RS-14-042, Attachment 7 - UHS Calculation LSCS Design Analysis L-002457, Revision 8, Part 2 of 2

From kanterella
Revision as of 18:55, 12 October 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Attachment 7 - UHS Calculation LSCS Design Analysis L-002457, Revision 8, Part 2 of 2
ML14066A234
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 02/20/2014
From:
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML14066A250 List:
References
CC-AA-309-1001, Rev. 8, RS-14-042
Download: ML14066A234 (420)


Text

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H188 of H344 1% 5%LAKE TEMP NATURAL (F) 100.5 97.0 LAKE TEMP @ INLET (F) 132.0 110.0 LAKE TEMP @ OUTLET (F) 103.0 97.2 50%88.4 98.5 89.2 Program : LAKET Page : 1 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H189 of H344 Number 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Date 04/07/2006 Time : 13:54:23.56 Case 32 1 2 3 4 5 7 8 999 FPLANT TPRISE 3548 28.95 16.79 16.39 1542 15.06 14.61 14.36 13.95 13.52 13.36 13.36 13.36 13.30 12.79 12.79 12.50 12.50 12.30 12.09 12.09 12.09 12.09 12.08 11.56 11.56 11.56 11.56 11.56 D: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104.OF, 1.5')070100 1 0 1 6 080500 1 20.1 0 3 2 0.2 5500. 0 2 690 690 689 688 687 686 685 1 102.R/I S/I 81.35 34 79.75 26 78.15 18 29.70 10 22 .22 60 13.42 43 0 3 86 98.36 1.4 0.8 1.9 2.2.0.8 73.21 71.78 70.34 26.73 20.00 12.08 18 19 307.2 234.7 163.7 92.0 54.0 39.4 20 86.0 IPROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H190 of H344 11.56 11.56 11.56 11.16 11.15 11.15 11.15 11.15 10.95 10. 94 10.94 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.36 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 9.81 9.79 9.79 9.79 9.79 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H191 of H344 9.79 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.48 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9 .27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.23 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.81 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 I REVISION NO. 8 ATTACHMENT H, PAGE NO. H192 of H344 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H193 of H344 8.78 8.78 8.78 8.78 8.78 8.78 8.61 8.51 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H194 of H344 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.52 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H195 of H344 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 END I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H196 of H344 Program LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page 7 Date : 04/07/2006 Time 13:54:23.56 Case 3b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104.0F, 1.5')RUN 36 DAYS FROM 70100 TO 80500 PLOT FILE OPTION : 1 CYCLE FLAG: 1 CIRCULATION TIME FLAG: 0 TIME INCREMENT

3 TIME UNITS: 2 WEATHER FILE OPTION: 1 ANEMOMETER HEIGHT OPTION: 0 ANEMOMETER HEIGHT DENSITY: 62.40 SEEPAGE: 0.20 LAKE LENGTH: 5500.00 LAKE ELEVATION OPTION = 2 INITIAL LAKE ELEVATION 690.00 DRAWDOWN CURVE ELEVATION TOTAL AREA TOTAL VOLUME EFF AREA EFF VOLUME 690.000 81.350 341.400 73.210 307.200 689.000 79.750 260.800 71.780 234.700 688.000 78.150 181.900 70.340 163.700 687.000 29.700 102.200 26.730 92.000 686.000 22.220 60.000 20.000 54.000 685.000 13.420 43.800 12.080 39.400 PLOT FILE FREQENCY 1 (NUMBER OF TIME STEPS)PLOT FILE FORMAT 0 (0-EXCEL/1-ACGRACE)

NUMBER OF VARIABLES FOR PLOT FILE: 3 PLOT VARIABLES:

18 LAKE TEMP NATURAL (F)19 LAKE TEMP @ INLET (F)20 LAKE TEMP @ OUTLET (F)INITIAL FORCED/NATURAL LAKE TEMPS. = 102.86 98.36 WEATHER STATION ID 0.20.00 PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H197 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 8 Date 04/07/2006 Time 13:54:23.56 Case 3b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104.0F, 1.5')FPLANT 70100 -TPRISE 70100 -80500 R/I 80500 S/I 86.000 35.480 15.420 13.950 13.360 12.500 12.090 11.560 11.560 11.160 11.150 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9.630 9.630 9.630 9.480 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 8.940 28.950 15.060 13.520 13.300 12.500 12.090 11.560 11.560 11.150 10.950 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 8.940 16.790 14.610 13.360 12.790 12.300 12.090 11.560 11.560 11.150 10.940 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 9.810 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.230 8.940 8.940 8.940 16.390 14.360 13.360 12.790 12.090 12.080 11.560 11.560 11.150 10.940 10.590 10.590 10.590 10.360 10.070 10.070 10.070 10.070 9.790 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 8.940 8.940 PROJECT NO. 11333-297 CALCULATION NO. L-002457 8.940 8.940 8.810 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 REVISION NO. 8 8.940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8.610 8.570 8.570 8.570 8.570 8.570 8.570 8. 570 8.570 8.570 8.570 8.570 8.570 8.570 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8. 570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8. 570 8 .570 8.570 8.570 8.570 8.310 8.310 8.310 8.310 8.310 8.310 80310 8.310 8.310 8.310 8.310 8.310 ATTACHMENT H, PAGE NO. H198 of H344 8.940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.520 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 I IPROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H199 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 9 Date : 04/07/2006 Time : 13:54:23.59 Case 3b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104.0F, 1.5')SEASONAL

SUMMARY

FOR SUMMER ( 6/1900 -8/1900 )QUANTITY MONTHLY AVERAGES JUN JUL AVERAGE AUG VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 JUN 20.00 20 .00 689.27 688.54 80.18 79.02 282.78 224.66 72.17 71.12 254.47 202.18 0.00 0.00 0.00 0 .00 0.00 0 .00-0.17 -0 .14-1.62 -1.33-0.97 -0.76-0.65 -0.56 0.00 0.00 219.94 214.31 153.58 152.47 64. 65 51 .78 5.34 5.25 90.92 89.93 101.40 98.78 91.58 90.55 0.00 0.00 20.00 689.17 80.02 274.71 72.02 247.21 0.00 0.00 0.00-0.16-1.58-0.94-0.64 0.00 219.16 153.43 62.87 5.32 90.78 101.03 91.43 0.00 TOTAL VALUE 0.00 0.00-11.67-112.86-67.18-45.68 0.00 MONTHLY TOTALS JUL AUG TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MKUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-10.33-99.71-59.60-40.11 0.00 0 .00 0.00-1.34-13.15-7.58-5.57 0.00 TEMPERATURE FREQUENCY OF OCCURENCES PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H200 of H344 1% 5% 50%LAKE TEMP NATURAL LAKE TEMP @ INLET LAKE TEMP @ OUTLET (F)(F)(F)100.5 132.0 103.0 97 .5 110.4 98.0 90.9 100.8 91.5 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H201 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 10 Date 04/07/2006 Time : 13:54:23.59 Case 3b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104.OF, 1.5')CUMULATIVE SEASONAL

SUMMARY

SUMMER QUANTITY JUN MONTHLY AVERAGES JUL AUG ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 JUN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 20.00 689.27 688.54 80.18 79.02 282.78 224.66 72.17 71.12 254.47 202.18 0.00 0.00 0.00 0.00 0.00 0.00-0.17 -0.14-1.62 -1.33-0.97 -0.76-0.65 -0.56 0.00 0.00 219.94 214.31 153.58 152.47 64. 65 51.78 5.34 5.25 90.92 89.93 101.40 98.78 91.58 90.55 0.00 0. 00 MONTHLY TOTALS AVERAGE VALUE 20.00 689.17 80.02 274.71 72.02 247.21 0.00 0.00 0.00-0.16-1.58-0.94-0.64 0.00 219.16 153.43 62.87 5.32 90.78 101.03 91.43 0.00 TOTAL VALUE 0.00 0.00-11.67-112.86-67.18-45.68 0.00 JUL AUG TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MKUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00-10.33-99.71-59.60-40.11 0.00 0.00 0.00-1.34.13.15-7. 58-5.57 0. 00 TEMPERATURE FREQUENCY OF OCCURENCES I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H202 of H344 1% 5% 50%LAKE TEMP NATURAL LAKE TEMP @ INLET LAKE TEMP @ OUTLET (F)(F)(F)100.5 132.0 103.0 97.5 110.4 98.0 90.9 100.8 91.5 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H203 of H344 Program LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 11 Date : 04/07/2006 Time : 13:54:23.59 Case 3b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104.OF, 1.5')TOTAL CUMULATIVE

SUMMARY

QUANTITY MAXIMUM MINIMUM VALUE ( DATE VALUE ( DATE AVERAGE VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)20.00 689.99 81.33 340.63 73.20 306.51 0.00 0.00 0.00-0.13-0.24 0.00-0.23 0.00 430.59 165.63 179.35 26.28 101.47 137.71 104 .00 0.00 7011900)7011900)7011900)7011900)7011900)7011900)7011900)7011900)7011900)8051900)8051900)7031900)7311900)7011900)7191900)7011900)7051900)7051900)7011900)7011900)7011900)7011900)DATE 7011900)7011900)8051900)8051900)7031900)7311900)7011900)20.00 7011900)688.45 8051900)78.86 8051900)216.86 8051900)70.98 8051900)195.16 8051900)0.00 7011900)0.00 7011900)0.00 7011900)-0.20 7011900)-4.12 7051900)-2.72 7051900)-1.86 7011900)0.00 7011900)101.21 7221900)142.19 7241900)0.00 7031900)-30.81 7251900)80.45 7241900)89.71 7241900)81.35 7241900)0.00 7011900)MINIMUM VALUE ( DATE 20.00 689.17 80.02 274.71 72.02 247.21 0.00 0.00 0 .00-0.16-1.58-0. 94-0 64 0.00 219.16 153.43 62.87 5.32 90 .78 101 .03 91 .43 0.00 TOTAL VALUE 0.00 0.00-11.67-112.86-67.18-45.68 0.00 QUANTITY MAXIMUM VALUE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MKUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00-0.03-0.06 0.00-0.06 0.00 0.00 0.00-0.05-1 02-0.68-0.46 0.00 7011900)7011900)7011900)7051900)7051900)7011900)7011900)TEMPERATURE FREQUENCY OF OCCURENCES PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H204 of H344 1% 5% 50%LAKE TEMP NATUPAL (F) 100.5 97.5 90.9 LAKE TEMP @ INLET (F) 132.0 110.4 100.8 LAKE TEMP @ OUTLET (F) 103.0 98.0 91.5 Program : LAKET Page : PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H205 of H344 Number : 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Date 04/11/2006 Time 15:49:35.51 Case 3 1 2 3 4 5 7 8 999 FPLANT TPRISE 35.48 28.95 16.79 16.39 15.42 15.06 14.61 14.36 13.95 13.52 13.36 13.36 13.36 13.30 12.79 12.79 12.50 12.50 12.30 12.09 12.09 12.09 12.09 12.08 11.56 11.56 11.56 11.56 11.56 c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.5')061854 1 0 1 6 690 81 689 79 688 78 687 29 686 22 685 13 1 102.3 R/I S/I 071754 1 20.1 0 3 2 0.2 2.35.75.15.70.22.42 0 3 97.8 5.6 341.4 260.8 181.9 102.2 60.0 43.8 500. 0 90 73.21 71.78 70.34 26.73 20.00 12.08 18 19 307.2 234.7 163.7 92.0 54.0 39.4 20 86.0 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H206 of H344 11.56 11.56 11.56 11.16 11.15 11.15 11.15 11.15 10.95 10.94 10.94 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.36 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10. 07 10. 07 10.07 9.81 9.79 9.79 9.79 9.79 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H207 of H344 9.79 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.48 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H208 of H344 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.23 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.81 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H209 of H344 8.78 8.78 8.78 8.78 8.78 8.78 8.61 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8 .57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H210 of H344 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.52 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H211 of H344 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 END I PROJECT NO. 11333-297 1

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H212 of H344 Program : LAKET Number : 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Page : 7 Date : 04/11/2006 Time : 15:49:35.51 Case 3c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.5')RUN 30 DAYS FROM 61854 TO 71754 PLOT FILE OPTION : 1 CYCLE FLAG: 1 CIRCULATION TIME FLAG: 0 TIME INCREMENT

3 TIME UNITS: 2 WEATHER FILE OPTION: 1 ANEMOMETER HEIGHT OPTION: 0 ANEMOMETER HEIGHT DENSITY: 62.40 SEEPAGE: 0.20 LAKE LENGTH: 5500.00 LAKE ELEVATION OPTION = 2 INITIAL LAKE ELEVATION

= 690.00 DRAWDOWN CURVE ELEVATION TOTAL AREA TOTAL VOLUME EFF AREA EFF VOLUME 690.000 81.350 341.400 73.210 307.200 689.000 79.750 260.800 71.780 234.700 688.000 78.150 181.900 70.340 163.700 687.000 29.700 102.200 26.730 92.000 686.000 22.220 60.000 20.000 54.000 685.000 13.420 43.800 12.080 39.400 PLOT FILE FREQENCY 1 (NUMBER OF TIME STEPS)PLOT FILE FORMAT 0 (0-EXCEL/1-ACGRACE)

NUMBER OF VARIABLES FOR PLOT FILE: 3 PLOT VARIABLES:

18 LAKE TEMP NATURAL (F)19 LAKE TEMP @ INLET (F)20 LAKE TEMP @ OUTLET (F)INITIAL FORCED/NATURAL LAKE TEMPS. = 102.30 97.80 WEATHER STATION ID 93822.20.00 IPROJECT NO. 11333-297 CALCULATION NO. L-002457 Program LAKET Number 03.7.292-2.2 0 Created: 11/18/2004 08:08:26 m REVISION NO. 8 ATTACHMENT H, PAGE NO. H213 of H344 Page : 8 Date 04/11/2006 Time : 15:49:35.51 I_______a m Case 3c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.5')FPLANT 61854 -TPRISE 61854 -71754 R/I 71754 S/I 86.000 35.480 15.420 13.950 13.360 12.500 12.090 11.560 11.560 11.160 11.150 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9.630 9.630 9.630 9.480 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 8.940 28.950 15.060 13.520 13.300 12.500 12.090 11.560 11.560 11.150 10.950 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8. 940 8.940 8.940 16.790 14.610 13.360 12.790 12.300 12.090 11.560 11.560 11.150 10.940 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 9.810 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.230 8.940 8.940 8.940 16.390 14.360 13.360 12.790 12.090 12.080 11.560 11.560 11.150 10.940 10.590 10.590 10.590 10.360 10.070 10.070 10.070 10.070 9.790 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 8.940 8.940 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 8 .940 8. 940 8.810 8.780 8.780 8.780 8.780 8.780 8. 780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 REVISION NO. 8 8.940 8.940 8.780 8. 780 8. 780 8. 780 8.780 8.780 8.610 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8-570 ATTACHMENT H, PAGE NO. H214 of H344 8. 940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8. 570 8.570 8.570 8.520 IJ I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H215 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 9 Date : 04/11/2006 Time 15:49:35.54 Case 3c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.5')SEASONAL

SUMMARY

FOR SUMMER ( 6/1954 -8/1954 )QUANTITY MONTHLY AVERAGES JUN JUL AUG ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY 20.00 689.61 80.72 309.79 72.65 278.76 0.00 0.00 0.00-0.18-2.01-1.28-0.73 0.00 226.40 148.11 85.13 4.10 85.92 98.17 86.90 0.00 20.00 688.91 79.61 253.94 71.65 228.52 0.00 0.00 0.00-0.15-1. 69-1.13-0.56 0.00 221.82 145.43 76.30 0. 93 83.46 93.25 84.51 0.00 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 AVERAGE VALUE 20.00 689.21 80.09 278.14 72.08 250.29 0.00 0.00 0.00-0.17-1.83-1.20-0.63 0.00 223.80 146.59 80.13 2.30 84.52 95.38 85.55 0.00 MONTHLY TOTALS TOTAL JUN JUL AUG VALUE TOTAL PRECIP (ACRE-FT) 0.00 0.00 TOTAL MKUP TOT(ACRE-FT) 0.00 0.00 TOTAL SEEPAGE (ACRE-FT)

-4.71 -5.12 TOTAL EVAP TOT(ACRE-FT)

-51.84 -56.94 TOTAL EVAP NAT(ACRE-FT)

-33.07 -38.13 TOTAL EVAP FOR(ACRE-FT)

-18.77 -18.81 TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 TEMPERATURE FREQUENCY OF OCCURENCES 0.00 0.00 0.00 0 .00 0 .00 0 .00 0.00 0.00 0.00-9.84-108.78-71.20-37.58 0.00 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H216 of H344 1% 5% 50%LAKE TEMP NATURAL (F) 100.0 93.3 84.1 LAKE TEMP @ INLET (F) 133.0 107.5 94.5 LAKE TEMP @ OUTLET (F) 104.0 94.0 85.2 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H217 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page 10 Date 04/11/2006 Time 15:49:35.54 Case 3c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.5')CUMULATIVE SEASONAL

SUMMARY

QUANTITY SUMMER MONTHLY AVERAGES JUN JUL AVERAGE AUG VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)20.00 689.61 80.72 309.79 72.65 278.76 0.00 0.00 0.00-0.18-2.01-1.28-0.73 0.00 226.40 148.11 85.13 4.10 85.92 98.17 86.90 0.00 JUN 20.00 688.91 79.61 253.94 71.65 228.52 0.00 0.00 0.00-0.15-1.69-1.13-0.56 0.00 221.82 145.43 76.30 0.93 83.46 93.25 84.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S AUG 20.00 689.21 80.09 278.14 72.08 250.29 0.00 0.00 0.00-0.17-1.83-1.20-0. 63 0.00 223.80 146.59 80.13 2.30 84.52 95.38 85.55 0.00 TOTAL VALUE QUANTITY MONTHLY TOTAL JUL TOTAL PRECIP (ACRE-FT) 0.00 0.00 TOTAL MKUP TOT(ACRE-FT) 0.00 0.00 TOTAL SEEPAGE (ACRE-FT)

-4.71 -5.12 TOTAL EVAP TOT(ACRE-FT)

-51.84 -56.94 TOTAL EVAP NAT(ACRE-FT)

-33.07 -38.13 TOTAL EVAP FOR(ACRE-FT)

-18.77 -18.81 TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 TEMPERATURE FREQUENCY OF OCCURENCES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-9.84-108.78-71.20-37.58 0.00 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 1 % 5% REVISION NO. 8 ATTACHMENT H, PAGE NO. H218 of H344 1% 5% 50%LAKE TEMP NATURAL (F) 100.0 93.3 84.1 LAKE TEMP @ INLET (F) 133.0 107.5 94.5 LAKE TEMP @ OUTLET (F) 104.0 94.0 85.2 L- PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H219 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 11 Date : 04/11/2006 Time 15:49:35.54 Case 3c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.5')TOTAL CUMULATIVE

SUMMARY

QUANTITY ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY MAXIMUM VALUE ( DATE MINIMUM VALUE AVERAGE DATE VALUE 20.00 6181954) 20.00 690.00 6181954) 688.52 81.34 6181954) 78.98 341.13 6181954) 222.77 73.21 6181954) 71.09 306.96 6181954) 200.48 0.00 6181954) 0.00 0.00 6181954) 0.00 0.00 6181954) 0.00-0.13 7171954) -0.20-0.48 66291954)

-5.43-0.24 6291954) -4.14-0.15 7171954) -2.48 0.00 6181954) 0.00 451.13 6191954) 90.18 165.58 6181954) 134.89 275.61 6271954) 16.17 37.15 6271954) -47.13 101.42 6181954) 73.38 140.00 6181954) 82.37 104.65 6181954) 73.45 0.00 6181954) 0.00 MAXIMUM MINIMUM VALUE ( DATE ) VALUE 6181954)7171954)7171954)7171954)7171954)7171954)6181954)6181954)6181954)6181954)6181954)6271954)6181954)6181954)7071954)7071954)6291954)7121954)7071954)7071954)7071954)6181954)DATE 20.00 689.21 80.09 278.14 72.08 250.29 0.00 0.00 0.00-0.17-1.83-1.20-0.63 0.00 223.80 146.59 80.13 2.30 84.52 95.38 85.55 0.00 TOTAL VALUE 0.00 0.00-9.84-108.78-71.20-37.58 0.00 TOTAL PRECIP (ACRE-FT) 0.00 TOTAL MKUP TOT(ACRE-FT) 0.00 TOTAL SEEPAGE (ACRE-FT)

-0.03 TOTAL EVAP TOT(ACRE-FT)

-0.12 TOTAL EVAP NAT(ACRE-FT)

-0.06 TOTAL EVAP FOR(ACRE-FT)

-0.04 TOTAL BLWD TOT(ACRE-FT) 0.00 6181954)6181954)7171954)6291954)6291954)7171954)6181954)0.00 0.00-0.05-1.35-1.03-0. 0 0.00 6181954)6181954)6181954)6181954)6271954)6181954)6181954)I PROJECT NO. 11333-297 CALCULATION NO. L-002457 TEMPERATURE FREQUENCY OF OCCURENCES 1% 5% 50%LAKE TEMP NATURAL (F) 100.0 93.3 84.1 LAKE TEMP @ INLET (F) 133.0 107.5 94.5 LAKE TEMP @ OUTLET (F) 104.0 94.0 85.2 REVISION NO. 8 ATTACHMENT H, PAGE NO. H220 of H344 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H221 of H344 Program LAKET Number 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 1 Date : 02/24/2011 Time 10:27:07.17 Case 1 2 3 4a: LaSalle UHS (09:00, Worst Day Temp; To=104F, 1.0')070100 073100 1 1 0 20.1 0 3 2 4 1 0.2 5 6 2 5500. 0 E E E E (7 8 999 F PLANT TPRISE 35.48 28.95 16.79 16.39 15.42 15.06 14.61 14.36 13. 95 13.52 13.36 13.36 13.36 13.30 12.79 12.79 12.50 12.50 12.30 12.09 12.09 12.09 12.09 12.08 11.56 11.56 11.56 90;89 88 87 86 85 1 102.74 R/I S/I 32.15 30.55 18.96 77.33 29.70 14.75 0 3 98.24 86.0 690 381.9 300.6 220.8 142.7 71.74 50.79 18 73.72.49 71.06 69.60 26.73 13.28 19 94 343.7 270.5 198.7 128.4 64.57 45.71 20 I PROJECT NO. 11333-297 1

[CALCULATION NO. L-002457 11.56 11.56 11.56 11.56 11.56 11.16 11.15 m REVISION NO. 8 ATTACHMENT H, PAGE NO. H222 of H344 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 Program LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 REVISION NO. 8 ATTACHMENT H, PAGE NO. H223 of H344 I Page : 2 Date 02/24/2011 Time 10:27:07.17 11.15 11.15 11.15 10.95 10.94 10.94 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.36 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 9.81 9.79 9.79 9.79 9.79 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H224 of H344 9.79 9.63 9.63 9.63 9.63 9.63 IPROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H225 of H344 I Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 3 Date : 02/24/2011 Time 10:27:07.17 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.48 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 PROJECT NO. 11333-297 CALCULATION NO. L-002457 9.27 9.27 9.27 9.27 9.27 9.27 9.27 REVISION NO. 8 ATTACHMENT H, PAGE NO. H226 of H344 I PROJECT NO. 11333-2971 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H227 of H344 I Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 4 Date : 02/24/2011 Time 10:27:07.17 9.27 9.27 9.23 8.94 8.94 8.94 8.94 8 .94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8 .94 8.94 8.94 8.94 8.94 8.94 8. 94 8 .94 8 .94 8.81 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8 .78 8 .78 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 8.78 8.78 8.78 8.78 8.78 8.61 8.57 REVISION NO. 8 ATTACHMENT H, PAGE NO. H228 of H344 I IPROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H229 of H344 Program : LAKET Number 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Page : 5 Date 02/24/2011 Time 10:27:07.17 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H230 of H344 8.57 8.57 8.57 8.57 8.57 8.57 8.57 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H231 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 6 Date : 02/24/2011 Time 10:27:07.17 8.57 8.52 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 8.31 8.31 8.31 8.31 8.31 8.31 END REVISION NO. 8 ATTACHMENT H, PAGE NO. H232 of H344 I IPROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H233 of H344 Program LAKET Number : 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Page : 7 Date : 02/24/2011 Time : 10:27:07.18 Case 4a: LaSalle UHS (09:00, Worst Day Temp; To=104F, 1.0')RUN 31 DAYS FROM 70100 TO 73100 PLOT FILE OPTION : I CYCLE FLAG: 1 CIRCULATION TIME FLAG: 0 TIME INCREMENT

3 TIME UNITS: 2 WEATHER FILE OPTION: 1 ANEMOMETER HEIGHT OPTION: 0 ANEMOMETER HEIGHT DENSITY: 62.40 SEEPAGE: 0.20 LAKE LENGTH: 5500.00 LAKE ELEVATION OPTION = 2 INITIAL LAKE ELEVATION

= 690.00 DRAWDOWN CURVE ELEVATION TOTAL AREA TOTAL VOLUME EFF AREA EFF VOLUME 690.000 82.150 381.900 73.940 343.700 689.000 80.550 300.600 72.490 270.500 688.000 78.960 220.800 71.060 198.700 687.000 77.330 142.700 69.600 128.400 686.000 29.700 71.740 26.730 64.570 685.000 14.750 50.790 13.280 45.710 PLOT FILE FREQENCY 1 (NUMBER OF TIME STEPS)PLOT FILE FORMAT 0 (0-EXCEL/1-ACGRACE)

NUMBER OF VARIABLES FOR PLOT FILE: 3 PLOT VARIABLES:

18 LAKE TEMP NATURAL (F)19 LAKE TEMP @ INLET (F)20 LAKE TEMP @ OUTLET (F)INITIAL FORCED/NATURAL LAKE TEMPS. = 102.74 98.24 WEATHER STATION ID 0.20.00 I PROJECT NO. 11333-297 1

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H234 of H344 Program : LAKET Number 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Page : 8 Date 02/24/2011 Time 10:27:07.31 Case 4a: LaSalle UHS (09:00, Worst Day Temp; To=104F, 1.0')FPLANT 70100 -TPRISE 70100 -73100 R/I 73100 S/I 86.000 35.480 15.420 13.950 13.360 12.500 12.090 11.560 11.560 11.160 11.150 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9. 630 9. 630 9.630 9.480 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8. 940 8. 940 28. 950 15.060 13.520 13.300 12.500 12.090 11.560 11.560 11.150 10.950 10. 590 10. 590 10. 590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9. 630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8. 940 8. 940 16.790 14.610 13.360 12 .790 12.300 12.090 11.560 11.560 11.150 10.940 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 9.810 9.790 9.630 9.630 9.630 9.270 9.270 9. 270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.230 8.940 8.940 16. 390 14.360 13.360 12.790 12.090 12.080 11.560 11.560 11.150 10.940 10.590 10.590 10.590 10.360 10.070 10.070 10.070 10.070 9.790 9.790 9.630 9. 630 9. 630 9.270 9.270 9. 270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 8.940 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 8.940 8.940 8.940 8.810 8 .780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.310 8.310 REVISION NO. 8 8.940 8.940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8.610 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.310 8.310 8.940 8.940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.310 8.310 ATTACHMENT H, PAGE NO. H235 of H344 8.940 8.940 8.940 8.780 8.780 8.780 8. 780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8. 570 8.570 8.570 8.570 8.520 8.310 8.310 PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H236 of H344 Program : LAKET Number : 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Page : 9 Date : 02/24/2011 Time : 10:27:07.40 Case 4a: LaSalle UHS (09:00, Worst Day Temp; To=104F, 1.0')SEASONAL

SUMMARY

FOR SUMMER ( 6 QUANTITY ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY/1900 -8/1900 )MONTHLY AVERAGES JUN JUL AUG AVERAGE VALUE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 0.00 20.00 689.34 0.00 689.34 81.10 0.00 81.10 328.51 0.00 328.51 72.99 0.00 72.99 295.63 0.00 295.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-0.17 0.00 -0.17-1.40 0.00 -1.40-0.76 0.00 -0.76-0.63 0.00 -0.63 0.00 0.00 0.00 204.97 0.00 204.97 151.30 0.00 151.30 50.37 0.00 50.37 6.88 0.00 6.88 88.87 0.00 88.87 99.69 0.00 99.69 89.86 0.00 89.86 0.00 0.00 0.00 MONTHLY TOTALS TOTAL JUL AUG VALUE JUN TOTAL PRECIP (ACRE-FT) 0.00 TOTAL MKUP TOT(ACRE-FT) 0.00 TOTAL SEEPAGE (ACRE-FT) 0.00 TOTAL EVAP TOT(ACRE-FT) 0.00 TOTAL EVAP NAT(ACRE-FT) 0.00 TOTAL EVAP FOR(ACRE-FT) 0.00 TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 0.00-10.71-85.89-46.97-38.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-10.71-85.89-46.97-38. 91 0.00 I PROJECT NO. 11333-297 1

ICALCULATION NO. L-002457 TEMPERATURE LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)REVISION NO. 8 ATTACHMENT H, PAGE NO. H237 of H344 I FREQUENCY OF OCCURENCES 1% 5% 50%100.5 97.0 88.3 132.0 110.0 98.7 103.0 97.0 89.4 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H238 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 10 Date 02/24/2011 Time : 10:27:07.40 Case 4a: LaSalle UHS (09:00, Worst Day Temp; To=104F, 1.0')CUMULATIVE SEASONAL

SUMMARY

SUMMER QUANTITY MONTHLY AVERAGES AVERAGE JUN JUL AUG VALUE ANEMOMETER HEIGHT (FT) 0.00 20.00 0.00 LAKE ELEVATION (FEET) 0.00 689.34 0.00 TOTAL AREA (ACRE) 0.00 81.10 0.00 TOTAL VOLUME (ACRE-FT) 0.00 328.51 0.00 EFFECTIVE AREA (ACRE) 0.00 72.99 0.00 EFFECTIVE VOL (ACRE-FT) 0.00 295.63 0.00 CIRCULATION TIME (HR) 0.00 0.00 0.00 PRECIPITATION (CFS) 0.00 0.00 0.00 MAKEUP TOTAL (CFS) 0.00 0.00 0.00 SEEPAGE (CFS) 0.00 -0.17 0.00 EVAPORATION TOTAL (CFS) 0.00 -1.40 0.00 EVAPORATION NATURL(CFS) 0.00 -0.76 0.00 EVAPORATION FORCED(CFS) 0.00 -0.63 0.00 BLOWDOWN TOTAL (CFS) 0.00 0.00 0.00 SOLAR GAIN (BTU/HR-FT2) 0.00 204.97 0.00 SURF LOSS (BTU/HR-FT2) 0.00 151.30 0.00 EVAP LOSS (BTU/HR-FT2) 0.00 50.37 0.00 COND LOSS (BTU/HR-FT2) 0.00 6.88 0.00 LAKE TEMP NATURAL (F) 0.00 88.87 0.00 LAKE TEMP @ INLET (F) 0.00 99.69 0.00 LAKE TEMP @ OUTLET (F) 0.00 89.86 0.00 DISSOLVED SOLIDS (PPM) 0.00 0.00 0.00 20.00 689.34 81.10 328.51 72.99 295.63 0.00 0.00 0.00-0. 17-1.40-0.76-0. 63 0.00 204.97 151.30 50.37 6.88 88.87 99.69 89.86 0.00 TOTAL VALUE QUANTITY MONTHLY TOTALS JUL JUN AUG TOTAL PRECIP (ACRE-FT)TOTAL MKUP TOT(ACRE-FT)

TOTAL SEEPAGE (ACRE-FT)TOTAL EVAP TOT(ACRE-FT)

TOTAL EVAP NAT(ACRE-FT)

TOTAL EVAP FOR(ACRE-FT)

TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-10.71-85.89-46.97-38.91 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-10.71-85.89-46. 97-38. 91 0.00 PROJECT NO. 11333-297 CALCULATION NO. L-002457 TEMPERATURE FREQUENCY OF OCCURENCES 1% 5% 50%LAKE TEMP NATURAL (F) 100.5 97.0 88.3 LAKE TEMP @ INLET (F) 132.0 110.0 98.7 LAKE TEMP @ OUTLET (F) 103.0 97.0 89.4 REVISION NO. 8 ATTACHMENT H, PAGE NO. H239 of H344 I REVIIONNO.8 ATACHENTH, PGE O. 239 f H44 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H240 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 11 Date 02/24/2011 Time 10:27:07.40 Case 4a: LaSalle UHS (09:00, Worst Day Temp; To=104F, 1.0')TOTAL CUMULATIVE

SUMMARY

QUANTITY MAXIMUM VALUE MINIMUM AVERAGE DATE ) VALUE ( DATE ) VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)20.00 689.99 82. 14 381.31 73.93 343.17 0.00 0.00 0.00-0.15-0.26 0.00-0.26 0.00 426.50 165.49 234.70 39.43 101.35 138 .41 104.00 0.00 7011900)7011900)7011900)7011900)7011900)7011900)7011900)7011900)7011900)7311900)7161900)7011900)7161900)7011900)7011900)7011900)7031900)7261900)7011900)7011900)7011900)7011900)20.00 688.81 80.24 285.29 72.22 256.73 0.00 0.00 0.00-0.20-4.78-3.60-2.08 0.00 97.95 143.62 0.00-6.87 81.80 92.47 82.96 0.00 7011900)7311900)7311900)7311900)7311900)7311900)7011900)7011900)7011900)7011900)7021900)7031900)7011900)7011900)7041900)7061900)7011900)7261900)7061900)7251900)7061900)7011900)DATE )20.00 689.34 81.10 328.51 72.99 295.63 0.00 0.00 0.00-0.17-1.40-0.76-0.63 0.00 204.97 151.30 50.37 6.88 88.87 99.69 89.86 0.00 TOTAL VALUE QUANTITY MAXIMUM VALUE ( DATE MINIMUM VALUE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MXUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00-0 .04-0.06 0.00-0.06 0.00 7011900)7011900)7311900)7161900)7011900)7161900)7011900)0.00 0.00-0.05-1.18-0.89-0.51 0.00 7011900)7011900)7011900)7021900)7031900)7011900)7011900)0.00 0.00-10.71-85.89-46.97-38.91 0.00 PROJECT NO. 11333-297 CALCULATION NO. L-002457 TEMPERATURE FREQUENCY OF OCCURENCES 1% 5% 50%LAKE TEMP NATURAL (F) 100.5 97.0 88.3 LAKE TEMP @ INLET (F) 132.0 110.0 98.7 LAKE TEMP @ OUTLET (F) 103.0 97.0 89.4 REVISION NO. 8 ATTACHMENT H, PAGE NO. H241 of H344 i PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H242 of H344 I Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 1 Date 02/21/2011 Time 14:25:17.25 Case 4b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104F, 1.0')1 2 3 070100 080500 1 1 0 20.1 0 3 2 4 1 5 6 690 689 688 687 686 685 7 1 0.2 2 82.15 80.55 78.96 77.33 29.70 14 .75 0 3 5500. 0 690 381.9 300.6 220.8 142.7 71.74 50.79 18 73.94 343.7 72.49 270.5 71.06 198.7 69.60 128.4 26.73 64.57 13.28 45.71 19 20 8 999 FPLANT TPRISE 35.48 28.95 16.79 16.39 15.42 15.06 14.61 14.36 13.95 13.52 13.36 13.36 13.36 13.30 12.79 12.79 12.50 12.50 12.30 12.09 12.09 12.09 12.09 12.08 11.56 11.56 11.56 103.02 R/I S/I 98.52 86.0 I PROJECT NO. 11333-297 ICALCULATION NO. L-002457 11.56 11.56 11.56 11.56 11 56 11.16 11.15 REVISION NO. 8 ATTACHMENT H, PAGE NO. H243 of H344 REVISION NO.8 ATTACHMENT H, PAGE NO. H243 of H344 I I PROJECT NO. 11333-297 1

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H244 of H344 I Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 2 Date : 02/21/2011 Time 14:25:17.25 11.15 11.15 11.15 10.95 10.94 10.94 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.36 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 9.81 9.79 9.79 9.79 PROJECT NO. 11333-297 CALCULATION NO. L-002457 9.79 9.79 9.63 9.63 9.63 9.63 9.63 REVISION NO. 8 ATTACHMENT H, PAGE NO. H245 of H344 I I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H246 of H344 I Program : LAKET Number 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Page : 3 Date : 02/21/2011 Time 14:25:17.25 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.48 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 PROJECT NO. 11333-297 lCALCULATION NO. L-002457 9.27 9.27 9.27 9.27 9.27 9.27 9.27 REVISION NO. 8 ATTACHMENT H, PAGE NO. H247 of H344 I REVISION NO. 8 ATTACHMENT H, PAGE NO. H247 of H344 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H248 of H344 Program : LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 4 Date 02/21/2011 Time 14:25:17.25 9.27 9.27 9.23 8.94 8.94 8 .94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8. 94 8.94 8.94 8.94 8.94 8 .81 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8 .78 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 8.78 8.78 8.78 8.78 8.78 8.61 8.57 REVISION NO. 8 ATTACHMENT H, PAGE NO. H249 of H344 I I PROJECT NO. 11333-297 1

ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H250 of H344 Program LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 5 Date 02/21/2011 Time : 14:25:17.25 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 8.57 8.57 8.57 8.57 8.57 8.57 8.57 REVISION NO. 8 ATTACHMENT H, PAGE NO. H251 of H344 I I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H252 of H344 Program : LAKET Number 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 6 Date : 02/21/2011 Time 14:25:17.25 8.57 8.52 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 PROJECT NO. 11333-297 CALCULATION NO. L-002457 8.31 8.31 8.31 8.31 8.31 8.31 END REVISION NO. 8 ATTACHMENT H, PAGE NO. H253 of H344 I I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H254 of H344 Program LAKET Number 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 7 Date 02/21/2011 Time : 14:25:17.25 Case 4b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104F, 1.0')RUN 36 DAYS FROM 70100 TO 80500 PLOT FILE OPTION : 1 CYCLE FLAG: 1 CIRCULATION TIME FLAG: 0 TIME INCREMENT

3 TIME UNITS: 2 WEATHER FILE OPTION: 1 ANEMOMETER HEIGHT OPTION: 0 ANEMOMETER HEIGHT DENSITY: 62.40 SEEPAGE: 0.20 LAKE LENGTH: 5500.00 LAKE ELEVATION OPTION = 2 INITIAL LAKE ELEVATION

= 690.00 DRAWDOWN CURVE ELEVATION TOTAL AREA TOTAL VOLUME EFF AREA EFF V(690.000 82.150 381.900 73.940 342 689.000 80.550 300.600 72.490 27(688.000 78.960 220.800 71.060 687.000 77.330 142.700 69.600 686.000 29.700 71.740 26.730 6 685.000 14.750 50.790 13.280 4 PLOT FILE FREQENCY 1 (NUMBER OF TIME STEPS)PLOT FILE FORMAT 0 (0-EXCEL/1-ACGRACE)

NUMBER OF VARIABLES FOR PLOT FILE: 3 PLOT VARIABLES:

18 LAKE TEMP NATURAL (F)19 LAKE TEMP @ INLET (F)20 LAKE TEMP @ OUTLET (F)INITIAL FORCED/NATURAL LAKE TEMPS. = 103.02 98.52 WEATHER STATION ID 0.20.00 OLUME 3.700 0.500 8.700 8.400 4.570 5.710 PROJECT NO. 11333-297 I ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H255 of H344 Program LAKET Number : 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Case 4b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104F, 1.0')Page : 8 Date : 02/21/2011 Time : 14:25:17.25 FPLANT 70100 -TPRISE 70100 -80500 R/I 80500 S/I 86.000 35.480 15.420 13.950 13.360 12.500 12.090 11.560 11.560 11.160 11.150 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9.630 9.630 9.630 9.480 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 28.950 15.060 13.520 13.300 12.500 12.090 11.560 11.560 11.150 10. 950 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 PROJECT NO. 11333-297 16.790 14.610 13.360 12.790 12.300 12.090 11.560 11.560 11.150 10.940 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 9.810 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.230 8.940 8.940 16.390 14.360 13.360 12.790 12.090 12.080 11.560 11.560 11.150 10.940 10.590 10.590 10.590 10.360 10.070 10.070 10.070 10.070 9.790 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 8.940 I I CALCULATION NO. L-002457 8 940 8.940 8.940 8.810 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8. 570 8.570 8.570 8.570 8.570 8.310 8.310 8.310 8.310 8.310 8.310 8. 310 8.310 8.310 8.310 8.310 8.310 REVISION NO. 8 8. 940 8.940 8. 940 8.780 8.780 8.780 8.780 8.780 8.780 8.610 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.940 8.940 8.940 8.780 8.780 8 .780 8.780 8.780 8.780 8.570 8.570 8 .570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8-310 8.310 8.310 ATTACHMENT H, 8.940 8.940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8. 570 8. 570 8. 570 8.520 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 8.310 PAGE NO. H256 of H344 I I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H257 of H344 Program : LAKET Page 9 Number 03.7.292-2.2 0 Date : 02/21/2011 Created 11/18/2004 08:08:26 Time 14:25:17.31 Case 4b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104F, 1.0')SEASONAL

SUMMARY

FOR SUMMER ( 6/1900 -8/1900 )QUANTITY MONTHLY AVERAGES AVERAGE JUN JUL AUG VALUE ANEMOMETER HEIGHT (FT) 0.00 20.00 20.00 20.00 LAKE ELEVATION (FEET) 0.00 689.27 688.54 689.17 TOTAL AREA (ACRE) 0.00 80.98 79.82 80.82 TOTAL VOLUME (ACRE-FT) 0.00 322.70 264.07 314.56 EFFECTIVE AREA (ACRE) 0.00 72.88 71.84 72.74 EFFECTIVE VOL (ACRE-FT) 0.00 290.40 237.63 283.07 CIRCULATION TIME (HR) 0.00 0.00 0.00 0.00 PRECIPITATION (CFS) 0.00 0.00 0.00 0.00 MAKEUP TOTAL (CFS) 0.00 0.00 0.00 0.00 SEEPAGE (CFS) 0.00 -0.17 -0.14 -0.17 EVAPORATION TOTAL (CFS) 0.00 -1.64 -1.33 -1.59 EVAPORATION NATURL(CFS) 0.00 -0.98 -0.76 -0.95 EVAPORATION FORCED(CFS) 0.00 -0.65 -0.56 -0.64 BLOWDOWN TOTAL (CFS) 0.00 0.00 0.00 0.00 SOLAR GAIN (BTU/HR-FT2) 0.00 219.94 214.31 219.16 SURF LOSS (BTU/HR-FT2) 0.00 153.68 152.29 153.49 EVAP LOSS (BTU/HR-FT2) 0.00 64.97 51.32 63.07 COND LOSS (BTU/HR-FT2) 0.00 5.42 5.16 5.38 LAKE TEMP NATURAL (F) 0.00 91.01 89.78 90.84 LAKE TEMP @ INLET (F) 0.00 101.58 98.83 101.20 LAKE TEMP @ OUTLET (F) 0.00 91.75 90.57 91.59 DISSOLVED SOLIDS (PPM) 0.00 0.00 0.00 0.00 QUANTITY MONTHLY TOTALS TOTAL JUN JUL AUG VALUE TOTAL PRECIP (ACRE-FT) 0.00 0.00 0.00 0.00 TOTAL MKUP TOT(ACRE-FT) 0.00 0.00 0.00 0.00 TOTAL SEEPAGE (ACRE-FT) 0.00 -10.53 -1.41 -11.95 TOTAL EVAP TOT(ACRE-FT) 0.00 -100.60 -13.14 -113.75 TOTAL EVAP NAT(ACRE-FT) 0.00 -60.49 -7.59 -68.07 TOTAL EVAP FOR(ACRE-FT) 0.00 -40.12 -5.56 -45.67 TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 0.00 0.00 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 TEMPERATURE FREQUENCY OF OCCURENCES 1% 5% 50%LAKE TEMP NATURAL (F) 100.5 97.2 90.9 LAKE TEMP @ INLET (F) 132.0 110.6 100.9 LAKE TEMP @ OUTLET (F) 103.0 98.1 91.7 REVISION NO. 8 ATTACHMENT H, PAGE NO. H258 of H344 I REVIIONNO.8 ATACHENTH, PGE O. 258 f H44 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H259 of H344 I Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page 10 Date 02/21/2011 Time 14:25:17.31 Case 4b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104F, 1.0')CUMULATIVE SEASONAL

SUMMARY

SUMMER QUANTITY MONTHLY AVERAGES AVERAGE JUN JUL AUG VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 689.27 80.98 322.70 72.88 290.40 0.00 0.00 0.00-0.17-1.64-0.98-0.65 0.00 219.94 153.68 64.97 5.42 91.01 101.58 91.75 0.00 20.00 688.54 79.82 264 .07 71.84 237.63 0.00 0.00 0.00-0.14-1.33-0.76-0.56 0.00 214.31 152.29 51.32 5.16 89.78 98.83 90.57 0.00 20.00 689.17 80.82 314.56 72.74 283.07 0.00 0.00 0.00-0.17-1.59-0.95-0.64 0.00 219.16 153.49 63.07 5.38 90.84 101.20 91.59 0.00 QUANTITY MONTHLY TOTALS JUN JUL TOTAL AUG VALUE TOTAL PRECIP (ACRE-FT)TOTAL MKUP TOT(ACRE-FT)

TOTAL SEEPAGE (ACRE-FT)TOTAL EVAP TOT(ACRE-FT)

TOTAL EVAP NAT(ACRE-FT)

TOTAL EVAP FOR(ACRE-FT)

TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-10.53-100.60-60.49-40.12 0.00 0.00 0.00-1.41-13.14-7.59-5.56 0.00 0.00 0.00-11.95-113.75-68.07-45.67 0.00 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 TEMPERATURE LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)REVISION NO. 8 ATTACHMENT H, PAGE NO. H260 of H344 FREQUENCY OF OCCURENCES 1% 5% 50%100.5 97.2 90.9 132.0 110.6 100.9 103.0 98.1 91.7 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H261 of H344 Program LAKET Page : 11 Number 03.7.292-2.20 Date o02/21/2011 Created 11/18/2004 08:08:26 Time 14:25:17.31 Case 4b: LaSalle UHS (09:00, Worst 5/1/30 Day Temp; To=104F, 1.0')TOTAL CUMULATIVE

SUMMARY

QUANTITY MAXIMUM MINIMUM AVERAGE VALUE ( DATE ) VALUE ( DATE ) VALUE ANEMOMETER HEIGHT (FT) 20.00 7011900) 20.00 7011900) 20.00 LAKE ELEVATION (FEET) 689.99 7011900) 688.45 8051900) 689.17 TOTAL AREA (ACRE) 82.13 7011900) 79.67 8051900) 80.82 TOTAL VOLUME (ACRE-FT) 381.11 7011900) 256.19 8051900) 314.56 EFFECTIVE AREA (ACRE) 73.93 7011900) 71.69 8051900) 72.74 EFFECTIVE VOL (ACRE-FT) 342.99 7011900) 230.54 8051900) 283.07 CIRCULATION TIME (HR) 0.00 7011900) 0.00 7011900) 0.00 PRECIPITATION (CFS) 0.00 7011900) 0.00 7011900) 0.00 MAKEUP TOTAL (CFS) 0.00 7011900) 0.00 7011900) 0.00 SEEPAGE (CFS) -0.14 8051900) -0.20 7011900) -0.17 EVAPORATION TOTAL (CFS) -0.29 8051900) -4.06 7051900) -1.59 EVAPORATION NATURL(CFS) 0.00 7031900) -2.73 7051900) -0.95 EVAPORATION FORCED(CFS)

-0.25 7311900) -1.84 7011900) -0.64 BLOWDOWN TOTAL (CFS) 0.00 7011900) 0.00 7011900) 0.00 SOLAR GAIN (BTU/HR-FT2) 430.59 7191900) 101.21 7221900) 219.16 SURF LOSS (BTU/HR-FT2) 165.45 7011900) 142.91 7241900) 153.49 EVAP LOSS (BTU/HR-FT2) 178.35 7051900) 0.00 7031900) 63.07 COND LOSS (BTU/HR-FT2) 26.10 7051900) -31.35 7251900) 5.38 LAKE TEMP NATURAL (F) 101.31 7011900) 81.13 7241900) 90.84 LAKE TEMP @ INLET (F) 137.91 7011900) 90.55 7241900) 101.20 LAKE TEMP @ OUTLET (F) 104.00 7011900) 82.04 7241900) 91.59 DISSOLVED SOLIDS (PPM) 0.00 7011900) 0.00 7011900) 0.00 QUANTITY MAXIMUM MINIMUM TOTAL VALUE ( DATE ) VALUE ( DATE ) VALUE TOTAL PRECIP (ACRE-FT) 0.00 ( 7011900) 0.00 ( 7011900) 0.00 TOTAL MEUP TOT(ACRE-FT) 0.00 7011900) 0.00 7011900) 0.00 TOTAL SEEPAGE (ACRE-FT)

-0.03 8051900) -0.05 7011900) -11.95 TOTAL EVAP TOT(ACRE-FT)

-0.07 8051900) -1.01 7051900) -113.75 TOTAL EVAP NAT(ACRE-FT) 0.00 7031900) -0.68 7051900) -68.07 TOTAL EVAP FOR(ACRE-FT)

-0.06 7311900) -0.46 7011900) -45.67 TOTAL BLWD TOT(ACRE-FT) 0.00 7011900) 0.00 7011900) 0.00 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 TEMPERATURE LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)REVISION NO. 8 ATTACHMENT H, PAGE NO. H262 of H344 I FREQUENCY OF OCCURENCES 1% 5% 50%100.5 97.2 90.9 132.0 110.6 100.9 103.0 98.1 91.7 I PROJECT NO. 11333-297 1

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H263 of H344 I Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 1 Date : 02/24/2011 Time : 13:13:58.01 Case 4c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.0')1 2 3 061854 071754 1 1 0 20.1 0 3 2 4 1 5 6 690 689 8 688 687 686 685 1 0.2 2 32.15 0.55 18.96 7.33 9. 70.4.75 0 3 98.24 86.0 5500.690 381.9 300.6 220.8 142.7 71.74 50.79 18 0 73.94 343.7 72.49 270.5 71.06 198.7 69.60 128.4 26.73 64.57 13.28 45.71 19 20 7 8 999 FPLANT TPRISE 35.48 28.95 16.79 16.39 15.42 15.06 14.61 14.36 13.95 13.52 13.36 13.36 13.36 13.30 12.79 12.79 12.50 12.50 12.30 12.09 12.09 12.09 12.09 12.08 11.56 11.56 11.56 1 102.74 R/I S/I I PROJECT NO. 11333-297 CALCULATION NO. L-002457 11.56 11.56 11.56 11.56 11.56 11.16 11.15 REVISION NO. 8 ATTACHMENT H, PAGE NO. H264 of H344 i REVIIONNO.

