ML18221A168
Text
6.1-1Reformatted PerAmendment 02-016.0ENGINEERED SAFETY FEATURESThe central safety objective in reactor plant design and operation is control of reactorfission products. The methods used to assure this objective are:1.Design of the reactor core in conjunction with the reactor control and protectionsystems to preclude release of fission products from the fuel (Chapters 4 and 7).2.Retention of fission products in the Reactor Coolant System (Chapters 5 and 6).
3.Retention of fission products by the containment for operational and accidentalreleases beyond the reactor coolant boundary (Sections 3.8 and 6.2).4.Limiting or optimizing fission product dispersal to minimize population exposure foran accidental release beyond the containment (Chapters 2 and 11).The engineered safety features are the provisions in the plant which embody methods 2and 3 above to prevent the occurrence, or to ameliorate the effects, of seriousaccidents.6.1GENERALThe engineered safety features are:
1.ContainmentThe reactor building provides a virtually leaktight barrier to the escape of fissionproducts. Detailed information on the containment is provided in Section 6.2.1.2.Reactor Building Heat Removal SystemsThese systems serve to reduce reactor building pressure and temperature. These systems are discussed in detail in Section 6.2.2.3.Reactor Building Air Purification and Cleanup SystemsThe function of these systems is to provide air purification and cleanup services to the Reactor Building. These systems are discussed in Section 6.2.3.4.Containment Isolation SystemThis system provides containment isolation capability for the various system lines penetrating the containment. Detailed discussions of this system are presented inSection 6.2.4.
02-01 6.1-2Reformatted PerAmendment 02-015.Combustible Gas Control SystemThis system acts to control the concentration of hydrogen, oxygen, and othercombustible gas which may be released to the reactor building to assurecontainment integrity. This system is discussed in Section 6.2.5.6.Containment Leakage Testing.Containment leakage testing provisions are discussed in Section 6.2.6.7.Emergency Core Cooling SystemThis system delivers borated water to the reactor core to provide core cooling following postulated accidents. The boron, together with the control rods providessufficient negative reactivity for safe shutdown following design basis accidents.
The Emergency Core Cooling System is discussed in detail in Section 6.3.8.Habitability SystemsThese systems provide the control room with adequate shielding, air purification, and climatic control. These systems are discussed in Section 6.4.9.Fission Product Removal and Control SystemsThe fission product removal systems include the high efficiency particulate air filters in the Reactor Building cooling system and the control room emergency filterplenums. This equipment is discussed in Section 6.5.
6.2-107 Reformatted April 2004 TABLE 6.2-1 GENERAL CONTAINMENT DESIGN AND EVALUATION PARAMETERS General Design Information Maximum Internal Design Pressure, psig 57 Maximum External Design Pressure, psig 3.5 psig Design temperature, F 283 (1) Free Volume, ft 3 1.84x10 6 Design Leak Rate, max. allowable, %/day 0.2 Engineered Safety Features Full Capacity Value Used for Analysis Passive Safety Injection Number of Accumulators 3 2 or 3 Pressure Setpoint, Psig 600 600 Active Safety Injection Residual Heat Removal Flow Rate, lb/sec 990.4 460.2 or 990.4 Reactor Building Spray System Number of Lines 2 1 or 2 Number of Pumps 2 1 or 2 Number of Headers 6 3 or 6 Design Flow, gpm 5,000 2,500 or 5,000 Reactor Building Cooling Units Number 4 1 or 2 Air Side Flow Rate, cfm/unit 60,270 (3) 54,200 (3) Heat Removal Rate at 283 F, Btu/hr/unit 125x10 6 90.7x10 6 (2) Residual Heat Removal System Heat Exchangers Number 2 1 UA, BTU/hr- F/unit 1.519x10 6 (4) 1.519x10 6 (4) Flow Rate Shell Side, gpm 5,600 5,600 Tube Side, gpm 3,750 3,750 See Notes (1) through (4) on next page 02-01 02-01 RN 03-003 02-01 RN 03-003 6.2-108 Reformatted April 2004 Notes: 1. Peak reactor building temperature is 373.7F as described in Section 6.2.1.1.1
- 2. Maximum analysis value assumed was an energy removal rate of 90.7 x10 6 Btu/Hr, at 283F. 3. This parameter is used only in the Chapter 15 Radiological Consequence Analysis for particulate iodine removal post-LOCA. This parameter is not used in the Chapter 6 pressure/temperature analyses.
- 4. Based on the maximum component cooling water shell-side inlet temperature of 120 F [47]. RN 03-003 RN 03-003 6.2-109 Reformatted Per Amendment 02-01 TABLE 6.2-1a MAIN STEAM LINE BREAKS ANALYZED Double Ended Ruptures (1) (No Entrainment) to Assess Impact of Single Failures Area/Power Failure(s) Assumed (2) 1.4 ft 2/ 102% MSIV (3) 1.4 ft 2/ 102% FWIV (4) 1.4 ft 2/ 102% EFW FCV (5) 1.4 ft 2/ 102% Diesel (6) 1.4 ft 2/ 102% CH-A (7) Double Ended Ruptures (with Entrainment) to Assess Impact of Power Level Area/Power Failures Assumed (2) 1.4 ft 2/ 75% CH-A 1.4 ft 2/ 50% CH-A 1.4 ft 2/ 25% CH-A 1.4 ft 2/ 25% FWIV (4) 1.4 ft 2/ 0% CH-A Double Ended Ruptures (No Entrainment) to Assess Impact of Break Size Area/Power Failures Assumed (2) 1.2 ft 2/ 102% FWIV, MSIV, EFW FCV, Diesel 1.1 ft 2/ 102% FWIV, MSIV, EFW FCV, Diesel Small Double Ended Ruptures (with Entrainment)
Area/Power Failures Assumed (2) 1.1 ft 2/ 75% FWIV, MSIV, EFW FCV, Diesel 0.8 ft 2/ 50% FWIV, MSIV, EFW FCV, Diesel 0.6 ft 2/ 25% FWIV, MSIV, EFW FCV, Diesel 0.2 ft 2/ 0% FWIV, MSIV, EFW FCV, Diesel 6.2-110 Reformatted Per Amendment 02-01 TABLE 6.2-1a (Continued)
MAIN STEAM LINE BREAKS ANALYZED Small Double Ended Ruptures (No Entrainment)
Area/Power Failures Assumed (2) 1.0 ft 2/ 75% FWIV, MSIV, EFW FCV, Diesel 0.7 ft 2/ 50% FWIV, MSIV, EFW FCV, Diesel 0.5 ft 2/ 25% FWIV, MSIV, EFW FCV, Diesel 0.1 ft 2/ 0% FWIV, MSIV, EFW FCV, Diesel Split Ruptures (No Entrainment)
Area/power Failures Assumed (2) 0.878 ft 2/ 102% 0.871 ft 2/ 75% FWIV, EFW FCV, Diesel 0.863 ft 2/ 50% FWIV, EFW FCV, Diesel 0.849 ft 2/ 25% FWIV, EFW FCV, Diesel 0.772 ft 2/0% FWIV, EFW FCV, Diesel Notes:
- 1. Effective break area for broken loop is 1.4 ft
- 2. 2. Failure of one Chg/SI pump is assumed in all analyses. 3. MSIV = Main steam isolation valve fails to close. 4. FWIV = Main feedwater isolation valve fails to close. 5. EFW FCV = EFW control valve which terminates flow to the faulted SG fails to close. 6. Diesel = One emergency diesel fails to start. 7. CH-A = Failure of Electrical Channel A.
6.2-111 Reformatted Per Amendment 02-01 TABLE 6.2-2 INITIAL CONDITIONS USED IN REACTOR BUILDING PEAK PRESSURE ANALYSIS Reactor Coolant System Power Level, MWt (Includes +2% Allowance for Instrument Error and Deadband) 2958 Vessel Average Temperature, F (Includes +5.3 F Allowance for Instrument Error and Deadband) 592.7 Mass of Reactor Coolant, lbm 421.3 x 10 3 Reactor Coolant Energy, (1) BTU 251.3 x 10 6 Reactor Coolant Pressure, psia 2300 Reactor Building Pressure, psig (2) 1.5 Temperature, F 120 Relative humidity, %
30 Service Water Temperature F 95 Refueling Water Temperature, F 95 Stored Water Quantity Assumed in Analysis Refueling Water Storage Tank, gal 404,000 Accumulators, lbm 188,130 (1) Energy relative to 32 F. (2) Peak pressure analysis; peak temperature analysis uses pressure of 0.0 psig.
98-01 02-01 02-01 RN 02-009 6.2-112 Reformatted Per Amendment 02-01 TABLE 6.2-3 COMPARATIVE RESULTS, PEAK PRESSURE AND TEMPERATURE FOR A SPECTRUM OF ACCIDENTS LARGE MSLBs BREAK SIZE FT 2 / % POWER 1.4 / 102% 1.4 / 102% 1.4 / 102% 1.4 / 102% 1.4 / 102% 1.4 / 75% 1.4 / 50% 1.4 / 25% 1.4 / 25% 1.4 / 0% (CASE IG) (CASE IH) (CASE II) (CASE IJ) (CASE IK) (CASE 2E) (CASE 3E) (CASE 4E) (CASE 4G) (CASE 5F)
RB SPRAY 2 2 2 1 1 1 1 1 2 1 RBCU'S 2 2 2 1 1 1 1 1 2 1 OTHER FAILURES FWIV SI PUMP MISV SI PUMP EFW FCV SI PUMP DIESEL CH-A CH-A CH-A CH-A FWIV SI PUMP CH-A PEAK PRESSURE (PSIG) 50.4 48.1 47.9 48.2 49.3 49.6 50.9 53 52.6 51.7 TIME TO PEAK PRESSURE (SEC) 204 177 185 173 1,800 1,800 1,800 1,800 193 1,900 PEAK TEMPERATURE ( F) 360.8 372.7 360.9 361 352.1 283.7 275.4 278.1 277.8 276.4 TIME TO PEAK TEMPERATURE (SEC) 31 19 31 30 53 4 1,800 1,800 193 1,900 02-01 6.2-113 Reformatted Per Amendment 02-01 TABLE 6.2-3 (Continued) SMALL MSLB'S WITHOUT ENTRAINMENT BREAK SIZE FT 2 / % POWER 1.2/102% 1.1/102% 1.0/75% 0.7/50% 0.5/25% 0.1/0%
(CASE IB) (CASE IC) (CASE 2C) (CASE 3C) (CASE 4C) (CASE 5C)
RB SPRAY 1 1 1 1 1 1 RBCU'S 1 1 1 1 1 1 OTHER FAILURES (Note 1) (Note 1) (Note 1) (Note 1) (Note 1) (Note 1) PEAK PRESSURE (PSIG) 51.6 50.3 50.2 51.8 49.7 13.7 TIME TO PEAK PRESSURE (SEC) 1,200 1,200 1,200 1,200 1,200 1,200 PEAK TEMPERATURE ( F) 350.5 347.2 341.1 322 303.8 251.6 TIME TO PEAK TEMPERATURE (SEC) 49 53 53 58 67 480
Note: 1. Multiple failures assumed: MSIV, FWIV, EFW FCV, and Diesel.
02-01 02-01 02-01 02-01 02-01 6.2-114 Reformatted Per Amendment 02-01 TABLE 6.2-3 (Continued) SMALL MSLB'S WITH ENTRAINMENT BREAK SIZE FT 2/% POWER 1.1/75% 0.8/50% 0.6/25% 0.2/0%
(CASE 2B) (CASE 3B) (CASE 4B) (CASE 5B)
RB SPRAY 1 1 1 1 RBCU'S 1 1 1 1 OTHER FAILURES (Note 1) (Note 1) (Note 1) (Note 1)
PEAK PRESSURE (PSIG) 51.3 48.7 49.9 25.9 TIME TO PEAK PRESSURE (SEC) 1,200 1,200 1,200 1,200 PEAK TEMPERATURE ( F) 276 272.4 274.1 232.8 TIME TO PEAK TEMPERATURE (SEC) 1,200 1,200 1,200 1,200
Note: 1. Multiple failures assumed: MSIV, FWIV, EFW FCV, and Diesel.
02-01 02-01 02-01 6.2-115 Reformatted Per Amendment 02-01 TABLE 6.2-3 (Continued) SPLIT MSLB'S WITHOUT ENTRAINMENT BREAK SIZE FT 2/% POWER 0.878/102% 0.871/75% 0.863/50% 0.849/25% 0.772/0%
(CASE IB) (CASE 2B) (CASE 3B) (CASE 4B) (CASE 5B)
RB SPRAY 1 1 1 1 1 RBCU'S 1 1 1 1 1 OTHER FAILURES (Note 1) (Note 1) (Note 1) (Note 1) (Note 1) PEAK PRESSURE (PSIG) 35 35 38.1 37.8 35.7 TIME TO PEAK
PRESSURE (SEC) 230 280 320 245 400.0 PEAK TEMPERATURE (F) 331.9 329.5 327.9 325.9 318.1 TIME TO PEAK TEMPERATURE (SEC) 67 67 67 67 67 Note: 1. Multiple failures assumed: MSIV, FWIV, EFW FCV, and Diesel. 02-01 02-01 02-01 02-01 6.2-116 Reformatted Per Amendment 02-01 TABLE 6.2-3 (Continued) COMPARATIVE RESULTS, PEAK PRESSURE AND TEMPERATURE FOR A SPECTRUM OF ACCIDENTS Large LOCA BREAK SIZE FT 2/% POWER DEPS (1)/102 DEPS/102 DEHL (2)/102 R B SPRAY 1 1 N/A RBCU'S 1 1 N/A SAFETY INJECTION MIN MAX N/A PEAK PRESSURE (PSIG) 43.7 43.7 45.1 TIME TO PEAK PRESSURE (SEC) 18 18 15 PEAK TEMPERATURE ( F) 265.4 265.4 267.4 TIME TO PEAK TEMPERATURE (SEC) 18 18 15 ENERGY ABSORBED BY PASSIVE HEAT SINKS AT TIME CF PEAK PRESSURE Btu x 10 6 23.6 23.6 22.1 Notes: 1. DEPS = Doub le-Ended Pump Suction 2. DEHL = Double-Ended Hot Leg 98-01 02-01 02-01 6.2-117 Reformatted Per Amendment 02-01 TABLE 6.2-4 LONG TERM VALUES OF REACTOR BUILDING PARAMETERS FOR LOSS OF COOLANT ACCIDENT AND MAIN STEAM LINE BREAK Design Basis (1) Accident Main Steam Line Break LOCA (1) DEPS with Minimum Safety Injection Reactor Building Pressure, psig 38.3 1.8 Reactor Building Vapor Temperature, F 257 107 Reactor Building Sump Temperature, F 270 132 Notes: 1. Long-term MSLB = 1800 Seconds Long-term LOCA = 1440 Hours RN 03-003 RN 03-003 6.2-118 Reformatted Per Amendment 02-01 TABLE 6.2-5 CHRONOLOGY OF EVENTS FOR THE DESIGN BASIS ACCIDENT MAIN STREAM LINE BREAK (1) Time (Sec.)
- 1. Break occurs, which blows down all three st eam generators, coincident with Electrical Channel A Failure (2) 0.0 2. Reactor building pressure reaches the safety injection setpoint.
1.0 3. Feedwater pumps tripped (not assumed in analysis) N/A 4. Main steam isolation valves close (blowdown limited to one steam generator) 7.0 5. Reactor building spray initiated 53.1 6. Reactor building cooling units fully operational 86.5 7. Peak pressure of 53.0 psig is reached 1800
- 8. Emergency feedwater fl ow manually terminated 1800 9. End of Analysis for DBA 1800.0 Notes: (1) 1.4 ft 2 DE Rupture from 25% power.
(2) Electrical Channel A Failure results in loss of power to the feedwater control and isolation valves, main steam isolation valves, prevents startup of an emergency diesel generator, and prevents automatic isolation of emergency feedwater to the faulted SG.
02-01 6.2-119 Reformatted February 2018 TABLE 6.2-6 CHRONOLOGY OF EVENTS FOR LOCA (DEPS, Minimum Safety Injection)
Time (Sec.)
- 1. Break occurs 0.0 2. Peak pressure of 43.7 psig is reached 18.0 3. Primary system blowdown complete 19.6 4. Reactor Building spray begins 52.0 5. Reactor building cooling units actuated 86.5 6. Recirculation begins 2499.0 7. Reactor building spray system and cooling unit operation is terminated 3.456x10 6 8. End of Analysis 5.184x10 6 RN 03-003 6.2-120 Reformatted February 2018 Page 1 of 10 TABLE 6.2-7 PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) Reactor Building Concrete and steel Reactor Building Shell Concrete 4 57,397(5) 0 Reactor Building Dome Concrete 3 20,241 0 Floor Slab (el.412')
Concrete 4 8,868 8,868 Floor Slab (el.436')
Concrete 2 5,019 5,019 Floor Slab (el.463')
Concrete 2 6,675 6,675 Decking under Floor Slabs at el. 436' and el.463' Carbon Steel 1/8 in 44,315 Ambient 8,696 8,696 Secondary Shield Walls between el. 412' and 436' Concrete 3.66 6,168 11,919 Secondary Shield Walls between el. 436' and 463' Concrete 3.66 7,523 14,492 Secondary Shield Walls above el.
463' Concrete 3.66 8,613 17,126 Misc. Walls and Shield Slabs between el. 412' and 436' Concrete 2 2,581 5,162 Misc. Walls between el. 436' and el. 463' Concrete 2 737 1,473 Misc. Walls above el. 463' Concrete 2 808 1,616 Primary Shield Wall and Fuel Transfer Canal Walls between el. 412' and el. 436' Concrete 8 2,729 5,457 Primary Shield Wall and Fuel Transfer Canal Walls at el. 436' Concrete 4.5 2,348 4,695 02-01 02-01 6.2-121 Reformatted February 2018 Page 2 of 10 TABLE 6.2-7 (Continued)
PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) Reactor Building Concrete and steel (Continued)
Secondary Shield Slab Concrete 2 1,280 2,560 Reactor Building Liner Carbon Steel 0.26 in 954,450(6) Ambient 77,638 77,638 Liner Anchors Carbon Steel 0.25 in 390,600(6) Ambient 36,943 0 Fuel Transfer Canal Liners Stainless Steel 0.266 in 131,250(6) Ambient 11,497 11,497 Column Steel Carbon Steel 1.55 in 212,000 Ambient 3,350 6,616 Framing Steel, Platforms, Stairs, Restraints Carbon Steel 0.5 in 969,000 Ambie nt 47,281 88,887 Special Steel Around Reactor in Primary Wall Carbon Steel 1.9 305,000 Ambient 3,930 4,249 Brackets Carbon Steel 0.936 in 128,000 Ambient 3,349 3,339 Airlocks and Hatch Carbon Steel 0.87 45,000 Ambient 1,266 1,266 Piping, Piping Supports and Equipment Spent Fuel Cooling System Sch 40 Pipe, 2 in Stainless Steel 0.013 110 Ambient 19 19 Sch 40 Pipe, 3 in Stainless Steel 0.018 834 Ambient 101 101 Leak Test Canal System Sch 40 Pipe, 1/2 in Stainless Steel 0.009 26 Ambient 7 7 OD Tubing, 1/2 in Stainless Steel 0.005 24 Ambient 10 10 02-01 02-01 6.2-122 Reformatted February 2018 Page 3 of 10 TABLE 6.2-7 (Continued)
PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) Piping, Piping Supports and Equipment (Continued)
R.B. Spray System Sch 40 Pipe, 3/4 in Stainless Steel 0.009 11 Ambient 3 3 Sch 40 Pipe, 1 in Stainless Steel 0.011 544 Ambient 113 113 Sch 40 Pipe, 2 in Stainless Steel 0.013 3 7 Ambient 6 6 Sch 40 Pipe, 3 in Stainless Steel 0.018 2,274 Ambient 275 275 Sch 40 Pipe, 6 in Stainless Steel 0.024 23,333 Ambient 2,133 2,133 Sch 40 Pipe, 10 in Stainless Steel 0.030 8,096 Ambient 563 563 Safety Injection System Sch 140 Pipe, 12 in Stainless Steel 0.094 23,043 Ambient 551 551 Sch 40 Pipe, 12 in Stainless Steel 0.034 1,338 Ambient 83 83 Sch 150 Pipe, 3 in Stainless Steel 0.036 501 Ambient 32 32 Sch 160 Pipe, 2 in Stainless Steel 0.029 4,690 Ambient 392 392 Sch 40 Pipe, 2 in Stainless Steel 0.013 110 Ambient 19 19 Sch 160 Pipe, 1 in Stainless Steel 0.021 924 Ambient 112 112 Sch 40 Pipe, 1 in Stainless Steel 0.011 285 Ambient 58 58 Sch 160 Pipe, 3/4 in Stainless Steel 0.018 620 Ambient 89 89 Sch 40 Pipe, 1 in Carbon Steel 0.011 445 Ambient 91 91 Nuclear Utility System Sch Std Pipe, 1/2 in Carbon Steel 0.009 204 Ambient 53 53 Sch 40 Pipe, 1/2 in Stainless Steel 0.009 247 Ambient 64 64 Sch Std Pipe, 3/4 in Carbon Steel 0.009 90 Ambient 22 22 Sch 40 Pipe, 3/4 in Stainless Steel 0.009 79 Ambient 19 19 Sch Std Pipe, 1 in Carbon Steel 0.011 1,595 Ambient 327 327 Sch 40 Pipe, 1 in Stainless Steel 0.011 487 Ambient 100 100 Sch Std Pipe, 1
-1/2 in Carbon Steel 0.012 49 Ambient 9 9 Sch Std Pipe, 2 in Carbon Steel 0.013 8 77 Ambient 149 149 Sch 40 Pipe, 2
-1/2 in Carbon Steel 0.017 1,448 Ambient 188 188 Sch 40 Pipe, 4 in Carbon Steel 0.020 2,482 Ambient 271 271 Sch 40 Pipe, 6 in Carbon Steel 0.024 95 Ambient 9 9 02-01 02-01 02-01 6.2-123 Reformatted February 2018 Page 4 of 10 TABLE 6.2-7 (Continued)
PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) Piping, Piping Supports and Equipment (Continued)
Nuclear Sampling System OD Tubing, 3/8 in Stainless Steel 0.005 105 Ambient 48 48 Sch 40 Pipe, 3/4 in Stainless Steel 0.009 23 Ambient 6 6 Reactor Building Leak Rate Test System Sch 40 Pipe, 8 in Carbon Steel 0.027 143 Ambient 11 11 ECCS Check Valve Testing System Sch 160 Pipe, 3/4 i n Stainless Steel 0.018 1,027 Ambient 147 147 Nuclear Drains System Sch 40 Pipe, 3 in Stainless Steel 0.018 303 Ambient 37 37 Sch 40 Pipe, 2 in Stainless Steel 0.013 913 Ambient 155 155 Sch 40 Pipe, 1/2 in Stainless Steel 0.009 17 Ambient 4 4 Post Accident Hydrogen Removal System Sch 40 Pipe, 3 in Stainless Steel 0.018 2,426 Ambient 293 293 Floor & Equipment Drains Sch 10 Pipe, 8 in Stainless Steel 0.013 630 Ambient 106 106 Sch 10 Pipe, 6 in Stainless Steel 0.011 2,685 Ambient 50 1 501 Sch 10 Pipe, 4 in Stainless Steel 0.010 7,349 Ambient 1,544 1,544 Sch 10 Pipe, 2
-1/2 in Stainless Steel 0.010 1,077 Ambient 230 230 Sch 10 Pipe, 2 in Stainless Steel 0.009 92 Ambient 22 22 Sch 10 Pipe, 1 in Stainless Steel 0.009 1 Ambient 1 1 02-01 02-01 02-01 02-01 02-01 6.2-124 Reformatted February 2018 Page 5 of 10 TABLE 6.2-7 (Continued)
PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) Piping, Piping Supports and Equipment (Continued)
Hanger Components and Supplementary Steel for Hanger Components Carbon Steel 0.019 135,507 Ambient 14,555 14,555 Polar Crane Carbon Steel 0.198 205,000 Ambient 2,113 22,500 Reactor Cavity Manipulator Crane Carbon Steel 0.556 74,104 Ambient 3,000 3,000 Loop B Auxiliary Crane (9) Carbon Steel 0.043 32,393 Ambient 2,474 2,474 Fuel Transfer Control Panel Carbon Steel 0.292 4,865 Ambient 34 34 Service Water System (7) Sch Std Pipe, 16 in Carbon Steel 0.034 19,400 95 1,298 1,298 Sch 40 Pipe, 10 in Carbon Steel 0.030 10,930 95 760 760 Sch Std Pipe, 1 in Carbon Steel 0.011 40 95 24 24 Sch 40 Pipe, 3/4 in Carbon Steel 0.009 9 95 8 8 Reactor Makeup Water Sch 40 Pipe, 3 in Stainless Steel 0.018 834 120 101 101 Sch 40 Pipe, 3/4 in Stainless Steel 0.009 418 120 103 103 Integrated Head Assembly (10) Stainless Steel 15,598 709 (IHA) Carbon Steel 73,104 1,953 02-01 RN 16-011 02-01 RN 16-003 RN 16-0 03 6.2-125 Reformatted February 2018 Page 6 of 10 TABLE 6.2-7 (Continued)
PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) Piping, Piping Supports and Equipment (Continued)
Reactor Coolant System OD Tubing, 3/8 in Stainless Steel 0.005 2 120 1 1 Sch 40 Pipe, 3/4 in Stainless Steel 0.009 6 120 1 1 Sch 40 Pipe, 1 in Stainless Steel 0.011 84 120 17 17 Sch 40 Pipe, 3 in Stainless Steel 0.018 834 120 101 101 Sch 40 Pipe ,4 in Stainless Steel 0.020 2,644 120 289 289 Sch 40 Pipe, 6 in Stainless Steel 0.024 2,466 120 225 225 Sch 160 Pipe, 6 in Stainless Steel 0.059 277 120 9 9 Sch 40 Pipe, 12 in Stainless Steel 0.034 4,550 120 284 284 Chemical and Volume Control System(7) Sch 160 Pipe, 3/4 in Stainless Steel 0.018 39 130 6 6 Sch 160 Pipe, 1
-1/2 in Stainless Steel 0.023 1,1 18 130 115 115 Sch Pipe, 3 in Stainless Steel 0.037 1,862 130 119 119 Component Cooling System(7) Sch 40 Pipe, 1 in Carbon Steel 0.011 319 135 65 65 Sch 40 Pipe, 3/4 in Carbon Steel 0.009 17 135 4 4 Sch 40 Pipe, 1
-1/2 in Carbon Steel 0.012 734 1 35 135 135 Sch 40 Pipe, 2 in Carbon Steel 0.013 37 135 6 6 Sch 40 Pipe, 3 in Carbon Steel 0.018 2,880 135 348 348 Sch 40 Pipe, 4 in Carbon Steel 0.020 1,187 135 130 130 Sch 40 Pipe, 6 in Carbon Steel 0.024 13,279 135 1,214 1,214 Sch 40 Pipe, 8 In Carbon Steel 0.027 2,998 135 237 237 Sch 160 Pipe, 1
-1/2 in Carbon Steel 0.023 1,166 135 120 120 Sch Std Pipe, 1/2 in Carbon Steel 0.009 298 135 77 77 Sch Std Pipe, 1 in Carbon Steel 0.011 151 135 31 31 02-01 02-01 6.2-126 Reformatted February 2018 Page 7 of 10 TABLE 6.2-7 (Continued)
PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) Piping, Piping Supports and Equipment (Continued)
Waste Disposal System(7) OD Tubing, 3/8 in Stainless Steel 0.005 2 160 1 1 Sch 40 Pipe, 3/4 in Stainless Steel 0.009 102 160 25 25 Sch 40 Pipe, 1/2 in Stainless Steel 0.009 204 160 53 53 Sch 40 Pipe, 1 in Stainless Steel 0.011 84 160 17 17 Sch 40 Pipe, 1
-1/2 in Stainless Steel 0.012 571 160 105 105 Sch 40 Pipe, 2 in Stainless Steel 0.013 475 160 81 81 Sch 160 Pipe, 2 in Stainless Steel 0.028 893 160 75 75 Sch 40 Pipe, 3 in Stainless Steel 0.018 1,364 160 165 165 Sch 160 Pipe, 3 in Stainless Steel 0.037 1,002 160 65 65 Sch 40 Pipe, 4 in Stainless Steel 0.044 216 160 24 24 Feedwater System(7) Sch 80 Pipe, 1 in Carbon Steel 0.015 11 200 2 2 Reactor Coolant System Sch 160 Pipe, 3/4 in.(8) Stainless Steel 0.018 203 653 29 29 Reactor Coolant Drain Tank Stainless Steel 0.043 2,000 120 93 93 Reactor Coolant Drain Tank Heat Exchanger(8) Stainless Steel 0.030 1,325 250 87 87 Reactor Coolant Drain Tank Pump(7) Stainless Steel 0.05 720 200 30 30 Accumulator(8) Stainless Steel 0.117 168,000 300 2,878 2,878 Reactor Coolant Pumps Relief Tank(8) Stainless Steel 0.071 23,000 340 650 650 CRDM(8) Stainless Steel 0.152 36,720 400 1,383 1,383 02-01 02-01 02-01 02-01 02-0 1 02-01 RN 16-003 6.2-127 Reformatted February 2018 Page 8 of 10 TABLE 6.2-7 (Continued)
PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) Piping, Piping Supports and Equipment (Continued)
Reactor Coolant Pump Handling Fixture Carbon Steel 0.029 8,000 Ambient 547 547 Reactor Vessel Head Guide Studs Stainless Steel 0.127 4,500 Ambient 72 72 Reactor Vessel Internals Lifting Device Stainless Steel 0.077 15,000 Ambient 398 398 Upper Internals Storage Stand Stainless Steel 0.053 2,435 Ambient 93 93 Lower Internals Storage Stand Stainless Steel 0.063 2,176 Ambient 70 70 Reactor Coolant Pump Tierods and Steam Generator Upper/Lower Supports Carbon Steel 0.029 50,976 Ambient 3,510 3,510 Reactor Coolant Piping Crossover Supports Carbon Steel 0.049 7,800 Ambient 330 330 Incore Instrument Tubing I Stainless Steel 0.025 7,900 Ambient 921 921 Incore Instrument Tubing II Stainless Steel 0.017 1,152 Ambient 176 176 Misc. Supports, Fittings, Specia l Tools 0.083 104,565 Ambient 2,568 2,568 02-01 02-01 02-01 R N 16-003 6.2-128 Reformatted February 2018 Page 9 of 10 TABLE 6.2-7 (Continued)
PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) HVAC Ductwork and Units Ring Duct Carbon Steel 0.011 39,105 Ambient 6,952 6,952 Vertical Risers Carbon Steel 0.014 62,906 Ambient 9,150 9,150 Duct Reinforcing Angles Carbon Steel 0.015 9,772 Ambient 1,357 1,357 Risers, Duct Reinforcing Angles Carbon Steel 0.024 75,360 Ambient 6,384 6,384 Duct Supports Carbon Steel 0.015 17,640 Ambient 2,394 2,394 Riser Supports Carbon Steel 0.024 14,130 Ambient 1,197 1,197 Reactor Building Cooling Unit to Ring Duct Connectors Carbon Steel 0.014 15,400 Ambient 2,240 2,24 0 Reactor Building Cleanup Units Carbon Steel 0.006 26,000 Ambient 830 830 Reactor Building Cooling Units Carbon Steel 0.069 392,000 Ambient 11,640 11,640 Reactor Compartment Cooling System Carbon Steel 0.062 2,400 Ambient 79 79 Refueling Water Surface System Fans Carbon Steel 0.047 1,110 Ambient 48 48 Reactor Building Charcoal Cleanup Fans Carbon Steel 0.016 1,200 Ambient 149 149 Secondary Compartment Cooling System Carbon Steel 0.017 4,500 Ambient 545 545 Duct Support and Support Angles:
Floor El. 412' Carbon Steel 0.005 1,678 Ambient 635 635 Floor El. 463' Carbon Steel 0.005 49,500 Ambient 18,710 18,710 02-01 RN 16-003 98-01 6.2-129 Reformatted February 2018 Page 10 of 10 TABLE 6.2-7 (Continued)
PASSIVE HEAT SINKS Description Material of Each Layer Thickness of Layer (1) (ft) Steel Weight(2) (lbm) Steel Temp (F) Area(3) (ft 2) Exposure(4) (ft 2) Electrical Cable Trays Carbon Steel 0.009 46,186 Ambient 10,473 10,473 Cable Tray Supports Carbon Steel 0.042 100,842 Ambient 4,900 4,900 Conduits Carbon Steel 0.018 37,220 Ambient 4,220 4,220 Conduit Supports Carbon Steel 0.007 7,080 Ambient 2,064 2,064 Penetrations Type 1 Carbon Steel 0.009 7,285 Ambient 1,652 1,652 Penetrations Type 2 Carbon Steel 0.056 50,407 Ambient 1,837 1,837 Misc. Panels Carbon Steel 0.007 909 Ambient 265 265 (1) Material thickness, where not indicated specifically, is in feet.
