Allens Creek PSAR +j 1.10: lbchanical Cadweld Splices in Reinforcing bars of Category 1 Concre te Structures 1.15: Te sting of Reinf orcing Bars for Concre te Structures l.29:_" Seismic Design Classification", dated August 1973

j 1.54: " Quality Assurance Requirements for Protective Coatings Applied to Water Cooled Nuclear Power Plants", dated y June 1973 i O 1.57: " Design Limits and Loading Combinations for }ktal Primary Reactor Containment System Components", dated June 1973 g (except C.1-b(2) which is discussed in PSAR Section 2 3.8.2.6 and CSDR Se ction 6.1.1).

6.2.2 CODE CLASSlFICATION N 4 The steel containment is classified Class MC in accordance with Sub article _NA-2130, Se ction III of the ASME Code . [!The bottom line r is classified Class CC in accordance with Article CC-lllo 1 of ACI-ASME Se ction Ill, Division 2. I i 6.2.3 CODE COMPLIANCE a__a)Containme nt 4 i T he steel cylindrical shall and dome of the steel containment in-cluding all pene trations and attachments within the boundaries de - fine d in Section 6.1.3, is de signe d and constructed in strict

-{accordance with Subsection NE, Class MC Components, including the 1 requirements for quality assurance of Article NA-4000, and inspec-

_tion requirements of Article NA-5000 of Section III of the ASME _'Code .Thr bottom liner of tre containnent including attachcents within the boundaries defined in Section 6.1.3 is designed and constructed a!-i_6-9 Rev 2, 12/20/79

1635 018_____. ..-

in strict accordance with Subse ctions CC-3000. and CC-4000, Class Cc Compone nt s , including tre requirenents f or quality assuranm of g Article NA-4000, and inspe ction re quirecents of Article un-5000 of g Se ction III of tre ASME Code . Furt he rmore t he suppression pool liner will be de signed in accordance with tre AShE Code , Section Ill, Divi-2 sion 1, Subse ction NE to resist the SRV negative pre ssure , conside r-ing strength, buckling and low cycle f atigue . b)Code Stamp 1 The steel Containmnt and tre botton liner will not be ASME Code s tampe d. However, all otter requirements of the Coe applicabla to g Class MC containcent vessels and to steel liners (ASME Code Div. 2) I are complied with. c)Exce ptions Tre following are exceptions to the requirenents of Section III of tte ASME Co& for Class MC Containuent Vessels. 2 1)Tre de sign of tre bottom steel line r (see Section 6.1.3) and tre concre te mat foundation are not included in tre scope of Se etion Ill, Division 1, of tre ASME Code . 2)buckling for SRV loads and post-accident flooding are not in tre 2 scope of ASME Se etion Ill, Division 1. d)Attachce nts Structural steel attachcents teyond the boundaries establiste d for t hz steel containcent are designed and constructed according to tre AISC Manual fc - Steel Construction, Seventh Edition, wtere applicable . The allowable stress limits for otter non pressure re taining parts are in accordane with Sub-Article NE-3131 (e ) of Section III of tre ASME Code . 2 e)For tre concre te mat foundation and tie bottom line r plate anchorage , see Se ctions 6.1.2 and 6.1.6. 6.3 MATERIALS Following is a summary of tre materials scheduled for use on the Containcent: a)Carbon steel plate shall be pressure vessel quality conf orming to ASMS SA-516, Gra& 70, fully killed and normalized. S te ll plate i thickness up to 1 3/4 inctes shall be allowed in which case those plates greater than 1 1/2 inches thick shall te in accordance with Code Case 1714 and have a maximum carbon content of tre product analysis limited to 0.24%. b)Carbon steel forgings shall conf orm to ASME SA-350, Grade LF1orLF2,! normalized and tempe re d. 6-10 Rev 2, 12/20/79 1635 cn9 I<. I I c)Carbon steel pipe penetration nozzles shall conform to ASME SA-333 Grade 6 seamless, or ASME SA-155 KCF 70. All penetration nozzles will be furnisned in the normalized condition. d)Carbon steel castings shall conform to ASME SA-352, Grade LCl, normalized and tempe. red. e)Carbon steel bolting shall conform to ASME SA-193-B7 or SA-320-L43, heat treated to obtain their required mechanical properties. f)Structural steel for temporary supports, bracing and similar applica-tions not within the scope of ASME Code shall conform to ASTM A-36. I Embedded structural shapes for the bottom liner and other applications 2 within the scope of ASME Code shall conform to ASME SA-36, None of the materials for the containment vessel will be used in the hot I finished condition. Fracture toughness criteria for the carbon steel materials specified in (a) I through (e) above shall cor <ly with the requirements of ASME Section III, Div. 1 Para NE-2300 or in the case of the bottom liner-Div. 2 Para. CC-2520. The lowest service metal temperature is 30 F and the maximum impact test I temperature shall be 0 F except for Cgde Case 1714 plates for which the maximum test temperature shall be -10 F. Charpy V-notch specimens con-forming to SA-370 Type A shall be used for testing. The surf aces of the structure which form the boundary of the Suppression Pool will have stainless steel cladding to provide corrosion protection. The stainless steel clad will be approximately 100 mils thick and will nc' be included in the evaluation to determine if any post veld heat treatment is required, only the base material thickness will be used in the evaluation. In some areas such as the weir wall and the drywell vents solid stainless s teel may be used . Steel surfaces (stainless or carbon) which come in con-I tact with concrete will not be coated. Also, the internal surf aces of the hollow lower drywell will not be coated. I I I I 1635 020 g 6-11 Rev 2, 12/20/79 6.4 EBASCO/GE/ VENDORS INTERFACE The interf aces among and responsibilities of the NSSS Supplier (General g Electric), the architect engineer (Ebasco) and vendors in the process of g design and analysis of containment structures are discussed below. The NSSS Supplier (GE) investigates phenomena associated with LOCA and lLOCA-mitigating actions which involve the pressure suppression function 5 of suppression pool. This investigation includes determination of building volumes, flow areas, vent areas and layout suppression pool water E capacity, minimum water coverage of vents, location and distribution of g safety / relief discharging lines, etc. for the GESSAR 238 Standard Plant. All this information is then made available for use by the Architect Engineer to establish the geometry of the structures. GE has performed the accident analysis for the Allens Creek PSAR and is responsible for the determination of short term and long term transient pressures and temperatures presented in Chapter 15 of that document. GE has also analyzed the suppression pool dynamic behavior associated with the pressure suppression function of the containment sy s tem. Pressure g loadings have been identified by the NSSS Supplier (GE) f or the GESSAR 238 5 Standard Plant Containment. In turn this information is used by the AE for its use in establishing a Design Specification f or the containment design. Design margins for ef fective loads will be added by the AE where appropriate. lA definition of the sequence of occurrence of these phenomena as provided a by GE is used in establishing the design basis load combinations. The Architect Engineer (Ebasco) reviews all load inputs and event sequences provided by the NSSS Supplier and determines their proper application in the design of structures. The AE uses the ef fective load (with a design margin where appropriate), the design loads (without a design margin) land the load combination together with other loads and envelopes all plant a proc as and environmental conditions with a set of design lood combinations. The frequency and severity of the design load combinations serve to deter-mine appropriate structural design criteria (stress limits, strain limits, displacement limit s ) . The A-E is fully responsible for the proper combina-tion of loads and compulsory load combination with other loads and f or the design of structures. For items which have to be designed, fabricated and erected by a vendor (in the case of the containment vessel - Chicago Bridge and Iron) the AE provides full information on loads, load combinations and g structural design criteria in the design and analysis within the scope of g the Design Specification. Vendor: For items which are only fabricated and/or erected by the vendor, the design and anslysis is the A-E's responsibility. This is the caae f or the Drywell lsteel portion, the Suppression Pool liner, the weir wall and structural 5 floor members. In the particular case of the containment vessel Vendor (CB&I) the design and analysis is the vendor's full responsibility. However, due to the requirements of the Design Specifications for the containment vessel, 1635 021 6-12 I . . . . . _ _ _ .-__the design and analysis methods are agreed upon between the Vendor and the Architect-Engineer. The Vendor must properly document the methods of analysis he proposes to apply, and is responsible for the practical appli-cation of these methods in the design process. His responsibility is not waived by the Architect Engineer's review of the Stress Reports and other design documents. ___.__.1635-022 6-13_.--_._.. . . . . . . . .. ....___. _ . .(Rev 1, 7/8/77) TICURE 6.1-1 STRESS LIMITS FOR CONTAIN'!Ehe VESSEL r Load Stress Criterion Pritury St resses Primary and Peak Stresses Buckling Combination Category Bend + Local Secondary Cen. Memb. P Local Memb. P Memb. P B L Construction Cons t ruct ion Consider for 125% of and Fatigue A11owables Test Overpressure Test 0.90 Sy 1.25 Sy 1.25 Sy 3 S, Analysis gli en by NE-3133 Normal and Operating or Severe Shutdown with S 1.5 S 1.5 S, 3 S, Consider for See Figure b.1-2 or without OBE Fatigue Analysis Normal Operating Not integral and S 1.5 S, 1.5 S, N/A N/A See Figure 6.1-2 Extreme with Continuous SSE Integral and The greater of The greater of The greater of N/A N/A See Figure 6.1-2 Continuous 1.2 S,or Sy 1.8 5 or 1.5 Sy 1.8 S,or 1.5 Sy Abnormal Accident with Severe OBE S 1.5 S 1.5 S N/A N/A See Figure 6.1-2 m m m Post Accident 1.5 S The greater of The greater of N/A N/A See Figure 6.1-2 " Flood with OBE 1.8 S or 1.5 Sy 1.8 S or 1.5 Sy -m m@U Abnormal Accident with !;u r integral and S 1.5 S 1.5 S_N/A N/A See Figure 6.1-2 @Extreme SSE Continuous Integral and The greater of The greater of The greater of N/A N/A See Figure 6.1-2 Continuous 1.2 S or Sy 1.8 S or 1.5 Sy 1.8 S or 1.5 Sy N m m m U{Accident with Not integral and Ibe greater of The greater of The greater of N/A N/A See Figure 6.1 2 SSE and Rupture Continuous 1.2 S or Sy 1.8 S or 1.5 Sy 1.8 S or 1.5 Sy -Jet or Missile Loads;U o D Ir te:.,ral and 852 of Strees Intensity Limits of N/A N/A 85% of Allow.

  • Continuous Appendix F given by F 1325 l

. . . . _..,_'i FIGURE 6.1-2 2 BUCKLING CRITERIA FOR CONTAINiENT VESSEL I.Method of Determining Critical Buckling Stress in the Cylindrical Shell.The methods used for calculating the critical buckling stresses in the cylindrical shell will be based on correlated results of gltheoretical and experimental investigations of stif fened and un- -stif f ened vessels. The selected methods will be those which account _for imperf ections of the ceae degree which will be allowed in the i vessel fabrication. Both elastic and inelastic buckling behavior j will be considered as follows:

a)Critical Elastic Buckling Stresses:

i 1)Axial - Computation of critical buckling stress will be g based on an approach which includes consideration of ring g stiffeners such as that described on page 16 of Ref erence ](1) or similar. For the Post-Accident Flooded loading i condition only the computation will include the stif f ening -ef f e ct of the internal water pressure by utilizing the methods of Reference (2) or similar. f 2)Circumferential - Computation of critical buckling stress , i will include consideration of ring stiffeners and be based i on an approach similar to the A21E Code, Section III, Sub- !section NE, Summer 1974 Addenda, including the update of 2 j Para.NE3133 thru the Winter 1973 Addenda. i-3)Shear - Computation of the critical stress will be based _on the approach described on page 24 of Reference (1) or similar.J.1 b)Critical Inelastic Buckling Stresses: j 1)axial - When the elastically calculated value of the (critical axial stress exceeds the proportional limit j (0.55 yield) the critical value to be used in design will be calculated using inelastic correction similar to that described in Section 3.3 of Reference (3). 1 j 2)Circumferential - When the elastically calculated value of the critical circumf erential stress exceeds the , proportional limit the critical value to be used in .design will be calculated using AS1E Code, Section Ill, Appendix Vll, Figure VII-llul-2. 3)Shear - When the elastically calculated value of the , critical shear stress exceeds 0 577 yield the critical _;value to be used in design shall be 0.577 yield. i 1635 024 I Rev 2, 12/20/79 .!;_ _ . . . . . . -. . - -._;.__l;,;]FICUPE 6.1-2 (Cont'd) !II.Factors of Saf ety and Interaction Check -a)The following factors of safety will be applied to the actual stresses in the interaction checks: }1)Operating and Accident Conditions - If the critical {buckling stresses are in the elastic range (at or below

0.55 yield) a factor of safety of 2.75 will be used.
In the inelastic range (above 0.55 yield) as the calculated

$critical values get closer to the material's yield strength 'the mode of f ailure would increasingly resemble yielding rather than a sudden type fsilure. To provide continuity (between the ASME Code stress intensity rules (which provide j a safety factor approximately equal to 2.0 against yield f ailure) and the buckling rules, the inelastic factor of q safety will be varied linearly from 2.75 when the critical , stress is just above 0.55 yield down to 2.0 when the " critical stress is at yield or above. 2)Post Accident Flood Condition - A f actor of safety of 2.0 will be used ir.h the elastic and inelastic range. t.b)Elastic Interaction .The following relationship will be satisfied when the critical stresses in the cylindrical shell are in the elastic range: Actual Axial x F Actual Circumferential x F =+q Critical Axial Critical Circumferential + ~:[ Actual Shear x F ) 2

Ilg 1.0: ( Critical Shear

)-: where: 4 Factor Safety = 2.75 for Operating and Accident Condi-j F=tions and 2.0 for Post Accident Flood c)Inelastic Interaction When the critical stresses are in the inelastic range the inter-action in II-b above shall be satisfied using the elastically

calculated values (Para I-a above) for the critical stresses.

In addition the following relationship will be satisfied using 2 the inelastically calculated values (Para I-b above) for the -" critical stresses: -1635 025.-_Rev 2, 12/20/79 ~ ', , , ... . __;i.nllFigure 6.1-2 (Cont'd) ~1 , IActual Axial x F, 3(Actual Shear x F )' 3'-s1- g ,}Critical Axial 1 (Yield Stress)* " Actual Circumferential x F 3( Actual Shear x F ) 3.3%, e Critical Circumfarential 1 (Yield Stress) J.where:_;Factor safety in the inelastic range = varies from 2.75 F=2 2.0 as per Para II-a

Factor safety at yield = 2.0 F];3=III. Stability Check and Stiffener Adequacy

~4 J The buckling stability of the vessel and the adequacy of the stiffeners will be demonstrated by analysis using the public domain computer program BOSAR IV or update. l 4 i-;=7 w 2___i-%,.1 s 1635 026 , j Rev 2, 12/20/79 .: M__.. ....REFERENCES FOR FIGURE 6.1-2 .1.Citerley, R.L., Anamet Labs, " Stability Criteria for Primary Metal Containment Vessels Under Static and Dynamic Loads", August 1977. 2."The Stability of Thin-Walled Unstif f ened Circular Gylinders Under 2 axial Compression including the Ef f ects of Internal Pressure", harris, et. al, Journal of the Acronautical Scilnces, 8/57. nd 3.Timoshenko and Gere, Theory of Elastic Stability, 2 Edition, 1961. 1 4 l 1 1 Il1 1635 027 Rev 2, 12/20/79

1. _ . . . _

. . . . . . _ _ _ _ _ _ . _ . _ _ _ , j 7.0 DESIG's PROCEDURES FOR ASSOCIATED SYSTEMS AND COMPONENTS Effects of LOCA-related loads (including Main Vent Clearing, Pool Swell, Steam Condensation Oscillation, Chugging and Annulus Pressurization) and -Safety Relief Valve Discharge Load on seismic Category I Piping and Equip-ment in the suppression pool area Seismic Category I piping and equipment in the pressure suppression annulus and below the normal water level (elevation 136.58') will be subjected to 1 LOCA-related loads induced in form of water jet, air bubble, steady state condensation and chugging and to SRV quencher loads induced in form of water jet and air bubble. Piping and equipment above the normal water -]level and at or below elevation 154.58' will be subjected to the bulk mode loads of transient suppression pool water behavior. Above elevation 154.58' and below the HCU floor (elevation 158.75'), piping and equipment will be subjected to impingement loads from the froth mode of suppression .pool water behavior. The design and evaluation of the equipment and piping ~shall be based on a separate set of SRV discharge loads other than those shown in Section 3.5 for the Containment Structure consideration. The pro-lcedure described in Attachment B will be used to generate the new set of 1 loads. This procedure utilizes the randan nature of several parameters 2 S ~that significantly influence the phase relationship of the individual air bubbles formed in the suppression pool during multiple SRV discharge events.These loads will be combined with seismic loads in the following manner: LOAD COMBINATIONS /0PERATING CONDITION CATEGORIES / ACCEPTANCE CRITERIA a Load Combination Operating Condition Categories N + SRV Upset)N + OBE Upset N + OBE + SRV(All) Upset N + SSE Faultedl!l i: w s!-!*See legend at end of table for definition of terms. Peak individual )gynamic loads are to be combined square root sum of the squares. J Not considered in f atigue evaluations. C From rated power initial conditions. i From all initial conditions. 635 028 ,'!'7-1 Rev 2, 12/20/79 1 , ,.--.s. I a Load Combination Operating Condition Categories N + SSE + SRV Faulted N + SBA + SM Emergency N + IBA + SRV Faulted N + SBA + SSE Faulted 2 N + LOCA + SSE Faulted" d N + LOCA Fau lt ed N + LOCA + SSE + SRV" Fault ed i I I-I I I I I E a See legend at end of table for definitior. of terms. Peak individual gynamicloodsaretobecombinedsquareroot sum of the squares. Not considered in fatigure evaluations. 2 c From rated power initial conditions. d From s.11 initial conditions.