ATACHMNT , PGE O. H64 f H44 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H265 of H344 Program LAKET Number 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 2 Date 02/24/2011 Time 13:13:58.01 11.15 11.15 11.15 10.95 10.94 10.94 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.59 10.36 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 10.07 9.81 9.79 9.79 9.79 PROJECT NO. 11333-297 CALCULATION NO, L-002457 9.79 9.79 9.63 9.63 9.63 9.63 9.63 REVISION NO. 8 ATTACHMENT H, PAGE NO. H266 of H344 I I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H267 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 3 Date : 02/24/2011 Time : 13:13:58.01 9.63 9.63 9. 63 9.63 9.63 9.63 9.63 9.48 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 9.27 PROJECT NO. 11333-297 lCALCULATION NO. L-002457 9.27 9.27 9.27 9.27 9.27 9.27 9.27 REVISION NO. 8 ATTACHMENT H, PAGE NO. H268 of H344 I REVISION NO. 8 ATTACHMENT H, PAGE NO. H268 of H344 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H269 of H344 Program : LAKET Number 03.7.292-2.2 0 Created: 11/18/2004 08:08:26 Page : 4 Date : 02/24/2011 Time 13:13:58.01 9.27 9.27 9.23 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8.94 8 .94 8 .94 8.94 8. 94 8. 94 8.94 8 .94 8 .94 8 .94 8.81 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 8.78 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H270 of H344 8.78 8.78 8.78 8.78 8.78 8.61 8.57 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H271 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 5 Date 02/24/2011 Time 13:13:58.01 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 PROJECT NO. 11333-297 I ICALCULATION NO. L-002457 8.57 8.57 8.57 8.57 8.57 8.57 8.57 REVISION NO. 8 ATTACHMENT H, PAGE NO. H272 of H344 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H273 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 6 Date 02/24/2011 Time : 13:13:58.01 8.57 8.52 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 8.31 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 8.31 8.31 8.31 8.31 8.31 8.31 END REVISION NO. 8 ATTACHMENT H, PAGE NO. H274 of H344 I IPROJECT NO. 11333-297 ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H275 of H344 Program : LAKET Number 03.7.292-2.2 0 Created : 11/18/2004 08:08:26 Page : 7 Date : 02/24/2011 Time 13:13:58.01 Case 4c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.0')RUN 30 DAYS FROM 61854 TO 71754 PLOT FILE OPTION : 1 CYCLE FLAG: 1 CIRCULATION TIME FLAG: 0 TIME INCREMENT

3 TIME UNITS: 2 WEATHER FILE OPTION: 1 ANEMOMETER HEIGHT OPTION: 0 ANEMOMETER HEIGHT DENSITY: 62.40 SEEPAGE: 0.20 LAKE LENGTH: 5500.00 LAKE ELEVATION OPTION = 2 INITIAL LAKE ELEVATION

= 690.00 DRAWDOWN CURVE ELEVATION TOTAL AREA TOTAL VOLUME EFF AREA EFF VOLUME 690.000 82.150 381.900 73.940 343.700 689.000 80.550 300.600 72.490 270.500 688.000 78.960 220.800 71.060 198.700 687.000 77.330 142.700 69.600 128.400 686.000 29.700 71.740 26.730 64.570 685.000 14.750 50.790 13.280 45.710 PLOT FILE FREQENCY 1 (NUMBER OF TIME STEPS)PLOT FILE FORMAT 0 (0-EXCEL/1-ACGRACE)

NUMBER OF VARIABLES FOR PLOT FILE: 3 PLOT VARIABLES:

18 LAKE TEMP NATURAL (F)19 LAKE TEMP @ INLET (F)20 LAKE TEMP @ OUTLET (F)INITIAL FORCED/NATURAL LAKE TEMPS. = 102.74 98.24 WEATHER STATION ID 93822.20.00 I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H276 of H344 I Program LAKET Number 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 8 Date : 02/24/2011 Time 13:13:58.03 Case 4c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.0')FPLANT 61854 -TPRISE 61854 -71754 R/I 71754 S/I 86.000 35.480 15.420 13.950 13.360 12.500 12.090 11.560 11.560 11.160 11.150 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9.630 9.630 9. 630 9.480 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 28.950 15.060 13.520 13.300 12.500 12.090 11.560 11.560 11.150 10.950 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 10.070 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 16.790 14.610 13.360 12.790 12.300 12.090 11.560 11.560 11.150 10.940 10.590 10.590 10.590 10.590 10.070 10.070 10.070 10.070 9.810 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.230 8.940 8.940 16.390 14.360 13.360 12.790 12.090 12.080 11.560 11.560 11.150 10. 940 10.590 10.590 10.590 10.360 10.070 10.070 10.070 10.070 9.790 9.790 9.630 9.630 9.630 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 9.270 8.940 8.940 8.940 I PROJECT NO. 11333-297 1

ICALCULATION NO. L-002457 8.940 8.940 8.940 8.810 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 REVISION NO. 8 8.940 8.940 8. 940 8.780 8.780 8.780 8.780 8.780 8.780 8. 610 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.940 8.940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 ATTACHMENT H, PAGE NO. H277 of H344 8.940 8.940 8.940 8.780 8.780 8.780 8.780 8.780 8.780 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.570 8.520 I PROJECT NO. 11333-297 I CALCULATION NO, L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H278 of H344 Program : LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Case 4c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.0')Page : 9 Date 02/24/2011 Time : 13:13:58.09 SEASONAL

SUMMARY

FOR SUMMER ( 6/1954 -QUANTITY JUN 8/1954 )MONTHLY AVERAGES JUL AUG ANEMOMETER HEIGHT (FT) 20.00 LAKE ELEVATION (FEET) 689.60 TOTAL AREA (ACRE) 81.52 TOTAL VOLUME (ACRE-FT) 349.69 EFFECTIVE AREA (ACRE) 73.37 EFFECTIVE VOL (ACRE-FT) 314.70 CIRCULATION TIME (HR) 0.00 PRECIPITATION (CFS) 0.00 MAKEUP TOTAL (CFS) 0.00 SEEPAGE (CFS) -0.18 EVAPORATION TOTAL (CFS) -2.04 EVAPORATION NATURL(CFS)

-1.31 EVAPORATION FORCED(CFS)

-0.73 BLOWDOWN TOTAL (CFS) 0.00 SOLAR GAIN (BTU/HR-FT2) 226.40 SURF LOSS (BTU/HR-FT2) 148.36 EVAP LOSS (BTU/HR-FT2) 86.34 COND LOSS (BTU/HR-FT2) 4.41 LAKE TEMP NATURAL (F) 86.14 LAKE TEMP @ INLET (F) 98.38 LAKE TEMP @ OUTLET (F) 87.12 DISSOLVED SOLIDS (PPM) 0.00 QUANTITY JUN 20.00 688.91 80.40 293.35 72.36 263.98 0.00 0.00 0.00-0.16-1.70-1.14-0.56 0.00 221.82 145.47 76.25 0.97 83.50 93.35 84.58 0.00 MONTHLY TOTALS JUL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 AUG AVERAGE VALUE 20.00 689.21 80.89 317.77 72.80 285.96 0.00 0.00 0.00-0.17-1.85-1 22-0. 63 0.00 223. 80 146.72 80. 62 2.46 84. 64 95. 53 85. 68 0.00 TOTAL VALUE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MKUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00-4.76-52.66-33.87-18.78 0.00 0.00 0.00-5.29-57.30-38.48-18.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-10.05-109.95-72.35-37. 60 0.00 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 TEMPERATURE LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)REVISION NO. 8 ATTACHMENT H, PAGE NO. H279 of H344 I FREQUENCY OF OCCURENCES 1% 5% 50%100.0 94.0 84.0 133.0 108.0 94.5 104.0 94.0 85.1 PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H280 of H344 1 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 10 Date : 02/24/2011 Time : 13:13:58.09 Case 4c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.0')CUMULATIVE SEASONAL

SUMMARY

SUMMER QUANTITY JUN MONTHLY AVERAGES JUL AUG AVERAGE VALUE ANEMOMETER HEIGHT (FT) 20.00 LAKE ELEVATION (FEET) 689.60 TOTAL AREA (ACRE) 81.52 TOTAL VOLUME (ACRE-FT) 349.69 EFFECTIVE AREA (ACRE) 73.37 EFFECTIVE VOL (ACRE-FT) 314.70 CIRCULATION TIME (HR) 0.00 PRECIPITATION (CFS) 0.00 MAKEUP TOTAL (CFS) 0.00 SEEPAGE (CFS) -0.18 EVAPORATION TOTAL (CFS) -2.04 EVAPORATION NATURL(CFS)

-1.31 EVAPORATION FORCED(CFS)

-0.73 BLOWDOWN TOTAL (CFS) 0.00 SOLAR GAIN (BTU/HR-FT2) 226.40 SURF LOSS (BTU/HR-FT2) 148.36 EVAP LOSS (BTU/HR-FT2) 86.34 COND LOSS (BTU/HR-FT2) 4.41 LAKE TEMP NATURAL (F) 86.14 LAKE TEMP @ INLET (F) 98.38 LAKE TEMP @ OUTLET (F) 87.12 DISSOLVED SOLIDS (PPM) 0.00 QUANTITY MO JUN 20.00 688.91 80.40 293.35 72.36 263.98 0.00 0.00 0.00-0.16-1.70-1.14-0.56 0.00 221.82 145.47 76.25 0.97 83.50 93.35 84.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 689.21 80.89 317.77 72.80 285.96 0.00 0.00 0.00-0.17-1.85-1.22-0.63 0.00 223.80 146.72 80. 62 2.46 84.64 95.53 85.68 0.00 TOTAL VALUE NTHLY TOTALS JUL AUG TOTAL PRECIP (ACRE-FT)TOTAL MKUP TOT(ACRE-FT)

TOTAL SEEPAGE (ACRE-FT)TOTAL EVAP TOT(ACRE-FT)

TOTAL EVAP NAT(ACRE-FT)

TOTAL EVAP FOR(ACRE-FT)

TOTAL BLWD TOT(ACRE-FT) 0.00 0.00-4.76-52.66-33.87-18.78 0.00 0.00 0.00-5.29-57.30-38.48-18.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-10.05-109.95-72.35-37. 60 0.00 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 TEMPERATURE


LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)I REVISION NO. 8 ATTACHMENT H, PAGE NO. H281 of H344 I FREQUENCY OF OCCURENCES 1% 5% 50%---------------------------

I00.0 94.0 84.0 133.0 108.0 94.5 104.0 94.0 85.1 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H282 of H344 Program : LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 11 Date 02/24/2011 Time 13:13:58.09 Case 4c: LaSalle UHS (12:00, Worst 30-day Evaporation; To=104F, 1.0')TOTAL CUMULATIVE

SUMMARY

QUANTITY ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)MAXIMUM VALUE 20.00 690.00 82.14 381.62 73.94 343.45 0.00 0.00 0.00-0.14-0.49-0.26-0.16 0.00 451.13 165.64 270.89 37.53 101.48 140.00 104.84 0.00 MINIMUM DATE ) VALUE ( DATE AVERAGE VALUE 6181954)6181954)6181954)6181954)6181954)6181954)6181954)6181954)6181954)7171954)6291954)6291954)7171954)6181954)6191954)6181954)6271954)6271954)6181954)6181954)6181954)6181954)DATE )20.00 6181954)688.52 7171954)79.78 7171954)261.88 7171954)71.80 7171954)235.66 7171954)0.00 6181954)0.00 6181954)0.00 6181954)-0.20 6181954)-5.43 6181954)-4.11 6271954)-2.44 6181954)0.00 6181954)90.18 7071954)136.01 7071954)17.13 6291954)-47.07 7121954)74.48 7071954)83.77 7071954)74.79 7071954)0.00 6181954)MINIMUM VALUE ( DATE 20.00 689.21 80.89 317.77 72.80 285.96 0.00 0.00 0.00-0.17-1.85-1.22-0.63 0.00 223.80 146.72 80.62 2.46 84.64 95.53 85.68 0.00 TOTAL VALUE QUANTITY MAXIMUM VALUE TOTAL PRECIP (ACRE-FT) 0 TOTAL MKUP TOT(ACRE-FT) 0 TOTAL SEEPAGE (ACRE-FT)

-0 TOTAL EVAP TOT(ACRE-FT)

-0 TOTAL EVAP NAT(ACRE-FT)

-0 TOTAL EVAP FOR(ACRE-FT)

-0 TOTAL BLWD TOT(ACRE-FT) 0.00.00.04.12.06.04.00 6181954)6181954)7171954)6291954)6291954)7171954)6181954)0.00 0.00-0.05-1.35-1.02-0.61 0.00 6181954)6181954)6181954)6181954)6271954)6181954)6181954)0.00 0.00-10.05-109.95-72.35-37.60 0.00 PROJECT NO. 11333-297 CALCULATION NO. L-002457 TEMPERATURE FREQUENCY OF OCCURENCES 1% 5% 50%LAKE TEMP NATURAL (F) 100.0 94.0 84.0 LAKE TEMP @ INLET (F) 133.0 108.0 94.5 LAKE TEMP @ OUTLET (F) 104.0 94.0 85.1 REVISION NO. 8 ATTACHMENT H, PAGE NO. H283 of H344 I REVIIONNO.

ATACHMNT , PGE O. H83 f H44 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H284 of H344 I Program : LAKET Number 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 1 Date 04/07/2006 Time 09:37:07.53 Case 00ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat 1 2 061854 071754 1 3 1 0 20.4 1 0.2 550 5 6 2 690 690 83.83 464.689 82.15 381.688 80.55 300.687 78.96 220 686 77.33 142.685 29.70 71.7 7 1 0 3 97.6 93.1 3 2 0.9 9 5.8 6 19 0 75.45 73.94 72.50 71.06 69.60 26.73 20 418.4 343.7 270.5 198.7 128.4 65.6 21 8 999 FPLANT TPRISE 35.26 28.79 16.68 16.28 15.32 14.97 14.53 14.29 13.88 13.45 13.30 13.30 13.30 13.24 12.73 12.73 12.57 12.43 12.24 12.02 12.02 12.02 12.02 12.01 11.49 11.49 11.49 11.49 R/I S/I 86.0 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 11.49 11.49 11.49 11.49 11.09 11.07 11.07 11.07 11.07 10. 87 10.86 10.86 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.27 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.72 9.70 9.70 9.70 REVISION NO. 8 ATTACHMENT H, PAGE NO. H285 of H344 I I PROJECT NO. 11333-297 CALCULATION NO. L-002457 9.70 9.70 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.40 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 m REVISION NO. 8 ATTACHMENT H, PAGE NO. H286 of H344 I I IPROJECT NO. 11333-297 CALCULATION NO. L-002457 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.15 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.72 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 REVISION NO. 8 ATTACHMENT H, PAGE NO. H287 of H344 i PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H288 of H344 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.52 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H289 of H344 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.44 END I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H290 of H344 Program LAKET Page : 7 Number 03.7.292-2.2 0 Date : 04/07/2006 Created :11/18/2004 08:08:26 Time :09:37:07.53 Case 00ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat RUN 30 DAYS FROM 61854 TO 71754 PLOT FILE OPTION : 1 CYCLE FLAG: 1 CIRCULATION TIME FLAG: 0 TIME INCREMENT

3 TIME UNITS: 2 WEATHER FILE OPTION: 1 ANEMOMETER HEIGHT OPTION: 0 ANEMOMETER HEIGHT 20.00 DENSITY: 62.40 SEEPAGE: 0.20 LAKE LENGTH: 5500.00 LAKE ELEVATION OPTION = 2 INITIAL LAKE ELEVATION

= 690.00 DRAWDOWN CURVE ELEVATION TOTAL AREA TOTAL VOLUME EFF AREA EFF VOLUME 690.000 83.830 464.900 75.450 418.400 689.000 82.150 381.900 73.940 343.700 688.000 80.550 300.500 72.500 270.500 687.000 78.960 220.800 71.060 198.700 686.000 77.330 142.600 69.600 128.400 685.000 29.700 71.700 26.730 65.600 PLOT FILE FREQENCY 1 (NUMBER OF TIME STEPS)PLOT FILE FORMAT 0 (0-EXCEL/1-ACGRACE)

NUMBER OF VARIABLES FOR PLOT FILE: 3 PLOT VARIABLES:

19 LAKE TEMP @ INLET (F)20 LAKE TEMP @ OUTLET (F)21 LAKE TEMP @ DAM (F)INITIAL FORCED/NATURAL LAKE TEMPS. = 97.60 93.10 WEATHER STATION ID 93822.I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H291 of H344 Program : LAKET Number 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 8 Date 04/07/2006 Time 09:37:07.53 Case 00ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat FPLANT 61854 -TPRISE 61854 -71754 R/I 71754 S/I 86.000 35.260 15.320 13.880 13.300 12.570 12.020 11.490 11.490 11.090 11.070 10.500 10.500 10.500 10.500 9.990 9.990 9.990 9.990 9.990 9.700 9.540 9. 540 9.540 9.400 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9. 190 9.190 9.190 9.190 8.850 8.850 8.850 28.790 14.970 13.450 13.240 12.430 12.020 11.490 11.490 11.070 10.870 10.500 10.500 10.500 10.500 9.990 9.990 9.990 9.990 9.990 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 16.680 14.530 13.300 12.730 12.240 12.020 11.490 11.490 11.070 10.860 10.500 10.500 10.500 10.500 9.990 9.990 9.990 9.990 9.720 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.150 8.850 8.850 8.850 16.280 14 .290 13.300 12.730 12.020 12.010 11.490 11.490 11.070 10.860 10.500 10.500 10.500 10.270 9.990 9.990 9.990 9.990 9.700 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 8.850 PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H292 of H344 8.850 8.850 8.720 8.700 8.700 8.700 8.700 8.700 8.700 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.850 8.850 8.700 8.700 8.700 8.700 8.700 8.700 8.520 8.490 8.490 8.490 8. 490 8. 490 8. 490 8. 490 8. 490 8. 490 8.490 8.490 8.490 8.490 8.850 8.850 8. 700 8.700 8.700 8.700 8.700 8.700 8.490 8.490 8.490 8 .490 8 .490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.850 8.850 8. 700 8.700 8.700 8.700 8.700 8.700 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.440 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H293 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 9 Date : 04/07/2006 Time : 09:37:07.56 Case 00ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat SEASONAL

SUMMARY

FOR SUMMER ( 6/1954 -8/1954 )QUANTITY MONTHLY AVERAGES JUL JUN AVERAGE AUG VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)20.00 689.62 83.19 433.37 74.88 390.02 0.00 0.00 0.00-0.19-2.03-1.31-0.72 0.00 226.40 148.00 84.28 4.08 85.84 98.17 86.96 0.00 20.00 688.93 82.04 376.32 73.84 338. 68 0.00 0.00 0.00-0.17-1.72-1.16-0.55 0.00 221.82 145.52 76.16 1.01 83.56 93.43 84 .72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0 .00 0.00 0.00 20.00 689.23 82.54 401.04 74.29 360.93 0.00 0.00 0.00-0.18-1.85-1.23-0. 62 0.00 223.80 146.59 79.68 2.34 84.55 95.49 85.69 0.00 QUANTITY MONTHLY TOTALS JUN JUL TOTAL AUG VALUE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MKUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00-4.84-52.28-33.73-18.55 0.00 0.00 0.00-5.58-57.83-39.21-18.62 0.00 0.00 0.00 0 .00 0 .00 0.00 0.00 0.00 0.00 0.00-10.42-110.11-72.94-37.17 0.00 TEMPERATURE FREQUENCY OF OCCURENCES I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 1%LAKE TEMP NATURAL (F) 95.8 LAKE TEMP @ INLET (F) 128.0 LAKE TEMP @ OUTLET (F) 99.0 REVISION NO. 8 ATTACHMENT H, PAGE NO. H294 of H344 I 5% 50%92.2 84.1 106.5 94.5 92.7 85.2 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 REVISION NO. 8 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 ATTACHMENT H, PAGE NO. H295 of H344 Page : 10 Date : 04/07/2006 Time 09:37:07.56 Case 00ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat CUMULATIVE SEASONAL

SUMMARY

SUMMER QUANTITY J MONTHLY AVERAGES UN JUL A AVERAGE G VALUE U ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY 20.00 689.62 83.19 433.37 74.88 390.02 0.00 0.00 0.00-0.19-2.03-1.31-0.72 0.00 226.40 148.00 84.28 4.08 85.84 98.17 86.96 0.00 20. 00 688.93 82.04 376.32 73.84 338.68 0.00 0.00 0.00-0.17-1.72-1.16-0.55 0.00 221.82 145.52 76.16 1.01 83.56 93.43 84.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 689.23 82. 54 401.04 74.29 360.93 0.00 0.00 0.00-0.18-1.85-1.23-0.62 0.00 223.80 146.59 79.68 2.34 84.55 95.49 85.69 0.00 TOTAL VALUE 0.00 0.00-10.42-110.11-72.94-37.17 0.00 MONTHLY TOTALS JUN JUL AUG TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MKUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00-4.84-52.28-33.73-18.55 0.00 0.00 0.00-5.58-57.83-39.21-18.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TEMPERATURE FREQUENCY OF OCCURENCES PROJECT NO. 11333-297 CALCULATION NO. L-002457 1% 5% 50%LAKE TEMP NATURAL (F) 95.8 92.2 84.1 LAKE TEMP @ INLET (F) 128.0 106.5 94.5 LAKE TEMP @ OUTLET (F) 99.0 92.7 85.2 REVISION NO. 8 ATTACHMENT H, PAGE NO. H296 of H344 I REVISION NO. 8 ATTACHMENT H, PAGE NO. H296 of H344 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H297 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 11 Date 04/07/2006 Time 09:37:07.56 Case 00ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat TOTAL CUMULATIVE

SUMMARY

QUANTITY MAXIMUM--

-- --- --- --- --- --- --- --- --- --- -QUANTITY MAXIMUM VALUE (DATE MINIMUM AVERAGE VALUE ( DATE ) VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)20.00 690.00 83.83 464.67 75.45 418.19 0.00 0.00 0.00-0.15-0.54-0.28-0.15 0.00 451.13 159.63 262.99 37.83 96.31 134.81 99.95 0.00 6181954)6181954)6181954)6181954)6181954)6181954)6181954)6181954)6181954)7171954)6291954)6221954)6181954)6181954)6191954)6181954)6271954)6271954)6181954)6181954)6181954)6181954)20.00 688 54 81.41 344.36 73 .28 309.94 0.00 0.00 0.00-0.20-5.33-4 .07-1. 92 0.00 90.18 137 .82 17 .98-46.87 76.25 85.65 76.80 0.00 6181954)7171954)7171954)7171954)7171954)7171954)6181954)6181954)6181954)6181954)6271954)6271954)6181954)6181954)7071954)7071954)6221954)7121954)7071954)7071954)7071954)6181954)20.00 689.23 82.54 401 .04 74.29 360.93 0.00 0.00 0.00-0.18-1 85-1.23-0. 62 0.00 223.80 146.59 79.68 2.34 84. 55 95.49 85.69 0.00--------------------------------


QUANTITY MAXIMUM MINIMUM VALUE ( DATE VALUE ( DATE TOTAL VALUE TOTAL PRECIP (ACRE-FT) 0.00 6181954)TOTAL MKUP TOT(ACRE-FT) 0.00 6181954)TOTAL SEEPAGE (ACRE-FT)

-0.04 7171954)TOTAL EVAP TOT(ACRE-FT)

-0.13 6291954)TOTAL EVAP NAT(ACRE-FT)

-0.07 6221954)TOTAL EVAP FOR(ACRE-FT)

-0.04 6181954)TOTAL BLWD TOT(ACRE-FT) 0.00 6181954)TEMPERATURE FREQUENCY OF OCCURENCES 0.00 0.00-0.05-1.32-1.01-0.48 0.00 6181954)6181954)6181954)6271954)6271954)6181954)6181954)0.00 0.00-10.42-110.11-72. 94-37 .17 0.00 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H298 of H344 1% 5% 50%LAKE TEMP NATURAL LAKE TEMP @ INLET LAKE TEMP @ OUTLET (F)(F)(F)95.8 128.0 99.0 92.2 106.5 92.7 84.1 94.5 85.2 Program LAKET Number 03.7.292-2.2 0 Page : 1 Date : 04/07/2006 I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H299 of H344 Created : 11/18/2004 08:08:26 Time : 09:41:26.34 Case 06ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprate)1 2 061854 071754 1 1 0 3 2 3 1 0 20.4 1 0.2 5500. 0 5 6 2 690 7 8 999 FPLANT TPRISE 35.26 28.79 16.68 16.28 15.32 14.97 14.53 14.29 13.88 13.45 13.30 13.30 13.30 13.24 12.73 12.73 12.57 12.43 12.24 12.02 12.02 12.02 12.02 12.01 11.49 11.49 11.49 11.49 11.49 11.49 590 82.99 423.89 81.35 341.88 79.75 260.87 78.15 181.86 29.70 102.85 22.22 60.0 1 0 3 97.4 92.9 0 5 74.69 4 73.21 8 71.78 9 70.34 2 26.73 20.00 19 20 381.2 307.2 234.7 163.7 92.0 54.0 21 R/I S/I 86.0 PROJECT NO. 11333-297 CALCULATION NO. L-002457 11.49 11.49 11.09 11.07 11.07 11.07 11.07 10.87 10.86 10.86 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.27 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.72 9.70 9.70 9.70 9.70 9.70 REVISION NO. 8 ATTACHMENT H, PAGE NO. H300 of H344 I I PROJECT NO. 11333-297 1

ICALCULATION NO. L-002457 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.40 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 REVISION NO. 8 ATTACHMENT H, PAGE NO. H301 of H344 1 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H302 of H344 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.15 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.72 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 PROJECT NO. 11333-297 CALCULATION NO. L-002457 8.70 8.70 8.70 8.70 8.70 8 .52 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8 .49 8 .49 8 .49 8 .49 8.49 8.49 8.49 8.49 8.49 8.49 8 .49 8 .49 8 .49 8 .49 8 .49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 REVISION NO. 8 ATTACHMENT H, PAGE NO. H303 of H344 I PROJECT NO. 11333-297 1

ICALCULATION NO. L-002457 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.44 END REVISION NO. 8 ATTACHMENT H, PAGE NO. H304 of H344 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H305 of H344 Program : LAKET Page : 7 Number 03.7.292-2.2 0 Date : 04/07/2006 Created: 11/18/2004 08:08:26 Time : 09:41:26.34 Case 06ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat RUN 30 DAYS FROM 61854 TO 71754 PLOT FILE OPTION : 1 CYCLE FLAG: 1 CIRCULATION TIME FLAG: 0 TIME INCREMENT

3 TIME UNITS: 2 WEATHER FILE OPTION: 1 ANEMOMETER HEIGHT OPTION: 0 ANEMOMETER HEIGHT 20.00 DENSITY: 62.40 SEEPAGE: 0.20 LAKE LENGTH: 5500.00 LAKE ELEVATION OPTION = 2 INITIAL LAKE ELEVATION

= 690.00 DRAWDOWN CURVE ELEVATION TOTAL AREA TOTAL VOLUME EFF AREA EFF VOLUME 690.000 82.990 423.500 74.690 381.200 689.000 81.350 341.400 73.210 307.200 688.000 79.750 260.800 71.780 234.700 687.000 78.150 181.900 70.340 163.700 686.000 29.700 102.200 26.730 92.000 685.000 22.220 60.000 20.000 54.000 PLOT FILE FREQENCY 1 (NUMBER OF TIME STEPS)PLOT FILE FORMAT 0 (0-EXCEL/1-ACGRACE)

NUMBER OF VARIABLES FOR PLOT FILE: 3 PLOT VARIABLES:

19 LAKE TEMP @ INLET (F)20 LAKE TEMP @ OUTLET (F)21 LAKE TEMP @ DAM (F)INITIAL FORCED/NATURAL LAKE TEMPS. = 97.40 92.90 WEATHER STATION ID 93822.I PROJECT NO. 11333-297 1

I ICALCULATION NO. L-002457 Program LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 REVISION NO. 8 ATTACHMENT H, PAGE NO. H306 of H344 I Page :8 Date :04/07/2006 Time :09:41:26.34 Case 06ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat FPLANT 61854 -TPRISE 61854 -71754 R/I 71754 S/I 86.000 35.260 15.320 13.880 13.300 12.570 12.020 11.490 11.490 11.090 11.070 10.500 10.500 10.500 10.500 9.990 9.990 9.990 9.990 9.990 9.700 9.540 9.540 9.540 9.400 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9. 190 9.190 9.190 9.190 8.850 8.850 8.850 28.790 14.970 13.450 13.240 12.430 12.020 11.490 11.490 11.070 10.870 10.500 10.500 10.500 10.500 9. 990 9.990 9.990 9.990 9.990 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 16.680 14.530 13.300 12.730 12.240 12.020 11.490 11.490 11.070 10.860 10.500 10.500 10.500 10.500 9.990 9.990 9.990 9.990 9.720 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9. 190 9.190 9.190 9.150 8.850 8.850 8.850 16.280 14 .290 13.300 12.730 12.020 12.010 11.490 11.490 11.070 10.860 10.500 10.500 10.500 10.270 9. 990 9. 990 9. 990 9. 990 9.700 9. 700 9.540 9.540 9.540 9.190 9.190 9.190 9. 190 9.190 9.190 9. 190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 8.850 I PROJECT NO. 11333-297 1

ICALCULATION NO. L-002457 8.850 8.850 8.720 8.700 8.700 8.700 8.700 8.700 8.700 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 REVISION NO. 8 8.850 8.850 8.700 8.700 8.700 8.700 8.700 8.700 8.520 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.850 8.850 8.700 8.700 8.700 8.700 8.700 8.700 8.490 8.490 8.490 8 .490 8.490 8.490 8.490 8.490 8.490 8.490 8 .490 8.490 8 .490 8.490 ATTACHMENT H, PAGE NO. H307 of H344 8.850 8.850 8.700 8.700 8.700 8.700 8.700 8.700 8. 490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.440 I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H308 of H344 Program : LAKET Page : 9 Number Created 03.7.292-2.2 0 11/18/2004 08:08:26 Date 04/07/2006 Time 09:41:26.35 Case 06ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat SEASONAL

SUMMARY

FOR SUMMER (6/1954 -8/1954 )QUANTITY MONTHLY AVERAGES JUN JUL AUG AVERAGE VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY 20.00 689.62 82.37 392.37 74 .13 353.14 0.00 0.00 0.00-0.19-2.00-1.28-0.72 0.00 226.40 147.84 83.54 3.88 85.70 97.97 86.77 0.00 20.00 688.93 81.24 335.79 73.11 302.16 0.00 0.00 0.00-0.16-1.70-1.15-0.55 0.00 221.82 145.50 76.20 0.99 83.53 93.35 84.64 0.00 MONTHLY TOTALS JUL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 689.23 81.73 360.30 73.55 324.25 0.00 0.00 0.00-0.17-1.83-1.21-0.62 0.00 223.80 146.51 79.38 2.24 84.47 95.35 85.57 0.00 TOTAL VALUE 0.00 0.00-10.27-109.12-71.95-37.17 0.00 JUN AUG TOTAL PRECIP (ACRE-FT) 0.00 TOTAL MKUP TOT(ACRE-FT) 0.00 TOTAL SEEPAGE (ACRE-FT)

-4.81 TOTAL EVAP TOT(ACRE-FT)

-51.65 TOTAL EVAP NAT(ACRE-FT)

-33.10 TOTAL EVAP FOR(ACRE-FT)

-18.55 TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 0.00-5.46-57.47-38.85-18.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 TEMPERATURE FREQUENCY OF OCCURENCES I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H309 of H344 1% 5% 50%LAKE TEMP LAKE TEMP LAKE TEMP NATURAL@ INLET@ OUTLET (F)(F)(F)95.8 128.0 99.0 92.2 106.0 92.3 84.0 94.4 85.1 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H310 of H344 I Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 10 Date : 04/07/2006 Time 09:41:26.35 Case 06ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat CUMULATIVE SEASONAL

SUMMARY

SUMMER QUANTITY MONTHLY AVERAGE JUN JUL S AVERAGE AUG VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)20.00 689. 62 82.37 392.37 74.13 353.14 0.00 0.00 0.00-0.19-2.00-1.28-0.72 0.00 226.40 147 .84 83.54 3.88 85.70 97.97 86.77 0.00 20.00 688.93 81.24 335.79 73.11 302.16 0.00 0.00 0.00-0.16-1.70-1.15-0.55 0.00 221.82 145.50 76.20 0.99 83.53 93.35 84.64 0.00 MONTHLY TOTALS JUL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 689.23 81.73 360.30 73.55 324.25 0.00 0.00 0.00-0.17-1.83-1.21-0 .62 0.00 223.80 146.51 79.38 2 .24 84 .47 95.35 85.57 0.00 TOTAL VALUE 0.00 0.00-10.27-109.12-71.95-37.17 0.00 QUANTITY JUN AUG TOTAL PRECIP (ACRE-FT) 0.00 0.00 TOTAL MKUP TOT(ACRE-FT) 0.00 0.00 TOTAL SEEPAGE (ACRE-FT)

-4.81 -5.46 TOTAL EVAP TOT(ACRE-FT)

-51.65 -57.47 TOTAL EVAP NAT(ACRE-FT)

-33.10 -38.85 TOTAL EVAP FOR(ACRE-FT)

-18.55 -18.62 TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 TEMPERATURE FREQUENCY OF OCCURENCES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H311 of H344 1% 5% 50%LAKE TEMP NATURAL LAKE TEMP @ INLET LAKE TEMP @ OUTLET (F)(F)(F)95.8 128.0 99.0 92.2 106.0 92.3 84.0 94 .4 85.1 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H312 of H344 I Program : LAKET Number 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Page : 11 Date 04/07/2006 Time : 09:41:26.35 Case 06ev: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprat TOTAL CUMULATIVE

SUMMARY

QUANTITY MAXIMUM VALUE MINIMUM DATE VALUE ( DATE AVERAGE VALUE ANEMOMETER HEIGHT (FT) 20.00 6181954)LAKE ELEVATION (FEET) 690.00 6181954)TOTAL AREA (ACRE) 82.99 6181954)TOTAL VOLUME (ACRE-FT) 423.27 6181954)EFFECTIVE AREA (ACRE) 74.69 6181954)EFFECTIVE VOL (ACRE-FT) 381.00 6181954)CIRCULATION TIME (HR) 0.00 6181954)PRECIPITATION (CFS) 0.00 6181954)MAKEUP TOTAL (CFS) 0.00 6181954)SEEPAGE (CFS) -0.15 7171954)EVAPORATION TOTAL (CFS) -0.52 6291954)EVAPORATION NATURL(CFS)

-0.27 6221954)EVAPORATION FORCED(CFS)

-0.14 6181954)BLOWDOWN TOTAL (CFS) 0.00 6181954)SOLAR GAIN (BTU/HR-FT2) 451.13 6191954)SURF LOSS (BTU/HR-FT2) 159.72 6181954)EVAP LOSS (BTU/HR-FT2) 266.48 6271954)COND LOSS (BTU/HR-FT2) 37.73 6271954)LAKE TEMP NATURAL (F) 96.39 6181954)LAKE TEMP @ INLET (F) 134.78 6181954)LAKE TEMP @ OUTLET (F) 99.96 6181954)DISSOLVED SOLIDS (PPM) 0.00 6181954)QUANTITY MAXIMUM VALUE ( DATE 20.00 688.54 80.61 304.09 72.55 273.64 0.00 0.00 0.00-0.20-5.34-4.09-1.97 0.00 90.18 137.02 17.56-46.97 75.47 84.76 75.91 0.00 6181954)7171954)7171954)7171954)7171954)7171954)6181954)6181954)6181954)6181954)6271954)6271954)6181954)6181954)7071954)7071954)6221954)7121954)7071954)7071954)7071954)6181954)20.00 689.23 81.73 360.30 73.55 324.25 0.00 0.00 0.00-0.17-1.83-1.21-0.62 0.00 223.80 146.51 79.38 2.24 84.47 95.35 85.57 0.00 TOTAL VALUE MINIMUM VALUE ( DATE TOTAL PRECIP (ACRE-FT) 0.00 6181954)TOTAL MKUP TOT(ACRE-FT) 0.00 6181954)TOTAL SEEPAGE (ACRE-FT)

-0.04 7171954)TOTAL EVAP TOT(ACRE-FT)

-0.13 6291954)TOTAL EVAP NAT(ACRE-FT)

-0.07 6221954)TOTAL EVAP FOR(ACRE-FT)

-0.04 6181954)TOTAL BLWD TOT(ACRE-FT) 0.00 6181954)TEMPERATURE FREQUENCY OF OCCURENCES 0.00 0.00-0.05-1.32-1.01-0 .49 0.00 6181954)6181954)6181954)6271954)6271954)6181954)6181954)0.00 0.00-10.27-109.12-71.95-37.17 0.00 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 1% 5% 50%LAKE TEMP NATURAL (F) 95.8 92.2 84.0 LAKE TEMP @ INLET (F) 128.0 106.0 94.4 LAKE TEMP @ OUTLET (F) 99.0 92.3 85.1 REVISION NO. 8 ATTACHMENT H, PAGE NO. H313 of H344 I Program LAKET Number 03.7.292-2.2 0 Page : 1 Date : 04/07/2006 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H314 ofH344 Created : 11/18/2004 08:08:26 Time : 09:43:32.15 Case 18e: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprate 1 2 3 4 5 061854 071754 1 1 0 20.1 0.2 5 6 2 6 690 81.35 341.4 689 79.75 260.8 688 78.15 181.9 687 29.70 102.2 686 22.22 60.0 685 13.42 43.8 1 0 3 96.8 92.3 1 0 3 500.90 0 73.21 71.78 70.34 26.73 20.00 12.08 19 20 307.2 234.7 163.7 92.0 54.0 39.4 21 7 8 999 FPLANT TPRISE 35.26 28.79 16.68 16.28 15.32 14.97 14.53 14.29 13.88 13.45 13.30 13.30 13.30 13.24 12.73 12.73 12.57 12.43 12.24 12.02 12.02 12.02 12.02 12.01 11.49 11.49 11.49 11.49 11.49 11.49 R/I S/I 86.0 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 11.49 11.49 11.09 11.07 11.07 11.07 11.07 10.87 10.86 10.86 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.27 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.72 9.70 9.70 9.70 9.70 9.70 REVISION NO. 8 ATTACHMENT H, PAGE NO. H315 of H344 1 I I PROJECT NO. 11333-297 CALCULATION NO. L-002457 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.40 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 REVISION NO. 8 ATTACHMENT H, PAGE NO. H316 of H344 I I PROJECT NO. 11333-297 CALCULATION NO. L-002457 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.15 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.72 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 REVISION NO. 8 ATTACHMENT H, PAGE NO. H317 of H344 I I PROJECT NO. 11333-297 ICALCULATION NO. L-002457 8.70 8.70 8.70 8.70 8.70 8.52 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 REVISION NO. 8 ATTACHMENT H, PAGE NO. H318 of H344 I I PROJECT NO. 11333-297 1

CALCULATION NO, L-002457 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.44 END REVISION NO. 8 ATTACHMENT H, PAGE NO. H319 of H344 I I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H320 of H344 Program: LAKET Page: 7 Number : 03.7.292-2.2 0 Date : 04/07/2006 Created: 11/18/2004 08:08:26 Time :09:43:32.15 Case 18e: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprate RUN 30 DAYS FROM 61854 TO 71754 PLOT FILE OPTION : 1 CYCLE FLAG: 1 CIRCULATION TIME FLAG: 0 TIME INCREMENT

3 TIME UNITS: 2 WEATHER FILE OPTION: 1 ANEMOMETER HEIGHT OPTION: 0 ANEMOMETER HEIGHT 20.00 DENSITY: 62.40 SEEPAGE: 0.20 LAKE LENGTH: 5500.00 LAKE ELEVATION OPTION = 2 INITIAL LAKE ELEVATION

= 690.00 DRAWDOWN CURVE ELEVATION TOTAL AREA TOTAL VOLUME EFF AREA EFF VOLUME 690.000 81.350 341.400 73.210 307.200 689.000 79.750 260.800 71.780 234.700 688.000 78.150 181.900 70.340 163.700 687.000 29.700 102.200 26.730 92.000 686.000 22.220 60.000 20.000 54.000 685.000 13.420 43.800 12.080 39.400 PLOT FILE FREQENCY 1 (NUMBER OF TIME STEPS)PLOT FILE FORMAT 0 (0-EXCEL/1-ACGRACE)

NUMBER OF VARIABLES FOR PLOT FILE: 3 PLOT VARIABLES:

19 LAKE TEMP @ INLET (F)20 LAKE TEMP @ OUTLET (F)21 LAKE TEMP @ DAM (F)INITIAL FORCED/NATURAL LAKE TEMPS. = 96.80 92.30 WEATHER STATION ID 93822.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H321 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 8 Date : 04/07/2006 Time : 09:43:32.15 Case 18e: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprate FPLANT 61854 -TPRISE 61854 -71754 R/I 71754 S/I 86.000 35.260 15.320 13.880 13.300 12.570 12.020 11.490 11.490 11.090 11.070 10.500 10.500 10.500 10.500 9.990 9.990 9.990 9.990 9.990 9.700 9.540 9.540 9.540 9.400 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 28.790 14.970 13.450 13.240 12.430 12.020 11.490 11.490 11.070 10.870 10.500 10. 500 10.500 10.500 9.990 9.990 9.990 9.990 9.990 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9. 190 9.190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 16.680 14.530 13.300 12.730 12.240 12.020 11.490 11.490 11.070 10.860 10.500 10.500 10.500 10.500 9.990 9.990 9.990 9.990 9.720 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.150 8.850 8.850 8.850 16.280 14.290 13.300 12.730 12.020 12.010 11.490 11.490 11.070 10.860 10.500 10.500 10.500 10.270 9.990 9.990 9.990 9.990 9.700 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 8.850 PROJECT NO. 11333-297 ICALCULATION NO. L-002457 8.850 8.850 8.720 8.700 8.700 8. 700 8.700 8.700 8.700 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 REVISION NO. 8 8.850 8.850 8.700 8.700 8.700 8.700 8.700 8.700 8. 520 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.850 8.850 8.700 8.700 8.700 8. 700 8.700 8.700 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 ATTACHMENT H, 8.850 8.850 8.700 8.700 8.700 8. 700 8.700 8.700 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.440 PAGE NO. H322 of H344 I I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H323 of H344 I Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 9 Date : 04/07/2006 Time 09:43:32.18 Case 18e: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprate SEASONAL

SUMMARY

FOR SUMMER ( 6/1954 -8/1954 )QUANTITY MONTHLY AVERAGES AVERAGE JUN JUL AUG VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY TOTAL PRECIP (ACRE-FT)TOTAL MKUP TOT(ACRE-FT)

TOTAL SEEPAGE (ACRE-FT)TOTAL EVAP TOT(ACRE-FT)

TOTAL EVAP NAT(ACRE-FT)

TOTAL EVAP FOR(ACRE-FT)

TOTAL BLWD TOT(ACRE-FT)

TEMPERATURE 20.00 689.62 80.75 311.10 72.67 279.94 0.00 0.00 0.00-0.18-1.95-1.23-0.72 0.00 226.40 147.50 81.97 3.45 85.38 97.62 86.44 0.00 JUN 0.00 0.00-4.73-50.36-31.83-18.53 0.00 20.00 688.93 79.64 255.47 71.68 229. 90 0.00 0.00 0.00-0.15-1. 68-.13-0.55 0.00 221.82 145. 43 76. 30 0.93 83.46 93.16 84.50 0.00 MONTHLY TOTALS JUL 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 0 .00 0 .00 0.00 0.00 AUG 0 .00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 689.23 80.12 279.57 72.11 251.58 0.00 0.00 0.00-0.17-1.80-1.18-0.62 0.00 223.80 146.33 78.76 2.02 84.29 95.09 85.34 0.00 TOTAL VALUE 0.00 0.00-5.15-56.78-38.14-18.64 0.00 0.00 0.00-9.89-107.14-69.97-37.17 0.00 FREQUENCY OF OCCURENCES I PROJECT NO. 11333-297 B CALCULATION NO. L-002457 1% 5%LAKE TEMP NATURAL (F) 96.0 91.7 LAKE TEMP @ INLET (F) 128.0 105.5 LAKE TEMP @ OUTLET (F) 99.0 92.6 REVISION NO. 8 ATTACHMENT H, PAGE NO. H324 of H344 I 50%84.1 94 .4 85.2 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H325 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 10 Date 04/07/2006 Time 09:43:32.18 Case 18e: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprate CUMULATIVE SEASONAL

SUMMARY

SUMMER QUANTITY JUN MONTHLY AVERAGES JUL AUG AVERAGE VALUE ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)20.00 689.62 80.75 311.10 72.67 279. 94 0.00 0.00 0.00-0.18-1.95-1 23-0.72 0.00 226.40 147.50 81.97 3.45 85.38 97. 62 86.44 0.00 20.00 688. 93 79. 64 255. 47 71.68 229. 90 0.00 0.00 0.00-0.15-1. 68-1. 13-0.55 0.00 221.82 145.43 76.30 0.93 83.46 93. 16 84.50 0.00 MONTHLY TOTALS JUL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 AUG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.00 689.23 80.12 279.57 72.11 251.58 0.00 0.00 0.00-0.17-1.80-1.18-0.62 0.00 223.80 146.33 78.76 2.02 84.29 95.09 85.34 0.00 TOTAL VALUE QUANTITY JUN TOTAL PRECIP (ACRE-FT) 0.00 0.00 TOTAL MKUP TOT(ACRE-FT) 0.00 0.00 TOTAL SEEPAGE (ACRE-FT)

-4.73 -5.15 TOTAL EVAP TOT(ACRE-FT)

-50.36 -56.78 TOTAL EVAP NAT(ACRE-FT)

-31.83 -38.14 TOTAL EVAP FOR(ACRE-FT)

-18.53 -18.64 TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 0.00 0.00-9.89-107.14-69.97-37.17 0.00 TEMPERATURE FREQUENCY OF OCCURENCES I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H326 of H344 1% 5% 50%LAKE TEMP NATURAL LAKE TEMP @ INLET LAKE TEMP @ OUTLET (F)(F)(F)96.0 128.0 99.0 91.7 105.5 92.6 84.1 94 .4 85.2 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 Program LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 REVISION NO. 8 ATTACHMENT H, PAGE NO. H327 of H344 I Page : 11 Date 04/07/2006 Time 09:43:32.18 Case 18e: LaSalle UHS (Updated Worst 30-Day Evap; Ti=97.6F @ 1200; power uprate TOTAL CUMULATIVE

SUMMARY

QUANTITY ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY MAXIMUM VALUE ( DATE MINIMUM AVERAGE VALUE ( DATE ) VALUE 20.00 690.00 81.35 341.18 73.21 307.00 0.00 0.00 0.00-0.14-0.48-0.24-0.14 0.00 451.13 159.94 275.39 37.16 96.58 134.67 99.96 0.00 6181954)6181954)6181954)6181954)6181954)6181954)6181954)6181954)6181954)7171954)6291954)6291954)6181954)6181954)6191954)6181954)6271954)6271954)6181954)6181954)6181954)6181954)20.00 6181954)688.54 7171954)79.01 7171954)224.36 7171954)71.11 7171954)201.91 7171954)0.00 6181954)0.00 6181954)0.00 6181954)-0.20 6181954)-5.39 6271954)-4.14 6271954)-2.08 6181954)0.00 6181954)90.18 7071954)134.94 7071954)16.21 6291954)-47.13 7121954)73.43 7071954)82.31 7071954)73.50 7071954)0.00 6181954)MINIMUM VALUE ( DATE 20.00 689.23 80 .12 279.57 72. 11 251.58 0.00 0.00 0.00-0.17-1.80-1.18-0 .62 0.00 223.80 146.33 78.76 2.02 84.29 95.09 85.34 0.00 TOTAL VALUE MAXIMUM VALUE ( DATE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MKUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00-0.03-0.12-0.06-0.03 0.00 6181954)6181954)7171954)6291954)6291954)6181954)6181954)0.00 0.00-0.05-1 34-1.03-0.52 0.00 6181954)6181954)6181954)6271954)6271954)6181954)6181954)0.00 0.00-9.89-107.14-69.97-37.17 0.00 TEMPERATURE FREQUENCY OF OCCURENCES IPROJECT NO. 11333-297 CALCULATION NO. L-002457 1%LAKE TEMP NATURAL (F) 96.0 LAKE TEMP @ INLET (F) 128.0 LAKE TEMP @ OUTLET (F) 99.0 REVISION NO. 8 ATTACHMENT H, PAGE NO. H328 of H344 I 5% 50%91.7 84.1 105.5 94.4 92.6 85.2 Program : LAKET Page I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H329 of H344 i Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 Date : 04/07/2006 Time : 09:56:32.71 Case 0609: LaSalle UHS (Updated Worst 36-Day Temp; Ti=97.7F @0900; power uprate 1 2 070100 080500 1 1 0 3 2 3 1 0 20 4 1 0.2 5500. 0 5 6 2 690 690 82.99 423.5 689 81.35 341.4 688 79.75 260.8 687 78.15 181.9 686 29.70 102.2 685 22.22 60.0 1 0 3 97.5 93.0 74.69 73.21 71.78 70.34 26.73 20.00 19 20 381.2 307.2 234.7 163.7 92.0 54.0 21 7 8 999 FPLANT TPRISE 35.26 28.79 16. 68 16.28 15.32 14. 97 14.53 14.29 13.88 13.45 13.30 13.30 13.30 13.24 12.73 12.73 12.57 12.43 12.24 12.02 12.02 12.02 12.02 12.01 11.49 11.49 11.49 11.49 11.49 R/I S/I 86.0 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 11.49 11.49 11.49 11.09 11.07 11.07 11.07 11.07 10.87 10.86 10.86 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.27 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.72 9.70 9.70 9.70 9.70 REVISION NO. 8 ATTACHMENT H, PAGE NO. H330 of H344 I I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 9.70 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.54 9.40 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 REVISION NO. 8 ATTACHMENT H, PAGE NO. H331 of H344 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.19 9.15 8.85 8.85 8 .85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.72 8.70 8.70 8.70 8.70 8.70 8.70 8 .70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 REVISION NO. 8 ATTACHMENT H, PAGE NO. H332 of H344 I I PROJECT NO. 11333-297 1

I ICALCULATION NO. L-002457 8.70 8.70 8.70 8.70 8.70 8.70 8.52 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 REVISION NO. 8 ATTACHMENT H, PAGE NO. H333 of H344 I I I PROJECT NO. 11333-297 ICALCULATION NO. L-002457 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.49 8.44 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8,22 8,22 8.22 8,22 8,22 8,22 8,22 8.22 8.22 8,22 8,22 8.22 8,22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 REVISION NO. 8 ATTACHMENT H, PAGE NO. H334 of H344 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22 END REVISION NO. 8 ATTACHMENT H, PAGE NO. H335 of H344 I I I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H336 of H344 Program : LAKET Page : 7 Number : 03.7.292-2.2 0 Date : 04/07/2006 Created 11/18/2004 08:08:26 Time 09:56:32.71 Case 0609: LaSalle UHS (Updated Worst 36-Day Temp; Ti=97.7F @0900; power uprate RUN 36 DAYS FROM 70100 TO 80500 PLOT FILE OPTION 1 CYCLE FLAG: 1 CIRCULATION TIME FLAG: 0 TIME INCREMENT

3 TIME UNITS: 2 WEATHER FILE OPTION: 1 ANEMOMETER HEIGHT OPTION: 0 ANEMOMETER HEIGHT 20.00 DENSITY: 62.40 SEEPAGE: 0.20 LAKE LENGTH: 5500.00 LAKE ELEVATION OPTION = 2 INITIAL LAKE ELEVATION

= 690.00 DRAWDOWN CURVE ELEVATION TOTAL AREA TOTAL VOLUME EFF AREA EFF VOLUME 690.000 82.990 423.500 74.690 381.200 689.000 81.350 341.400 73.210 307.200 688.000 79.750 260.800 71.780 234.700 687.000 78.150 181.900 70.340 163.700 686.000 29.700 102.200 26.730 92.000 685.000 22.220 60.000 20.000 54.000 PLOT FILE FREQENCY 1 (NUMBER OF TIME STEPS)PLOT FILE FORMAT 0 (0-EXCEL/1-ACGRACE)

NUMBER OF VARIABLES FOR PLOT FILE: 3 PLOT VARIABLES:

19 LAKE TEMP @ INLET (F)20 LAKE TEMP @ OUTLET (F)21 LAKE TEMP @ DAM (F)INITIAL FORCED/NATURAL LAKE TEMPS. 97.50 93.00 WEATHER STATION ID 0.PROJECT NO. 11333-297 CALCULATION NO. L-002457 Program LAKET Number : 03.7.292-2.2 0 Created 11/18/2004 08:08:26 REVISION NO. 8 ATTACHMENT H, PAGE NO. H337 of H344 I Page : 8 Date :04/07/2006 Time 09:56:32.71 Case 0609: LaSalle UHS (Updated Worst 36-Day Temp; Ti=97.7F @0900; power uprate FPLANT 70100 -TPRISE 70100 -80500 R/I 80500 S/I 86.000 35.260 15.320 13.880 13.300 12.570 12.020 11.490 11.490 11.090 11.070 10.500 10.500 10.500 10.500 9.990 9.990 9.990 9.990 9.990 9.700 9.540 9.540 9.540 9.400 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 28.790 14.970 13.450 13.240 12.430 12.020 11.490 11.490 11.070 10.870 10.500 10.500 10.500 10.500 9.990 9.990 9.990 9.990 9.990 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 16.680 14.530 13.300 12.730 12.240 12.020 11.490 11.490 11.070 10.860 10.500 10.500 10. 500 10.500 9. 990 9.990 9. 990 9.990 9.720 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.150 8.850 8.850 8.850 16.280 14.290 13.300 12.730 12.020 12.010 11.490 11.490 11.070 10.860 10.500 10.500 10.500 10.270 9.990 9.990 9.990 9.990 9.700 9.700 9.540 9.540 9.540 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 9.190 8.850 8.850 8.850 8.850 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 8.850 8.850 8.720 8.700 8.700 8.700 8.700 8.700 8.700 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8 .490 8 .490 8.490 8.490 8.490 8.490 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 REVISION NO. 8 8.850 8.850 8.700 8.700 8.700 8.700 8.700 8.700 8.520 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.850 8.850 8.700 8.700 8.700 8.700 8.700 8.700 8.490 8.490 8.490 8 .490 8.490 8.490 8.490 8 .490 8 .490 8 .490 8.490 8.490 8.490 8.490 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 ATTACHMENT H, PAGE NO. H338 of H344 8.050 8.850 8.700 8.700 8.700 8.700 8.700 8.700 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.490 8.440 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 8.220 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H339 of H344 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 9 Date 04/07/2006 Time 09:56:32.75 Case 0609: LaSalle UHS (Updated Worst 36-Day Temp; Ti=97.7F @0900; power uprate SEASONAL

SUMMARY

FOR SUMMER (QUANTITY 6/1900 -JUN 8/1900 )MONTHLY AVERAGES JUL AUG AVERAGE VALUE ANEMOMETER HEIGHT (FT) 0.00 20.00 LAKE ELEVATION (FEET) 0.00 689.29 TOTAL AREA (ACRE) 0.00 81.83 TOTAL VOLUME (ACRE-FT) 0.00 365.53 EFFECTIVE AREA (ACRE) 0.00 73.65 EFFECTIVE VOL (ACRE-FT) 0.00 328.96 CIRCULATION TIME (HR) 0.00 0.00 PRECIPITATION (CFS) 0.00 0.00 MAKEUP TOTAL (CFS) 0.00 0.00 SEEPAGE (CFS) 0.00 -0.17 EVAPORATION TOTAL (CFS) 0.00 -1.62 EVAPORATION NATURL(CFS) 0.00 -0.97 EVAPORATION FORCED(CFS) 0.00 -0.64 BLOWDOWN TOTAL (CFS) 0.00 0.00 SOLAR GAIN (BTU/HR-FT2) 0.00 219.94 SURF LOSS (BTU/HR-FT2) 0.00 153.43 EVAP LOSS (BTU/HR-FT2) 0.00 63.62 COND LOSS (BTU/HR-FT2) 0.00 5.18 LAKE TEMP NATURAL (F) 0.00 90.79 LAKE TEMP @ INLET (F) 0.00 101.45 LAKE TEMP @ OUTLET (F) 0.00 91.70 DISSOLVED SOLIDS (PPM) 0.00 0.00 20.00 20.00 688.57 689.19 80.66 81. 67 306.60 357.34 72.59 73.50 275.90 321.59 0.00 0.00 0.00 0.00 0.00 0.00-0.15 -0.17-1.32 -1.58-0.77 -0.94-0.55 -0.63 0.00 0.00 214.31 219.16 152.11 153.24 50.87 61.85 5.08 5.16 89.62 90.63 98.76 101.08 90.57 91.54 0.00 0.00 TOTAL AUG VALUE QUANTITY MONTHLY TOTALS JUL JUN TOTAL PRECIP (ACRE-FT) 0.00 0.00 TOTAL MKUP TOT(ACRE-FT) 0.00 0.00 TOTAL SEEPAGE (ACRE-FT) 0.00 -10.76 TOTAL EVAP TOT(ACRE-FT) 0.00 -99.48 TOTAL EVAP NAT(ACRE-FT) 0.00 -59.82 TOTAL EVAP FOR(ACRE-FT) 0.00 -39.66 TOTAL BLWD TOT(ACRE-FT) 0.00 0.00 TEMPERATURE FREQUENCY OF OCCURENCES 0.00 0.00-1.48-13.08-7.60-5.48 0.00 0.00 0.00-12.23-112.56-67. 42-45.14 0.00 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H340 of H344 1% 5% 50%LAKE TEMP NATURAL LAKE TEMP @ INLET LAKE TEMP @ OUTLET (F)(F)(F)97.0 128.0 99.0 95.9 109.4 97.1 90.9 100.9 91.9 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H341 of H344 7 Program Number Created LAKET 03.7.292-2.2 0 11/18/2004 08:08:26 Page : 10 Date : 04/07/2006 Time : 09:56:32.75 Case 0609: LaSalle UHS (Updated Worst 36-Day Temp; Ti=97.7F @0900; power uprate CUMULATIVE SEASONAL

SUMMARY

SUMMER QUANTITY MONTHLY AVERAGES JUL JUN AUG ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY 0.00 20.00 0.00 689.29 0.00 81.83 0.00 365.53 0.00 73.65 0.00 328.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.17 0.00 -1.62 0.00 -0.97 0.00 -0.64 0.00 0.00 0.00 219. 94 0.00 153.43 0.00 63.62 0.00 5.18 0.00 90.79 0.00 101.45 0.00 91.70 0.00 0.00 MONTHLY TOTALS JUN JUL 20.00 688.57 80.66 306.60 72.59 275.90 0.00 0 .00 0.00-0.15-1 32-0.77-0.55 0.00 214.31 152.11 50.87 5.08 89.62 98.76 90.57 0.00 AUG AVERAGE VALUE 20.00 689.19 81.67 357.34 73. 50 321.59 0.00 0.00 0.00-0.17-1.58-0.94-0.63 0.00 219.16 153.24 61.85 5.16 90.63 101.08 91.54 0.00 TOTAL VALUE 0.00 0.00-12.23-112.56-67.42-45.14 0.00 TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MKUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00-10.76-99.48-59.82-39.66 0.00 0.00 0.00-1.48-13.08-7 .60-5.48 0.00 TEMPERATURE FREQUENCY OF OCCURENCES I PROJECT NO. 11333-297 CALCULATION NO. L-002457 1% 5%LAKE TEMP NATURAL (F) 97.0 95.9 LAKE TEMP @ INLET (F) 128.0 109.4 LAKE TEMP @ OUTLET (F) 99.0 97.1 REVISION NO. 8 ATTACHMENT H, PAGE NO. H342 of H344 I 50%90.9 100.9 91.9 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 Program : LAKET Number 03.7.292-2.2 0 Created 11/28/2004 08:08:26 REVISION NO. 8 ATTACHMENT H, PAGE NO. H343 of H344 1 Page : 11 Date :04/07/2006 Time :09:56:32.75 Case 0609: LaSalle UHS (Updated Worst 36-Day Temp; Ti=97.7F @0900; power uprate TOTAL CUMULATIVE

SUMMARY

QUANTITY ANEMOMETER HEIGHT (FT)LAKE ELEVATION (FEET)TOTAL AREA (ACRE)TOTAL VOLUME (ACRE-FT)EFFECTIVE AREA (ACRE)EFFECTIVE VOL (ACRE-FT)CIRCULATION TIME (HR)PRECIPITATION (CFS)MAKEUP TOTAL (CFS)SEEPAGE (CFS)EVAPORATION TOTAL (CFS)EVAPORATION NATURL(CFS)

EVAPORATION FORCED(CFS)

BLOWDOWN TOTAL (CFS)SOLAR GAIN (BTU/HR-FT2)

SURF LOSS (BTU/HR-FT2)

EVAP LOSS (BTU/HR-FT2)

COND LOSS (BTU/HR-FT2)

LAKE TEMP NATURAL (F)LAKE TEMP @ INLET (F)LAKE TEMP @ OUTLET (F)DISSOLVED SOLIDS (PPM)QUANTITY MAXIMUM VALUE ( DATE 20.00 7011900)689.99 7011900)82.98 7011900)422.94 7011900)74.68 7011900)380.69 7011900)0.00 7011900)0.00 7011900)0.00 7011900)-0.15 8051900)-0.32 8051900)0.00 7031900)-0.26 7311900)0.00 7011900)430.59 7191900)161.26 7041900)172.30 7051900)24.99 7051900)97.72 7041900)132.96 7011900)99.98 7011900)0.00 7011900)MAXIMUM VALUE ( DATE MINIMUM VALUE ( DATE AVERAGE VALUE 20.00 688.47 80.50 298.69 72.45 268.78 0.00 0 .00 0.00-0.20-4 .06-2.67-1.53 0.00 101.21 143.56 0 .00-31 .64 81.75 91 .00 82.51 0.00 7011900)8051900)8051900)8051900)8051900)8051900)7011900)7011900)7011900)7011900)7051900)7051900)7011900)7011900)7221900)7241900)7031900)7251900)7241900)7241900)7241900)7011900)20.00 689.19 81.67 357.34 73.50 321.59 0.00 0.00 0.00-0.17-1.58-0.94-0.63 0.00 219.16 153.24 61.85 5.16 90. 63 101 .08 91.54 0.00 MINIMUM TOTAL VALUE ( DATE ) VALUE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL PRECIP (ACRE-FT)MKUP TOT(ACRE-FT)

SEEPAGE (ACRE-FT)EVAP TOT(ACRE-FT)

EVAP NAT(ACRE-FT)

EVAP FOR(ACRE-FT)

BLWD TOT(ACRE-FT) 0.00 0.00-0.04-0.08 0.00-0.07 0.00 7011900)7011900)8051900)8051900)7031900)7311900)7011900)0.00 0.00-0.05-1.01-0.66-0.38 0.00 7011900)7011900)7011900)7051900)7051900)7011900)7011900)0.00 0.00-12.23-112.56-67.42-45.14 0.00 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT H, PAGE NO. H344 of H344 TEMPERATURE FREQUENCY OF OCCURENCES 1% 5% 50%LAKE TEMP NATURAL (F) 97.0 95.9 90.9 LAKE TEMP @ INLET (F) 128.0 109.4 100.9 LAKE TEMP @ OUTLET (F) 99.0 97.1 91.9 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. I1 of 122 11.0 PURPOSE/OBJECTIVE The purpose of this attachment is to evaluate the UHS transient analyses with an allowable plant intake temperature of 104'F and an increased allowable plant intake temperature of 107 0 F for MUR PU and EPU power levels. Additionally, new weather data from January 1995 to September 2010 is considered in prediction of the UHS temperature response.

The initial lake temperature is adjusted such that the plant intake temperature remains below 104'F or 107'F during the accident scenario.12.0 METHODOLOGY AND ACCEPTANCE CRITERIA The S&L LAKET-PC computer program [Ref. 15.2] is utilized to determine the combined impact of decay heat, initial UHS temperature, and allowable sediment accumulation in the UHS. The maximum allowable UHS temperature is determined for average sediment accumulations of zero (0), six (6), twelve (12), and eighteen (18) inches.12.1 Methodology 12.1.1 Selection of Weather Data -The selection of the most limiting weather data is done in Attachment M. The worst weather day was determined to be 7/25/2001 ending at 6:00 AM and the worst weather month runs from 7/21/1995 4:00PM to 8/20/1995 3:00PM. The most limiting net evaporation month was determined to be from 6/18/1954 to 7/18/1954, which is unchanged from previous revisions of this calculation.

12.1.2 Lake Area and Volume -The initial lake elevation is 690-ft, which corresponds to the top water elevation of the UHS per the UFSAR. [Ref. 15.1]. However, UFSAR Section 9.2.6.3 [Ref. 15.1] states that 440,400 gallons of water from the UHS must be available for fire fighting following an accident (Design Input 14.3). Assuming that this inventory is removed from the UHS immediately following an accident (Assumption 13.2) leads to a decrease in the initial lake elevation of 690-ft and lake volume and area.440,400 gallons corresponds to 1.35 acre-ft of water and a 0.02-ft drop in lake elevation.

The initial lake level in the LAKET file is modified to incorporate these changes as shown in Table 12-1. The volume at an elevation of 689.98-ft is determined by subtracting the 1.35 acre-ft used in fire-fighting from the lake volume at 690-ft. The surface area is determined by interpolation using the information given in Table 7.1 of the main body of this calculation.

The effective volume and effective area are determined by multiplying the volume and surface area by the effective volume and effective area percentages determined in Attachment J (effective volume is 63.4% of total volume and effective area is 57.9% of total area).Table 12-1: Initial Lake Level e E o Effective Sediment Level Lake Elevation Area Volume Effective Area Volume (ft) (acre) (acre-ft) (acre) (acre" (acre-ft)18-in 689.98 81.32 340.0 47.08 215.59 12-in 689.98 82.12 380.5 47.55 241.24 6-in 689.98 .82.96 422.1 48.03 267.64 0-in 689.98 83.80 463.5 48.52 293.89 The remainder of the drawdown curve (from a lake elevation of 689-ft through 685-ft) remains the same as given in Table 7.1 of the main body of this calculation with respect to the total lake voluire and surface area. The effective volume and effective area are updated using the percentages determined in Attachment J.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 12 of 122 12.1.3 Plant Temperature Rise -The UHS heat load is increased due to an increase in power level. In addition, the core decay heat is changed as a result of EPU [Ref. 15.3] The new heat load on the UHS for EPU operation is determined in L-002453 [Ref. 15.4]. The plant temperature rise is dependent on the UHS heat load, and the calculation of the new plant temperature rise at MUR PU and EPU is documented in Attachment L.12.1.4 LAKET Case Runs -For the worst weather cases (cases ending with the letter a), the initial temperature for each case is iteratively set until the lake outlet temperature is equal to the maximum allowable lake outlet temperature (either 104'F or 107'F). The net evaporation cases use the same input file as the corresponding worst weather case, but are run with the most limiting net evaporation month weather file.A list of all cases run for this analysis is shown below: Table 12-2: List of LAKET Cases SPower Level Sediment Case Type Power Level Design Criteria S(MWt) Level la i Worst Weather 4067 (EPU) Pl-antInlet Temp=- 107"F 1c Worst Net Evaporation 4067 (EPU) 0" Initial Temp of Case la 2a Worst Weather 4067 (EPU) 1 6" Plant Inlet Temp = 107°F 2c Worst Net Evaporation 4067 (EPU) 6" Initial Temp of Case 2a 3a_12am Worst Weather 4067 (EPU) 18" Plant Inlet Temp = 1077F 3a_3am Worst Weather 4067(EPU)

-ý 18" Plant Inlet Temp = 107°F 3a_6am Worst Weather 4067 (EPU) 18" Plant Inlet Temp = 107°F__3a_9am Worst Weather 1 4067 (EPU) 18" Plant Inlet Temp 107'F 3a_912pm Worst Weather 4067 (EPU) 18" Plant Inlet Temp = 107°F 3a_3pm Worst Weather 4067 (EPU) 18" Plant Inlet Temp = 107°F 3a_6pm I Worst Weather 4067 (EPU) 18" Plant Inlet Temp = 107°F 3a_9pmr Worst Weather 4067 (EPU) 18" Plant Inlet Temp = 107°F 3c worst Net Evaporationj 4067 (EPU) 18" Initial Temp of Case 3a at 6AM 4a Worst Weather 4067 (EPU) 12" Plant Inlet Temp = 107'F 4c Worst Net Evaporation 4067 (EPU) 12" Initial Temp of Case 4a 4la 1-F Worst Weather 4067 (EPU) 0 1" Plant Inlet Temp = 104'F 1c 104F I Worst Net Evaporation 4067 (EPU) 0" Initial Temp of Case 1a_104F 2a-104F Worst Weather 4067 (EPU) 6" Plant Inlet Temp = 104-F 3a_104F Worst Wether 4067 (EPU) 18" Plant Inlet Temp = 104"F 4a_104F Worst Weather 4067 (EPU) 12" Plant Inlet Temp = 104'F 1laMUR~ Worst Weather 3559 (MUR PU) 011 Plant Inlet Temp =107-F___cMUR 1Worst Net Evaporation 13559_(MUR PU) 0" Initial Temp of Case la_MUR 2a_ MUR Worst Weather 3559 (MUR PU) 6" Plant Inlet Temp = 1074F 3a_4MU--iR

.V-Wor-st Weather _- 3559_(MUR PU) 18" Plant Inlet Temp = 107'F 4a MUR Worst Weather 3559 (MUR PU) 12" Plant Inlet Temp = 107'F laMUR 104F Worst Weather 3559 (MUR PU) 0" Plant Inlet Temp = 1047F I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 13 of 122 1 Power Level S Case Type (I (MWt)lc_MUR_104F Worst Net Evaporation 3559 (MUR PU)2aMUR_104F Worst Weather 3559 (MUR PU)3aMUR_104F Worst Weather 3559 (MUR PU)4a_MUR_104F Worst Weather , 3559 (MUR PU)ediment Level 0" Design Criteria 6" 18" 12" Initial Temp of Case la MUR_104F Plant Inlet Temp = 104'F Plant Inlet Temp = 104'F Plant Inlet Temp = 104'F Cases are run at varying times for the most limiting case, Case 3a. The purpose of this is to determine at which time an accident would provide the most limiting results. For all other cases besides Case 3a, only the time determined to be the most limiting will be used.For EPU power level and a maximum allowable lake temperature of 107'F, the worst net evaporation cases are ran for all levels of sediment.

The worst case in terms of UHS drawdown is determined from the four different sediment levels, and the remainder of the worst evaporation cases are run at this sediment level only.12.2 Acceptance Criteria 12.2.1 Acceptance Criterion

  1. 1 -Peak Temperature

-The maximum plant inlet temperature from the UHS shall remain equal to or less than 104'F or 107°F.12.2.2 Acceptance Criterion

  1. 2 -UHS Drawdown -There are no specific acceptance criteria for maximumn UHS lake drawdown.

However, for the worst 30-day evaporation period, the maximum lake drawdown is determined for input to calculation L-00 1355 [Ref. 15.6].12.3 Limitations Same as main body of calculation.

12.4 Identification of Computer Programs Postprocessing of the LAKET-PC results is done using Microsoft Excel 2003 [Ref. 15.5], which is commercially available.

The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis.

All computer runs were performed using PC No. ZD6661 under the Windows XP operating system.LAKET-PC Version 2.2 [Ref. 15.2] was used to perform the lake transient analysis contained in this evaluation.

This was run on S&L PC No. ZD6661 on Windows XP operating system.I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 14 of 122 13.0 ASSUMPTIONS 13.1 Fuel Pool Heat Load -It is assumed that the fuel pool emergency makeup pumps provide required makeup flow to the fuel pools. Including fuel pool heat loads is not realistic because it is improbable that the required operator actions to align the fuel pool emergency makeup pumps to the RHR system could be performed in the post-LOCA reactor building environment

[Ref. 15.3]. Therefore, the 600 gpm emergency fuel pool makeup flow rate (See Design Input 14.1) is added to the UHS seepage rate.13.2 UHS Inventory for Fire Fighting -It is assumed that all UHS inventory for fire fighting is used immediately following an accident.

This is conservative as it decreases the volume of water in the UHS.13.3 Effective Area and Volume at Different Sediment Levels -The effective area and volume percentages determined in Attachment J are determined for 18-in of sediment.

It is assumed that these percentages apply to the other sediment levels analyzed in this evaluation.

Since changes in sediment level change the depth of the lake evenly throughout the entire lake (see Section 6.2 of the main body of this calculation), the percentages of effective area and volume will negligibly change with sediment level.13.4 Other -All other assumptions are the same as the assumptions in the main body of calculation.

I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 15 of 122 14.0 DESIGN INPUT 14.1 Spent Fuel Pool Makeup Flow -The emergency fuel pool makeup flow rate is 600 gpm, which corresponds to 300 gpm per unit [Ref. 15.3].14.2 General Seepage Rate -A seepage rate of 0.2 cfs is retained from Design Input 4.3 of the main body of this calculation.

This will be added to the spent fuel pool makeup flow (See Assumption 13.1) to determine the total seepage rate of the UHS.14.3 UHS Inventory for Fire Fighting Following an Accident -Following an accident, 440,400 gallons of water from the UHS must be available for fire fighting [Ref. U5. 1, Section 9.2.6.3].14.4 Anemometer Height -For the worst net evaporation weather data, which is from the Peoria weather data spanning from 1948 to 1996, the anemometer height is 20-ft (as taken from input files for the worst net evaporation cases in previous revisions).

For the worst weather data, which is taken from the LaSalle Station weather data spanning from 1995 to 2010, the anemometer is at a height of 33-ft (See Attachment K).14.5 Other -All other design inputs are the same as the design inputs in the main body of calculation.

I PROJECT NO. 11333-297 1

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 16 of 122 1 15.0 15.1 15.2 15.3 15.4 15.5

15.6 REFERENCES

LaSalle County Station Updated Final Safety Analysis Report (UFSAR), Rev. 19.LAKET-PC Computer Program, Version 2.2, S&L Program No. 03.7.292-2.2, 12/09/2004.

Controlled File Path: \\SNLVS5\SYS3\OPS$kLAK29222\

SEAG # 12-000098, "DIR for LAS-EPU-U 1/2-DIR-T0608-1," 4/18/2012."UHS Heat Load," Calculation L-002453, Rev. 3, June 2012.Microsoft Office Excel 2003 (11.8120.8122)

SP2, Copyright 1985-2003 Microsoft Corporation.

L-001355, "LaSalle County Station CSCS Hydraulic Model," Rev. 005A.IPROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 17 of 122 16.0 CALCULATIONS 16.1 Calculation of Plant Temperature Rise The CSCS temperature rise across the plant is computed in Attachment L. Changes from the determination of the plant temperature rise in previous revisions of this calculation included a change in the decay heat ratio as a result of EPU, the removal of fuel pool heat loads, and a one-hour time interval between calculations.

See Appendix L9.2 of Attachment L for the results of the plant temperature rise at MUR PU and Appendix L9.4 of Attachment L for the plant temperature rise at EPU.16.2 Seepage Rate The seepage rate is determined from a UHS seepage of 0.2 cfs (Design Input 14.2) and a constant flow of 600 gpm for spent fuel pool makeup (See Design Input 14.1). This gives a total seepage rate of 1.537 cfs, which a constant for all cases.16.3 Maximum Allowable Lake Temperature For this analysis, cases are run at MUR PU and EPU power levels. Each case is run with a limiting plant intake temperature of 104'F and 107'F, allowing for a comparison of the maximum allowable UHS temperature at the differing plant intake temperatures.

Limiting weather data is determined from two sets of weather data (See Attachment M).The time of day which the transient is assumed is critical when determining the maximum allowable initial temperature of the UHS. To account for the time of day at which the UHS transient may start, eight start times are used for the limiting sediment depth of 18-in. As seen in Table 17.1, the most limiting time is 6AM (as it results in the lowest allowable initial temperature).

Therefore, the remaining worst weather cases are run beginning at 6AM.In order to determine the limiting amount of sediment, the worst net evaporation case was run at four different sediment levels at EPU power level (Cases la, 2a, 3a, and 4a) for a maximum plant inlet temperature of 107°F. The case with no sediment (Case 1 a) was determined to be the most limiting (as it resulted in the highest drawdown).

Therefore, the remaining worst evaporation cases were run with a sediment level of 0-in.16.4 LAKET-PC Files The S&L LAKET-PC computer program [Ref. 15.2] was utilized to determine the combined impact of decay heat, initial UHS temperature, and allowable sediment accumulation in the UHS. The files used in this analysis are shown in Table 16.1, below.I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 18 of 122 1 Table 16.1: LAKET Files I Name -IType:-1Casela.cdat DAT File I' Case la.out OUT File 11 Case la.pit PLT File 11 Case la. pltX PLTX File?l Case la-lO-F.dat DAT File-Casela_104F.out OUT File P1 Case lal04F.plt PLT File?iCase laj104F.pltX PLTX File Case laMUR.dat DAT File Pj Case la-MUR.out OUT File Case lajMUR.plt PLT File P Case lajMUR,pltX PLTX File LA1 Case laMUR_10-4Fdat DAT File F1 Casela MUR_10-F~out OUT File Case la MUR_104F.plt PLT File_Case laYMUR_1O4F.pltX PLTX File 11 Case lc.dat DAT File S Case c. out OUT File L; Caselc.plt PLT File P1 Case lc.pltX PLI-X File Case lclO41F.dat DAT File DI Case lc 104F.out OUT File L Case 1c 104Fplt PLT File LA Case lc_104F.pltX PLTX File PL Case IcMUR.dat DAT File 5 Case lc MUR.out OUT File Case IcYMUR.plt PLT File 4 Case lcMUR.pltX PLTX File Case IcMUR_104F.dat DAT File-ACase lcMUR_104F.out OUT File Case 1cqMURO-4F.plt PLT File P11 Case 1c MUR 104F.pltX PLTX File PlCase2adat DAT File L1 Case2a.out OUT File IlCase2a~plt PLT FileCase2a,pltX PLTX File_5 Case2a 10-1F.dat DAT File LA Case2a_104F.out OUT File LA Case 2a_104F.plt PLT File LACase 2a104F.pitX PLTX File P1Case 2aMUR.dat DAT File EA Case2ajMUR.out OUT File Case 2aMUR.plt PLT File LACase2aMUR.plLX PLTX File lACase2aMUR 104F.dat DAT File P-l1 Case2aMUR_10-F.out OUT File LA Case2aMUR 104F.pit PLT File 51 Case 2a MUR_10-F.pltX PLTX File l Modified 6/21(2012 10:21 AM 6/21/2012 11:16 AM 6/21/2012 11:16 AM 6/21/2012 11:16 AM 6/21/2012 10: 22 AM 6/21/2012 11: 18 AM 6/21/2012 11:18 AM 6/21/2012 11: 18 AM 5/17/2012 4:29 PM 5/17(2012 4:32 PM 5/17/2012 4:32 PM 5/17/2012 4:32 PM 5/17/2012 4:30 PM 5/17/2012 4:35 PM 5/17(2012 4:35 PM 5/17/2012 4:35 PM 6/21/2012 10:21 AM 6/21/2012 11: 17AM 6/21/2012 11:17 AM 6/21/2012 11: 17 AM 6/21/2012 10:22 AM 6(21(2012 11:18 AM 6/21/2012 11:18 AM 6/21/2012 11:18 AM 5/22/2012 5:50 PM 5/22/2012 5:50 PM 5/22/2012 5:50 PM 5(22/2012 5:50 PM 5/22/2012 5:50 PM 5/22/2012 5:50 PM 5/22/2012 5:50 PM 5/22/2012 5:50 PM 6/21(2012 10:21 AM 6/21/2012 11:17 AM 6/21/2012 11:17 AM 6/21/2012 11:17 AM 6/21/2012 10:22 AM 6/21/2012 11:18 AM 6/21/2012 11:18 AM 6/21/2012 11:18 AM 5/17/2012 4:30 PM 5/17/2012 4:32 PM 5/17/2012 4:32 PM 5/17(2012 4:32 PM 5/17/2012 4:31 PM 5/17/2012 4:35 PM 5/17/2012 4:35 PM 5/17/2012 4:35 PM Size 5,134 104,201 435,708 44,640 5,138 104,201 435,708 44,640 5,069 104,201 435,708 44,640 5,074 104,201 435,708 44,640 5,143 103,572 421,692 52,560 5,145 103,541 421,692 43,200 5,0/-9 103,572 421,692 52,560 5,081 103,541 421,692 43,200 5,137 104,201 435,708 44,640 5,140 104,2011 435,7038 44,610 5,072 104,201 435,708 44,640 5,077 104,201 435,708 44,640 Ratio 91%97%73%78%91%/97%73%78%91%97%73%783%91%97%73%78%91%97%73%77%91%97%73%76%90%97%73%76%90%97%730/c 76%91%97%73%78%91%97%73%78%91%97%73%78%90%97%73%Packed 470 3,159 118,789 9,967 472 3, 168 118,774 9,873 475 3,175 118,813 9,946 480 3,176 118,807 9,879 478 3,358 115,779 12,348 481 3,349 115,769 10,197 484 3,359 115,753 12,358 487 3,333 115,783 10,244 474 3,154 118,896 9,985 475 3,187 118,835 10,007 478 3,176 118,932 10,011 483 3,183 118,914 78% 9,969 I PROJECT NO. 11333-297 1

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 19 of 122 1 Table 16.1: LAKET Files (cont.)I Name PIlCase2c.dat

.P1 Case 2c.out PlCase2c.plt

-1 Case2c.pltX

.1 Case 3a_104F.cdat PI1 Case 3a_ 104F. out P1 Case 3a_ 104F.pitCase 3a_104F.pltX P1Case 3a 12am. dat Ri Case 3al12am.out 1ýj Case 3a_12am.pit

%1 Case 3a_ 12am.pltX 51 Case 3a_ j2pm.dat P1 Case 3a_ 12pm, out Q1 Case 3a_ 12pm. pit', Case 3a_ 12pm.pltX P1 Case 3a_3am. dat

-1 Case Ba jam. plt P Case 3a3am.pltX P1 Case 3a_3pm, dat D1 Case 3a_3pm, out P Case 3a_3pm. pit P. Case 3a_3pm. pltX P1Case 3a.6am, dat P1Case 3a_6am. out A Case 3a.6amplt Pl Case 3a_6am, pltX i Case 3a_6pm, dat P1 Case 3a_6pm, out P1 Case 3a_6pmplt P1 Case 3a_6pm, pltX P Case 3agamdat P1 Case 3a_9am out PICase3a_9amplt P_1iCase3a_9ampltX P1 Case 3a._pmdat 51 Case 3a_9pm.out P1 Case 3a._pmplt 5 Case 3a_9pmpltX P1Case3aMUR.dat 51 Case 3aMUR. out I1 Case3aMUR.plt PI Case 3aMUR.pltX S;1 Case3a MUR_104F.dat P Case 3aMUR_ 10F. out 51 Case 3aMUR_ 104F. pit A°I Case 3a MUR_ 10*F, pltI I Type DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTFX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File I Modified 6/21/20 12 10:21 AM 6/21/2012 11:17 AM 6/21/2012 11:17 AM 6/21/2012 11: 17 AM 6/21/2012 10:23 AM 6/21/2012 11: 18 AM 6/21/2012 11: 16 AM 6/21/2012 11: 18 AM 6122/2012 10:15 AM 6/22/2012 10:16 AM 6/22/2012 10:16 AM 6/24222012 10:16 AM 6/21/2012 9:49 AM 6/21/2012 9:50 AM 6/21/2012 9:50 AM 6/21/2012 9:50 AM 6/21/2012 9:47 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:47 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:48 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:48 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:48 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:48 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 6/21/2012 9:49 AM 5/17/2012 4:30 PM 5/17/2012 4:33 PM 5/17/20 12 4:33 PM 5/17/2012 4:33 PM 5/17/20 12 4:38 PM 5/17/20 12 4:38 PM 5/17/2012 4:38 PM 5/17/2012 4:38 PM Size I 5,144 103,541 421,692 43,200 5,133 104,201 435,708 44,640 5,137 104,201 435,708 44,640 5,137 104,201 435,708 44,640 5,134 104,201 435,708 44,640 5,134 104,201 435,708 44,640 5,135 104,201 435,708 44,640 5,136 104,201 435,708 44,640 5,136 104,201 435,708 4-1,640 5,136 104,201 435,708 44,640 5,067 104,201 435,7038 44,640 5,070 104,201 435,708-4,640 Ratio I 91%97%73%76%91%97%73%77%91%97%73%779/91%97%*73%77 %c 91%97%73%77%91%97%73%77%91%97%73%77%91%97%73%77%Ac 91%97%73%77%91%97%73%77%91%97%73%77%91%97%73%77%Packed I 482 3,346 115,828 10,261 469 3,174 118,968 10,133 474 3,181 119,012 10,115 476 3,161 119,003 10,143 472 3,161 118,996 10,133 472 3,159 118,909 10,126 474 3,158 118,984 10,112 475 3,162 118,984 10,068 473 3,166 118,983 10,082 475 3,163 118,954 10,105 478 3,166 118,981 10, 145 478 3,172 118,942 10,124 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 110 of 122 1 Table 16.1: LAKET Files (cont.)Name ,-1_' Case 3c. datCase3c.out"I Case3c.plt P Case 3c.pltX P-1 Case-a.dat 51 Case4a.outCase4a.plt Li Case4a.pItX

';I Case-la_10F.dat

-1 Casela_10-F.out 1 Case4a_ IOF pit 51 Case4alO14F.

pltX_1 Casela_MUR~dat LiCaselaMUR.out 5;l Case4aMUR.pit Pl Case4aMUR.pltX 1 Case-laMUR_104F.dat Li Case4a1MUR_104F.out Li Case-aMUR_1O4F.plt S11 Case4ajMURJO-1F.plLt Li Case-qc.dat

Case4c.plt

............

p.......I Type DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File DAT File OUT File PLT File PLTX File I Modified 6/21/2012 10:21 AM 6/21/2012 11:17AM 6/21/2012 11:17 AM 6/21/2012 11: 17AM 6/21/2012 10:22 AM 6/21/2012 11: 17 AM 6/21/2012 11: 17 AM 6/21/2012 11:17 AM 6/21/2012 10:23 AM 6/21/2012 11: 18 AM 6/21/2012 11:18 AM 6/21/2012 11: 18 AM 5/17/2012 4:30 PM 5/17/2012 4:33 PM 5/17/2012 4:33 PM 5/17/2012 4:33 PM 5/17/2012 4:39 PM 5/17/2012 4:-40 PM 5/17/2012 4:40 PM 5/17/2012 4:40 PM 6/21/2012 10:22 AM 6/21/2012 11:18 AM 6/21/2012 11:18 AM 6/21/2012 11:18 AM Size 5,133 103,541 421,692 43,200 5,133 104,201 435,703 44,640 5,136 104,201 435,708 44,640 5,068 104,201 435,708 44,640 5,071 104,201 435,708 44,640 5,139 103,541 421,692 43,200 Ratio 91%97%72%76%91%97%73%77%91%97%73%77%91%97%73%77%91%97%73%77%91%97%73%76%Packed 478 3,327 115,987 10,334 467 3,171 118,931 10,066 470 3,178 118,884 10,046 477 3,176 118,927 10,111 480 3,188 113,868 10,102 475 3,332 115,829 10,333 I PROJECT NO. 11333-297 ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. Ill of 122 17.0 RESULTS AND CONCLUSIONS 17.1 Summary Table 17.1 provides a summary of the limiting maximum initial lake temperature for the worst weather cases. Table 17.2 provides a sununary of the maximum lake drawdown for the worst net evaporation cases.Table 17.1a: MUR PU (3559 MW) Overall Summary for Maximum Temperature Case Weather Data Sediment Initial Lake Max Plant Inlet Level (in.) Temp. (°F) Temp. (°F)la MUR 1/30 0 103.63 107.0 2aMUR 1/30 J 6 103.32 107.0 3a MUR 1/30 18 102.46 107.0 4aMUR 1/30 12 102.93 107.0 laMUR_104F 1/30 0 100.30 104.0 2aMUR_104F 1/30 6 _ 99.95 104.0 3aMUR_104F 1/30 18 91.68 104.0 4aMUR 104F 1/30 12 89.54 104.0 Table 17.1b: EPU Case la 2a 3a 12am 3a_3am 3a_6am 3a_9am 3a_12pmr 3a_3pm 3a_6pm (4067 M W,) Overall Summary for Maximum Temperature I Sediment Initial Lake Max Plant Inlet Weather Data 1 Level (in.) Temp. (*F) Temp. (fF)1/30 I 0 103.63 107.0 1/30 6 103.32 107.0 1/30 18 104.95 107.0 1/30 18 103.14 106.81 1/30 18 102.42 107.0 1/30 18 103.61 107.0 1/30 18 105.80 107.0 1/30 18 1 106.97 107.0 1/30 18 107.00 107.0 3a_9pm 1/30 18 107.00 107.0 4a 1/30 12 102.93 107.0 is_104F 1/30 0 o 100.30 104.0 2a 104F 1/30 6 96.80 104.0 3a 104F 1/30 18 87.01 104.0 4a_104F 1/30 12 85.47 104.0 (1) Due to a discontinuity in LAKET, this is as close to 107°F that can be reached.I PROJECT NO. 11333-297 1

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 112 of 122 1 Table 17.2a: MUR PU Overall Summary for Maximum Evaporation Sediment Maximum Case Weather Data Level (in.) Drawdown (ft)1 1c_MUR Worst 30-day Evaporation 0 2.24 lcMUR_104F Worst 30-day Evaporation 0 2.22 1) Determined from initial lake elevation of 689.98-ft.