(2) A 5 percent (plus) ,margin (for ECCS analysis) is included in the calculated weights of reactor building liner, liner anchors and fuel transfer canal liner.
(3) The Area column shows a conservatively high surface area (for ECCS analysis) for one side (plus ends if significant) of the heat sink. (4) The Exposure column indicates if both sides are exposed to the reactor building atmosphere (or one side to the outside).
(5) Carbon Steel plate (1/4 in.) lines interior surface. Theoretically, zero surface are is exposed directly to reactor building atmosphere.
(6) Uncertainty margin of 5 percent include
- d. (7) Heat sink modeled at ambient temperature of 120F, weighted average temperature (8) Not used for peak pressure analysis, only for ECCS analysis.
(9) Conservatively not used for peak pressure analysis.
(10) IHA Carbon and Stainles s Steel Summaries
- See DC00020
-002, Table 12.
98-01 02-01 02-01 RN 1 6-0 1 1 16-003 6.2-130 Reformatted February 2018 Table 6.2-8 PASSIVE HEAT SINK MODELS USED IN PEAK PRESSURE ANALYSIS Reactor Building Cylinder
- a. Surface = 57,397.0 ft 2 b. Materials First region
- carbon steel, 0.0217 ft Second region
- air/steel, 0.00521 ft Third region
- concrete, 0.25 ft Fourth region
- concrete, 0.75 ft Reactor Building Dome
- a. Surface = 20,241 ft 2 b. Materials First region
- carbon steel, 0.0217 ft Second region
- air/steel, 0.00521 ft Third region
- concrete, 0.25 ft Fourth region
- concrete, 0.75 ft Reactor Building Material
- a. Surface = 12,463 ft 2 b. Material First region
- concrete, 0.33 ft Second region
- concrete, 1.67 ft Internal Concrete
- a. Surface = 76,839 ft 2 b. Material First region
- concrete, 0.25 ft Second region
- concrete, 0.75 ft Carbon Steel, 0.02 ft < thickness < 0.03 ft
- a. Surface = 29,885.0 ft 2 b. Material, carbon steel, average thickness, 0.0266 ft Carbon Steel, thickness < 0.025 ft
- a. Surface = 68,946.0 ft 2 b. Material, carbon steel, average thickness, 0.0132 ft 02-01 6.2-131 Reformatted February 2018 Table 6.2-8 (Continued)
PASSIVE HEAT SINK MODELS USED IN PEAK PRESSURE ANALYSIS Stainless Steel, thickness > 0.025 ft
- a. Surface - 17, 051.0 ft 2 b. Material, stainless steel, average thickness, 0.033 ft Stainless Steel, thickness < 0.025 ft
- a. Surface = 4919.4 ft 2 b. Material, stainless steel, average thickness, 0.0138 ft Carbon Steel, thickness > 0.03 ft
- a. Surface = 121,616.0 ft 2 b. Material, carbon steel, average thickness, 0.0415 ft
6.2-132 Reformatted February 2018 TABLE 6.2-9 REACTOR BUILDING DESIGN EVALUATION PARAMETERS PASSIVE HEAT SINK MATERIAL PROPERTIES Material Thermal Conductivity (BTU/hr/ft/ F Volumetric Heat Capacity (BTU/ft 3/ F Concrete 0.8 28.0 Stainless Steel 9.4 53.7 Carbon Steel 28.0 53.9 Air/steel 0.72 1.31 RN 09-022 6.2-133 Reformatted Per Amendment 02-01 TABLE 6.2-11 REACTOR BUILDING SUBCOMPARTMENT CALCULATED AND DESIGN PRESSURES Compartment Peak Calculated Differential Pressure (psid)
Design Differential Pressure (psid)
Pressurizer Spray Spray Line Break 26.0 41.4 Surge Line Break 30.6 51.3 Steam Generator Lower Compartment See Section 6.2.1.3.9.2 Reactor Cavity See Section 6.2.1.3.9.3
6.2-134 Reformatted Per Amendment 02-01 TABLE 6.2-11a
SUMMARY
OF INITIAL STEAM GENERATOR COMPARTMENT MODELS Model Nodal Arrangement Figure No.
Model Description/Results Listed in Table No.
Results Illustrated by Figure No.
16 Node Model, Loop A
Steam Generator Compartment
Cold Leg Break 6.2-22a 6.2-12, 6.2-12a 6.2-22b 17 Node Model, Loop A
Steam Generator Compartment
Hot Leg Break 6.2-22c 6.2-12b, 6.2-12c 6.2-22d 12 Node Model, Loop B
Steam Generator Compartment
Cold Leg Break 6.2-22e 6.2-13, 6.2-13a 6.2-22f 13 Node Model, Loop B
Steam Generator Compartment
Hot Leg Break 6.2-22g 6.2-13b, 6.2-13c 6.2-22h 14 Node Model, Loop C
Steam Generator Compartment
Hot and Cold Leg Breaks 6.2-22i 6.2-14, 6.2-14a 6.2-22j, 6.2-22k 6.2-135 Reformatted Per Amendment 02-01 TABLE 6.2-12 16 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, VOLUME DESCRIPTION Control Volume No Description Height (ft)
Volume (ft 3) Volume Flow Area (ft 2)
Bottom Elev. (ft)
Initial Conditions Temp Pressure
( F) (psia) Quality Calc. Peak Diff. press(1)(psi) Design Diff.
press.(2) (psi) Design Margin (%) 1 Lower 1/2 Compartment below Steam Generator 14.0 6,768. 615. 412.5 212 14.696 0.573 21.5 41.2 92 2 Lower 1/2 Compartment below Reactor Coolant Pump 14.0 4,641. 413. 412.5 212 14.696 0.573 21.4 41.2 93 3 Between Steam Generator and Secondary Shield Wall 9.5 2,084. 317. 426.5 212 14.696 0.573 21.6 41.2 91 4 Between Steam Generator, Reactor Coolant Pump and Primary Shield Wall 9.5 2,195. 326. 426.5 212 14.696 0.573 21.8 41.2 89 5 Between Steam Generator, Reactor Coolant Pump and Secondary Shield Wall 9.5 1,380. 332. 426.5 212 14.696 0.573 21.6 41.2 91 6 Between Reactor Coolant Pump, Cold Leg and Secondary Shield Wall 9.5 1,134. 314. 426.5 212 14.696 0.573 24.7 41.2 67 7 Between Reactor Coolant Pump and Secondary Shield Wall 9.5 314. 90. 426.5 212 14.696 0.573 21.6 41.2 91 8 Compartment above Elevation 436' 23.5 16,686. 758. 436.0 212 14.696 0.573 21.5 41.2 92 9 Around Steam Generator above Elevation 459.5' 15.9 4,826. 392. 459.5 212 14.696 0.573 5.8 16.9 191 10 Steam Generator B Compartment below Elevation 459.5' 47.0 34,094. 863. 412.5 212 14.696 0.573 NA (3) 11 Steam Generator B Compartment above Elevation 459.5' 15.9 4,347. 413. 459.5 212 14.696 0.573 NA 02-01 02-01 6.2-136 Reformatted Per Amendment 02-01 TABLE 6.2-12 16 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, VOLUME DESCRIPTION Control Volume No Description Height (ft)
Volume (ft 3) Volume Flow Area (ft 2)
Bottom Elev. (ft)
Initial Conditions Temp Pressure
( F) (psia) Quality Calc. Peak Diff. press(1)(psi) Design Diff.
press.(2) (psi) Design Margin (%) 12 Pressurizer Surge Tank Compartment 22.5 6,200. 100. 412.5 212 14.696 0.573 NA 13 Gallery between Steam Generators A and C 11.5 6,900. 200. 412.0 212 14.696 0.573 NA 14 Steam Generator C Compartment below Elevation 459.5' 47.0 34,922. 859. 412.5 212 14.696 0.573 NA 15 Steam Generator C Compartment above Elevation 459.5' 15.9 5,461. 315. 459.5 212 14.696 0.573 NA 16 Containment 200. 1.74+6 1.3+4 412.0 212 14.696 0.545 NA Notes: 1. With respect to containment.
- 2. Values to be multiplied by dynamic load factor of 1.1 for purposes of structural design. 3. NA, not applicable.
02-01 02-01 6.2-137 Reformatted Per Amendment 02-01 TABLE 6.2-12a 16 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 1 1 2 Inertial(2) 419.5 276. 0.05 0.01 - - 0.04 0.05 - 0.04 0.05 2 1 3 Inertial 426.5 245. 0.05 0.01 - - - 0.01 - - 0.01 3 2 4 HEM(3) 426.5 108. 0.11 0.01 - - 0.30 0.31 - 0.47 0.48 4 2 5 Inertial 426.5 28. 0.42 0.01 - - - 0.01 - - 0.01 5 1 4 HEM 426.5 150. 0.08 0.01 - - 0.31 0.32 - 0.49 0.50 6 1 5 Inertial 426.5 109. 0.11 0.01 - - - 0.01 - - 0.01 7 2 6 HEM 426.5 127. 0.12 0.02 - - 0.28 0.30 - 0.39 0.41 8 2 7 HEM 426.5 31. 0.31 0.01 - 0.20 - 0.21 0.20 - 0.21 9 1 16 HEM 415.9 26.8 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 10 1 12 HEM 419.5 91. 0.04 - 1.20 1.00 0.33 2.53 0.44 0.50 2.14 11 1 13 HEM 419.5 79. 0.12 - - 0.25 0.50 0.75 1.00 0.29 1.29 12 2 10 HEM 419.5 105. 0.18 0.03 0.30 1.00 0.50 1.83 1.00 0.50 1.83 13 10 16 HEM 415.9 107. 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 14 10 16 HEM 418.0 44. 0.36 0.06 3.60 1.00 0.50 5.16 1.00 0.50 5.16 15 10 16 HEM 459.5 157. 0.07 0.01 - 1.00 0.50 1.51 1.00 0.50 1.51 16 10 11 HEM 459.5 193. 0.07 0.01 - 0.13 0.52 0.66 0.13 0.52 0.66 17 11 16 HEM 475.4 246. 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 18 5 7 HEM 431.25 50. 0.16 0.01 - 0.24 0.31 0.56 0.24 0.31 0.56 19 6 7 HEM 431.25 31. 0.30 0.01 - 1.70 0.25 1.96 1.70 0.31 2.02 02-01 02-01 02-01 6.2-138 Reformatted Per Amendment 02-01 TABLE 6.2-12a (Continued) 16 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 20 6 4 HEM 431.25 75. 0.10 0.01 - 0.36 0.24 0.61 0.26 0.31 0.58 21 4 5 HEM 431.25 51. 0.28 0.01 - 0.42 0.31 0.74 0.29 0.46 0.76 22 3 5 HEM 431.25 49. 0.38 0.01 - 0.24 0.31 0.56 0.22 0.43 0.66 23 3 4 HEM 431.25 51. 0.14 0.01 - 0.28 0.29 0.58 0.24 0.41 0.66 24 6 10 HEM 431.25 70. 0.18 0.03 0.30 1.00 0.50 1.83 1.00 0.50 1.83 25 3 8 HEM 436.0 102. 0.09 0.01 - 0.22 0.20 0.43 0.20 0.22 0.43 26 4 8 HEM 436.0 160. 0.08 0.01 - 0.07 0.07 0.15 0.07 0.07 0.15 27 5 8 HEM 436.0 77. 0.12 0.01 - 0.23 0.21 0.45 0.21 0.23 0.45 28 6 8 HEM 436.0 118. 0.14 - - 0.01 - 0.01 0.01 - 0.01 29 7 8 Inertial 436.0 28. 0.49 0.02 - 0.035 0.035 0.09 0.035 0.035 0.09 30 8 16 HEM 459.5 185. 0.06 0.01 - 1.00 0.50 1.51 0.50 1.00 1.51 31 8 9 HEM 459.5 160. 0.05 0.01 - 0.41 0.28 0.70 0.28 0.41 0.70 32 9 16 HEM 475.4 269. 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 33 12 13 HEM 417.5 108. 0.12 - 1.20 0.20 0.38 1.78 0.57 0.23 2.00 34 13 14 HEM 417.8 162. 0.90 0.02 - 0.21 0.22 0.37 0.27 - 0.51 35 13 16 HEM 415.9 27. 0.75 - 0.80 0.71 0.19 1.70 0.71 0.19 1.70 36 13 16 HEM 420.0 33. 0.25 - 1.20 1.00 0.50 2.70 1.00 0.50 2.70 37 14 16 HEM 415.9 81. 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 38 14 16 HEM 418.0 54. 0.17 - 1.80 0.59 0.50 2.89 0.59 0.50 2.89 39 14 16 HEM 459.4 128. 0.05 - - 1.00 0.50 1.50 1.00 0.50 1.50 02-01 02-01 6.2-139 Reformatted Per Amendment 02-01 TABLE 6.2-12a (Continued) 16 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 40 14 15 HEM 459.5 225. 0.05 0.02 - 0.08 0.64 0.74 0.08 0.64 0.74 41 15 16 HEM 475.4 318. 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 42 0 4 Inertial 430.75 Fill syst. 43 0 6 Inertial 430.75 Fill syst. NOTES:
- 1. With respect to minimum flow area.
- 2. No choking allowed.
- 3. Homogeneous equilibrium model.
02-01 6.2-140 Reformatted Per Amendment 02-01 TABLE 6.2-12b 17 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, VOLUME DESCRIPTION Initial Conditions Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft) Temp ( F) Pressure (psia) Quality Clac. Peak Diff. press(1)(psi) Design Diff.
press (2) (psi) Design Margin (%) 1 Lower 1/2 Compartment below Steam Generator 14.0 6,768. 615. 412.5 212 14.696 0.573 19.4 41.2 112 2 Lower 1/2 Compartment below Reactor Coolant Pump 14.0 4,641. 413. 412.5 212 14.696 0.573 19.4 41.2 112 3 Between Steam Generator and Secondary Shield Wall 9.5 1,044. 208. 426.5 212 14.696 0.573 19.5 41.2 111 4 Between Steam Generator, Reactor Coolant Pump and Primary Shield Wall 9.5 1,853. 374. 426.5 212 14.696 0.573 20.5 41.2 101 5 Between Steam Generator, Reactor Coolant Pump and Secondary Shield
Wall 9.5 1,380. 332. 426.5 212 14.696 0.573 19.9 41.2 107 6 Between Reactor Coolant Pump, Cold Leg and Secondary Shield Wall 9.5 1,134. 314. 426.5 212 14.696 0.573 19.0 41.2 116 7 Between Reactor Coolant Pump and Secondary Shield Wall 9.5 314. 90. 426.5 212 14.696 0.573 19.5 41.2 111 8 Compartment above Elevation 436' 23.5 16,686. 758. 436.0 212 14.696 0.573 19.7 41.2 109 9 Around Steam Generator above Elevation 459.5' 15.9 4,826. 392. 459.5 212 14.696 0.573 4.7 16.9 260 02-01 02-01 02-01 02-01 02-01 02-01 02-01 6.2-141 Reformatted Per Amendment 02-01 TABLE 6.2-12b (Continued) 17 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, VOLUME DESCRIPTION Initial Conditions Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft) Temp ( F) Pressure (psia) Quality Clac. Peak Diff. press(1)(psi) Design Diff.
press (2) (psi) Design Margin (%) 10 Steam Generator B Compartment below Elevation 459.5' 47.0 34,094. 863. 412.5 212 14.696 0.573 NA(3) 11 Steam Generator B Compartment above Elevation 459.5' 15.9 4,347. 413. 459.5 212 14.696 0.573 NA 12 Pressurizer Surge Tank Compartment 22.5 6,200. 100. 412.5 212 14.696 0.573 NA 13 Gallery between Steam Generators A and C 11.5 6,900. 200. 412.0 212 14.696 0.573 NA 14 Steam Generator C Compartment below Elevation 459.5' 47.0 34,922. 859. 412.5 212 14.696 0.573 NA 15 Steam Generator C Compartment above Elevation 459.5' 15.9 5,461. 315. 459.5 212 14.696 0.573 NA 16 Containment 200. 1.74+7 1.3+4 412.0 212 14.696 0.573 NA 17 Between Steam Generator Hot Leg and Primary Shield Wall 9.5 1,205. 218. 426.5 212 14.696 0.545 37.5 41.2 10 Notes:
- 1. With respect to containment.
- 2. Values to be multiplied by dynamic load factor of 1.1 for purposes of structural design.
- 3. NA, not applicable.
02-01 02-01 02-01 02-01 6.2-142 Reformatted Per Amendment 02-01 TABLE 6.2-12c 16 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2)Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 1 1 2 Inertial(2) 419.5 276. 0.05 0.01 - - 0.04 0.05 - 0.04 0.05 2 1 3 Inertial 426.5 114. 0.01 0.01 - - - 0.01 - - 0.01 3 2 4 HEM (3) 426.5 108. 0.11 0.01 - - 0.30 0.31 - 0.47 0.48 4 2 5 Inertial 426.5 28. 0.42 0.01 - - - 0.01 - - 0.01 5 1 4 HEM 426.5 117. 0.10 0.01 - - 0.34 0.35 - 0.59 0.60 6 1 5 Inertial 426.5 109. 0.11 0.01 - - - 0.01 - - 0.01 7 2 6 HEM 426.5 127. 0.12 0.02 - - 0.28 0.30 - 0.39 0.41 8 2 7 HEM 426.5 31. 0.31 0.01 - 0.20 - 0.21 0.20 - 0.21 9 1 16 HEM 415.9 27. 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 10 1 12 HEM 419.5 91. 0.04 - 1.20 1.00 0.33 2.53 0.44 0.50 2.14 11 1 13 HEM 419.5 79. 0.12 - - 0.25 0.50 0.75 1.00 0.29 1.29 12 2 10 HEM 419.5 105. 0.18 0.03 0.30 1.00 0.50 1.83 1.00 0.50 1.83 13 10 16 HEM 415.9 107. 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 14 10 16 HEM 418.0 44. 0.36 0.06 3.60 1.00 0.50 5.16 1.00 0.50 5.16 15 10 16 HEM 459.5 157. 0.07 0.01 - 1.00 0.50 1.51 1.00 0.50 1.51 16 10 11 HEM 459.5 193. 0.07 0.01 - 0.13 0.52 0.66 0.13 0.52 0.66 17 11 16 HEM 457.4 246. 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 18 5 7 HEM 431.25 50. 0.16 0.01 - 0.24 0.31 0.56 0.24 0.31 0.56 19 6 7 HEM 431.25 31. 0.30 0.01 - 1.70 0.25 1.96 1.70 0.31 2.02 20 6 4 HEM 431.25 75. 0.10 0.01 - 0.36 0.24 0.61 0.26 0.31 0.58 02-01 02-01 0 2-0 1 02-01 0 2-0 1 6.2-143 Reformatted Per Amendment 02-01 TABLE 6.2-12c (Continued) 16 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2)Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 21 4 5 HEM 431.25 51. 0.28 0.01 - 0.43 0.27 0.71 0.29 0.38 0.68 22 3 5 HEM 431.25 54. 0.28 0.01 - 0.28 0.14 0.43 0.22 0.14 0.37 23 4 17 HEM 431.25 51. 0.19 0.01 - 0.30 0..28 0.59 0.24 0.40 0.65 24 6 10 HEM 432.25 70. 0.18 0.03 0.30 1.00 0.50 1.83 1.00 0.50 1.83 25 3 8 HEM 436.0 66. 0.17 0.01 - 0.13 0.12 0.26 0.12 0.13 0.26 26 4 8 HEM 436.0 159. 0.09 0.01 - 0.04 0.04 0.09 0.04 0.04 0.09 27 5 8 HEM 436.0 77. 0.12 0.01 - 0.23 0.21 0.45 0.21 0.23 0.45 28 6 8 HEM 436.0 118. 0.14 0.01 - 0.01 - 0.02 0.01 - 0.02 29 7 8 Inertial 436.0 28. 0.49 0.02 - 0.035 0.035 0.09 0.035 0.035 0.09 30 8 16 HEM 459.5 185. 0.06 0.01 - 1.00 0.50 1.51 0.50 1.00 1.51 31 8 9 HEM 459.5 160. 0.05 0.01 - 0.41 0.28 0.70 0.28 0.41 0.70 32 9 16 HEM 475.4 269. 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 33 12 13 HEM 417.5 108. 0.12 - 1.20 0.20 0.38 1.78 0.57 0.23 2.00 34 13 14 HEM 417.8 162. 0.10 0.02 - 0.21 0.22 0.45 0.27 - 0.29 35 13 16 HEM 415.9 27. 0.75 - 0.80 0.71 0.19 1.70 0.71 0.19 1.70 36 13 16 HEM 420.0 33. 0.25 - 1.20 1.00 0.50 2.70 1.00 0.50 2.70 37 14 16 HEM 415.9 81. 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 38 14 16 HEM 418.0 54. 0.17 - 1.80 0.59 0.50 2.89 0.59 0.50 2.89 39 14 16 HEM 459.4 128. 0.05 - - 1.00 0.50 1.50 1.00 0.50 1.50 40 14 15 HEM 459.5 225.5 0.05 0.02 - 0.08 0.64 0.74 0.08 0.64 0.74 0 2-0 1 0 2-0 1 0 2-0 1 02-01 6.2-144 Reformatted Per Amendment 02-01 TABLE 6.2-12c (Continued) 16 NODE LOOP A STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2)Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 41 15 16 HEM 475.4 318. 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 42 3 17 HEM 431.25 54. 0.21 0.01 - 0.19 0.19 0.39 0.19 0.19 0.39 43 17 8 HEM 436.0 51. 0.14 0.01 - 0.19 0.13 0.33 0.23 0.33 0.57 44 1 17 HEM 426.5 159. 0.08 0.01 - - - 0.01 - - 0.01 45 0 4 Inertial 430.75 Fill syst. 46 0 17 Inertial 430.75 Fill syst.. NOTES:
- 1. With respect to minimum flow area.
- 2. No choking allowed.
- 3. Homogeneous equilibrium model.
02-01 02-01 6.2-145 Reformatted Per Amendment 02-01 TABLE 6.2-13 12 NODE LOOP B STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, VOLUME DESCRIPTION Control Volume No. Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft)
Initial Conditions Temp. Pressure ( F) (psia) Quality Calc. Peak Diff. Press (1) (psi) Design Diff. Press (2) (psi) Design Margin (%) 1 Lower 1/2 Compartment below Reactor Coolant Pump 14.0 3,869. 364. 412.5 212 14.696 0.573 22.8 41.2 81 2 Lower 1/2 Compartment below Steam Generator 14.0 6,708. 510. 412.5 212 14.696 0.573 22.8 41.2 81 3 Between Reactor Coolant Pump and Secondary Shield Wall 9.5 369. 132. 426.5 212 14.696 0.573 22.9 41.2 80 4 Between Reactor Coolant Pump, Cold Leg and Secondary Shield Wall 9.5 1,003. 332. 426.5 212 14.696 0.573 40.0 41.2 3 5 Between Reactor Coolant Pump, Steam Generator and Primary Shield Wall 9.5 1,722. 744. 426.5 212 14.696 0.573 23.4 41.2 76 6 Between Reactor Coolant Pump, Steam Generator and Secondary Shield Wall 9.5 1,430. 371. 426.5 212 14.696 0.573 22.8 41.2 81 7 Between Steam Generator and Secondary Shield Wall 9.5 2,326. 460. 426.5 212 14.696 0.573 22.7 41.2 81 8 Compartment above Elevation 436' 23.5 16,663. 863. 436.0 212 14.696 0.573 22.5 41.2 83 9 Around Steam Generator above Elevation 459.5' 15.9 4,347. 413. 459.5 212 14.696 0.573 11.5 16.9 47 10 Steam Generator A Compartment below Elevation 459.5' 47.0 35,254. 858. 412.5 212 14.696 0.573 NA (3) 11 Steam Generator A Compartment above Elevation 459.5' 15.9 4,826. 458. 459.5 212 14.696 0.573 NA 12 Containment 200. 1.84+6 1.3+4 412.0 212 14.696 0.545 NA Notes: 1. With respect to containment. 2. Values to be multiplied by dynamic load factor of 1.1 for purposes of structural design. 3. NA - not applicable.
02-01 02-01 02-01 0 2-0 1 6.2-146 Reformatted Per Amendment 02-01 TABLE 6.2-13a 12 NODE LOOP B STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 1 1 2 Inertial (2) 419.5 235.8 0.05 0.01 - 0.02 0.02 0.05 0.02 0.02 0.05 2 1 3 HEM (3) 426.5 28.4 0.31 0.01 - - 0.41 0.42 0.81 - 0.82 3 1 4 HEM 426.5 47.7 0.17 0.01 - - 0.36 0.37 0.69 - 0.70 4 1 5 HEM 426.5 99.6 0.10 0.01 - 0.02 0.28 0.31 0.40 0.02 0.43 5 1 6 HEM 426.5 22.7 0.27 0.01 - 0.19 0.23 0.43 0.21 0.21 0.43 6 1 12 HEM 415.9 40.2 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 7 1 12 HEM 418.0 43.9 0.36 0.06 3.6 1.0 0.5 5.16 1.0 0.5 5.16 8 2 5 Inertial 426.5 83.6 0.14 0.01 - - - 0.01 - - 0.01 9 2 6 Inertial 426.5 90.8 0.11 0.01 - - 0.06 0.07 - 0.06 0.07 10 2 7 Inertial 426.5 277.8 0.04 0.01 - - - 0.01 - - 0.01 11 2 10 HEM 419.5 104.5 0.18 0.03 0.30 1.0 0.5 1.83 1.0 0.5 1.83 12 2 12 HEM 415.9 67.0 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 13 3 4 HEM 431.25 30.9 0.33 0.01 - 0.30 0.24 0.55 0.30 0.24 0.55 14 3 6 HEM 431.25 58.3 0.17 0.01 - 0.15 - 0.16 - 0.15 0.16 15 3 8 HEM 436.0 32.0 0.39 0.01 - 0.05 0.05 0.11 0.05 0.05 0.11 16 4 5 HEM 431.25 61.1 0.17 0.01 - 0.33 0.25 0.59 0.33 0.25 0.59 17 4 8 HEM 436.0 101.7 0.14 0.01 - 0.02 0.02 0.05 0.02 0.02 0.05 18 5 6 HEM 431.25 50.4 0.19 0.01 - 0.28 0.23 0.52 0.28 0.23 0.52 19 5 7 HEM 431.25 119.1 0.09 0.01 - 0.09 0.09 0.19 0.09 0.09 0.19 20 5 8 HEM 436.0 134..2 0.09 0.01 - 0.06 0.12 0.19 0.12 0.06 0.19 0 2-0 1 02-01 02-01 02-01 02-01 6.2-147 Reformatted Per Amendment 02-01 TABLE 6.2-13a (Continued) 12 NODE LOOP B STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 21 6 7 HEM 431.25 79.8 0.16 0.01 - 0.08 0.08 0.17 0.08 0.08 0.17 22 6 8 HEM 436.0 80.0 0.14 0.01 - 0.12 0.19 0.32 0.91 0.12 0.32 23 7 8 HEM 436.0 181.3 0.08 0.01 - 0.03 0.12 0.16 0.3 0.12 0.16 24 7 10 HEM 431.25 70.2 0.18 0.03 0.3 1.00 0.5 1.83 1.00 0.5 1.83 25 8 9 HEM 459.5 193.0 0.07 0.01 - 0.13 0.52 0.66 0.13 0.52 0.66 26 8 12 HEM 459.5 157.0 0.07 0.01 - 1.00 0.5 1.51 1.00 0.5 1.51 27 9 12 HEM 475.4 245.9 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 28 10 11 HEM 459.5 160.2 0.07 0.01 - 0.13 0.52 0.66 0.13 0.52 0.66 29 10 12 HEM 415.9 26.8 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 30 10 12 HEM 459.5 184.6 0.07 0.01 - 1.00 0.5 1.51 1.00 0.5 1.51 31 11 12 HEM 475.4 269.1 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 32 0 4 NA (4) 430.75 Fill syst. 33 0 5 NA 430.75 Fill syst. NOTES: 1. With respect to minimum flow area.
- 2. No choking allowed.
- 3. Homogeneous equilibrium model.
- 4. NA, not applicable.
0 2-0 1 0 2-0 1 02-01 02-01 02-01 6.2-148 Reformatted Per Amendment 02-01 TABLE 6.2-13b 13 NODE LOOP B STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, VOLUME DESCRIPTION Initial Conditions Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft) Temp ( F) Pressure (psia) Quality Clac. Peak Diff. press(1)(psi) Design Diff.
press (2) (psi) Design Margin (%) 1 Lower 1/2 Compartment below Reactor Coolant Pump 14.0 3,869. 364. 412.5 212 14.696 0.573 19.9 41.2 107 2 Lower 1/2 Compartment below Steam Generator 14.0 6,708. 510. 412.5 212 14.696 0.573 19.9 41.2 107 3 Between Reactor Coolant Pump and Secondary Shield Wall 9.5 369. 132. 426.5 212 14.696 0.573 20.3 41.2 103 4 Between Reactor Coolant Pump, Cold Leg and Secondary Shield Wall 9.5 1,003. 332. 426.5 212 14.696 0.573 20.1 41.2 105 5 Between Reactor Coolant Pump, Steam Generator and Primary Shield Wall 9.5 1,722. 744. 426.5 212 14.696 0.573 26.6 41.2 55 6 Between Reactor Coolant Pump, Steam Generator and Secondary Shield Wall 9.5 1,430. 371. 426.5 212 14.696 0.573 20.3 41.2 103 7 Between Steam Generator, Hot Leg and Secondary Shield Wall 9.5 1,396. 276. 426.5 212 14.696 0.573 26.0 41.2 58 8 Compartment above Elevation 436' 23.5 16,663. 863. 436.0 212 14.696 0.573 20.2 41.2 104 9 Around Steam Generator above Elevation 459.5' 15.9 4,347. 413. 459.5 212 14.696 0.573 9.6 16.9 76 10 Steam Generator A Compartment below Elevation 459.5' 47.0 32,254. 858. 412.5 212 14.696 0.573 NA (3) 11 Steam Generator A Compartment above Elevation 459.5' 15.9 4,826. 458. 459.5 212 14.696 0.573 NA 12 Containment 200. 1.74+6 1.3+4 412.0 212 14.696 0.545 NA 13 Between Steam Generator and Secondary Shield Wall 9.5 930. 184. 426.5 212 14.696 0.573 20.1 41.2 105 Notes:
- 1. With respect to containment. 2. Values to be multiplied by dynamic load factor of 1.1 for purposes of structural design. 3. NA, not applicable.