  • LOCA plus SRV loads is a tentative load combination pending NRC re-so lu tion .

I 1635.429 7-2 Rev 2, 12/20 79 l- . . . _ _ . . I Load Definition Legend i Normal (N) Normal (e.g., weight, pressure, etc.) -OBE Operational basis earthquake loads -SSE Loads due to vibratory motion from the safe shutdown -i earthquake j'SRV Safety / relief valve discharge induced loads from two 2-adjacent valves first actuation (SRV ) or from one 3 valve subsequent actuation (SRV ), whichever is greater. The loads induced by actuation ,f all safety / relief valves SRV-O which activate within milliseconds of each other (e.g. , turbine trip operational transient). lLOCA The loss-of coolant accident associated with the postulated -3 pipe rupture of large pipes. LOCA-related loads include main vent clearing and pool swall, chugging, condensation oscil-lation, and annulus pressurization. SBA Small-break accident - (For description see Section 2.1.1.3). -lLA Intermediate Break Accident - (For description see Section -2.1.1.2).I I I I I I I I i 1635 030 1 7-3 Rev 2, 12/20/79 _ . . . m m W m- m Tt--. A1TACllMENT A Hark 111 L'ondensation Oucillation Forcing Function for t - 3.0 to 30.0 Seconc! ~6 9 TIME PoESSuuE TINE PitESSHOE TIuli lanlissuuE TINE l'HESsuuE TIME PHE SSuuE TIME PilEssanlE g g g $rci (PS10)( SI:C)(PSID)(SEcl (l*Silu (SEcl#1'S103 ( SI'C l (185101 i SEcl IPSlon 3.000 0.3.513 4.3474 1.997 0.0(wa0 4.442 -1.9762 4.911 0 5.347 3.4111 M 3.010 2.0550 1.522 4.5578 4.007 0.8045 4. 4 FI-3.04S9 4.920 2.3142 5. 3%3.uolr)3.0 28 5.2012 3.512 4.5924 4.014-0.0129 4 . 481 0 -4.0121 4.92tl 4.2160 5. 34 4 3.0310 1 . 0 11 4.6010 3.542 4.2594 4.024-0.5001 4. 4:19-4.5401 e .917 6.4155 5.373 3.560s (<9 3.041 7.41869 3. % 2 3.5149 4.015-1.3198 4. 49as -5.2flo 4.944 5.0254 5 . 138 2.9194 3.052 o. fil55 3.542 2. 4 tioS 4.044-2.1101 4.507-5.9415 4.955 5.5732 5.190 2.n102 3.042 4.0942 3.572 8.4047 4.uS4-3.b25 4.547-4.2160 4.941 4.9399 5. 39:3 3.4780 3.012 5.2107 3.Sall 0.5244 4.041-4.0405 4.524-5.7398 4.912 4.2544 5.407 n. 414 4 h.-g [1 Olli 4.641 3 3.598 0.081S 4.011-4.1114 4.515-4.4990 4.9:11 3.71u4 5.414 0.0811 3.098 4.4492 3.o01 - 0.1 1.D 8 4.08:2-4.1442 4.544-2.4494 4.990 3.o224 5.424-0.0958 3.104 4.59VO 3.688 0.0000 4.092-4.8443 4.55 1 0 4.9vd 3.7219 5.411 0.0000 3.184 4.t:20il 3.421 0. l i lat 4.101-4.0271 4.542 2. }344 5.001 1.9077 5.448 0.0951 3.124 4.uSlo 3. 6 11-0.01 h 4.811 . -4.2005 4.571 4.1441 5.014 1.9 115 5.4SG -0.0111

3. l li 4.50i9 3.441-0.S244 4.120-4.1299 4.5u0 5.S'801 5.025 1.4S24 5.4S9-0.4)ns IJ 3.8 43 3.1203 3.450-l.4040 4.1 10 -5.4910 4.Sel9 4.802u 5.011 1.0154 5.447-1.1748.3.lSS 2 . o 80 2 3.ooo-2.4064 4 .1 19-o.19S6 4.59n 5.1427 5.0 42 2.8120 5.414 -2.0702
3. loo 8 . 4 t:59 3.470 - 1.S170 4.149-o.4764 4. dol 5.WO2 5.OSI 1.2044 5. 4 tl 4 -239194 3.1 14 0.5549 3. 4160-4.2597 4.85#1-o.0205 4.414 4.1140 5.040 0.4490 5.491 - 3. 5t.0 2 3.lan 0.0141 1.490-4.5928 4.147-4.o io9 4.425 3.n91)5.stor!0.0114 5.502 - 1. 01:50 3.191-0.12n4 3.100-4.% f1 4. I ll-2.S l25 4.414 3. 7 82tl 5.0 17-0.n9 7 4 5.510 - 1.0 0,89 3.20F 0.0 ten 3.109-4. 3814 4 .1:14 0.4.44)3.0411 5. net o 0.0000 5.519-1.4114 1.287 0.8204 3.719-4.2249 4.194 2.4494 4.oS2 4.0264 5.09i 0.0974 5.527-3.S ill ra 3.21i8-0. S% n " 3.729-4.4045 4.20i 4.4994 4. con 4.0511 5.803-0.0814 5.5 16 -3.on29 T 1.22d-0.0141 3.739-4.9489 4.214 5.7192 4.469 3.74 55 5.182-0.4490 5.545-4.1438 3.24i8- 3 . 4116 0 3.749-5.1412 4.221 4.2140 4.47n 1.1071 S.121-l.2045 5 %) - 4.u t S t 2 1.2S9-2.6104 3.7S9-o.4997 4.2 12 5.9414 4. od s 2.1949 5. I ll-2.8121 5.542-5.4124 1. 2 r,9-3.12u 1 3. loo - o. 79 41 4.248 5.2784 4.494 8.2418 5.1 bl-1.0157 5.5 10 -5.4704 1.200-4.5040 3.770-o.11 S 7 4.251 4.5402 4.705 0. 44 h 5.147-3.4525 5.579-5. 21u 4 3.290-4.d574 1. luts-4.9147 4.240 4.0128 4. 78 4 0.0889 5.154-3.9 175 5.504-4.809 8 1.300-4.02011 1.194 -2.aval 4.269 1.HaS9 4. 72 3-0. i dkl4 5.145-1.9017 5 . *> 9 6

-2.2 %'s 3.311-4.5990 3. tH ht O.4 . 2 181 3.9782 4.742 0.0000 5.Ill -3.7279 5.4u5 O.1. 124-4.4492 3.H87 2.S l2 /4.247 4.8708 4.341 0.1004 5.182-1.4224 5.41 )2.2078 1 . 3 81-4.641 )1.#12 7 4.otlin 4.294 4.2019 4. JSO-0.0119 5.198- 1. 11184 5.422 4.0209 1.142-S.24Hd 1.88 44 a.020S 4. 104 3.uvll 4.159 - 0.4415 5 .24 4-4.2S44 5 . 4 10 S.lon.l. h2-o.0948 3. tl 4 4 o.4144 4 . 18 5 1.23HI 4. f ou-l.2412 S.2nd-4.9199 5 . o 19 5. M oo 3 lc2-o.ulS4 1.nn o.19S6 4. 82 4 2.27S2 4.777-2.1910 5.217-S . S I 12 5.o47 5.18 $ 1 1.114-l. loo 9 3 . 88 o 5 S.4911 4.111 1.2dS1 4. fllo-1.1014 5.224 -5.02So 5.4So 4.784 5 3. ):11-o . otto 9

3. H7 4 4.1299 4.142 0.400n 4. 795 - 1. fo la 5.2 M-5. 4 8 %5. 444 4 (n ll 3. 19 1-5.2080 3.Hal t 4.2005 4. hl O.0828 4. t:0 4 - 4.iri l l 5.241-4.2859 S.473 3.ou h W l.444-2.tsS 4 I 1.HV3 4.02/8 4. 148-0.8048 4.482-4.0844 5.252-2.3840 5. o+ll 3.4SSO i.4i4 0 3.902 4.i448 4. ilo o.oooo 4.ozi-i.n o a S.2oi n.5.ovo 3. %S 4 a-@1.424 2 .o9489 1.982 4.:S842 1. 179 0.8u41 4.n to - 1. 7 82u S.249 2.2% 7 5.690 3.1249 g Q 1.4 18 4.9849 1.921 4.lill 4. lull-0.0124 4 . 4 19 - 1.889 5 )

5.21d 4.1095 5.704 3. 7% 8.1.444 6. ll Sta 1. 9 11 4. nous 4. 19 1-0.4000 4.al lst - 4. 1984 S.2HJ 5.2707 5 . 185 3. 4 tt l4 to 1. 4S t o.1941 1.9-80 1.1'a zi 4.401-l.2hS4 4 . elS 7*e . 09 02 S.295 5.4704 S.121 2 H740 g D 1.46 8 4.4991 1 VSO 2. 110 *4.414-/.2 75 )4 .

  • loo-S. 142:1*a .10 4 S.4121 5. 712 2.0 184 o C 1.418 5.1414 3.VS9 1. 4890 4.425-1.2185 4. tl lS-o.(H2O S. All 4.all SO S. 140 3 . 4 4818 au i.4n t 4.9ain 3.vov o.Sood 4.4 :4 - i.o9 n 4.na4-S.vina S. us 4.84fo 5.i49 0. wm o_l.498 4.4035 l.9 10 0.0829 4.441-4.2619 4.H91-4.1885 S . 1 80 1.4182 9 5. 7'* )0.01888_1.Sul 4.2249 3. V utl-0.5045 4.4S2-4.8701 4.902- 2. ):344
5. l bl 1. 5 '18 8
5. loo - 0. 09 18

.-r_-----------i---i-----m-m---uni--ii-mn l'I NE Pf1EssullE T ildli PalESSuuE T iuli PitE SSilitE T I'tE PRESSullE TIME PitESSunE T late PitEsslulE (SEcl IPSID)(SEC)IPSIDI (%Ecl (PSilu (SECS (PSint (SECl (PSIOl ( SEC)(PSID4 5.774 0.0000 d.195 -3.4906 4.610 O.1.019.1.35 79 7.425 0.0000 7.023-3. lofl5 S . 7 t! ) 0.0918 4.203 - 3. 3919 4.488 2.1064 7.027 3.58 99 7.41)0.01812 7.t:31 -1.28S8 S.798-0.0888 a.218 - 3.5 374 4.426 1.a l lS 1.0 15 1.5147 7.448-0.0104 7.n45 -1.1511 S .110 0-0.4290 d.220 - 3.9:l ft o.414 4.9294 7.044 1.2499 7.4*20-0.4080 7. tis 3 - 3.7760

5. t:45 - 1.14 4tl o.220-4.6251 4.442 S.1024 7.0$2 2.7861 1. 4 Sit-1.07S9 f.648-4.1442 S .tll i-2.0145 a.237 -S.2ini 4.658 5.0729 7.060 1.9204 1.444-1.9045 3.8849' -4.9442 S.tih-2.11168 4.246-S.4S44 4.oS9 4.4944 7.048 1. Dil 49 7.4 84-2.6984 7.H77 -S.Ilo2 S.018-3.4u 85 6.241-5.0704 o.647 3. tll 24 7.olo 0.4058 1.432 -3.2o26 7.nH5-4.48u42 S.H42-1.7*34 1 6.242-3.9414 4.47S 1.4192 7.014 0.0104 1.490 -1.5112 7 . 88 9 ) -3.74to 5.USO-1.1249 4.210 - 2. l o od 6 . 411 1 1.2974 7.092-0. t hi l9 7.49d-3.4906 f.908- 2. 0S 47 S.HS9-1.5S54 4.210 O.4.492 3.1912 1.108 0.0000 1.Sud-1.3100 7.909 0 5 .1867-1.4550 4.2u)2. l l h 4.700 3.SSo9 7.109 0. uil l9 7.584-3.2159 7.987 2.0 448 S.tllo-3.60 15 d.295 3.0:110 4.70#1 1.5u40 7.117-0.0104 7.522-1. 1158 7.925 1.12J9 5.aut-4.0$7s 6.301 4.9>29 6.784 1.124S 7.825-0.40S2 1.S bl - 1.t1006 7.91)4. lu ll S .t!91-4.7183 4.311 S.3780 4.724 2.7449 7.81) - 1. nl60 1 . 5 89-4.4824 1.041 S.1455 S.908- S . 18 6 )
6. 120 5.1141 4.711 1.9404 7.141-1.9J05 7.547-4.9701 1.949 4.9224 S.980-S.S$40 a.120 4.SS 4 4 4.148 1.0941 7.849-2.7844 1.555-S.201tl I.9S7 4.3412 S .9 8 tl-5.1449 d.136 3.9226 4.749 0.4094 7 lSo-1.2900 7 Sol-4.0174 7.945 1.1979-S.927-4.0200 o. 145 3. 40 si 6. 7S 7 0.0106 7. loo-1.5467 7.578-3.7459 1.973 3.1971 S.v h-2.2069 o. 15 3 1.3199 4.145-0. U nnel 7.874-1 $199 7.$ 19-2.0410 7.9#st 1.1997 S.944 0, 6.141 3.4170 4.774 0.0000 7. l el 2 - 3. 15 79
7. Sal O.l.9189 3.2927 5.9S2 2. l oott 4 . 149 1.4021 4.702 0.umiu 7.190 - 3.2411 7.594 2.0519 7.997 3.4686 S.960 3.9415 4.170 3.oM2 4.790-0.0804 7.190 - 3.40 14 7.40)3.7457 n.00S 3.4719 5.969 S.0107 4. 3u4 3.14 f 4 4.79#1-0.4095 7.204 - 1.88 B 2 4 7.411 4.0041 11.011 1.2248 2:p S.971 S.4644 a.394 2.luo2 a.8804-4.0944 7.285-4.4491 7.o89 S.1102 88.0 28 2.6485l, s.9u4 S.2iai 4.40i 1.96S7 4.m S-i.940s 1. 2n -5.oam 1.627 4.9442 a.n29 i .un ii S.994 4.6243 6.481 8.8804 4.621-2.7449 1.211-S.2414 7. 4 15 4.38141 U.017 1.041:1 d.002 1.90 16 a.419 0.4841 4.u ll-3.1244 7.219-4. 0 7:10 7.441 3.78S9 8.n45 0. 1973 4.088 3,5177 a.427 0.0807 4.ts 19 - 3.61840 7.247-1.1975 7.oS8 3.3611 f1. 0$ 1 0.0802 o 019 3.3919 d.434-0.0964 4.al4 7-1.SSo9 7.255-2.0141 7.6S9 3.2168 H.uol-0.sks42%6.027 3.4V06 o.444 0.0000 d.stSo - 3, 19 12 7.243 O.7.664 3.3005 81.049 0. 0(ki0{g o.O M 3.oSud 6.4S2 0.0V00 o.alo t-1.2974 7.272 2.04/2 7.o lo J.4441 0.077 0. 8#14 2 6.044 3.61848 o.440-0.0101 6.1832-1.4192 7 . 215 0 3.7440 7.out 1.4944 il.tkl4-0.0102 ()6.OS2 3. u vo 6.449-o. u 41 4.nno -3.us27 7.2na 4.n uS 7.o92 3.2415 a.ovi-o. wn 4.048 2.192 85 4.477-8.8104 4. slutt-4.4965 7.294 S.2010 1.748)2.4743 48.801-1.0419 M 4.049 8.9963 4.405-!.9451 6. flV I-$ ,012 9 7.104 4.974)7.104 8.tl922 41.809 - 1. tid l2
0. 01d 4.8211 4.494-2. lal01 a.905-5.1024 7 . 11 2 4.4424 1.384 1. D on 9 '