Table 17.2b: EPU Overall Summary for Maximum Evaporation Sediment Maximum Case Weather Data Level (in.) Drawdown (ft)1 ic Worst 30-dayEvaporation 0 2.27 2c Worst 30-day Evaporation 6 2.25 3c Worst 30-day Evaporation 18 2.20 4c Worst 30-day Evaporation 12 Ic_104F Worst 30-day Evaporation 0 1) Determined from initial lake elevation of 689.98-ft.

2.23 2.26 Figures 17.1 through 17.8, below, show the plant outlet temperature and plant inlet temperature over the entire 31 day period for the 107'F maximum plant inlet temperature case at MUR PU and EPU. Figures 17.9 and 17.10 show the maximum lake drawdown over the worst 30 days of evaporation weather.17.2 Compliance with Acceptance Criteria 17.2.1 Acceptance Criterion

  1. 1 -Peak Temperature

-Acceptance Criterion

  1. 1 is met provided the plant is operated, monitored, and maintains UHS initial temperatures below the applicable limits per the results listed in Table 17.1.17.2.2 Acceptance Criterion
  1. 2 -UHS Drawdown -The maximum expected lake drawdown for the cases evaluated is given in Table 17.2. This will be used in calculation L-001355 [Ref. 15.6].I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 113 of 122 Figure 17.11: Plant Outlet Temperature (MUR PU)150.000 140.000 U.0 130.000 C-E 120.000 I-0 E 110.000 0.100.000 90.000 0 5 10 15 20 25 30 35 Days Following Accident I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 114 of 122 1 Figure 17.2: Plant Outlet Temperature (EPU)150.000 140.000 U-0 130.000 CL 4..E 120.000 4W'0* 110.000 EU 100.000 90.000-.--Case la ... Case 2a Case 3a 6am ---Case 4a 0 5 10 15 20 25 Days Following Accident 30 35 I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 115 of 122 Figure 17.3: Plant Inlet Temperature (MUR PU)U-0'E M-FL 108.000 106.000 104.000 102.000 100.000 98.000 96.000 94.000 92.000 90.000 88.000 0 5 10 15 20 25 30 35 Days Following Accident IPROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 116 of 122 Figure 17.4: Plant Inlet Temperature (EPU)LL 0 CL 0.E 4)108.000 106.000 104.000 102.000 100.000 98.000 96.000 94.000 92.000 90.000 88.000 0 5 10 15 20 25 30 35 Days Following Accident IPROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 117 of 122 Figure 17.5, Case 3aMUR: UHS LOCA Temperature Transient Worst 31-Day Temperature Period (d = 18", t = 0600 hrs, Ti = 102.46°F)150.000 140.000 130.000-UHS Inlet Temperature

-UHS Outlet Temperature I LL 0 1,..0 E 0 120.000 110.000 100.000 90.000 80.000 0 5 10 15 20 25 30 35 Days Following Accident I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 118 of 122 Figure 17.6, Case 4a_MUR: UHS LOCA Temperature Transient Worst 31-Day Temperature Period (d = 12", t = 0600 hrs, Ti = 102.93°F)150.000 140.000 130.000 LL 0-" 120.000 C.E: 110.000 I.-.100.000 90.000 80.000-UHS Inlet Temperature

-UHS Outlet Temperature 5 10 15 20 25 30 0 35 Days Following Accident I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 119 of 122 1 Figure 17.7, Case 3a: UHS LOCA Temperature Transient Worst 31-Day Temperature Period (d = 18", t = 0600 hrs, Ti = 102.43*F)150.000 140.000 130.000 L-0 120.000 I-4.'E= 110.000 I--100.000 90.000 80.000 0 5 10 15 20 25 30 Days Following Accident 35 I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 120 of 122 1 Figure 17.8, Case 4a: UHS LOCA Temperature Transient Worst 31-Day Temperature Period (d = 12", t = 0600 hrs, T 1= 102.93*F)150.000 140.000 130.000 U_0 120.000 E 110.000 I-100.000 90.000 80.000 0 5 10 15 20 25 30 Days Following Accident 35 I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 121 of 122 Figure 17.9, Case lc_MUR: UHS LOCA Drawdown Worst 30 Day Evaporation Weather Period Sediment Level = 0-in 690.500 690.000 689.500 0 CU> 689.000 688.500 688.000 687.500 0 5 10 15 20 25 30 Days Following Accident 35 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT I, PAGE NO. 122 of 122 Figure 17.10, Case Ic: UHS LOCA Drawdown Worst 30 Day Evaporation Weather Period Sediment Level = 0-in 690.500 690.000 0 MU 689.500 689.000 688.500 688.000 687.500 0 5 10 15 20 25 30 35 Days Following Accident I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J1 of J40 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE Ji of J40 Attachment J -UHS Flow Path Analysis Prepared: IiO "f D9aniele Ludovisi -Sargent & LundyLLc Reviewed: Pawel Kut -Sargent & LundyLLc Date OQCAL 1 V2,,o113 Date 10- o-2,oOi Revision 8 of this attachment adds Appendix J8.6 (pages J33 to J40).PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J2 of J40 J1.O PURPOSE The purpose of this attachment is to evaluate the water flow pattern in the man-made Ultimate Heat Sink (UHS) at LaSalle County Generating Station with the water depth at its minimum, that the water level is at elevation 690 ft [Ref. J5.1] and the UHS bottom is covered with approximately 1.5 ft of silt [Ref. J5.8]. The analysis is carried by means of computational fluid dynamics (CFD). The recirculation areas in the UHS are identified and the UHS volume actively involved in the main water flow is estimated along with and the associated surface area. The output of this evaluation is to provide effective lake volume and surface area for use in the S&L LAKET-PC computer program.J1.1 Background The UHS is designed to provide sufficient cooling water to permit the safe shutdown and cool down of the station for both normal and accident conditions.

In the unlikely event that the main dike is breached, there is a submerged pond within the cooling lake for the LaSalle County Station that is designed to hold water. This remaining water constitutes the ultimate heat sink for the station. It has a depth of approximately 5 feet and a top water elevation established at 690 feet [Ref. J5.1].Considering approximately 1.5 ft of silt at the bottom of the UHS, a CFD analysis is performed to predict the water main flow pattern and estimate the volume of water contained in the active zones of the UHS and the corresponding surface area. These inputs are used in main report to determine the combined impact of power uprate and allowable sediment accumulation in the UHS on the maximum plant inlet temperature and evaporative drawdown by use of the S&L LAKET-PC computer program.J2.0 METHODOLOGY AND ACCEPTANCE CRITERIA J2.1 Methodology J2. 1.1 Effective volume and effective surface area Figure J-3 shows a top view of the UHS computational domain. As shown, water enters the UHS in one of the UHS side branches and exits from the intake flume. Zones of recirculation are expected in the other branch of the UHS, which is a dead leg, and in proximity of the UHS inlet. LAKET-PC is a one-dimensional lake thermal prediction computer program [Ref. J5. 10]. The one-dimensional assumption coerces the water body into an idealized rectangular channel. In this idealization, water entering the channel displaces an equal amount of water out of the back end (see Figure J-1 ). At some time (t,)after the start of flow (to), the volume of displaced water is equal to Q.( t, -to), where is the Q is the flow rate of the water flowing into the channel. Indicating the total volume of the channel with Vchannel, all of the water is considered to have swept out of the channel at time t = to+Vchannel/Q.

However, if the lake being modeled has stagnant volumes, the water in those volumes would not be swept out of the exit as idealized in the LAKET-PC modeling.

For more accurately conforming the real lake to the idealized channel, these stagnant volumes and the corresponding surfaces must be removed from the active volume.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J3 of J40 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J3 of J40 Figure J-1. Reference water flow.Initial volume of water still present in the channel at time t Vchannel Veffective Straight channel Channel with to teffecive t = to + Vchannel/Q Time Figure J-2. Water displaced in the reference straight channel and in channel with recirculation zones.Figure J-2 shows both the idealized and actual amount of water displaced from a lake with recirculating (stagnant) volumes. If we could differentiate between water that was initially in the lake from new water entering the lake, we could use the concentration of initial water remaining in the lake at time t to find the fraction of water that was not swept out at time t. This is the fraction of the lake not actively participating in the channel flow.This volume and the corresponding surface area should be removed from the lake total dimensions to provide more accurate and conservative results.The amount of water initially in the channel at time to and still present in the channel, trapped in the recirculation zones, at time t = to + (Vchannel/Q) is calculated as follows (with to =0): Vtrapped in the reciruclation zones (t) = Jc V initial water in the channel (t)dV (J2. I -)Vchannel PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J4 of J40 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J4 of J40 where Vchannel is the total volume of the channel and CVinitial water in the channel(t) is the volumetric distribution of water initially in the channel at time to and still present in the channel at time t. The effective volume is calculated as follows: Veffective

-Vchannel -Vtrapped in the reciruclation zones (t) =JC V initial water in the channel (t)dV VchannelI

-Vchannel Vhannel (J2.1-2)= Vchannel (1 -c'V initial water in the channel (t))where the term CV initial water in the channel (t)= C initial water in the channel (t)dV Vchannel is equal to VchanneI /the volume average concentration of the amount of water initially in the channel at time t, and still present in the channel at time t. The effective surface area is calculated in manner similar to the effective volume. At the surface of the channel, the amount of water initially in the channel at time to and still present in the channel, trapped in the recirculation zones, at time t = (Vchannel/Q) is calculated as follows: S trapped in the reciruclation zones (t) = JC S initial water in the channel (t)dS (J2.1-3)Schannel where Schannel is the total surface of the channel and CSinitial water in the channel(t) is the surface distribution of water initially in the channel at time to and still present in the channel at time t. The effective surface is calculated as follows: Seffective Sdchannel -Strapped in the reciruclation zones (t) =f C S initial water in the channel (t)dV Schanne 1- Schannel =channel (J2.1-4)waeS ntechanne l td= Schannet (i -c'Sinitial water in the channet (t))where the tenn C 5 initial water in the channel (t) = PC initial water in the channel (t)dVj channel is equal to Schannel /the surface average concentration of the amount of water initially in the channel at time to and still present in the channel at time t.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J5 of J40 J2.1.2 Calculation strategy As indicated in Section J2.1.1, the volume and surface averaged concentrations of the water initially in the UHS at to = 0 sec still present in the UHS at time t = VUHs/Q are necessary in order to calculate the effective UHS volume and surface.The analysis of the water flow in the UHS is carried out through the use of the commercially available CFD code STAR-CCM+

[Ref. J5.2]. The calculation is performed in two steps: I. The first step is employed to find the steady state flow distribution in the UHS. This solution is used as initial condition for the transient multi-component fluid mixture in the second step.2. During this second step, newly introduced water in the UHS is specified to be a different liquid but with the same properties of the water already present in the UHS.The flow pattern and mixing of these liquids are calculated and tracked over time from time to = 0 sec to t = VuHs/Q. At the end of the transient analysis, the surface average concentration of the amount of water initially in the UHS and still present in the UHS at time t = VUHs/Q are calculated to find the effective volume and surface.J2.1.3 Geometrical domain The CFD analysis is carried out in three-dimensions.

For the computations, the water domain is considered from the outlet of the inlet chute into the UHS to the exit of the intake flume. Figure J-3 shows a top view of the computational domain while Figures J-4 and J-5 show the inlet and outlet boundaries, respectively.

Figure J-6 shows the bottom view of the UHS. Design Input J4.1 reports the dimensional information used to generate the model. Assumption J3.1 is used to evaluate the UHS thickness.

The main dimensions are indicated in Figures J-1 to J-3. Figures J-4 to J-7 also show, in quotations, names associated to each of the boundaries in the numerical model. Note that this evaluation reports the fraction of active volume and surface area. Therefore, slight variations in the lake dimensions will not significantly affect the final results.J2.1.4 Mesh The computational domain is discretized by using polyhedral cells with a base size of 12 ft, and six thin layers through the thickness of the UHS. Where necessary, the cell size is reduced down to 6 ft and, in proximity of the inlet boundary, down to 1.5 ft. Figures J-5 to J-8 show the mesh employed for the computations, which consists of 1,761,870 nodes for a total of 748,386 cells. Appendix J8.1 provides the STAR-CCM+

report of the mesh quality.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J6 of J40 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J6 of J40 t Domain outlet 2200 ft 820 f 180ft Domain inlet-t 780 ft Figure J-3. UHS computational domain: Top view."FreeSurface""Inlet" Figure J-4. UHS computational domain: Inlet boundary.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J7 of J40 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J7 of J40"Outlet"/i 80 t i Figure J-5. UHS computational domain: Outlet boundary.14"Soil"/Figure J-6. UHS computational domain: Bottom view.Note: The indicated depths are net values; the silt layer of 1.5 ft (see Design Input J4.3) is already considered in the indicated values.Figure J-7. UHS computational domain: Mesh detail of the inlet boundary.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J8 of J40 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J8 of J40 Figure J-8. UHS computational domain: Mesh detail of the outlet boundary.Figure J-9. UHS computational domain: Cross section of the outlet boundary mesh both along and across the axis.Figure J-10. UHS computational domain: Mesh detail of the free surface boundary.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J9 of J40 J2.1.5 Numerical model As indicated in Section J2.1.2, the calculation is carried out in two steps.Step One: Steady State Single-Fluid Analysis The numerical analysis is carried out using the segregated SST (Menter) k-wO model with the all y+ wall treatment.

The shear stress transport (SST) formulation is a blend of a k-(0 formulation, which is used near walls, and a k-e formulation, which is used in regions far from walls. The use of a k-co formulation in the inner parts of the boundary layer makes the model directly usable all the way down to the wall through the viscous sub-layer without additional modifications.

Hence, the SST k-w model can be used as a low Reynolds turbulence model without any extra damping functions.

The SST formulation also switches to a k-c behavior in the free-stream and thereby avoids the common k-o0 problem of being too sensitive to the inlet free-stream turbulence properties.

This model is fairly robust, it demonstrated superior performance for wall bounded problems and low Reynolds number flows, it showed potential for predicting transition regions and it also is often found to do a better job at capturing recirculation regions than other models [Ref.J5.2].Therefore, the SST (Menter) k-o model with the all y+ wall treatment is particularly suited for the geometry analyzed in this calculation which presents a confined flow with very extensive surface associated to an extremely small thickness, and a uniform mesh through the thickness of the domain as generated by the thin mesher generator.

A constant-density single-fluid is specified as working liquid with the properties of water at 100°F (see Assumption J3.2) with a density of approximately 62 lb/ft 3 and a dynamic viscosity of 6.727"10-9 atm-s [Ref. J5.7].The following boundary conditions are applied:* "FreeSurface" -This boundary represents the free surface of the lake. As a simplification, this boundary is considered to be rigid in order to reduce the computational time. This simplification does not significantly impact the results of the calculation since the water velocity is small and very small or no waves are expected to form (tranquil flow). Furthermore, this boundary is specified to be a symmetry plane in order to guarantee a zero shear stress (free surface flow)." "Inlet" -This boundary represents the inlet to the UHS. It is specified to be a mass flow inlet boundary with an inlet flow rate of 86 ft 3/sec, which is approximately equal to 5333.7 lb/sec [Ref. J5.8].* "Outlet" -This boundary represents the outlet to the UHS. It is specified to be a simple pressure outlet boundary.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE A 0 of J40* "Soil" -This boundary represents the bottom and sloped sides of the UHS. It is specified to be a rough no-slip wall boundary with a roughness of 5.0 in (see Assumption J3.3).The system is initialized with constant zero velocity and pressure and let to evolve to final steady state solution.Step Two: Transient Two-Fluid Analysis The results of Step One are used as initial condition to the calculation performed in this second phase. The following changes are made to the model: 1. Transient solver -The solver is specified to be implicit unsteady with maxinmm number of inner iteration per time step equal to 20. The time step is adjusted through the computation for an initial minimum value of 0.1 sec to a final maximum value of 100 sec. The transition from one time step to the other is nonrmally performed after ensuring that the residuals are always small and the solution is converged at each time step.2. Two-fluid specification

-The solver is changed to account for a two fluid mixture.Both fluids have the properties of water at 100°F and the are labeled "WaterLake" for the water initially present in the UHS at the beginning of the transient analysis (from Step One) and "WaterCirculating" for the water injected from the "Inlet" boundary.For the two-fluid mixture, the code can compute the mixture properties based on the local concentration of the two base fluids and their molecular weight. Since there is no difference between the "WaterLake" and "WaterCirculating", the properties of the mixture are specified to be constant and equal to that of water at I 00'F.In order to compute the diffusion of one liquid into the other, the Schmidt number and the turbulent Schmidt number need to be specified for the mixture. The Schmidt number is a dimensionless parameter defined as the ratio of momentum diffusivity and mass diffusivity as [Ref. J5.2]: Schmidt- P (J2.1-5)P Dim where Vt is the dynamic viscosity, p is the density and Dim is the molecular diffusivity of component-i into the mixture. The Schmidt number used in this analysis is equal to 219.8 (see Appendix J8.2). The turbulent Schmidt number is taken as the default value in STAR-CCM+

which is equal to 0.9. This implies that the turbulent mass diffusivity is proportional to the turbulent viscosity, which is an unknown a-priori variable and it is locally computed by the code. Note that the computed solution is fairly insensitive to the choice of the Schmidt number and the turbulent Schmidt number within the range of realistic values. The molecular weight for both fluids, which is another input required to compute the mass diffusivity, is specified to be 18.0153 lb/lbmol [Ref. J5.9].PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J 11 of J40 3. Boundary conditions

-The boundary conditions are kept the same as for the steady-state analysis.

However, the fluid entering the "Inlet" surface is specified to the 100%"WaterCirculating" and, in case of backflow at the "Outlet" surface, the re-entering fluid is specified to the 100% "WaterLake".

This last condition is specified only to complete the STAR-CCM+

input file for this analysis but it is not used during the computation.

4. Initial conditions

-The results of steady state analysis are used as initial conditions for the transient calculation.

The liquid present in the UHS at the beginning of the transient simulation (t = 0 sec) is specified to be 100% "WaterLake".

5. Simulation time -The calculation is perforned from time tstart = 0 sec to time tend =VUHs/Q. The total volume of the UHS is manually requested and printed out by STAR-CCM+

after the generation of the computational domain and it is equal to VUHS = 1.454446"107 ft 3.The flow entering the UHS is equal to 86 ft 3/sec [Design Input J4.2]. Therefore, tend = VUHs/Q = (1.454446' 10' ft 3)/(86 ft 3/sec) = 169,122 sec 47 hrs.After the completion of the transient simulation, the volume and surface average concentrations of "WaterLake" are computed and the results are used to manually calculate the UHS effective volume and surface as percentages respectively of the total UHS volume and surface by applying equations J2.1-2 and J2.1-4 as follows: Veffective

= 1- 'VLakeWater (t = 47 hr) (J2.1-6)VUHS Seffective

= 1---SLakeWater (t = 47 hr) (J2.1-7)SUHS Appendix J8.3 provides the STAR-CCM+

summary report of the model including physics and boundary conditions.

J2.2 Computer Programs and Software The analysis performed herein utilizes: 1. STAR-CCM+

6.04.014, S&L Program No. 03.7.863-6.04.014.

Controlled folder on Sargent & Lundy STARCCM server: C:\Program Files\CD-adapco (see code file listing in Appendix J8.4).All runs are executed on Sargent & Lundy server STARCCM with 64-bit Windows Server Standard 2007 operating system. The code has been validated under the Sargent & Lundy Quality Assurance Program.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J 12 of J40 2. MathCad 14.35, S&L Program No. 03.7.548-1435.

Controlled folder on Sargent& Lundy PC: C:\Program Files\ MathCad\ MathCadl4 (see code file listing in Appendix J8.5).All runs are executed on Sargent & Lundy PC ZL5581 with 32-bit Windows XP SP3 operating system. The code has been validated under the Sargent & Lundy Quality Assurance Program 3. Microsoft Excel, Microsoft Office Professional 2003 SP-2 including Excel, S&L Program No. 03.2.286-1.0.

All runs are executed on Sargent & Lundy PC ZL5581 with 32-bit Windows XP SP3 operating system. The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis.J2.3 Acceptance Criteria There are no specific acceptance criteria for the effective volume and surface values estimated in this calculation.

This information is gathered to support thermal analysis of the UHS performed in the main report.For the CFD analysis, the computational mesh must be of acceptable quality, as verified by Appendix J8. 1. Furthermore, the calculated results must be converged as verified by the plot of the residuals in Appendix J8.3 (page J31).PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J 13 of J40 J3.0 ASSUMPTIONS J3.1 Silt thickness

-The depth of the silt layer at the bottom of the UHS is assumed to be 1.5 ft (see Design input 5.3). The use of 1.5 ft silt thickness (maximum allowed value) causes the calculation of a reduced UHS effective volume.J3.2 Water temperature

-The water in the UHS is assumed to be at a constant temperature of 100'F. This input is used to estimate the density, viscosity and self-diffusivity of water in the UHS. This input does not significantly impact the results of this calculation.

J3.3 Soil roughness

-The roughness of the bottom of the UHS (including the silt layer) is assumed to be 5 in. Since this calculation determines the UHS inactive volumes rather than pressure losses, based on the calculated UHS low water velocities, this input does not significantly impact the results of this calculation.

J4.0 DESIGN INPUTS J4.l UHS dimensions

-The UHS dimensions are obtained from References J5.3 to J5.6 as follows: i. The nominal elevation of the UHS cooling pond bottom is approximately 685 ft[Ref. J5.5].ii. The elevation of the bottom of the intake flume is approximately 678.5 ft [Ref.J5.5].iii. The bottom of the UHS between the cooling pond and intake flume is approximately flat and its depth varies from 678.5 ft to 685 ft in a linear manner[Refs. J5.3 to J5.6].iv. The slope of the UHS side is approximately 1:4 all around its perimeter

[Refs.J5.3 to J5.6].v. The width of the water inlet chute is 8 ft [Ref. J5.4].vi. The width of the intake flume bottom is approximately 40 ft [Ref. J5.6].vii. The dimensions of the UHS that are not listed above are scaled from Reference J5.3.viii. The elevation of the UHS free surface is 690 ft [Ref. J5.1].J4.2 UHS flow -The mass flow rate through the UHS is equal to 86 ft 3/s [Ref. J5.8].J4.3 UHS sediment level -The sediment level in the intake flume and cooling pond must remain less than or equal to 1.5 ft [Ref. J5.8]. The use of maximum silting reduces the PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J14 of J40 UHS volume, and therefore the residence time. This reduces the effectiveness of the UHS and it is thus conservative.

J4.4 Properties of water -Water at 1007F has the following properties:

density z 62 lb/ft 3;dynamic viscosity z 6.727.10-9 atm-s [Ref. J5.7].J

5.0 REFERENCES

J5.1 LSCL-UFSAR, Section 9.2.6 "Ultimate Heat Sink", Rev. 19 J5.2 CD-adapco, User Guide, STAR-CCM+

Version 6.04.014, 2011 J5.3 Exelon Nuclear -LaSalle Station Drawing No. S-16B Rev. B, "Composite Lake Drawing, Sheet 2" J5.4 Exelon Nuclear -LaSalle Station Drawing No. S-79 Rev. H, "CSCS Pond Water Inlet Chutes Plan and Sections" J5.5 Exelon Nuclear -LaSalle Station Drawing No. 97ES083.1 Rev. 0, "Contours Hydrographic Survey" J5.6 Exelon Nuclear -LaSalle Station Drawing No. 97ES083.2 Rev. 0, "Profiles Hydrographic Survey" J5.7 Frank Kreith, "Principles of Heat Transfer", 3 rd Ed. 1976, IEP, New York, NY J5.8 LSCL Calculation No. L-002457, Rev. 5 J5.9 T.L. Brown, H.E. LeMay Jr., B.E. Bursten, J.R. Burdge, "Chemistry", 9 th Ed. 2003, Prentice Hall, Upper Saddle River, NJ J5.10 LAKET-PC User Manual, S&L Program Number 03.7.292-2.2, Rev. 0, October 30, 2004 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J15 of J40 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J15 of J40 J6.0 EVALUATIONS Step One: Steady State Analysis The steady state simulation is run until convergence for approximately 6,000 iterations

[see Residual graph in Appendix J8.3]. Figure J- 11 shows the velocity magnitude distribution and stream lines at the free surface. As seen, the right leg of the UHS presents two large recirculation cells which are not expected to participate significantly to the main water flow. Additional two smaller recirculation areas are visible in proximity to the UHS inlet created by the inlet water stream.Velocity:

Magnitude (ft/s)v3,1399 25319 21819 12560 0.6Z2798 Figure J-1 1. UHS computation

-Step One: Velocity magnitude and stream lines on the UHS free surface.Step Two: Transient Analysis After applying the changes indicated in Section J2.1.5 to the steady state model, the transient simulation is run for approximately 40,000 iterations from time tstar, = 0 sec to time tend = 47 hrs [see Residual graph in Appendix J8.3]. Figure 12 shows the surface concentration distribution for the "WaterLake".

As expected, the velocity distribution is practically unchanged with respect to the steady-state solution (see Figure J-13).PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J16 of J40 MassFraction of WaterLake L.0000 Velocity:

Magnitude (ft/s)2.5 22 0.8000 0.6000 0.240O 90.0=00 V2561 562805 t48 .006 Figure J-12. UHS computation

-Step Two: Surface concentration for "WaterLake" at 47 hrs.Figure J-13. UHS computation

-Step Two: Velocity magnitude and stream lines on the UHS free surface.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J 17 of J40 The numerical computation of both Step One and Two is considered to be successful upon evaluation of the relative residual (unitless) plot shown in Appendix J8.3 (see page 31). The residuals of the fluid dynamics variables are very well behaved and with a magnitude, at the end of each main iteration, small enough to ensure a sufficiently converged solution.

Therefore, the acceptance criteria in Section J2.3 are satisfied.

7 0 0 C 0 0 E.5 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1--Straight Channel-UHS I-,.I N N N N N I N N N-- N 0 0 5 10 15 20 25 Time [hr]30 35 40 45 50 Figure J-14. UHS computation

-Time variation of the"WaterLake" volume average concentration in the UHS.Figure J-14 shows the trend over time of the "WaterLake" volume average concentration.

As seen, the concentration decreases linearly at the beginning since the incoming water displaces the water in the UHS. After about 20 hrs, some the incoming water is already exiting the UHS and thus "WaterLake" volume average concentration change is no longer linear: some of the incoming water is being trapped in the areas of recirculation and it cannot efficiently displace the "WaterLake" out of the UHS.After 47 hrs, the volume average concentration is computed to be 36.59 %. Therefore, the UHS effective volume percentage as compute by Equation J2.1.6 is equal to (see Appendix J8.3): Veffective

= 1 -0.3659 = 63.4%VUHS (J2.1-8)PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT J, PAGE J18 of J40 After 47 hrs, the surface average concentration is computed to be 42.09 %. Therefore, the UHS effective surface percentage as compute by Equation J2.1.7 is equal to (see Appendix J8.3: Seffective

= 1- 0.4209 = 57.9%SUHS (J2.1-9)J

7.0 CONCLUSION

The UHS effective volume as percentage of the UHS total volume is 63.4 %.The UHS effective surface as percentage of the UHS total free surface is 57.9 %.J8.0 APPENDICES J8.1 STAR-CCM+

mesh quality report [see Page J19]J8.2 Calculation of the Schmidt number [see Pages J20 to J23]J8.3 Summary Report of STAR-CCM+

Analysis [see Pages J24 to J32]J8.4 STAR-CCM+

6.01.014, S&L Prog. No. 03.7.863-6.04.014, Controlled folder file listing Electronically attached: File name: EAppendix J8.4.pdf Size: 22,128 KB; Type: Adobe Acrobat Document; Date 5/23/2012 3:25 PM J8.5 MathCad 14.35, S&L Program No. 03.7.548-1435, Controlled folder file listing Electronically attached: File name: EAppendix J8.5.pdf Size: 2,068 KB; Type: Adobe Acrobat Document; Date 5/23/2012 3:27 PM J8.6 Additional information requested by the U.S. Nuclear Regulatory Commission on June 27th 2013 [see Page J33 to J40]PROJECT NO. 11333-297 Calculation No. L-002457 Appendix J8.1 Revision No. 8 Attachment J Page J19 of J40 Boundaries of region Lake: Boundary soil: 126832 faces (7 triangular, 236 quadrilateral, 126589 polygonal)

Extents: x: [-4.2672000000e+000, 7.8150720000e+002]

m y: [-4.2672000000e+000, 1.4874240000e+003]

m z: [-1.9812000000e+000, 1.0668000000e+000]

a surface area: 3.2716753125e+005 mA2 maximum boundary skewness angle = 1.2161578369e+002 deg in cell with Prostar cell Index 754941 Boundary FreeSurface:

126581 faces (1 triangular, 201 quadrilateral, 126379 polygonal)

Extents: x: [-4.2672000000e+000, 7.8150720000e+002) m y: [-4.2672000000e+000, 1.4874240000e+003]

m z: [1.0668000000e+000, 1.0668000000e+000]

m surface area: 3.2625790625e+005 mA2 maximum boundary skewness angle = 8.5943321228e+001 deg in cell with Prostar cell Index 158035 Boundary Inlet: 30 quadrilateral faces Extents: x: [9.0220800000e+001, 9.2659200000e+001]

m y: [1.7526000000e+002, 1.7526000000e+002]

m z: [0.0000000000e+000, 1.0668000000e+0001 m surface area: 2.6012849808e+000 mA2 maximum boundary skewness angle = 2.4523153305e+001 deg in cell with Prostar Cell Index 372457 Boundary Outlet: 176 faces (174 quadrilateral, 2 polygonal)

Extents: x: [2.9565600000e+002, 3.4442400000e+002]

m y: [1.4874240000e+003, 1.4874240000e+003]

m z: [-1.9812000000e+000, 1.0668000000e+000]

m surface area: 1.1132573700e+002 mA2 maximum boundary skewness angle = 2.8035736084e+001 deg in cell with Prostar Cell Index 739634 Region Lake: 43 tetrahedral cells 25 hexahedral cells 2 wedge cells 2 pyramid cells 748314 polyhedral cells 748386 cells total 2880831 interior faces (5724 triangular, 2249993 quadrilateral, 625114 polygonal) 1761870 vertices Extents: x: [-4.2672000000e+000, 7.8150720000e+002]

m y: [-4.2672000000e+000, 1.4874240000e+003]

m z: [-1.9812000000e+000, 1.0668000000e+0003 m Maximum interior cell index delta: 2296, average: 7.8781478469e+002 Maximum cell face index delta: 9001, average: 5.6040540283e+003 volume range: [4.2707888497e-005, 3.1967809200e+000]

mA3 Minimum volume in cell with Prostar cell Index 747962 Minimum distance between centroids of neighbor cells = 1.9749755266e-002 between cells with Prostar Cell Index 452140 and 576394 Maximum skewness angle = 1.7942733765e+002 deg in cell with Prostar cell Index 718600 Face validity: Minimum Face validity:

8.4159338474e-001 Maximum Face validity:

1.0000000000e+000 Face validity < 0.50 0 0.000%0.50 <= Face validity < 0.60 0 0.000%0.60 <= Face validity < 0.70 0 0.000%0.70 <= Face validity < 0.80 0 0.000%0.80 <= Face validity < 0.90 24 0.003%0.90 <= Face validity < 0.95 94 0.013%0.95 <= Face validity < 1.00 357 0.048%1.00 <= Face validity 747911 99.937%volume change: Minimum volume change: 1.052741e-003 Maximum volume change: 1.000000e+000 volume change < 0.000000e+000 0 0.000%0.000000e+000

<= volume change < 1.0000OOe-006 0 0.000%1.0000OOe-006

<= volume Change < 1.0000OOe-005 0 0.000%1.000000e-005

<= volume change < 1.000000e-004 0 0.000%1.000000e-004

<= volume Change < 1.0000OOe-003 0 0.000%1.000000e-003

<= volume change < 1.000000e-002 166 0.022%1.000000e-002

<= volume change < 1.0000OOe-001 685 0.092%1.000000e-001

<= volume change <= 1.000000e+000 747535 99.886%Maximum boundary skewness angle in region = 1.216158e+002 deg overall Face validity: Minimum Face validity:

8.415934e-001 Maximum Face validity:

1.000000e+000 Face validity < 0.50 0 0.000%0.50 <= Face validity < 0.60 0 0.000%0.60 <= Face validity < 0.70 0 0.000%0.70 <= Face validity < 0.80 0 0.000%0.80 <= Face validity < 0.90 24 0.003%0.90 <= Face validity < 0.95 94 0.013%0.95 <= Face validity < 1.00 357 0.048%1.00 <= Face validity 747911 99.937%overall volume change: Minimum volume Change: 1.052741e-003 Maximum volume Change: 1.000000e+000 volume change < 0.000000e+000 0 0.000%0.000000e+000

<= volume Change < 1.00OOOOe-006 0 0.000%1.000000e-006

<= volume Change < 1.OOOOOe-005 0 0.000%1.000000e-005

<= volume Change < 1.000000e-004 0 0.000%1.000000e-004

<= volume Change < 1.0000OOe-003 0 0.000%1.000000e-003

<= volume change < 1.0000OOe-002 166 0.022%1.0000OOe-002

<= volume Change < 1.000000e-001 685 0.092%1.000000e-001

<= volume Change <= 1.000000e+000 747535 99.886%PROJECT NO. 11333-297 Calculation No. L-002457 Revision No. 8 Appendix J8.2 Page J20 of J40 Attachment J Appendix B8.2 Calculation of the Schmidt number References

1. Frank Kreith, "Principles of Heat Transfer", 3rd Ed. 1976, IEP, New York, NY 2. R.S. Smith, Z. Dohnalek, G.A Kimmel, K.P. Stevenson, B.D. Kay, "The self-diffusivity of amorphous solid water near 150 K", Chemical Physics Vol. 258, Page 291-305, 2000 Project No. 11333-297 Calculation No. L-002457 Appendix J8.2 Revision No. 8 Attachment J Page J21 of J40 Water fluid dynamics properties as function of temperature

[Ref. 1]i 0.. 4 70-F 80 OF Tdata.water.i 90OF Temperature 100 0 F 1150 OF, (62.3" 62.2:= /62.1 lb Density Pdaia.,,vater.[

62.0 ft 161.2)"0.658 0.578:=dala.water.

0.514 10- 3 lb Dynamic viscosity 4 ft sec 0.458.0.292 Based on these values, the water density and dynamic viscosity are defined as function of temperature using a linear interpolation procedure:

Pwater(Texnp)

= linterp(Tdata.water.

I, Pdata.water.

I, Temp).,v.ater(Temp)

= linterp(Tdata.water.

I, -Idata.water.

I, Temp)Project No. 11333-297 Calculation No. L-002457 Revision No. 8 Attachment J Appendix J8.2 Page J22 of J40 Water self-diffusivity as function of temperature

[Ref. 2]Reference 2 plots self-diffusivity values for water in liquid state for temperature from 273.15 K (32 'F) to 373.15 K (212 -F). The data below are extracted from Figure 7 of Ref. 2: Tdata.water,2

=277.0 282.2 286.4 291.1 295.7 299.4 318.6 334.1 ,364.2 K j := 0.. 8 Temperature Dww-daIa.watcr.2:=

1.23E-05 1.49E-05 1.69E-05 1.92E-05 2.05E-05 2.33E-05 3.65E-05 4.71E-05 7.85E-05 2 cm S Self-diffusivity Based on these values, the water self-diffusivity is defined as function of temperature using a linear interpolation procedure:

Dj(Temp) := linterp(Tdta.water.2, Dww.data.water.2, Teinp)Project No. 11333-297 Calculation No. L-002457 Revision No. 8 Appendix J8.2 Page J23 of J40 Attachment J The Schmidt number is defined as [Ref. B5.2]: Schmidt(Temp)

= ..,,(Temp)Pwater(Temp)
  • DN%,v(Temp)

A plot of the Schmidt number between 90'F and 130°F is shown below: Temperature:=

90 OF I 10 OF 120 0 OF 130 OF)Schmid,(Teinperature

.)280.6 219.8= 182.1 151.8 ,126.9)330 Temperaturei K At 100'F, the Schmidt number is equal to 219.8.Project No. 11333-297 Calculation No. L-002457 Revision No. 8 Appendix J8.3 Page J24 of J40 Altachment J Summary Report: UHS step two Session Summary Date I Simulation C File size 2 Number of Partitions 1 Number of Restored Partitions 1 Software Summary Version B B R R Hardware Summary Hosts C N Simulation Properties a uHS+-1 Filters*-2 Parts 1 -1 Lake+-1 Surfaces+-1 FreeSurface I II 1 4-2 Inlet I I tar 29, 2012 6:16:13 PM;:\Users\0n7590\Desktop\UHS.sim

.9e+02 MB uildArch:

win64 uildEnv: intell1.1 eleaseDate:

Fri Jun 3 18:25:06 UTC 2011 eleaseNumber:

6.04.014 ontroller:

STARCCM umber of Workers: 0 Region Contacts Face count Tags Meta Data Boundary Tags Meta Data Boundary Tags Meta Data Boundary Tags Meta Data Boundary Tags Meta Data Tags Feature Curve+-3+-5+ -(+1 4-3 Outlet I" -4 Soilt-2 Curves"-a Edges 3D-CAD Models Tags Operations Continua 1 Mesh 1+-1 Modets 1 +-1 Surfacet I I II" -2 Thin Met Remesher sher Continua OOC translation Verbose Output Per-Region Meshing Use Parallel Meshing Interpolation Option Interfaces Regions Do curvature refinement Do proximity refinement Do compatibility refinement Retain geometric features Create aligned meshes Minimum face quality Enable automatic surface repair Polyhedral Cells Type Run Optimizer Automatic Correction Customize Thickness Threshold Customize Surface Size Ratio Threshold Value Project to CAD Enable curvature deviation distance# Pig/circle Surface Growth Rate# Points in gap Search Floor Relative/Absolute Size Method Value Value Number of Layers Size type Value Part Group Shapes Lake 0 572{}Lake: FreeSurface

{}Lake: Inlet[]{}Lake: Outlet U Lake: Soil[]{}U Lake:Edges 2 false false false false Nearest neighbor 0[Lake]true true false true false 0.05 false Polygonal prisms false true true false 12.0 ft true false 36.0 1.3 2.0 0.0 ft Absolute Min and Target 6.0 It 12.0 ft 6 Absolute 11.0 ft[Block 1]2 Reference Values+-I Base Size-2 CAD Projection

+-3 Surface Curvature I '-I Basic Curvature+-4 Surface Growth Rate+-5 Surface Proximity 1-6 Surface Size I I I +-I Absolute Minimum Size 1 -2 Absolute Target Size+-7 Thin Mesher Layers 8 -6 Thin Solid Thickness"-I Absolute Size-3 Volumetric Controls'-a Volumetric Control 1 M+-I1 Mesh Conditions Project No. 11333-297 Calculation No. L-002457 Revision No. 8 Appendix J8.3 Page J25 of J40 Atlachment J I -+-7 I "-2 Physic-1 Surface Remesher Mesh Values-1 Custom Size'-1 Absolute Size s 1 Customize surface remesher Size type Value Interfaces Regions Enabled Absolute 1.5 ft 0[Lake]1 Models--1 All y+ Wall Treatment 4-2 Constant Density+-3 Implicit Unsteady+-4 K-Omega Turbulence

+-5 Multi-Component Liquid I-1 Liquid Mixture+-i Liquid Components I +-I WaterLake I I1 I I -1 Component Properties I I -1 MolecularWeight I -1 Constant" -2 WaterCirculating I I I -1 Component Properties

' -1 Molecular Weight'-1 Constant-2 Mixture Properties

+-1 Density I -1 Constant+-2 Dynamic Viscosity I -1 Constant.--3 Molecular Diffusivity I '-1 Schmidt Number+-,I Molecular Weight I -1 Mixture-5 Turbulent Schmidt Numbe-1 Constant+--6 Non-reacting

+-7 Reynolds-Averaged Navier-Stokes

+-,q Segregated Flow I I 1+-9 Segregated Species r I I v v+-i4- SST (Menter) K-Omega 1 +-1 Compressibility Parameters 1 '-2 Realizability Coefficient

+- 11 Three Dimensional

'-12 Turbulent+-2 Reference Values I +-1 Reference Pressure-2 Minimum Allowable Wall Distance-3 Initial Conditions 4-1 Pressure I "-1 Constant+-2 Species Mass Fraction I -1 Constant+-3 Species Specification

+-.i Turbulence Intensity I -1 Constant+-5 Turbulence Specification

+-6 Turbulent Velocity Scale I '-1 Constant+-7 Turbulent Viscosity Ratio I -1 Constant'-8 Velocity I"-1 Constant ID Database Material Method Value ID Database Matedal Method Value Method Value Method Value Method Schmidt Number Method Method Value Minimum Absolute Pressure Flow Boundary Diffusion Secondary Gradients Convection Flow Boundary Diffusion Secondary Gradients Convection al Kappa BetaStar Beta1 Sigma_k1 Sigma wl Beta2 Sigmak2 Sigmaw2 Secondary Gradients Convection Realizability Option Compressibility Correction Low Re Damping Modification Normal Stress Term Tke Minimum Sdr Minimum ZetaStar Realizability Coefficient Value Value Method Value Method Value Method Method Value Method Method Value Method Value Coordinate System Method Value Regions Index Physics Continuum Type Mesh Continuum Parts Boundaries Index 1 H20 (Water) [Standard/Liquids]

Constant 18.0153 Ib/Ibmol 2 Hg (Mercury)

[Standard/Liquids]

Constant 18.0153 Ib/Ibmol Constant 62.0 lb/ft^3 Constant 6.727E-9 atm-s Schmidt Number 219.8 Mixture Constant 0.9 0.009869232667160128 atm true On 2nd-order true On 2nd-order 0.31 0.41 0.09 0.075 0.85 0.5 0.0828 1.0 0.856 On 2nd-order Durbin Scale Limiter true false false I.OE-10 1.OE-10 1.5 0.6000000238418579 1.0 atm 3.280839895013123E-6 ft Constant 0.0 atm Constant[1.0, 0.0)Mass fraction Constant 0.01 Intensity

-Viscosity Ratio Constant 3.280839895013123 ft/s Constant 10.0 Laboratory Constant[0.0, 0.0, 0.0] ft/s 0 Physics 1 Fluid Region Mesh 1[Lake]4 2 Ri-1 4.egions Lake-i Bo÷-1 Pndaries:reeSudface Project No. 11333-297 Calculation No. L-002457 Revision No. 8 Attachment J Appendix J8.3 Page J26 of J40-1 Mesh Conditions

+-1 Custom Surface Curvature 4-2 Custom Surface Proximity 4- 3 Custom Surface Size'-4 Customize Surface Remeshing Inlet+-1 Mesh Conditions 1 -1 Custom Surface Curvature I +-2 Custom Surface Proximity I +-3 Custom Surface Size I I-4 Customize Surface Remeshing 1 -2 Physics Conditions I +-i Flow Direction Specification I +-2 Mass Flow Option I 4-3 Species Specification 1I '-4 Turbulence Specification