0 2-0 1 02-01 0 2-0 1 0 2-0 1 02-01 02-01 6.2-149 Reformatted Per Amendment 02-01 TABLE 6.2-13c 13 NODE LOOP B STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 1 1 2 Inertial(2) 419.5 235.8 0.05 0.01 - 0.02 0.02 0.05 0.02 0.02 0.05 2 1 3 HEM(3) 426.5 28.4 0.31 0.01 - - 0.41 0.42 0.81 - 0.82 3 1 4 HEM 426.5 47.7 0.17 0.01 - - 0.36 0.37 0.69 - 0.70 4 1 5 HEM 426.5 99.6 0.10 0.01 - 0.02 0.28 0.31 0.42 0.02 0.43 5 1 6 HEM 426.5 22.7 0.27 0.01 - 0.19 0.23 0.43 0.21 0.21 0.43 6 1 12 HEM 415.9 40.2 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 7 1 12 HEM 418.0 43.9 0.36 0.06 3.6 1.0 0.5 5.16 1.0 0.5 5.16 8 2 5 HEM 426.5 83.6 0.14 0.01 - - 0.37 0.38 0.69 - 0.70 9 2 6 HEM 426.5 90.8 0.11 0.01 - 0.06 0.36 0.43 0.67 0.06 0.74 10 2 7 HEM 426.5 166.7 0.04 0.01 - - 0.18 0.19 0.18 - 0.19 11 2 10 HEM 419.5 104.5 0.18 0.03 0.3 1.0 0.5 1.83 1.0 0.5 1.83 12 2 12 HEM 415.9 67.0 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 13 3 4 HEM 431.25 30.9 0.33 0.01 - 0.30 0.24 0.55 0.30 0.24 0.55 14 3 6 HEM 431.25 58.3 0.17 0.01 - 0.15 - 0.16 - 0.15 0.16 15 3 8 HEM 436.0 32.0 0.39 0.01 - 0.05 0.05 0.11 0.05 0.05 0.11 16 4 5 HEM 431.25 61.1 0.17 0.01 - 0.33 0.25 0.59 0.33 0.25 0.59 17 4 8 HEM 436.0 101.7 0.14 0.01 - 0.02 0.02 0.05 0.02 0.02 0.05 18 5 6 HEM 431.25 50.4 0.19 0.01 - 0.28 0.23 0.52 0.28 0.23 0.52 19 5 7 HEM 431.25 119.1 0.09 0.01 - 0.09 0.09 0.19 0.09 0.09 0.19 20 5 8 HEM 436.0 134.2 0.09 0.01 - 0.06 0.12 0.19 0.12 0.06 0.19 02-01 0 2-0 1 02-01 0 2-0 1 6.2-150 Reformatted Per Amendment 02-01 TABLE 6.2-13c (Continued) 13 NODE LOOP B STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 21 6 13 HEM 431.25 79.8 0.16 0.01 - 0.08 0.08 0.17 0.08 0.08 0.17 22 6 8 HEM 436.0 80.0 0.14 0.01 - 0.12 0.19 0.32 0.19 0.12 0.32 23 7 8 HEM 436.0 108.8 0.15 0.01 - 0.03 0.12 0.16 0.03 0.12 0.16 24 7 10 HEM 431.25 70.2 0.18 0.03 0.30 1.00 0.5 1.83 1.00 0.5 1.83 25 8 9 HEM 459.5 193.0 0.07 0.01 - 0.13 0.52 0.66 0.13 0.52 0.66 26 8 12 HEM 459.5 157.0 0.07 0.01 - 1.00 0.5 1.51 1.00 0.5 1.51 27 9 12 HEM 475.4 245.9 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 28 10 11 HEM 459.5 160.2 0.07 0.01 - 0.13 0.52 0.66 0.13 0.52 0.66 29 10 12 HEM 415.9 26.8 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 30 10 12 HEM 459.5 184.6 0.07 0.01 - 1.00 0.50 1.51 1.00 0.5 1.51 31 11 12 HEM 475.4 269.1 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 32 2 13 HEM 426.5 111.1 0.04 0.01 - - 0.18 0.19 0.18 - 0.19 33 7 13 HEM 431.25 77.6 0.19 0.01 - - 0.09 0.10 0.09 - 0.10` 34 8 13 HEM 436.0 72.5 0.23 0.01 - 0.03 0.12 0.16 0.03 0.12 0.16 35 0 5 NA (4) Fill syst. 36 0 7 NA Fill syst.
NOTES: 1. With respect to minimum flow area.
- 2. No choking allowed.
- 3. Homogeneous equilibrium model.
- 4. NA, not applicable.
02-01 0 2-0 1 02-01 Reformatted Per Amendment 02-01 6.2-151 TABLE 6.2-14 14 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL HOT AND COLD LEG BREAKS, VOLUME DESCRIPTION Control Volume No. Description Height (ft)
Volume (ft 3) Flow Area (ft 2) Volume Elevation (ft) Bottom Temp. ( F) Pressure (psia)
Quality Calc. Peak Diff. Press.(1) Cold Leg Hot Leg (psi) (psi) Design Press (2) (psi) Design Margin (%) 1 Lower 1/2 Compartment below Reactor Coolant Pump 14.0 5,519. 442. 412.5 212 14.696 0.573 23.2 20.2 41.2 78 2 Lower 1/2 Compartment below Steam Generator 14.0 6,232. 462. 412.5 212 14.696 0.573 23.3 20.2 41.2 77 3 Between Reactor Coolant Pump, primary Shield and Steam Generator 9.5 1,528. 586. 426.5 212 14.696 0.573 26.3 26.3 41.2 57 4 Between Cold Leg, Reactor Coolant Pump and Secondary Shield 9.5 609. 203. 426.5 212 14.696 0.573 47.9 20.1 41.2 -14 (4) 5 Between Reactor Coolant Pump, Steam Generator and Secondary Shield 9.5 2,640. 300. 426.5 212 14.696 0.573 23.2 20.1 41.2 78 6 Between Steam Generator and Secondary Shield 9.5 1,022. 163. 426.5 212 14.696 0.573 23.3 20.2 41.2 77 7 Between Steam Generator, Hot Leg and Secondary Shield Wall 9.5 864. 158. 426.5 212 14.696 0.573 23.4 43.4 41.2 -5 (4) 8 Compartment above Elevation 436' 23.5 16,470. 730. 436.0 212 14.696 0.573 22.9 20.4 41.2 80 9 Around Steam Generator above Elevation 459.5' 15.9 5,461. 315. 459.5 212 14.696 0.573 6.4 6.0 16.9 164 10 Gallery between Loops A and C 11.5 6,900. 200. 412.0 212 14.696 0.573 8.9 7.5 41.2 363 11 Pressurizer Relief Tank Compartment 22.5 6,200. 100. 412.5 212 14.696 0.573 NA (3) 12 Steam Generator A Compartment below Elevation 459.5' 47.0 35,254. 858. 412.5 212 14.696 0.573 NA 13 Steam Generator A Compartment above Elevation 459.5' 15.9 4,826. 260. 459.5 212 14.696 0.573 NA 14 Containment 200. 1.74+6 12,500. 412.0 212 14.696 0.573 NA Notes: 1. With respect to containment. 2. Values to be multiplied by dynamic load factor of 1.1 for purposes of structural design. 3. NA, not applicable. 4. For discussion of results, see Section 6.2.1.3.9.2.3.
02-01 0 2-0 1 0 2-0 1 0 2-0 1 02-01 Reformatted Per Amendment 02-01 6.2-152 TABLE 6.2-14a 14 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL HOT AND COLD LEG BREAKS, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 1 1 2 Inertial (2) 419.5 304.0 0.05 0.01 - - - 0.01 - - 0.01 2 1 10 HEM (3) 417.8 161.8 0.09 0.02 - 0.21 0.22 0.45 0.27 - 0.29 3 1 14 HEM 415.9 26.8 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 4 2 14 HEM 415.9 53.6 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 5 2 14 HEM 418.0 53.8 0.17 - 1.8 0.59 0.5 2.89 0.59 0.5 2.89 6 3 1 HEM 426.5 63.0 0.08 0.01 - 0.72 - 0.73 - 0.06 0.07 7 3 2 HEM 426.5 116.4 0.05 0.01 - 0.56 - 0.57 - 0.37 0.38 8 3 4 HEM 431.25 44.3 0.28 0.02 - 1.86 1.13 3.01 0.41 - 0.43 9 3 5 HEM 431.25 54.8 0.25 0.02 - 0.50 0.28 0.8 0.33 0.33 0.68 10 3 7 HEM 431.25 74.8 0.14 0.03 - 0.04 0.20 0.27 0.15 0.11 0.29 11 3 8 HEM 436.0 108.8 0.06 0.01 - 0.09 0.19 0.29 0.01 0.15 0.17 12 4 1 HEM 426.5 64.4 0.08 0.02 - 0.71 - 0.73 0.10 - 0.11 13 4 5 HEM 431.25 40.0 0.20 0.02 - 0.22 0.24 0.48 0.22 0.24 0.48 14 4 8 HEM 436.0 60.5 0.12 0.02 - - 0.03 0.05 - 0.03 0.05 15 5 1 HEM 426.5 144.4 0.03 0.01 - 0.12 0.15 0.28 0.09 0.17 0.27 16 5 2 HEM 426.5 80.7 0.03 0.02 - 0.06 0.12 0.20 0.06 0.12 0.20 17 5 6 HEM 431.25 81.0 0.15 0.03 - - 0.23 0.26 0.21 - 0.24 18 5 8 HEM 436.0 209.6 0.04 0.01 - 0.06 0.12 0.19 0.06 0.12 0.19 19 6 2 Inertial 426.5 119.2 0.05 0.01 - - - 0.01 - - 0.01 20 6 7 HEM 431.25 71.6 0.16 0.02 - 0.0 0.18 0.20 0.13 0.03 0.18 02-01 0 2-0 1 0 2-0 1 0 2-0 1 0 2-0 1 Reformatted Per Amendment 02-01 6.2-153 TABLE 6.2-14a (Continued) 14 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL HOT AND COLD LEG BREAKS, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 21 6 8 HEM 436.0 53.7 0.09 0.01 - 0.19 0.25 0.45 0.05 0.21 0.27 22 7 2 HEM 426.5 110.8 0.12 0.02 - 0.58 - 0.60 - - 0.02 23 7 8 HEM 436.0 59.0 0.10 0.02 - 0.05 0.11 0.18 0.05 0.11 0.18 24 8 9 HEM 459.5 225.5 0.05 0.02 - 0.08 0.64 0.74 0.08 0.64 0.74 25 8 14 HEM 459.5 128.4 0.05 - - 1.00 0.50 1.50 1.00 0.50 1.50 26 9 14 HEM 475.4 317.6 0.02 0.01 - 1.00 - 1.01 1.00 - 1.01 27 10 11 HEM 417.5 107.7 0.12 - 1.2 0.57 0.23 2.0 0.20 0.38 1.78 28 11 12 HEM 419.5 90.9 0.04 - 1.2 1.00 0.33 2.53 0.44 0.50 2.14 29 10 14 HEM 415.9 26.8 0.75 - 0.80 0.71 0.19 1.7 0.71 0.19 1.7 30 10 14 HEM 420.0 33.0 0.24 - 1.2 1.00 0.50 2.7 1.00 0.50 2.7 31 10 12 HEM 419.5 78.8 0.12 - - 1.00 0.29 1.29 0.25 0.50 0.75 32 12 13 HEM 459.5 160..2 0.12 0.02 - 0.16 0.70 0.88 0.16 0.70 0.88 33 12 14 HEM 423.2 178.7 0.11 - - 1.00 0.50 1.50 1.00 0.50 1.50 34 12 14 HEM 415.9 26.8 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 35 12 14 HEM 459.5 184.6 0.04 - - 1.00 0.38 1.38 1.00 0.38 1.38 36 13 14 HEM 475.4 269.1 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 37 0 3 NA (4) 430.75 0.5 Fill system; hot and cold leg breaks 38 0 4 NA 430.75 0.5 Fill system; cold leg break 39 0 7 NA 430.75 0.5 Fill system; hot leg break NOTES: 1. With respect to minimum flow area. 2. No choking allowed. 3. Homogeneous equilibrium model.
- 4. NA, not applicable.
0 2-0 1 02-01 02-01 02-01 Reformatted Per Amendment 02-01 6.2-154 TABLE 6.2-15
SUMMARY
OF LOOP C GENERATOR COMPARTMENT MODELS Forces and Moments Data Model Model Arrangement Figure No.
Model Description/Results Listed in Table No.
Results Illustrated by Fig. No.
Fig. No. Table No.
20 Node Model, Loop C Steam Generator Compartment, Cold Leg Break, Reactor Coolant Pump Loading 6.2-23 6.2-15a, 5.2-15b 6.2-23a, 6.2-23b, 6.2-23c 6.2-24 6.2-15c 25 Node Model, Loop C Steam Generator Compartment, Hot Leg Break, Steam Generator Loading 6.2-25 6.2-15d, 16.2-15e 6.2-25a, 6.2-25b, 6.2-25c 6.2-26 6.2-15f
6.2-155 Reformatted Per Amendment 02-01 TABLE 6.2-15a 20 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, VOLUME DESCRIPTION Control Volume No. Description Height (ft) Volume (ft 3) VolumeFlow Area (ft 2) Bottom Elev. (ft)
Initial Conditions Temp. Pressure ( F) (psia) Quality Calc. Peak Diff. Press (1) (psi) Design Diff. Press (2) (psi) Design Margin (%) 1 Lower 1/2 Compartment below Reactor Coolant Pump 14.0 5,519. 442. 412.5 212 14.696 0.573 23.0 41.2 79 2 Lower 1/2 Compartment below Steam Generator 14.0 6,232. 462. 412.5 212 14.696 0.573 23.0 41.2 79 3 Between Reactor Coolant Pump, Primary Shield and Steam Generator 9.5 1,528. 586. 426.5 212 14.696 0.573 26.5 41.2 55 4 Between Cold Legs, Reactor Coolant Pump and Secondary Shield 9.5 609. 203. 426.5 212 14.696 0.573 47.9 41.2 -14 (4) 5 Between Reactor Coolant Pump, Steam Generator and Secondary Shield 9.5 2,640. 300. 426.5 212 14.696 0.573 23.0 41.2 79 6 Between Steam Generator and Secondary Shield 9.5 1,022. 163. 426.5 212 14.696 0.573 23.1 41.2 78 7 Between Steam Generator, Hot Leg and Secondary Shield 9.5 864. 158. 426.5 212 14.696 0.573 23.2 41.2 78 8 Between Reactor Coolant Pump, Steam Generator and Primary Shield above Elevation 436' 15.0 2,300. 277. 436.0 212 14.696 0.573 22.8 41.2 81 9 Around Steam Generator above Elevation 459.5' 15.9 5,461. 315. 459.5 212 14.696 0.573 6.4 16.9 164 10 Gallery between Loops A and C 11.5 6,900. 200. 412.0 212 14.696 0.573 8.9 41.2 363 11 Pressurizer Relief Tank Compartment 22.5 6,200. 100. 412.5 212 14.696 0.573 NA (3) 12 Steam Generator A Compartment below Elevation 459.5' 47.0 35,254. 858. 412.5 212 14.696 0.573 NA 13 Steam Generator A Compartment above Elevation 459.5' 15.9 4,826. 260. 459.5 212 14.696 0.573 NA 02-01 02-01 02-01 0 2-0 1 0 2-0 1 6.2-156 Reformatted Per Amendment 02-01 TABLE 6.2-15a (Continued) 20 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, VOLUME DESCRIPTION Control Volume No. Description Height (ft) Volume (ft 3) VolumeFlow Area (ft 2) Bottom Elev. (ft)
Initial Conditions Temp. Pressure ( F) (psia) Quality Calc. Peak Diff. Press (1) (psi) Design Diff. Press (2) (psi) Design Margin (%) 14 Containment 200. 1.74+6 12,500. 412.0 212 14.696 0.573 NA 15 Between Reactor Coolant Pump and Secondary Shield above Elevation 436' 15. 966. 126. 436.0 212 14.696 0.573 22.8 41.2 81 16 Between Reactor Coolant Pump, Steam Generator and Secondary Shield above Elevation 436' 15. 4,161. 382. 436.0 212 14.696 0.573 22.8 41.2 81 17 Between Steam Generator and Secondary Shield above Elevation 436' 15. 1,431. 191. 436.0 212 14.696 0.573 22.8 41.2 81 18 Between Steam Generator and Primary Shield above Elevation 436' 15. 1,144. 176. 436.0 212 14.696 0.573 22.8 41.2 81 19 Between Steam Generator and Secondary Shield above Elevation 451' 8.5 1,457. 237. 451.0 212 14.696 0.573 22.8 41.2 81 20 Above Reactor Coolant Pump 8.5 4,208. 495. 451.0 212 14.696 0.573 22.8 41.2 81 Notes: 1. With respect to containment. 2. Values to be multiplied by dynamic load factor of 1.1 for purposes of structural design. 3. NA, not applicable.
- 4. For discussion of results see Section 6.2.1.3.9.2.3.
02-01 6.2-157 Reformatted Per Amendment 02-01 TABLE 6.2-15b 20 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 1 1 2 Inertial(2) 419.5 304.0 0.05 0.01 - - - 0.01 - - 0.01 2 1 10 HEM(3) 417.8 161.8 0.09 0.02 - 0.21 0.22 0.45 0.27 - 0.29 3 1 14 HEM 415.9 26.8 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 4 2 14 HEM 415.9 53.6 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 5 2 14 HEM 418.0 53.8 0.17 - 1.8 0.59 0.50 2.89 0.59 0.50 2.89 6 3 1 HEM 426.5 63.0 0.08 0.01 - 0.72 - 0.73 - 0.06 0.07 7 3 2 HEM 426.5 116.4 0.05 0.01 - 0.56 - 0.57 - 0.37 0.38 8 3 4 HEM 431.25 44.3 0.28 0.02 - 1.86 1.13 3.01 0.41 - 0.43 9 3 5 HEM 431.25 54.8 0.25 0.02 - 0.50 0.28 0.80 0.33 0.33 0.68 10 3 7 HEM 431.25 74.8 0.14 0.03 - 0.04 0.20 0.27 0.15 0.11 0.29 11 3 8 HEM 436.0 108.8 0.07 0.02 - 0.08 0.19 0.29 0.14 0.01 0.17 12 4 1 HEM 426.5 64.4 0.08 0.02 - 0.71 - 0.73 0.10 - 0.12 13 4 5 HEM 431.25 40.0 0.20 0.02 - 0.22 0.24 0.48 0.22 0.24 0.48 14 4 15 HEM 436.0 60.5 0.16 0.02 - - 0.03 0.05 - 0.03 0.05 15 5 1 HEM 426.5 144.4 0.03 0.01 - 0.12 0.15 0.28 0.09 0.17 0.27 16 5 2 HEM 426.5 80.7 0.15 0.02 - 0.06 0.12 0.20 0.06 0.12 0.20 17 5 6 HEM 431.25 81.0 0.04 0.03 - - 0.23 0.26 0.22 - 0.25 18 5 16 HEM 436.0 209.6 0.04 0.01 - 0.06 0.12 0.19 0.06 0.12 0.19 19 6 2 Inertial 426.5 119.2 0.05 0.01 - - - 0.01 - - 0.01 20 6 7 HEM 431.25 71.6 0.16 0.02 - - 0.18 0.20 0.13 0.03 0.18 02-01 6.2-158 Reformatted Per Amendment 02-01 TABLE 6.2-15b (Continued) 20 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 21 6 17 HEM 436.0 53.7 0.11 0.01 - 0.19 0.25 0.45 0.05 0.21 0.27 22 7 2 HEM 426.5 110.8 0.12 0.02 - 0.58 - 0.60 - - 0.02 23 7 18 HEM 436.0 59.0 0.14 0.02 - 0.05 0.11 0.18 0.05 0.11 0.18 24 19 9 HEM 459.5 140.8 0.07 0.02 - 0.32 0.09 0.43 0.32 0.09 0.43 25 20 14 HEM 459.5 128.4 0.04 0.01 - 1.00 0.37 1.38 1.00 0.37 1.38 26 9 14 HEM 475.4 317.6 0.02 0.01 - 1.00 - 1.01 1.00 - 1.01 27 10 11 HEM 417.5 107.7 0.12 - 1.2 0.57 0.23 2.0 0.20 0.38 1.78 28 11 12 HEM 419.5 90.9 0.04 - 1.2 1.00 0.33 2.53 0.44 0.50 2.14 29 10 14 HEM 415.9 26.8 0.75 - 0.8 0.71 0.19 1.7 0.71 0.19 1.7 30 10 14 HEM 420.0 33.0 0.24 - 1.2 1.00 0.5 2.7 1.00 0.50 2.7 31 10 12 HEM 419.5 78.8 0.12 - - 1.00 0.29 1.29 0.25 0.50 0.75 32 12 13 HEM 459.5 160.2 0.12 0.02 - 0.16 0.70 0.88 0.16 0.70 0.88 33 12 14 HEM 423.2 178.7 0.11 - - 1.00 0.50 1.50 1.00 0.50 1.50 34 12 14 HEM 415.9 26.8 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 35 12 14 HEM 459.5 184.6 0.04 - - 1.00 0..38 1.38 1.00 0.38 1.38 36 13 14 HEM 475.4 269.1 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 37 8 15 HEM 443.5 45.0 0.16 - - 0.25 0.30 0.55 0.41 0.25 0.66 38 8 16 HEM 443.5 112.5 0.15 0.01 - 0.39 0.21 0.61 0.18 0.31 0.50 39 8 18 HEM 443.5 135.0 0.08 0.02 - 0.01 0.15 0.18 0.09 0.05 0.16 40 8 20 Inertial 451.0 153.3 0.08 0.02 - - - 0.02 - - 0.02 02-01 6.2-159 Reformatted Per Amendment 02-01 TABLE 6.2-15b (Continued) 20 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL COLD LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 41 15 16 HEM 443.5 82.5 0.13 0.01 - 0.10 0.16 0.27 0.10 0.16 0.27 42 15 20 Inertial 451.0 64.4 0.17 0.02 - 0.04 - 0.06 0.04 - 0.06 43 16 17 HEM 443.5 150.0 0.18 0.02 - - 0.19 0.21 0.14 - 0.16 44 16 20 Inertial 451.0 209.6 0.06 0.02 - 0.0 - 0.02 - - 0.02 45 17 18 HEM 443.5 82.5 0.11 0.02 - 0.10 0.27 0.39 0.29 0.16 0.47 46 17 19 Inertial 451.0 95.4 0.10 0.02 - - - 0.02 - - 0.02 47 18 19 Inertial 451.0 76.0 0.13 0.02 - - - 0.02 - - 0.02 48 19 20 HEM 455.2 85.0 0.11 0.02 - 0.14 - 0.16 - 0.19 0.21 49 19 20 HEM 455.2 76.5 0.14 0.02 - 0.19 - 0.21 - 0.21 0.23 50 20 9 HEM 459.5 84.7 0.07 0.02 - 0.55 0.41 0.98 0.55 0.41 0.98 51 0 3 NA (4) 430.75 0.5 Fill syst. 52 0 4 NA (4) 430.75 0.5 Fill syst.
NOTES: 1. With respect to minimum flow area.
- 2. No choking allowed.
- 3. Homogeneous equilibrium model.
- 4. NA, not applicable.
0 2-0 1 02-01 02-01 02-01 6.2-160 Reformatted Per Amendment 02-01 TABLE 6.2-15c 20 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL FORCES AND MOMENTS ON REACTOR COOLANT PUMP Time (Sec) F x (lbf) F y (lbf) F z (lbf) M x (ft-lbf) M y (ft-lbf) Node A x (ft 2) A y (ft 2) A z (ft 2) AM x (ft 3) AM y (ft 3) 0 0 0 0 0 0 1 0.0 0.0 0.0 0.0 0.0 2.50-3 -9.49+4 -6.26+4 2.86+4 -3.38+5 5.13+5 2 0.0 0.0 0.0 0.0 0.0 5.10-3 -2.19+5 -1.46+5 6.60+4 -7.48+5 1.12+6 3 3.133+1 -3.603+1 7.560+0 -1.982+2 -1.723+2 7.50-3 -2.94+5 -1.98+5 8.78+4 -9.14+5 1.37+6 4 -6.957+1 -2.286+1 1.412+1 -1.257+2 3.826+2 1.00-2 -3.22+5 -2.17+5 9.40+4 -8.28+5 1.25+6 5 3.824+1 5.889+1 1.412+1 3.239+2 -2.103+2 1.48-2 -3.16+5 -2.01+5 8.26+4 -3.09+5 6.23+5 6 0.0 0.0 0.0 0.0 0.0 2.96-2 -1.62+5 -7.95+4 5.23+4 -3.29+5 8.14+5 7 0.0 0.0 0.0 0.0 0.0 3.52-2 -1.05+5 -3.64+4 5.01+4 -5.72+5 1.15+6 8 3.838+1 -4.913+1 0.0 3.685+2 2.879+2 4.00-2 -8.26+4 -1.29+4 5.00+4 -6.79+5 1.26+6 9 0.0 0.0 0.0 0.0 0.0 5.00-2 -1.18+5 -3.20+4 4.81+4 -5.84+5 9.83+5 10 0.0 0.0 0.0 0.0 0.0 6.00-2 -2.54+5 -1.43+5 6.48+4 -4.64+5 7.86+5 11 0.0 0.0 0.0 0.0 0.0 7.00-2 -3.20+5 -2.03+5 7.88+4 -3.04+5 7.84+5 12 0.0 0.0 0.0 0.0 0.0 8.00-2 -2.85+5 -1.73+5 8.49+4 -5.62+5 1.25+6 13 0.0 0.0 0.0 0.0 0.0 9.00-2 -2.40+5 -1.20+5 8.60+4 -1.00+6 1.73+6 14 0.0 0.0 0.0 0.0 0.0 1.00-1 -2.44+5 -9.97+4 8.25+4 -1.11+6 1.12+6 15 -9.053+1 -3.117+1 0.0 2.338+2 -6.790+2 1.50-1 -2.64+5 -1.16+5 7.19+4 -7.92+5 1.54+6 16 5.215+1 8.030+1 0.0 -6.023+2 3.911+2 2.00-1 -2.58+5 -1.20+5 6.54+4 -5.87+5 1.42+6 17 0.0 0.0 0.0 0.0 0.0 3.00-1 -2.33+5 -1.04+5 5.60+4 -5.34+5 1.24+6 18 0.0 0.0 0.0 0.0 0.0 4.00-1 -2.10+5 -9.11+4 4.93+4 -4.90+5 1.12+6 19 0.0 0.0 0.0 0.0 0.0 5.00-1 -1.95+5 -8.55+4 4.74+4 -4.50+5 1.03+6 20 0.0 0.0 -3.58+1 0.0 0.0 1.00 -1.69+5 -7.32+4 4.03+4 -3.89+5 8.96+5 02-01 6.2-161 Reformatted Per Amendment 02-01 TABLE 6.2-15c (Continued) 20 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL FORCES AND MOMENTS ON REACTOR COOLANT PUMP Maximum Forces and Moments and Corresponding Times Max. F x = -3.240+5 at time = 0.0116 Max F y = -2.177+5 at time = 0.0104 Max. F z = 9.403+4 at time = 0.0099 Max. M x = -1.124+6 at time = 0.0970 Max. M y = 1.795+6 at time = 0.0940 6.2-162 Reformatted Per Amendment 02-01 TABLE 6.2-15d 25 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, VOLUME DESCRIPTION Initial Conditions Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft) Temp ( F) Pressure (psia) Quality Clac. Peak Diff. press(1)(psi) Design Diff.
press (2) (psi) Design Margin (%) 1 Lower 1/2 Compartment below Reactor Coolant Pump 14.0 5,519. 442. 412.5 212 14.696 0.573 20.5 41.2 101 2 Lower 1/2 Compartment below Steam Generator 14.0 6,232. 462. 412.5 212 14.696 0.573 20.4 41.2 102 3 Between Reactor Coolant Pump, Primary Shield and Steam Generator 9.5 1,528. 586. 426.5 212 14.696 0.573 27.2 41.2 51 4 Between Cold Leg, Reactor Coolant Pump and Secondary Shield 9.5 609. 203. 426.5 212 14.696 0.573 20.3 41.2 103 5 Between Reactor Coolant Pump, Steam Generator and Secondary Shield 9.5 2,640. 300. 426.5 212 14.696 0.573 20.5 41.2 101 6 Between Steam Generator and Secondary Shield 9.5 1,022. 163. 426.5 212 14.696 0.573 20.8 41.2 98 7 Between Steam Generator, Hot Leg and Secondary Shield 9.5 864. 158. 426.5 212 14.696 0.573 45.9 41.2 -10 (4) 8 Between Reactor Coolant Pump, Steam Generator and Primary Shield above Elevation 436' 15.0 2,300. 277. 436.0 212 14.696 0.573 21.6 41.2 91 9 Around Steam Generator between Elevations 475.4' and 513.5' 38.1 4,314. 259. 475.4 212 14.696 0.573 0.9 12.1 1244 10 Gallery between Loops A and C 11.5 6,900. 200. 412.0 212 14.696 0.573 11.2 41.2 268 11 Pressurizer Relief Tank Compartment 22.5 6,200. 100. 412.5 212 14.696 0.573 NA (3) 12 Steam Generator A Compartment below Elevation 459.5' 47.0 35,254. 858. 412.5 212 14.696 0.573 NA 13 Steam Generator A Compartment above Elevation 459.5' 15.9 4,826. 260. 459.5 212 14.696 0.573 NA 14 Containment 200. 1.74+6 12,500. 412.0 212 14.696 0.573 NA 02-01 0 2-0 1 02-01 0 2-0 1 02-01 0 2-0 1 02-01 6.2-163 Reformatted Per Amendment 02-01 TABLE 6.2-15d (Continued) 25 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, VOLUME DESCRIPTION Initial Conditions Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft) Temp ( F) Pressure (psia) Quality Clac. Peak Diff. press(1)(psi) Design Diff.
press (2) (psi) Design Margin (%) 15 Between Reactor Coolant Pump and Secondary Shield above Elevation 436' 15. 966. 126. 436.0 212 14.696 0.573 20.8 41.2 98 16 Between Reactor Coolant Pump, Steam Generator and Secondary Shield above Elevation 436' 15. 4,161. 382. 436.0 212 14.696 0.573 21.0 41.2 96 17 Between Steam Generator and Secondary Shield above Elevation 436' 15. 1,431. 191. 436.0 212 14.696 0.573 20.4 41.2 102 18 Between Steam Generator and Primary Shield above Elevation 436' 15. 1,144. 176. 436.0 212 14.696 0.573 20.5 41.2 101 19 Between Steam Generator and Secondary Shield above Elevation 451' 8.5 1,457. 237. 451.0 212 14.696 0.573 20.5 41.2 101 20 Above Reactor Coolant Pump 8.5 4,208. 495. 451.0 212 14.696 0.573 20.4 41.2 102 21 Around Steam Generator between Elevations 459.5' and 475.4' 15.9 378. 87. 459.5 212 14.696 0.573 10.4 16.9 63 22 Around Steam Generator between Elevations 459.5' and 475.4' 15.9 1,277. 166. 459.5 212 14.696 0.573 10.3 16.9 64 23 Around Steam Generator between Elevations 459.5' and 475.4' 15.9 2,094. 236. 459.5 212 14.696 0.573 10.4 16.9 63 24 Around Steam Generator between Elevations 459.5' and 475.4' 15.9 1,687. 162. 459.5 212 14.696 0.573 10.2 16.9 66 25 Around Steam Generator between Elevations 475.4' and 513.5' 38.1 5,156. 313. 475.4 212 14.696 0.573 1.1 12.1 1,000 Notes: 1. With respect to containment. 2. Values to be multiplied by dynamic load factor of 1.1 for purposes of structural design. 3. NA, not applicable.