n.ll)-2.44 144.tkl4 0.4288 d.SO2-3.3414 4.981-4.9291 1. 320 1.nOO4 7.724 0.3992 0.825-1.22Al"'o 094 0.0100 6.580 - 3. o'80 2 4.928-1.H374 7. 1218 3.)lSt 7. 1 12 0.0101 11. 5 )) -1.4779 gg@d.lut-0.0944 d.51H-3.oO21 4.9 10-2.106)7. 31a 3.2849 7.140-0.0844 1.841-3.4565 LN N o.llt 0.0000 6.$2J-1.4169 4. 91d O.7. 144 3.3500 7. 744 0. 0a k h) 11.849 -1.2921 bh@$4.119 0.0914 d. 515-3.1199 d.944 2.01146 7.1$ 2 3.4104 7.756 0.01:44 n.lST-1.1991 6.12d-0.0109 o.543 - 1. 418 15 4.954 1.1976 7. lo t 3.51 72 7.164-0.0101 H.145 - 1. 117) ." 4. l M-0.4212 4.SS2-3.9224 a.942 4.3701 7 . 14 9 3.2424 7.772-0.3992 d.ll) - 1. 7S 79 7M b, o.144-l.1270 a.Soo-4.5544 4.910 S.2474 1. 311 2. o9 11 7.700-1.0490 H.808-4.1411 u r;d.iS3-i.9943 o. Son-S. l in i 4.97o S.ozol i. m i.904s 7. 7:n -i .a9a n.In9-4.9226 TEED N n 4.loi-2. n .n o 4.Si4-S. ulo 6.Voi 4.44v4 7. m i.olS9 7.794-2.67o4 n.in-S.84S5 b o 4.170-3.4199 d . Sili-4.9924 4.99S 1.4321 f.408 u. 40 8 ts 7.110 4-1.2414 0.206 - 4.74 1) N o. I lli-1.o1101 4.591 - 3. dll49 1.001 1.4034 7.409 0.0101 7 .888 2-1.494S 6.211-1.82J8 d o. i tt o - 3. 4Sud o.ool-2.8 114 2.011 3.2418 7.437-0.0472 7.u20-1.4448 43.221-2.0419 m W W mM M M M M M M SE M5 M M Mr M M M ... . . .- - -TintE PHESSURE TIME PitfissunE TIME PDEssunE TlWE PHEssuuE TluE PRESSunE TiwE PRESSunE (SEC)(PSilli ( SEcl (PSilu (sEcl (PSint I S(Cl (PSilli (SEC)(PSlot (SEcl (PS100 a.229 0 8.42tl 3.2757 9.024 0.0000 9.=22-3.2740 9.080 0, 80.213 3.2972"~p)0.217 2.0374? ,4 34 3.4117 9.014 0.0057 9.410 - 3.1 t5 2 4 9.1124 2.040S 10.221 3.4542 U.24S 3.7887 11.444 3.4599 0.042-0.0802 9. 414-1.1492 9.0 14 3.7174 10.229 3.4024 b U 0.2S1 4.7677 0.oS2 1.2094 9.049-0. 39S0 9.444 -3.7374 9.842 4.7758 80.237 1.230S G 3.8.261 S.12d7 18.d40 2.6493 9.067 -l.0S71 9.444-4.3194 9.049 S.1 144 10.24S 2.6612 0.269 4.9045 8 . 6 418 8.8734 9.045 -1.0722 9.442-4.0940 9 .115 7 4.9841 10.26)8 . fW'27 M 8.277 4.34VO H.4To 5.05:11 9.01)-2.d4dl 9.450-S. I l lo 9.1845 4. 3 SS 7 10.240 1.04*2)U . 21:5 3.f4So 6.on4 0.1962 9. Ott i-3.2071 9. 4 7 tl-4.7S/4 9.H 11 3.7584 30.2488 D. )v id 0.291 3.1244 0.492 0.0802 9.un9-3.4576 9 . 4 18 S - 1. 10 84 9 .880 8 3. 3 11 S 10.274 8.n802 6 9 0. 304 3.1 t19 )0.100-0. 0 tsSil 9.097-3.4184 9.491 - 2. 012tl

9. tlel9 3.1942 10.2814 -0.aud)

.o.309 3.2320 11.700 0.0000 9.805-3.27JS 9.Sul 0 9.1897 3.2u10 10.292 e.coou- e u. 381 3.4401 8.714 0.OuSit 9.11 1-1.IHil 9.S09 2.015n 9.905 1.4454 10.100 U.UH41$2'ti.32S 3.464S 0.124-0.0802 9.121- 3.11 lil 9.581 3.7039 9.981 3.4119 10.300-0.0808 e b'] ch 0.111 3.2155 8.732-0.3951 9.129 - 1. 7 'IA0 9.S25 4.744l 9.928 1.220S 10.114-0.1979 U 3 41 2.6549 0.740 - l . uSel t 9.3 17 - 4. 11115 9.S11 S.1249 9.924 2.6549 10.124-l.06S4 pg U.349 8 . H il0 U. 7 4tl - 1.111 ti 9.8 45-4.41919 9.541 4.9020 9.9 34 1.0J99 10. 112-l . asusti- '=~O. 127 1.0o04 11.755-2.64v>9. 4 % ) -S.IISS 9.549 4.14S7 9.944 1.0420 10. 189-2.d473.h 0. loS 0.1940 8.761 -1.2094

9. lot-4.1554 9.537 3.742d 9.9S2 0.3944 10.187-3.2105 8.311 0.0802 H.778- 3.4S99 9.849-3.7020 9.SAS 3. 12 49 9.960 0.0102 lo.3SS-3.4u24 b U. lut-0.0 tis 9 8.179-3.4117 9.I14-2.01l9 9.573 3.Iu49 9.960-0.0040 tu.1A1 - 1. 4So2

,;3.1u9 0.0000 0 . 74l7 - 3. 2 f SI 9.the G.9.500 3.2795 9.914 0.0000 10.118-1.2972'11. 19 7 0.OdS9 11.1V5 - 1.8412 9.192 2 . 0 5'80 9 . 5810 3.4171 9 . 9814 0.0040 10.379-1.2041 0.405-0.0802 H .1101-3. 3208 9.200 3.1017 9.594 3.44s9 9.992-0.0102 10.1d7-3.3419' , it. 413-0.3940 8.niI-3.7184 9.200 4.IS74 9.604 3.28 18 10.000-0.3944 80.195 - 1. To ll >18.421-1.0404 d. all 9-4.1407 9.21o S. I l ld 9.412 2.4520 10. 0ut8-1.0428 10.443-4.1492 p.48.429-1.tlill 0 u21-4.H912 9.224 4. I' V S 9 9.420 1.11154 10.085 - l .11:10 0 10.488-4.9294-8 0.4 31-2.6S49 U.46 85-S.1190 9.2 12 4.3194 9.620 1.0594 10.023-2.4590 10.410-$.1624 2" 11. 4 4 S-1.2154 0.814 3 - 4.15:14 9.240 3. 1 17S 9.414 0. 19*27 10.088-3.2205 10.426-4.10918 0.461-1.4465 8 .115 8 - 3.104S 9.240 3.1492 9.444 0.0802 10.039-3.4789 10.414 - 3 . 7 21115 0.448-3.4402 8. tis 9 -2.0331 9.2S4 3.8H24 9.452-0. nets 9 10.047-3. 4 4%80.442-2.0447 11.469- 3. 2 dl 9 U . flol 0 9.244 3.2149 9.460 0.0000 10.05S-3.2810 10.4S0 0 H.477-3.1698 0.1815 2.0 128 9.212 3.4128 9.oal O.09S9 10.04)-3.1942 10.4Su 2.0S47 U.4H6-3.3244 0 . 11 0 ) 3.7021 9.279 3.4S90 9.415-0.0802 10.071-3.114S 10.464 3.1412 II. 4 V I-1.1451 U.091 4. 7 % 4 9.2H7 1.2004 v.481-0.1957 10.019-1.1515 10.474 4.0 0:12 U.Sul-4.1490 8.099$. 81 %V.29i 2.4491 9.491-1.0S94 10.047-4.1%)10.4u2 S.1722.u.So>-4.9044 0.9u7 4.nv u 9. m 1.u l29 9.o99 -i.niSi lo.ove-4.9848 10.4v0 4.v4al;si . S i l-S.12nl H.985 4.3817 9.111 1.0S08 9.107-2.6429 10.802-S 1144 10.491 4.luSu'it. S 25-4.7411 0.922 1.134u 9. 18 9 0. 19S 8 9. 785 - 3. 28 38 10.180 - 4. ? lSO 10.605 3.1714 d 0. S 13-3. li t o

  • l.9 10 3. 11 10 9. 127 0.0802 9.723 - 1.4519 in.Ild-3.1871 10.513 3.3S44$u,548-2.0812 U . 9 34 3. l til l 9.33i-0.0457 9. 718 - 1.4 114 10.824-2.040)10.S28 1.284)=4 t'.549 0.u.944 1.21 ri 9. 14 1 0. 00e w)9.719 - 1.219%

80.814 0 10.529 3.3090 m N O.SSI 2.018S tl. 9S 4 1.4114 9. 158 0.0491 9.747 - 1. l tn9 10.442 2.04o0 10.517 3.4694 U. sos 3.7044 18.962 1.4S 74 9. l*29-0.0002 9. 7% - 1.1.! 19 10.850).7290 10.S4S.l. 4 VS9**r 11.*3 12 4. 7SH I U.910:8.2012 9 . 14 7-0.1vS2 9. 742 - 3. 14286 lo.lSd 4.7899 10. % )3.2424 10.So 2.4774" ~i O. S o,l 48 SHO S.48V0 U . 910 2. o lud v. llS-1.0508 9. 110-4. 1457 l o. l M S.1524 i . Il> 29 ~ os u . S n.i 4.o m n.vn4 i .o in 9. 3ni-l .o I = >

9. i,a-4.9029 i n. i 14 4.929 i kU 48.S96 4.3807 11.994 1 OS /4 9. 190-2.d492 9 . 149 4*2.8249 10.468 4.1692 10.S76 1.OA94 g fl . ou t 1. I lui 9.002 0.19S0 9.19 tl-1.2444 9.794-4.7444 10.I49).14 h1 4 d . Sal 4 0.1998 4*u.ol2 3. J ful 9.080 n.olu2 9.403-1.4S90 9.602-1.luun 10.197 3.141 u lo.S92 0.04 u 1;it . o M 1. l u l2 9.Olu-0,onSi 9.414-1.4124 9.010-2.0851 10.20S 3.2041 10.400-0.0044 U4 (~ra s. _ . _ . . . . .
TINE PHE SSUHE Til4E PHE SSlHil:

TiuE PnES$ullE TIME PDE SSuitE T intE PRESSlHIII TINE PRESSO4ti (SEC)(PSID)(5fCl (PSint (SEC)(PSIDI ( SfiCl (PSlun (SEC)(PSint 850C5 (PSilu 10.608 0.0000 11.003 - 3.3245 11.399 0 II.334 3.3004 82.198 0.0000 82.500 -3.4249 10.684 0.Ot:46 18.011-3.2107 11.404 2.OnSn 18.602 3.541!82.199 0.0u98 12.594 -3.32H2 10.424-0.080)l1.089-3.3494 18.484 3. 7 99 tl 11.1880 3.S102 12.207-0.0104 12.404 -3.478) 10.412-0.3994 11.027-1.7941 18.422 4.0009 18.080 3.3887 12.215-0.4105 12.442-3.9004 10.440-1.0494 11.0 3S J.40SS 18.410 S.2505 48.8124 2.7142 82.223-l.0992 12.420-4.5 Fs4 10.440-1.11910 11.04). -4.9101 11.430 5.0210 18.1814 1.9 118 12.2:10-l.9454 12.4241 -5.8201 10.4So-2.6714 88.061-S.19S 1 11.444 4.4522 I I .al4 2 8.0921 12.2:10-2,1S89 12.613-5.3528 10.441-3.24241 18.0S9-4.0294 11.4S4 3.11144 88.8150 0.4070 12.244-J.3110 12.444-4.9858 10.418-1.4959 18.044-1.759d 18.442 3.4054 11 .41'20 0.0806 82.254 - 1.$9 11 12.4S2-3.0712 10.419-3.4494 18.014-2.0414 18.470 3.24S0 11.f 44-0.O'sels 12.242-1.5459 12.440 -2.82S9 I d . t..l l -3.109d 11. 01:2 0 18.474 3.1599 11.014 0.0000 12.270 - 3.40181 12.447 0 10.495 - 3.2 in ) II.090 2.0142 14.4:s4 1.5289 14.1982 0. t Nie:S 12.270 - 1. 3(h u 12.4I5 2.1412 10.701-1.154h 11.090 3.1103 18.494 3.64u0 18.8919-0.0BOS 12.2:14-3.4479 12.4d3 3.9009 10.111-1.1114 11.104 4.elS 40 81.508 3.2949 I I .sl9 7 -0.4019 12.298-3.lul2S 12.498 5.0100 10.789-4.10S9 11.184 5.228S 11.509 2.7879 11.405-l .OJ Ji 12.102-4.5078 12.499 5.1002 10.127-4.941 2 11.122 4.9961l1.587 8.9284 II .98 3-1.9112 12.310 -5.0u57 12.707 5.1547 10.735-5.1122 14.1 10 4,4214 18.525 1.035S 18.921-2.7143 82.110-5.3160 12.785 4.5107 10.742-4 . u oll t 18.130 1. tli 14 18,511 0.4054 11.929-3. 3887 12. 124-4.9480 12.723 3.9144 10.7S0-3.1411 18.146 3.304i 11.541 0.0104 11.917 -3.5702 12.114-3.8478 12.731 3.4940 10.7S3-2.0545 18.16 )3.2410 18.549 -0.Ohun l1.945 - 3.5 4 11 12.142-2.8844 12.I]9.1.3519 10.144 0 II.144 1.1813 18.5S7 0.0000 18.993-1.1408 12.150 0, 12.747 3.4491 10.714 2.041ul1.149 3.5025 18.545 0.0u00 88.941-1.2044 12.157 2.8248 12.755 3.6854 1 0 . 1482 3.7S99l 1.171 3.S292 11.571-0.0104 II.949 - 3.42S9 12.145 3.8714 12.f41 3.6412 y s 10.790 4.tl294 18.1815 3.2717 li . Sit t -0.4054 11.971 - 3.485 77 12.371 4.9754 12. 778 3.3795*lo.lvu S.1951 11.191 2.7029 I I .Sil0-8.0HSa 18.985-4.4794 12. 101 5.3628 12.719 2.1902 10.uo4 4.9702 II.201 8.9809 88.594-1.9244 14.992-S.0S31 12.109 S.1202 12.707 1.9127 10.4114 4. 4uS 4 18.200 l.079%14.o04 -2.71no 12.000 -5.2u24