-3 Physics Values+-1 Mass Flow Rate I "-1 Constant I +-2 Species Mass Fraction I "-1 Constant 1 -3 Turbulence Intensity I '-1 Constant 1 -4 Turbulent Viscosity Ratio'-1 Constant+-3 Outlet I I I I I I I 4-1 Mesh Conditions I --1 Custom Surface Curvature I 4-2 Custom Surface Proximity I +-3 Custom Surface Size I --4 Customize Surface Remeshing 1 +-2 Physics Conditions I --1 Backflow Direction Specification S1+-2 Species Specification I "-3 Target Mass Flow Option I -4 Turbulence Specification

"-3 Physics Values+-1 Pressure I '-1 Constant I +-2 Species Mass Fraction I '-1 Constant I -3 Turbulence Intensity I '-1 Constant"-4 Turbulent Viscosity Ratio 1 -1 Constant"- Soil I I I+-1 Mesh Conditions I +-1 Custom Surface Curvature I +-2 Custom Surface Proximity I +-3 Custom Surface Size 1 -4 Customize Surface Remeshing+-2 Physics Conditions I +-1 Shear Stress Specification I +-2 Tangential Velocity Specification I I I +-3 Wall Species Option 1 -4 Wall Surface Specification

-3 Physics Values 4-1 Blended Wall Function 1+-2 Roughness Height I "-i Constant-3 Wall Roughness Parameters

-2 Feature Curves-t Edges--1 Mesh Conditions

'-1 Custom Surface Size-3 Mesh Conditions

.-1 Customize Thin Mesher Parameters

-4 Physics Conditions 4-1 Initial Condition Option+-2 Momentum Source Option+-3 Species Source Option-4 Turbulence Source Option-5 Physics Values+-1 Axis Type Interfaces Part Surfaces Custom curvature Custom proximity Custom surface size Disable Surface Remeshing Index Type Interfaces Part Surfaces Custom curvature Custom proximity Custom surface size Disable Surface Remeshing Method Specification Option Method Method Method Value Method Value Method Value Method Value Index Type Interfaces Part Surfaces Custom curvature Custom proximity Custom surface size Disable Surface Remeshing Method Method Target Mass Flow Option Method Method Value Method Value Method Value Method Value Index Type Interfaces Part Surfaces Custom curvature Custom proximity Custom surface size Disable Surface Remeshing Method Method Reference Frame Method Method Kappa E Method Value B C RplusSmooth RplusRough Feature Curves Part Curves Custom surface size Customize Thin Mesher Parameters Option Momentum Source Option Species Source Term Turbulence Source Option Direction Coordinate System Symmetry Plane[Lake.FreeSurface]

Use Continuum Values Use Continuum Values Disabled Disabled 3 Mass Flow Inlet[Lake.Inlet]

Use Continuum Values Use Continuum Values Disabled Disabled Boundary-Normal Mass Flow Rate Mass fraction Intensity

+ Viscosity Ratio Constant 5333.7 Ib/s Constant[0.0, 1.0]Constant 0.01 Constant 10.0 4 Pressure Outlet[Lake.Outlet]

Use Continuum Values Use Continuum Values Disabled Disabled Boundary-Normal Mass fraction Disabled Intensity

+ Viscosity Ratio Constant 0.0 atm Constant[1.0, 0.0]Constant 0.01 Constant 10.0 1 Wall[Lake.Soil]

Use Continuum Values Use Continuum Values Disabled Disabled No-Slip None Relative To Mesh Impermeable Rough 0.42 9.0 Constant 5.0 in 0.0 0.253 2.25 90.0 1[Lake.Edges]

Disabled Use Default Values Use Continuum Values None Disabled None[0.0, 0.0, 1.0]Laboratory Project No. 11333-297 CalcUjlation No. L-002457 Revioion No. 8 Appendix J8.3 Page J27 of J40 Attachmenl J I "-2 Motion Specification

+-8 Derived Parts+-1 HorizontalCenter

+-.-1 Single section 2 Horizontallnlet

'-1 Single section+-3 HorizontalOutlet II I I Single section+-'J Streamline

+-I Source Seed II"-2 2nd Order Integrator

+-5 VerticalCenter I I Origin Motion Reference Frame Derived Parts Coordinate System Origin Normal Section Mode Displayed Index Parts Offset Coordinate System Origin Normal Section Mode Displayed Index Parts Offset Coordinate System Origin Normal Section Mode Displayed Index Parts Offset Seed Type Rotation Scale Integration Solver Vector Field Parts Seed Parts On Ratio Randomize N Grid Points Integration Direction Initial Integration Step Maximum Propagation Max Steps Coordinate System Origin Normal Section Mode Displayed Index Parts Offset Coordinate System Origin Normal Section Mode Displayed Index Parts Offset Time-Step Freeze Time Temporal Discretization Solver Frozen Verbosity Parallel memory optimization scaling factor Solver Frozen Reconstruction Frozen Reconstruction Zeroed Temporary Storage Retained Solver Frozen Under-Relaxation Factor Ramp Method Verbosity Max Cycles Parallel Migration Limit Extra partition-boundary sweeps Enable direct-solver Maximum direct-solver equations Convergence Tolerance Epsilon Cycle Type Group Size Control Group Size Relaxation Scheme Acceleration method Scaling Restriction Tolerance Prolongation Tolerance Sweeps Under-Relaxation Factor Pressure Reference Location Ramp Method Verbosity[0.0, 0.0, 0.0] ft Stationary Lab Reference Frame 6 Laboratory

[700.0, 1000.0, -1.49999999999999981 it,it,it[0.0, 1.0, 0.0] ft,ft,ft Single Section-1[Lake]0.0 Laboratory

[500.0, 500.0, -1.4999999999999998[

ft,ft,ft[0.0, 1.0, 0.0] tt,tt,it Single Section-1[Lake]0.0 Laboratory

[1050.0, 4000.0, -1.4999999999999998]

ft,ft,ft[0.0, 1.0, 0.0] ft,ft,it Single Section-1[Lake]0.0 Part 1.0 2nd-Order RK Cell Relative Velocity[Lake: FreeSurface]

[Lake: FreeSurface]

281 false[30, 30]Both 0.5 20.0 2000 Laboratory

[1050.0, 2433.0000000000005, -1.4999999999999998]

it,it,ft[1.0, 0.0, 0.0] ft,ft,ft Single Section-1[Lake]0.0 Laboratory

[300.0, 1000.0, -1.4999999999999998]

fitft,it[1.0, 0.0, 0.0] ft,fIft Single Section-1[Lake]0.0 11.0s false 1 st-order false 0 1.0 false false false false false 0.7 No Ramp None 30 25 0 false 32 0.1 0.0 Flex Cycle Auto 4 Gauss-Seidel None Disabled 0.9 0.5 1 0.3 Automatic Selection No Ramp None-1 Single section Verticallnlet

+--'-1 Single section-9 Solvers+-1 Implicit Unsteady÷-2 Wall Distance I 4-3 Segregated Flow I I I I I I I+- Velocity+-I Under-Relaxation Factor Ramp*-2 AMG Linear Solver"-1 Flex Cycle-2 Pressure I+-1 Under-Relaxation Factor Ramp"-2 AMG Linear Solver Project No. 11333-297 Calculation No. L-002457 Revision No. 8 Appendix J8.3 Page J28 of J40 Attachment J'-I VCycle 1+-4 Segregated Species I I I I+-i Under-Relaxation Factor-2 AMG Linear Solver I -1 V Cycle I I 1 -5 K-Omega Turbulence I I+-1 Under-Relaxation Factor F I -2 AMG Linear Solver.-1 FlexCycle"-6 K-Omega Turbulent Viscosi+-10 Stopping Criteria I +-i Maximum Inner Iterations 1+-2 Maximum Physical Time f+-3 Maximum Sep S-4 Stop File Ramp Ramp Max Cycles Parallel Migration Limit Extra partition-boundary sweeps Enable direct-solver Maximum direct-solver equations Convergence Tolerance Epsilon Cycle Type Group Size Control Group Size Relaxation Scheme Acceleration method Scaling Pre-Sweeps Post-Sweeps Max Levels Under-Relaxation Factor Reconstruction Frozen Reconstruction Zeroed Temporary Storage Retained Solver Frozen Ramp Method Verbosity Max Cycles Parallel Migration Limit Extra partition-boundary sweeps Enable direct-solver Maximum direct-solver equations Convergence Tolerance Epsilon Cycle Type Group Size Control Group Size Relaxation Scheme Acceleration method Scaling Pre-Sweeps Post-Sweeps Max Levels Under-Relaxation Factor Reconstruction Frozen Reconstruction Zeroed Temporary Storage Retained Solver Frozen Ramp Method Verbosity Max Cycles Parallel Migration Limit Extra partition-boundary sweeps Enable direct-solver Maximum direct-solver equations Convergence Tolerance Epsilon Cycle Type Group Size Control Group Size Relaxation Scheme Acceleration method Scaling Restriction Tolerance Prolongation Tolerance Sweeps Under-Relaxation Factor Maximum Ratio Solver Frozen Maximum Inner Iterations Enabled Criterion Satisfied Logical Rule Maximum Physical Time Enabled Criterion Satisfied Logical Rule Maximum Steps Enabled Criterion Satisfied Logical Rule Stop Inner Iterations Path Enabled Criterion Satisfied Logical Rule Reports Scalar Field Function Parts Smooth Values Units Scalar Field Function Parts Smooth Values Units Parts 30 25 0 false 32 0.1 0.0 V Cycle Auto 4 Gauss-Seidel Conjugate Gradient Auto 1 1 50 0.9 false false false false No Ramp None 30 25 0 false 32 0.1 0.0 V Cycle Auto 4 Gauss-Seidel None Disabled 1 1 5O 0.8 false false false false No Ramp None 30 25 0 false 32 0.1 0.0 Flex Cycle Auto 4 Gauss-Seidel None Disabled 0.9 0-5 1 1.0 100000.0 false 20 true true Or 169122.0 s true true Or 1000000000 true false Or true ABORT true false Or 8 MassFraction of WaterLake[Lake: FreeSurface]

false MassFraction of WaterLake[Lake]false[Lake: Inlet]Ly+-11 Reports+-1 ConcenfrationSurfaceLakeWater

+-2 ConcentrationVolumeLakeWater I I+-3 MasslFlow-lnlet Project No. 11333-297 Celculalion No. L-002457 Revision No. 8 Appendix J8.3 Page J29 of J40 Attachmnenl J+-4 MassFlowOutlet

+-5 MassFlowTotal

÷-6 Velocity_Plane4AveVel t-7 Velocity_Plane4MaxVel-a Velocity_Plane4ManVel 4-12 Monitors I+-.L Concern trationSurfaceLakeWater Monitor I I I I+-4 Inlet Monitor+ -5 Plane4AveVel Monitor I+-6 Plane4MaxVel Monitor I I+-7 Plane4MinVel Monitor+-8 Total Monitor II II+-13 Representations 1 +-1 Geometry 1 +-2 Initial Surface II-1 Regions-1 Lake I+-I Boundaries-I --1 FreeSurface I +-2 Inlet I +-3 Outlet ,I --I Soil"-2 Feature Curves I -1 Edges 1 +-3 Remeshed Surface I I I I -1 Regions I -1 Lake II I Smooth Values Units Parts Smooth Values Units Parts Smooth Values Units Scalar Field Function Parts Smooth Values Units Scalar Field Function Parts Smooth Values Units Scalar Field Function Parts Smooth Values Units Monitors Monitors To Print Output Direction Heading Print Frequency Report Trigger Maximum Plot Samples Normalization Option Frequency Report Trigger Maximum Plot Samples Normalization Option Frequency Report Trigger Maximum Plot Samples Normalization Option Frequency Report Trigger Maximum Plot Samples Normalization Option Frequency Report Trigger Maximum Plot Samples Normalization Option Frequency Report Trigger Maximum Plot Samples Normalization Option Frequency Report Trigger Maximum Plot Samples Normalization Option Frequency Report Trigger Maximum Plot Samples Normalization Option Frequency false Ib/s[Lake: Outlet]false Ibis (Lake: FreeSurface, Lake: Inlet, Lake: Outlet, Lake: Soil]false lb/s Velocity:

Magnitude[HodzontalCenter]

false ft/s Velocity:

Magnitude[HorizontalCenter]

false ft/s Velocity:

Magnitude[HorizontalCenter]

false ft/s 18[Z-momentum, WaterLake, Sdr, Tke, Y-momentum, X-momentum, Continuity, Inlet Monitor, Outlet Monitor, Total Monitor, Plane4AveVel Monitor, Plane4MinVel Monitor, Plane4MaxVel Monitor, ConcentrationSurface LakeWater Monitor, ConcentrationVolumeLakeWater Monitor]Horizontal 10 ConcentrationSurfaceLakeWater Time Step 100000 Off 1 ConcentrationVolumeLakeWater Time Step 100000 Off 1 MassFIowmInlet Iteration 5000 Off 1 MassFlowOutlet Iteration 5000 Off 1 Velocity_Plane4AveVel Iteration 5000 Off 1 Velocity_PIane4MaxVel Iteration 5000 Off 1 Velocity_Plane4MinVel Iteration 5000 Off 1 MassFIowTotal Iteration 5000 Off I akeWater Monitor Faces Edges Faces Edges Faces Faces Faces Faces Edges Faces Edges Faces Edges 572 154 572 154 142 2 2 426 154 493496 2460 493496 2460 Project No. 11333-297 Calculation No. L-002457 Revision No. 8 Appendix J8.3 Page J30 of J40 Attachment J+-1 Boundaries I I +-1 FreeSurface I I +-2 Inlet I I 1 +-3 Outlet SI I "-4 Soil 1 -2 Feature Curves I I -I Edges I -4 Volume Mesh I I I I I +-I Finite Volume Regions I -1 Lake I I I I I -1 Finite Volume Boundaries I ; -1 FreeSurface 1 +-2 Inlet I --3 Outlet I "-4 Soil"-2 Cell Sets+-14 Coordinate Systems+-15 Tables--16 Units+-17 Field Functions+-Is Volume Shapes I -1 Block 1 Faces Faces Faces Faces 250750 32 94 242620 Edges Cells Interior Faces Vertices Cells Interior Faces Vertices Faces Faces Faces Faces Preferred System Coordinate System Corner1 2460 748386 2880831 1761870 748386 2880831 1761870 126581 30 176 126832 United States Customary System Laboratory

[295.00000120147945, 558.9999802156383, -1.4999999696501283]

ff,ft,[304.9999897874246, 576.0, 5.000000159571489]

fl,f,ft Comer2--19 UserCode+-20 Data Set Functions+-21 Layouts I '-1 default+-22 Data Mappers+-23 Motions 1 "-1 Stationary

+-24 Reference Frames I '-I Lab Reference Frame Solution Accumulated CPU Time over all processes (s) 641294.4330000208 Elapsed Time (s) 641294.4820000213 Time Level 1947 Solution Time 169122.0 Project No. 11333-297 Residuals_.J

-0 0 O 0 No 0.1 p.J01 0 .0 1.. ..- --- ----------- ------ ---- ------0.001-1 E-4 ....Continuity

.. .1 E5 -X-momentum

.. --Y-momentum z 1E-6:- -Z-momentum O CD Tke AllO 11111 Will 111.1111 d.11 l 11.1[ i1 -- Sdrmk _'1E-7I WaterLake 1E-8 1E-9 1 E-12 1 0 10000 20000 30000 40000 50000 '" xIteration 9D 0 Calculation No. L-002457 Appendix J8.3 Revision No. 8 Attachment J Page J32 of J40 Volume Average of MassFraction of WaterLake Part Value Lake 3. 658991e-01 Total: 3.658991e-01 Surface Average of MassFraction of WaterLake Part Value Lake: FreeSurface 4.209259e-01 Total: 4.209259e-01 Project No. 11333-297 Calculation No. L-002457 Revision No.8 Appendix J8.6 Attachment J Page J33 of J40 Appendix J8.6 Additional information requested by the U.S. Nuclear Regulatory Commission on June 2 7 th 2013.

References:

1. U.S. N.R.C. letter, "

Subject:

LaSalle County Station, Units 1 and 2 -Request for additional information related to license amendment request to technical specification

3.7.3 Ultimate

Heat Sink (TAC. NOS. ME9076 and ME9077)", June 27, 2013.Project No. 11333-297 Calculation No. L-002457 Revision No.8 Appendix J8.6 Attachment J Page J34 of J40 This appendix is added in response to the U.S. N.R.C. request for additional information for the review of CFD and entrance mixing conclusions

[Sec. 6, Ref. 1].Request "a": The dimensions of the inlet channel are shown in Figure J-4 in the main body of the calculation.

As seen, the channel cross-section is modeled as a rectangular area 8 feet wide and 3.5 feet high, which is an accurate representation of the actual inlet channel. The inlet velocity of the water is equal to approximately 3.07 ft/s, which corresponds to 86 ft 3/s (see Section J.2.1.5 in the main body of the calculation).

This is an accurate modeling of the inlet water velocity based on the dimensions of the discharge channel. The roughness of the bottom of the UHS (including the silt layer) is assumed to be 5 in. As indicated in Assumption J3.3 in the main body of the calculation, this value does not significantly affect the result of the analysis which is the overall water flow pattern and speed within the UHS.Figures J.8.6-1 to J.8.6-3 show the nodalization used at the inlet region of the UHS model (see also Section J2.1.4 in the main body of the calculation).

Figure J.8.6-1 shows a to-scale perspective side view of the UHS inlet channel.The dimensions the channel are show in Figure J-4 in the main body of the calculation.

Figure J.8.6-2 shows a to-scale perspective bottom view of the same region, while Figure J.8.6-3 shows the mesh at the mid-level plane of the UHS.41 Figure J8.6-1. Detail of the mesh at the inlet boundary (perspective side view)Project No. 11333-297 Calculation No. L-002457 Revision No.8 Appendix J8.6 Page J35 of J40 Attachment J Figure J8.6-2. Detail of the mesh at the inlet boundary (perspective bottom view)Figure J8.6-3. Detail of the mesh at the inlet boundary (top view of the mid-level plane)Project No. 11333-297 Calculation No. L-002457 Revision No.8 Appendix J8.6 Attachment J Page J36 of J40 Request "b": Figures J8.6-4 to J8.6-9 show the fluid velocity at the inlet region (images are to scale) including the top surface, horizontal mid-elevation plane and a vertical cross-section along the inlet channel and UHS (with details of the mesh).Velocity-Magnitude (ft/s)r J .06- 00 0.62774 1 255v8 o832 2.5110 3.1387 Figure J8.6-4. Water velocity on the free surface at inlet region 0,00000 0.62756 Velocity Magnitude (1f/s)1.2551 1.8827 2.5102 3.1378 Figure J8.6-5. Water velocity at the mid-plane of the UHS Project No. 11333-297 Calculation No. L-002457 Revision No.8 Appendix J8.6 Attachment J Paqe J37 of J40 Figure J8.6-6. Location of the vertical cross-section across the inlet channel and UHS (used in the figures below)o.00000 0.62956 Velocity:

Magnitude (ft/s)12591 1.8887 2.5183 3.1478 Figure J8.6-7. Water velocity on the vertical cross section along the inlet channel and UHS (see Figure J.8.6-6).

Note: The scale of the y-axis is 3.5 times larger that the scale of the x-axis.Project No. 11333-297 Calculation No. L-002457 Revision No.8 Appendix J8.6 Attachment J Page J38 of J40 0.00000 0.62956 Velocity:

Magnitude (ft/s)17250 7 1.8887 2,5183 3.1478 Figure J8.6-8. Water velocity on the vertical cross section along the inlet channel and UHS (see Figure J.8.6-6) with details of the mesh. Note: The scale of the y-axis is 3.5 times larger that the scale of the x-axis.Velocity:

Magnitude (tfts)0.00000 0.62956 12591 1.8887 2.5182 3.1478 Figure J8.6-9. Water velocity on the vertical cross section along the inlet channel and UHS (see Figure J.8.6-6) with details of the mesh (close-up view of the inlet)Project No. 11333-297 Calculation No. L-002457 Revision No.8 Appendix J8.6 Attachment J Page J39 of J40 Request "c": Figure J8.6-10 shows the two recirculation loops at the entry region.following variables are estimated from the CFD results (see Figure J8.6-10): The Mass flow rate in section Si: Mass flow rate in section S2: Mass flow rate in section S3: Mass flow rate entering the UHS: Mean return period in Loop A: Mean return period in Loop B: 184.5 ft 3/s 52.4 ft 3/s 46.1 ft 3/s 86.0 ft 3/s-1 hour-14 hours ((-61% of plant flow to the UHS)-54% of plant flow to the UHS)Loop A Figure J8.6-10. Recirculation loops at the entry region Project No. 11333-297 Calculation No. L-002457 Appendix J8.6 Revision No.8 Attachment J Page J40 of J40 Request "d": The use of constant density fluid and thermal stratification effects in the UHS are addressed in Attachment N, Section N6.4.The purpose of the CFD analysis is to evaluate the water flow pattern in the man-made Ultimate Heat Sink (UHS) at LaSalle County Generating and to provide effective lake volume and surface area for use in the S&L LAKET-PC computer program. Recirculation regions are present in the UHS due to its shape, which causes the water to flow in a non-straight path. Since water can be practically considered an incompressible fluid, the average velocity distribution within the UHS is governed by the conservation of mass. Changes in average water temperatures within the range of expected values (-100'F to 120'F)produce small changes in water properties and thus may marginally affect the local water velocity distribution.

However, these changes would not cause a significant change in the UHS overall water flow pattern and thus to the size of the recirculation regions. Therefore, the results of the CFD calculation are insignificantly affected by a change in water temperature.

Project No. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT K, PAGE KI of K6 CALCULAllON NO. 1-002457 REVISION NO.8 A1TACHMENT K, PAGE KI of K6 Attachment K -Preparation of Hourly Meteorological Data Prepared:

~ (-t Date Z+/- M A 2,012, Erwin T. Prater -Sargent & LundyLLc Reviewed:

I___ Date ______Paul N. Derezotes

-Sargent & LundyLLc PROJECT NO. 11333-297 CALCULATION NO. L-002457 RBASION No. 8 ATTACHMENT 1-ý PAGE K2 of K6 Preparation of Hourly Meteorological Data Used for Cooling Lake Analysis 1 Purpose This attachment describes update of a meteorological data input file provided to support a validation study of the cooling lake at the LaSalle County Nuclear Generating Station, near Marseilles, IL. The file was expanded to include older data collected from January 1, 1995 -December 31, 2004. The updated file now includes the period of record from January 1, 1995 -September 30, 2010.2 Parameters included in the Meteorological Data File The meteorological data file was compatible with the Laket program (Reference 1), which S&L uses to evaluate the thermal performance of cooling lakes. The parameter content and digital format of Laket meteorological files are listed in Table 1.3 Meteorological Data Selection Wind and temperature data were taken from an on-site meteorological tower at the generating station. The on-site tower measured the dry-bulb temperature and wind speed/direction at three levels: 33 ft., 200 ft. and 375 ft above ground level. Wind speed/direction and dry-bulb temperature from the lowest level (33 ft, or 10.1 meter) level were extracted for use in Laket.The on-site meteorological tower contractor supplied the on-site tower data in the form of digital text file.The on-site meteorological tower did not collect hourly humidity, precipitation type, cloud height and cloud cover, which are required inputs for Laket. These parameters were taken from a National Weather Service observing station at the Peoria, IL airport (station identifier KPIA).That weather station is located approximately 70 miles southwest of the generating station.4 Raw Meteorological Data Observed ("raw") meteorological data from KPIA were used to develop the meteorological data input file for Laket. Raw data were purchased from the National Climatic Data Center (NCDC)in Asheville, NC. Two separate digital files were purchased.

These two files are briefly described below.(1) Surface Weather Observations Raw surface weather observations (Reference

2) from KPIA covered the period of record from January 1, 1995 through December 31, 2004. NCDC subjects meteorological data to rigorous quality control checks before archiving it. Nevertheless, meteorological databases still typically include gaps and data values outside of valid ranges. The PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT K, PAGE K3 of K6 archived data included most of the weather parameters required by Laket (Table 1), with the following exceptions:

freezing precipitation code, solar radiation, atmospheric radiation, and partial pressure of water vapor. S&L estimated those parameters using standard methods. To check the thermodynamic consistency of the input data, S&L estimated hourly wet bulb temperature, dew point temperature and humidity to ensure consistency between those parameters and the (on-site) dry-bulb temperature.

In instances when the dew point temperature at KPIA exceeded the dry-bulb temperature at the on-site meteorological tower, the dew point temperature at KPIA was set equal to the dry-bulb temperature observed at the on-site tower. This ensured thermodynamic consistency between the relative humidity and the dry-bulb, wet-bulb temperature and dew point temperatures.

(2) Precipitation Data Raw hourly digital precipitation data (Reference

3) from KPIA were available for the period of record from January 1, 1995 through December 31, 2004.5 Creating Input Meteorological Data for Laket S&L uses a series of modular computer programs collectively called the Surface Data Generator ("Surgen")

and judgements and adjustments by a qualified, experienced, professional meteorologist to create digital meteorological data files for input into Laket. Key requirements of Laket include a specific set of weather parameters and specific digital format (Table 1), and a complete meteorological database with no bad (out of range), or missing, parameters.

Surgen modules are executed independently and perform the following functions:

(1) Interpret the unique digital formats of raw surface weather observations and precipitation data and extract required meteorological parameters.

(2) Convert numeric units of extracted parameters to those required by the Laket program.(3) Scan hourly surface weather observations, and identify periods when values for selected parameters are either missing or invalid (outside of acceptable ranges). Those periods are identified by starting and ending date, and by the length of each gap (in hours).(4) Scan hourly surface weather observations, identify periods within the digital file when whole days or specific hours are missing; insert new, or blank records into the file to fill time gaps.(5) Estimate values for the following weather parameters:

an indicator whether precipitation is liquid or frozen, solar radiation reaching the lake surface, atmospheric radiation reaching the lake surface, partial pressure of water vapor in the atmosphere, wet bulb temperature and dew point temperature.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION No. 8 ATTACHMENT K, PAGE K4 of K6 (6) Perform simple linear interpolation of weather parameter values through gaps, and insert the new interpolated values into the database.(7) Allow insertion of manually selected substitution values into gaps in the database that are judged not to be suitable for simple linear interpolation.

(8) Translate processed and adjusted databases into the format required by the Laket program.Since the project required combining wind and temperature data from an on-site meteorological tower with data collected at another site (Peoria, IL), S&L developed a project-specific FORTRAN program which merged the on-site wind speed/direction and dry-bulb temperature data with other data from KPIA. The program produced a single input file that was subsequently processed with Surgen, as described above.6 Review and Adjustment of Meteorological Data Surgen identified short periods of missing, or bad (out of range), raw meteorological data and used linear interpolation to fill short gaps that were generally 1-2 hours long. However, there were three periods identified which had data gaps too long for linear interpolation.

Data were manually substituted from Peoria in these periods. These periods are listed below: Wind direction and speed from Peoria, IL was used for the following periods: (1) 10/30/97 21:00 local standard time (LST) through 11/03/97 14:00 LST (2) 08/23/02 05:00 LST through 09/04/02 11:00 LST The anemometer height at Peoria during both of these time periods was 32.8 ft (10 meters) (Reference 4).Dry bulb temperature from Peoria, IL used for the following period: (3) 06/15/98 08:00 LST through 06/16/98 11:00 LST 7 Laket Meteorological Input File Surgen produced a single Laket meteorological input file which was appended to the original meteorological data file produced in 2011. The specifications of the original and combined (updated) file are listed below PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION No. 8 ATTACHMENT K, PAGE K5 of K6 Original file: Name: PIALSL05 10.DAT Type: ASC text Size: 7,773 Kb Creation date/time:

3/17/2011 4:04 PM Updated file: Name: PIALSL9510.DAT Type: ASC text Size: 21,301 Kb Creation date/time:

3/9/2012 11:08 AM The updated meteorological data file was tested with a short Laket input file to ensure that Laket could read the updated meteorological data file. Laket read the updated meteorological data file normally.8 Wind Sensor Height The wind speed/direction sensor height is an input in Laket. The wind speed and direction were taken from the 33 ft. (10.1 meter) level of the on-site meteorological tower at the generating station.9 References

1. Sargent & Lundy (S&L), 2004. "LAKET-PC, A One Dimensional Lake Thermal Prediction Program, S&L Program Number LAK 03.7.292-2.2, Revision 0, October 30, 2004, User Manual", S&L, Chicago IL.2. National Climatic Data Center (NCDC), 2006. "Federal Climate Complex Data Documentation for Integrated Surface Data", August 25, 2006. Published by NCDC, Asheville, NC.3. National Climatic Data Center (NCDC), 2000. "Data Documentation for Hourly Precipitation Data TD-3240", November 15, 2000. Published by NCDC, Asheville, NC.4. National Climatic Data Center (NCDC), 2012. Data file "anem_elev_inf' referenced in"Data Documentation for Data Set 6421 (DSI-642 1) Enhanced hourly wind station data for the contiguous United States" National Climatic Data Center, Asheville North Carolina.Website: http://www.wcc.nrcs.usda.gov/ftpref/support/climate/wind daily/td6421.pdf Accessed March, 2012.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT K, PAGE K6 of K6 CALCULATION NO. L-002457 REVISION NO.8 A1TACHMENT K, PAGE K6 of K6 Table 1. Parameters and Digital Record Format of the Standard Weather Data File Used by S&L Laket Program Field No.Parameter Units 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Station Code Number 5 digits Year 4 digits Month 2 digits Day 2 digits Hour of Day (00 (midnight)-23 (11 pm)) 2 digits Cloud Ceiling Height above feet Ground Level Direction Sector from which Wind Blows (I(N) -16(NNW))Wind Speed knots Dry Bulb Temperature deg F Wet Bulb Temperature deg F Dow Point Temperature deg F Relative Humidity percent Station Atmospheric Pressure Inches Hg Cloud Cover Tenths Freezing Precipitation Code 1 digit One-Hour Total Water 1 00ths inches Equivalent Precipitation Solar Radiation Btu/ft-hour Atmospheric Radiation Btulfte-hour Partial Pressure of Water inches Hg Vapor Lower Upper Digital Limit Limit Format F7.0 F6.0 F4.0 F4.0 F9.2 0 70,000 F9.2 1 16 0 96-129 136-129 136-129 136 0 100 25.69 32.01 00 10 0 -liquid 1 -solid 0 1,200 0 4,000 5 220 0 2.00 F9.2 F9.2 F9.2 F9.2 F9.2 F9.2 F9.2 F9.2 F9.2 F9.2 F9.2 F9.2 F9.2 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION No. 8 ATTACHMENT L, PAGE Ll of L58 CALCULATION NO. L-002457 REVISION NO.8 ATTACHMENT L, PAGE LI of L58 Attachment L -Plant Temperature Rise Prepared:

."/04 w. (L). JL Date (o a'- Iacn;L Daniel W. Nevill -Sargent & LundyLLc Checked: ____ Date __2_7__z_William D. Brey -:Sargent

& LundyI+/-c Reviewed: , / Date 062- 7-2-o0/Z Pawel Kut -Sargent & LundyLic PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L2 of L58 ATTACHMENT L -TABLE OF CONTENTS Section Page No.L 1.0 P u rp o se .......................................................................................................................

L 3 L 2 .0 M eth od o lo g y ................................................................................................................

L 4 L 3.0 A ssum ptions .............................................................................................................

L 6 L 4 .0 D esig n In p u ts ................................................................................................................

L 7 L 5 .0 R eferen ces ....................................................................................................................

L 8 L 6 .0 E v a lu atio n s ...................................................................................................................

L 9 L7.0 Summary and Conclusions

......................................................................................

L1O L8.0 Limitations and Open Items ....................................................................................

Ll1 L 9 .0 A p p en d ice s .................................................................................................................

L 12 (Total Pages -Attachment L (12) plus Appendices (46) for a Total of 58 pages)LIST OF APPENDICES No. Title Page L9.1 MUR PU Total Generated Heat Load L13 to L14 L9.2 j MUR_ PU Plant Temperature Rise Results L15 to L34 L9.3 ! EPU Total Generated Heat Load L35 to L37 L9.4 i EPU Plant Temperature Rise Results L38 to L57 L9.5 Plant Temperature Rise Equations L58 (Total Appendix Pages -46)PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L3 of L58 L1.O PURPOSE The purpose of this attachment is to determine the Core Standby Cooling System (CSCS)temperature rise across the plant for Measurement Uncertainty Recapture Power Uprate (MUR PU) and Extended Power Uprate (EPU) based on the new heat load to the Ultimate Heat Sink (UHS) determined in L-002453 [Ref. L5.1]. This temperature rise is to be used in the LAKET-PC [Ref. L5.3] model of the LaSalle County Station UHS.PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L4 of L58 L2.0 METHODOLOGY The plant temperature rise is used in LAKET-PC [Ref. L5.3] to compute the rise in water temperature caused by the heat rejected to the UHS during the postulated accident.There are two types of heat loads that are considered when determining the CSCS temperature rise across the plant: 1) the total generated heat load and 2) the sensible heat load. The total generated heat load can be further divided into decay heat load, pump heat load and cooler heat load. Heat load from the spent fuel pool is not considered since it is improbable that required operator actions could be performed in the post-Loss Of Coolant Accident (LOCA) reactor building environment (Assumption L3.4). The total heat load, consisting of the generated heat load and the sensible heat load, is the heat rejection to the UHS and is used to determine the plant temperature rise.The total generated heat load (Design Input L4.1) is computed for various time steps between zero seconds and IE+9 seconds in Calculation L-002453 [Ref. L5.1]. Linear interpolation of the results from L-002453 is used to detennine the integrated total generated heat load at each time step.The total sensible heat load is determined to be [R ]] (Design Input L4.2). It is assumed that all sensible heat is dissipated to the UHS at a constant rate within six hours (See Assumption L3.2).Once the heat rejection to the UHS is determined by adding the total generated head load and the sensible heat load, the temperature rise through the plant is determrined by the following equation: AT= Q (Eq. L3-1)where: AT = plant temperature rise ['F]Q = heat rejection rate to the UHS [BTU/hr]Cp = specific heat capacity of water [BTU/(lbm-°F)]

m = mass flow rate [lbm/hr]The mass flow rate is determined by converting the CSCS volumetric flow rate of 86 ft 3/s (Assumption L3.3) to a mass flow rate at a density of 62.0 lb,n/ft 3 (Assumption L3.1).L2.1 Computer Programs and Software The analysis performed herein utilizes Microsoft Excel 2003 [Ref. L5.4], which is commercially available.

The validation of Excel is implicit in the detailed review of all PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L5 of L58 spreadsheets used in this analysis.

All computer runs were performed using PC No.ZD6661 under the Windows XP operating system. Excel Add-in function STMFUNC is used to calculate the thermal properties of water and steam at varying operating conditions

[Ref. L5.5]. The Excel Add-in function STMFUNC has been validated and approved for use in accordance with the S&L Quality Assurance (QA) program.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L6 of L58 L3.0 ASSUMPTIONS L3.1 Water Properties

-The properties of water are evaluated at a temperature of 100°F and atmospheric pressure.

The density and specific heat capacity of water at 100°F and 1 atm are 62.0 lbm/ft 3 and 0.998 BTU/lbm-°F, respectively

[Ref. L5.5].L3.2 Sensible Heat Load from Reactor Coolant System -It is conservatively assumed that all of the sensible heat from the reactor and the primary system is dissipated to the UHS within six hours. One-sixth of the heat is assumed to be rejected per 1-hour time step until the full sensible heat load is rejected by the sixth hour. This is based on the assumption that the temperature within the reactor will be at 100°F within six hours.L3.3 CSCS Volumetric Flow -The total plant flow during the UHS analysis is assumed to be 38,600 gpm (86.0 ft 3/s). The total flow is based upon the cumulative flow contribution from thirteen CSCS pumps operating at design flow conditions (eight Residual Heat Removal (RHR)-Service Water pumps, 4,000 gpm each; three Diesel Generator (DG)pumps, two at 1300 gpm and one at 2,000 gpm; and two High Pressure Core Spray DG pumps, 1000 gpm each) (See Attachment D).L3.4 Spent Fuel Pool Heat Load -Heat load from the spent fuel pool is not considered because it is improbable that required operator action (RHR alignment) could be performed in the post-LOCA reactor building environment.

Instead, the fuel pool emergency makeup pumps are modeled as providing required makeup flow to the fuel pools at 600 gpm [Ref.L5.2].PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L7 of L58 L4.0 DESIGN INPUTS L4.1 Total Generated Heat Load -The total generated heat load rejected to the UHS following a LOCA for one unit while the second unit is in normal shutdown from maximum power is determined in L-002453 [Ref. L5.1]. These results are presented in Appendix L9.1 for MUR PU and Appendix L9.3 for EPU.L4.2 Sensible Heat -The sensible heat load is [[]], per L-002453 [Ref. L5.1 ].L4.3 CSCS Pump Curves -The CSCS pump curves are provided in Attachment D of this calculation.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L8 of L58 L

5.0 REFERENCES

L5.1 L-002453, "UHS Heat Load," Rev. 3.L5.2 SEAG #12-000098, "DIR for LAS-EPU-U 1 /2-DIR-T0608-1," 4/18/2012.

L5.3 LAKET-PC Computer Program, Version 2.2, S&L Program No. 03.7.292-2.2, 12/09/2004.

L5.4 Microsoft@

Excel 2003, Sargent & Lundy LLC Program No. 03.2.286-1.0, dated 02/02/2004.

L5.5 STMFUNC (Steam Table Function Dynamic Link Library) S&L Program Number 03.7.598-2.0, dated 5/15/2003.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L9 of L58 L6.0 CALCULATIONS L6.1 Total and Integrated Generated Heat Load Rejected to the UHS The total generated heat load rejected to the UHS following a LOCA for one unit while the second unit is in normal shutdown from maximum power is determined for MUR PU (3559 MWt) and EPU (4067 MWt) in L-002453 [Ref. L5.1]. These results are presented in Appendix L9.1 for MUR PU and Appendix L9.3 for EPU and are used to determine the temperature rise through the plant.L6.2 Plant Temperature Rise In order to facilitate the creation of a LAKET-PC [Ref. L5.3] input file, the plant temperature rise results are determined in one hour increments.

This requires linear interpolation of the integrated total generated heat load found in L-002453 [Ref. L5.1] to determine the integrated total generated heat load at hourly intervals.

Adding the integrated total generated heat load and the sensible heat load gives the total heat load, which is the heat rejected to the UHS used to determine the plant temperature rise. The plant temperature rise is calculated in Excel using Eq. L3-1. The results of this calculation are shown in Appendix L9.2 for MUR PU and Appendix L9.4 for EPU.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L10 of L58 L7.0

SUMMARY

AND CONCLUSIONS The CSCS temperature rise across the plant following a postulated accident is determined in hourly intervals in order to be used as input to LAKET-PC [Ref. L5.3]. These results are given in Appendix L9.2 for MUR PU and Appendix L9.4 for EPU.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE Ll 1 of L58 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE Lii of L58 L8.0 LIMITATIONS AND OPEN ITEMS L8.1 Limitations None.L8.2 Open Items None.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L12 of L58 L9.0 APPENDICES LIST OF APPENDICES App. Title No. of Pages L9,1 MUR PU Total Generated Heat Load [Ref. L5.1] 2 L9,2 MUR PU Plant Temperature Rise Results 20 L9.3 EPU Total Generated Heat Load [Ref. L5.1] 3 L9,4 EPU Plant Temperature Rise Results 20 L9.5 Plant Temperature Rise Equations 1 (Total Appendix Pages -46)PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L13 of L58 APPENDIX L9.1: MUR PU TOTAL GENERATED HEAT LOAD [Ref. L5.11 i I[[[Time Time (seconds) (hours)0 2.781E-11 1.00E-01 2.78E-05 1.50E-01 4.17E-05 2.OOE-01 5.56E-05 4.OOE-01 1.11E-04 6.OOE-01 1.67E-04 8.OOE-01 I 2.22E-04 1.OOE+00 2.78E-04 1.50E+00 4 .17E-04 2.OOE+00 5.56E-04 4.OOE+00 1.11E-03 6_OOE+00"1