- 4. For discussion of results see Section 6.2.1.3.9.2.3.
02-01 02-01 02-01 6.2-164 Reformatted Per Amendment 02-01 TABLE 6.2-15e 25 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2)Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 1 1 2 Inertial(2) 419.5 304.0 0.05 0.01 - - - 0.01 - - 0.01 2 1 10 HEM(3) 417.8 161.8 0.09 0.02 - 0.21 0.22 0.45 0.27 - 0.29 3 1 14 HEM 415.9 26.8 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 4 2 14 HEM 415.9 53.6 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 5 2 14 HEM 418.0 53.8 0.17 - 1.8 0.59 0.50 2.89 0.59 0.50 2.89 6 3 1 HEM 426.5 63.0 0.08 0.01 - 0.72 - 0.73 - 0.06 0.07 7 3 2 HEM 426.5 116.4 0.05 0.01 - 0.56 - 0.57 - 0.37 0.38 8 3 4 HEM 431.25 44.3 0.28 0.02 - 1.86 1.13 3.01 0.41 - 0.43 9 3 5 HEM 431.25 54.8 0.25 0.02 - 0.50 0.28 0.80 0.33 0.33 0.68 10 3 7 HEM 431.25 74.8 0.14 0.03 - 0.04 0.20 0.27 0.15 0.11 0.29 11 3 8 HEM 436.0 108.8 0.07 0.02 - 0.08 0.19 0.29 0.14 0.01 0.17 12 4 1 HEM 426.5 64.4 0.08 0.02 - 0.71 - 0.73 0.10 - 0.12 13 4 5 HEM 431.25 40.0 0.20 0.02 - 0.22 0.24 0.48 0.22 0.24 0.48 14 4 15 HEM 436.0 60.5 0.16 0.02 - - 0.03 0.05 - 0.03 0.05 15 5 1 HEM 426.5 144.4 0.03 0.01 - 0.12 0.15 0.28 0.09 0.17 0.27 16 5 2 HEM 426.5 80.7 0.15 0.02 - 0.06 0.12 0.20 0.06 0.12 0.20 17 5 6 HEM 431.25 81.0 0.04 0.03 - - 0.23 0.26 0.22 - 0.25 18 5 16 HEM 436.0 209.6 0.04 0.01 - 0.06 0.12 0.19 0.06 0.12 0.19 19 6 2 Inertial 426.5 119.2 0.05 0.01 - - - 0.01 - - 0.01 20 6 7 HEM 431.25 71.6 0.16 0.02 - 0.0 0.18 0.20 0.13 0.03 0.18 02-01 0 2-0 1 0 2-0 1 6.2-165 Reformatted Per Amendment 02-01 TABLE 6.2-15e (Continued) 25 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2)Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 21 6 17 HEM 436.0 53.7 0.11 0.01 - 0.19 0.25 0.45 0.05 0.21 0.27 22 7 2 HEM 426.5 110.8 0.12 0.02 - 0.58 - 0.60 - - 0.02 23 7 18 HEM 436.0 59.0 0.14 0.02 - 0.05 0.11 0.18 0.05 0.11 0.18 24 20 21 HEM 459.5 12.0 0.20 0.01 - 0.55 0.43 0.99 0.86 0.33 1.20 25 20 14 HEM 459.5 128.4 0.04 0.01 - 1.00 0.37 1.38 1.00 0.37 1.38 26 20 22 HEM 459.5 60.9 0.10 0.01 - 0.17 0.28 0.46 0.40 0.17 0.58 27 10 11 HEM 417.5 107.7 0.12 - 1.2 0.57 0.23 2.0 0.20 0.38 1.78 28 11 12 HEM 419.5 90.9 0.04 - 1.2 1.00 0.33 2.53 0.44 0.50 2.14 29 10 14 HEM 415.9 26.8 0.75 - 0.8 0.71 0.19 1.7 0.71 0.19 1.7 30 10 14 HEM 420.0 33.0 0.24 - 1.2 1.00 0.5 2.7 1.00 0.50 2.7 31 10 12 HEM 419.5 78.8 0.12 - - 1.00 0.29 1.29 0.25 0.50 0.75 32 12 13 HEM 459.5 160.2 0.12 0.02 - 0.16 0.70 0.88 0.16 0.70 0.88 33 12 14 HEM 423.2 178.7 0.11 - - 1.00 0.50 1.50 1.00 0.50 1.50 34 12 14 HEM 415.9 26.8 0.28 - 0.68 0.51 0.38 1.57 0.51 0.38 1.57 35 12 14 HEM 459.5 184.6 0.04 - - 1.00 0.38 1.38 1.00 0.38 1.38 36 13 14 HEM 475.4 269.1 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 37 8 15 HEM 443.5 45.0 0.16 - - 0.25 0.30 0.55 0.41 0.25 0.66 38 8 16 HEM 443.5 112.5 0.15 0.01 - 0.39 0.21 0.61 0.18 0.31 0.50 39 8 18 HEM 443.5 135.0 0.08 0.02 - 0.01 0.15 0.18 0.09 0.05 0.16 40 8 20 Inertial 451.0 153.3 0.08 0.02 - - - 0.02 - - 0.02 02-01 6.2-166 Reformatted Per Amendment 02-01 TABLE 6.2-15e (Continued) 25 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2)Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 41 15 16 HEM 443.5 82.5 0.13 0.01 - 0.10 0.16 0.27 0.10 0.16 0.27 42 15 20 Inertial 451.0 64.4 0.17 0.02 - 0.04 - 0.06 0.04 - 0.06 43 16 17 HEM 443.5 150.0 0.18 0.02 - - 0.19 0.21 0.14 - 0.16 44 16 20 Inertial 451.0 209.6 0.06 0.02 - 0.0 - 0.02 - - 0.02 45 17 18 HEM 443.5 82.5 0.11 0.02 - 0.10 0.27 0.39 0.29 0.16 0.47 46 17 19 Inertial 451.0 95.4 0.10 0.02 - - - 0.02 - - 0.02 47 18 19 Inertial 451.0 76.0 0.13 0.02 - - - 0.02 - - 0.02 48 19 20 HEM 455.2 85.0 0.11 0.02 - 0.14 - 0.16 - 0.19 0.21 49 19 20 HEM 455.2 76.5 0.14 0.02 - 0.19 - 0.21 - 0.21 0.23 50 19 23 HEM 459.5 85.4 0.06 0.01 - 0.25 0.33 0.59 0.55 0.22 0.78 51 20 23 HEM 459.5 11.8 0.10 0.01 - 0.17 0.28 0.46 0.40 0.17 0.58 52 19 24 HEM 459.5 55.4 0.06 0.01 - 0.39 0.37 0.77 0.68 0.28 0.97 53 21 22 HEM 467.5 34.6 0.31 0.01 - 0.32 0.25 0.58 0.32 0.25 0.58 54 21 24 HEM 467.5 33.7 0.30 0.01 - 0.40 0.08 0.49 0.08 0.28 0.37 55 22 23 HEM 467.5 121.2 0.12 0.01 - 0.04 0.21 0.26 0.24 0.04 0.29 56 23 24 Inertial 467.5 75.4 0.16 0.01 - 0.02 0.02 0.05 0.02 0.02 0.05 57 21 14 HEM 475.4 18.3 0.48 0.01 - 1.00 - 1.01 1.00 - 1.01 58 22 14 HEM 475.4 78.7 0.10 0.01 - 1.00 - 1.01 1.00 - 1.01 59 23 25 HEM 475.4 114.5 0.24 0.01 - - 0.09 0.10 0.09 - 0.10 60 24 9 HEM 475.4 87.4 0.31 0.01 - 0.01 0.12 0.14 0.12 0.01 0.14 02-01 6.2-167 Reformatted Per Amendment 02-01 TABLE 6.2-15e (Continued) 25 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL HOT LEG BREAK, FLOW PATH DATA Head Loss, K (1) Forward Flow Reverse Flow Junction No. Control Volume 1 Control Volume 2 Choking Model Elevation (ft) Flow Area (ft 2)Inertia (ft-1) Friction fL/D Bends Expansion ContractionTotal ExpansionContractionTotal 61 25 14 HEM 513.5 114.5 0.22 0.01 - 1.00 - 1.01 1.00 - 1.01 62 25 14 HEM 494.5 275.5 0.03 0.01 - 1.00 - 1.01 1.00 - 1.01 63 25 9 Inertial 494.5 122.0 0.12 0.01 - 0.02 0.02 0.05 0.02 0.02 0.05 64 9 14 HEM 513.5 87.4 0.22 0.01 - 1.00 - 1.01 1.00 - 1.01 65 9 14 HEM 494.5 152.0 0.07 0.01 - 1.00 - 1.01 1.00 - 1.01 66 0 3 NA (4) 430.75 0.5 Fill syst. 67 0 7 NA 430.75 0.5 Fill syst.
NOTES:
- 1. With respect to minimum flow area.
- 2. No choking allowed.
- 3. Homogeneous equilibrium model.
- 4. NA, not applicable.
0 2-0 1 0 2-0 1 02-01 6.2-168 Reformatted Per Amendment 02-01 TABLE 6.2-15f 25 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL FORCES AND MOMENTS ON STEAM GENERATOR Time (Sec) F x (lbf) F y (lbf) F z (lbf) M x (ft-lbf) M y (ft-lbf) Node A x (ft 2) A y (ft 2) A z (ft 2) AM x (ft 3) AM y (ft 3) 0 0 0 0 0 0 1 0.0 0.0 0.0 0.0 0.0 2.50-3 3.49+4 -7.71+4 9.36+4 -1.40+5 -6.37+4 2 0.0 0.0 0.0 0.0 0.0 5.10-3 8.83+5 -1.90+5 2.21+5 -2.28+5 -1.12+5 3 -2.552+1 -2.338+1 2.602+1 -4.676+1 5.104+1 7.50-3 1.32+5 -2.69+5 2.91+5 -5.53+4 -5.07+4 4 0.0 0.0 0.0 0.0 0.0 1.00-2 1.70+5 -3.23+5 3.15+5 3.75+5 1.41+5 5 -2.464+1 2.338+1 2.781+1 4.676+1 4.928+1 1.48-2 1.96+5 -3.54+5 2.98+5 1.27+6 6.90+5 6 1.935+1 2.306+1 2.393+1 4.612+1 -3.870+1 2.96-2 -2.24+4 -3.03+4 2.66+5 -3.38+5 5.85+5 7 3.081+1 -2.306+1 2.991+1 -4.612+1 -6.162+1 3.52-2 -7.36+4 5.41+4 2.95+5 -9.72+5 1.60+5 8 -8.322+1 -8.769+1 0.0 6.577+2 -6.241+2 4.00-2 -7.52+4 8.98+4 3.28+5 -1.22+6 1.16+5 9 1.380+2 -2.830+2 0.0 1.449+4 7.069+3 5.00-2 1.43+4 6.85+4 3.76+5 -8.36+5 1.55+6 10 0.0 0.0 0.0 0.0 0.0 6.00-2 1.25+5 -9.64+4 3.86+5 8.74+5 3.80+6 11 0.0 0.0 0.0 0.0 0.0 7.00-2 1.40+5 -2.33+5 4.16+5 2.38+6 4.32+6 12 0.0 0.0 0.0 0.0 0.0 8.00-2 6.28+4 -1.47+5 4.47+5 1.74+6 3.13+6 13 0.0 0.0 0.0 0.0 0.0 9.00-2 -1.32+4 1.61+4 4.56+5 -1.11+5 1.70+6 14 -3.165+2 5.867+1 -1.791+2 -3.004+3 -1.621+4 1.00-1 -7.26+3 3.12+4 4.57+5 -9.05+5 1.39+6 15 0.0 0.0 0.0 0.0 0.0 1.50-1 1.85+4 -9.15+3 4.58+5 7.40+5 1.64+6 16 -9.241+1 8.769+1 0.0 -6.577+2 -6.931+2 2.00-1 4.44+4 -1.20+4 4.59+5 3.43+5 2.21+6 17 7.257+1 8.648+1 0.0 -6.486+2 5.443+2 3.00-1 4.84+4 -2.76+4 4.13+5 3.04+5 2.07+6 18 1.031+2 -8.648+1 0.0 6.486+2 7.729+2 4.00-1 3.84+4 -3.17+4 3.55+5 2.91+5 1.68+6 19 9.952+1 0.0 0.0 0.0 1.916+3 5.00-1 3.37+4 -2.96+4 3.05+5 2.37+5 1.48+6 20 -9.952+1 0.0 0.0 0.0 -1.916+3 1.00 2.65+4 -2.28+4 1.62+5 1.74+5 1.24+6 21 -8.394+1 -4.095+1 1.741+1 1.288+3 -2.641+3 02-01 0 2-0 1 0 2-0 1 0 2-0 1 0 2-0 1 02-01 0 2-0 1 0 2-0 1 0 2-0 1 0 2-0 1 6.2-169 Reformatted Per Amendment 02-01 TABLE 6.2-15f (Continued) 25 NODE LOOP C STEAM GENERATOR COMPARTMENT MODEL FORCES AND MOMENTS ON STEAM GENERATOR Time (Sec) F x (lbf) F y (lbf) F z (lbf) M x (ft-lbf) M y (ft-lbf) Node A x (ft 2) A y (ft 2) A z (ft 2) AM x (ft 3) AM y (ft 3) 22 -9.262+1 7.368+1 1.860+1 -2.318+3 -2.695+3 23 9.956+1 1.252+2 1.600+1 -3.938+3 2.914+3 24 7.700+1 -1.579+2 2.000+1 4.968+3 2.422+3 25 1.785+2 2.244+2 0.0 -1.149+4 9.139+3 Maximum Forces and Moments and Corresponding Times
Max. F x = 1.992+5 at time = 0.0136 Max F y = -3.594+5 at time = 0.0136 Max. F z = 4.602+5 at time = 0.1680 Max. M x = 2.446+6 at time = 0.0720 Max. M y = 4.381+6 at time = 0.0680 0 2-0 1 0 2-0 1 6.2-170 Reformatted Per Amendment 02-01 TABLE 6.2-16 REACTOR CAVITY MODEL CROSS REFERENCES
22 Node Model 31 Node Model 33 Node Model Penetration Nodes
Figure 6.2-30 Figure 6.2-30 Figure 6.2-30a Reactor Vessel Annulus Nodes
Figure 6.2-31 Figure 6.2-31a Figure 6.2-31a Overall Model Schematic
Figure 6.2-32 Figure 6.2-32a Figure 6.2-32a Control Volumes
Table 6.2-16a Table 6.2-16b Table 6.2-16c Flow Paths
Table 6.2-17 Table 6.2-17a Table 6.2-17b Force/Moment Areas Table 6.2-18 Table 6.2-18a Table 6.2-18b 6.2-171 Reformatted Per Amendment 02-01 TABLE 6.2-16a 22 NODE REACTOR CAVITY MODEL CONTROL VOLUMES Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft)
Initial Conditions Temp Pressure
( F) (psia) Quality Calc. Peak Diff. press(1)(psi) Design Diff.
press.(2) (psi) Design Margin (%) 1 Reactor Vessel Annulus - 2.56 14.4 6.5 434.67 212 14.7 0.573 5.4 22.4 310 2 See Figure 6.2-31 18.3 43.4 140 3 5.4 22.4 310 4 Reactor Vessel Annulus - 3.92 23.3 7.3 430.75 212 14.7 0.573 5.3 22.4 320 5 See Figure 6.2-31 18.7 105.0 460 6 5.3 22.4 320 7 Reactor Vessel Annulus - 4.08 24.2 7.3 426.67 212 14.7 0.573 4.2 22.4 430 8 See Figure 6.2-31 15.1 105.0 590 9 4.2 22.4 430 10 Reactor Vessel Annulus - 7.42 35.8 7.0 419.25 212 14.7 0.573 4.2 30.0 610 11 See Figure 6.2-31 8.0 198.0 2370 12 4.2 30.0 610 13 Reactor Vessel Annulus - 7.42 35.8 7.0 411.83 212 14.7 0.573 3.7 30.0 710 14 See Figure 6.2-31 4.0 48.0 1100 15 3.7 30.0 710 16 Under Reactor Vessel 24.16 5528. 270. 386.67 212 14.7 0.573 0.9 30.0 3230 17 Instrument Chase 1 8.5 4439. 130.5 387.5 212 14.7 0.573 0.8 - - 18 Instrument Chase 2 32. 3472. 108.5 396. 212 14.7 0.573 0.3 - - 19 Penetration - Break Node - See Figure 6.2-30 7.57 163.4 61.9 427.76 212 14.7 0.573 237.7 483.0 100 20 Penetration - Pipe Sleeve - See Figure 6.2-30 5.83 46.0 15.5 427.83 212 14.7 0.573 207.2 280. 30 21 Penetration - Inspection Port - See Figure 6.2-30 1.88 25.9 13.8 435.33 212 14.7 0.573 146.1 483.0 230 22 Containment 200. 1.82+6 9100. 412. 212 14.7 0.545 - - -
Notes: 1. With respect to containment.
- 2. Values to be multiplied by dynamic load factor of 1.5 for purposes of structural design.
02-01 02-01 02-01 6.2-172 Reformatted Per Amendment 02-01 TABLE 6.2-16b 31 NODE REACTOR CAVITY MODEL CONTROL VOLUMES Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft)
Initial Conditions Temp Pressure
( F) (psia) Quality Calc. Peak Diff. press(1)(psi) Design Diff.
press.(2) (psi) Design Margin (%) 1 Reactor Vessel Annulus - 2.56 8.4 4.1 434.67 212 14.7 0.573 4.9 22.4 360 3 See Figure 6.2-31a 16.0 43.4 170 5 6.3 22.4 250 2 Reactor Vessel Annulus - 2.56 6.0 3.2 434.67 212 14.7 0.573 7.7 22.4 190 4 See Figure 6.2-31a 15.9 77.0 380 6 4.9 22.4 360 7 Reactor Vessel Annulus - 3.92 13.6 4.8 430.75 212 14.7 0.573 4.8 22.4 370 9 See Figure 6.2-31a 16.4 105.0 540 11 6.2 22.4 260 8 Reactor Vessel Annulus - 3.92 9.7 3.9 430.75 212 14.7 0.573 7.6 23.1 200 10 See Figure 6.2-31a 16.8 77.0 360 12 4.9 22.4 360 13 Reactor Vessel Annulus - 4.08 14.1 4.9 426.67 212 14.7 0.573 4.2 22.4 430 15 See Figure 6.2-31a 14.1 105.0 640 17 4.3 22.4 420 14 Reactor Vessel Annulus - 4.08 10.1 3.9 426.67 212 14.7 0.573 4.2 23.1 450 16 See Figure 6.2-31a 13.9 77.0 450 18 4.2 22.4 430 19 Reactor Vessel Annulus - 7.42 35.8 4.8 419.25 212 14.7 0.573 4.1 30.0 630 20 See Figure 6.2-31a 6.8 198.0 2810 21 4.1 30.0 630 22 Reactor Vessel Annulus - 7.42 35.8 4.8 411.83 212 14.7 0.573 3.7 30.0 710 23 See Figure 6.2-31a 3.8 48.0 1160 24 3.7 30.0 710 25 Under Reactor Vessel 24.16 5528. 270. 387.67 212 14.7 0.573 0.9 30.0 3230 26 Instrument Chase 1 8.5 4439. 130.5 387.5 212 14.7 0.573 0.8 - - 27 Instrument Chase 2 32. 3472. 108.5 396. 212 14.7 0.573 0.3 - - 02-01 02-01 6.2-173 Reformatted Per Amendment 02-01 TABLE 6.2-16b (Continued) 31 NODE REACTOR CAVITY MODEL CONTROL VOLUMES Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft)
Initial Conditions Temp Pressure
( F) (psia) Quality Calc. Peak Diff. press(1)(psi) Design Diff.
press.(2) (psi) Design Margin (%) 28 Penetration - Break Node -See Figure 6.2-30 7.57 163.4 61.9 427.76 212 14.7 0.573 237.7 483.0 100 29 Penetration - Pipe Sleeve - See Figure 6.2-30 5.83 46.0 15.5 427.83 212 14.7 0.573 207.2 280. 30 30 Penetration - Inspection Port -See Figure 6.2-30 1.88 25.9 13.8 435.33 212 14.7 0.573 146.1 483.0 230 31 Containment 200. 1.82+6 9100. 412. 212 14.7 0.545 - - -
Notes:
- 1. With respect to containment. 2. Values to be multiplied by dynamic load factor of 1.5 for purposes of structural design.
0 2-0 1 02-01 6.2-174 Reformatted Per Amendment 02-01 TABLE 6.2-16c 33 NODE REACTOR CAVITY MODEL CONTROL VOLUMES Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft)
Initial Conditions Temp Pressure
( F) (psia) Quality Calc. Peak Diff. press(1)(psi) Design Diff.
press.(2) (psi) Design Margin (%) 1 Reactor Vessel Annulus - 2.56 8.4 4.1 434.67 212 14.7 0.573 4.9 22.4 350 3 See Figure 6.2-31a 16.1 43.4 170 5 6.3 22.4 250 2 Reactor Vessel Annulus - 2.56 6.0 3.2 434.67 212 14.7 0.573 7.7 22.4 190 4 See Figure 6.2-31a 16.0 77.0 380 6 5.0 22.4 350 7 Reactor Vessel Annulus - 3.92 13.6 4.8 430.75 212 14.7 0.573 4.9 22.4 360 9 See Figure 6.2-31a 16.5 105.0 530 11 6.2 22.4 260 8 Reactor Vessel Annulus - 3.92 9.7 3.9 430.75 212 14.7 0.573 7.7 23.1 250 10 See Figure 6.2-31a 16.7 77.0 360 12 4.9 22.4 350 13 Reactor Vessel Annulus - 4.08 14.1 4.9 426.67 212 14.7 0.573 4.2 22.4 430 15 See Figure 6.2-31a 14.3 105.0 630 17 4.4 22.4 410 14 Reactor Vessel Annulus - 4.08 10.1 3.9 426.67 212 14.7 0.573 4.3 23.1 440 16 See Figure 6.2-31a 14.1 77.0 440 18 4.2 22.4 430 19 Reactor Vessel Annulus - 7.42 35.8 7.0 419.25 212 14.7 0.573 4.2 30.0 610 20 See Figure 6.2-31a 6.5 198.0 2930 21 4.2 30.0 610 22 Reactor Vessel Annulus - 7.42 35.8 7.0 411.83 212 14.7 0.573 3.7 30.0 700 23 See Figure 6.2-31a 3.8 48.0 1360 24 3.7 30.0 710 25 Under Reactor Vessel 24.16 5528. 270. 386.67 212 14.7 0.573 0.9 30.0 3270 26 Instrument Chase 1 8.5 4439. 130.5 387.5 212 14.7 0.573 0.8 - - 27 Instrument Chase 2 32. 3472. 108.5 396. 212 14.7 0.573 0.3 - -
02-01 6.2-175 Reformatted Per Amendment 02-01 TABLE 6.2-16c (Continued) 33 NODE REACTOR CAVITY MODEL CONTROL VOLUMES Control Volume No Description Height (ft) Volume (ft 3) Volume Flow Area (ft 2) Bottom Elev. (ft)
Initial Conditions Temp Pressure
( F) (psia) Quality Calc. Peak Diff. press(1)(psi) Design Diff.
press.(2) (psi) Design Margin (%) 28 Penetration - Break Node 1 - See Figure 6.2-30a 2.99 63.7 45.3 427.76 212 14.7 0.573 242.3 (2)(3) 195.2 (2)(4) 483.0 195.2 100 0 29 Penetration - Break Node 2 - See Figure 6.2-30a 4.58 99.7 45.3 430.75 212 14.7 0.573 236.3 (2)(3) 188.5 (2)(4) 483.0 188.5 100 0 30 Penetration - Pipe Sleeve 1 -See Figure 6.2-30a 2.92 23.0 7.8 427.83 212 14.7 0.573 211.7 280. 30 31 Penetration - Pipe Sleeve 2 -See Figure 6.2-30a 2.92 23.0 7.8 430.75 212 14.7 0.573 206.5 280. 30 32 Penetration - Inspection Port -See Figure 6.2-30a 1.88 25.9 13.8 435.33 212 14.7 0.573 145.2 (2)(3) 109.2 (2)(4) 483.0 109.2 230 0 33 Containment 200. 1.82+6 9100. 412. 212 14.7 0.545 - - -
Notes: 1. With respect to containment. 2. The following notes 3 and 4 are applicable to the design of the reactor baffle system. 3. These values are for 150 sq. ins. break and apply to original design of the baffles before the deign details were changed in 1978 to accommodate a revised construction sequence. These loads were increased by a dynamic load factor of 1.5 for structural design.
- 4. For Nodes 28, 29 and 32 the peak differential pressures were also evaluated for a break size of 100 sq. ins. in 1978 and 127 sq. ins. in 1988. The 127 sq. in. break values were obtained by interpolation of the pressure/temperature analyses for the 100 sq. in. and 150 sq. in. breaks. The calculated peak and design differential pressures (with respect to annulus) shown are for the 127 sq. in. break which is the maximum expected break size that can occur. These values were increased by a dynamic load factor of 1.2 for structural design.
02-01 02-01 02-01 6.2-176 Reformatted Per Amendment 02-01 TABLE 6.2-17 22 NODE REACTOR CAVITY MODEL JUNCTIONS Head Loss, K(1) Junction No. Description Control Volume 1 Control Volume 2 Choking ModeI Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion Contraction Total 1 2 3 Reactor Vessel Annulus - See Figure 6.2-31 1 2 3 2 3 1 Inertia 435.95 0.85 20.0 0.62 0.0 0.0 0.0 0.62 4 5 6 Reactor Vessel Annulus - See Figure 6.2-31 1
2 3 22 22 22 HEM(2) 437.23 0.72 0.69 0.001 1.2 1.0 0.0 2.2 7 8 9 Reactor Vessel Annulus - See Figure 6.2-31 1
2 3 4 5 6 HEM 434.67 5.8 0.56 0.092 0.0 0.0 0.0 0.092 10 11 12 Reactor Vessel Annulus - See Figure 6.2-31 4
5 6 5 6 4 HEM 432.71 0.60 19.5 0.20 0.0 1.0 0.69 1.9 13 14 15 Reactor Vessel Annulus - See Figure 6.2-31 4
5 6 7 8 9 HEM 430.75 2.4 1.4 0.11 0.0 0.36 0.26 0.73 16 17 18 Reactor Vessel Annulus - See Figure 6.2-31 7
8 9 8 9 7 HEM 428.71 0.65 17.6 0.20 0.0 1.09 0.70 2.0 19 20 21 Reactor Vessel Annulus - See Figure 6.2-31 7
8 9 10 11 12 HEM 426.67 4.8 1.1 0.079 0.0 0.0 0.0 0.079 22 0.0 23 24 Reactor Vessel Annulus - See Figure 6.2-31 10 11 12 11 12 10 Inertia 422.96 2.2 7.3 0.53 0.0 0.0 0.53 25 26 27 Reactor Vessel Annulus - See Figure 6.2-31 10 11 12 13 14 15 Inertia 419.25 4.8 1.5 0.25 0.0 0.0 0.0 0.25 28 29 30 Reactor Vessel Annulus - See Figure 6.2-31 13 14 15 14 15 13 Inertia 415.54 2.2 7.3 0.53 0.0 0.0 0.0 0.53 02-01 6.2-177 Reformatted Per Amendment 02-01 TABLE 6.2-17 (Continued) 22 NODE REACTOR CAVITY MODEL JUNCTIONS Head Loss, K(1) Junction No. Description Control Volume 1 Control Volume 2 Choking ModeI Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion Contraction Total 31 32 33 Reactor Vessel Annulus - See Figure 6.2-31 13 14 15 16 16 16 HEM 411.83 4.8 0.85 0.12 0.0 1.0 0.0 1.12 34 Instrument Chase 16 17 HEM 391.83 130.5 0.21 0.02 1.2 0.0 0.05 1.27 35 Instrument Chase 17 18 HEM 396.0 81.4 0.31 0.03 (3) (3) 0.02 0.35 36 Instrument Chase 18 22 HEM 420.0 29.0 0.089 0.0 0.0 1.0 0.5 1.5 37 Instrument Chase 18 22 HEM 420.0 41.2 0.27 0.0 0.0 1.0 0.5 1.5 38 From Break Node - See Figure 6.2-30 19 20 HEM 430.75 11.7 0.21 0.02 0.0 0.0 0.28 0.30 39 From Break Node - See Figure 6.2-30 19 21 HEM 435.33 13.8 0.23 0.01 0.0 0.04 0.22 0.27 40 41 From Break Node -
See Figure 6.2-30 19 5 HEM 430.75 0.43 2.8 0.16 0.0 0.13 0.5 0.79 42 43 From Break Node -
See Figure 6.2-30 19 8 HEM 430.75 0.25 1.6 0.16 0.0 0.13 0.5 0.79 44 Penetration to Contain. 20 22 HEM 430.75 11.7 0.14 0.02 0.0 1.0 0.0 1.02 45 Penetration to Contain. 21 22 HEM 437.21 13.8 0.07 0.01 0.0 1.0 0.0 1.01 46 47 From Reactor Vessel Annulus to Contain. through Penetr. 4 22 HEM 430.75 0.73 3.1 0.17 0.0 1.0 0.05 1.67 48 49 From Reactor Vessel Annulus to Contain. through Penetr. 5 22 HEM 430.75 0.30 3.5 0.17 0.0 1.0 0.05 1.67 50 51 From Reactor Vessel Annulus to Contain. through Penetr. 6 22 HEM 430.75 0.73 3.1 0.17 0.0 1.0 0.05 1.67 02-01 6.2-178 Reformatted Per Amendment 02-01 TABLE 6.2-17 (Continued) 22 NODE REACTOR CAVITY MODEL JUNCTIONS Head Loss, K(1) Junction No. Description Control Volume 1 Control Volume 2 Choking ModeI Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion Contraction Total 52 53 From Reactor Vessel Annulus to Contain. through Penetr. 7 22 HEM 430.75 0.42 1.8 0.17 0.0 1.0 0.5 1.67 54 55 From Reactor Vessel Annulus to Contain. through Penetr. 8 22 HEM 430.75 0.17 2.0 0.17 0.0 1.0 0.5 1.67 56 57 From Reactor Vessel Annulus to Contain. through Penetr. 9 22 HEM 430.75 0.42 1.8 0.17 0.0 1.0 0.5 1.67 58 Break Path 19 0 None NOTES: 1. With respect to the minimum area. 2. Homogeneous equilibrium model. 3. K grating = 0.30.