12. )? ?4.5 1484 12.195 1.1844 Bd.u28 3.1942 18.287 0.4011 68.412-3.2989 12. 00tl-4.9802 12.4&i 3.90u0 12.uG3 0.4842 10.4829 3.3496l1.225 0.0804 11.o20-3.5400 82.086 - 3. il 224 12.45)3.4733 12.nli 0.0107 2 10.1817 3.2107 11.212-0.001S 18.4241-1.S269 12.024 - 2. 0)d i 12.428 3.32n2 12.019-0.0003 10.114S 3.1246 18.240 0. Om o 18.444-1.3599 12.012 0 12.420 1.4249 12.627 0.0000 10.uS3 3. 4t: 49 18.2415 0.0075 18.444-1.24So 12.080 2.418H 82.4 11 3.S908 12. ell 5 0.0901 10.8141 1.5115 18.254-0.0104 18.4S2-3.40S4 12.04:1 3.0473 82.445 3.4815 12.H43 -0.0807 10.uo9 3.2673 11.244-0.4012 11.o40-1.0 844 12.064 4.9 4 8 al 12.451 3. .lSS o 12. tis i-0.4142 6 10.4111 2.469 )11.272-l.0196 18.443 - 4 . 4S 2.1 12.044 S.3140 12.448 2.7105 12.stS9-l.8145 I lo.utti 1.9014l1.2u0-l.9180 18.474-S.0210 12.072 5.Os S7 12.449 8.9500 12.047-l.9720 ()10.8191 1.0148 11.203-2.7029 18.4u8-S.2605 12.000 4.5010 12.477 8.1045 8 2.u l5-2.790110.900 0.4088 11.2V4-1.2111 18.498-4.0009 12.0u0 3 .19:24 82.405 0.48 12 12. ptt ) - 3.319i 10.900 0.0001 11.304-1.5292 II.499-1.7997 82.094 1. 44 19 82.491 0.0104 12.8190 -3.4412 g 10.986-0.0H10 18.112-1.5025 14.707-2.0u54 12.104 3. M 0 12.508-0.0hv7 12.119tl -3.4856 g (D 10.V/4 0.0000 38. 119-1.3481 11. 115 O.12.888 3.4010 12.500 0.0000 12.904-3.4491 10.912 0.0010 11. 127-1.2470 II . 721 2.0901 12.119 3.5459 82.$14 0.0097 12.984-3.1589 O 4 M 10.940-0.0101 l l . i ss - 3.1044 II . 718 3.H227 82.827 3.S 9 16 12.S24-0.0101 12.922-3.4940 10.94i3-0.4082 14.341 - 1.all 14 18.719 4.9801 12.11S 3.1129 12.512-0.4831 12.910-1.9146 M" 10.954-1.0142 l l . 3S t

-4.4271 18.747 S.2H28 82.141 2.751u 12.540-1.1044 12. 9 W-4.5707' ' , , N" B0.944-1.9084 I I .159-4.99S1 II . 7%5.051?12.158 8.94 %12.544-1. 9 S ud 12.v-S.ISol Qg D U@10.912-2 .4:19 4 11.347-S.221S tl.141 4.4190 82.859 1.0998 82.556-2.7104 12.9 %.-5.19u2 g)%80.919-3.2i11 II. Ils - 4 . t:5 19 I I . 7 il 1.6tS #4 42.t$7 0.4144 42.544 - 1,1% 4 82.942-5.0187 y 10.9u1-1.5185 1 4 . 11:1 - 1, 47461

11. 119 3.42Su 12.17S 0.0804 82.572-3.4115 12.910-3.98WI Y-i 80.99S-i.4049 i .39:-2.n i m si.ina i.2a44 12. iu 3-o. m V i i2.Sud -3.S90:

g g u u>E E E E E E E E E E@M M M M M S W M ...... . . . . . . . _i.TiuE PHESSUNE TlHE PDESSunE TiuE PHESSunE TIME PDESSuflE T illE PHESSufiE TI4E PDESSuuE 350C5 IPSIO)( SEcl IPSIDI ISEcl IPSIDI ISEcl IPSins ISEcl IPSIDI ISEcl IPSIol%12.904 0, 13.105 3.5684 13.784 0.0000 14.187 - 3.55 74 14.590 0 14.995 3.6474 (12.994 2.8571 13.39)3.670)81.194 0.0924 84.195-3.4549 84.599 2.2452 15.003 3.H2 31@13.002 3.9290 13.401 3.49111 11.u02-0.0110 14.201-3.4054 14.607 4.0001 15.011 1.185 2 S 13,010 5.0419 11.409 1.4 105 11.8880-0.4250 14.211-4.0400 14.485 5.2540 15.020 3.$714'-83.010 5.4308 13.417 2.0 124 1 1.H ill-1.I402 84.220-4.7840 14.621 5.o$80 15.023 2.950*i-11.024 5.194u 11.425 2.002S 11.u24-2.01 u 1 14.22n - 5 . 11 :1 1 14.a ll 5.4069 15.014 2.0u60 11.034 4 o04*i 11.411 1.1111 11.H 14-2 u547 84.214 -5.$692 14.639 4.1925 15.044 8.17u4 11.042 3.94S i 81.448 0.422i 81.u42-3.4514 14.244-5.8413 14.641 4.8211 15.0S2 0.4408 11.050 3.5280 11.449 0.0809 1 1 .16 S 0 -1.7284 14.262-4.02 14 14.4 %3.44S7 15.060 0.018 1 11.oSO 3.3767 11.467-0.0957 1 1. llSal -1.4998 14.240 -2.20u2 14.641 3.5144 15. nod-0.09%15.064 1.4740 13.465 0.0000 13.4144 - 1.S 2n 9 14.2441 0 8 4.oll 1.olo7 15.014 0.6.cl 11.074 3.6424 81.471 0.0981 1 1.u 14-1.4291 14.214 2.2265 14.619 3.7981 15.004 n.hv %h M I ).iMil 3.6102 13.401-0.0809 11.002-1.5741 8 4. 2sl 4

4. O'i41 14.o47 3.0201 15.091-0. H i l l 11.090 3.4045 11.409-0.422S 1 1.uvo-4.0284 14.292 5.2804 14.694 3.5415 15.101-0.4401 13.09d 2 .188 061 13.497-l . i ll i l l. livil

-4.474)14.100 5.6049 14.704 2.92$o 85.109-l . I luS 11.804 8.9011 11.S05-J.0024 13.904-S. 2 hu 14. lon 5.3528 14.783 2.04u 4 85.817-2.0u41 11.184 8.1227 13.583 -2.0124 11.984-5.S;47 84.144 4.7627 34.720 1.lous 15.125-2.9505 11.122 0.4892 11.521 - 3. 4 10 S 11.922-5 '82AS I4. 124 4.09 14 14.720 0.4344 l $.1 11 -1.5714 1 1.I 10 0. 01 ott i1.$29-1.49ul i 1.9 10-1.9909 I4.312 3. o BSJ l 4 . 7 .14 0.0112 15.I41 - 1.H*i25 13.118-0.0980 13.537-3.4701 I ).9 98-2.1905 14.340 3.4144 14.744-0.0947 15.849-3.H23 8 11.144 0.0000 11.545-3.5014 11.944 0 14.344 3.S447 14.762 0.0000 15.ISH -1,6474 ll.lS4 0.0980 1 1. % )-1.4025 31.964 2.2004 84,147 3.7S97 14. ' Ion 0.0947 15.164-3.S444 11.Io2-0.0300 13.541- 3.6 4105 i1.942 4.0212 14.145 3.1464 84.Jod-0.0882 15.I74 - 1. 494tl 11.870-0.4891 13.569-1.9961 11.970 5.lo19 14.311 3.56 48 14.786-0.4144 1 5.1152-4.1424 a 1 1.17d-l.1221 11.577-4.4IVd 13.970 5.5592 14.306 2.9083 64.lus-1.1684 16.190 - 4.011) , p LA ll.luo-1.9674 1 3.5115-$. 2 8 44 I) 904 5. 38 u)14.)s9 2.048 1 14.7V1 -2.OAuS 45.890-5.4529 2 18.894-2.0809 11.591 -5.4784 11.994 4. 18 19 14. b l 1. lS ud 14.u01-2.9257 15.206-5.4990 13.202-1,4045 43.608-5.odoe 14.002 4.DoGG I4.405 O.4127 14.uo9-3.S415 15.284-5.svuS i1.240-3.4102 11.409-3.9591 14.010 3.o044 14.483 0.n181 14.081 - 1.0208 15.222-4.1249 11.214-1.d424 11.617-2.8734 14.016 1.4449 14.428-0.49 19 14.u2S-3.1988 15.211-2.2640 1 3.226-l.4143 11.425 O.14.027 1. % 74 14.429 0.0000 14.u ll-3.6147 14.239 0 I1.211-3.1141 11.433 2.1901 I 4.0 li 3.7290 14.417 0.09 N 14.1148-1.5144 15.247 2.2u17 11.248- 3.S219 11.d48 3.9980 14.04)3. 8% # 4 14.445-0.0812 14.6149-3.4447 15.2S6 4.1605l1.249- 1. 9 4*2 n 8).649 5.426S 14.OSI 3.4HS4 14. 4% )-0.4120 84.uSJ-4.8271 85.241 S 8442 11.2S1-4.6046 11.oS7 5.5847 14.uS9 2.16117 14.441-I.1S09 14.u46-4.1926 15.278 S.74u4 l l. 2 tti-S.1949 13.o65 5.27SO 14.047 2.0 146 14.449-2.0414 14.1114-5.4070 15.219 5.4997 11.211-5.4808 11.o71 4.6142 14.075 1.8493 14.417-2.9044 14.uu2 -5.451u q5.21ul 4.0 740 s&81.201-S.041u i 1. ott i 4.0275 14.031 0.4292 14.4u4 - 3.$ 8 il I4.u90-5. 2 S 19 15.296 4.190S ll.2n9-3.9291 13.639 3.Slal 14.098 0.0110 12.494-3.7ud4 14. u918-4.090: 15.304 3. 12 0%$11.297-2.1569 11.497 3.4291 14.099-0.0951 14.602-1.lS94 14.904-2,24Su 15.112 1.S749<W 1 1. W.O.11.704 3.S2:19 14.8u7 n.uwx)14.580 - 1.$18 44 14.984 0 15.320 3.o lt 7 N i 1. 84 1 2.8114 11.764 1.o992 34.885 0.09 11 14.Slu-1.4544 14.922 2.2442 IS.12u 1 uS42 C7 1 1. 321 1.95V9 11.72*3.1214 14.12)-0.0118 14.524-1.48S1 14.9 50 4.1250 15. 116 1.0u56*M u 8 1. 129 S lainsl1.110 3. 46 IS 1 4 . I 18 -0,4298 84.514-4.0 > 14 14.9 8:1 5.2906 i$.JeS 3.4041 (i 1. 117 S.411o i 1. 7 ist 2.uS44 84.119-1.I494 44.S42-4.142d 14.944 5.oV90 IS.3S1 2.91Sil N I 1. 14%S.2 144 41.846 2.0001 14.141-2.0144 I 4.%u-S. h2 8 84.9 %5.4S29 15.168 2. l u D g R I 1. h I 4.6191 51.754 8.8402 Il.8%-2.ullt i4.5Su-S. M 49 I4.941 4.0 til I S. 349 8. ludo y 8 1. 161 4.9961 11.742 n. 4 2Sil 14.841-1.4uS4 14.Soo-5.28 u1 14.918 4.1427 15.177 0. 4 4 U I J. lov 1.Saud 1 1. l M 8a.0110 34.111-1.lSli 14.514-4.treo2 14.919 3.6940 16.1u4 0.0414 8 1. l i t 1.402Sl 1. s %-0.0924 14.889~1.1290 14.632-2.2241 14.947 8.$ 4 4 4 8L M1-0.u941_ _ _ . _ _ _ _ . _ _ _ _ . ....._. . l' l u E PRESSullE TlHE PiniSSUHE TiuE PRESSunE T H4E I llE SSuliE TIME PflE55U4E TIME - PitE SSullE (SEC)IPSills ( SEcl .(PSIDI (SFCI (PSilli (SCC)(PSIO)ISTC)(PS101 ESEC)(PSina 15.402 0.0000 85.nto -3.1106 I4.220 0 16.412 3.0094 17.044 0.0000 11.462 - 3 ,u 711 15.410 0.0961 15.ulo-1.6059 14.220 2.3441 86.440 3.9932 87.054 0.5004 17.470 -3.1479 15.41n-0.0114 lb.n24-1.1409 14.216 4.2105 14.440 4.0216 17.042-0.0120 11.479 -1.9/99 15.424-0.4419 15.034-4.2160 14.244 5.4n%16.654 3.7321 87.071-0.4410 17.431-4.4252 15.434-1. I nu o 15.042-4.9175 14.252 5.9009 lo.oo$1.Ott :5 11.079-l.2410 17.495-5.8100 15.442-2.1040 15.061-5.5115 16.241 5.4452 16.411 2.1187 17.007-2.19ts i 17.604-5.1941 15.450-2.97S9 15.n59-S.1907 14.249 5.0017 lo.otti 1.2800 17.095-3.80u9 17.512-o.0'298-IS.4S9-3.6041 15.041-S.1904 I4.2tl 4. 3095 14.449 0.4594 17.104-3.1455 17.520-$.4126 15.447-1. tidS o 15.el15-4.8944 14. 2 t15 3.8212 l o .o9ts 0.0180 17.182-4.OS9 3 17.529-4.3u49 1S . 4 15-1.4542 15.001 -2.3031 14.29t 3.4494 lo. lon-C.0997 11.120 -4.02uo 17.517-2.4040 , 15.4d1-1.d767 15.898 0 14.102 3.7140 16.744 0.0000 if.129 - 3. el 4 32 17.645 O.15.494-1.6149 15.900 2.3231 16.380 3.9502 14.125 0.0191 17.137-3.'1141 17. % 4 2.42u4.15.499-1.1206 is.90u 4.2111 14.118 3.9 0:14 16. J 11-0.0110 17.845-1.8963 17.542 4.4240 15.S01-4. I vtsS 15.914 5.4177 14.127 1.6994 14.739-0.4597 17.154-4.1Ho2 17.570 5.6027 15. Slo - 4 . t: 14 6 15.924 5.1494 16.11i 1.0S45 14.147-I.2109 17.142 -5.0927 17.579 a.8810 15.524-S.499d 15.932 5.59a0 16.141 2.8594 lo.lso -2.4703 81.110 -5.7456 11.501 5.hto2 15.5 32-5.14ua 15.941 4.9408 16.1S1 1.2200 16.744 - 1. bl i o 11.179 -o.00iu 17.595 5.1 H 14.16.540-S.3448 15.949 4.2719 16.140 0. 4 % d to.712 -3.7124 17.8u7-5.tH 10 17.404 4.464S 15.54,1-4.lodi 15.967 3.1910 14. 160 0.0187 16.700 -4.0J11 17.195 -4.3461 11.682 3.944:1 I S. Mo-2.2u15 15.965 3.o174 16. 114-0.09h6 14. lH9-1.9911 17.203 -2.3066 17.428 3.u014 15.564 0 15.911 3.7434 lo.lue 0.0000 16.791-3.8094 17.232 0.17.429 3.9810 15.51)2, 108S 15.902 3.9217 14.192 0.0909 14.005 -3.1089 17.220 2.40lo 17.437 4.100i 15.Sul 4.1944 15.990 3.vS lo 16.401-0.ul 7 14.t:1 1 - 3. u4 :0 17.224 4.30S8 17.444 4.8 31d IS.Su9 5.190S 15.998 3. 44 J )85.409-0.4557 16.022-4.3417 17.23l 5.4127 11.464 3. t: 324 y 16.591 5.7967 14.004 3.0279 so.417 -:.2201 16.010 -S.Oluo 57.245 a.0S91 17.462 3.1644 2 6 15.402 5.5414 14.014 2.1407 16.425-2.8597 14.0 D1-5.49S8 17.2S3 5.1964 11.418 2.2312 IS.dll 4.91/1 84.02)1.2094 16.414-1.0$44 14.047-5.9410 17.242 5.1379 17.419 f . 24 39 15.622 4.2349 16.011 0.4566 14.442-1.o997 16.4S5-$ . $ 119 17.270 4.425l 17.onu 0.4720 I S . 6 30 3.7609 16.039 n.08:4 14.4SO - 3.9 uel e to.no)-4. Mdl I F.2 7d 3.9290 17.o94 0.0128 IS.o M 3.60S9 16.047-0.0930 14.453-3.9502 l o.H il-2. M 46 17.241 3.1479 11.104-0.1024 IS.644 3.7407 14.055 0.0000 14.447-3.1340 14.0u0 0.17.29S 3.u173 17.78)4 00tn IS.oS4 3.uuvo 14.064 0 . 0 9:10 14.43S-1.6694 l o . Hutt 2.3150 17.101 4.0444 11.728 0.8024 s IS.ool 1.9 8 V )14.072-0.0186 14.401 - 1.16212 14.8896 4.1164 17.182 4.09S4 17.729 -0.0122 <, 14.471 3.oiSo 14.000 -0.4Sli 16.498-4.1494 lo.905 5.5418 17.120 3.1969 17.1318-0.4720 IS . o IV 3.004o 14.000-8.2094 lo.SOO-S.OO HB i4.91 1 4. 00iti i7.32H 3.3145 17.744 -l.2619 (t)IS.ont 2.3222 16.096-2.84011-lo.Sud-S.64S2 lo.921 5.74So 17. 117 2.281S 17.7% -2.2118 IS.69S 1.19H9 16.105-1.0200 lo.Sto-S.9009 14.v29 5.tN 2 7 13.34S 1.2527 11.141-3.4444 M 15.701 0.4471 14.113-3.6434 14.924-$.4nS4 14.95n 4. .p:42 17.1'21' O. 4 4 hl 17.774-3.86327 IS.782 0.0115 16.121 - 1.V i14 14.512-4.2101 16.944 3.16962 I I .142 0.0820 87.100-4. I ll u , , IS.720-0.0911 14.829-l.9214 16.548-2.3419 lo.v54 3.7 447 17.110-0.808S 37.7u0-4.800i$15.12d 0.0000 16.137 - 1.7418 14.S49 0, 16.96 )1.t4 12 17.110 0.0000 11.194 - 3.v i l d g<15. l M 0.0918 16.144-1.6 814 s o.Mi 2.1440 lo.Vil 4.02H4 17. )ni 0.10l$8 7.t:0's- 3. H0 0 4 N IS.144-0.011S l o. l *2 4 - 1.191u 14.S6')4 . 10:52 lo.979 4.0693 1 7. 19S-0.0828 17.083-3.9440 15.152-0.4414 14.142-4.2120 14.574 S.5 140 l o.v utt 3.74S4 ll.401-0.4479 17.422-4.4646*e-a 15.161-1.1990 14.170-4.9601 lo.Su2 5.9510 16.994 1.lud9 11.482-l.2S20 87.1810-S. lu ll Ch D'14.749-2.1221 lo.419-S.S960 lo.S90 SJ4941 17.004 2.8900 11.420 -2.2874 17 d la-S.0402:d-~~~u N IS. 711-l.0087 14.107-5.u94 14.599 5.0479 11.012 1.2487 17.420-1.1166 11.H47-o. Il 6 5 " R IS los-1.6 64 lo.195 - S. 4 174 lo.ool 4.64to I7.028 0.44 17 17.411-1.19:49 17.0 %-S.4424 4 IS.19?- 3.989 )14.201-4.2138 lo.olS 1. sto l o $7.029 0.0189 17.44S-4.09S4 l l.aso l-4.4239 g*IS uus-1.uu94 84.211-2. 12 35 14.628 3.1089 11.017-0.6006 11.4$4-4.0641 O t -J Ch E U U E E M M M M M g g g.g g ..._._._____TIME PnESSURE TIME P11ESSunE TiuE PHESSunE TI88E PHE SSunE TIME PRESSunE TIME PliE SSilflE ISEcl IPSIDI ISEcl I t'S IDI ISEcl IPSIDI MEcl IPSIDI ISECl IPSIDI ISCCI IPSifu 17.800 0 10.301 3. 91114 IH.725 0.0000 10.150 -4.0524 19.579 0 20.010 4.1599 17.1100 2.4500 1:1.310 4.4731 10.73)0.3052 89.459 - 3.9 1110 39.5837 2.5601 20.089 4.3606 Q 17.097 4.4634 10.310 4.2055 10.742-0.0125 19.847-4.1011 19.596 4.6639 20.027 4.3919 17.905 5.7312 10.327 3.9010 10.7S0-0.047 19.874 -4.o250 19.605 5.9909 20.016 4.0157 IT.914 4.1673 18.315 3.2200 ifl.150-l.2919 19.104-5. M99 19.413 o.4445 20.045 3.8658 17.922 5.9001 10.343 2.2778 111.747-2.2914 19.191 -o.0404 19.422 o.loS1 20.053 2. Yl01 17.931 5.2297 1 11 . 3 S 2