.67E-03 8.OOE+00 2.22E-03 1.OOE+01 2.78E-03 1.50E+01 4.17E-03,L 2.OOE+01 5.56E-03 4.00E+01 I1.11E-02 6.OOE+01 1.67E-02 8.OOE+01 2.22E-02'1.OOE+02 2.78E-02 1.50E+02 4.17E-02 2.0OE+02 5.56E-02 4.OOE+02 1.11E-01 6.00E+02 1.67E-01 8.00E+02 2.22E-01 1.OOE+03j 2.78E-01 1.50E+03 4.17E-01 2.001E+03 5.56E-01 4.OOE+03 1.11E+00 6.OOE+03 1.67E+00 8.OOE+03 2.22E+00 1.00E+04 2.78E+00 1.50E+04 4.17E+00 2.00E+04 5.56E+00 4.OOE+04 1.11E+01 6.OOE+04 1.67E+01 8.OOE+04 2.22E+01 Pump Cooler Fuel Pool Heat Heat Heat Load Load Load L__(Btu/hr) (Btu/hr) (Btulhr)4.15E+07 5.04E+07 0.OOE+00 4.15E+07 ! 5.04E+07 0.OOE+00 , i 5~j __.04E+07 0.00E+00 4.5E 0 I. L 4.15E+07 I 5.04E+07 0.00E+00 K 4.15E+07 _5.04E+07 o.ooE+00.4.15E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 0.00[* 4.15E+07 5.04E+07 I 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00_4.15E+07 5.0E _7___O+0' 4.15E+07 5.04E+07 0.OOE+00L-4.15E+07 O5.O4E+07 0.OOE+00-4.15E+07 5.04E+07 O.OOE+_0 4.15E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 0.0OE+00 4.15E+07 5.04E+07 O.OOE+0 Ii 4.15E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 -.ooE+00 4.15E+07 5.04E+07 O.OOE+00 4.15E07 -5.04E7-O-O+00 4.15E+07 5.04E+07 0.00E+00 I 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.00E+00 4.15E+07 5.04E+07 0.00E+00 4.15E+07 5.04E+07 0.00E+00 4.15E+07 5.04E+07 0.00E+00 4.15E+07 5.04E+07 0.00E+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.00E+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 i0.00E00 4.15E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 j O.OOE+O00 4.15E+07 5.04E+07 O.OOE+O0'-]-4.15E+07 5.04E+07 0.00E+00 I]]PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L14 of L58 Time Time (seconds) (hours)8.64E+04 2.40E+01 1.OOE+05 2.78E+01 1.50E+05 4.17E+01 1.73E+05 4.81E+01 2.OOE+05 5.56E+01 2.59E+05i 7.19E+01 3.46E+05 9.61E+01 4.OOE+05 1.11E+021 4.32E+05 1.20E+02 6.OOE+05 1.67E+02 8.OOE+05 2.22E+02 8.64E+05 2.40E+02 1.OOE+06 2.78E+02 1.50E+06 4.17E+02 r 1.73E+06 4.81 E+02 2.OOE+06 5.56E+02 2.59E+06 I 7.19E+02 3.46E+06 9.61E+02 4.OOE+06 1.11E+03 1 4.32E+06 1.20E+03 6.OOE+06 1.67E+03 8.OOE+06 2.22E+03 1.OOE+07 2.78E+03 1.50E+07 4.17E+031 2.OOE+07 5.56E+03 4.OOE+07 1.11 E+04 6.OOE+07 1.67E+04 8.OOE+07 2.22E+04 1.OOE+08 2.78E+04L 1.50E+08 4.17E+04 2.OOE+08 5.56E+04 4.00E+08 1.11E+051 6.OOE+08 1.67E+051 8.OOE+08 2.22E+05 1.OOE+09 2.78E+05 Pump Cooler Fuel Pool L 10 10 11 ___ 12 12 13 13 4 -14 15 1 15 1-16 F 17 17 18 19L 19 _2_20 i 21 i 21 22 22 23_23 24 24 I 25 f 25 26 _j 26 27 j 27 28 28 F 29 _L_29- -o30 30 1 31_ _31 32 32 331 33 34 F 34 35 -35 F 36 _36- 37 37 38 38 I 39 39F 40 4o0 41 41 --42 43 _4 _Plant Temperature Rise (*F)40.75 31.98 29.49 28.41 27.50 26.73 15.35 15.35 15.35_ 1. 5.35_.15.35 I 14.12 13.97 1 13.97 13.97-13.97 13.70 13.16 13.16 13.16 13.16 7_13.16-r 12.84 12.75 F 12.51 12.51 12.38 11.92 11.92 11.92 11.92 F 11.92 T_ 1-1.92 11.92 11.92 11.92 I 11.92 S 11.92 I F 11.92 11.73 I 11.34]] I 11.34 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L16 of L58 Starting Ending Time Time (hr) (hr)45 46 I 46 47 I__48_ I 49 ]_49 50 I 50 I 51 i 51__ 52 52 53 _53 54 54 554 55 I 5 -56 57_57 58 i 58 _[ 59 -!!59 60 60 61 61 _ 62_ 62 ._ 63_63 1 64 64 65 65 66 66 671* 67- --68--___68 _1_69I 69 70 7 j 71 .I 72 73 73 74 _74 75 _75 I 76 _76-- 77 _77 78}[79 98 8 810 T 84 __81--. -_82- -1 T 82 .:[ 83 84 1_854-85 86 86 _87 87 __ 88 88 89 'Plant Temperature Rise (°F)11.34 11.34 11.34! 11.341 11.07 11.05 11.05 11.05 11.05 11.05] -11.05 10.87.I 10.65 J 10.65 1 10.65 1 10.65 I 10.65 1 10.65 10.65 10.65 10.65! 10.65 K 10.65 10.65 10.65 10.65 10.65 10.62 10.12 10.12 10.12 10.12 10.12 10.12 10.12 T_10.12 10.12 10.12 10.12 10.12 10.12 10.12 i 10.12 j i] 10.12 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L17 of L58 Starting Ending [Time Time (hr) (hr)89 90 90 91 1 91 92 _" 92 -- --93-- -1 93 1 94 J 94 __ 95 "I 95 I 96 I 96 97 1 97 98 I 98 99 102 100 1 1 I. 1_01 I 104i 102 I 105 103 104 1105 _1051 {F66 106 l_107 L 107 108 I 108 I 109 1-1-o9--- 110 liog ill _110 111 1_ I-2, 112 J_113 __1 114 115 I 1151 116 7 116 117_117 I 118 -1186 119 19 120 120 1211 121 122._122 123 123 124 -124 125_1 1j25 1j_226_ 1 126 L127 127_1 128 I 128L 129 J-1291____ 130 130 ý 131 131 132 132 133 133 134 _ _Plant Temperature Rise (*F)10.12 10.12 10.12-10.12 10.12 10.12 9.75 9.70 9.70 I 9.70 9.70 F_9.70o 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.70 9.52 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14 9.14__ I 9.14 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L18 of L58 Starting Ending Time Time (hr) (hr)134 135 135 136 I 136 J 137 13-[13 F 138 139 139 140 140 1411 141 142 142 143 143 144 144 145 145 146 J_146 147 ,L 147 -1486 148. 149 149 1501 150 151 151 1-152 ]152 1 153 153 154 154 155 155 I 156 156 157 157 .1158 __158 159 159 160 _160 161 161! 162 162 1 163 163 1164 164__ 165 165 1661 166 I-167 _167 _i 168 1 1681 169 1_169 170 I 170o 171 7 171 1 172 172 ! 173_*173 !174 174 175 1 75 [176 I 176 177 177 178 178 179 _Plant Temperature Rise (°F)9.14 9.14 9.14 9.14 9.14 9.14 I 9.14-9.14! 9.14 9.14 9.14 9.14 9.14 9.14] 9.14 9.14 9.14 I 9.14 1 9.14 9.14 9.14-9.14-I 9.14-9.14-9.14 I 9.14-9.14 I9.14 9.14 8.97 8.63 8.63 8.63 8.63 8.63 8.63 8.63 8.63 8.63.! _ 8-.63 8.63 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L19 of L58 Starting Ending i Plant Time Time Temperature (hr) (hr) Rise (*F)179 j 180 8.63 180 181 8.63 181 182 8.63 182 183 8.63 183_ 184 -1 8.63 184 185 8.63 185 I 186 1 8.63 186 187 I 1 8.63 187 188 8.63 188 I 189 8.63 189 -- 1 _ 8.63 190 I 191 i 8.63 191 192 8.63 S192 193--- I 8.63 193 194 8.63 1941 195 I 8.63 195 196 I 8.63 196_ 197 ! 8.63 _.6 197 1 198 8.63 198 199 8.63 199 ! 200 8.63 200 201 8.63 201 202 1 8.63 202 I203 -I 86 203__._ 204 1. 8.63 204 I 205 8.63 j 205 206 8.63 I 206. 207 8.63 207 208 8.63 208 209 -8.63 209 210 8. ..63.210 211 8.63 211 I- 212 8.63 212 I 213 8.63 213 214 8.63_ 214 215L. 8.63 215 216 I 8.63 1 216 217 ... 8.63* 217 218 8.63 218 219 8.63 219 2201 8.63 220 221 8.63 2211 222 8.63 i 222 i 223 8.41 223 22ý4---- 8.3422 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L20 of L58 Starting Ending Time Time (hr) (hr)224 225 _225 226 2261 227 227_ --228 _-ý228 2 229 229 _ 230 230 231 231 232 232 I 233 233 234r 234_. 235 235 --236-236 237 L 237 I238 238 239 -239 240 2401 241 1 241 I 242 !242 1 243 1 243 1244 1 244 J_245 L 245 246 1 246 247 247 248 _248 I 249 1I 249 250 250 251 r 251 252 2526 253 253 254 J_254 255-5 256- -256 1I 257 257 I 258 i 258 259 _'___ _E ._ -7_25_9 _;200I 2601261._2_6_1 262 __26212632 263 264 264 265 _265 266 266 I.267 267 268 __1 268_1 269 Plant Temperature Rise (*F)8.34 8.34 8.34-8.34 8.34 8.34 8.34 8.34 1 8.34 j 8.34-r 8.34 8.34 8.34 8.34 8.34 8.34 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18 I 8.18 I 8.18 I 8.18 8.18 8.18 8.18 8.18 8.18 8.18 8.18-, 8.18 8.18 8.18 1 8.18 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L21 of L58 Starting Ending Time I Time (hr) (hr)269 271 0 270 271 271 i 272 272 273 1-273 -274 274 275 275 276 I 276 277 277 278 i*278 279 279 280 280_ 21 I2 281 282 282 283 _283 284 284 285 I 285 I 286 L 286 287 287 288 1 288 I289 _.289 1 290_j 290 1 291 291 _29_2__2 292 293 I 294 3 295 295 296 -296 1 297 297 I 298 I 298 299_.299 300 300 1 301 301 302 302 J 303 303 I 304 304 3-305 f 305 306-306 307-307 308 308 309 3_09 _1_31_0 310 311 31~i 31 [7 312 313 313 314 , Plant Temperature Rise (*F)8.18 8.18 8.18 8.18 t 8.18 8.18 7 8.18 8.10 7.83 L 7.83 I 7.83_.7.83 7.83 7.83 7.83 7.83 7.83 L__7.83 7.83 1-7.83.7.83_- 7.83 7.83 7.83 7.83 7.83 7.83 .7.83 7.83 1-7.83 7.83 7.83 7.83 T 7.83 , 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L22 of L58 Starting Ending Time Time (hr) (hr)3141 315 3151 316 316 317 317J 318 318 i 319 319 320320 320 I 321--j-321 322 322 323 323 324 3241 325 a 325 I 326 326 327 327 328 328 329 329 1 3301 330 J 331 331 -332 333 1 334 j 334 335 335 336 336 337 337 I 338 _338 I 339 33 339 340-i 340 __ --341"-1 341 342 3421 343 343 I 344 I 344 J 345 1 345 1 346 .-346_ _ 347__3471 348 I 348 1349 349 3507__350_._ 351 -351 352 I 352 353 353 I 354 i 355 , 356 356 J357 357 13581i_358 i 359 -Plant Temperature Rise (7F)7.83 7.83 7.83 I 7.83 7.83 7.83] 7.83 7.83 f 7.83 7.83 7.83 l 7.83 7.83-I 7.83 1I 7.83 1 7.83_1 7.83 7.83 7.83 7.83 7.83 I 7.83 7.83 I 7.83 I 7.83 7.83 7.83 j 7.83 7.83 7.83 7.83_ 7.83 _I 7.83 7.83 7.83 7.83_I f7.83_=7. 83_ _ 7.83 __ 7.83L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L23 of L58 Starting Ending Time Time (hr) (hr)359 1360 360j 361_361 .... 362 362. 363 363 364 364 I 365 365 j 366 366 367 367 368 I 368 369 369 370 370 371 371 372 372 .373 F 373 _ 374 3741 375 375 376 1 376 377 377~ 378 378 379 379 380 380 381 381 3 382 383 383 384 7 384 385 _385 j 386 386 387 387 ] 388 388 -389 389 390 3901 391 392 393 I 393 394 i, 394 395 39 396 397 .398 398 399 399 F 400 -400 401 401i 402 402 i 403 I 403 404 Plant Temperature Rise (*F)7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 T- 7.83 7.83 J 7.83 I 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 1 7.83 7.83 7.83 7.83 7.83 J 7.83 i! 7.83 S 7.83 I 7.83 -.-S 7.83_ 7.83 7.83 7.83 7.83__7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83 7.83]] 7.83 7.8 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L24 of L58 Starting Ending i Plant Time Time Temperature (hr) (hr)Rise (F)404 I 405 1 7.83 405 406 I 7.83 406 407 -.83 407 J 408 T7.83 408 1 409 _1_ _ 7.83 409 ] 410 -7.83 410 I 411 L I 7.83 411 412 7.83 412 413 7.83 413 414L 7.83 4141 415 _ J 7.83 415 1416 -I 7.83 416 1 417 .__ 7.71 417[418 7.49 4181 419 7.49 419] 420 I I 749 420 I 421 L _1 7.49 421 422 7.49 422 1 423- 7.49-423 I 424 7A.49 424 ]425~ _ 7.49 425 426 .7.49 426j 4271 7.49 427 I 428] I 7.49 428 429 7.49 429 I 430 L 7.49 430 431 -7.49 431 432_ ____7.49 4321 433 7.49 433 T4i4-- ..749 435 436 7.49 436. _437 7.49 437 438 J 1 7.49 438 ] 439 I 7.49 439 __440__ 74 S__7.49 -440 441 7.49 441 442 -! 7.49 442 443 L 7.49 443 444 7.49 444 445 I 7.49 445 446 7.4 446 447 7.49 447 448 , 7.49 448 449 ___]]i 7.49 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L25 of L58.Starting Ending Plant Time Time Temperature (hr) (hr) Rise (°F)449 I 450 7.49 450 451 J_ 7.49 451 J 452 I 7 7.49_452 453 7.49 454 455 7.49 455 456 7.49 456 457 7.49 4577458 7.49 458 459 7.49 459 460 --__1-7.49 460 461 L 7.49 461 462 I 7.49 462 463 -7.49 463 464 -7.49 -464 465 J 7.49 465 I 466 1 7.49 466 1467 1 I 7.49 _467 7 468 -7.49 468- 469 -7.49 469 470 I 7.49 470 I 471 { _ 7.49 471 ! 472- 1 1 7.49 472 473 7.49 473 474 7.49 474 475 7.49 475j 476 7.49 1 476 1477 7.49 1 4771 478 j_ 7.49 478 .I 479 7.49 479 480 I 7.49 480 1481 7.42 481 482 J 7.34 482 L483 7.34 4831 484 7.34_484 485 1---7.34 485 486 1 7.34 4861487] -7.34 487 488 -7.34 488 489 i_ 7.34 489-F 4904--9 7.34 490 491 7.34 4911492 7.34 492 493 i 7.34 493 494 ]]I 7.34 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L26 of L58 Starting Ending Plant Time Time Temperature (hr) (hr) Rise (°F)494 -495 1 I 734 4951 496 7--4961 497 7.3 J 497 " 498 7.34 498 1 499 i. 4-499 500 l.......7.-34 500 501 7.34 501 502 7.34 502 503 I 7.34 503 504 7.34 504] I5 7.34 505 506 7.34 506 507 __ 7.34 507 508

  • I 7.34 508 509 7.34 509 .510 7.34 5101 511 1__7.34 511 512 7.34 512 L513 7.34 513 .514 I 7.34 514 515 J 7.34 515 .516 7.34 I 516 517 7.34 518 I 7.34 518 -519 7 .34 519 ! 520 L -j-7.34 520 I 521 7.34 521 I 522 :7.34 522 I 523 j. 7.34 523 524 I 7.34 524_I 525_ 7.34 525 52 7.34 526 1 527 7.34 527 528 7.34 5281 529 7.34 529 5377.34 530 531 7.34-53 532 , 7.34 533 534 7.34--534 _ 535_4 7.34..... ...I 7.34 535 536 7.34 536 537 7.34 537 538 7.34 538 I 539 7.34] -734 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L27 of L58 Starting Ending Plant Time Time Temperature (hr) (hr) Rise (°F)5391 540 I 7.34 540 541 7.34 I 541 I 542---5-43 1- -7.34 -543 544 I 7.34 54 I545 7.34 545 546 L 7.34 546 j 547 1 I 7.34 547 -548J 7.34 548/ 549 I I 7.34 549 550 ' 7.34 550 551 7.34 551 552 7.34 553 554 7.34 554 555 J 7.34ý555 556 7.24 556 557 7.13 557 [ 558 7.13 558 _ 559 7.13 559 560 1 7.13 560 561 7.13 561 562 7.13 562 563 7.13* 563 .564 J 7.13 564 565 11 7.13 565 566 ] 7.13 566 567 I 7.13 567 568 II 7.13 568 569 J 7.13_ 57 570 I 571 _ 7.13 571 I 572 7.13 -. .572 I 573 ."--_7.-13--_

_573 I 574 7.13*575 576 1J 71577 I 7.13-_577 578 7.13 578 579- 7.13 580 7.13 580 581 7.13 581 582 7.13 582 583 I I 7.13 583 584 AF,....]i 7.13 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L28 of L58 Starting Ending Plant Time Time Temperature (hr) (hr) Rise (°F)584 _ 585 7.13 5 586 7.13 586 587 7.13 587 -588 -1 ... ...7.-13 ..588 589 I 7.13 589 590 7.13 590 591 7.13 591 1592 I71 592 -593- 7.13 593 594 7.13 594 595 F 7.13 595- 596 7.13 596 597 7.13 597 598 I 7.13 598 599 7.13 5991 600 7.13 600 601 L 7.13 601 602 L 7.13 602 603 -7.13 603 J 604 I 7.13 604 605 7.13 605 606 7.13 606 607 I 7.13 607 608 I 7.13 608 609 7.13 609 610 7L3 610I 611 -L 7.13 611 612 7.13 612 613 7.13 613 614 7.13 614 _ _615 7.13 615 I 616 7.13 616 I 617 I 7.13 617 618 I 7.13 618 I 619 7.13 -619 620 -_ 7.13 620 621 I 7.13 6 622 F 7.13 622 623 7.13 623 624 7.13 624 1 625 J__ 7.13 625 626 7.13 __1 626- 627! 7.13 627 628 7.13 628 1 629 .........

.......]I 7.13 _j PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L29 of L58 Starting Ending i Plant Time Time Temperature (hr) (hr) Rise (*F)629 630 7.13 630 631 L 7.13 631 632 ..7.13 _632 633 ,7.13 633 634 7.13 63634 I 63 j 7.13 635 636 I 7.13 636 637 7.13 637 T638 -... 7.13.638 .639 ji 7.13* 639 J 640 ] j 7.13 640 1 641 I 7.13 641 642 '7.13 642 643 1 7.13 643 644 7.13 644 645 -- 7.13 645 [ 646 7.13 646 647 7.13 647 648 7.13 648 649 7.13 3 649] 650 _ 7.13 650 651 -7.13 651 652 .7.13.62 653 I 7.1 3 653. _ 654 __ 7.13 654 j655 7.... -713_...4 655 656 7.13 656 657 I 7.13 657 658 ] 7.13___658 659 __ 71.13 659 66059 7.13 660 662 1 7.13 661 I 662 7.13 662 663 7.13 663 664 L 7.13__664] 665 _L 7.7_13 665 666 J 7.13 666 667 7.13 667 668 7.13 6681 669 i 7.13 669 670-' 7.13-670 671 7.13 671 672 2 _ 7.13__972 673 7.13 673 674 ..................

J]l 7.13 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L30 of L58 Starting Ending Time Time (hr) (hr)674 675 i 675 676 676 1677 _F 677 1 678 678 6 79!679 680 1 680 681 1 681 682 682 7 683 I 683 I 684 684I 685 _685 I686 686 I687 687 688 688__ 689 689 L 690 1 690-I 691 1 6911 692 -692__!_ 693 I 693 J 694 _694 695 695 696 696f 697_697 L 698 698 I 699-699-- -700 700 !7 i 701 702 I 702 I 703 _703 .[704 i 704 I 705 -_705 _706 !, 706 707 707 708 708 709 L 709 710 710o__ 711 711 712 712 713 I 713 714 714 715l i 715 716 716 717 717 718 718 719 Plant Temperature Rise (*F)7.13 7.13 7.13 7.13 j 7.13 j 7.13 1 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13_ 7.13 I 7.13 7.13_ 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13 7.13]] 7.13 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L31 of L58 Starting Ending Time Time (hr) (hr)719 720 j 7201 721 (721 ... 722 ..-722 723 723 724 I 724 725 725 726 726 727 727 728 728 7297 729 730 731I 732 1 732- 733 I 733 734 734 735 _---35j 736 I 736 737 7ýý37 _ -738 738 739 739 740 -740 741 741 [ 742 , 72743 743 I _744._744 1 745 745 _. 746 746 1 747 747 748 7481 749_ 7499 .__750 750 I751 751 j 752 752 753 7531 754 754 755 7551__7561 7561 757_ý_1 757 758 758 759 759 I760 9 760 76 761 1 762 762 763 763 764 Plant Temperature Rise (*F)I 6.98 6.86 _I 6.86 6.86 1 6.86 I 6.86 6.86 6.86 I 6.86 6.86-1"I 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.86 _6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.86 6.86 I_6.86-__6.86 6.86A 6.86 I 6.86-6.86 6.86 6.86 6.86 6.86 6.86 6.86_ _ _ _ _I -- -6 -PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L32 of L58 Starting Ending Plant Time Time Temperature (hr) (hr) Rise (°F)764 [ 765 6.86 7651 766 6.86 766 F 767. 6.86 767- 768 6.86 768 769 1_ 6.86 769 770 I 6.86 770 771 -[ 6.86 771 772 6.86 772 773 6.86 773 774 6.86 774T] 775 *6.86* 7751 776 6.86 776 j 777 6.86 777I 778 6.86 778L 779 6.86 779 1 780 6.86 780 _ 781 6.86 781 782 6.86 782 _ 783 6.86 783 ! 784 6.86--784 I- 785 j 6.86 785 786 6.86 786 787 6.86 787 _. 788 j 6.86 788 _ 789 1 6.86 789_j 790 6.86 790 I 791

  • 6.86 7911 792 6.86 792- 1 793 1- 6.86 77931 794 L 6.86 794 795 6.86 795 I 796 6.86 796 797 6.86 797 798 j 6.86 798 799 ! 6.86 7991800 _ 6.86 801 6.86 801 802 i 6L 6.86 802 803 1 I 6.86 803 804 " 6.86 804 805 6.86 805 806 i 6.86 806 807 I 6.86 807 808 -I 6.86 808 1 809 ]]I 6.86 j PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L33 of L58 Starting Ending -[ Plant Time Time Temperature (hr) (hr) i Rise (*F)809 810 _ 6.86 810 811 6.86* 8111 812' _. 6.86 812 813 6.86 813 814 , 6.86 814 815 ! 6.86 815 816 6.86 816 I 817 T 6.86 817 818 -6.86 818 819 .6.86 819 820 6.86 820 I 821 6.86 821 822 6.86 822- 823{ 6.86 823 L 824 ' 6.86 824 _ 825 ' 6.86_8251826 j 6.86 826 I 827 .6.86 827 828 F-6.86 828 829 -1' 6.86 829; 8301 6.86 830 831 1 6.86 831 832 , 6.86 832 833 -- 6.86 833 834 6.86 834 I 835 I _. 6.86 835 j836 -6.86 836 837 -6.86 837 I 838 i _ 6.86 838 I 839 6.86-- 84---- 6.86 8341 F-84 -6.8---842 843 .6.86 843 844 J 6.86 844 -845 1F 6.86 845 8464 I 6.86 846 7 8745_ -- 6.86 847 __848 _ 6.86 846 849 6.86 849 850 6.86 850 851 6.86 851 _ 852 6.86 852 853 6.86 853 854 _]] 6.86 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L34 of L58 Starting Ending Time Time (hr) (hr)854 855 855 856 8_56 857 857 858 858 859 859 860 I 860 8611 861 862 862 863 863 864 Plant Temperature Rise ('F)6.86 6.86 6.86 __6.86 6.86 6.86 6.86--6.86 6.86 6.86 11 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L35 of L58 APPENDIX L9.3: EPU TOTAL GENERATED HEAT LOAD [Ref. L5.11 Time Time (seconds) (hours)0 2.78E-1 1 1.OOE-01 2.78E-05 1.50E-01 4.17E-05 2.OOE-01 5.56E-05 4.OOE-01 1.11E-04 6.OOE-01 1.67E-04 8.OOE-01 2.22E-04 1.OOE+00 2.78E-04 1.50E+00 r 4.17E-04 2.OOE+00 5.56E-04 S4.OOE+00 1.11E-03 6.OOE+00 1.67E-03 8.OOE+00 2.22E-03 , 1.OOE+01 2.78E-03 1.50E+01 4.17E-03 2.00E+01 5.56E-03 i[1-I-Pump Heat Load (Btu/lhr)4.15E+07 4.15E+07 4.15E+07 I Cooler Fuel Pool Heat Heat Load Load (Btulhr) (Btulhr)5.04E+07 L.00E+00 5.04E+07 0.OOE+00 5.04E+07 0.OOE+00 4.15%E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 0.OOE+0O 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07!

0.OOE+00I 4.OOE+01 1.11E-02 6.OOE+01 1.67E-02 8.OOE+01_

2.22E-02 1.OOE+02 2-8E-02 1.50E+02 4.17E-02 2.00E+02 5.56E-02 3.OOE+02 8.33E-02 4.OOE+02 1.11E-01_6.00E+02 1.67E-01 8.00E+02 2.22E-01 1.00E+03 2.78E-01 1.50E+03 4.17E-01 1.80E+03 5.OOE-01 2.OOE+03 5.56E-01 3.OOE+03_I 8.33E-01_4.OOE+03 1.11E+00 4.80E+03 1.33E+00-6.OOE+03 1.67E+00 8.OOE+03 2.22E+00O 1.OOE+04 2.78E+0O 1.50E+04 4.17E+00 4.15+075.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00L 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 .OE+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07j 0.OOE+0O{4.15E+071 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+/-00 4.15E+07 5.04E+07 IOOOE+00 h4.15E+07 5.04E+07 0.OOE+OO 4.15+0715.04E+07 0.OE00E 4.15E+07 I5.04E+07 O.OOE+00 4.15E0 .0 I.OE 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00 J 4.15E+07 j5.04E+07 0.OOE+00[4.15E+07 5.04E+07 I..OOE+o2J J .5E0 5.04E+071 IO.OE00j9I 4.15E+07_

5.04E+07~

0.OOE+00_4.15E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 0.OOE+00 4.1 5E+07 5.04E+07 0.OOE+00 4.15E+07 [5.04E+07 I .OOE+00 -4.15E+07 I5.04E+07 0.OOE+00 4.15E+07 I5.04E+07 0.OOE÷00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+O0]:4.15E+07 5.04E+07 0.OOE+00 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L36 of L58 Time 1 Time (seconds) (hours)2.OOE+04 5.56E+00-3.OOE+04 L 8.33E+00 4.00E+04 1.11E+01 6.OOE+04 1.67E+01 8.OOE+04 2.22E+01 8.64E+04 2.40E+01 1.OOE+05 2.78E+01 1.50E+05:4.17E+01 1_.73E+05 4.80E+01 1.80E+05 5.OOE+01 2.OOE+05 5.56E+01i 2.59E+05 7.20E+01 3.46E+05 960E+01 3.60E+05 1.OOE+02 4.OOE+05 1.11E+02_4.32E+05 1.20 E+02F 6.OOE+05 1.67E+02 8.OOE+05 2.22E+02 8.64E+05 2.40E+02 1.OOE+06 2.78E+02 1.50E+06 4.17E+02 1.73E+06 4.80E+02 2.OOE+06 j 5.56E+02 2.59E+06-'

7.20E+02 3.46E+06 9.60E+02 4.00E+06 1.11E+03 4.32E+06 1.20E+03 6.OOE+06 1.67E+031 8.OOE+06 2.22E+03 1.OOE+07 2.78E+03 1.50E+07 4.17E+03 2.OOE+07_5.

T+o3 4.OOE+07 1.11E+041 6.00E+07 1.67E+04 8.OOE+07 2.22E+04] .0E+08 2.78E+04 1.50E+08 4.17E+04 2.OOE+08 5.56E+04 Pump Cooler Fuel Pool Heat Heat Heat Load Load Load (Btu/hr) (Btu/hr) (Btu/hr)4.15E+07 5.04E+07 0.OOE+00 I 4.15E+07 5.04E+07 0.00E+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.00E+00 4.15E+07 5.04E+07 O.00E+00!S4.15E+07 5.04E+07 0.30E+00 I 4.15E+07 5.04E+07 4.15E+07 5.04E+07 4.15E+07 5.04E+07 4.15E+07 5.04E+07 4.15E+07 5.04E+07 4.15E+07 5.04E+07 4.15E+07 5.04E+07 4.15E+07 5.04E+07 4.15E+07 5.04E+07 4.15E+07 5.04E+07 0.OOE+0Ol 0.OOE+00L 0.011+0_0L 0.00E+00 0.00E+00~0O.OOE+O0 0.OOE+00 0.0_0E+00 0.OOE+00OL O.OOE+00 4.15E+07 5.04E+07 I 0.OOE+00 4.15E+07 5.04E+07 1 0.OOE+00 4.15E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 0.OOE+00 4.1E_0 5.04E+07 0.OOE+0!4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0OOE+00 4. 15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 O.OOE+00*4.15E+07

]5.04E+07 0.OOE+OO i4.15E+07 5.04E+07 0.OOE+0O 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 I5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 0.OOE+00 4.15E+07 5.04E+07 c100E+00]'4.15E+07 5.04E+07 0.OOE+00 1]PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L37 of L58 Time Time (seconds) (hours)4.OOE+08 1.11E+05 6.OOE+08 1.67E+05 8.OOE+08 2.22E+05 1.OOE+09 2.78E+051ý Pump Cooler Fuel Pool [[I Heat Heat Heat Load Load Load (Btulhr) .(Btu/hr) (Btulhr)4.15E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 O.OOE+00 4.15E+07 5.04E+07 O.OOE+00] 4.15E+07 5.04E+07 O.OOE+00 !]]PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L38 of L58 APPENDIX L9.4: EPU PLANT TEMPERATURE RISE RESULTS Starting Ending Time Time (hr) (hr)0 __ 1 1 2 2 3 3 4 415 5 6_6 7 7 8 8 9 _9-H iO 10 11 11 12 12 13 13 14 14 5 15 [ 16 16 17 17 18 18 I 19 19. F ..20 20 21 21 22 J 22 -23 24 _25 25 26 -_26 j 27 27 28 "_8 29 L 29 30 r 30 31 _32 33 -33 34 -34 35 35 36 36 , 37 38 1 39 39 ! 40 40 41 41 __41 42 Plant Temperature Rise (°F)44.80 S 34.57_1 31.95 1 30.73 J 29.69-F_1 28.99 17.72 I 17.72 17.03 16.69 16.69 15.84 J 15.73 I 15.73-15.73 F 15.73 15.42[ 14.80 14.80 .14.80 14.80-[ 14.80 14.42 14.31 .IL14.03 14.03 14.03 13.88 13.34 13.34 13.34 13.34 13.34 13.34 13.34 13.34 J 13.34 13.34 , 13.34 13.34--13.34 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L39 of L58 Starting Ending Time Time (hr) (hr)42 43 43 I 44-44_.1...45_-

45__! _4_46 ..46 47 47 { 48 48 49 49 50 50 l 51 " 51 52 52 53 53 53 54 54 55 55 -ý 56*56 1 57_C~57 I 58 58 59 59 60 60__L 61 61 62 62 63 63 64 64 65 I 65 66 ]1 66 67 67 681 68 69 69 70 L 70 71 71 72 i 72 73 _73-7 74 ._-74 75 75 I76 76 77 77 78 I 78 79 79 80 I 80 81 i 81 82 82 83 83 84 84 85 85 86 -86 87 11.82 11.82 4 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.82 11.18-! 11.18 11.18 11.18 11.18 11.18 11.18 11.18 11.18 11.18 11.18 11.18____ _j'j 11.18~PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L40 of L58'Starting Ending Time Time (hr) (hr)87 88 88 89 89 90 go 91 91 I 92 92 93 93 _ 94 94 95 95 96 96 97 97 98 98 991 99 _100 100 101 101 L 102 102 103 103 _10o4 104 I 105 105 I 106 1061_107 JI 107 108 108 I 109 109 110 _1 110 ill 111 112 i 112 I 113 113 114 -114 I 115 115 I 116 116 117-11.7 118 118 119 _I 119 7 1 iO I 120 121 L 121 I 122 I_1221 123_ i 123j 1241 124 1251 125 126 , 126 127 127 128 128 129 129 130 130 131 _131 132 ', Plant Temperature Rise ('F)11.18 11.18 11.18 11.18 11.18 11.18 11.18 11.18 11.18 10.80 10.80 10.80 10.80 10.64 10.64 10.64 10.64 10.64 10.64 10.64 10.64 10.64 10.64 10.46 10.44 F -10.44 10.44 10.44 10.44 K 10.44 10.44 10.44 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01.]]r 10.01 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L41 of L58 Starting Ending Plant Time Time Temperature (hr) (hr) Rise (°F)132 133 10.01 133 134 10.01 134 135 10.01 135 136 10.01 136 137 10.01 137 138 10.01 .138 139 10.01 139 140 10.01 140 I 141 10.01 141 142 10.01 I 142 143 10.01 143 1144 _ 10.01 j 144 145 10.01 145 146 10.01 146 147 10.01 147 148 10.01 t 148 149 L 10.01 149 150 K 10.01 150 151K 10.01 151 152 I 10.01 152 153 10.01 K 153 154 10.01 154 t 155 10.01 155 156 I 10.01 J 156 _ 157 l.Ol 1 157 158 -10.01 1587 -159 _ 10.01 159 160 1 10.01 160 161 _ 10.01 161 162 10.01 162f163 1 10.01_1634 164 10.01 164 I 165 -I-__ _ _ _ _ _ _ _. 10.01 165 166 10.01 166 167 9.81.167 168 9.40 168 169 9.40 169 170 T 9.40 170I 171 K 9.40 171 I 172 9.40 172-K 173 9.40 173 174 9.40 174 L 175 , 9.40 175 1 176-J 9.40 176 K 177 _,_ _I 9.40 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L42 of L58 Starting Ending Time Time (hr) (hr)177 I178 178j 179 179. 180 180 81 __8 181 I 182 182 183 183 184 184 185 185 186 186 { 187 187 -188 188 I 189 189 190 1 190 191 191 I 192 192 {193 193 j 194 _194 I 195 S1951 .196 1 196 197 _197 1-98 _198 1 99 1991_200 200 201j 201 202 __202 203 1 203 204 1_204 1 205 I 205j 20606 2061 207 __207 1 208 208 -209 _209 210 _210 211 211 1 212 212 _- 213 213 214 J_214 [ 215 _2151 216 1 216__ 217 -i.217 1 218 I 218 219 219 220 220 221 -221 222 __Plant Temperature Rise ('F)9.40 9.40 9.40' 9.40 9.40 9.40 9.40 9.40-I 9.40-9.40 9.40 9.40 J 9.40 J- 9.40 9.40 J 9.40"1 -9.40 J 9.40! 9.40! 9.40 9.40 9.40 9.40 9.40 I 9.40 1 9.40 I 9.40 9.40] 9.40 S 9.40 9.40 9.40 9.40 9.40 9.40 9.40 9.40 9.40 J[ 9.40 9.40 9.40 9.40 9.40 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L43 of L58 Starting Ending Time Time (hr) (hr)--L 222 223 223 224 L__224__ 225__225 -226 _226 227 227 228 228 229 I 229 230 230 231 -231 232 232 233 _233 24 234 235 235 236 236 237 237 238 238 _239_239 240 '_240 241 I 241 242 242 243 _243 I 244 244 T 245 245 246 246 247 _247 I 248 248 24-9-249 250 250 251 251 252

.253 254 254 255 255 256 256 257 I 257 _258 258 259 259 ..260 _-260 261I 261 262 262 263 263 264 264 265 i 265 266 266 267 Plant Temperature Rise (°F)9.14 9.06 J 9.06--1___ 9.06 9.06 9.06-1 9.06 9.06 9.06 1- 9.06 9.06 9.06 I 9.06 9.06 9.06 9.06 9.06 I 9.06 I 8.88 8.88 8.88 8.88 8.88 8.88.. .8.88 _8.88 8.88-68.88_ 8.88-1 8.88 8.88 1 8.88 8.88-1---8.88 8.88 8.88 1 8.88 8.88 8.88-K 8.88 8.88 I 8.88 8.88 1 I 8.88 ,...... ..._ .. ..._] ! 8 8 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L44 of L58 Starting Ending Time Time (hr) (hr)26 268 268 269 269 270 2-7-0 271 271 272 272 _ 273 273 274 I 274 275 275- 276 276 277 277 278 1 278 279 279 280 280 281 281 282 282 I 283 I 283 284 -284 285 285 286 286 _- 287 287 288!288 289 289 290 290 291 291 292 _292 293 293 29494 294 295 295 I 296 296 297 297 298 298 1 299!299 300 300 I 301 301o 1 302 302 303 303 304 304 305 305 306 4-306 -307 307 308 _308 309 1_310 -j-3101 311 311 312 Plant Temperature Rise (°F)8.88 8.88 8.88 8.88 8.88 1 8.88 8.88 8.88 8.88 8.88 8.78 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 I 8.45 8.45 8.45 8.45 8.45 Ji 8.45 F 8.45 8.45 8.45 8.45 8.45 8 .45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L45 of L58 Starting Ending Plant Time Time Temperature (hr) (hr) Rise (*F)312 1313 8.45 313 l 314 8.45 314 315 8.45 315j 316 __ 8.45 316 317 8.45 317 .318 F- 8.45J 318 _319 -8.45 319 320 8.45 320 321 1 8.45 321 F 322 8.45 322L 323 _- 8.45 323 324 J 8.45 324 325 8.45 325. 326 8.45 326 327 8.45 327 328 "[ 8.45 328 329 J 8.45 329 330 J 8.45__330 L 331 J 8.45 3311332 8.45 332 333 8.45 333 1 334 8.45 334 ..1 335 -8.45-335 .1__336 8,45 1 8.45_33_6_ i__ __...337 _-8.45 -- -337 1 338 F 8.45 338 1339 7" 8.45 339 1 340 7 8.45 340 341 i_8.45 3-41 [342 7 8.45 342_!. 343 J .8.45 343J 344J- 8.45-344 I 345 8.45 345 I 346 I 8.45ýi3461 347 1 8.45 347 _ 348 T 8.45-3 4 8 J 349 _ 8.45 349 J_ 350 I 8.45 3501 351 8.45 351 352 I 8.45 352 353 _ 8.45 353 354 8.45 3541 355 --8.45 355 _ 356 8.45 3568 357 7..... _]]F 8.45 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L46 of L58 Starting Ending L 409 410 41o0[ 411 411 412 412 413 413 I 414 44.415 415 416 416 417 417 418 418 419 419 420_ 4201-421 _1 421 I 422 1_ 4221 423-L 423 1 424k 424 1 425 425 I 426 i 426 1_427 -_427 1 428 428 429 1 4291 430 _430 431 431 j 432 432 433 433 434 ....434 I 435 435 436 436 437 8 438 439 439 440 440 441 441 442 442 ]443j 443 444_444_ 445 4 4 5 I 446 446 447 Plant Temperature Rise (°F)8.45-8.45 8.45 1-8.45 8.,45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.45 8.32 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06..8.06 8.06 8.06 8.06 8.06 8.06 8.06 J 8.06.8.06 8.06 F. _ ._8 06. ..-E 8.06 8.06 J 8.06 8.06 8.06 8.06__8.06 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L48 of L58 Starting Ending Time Time (hr) (hr)447 448 448 1 449 4491 450 -450 I451 451_ I 452 I 452 453 453 454 454 455---_455 456 !456 457 457 458 __458 459 I 459 460 _460 461 461 462 i 4621 463 -463 464 I 464 1 465 _465 .- 466 I 466 j 467 I 467I 468 4 4681 469 469 _-470--470 471__471 1 472 _472 1 _ 473 I 473I 474 J__474 475 , 475 476 " 476 7_ 7 477~j _478__j 478 .479 I 479 480 I 480 I 481 481 ! 482 482 -483 483 484 484 _ 485 J, 485 486 1 486 ..48_7 487 488 1 488 489 489 490 49 491 492 1 Plant Temperature Rise (*F)8.06 7 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06 J 8.06 1 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06 8.06 6 8.06 8.06 8.06.8.06 8.06 8.06 8.06 8.06 8.06 8.06 7.87 1 7.87 I 7.87 7.87 7.87 J 7.87 J 7.87 I 7.87 7.87 7.87 _-7.87_]]. : .7.8 7 j PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L49 of L58 Starting Ending Plant Time Time Temperature (hr) (hr) Rise (°F)492 493 7.87 493 494 7.87 494 495 7.87 495A 496- L _.7.87 496 I 497 7.87 497 498 7.87 498 I 499 7.87 499 500 7.87 500 501 7.87 501 502 I 7.87 502 503 _ 7.87-503 -504 -7.87 504 505 7.87 505 506 i 7.87 506 507 -7.87 507 1 508 7.87 508 509 7.87 509 510 7.87 511 I 511 I 7.87-5 1-1---- 512 ---_ 7.87 512 i 5 1 3 7.87 513 514 7.87 514 5 1 5 +. 7.87 515 516 7.87 516 517 ..7.87 517- 5-1 7.87 518 519 7.87 519 520 7.87 520 521 i I 7.87 521 522 7.87'I 7.87 522 I 523 78 523 j 524 I 7.87 524 I 525 i 7.87 525 1526 _L 7.87 526! 527 I 7.87 527 S 528 1 7.87 528 I 529 7.87 529r 5307 -7.87 530 531 7.87 531 532 7.87 532.1 533 7.87 533 534 7.87 534 535 , 7.87 535 536 7.87 536 _,537 _ ]]_ 7.87 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L50 of L58 Starting Ending Time Time (hr) (hr)537 538 538 539 5391 540 50 541__541 542 542 i 543 543 544 544 545 545 546 546 547 L-547 548 _548 549 549 550 550 551 551 552 552 553 553 554 554 I 555 555 5561_556 I 557 557 558 558 I 559 S559 t560 560 561 _561 562 .562 563 5631 564 " 5641 565 T 565 I 566j 566 567 567 567 568 1 568 569F 569 I 570 5701 571* 571 572 572 5731 573 .574 575 576 576 577 577 578 5_78___ _57_9_ !579 1 580 I 580 581 _-581 582 __: _Plant Temperature Rise (*F)7.87 7.87.. ..7.87 j 7.87 I_ 7.87 7.87 7.87 I 7.87 7.87 7.87-7.87_ 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.86 7.63 7.63 7.63 7.637.63 T _ --7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63_ -7.63 7.63 L 7.63 7.63 7.63 7.63 7.63 _I 7.63 7.63 7.63 I 7.63 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L51 of L58 Starting Ending [[Plant Time Time Temperature (hr) (hr) Rise (°F)582 I 583 7.63_58 L58j4 7.63 584 j 585 7.63 2:__585 ---586- 7.63 586 _1 587 1 _j_ 7.63 __587 588 1 7.63 5_8_8 _589 J 7.63 5892 590 7.63 590 591 J- 7.63 591 1 592 7.63 592 E:7 3 4ý- 7.63 593 ! 59_4_ 7.63 594 595 7.63 595 5-96HF 7.63 596 ! 597 7.63 597 598 7.63 598! 599 I_ 7.63 599 .600 7.63 600 _ 6011 763 601 602 ! __ 7.63 I 602 603 J 7.63 603 1 604 7.63 604 605 I 7.63 605 !_606 7.63 606 607 7.63*_607 -608 J 7.63 608 6097 7.63 609 610 I 7.63 610 611 7.63 611 612 J_ 7.63 612 613 __7.63 613 614 7.63 67.63-615 616 L 7.63 616 617 _ 7.63 61.7_ 1618 _7.63 6 1 8_j_6 1 9 .7.63 619 620 1 7.63 620 621 J 7.63-621- 622 _ 7.63 622 I 623 I 7.63 623 624 7.63 624 625 7.63 62 626 7.63 6261 627'__ _ _._]]. 7.63 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L52 of L58 Starting Ending Time Time (hr) (hr)627 I 628 628 629 6291 630-6630- 631 ..631 _632 633 I 634 634 i 635 635 ý1636 6361 637 6371. 638 __638 1 639 D_639 640 _640 641 641 642 642 643 I 643 644 644 645 645 646 646 1 647I 647-- 646 1 648 1649 1 649 1 650 _650 1._651 _1 6511 652 -652 1 653--653 654 654 I 655 655 I 656 656 657 657 658 .!658 I 659 L 659 I 660 I 660-1 661 661 _ 662 _-662 663 1 663 664 664 L665 I 665 666 666 -667 __667 668 6681 669 669 670 670 i 671 671 7 672 _ _Plant Temperature Rise (*F)7.63 7.63._ 763 I 7.63 7.63 7.63 1 7.63 I 7.63 7.63 7.63 7.63 j 7.63 I 7.63 7.63 7.63 7.63 7.63 7.63 7.63 j 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 J 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63 7.63_ 7.63" 7.63 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L53 of L58 Starting Ending [ Plant Time Time Temperature (hr) (hr) Rise (_F)672 I 676 7.63 673 674 7.63 6_74_47 _67-5._ 7.63_6751. 6.76 !7.63 676 677 ,,7.63 677 678 7.63 678 679 I 7.63 679 680 7.63 680 681 --7.63 681 682 i 7.63 682 683 r 7.63 683 684__ 7.63 684 -685 7.63 685 1 686 7.63 686 687 7.63 687 688 I 7.63 688 I 689 7.63 689 690 7.63 690 691 7.63 691 692 763 692 693 7.63 693 694 7.63 694 6 1 7.63 695 696 7.63 J 696 9 697 7.63 ...697 698 7.63 698 I 699 F 7.63 J 699 1. 700 -J. 7.6 3 j 700I 701 7.63 7011 702 7.63 702 703 7.63 .703 70 7.63 _704 705 -7.63 705 706 7.63 706 -707 -7.63__..707_ 708 7.63 708 709 7.63__-__7.63 709 _ 71o 0 710 7111 7.63 711 712 7.63 712 713 7.63 713 714 ! 7.63 714 _ 715 --7.63 715 716 .7.63 716 717 _ ] 7.63 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L54 of L58 Starting Ending R Plant Time Time Temperature (hr) (hr) Rise (*F)717 718 7.63 718 719 7.63 719 720 7.63 70 721 7.31 721 722 -I I 7.31 722 723 j 7.31 723 724 1 7.31 724 725 F 7.31 725 ]T 726 j 7.31 726 727 -7.31 727 728 -F7.31 728K 729 L 7.31 729 I 730 I 7.31 730 ]. 731 7.31 731 732 J 7.31 732 733 7.31 733 734 7.31 734 735 7.31 7 }7 736 7.31 736__ 737 7.31.31 7371 738 j 7.31 738 739 7.31 739 _ 740 7.31 , 740 741 -7.31 741 742 .. 7.31 7421 743 J- 7.31 743L 744 -7.31_744 j 745I 7.31 745 I 746 1 .7.31 746 " 747 j 7.31 747 .748 j .7.31 748 749 7.31_749 750 7.31 750 751 j 7.31 751 752 I 7.31 752 753 ,7.31 753 I 754 7.31 754 755 I.7.31 755 I 756 7.31 756 757 ...7.31 757 I 758 -7.31 758 ' 759 7.31 759 I 760 7.31 760 761 7.31 761 762 __]_7.31 PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L55 of L58 Starting Ending Time Time (hr) (hr)762 763 763 764 L 764 765_765_J 766 766 ] 767 767 768 768 769 769 770 770 -771 771 772 772 773 773 I 774 774 775 775 776 776 777 L 777 778 778 779 779 780 780 1781 781 782 _782 j 7831 78 784 784I 785 J 785 _ 786 786 787 787 788 788 789 789 790 790 791 791 792 i 792 I_793 793 J 794 794 795 795 796 796 797.797 798__798 ' 799 799 800 800 801 801 1 802 802 I 803 803 804 804 805 805 1806 806 I 807 Plant Temperature Rise (*F)7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7 7.31 7.31 L 7.31 7.31 T 7.31 7.31 7.31 S 7.31_ý7.31 7.31_7.31 7.31 7.31 7.31 7.31 7.317.31 7.31-i 7.31]]l 7.31 PROJECT NO. 11333-297 Non-proprietary version CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L56 of L58 Startingg Ending Plant Time Time Temperature (hr) (hr) Rise (*F)807 808 7.31 808 8o9 L 7.31.80.9 .80 7.31 81 _ _.. 7.31 811 _ 812 7.31 812 L 813 -7.31 813 814 L 7.31 814 815 I 7.31 815 8161 7.31 816 817 I 7.31 817 818 7.31 818 819 7.31 819 820 7.31 820 821 7.31 821 _ 822 7.31 822 1 823 7.31 8231 __824t 7.31 824 1 825 L 7.31 825 L826 7.31 826 827 7.31 827 j 828 7.31 828 829 j 7.31 829 -- 830 , 7.31 830_ 831 1 7.31 831 832 7.31 832 8_ 33 - 7.31~833 1 834 l-7.31 834 835 7.31 835 836 7.31 836 I 837 7.31_837_ _838 7.31 838 839 _ 7.31 839 840 _ 7.31 840( 841 7.31 841 J 842-1. 7.31 842 L843 -1 7.31.843 844 7.31 844 845 7.31 845 [846 !_ 7.31 846 j 847 i 7.31 847 _L848 7.31 848 849 7.31 849 850 7.31 850 851 7.31 851 852 7.-31__PROJECT NO. 11333-297 Non-proprietary version REVISION NO. 8 CALCULATION NO. L-002457 ATTACHMENT L, PAGE L57 of L58 Starting Ending Time Time (hr) (hr)852 .1 853 853 _j 854L 854__ 855 L 8551 856 856 1 857 1 857j 8581__858 859 859 860*860/ 861 J 861 862 862 863 863 864 I Plant Temperature Rise (*F)7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 7.31 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT L, PAGE L58 of L58 APPENDIX L9.5: Plant Temperature Rise Equations A 1 8 1 C 0 I E I F I G I H 1 S Flowrate 86 cfs Mass Flow $C$1"$C$2 3600 Ibrn/h, 2 Density 62 lb 3 .. cp .(14.3.100)

BTU/Ibm-F Starting Ending TTotalnHea Heat RatperhTimestap Plant Temperature (hr) (hr) I Itd erated Heet Load (BTU) Added (BTU) Added (BTU) (BTUlhr) I Rise (Deg F)"4--0 - =FORECAST)$BA'OFFSET)Thta$E$I$E82

'M0$06ATOH)$64.Thta11$6$2:$6$60'1)102) 0FFSET )$o4,To0602 02080 MTH0404-001201-I 0O2))

1=0÷4.04 f=$E456-$84)

SI-F440014002-

"=64 5 60A1 C FORECAST SB5,OFFSET(Totle$IE$2$

E$80 MATCH$6 0,TotalrB$2$B$80,01)

-,O12),OFFSET(TotlI'$2:06000,MATC6)$60,TotaL8e$B2:0$80,-

1)0,2) =Ttle$F$2J6+04 C0D =-$E0-SE-5)$B06)--

-- '-.$FOIG1$02--A'

-B6 80 =7+I 66.1 =fORECAST($B,OFFSET SB0$E ,)-, 102),OFFS6T(T.1410602 O TET(O-O6$B$6,0,MATC0$0T0$1)2))

-o !$F$0 =65 l-It. 21-E6-/).=

D7 $E7 Y SE6-/($-$A76)

F $1/$$2 M 67 J A+1 )=FORECAST($66,FFSET)ToI'aSE$20$E6806MATCH($B7,ToaoIISB2 OFFSET)Totale$B2

$6S0, MATH)$B8,TotallB$2:$$801

)-1.0,2))

IlTotalF$2/6D67

=6E+68 %=($8-$E7 -y)$E68-A) i$FE/$G$11$G$2

_9 =87 =A12+1 _ I=FOREC0AST($B12,FFSET(TolIalrSE2.$E$80,MATOH($10,TotaI$B$2

$B$80,1) -10,2),OFFSETITotI6$B$2:0$80,60MATCH)SB1,TotalB$2:$

,1)102)) k2:11 =1 2 ($E1-$E1 y($B1$AE12.