02-01 02-01 6.2-179 Reformatted Per Amendment 02-01 TABLE 6.2-17a 31 NODE REACTOR CAVITY MODEL JUNCTIONS Head Loss, K(1) Junction No. Description Control Volume 1 Control Volume 2 Choking ModeI Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion Contraction Total 1 Reactor Vessel 1 2 Inertia 435.95 0.85 10.0 0.31 0.0 0.0 0.0 0.31 2 Annulus - See 2 3 3 Figure 6.2-31a 3 4 4 4 5 5 5 6 6 6 1 7 Reactor Vessel 1 31 HEM (2) 437.23 0.42 1.2 0.001 1.2 1.0 0.0 2.2 8 Annulus - See 3 31
9 Figure 6.2-31a 5 31 10 Reactor Vessel 2 31 HEM 437.23 0.30 1.7 0.001 1.2 1.0 0.0 2.2 11 Annulus - See 4 31
12 Figure 6.2-31a 6 31 13 Reactor Vessel 1 7 HEM 434.67 3.4 0.96 0.092 0.0 0.0 0.0 0.092 14 Annulus - See 3 9
15 Figure 6.2-31a 5 11 16 Reactor Vessel 2 8 HEM 434.67 2.4 1.3 0.092 0.0 0.0 0.0 0.092 17 Annulus - See 4 10
18 Figure 6.2-31a 6 12 19 Reactor Vessel 7 8 HEM 432.71 0.48 10.6 0.10 0.0 0.42 0.28 0.80 20 Annulus - See 9 10
21 Figure 6.2-31a 11 12 22 Reactor Vessel 8 9 HEM 432.71 0.60 8.9 0.11 0.0 0.34 0.25 0.70 23 Annulus - See 10 11 24 Figure 6.2-31a 12 7 25 Reactor Vessel 7 13 HEM 430.75 1.68 2.1 0.11 0.0 0.25 0.22 0.58 26 Annulus - See 9 15
27 Figure 6.2-31a 11 17 28 Reactor Vessel 8 14 HEM 430.75 0.69 4.3 0.11 0.0 0.52 0.32 0.95 29 Annulus - See 10 16 30 Figure 6.2-31a 12 18 0 2-0 1 02-01 6.2-180 Reformatted Per Amendment 02-01 TABLE 6.2-17a (Continued) 31 NODE REACTOR CAVITY MODEL JUNCTIONS Head Loss, K(1) Junction No. Description Control Volume 1 Control Volume 2 Choking ModeI Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion Contraction Total 31 Reactor Vessel 13 14 HEM 428.71 0.54 9.2 0.10 0.0 0.53 0.32 0.95 32 Annulus - See 15 16 33 Figure 6.2-31a 17 18 34 Reactor Vessel 14 15 HEM 428.71 0.65 8.4 0.11 0.0 0.32 0.24 0.67 35 Annulus - See 16 17 36 Figure 6.2-31a 18 13 37 Reactor Vessel 13 19 HEM 426.67 2.8 1.4 0.079 0.0 0.0 0.0 0.079 38 Annulus - See 15 20 39 Figure 6.2-31a 17 21 40 Reactor Vessel 14 19 HEM 426.67 2.0 1.6 0.079 0.0 0.0 0.0 0.079 41 Annulus - See 16 20 42 Figure 6.2-31a 18 21 43 Reactor Vessel 19 20 Inertia 422.96 2.2 7.3 0.53 0.0 0.0 0.0 0.53 44 Annulus - See 20 21 45 Figure 6.2-31a 21 19 46 Reactor Vessel 19 22 Inertia 419.25 4.8 1.5 0.25 0.0 0.0 0.0 0.25 47 Annulus - See 20 23 48 Figure 6.2-31a 21 24 49 Reactor Vessel 22 23 Inertia 415.54 2.2 7.3 0.53 0.0 0.0 0.0 0.53 50 Annulus - See 23 24 51 Figure 6.2-31a 24 22 52 Reactor Vessel 22 25 HEM 411.83 4.8 0.85 0.12 0.0 1.0 0.0 1.12 53 Annulus - See 23 25 54 Figure 6.2-31a 24 25 55 Instrument Chase 25 26 HEM 391.83 130.5 0.21 0.02 1.2 0.0 0.05 1.27 56 Instrument Chase 26 27 HEM 396. 81.4 0.31 0.03 (3) (3) 0.02 0.35 57 Instrument Chase 27 31 HEM 420.0 29.0 0.089 0.0 0.0 1.0 0.5 1.5 58 Instrument Chase 27 31 HEM 420.0 41.2 0.27 0.0 0.0 1.0 0.5 1.5 02-01 6.2-181 Reformatted Per Amendment 02-01 TABLE 6.2-17a (Continued) 31 NODE REACTOR CAVITY MODEL JUNCTIONS Head Loss, K(1) Junction No. Description Control Volume 1 Control Volume 2 Choking ModeI Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion Contraction Total 59 From Reactor Vessel Annulus 7 31 HEM 430.75 0.73 3.1 0.17 0.0 1.0 0.5 1.67 60 to Contain. through Penetr. 8 31 61 From Reactor Vessel Annulus 9 31 HEM 430.75 0.30 3.5 0.17 0.0 1.0 0.5 1.67 62 to Contain. through Penetr. 10 31 63 From Reactor Vessel Annulus 11 31 HEM 430.75 0.73 3.1 0.17 0.0 1.0 0.5 1.67 64 to Contain. through Penetr. 12 31 65 From Reactor Vessel Annulus 13 31 HEM 430.75 0.42 1.8 0.17 0.0 1.0 0.5 1.67 66 to Contain. through Penetr. 14 31 67 From Reactor Vessel Annulus 15 31 HEM 430.75 0.17 2.0 0.17 0.0 1.0 0.5 1.67 68 to Contain. through Penetr. 16 31 69 From Reactor Vessel Annulus 17 31 HEM 430.75 0.42 1.8 0.17 0.0 1.0 0.5 1.67 70 to Contain. through Penetr. 18 31 71 From Break Node - See Figure 6.2-30 28 29 HEM 430.75 11.7 0.21 0.02 0.0 0.0 0.28 0.30 72 From Break Node - See Figure 6.2-30 28 30 HEM 435.33 13.8 0.23 0.01 0.0 0.04 0.22 0.27 73 From Break Node - See 28 9 HEM 430.75 0.43 2.8 0.16 0.0 0.13 0.5 0.79 74 Figure 6.2-30 28 10 75 From Break Node - See 28 15 HEM 430.75 0.25 1.6 0.16 0.0 0.13 0.5 0.79 76 Figure 6.2-30 28 16 77 Penetration to Contain. 29 31 HEM 430.75 11.7 0.14 0.02 0.0 1.0 0.0 1.02 78 Penetration to Contain. 30 31 HEM 437.21 13.8 0.07 0.01 0.0 1.0 0.0 1.01 79 Break Path 28 0 None NOTES: 1. With respect to the minimum area.
- 2. Homogeneous equilibrium model. 3. K grating = 0.30.
02-01 02-01 02-01 6.2-182 Reformatted Per Amendment 02-01 TABLE 6.2-17b 33 NODE REACTOR CAVITY MODEL JUNCTIONS Head Loss, K(1) Junction No. Description Control Volume 1 Control Volume 2 Choking ModeI Elevation (ft) Flow Area (ft 2) Inertia (ft-1) Friction fL/D Bends Expansion Contraction Total 1 Same as 31 Node through Model - See Table 6.2-17a - 70 Except Containment is Node 33 71 From Break Node - 28 15 HEM(2) 429.26 0.25 1.6 0.16 0.0 0.13 0.5 0.79 72 See Figure 6.2-30a 28 16 73 From Break Node - 29 9 HEM 433.04 0.43 2.8 0.16 0.0 0.13 0.5 0.79 74 See Figure 6.2-30a 29 10 75 From Break Node - 28 29 HEM 430.75 13.3 0.34 0.01 0.0 0.28 0.23 0.52 See Figure 6.2-30a 76 From Break Node - 28 30 HEM 429.26 5.85 0.38 0.04 0.0 0.0 0.32 0.36 See Figure 6.2-30a 77 From Break Node - See Figure 6.2-30a 29 31 HEM 432.25 5.85 0.38 0.04 0.0 0.0 0.32 0.36 78 From Break Node - See Figure 6.2-30a 29 32 HEM 435.33 13.8 0.15 0.01 0.0 0.0 0.22 0.23 79 Penetration to Contain. 30 33 HEM 429.26 5.85 0.28 0.02 0.0 1.0 0.0 1.02 80 Penetration to Contain. 31 33 HEM 432.25 5.85 0.28 0.02 0.0 1.0 0.0 1.02 81 Penetration to Contain. 32 33 HEM 437.21 13.8 0.07 0.01 0.0 1.0 0.0 1.01 82 Break Path 28 0 None 83 Break Path 29 0 None
NOTES: 1. With respect to minimum area. 2. Homogeneous equilibrium area.
02-01 0 2-0 1 0 2-0 1 02-01 6.2-183 Reformatted Per Amendment 02-01 TABLE 6.2-18 22 NODE REACTOR CAVITY MODEL FORCE/MOMENT AREAS Control Volume No.
Description A x (ft 2)(1) A y (ft 2) A z (ft 2) (2) M x (ft 3) (3) M y (ft 3) 1 Reactor Vessel Annulus -21.48 -25.59 15.34 217.71 -170.95 2 See Figure 6.2-31 32.89 -5.80 15.34 39.14 273.93 3 -11.41 31.39 15.34 -256.85 -102.98 4 -26.28 -28.88 -12.08 56.61 -51.51 5 39.49 -7.92 -12.08 15.52 77.40 6 -13.21 36.80 -12.08 -72.13 -25.89 7 -27.57 -30.44 13.04 -57.14 52.78 8 41.47 -8.27 13.04 -16.34 -78.58 9 -13.90 38.71 13.04 73.48 25.80 10 -59.80 -71.23 0. -554.9 465.8 11 91.58 -16.16 0. -125.9 -713.4 12 -31.78 87.39 0. 680.8 247.6 13 -59.80 -71.23 0. -1083. 910.
14 91.58 -16.16 0. -246. -1393. 15 -31.78 87.39 0. 1329. 483. 16 Under Reactor Vessel
- 0. 0. 164.42 0.
- 0. 17 Instrument Chase -
1 0. 0. 0. 0. 0. 18 Instrument Chase -
2 0. 0. 0. 0. 0. 19 Penetration - Break Node - See Figure 6.2-30 14.93 0. 0. 0. 3.02 20 Penetration - Pipe Sleeve - See Figure 6.2-30
- 0. 0. 0. 0. 0. 21 Penetration - Inspection Port See Figure 6.2-30
- 0. 0. 0. 0. 0. 22 Containment -14.93 0. 0. 0. -3.02
NOTES: 1. Net area for force calculation.
- 2. F Z calculations use nodal pressure minus containment pressure. 3. Net area times moment arm for moment calculations.
0 2-0 1 02-01 6.2-184 Reformatted Per Amendment 02-01 TABLE 6.2-18a 31 NODE REACTOR CAVITY MODEL FORCE/MOMENT AREAS Control Volume No.
Description A x (ft 2)(1) A y (ft 2) A z (ft 2) (2) M x (ft 3) (3) M y (ft 3) 1 Reactor Vessel Annulus -20.05 -9.35 7.67 73.84 -158.31 2 See Figure 6.2-31a
-1.43 -16.24 7.67 143.87 -12.64 3 18.12 -12.68 7.67 100.14 143.08 4 14.77 6.88 7.67 -61.00 130.85 5 1.93 22.04 7.67 -174.03 15.24 6 -13.34 9.35 7.67 -82.82 -118.22 7 -24.75 -11.54 -6.04 22.62 -48.51 8 -1.53 -17.34 -6.04 33.99 -3.00 9 22.58 -15.80 -6.04 30.97 44.26 10 16.91 7.88 -6.04 -15.45 33.14 11 2.27 25.95 -6.04 -50.86 4.45 12 -15.48 10.85 -6.04 -21.27 -30.34 13 -25.96 -12.11 6.52 -23.23 49.80 14 -1.61 -18.33 6.52 -33.91 2.98 15 23.67 -16.57 6.52 -31.80 -45.53 16 17.80 8.30 6.52 15.46 -33.15 17 2.39 27.29 6.52 52.19 -4.57 18 -16.29 11.42 6.52 21.29 30.37 19 -59.80 -71.23 0. -554.9 465.8 20 91.58 -16.16 0. -125.9 -713.4 02-01 6.2-185 Reformatted Per Amendment 02-01 TABLE 6.2-18a (Continued) 31 NODE REACTOR CAVITY MODEL FORCE/MOMENT AREAS Control Volume No.
Description A x (ft 2)(1) A y (ft 2) A z (ft 2) (2) M x (ft 3) (3) M y (ft 3) 21 -31.78 87.39 0. 680.8 247.6 22 -59.80 -71.23 0. -1083. 910.
23 91.58 -16.16 0. -246. -1393. 24 -31.78 87.39 0. 1329. 483. 25 Under Reactor Vessel
- 0. 0. 164.42 0.
- 0. 26 Instrument Chase -
1 0. 0. 0. 0. 0. 27 Instrument Chase -
2 0. 0. 0. 0. 0. 28 Penetration - Break Node See Figure 6.2-30 14.93 0. 0. 0. 3.02 29 Penetration - Pipe Sleeve See Figure 6.2-30
- 0. 0. 0. 0. 0. 30 Penetration - Inspection Port See Figure 6.2-30 0. 0. 0. 0. 0. 31 Containment -14.93 0. 0. 0. -3.02 NOTES:
- 1. Net area for force calculation.
- 2. F z calculations use nodal pressure minus containment pressure. 3. Net area times moment arm for moment calculations.
02-01 6.2-186 Reformatted Per Amendment 02-01 TABLE 6.2-18b 33 NODE REACTOR CAVITY MODEL FORCE/MOMENT AREAS Control Volume No.
Description A x (ft 2)(1) A y (ft 2) A z (ft 2) (2) M x (ft 3) (3) M y (ft 3) 1 through 24 Reactor Vessel Annulus -
Same as 31 Node Model See Table 6.2-18a 25 Under Reactor Vessel 0. 0. 164.42 0. 0. 26 Instrument Chase -
1 0. 0. 0. 0. 0. 27 Instrument Chase -
2 0. 0. 0. 0. 0. 28 Penetration - Break Node 1 - See Figure 6.2-30a 6.81 0. 15.45 0. -7.70 29 Penetration - Break Node 2 - See Figure 6.2-30a 8.12 0. -15.45 0. 10.72 30 Penetration - Pipe Sleeve 1 - See Figure 6.2-30a
- 0. 0. 0. 0. 0. 31 Penetration - Pipe Sleeve 2 - See Figure 6.2-30a 0. 0. 0. 0. 0. 32 Penetration - Inspection Port - See Figure 6.2-30a 0. 0. 0. 0. 0. 33 Containment -14.93 0. 0. 0. -3.02 NOTES: 1. Net area for force calculation.
- 2. F z calculations use nodal pressure minus containment pressure. 3. Net area times moment arm for moment calculations.
0 2-0 1 02-01 6.2-187 Reformatted Per Amendment 02-01 TABLE 6.2-18c REACTOR CAVITY MODEL RESULTS CROSS REFERENCE 22 Node Model 31 Node Model 33 Node Model Peak Differential Pressure Table 6.2-16a Table 6.2-16b Table 6.2-16c Transient Differential Pressure for Selected Nodes Figures 6.2-33 6.2-33a Figures 6.2-33b 6.2-33c Figures 6.2-33d 6.2-33e Forces and Moments Table 6.2-18d Table 6.2-18e Table 6.2-18f; Figures 6.2-34, 6.2-34a, 6.2-34b 6.2-35, 6.2-35a 02-01 6.2-188 Reformatted Per Amendment 02-01 TABLE 6.2-18d 22 NODE REACTOR CAVITY MODEL FORCES AND MOMENTS Time (sec)
F x (lbf) F y (lbf) F z (lbf) M x (ft-lbf)
M y (ft-lbf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0051 1.252+5 -5.636+3 1.
328+2 2.598+3 3.774+4 0.01 2.785+5 -1.851+4 9.
343+3 4.779+3 9.869+4 0.0148 4.335+5 -3.352+4 1.800+4 -2.219+4 -1.030+4 0.02 5.802+5 -4.879+4 2.382+4 -6.805+4 -2.386+5 0.0256 6.755+5 -5.823+4 3.557+4 -8.64+4 (1) -3.098+5 0.0296 7.108+5 -5.993+4 (1) 4.054+4 -8.327+4 -2.821+5 0.032 7.236+5 -5.963+4 4.204+4 -8.122+4 -2.693+5
0.04 7.436+5 (1) -5.592+4 5.016+4 -7.764+4 -2.443+5 0.05 7.227+5 -4.764+4 5.948+4 -2.425+4 5.758+4 0.06 7.034+5 -4.161+4 6.
548+4 5.131+4 4.884+5 0.067 7.056+5 -4.082+4 6.
753+4 6.777+4 5.811+5 (1) 0.07 7.094+5 -4.110+4 6.
838+4 6.615+4 5.724+5 0.08 7.23+5 -4.258+4 7.
033+4 4.719+4 4.679+5 0.09 7.253+5 -4.236+4 7.
159+4 3.905+4 4.210+5 0.10 7.166+5 -4.04+4 7.
27+4 4.73+4 4.655+5 0.11 7.074+5 -3.849+4 7.36+4 5.774+4 5.23+5 0.12 7.048+5 -3.78+4 7.43+4 6.027+4 5.35+5 0.13 7.074+5 -3.815+4 7.
491+4 5.506+4 5.083+5 0.14 7.101+5 -3.855+4 7.
557+4 5.059+4 4.818+5 0.15 7.108+5 -3.86+4 7.
626+4 4.917+4 4.739+5 0.16 7.102+5 -3.842+4 7.
677+4 4.974+4 4.766+5 0.167 7.098+5 -3.829+4 7.689+4 (1) 5.026+4 4.794+5 0.18 7.097+5 -3.822+4 7.
638+4 5.024+4 4.795+5 0.19 7.103+5 -3.827+4 7.
527+4 4.974+4 4.767+5 0.20 7.108+5 -3.832+4 7.
361+4 4.948+4 4.754+5 NOTE:
- 1. Maximum absolute value
. 02-01 02-01 0 2-0 1 0 2-0 1 0 2-0 1 6.2-189 Reformatted Per Amendment 02-01 TABLE 6.2-18e 31 NODE REACTOR CAVITY MODEL FORCES AND MOMENTS Time (sec)
F x (lbf) F y (lbf) F z (lbf) M x (ft-lbf)
M y (ft-lbf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0051 1.194+5 -2.882+3 -1.201+2 -8.95+2 3.119+4 0.01 2.734+5 -1.187+4 7.719+3 -1.731+4 6.836+4 0.0152 4.329+5 -2.448+4 1.663+4 -5.663+4 -8.696+4 0.02 5.492+5 -3.386+4 2.168+4 -8.78+4 -2.779+5 0.0296 6.4+5 -3.852+4 3.667+4 -5.224+4 -1.84+5 0.04 6.76+5 -3.167+4 4.637+4 -3.138+4 -6.723+4 0.05 6.899+5 -3.046+4 5.484+4 -7.078+3 1.035+5 0.06 6.917+5 -3.367+4 6.
059+4 6.952+4 3.651+5 0.07 6.959+5 -3.751+4 6.422+4 1.005+5 (1) 4.269+5 0.077 6.974+5 (1) -3.898+4 6.622+4 8.824+4 4.153+5 0.082 6.968+5 -3.930+4 (1) 6.721+4 7.552+4 4.084+5 0.09 6.934+5 -3.834+4 6.
861+4 6.864+4 4.164+5 0.10 6.874+5 -3.583+4 6.
978+4 8.091+4 4.486+5 0.11 6.835+5 -3.446+4 7.
063+4 8.913+4 4.737+5 0.115 6.83+5 -3.465+4 7.098+4 8.50+4 4.778+5 (1) 0.13 6.854+5 -3.608+4 7.
209+4 7.159+4 4.551+5 0.14 6.869+5 -3.657+4 7.
290+4 6.757+4 4.414+5 0.15 6.87+5 -3.653+4 7.
365+4 6.613+4 4.396+5 0.16 6.866+5 -3.625+4 7.
416+4 6.642+4 4.424+5 0.166 6.864+5 -3.611+4 7.426+4 (1) 6.648+4 4.431+5 0.18 6.866+5 -3.601+4 7.
37+4 6.60+4 4.415+5 0.19 6.87+5 -3.604+4 7.
258+4 6.572+4 4.395+5 0.20 6.874+5 -3.606+4 7.
092+4 6.594+4 4.399+5 NOTE:
- 1. Maximum absolute value
. 0 2-0 1 6.2-190 Reformatted Per Amendment 02-01 TABLE 6.2-18f 33 NODE REACTOR CAVITY MODEL FORCES AND MOMENTS Time (sec)
F x (lbf) F y (lbf) F z (lbf) M x (ft-lbf)
M y (ft-lbf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0051 1.255+5 -3.274+3 4.615+4 -2.510+3 -4.645+3 0.01 2.803+5 -1.264+4 8.109+4 -2.483+4 -3.587+4 0.0152 4.418+5 -2.563+4 7.694+4 -6.682+4 -2.205+5 0.020 5.565+5 -3.476+4 6.092+4 -9.087+4 -3.438+5 0.0296 6.403+5 -3.781+4 4.712+4 -4.364+4 -1.23+5 0.04 6.823+5 -3.114+4 6.923+4 -3.485+4 -8.853+4 0.05 6.988+5 -3.088+4 7.566+4 -9.219+3 4.629+4 0.06 6.982+5 -3.479+4 7.
401+4 7.053+4 3.483+5 0.069 6.99+5 -3.808+4 7.738+4 1.005+5 (1) 4.360+5 0.078 7.00+5 (1) -3.950+4 8.179+4 8.584+4 4.211+5 0.081 6.999+5 -3.960+4 (1) 8.256+4 7.889+4 4.127+5 0.10 6.921+5 -3.614+4 8.
348+4 8.241+4 4.365+5 0.11 6.877+5 -3.500+4 8.
456+4 8.717+4 4.649+5 0.115 6.869+5 -3.516+4 8.
510+4 8.386+4 4.69+5 (1) 0.12 6.871+5 -3.556+4 8.
552+4 7.956+4 4.652+5 0.13 6.889+5 -3.646+4 8.
611+4 7.247+4 4.475+5 0.14 6.905+5 -3.694+4 8.
678+4 6.797+4 4.344+5 0.15 6.908+5 -3.692+4 8.
756+4 6.608+4 4.302+5 0.16 6.905+5 -3.665+4 8.
807+4 6.610+4 4.311+5 0.165 6.903+5 -3.653+4 8.815+4 (1) 6.622+4 4.320+5 0.17 6.902+5 -3.645+4 8.
809+4 6.621+4 4.325+5 0.18 6.903+5 -3.640+4 8.755+4 6.59+4 4.318+5 0.19 6.907+5 -3.642+4 8.
642+4 6.560+4 4.301+5 0.20 6.911+5 -3.645+4 8.
475+4 6.577+4 4.301+5 NOTE:
- 1. Maximum absolute value.
0 2-0 1 6.2-191 Reformatted Per Amendment 02-01 TABLE 6.2-18g REACTOR CAVITY NODILIZATION STUDY PEAK FORCES AND MOMENTS
22 Node Model 31 Node Model 33 Node Model F x (lbf) (1) 7.436+5 6.974+5 7.00+5 F z (lbf) 7.689+4 7.426+4 8.82+4 M y (ft-lbf)
(1) 5.811+5 4.778+5 4.69+5
- 1. F i, force in the i direction.
M y, Moment around the y axis.