8. 21164 10. l75-3.2494 19.202-o. 1127 19.4 10 5.4447 20.042 1.1440 17.939 4.5041 10.340 0.4004 1 14 . 7:14

-3.9354 19.210-5.0049 8 9. o ))4.7066 20.018 0.5019.g II.947 4.00GO 11.369 0.0124 10.192-4.24213 19.249-4.S429 19.o44 4.1790 20.019 0.0129 17.954 3.U IS I 1:1.377-U.8042 l u.tlu t-4.2804 19.227 -2.5454 19 oSo 4.0075 20.Ond-0.1009l1.944 3.9464 10.1:16 0.0000 14.H09-4.0469 19.216 0 19.465 4.8219 20.097 0.0000%17.97)4. 8 lo9 111. 394 0.1042 148.458 0 - 3.00 !$ 19.244 2.5170 19.614 4.3220 20.105 0.1019%17.9'4.8445 10.403-0.0824 lit .fl24-4.0741 19.2S8 4.42 14 19.4d2 4.1%d 20.814-0.0829 17. bu' 3. tloo l Ill . 4 81 -0. 40tri 10.451S-4. Sal 46 19.248 5.91uu 19.498 4.0405 20.123 -0.SO20 11.900 3.1925 148.419 - l . 2 tioS 1 H. 88 41 -5.3229 19.210 d. 31165 19.499 3.3149 20.111-1. 1448 Itl.nuo 2.2S78 in.42n -2.2112 10.0%2-d.0051 19.279 d.fil7 19.700 2.1S35 20.140 -2.3192 P 145.085 1.2158 10.434-3.2209 1u.840-4.2 112 19.207 5.4872 19.747 1.3124 20.849 -1.loS2 10.021 0.4762 141.445-3.9011 IH.Ho9 -$.0151 19.294 4.44S6 19.72%0.4974 20.857 - 4.p !Su lu .012 0.0122 1 11 . 4 S 3 -4.2055 10.u71-4.5421 19.104 4.1414 19.714 0.0820 20.164 - 4.191> 10.040-0.1011 10.462-4.1734 14. 81H4-2.4914 19.311 3.9124 19.742-0.l000 20.175-4.1608 10.0l0 0.0000 19.410 -1.9ulo lit . H 94 0 19.321<.04dl 19.751 0.0000 20.1113-4.1599 Id.Di7 0.1011 118.479-3.n492 116.901 2.5457 19.110 4.24S3 19.760 0.8000 20.192-4.0425.H.OoS-0.0*21 18.407-4.0156 10.988 4.5010 19.119 4.3840 19. 7.*Ja-0.0120 20.204-4.2841 Y'u.074-0.4'lo2 10.494-4.5442 14.920 5 Wito 19. 34'l 4. 0)S)19.777-0.4974 20.209 -4.7477 '4.0u2-l.27S2 Isl.SO4 -S.2fo2 14.924 o.3121 19 b4 3.1049 1 9 . 1684 -1.3125 20.284 -5.5825 lu.090-2.2512 111.582-5.9526 t il.911 4.0S01 19.M4 2. 1100 19.794 -2.35uo 20.227-o.2891 u i lb.OV9-1.1926 10.521-o.2228 10.944 5.1499 .19.J13 8.3200 19.D01-3.3140 20.235-o.5007 141.107-3.hool 10.529-S.1448 lo.9S4 4.o249 19.101 0.49 12 19.8188-4.040$20.244-o.0431 2 1 t2.116 -4.lous t o S ia - 4. SO 2n 10.941 4.8071 19.190 0.0827 19.1120-4.3SSu 20.253-4.1045 14.124-4.1149 1:1.544-2.4715 4:1.9 78 1.0140 19. 199-0.8070 19,8129-4.32211 20.246- 2. 5t12 2 10.838 -1.94oo 18.555 O.14.960 4.0924 19.407 0. OMO 19.d ll-4.1219 20.270 0.lu. 4 48-3.ohl 10.561 2.4916 l u .9 0tl 4.2419 19.416 0.1010 19.8146-4.00/5 20.279 2.604/5 115.149-4.i)000 ill .512 4.5429 1:1.991 4.2003 19.424-0.0427 19.0 % - 4.17 vit 20,20u 4.74S$lat . l St! -4.SO 4 2 188.500 b. il lS 4 49.00%3.9704 19.411-0.49 1)19.4841-4.1044 20.296 4.0957 ill . l oo ~5.2297 10.5u9 4.2 112 19.084 1.2108 19.448-1.1209 19.8272-5.444l 20.105 4.$5 72 lll . I IS -5.0002 I tl.59 7 d.0053 19.022 2.38 14 19.490 -2.1848 I V. liiso-o . l oS 3 20.384 6.2731 Ill. i ti l-o.lol)10.606 5.l?id 19.011 l.1091 19.4S9-3.3010 19. tit:9-o.444S 20.122 5.5602 10.191-5.7 132 18.414 4.5044 19.019 0. 4 tin 9 lo.441 - 4. nb 4 19.uvo-5.990d 20. til 4. Inu9 18.200-4.4412 10.623 4.0181 19.044 0.0824 19.414 - 4. 31 tlin 19.904-4.641:1 20.140 4.2529 o to Ill.2Od-2. 4 4 9tl 115. 4 11 3.90 h 19.0So-0.8061 19.444-4.2d%2 19.985-2.SS90 20.149 4.0776 g g M 4 10.217 0, 10.640 4.0149 19.04%0.0000 19.491-4.0448 19.924 0, 20.341 4.1948 U N 10.22$2.4143 lu . 4 4:1 4.2806 49.014 0. lool 19.402-1.9124 19.912 2. Sis 2 4 20.146 4. 19:14 14.231 4.6010 id.oSJ 4.2424 19 .01l2-0.0824 19.510-4.8415 19,948 4.1044 20.115 4.4320 e A tl . 2 42 5.7041 10.64%1.91So 19.098-0.4u90 19.S19 - 4. ooS 1 19.9%0 4.0432 20.30)4.1118'10.250 4.2228 1H.414 3.2494 19.099-1.1094 19.521-S.4812 19.950 a.500tl 20.392 1.3945 g" N tal.249 S.9625 Ill . on 2 2.2911 19.4018-2.1811 19.S lo-4.1887 19.941 A.2498 20.408 2. 1994 j k i ts . 2 A l S.J lo t in.oVI l.291:4 19.144 - 3. fles2 19.544-o. h15 49.914 S.S124 20.480 8. 3% 7 j 10.216 4.5448 181.499 0.4441 19.425-1.9104 19.551-S.95HI 19 .9884 4.747o 20. 4 t ti 0.SGos 14.206 4 . 0 15 S IH.700 0.0125 19.118-4.2001 19.S42-4.42 12 19.99.1 4.2842 20.421 0.08 kl 1:1.291 1.tM92 10.786-0.80S2 19.142-4.24ft: 19.510-2.$114 20.001 4.0425 20.434-0.10%I Tin 8E PRESSURE TINE .PRESSO4E TIGE PRE S5ul:E Ti4E PDE SSURE TGME PnUSsunE TIME PRE SSililE ISEC)(PStol (SEcl (PSinn (SEcl (PSini (SEcl (PSID)(ST )(PSID)I SEC)(PStol 20.444 0.0000 20.001-4.2323 28. 123 0 21.765 4. 3484 22.212 0.0000 22.462-4.4844 20.451 0.10V0 20.090 -4.1820 21.310 2.4725 28.774 4.5500 22.228 0.1846 22.471 - 4. 209tl 20.462-0.0138 20.099-4.2894 21.319 4. f t tW11 28.743 4.505d 22.2 30-0.011 22.400 -4.4741 20.478-0.5043 20.900-4.0101 28.148 6.2S 19 21.192 4.2516 22.239 -0.620) 22.449-5.0312 20.479-1.3S50 20.984-5. outi l '21.357 o.72ld 28.601 3.5119 22.24:1 1.4844 22.490 -5.0497 20.400-2,3999 20.92S -o.3271 28.164 4.4140 21.1680 2.41129 22.' . 0 3V 22.701 -o.5997 20.497-3.19 4 20.934-o. o l ill 21.175 5.704o 21.08u 1.4027 22.t- 1., 45 22.186' -o.098n 20.50S-4.1882 20.943-o. 8 4t:2 21.3u)4.98 12 28.027 0.5210 22.21-4.2u94 22.125-d.4823 20.584-4.4120 20.9S2 - 4. 7 ti o ) 28.192 4.3611 21.tlio 0.08 15 22.201-4.6248 22.734-4.9921 20.521-4.39d4 20.960 -2.6274 28.408 4.1014 21.114S - 0.88 37 22.292-4.58W 22.743 -2.1402 20.$ li-4.1960 20.969 0 28.480 4.1060 2 8.alu t 0. 00f k)22.308-< . 3: 22.JS2 0 20.640-4.0176 20.9 7 tl 2.6499 21.449 4.$124 2 8.no )0.18 17 22.310-4.25+22.148. 2.7411 20. $ 49-4.2529 20.9:s1 4.812 74 28.42d 4.S478 21.072 - 0.01 15 22.119-4.Jf2 22.710 5. 0 3 M 20.550-4.7609 20.995 6.2018 21.437 4.2819 28.8141-0.5219 22.323-4. G >M 22.139 d.4640 20.564-5.5603 21.004 6.4106 28.445 3.4024 21.19 0-1.4020 22.337-S .n N 22.700 d.95So 20.S75-d.2711 21.083 o. 3til a 21,454 2.4421 28.1699-2,4ll M 22.344-o.T 22.197 a.4542.20.5u4-o.5512 21.022 5.4S44 28.441 8.1909 28.900-3.5120 22.3S5-o.0414 22.306 5.uvut'20.592-o.0956 21.~0 31 4.fi ll 7 21.472 0.5894 23.914 -4.2514 22.164-d. 399d 22.ul5 5.0790*20.601-4.7453 21.040 4.3264 28.481 0.083%21.925-4.53S6 22.173 -4.0580 22.324 4.5182 20.610-2.4046 24.04d 4.8408 28.490 -0.812l 21.914-4.5500 22.302 -2.1875 22.014 4. 325 1 20.619 0 28.057 4.2ddo 21.499 0.0000 28.941-4.1484 22.398 0 22.u41 4.4510 20.627 2.4273 21.064 4.4145 28.607 0.1827 21.062-4.2tu9 22.4(11 2.1404 22.uS2 4.6657 20. o M 4.7066 21.075 4.6036 21.584-0.0814 21.948-4.4001 22.409 4.992S 22. Hot 4.701 )20.64S 6.1403 2 8.0d 4 4.8022 21.525-0.$195 21.070-4.9549 22.410 6.4129 22.uf0 4.3609 p e 20.454 a. o l it! 28.092 3.45 1)21.514-l.1980 21.979 - 5. 74 10 22.427 6.09uS 22.079 3.6005 2*20.662 o.3211 28,101 2.4413 23.54) -2.4622 21.968 -o.4905 22.414 o.5996 22.H43 2.54So 20.678 5.doul 21.110 1.1798 21.5S2 - 3. 4 n 25 21.997-o. 7:144 22.445 5.0494 22.uv7 1 . 4 1:11 20.on0 4. u 102 28.119 0.5150 28.568-4.2879 22.006 -o.3860 22.454 5.01:s l 22.904 0.5310 2 0 . 6449 4.2094 24.120 0.0812 28.570-4.5 4 f t 22.085 - 4.909 u 22.441 4.4742 22.915 0.08 14 20.ovl 4.1124 28.834 -0.8817 21.5 7a-4.5824 22.021-2.6949 22.472 4.2n90 22.924-0.1446 20.706 4.2123 28.14S 0.0000 28.5H7-4.1050 22.012 0 22. 4 tli 4.484S 22.933 0.0000 k")20.786 4.4144 28.854 0.1887 21.594 - 4.1:1 14 22.048 2.7877 22.490 4.4214 22.942 0.8145 20.724 4.4101 21.161-0.083)21. oui-4.361)22. trio 4.9512 22.499 4,oo27 22.992-0. 01 M Q 20. I 11 4.8464 21.172-0.58S8 21.os4-4.9833 22. tri9 4.1S99 22.5 45 4.1258 22.968-0.5171 20.748 3.4214 21.100-1. 3792 21.421 -S.7047