=$F1 $G$F/0G0115G$2 "11 610I-- -IAleI .FORECAST($BII OFaFISET)T1 060601-1,0,2))

-0D10301. D- --

l)F -- -OF[:1IIGOG$2-9124611 ,12+ -=FORECAST($)062 5OFFSET(TotarlE$2"$E$80,0MATCH($)5T2tasý$Bl$26$B$80'1)102).OFFSETTolaTl$B$2:$60$60MATCmH$B012'Tota70$2.

06871)102))

-011 I=15+12 )0E12-$E14ySB15-$A15)

$F151$0$15G$2 13" 6 12 ---A 1"6=1 " =F-0RE-CAsi")$81 3 OSETTot$ OE2 '$E80,M ATOH($Ba3$1o$e0

.'$ 060601)1 0,),2 ),

BE 2 06060 ATC H)0B$ hlI'0$ 006 1)1 2 )) -012 ="1.01 '=OI--($ $E12)l)061

--063 F130-1/$ 6 --S -613- =1 =Ald8l 1 =FORECAST)$B4 1668 FST)TOteISE02

$ES60,MATCH

)$61,Tot~l06$2

$60$E80 1)-1,02) 0FFST)TotaIl$62 SBETH$ -0681)11,02))

D=13 ,=18+018 =(E 184-E13r5)$B14-$A14)I 0=F18$G$1/$G$2 "0B19 "A l =FOREOAST)081_0.OFFSET)To!$E$2..'$E_0,MATCH($B)0,TotIal$B$2:$0$80,11)-01.002)OFFSET(Totall4!$062-0$B-6MATC.($B10,TotaIl$B$2

$B$80,1)-I,,))

": =01 0.010 )=)0-$E19y$0615-A) 0G1/$G1 0 16 22 810 Abl 1 " ,A-C eII$B$2$1060601)1 0.2),OFFSET(Totale$B$2

$B$80 MATIICH$2613,Ttal'B$2:$B$80 0 -1,01)1 02)) =01= D21 )=)16$-$E2y5$B23-$A231) f=$F2131G$115G$2 17 826 17.1 FOREOAST($B27,0FFIET$To2lb$$2

$E806,MATCH)$B27,TotaI$B$2

$80,1)-1,02),O FFET(Totl$B$2:$6B80 MATCH$6127,TotaLIB$2:B$6801)-10,2))

-016 I=Cl27D27

= E27-$E261Y($B27-$A27) i=$F275G$1/$G$2 10 =B17 6A31 0FFETTOtahl$$2:$B$806 MATCH($136'Th-etal0B$2:$B$80 0=529 +=01130 1)6 E 30 -E 2_F(1$6B-$A3.

ýF0=$115$G$2 14- =130 1=A14e1 .=FORREAST )O1,OFFSET TaIE$2:E$8I 2 X' 0MATOH$B31',TotaIl$B$20$B$0 0

$B$806'1)-1'0.2))

,=D01 .-- D1-1 )$E31-0($B314S~-$A1)

I=$F31/$G$115G$2 1-620 I=÷-A --1 -FORFCAST)$B321FFSS-ET(Taol$6E$2:$E$80,MATCH($321,Totalý$6$2:6$B$ 2 3 =l '2to10

$B2-A --F311$G0IS0$2 621 =A+621 i =FORECAST($B66'2FFsET(TOaI$E$2:$E$80.MATC$H)_62TotO$2:$$860 1)-1',02)'FFSET)Totall$B$20$B$806MATCH

$B3T2tall$B$2 0$B$80,1)-1,0,2))

LOOI 22 )E2'-$E21Y)06

$A16) '-$F2210G$I10062 23 6-2 623=1 Tot)$0E'$S8 ,MATCH)($B2 ,T0altS$2.$B$.L601)02),OFFSET(Toal 0 M$AT 82 el2 B$06080 1)102)) )I- 022 23=23+D3 )$ ) -E32Y)$B3-$A23 )

24" 6238-- -'=A39+ 1 I=FOFREOAST)$B39 OFFSET)TotIIE$2.EB0,MATCH)39.Tolal$6$2.$$80,1

)-1,0,2),OFFSET)To(2ta 066$8 0,MATCH $B39,TOteI!$6$2

$B$80,1)-10,2))

1= 3 0 '=29+D24 YI,8$E3-$3y

$B-$A39) I- $F341$G$115G$2 260-625 " -A."1 FORE8AST)$B20,OFFSOET)To7IISE$2:$ESO0,MATCH)$B40TobaIl$B$2"080001

)-1,0,2) O6SE-ot ailO$2 :6060 ,ATC (0626.Tot 11$632 06080,1)102))

025 ',___ 026=02 )082= 0E200)/$---.06)

--F2-60$bO G$-2-27 B216 A51 B$06 '01)102).OFFSET)Totall0$$2:0B8060 MTCH$B'7Totlt$B6$2:$6080'1)102))" 026 I 027.027 )E-0E26y)6827-A2) 29 =W29 -621 =FORECAST($B260FFSETrToIe$_E$2:$E8080MATCqH$B620,Totl$B$2:$BS80.,)-1,012),OFFSETTotaIl$$20$B$8000,MATCH(B426TotalI!B2:06080,1)-1,0,2))

-052=4+6 C2 j =82962$)5($620-$0A2) ) -F2410001$000 j20LVi-A3O1 I R8AST)630 FFSET)TobelSEO$2:$E80,MATCH)$630,ToleIIBO62.0600.1)1 0,2) 0660ET)TotleT$O62 0B8060 MATO)3.TlI2

$800 loak iM -1)02)) - I0000 )E002063-$A21) 1=$F30'6001I$G$2 I 31 30

$B060,1)1l,0,2),OFFSETT(Otall$B$2:08060,MATrH)$7,ToteI16$2:06060,1)-102))

-0046 -37÷D31 )$E37-$E46)/($B4$-$A47)

)=F47/$021/$G$2 232 B63I2 21 -=F0ECAsT)$BS06,1FFSET TrlýlO$Eý.2$ES60,MATCH.)2$B32,o0leSB$2:_

001)1 02) 2OFFSIETTotaII$B$$-$L , 80MATCH($Bý3,TotaI$ýIT$2i06060B1)10,2))1021ýE2-$E49($B2

$ 3) __=$F23/$G G$2 I_- _- _______ T032__.032__

__; _ -0i/)63.A32 F300160 33 63 '82=1 -666007063 FFETTo~IIEO:008,MT06)033Tee106200,1

)-1,02)10FFSET(Total1$B$208060 MATCH)0633TtaT$~I00 68 )0) B$3 -C303 h)0834$E23Y$2)I)83363)IF310, 3-4 6323 -!-=34.1 _I 60660807)0634 OFFSET)T1OeII$E02:OýE$80,MATCH)0634,TýlIIO82$B68110)OFETTtl$0 66 MAO)841t1022 B$06001)1 02)) 0332- 0240034-357 =824 -A25+1 I F060060T)$B350(F60ET)ToaIIIEO$2

$E$80,MCATC A 35,TotetlO$S2 3$66001)-1.02).OFFSET)ToleI'$B602 06060 MATCH)6830, Tteal!$02 080801 -1.0.2)) 004 39e00 )E350E4Y$635-A25) 03I0100 26 6B20 =A 3 6.l 6600607)636O6FSET)T.6eIIE$2:0E080,MATCH)0B636ToalaO$2 060001)1 0.2) OFFSET)Total'6602 0B8060 AATCII)$636,oteIIO8O2:$060870, 1)0) DOS 03603 IE-E3)06-

-_6 F61010 37 626 1 27e1 6060060ý($B7)6637066T)TotaIIOEO2

$ES80,MATCH)00327,T

!IIO$2B 06001)-1 62) 0FFSE~T)leI'al$60ý2 06060MATCH)06L7.TotaleI 2$802 0600 1)10))__03D6 03=037-D2 )E37-$E36)I)067-W67)

,03I010 26 -37 6301 = 60660607)0630 066SET 1Teb0lE$2

$$8060MATCH)0B830Totall$B$2 80660)) 1 0,2),OFFSET)Tol4Il0602 06060MATCH(083.Totlelk1$80 0680,110.02))

I 037 If030.26 )08-$E37Y)0630-$A28)

O~F3OIOGSIIOO$2 39 =B83 ) 9-01 _I=FOR8CAST)O638OFFSE))TotaIIS6O2:$E808ATCH)$039.Totall$B6026B80001)-1.02),OFFSET)To~taI'0602 q$0600MATCH)0639.Tot~e0002:06080 1)10,2)) I 036-- -C23D903 )0E30.0183(8)I$3-049

$2LI =S2F91000 i$G2 0639 j 1~ FORECAST)$840 0FFSET(Toteýl06E$2.ýE8$0,MAT0H)0640,To~lekl2B02 08600 1)0.2),OFFSET TotallbO6O2 08060 MATCýH($)0640.tal$B02:$08800 1)10.2)) 03 4.00 )80.89I58604) -FOOG1O$41 8430 64ýA 1=1 6 9 08 641 F S T oI IO $2 8 80 ,M ATCH )0841 7.60116802

88000 1)1.0,2) O FFSE T)Tobe lO$B $O2 $06060 A T C H)0841,To ala'680' 0868 1) 2 )00 00 1= 4 (L) E4 -1 E 30Y11) 8 4b06431) I O 4 I G 1 0 6 42 8431 I 642 1)6006601)682 OFFSET)ToýeII0602 0E800,'MATOHI0B32,Tq0$60I16 8Q2 0601)0,2)

OFFSEýT)Toalel$B$O 08060 MATCH)0642.To!l=II0802 08081)1j0.2))_

DI 061 ) 4.42 I)62-!ly084 II2-0642)

F2IG1G2 43 42 84.1 I 06060)043OFSE)TIOIOE2.E$0,AT H)843Toal$62 800 )1 , )OFFSET)Tobo.l0802 08060 B M60)8 Tolall$S$2$6080.1)j 62)) 1=0204.03

$}E4330 4g1404) -041010 3483 644 F 606060(0644 0FFSET)T~aIISE$20ýE680,MATOH)0844.,Toeal6802 0B8001)1 02) O6STToel62$B0600 AATH084ToalOO 08801)i 2) 03 004 '.04-$E42(B3)I64-$A4)'

14F441$01/fG 2 40 ~844 64=1 60680607)06345OFýFSET)TotaI!$E02-.$E8600MATCH6)6845T~lel$lO6O 06001)-1 02) OýFFSET)7otal10B 2 0$8060 MATqH)0L45,Totalb620081102)j5 045=40 E )$4-SE33yI8845BA)

-' F40I00011$$2 46 845 -646=1 1-0680S~k607)046FFSET)Totall E$208080,MAT0FI)835,Tdelb0BS2:$080001)1 02?)OFFSET)To11 B$6 013800 MATOH)08356.taeI1062.

0606 1) 10) -004=C3063

)6(lE40-$EL4W(B5)I4-W4)-

0F46/$101/i0002-4 7- = B 63 4=5F 6 O S T 0 4 , F O T T 1 1 6 E 3 0 0 0 M T I I 68 7 T ~ ~ 0 0 8 8 1) 1 .0 .2 ),O F FS E T (T o ale $B $ 2 1 $4O2:0 08 .M T C H )0847.T oteI'080 2 6 808 01 ) 1 0 .2 )) _ 0 0 6ý3 ,0 4 7 e 0 )= 0 4 -F 6 I 0 4 -0 4 ) ! 0 4 1 0 16/$0 2$48 .64 =6480 )=FOECAST)086.8OFFSET TotalbOE$2:$E$80,MATCH($B36,I00T 6001162oFOT)oe!80:80,ATH04,TlI 11000)10) 00$8_____=4eD6)E0-E7I62:$4)_J=F0I0100 49~ ~ ~ ~ ~~~B7 =60_51. -=96AT04~FFSET)TolaII080Z0806,MATCH($8346Ttel0$B$2:$06000-I1)02)

O5FýFSET)T.1e$B$2

$:08000,ATCH($837,TotieO62:$080801)1I0,2) 040 374D4 )')0E48-$E48)I)6649-0649 L=F 410 61=638 i=6891 I 4F06E0AST)06ol0(?FFSET)TolaII0 E02:0066rAT0H)06511e~leI0862

$ý0 I88 ý1)0,2) OýFFOT)Toele$B$iO BBO280.MoATCH)0651,TotaeIIO

$$8O0606
1) ý1.02)) 1=003- ' 39.~ $E395-$E8Y0)I06514651 I.06010G0i1/$GS2' 02 =1 621 =60660607

($B065,0660 (ToteIIOE$2i$E$80, CH670 06,TMbII$862 0686001 1602)OFFSET T.ta115602 B$0 6MATCHli 65ToteIOO 86113 I0 .- )02D2 T~05-8155-62 I0010100 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION No. 8 ATTACHMENT M, PAGE M1 of M17 CALCULATION NO. L-002457 REVISION NO.8 ATTACHMENT M, PAGE Ml of Mu Attachment M -LAKET-PC Weather File Creation Prepared:

plm ,z .W I -Date (uIa7I;OaL Daniel W. Nevill -Sargent & LundyLLC Reviewed:

/-g Date ,2?-.ý-ou-Robert W. Youn -S gent & LundyLic PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M2 of M17 ATTACHMENT M -TABLE OF CONTENTS Section Page No.M 1.0 Purpose / Objective

..............................................................................................

M 3 M 2.0 M ethodology

..........................................................................................................

M 4 M 3.0 Assumptions

............................................................................................................

M 7 M4.0 Design Inputs ..........................................................................................................

M 8 M 5 .0 R eferences

...................................................................................................................

M 9 M 6.0 Calculations and Results .......................................................................................

M 10 M 7.0 Summary and Conclusions

..................................................................................

M 13 M 8 .0 L im itatio n s .................................................................................................................

M 14 M 9 .0 A p p en d ices ................................................................................................................

M 15 (Total Pages -Attachment M (15) plus Appendices (2) for a Total of 17 pages)LIST OF TABLES Table No. Title i_ Page M6-1 __ _Worst Weather Days ______M10_....

M6-2 Worst Net Evaporation Days -M1 M6-3 Worst Weather 24-Hour/30-Day Files M12 LIST OF APPENDICES No. Title Page M9.1 Electronic File Listing M16 (Total Appendix Pages -2)PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M3 of M17 M1.0 PURPOSE / OBJECTIVE The purpose of this attachment is to determine the worst 24-hour and 30-day weather period and the worst 30-day period of net evaporation for LaSalle County Station. The new weather data is compared to the weather data used in the existing analysis to determine if the new weather data set is more limiting.

If the existing weather data is no longer bounding, new LAKET weather files are compiled.

This will be used as input in determining the maximum plant inlet temperature and evaporative drawdown of the LaSalle County Station Ultimate Heat Sink, which determines the design basis Ultimate Heat Sink (UHS) performance for 30 days following an accident.

Weather data has been provided from January 1, 1995 through September 30, 2010.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M4 of M1 7 M2.0 METHODOLOGY A LAKET-compatible meteorological data file, 'PIALSL9510.txt', was created consisting of meteorological data for LaSalle County Station and Peoria, IL from January 1, 1995 through September 30, 2010. See Design Input M4.1 for additional information on this file. Wind speed, wind direction, and dry-bulb temperature data were taken from an on-site meteorological tower at LaSalle County Station. Humidity, precipitation type, cloud height, and cloud cover data were not available from the on-site meteorological tower, and were taken from a National Weather Service observing station at the Peoria, IL airport (approximately 70 miles southwest of LaSalle County Station).

This weather data file is input to LAKET [Ref. M5.2], and the worst weather and worst net evaporation time periods are found from the range of dates included in this file.Based on options selected in the input file, the LAKET run returns a plot file that includes the total evaporation, precipitation, natural lake temperature, lake inlet temperature (same as the plant outlet temperature), and the UHS outlet temperature (same as the plant inlet temperature).

Since LAKET returns results in three hour increments, a rolling average over 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> is created using Microsoft Excel [Ref. M5.1] by averaging the UHS outlet temperature of the selected time step along with the previous seven time steps. The worst weather day is chosen as the day with the highest UHS outlet temperature 24-hour rolling temperature average. The worst 30 days of weather is detennined using a similar methodology, in which a 30-day rolling average of the UHS outlet temperature is calculated and the maximum is chosen as the representative worst weather month.M2.1 Worst 24-Hour and 30-Day Weather A specific UHS model was created in LAKET (based on Case 3a from Attachment H)with a transit time that corresponds to the three hour time step period. Case 3a is used since it uses a worst 1-day plus worst 30-day weather file and represents the worst case scenario of 18-in sedimentation.

The following changes were made to Case 3a for determining the worst weather conditions:

  • The date range is changed to match the date range of weather file 'PIALSL95 I 0.txt.'* The lake initial temperature is set at 100°F. (Assumption M3.1)* The model is set as open cycle, so the UHS is at the same temperature at the beginning of each 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> interval.* Anemometer height is set at 33-ft in accordance with the instrument setup at LaSalle County Station (Design Input M4.2).* Lake elevation is fixed at 690-ft (Assumption M3.2).* The circulating plant flow is set at 873.0 ft 3/s for a circulation time of 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />.* The plant discharge water temperature (TPRISE variable in LAKET) is set at 100°F (Assumption M3.3). For an open cycle model, this value is the lake inlet temperature.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M5 of M17* Effective area and effective volume are set to 57.9% of total area and 63.4% of total volume, respectively, due to the results of Attachment J -UHS Flow Path Analysis.The UHS outlet temperature for each 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> period corresponds to the environmental effects on the UHS during these three hours. From these results, it can be implied that higher UHS outlet temperatures represent worse (hotter) weather conditions.

M2.2 Worst 30-Days of Net Evaporation For determining the worst 30-days of net evaporation, a UHS model is created in LAKET (based on Case 3c in Attachment H). Case 3c is used since it uses a worst 30-day net evaporation weather file and represents the worst case scenario of 18-in sedimentation.

The following changes were made to Case 3c for determining the worst net evaporation conditions:

  • The date range is changed to match the date range of weather file 'PIALSL950O.txt.'
  • Anemometer height is set at 33-ft in accordance with the instrument setup at LaSalle County Station (Design Input M4.2).* Lake elevation is fixed at 690-ft (Assumption M3.2).* Initial temperature is set at 407F as a representative winter UHS temperature (Assumption M3. 1).* The temperature rise through the plant (TPRISE variable in LAKET) is set at the approximate average temperature rise at EPU of -9°F (Assumption M3.3).* Effective area and effective volume are set to 47.10 acres and 216.45. acre-ft, respectively, due to the results of Attachment J -UHS Flow Path Analysis and the Case 3c model area and volume.The net evaporation is calculated by subtracting precipitation from the total evaporation.

The worst 30 days of net evaporation is determined using rolling averages, similar to the methodology used in determining the worst weather.M2.3 Weather File Creation for Comparison to Existing Analysis Following determination of the worst weather days and the worst net evaporation days, weather files for input to LAKET are created. For the worst weather input file, conditions from the worst weather day are used as the first day in the new weather file.Following the first day, the conditions from the worst 30-day period are added to create a 31-day worst weather "month." Precipitation is conservatively set to zero for all time steps comprising the worst weather month (Assumption M3.4). To determine if this new worst weather month is more limiting than the existing worst weather month used in Attachment H, the input file from Case 3a is ran using the new worst weather month. If the new weather month does not result in a higher maximum UHS outlet temperature, the existing worst weather month will be retained as it is more severe.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M6 of M17 For the worst net evaporation weather file, the conditions from the worst 30-day period are compiled to create a 30-day worst net evaporation "month." Similar to the worst weather month, precipitation is set to zero for all time steps (Assumption M3.4). To detennine if this new worst net evaporation month is more limiting than the existing worst net evaporation month from Attachment H, the input file from Case 3c is ran using the new worst net evaporation month. If the new weather file does not result in more lake drawdown, the existing worst net evaporation month will be retained as it is more severe.M2.4 Weather File Creation for UHS Analysis If the existing weather file is not bounding, new weather files are created based on the new most limiting day and month determined by this analysis.

These weather files use the weather information provided in 'PIALSL95IO.txt' with the following changes: " The station code is set to zero. This input has no impact on the results of this analysis.* The start date and time is set at 7/1/1900 at 12AM. This input has no effect on the results of this analysis." Precipitation is set to zero for all time steps (Assumption M3.4).In order to determine the effect of the time of day of the worst weather day on the UHS, eight different worst weather files will be created. The first file will start at 12 AM of the worst weather day followed by subsequent files at 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> intervals (e.g. the second weather file starts at 3 AM of the worst weather day). After 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> of the worst weather day, the worst 30 days subsequently added to the file. The start of the worst 30 days is selected to maintain a 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> interval between time steps. For example, if the worst 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> day ends at 11PM, the next time step will be at 12AM of the beginning of the worst 30 days.For the worst net evaporation, only one weather file will be created, corresponding to the dates and times determined to be the most limiting.M2.5 Computer Programs and Software LAKET-PC Version 2.2 [Ref. M5.2] was used to perform the lake transient analysis contained in this evaluation.

This was run on S&L PC No. ZD6661 on Windows XP operating system.Postprocessing of the LAKET-PC results is done using Microsoft Excel 2003 [Ref.M5.1], which is commercially available.

The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis.

All computer runs were perfon-ned using PC No. ZD6661 under the Windows XP operating system.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M7 of M17 M3.0 ASSUMPTIONS M3.1 Initial Lake Temperature

-For the worst weather evaluation, the initial lake temperature is set at 100°F. This is an arbitrary reference value for determrining the relative weather severity and does not influence the results of this analysis.For the worst net evaporation month, the initial lake temperature is assumed to be 40'F.This is used as a representative value for the lake temperature during the winter since the weather data file begins on January 1. This does not influence the results of this analysis as the worst net evaporation month occurs during the summer.M3.2 Fixed Lake Elevation

-The lake elevation when determining the worst weather month and worst net evaporation month is fixed at 690-ft. A constant lake elevation removes the effects of lake level in determining the weather effects on the UHS temperature and evaporation.

M3.3 Station Thermal Boundary Condition

-The plant discharge water temperature when determining the worst weather day and month is assumed to be 100°F. Since the lake is modeled as open cycle, the lake starts at this temperature at the start of each 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> time interval.

A constant initial temperature allows for isolation of the meteorological effects on the lake.When determining the worst net evaporation month, the temperature rise through the plant is assumed to be constant at approximately 9°F, which is the average temperature rise for EPU over the calculated 30 day period (Calculated from Appendix L9.3 of Attachment L -Plant Temperature Rise). A constant temperature rise through the plant removes the effects of the plant heat load in determining the evaporation.

M3.4 Precipitation

-When creating the worst weather "month" and worst net evaporation"month," precipitation is set to zero for all time steps. This is conservative when determining the limiting initial UHS temperature.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M8 of M17 M4.0 DESIGN INPUTS M4.1 Weather Data File -The LAKET-compatible meteorological data file is developed from weather data from LaSalle County Station and Peoria from 1/1/1995 to 9/30/2010 in Attachment K -Preparation of Hourly Meteorological Data. This file has the following properties:

Name: PIALSL95 10.txt Type: ASC text Size: 21,812 KB Creation date/time:

3/9/2012 11:08 AM CST (12:08 PM CDT)M4.2 Anemometer Height -The anemometer height at LaSalle County Station is 33 feet from Attachment K -Preparation of Hourly Meteorological Data.M4.3 Plant Temperature Rise -The approximate average plant temperature rise at EPU is calculated to be -9°F as taken from Attachment L -Plant Temperature Rise (Appendix L9.3: Calculated average of the first 30 days following an accident evaluated in Attachment L).M4.4 Effective Area and Volume Percentages

-The effective area percentage is 57.9% and the effective volume percentage is 63.4% from Attachment J -UHS Flow Path Analysis.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M9 of M17 M

5.0 REFERENCES

M5.1 Microsoft Office Excel 2003 (11.8120.8122)

SP2, Copyright 1985-2003 Microsoft Corporation, Sargent & Lundy LLC Program No. 03.2.286-1.0, dated 2/2/2004.M5.2 LAKET-PC Computer Program, Version 2.2, S&L Program No. 03.7.292-2.2, 12/09/2004.

Controlled File Path: \\SNLVS5\SYS3\OPS$\LAK29222\

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M10 of M17 M6.0 CALCULATIONS AND RESULTS Analysis of rolling averages determine the worst day and 30 day period for UHS temperature and the worst 30 day period for net evaporation for the weather file created from LaSalle County Station meteorological data from I/1/1995 to 9/30/2010.

These results are then compared to the existing weather files used in the Attachment H of this calculation.

M6.1 Worst Weather Conditions LAKET input file 'Worst Weather.dat' was compiled to detennine the worst weather day and 30-day period from 1/1/1995 to 9/30/2010.

The top ten worst 24-hour periods and 30-day periods are shown below in Table M6-1. Note that the temperature provided is for comparison purposes only and not representative of the expected actual temperature of the UHS (See Limitation M8. 1).Table M6-1: Worst Weather Days 24-Hour 30-Day End Date Average Temp. End Date I Average Temp.(°F) (°F)7/25/01 6:00 AM 99.609 8/20/95 3:00 PM 98.867 7/25/01 3:00 AM 99.586 -8/20/95 6:00 PM 98.866 7/19/98 12:00 AM 99.576 8/21/95 12:00 PM 98.865 7/18/98 9:00 PM 99.576 8/21/95 3:00 AM 98.865 7/25/01 12:00 AM 99.526 8/21/95 6:00 PM 98.864 7/24/01 9:00 PM 99.516 8/20/95 9:00 PM 98.864 7/19/98 3:00 AM 99.515 8/21/95 6:00 AM 98.864 7/25/01 9:00 AM 99.488 8/21/95 12:00 AM 98.864 8/19/95 12:00 AM 99.474 8/21/95 9:00 PM 98.864 7/22/01 3:00 PM 99.464 8/20/95 12:00 PM 98.863 Based on this data, a weather file for LAKET was created for the worst (hottest) weather,'Worst Weather.txt'.

The worst weather file is created by first inputting the worst 24-hr day (7/25/2001 ending at 6:00 AM) and then inputting the worst period of 30 days (7/21/1995 4:00PM to 8/20/1995 3:00PM) to create a 3 1-day weather file.To compare the new weather file with the existing weather file, Case 3a from L-002457 was run using the new weather file. This was done by creating a LAKET input file,"WorstWeatherComparison.dat,'

with the same conditions as Case 3a, but an adjusted anemometer height to reflect the setup at LaSalle County Station. As seen in the output file, 'WorstWeather Comparison.out,'

the maximum UHS outlet temperature using the new worst weather file is 105.967F.

From Attachment H, the results from Case 3a using the existing weather file is a maximum UHS outlet temperature of 104.00'F.

The new weather file results in a greater UHS outlet temperature, so it will replace the existing worst weather file in the UHS analysis.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M11 of M17 M6.2 Worst Net Evaporation LAKET input file 'NetEvapWorstMonth.dat' was compiled to determine the worst 30-day period of net evaporation from 1/1/1995 to 9/30/2010.

Using the results from LAKET, the worst ten 30-day periods in terms of net evaporation are shown below in Table M6-2. Note that the net evaporation values provided are for comparison purposes only and not representative of the expected actual evaporation of the UHS (See Limitation M8. 1).Table M6-2: Worst Net Evaporation Days End Date 30-Day Net Evaporation (cfs)7/13/02 9:00 PM 1.569 7/13/02 6:00 PM 1.568 7/14/02 12:00 AM 1.566 7/13/02 3:00 PM j 1.565 7/13/02 12:00 PM 1.563 7/14/02 3:00 AM 1.563 7/13/02 9:00 AM j 1.563 7/13/02 6:00 AM -1.562 7/14/02 6:00 AM 1.560 7/13/02 3:00 AM 1.557 The worst net evaporation weather file, 'NetEvapweather.txt,'

is created by inputting the weather conditions from the worst net evaporation period of 30 days (6/13/2002 10:00 PM to 7/13/2002 9:00 PM). In order to compare this with the worst 30 day net evaporation period from Attachment H, Case 3c from Attachment H was run using the new weather file. This was done by creating a LAKET input file,"NetEvapComparison.dat,'

with the same conditions as Case 3c, but an adjusted anemometer height to reflect the setup at LaSalle County Station.As seen in the output file, 'NetEvapComparison.out,'

the minimum lake elevation using the new worst net evaporation weather file is 688.63-ft.

From Attachment H, the results from Case 3c using the existing weather file is a minimum lake elevation of 688.52-ft.

Since the existing weather file results in greater lake drawdown, the existing weather conditions from 6/18/1954 to 7/18/1954 will continue to be used for this analysis.M6.3 Weather File Creation for UHS Analysis After determination of the worst weather day and month and the worst net evaporation month, weather files are created for use in the UHS Analysis.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M12 of M17 For the worst weather day and month, eight new weather files are created starting at different times to determine the limiting time of day. A summary of the eight created weather files, including the start times and end times used in taking weather data from'PIALSL95 1O.txt' is presented in the table below: Table M6-3: Worst Weather 24-Hour/30-Day Files-File Name Worst 24-hr Start Worst 24-hr End Worst 30-Day Start Worst 30-Day End 1-30day_12am.txt 7/24/2001 12AM 7/24/2001 11PM 7/21/1995 12AM 8/19/1995 11PM 1-30day_3am.txt 7/24/2001 3AM 7/25/2001 2AM 7/21/1995 3AM 8/20/1995 2AM 1-30day6am.txt 7/24/2001 6AM 7/25/2001 5AM 7/21/1995 6AM 8/20/1995 5AM 1-30day_9am.txt 7/24/2001 9AM 7/25/2001 8AM 7/21/1995 9AM 8/20/1995 8AM 1-30day_12pm.txt 7/24/2001 12PM 7/25/2001 11AM 7/21/1995 12PM 8/20/1995 11AM 1-30day_3pm.txt 7/24/2001 3PM 7/25/2001 2PM 7/21/1995 3PM 8/20/1995 2PM 1-30day_6pm.txt 7/24/2001 6PM 7/25/2001 5PM 7/21/1995 6PM 8/20/1995 5PM 1-30day_9pm.txt 7/24/2001 9PM 7/25/2001 8PM 7/21/1995 9PM 8/20/1995 8PM The worst net evaporation month was determined to be the existing weather file,'30dayevap.txt'.

This will continued to be used in the UHS analysis, and no further weather file compilation is needed.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M 13 of M 17 M7.0

SUMMARY

AND CONCLUSIONS The worst weather day and 30 days and worst net evaporation 30 days were determined by running LAKET over a range of days spanning from 1/1/1995 to 9/30/2010.

The worst weather day was determined to be 7/25/2001 ending at 6:00 AM, while the worst 30 day period of weather spanned from 7/21/1995 4:00 PM to 8/20/1995 3:00 PM. A comparison of this weather file with the existing weather file shows that the new weather file based on the weather data from 'PIALSL951O.txt' results in a higher maximum UHS outlet temperature than the existing weather file. Therefore the new weather files summarized in Table M6-3 will be used in the UHS analysis.For net evaporation, the worst 30 day period was determined to span from 6/13/2002 10:00 PM to 7/13/2002 9:00 PM. Comparison of this 30 day span with the previous limiting 30 days, 6/18/1954 to 7/18/1954, shows that the 1954 span remains bounding.Therefore, the existing worst 30-day net evaporation weather file will be used in the UHS analysis.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M14 of M1 7 M8.0 LIMITATIONS M8.1 24-Hour and 30-Day Rolling Average Values -The values for UHS outlet temperature and net evaporation provided in Tables M6-1 and M6-2 are merely representative values for use in comparing weather effects over different time periods. These values are not actual expected values for the LaSalle UHS.PROJECT NO. 11333-297 CALCULATION NO. L-002457 M9.0 APPENDICES List of Appendices App. -Description M9.1 Electronic File Listing REVISION NO. 8 ATTACHMENT M, PAGE M15 of M17 No. of Pages 2 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M16 of M17 Appendix M9. I: Electronic File Listing Appendix M9.1: Electronic File Listing A summary of the electronic files and their purposes is provided below: LaSalle County Station / Peoria Weather File File Name Date PIALSL951O.txt 3/09/2012 12:08 PM Files for Determining 24-Hour and 30-Day Worst Weather File Name Date Worst W~eather~dat

.. 4/24/2012 11:26 AM-_______ 4/24/2012 11:26 AM WorstWeatherdaut Worst Weather.out

-4/24/2012 11:26 AM____WorstWeather.plt

_ _4/24/2012 11:26 AM WorstWeather.pltX 24/24/2012 11:26-AM Files for Determining Worst Net Evaporation File Name Date NetEvapWorstMonth.dat 5/17/2012 3:01-PM NetEvap_WorstMonth.out 5/17/2012 3:03 PM NetEvap_WorstMonth.plt 5/17/2012 3:03 PM NetEvapWorstMonth.pltX 5/17/2012 3:03 PM Compiled Weather Files (Section M6.1 and Section M6.2)-File Name ' Date Worst Weather.txt 4/26/2012 10:11 AM NetEvapweather.txt 5/17/2012 3:23 PM Files for Comparison to Previous Worst Weather File Name Date WorstWeatherComparison.dat 4/26/2012 10:12 AM WorstWeather Comparison.out 4/26/2012 10:12 AM WorstWeather Comparison.plt 4/26/2012 10:12 AM WorstWeatherComparison.

pltX 4/26/2012 10:12 AM Files for Comparison to Previous Worst Net Evaporation Weather File Name Date NetEvapComparison.dat 5/17/2012 3:20 PM NetEvapComparison.out 5/17/2012 3:23 PM NetEvapComparison.plt 5/17/20123:23 PM NetEvapComparison.pltX 5/17/2012 3:23 PM PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT M, PAGE M17 of M17 Appendix M9. 1: Electronic File Listing Weather Files for UHS Analysis File Name 1-30day_1 2am.txt 1-30day_3am.txt 1-330day_6am.txt 1-30day_9am.txt 1-30day_1 2pm.txt 1-30day_3pm.txt 1-30day_6pm.txt 1-30day_9pm.txt 30dayevap.txt Date .4/26/2012 3:23 PM_14/26/2012 3:25 PM 1. .ý4/26 /2 012 _3 :26 P .M .... ..i 4/26/2012 3:29 PM 4/26/2012 3:30 PM t 4/26/2012 3:32 PM--4/26/20123:33_PM--

---.4/26/2012 3:34 PM 4/06/2006 4:18 PM A more detailed look at the files listed in the tables above is provided below: Further Detail for Electronic Files Name Q ..30day.12am.at.

1-30day_6pm.txt 1-3tday gam.txt 91-N3dayfipm.tbt 9 -302dyam.bct 9 3OdayevapxIt

.,Net0vaCompanson.dat Pl IktEvapCompanson.out_COrnlpason.plt P NeatEvaComparma.p X 9 NetEvaptVeadter.txt.DI etEvap..worstMonth.dat Dl Net~vapWorsdmonth.out R1 NetMvapWorstOonth.0.pt

.1NetEvapYiorxsdonth.

pLtX 9) PIALSI9510.gxt DIlWorstWeather .dat DlWorstWeather.out P1lWortwýeadherplt 01 Worst Weather.ptl 9WAorsteather.txt P.1 WorstWeatherCome anson.dat DlWorstWeather ComDarison.out D0IvorstWeatherComyarison.pIt 0- vorstweathercomDarison.pitx I Type I Size l TextDocument 4/26/2012 3:23PM 118,296 Text 4/26f2012 3:30 PM 113,296 Text Document 4/26/2012 3:25 PM1 113,296 TextDocument 4/26/2012 3:2 PM 118,296 Text Document 4126/2012 3:26 PM 118,296 TextDocument 4i26/2012 3:33PM 118,296 Text Document 4/26/2012 3:29 PM 113,2%Text Document 4/26/2012 3:34 PM 113,296 Text Document 4/6/2006 4:18 PM 116,802 OAT File 5117/20312 3:20 PM 2,623 OUT He 5/17/2012 3:23 PM11 4a,857 PT File 5117/2012 3:23 PM 141,372 PL'X He 53/17/2012 3:23 PM 14,400 TextDocument 5/17/2012 3:23 PM 114,430 DAT e 51/17/2012 3:01PM 357 OUIT le 5/17/2012 3:03 PM 278,69 1 PLT e 51/17/2012 3:03 PM 26,374,556 P1.TX Pe 5/17/2012 3:03 PM1 3,957,37i TextDocument 3/9/2012 12:03 PNt 21.811,532 DAT File 4/24/2012 11:26 M 401 OUT Fie 4/24/2012 11:26 AM 305,229 PT Fle 4/24/2012 11:26 AM 26,374,556 PLTX Pie 4/24/2012 11:26 AM. 2,760,960 Text Document 4/26/2012 10:11 AM 113,296 DAT Pel 4/26/2012 10:12 *1 2,355 OUT Fie 4/26/2012 10:12 AM 49,077 PLT ie 4/26/2012 10:12 AM 146,0-HFde 41/2/2012 10:12 ,1 14,330 Ratio I Packed I 33% 14,272 33% 14,300 88% 14,293 03% 14,224 88% 14,339 83% 14,262 03% 14,321 a3% 14,245 85% 17,890 83% 449 95% 2,679 72% 39,051 76% 3,495 37% 14,843 38% 222 91% 23,803 B0% 5,390.500 73% 871,914 87% 2,742,002 44% 223 92% 25,441 81% 5,234,116 84% 435,906 83% 14,341 82% 425 95% 2,664 72% 40,312 77% 3,461 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N1 of N20 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE Ni of N20 Attachment N -LAKET-PC Methodology Validation Prepared:-

p, Daniel W. Nevill -Sargent & LundyLLC Date ZoI3 Reviewed:

Date V__1_201 P/ul J. Szymiczek.ý

-gent & LundyLLC PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N2 of N20 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N2 of N20 Section N1.0 N2.0 N3.0 N4.0 N5.0 N6.0 N7.0 N8.0 N9.0 ATTACHMENT N -TABLE OF CONTENTS Page No.P u rp o se ........................................................................................................................

N 3 M ethodology

..........................................................................................................

N 4 A ssum ptions ............................................................................................................

N 6 Design Inputs ..........................................................................................................

N 7 References

....................................................................................................................

N 8 E v a lu a tio n s ...................................................................................................................

N 9 Sum m ary and Conclusions

.........................................................................................

N 18 Lim itations and Open Item s ..................................................................................

N 19 Appendices

.................................................................................................................

N 20 (Total Pages -Attachment N (20) plus Appendices (0) for a Total of 20 pages)LIST OF APPENDICES No. Title _ Page A i -I (Total Appendix Pages -0) .....PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N3 of N20 N1.0 PURPOSE The purpose of this attachment is to evaluate the methodology in the LAKET-PC program and compare it to accepted methods for analyzing UHS cooling ponds. The LAKET-PC method is compared to NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds," [Ref. N5.1]. This evaluation reviews the individual equations for heat transfer, wind characterization, and evaporation used in both the NUREG document and the LAKET-PC program.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N4 of N20 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N4 of N20 N2.0 METHODOLOGY NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds" [Ref. N5.1] presents a method for analyzing the performance of ultimate heat sink cooling ponds. It was published in November 1980 and contains the accepted methodology for characterizing the thermal performance of cooling ponds.The methodology of LAKET-PC is compared to NUREG-0693 based onl review of the LAKET-PC manual [Ref. N5.2]. The equations for heat transfer, wind characterization, evaporation, and the iterative method are compared between both documents.

LAKET-PC is validated in the process of demonstrating that the method of calculation is equal to the approved method outlined in NUREG-0693.

N2.0.1 Lake Stratification

-NRC RAI #6 [Ref. N5.4] asks for additional information about the effects of thermal stratification of the lake.A method for determining if a lake is stratified is presented in Sargent & Lundy standard MES-11.1 [Ref. N5.7]. This method consists of assuming the lake is stratified with the less dense hot water floating on top of the slightly more dense colder water. If the calculated value for the upper layer depth is close to or beneath the actual lake bottom, then the lake can be regarded as not stratified.

The depth of the upper layer hot water is determined using Eq. 1.FiQ2D_3L 1/h,, 14gfATB -(Eq. N2-1)Where: fi -Interfacial shear coefficient, estimated as one-half of bottom friction coefficient fi = 0.5

  • 8
  • g / C, 2 (Eq. N2-2)C, -Chezy coefficient C, = 1.47
  • H" 6/ n (Eq. N2-3)H -lake depth (ft)n -Manning roughness coefficient Q -Circulating water flow (ft 3/s)D, -Dilution ratio (total lake flow / circulating water flow)L -Lake length (fi)g -gravity, 32.2 ft/s 2-Bulk expansion coefficient of water (°F)13 = 4.1x10 6 * (Tawe -39°F) (Eq. N2-4)Tare- Average temperature of discharge and receiving water temperature

(°F)AT -Temperature difference between upper and lower levels (fF)B -Width of lake (ft)PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N5 of N20 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N5 of N20 For the case where a jet or plume is formed in the lake, the dilution ratio (D,) is found from the following steps.Fr = U d / Vhg/3AT (Eq. N2-5)hmax = 0.42. -hdb, (hd / bd )1/4 Fr (Eq. N2-6)D: = 1.4 1l + Fr 2 (hd /bj,)'" 4 (Eq. N2-7)Where: Fr -discharge Froude number Ud -Velocity at discharge structure 015s)hd -Depth of discharge structure 00)bd- '/2 width of discharge structure (ft)D,*- Dilution ratio without correction for lake bottom If the maximum depth of the plume (hmax) is greater than the depth of the lake, a correction factor is applied to the dilution ratio.r = (0.75H / hmax )3/4 (Eq. N2-8)D, = rD: (Eq. N2-9)Where: r -Dilution correction factor The upper layer depth (hu) is used to determine the degree of stratification in the lake. If the volume of the lake below the upper layer depth is small compared to the total volume of the lake, then a plug flow model such as LAKET should be valid. When the volume below the upper layer depth is greater than one half the total volume of the lake, a different model that accounts for stratification should be used.N2.1 Acceptance Criteria N2.1.1 Acceptance Criterion N I -The calculation method in LAKET-PC for analysis of the thermal performance of cooling ponds shall be consistent with the accepted methodology presented in NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds" [Ref.N5. I].N2.1.2 Acceptance Criterion N2 -The LAKET-PC program [Ref. N5.2] is not applicable for stratified lakes. The fraction of lake volume below the upper layer depth shall be less than 50% for the UHS to be considered not stratified

[Ref. N5.7].PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N6 of N20 N3.0 ASSUMPTIONS N3.1 Lake Stratification Calculation Inputs -The minimum mixing zone temperature is assumed to be 100.0°F. The maximum mixing zone temperature is assumed to be 125.0°F. These values are based on values of interest (during the first few days following an accident) from the mixing zone analysis done in Attachment 0.The Manning coefficient is assumed to be 0.02. This is an approximate, conservative value [Ref. 5.6, Table 3.3.17] based on the surface of crushed stone bedding and rip rap[Ref. N5.5].PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N7 of N20 N4.0 DESIGN INPUTS N4.1 Accepted UHS Analysis Method -The accepted analysis method for UHS cooling ponds is taken from NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds" [Ref.N5.1].N4.2 LAKET-PC Methodology

-The analysis method used in LAKET-PC is determined from the LAKET-PC user manual and the computer code [Ref. N5.2].N4.3 Wind Dependence Functions

-Wind dependence functions are taken from MIT Report 161, "An Analytical and Experimental Study of Transient Cooling Pond Behavior," [Ref.N5.3].N4.4 Lake Stratification Inputs -The bases for inputs to the lake stratification analysis are provided in Table N6-4.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N8 of N20 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N8 of N20 N

5.0 REFERENCES

N5.1 NUREG-0693, "Analysis of Ultimate Heat Sink Cooling Ponds," Office of Nuclear Reactor Regulation, Nuclear Regulatory Cormnission, November 1980.N5.2 LAKET-PC Version 2.2, Sargent & LundyLLC, Program No. 03.7.292-2.2, 12/09/2004.

Controlled File Path: \\SNLVS5\SYS3\OPS$\LAK-9222\

N5.3 MIT Report 161, "An Analytical and Experimental Study of Transient Cooling Pond Behavior," Ryan and Harleman, Massachusetts Institute of Technology, Cambridge Massachusetts, 1973.N5.4 Request for Additional Information Docket Nos. 50-373 and 50-374, "LaSalle County Station, Units 1 and 2 -Request for Additional Information Related to License Amendment Request to Technical Specification

3.7.3 Ultimate

Heat Sink (TAC Nos.ME9076 and ME 9077," 6/27/2013.