02-01 6.2-192 Reformatted Per Amendment 02-01 TABLE 6.2-19 BLOWDOWN MASS AND ENERGY RELEASES DOUBLE ENDED PUMP SUCTION GUILLOTINE TIME BREAK PATH NO. 1 FLOW BREAK PATH NO. 2 FLOW SECONDS LBM/SEC THOUSAND BTU/SEC LBM/SEC THOUSAND BTU/SEC 0.000 0.0 0.0 0.0 0.0 0.101 41226.3 22798.3 22509.4 12407.1 0.201 41151.8 22857.9 24598.8 13572.4 0.600 42021.0 24036.7 21813.2 12091.2 0.901 41596.5 24453.0 20262.5 11265.6 1.40 38613.1 23653.5 19519.5 10841.8 2.00 33824.8 21885.0 19227.8 10682.1 2.50 26966.8 18578.2 17874.7 9954.5 2.70 20342.8 14290.5 17235.4 9609.8 2.90 17530.7 12472.6 16664.7 9302.6 3.20 14967.0 10742.3 15945.2 8913.6 4.20 11851.4 8639. 7 14257.3 7960.9 4.80 11211.8 8445.6 13362.6 7447.3 5.20 8680.8 7660.3 13609.6 7581.3 5.40 7650.9 7142.5 13426.4 7477.7 6.20 7694.5 6610.6 12890.6 7182.4 7.20 8353.3 6306.3 12178.7 6784.8 8.00 8031.9 6080.8 11699.2 6511.9 9.80 6443.7 5402.5 10478.1 5829.6 11.6 5529.9 4696.0 9229.6 5146.6 14.2 4260.9 3693.6 7415.4 4158.4 14.6 4128.9 3611.2 7237.4 3944.6 14.8 4059.6 3585.0 8616.4 4612.5 15.0 3961.4 3556.0 6301.6 3367.6 15.2 3886.7 3551.5 11251.0 5853.2 15.4 3704.1 3494.3 11196.1 5851.6 15.6 3677.5 3611.6 4829.9 2511.8 15.8 3477.4 3525.7 9022.3 4356.0 16.0 3270.5 3501.4 8927.5 4374.1 16.2 3090.6 3493.0 4650.6 2292.0 16.6 2467.6 3023.5 8768.5 3941.9 16.8 2123.2 2624.3 5556.8 2540.9 17.2 1618.6 2015.9 3758.2 1743.9 18.4 571.0 720.5 1256.4 759.7 19.6 0.0 0.0 0.0 0.0 0 2-0 1 6.2-193 Reformatted Per Amendment 02-01 TABLE 6.2-20 BLOWDOWN MASS AND ENERGY RELEASES DOUBLE ENDED HOT LEG GUILLOTINE TIME BREAK PATH NO. 1 FLOW BREAK PATH NO. 2 FLOW SECONDS LBM/SEC THOUSAND BTU/SEC LBM/SEC THOUSAND BTU/SEC 0.000 0.0 0.0 0.0 0.0 0.100 40707.9 26964.9 28641.3 18613.5 0.200 37093.4 24611.9 23845.5 15400.7 0.300 35362.1 23347.9 21758.7 13867.2 0.601 34739.7 22929.6 19114.6 11631.3 1.20 31342.0 21403.5 17380.0 10059.9 2.20 23965.5 17302.9 17132.6 9580.2 2.80 21069.8 15272.0 17270.0 9571.5 3.30 19800.2 14176.8 16976.1 9390.0 4.00 19119.2 13341.5 15537.5 8628.8 4.40 19570.4 13333.2 14463.4 8077.3 5.00 21265.5 13802.9 12433.7 7023.0 5.20 14974.3 11011.2 11792.4 6691.5 6.00 16239.9 11358.0 9807.0 5662.3 6.20 17613.8 11934.2 9465.8 5482.3 6.60 26967.4 17319.2 8901.8 5180.9 7.80 26423.9 16211.8 7318.3 4332.4 8.60 24989.3 15306.5 6187.5 3768.5 8.80 15237.9 9142.2 5918.2 3639.9 9.20 15813.8 9546.9 5406.1 3402.4 9.40 10036.9 7348.0 5187.3 3306.9 9.60 9692.6 7209.3 4991.7 3222.3 10.4 11042.5 7754.2 4447.3 2969.2 10.8 13961.6 9556.2 4243.7 2864.6 11.4 12073.9 8363.3 3891.7 2698.3 11.8 5710.9 4926.3 3559.5 2557.1 12.4 4768.5 4341.9 2870.3 2325.5 13.2 2690.8 3036.4 1845.3 1999.9 13.8 1959.9 2320.3 1118.0 1385.5 15.6 882.5 1101.1 565.1 711.9 16.2 921.1 961.9 320.5 407.1 16.4 329.8 405.2 412.8 524.3 17.0 1043.3 749.3 188.9 240.7 17.4 0.0 0.0 119.2 152.8 18.2 0.0 0.0 0.0 0.0 02-01 6.2-194 Reformatted Per Amendment 02-01 TABLE 6.2-21 BLOWDOWN MASS AND ENERGY RELEASES DOUBLE ENDED PUMP SUCTION - MIN SI TIME BREAK PATH NO. 1 FLOW BREAK PATH NO. 2 FLOW SECONDS LBM/SEC THOUSAND BTU/SEC LBM/SEC THOUSAND BTU/SEC 19.6 0.0 0.0 0.0 0.0 20.3 0.0 0.0 0.0 0.0 20.4 68.0 80.4 0.0 0.0 20.6 64.8 76.6 0.0 0.0 22.1 137.6 162.6 0.0 0.0 22.2 148.9 176.0 514.1 56.1 22.3 369.6 438.4 3994.2 446.3 22.4 537.9 640.0 5659.3 660.0 22.5 597.1 711.3 6181.8 745.3 22.8 641.4 764.5 6577.3 804.3 23.7 625.9 746.1 6420.0 808.9 25.7 570.8 679.8 5943.3 755.2 26.7 545.9 649.8 5718.8 730.4 27.7 523.0 622.3 5508.6 707.2 29.7 482.6 573.9 5127.6 665.5 31.7 448.1 532.5 4791.0 628.7 33.7 418.2 496.7 4490.3 596.1 35.7 392.0 465.3 4218.8 566.7 36.8 285.1 337.8 2990.3 441.1 37.0 283.5 335.9 2971.2 439.0 38.8 270.2 320.0 2807.5 421.2 39.8 285.1 337.8 3019.6 431.3 41.8 272.1 322.3 2856.9 414.0 43.8 260.7 308.8 2716.4 398.5 44.8 265.5 314.4 255.2 151.0 51.8 239.5 283.5 244.2 135.5 61.8 209.6 248.0 231.6 118.0 76.8 176.3 208.5 217.9 99.0 92.8 152.6 180.4 208.3 86.1 138.8 126.7 149.7 197.6 72.1 174.8 125.2 148.0 196.6 70.7 190.8 127.2 150.4 199.1 71.8 198.8 128.8 152.2 206.1 73.8 214.8 129.4 152.9 225.4 77.7 231.5 125.2 147.9 247.2 80.7 02-01 02-01 6.2-195 Reformatted Per Amendment 02-01 TABLE 6.2-22 BLOWDOWN MASS AND ENERGY RELEASES DOUBLE ENDED PUMP SUCTION - MAX SI TIME BREAK PATH NO. 1 FLOW BREAK PATH NO. 2 FLOW SECONDS LBM/SEC THOUSAND BTU/SEC LBM/SEC THOUSAND BTU/SEC 19.6 0.0 0.0 0.0 0.0 20.3 0.0 0.0 0.0 0.0 20.4 68.0 80.4 0.0 0.0 20.6 64.8 76.6 0.0 0.0 22.1 137.6 162.6 0.0 0.0 22.2 148.9 176.0 514.1 56.1 22.3 369.6 438.4 3994.2 446.3 22.4 537.9 640.0 5659.3 660.0 22.5 597.1 711.3 6181.8 745.3 22.8 641.4 764.5 6557.3 804.3 23.7 625.9 746.1 6420.0 808.9 25.7 570.8 679.8 5943.3 755.2 26.7 545.9 649.8 5718.8 730.4 27.7 523.0 622.3 5508.6 707.2 29.7 482.6 573.9 5127.6 665.5 31.7 448.1 532.5 4791.0 628.7 33.7 418.2 496.7 4490.3 596.1 35.7 392.0 465.3 4218.8 566.7 36.8 285.1 337.8 2990.3 441.1 37.0 283.5 335.9 2971.2 439.0 38.8 270.2 320.0 2807.5 421.2 39.8 314.9 373.2 3412.5 454.9 40.8 307.4 364.4 3308.0 447.2 41.8 301.3 357.0 3236.5 439.2 43.8 289.7 343.3 3101.5 424.2 44.8 151.5 179.1 733.7 152.2 46.8 150.7 178.2 735.2 151.8 62.8 145.0 171.3 746.0 149.0 64.8 144.3 170.5 747.3 148.7 80.8 138.9 164.2 757.6 146.1 102.8 132.0 156.0 771.5 142.9 162.8 120.2 142.1 794.3 139.6 172.8 118.4 139.9 797.8 138.9 238.8 106.9 126.5 820.2 133.7 239.5 106.8 126.2 820.5 133.6 02-01 6.2-196 Reformatted Per Amendment 02-01 TABLE 6.2-23 PRINCIPLE PARAMETERS DURING REFLOOD DOUBLE-ENDED PUMP SUCTION - MIN SI INJECTION LBM/SEC TIME SEC TEMP DEG F FLOODING RATE IN/SEC CARRYOVER FRACTION CORE HEIGHT FT DOWN HEIGHT FT FLOW FRACT TOTAL ACCU SPILL ENTHALPHY BTU/LBM 19.6 269.3 0.000 0.000 0.00 0.00 0.333 0.0 0.0 0.0 0.00 20.2 264.3 31.931 0.000 0.63 3.07 0.000 12601.6 12601.6 0.0 89.57 20.3 261.2 40.513 0.000 1.08 3.44 0.000 12386.3 12386.3 0.0 89.57 21.2 258.5 3.371 0.338 1.52 8.95 0.397 11417.8 11417.8 0.0 89.57 22.1 257.6 3.134 0.471 1.66 14.33 0.423 10709.1 10709.1 0.0 89.57 22.7 256.4 7.122 0.553 1.79 15.59 0.719 8259.1 8259.1 0.0 89.57 23.7 254.0 6.137 0.645 2.00 15.60 0.708 7555.4 7555.4 0.0 89.57 24.7 252.0 5.573 0.684 2.16 15.60 0.706 7190.6 7190.6 0.0 89.57 27.7 247.6 4.686 0.728 2.52 15.60 0.693 6330.7 6330.7 0.0 89.57 33.7 242.4 3.801 0.748 3.07 15.60 0.666 5132.1 5132.1 0.0 89.57 38.8 240.4 2.783 0.748 3.41 15.60 0.588 3237.7 3237.7 0.0 89.57 39.8 240.2 2.876 0.750 3.47 15.60 0.600 3469.3 3070.8 0.0 86.52 40.8 240.0 2.825 0.750 3.53 15.60 0.595 3371.5 2971.8 0.0 86.42 43.8 239.5 2.697 0.750 3.70 15.60 0.585 3131.0 2725.6 0.0 86.13 44.8 239.4 2.731 0.751 3.76 15.49 0.587 403.6 0.0 0.0 63.01 49.8 239.5 2.564 0.750 4.03 14.83 0.582 408.5 0.0 0.0 63.01 59.8 241.8 2.286 0.748 4.54 13.82 0.570 416.3 0.0 0.0 63.01 70.8 246.7 2.051 0.746 5.04 13.10 0.558 422.3 0.0 0.0 63.01 82.8 253.4 1.857 0.746 5.54 12.68 0.544 426.8 0.0 0.0 63.01 96.8 261.1 1.697 0.747 6.06 12.53 0.531 430.1 0.0 0.0 63.01 110.8 267.4 1.594 0.749 6.55 12.62 0.521 431.6 0.0 0.0 63.01 124.8 272.7 1.529 0.751 7.00 12.87 0.514 432.4 0.0 0.0 63.01 142.8 278.5 1.483 0.756 7.56 13.32 0.511 433.0 0.0 0.0 63.01 158.8 282.9 1.462 0.761 8.03 13.80 0.510 433.2 0.0 0.0 63.01 176.8 287.1 1.451 0.768 8.54 14.36 0.511 433.2 0.0 0.0 63.01 182.8 288.4 1.450 0.770 8.71 14.56 0.511 433.2 0.0 0.0 63.01 194.8 290.8 1.457 0.775 9.04 14.93 0.515 433.0 0.0 0.0 63.01 198.8 291.5 1.458 0.776 9.15 15.03 0.517 432.9 0.0 0.0 63.01 212.8 293.9 1.445 0.782 9.53 15.32 0.521 432.7 0.0 0.0 63.01 231.5 1.388 0.788 10.00 15.52 0.520 433.1 0.0 0.0 63.01 02-01 6.2-197 Reformatted Per Amendment 02-01 TABLE 6.2-24 PRINCIPLE PARAMETERS DURING REFLOOD DOUBLE-ENDED PUMP SUCTION - MAX SI INJECTION LBM/SEC TIME SEC TEMP DEG F FLOODING RATE IN/SEC CARRYOVER FRACTION CORE HEIGHT FT DOWN HEIGHT FT FLOW FRACT TOTAL ACCU SPILL ENTHALPHY BTU/LBM 19.6 269.3 0.000 0.000 0.00 0.00 0.333 0.0 0.0 0.0 0.00 19.6 269.3 0.000 0.000 0.00 0.00 0.333 0.0 0.0 0.0 0.00 20.2 264.3 31.931 0.000 0.63 3.07 0.000 12601.6 12601.6 0.0 89.57 20.3 261.2 40.513 0.000 1.08 3.44 0.000 12386.3 12386.3 0.0 89.57 21.2 258.5 3.371 0.338 1.52 8.95 0.397 11417.8 11417.8 0.0 89.57 22.1 257.6 3.134 0.471 1.66 14.33 0.423 10709.1 10709.1 0.0 89.57 22.7 256.4 7.122 0.553 1.79 15.59 0.719 8259.1 8259.1 0.0 89.57 23.7 254.0 6.137 0.645 2.00 15.60 0.708 7555.4 7555.4 0.0 89.57 24.7 252.0 5.573 0.684 2.16 15.60 0.706 7190.6 7190.6 0.0 89.57 27.7 247.6 4.686 0.728 2.52 15.60 0.693 6330.7 6330.7 0.0 89.57 33.7 242.4 3.801 0.748 3.07 15.60 0.666 5132.1 5132.1 0.0 89.57 38.8 240.4 2.783 0.748 3.41 15.60 0.588 3237.7 3237.7 0.0 89.57 39.8 240.2 3.069 0.752 3.47 15.60 0.624 3902.0 2979.5 0.0 83.29 40.8 239.9 3.018 0.751 3.53 15.60 0.615 3788.5 2866.7 0.0 83.11 44.8 239.3 2.003 0.739 3.77 15.60 0.465 979.5 0.0 0.0 63.01 50.8 239.9 1.970 0.740 4.02 15.60 0.465 979.6 0.0 0.0 63.01 62.8 243.2 1.910 0.742 4.53 15.60 0.464 979.7 0.0 0.0 63.01 74.8 248.4 1.852 0.744 5.01 15.60 0.464 979.8 0.0 0.0 63.01 88.8 255.8 1.786 0.747 5.55 15.60 0.464 979.9 0.0 0.0 63.01 102.8 263.1 1.721 0.751 6.06 15.60 0.464 980.0. 0.0 0.0 63.01 116.8 269.2 1.670 0.754 6.55 15.60 0.465 980.0 0.0 0.0 63.01 130.8 274.4 1.628 0.758 7.02 15.60 0.467 979.9 0.0 0.0 63.01 146.8 279.5 1.566 0.762 7.53 15.60 0.469 979.9 0.0 0.0 63.01 162.8 283.8 1.512 0.766 8.01 15.60 0.471 979.8 0.0 0.0 63.01 180.8 288.0 1.453 0.771 8.53 15.60 0.474 979.8 0.0 0.0 63.01 198.8 291.5 1.395 0.776 9.01 15.60 0.477 979.7 0.0 0.0 63.01 218.8 294.8 1.333 0.781 9.52 15.60 0.480 979.7 0.0 0.0 63.01 239.5 297.7 1.270 0.788 1.00 15.60 0.484 979.6 0.0 0.0 63.01 02-01 6.2-198 Reformatted Per Amendment 02-01 TABLE 6.2-25 POST-REFLOOD MASS AND ENERGY RELEASES DOUBLE-ENDED PUMP SUCTION - MIN SI TIME BREAK PATH NO. 1 FLOW BREAK PATH NO. 2 FLOW SECONDS LBM/SEC THOUSAND BTU/SEC LBM/SEC THOUSAND BTU/SEC 231.6 118.5 149.3 319.4 91.8 266.6 116.2 146.4 321.7 91.4 401.6 106.0 133.6 331.8 90.4 406.6 107.2 135.1 330.7 89.9 446.6 105.5 133.0 332.4 89.2 451.6 106.6 134.4 331.3 88.8 486.6 105.2 132.5 332.7 88.2 491.6 106.2 133.9 331.6 87.8 526.6 104.7 132.0 333.1 87.2 531.6 105.8 133.3 332.1 86.7 561.6 104.5 131.7 333.4 86.2 566.6 105.5 133.0 332.4 85.8 596.6 104.1 131.2 333.7 85.2 601.6 105.2 132.5 332.7 84.8 636.6 103.8 130.9 334.0 87.8 641.6 104.9 132.1 333.0 87.3 676.6 103.5 130.4 334.4 86.5 746.6 104.1 131.1 333.8 84.0 806.6 102.5 129.2 335.4 85.7 836.6 103.4 130.3 334.5 84.3 861.6 102.2 128.8 335.7 83.6 911.6 102.9 129.6 335.0 81.4 931.6 101.8 128.3 336.1 84.1 971.6 102.4 129.1 335.5 82.1 1106.6 100.9 127.2 337.0 81.6 1436.6 101.0 127.3 336.9 80.7 1436.7 72.6 90.0 365.3 85.8 1579.0 72.6 90.0 365.3 85.5 1579.1 70.0 80.5 367.9 32.0 2393.9 70.0 80.5 367.9 32.0 2394.0 74.0 85.0 397.1 73.3 3599.9 74.0 85.0 397.1 73.3 3600.0 57.9 66.6 413.2 76.3 3600.1 43.3 49.8 427.8 63.3 02-01 02-01 RN 02-020 6.2-199 Reformatted Per Amendment 02-01 TABLE 6.2-26 POST-REFLOOD MASS AND ENERGY RELEASES DOUBLE-ENDED PUMP SUCTION - MAX SI TIME BREAK PATH NO. 1 FLOW BREAK PATH NO. 2 FLOW SECONDS LBM/SEC THOUSAND BTU/SEC LBM/SEC THOUSAND BTU/SEC 239.6 118.3 149.5 864.8 128.7 259.6 117.0 147.9 866.1 128.5 264.6 118.1 149.3 864.9 128.0 289.6 116.5 147.2 866.6 127.7 294.6 117.6 148.6 865.5 127.3 314.6 116.3 146.9 866.8 127.0 344.6 117.1 148.0 866.0 121.9 369.6 115.4 145.8 867.7 121.7 374.6 116.4 147.2 866.6 121.3 429.6 114.7 145.0 868.4 124.1 434.6 115.9 146.4 867.2 123.6 464.6 114.4 144.6 868.6 123.1 499.6 115.4 145.9 867.6 121.8 529.6 113.9 144.0 869.1 121.2 534.6 115.0 145.3 868.1 120.8 589.6 113.4 143.3 869.7 119.5 624.6 114.2 144.3 868.9 118.1 649.6 113.0 142.8 870.1 117.6 704.6 113.8 143.8 869.3 119.1 749.6 112.4 142.0 870.7 117.9 774.6 113.1 143.0 869.9 116.7 809.6 112.0 141.6 871.1 115.7 829.6 112.9 142.6 870.2 114.7 889.6 111.5 141.0 871.5 115.9 914.6 112.3 141.9 870.7 114.6 984.6 111.1 140.4 872.0 114.8 1349.6 111.2 140.6 871.8 113.5 1349.7 73.2 91.1 1012.7 220.1 1569.3 72.1 89.8 1013.8 220.4 1569.4 69.6 80.0 1016.4 165.1 3600.0 57.4 66.0 1028.5 167.3 3600.1 43.3 49.8 1042.6 154.3 02-01 02-01 6.2-200 Reformatted Per Amendment 02-01 TABLE 6.2-27 MASS BALANCE DOUBLE-ENDED PUMP SUCTION - MIN SI TIME(SECONDS) 0.0 19.60 19.60 231.53 1441.60 1578.99 3600.00 MASS (THOUSAND LBM)
INITIAL MASS IN RCS AND ACC 609.42 609.
42 609.42 609.42 609.42 609.42 609.42 ADDED MASS PUMPED INJECTION 0.00 0.00 0.00 82.62 612.11 676.83 1628.90 TOTAL ADDED 0.00 0.00 0.00 82.62 612.11 676.83 1628.90 **TOTAL AVAILABLE**
609.42 609.42 609.42 691.68 1221.54 1286.26 2238.32 DISTRIBUTION REACTOR COOLANT 421.29 47.69 54.59 105.15 105.15 105.15 105.15 ACCUMULATOR 188.13 146.19 139.29 0.00 0.00 0.00 0.00 TOTAL CONTENTS 609.42 193.
88 193.88 105.15 105.15 105.15 105.15 EFFLUENT BREAK FLOW 0.00 415.53 415.53 586.53 1116.38 1181.10 2133.17 ECCS SPILL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TOTAL EFFLUENT 0.00 415.53 415.53 586.53 1116.38 1181.10 2133.17 **TOTAL ACCOUNTABLE** 609.42 609.42 609.42 691.68 1221.53 1286.25 2238.32
6.2-201 Reformatted Per Amendment 02-01 TABLE 6.2-28 MASS BALANCE DOUBLE-ENDED PUMP SUCTION - MAX SI TIME(SECONDS) 0.0 19.60 19.60 239.50 1354.60 1569.33 3600.00 MASS (THOUSAND LBM)
INITIAL MASS IN RCS AND ACC 609.42 609.
42 609.42 609.42 609.42 609.42 609.42 ADDED MASS PUMPED INJECTION 0.00 0.00 0.00 195.63 1292.77 1525.96 3731.14 TOTAL ADDED 0.00 0.00 0.00 195.63 1292.77 1525.96 3731.14 **TOTAL AVAILABLE**
609.42 609.42 609.42 805.05 1902.20 2135.38 4340.56 DISTRIBUTION REACTOR COOLANT 421.29 47.69 54.59 105.82 105.82 105.82 105.82 ACCUMULATOR 188.13 146.19 139.29 0.00 0.00 0.00 0.00 TOTAL CONTENTS 609.42 193.88 193.88 105.82 105. 82 105.82 105.82 EFFLUENT BREAK FLOW 0.00 415.53 415.53 699.23 1796.37 2029.56 4234.74 ECCS SPILL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TOTAL EFFLUENT 0.00 415.53 415.53 586.53 1796.37 2029.56 4234.74 **TOTAL ACCOUNTABLE** 609.42 609.42 609.42 805.05 1902.19 2135.38 4340.56
6.2-202 Reformatted Per Amendment 02-01 TABLE 6.2-29 MASS BALANCE DOUBLE-ENDED HOT LEG GUILLOTINE TIME(SECONDS) 0.0 18.20 18.20 MASS (THOUSAND LBM)
INITIAL MASS IN RCS AND ACC 609.42 609.42 609.42 ADDED MASS PUMPED INJECTION 0.00 0.00 0.00 TOTAL ADDED 0.00 0.00 0.00 **TOTAL AVAILABLE**
609.42 609.42 609.42 DISTRIBUTION REACTOR COOLANT 421.29 95.75 102.64 ACCUMULATOR 188.13 116.21 109.31
TOTAL CONTENTS 609.42 211.96 211.96 EFFLUENT BREAK FLOW 0.00 397.46 397.46 ECCS SPILL 0.00 0.00 0.00 TOTAL EFFLUENT 0.00 397.46 397.46 **TOTAL ACCOUNTABLE** 609.42 609.42 609.42
6.2-203 Reformatted Per Amendment 02-01 TABLE 6.2-30 ENERGY BALANCE DOUBLE-ENDED PUMP SUCTION - MIN SI TIME(SECONDS) 0.0 19.60 19.60 231.53 1441.60 1578.99 3600.00 ENERGY (MILLION LBM)
INITIAL ENERGY IN RCS AND ACC, S GEN 720.39 720.39 720.39 720.39 720.39 720.39 720.39 ADDED ENERGY PUMPED INJECTION 0.00 0.00 0.00 5.18 38.57 48.15 189.05 DECAY HEAT 0.00 5.54 5.54 26.56 107.39 115.06 212.59 HEAT FROM SECONDARY 0.00 -2.33 -2.33 -2.33 1.67 1.67 1.67 TOTAL ADDED 0.00 3.21 3.21 29.41 147.62 164.88 403.31 **TOTAL AVAILABLE**
720.39 723.60 723.60 749.80 868.01 885.26 1123.69 DISTRIBUTION REACTOR COOLANT 251.33 13.54 14.61 29.77 29.77 29.77 29.77 ACCUMULATOR 16.85 13.09 12.48 0.00 0.00 0.00 0.00 CORE STORED 21.91 10.73 10.73 4.10 3.95 3.86 2.71 PRIMARY METAL 126.07 119.58 119.58 98.57 60.50 57.80 41.62 SECONDARY METAL 80.76 79.64 79.64 73.31 45.45 42.89 31.31 STEAM GENERATOR 223.47 224.89 224.89 203.60 123.41 116.70 85.56
TOTAL CONTENTS 720.39 461.48 461.48 409.35 263.07 251.03 190.97 EFFLUENT BREAK FLOW 0.00 262.11 262.11 334.25 598.74 628.04 926.53 ECCS SPILL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TOTAL EFFLUENT 0.00 262.11 262.11 334.25 598.74 628.04 926.53 **TOTAL ACCOUNTABLE** 720.39 723.59 723.59 743.60 861.81 879.07 1117.50
6.2-204 Reformatted Per Amendment 02-01 TABLE 6.2-31 ENERGY BALANCE DOUBLE-ENDED PUMP SUCTION - MAX SI TIME(SECONDS) 0.00 19.60 19.60 239.50 1354.60 1569.33 3600.00 ENERGY (MILLION BTU)
INITIAL ENERGY IN RCS, ACC, S GEN 720.39 720.39 720.39 720.39 720.39 720.39 720.39 ADDED ENERGY PUMPED INJECTION 0.00 0.00 0.00 12.33 82.38 116.89 443.26 DECAY HEAT 0.00 5.54 5.54 27.24 102.41 114.53 212.59 HEAT FROM SECONDARY 0.00 -2.33 -2.33 -2.33 2.99 3.37 3.37
TOTAL ADDED 0.00 3.21 3.21 37.23 187.78 234.79 659.22 **TOTAL AVAILABLE**
720.39 723.60 723.60 757.62 908.16 955.18 1379.61 DISTRIBUTION REACTOR COOLANT 251.33 13.
54 14.61 29.98 29.98 29.98 29.98 ACCUMULATOR 16.85 13.09 12.48 0.00 0.00 0.00 0.00 CORE STORED 21.91 10.73 10.73 4.10 3.95 3.82 2.71 PRIMARY METAL 126.07 119.58 119.58 97.37 61.29 57.13 41.28 SECONDARY METAL 80.76 79.
64 79.64 73.43 46.34 42.36 30.92 STEAM GENERATOR 223.47 224.89 224.89 203.88 127.25 116.94 86.16
TOTAL CONTENTS 720.39 461.
48 461.48 408.75 268.82 250.25 191.05 EFFLUENT BREAK FLOW 0.00 262.11 262.11 342.67 633.15 698.74 1182.37 ECCS SPILL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TOTAL EFFLUENT 0.00 262.11 262.11 342.67 633.15 698.74 1182.37 **TOTAL ACCOUNTABLE**
720.39 723.59 723.59 751.42 901.97 948.98 1373.41
6.2-205 Reformatted Per Amendment 02-01 TABLE 6.2-32 ENERGY BALANCE DOUBLE-ENDED HOT LEG GUILLOTINE TIME(SECONDS) 0.00 18.20 18.20 ENERGY (MILLION BTU)
INITIAL ENERGY IN RCS, ACC, S GEN 720.39 720.39 720.39 A DDED ENERGY PUMPED INJECTION0.000.00 0.00 DECAY HEAT0.005.87 5.87 HEAT FROM SECONDARY 0.00-3.48 -3.48
TOTAL ADDED 0.00 2.39 2.39 ** TOTAL AVAILABLE **
720.39 722.77 722.77 DISTRIBUTION
REACTOR COOLANT 251.33 23.93 24.55 ACCUMULATOR 16.85 10.41 9.79 CORE STORED 21.91 8.56 8.56 PRIMARY METAL 126.07 118.22 118.22 SECONDARY METAL 80.76 78.42 78.42 STEAM GENERATOR 233.47 220.64 220.64
TOTAL CONTENTS 720.39 460.18 460.18 EFFLUENT BREAK FLOW 0.00 262.58 262.58 ECCS SPILL 0.00 0.00 0.00
TOTAL EFFLUENT 0.00 262.58 262.58 ** TOTAL ACCOUNTABLE **
720.39 722.76 722.76
6.2-206 Reformatted Per Amendment 02-01 TABLE 6.2-33 SYSTEM INITIAL CONDITIONS Power Level (Includes +2% Allowance for Instrument
Error and Deadband
2958 MWt Vessel Average Temperature (Includes +5.3 F Allowance for Instrument Error and Deadband)
592.7 F Core Inlet Temperature (Includes +5.3 F Allowance for Instrument Error and Deadband)
558.2 F Mass of Reactor Coolant
421.3 x 10 3 lbm Reactor Coolant Pressures (Includes +50 psi Allowance for Instrument Error and Deadband)
2300 psia Initial Steam Generator Steam Pressure
966 psia Assumed Maximum Containment Back Pressure 71.7 psia
6.2-207 Reformatted Per Amendment 02-01 TABLE 6.2-34 WESTINGHOUSE MODEL DECAY HEAT CURVE (1979 ANS PLUS 2-SIGMA UNCERTAINTY)
TIME (SEC) DECAY HEAT GENERATION RATE (BTU/BTU) 1.00E+01 0.053876 1.50E+01 0.050401 2.00E+01 0.048018 4.00E+01 0.042401 6.00E+01 0.039244 8.00E+01 0.037065 1.00E+02 0.035466 1.50E+02 0.032724 2.00E+02 0.030936 4.00E+02 0.027078 6.00E+02 0.024931 8.00E+02 0.023389 1.00E+03 0.022156 1.50E+03 0.019921 2.00E+03 0.018315 4.00E+03 0.014781 6.00E+03 0.013040 8.00E+03 0.012000 1.00E+04 0.011262 1.50E+04 0.010097 4.00E+04 0.007778 1.00E+05 0.006021 4.00E+05 0.003770 6.00E+05 0.003201 8.00E+05 0.002834 1.00E+06 0.002580 1.50E+06 0.002168 2.00E+06 0.001909 4.00E+06 0.001355 6.00E+06 0.001091 8.00E+06 0.000927 1.00E+07 0.000808 2.00E+07 0.000477 4.00E+07 0.000269 6.00E+07 0.000188 8.00E+07 0.000140 1.00E+08 0.000111
6.2-208 Reformatted Per Amendment 02-01 TABLE 6.2-41 BLOWDOWN TABLE (WITHOUT MARGIN) FOR REACTOR CAVITY PRESSURE RESPONSE ANALYSIS, 150 SQUARE IN CH BREAK AREA, COLD LEG BREAK Time (sec)
Mass Flow (10 3 lbm/sec) Enthalpy (Btu/lbm) 0.0 0.00 557.61 0.001 8.83 557.61 0.002 12.46 557.40 0.003 12.86 557.52 0.010 20.53 556.35 0.017 24.70 555.57 0.022 23.82 554.11 0.036 26.72 553.97 0.042 26.23 553.43 0.049 26.99 553.61 02-01 6.2-209 Reformatted Per Amendment 02-01 TABLE 6.2-42 BLOWDOWN TABLE FOR STEAM GENERATOR COMPARTMENT DIFFERENTIA L PRESSURE ANALYSIS COLD LEG DOUBLE ENDED GUILLOTINE BREAK Time (sec)
Mass Flow (10 3 lbm/sec) Enthalpy (Btu/lbm) 0. 10.022 553.81 0.001 40.519 549.06 0.004 60.438 548.88 0.010 51.753 547.88 0.015 51.461 548.64 0.025 54.794 548.97 0.030 56.260 549.08 0.035 57.373 549.14 0.040 58.238 549.26 0.045 58.870 549.42 0.050 59.569 549.76 0.055 69.678 554.68 0.058 79.314 550.76 0.060 81.633 551.21 0.062 80.386 550.82 0.065 81.351 550.81 0.070 83.484 550.83 0.075 84.880 550.82 0.080 87.451 551.00 0.085 88.606 550.95 0.090 89.752 550.96 0.095 89.695 550.83 0.100 90.318 550.85 0.125 92.418 550.87 0.150 94.527 551.23 0.175 95.191 551.17 0.200 95.876 551.15 0.250 96.582 551.24 0.300 96.209 551.18 0.350 94.955 551.09 0.400 93.945 551.14 0.450 92.873 551.14 0.500 91.364 551.21 0.600 89.085 551.63 0.750 87.717 552.71 0.900 85.512 554.42 1.000 82.637 555.98 1.100 80.511 557.86 02-01 6.2-210 Reformatted Per Amendment 02-01 TABLE 6.2-43 BLOWDOWN TABLE FOR STEAM GENERATOR COMPARTMENT DIFFERENTIA L PRESSURE ANALYSIS HOT LEG DOUBLE ENDED GUILLOTINE BREAK Time (sec)
Mass Flow (10 3 lbm/sec) Enthalpy (Btu/lbm) 0. 10.022 647.51 0.001 54.859 645.59 0.003 80.761 645.01 0.008 63.883 647.45 0.010 65.471 648.08 0.015 66.879 649.87 0.020 68.935 650.91 0.030 70.920 652.36 0.039 71.408 653.24 0.050 71.948 655.22 0.060 75.985 656.17 0.070 80.768 654.92 0.080 83.236 653.78 0.085 83.747 653.39 0.089 83.859 653.15 0.100 83.421 652.72 0.125 80.990 651.45 0.150 76.694 650.73 0.175 74.661 649.64 0.200 73.906 647.85 0.250 71.393 644.44 0.300 69.196 641.27 0.350 67.446 638.54 0.400 66.152 636.18 0.450 65.167 634.16 0.500 64.153 632.66 0.600 61.847 630.68 0.700 59.740 630.19 0.800 59.165 631.82 0.900 57.600 634.08 1.000 55.551 636.03 1.100 53.998 638.07 02-01 6.2-211 Reformatted Per Amendment 02-01 TABLE 6.2-44 DOUBLE ENDED PRESSURIZER SURGE LINE GUILLOTINE BREAK SHORT TERM MASS AND ENERGY REL EASE RATES INTO PRESSURIZER CAVITY Time (Seconds) Mass Flow (10 3 lbm/sec) Enthalpy (BTU/lbm) 0.00 21.76 668.6 0.02 22.52 662.9 0.04 23.40 670.3 0.05 23.71 671.2 0.06 23.91 659.0 0.08 24.16 633.5 0.10 24.27 599.5 0.12 23.78 579.0 0.14 23.02 570.4 0.16 20.87 611.0 0.18 18.40 677.5 0.20 18.11 674.3 0.22 18.08 674.3 0.24 18.06 674.5 0.26 18.04 674.3 0.28 18.01 675.0 0.30 17.99 675.2 0.35 17.93 675.4 0.40 17.87 676.3 0.45 17.83 675.5 0.50 17.77 675.7 0.55 17.72 676.2 0.60 17.70 675.1 0.65 17.69 674.2 0.70 17.66 673.2 0.75 17.62 673.6 0.80 17.58 673.6 0.85 17.56 672.6 0.90 17.52 673.0 1.00 17.37 676.2
6.2-212 Reformatted Per Amendment 02-01 TABLE 6.2-45 BLOWDOWN TABLE FOR PRESSURIZER SPRAY LINE BREAK Time (Seconds) Mass Flow (10 3 lbm/sec) Enthalpy (BTU/lbm) 0.00000 5.350 611.05 0.05003 5.350 611.05 0.10011 5.478 609.82 0.15001 5.214 612.01 0.20062 5.199 612.03 0.25024 5.207 611.80 0.30016 5.108 612.62 0.35000 5.134 612.22 0.40023 5.115 612.26 0.45080 5.137 611.88 0.50011 5.158 611.52 0.55038 5.138 611.56 0.60015 5.145 611.34 0.65025 5.138 611.25 0.70026 5.134 611.14 0.75041 5.132 611.02 0.80005 5.115 611.05 0.85031 5110 610.95 0.90033 5.099 610.93 0.95038 5.084 610.93 1.00004 5.079 610.86 1.05002 5.059 610.93 1.10003 5.048 610.90 1.15004 5.037 610.89 1.20016 5.022 610.95 1.25006 5.012 610.91 1.30023 4.997 610.94 1.35011 4.983 610.97 1.40013 4.974 610.95 1.45020 4.959 611.00 1.50020 4.947 611.02 1.55112 4.936 611.02 1.60021 4.921 611.07 1.65033 4.909 611.09 1.70032 4.898 611.11 1.75012 4.884 611.17 1.80021 4.872 611.20 1.85040 4.860 611.24 1.90010 4.844 611.30 1.95032 4.832 611.34 2.00001 4.820 611.40 4.0 4.820 611.40 0 2-0 1 6.2-213 Reformatted Per Amendment 02-01
TABLE 6.2-46a Deleted per RN 01-073 02-01 6.2-214 Reformatted Per Amendment 02-01 TABLE 6.2-46b STEAM LINE BREAK MASS & ENERGY RELEASE INSIDE CONTAINMENT SYSTEM NOMINAL PARAMETERS (1) NSSS Power, Mwt 2912 Core Power Mwt 2900 Reactor Coolant Pump Heat, Mwt 12 Reactor Coolant Flow, Total, gpm 277800 Pressurizer Pressure, psia 2250 Reactor Coolant Temperature, F Core Outlet 627.7 Vessel Outlet 621.9 Core Average 592.8 Vessel Average 587.4 Vessel/Core Inlet 552.9 Steam Generator Steam Temperature, F 540.4 Steam Pressure, psia 966
- 1. Parameters for the partial pow er cases are adjusted accordingly
6.2-215 Reformatted Per Amendment 02-01 TABLE 6.2-46c STEAM LINE BREAK MASS & ENERGY RELEASE INSIDE CONTAINMENT ANALYSIS INITIAL CONDITION ASSUMPTIONS PARAMETER Power Level (%)
102 75 50 25 0 RCS Average Temperature ( F) 591.4 583.2 575.6 568.0 557.0 RCS Flowrate (gpm) 277800 277800 277800 277800 277800 RCS Pressure (psia)
2250 2250 2250 2250 2250 Pressurizer Water Volume (ft
- 3) 861.5 739.5 626.5 513.5 409.6 Feedwater Enthalpy (btu/lbm)
419.4 385.6 349.3 297.2 220.8 Faulted SG Water Level (% span) 65 65 65 65 65 Intact SG Water Level (% span) 55 55 55 55 55 02-01 6.2-216 Reformatted Per Amendment 02-01 TABLE 6.2-46d STEAM LINE BREAK MASS & ENERGY RELEASE INSIDE CONTAINMENT SAFETY SYSTEM ASSUMPTIONS PARAMETER VALUE Trip Setpoints Low Pressurizer Pressure Reactor Trip (psia) 1775 Low Pressurizer Pressure Safety Injection (psia) 1715 Low Steam Line Pressure (psia) 430 Overpower T 1.143 Time Constants Steam Line Pressure Lead Time Constant (sec) 50.0 Steam Line Pressure Lag Time Constant (sec)
5.0 Time Delays (sec)
Low Pressurizer Pressure Reactor Trip Delay 2.0 Low Steam Line Pressure Reactor Trip Delay 2.0 Overpower T Reactor Trip Delay 8.5 High-1 Containment Pressure Reactor Trip Delay 3.0 Steam Line Isolation Valve Closure 10.0 Feedwater Isolation Delay 10.0 SI System Reactor Trip Delay 3.0 SI Start Up Time (with offsite power) 27.0 Auxiliary Feedwater Delay 0.0
6.2-217 Reformatted Per Amendment 02-01 TABLE 6.2-47a STEAM LINE BREAK MASS & ENERGY RELEASE INSIDE CONTAINMENT CASE ANALYZED Break Type/Case Power (%) Break Size (ft 2) Failure(s)
Entrainment Reactor Trip (sec)
FW Isolation (sec) SL Isolation (sec) DER/1G 102 1.4 FWIV, SIS No LSP (3.6) LSP (10.6) LSP (10.6) DER/1B 102 1.2 FWIV, SIS, EFW No LSP (4.6) LSP (11.6) LSP (11.6) DER/1C 102 1.1 FWIV, SIS, EFW No LSP (5.0) LSP (12.0) LSP (12.0) DER/1H 102 1.4 SIS No LSP (3.6) LSP (10.6) LSP (10.6) DER/1I 102 1.4 SIS, EFW No LSP (3.6) LSP (10.6) LSP (10.6) DER/1J 102 1.4 DIESEL No LSP (3.6) LSP (10.6) LSP (10.6) DER/1K 102 1.4 CH-A No LSP (3.6) LOP (8.5) LOP (7.0) SPLIT/1 102 0.878 FWIV, SIS, EFW No Hi-1 (15.0) Hi-1 (22.0) Hi-2 (22.0) DER/2E 75 1.4 CH-A Yes LSP (3.7) LOP (8.5) LOP (7.0)
DER/2B 75 1.1 FWIV, SIS, EFW Yes LSP (4.4) LSP (11.4) LSP (11.4) DER/2C 75 1.0 FWIV, SIS, EFW No LSP (4.6) LSP (11.6) LSP (11.6) SPLIT/2 75 0.871 FWIV, SIS, EFW No Hi-1 (14.7) Hi-1 (21.7) Hi-2 (21.7) DER/3E 50 1.4 CH-A Yes LSP (3.8) LOP (8.5) LOP (7.0) DER/3B 50 0.8 FWIV, SIS, EFW Yes LSP (4.6) LSP (11.6) LSP (11.6) DER/3C 50 0.7 FWIV, SIS, EFW No LSP (4.9) LSP (11.9) LSP (11.9) SPLIT/3 50 0.863 FWIV, SIS, EFW No Hi-1 (14.5) Hi-1 (21.5) Hi-2 (21.5) DER/4E 25 1.4 CH-A Yes LSP (3.8) LOP (8.5) LOP (7.0) DER/4G 25 1.4 FWIV, SIS Yes LSP (3.8) LSP (10.9) LSP (10.9) DER/4B 25 0.6 FWIV, SIS, EFW Yes LSP (4.5) LSP (11.5) LSP (11.5) DER/4C 25 0.5 FWIV, SIS, EFW No LSP (4.8 LSP (11.8) LSP (11.5) SPLIT/4 25 0.849 FWIV, SIS, EFW No Hi-1 (14.3) Hi-1 (21.3) Hi-2 (21.3) DER/5F 0 1.4 CH-A Yes LSP (3.8) LOP (8.5) LOP (7.0) DER/5B 0 0.2 FWIV, SIS, EFW Yes LSP (4.4) LSP (11.4) LSP (11.4) DER/5C 0 0.1 FWIV, SIS, EFW No LSP (4.6) LSP (11.6) LSP (11.6) SPLIT/5 0 0.772 FWIV, SIS, EFW No Hi-1 (15.4) Hi-1-(22-4) Hi-2 (22.4)
CH-A - Failure of Electrical Channel A DER - Double-ended rupture FWIV - Feedwater Isolation Valve Failure EFW - Emergency Feedwater Runout Control Failure SIS - Failure of 1 Train of the Safety Injection System LSP - Low Steam Line Pressure Setpoint Hi High-1 Containment Pressure Setpoint Hi High-2 Containment Pressure Setpoint LOP - Loss of Power
6.2-218 Reformatted Per Amendment 02-01 TABLE 6.2-47b CONTAINMENT PRESSURE ENGINEERED SAFETY FEATURES ACTUATION TIMES FOR STEAM LINE BREAKS INSIDE CONTAINMENT Hi-1 Hi-2 Hi-3 Reactor building pressure setpoint value used in analysis.