22. 0af t o.0444 22.687 3.5750 22.970-l . 41ts2 h 20.7S1 2.4205 21.189-2.4444 28.612-4.4140 22.077 d.5450 22.524 2.5247 22.979 -2.5457 20.759 8.1o14 21.190 - 3.4S il 28.o40 -o.7274 22.0u6 5. uit: 3 22.535 1.42o1 22.9u0-3.o004 20.7ad 0.S806 28.207-4.502)28.449-o.25 10 22.095 4.9944 22.5 4A . O.5124 22.997-4.1609 20.776 0.0838 28.214-4.5007 28.asu -4.uon5 22.104 4.4172 22.553 0.0837 23.006 - 4. 701 ) , g:u 20.7us-0.1100 28.225-4.414S 28.ool-2.6722 22.11 )4.2541 22.562-0.1156 23.015-4.6451@20.794 0.0000 21.233-4.2606 21.olo 0 2j.822 4. 3719 22.578 0.0000 e 21.024

-4.4580 20.001 0.1100 28.242-4.8401 24.6u5 2.69S1 23.131 4.Su94 22.5u0 0.815o 21.033 -4.3251 M 20.d88-0.0112 28.261-4.1264 21.o94 4.9099 22.140 4 o24I 22.5u9-0.0111 21.042-4.511)&" 20.020-0.$107 28.2o0-4.07 1 28.701 6.3069 22.149 4.209)22.590-0.6127 21.0S8-5*.0799%.--.20.029-l.3415 21.269 -S.oSoS 21.Ill 6.hl44 22.!Su 3.5484 22.o07-1.4264 21.0o0-5. u 9 u 8 & w N 20.0 kl-2.4204 21.277-o. 3tsl o 21.720 d.4905 22.lo?2. 50 ): 22.681-2.5244 23.070 -o.4543 N$20.044-3.4217 21.204-o.4104 28.729 5.lS29 22.11a 8.4145 22.624-3.5710 21.019-o. 9%4 p W N 20.uw-4.844l 21.295-o.2010 21.733 4.9548 22.105 0.S232 22.615-4.3252 21.000-o.46S9. 4.4101 21.104-4.H214 21.741 4. 4 fkl2 22.894 0.04 16 22.644-4.6627 21.097-5.0 816 U 20.064-O 20.u13' -4.4164

21. 38 3-2.o494 28.766 4. 21:19 22.203 -0.1846 22.651-4.6274 GZ CC W M M M M M M e M M mm M mmmma m

.____, m" TIME PflES$uflE TiuE PilESSURE TiuE Pile SSunE TIME PflESSURE TIME PilESSullE Th8E Pile SSURE r f ISEcl~ IPSIDI ISEcl IPSIDI ISEcl IPSIO)(SEcl (PS108 ISEcl (PSIDI (SEcl IPSIDI h 9 21.115 O.23.572 4.5240 24.033 0.0000 24.490 -4.5910 24.967 0 25.440 4.7060 23.124 2.735tl 21.602 4.7422 24.043 0.1894 24.507-4.4472 24.976 2.0909 15.449 4.9330 21.131 5.0758 23.593 4.7704 24.052-0.0142 24.517 -4.6592 24.945 5.2012.5.459 4.9107 C, 3 M 23.842 6.5898 2_f. 6 00 4.4 325 24.041-0.5501 24.526 -5.2445 24.995 6.7130 2:. 4aa 4.4100>23.1$1 7.0127 23.609 3.4594 24.070-1.47 35 24.515-o 0914 2S.004 7.2974 25.473 3.8040'21.lol 4.7000 23.o11 2.51174 24.000-2. 60d 1 24.545 -4.11725 25.014 6.9013 25.407 2.6915 C 23.870 5.9465 21.627 8.4417 24.049-3.4u92 24.554-7.5011 24.02)6.1819 25.497 8.S205 21.179 5.1215 21.637 0.6453 24.000-4.46s11 24.541-o. 67t10 25.0 11 5.3295 25.506 0.5413-23.1018 4.5401 21.444 0.0140 24.807-4.0810 24.573-S.1937 25.042 4.7310 2S.514 0.0846-23.191 1. 340tl 21.oS5-0.1 1 n 4 24.117-4.740S 24.Su2-2.85 15 25.0S2 4.5 379 25.525 -0.8212 -o: d 21.204 4. 4t:75 21.oo4 0.0000 24.124-4.5405 24.S98 0 25.048 4.do97 2 5.S 15 0.0000 23.28S 4.7040 21.673 0.11:14 24.115-4.4117 24.601 2.nfo)25.070 4.11950 25.544 0.8212 21.225 4.7199 23.401 -0.0848 24.144-4.o221 24.o10 5.2401 2S.08H 4.9123 25.SS4-0.0846 23.214 4.1967 21.492-0.54S9 24.154-5.2049 24.489 6.7110 25.0n9 4.5152 25.541 -0.5619 %21.24)3.6108 21.101-l.4ala 24.161 -4.0411 24.629 7.2406 25.099 3.7775 25.571 -l.5204 21.252 2.5645 23.180 -2.5815 24.872-o .u l tla 24.610 A.9249 25.800 2.6707 25.562 -2.o984

  • IJ 21.268 1.4499 21.719 -3.oS97 2 4.1188-1.1247 2 4. 6 4 tl 4.1190 25.110 1.50tli 25.$92-3,n069 21.270 0.5414 23.729-4.4125 24.198-4.4250 24.oS7 5.2 fluo 25.827 0.5414 25.402-4 olod 23.279 0.0139 21.734-4.7104 24.200 -5.1575 24.646 4.4968 25.1 17 0.084S 25.488-4.9707 23.209-0.4115 21.747-4.1422 24.209-2.u 300 24.674 4.502a 25.144 -0.8222 25.621-4.9 110 21.290 0.0000 21.7bo -4.5240 24.210 0 2 4.ot15 4.6114 25.856 0.0000 25.610 -4.7040 21.3ul 0.1875 23.745-4.1961 24.220 2.415 17 24.o94 4.8569 25.145 0.1222 25.d40 - 4.S 7 12

_-Y 21.316-0.0140 21.775 -4.5051 24.237 5.1969 24.704 4.09 49 25.874-0.014S 25.649 -4.7690 7 e 21. 125-0.5415 21.7d4-S. l o 12 24.244 6.67til 24.781 4.5194 25.1n4-0.6615 25.6S9-S. filo 3 21.114-l.4S00 21.79 )-S.V949 24.254 7.84117 24.721 3. 74518 2S.891-l . 50nd 25.640 -o.21ol 21.141-2.5444 21.n02-o. 74 h 24.24S o.0725 24.712 2.6499 2S.201-2.4100 25.670 -1.0156 2 23.152-3.4108 23.011-7.0697 24.214 o.0985 24.348 d . 4910 25.212 - 3. 7776 25.ou? -7.3548 e 21.342-4.3947 21. t:21-o.S720 24.234 5.2444 24.751 0.SS90 25.222-4.5751 25.497 -o.ulo4 2 3. 811-4.7899 21.H 30-5.8162 24.291 4.6592 24.7o0 0.0044 25.2 11-4.9123 25.104 -5.1228 21.360-4.7019 2 3.tl 19-2.n0H2 24.102 4.4672 24.Jo9-0.1213 25.241-4.0950 25.786 -2.9212 21.109-4.4u75 21.u40 0, 24.182 4.5970 24.179 0.0000 25.250-4.6697 26.125 0, 21.190-4.1600 2 1 . 41 S 7 2.48118 24.124 4. n 814 7 24.701 0.128 1 26.2S9 -4.5179 25.715 2.94]>21.401-4. 5 4 ti l 21.H A F 5.1577 24. 110 4.0$S5 2 4. lvtl-0.0144 25.269-4.7110 25.744 5.1612 21.4to-S.1216 21.1676 o.4258 24.140 4.5019 24 u07-0.% 98 2$. 213-S.3295 25.7$4 d nu98 21.424-S.9445 2 3.titl'a 7.1241 24.149 3.18154 24.084-1.4911 25.204-4.8000 25.744 7.4107 c 21. 4 h-o.7009 21. tiv 4 a.tl l ud 2 4. lSil 2.4298 24.024-2.6500 2S.291-4.9ul3 26.773 1.0497 28.444-7.0827 24.904 a. 0 412 24. 164 8.4052 24.n15-1.1402 25.301-1.29F4 25.101 d.2u40: 21.45)-o.6890 21.913 5.2040 24. 171 0. % 44 24.t45-4.5197 25.316 -4.7011 25.192 5.4122~21.462-5.0749 23.922 4.422)24.104 0.0141 24.854 - 4 .819 89 2S.J24 -5.21:10 25.1102 4.uGod;o Q 21.471-2.7uS$21.911 4.4111 24.19S-0.8201 24.Hol-4.11449 26.314 - 2.819:16 25 tll2 4.4001~%21. 4t10 0, 21.941 4.5605 24.4u5 0.0000 24.073-4.6114 25.145 O.25.421 4.1422 f3 21.490 2.0004 21.950 4 . 71:0 S 24.414 0.8201 2 4. Hel2-4.50Jo 25.354 2.9284 2S. st 18 4.9180 (-25.n40 6 . 00 :19 ( Os 21.499 5.1844 21.9$9 4. H i ld 24.421-0.0141 24.1198-4.4942 2i . 144 S.1223*y[21.Stil o.5728 28.949 4.46u2 24.411-0. % 41 24.901-5.2'stsi 25. 111 6.u loS 25.050 4.4461 s 21.581 7.0697 21.973 1.ouvi 24.442-1. 4uS 1 24.910-o.4 898 25.101 7.1541 25.IIS9 3.n lal y 28.S24 6.7484 21.9ul 2.40H2 24.4Si-2.4292 24.920-o.9270 25. 192 7.01%5 25.tlo9 2.1822 C s 21.S14 5.9940 23.994 1.4184 24.461-3.1301 24.929-7.240o 2S.402 o.2 160 2S.nl9 e I .S 122 i' CD y 2 8.S 44 b. l o l2 24.006 0. %O2 24.410-4.5040 24.910-o.7509 2S.488 5.3109 26.u0u 0.S722 (x 21.5S4 4.5451 24.016 0.0842 24.479 - 4 . I't S W 24.94H-S.2899 2S.428 4.7497 25.uva 0.0141 w 21. Sol 4.No1 24.024-0.8194 24.4t19-4.18801 24.vS7-2.11764 25.410 4.5732 26.901-0.1241.. - . . . O O O'TIME PHEssurlE TIuE PHESSunE Tis 4E PitESSOHE T14fi PRE SSURE TIME PRE SS8mE TIME PDESSuuE (SEC)(PSID)( Stici (PSIDI (SEC)(PSIon (SECl (PSlal (SEcl IPStol (SEC)(PSIOl 25.917 0.0000 26.399 -4.7104 24.084 0 27.374 4.lklo2 27.072 0.0000 20.373 -4.9575 25.927 0.1248 26.400-4.d41S 24.094 3.0110 27. 3tla 5.4219 21.002 0.8200 28.303 -4.0115 25.9 %-0.0141 24.480 - 4. tl 411 24.904 5.4855 21.396 5.1410 27.H92 -0.0853 24.393 -5.0247 25.946-0.5722 24.4211 -S.4515 24.914 1.0442 27.405 4.74173 27.902 -0.5939 2H.401-5.4S60 25.965-l.5323 26.437-4.3120 24.924 1.5797 27.415 1.9S24 21.982-1.5901 20.413 -o.5691 25.965-2.7123 24.447-7.1417 24.914 7.2513 27.425 2.1945 27.922-2.0850 20.423 -1.4815.eS.975-l.0142 26.4S7-1.4472 24.941 o.4271 27.43S 1.5717 21.912-3.9814- 20.413 -7.7471 25.904-4.o463 24.464 -4.9415 24.961 5.515d 27.445 0.5095 27.948-4.0223 20.443 -7.2017 25.994-S.00d9 24.414-5.4019 24.941 4.9140 21.4$5 0.0152 27.951-5.1907*20.4S3-5.6065 24.00)-4.9180 24. 4tla -2.9641 24.973 4.7114 27.445-0.1279 27.948-5.I$93 26.461 -3.0773 24.081-4.7422 26.495 O.24.981 4.tl50 4 21.475 0.0000 27.971-4.9249 2fl.4 7 3 0 24.022-4.6001 24. sus 2.9841 24.992 S.0841 21.4us 0.1279 27.938-4.7029 2d. 4111 3,0W5 24.0 12-4.006S 26.S85 5. 4 4 4ft 21.002 5.1211 27.494-0.0162 27.991 - 4. 9 ad o 2d.493 5.6440 *24.042-5.4123 26.524 d.9940 21.012 4.1522 27.504-0.5696 20.001-S.4111 20.50)1.2S D l26.0S4-o.2H48 24.534.1.5235 27.022 3.9214 27.584-l.S783 2H.011-d.5222 28.584 7.0025 i-26.041-7.01197 24.544 7.197o 27.032 2.1740 27.524-2.7944 2u.021-7.1603 2d.524 1.4645 24.010-7.4107 24.5S4 o.3794 27.048 8 S478 27.514-3.9527 20.018-7.4985 2tl.534 4.4142-26.000-4. ut190 26.541 5.4944 27.054 0.Sil5 2 27.544 -4.1!!71 2:1.0 48-7.8500 20.544 5.4904 24.090-S.3430 26.573 4.41794 27.061 0.0858 27.594 -5.1480 2n.051-5.5442 20.5S4 5.0406 2o.099-2.9434 24.503 4. o lini 27.011-0.1270 27.544 -5.1289 2G.041-3.05S2-20.564 4.H520 s 26.109 0 26.592 4.0144 21.031 0.0000 27.571-4.h862'20.078 0 2H.574 4.9930 p y 24.110 2.9441 24.602 S.0444 27.000 0.1270 27.531 - 4. 74:82 20.005_l.0715 20.504 5.211fl 24.124 5.4048 24.412 5.00$2 27.100 -0.0158 27.591-4.9524 2a.091 S.6041 2d.595 5.2737 26. l lti 4.9 41 o 26.622 4.1810 s.27.180-0. 5u5 )27.401 -5.5764 20.101 7.2010 20.605 4.0919 2 24.847 7.4672 2 4. o 11 3.u945 27.120 -1.5472 27.613-4.4140 28.111 1.7418 20.415 4.01u9 24.847 7.8417 24.448 2. 7S 14 27.130 -2.1148 27.421-7.3049 241.128 7.4185 20,625 2.ll%d 24.147 4.3819 26.oSt 1.5564 27.140 -1.9217 27.o11-1. o M 7 20.1 18 6.5693 20.615 1.41.12 26.116 5.4515 26.441 0.5 109 27.149 -4.1522 21.443 -1.0908 28.848 5.6579 20.445 0.o024 26.104 4.0431 26.410 0.0149 27.859 -S.1211 27.651 -5.S250 2u.lSI 5.0246 24.655 0.0155 24.894 4.d 415 2 4.4410-0.1240 27.169 -5.On41 27.442 - 1.0110 20.142 4.H875 2d.ood-0.1307 24.20s '4.7144 26.490 0.0000 27.179-4.nS0 3 27.472 0 23.812 4.9575 20.414 0.0000 24.285 5.0009 24.700 0.8240 21.109-4.7814 27.4H2 1.0% 4 23.102 5.1964 20.404 0.8 107 h 9 24.226 5.047s 26.109-0.0850 27.190-4.9148 27.692 5.5464 20.192 5.2363 20.694-0.0155 g g 24.2 14 4.4417 24.719-0,5810 2 7. 2 0>l-S . 51% I 21.702 7.8S01 2ts . 202 4.0512 20. 7M-0.6025 26.244 1.u 451 24.729-1.5S56 27.284-4.4274 27.782 1.4915 2H.282 4.0102 24.114-1.411)g 24.254 2.712d 26.110 - 2. 7S 14 27.22H -7.2511 27.722 7. h02 28.222 2.n 15 3'2J.126-2. sin i 26.268 1.54111 24.7411-3.6944 21.234-l.5197 21.112 o.5228 2:1.2 12 8.6017' 2:5.137-4.0190 W 24.271 0.5145 24.163 r4.7tio 27.247-7.0448 27.742 5.4171 20.242 0.5900 20.147-4 u920 O@26.20 )0.014d 26.743-S.0052 27.2SJ-5.4HS1 27.792 4.9h11S 2tl . 252 0.0164-23.157-5.2737 24.292-0.125l 24.777-5.04o4 27.247-3.0103 27.742 4.7,129 20.242-0.1290 2d.To? -5.2333 M f 26.302 0.0000 24.107-4.nl44 27.217 0 21.712 4.9249 2H.272 0.0000 2d.777-4.9929'24.142 0.12S1 24.797-4. 6 7tl5 21.207 3.0113 27.102 5.1503 20.2t:2 0.1290 20.787 -4.n520s Q_9 J--"'24. 121-0.0849 24.007-4.0796 27.297 5.5260 27.192 5.1947 20.292-0.0154 2tl .19 )-S.0o04 g N ON D 24. 131-0.5746 26.nlo-5.4941 21.301-7.09H2 27.002 4.0221 28.302-0.5002 23.u 01-5.4904-o.o l o ) f p lj o 24. 141-1.5419 24.u24 -o.1791 27.114 1.6 tS7 27.H12 1.9685 2a . 312-1.6080 2u.u80 w D 26. bo-2.7129 26. al 'Jo -7.1914 27.324 7.1049 27.u22 2.H149 2tl .122-2.nh4 20.820-7.4445 e 24.i40-3.nas4 24.n44 -7.sa n 2 i. n4 4.474o 21.n u 8.Sv02 2n. n2 -4.oini 2a.n u -F.uG25

24. 110-4.4081 24.855-4.9919 27.144 S.SloS 2 7.t 42 0.59 10 20.142 -4.n512 2d.040-7.2612lJ C! .. 119-S .o l l i 24.1845-S.4444 21.1i4 4.9S 2 )2 7.H42 0.0I S I 28.342-5. 2 86 )

2u .n Sit-5.6464.4 24.lu9-5.000d 24.075-2. 9 H0 4' 27.366 4.14H2 27.Ho2-0.820d 20. 14 ) -5.1944 2d .u od-3.099.1 CD M M M M M M M M M M M-M M m mm m m m -____q ATTACHMENT B li!CJLTIPLE SAFETY / RELIEF VALVE ACTUATION f i FORCING FUNCTION METHOUS j'TABLE OF CONTENTS j i SECTION TITLE PAGEli Bl.0 INTRODUCTION B-5 B2.0 RANDOM PARAMETERS B-6 , b2.1 Reactor Vessel Pressure Rise Rate B-6l-B2.2 Valve Setpoint B-6l-i B2.3 Valve Opening Time B-7!I B2.0 Quencher Bubble Frequency Distribution B-7-lB3.0 MONTE CARLO TRIAL SIMULATIONS B-13;I B3.1 Approach B-13 B3.2 Bubble Arrival Time B-14 B3.2.1 Calculation of Reference j Arrival Time B-14 B3.2.2 Adjustment of Bubble Arrival Time for Valve Setpoint Variations B-14 B3.2.3 Adjustment of Bubble Arrival Time for Valve Opening Time Variations B-14.B3.3 Quencher Bubble Frequency Variations B-15 B3.3.1 Adjustment of Quencher Bubble Frequency for Discharge Line Volume B-15 B3.3.2 Adjustment of Quencher 5ble Time History for Selee Frequency B-15 i 1635 041', B-i Rev 2, 12/20/79 _ - - I I t i'TA8LE OF CONTENTS (Cont'd) g i E SECTION TITLE PAGE B4.0 FACTORS AFFECTING PRESSURE DISTRIBUTION ON THE SUPPRESSION POOL BOUNDARY B-15=B4.1 Bubbi.e Pressure Attenuation B-16 B4.2 Line-of-Sight Influence B-16 B4.3 Combination of Multiple SRV Pressure Time Histories B-16 B5.0 FORCING FUNCTIONS FOR NSSS EQUIPMENT EVALUATIONS B-16 B5.1 Time Sequencing B-16 B5.2 Pressure Time Histories B-17 B5.3 Vertical Basemat Force and Overturning Moment B-1/B5.4 Fourier Spectra B-17 B6.0 STRUCTURAL RESPONSE ANALYSIS B-18 I I I I I I 1635 042 g.I B-il Rev 2, 12/20/79 .____ _ _ _!!ATTACHMENT B i LIST OF FIGURES FIGURE TITLE B2-1 Probability Density Function vs Pressure Rise Rate B2-2 Probability Density Function vs Valve Group Setpoint Variation B2-3 Probability Density Function vs Valve Opening Time Variation 2 B2-4 Probability Density Function vs Bubble Frequency j l B2-5 Quencher Bubble Pressure Tine History lBA-1 Basemat Load vs Time BA-2 Fourier Spectrum of Basemat Force BA-3 Fourier Spectra of Vertical Basemat Force 1635 043'B-iii Rev 2, 12/20/79- - ._ _ . . ,!l:[Bl.0 INTRODUCTION .This attachment describes the procedure for determining the safety / relief -valve (SRV) discharge 95-95 percent confidence level forcing functions that are imposed on the containment structure to obtain structural responses [which are used as input for the evaluation of equipment located within the containment. The procedure utilizes the randcm nature of several para-

I meters that significantly influence the phase relationship of the indi-(vidual air bubbles formed in the suppression pool during multiple SRV dis-charge events. The random variables that are utilized in this procedure p are 1) SRV Setpoint Tolerance, 2) Valve Opening Tims, 3) Reactor Vessel i Pressure Rise Rate, and 4) Quencher Bubble Frequency. Other parameters that influence the phase relationship are being studied for future appli-

, cation.4 The maximum positive and negative bubble pressures for each individual dis-charge location are determined by using the method described in Section r A12.6 of Reference 1. It should be noted that test data indicated random-g ness in the peak pressure amplitude which could also be used for determin-ing structural response. This is also being studied for future applica-tion.2 Of the SRV cases identified for consideration in containment structural de-t;sign (Table A4.4 of Reference 1), the expected bounding vertical re3ponse

~at equipac..t locations is based on the all valve case.

The expected bound-(ing horizontal response is based on either the single valve subsequent ]actuation, two adjacent valves, or the all valve case. The ADS case is )also evaluated. From each cf these four cases, the Fourier Spectra of the forcing functions for 59 Monte Carlo simulations of the event are plotted. A bounding forcing function is then selected in each of the frequency 1;ranges of interest for use in developing the dynamic responses at a selected location on the containment struct>re (i.e., basemat, drywell, L and containment). These dynamic responses are then employed for NSSS and BOP equipment evaluations. A dynamic time history analysis is performed to determine the acceleration time historie2, response spectra, and displace-a ments needed. Dynamic respoases for equipment evaluations are made by 1 enveloping the r(salts from the selected trial cases with the largest -Fourier Spectra magnitude in each frequency interval. For clarification, , an example is presented in Appendix B.A to this attachment. , B2.0 RANDOM PARAMETERS _B2.1.REACTOR VESSEL PRESSURE RISE RATE (PRR) ]The pressure rise rate distribution for BWR/6 plants is shown in Figure B2-1.The distribution is determined from an evaluation of BWR/6 transient The figure represents the probability density function for pres- , events.-j sure rise rates for events opening more than 2/3 of the SRV's, weighted by the relative occurrence of the events and averaged over all reactor condi-tions anticipated during the last 40 percent of an operating cycle. The l lower limit of 40 psi /sec is the minimum pressure rise rate expected to j open 2/3 of the SkV's. The upper limit of 140 psi /see has a high probabil-ity of not being exceeded for any operating condition. 3_j B-1 Rev 2, 12/20/79 1635 044':_ _ _... D**D*D'TY'CO c._a It should be noted that the PRR variable is only used in the all valve case Monte Carlo event simulations. B2.2 VALVE SETPOINT The setpoints for SEV's on BWR/6 are arranged in three groups with redun-dant logic trains consisting of a pressure transducer and three pressure g switches. The logic for the 238 BWR/6 design consists of one pressure g switch set at 1103 psi, nine on a pressure switch set at 1113 psi, and the remaining nine on a pressure switch at 1123 psi. A testability feature is g also included which utilizes pressure trip instrumentation. The tolerance 5 on tha nressure switch setpoints with this testability feature is based on a normal (Gaussian) distribution with a standard deviation of 2 psi as shown in Figure B2-2. For the grouped arrangement, the standard deviation lis applied to the group setpoints; thus, the valves within the group will 5 have the same adjustment. The SRV arrangement and pressure setpoints for the Mark III standard plants are identified in Figures A4-3 through A4-9 of Reference 1. The actual location of the quenchers in the suppression pool is defined by the pur-chaser.B2.3 VALVE OPENING TIME (VOT) Test data indicates that there is a normal distribution for the VOT with a standard deviation of 0.009 seconds as shown in Figure B2-3. lB2.4 QUENCHER BUBBLE FREOUENCY DISTRIBUTION (OB H A typical forcing function for a quencher SRV bubble with a frequency of 8 Hz is =hown in Figure A5.ll of Reference 1. The bubble lasts effectively g 0.75 seconds in the 'ppression pool. In the 8 Hz bubble, the pressure de-g cays to one-third of t he peak value over 5 cycles and a complete pressure cycle oscillation period lasts 0.125 seconds, 0.05 seconds for the positive pulse and 0.075 seconds for the negative pulse. For other frequencies, the

  • same damping definition applies, i.e., twocthird decay over 5 cycles, or 0.133 decay per cycle.

~The quencher bubble pressure time history in Figure AS.ll of Feference 1 is an idealized bubble model. For the purposes of this procedure a pressure time history curve is constructed by Essigning half sine waves to both the g positive and negative portions as shown in Figure B2-5. The P and g ratios and the positive and negative pulse duration peric2s are P g maintained. This provides a time history that is more representative of the test observations and allows for computer simulation. Quencher test data shows that the frequency of the air bubble is a function of the SRV discharge line air volume. The distrib fre-g quencies for a discharge line air volume of 50 ft.gtion of bubble is shown in Figure 5 B2-4 and is used as the reference for this procedure. This reference value is the SRV line volume from the operating plants from which the Quencher bubble frequency data was obtained. The normal distribution for the curve lhas a mean frequecy of 8.1 Hz with a standard deviation of 1.7 Hz. It is W truncated at thc minimum and maximum bounds of 5 and 12 Hz. I B-2 Rev 2, 12/20/79 R'ms m . . . _ _ _ _ -__--B3.0 MONTE CARLO TRIAL SIMULATIONS 33.1 APPROACH There are four SRV cases that are considered to get bounding forcing func- ]tions for the equipment evaluations. They are: i~Single Valve subsequent actuation -, i-Two adjacent valves .ADS valves -, I j-All valves _In each of these cases, 59 Monte Carlo trials are performed in which apprc-priate random variable adjustments are selected for the parameters listed

-in Section B2.0.

For the single valve subsequent actuation case only the quencher bubble frequency is varied. For the ADS two adjacent valves 7 cases, the valve setpoint tolerance and pressure rise rate considerations j are not incorporated for obtaining the forcing function because the entire group of ADS valves is simultaneously activated by a single signal. For

all val'e case all variables are considered.

!5 The all valve trials each consist of selecting a random pressure rise rate from Figure B2-1 and a random pressure switch setpoint for each group of SRVs using Figure B2-2. This information is used to compute the bubble _arrival time dif ference or separation between each group of valves. These bubble arrival times are adjusted for each individual valve by randomly _selecting a time variation due to valve opening time (VOT) using Figure 'B2-3.Once the bubbles are in the suppression pool, each bubble frequency is ran-domly varied by selecting a frequency from a unique distribution for the -discharge line volume involved. See Figure B2 4 for typical distribution for discharge line with an air volume of 50 ft3. The bubble time his- _tory for each valve location is then used to determine the forcing function on the suppression pool boundary by utilizing the methods described in 'Section A10.3.1 of Reference 1. _g For the ADS and two adjacent valve cases, each trial assumed that all valves are actuated together and then bubble phasing is adjusted by ran-J domly selecting a time variation due to VOT for each valve. Each bubble ]frequency is then randomly selected as for the multiple valve trials. For j the single valve case only the bubble frequency is varied. _;_B3.2 EUBBLE ARRIVAL TIME 5 B3.2.1 CALCULATION OF REFERENCE ARRIVAL TIME

  • The arrival time for each air bubble in the suppression pool relative to the lowest set SRV is a function of the SRV setpoint arrangement and the reactor pressure rise rate. Assuming no tolerance on setpoints, no varia-

_tion in valve opening time (VOT), and randomly selecting a pressure rise J B-3 Rev 2, 12/20/79 m 1635 046_ _ _ _ . _ . . . I I rate (PRR), the arrival times of the bubbles in the suppression pool are computed by dividing the nominal setpoint differences (i.e.,.sp = 10 and 20 psi for BWR-6) by the PRR. It should be noted that SRV discharge line lengths are not considered. For BWR-6 with nominal setpoints at 1103," 1113, and 1123 psi the time separation is 0.077 and 0.154 seconds, based upon PRR = 130 psi /sec. B3.1.2 ADJUSTMENT OF BUBBLE ARRIVAL TIME FOR PRESSURE SETPOINT VARIATIONS I Each Monte Carlo trial will include an adjustment of the bubble arrival times as calculated in Section B3.2.1 by alightly increasing or decreasing the valve setpoint for each group of valves. This is done by using a ran-E dom number generator code to select valve setpoint variation from the dis-g tribution shoun in Figure B2-2. B3.2.3 ADJUSTMENT OF BUBBLE ARRIVAL TIME FOR VALVE OPENING TIME VARIATIONS Each Monte Carlo trial will include an adjustment of the bubble arrival I time as calculated in Section B3.2.2 by slightly increasing or decreasing 3 the VOT for each valve. This is done by using a random number generator code to select VOT variation from the distribution shown in Figure B2-3. B3.3 QUENCHER BUBBLE FREQUENCY VARIATION B3.3.1 ADJUSTMENT OF BUBBLE FREQUENCY FOR DISCHAROC LINE AIR VOLUME l2 W As indicated in Section B2.4 the frequency of the quencher bubble is a function A reference line air volume g of 50 ft.gf the SRV discharge line air volume. has been selected to generate the bubble pressure timc history 5 shown in Figure B2-5. For each SRV discharge line volume a unique fre-quency distribution is generated by adjusting all of the characteristics (mean, standard deviation, lower bound, upper bound) of the reference dis-tribution curve by multiplying by the cube root of the ratio of 50 ft.# =to the actual air volume in the SRV dgscharge line. For example, the ad jus tment of frequency for a 100 ft. line volume is: 8.1 Hz x D = 8.1 x 0.79 = 6.4 Hz Il00 I Examples for the other characteristics: Volume Mean Std. De v. Lower Bound Upper Bound (ft )(Hz)(Hz)(Hz)(Hz)50 8.1 1.7 5 12 100 6.4 1.3 4 9.5 I I B- 4 Rev 2, 12/20/79 I 1635 047 __u_d i B3.3.2 ADJUSTMENT OF QUENCHER BUBBLE TIME HISTORY FOR SELECTED , i FREQUENCY In each !! ante Carlo trial, a random number generator code is used to select a frequency from each of the frequency distribution curves generated in ]j Section B3.3.1. For each frequency selected, a time history of the Quencher bubble pressure oscillation is generated by ad justing the refer- -ence time history (8.0 Hz). This is accomplished by maintaining the ratio I of negative to positise pulse period constant. The pressure cycle period, positive pressure pulse time and negative pressure pulse time are adjusted by multiplying each by the ratio of the reference frequency (8 Hz) to the selected frequency. For example, for 6 Hz:

  1. Pressure cycle period = 0.125 sec. 8 Hz = 0.167 sec.

-6 Hz.Positise pressure pulse time = 0.05 sec. 8 Hz = 0.067 sec. 6 Hz_!Negati ve pressure pulse time = 0.075 sec. 8 Hz = 0.100 sec.