4.2 psig 6.95 psig 12.65 psig Time after break to reach setpoint
t 1 t 2 t 3 Signal processing delay and response time 1.5 seconds 1.5 seconds 1.5 seconds Feedwater Isolation Diesel Fan Coolers Feedwater isolation valve closure time
8.5 seconds
Main steam valve closure
8.5 seconds
Diesel start time 10 sec. 10 sec. R.B. fan coolers start time, water side switchover, diesel loading sequence time
66.5 sec. R.B. spray pump start and header fill time t 1+10.0 t 1+11.5 t 1+76.5 t 2+10.0 37 seconds t 3+38.5 Hi Diesel Start, Feedwater Isolation Signal, Fan Cooler Actuation Signal Hi Main Steam Isolation Signal Hi Reactor Building Spray Actuation Signal 98-01 02-01 6.2-219 Reformatted Per Amendment 02-01 TABLE 6.2-47b (Continued)
CONTAINMENT PRESSURE ENGINEERED SAFETY FEATURES ACTUATION TIMES FOR STEAM LINE BREAKS (Values Used For Analysis)
Break Type/Case
Power (%) Break Size (ft 2) t 1 (sec) t 2 (sec) t 3 (sec) Main Feedwater Isolation (sec) Main Steam Isolation (sec) Fan Cooler Actuation (sec) Spray Actuation(sec) DER/1G 102 1.4 0.5 1 2.5 (1, 2) (1, 2) 86.5 53.1 DER/1B 102 1.2 3 4.5 8.5 (1, 2) (1, 2) 86.5 53.1 DER/1C 102 1.1 3 5 9 (1, 2) (1, 2) 86.5 53.1 DER/1H 102 1.4 1 1.5 3 (1, 2) (1, 2) 86.5 53.1 DER/1I 102 1.4 0.5 1 2.5 (1, 2) (1, 2) 86.5 53.1 DER/1J 102 1.4 0.5 1 2.5 (1, 2) (1, 2) 86.5 53.1 DER/1K 102 1.4 0.5 1 2.5 (1, 2) (1, 2) 86.5 53.1 SPLIT/1 102 0.878 6.8 12 24 22 22 86.5 67.1 DER/2E 75 1.4 0.5 1 2.5 (1, 2) (1, 2) 86.5 53.1 DER/2B 75 1.1 2 4 8 (1, 2) (1, 2) 86.5 53.1 DER/2C 75 1.0 3 5.5 10 (1, 2) (1, 2) 86.5 53.1 SPLIT/2 75 0.871 6.6 11.6 24 21.7 21.7 86.5 67.1 DER/3E 50 1.4 0.5 1 2.5 (1, 2) (1, 2) 86.5 53.1 DER/3B 50 0.8 2.5 5 14 (1, 2) (1, 2) 86.5 57.1 DER/3C 50 0.7 4.5 7.5 15 (1, 2) (1, 2) 86.5 58.1 SPLIT/3 50 0.863 6.6 11.4 23 21.5 21.5 86.5 66.1 DER/4E 25 1.4 0.5 1 2.5 (1, 2) (1, 2) 86.5 53.1 DER/4G 25 1.4 0.5 1 2.5 (1, 2) (1, 2) 86.5 53.1 DER/4B 25 0.6 3.5 6.5 (1, 2) (1, 2) 86.5 65.1 DER/4C 25 0.5 6 11 24 (1, 2) (1, 2) 86.5 67.1 SPLIT/4 25 0.849 6.4 11.2 23 21.3 21.3 86.5 66.1 DER/5F 0 1.4 0.5 1 2.5 (1, 2) (1, 2) 86.5 53.1 DER/5B 0 0.2 10 28 120 (1, 2) (1, 2) 86.5 163.1 DER/5C 0 0.1 39 87 441 (1, 2) (1, 2) 115.5 484.1 SPLIT/5 0 0.772 7 12.4 26 22.4 22.4 86.5 69.1 Notes:
(1) Main steam and feedwater isolation is initiated by other variable than containment pressure
(2) Analysis values are defined in Table 6.2-47a 02-01 6.2-220 Reformatted Per Amendment 02-01 TABLE 6.2-48a SLB M&E INSIDE CONTAINMENT CASE 4E: 25% POWER 1.4 FT 2 DER FAILURE: ELECTRICAL CH-A Time (sec) Break Flow Rate (lbm/sec) Break Energy (10 6 btu/sec)
Integrated Mass Release (10 3 lbm) Integrated Energy Release (10 6 btus) 0.0 0.0 0.0 0.0 0.0 0.2 9,441.0 11.23 1.888 2.245 0.4 9,207.0 10.96 3.73 4.437 0.6 9,052.0 10.78 5.54 6.592 0.8 8,903.0 10.61 7.321 8.713 1 8,758.0 10.44 9.072 10.80 2 8,125.0 9.704 17.44 20.79 3 16,729.0 12.14 29.66 31.58 4 18,151.0 12.35 47.31 43.87 5 17,156.0 11.83 64.86 55.91 6 16,214.0 11.33 81.45 67.43 7 14,980.0 10.74 96.93 78.40 7.2 4,711.0 3.373 97.87 79.08 8 4,397.0 3.217 101.5 81.70 9 4,009.0 3.048 105.6 84.81 10 3,691.0 2.917 109.5 87.77 15 2,562.0 2.366 124.7 100.9 20 1,540.0 1.831 134.9 111.3 30 1,205.0 1.451 148.3 127.4 40 1,064.0 1.281 159.5 140.9 61.5 1,002.0 1.206 181.4 167.3 80 987.6 1.189 199.8 189.4 100 980.0 1.180 219.4 213.1 120 982.1 1.182 239.0 236.7 140 979.7 1.179 258.7 260.3 160 976.0 1.175 278.2 283.8 180 299.1 0.3558 291.0 299.2 200 297.1 0.3525 297.2 306.5 220 458.4 0.5478 303.6 314.2 240 236.6 0.2812 309.1 320.7 260 186.6 0.2205 313.8 326.3 280 143.9 0.1690 317.3 330.3 300 141.0 0.1653 320.1 333.7 340 137.5 0.1612 325.6 340.1 1800 137.5 0.1612 526.4 575.5 1802 138.0 0.1619 526.7 575.9 1828 0.0 0.0 527.5 576.8 Steamline isolation: 7.0 sec Feedline isolation: 8.5 sec 02-01 02-01 6.2-221 Reformatted Per Amendment 02-01 TABLE 6.2-48b SLB M&E INSIDE CONTAINMENT CASE 1H: 102% POWER 1.4 FT 2 DER FAILURE: 1 Train SI Time (sec) Break Flow Rate (lbm/sec) Break Energy (10 6 btu/sec)
Integrated Mass Release (10 3 lbm) Integrated Energy Release (10 6 btus) 0.0 0.0 0.0 0.0 0.0 0.2 8,622.0 10.28 1.724 2.057 0.4 8,400.0 10.02 3.404 4.062 0.6 8,255.0 9.856 5.055 6.033 0.8 8,117.0 9.695 6.679 7.972 1 7,985.0 9.541 8.276 9.880 2 7,399.0 8.856 15.90 19.00 3 6,908.0 8.28 23.00 27.50 4 6,635.0 7.958 29.70 35.54 5 6,521.0 7.824 36.26 43.42 6 6,416.0 7.699 42.72 51.16 7 6,320.0 7.587 49.08 58.79 8 6,228.0 7.478 55.34 66.32 9 6,132.0 7.365 61.52 73.73 10 6,022.0 7.234 67.58 81.02 10.6 5,944.0 7.142 71.17 85.32 10.8 2,074.0 2.491 71.58 85.32 11 2,067.0 2.482 71.99 86.31 15 1,859.0 2.236 79.85 95.75 20 1,594.0 1.919 88.43 106.1 30 1,264.0 1.522 102.5 123.0 40 1,101.0 1.326 114.2 137.1 61.5 1,002.0 1.206 136.4 163.9 80 978.3 1.178 154.7 185.8 100 964.8 1.161 174.1 209.2 110 959.7 1.155 183.7 220.8 120 981.2 1.181 193.5 232.5 140 981.5 1.181 213.1 256.2 160 962.5 1.158 232.7 279.7 180 250.6 0.2964 244.8 294.3 200 29.23 0.337 246.7 296.5 206 0.0 0.0 246.8 296.6 252 48.42 0.0562 247.8 297.7 506 0.0 0.0 254.9 306.0 752 51.17 0.0594 261.5 313.6 1000 0.0 0.0 268.4 321.6 1250 49.56 0.0575 275.2 329.5 1502 0.0 0.0 282.4 337.7 1754 51.92 0.0603 289.1 345.5 1800 0.0 0.0 290.3 346.9 1808 13.43 0.0155 290.7 347.3 1810 0.0 0.0 290.7 347.3 Steamline isolation: 10.6 sec Feedline isolation: 10.6 sec 02-01 6.2-222 Reformatted Per Amendment 02-01 TABLE 6.2-49 REACTOR BUILDING SPRAY SYSTEM COMPONENT DATA Reactor Building Spray Pumps Number 2 Rated Capacity, gpm 2500 Rated Head, ft 450 Material Stainless steel (wetted parts) or equivalent corrosion resistant material Design Pressure, psig 300 Design Temperature, F 250 Code ASME III, Class 2 Safety Class 2a Sodium Hydroxide Storage Tank Number 1 Nominal Capacity, gal (minimum required usable volume) 3300 (3050) Material Carbon steel Design Pressure, ft Static Head + 3 psig Code ASME III, Class 3
Safety Class 2b Valves Exposed to Recirculated Coolant and Valves in the Refueling Water Storage
Tank Discharge Line Material Stainless steel Code ASME III, Class 2 Safety Class 2a 99-01 98-01 99-01 02-01 6.2-223 Reformatted Per Amendment 02-01 TABLE 6.2-49 (Continued)
REACTOR BUILDING SPRAY SYSTEM COMPONENT DATA Valves in the Sodium Hydroxide Storage Tank Discharge Line Material Stainless steel Code ASME III, Class 3
Safety Class 2b Piping in Sodium Hydroxide Storage Tank Discharge Line Material Stainless steel Code ASME III, Class 3
Safety Class 2b Other Piping, exposed to water recirculated from t he Reactor Building Sump and water from the RWST Material Stainless steel Code ASME III, Class 2
Safety Class 2a Spray Nozzles Number 330 Material Stainless steel Type Hollow cone Flow, gpm/nozzle 15.2 Pressure Drop, psi 40 6.2-224 Reformatted Per Amendment 02-01 TABLE 6.2-50 SINGLE FAILURE ANALYSIS - REACTOR BUILDING SPRAY SYSTEM Component Malfunction Comments 1. Reactor building spray pump Fails to start. Since each of the two sub-systems of the reactor building spray system is equally sized, the remaining subsystem
provides heat removal capability
at a reduced rate. In
combination with the reactor building emergency cooling system, heat removal capability in excess of the requirements is
provided. Elemental iodine
removal is adequate with one
subsystem operating.
- 2. Reactor building isolation valve.
Fails to open. (Same as above.) 3. Check valve in suction line.
Fails to open. (Same as above.) 4. Sodium hydroxide tank discharge
valve. Fails to open. The redundant discharge valve admits adequate sodium
hydroxide to the other
subsystem to provide the
required iodine removal.
6.2-225 Reformatted Per Amendment 02-01 TABLE 6.2-51 REACTOR BUILDING SPRAY SYSTEM HEADER LOCATIONS AND SIZES Subsystem A Header Ring Diameter (ft)
Pipe Size (in) Elevation (ft-in) Outer header 98 6 578-10 Middle header 58 6 590-4 Inner header 16 3 595-7 Subsystem B Header Ring Diameter (ft)
Pipe Size (in) Elevation (ft-in) Outer header 102 6 577-0 Middle header 62 6 589-6 Inner header 20 3 595-0
6.2-226 Reformatted Per Amendment 02-01 TABLE 6.2-52 SINGLE FAILURE ANALYSIS - REACTOR BUILDING HEAT REMOVAL AND FILTERING SYSTEM Component Malfunction Comments 1. Air Handling Unit Fan Motor Fails to start or fails to start at low speed.
Cooling continues from the
remaining operating unit with
supplemental cooling from the spray system.
- 2. Cooling Coils Rupture The coils are designed for
hydrostatic testing at 200 psig
which is in excess of the design
service water pressure. However, if rupture occurs, cooling continues
as noted under item 1 above.
- 3. Plenum and Ductwork Rupture The plenums and connected ductwork are designed to
withstand the post accident pressure transient and the systems
are sufficiently separated so that
the effects of a pipe break or missile are confined to a single unit. Thus, rupture of a portion of the system or a single component does not prevent continued cooling
as noted under item 1 above.
- 4. Cooling Water Piping Rupture The piping for two of the units is physically separated from that of
the remaining two units and is
designed as Seismic Category I.
Thus, rupture of a portion of the
system does not affect all units
and does not prevent cooling as
noted under item 1 above. 00-01 00-01 00-01 6.2-227 Reformatted Per Amendment 02-01 TABLE 6.2-52 (Continued)
SINGLE FAILURE ANALYSIS - REACTOR BUILDING HEAT REMOVAL AND FILTERING SYSTEM Component Malfunction Comments 5. Water Control Valves Fail to operate. The valves are used for switching from the normal cooling water supply to the service water supply
during a post accident period. The
valves are redundant and are periodically tested. Failure of a single valve does not prevent
cooling as noted under item 1
above.
- 6. HEPA Filter Bypass Duct Fails to operate. Failure of the dampers in the normal position results in loss of filtering ability but not in loss of
cooling for the affected units.
6.2-228 Reformatted Per Amendment 02-01 TABLE 6.2-52a MAJOR HEAT GENERATING COMPONENTS INSIDE THE REACTOR BUILDING Component Steam Generators
Pressurizer Reactor Coolant Pumps and Motors
Reactor Vessel
Control Rod Drive Mechanisms
Pressurizer Relief Tank
Reactor Coolant Drain Tank Pumps Regenerative Heat Exchanger
Excess Letdown Heat Exchangers
Ventilation Equipment Fan Motors Piping
Equipment and Piping Supports and Restraints
6.2-229 Reformatted Per Amendment 02-01 TABLE 6.2-52b MAXIMUM EXPECTED LEAKAGE TO THE AUXILIARY BUILDING FROM THE REACTOR BUILDING SPRAY SYSTEM Leakage Source Leakage (cc/hr)
Reactor Building Spray Pump Seals 300 Flanges 120 Process Valves
12 Instrumentation Valves
18 Valve Seats as Boundaries
420 Total 870
RN 03-019 6.2-230 Reformatted Per Amendment 02-01 TABLE 6.2-52c REFUELING WATER STORAGE TANK DRAWDOWN ANALYSIS BRANCH DATA No. From Junction To Junction Pipe ID (Inch) Straight Pipe (Feet) 90 Elbow 45 Elbow Gate Valve Check Valve Tee Run Tee Branch Reducers Total EquivalentDiameters (L/D) Total EquivalentDiameters(Feet) ElevationChange Feet 1 3 4 19.25 37.10 2 1 1 1 1 99.30 196.39 -13.80 2 4 5 11.94 75.60 2 1 1 1 94.30 169.43 5.00 3 5 6 11.94 43.20 2 2 1 1 2 1 210.60 252.75 -7.00 4 6 7 11.94 32.10 2 1 1 1 97.30 128.91 -21.70 5 7 8 10.02 4.70 1 1 18.70 20.31 -1.90 6 5 9 11.94 56.70 3 1 1 1 2 1 275.30 330.62 -7.00 7 9 10 11.94 38.40 4 2 1 1 91.60 129.54 -21.70 8 10 11 10.02 4.70 1 1 19.00 20.56 -1.90 9 4 12 19.25 3.00 2 20.00 35.08 0.00 10 12 13 13.12 78.20 2 1 2 1 114.30 203.17 5.00 11 13 14 13.12 93.10 6 3 1 1 2 1 340.90 465.82 -27.80 12 13 15 13.12 60.90 5 1 1 1 1 283.00 370.31 -27.80 13 12 16 19.25 3.00 1 10.00 19.04 0.00 14 16 17 7.98 10.90 1 1 1 1 185.10 133.99 0.00 15 17 18 7.98 2.60 1 1 1 73.00 51.14 0.00 16 18 19 7.98 37.90 2 1 1 2 144.30 133.86 -5.50 17 18 24 7.98 11.90 1 2 1 1 99.00 77.73 0.00 18 19 20 6.07 24.50 3 1 1 63.70 56.72 -4.60 19 17 21 7.98 3.60 1 2 33.00 25.54 0.00 20 21 22 7.98 48.00 4 1 2 90.30 108.05 -5.50 21 22 23 6.07 23.40 3 1 1 63.70 55.62 -4.60 22 21 24 7.98 11.20 2 1 1 86.00 68.39 0.00 23 24 25 7.98 23.50 4 1 1 70.30 70.25 -5.50 24 25 26 6.07 16.20 2 1 1 1 59.00 46.04 -4.60 25 31 32 3.07 56.90 3 1 1 2 1 2 145.10 94.02 -7.00 26 32 9 3.07 57.60 8 2 1 1 2 1 368.60 151.90 -7.00 27 32 6 3.07 32.00 3 1 1 1 1 1 247.00 95.19 -7.00 02-01 02-01 0 2-0 1 02-01 02-01 6.2-231 Reformatted Per Amendment 02-01 TABLE 6.2-52d PUMP HEAD DATA Reactor Building Spray Pumps A and B Flow (gpm) 0.0 1500.0 2000.0 2500.0 3000.0 3500.0 4000.0 Head (feet) 506.0 482.0 471.0 450.0 430.0 400.0 369.0 Charging Pump A Flow (gpm) 0.0 200.0 300.0 400.0 500.0 600.0 700.0 Head (feet) 6100.0 6000.0 5780.0 5300.0 4690.0 3820.0 2900.0 Charging Pump B
Flow (gpm) 0.0 200.0 300.0 400.0 500.0 600.0 700.0 Head (feet) 6075.0 5975.0 5740.0 5260.0 4600.0 3750.0 2900.0 Charging Pump C
Flow (gpm) 0.0 200.0 300.0 400.0 500.0 600.0 700.0 Head (feet)
6020.0 5980.0 5700.0 5150.0 4470.0 3650.0 2700.0 Residual Heat Removal Pump A
Flow (gpm) 0.0 1000.0 2000.0 3000.0 3500.0 4000.0 5000.0 Head (feet) 347.0 325.0 310.0 280.0 261.0 240.0 193.0 Residual Heat Removal Pump B Flow (gpm) 0.0 1000.0 2000.0 3000.0 3500.0 4000.0 5000.0 Head (feet) 350.0 325.0 310.0 279.0 260.0 238.0 195.0
6.2-232 Reformatted Per Amendment 02-01 TABLE 6.2-52e TANK PARAMETERS Tank ID
- Outlet Elevation Minimum Fill Level Elevation Maximum Fill Level Elevation Refueling Water Storage Tank
40' 415.25' 464' - 3" 466' - 5" Sodium Hydroxide
Storage Tank 45" 413.50' 450' - 7 1/16" 451' - 8 1/8"
- Center Line
99-01 02-01 6.2-233 Reformatted Per Amendment 02-01 TABLE 6.2-52f SPECIFIC VOLUME AND VISCOSITY CURVES NaOH (20 w/o)
NaOH (22 w/o)
-1 -1 Temp. ( F) (ft 3/lb) (lbm/ft-sec) (ft 3/lb) (lbm/ft-sec) 40 1.306 x 10
-2 6.100 x 10
-3 1.282 x 10
-2 7.150 x 10
-3 50 1.309 x 10
-2 4.650 x 10
-3 1.285 x 10
-2 5.650 x 10
-3 60 1.312 x 10
-2 3.600 x 10
-3 1.288 x 10
-2 4.490 x 10
-3 70 1.315 x 10
-2 2.840 x 10
-3 1.292 x 10
-2 3.600 x 10
-3 80 1.318 x 10
-2 2.280 x 10
-3 1.295 x 10
-2 2.900 x 10
-3 90 1.322 x 10
-2 1.900 x 10
-3 1.299 x 10
-2 2.390 x 10
-3 100 1.326 x 10
-2 1.630 x 10
-3 1.302 x 10
-2 1.990 x 10
-3 6.2-234 Reformatted Per Amendment 02-01 TABLE 6.2-52g REACTOR BUILDING SPRAY AND ECCS STORAGE TANKS DRAWDOWN TRANSIENT ANALYSIS ANALYTICAL RESULTS TO MINIMUM SODIUM HYDROXIDE INITIAL CONDITIONS TEMP ( F) CONCENTRATION(w/o) INITIAL LEVEL (feet) TIME (min) FINAL LEVEL (feet) VOLUME DRAWNFROM TANK (gallons)
MASS OF CHEMICAL (lbs) MASS OF WATER (lbs) Reactor Building Spray System
Design Case 67.49 Refueling Water Storage Tank 70 1.429 51.15 1.55 466,220 55,490 3,838,770 Sodium Hydroxide Storage Tank
70 20 37.00 3.47 2,770 5,630 22,540 Normal Case 39.06 Refueling Water Storage Tank 70 1.429 51.15 1.55 466,220 55,490 3,838,770 Sodium Hydroxide Storage Tank
70 20 37.00 0.38 3,020 6,140 24,570 Normal Case With One RBSS Pump Inoperable 49.25 Refueling Water Storage Tank 70 1.429 51.15 1.55 466,220 55,490 3,838,770 Sodium Hydroxide Storage Tank 70 20 37.00 9.63 2,260 4,600 18,380 Normal Case With One RHR Pump Inoperable 43.55 Refueling Water Storage Tank 70 1.429 51.15 6.73 417,530 49,700 3,437,860 Sodium Hydroxide Storage Tank 70 20 37.00 0.00 3,060 6,220 24,900 48.660 Refueling Water Storage Tank 1.55 466,220 55,490 3,838,770 Sodium Hydroxide Storage Tank 0.00 3,060 6,220 24,900 0 2-0 1
TABLE 6.2-55 ELECTRIC HYDROGEN RECOMBINER TYPICAL PARAMETERS Power (Maximum), kW 75 Capacity (Minimum), scfm
100 Heaters Number 5 Heater Surface Area/Heater, ft 2 35 Maximum Heat Flux, BTU/hr-ft 2 2850 Maximum Sheath Temperature, F 1550 Gas Temperature Inlet, F 80 to 155 In Heater Section, F 1150 to 1400 Materials
Outer Structure 300-Series Stainless Steel Inner Structure Inconel-600 Heater Element Sheath Incoloy-800 6.2-271 Reformatted Per Amendment 02-01 TABLE 6.2-60 PASSIVE HEAT SINK DATA FOR MINIMUM POST LOCA CONTAINMENT PRESSURE STRUCTURAL HEAT SINKS
Thickness (in)
Area (ft 2) 0.25 Carbon Steel, 48.0 Concrete 57,397 0.264 Carbon Steel, 36.0 Concrete 20,241 24.0 Concrete, 0.125 Carbon Steel 11,694 18.0 Concrete 315 21.96 Concrete 43,537 12.0 Concrete 10,811 48.0 Concrete 19,020 0.06 Stainless Steel 91,038 0.06 Carbon Steel 1,187,924 1.512 Stainless Steel 454 1.128 Stainless Steel 606 0.6 Stainless Steel 924 0.336 Stainless Steel 2,194 6.672 Carbon Steel 3,300 3.504 Carbon Steel 130 1.9 Carbon Steel 4,647 0.87 Carbon Steel 8,787 0.672 Carbon Steel 26,393 0.504 Carbon Steel 5,873 0.324 Carbon Steel 7,793 THERMOPHYSICAL PROPERTIES
Volumetric Heat Capacity BTU/ft 3- F Thermal Conductivity BTU/hr-ft- F Concrete 22.5 1.0 Carbon Steel 55.4 36.0 Stainless Steel 55.1 9.1 RN 06-040 0 2-0 1 6.2-272 Reformatted Per RN 06-040 REACTOR BUILDING PRESSUREDEPS WITH MINIMUM SAFETY INJECTIONTIME (SECONDS) 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7REACTOR BUILDING PRESSURE (PSIG) 0 5 10 15 20 25 30 35 40 45 50 RN 03-003 June 2003 SOUTH CAROLINA ELECTRIC & GAS CO VIRGIL C. SUMMER NUCLEAR STATION Double Ended Pump Suction Break Minimum Safety Injection Reactor Building Pressure vs. Time Figure 6.2-1 RN 03-003 REACTOR BUILDING PRESSUREDEPS WITH MAXIMUM SAFETY INJECTIONTIME (SECONDS) 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7REACTOR BUILDING PRESSURE (PSIG) 0 5 10 15 20 25 30 35 40 45 50 RN 03-003 June 2003 SOUTH CAROLINA ELECTRIC & GAS CO VIRGIL C. SUMMER NUCLEAR STATION Double Ended Pump Suction Break Maximum Safety Injection Reactor Building Pressure vs. Time Figure 6.2-2 RN 03-003 REACTOR BUILDING PRESSUREDOUBLE ENDED HOT LEG BREAKTIME (SECONDS) 10-1 10 0 10 1 10 2REACTOR BUILDING PRESSURE (PSIG) 0 5 10 15 20 25 30 35 40 45 50 RN 03-003 June 2003 SOUTH CAROLINA ELECTRIC & GAS CO VIRGIL C. SUMMER NUCLEAR STATION Double Ended Hot Leg Break Reactor Building Pressure vs. Time Figure 6.2-3 RN 03-003
Amendment 96-02 July 1996
FIGURE 6.2-5 Delete d By Amendment 96-02
RN 03-003 REACTOR BUILDING VAPOR AND SUMP TEMPERATUREDEPS WITH MINIMUM SAFETY INJECTIONTIME (SECONDS) 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7REACTOR BUILDING TEMPERATURE (o F)100125150175200225250275300VAPOR REGIONSUMP RN 03-003 June 2003 SOUTH CAROLINA ELECTRIC & GAS CO VIRGIL C. SUMMER NUCLEAR STATION Double Ended Pump Suction Break Minimum Safety Injection Reactor Building Vapor and Sump Temperature vs. Time Figure 6.2-7
TOTAL ENERGY REMOVED BY HEAT SINKSDEPS WITH MINIMUM SAFETY INJECTIONTIME (SECONDS) 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7TOTAL ENERGY REMOVED (BTU) 0 100 200 300 400 500 600 700 800 RN 03-003 RN 03-003 June 2003 SOUTH CAROLINA ELECTRIC & GAS CO VIRGIL C. SUMMER NUCLEAR STATION Double Ended Pump Suction Break Minimum Safety Injection Total Energy Removed by Heat Sinks Figure 6.2-9
CONDENSING FILM HEAT TRANSFER COEFFICIENTDEPS WITH MINIMUM SAFETY INJECTION TIME (SECONDS) 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7HEAT TRANSFER COEFFICIENT (BTU/HR-FT 2-o F)0 50 100 150 200 250 RN 03-003 RN 03-003 June 2003 SOUTH CAROLINA ELECTRIC & GAS CO VIRGIL C. SUMMER NUCLEAR STATION Double Ended Pump Suction Break Minimum Safety Injection Film Heat Transfer Coefficient Figure 6.2-11
REACTOR BUILDING COOLING UNIT HEAT REMOVAL RATEDEPS WITH MINIMUM SAFETY INJECTION TIME (SECONDS) 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7HEAT REMOVAL RATE (10 6 BTU/HR)0 20 40 60 80 100 RN 03-003 RN 03-003 June 2003 SOUTH CAROLINA ELECTRIC & GAS CO VIRGIL C. SUMMER NUCLEAR STATION Double Ended Pump Suction Break Minimum Safety Injection Reactor Building Cooling Unit Heat Removal Rate vs. Time Figure 6.2-13
RESIDUAL HEAT REMOVAL SYSTEM HEAT DUTYDEPS WITH MINIMUM SAFETY INJECTION TIME (SECONDS) 10-1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7HEAT REMOVAL RATE (10 6 BTU/HR)0 20 40 60 80 100 RN 03-003 RN 03-003 June 2003 SOUTH CAROLINA ELECTRIC & GAS CO VIRGIL C. SUMMER NUCLEAR STATION Double Ended Pump Suction Break Minimum Safety Injection Residual Heat Removal System Heat Duty vs. Time Figure 6.2-14
REACTOR BUILDING COOLING UNITPERFORMANCE CURVE INLET AIR TEMPERATURE (o F)100125150175200225250275300HEAT REMOVAL RATE (10 6 BTU/HOUR) 0 25 50 75 100 125 1500.0014 FOULING FACTORDESIGN60% DESIGN RN 03-003 RN 03-003 June 2003 SOUTH CAROLINA ELECTRIC & GAS CO VIRGIL C. SUMMER NUCLEAR STATION Reactor Building Cooling Unit Design Heat Removal Performance Figure 6.2-15
B c D F G H J K 17 2.70'* " 16 15 14 13 1!4 " c::c:r:r:l::T-, i I I I Z' 15' 20 12 11 10 0°
_______ :c===-=---i----. / : 1---=------,--------1 J St'RAY 1'f\MQ, -'-tL595'-0'\
8 ',' . , .. , . '.. .", , ' 'l --II,I..-m l y-L _____ I * --/Hi---IlJ.
I-i ! Sf'HAY RI"lG
_S'PP'f>..Y t.i-\.. S'B<:l'*G::." SPRAY R\\-.lG -4,.ELS1B'-\O" -,
7 6 5 o 90'" , I i t_______ j 4
- A. IB 3 2 -
l E.G E-ND INo\cnt5 NO!ZlE. AS '?E? btTA\\.¥A OW::=',
INb\C,l,lt5 SPil.,t..'{
NOIl.Lt.
OWG. t'304-(QIio-4 NOHCe: AS Pe1\
NOTES t. fOft PIPE tlATERI"l sp,nW/i 011 TillS IHER iG PlPHHl: srfClflc.mOIt sp--tn .. H81-0D FOR tiO'N-*fjUtL[AJl SAnU tLASS, l1JjE SPEC 3U2X. SP,"54b-O-WS1-CQO fOE A,liS SAfETY CUSS, UHE SPH: 3\11 2, HI Sf I-JS SHlTY CL'uSlfICATIOIrl1.A UNlESS NonD. 3. 1m HWflllNCE lUll Glf'S fGR ¥fLU EIflJ UETAlL SEE !lIt
., 1L1. ATnCIH!Um .noro TO HWY f IPI illHt BE SAME II.HfAHl PHE.. 6. All. CONNECTIONS YD HI af fABRICATED 6" LONGER SHO'H fOR l\IUIl.IJI:a.
- s. '!!ELOINt 1I1llllE pn,I/,J1jEli IN wn H'Cll0"S DF TH[ PIPI}!G REFEaENC1S:-
nt, MC. TITlE IIUCT\]f, BUILO]}!G SPRAY S)'5]EII -" DnAllS f_30H6S SllmlNG SPRAY nSTEJ/, -SHTIOHS t DETAltS lIaCToR aUllOINS SPRAY S!STtli _Jut THiS IS " HUC'_EAP S/,FETY F:(ElAlED DOCL'MH;-NO DEVIAl C,N Sj-I\LL ,BE -;-IATC, PERFOR.,,:t:D WI7\-tJIJT DOCUMEWAT!ON AU 'RITTD'.
ArrROVJ(.
FSAR Figure 6.2-47 V1RGll {. SUflKER NUCLU)!'l A B c D E F G H J K
Figure 6.2-61 Deleted per RN 01-073 02-01 RN 06-040 Figure 6.2-62 Through 6.2-64 Deleted per RN 06-040
NOTES TO FIGURE 6.3-2 (Sheet 1 of 4)
- 1. Westinghouse process flow diagrams are provided for illustrative purposes only and are not intended to represent the flow rates used by Westinghouse in various accident analyses. Flow rates to the RCS are provided in Chapter 15, where appropriate. The process flow diagrams are developed to prov ide representative best estimate system performance data based on minimum safeguards systems
alignment. The flow rates in the FSAR accident analyses are developed based on pump test curves degraded by 5 - 7 percent (see Section 6.3.3.1) and worst case assumptions pertaining to spilling line system resistances (e.g., maximum
allowable resistances in lines connect ed to unbroken loops and minimum allowable resistances in the line connected to the broken loop) an d RCS pressures. 00-01 00-01 RN 03-006
- 2. The minimum safeguards alignments are for Train A components only. Minimum alignments assume a loss of power to Tr ain B at the beginning of the event.
- 3. Charging pump suction and discharge valves are listed as Closed during the recirculation mode. In ac tuality, two suction and two dis charge header valves will be open, depending on which charging pumps are in operation to establish two
separate high head recirculation discharge flowpaths. (Reference Table 6.3-3)
- 4. RHR minimum recirculation valves are controlled automatically. During periods of low RHR injection flow rates, these valv es open to maintain pump minimum flow requirements. (Reference Section 6.3.2.2.4.1)
- 5. In order to minimize procedure comp lexity, the preferred lineup for hot leg recirculation is to align the Charging SI pumps to the RCS cold legs and the RHR SI pumps to the hot legs. Adequate core cooling is ens ured with either the preferred lineup or by aligni ng Charging SI pumps to the hot legs and the RHR SI pumps to the cold legs.
Reformatted Per Amendment 00-01 NOTES TO FIGURE 6.3-2 (Sheet 2 of 4)
VALVE ALIGNMENT FOR PRINCIPLE MODES OF ECCS OPERATION
Valve No. A
Normal Standby B
Injection Maximum Safeguards C Injection Minimum Safeguards (Train A Only -See Note 2)
D Cold L eg Recirculation Maximum Safegua rd s E Cold Leg Recirculation Minimum Safegua rd s (Train A Only -See Note 2)
F Hot Leg Recirculation Maximum Safeguard s (See Note 5)
G Hot Leg Recirculation Minimum Safeguard s (Train A Only -
See Note 2 and Note 5) 1A O O O C C C C 1B O O O C O C O 2A O O O O O O O 2B O O O O O O O 3A C C C C C C C 3B C C C C C C C 4A (Note 4) O C C C C C C 4B (Note 4) O C O C O C O 5A C C C O O O O 5B C C C O C O C 6A O O O C C C C 6B O O O C O C C 7A O O O O O O C 7B O O O O O O O 8 C C C C C C C 9A C C C O O O O 9B C C C O C O C 00-01 RN 03-006 RN 03-006 Reformatted Per Amendment 00-01 NOTES TO FIGURE 6.3-2 (Sheet 3 of 4)
VALVE ALIGNMENT FOR PRINCIPLE MODES OF ECCS OPERATION
Valve No. A
Normal Standby B
Injection Maximum Safeguards C Injection Minimum Safeguards (Train A Only -See Note 2)
D Cold L eg Recirculation Maximum Safegua rd s E Cold Leg Recirculation Minimum Safegua rd s (Train A Only -See Note 2)
F Hot Leg Recirculation Maximum Safeguard s (See Note 5)
G Hot Leg Recirculation Minimum Safeguard s (Train A Only -
See Note 2 and Note 5) 10A C C C O O O O 10B C C C O C O C 11A C C C C C C C 11B C C C C C C C 12A C C C C C C C 12B C C C C C C C 13A C O O C C C C 13B C O C C C C C 14A O C O C O C O 14B O C C C C C C 15A (Note 3) O O O C C C C 15B (Note 3)
O O O C O C O 16A (Note 3) O O O C C C C 16B (Note 3)
O O O C O C O 17A (Note 3) O O O C C C C 17B (Note 3)
O O O C O C O RN 03-006 00-01 Reformatted Per Amendment 00-01 NOTES TO FIGURE 6.3-2 (Sheet 4 of 4)
VALVE ALIGNMENT FOR PRINCIPLE MODES OF ECCS OPERATION
Valve No. A
Normal Standby B
Injection Maximum Safeguards C Injection Minimum Safeguards (Train A Only -See Note 2)
D Cold L eg Recirculation Maximum Safegua rd s E Cold Leg Recirculation Minimum Safegua rd s (Train A Only -See Note 2)
F Hot Leg Recirculation Maximum Safeguard s (See Note 5)
G Hot Leg Recirculation Minimum Safeguard s (Train A Only -
See Note 2 and Note 5) 18A (Note 3) O O O C C C C 18B (Note 3)
O O O C O C O 19A O O O C O C O 19B O O O C O C O 19C O O O C O C O 20 O O O C C C C 21A O C C C C C C 21B O C O C O C O 23A C O O O O C C 23B C O C O C C C 24 C C C C C O C 25 C C C C C O O 26 C C C O C C C 29A O O O O O O O 29B O O O O O O O 29C O O O O O O O RN 03-006 Amend 3 Amend 3 Reformatted Per Amendment 00-01
AMENDMENT 02-01
MAY 2002 SOUTH CAROLINA ELECTRIC AND GAS CO. VIRGIL C. SUMMER NUCLEAR STATION Performance Curve For Centrifugal Charging Pump C Figure 6.3-4c
6.5 FISSION
PRODUCT REMOVAL AND CONTROL SYSTEMS
6.5.1 ENGINEERED
SAFETY FEATURE FILTER SYSTEMS The engineered safety features (ESF) filter systems include:
- 1. The high efficiency particulate air (HEPA) filters in the Reactor Building Cooling System.
- 2. The control room em ergency filter plenums.
- 3. The Fuel Handling Building charcoal exhaust system.
6.5.1.1 Design Bases The ESF filter systems are designed and sized to perform the following functions. Non ESF filter systems are di scussed in Section 9.4.
- 1. Satisfy the radiation control requirements of 10 CFR 20.
- 2. Satisfy requirements of General Design Criteria 19, 41, 42 and 43.
- 3. Remove particulate fission products from the post accident Reactor Building atmosphere (Reactor Building Cooling System only).
- 4. Remove gaseous and particulate fission pr oducts from the spent fuel pool surface and from general areas of the Fuel Handling Building.
6.5.1.2 System Design Descriptive information concerning the ESF filt er systems is presented in the following sections:
- 1. Reactor Building cooli ng system HEPA filters:
- a. Design bases - Secti ons 6.5.1.1 through 6.5.1.3
- b. General descripti on - Section 6.2.2.2.2
- c. System design featur es - Section 6.2.2.2.2.1 6.5-1 Reformatted Per Amendment 00-01
- 2. Control room emer gency filter plenums:
- a. Design bases - Section 9.4.1.1
- b. General descripti on - Section 9.4.1.2
- c. System design featur es - Section 9.4.1.2.1
- 3. Fuel Handling Building charcoal exhaust system.
- a. Design bases - Section 9.4.3.1
- b. General descripti on - Section 9.4.3.2
- c. System design featur es - Section 9.4.3.2.1
Table 6.5-1 provides a comparison of the emergency filt er systems with the requirements of Regulatory Guide 1.52. General compliance with Regulatory Guide 1.52 is discussed in Appendix 3A.
6.5.1.3 Design Evaluation The general arrangement and control of the ESF filter systems are described in Sections 6.2.2, 9.4.1, and 9.4.3. System com ponents are separated, redundant, powered by Class 1E electric systems, and are housed in Seismic Category 1 structures. The control room system is not subject to jet impingement, pipe whip or flooding. The HEPA filter systems in the Reactor Building are physically separated so that no more than 1 unit is subject to thes e occurrences. The Fuel Handling Building charcoal exhaust system plenums are housed in shielded and separated cubicles. The exhaust fans of this system are adjacent to each other. Neither the exhaust fans nor the filter plenums are subject to jet impingement, pipe whip or flooding. The ESF filter systems can sustain a single component fail ure without impairing their full functional capability. Additionally, provision is made for suit able maintenance and change-out space and adequate instrumentat ion and lighting, all of which reduce personnel exposure by reducing time exposure.
The control room emergency filter system is required in the event of radioactive leakage from the outside into the Cont rol Building following a LOCA. Post LOCA operation of the control room filter systems is ensured by automatic actuation as a result of a safety injection signal or high radiation in the c ontrol room signal from the radiation monitor (RM-A1).
6.5-2 Reformatted Per Amendment 00-01 The Reactor Building cooling system and contro l room emergency filter trains provide a minimum of 99.97 percent removal efficienc y for particulates. The control room emergency filters also provide a minimum of 95 percent removal efficiency for methyl iodine at 85 percent relative humidity and 70 F (see Reference [1]).
6.5.1.4 Tests and Inspections 99-01 Details of the tests and inspections for t he ESF filter systems are provided in the following sections:
6.2.2.4.2 - Reactor Building Cooling System HEPA Filters
9.4.1.4 - Control Ro om Emergency Filters
9.4.3.4 - Fuel Handling Building Charcoal Exhaust System
Laboratory tests, inplace tests, and test acce ptance criteria are in accordance with the requirements of Regulatory Gu ide 1.52 (see Table 6.5-1).
6.5.1.5 Instrument ation Requirements Each of the ESF filter systems include instrumentati on for system performance and status monitoring during normal plant oper ation, system tests, and system operation following a design basis accident. The instru mentation and control features of the ESF filter systems are described in Se ctions 6.5.1.5.
1 and 6.5.1.5.2.
6.5.1.5.1 Reactor Building Cooling System HEPA Filter Instrumentation Activation of this filtering system is initiated automatically by a safety injection signal (from the ESF actuation system) or by manual action at the main control board. A separate automatic initiation si gnal is supplied to each redundant train. Under accident conditions, the filter bypass dampers of bot h trains (4 units) receive a signal to automatically close, 1 preselected cooling unit in each train is automatically started in low speed.
Main control board switches are provided for each fan motor (high and low) and for the filter bypass damper of each r eactor building cooling unit.
Instrumentation used for monitoring the performance of this filter system including bypass damper position indication, is described in Section 6.2.2.5.2.
6.5-3 Reformatted Per Amendment 00-01 6.5.1.5.2 Control Ro om Emergency Filter Instrumentation Activation of the control room emergency filter system is initiated automatically by a safety injection signal, a high control room radiation signal (RM-A1), (see Section
12.2.4) or by manual action at the HVAC control board in the c ontrol room. Other elements of the control room ventilation syst em are operated in conjunction with this emergency filter system to carry out the air cleaning function.
In particular, the relief dampers and outside air supply dampers of t he control room ventilation system are automatically tripped closed by the signals lis ted above. HVAC control board switches are provided for each emergen cy filtering fan. The f an inlet and discharge dampers operate in conjunction with their respective fans.
The overall operation of the control room ventilation system is described in Section 9.4.1. Instrumentation used for monitoring the performance of this filter system, including fan and damper status indication, is described in Section 9.4.1.2.1.
6.5.1.5.3 Fuel Handling Building Charcoal Exhaust System Instrumentation The Fuel Handling Building charcoal exhaust system components (2 f ilter plenums, one exhaust fan) are in continuous operation during normal, shutdown and refueling periods. The ESF function of the fuel building charcoal exhaust system is only required during the movement of fuel in the spent fuel pool or during cra ne operation with loads over the pool. Instrumentation used for monitoring system performance, including fan and damper status indication, is described in Section 9.4.3.2.1.
98-01 6.5.1.6 Materials Filter materials employed in the ESF filter systems are discussed in Section 6.5.1.6.1 and 6.5.1.6.2. 6.5.1.6.1 Reactor Building Cooling System HEPA Filter Materials Each of four Reactor Building cooling system filter plenums incl udes 120 HEPA cells.
Cells are nominally 24 inches square by 12 inches deep. Cells include media of high strength, waterproof glass fiber without separ ators, high temperature silicon adhesive, metal cell sides and silicon rubber closed cell sponge gasketing. RN 08-009 6.5-4 Reformatted Per Amendment 00-01 6.5.1.6.2 Control Ro om Emergency Filter and Fuel Handling Building Charcoal Exhaust System Filter Materials Both of the control room emergency filter plenums contain 1 prefilter bank, each with 15 prefilter cells. Each of the 3 Fuel Handling Building charcoal exhaust system filter plenums contains 1 prefilter bank, each with 12 prefilter cells. The prefilters satisfy the requirements of an d are marked for Unde rwriters Standard UL-900 [2], Class I; and therefore, the radiolytic or pyrolytic decomposition products will not interfere with safe ESF operation.
00-01 Both of the control room emergency filter plenum s contain 2 ba nks of HEPA filters with 15 HEPA filters per bank. Ea ch of the Fuel Hand ling Building charcoal exhaust system filter plenums includes 2 banks of HEPA filters with 12 HEPA filters per bank. Each filter is 24 inches square by 12 inches deep and includes glass media. The HEPA filters satisfy the requirements of MIL-C-51068C, MIL-F-51079 and are qualified to Underwriters St andard UL-586
[3]; and therefore, the radiolytic or pyrolytic deco mposition products w ill not interfere with safe ESF operation.
The 2 control room emergency filter plenums and the 3 Fuel Handling Building charcoal exhaust system filter plenums are of the vertical bed design. The control room plenums contain 11 sections and th e Fuel Handling Building charcoal exhaust system plenums contain 8 sections. Media is impregnated, activated coconut shell charcoal which meets the requirements of Regulatory Guide 1.52, Revision 2.
6.
5.2 REFERENCES
- 1. American Air Filter Report, TR-7102 Impr egnated Activated Carbon for Removal of Radioiodine Compounds from Reactor Containment Atmospheres.
- 2. "Air Filter Units," Underwr iters Laboratorie s, UL-900.
- 3. "High Efficiency, Particulate, Air Filter Units," Underwriters Laboratories, UL-586.
6.5-5 Reformatted Per Amendment 00-01 6.5-6 Reformatted Per Amendment 00-01 TABLE 6.5-1 Sheet 1 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 1. Reactor Building Cooli ng System HEPA Filters Regulatory Guide 1.52 Item 1-a The system complies with this requirement.
1-b, c The filters comply wit h the integrated radiation dose criteria as required by items 1-b, c.
1-d The system complies with this requirement.
1-e Not applicable.
2-a Filter plenums include only demisters and HEPA filters.
Systems are redundant. Char coal adsorbers are not
included since the reactor building spray system serves
this function.
2-b The system complies with this requirement.
2-c The system complies with this requirement.
2-d The system complies with this requirement.
2-e The system complies with this requirement.
2-f The capacity of each plenum is 120,000 cfm. The plenum is arranged as three filter modules, each four filters high and ten filters wide. Space limitations make use of multiple 30,000 cf m plenums for this system physically impractical.
2-g The system is instrumented to indicate differential pressure drop across demisters and HEPA filters by means of alarms in the control room and to indicate filter damper position. Since the filters are us ed only following a LOCA or during test, th e additional instrumentation specified would provide mini mum benefit and, therefore, was not added.
2-h See Chapters 7.0 and 8.0 for IEEE compliance.
6.5-7 Reformatted Per Amendment 00-01 TABLE 6.5-1 (Conti nued) Sheet 2 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 1. Reactor Building Cooling S ystem HEPA Filters (Continued) Regulatory Guide
1.52 Item 2-i The system complies with Regulatory Guide 8.8 through provision of service platforms and arrangement of HEPA
filters for "bagging" during the changing procedure. As noted for item 2-f, above, capacity of the unit made change as a single unit physically impractical. Also, high
radiation deposits are not expected to accumulate on
these filters from normal operation. Therefore, filter replacement as a single unit loses importance.
2-j Not applicable 2-k Duct and housing leakage is not of primary importance since this system is a recirculation type system housed
inside the reactor building 3-a The system complies with this requirement.
3-b Not applicable.
3-c The system complies with this requirement.
3-d The system complies with this requirement, except that filter tests were perform ed by the manufacturer.
3-e The system complies with this requirement.
3-f The system complies with this requirement.
3-g The system complies with this requirement.
3-h Not applicable since there is no fire spray system to this plenum. 3-i Not applicable since there ar e no adsorption filters in this system. 3-j Not applicable since there ar e no adsorption filters in this system. 3-k Not applicable since there ar e no adsorption filters in this system.
6.5-8 Reformatted Per Amendment 00-01 TABLE 6.5-1 (Conti nued) Sheet 3 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 1. Reactor Building Cooling S ystem HEPA Filters (Continued) Regulatory Guide
1.52 Item 3-l The system complies with this requirement.
3-m The system complies with this requirement.
3-n The system complies with this requirement.
3-o The system complies with this requirement.
4-a The system complies with this requirement.
4-b The system complies with this requirement.
4-c The capacity of this syst em makes this requirement physically impractical.
4-d External connections ha ve been provided for field insertion of test probes and manifolds.
4-e Operating procedures satisfy this request.
4-f System procedures comply with this request.
5-a Startup and test and operat ing procedures comply with this requirement except te sting will be per-formed every 18 months in lieu of once per operating cycle and after 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> of system operation.
The visual test will be performed before each in place air flow distribution test, or DOP test (Note 1).
5-b Filter plenum testing pr ocedures comply with this requirement.
5-c Operating procedures and filter plenum testing procedures comply with this requirement except testing
will be performed every 18 months in lieu of once per operating cycle and after 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> of system operation.
(Note 1).
5-d Not applicable since there ar e no adsorption filters in this system. 6-a Not applicable since there are no adsorption filters in this system. 6-b Not applicable since there are no adsorption filters in this system. 02-01 6.5-9 Reformatted Per Amendment 00-01 TABLE 6.5-1 (Conti nued) Sheet 4 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 2. Control Room Emergency Filter Regulatory Guide
1.52 Item 1-a The listed criteria, except r adiation dose rate, relative to this system are not affected by the DBA. The dose rate following DBA was considered in the filter design.
1-b The filters comply with the integrated radiation dose criteria as required by items 1-b, c.
1-d Not applicable.
1-3 Not applicable.
2-a Filter plenums include all sequential components listed, except demisters and heating/cooling coils. Demisters
are not included because there is no source of water
spray coincident with continuing filter operation.
Heating/cooling co ils are not included because relative humidity is not expected to exceed 50 percent. Systems
are redundant.
2-b The system complies with this requirement.
2-c The system complies with this requirement.
2-d Not applicable since filter plenums are not in an area where pressure surges could occur.
2-e The system complies with this requirement.
2-f The system complies with this requirement.
2-g The system complies with this requirement through provision of control room i ndication of isolation damper position, high temperature and smoke. Recorders are not considered pertinent since this system is operated
only for test or under accident conditions. Provisions
have been made for local indication of pressure drop
across filter sections.
2-h See Chapters 7.0 and 8.0 for IEEE compliance.
2-i The system complies with this requirement. 02-01 6.5-10 Reformatted Per Amendment 00-01 TABLE 6.5-1 (Conti nued) Sheet 5 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 2. Control Room Emerg ency Filter (Continued)
Regulatory Guide
1.52 Item 2-j Not applicable.
2-k Ducts were specified to satisfy leakage testing requirements of SMACNA, Chapter 8, 1967. Plenums were specified to indicate no leakage through soap bubble testing with ducts at 2 psig. Neither the plenum
nor the attached ducts are in any contaminated area
between the plenum equipment area and the control
room. 3-a Not applicable since this system will not be exposed to a water spray.
3-b No heaters are included in t he design. The filters process room return air and room relative humidity should not
exceed 50 percent. Therefore, heaters are not required.
3-c The system complies with this requirement.
3-d The system complies with this requirement.
3-e The system complies with this requirement.
3-f The system complies with this requirement.
3-g The system complies with this requirement.
3-h The system complies with this requirement.
3-i The system complies with this requirement.
New activated carbon meet s the physical property specifications given in Tabl e 5.1 of ANSI N509-1976. (Note 1) New and used activated carbon meet the
laboratory testing criteria of ASTM D3803-1989, at a relative humidity of 70%
and a temperature of 30 C (86 F) with a methyl iodide pe netration of less than 2.5%.
3-j The system complies with this requirement.
3-k The system complies with this requirement.
3-l The system complies with this requirement.
3-m The system complies with this requirement.
3-n The system complies with this requirement.
3-o The system complies with this requirement.
00-01 RN 02-034 6.5-11 Reformatted Per Amendment 00-01 TABLE 6.5-1 (Conti nued) Sheet 6 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 2. Control Room Emerg ency Filter (Continued)
Regulatory Guide
1.52 Item 4-a The system complies with this requirement.
4-b The system complies with this requirement.
4-c The system complies with this requirement.
4-d External connections ha ve been provided for field insertion of test probes and manifolds.
4-e Operating procedures satisfy this request.
4-f System procedures comply with this request.
5-a Startup and test and operat ing procedures comply with this requirement except testing will be performed every
18 months in lieu of once per generating cycle and after 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> of system operation.
The visual test will be performed before each in place air flow distribution test, DOP test or activated carbon adsorber section leak test. (Note 1) 5-b Filter plenum testing pr ocedures comply with this requirement.
5-c Operating procedures and filter plenum testing procedures comply with this requirement except testing will be performed every 18 months in lieu of once per operating cycle and after 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> of system operation.
(Note 1) 5-d Filter plenum testing pr ocedures comply with this requirement except adsorber testing will be done with
then DOP test is performed and following removal of an adsorber sample for laboratory testing if the integrity of the adsorber section is affected. (Note 1) 6-a The system analysis complies with this requirement.
New activated carbon meet s the physical property specifications given in Table 5.1 of ANSI N 509-1976 (Note 1) 02-01 02-01 02-01 02-01 6.5-12 Reformatted Per Amendment 00-01 TABLE 6.5-1 (Conti nued) Sheet 7 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 2. Control Room Emerg ency Filter (Continued)
Regulatory Guide
1.52 Item 6-b The system analysis complies with this requirement except laboratory tests will be performed every 18
months in lieu of once per operating cycle. New unused activated carbon meeting the physical requirements of
Table 5.1 of ANSI N 509-1976 will be used if (1) Testing
is in accordance with footnote c of Table 3 (except as noted above) results in a repres entative sample failing to pass the applicable test in Table 3 or (2) no
representative sample is avail able for testing. (Note 1)
New and used activated car bon meet the laboratory testing criteria of ASTM D3803-1989, at a relative humidity of 70% and a temperature of 30 C (86 F) with a methyl iodide penetration of less than 2.5%.
- 3. Fuel Handling Building Charcoal Exhaust System Regulatory Guide 1.52 Item 1-a The system complies with this requirement.
1-b, c The filter plenums comply with the integrated radiation dose criteria as requir ed by items 1-b, c.
1-d The system complies with this requirement.
1-e Not applicable.
2-a Filter plenums include all sequential components listed, except demisters and heating/cooling coils. Demisters
are not included because there is no source of water
spray coincident with conti nuing filter operation.
Heating/cooling coils are not provided because the relative humidity is not ex pected to exceed 70 percent.
Plenums and fans are redundant.
2-b The plenums are physically separated. The fans are adjacent to each other but are not in an area exposed to missiles.
RN 02-034 6.5-13 Reformatted Per Amendment 00-01 TABLE 6.5-1 (Conti nued) Sheet 8 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 3. Fuel Handling Building Charcoal Exhaust System (Continued)
Regulatory Guide
1.52 Item 2-c The system complies with this requirement.
2-d Not applicable since the filt er plenums are not in an area where pressure surges could occur.
2-e The system complies with this requirement.
2-f The system complies with this requirement.
2-g Temperature of the charcoal filter sections of the plenums is recorded in the control room and detection of high temperature actuates alarms in the control room.
Fan operation and isolation damper position are indicated in the control room. Filter bank pressure drop is indicated locally.
2-h See Chapters 7.0 and 8.0 for IEEE compliance.
2-i The system complies with this requirement.
2-j Not applicable.
2-k Ducts were specified to satisfy leakage testing requirements of SMACNA C hapter 8, 1967. Plenums were specified to indicate no leakage through soap bubble testing with ducts at 2 psig.
3-a Not applicable since this system will not be exposed to a water spray.
3-b No heaters are included in the design. The filters process room air and room relative humidity should not
exceed 70 percent. Therefore, a heater is not required.
3-c The system complies with this requirement.
3-d The system complies with this requirement.
3-e The system complies with this requirement.
3-f The system complies with this requirement.
3-g The system complies with this requirement.
3-h The system complies with this requirement.
6.5-14 Reformatted Per Amendment 00-01 TABLE 6.5-1 (Conti nued) Sheet 9 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 3. Fuel Handling Building Charcoal Exhaust System (Continued)
Regulatory Guide
1.52 Item 3-i The system complies with this requirement.
New activated carbon meet s the physical property specifications given in Tabl e 5.1 of ANSI N509-1976. (Note 1) New and used activated carbon meet the
laboratory testing criteria of ASTM D3803-1989, at a test media temperature of 30 C (86 F). 3-j The system complies with this requirement.
3-k The system complies with this requirement.
3-l The system complies with this requirement.
3-m The system complies with this requirement.
3-n The system complies with this requirement.
3-o The system complies with this requirement.
4-a The system complies with this requirement.
4-b The system complies with this requirement.
4-c The system complies with this requirement.
4-d External connections ha ve been provided for field insertion of test probes and manifolds.
4-e Operating procedures comply with this request.
4-f System procedures comply with this request.
5-a Startup and test and operat ing procedures comply with this requirement except testing will be performed every
18 months in lieu of once per operating cycle and after 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> of system operation.
The visual test will be performed before each in place air flow distribution test, DOP test or activated carbon adsorber leak test. (Note 1) 5-b Filter plenum testing pr ocedures comply with this requirement. RN 02-034 02-01 6.5-15 Reformatted Per Amendment 00-01 TABLE 6.5-1 (Continued)
Sheet 10 of 10 COMPARISON OF ENGINEERED SAFETY FEATURES FILTER SYSTEMS WITH REGULATORY GUIDE 1.52 (REVISION 1, 7/76) REQUIREMENTS
- 3. Fuel Handling Building Charcoal Exhaust System (Continued)
Regulatory Guide
1.52 Item 5-c Operating procedures and filter plenum testing procedures comply with this requirement except testing
will be performed every 18 months in lieu of once per operating cycle and after 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> of system operation.
(Note 1) 5-d Filter plenum testing pr ocedures comply with this requirement except adsorber testing will be done when the DOP test is performed and following removal of an
adsorber sample for laboratory testing if the integrity of the adsorber section is affected. (Note 1) 6-a The system analysis complies with this requirement.
New activated carbon meet s the physical property specifications given in T able 5-1 of ANSI N 509-1976.
(Note 1) 6-b The system complies with this requirement except laboratory tests will be performed every 18 months in lieu of once per operating cycle (Note 1) and every 720 hours0.00833 days <br />0.2 hours <br />0.00119 weeks <br />2.7396e-4 months <br /> (since units run continuously) during the period of time there is fuel or crane movem ent with loads over the pool. New unused activated carbon meets the physical requirements of Table 5.1 of ANSI N 509-1976 will be
used if (1) testing is in accordance with footnote C of Table 3 (except as noted above) results in a representative sample failing to pass the applicable test
in Table 3 or (2) no representative sample is available for testing. (Note 1) New and used activated carbon meet
the laboratory testing criteria of ASTM D3803-1989, at a media temperature of 30 C (86 F). 02-01 RN 02-034 RN 02-034
Note 1 Exceptions and clarifications are consistent with revisions made to these sections in Revision 2 of Regulatory Guide 1.52.