6 Hz t i Number of cycles per = Bubble duration

= 0.75 sec. = 4.5 cycles 'O.75 sec. duration Pressure cycle period 0.167 sec/ cycle -B4.0 FACTORS AFFECTING PRESSURE DISTRIBUTION ON THE SUPPRESSION POOL 5 BOUNDARY 2 B4.1 BUBBLE PRESSURE ATTENUATION }The attenuation of the bubble pressure with distance r from the quencher is 2r /r where r = radius of the quencher (= 4.87 ft) and r 2r see i SeStion A.10.3.1 of Re ference 1) . r = true spatial distance $ro(m the .-quencher center to the node. 7 B4.2 LINE-OF-SIG11T II. FLUENCE N The line of-sight criterion for the bubble pressure states that points which cannot be seen through a direct line from the outer radius of the ," quencher arms to the location in question will not be affected by the 3 pressure from that quencher (see Section A.10.3.2.1 of Reference 1). t B4.3 C0:1BINATION OF !!ULTIPLE SRV PRESSURE TIME HISTORIES 5 The time sequencing application provides a given phase relationship between quencher bubbles. The pressure at each node point and time step is calcu- , lated by combining the contribution from each valve (in the line of sight) using algebraic summation. At each node where the total calculated pres-sure at any time step exceeds the maximum pressure (positive or negative) f rom ar.y of the contributing valves, the calculated pressure at the speci-j fic tise step is set equal to the maximum bubble pressure at the same instant in time. ._-';B-5 Rev 2, 12/20/79 1635 048 r... . . , , . . . . I , 35.0 FORCING FUNCTIONS FOR NSSS EQUIPMENT EVALUATION 35.1 TIME SEQUENCING Time sequencing with random parameters is used to arrive at the forcing function f or the multiple SRV air-clearing events referenced in Section 33.1.A Monte Carlo technique is used to generate the building forcing function for equipment evaluations. The bounding forcing function f rom 59 trials g will result in a 95 percent conf idence level that 95 percent of the time 5 the actual forcing function will be less than the forcing function deter-mined by the Monte Carlo technique. 35.2 PRESSURE TIME HISTORIES Fif ty-nine (59) cases of pressure distribution on the pool boundary are calculated using the random parameters delineated in Section B2.0. B5.3 VERTICAL BASEMAT FORCE AND OVERTURNING MOMENT The total basemat force is calculated as a fuc7 tion of time by integrating the node pressures over the suppression pool basemat incremental areas. , The overturning moments (about two perpendicular horizontal axes through g'-the basemat center upper surface) are calculated, as a function of time-5 , by integrating the product (node pressure x the incremental area moment arm x the incremy1tal area) over the suppression pool boundary (contain-ment, basemat, and drywell wall). B5.4 FOURIER SPECTRA Fourier spectra (Ref erences 2 and 3) of the vert' cal basemat force :.nd overturning moment f or the 59 cases are developes f or selecting the cases used to determine dynamic responses for equipment evaluations. The signif-g icant f requency range is divided into three" f requency intervals as deter-5 mined below: Step 1.Adjust the mean frequency of each safety / relief valve discharge lline f or air volume dif f erences, see Subsection B3.3.1. W Step 2.Calculate the mean frequency (f m) for all applicable safety relief valve discharge lines. Step 3.Establish the frequency intervals based on 0.5 fm to 1.5 fm, 1.5 fm to 2.5 f m, and 2.5 fm to 3.5 f m. where fm = l_ f;i =1,...,N N N = total no. of valves actuated 3 5.The basemat loading cases with the largest spectral value within each fre- {quency interval (from the 59 cases) are selected f or determination of 'eq uipment responses. B-6 Rev 2, 12/20/79 I 1635 049' ~ ..-B6.0 STRUCTURAL RESPONSE ANALYSIS Forcing functions corresponding to the case selected in each frequency range (selected in Section B5.4) are used as input to the structural 2 analysis.Structural dynamic analysis is then performed for these selected The resulting dynamic responses are then enveloped for NSSS and BOP cases.equipment evaluations. ,.1635 050 B-7 Rev 2, 12/20/79 -. _ _ _ . . I l E

7.0 REFERENCES

1.Attachment A, Appendix 3B of GESSAR Amendment 43. 2.Cooley, J.W.,& Tukey, J.W., (1965), "An Algorithm for the Machine 2 Calculation of Complex Fourier Series," Mathematics of Computation, , Vol. 19, No. 90, pp 297-301. 3.Shingleton, Richard C.,"On Computing the Fast Fourier Transform," Communication of Applied Computation Mathematics, 1967, pp 647-654 I I I I I I I I I.I I I-B-8 Rev 2, 12/20/79 -, I . . . . .._ 9!i_,'-APPENDIX BA }EXAMPLE OF TYPICAL TIME SEQUENCINO APPLICATION _: This example is provided to clarify the time sequencing procedures pro- ',-vided in this attachment. Typical random parameter values are used to !'outline the steps required to determine the bounding vertical basemat

i force. Examination of the Fourier spectra for the vertical basemat force j i_and overturning moments permits calculation of bounding equipment i responses. Guidelines for selecting the bounding responses for equipment

'-evaluations are included. BA.1 RANDOM PARAMETERS -The following random parameters are used: pressure setpoints, valve -opening time, and vessel pressure rise rate. The random parameter values 'j used in this example problem are: (1) Pressure rise rate distribution per Subsection B2.1. _(2) Pressure setpoints variation per Subsection B2.2.

  • Mean Standard Setpoint Deviation , Valves (psi)(psi)2-1 1103 2 i I 9 1113 2%'9 1123 2_(3) Valve opening time variations per Subsection B2.3 j Standard deviation = 0.009 sec.

m Step 1#An 80 psi /sec vessel pressure rise rate was randomly selected from Figure E2-1.4)Stpp 2: The valve pressure setpoints are randomly selected from a random number

generator code using the distribution given in Figure B2-2.

The valve;~pressure setpoints from a typical random selection are 1104.5 psi, 1114.3 psi, and 1124.6 psi. _i i* Note that this example is for the 238 BWR/6 Mark III standard plant with a ganged valve arrangement. l, 1'1635 052 i BA-1 Rev 2, 12/20/79 i__ . . .. . ._ I Step 3 The relative valve opening time for each of the two groups of 9 valves is calculated: Valve setpoint (psi) - Valve setpoint (psi)lT (sec) =(1)(1)!I Pressure rise rate (psi /sec) f, where 2, 3 (the number of subsequent valve groups), and i=1 = thr. reference valve.. j llence, for i = 2, the valve opening time for the first group of 9 valves I is:: 1114.3 - 1104.5 - 0.1225 sec jlT.,~80:*=?Step 4 i The bubble arrival time is calculated by adding the group valve opening , time and a randomly selected delta time for each valve using the valve ! ', opening time distribution shown in Figure B2-3. Therefore, for each {quencher the bubble arrival time = T(Er up) + individual valve opening i time (IVOT). For this sample problem, the typical set of randomly selected IVOT's for the distribution values stated above are: f Valve No.IVOT (sec) Valve No.IVOT (sec) Valve No.IVOT (sec) 1 0.067 7 0.067 13 0.056: 2 0.069 8 0.051 14 0.061 3 0.065 9 0.062 15 0.056 i 4 0.059 10 0.065 16 0.065l5 0.063 11 0.058 17 0.057 i 6 0.038 12 0.057 18 0.071l19 0.069 Note that a mean value of 0.057 see is included in the above numbers. Add- lling these values to the group T calculated in Step 3 and normalizing to W f have the first bubble arrive at zero time results in the following bubble arrival times: I I BA-2 Rev 2, 12/20/79 I 1635 053 _ . _ _=-Arrival Time Arrival Time Arrival Time Valve No.(sec)Valve No.(sec)Valve No.(sec)1 0.125 7 0.125 13 0.243 l 2 0.256 8 0.238 14 0.127 3 0.123 9 0.120 is 0.243;4 0.247 10 0.0 16 0.124 s 0.122 11 0.246 1/0.245'-0.225 12 0.116 18 0.129 i 19 0.256'BA.2 BUBBLE FREOUENCIES Bubble f requencies for individual quenchers are randomly selected from a random number generator code using the distribution shown in Figure B2-4. ._Typical random bubble frequency values for the 19 quenchers are: -Valve No.Frequency (Hz) Valve No.Frequency (Hz) 1 6.56 11/.22 2 9.77 12 5.39 3 9.15 13 3.68 4 5.01 14 8.60 5 9.33 13 9.86 6 6.88 16 7.04 7 9.41 1/11.08 8 9.10 18 8.68 9 7.92 19 c.52 10 11.14 NOTE: For this example, all lines are considered as uniform in length and frequencies are randomly selected from one Ouencher Bubble Frequency (QBF) distribution curve (Figure B2-4). In this example, mean = 8.23 Hz and a= 1.80 Hz. With nonuniform line lengths, Subsection B3.2.1 is used to develop uniga,-: QBF distribution curves from which a frequency is randomly selectej for each line. .1635 054 BA-3 Rev 2, 12/20/79 _ . . I BA.3 The forcing function is calculated by computing the pressure di'stri-lbution around the pool boundary using the criteria defined in Sec- =tion B4.0 which are: quencher radius and r 2 2r . (1) 2r /r attentuation, r =9 9 (2) Line-of-sight influence. 'I'(3) Algebraic summation at each time step of the individual pres-sure waves. (4) Truncation of the total calculated pressure to the maximum bubble pressure of any of the pressure waves in the pool at !each time step. The basetat force vs time shown in Figure BA-1 is computed for a typical trial case. 2lThe Fourier spectrum of this basemat force (Section B5.0) is calcu-a lated in Figure BA-2. BA.4 A Monte Carlo technique is used to generate 59 forcing functions. This gives 95% confidence and 95% probability that these loads will not be exceeded. The significant frequency range for building and equipment evaluation is t'.en divided into seve.al frequency inter-vals. Out of these 59 t ials, the maximum trial case is selected for each frequency interval based on the peak Fourier amplitudes of the integrated vertical basemat forces or overturning moment, in that frequency interval. Figure BA-3 shows an example.of this selection procedure. Structural dynamic analyses are performed for these potential critical cases. The resulting dynamic re- 'sponses are then enveloped for NSSS and BOP equipment evaluation. .I I I I I 1635 055 g BA-4 Rev 2, 12/20/79 I _+m ____,_8*-8;I 8-Ef m I&Q o 2 o_S m<o O I H I_83 m a w 8_H o 8.-*o-o n-J_8'N w I l f Il, g m o m o m o e SNOllllW - (91) 30 hod Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Alleas Creek Nuclea Generating Station Unit 1 BASEMAT LOAD VS. TIME FIGURE BA-1 1635 056-_. __se l ()i<f t O%E>0m D 8 E-n ,-"=--, a>c o e o o 3 8 8 8 8 m N--SGNVSnOH1 - (I(;l) 30 bod 30 3G7VA "lVH103dS 1635 057 Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 FOURIER SPECTRUM OF BASEMAT FORCE FIGURE BA-2 _---_ _ . . . . ._l.I Il!lEXAMPLE RUN 48 Il= == = = R U N 26 !RUN 12 l M RUN 37 , ]Ill4 M RUN 48l$I l I dlI r RUN 26>-i I d I l/ *" l a!E I i/\ll S 1/\.}- 's % $h'/, s gl3l!, m"~__RUN 37ll %__l Il-....__FREQUENCY g;g g;fi = FREQUENCY INTERVAL NOTES:-1.FOURIER SPECTRA OF FORCING FUNCTION FOR ALL 59 MONTE CARLO RUNS ARE PLOTTED.2.-THE ABOVE EXAMPLE SHOWS MAXIMUM FORCING FUNCTIONS IN THE THREE SELECTED FREQUENCY INTERVALS.. B*RUN 48 IS MAX. FOR FREQUENCY INTERVAL, f; RUN 12 IS MAX. FOR FREQUENCY INTERVAL, f;

  • J RUN 26 IS MAX. FOR FREQUENCY INTERVAL, f;
  • 3.RUN 37 IS A TYPICAL NON-MAXIMUM CASE' 4.THE TIME HISTORIES FOR RUNS 48,12 and 26 ARE USED IN DEVELOPING DYNAMIC RESPONSES.

56 THE DYNAMIC RESPONSES THAT RESULT FROM THESE FORCING FUNCTIONS J ARE THEN ENVELOPED FOR NSSS & BOP EQUIPMENT EVALUATIONS. 1 Rev 2, 12/20/79 ]HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1lFOURIER SPECTRA 0F FORCING j FUNCTIONS FIGURE BA-3 ]1635 058 . _ .__O-S---o" 3$E o w-Sk e E E-Sy D$w Z_g a.-R._g-S I I I I I o R$$$8*o o o o o 6 6 6 6 6 NOl10Nnd A11SN30 Ailll8V80lfd Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 PROBABILITY DENSITY FUNCTION VS. PRESSURE RISE RATE FIGURE B2-1 1635 059--.. _ _._ . _ _ _-m C 3 E w Q 5 p2 5b xm N n Hw 2E 6s*$O" aElO c. 2 ,, a S O-m_;O$x m<>>_J', N <~'>-T*?I I I e m N e c'd 6 6 NOll3Nnd AllSN30 Alril8V908d 1635 060 Rev 2, 12/20/79 HOUSTON LIGHTlHG & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 PROBABILITY DENSITY FUNCTION VS. _.VALVE GROUP SETPT. VARIATION FIGURE B2-2 -_.. . . . _l a e l I_a e j s g C N_d o.H Q g s.]Z-.<w 2]_a s@-n m]!'s I o E=]_>w: a 1.-O ,r 2 5 o}8 m 3 1<-N >_..e]]l a , 3 81635 061<>], , , i i s e a a e o'NOl10Nnd AllSN3G Alnl8V90Hd ]HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 PROBABILITY DENSITY FUNCTION VS.. VALVE OPENING TIME VARIATION (FOR CROSBY & DIKKERS VALVES) FIGURE B2-3 .. _____._3-Q.-%h o S zg 3%Og C E 3 ko b N T.5>3-$5 3" m ko S " g ))"-n-u z z-a 2 5 58~=2 m u.*--~;;T 5.>y c1-w a 0 w I a: f u."i=m m o m m---e-_.t-.-g a E a=S 3 u)!I I 9 N 9 o o e o (x)) NOl10Nnd AllSN30 Alnl8V808d Rev 2, 12/20/79 HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 1 /7C aL7 PROBABILITY DENSITY FUNCTION IOJJ UUL VS. BUBBLE FREQUENCY FIGURE B2-4 __--i-i-in- _~8 X CD 5 6 E=5" w 5-lA e n=a o__E5~(s'=5 o!$ '$S5-'!5 8 o-=n.-e a-4i.r- 8=t=O-o g ,, 8 s , o 2 l 5 m:s%E E.N h~% -,\$ef ci "e\-8 e g 2/-8 n o'/X o a-s.e 5'I 1 i 1 e 8 8 8 8 8 a N 9 9 9=9 9 Rev 2, 12/20/79 3HOSS3Hd 03Zl1VWHON HOUSTON LIGHTING & POWER COMPANY Allens Creek Nuclear Generating Station Unit 1 QUENCHER BUBBLE PRESSURE TIME HISTORY FIGURE B2-5 _._}}