N5.5 S-79, "CSCS Pond Water Inlet Chutes Plan and Sections," Rev. H.N5.6 Avallone, Eugene A. and Baumeister III, Theodore, "Marks' Standard Handbook for Mechanical Engineers," 10t' edition.N5.7 MES- 11.1, S&L Mechanical Engineering Standard, "Effective Area of Cooling Lakes," Rev. 1.N5.8 RS-13-002, "Response to Request for Additional Information Related to License Amendment Request to Technical Specification 3.7.3, 'Ultimate Heat Sink'," l/18/2013.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N9 of N20 N6.0 EVALUATIONS N6.1 LAKET-PC Background LAKET-PC is a one-dimensional thermal prediction model first written in 1976 which has been well established in many areas of cooling lake sizing and analysis.

The lake simulation model is used to yield water surface temperature as a function of position and time. The inherent assumptions used in the LAKET-PC model are as follows: 1. Thermal One Dimensionality

-A one dimensional model assumes that the temperature is constant at any point along the plane perpendicular to the direction of flow. There are neither cross-stream variations nor thermal stratification with respect to depth.2. Time Increment

-The calculation scheme in LAKET-PC is an iterative process, where the calculation interval can be set to increments of minutes or hours. Weather data input to the model is generally hourly, and so weather data is held fixed for intervals smaller than one hour.3. Fluid Interactions

-The simulation model used in LAKET-PC involves adjacent fluid masses at different temperatures.

The horizontal heat conduction due to this temperature difference is assumed to be negligible with respect to the heat rejection at the air / water interface, and is ignored. Similarly, conductive heat loss and frictional retardation at the water / channel interface are ignored.4. Lake Rectanaularization

-The one-dimensional model assumptions coerce the water body into an idealized rectangular channel. The length of this channel is the flow path length of the actual water body, while the width and depth are computed theoretical values.5. Global Flow Components

-LAKET-PC assumes that all secondary water gains and losses, such as makeup, blowdown, and runoff are distributed globally over the entire lake surface. This is a reasonable assumption for the majority of applications; an actual configuration in which component flow is known to exert a disproportionate local influence will not be modeled accurately on that local scale. However, the net result of the component will be correctly modeled.The movement of fluid through the one-dimensional channel is envisioned as a series of individual, distinct fluid segments.

Each segment has an individual length and temperature, while the width and depth remain constant for all. The channel thus fornms a queue of fluid segments, where additions are made at the inlet, and deletions are made at the outlet. This is referred to as a "first in, first out" queue. Any segment that enters the channel will cause an equal amount to be expelled at the outlet. The program assumes that all segments are uniform in temperature, and each segment is allowed to react independently with the environment.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N10 of N20 N6.2 Heat Transfer Model This evaluation only considers the thermal model utilized in calculating the lake surface temperature, and does not delve into the effects of precipitation, makeup, blow down, or calculation of total dissolved solids.A) Edinger and Geyer Equilibrium Temperature Heat Transfer Model Both NUREG-0693 and LAKET-PC present thermal models in which the surface temperature of the cooling pond is calculated, as the bulk heat transfer modeled in these equations occurs at the water / air surface boundary.

Both thermal models utilize the Edinger and Geyer "Equilibrium Temperature Heat Transfer Model." The equilibrium temperature is defined as the water surface temperature at which the lake is in thermal equilibrium with the environment.

At this temperature, the heat removal from the water balances the heat addition, and the net effective heat transfer at the air / water surface is zero. Thus, the equilibrium temperature at any given time is a function only of the current meteorological environment.

This is not to be confused with the "natural" lake temperature used in LAKET-PC, which is the instantaneous water temperature in response to the meteorological parameters.

The equilibrium temperature is the theoretical steady state solution, while the natural temperature is the actual transient thennal response to the weather conditions.

The equilibrium temperature is used to define the heat transfer (Q) per the following equation: Q Ts JdQ = JK dT 0 E where Q = net heat transfer into the water (BTU/ft 2 day)E = equilibrium temperature

('F)T, = water surface temperature (fF)K = equilibrium heat transfer coefficient (BTU/ft 2 day 'F)Note that for this equation, K is assumed to be constant.

However, when evaluating ultimate heat sinks, which accept high heat loads, the external heat load rejected to the pond will increase the surface temperature significantly higher than the equilibrium temperature.

Thus, this equation is an iterative process in which the lake surface temperature is co-dependent on the net heat transfer rate and the heat transfer coefficient.

The surface temperature and heat transfer coefficient is held constant for each time step iteration when calculated in LAKET-PC.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N1 1 of N20 B) Heat Sources Contributing to the Cooling Pond The contributing components for the net heat transfer to the lake, listed below, are consistent between both LAKET-PC and NUREG-0693.

Q = QSN + QAN -QBR -QE -QC + QRJ where: QSN = net incident short wave solar radiation QAN = net incident long wave atmospheric radiation QBR = net rate of long wave back radiation from the lake surface QE = net rate of heat loss due to evaporation Qc = net rate of heat loss due to conduction and convection QRJ = net rate of heat rejected to the lake by the plant Table N6-1 below presents the equations for each component of the net heat load. Note that for both methods, the solar radiation is generally a measured value, while the others are approximated based on meteorological conditions.

Table N6-1: Heat Load Equations NUREG-0693 LAKET-PC QSN Measured value Calculated outside of LAKET-PC L -(included with weather data)1 QAN -.2x10-1 3 (T+460 )(l+O.17C2 ) Calculated outside of LAKET-PC (included with weather data)1 QBR 4.026x1O"8(460+Ts)4 4x10 8 (460+Ts)4 QE (es -eA)F(w) (e. -ea)F(w)approximated as: j3(Ts-TD)F(w)

Qc _ 0.26(Ts-TA)F(w) 0.255(Ts-TA)F(w)

QRJ Input based on plant heat load Input based on plant heat load 1) An additional description of solar radiation and atmospheric radiation can be found in RS-13-002

[Ref.5.8].where: C = fraction of sky covered by clouds (0.0 -1.0) (measured)

T4 = dry bulb air temperature (fF)Ts = water surface temperature (fF)TD = dew point temperature

(°F)es = saturated vapor pressure at Ts (nrunHg)e.4 = partial vapor pressure at TA and relative humidity (mrnHg)=+0.255-0.0085( .Tj+/- 0.000204 2 ) J (mrnHg/0 F)F(w) = wind speed function (see Section N6.2C) (BTU/ft 2 day/mmHg)Table N6-1 shows that the equations for each contributing heat load to the cooling pond are the same between NUREG-0693 and LAKET-PC.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N12 of N20 C) Wind Function NUREG-0693 The wind function (F(w)) is used to characterize the effect of wind on the evaporative heat loss from the water.The simple thermal model presented in NUREG-0693 utilizes a form of the wind function developed by Brady, which is solely dependent on the wind speed.FB(w) = 70 + 0.7W 2 where FB(w) = Brady wind function (BTU/ft 2 day/mrnHg)

W = wind speed measured 18-ft above the water surface (mph)However, Section 2.3 of NUREG-0693 discusses possible over-conservatism in this wind function and also presents an alternative equation.

The Brady wind function, presented above, seems to underestimate the evaporative heat flux. Another approach presented by Patrick Ryan in MIT Report No. 161 [Ref. N5.3] and summarized in NUREG-0693 includes the temperature dependence of the water surface when calculating evaporative heat loss. This Ryan function is less conservative than the Brady function, but based on firmer physical grounds. The Ryan function presented in NUREG-0693 is as follows: FR (w)=22.4rrTs

+ 460 F1'4 + 460 + 14W 0.378e, 0.378e,, P P where FR(w) = Ryan wind function (BTU/ft 2 day/mrnHg)

P = atmospheric pressure (mmHg)W2 = wind speed measured 2 meters above the water surface (mph)A comparison of calculations utilizing each of these two wind functions is shown in Fig.N6-1 in Section N6.3.LAKET-PC LAKET-PC uses two different wind speed functions, one for natural evaporation off a pond at its natural temperature, and another for the forced evaporation off a heated pond with elevated surface temperatures.

This is done to capture the effect of different phenomena above forced and natural water surfaces.

Both wind functions are taken from MIT Report No. 161 [Ref. N5.3].The wind speed function for a natural lake is solely dependent on the wind speed: FLH (W) = 17W, PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N13 of N20 where FLH(W) = Lake Hefner wind function (BTU/ft 2 day/mmHg)

[Ref. N5.3]Additional heat rejected to the cooling pond will increase the temperature of the water surface, and introduce the effect of free convection due to the temperature differential between the water and the air. Consistent with NUREG-0693, LAKET-PC utilizes the Ryan wind function (F,.(w)) to account for free and forced convection when the surface of the water is at an elevated temperature.

Specifically, LAKET-PC utilizes the Ryan wind function when the surface temperature is 2.5°F higher than the natural temperature of the lake.N6.3 Comparison of Calculation Methods There are several simplifying assumptions made when generating the set of equations used for the heat transfer model defined on page 9 of NUREG-0693

[Ref. N5.1]. This includes the approximation that the heat transfer from the back radiation and atmospheric radiation effectively cancel each other out. The model presented in NUREG-0693 also utilizes the Brady wind function (FB(w)), which is solely a function of wind speed.However, Figure 2.4 in NUREG-0693 (reproduced below) presents the results from a hypothetical one square foot section of a pond surface subject to constant meteorological conditions utilizing varying levels of rigor in the calculations and wind functions.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N14 of N20 SUAFACE ', TEMPON b TS-'IF 150 140 0 1301 120 100.1 2 3 4 5 8 7 a 1 0 11 1 HEAT LOAD FROM PLANT -BTU/(FT 2 OAY) x 1000 Fig. N6-1: Comparison of Calculation Methods where a) Simplified method with equilibrium temperature and heat transfer coefficients based on unloaded pond conditions (not a function of pond temperature).

Brady wind function.b) Simplified method where atmospheric and back radiation are ignored, but equilibrium temperature and heat transfer coefficients are based on pond temperatures.

Brady wind function.c) Rigorous method where each contributing heat source is explicitly calculated.

Brady wind function.d) Rigorous method where each contributing heat source is explicitly calculated.

Ryan wind function (LAKET methodology)

Furthermore, the explicit impact of the wind function on evaporative heat flux is analyzed to demonstrate the significant influence of forced evaporation.

This is done by 12 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N15 of N20 calculating the evaporative heat flux for several lake surface temperatures at the constant meteorological conditions used in Fig. N6-1 (per NUREG-0693).

The evaporative heat flux is calculated using the equation given in Table N6-1: QE = (es -e,4) F(W)Note that the equation above shows that given a constant water temperature, a decrease in atmospheric pressure will result in a slightly increased heat flux. The constant meteorological conditions used in the calculation are presented below in Table N6-2.Table N6-2: Constant Weather Parameters Parameter Symbol Value Dew Point Temp (oF) Td 70 Ambient Air Temp (0 F) Ta 90 Relative Humidity (%)-RH ...52%Wind Speed measured at 18-ft (mph) W W .2 Wind Speed corrected at 2-m (mph) W 2 1.7 Atm Pressure (mmHg) T P I 760.137 Partial Vapor Pressure at TA and RH (mmHg)j eA 18.772 The calculation of the evaporative heat flux and each contributing term is conducted below in Table N6-3.Table N6-3: Calculation of Evaporative Heat Flux Water Surface Temperature (7F) j Ts 150 135 L 120 105 90 Saturated Vapor at Ts (mmHg) I_ es 192.279 131.212 87.531 56.971 36.100 Brady WindFunction FB(W) 72.80 72.80 72.80 72.80 72.80 (BTU/ft day/mmHg)

FBW .. .. ... ......- ... ..... ..- .. ..- -'Ryan / Lake Hefner Wind Function 1 -1 69- 90.39 617 (BTU/ft 2 day/mmHg)

FR(W) 134.06 120.85 106.97 , 90.39 61.76 (BTU/t~da/mm~g i ,/fvv Evaporative Heat Flux (BTU/ft 2 day) [ QEB 12,631 8,186 2,781 1,261 (using Brady Wind Func.) 166 ,006 2 Evaporative Heat Flux (BTU/ft day) Q 23,261 ý13,588 7 3,453 (Using Ryan / Lake Hefner Wind Func.) 7,355,070 1) Per the methodology in LAKET-PC, the Lake Hefner wind function is used instead of the Ryan wind function when es approaches eA.Results from Table N6-3 are presented in Fig. N6-2.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N16 of N20 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N16 of N20 25,000-Evaporation w/ Brady Wind Func.S--Evaporation w/ Ryan and Lake Hefner Wind Func.'s 20,000.15,000 x 3 LL 4)4) 10,000 0 5U 5,000 I 0 90 100 110 120 130 140 Water Surface Temperature

('F)Fig. N6-2: Evaporative Heat Flux Calculation Results 150 Fig. N6-2 shows that the Ryan wind function (which accounts for forced evaporation due to elevated pond temperatures) results in significantly higher evaporative heat flux values at elevated water temperatures.

As UHS cooling ponds are expected to see significant heat rejection, the surface temperatures will be notably higher than the natural lake temperature and thus, accounting for this effect when calculating evaporation is necessary.

The results in Fig. N6-2 are consistent with the results presented in NUREG-0693, shown in Fig. N6-1. The differences in evaporation calculated with either of the two wind functions are negligible for lightly loaded cooling ponds (where the lake temperature is relatively close to the natural lake temperature).

However, when the heat rejection to the pond is increased and the resulting water temperature increases significantly beyond the natural lake temperature, the effect of the Brady vs. Ryan wind functions becomes apparent.

The increased evaporative heat flux shown in Fig. N6-2 will result in lower water temperatures, as shown by Cases c) and d) in Fig. N6- 1.N6.4 Lake Stratification The calculation of the upper layer depth was done for the UHS at LaSalle in order to detennine the degree of stratification.

The following table shows the calculation of the upper layer depth, which is done according to the methodology presented in Section N2.0. 1. This calculation is done for varying values of temperature rise through the plant since this value changes significantly during the first few hours following an accident.The temperature difference between the upper and lower layers is calculated as the PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N17 of N20 difference between the plant outlet temperature and the 'mixing zone' of the UHS located near the plant outlet. The temperature of a mixing zone comprising 10% and 20% of the UHS area is determined in a Section 06.9 of Attachment 0.Table N6-4: Calculation of Upper Layer Depth Parameter I Symbol 1 Units j Hour 1 Hour 4 Hour 6 1 Basis Gross Lake Area 1A Acres I 81.32 I 81.32 81.32 i Att. 0, Table 02-1ýGross- Lakme Vol u-me- -o -jAr-t 30 _ 4 4 t.0able 02-1 Average Depth l H ft I 4.18 4.18 j 4.18: =VIA Flow Rate Q 0 cfs I 86 I 86 _ 86 Att. O, Design Inp. 4.6 Plant Inlet Temperature Ti -F i102.00 101.73 102.62 i Case 3aJ6AM from Att. 0 Temperature Rise through Plant AT.._ _ 0 F 25.95 i 35.8 22.43 Att. P, Appendix P9.2 Plant Outlet Temperature To ' F 127.95 137.53 125.05 = Ti + ATP Minimum Assumed Mixing Zone Tm -F 100.0 100.0 100.0 Assumed Temperature----

AT Between Plant Outlet and Mix. Zone AT -F 27.95 37.53 25.05 = To- Tm ke Le ft I 5500 5500 -5500 I Main Body, Design lnp. 4.4 Lake Length .........

... ..Lake Width B ft 644 644 644 ,k=A*43560/L Width of Discharge Structure I BdI ft 8.0 8.0 8.0 i Ref. N5.5 Dth f Dschrge trutur -I UHS Depth with 1.5 feet of Depth of Discharge Structure d t ft 1 3.5 3.5 3.5 sedimentation of-Discharge Velocity Vd .. ft/s -3.071 3.071 3.071 =-Q-/ (B *hd).Maximum AssuImed MixingZone-T ' F 125.0 125.0 125.0 Assumed Temperature

-I .--- T -- 'F -Assumed Manning Roughness Coeff. n -(-) .0.2 0.02 .02 i Ref. N5.6, Table 3.3.17 Bulk Exp ansion Coefficient 3.. .3-0,13.53E-0, 3.53E-041 Eq. N2-4 Discharge_-Froude Number Fr .) 2.91 2.52 3.08 Eq.N2-5 Maximum Plume Depth hmax ft I 4.43 3.82 4.68 Eq. N2-6 Dilution ratio (uncorrected)

D* .(_) 4.17 3.66 4.38 Eq. N2-7 Dbiution Ratot Correction-Factor r (-) 0.77 0.86 0.74 Eq. N2-8---Dilution Ratio (corrected)

Ds () 3.221 3.16 3.25 _ Eq. N2-9 Chezy's Coefficient C _ _ ) 93.29 93.29 I 93.29 Eq. N2-3 Interfacial Friction Coefficient ) 0,015 0.015 .0.015 Eq. N2-2 Upper Layer Depth ho ft 2.49 j 2.28 2.57 Eq. N2-1 Test for Lake Stratification Gross Volume .... .. V I Acre-ft 1 340 4 340 40 .At. 0, Table 02-1 Volume Below Upper Layer V, Acre-ft 143.2 159.9 136.4 Interpolation of Table 7.1 in S--_ I _ I Main Body____ _Fraction of Lake Volume Below hu (') -0.42 0.47 0.40 = Vb/V As seen in Table N6-4, the most conservative calculated upper layer depth for the LaSalle UHS is 2.28 ft. Using this depth, the fraction of the UHS below the upper layer depth is 47%. According to MES- 11.1 [Ref. N5.7], LAKET is applicable to a certain lake if this fraction is less than 50%. Therefore, LAKET is acceptable for analyzing the LaSalle UHS.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT N, PAGE N18 of N20 N7.0

SUMMARY

AND CONCLUSIONS The methodology used in LAKET-PC is entirely consistent with the thermal model presented in NUREG-0693 and the wind speed functions presented in MIT Report No 161, which is also referenced and cited in NUREG-0693.

The use of the Ryan wind function (LAKET-PC) over the Brady wind function (NUREG thermal model) results in lower lake temperatures.

This is due to the fact that the Ryan wind function accounts for the effect of forced evaporation at water temperatures significantly higher than ambient air temperatures.

However, NUREG-0693 fully endorses the use of the Ryan wind function as a more accurate, although less conservative, method for calculating evaporative heat flux. Thus, Acceptance Criterion N I is met.In Table N6-4, it is determined that the fraction of lake volume below the calculated upper layer depth is 47%. Acceptance Criterion N2 requires that the lake volume below the upper layer depth be less than 50% for the lake to be considered not stratified.

Therefore, Acceptance Criterion N2 is met.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 N8.0 LIMITATIONS AND OPEN ITEMS None, ATTACHMENT N, PAGE N19 of N20 PROJECT NO. 11333-297 CALCULATION NO. L-002457 N9.0 APPENDICES None.REVISION NO. 8 ATTACHMENT N, PAGE N20 of N20 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 01 of 042 01.0 PURPOSE/OBJECTIVE The purpose of this attachment is to revise the existing Ultimate Heat Sink (UHS) analysis to include the weather selection methodology from Rev. 2 of Regulatory Guide 1.27 [Ref. 05.8] and a more realistic heat release to the UHS based on Revision 4 of L-002453 [Ref. 05.4]. This attachment includes analysis for only the Current Licensed Thermal Power (CLTP) (3559 MW,).Revision 7 included analysis for both CLTP (3559 MW) and Extended Power Uprate (EPU) (3998 MW,)power levels. Since Revision 7 plans for EPU have been cancelled, therefore only the CLTP power level is analyzed in this attachment.

The results in Revision 7 remain conservative as they utilize a more conservative UHS heat load than used in Revision 8. Rev. 8 shows that the acceptance criteria are met using Rev. 2 of Reg. Guide 1.27 [Ref. 05.8].The results of this attachment serve as an update to the current UHS design basis at LaSalle. See Section 1.1 of the main body of this calculation for further description on the history of this calculation.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 02 of 042 02.0 METHODOLOGY AND ACCEPTANCE CRITERIA The Sargent & Lundy (S&L) LAKET-PC computer program [Ref. 05.2] is utilized to determine the combined impact of decay heat, initial UHS temperature, and allowable sediment accumulation in the UHS. Based on the allowable UHS initial temperature (Design Input 04.5), the maximum UHS temperature is determined for average sediment accumulations of zero (0), six (6), twelve (12), and eighteen (18) inches.02.1 Worst Weather File Creation 02.1.1 Regulatory Guide Criteria Reg. Guide 1.27, Rev. 2 [Ref. 05.8] describes a method for considering meteorological conditions in the design of the UHS. A synthetic weather file is created using weather data from the critical time period due to design of the UHS (33-45 hours for the LaSalle UHS), the worst 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, and the worst 30 days. The synthetic weather file can be combined in this order, or alternatively the worst consecutive day period of the sum of these times can be used as the design basis. This calculation explores both options, each starting with the worst critical time period corresponding to the UHS transit time. For the LaSalle UHS, the critical time period unique to the design of the UHS is the transit time, which depends on the level of sedimentation.

The transit time is -33 hours, -39 hours, -42 hours, or -45 hours for 18 inches of sedimentation, 12 inches, 6 inches, and 0 inches, respectively (see Section 06.3).02.1.2 LAKET-PC Model for Weather Screening In order to find the worst weather periods, a specific UHS model was created in LAKET-PC with a transit time corresponding to the three hour time step period. The model is open cycle, which means water exiting the lake is discarded and new water enters the lake at predetermined conditions independent of the existing lake conditions.

The UHS is set to the same initial temperature at the beginning of each three hour time step. Since initial conditions are the same for each time step, there are no residual effects due to the weather from the preceding time step. The UHS outlet temperature for each 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> period corresponds to the environmental effects on the UHS during these three hours. From these results, it can be concluded that higher U-S outlet temperatures represent worse (hotter) weather conditions.

The LAKET-PC models 'Worst Weather I l0.dat' and 'WorstWeather 120.dat' were used to find the worst weather based on a UHS initial temperature of 1 10°F and 120'F, respectively.

The weather file analyzed is 'PIALSL95 I 0.txt', which is documented in Attachment M of this calculation.

The weather data spans from January 1995 to September 2010. 'WorstWeather_

10.dat' and'WorstWeather_

120.dat' are based off the input file 'WorstWeather.dat', which was developed in Attachment M of this calculation to determine the worst meteorological conditions based on an initial UHS temperature of I 00'F. The following changes were made to 'WorstWeather.dat' for the new input files:* 'WorstWeather_10 O.dat' changes from 'WorstWeather.dat':

o Lake initial temperature set to II 0°F o TPRISE (plant discharge water temperature) parameter set to 110.0°F" 'WorstWeather_120.dat' changes from 'WorstWeather.dat':

o Lake initial temperature set to 120°F o TPRISE (plant discharge water temperature) parameter set to 120.0°F PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 03 of 042 The worst weather with an initial UHS temperature of 110°F and 120'F is considered since the approximate average temperature of the flow from the plant input to the UHS over the first several days following an accident falls between these temperatures.

Additionally, these temperatures ensure that the Ryan wind function is used throughout the entire weather screening since they remain greater than 2.57F above the natural lake temperature at all times.The results from 'Worst Weather_ I I0.dat' and 'WorstWeather_

I 20.dat' can be used to determine the worst weather over any time period using a similar methodology as outlined in Section M2.0 of this calculation.

The rolling average of the lake temperature over the time period in which the worst weather conditions are being determined is calculated for each time step. The time periods with the highest rolling average are considered to have the worst weather. These periods of time are applied to the design event in order to determine the period that results in the highest UHS temperature.

A synthetic weather file is created using the worst weather time periods that are required for each case as outlined in Table 02-2.02.1.3 Lake Area and Volume -The lake area and volume remains unchanged from that described in Section 12.1.2 in Attachment

1. A summary of the initial lake levels is provided in Table 02-1, below.Table 02-1: Initial Lake Level Sediment Lake Effective Effectiv Level Elevation Area Volume Area e Level(ft) (acre) (acre-ft) (acre) (acre_____I-_ -]__ (acre-ft)18-in 689.98 81.32 340.0 -1 47.08 215.59 12-in 689.98 82.12 380.5 47.55 241.24 6-in 689.98 82.96 422.1 48.03 267.64 0-in 689.98 83.80 463.5 48.52 293.89 The remainder of the drawdown curve (from a lake elevation of 689-ft through 685-ft) remains the same as given in Table 7.1 of the main body of this calculation with respect to the total lake volume and surface area. The effective volume and effective area are updated using the percentages determined in Attachment J (effective volume is 63.4% of total volume and effective area is 57.9% of total area).02.1.4 Plant Temperature Rise -The UHS heat load has been revised for this attachment to include the effects of the Residual Heat Removal (RHR) heat exchangers.

The new heat load on the UHS for CLTP operation is determined in L-002453 [Ref. 05.4]. The plant temperature rise is dependent on the UHS heat load, and the calculation of the new plant temperature rise is documented in Attachment P.02.1.5 LAKET Case Runs -There are several different types of cases that are run. These include the worst weather cases, the worst net evaporation cases, worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> plus 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> plus 30 day cases, and diurnal wind exponent cases.A) Worst Temperature Cases -The worst temperature cases determine the maximum UHS outlet temperature based on an initial UHS temperature equal to the proposed Technical Specification (TS)temperature limits for the UHS (see Design Input 04.5). These cases determine if the UHS outlet temperature will remain below the limiting temperature of 107'F (see Design Input 04.1). Cases are run at varying start times due to the variable allowable UHS temperatures (see Design Input 04.5).I- PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 04 of 042 B) Worst Net Evaporation Cases -The net evaporation cases use the same input file as the corresponding worst weather case, but are run with the most limiting 30-day net evaporation weather file. These cases are run at all levels of sedimentation.

The limiting weather file begins at 12:00 AM, so the initial temperature is set to the TS initial UHS temperature limit of 104.53'F (Design Input 04.5). The most limiting net evaporation weather was determined to be 6/18/1954 to 7/18/1954 in Attachment M, and this weather is used for the net evaporation cases in this attachment.

Additionally, sensitivity cases are run to determine the effect of changing the wind power law exponent.C) Worst 33 Hour -24 Hour -30 Day Cases -Rev. 2 of Reg. Guide 1.27 [Ref. 05.8] gives two alternatives for selecting the worst weather data. The first alternative consists of finding three critical time periods: 1)the time period in which the UHS will reach a maximum following a shutdown (for this case it is the UHS transit time), 2) the worst 1-day weather period, and 3) the worst 30-day weather period. These three time periods, which do not have to occur contiguously, are combined to produce a synthetic weather period.Alternatively, the worst 33-consecutive-day (transit time + I day + 30 days) weather period may be used as the basis for the worst weather period. For the LaSalle UHS, the consecutive 33 day period is chosen starting with the worst weather period corresponding to the UHS transit time.To determine which of these alternatives is most conservative, cases are run using both methods and the results are compared.D) Wind Sensitivity Cases -In the NRC Request for Additional Information (RAI) [Ref. 05.3], more information is requested regarding the diurnal effects of wind speed. This case determines the effects on the maximum UHS outlet temperature when considering a diurnal wind power law exponent based on the analysis performed in EC 394434 [Ref. 05.10]. Case Wind_375 is run to determine the results of adjusting the 375 feet wind speed at the meteorological tower to 2 meters above the UHS [Ref. 05.12]based on wind tunnel testing as documented in EC394434 [Ref. 05.10].A list of all cases run for this analysis is shown below: Table 02-2: List of LAKET Cases Sedimentation Start Case Name Time Period Level Time Weather File Worst Temperature Cases Case la _12AM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 0:00 WW_0-6.22.txt Case la_3AM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 3:00 WW_3-6.22.txt Case 1 a_6AM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 6:00 WW_6-6.22.txt Case la_9AM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 9:00 WW_9.txt Case 1a_12PM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 12:00 WW_12.txt Case la_3PM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days_1 0 in. 15:00 I WW 15.txt Case Ia_6PM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 18:00 WWI 8-6.22.txt Case la_9PM worst 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br /> + next 30 days 0 in. 21:00 WW_21-6.22.txt Case 2a 12AM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 0:00 WW_0-6.22.txt Case 2a 3AM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 3:00 WW 3-6.22.txt Case 2a_6AM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 6:00 WW_6-6.22.txt Case 2a_9AM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 9:00 WW_9.txt Case 2a_12PM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 12:00 WW_12.txt PROJECT NO. 11333-297 ICALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 05 of 042 1 Case Name Time Period Sedimentation Start Weather File Level Time Case 2a 3PM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 15:00 WW_15.txt Case 2a 6PM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 18:00 WW_18-6.22.txt Case 2a_9PM worst 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br /> + next 30 days 6 in. 21:00 WW_21-6.22.txt Case 3a_12AM worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 0:00 WW_0-6.22.txt Case 3a_3AM worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 3:00 WW_3-6.22.txt Case 3a 6AM [worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 6:00 WW_6-6.22.txt Case 3a_9AM worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 9:00 WW_9.txt Case 3a_12PM worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 12:00 WW_12.txt Case 3a_3PM worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 15:00 WW 15.txt Case 3a_6PM worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 18:00 WW_18-6.22.txt Case 3a_9PM worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 21:00 WW_21-6.22.txt Case 4a 12AM worst 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br /> + next 30 days 12 in. 0:00 WWIN0-6.22.txt Case 4a_3AM worst 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br /> + next 30 days 12 in. 3:00 WW_3-6.22.txt Case 4a_6AM worst 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br /> + next 30 days 12 in. 6:00 WW_6-6.22.txt Case 4a_9AM worst 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br /> + next 30 days 12 in. 9:00 WW_9.txt Case 4a 12PM worst 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br /> + next 30 days 12 in. 12:00 WW_12.txt Case 4a_3PM worst 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br /> + next 30 days 12 in. 15:00 WW_15.txt Case 4a_6PM worst 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br /> + next 30 days 12 in. 18:00 WW_18-6.22.txt Case 4a_9PM worst 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br /> + next 30 days 12 in. 21:00 -WW_21-6.22.txt Worst Net Evaporation Cases Case 1c worst 30 days for evaporation 0 in. 0:00 30dayevap.txt Case 2c worst 30 days for evaporation 6 in. 0:00 30dayevap.txt Case 3c worst 30 days for evaporation 18 in. 0:00 30dayevap.txt Case 4c worst 30 days for evaporation 12 in. 0:00 30dayevap.txt NetEvap-0.r1 worst 30 days for evaporation 18 in. 0:00 NetEvap_0.1.txt NetEvap-0.2 worst 30 days for evaporation

_ 18 in. 0:00 NetEvap_0.2.txt Worst 33 Hours + 24 Hours + 30 Day Cases worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + worst 24 I WW 33-24-WW_33-24-30-6AM18 in. 9:00 -WW_33-24-30-6AM2 worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + worst 24 18 in. 6:00 WW-33-24 hours + worst 30 days 6AM2.txt worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + worst 24 IWW 33-24-30-WW_33-24-30-6AM2

/I hours + worst 30 days 18 in. 6:00 6AM2.txt Wind Sensitivity Cases Case Diurnal worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 6:00 Diurnal.txt Case Wind 375 worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> + next 30 days 18 in. 6:00 Wind_375.txt I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 06 of 042 1 Case Name Time Period Sedimentation Start Weather File Level Time Mixing Cases Mixing -10% 1 Mixing -10% 18 in. 6:00 NWV 6-6.22.txt Mixing -20% Mixing -20% 18 in. 6:00 WW_6-6.22.txt Mixing -10% -9AM Mixing -10% -9AM 18 in. 9:00 WW_9.txt Mixing -20% -12PM Mixing -20% -12PM 18 in. 12:00 W _12.txt 02.2 UHS Mixing RAI #4 [Ref. 05.3], asks for a detailed analysis that conservatively accounts for fluid segment mixing and corresponding lower water surface temperatures.

LAKET-PC [Ref. 05.2] currently does not have the capability to simulate this mixing; however, the included lake effectiveness compensates for this effect by simulating the resultant stagnant lake areas caused by mixing. To provide additional assurance, the effect of UHS mixing is determined using LAKET-PC [Ref. 05.2] results with modifications made outside of LAKET-PC in Microsoft Excel [Ref. 05.5].The existing UHS thermal model consists of a plug type model developed in LAKET-PC [Ref. 05.2]. The simplified diagram of the LaSalle UHS model is shown on Figure 02.1. The model effective area and volume are 57.9% and 63.4% of their total values (see Attachment J).From Plant 1 Effective Volume/Area op To Plant Figure 02.1 -Existing UHS Model To simulate the effect of entrance mixing, the existing model is modified as shown in Figure 02.2. This new model is similar to the two stage model described in the MIT Report 161 [Ref. 05.7, Figure 3-9] as presented in Figure 02.3. The mixing zone with various sizes has been created outside of LAKET-PC[Ref. 05.2]. The discharge temperature out of the mixing zone is calculated for each time step (one hour)by assuming complete mixing of the plant discharge water and the mixing zone water. The effects of evaporation and other heat transfer are conservatively ignored. According to MIT Report 161 [Ref. 05.7, Section 6.5.1] the mixing region is typically small (<10% of the total area), therefore the two sensitivity cases are developed with 10% and 20% mixing zones. In these cases the mixing zone area/volume is subtracted from the nominal LAKET-PC model. For the purpose of the mixing zone sensitivity runs the 6AM case with 18" of sedimentation (Case 3a_6AM) is selected as the nominal case.I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 07 of 042 From Plant -0 Mixing Zone Effective Volume/Area To Plant Figure 02.2 -Modified UHS Model for Mixing Effects T 0 Tl T Q I AI Figure 02.3 -MIT Report 161 [Ref. 05.71 Two Stage Pond 02.3 Acceptance Criteria 02.3.1 Acceptance Criterion#1 -Peak Temperature

-The maximum plant inlet temperature from the UHS shall T remain equal to or less than 107°F.02.3.2 Acceptance Criterion

  1. 2 -UHS Drawdown -There are no specific acceptance criteria for maximum UHS lake drawdown.

However, for the worst 30-day evaporation period, the maximum lake drawdown is determined for input to calculation L-00 1355 [Ref. 05.6].02.4 Limitations Same as main body of calculation.

r ý PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 08 of 042 02.5 Identification of Computer Programs Postprocessing of the LAKET-PC results is done using Microsoft Excel 2003 [Ref. 05.5], which is commercially available.

The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis.

All computer runs were perfonrned using PC No. ZD6661 under the Windows XP operating system.LAKET-PC Version 2.2 [Ref. 05.2] was used to perforn the lake transient analysis contained in this evaluation.

This was run on S&L PC No. ZD6661 on the Windows XP operating system.I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 09 of 042 03.0 ASSUMPTIONS 03.1 Effective Area and Volume at Different Sediment Levels -The effective area and volume percentages determined in Attachment J are determined for 18-in of sediment.

It is assumed that these percentages apply to the other sediment levels analyzed in this evaluation.

Since changes in sediment level change the depth of the lake evenly throughout the entire lake (see Section 6.2 of the main body of this calculation), the percentages of effective area and volume will negligibly change with sediment level.03.2 UHS Inventory for Fire Fighting -It is assumed that all UHS inventory for fire fighting is used immediately following an accident.

This is conservative as it decreases the volume of water in the UHS.03.3 UHS Transit Time -For weather sorting, the weather file is sorted in three hour increments.

For compatibility the transit time for 18-in, 12-in, 6-in, and 0-in of sedimentation is assumed to be approximately 33-hr, 39-hr, 42-hr, and 45-hr, respectively.

See the UHS transit time calculation in Section 06.3.03.4 Other -All other assumptions are the same as the assumptions in the main body of calculation.

I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 010 of 042 04.0 DESIGN INPUT 04.1 Maximum Allowable UHS Temperature

-The maximum allowable UHS temperature is 1077F [Ref.05.9].04.2 General Seepage Rate -A seepage rate of 0.2 ft 3/s is retained from Design Input 4.3 of the main body of this calculation.

In Rev. 7, the spent fuel pool makeup flow was added to determine the total UHS seepage rate, but this is no longer added in Rev. 8 (see Section 06.2).04.3 UHS Inventory for Fire Fighting Following an Accident-Following an accident, 440,400 gallons of water from the UHS must be available for fire fighting [Ref. 05.1, Section 9.2.6.3].04.4 Anemometer Height -For the worst net evaporation weather data, which is from the Peoria weather data spanning from 1948 to 1996, the anemometer height is 20-ft (as taken from input files for the worst net evaporation cases in previous revisions).

For the worst weather data, which is taken from the LaSalle Station weather data spanning from 1995 to 2010, the anemometer is at a height of 33-ft (See Attachment K).04.5 Proposed TS Limits -The proposed TS temperature limits for the UHS for each of the event start times are provided in the proposed TS changes [Ref. 05.9]. These temperatures plus an uncertainty of 0.75'F are used as the initial UHS outlet temperature in the LAKET-PC model. Due to an initial iteration in the LAKET-PC code, the initial forced temperature input in the input file may differ from the values in Table 04-1. However, the initial UHS outlet temperature in the output file will match the value in Table 04-1.Table 04-1: Proposed TS Limits Proposed TS Event Start Time Proposed TS Limit Plus Limit Uncertainty (0.75 0 F)0:00 103.78-F 104.53-F 3:00 101.97°F 102.72-F 6:00 101.25°F 102.00°F 9:00 102.44°F 103.19°F 12:00 104.00°F 104.75°F 15:00 I 104.00'F 104.75°F 18:00 " 104.00-F 104.75 0 F 21:00 104.00°F 104.75°F 04.6 CSCS Volumetric Flow -The total plant flow during the UHS analysis is 29,300 GPM (65.3 ft 3/s) for the first 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> of the event [Ref. 05.11, Attachment C]. The total plant flow is 38,600 gpm (86.0 ft 3/s)after 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> [Ref. 05.11, Attachment C]. The total flow after 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> is based upon the cumulative flow contribution from thirteen CSCS pumps operating at design flow conditions (eight Residual Heat Removal (RHR)-Service Water pumps, 4,000 gpm each; three Diesel Generator (DG) pumps, two at 1,300 gpm and one at 2,000 gpm; and two High Pressure Core Spray DG pumps, 1000 gpm each) (See Attachment D). Prior to 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br />, two RHR Service Water pumps and one of the 1,300 gpm DG pumps are not in operation

[Ref. 05.11, Attachment C].04.7 Other -All other design inputs are the same as the design inputs in the main body of calculation.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 011 of 042

05.0 REFERENCES

05.1 LaSalle County Station Updated Final Safety Analysis Report (UFSAR), Rev. 19.05.2 LAKET-PC Computer Program, Version 2.2, S&L Program No. 03.7.292-2.2, 7/31/2013.

Controlled File Path: \\SNLVS5\SYS3\OPSS\LAK29222\

05.3 NRC Request for Additional Information, Docket Nos. 50-373 and 50-374, "LaSalle County Station, Units I and 2 -Request for Additional Information Related to License Amendment Request to Technical Specification

3.7.3 Ultimate

Heat Sink (TAC Nos. ME9076 and ME 9077)," ADAMS Accession No.M13099A206, 6/27/2013.

05.4 L-002453, "UHS Heat Load," Rev. 4.05.5 Microsoft Excel 2003, Sargent & Lundy LLC Program No. 03.2.286-1.0, dated 02/02/2004.

05.6 L-001355, "LaSalle County Station CSCS Hydraulic Model," Rev. 005A.05.7 MIT Report 161, "An Analytical and Experimental Study of Transient Cooling Pond Behavior," Ryan and Harlernan, Massachusetts Institute of Technology, Cambridge Massachusetts, 1973.05.8 Regulatory Guide 1.27, "Ultimate Heat Sink for Nuclear Power Plants," Rev. 2.05.9 RS-12-084, "Request for a License Amendment to LaSalle County Station, Units I and 2, Technical Specification 3.7.3, 'Ultimate Heat Sink'," NRC Docket Nos. 50-373 and 50-374, ADAMS Accession No.ML12200A330, 6/12/2012.

05.10 EC 394434, "UHS Wind Correction Exponent Evaluation," Rev. 1.05.11 SEAG 13-000074, "LaSalle County Station Transmittal of Design Information (TODI) for UHS Analyses," Rev. 0.05.12 SEAG 13-000080, "LaSalle Station Transmittal of Design Information (TODI) for Calc L-002457 with WSR of Intake Flume," 9/30/2013.

I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 012 of 042 06.0 CALCULATIONS 06.1 Calculation of Plant Temperature Rise The CSCS temperature rise across the plant is computed in Attachment P. The heat rejected to the UHS is determined for an operating scenario that considers a LOCA on one unit and a reactor SCRAM for the non-LOCA unit coincident with a loss of the cooling lake. Both RHR heat exchangers are in service for the LOCA unit. For the non-LOCA unit one RHR heat exchanger is in suppression pool cooling mode (and later shutdown cooling mode) while the other RHR heat exchanger is in fuel pool cooling assist mode.See Appendix P9.2 of Attachment P for the results of the plant temperature rise.06.2 Seepage Rate The seepage rate is determined from a UHS seepage of 0.2 ft 3/s (Design Input 04.2). Revision 7 included a constant flow of 600 gpm for spent fuel pool makeup (See Design Input 14.1). Instead of spent fuel pool makeup drawn from the UHS, the spent fuel pool is cooled through the use of the RHR heat exchanger[Ref. 05.4, Attachment D]. The heat load rejected by the RHR heat exchanger to the UHS is calculated in L-002453 [Ref, 05.4], and included in the plant temperature rise calculated in Attachment P. Therefore, no additional seepage flow is added to account for spent fuel pool makeup flow.06.3 UHS Transit Time The UHS transit time for each sedimentation level can be determined using the effective volume and the UHS flow rate. This calculation is shown in Table 06-1, below.Table 06-1: UHS Transit Time Calculation

_ Symbol 0-in 6-in j 12-in 18-in Basis Eff. Volume (acre-ft)

_ V 8 293.89 267.64 .241.27 215.59 Table 02-1 Conversion (ft 3/acre-ft) i C i 43560 43560 I 43560 43560 o0iu-me( ... ... V 12,801,848 1 11,658,398 1 10,509,721 9,391,100 Ve* C lB16 _65. 65.3 65.3 65.3 ;Design Input 04.6 Volume Removed in 16,rsf (W) ,V, 6 I 3,761,280 3,761,280 3,761,280 3,761,280

=QB16*16hr*3600s/hr Transit Time (s) tB 1 6 57,600 57,600 -57,600 -57,600 ,16 hr* 3600 s/hr Flow 8Rate6 (is) ...6- 80 86.0 86.0 86.0 'Design Input 04.6 Remaining Volume (ft) VA16 9,040,568 7,897,118 6,748,441

.1 5,629,820-V

-V13 .1 6 Transit Time (s) tA1, 105,123 91,827 78,470 65,463 '=VA16/QA16 Total Transit Time (s) t I 162,723 149,427 136,070 123,063 .=tg16 +tA1 Total Transit Time (hr) t- 45.2 .4.5 37.8 34.2 =t /(3600 s/hr)For weather sorting, the weather file is sorted in three hour increments.

For compatibility, the transit time for 18-in, 12-in, 6-in, and 0-in of sedimentation is assumed to be approximately 33-hr, 39-hr, 42-hr, and 45-hr, respectively (see Assumption 03.3).PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 013 of 042 06.4 Weather File Creation 06.4.1 Worst Weather Screening Rolling averages of the lake output results from the weather screening files 'Worst Weather 11 O.dat' and'WorstWeather 120.dat' were computed for varying lengths of time: 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br />, 39 hours4.513889e-4 days <br />0.0108 hours <br />6.448413e-5 weeks <br />1.48395e-5 months <br />, 42 hours4.861111e-4 days <br />0.0117 hours <br />6.944444e-5 weeks <br />1.5981e-5 months <br />, and 45 hours5.208333e-4 days <br />0.0125 hours <br />7.440476e-5 weeks <br />1.71225e-5 months <br />. Besides the 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, these time periods represent potential transit times for the LaSalle UHS depending on the level of sedimentation.

The time with the highest rolling average corresponds to the start time of the worst weather period over the time span that is under consideration.

Since LAKET-PC cases are made at varying accident start times and sedimentation levels, the worst weather periods are determined for various start times over multiple time periods. These results are shown in Tables 06-2 and 06-3.Table 06-2: Worst Weather Periods -I10'F Initial Temperature Start Time 24 Hour 33 Hour 36 Hour 39 Hour 42 Hour 45 Hour 12AM 6/23/09 8/18/95 8/18/95 8/18/95 8/15/95 8/18/95 3AM 6/23/09 8/18/95 8/18/95 8/18/95 6/22/09 6/22/09 6AM 7/24/01 6/22/09 6/22/09 6/22/09 6/22/09 6/22/09 9AM 7/24/01 6/22/09 6/22/09 6/22/09 6/22/09 8/17/95 12PM 6/22/09 6/22/09 6/22/09 6/22/09 6/22/09 8/17/95 3PM 6/22/09 6/22/09 6/22/09 8/17/95 8/17/95 8/17/95 6PM 6/22/09 8/11/10 8/11/10 8/14/95 8/17/95 8/17/95 9PM 6/22/09 8/11/10 8/14/95 8/14/95 8/14/95 8/14/95 Table 06-3: Worst Weather Periods -120'F Initial Temperature Start Time 24 Hour 33 Hour 36 Hour 39 Hour 42 Hour 45 Hour 12AM 6/23/09 8/18/95 8/18/95 8/18/95 8/15/95 8/18/95 3AM 8/18/95 8/18/95 8/18/95 8/18/95 8/18/95 8/18/95 6AM 7/24/01 8/18/95 6/22/09 6/22/09 6/22/09 6/22/09 9AM 7/24/01 6/22/09 6/22/09 6/22/09 6/22/09 8/17/95 12PM 6/22/09 6/22/09 6/22/09 6/22/09 8/17/95 8/17/95 3PM 6/22/09 6/22/09 6/22/09 8/17/95 8/17/95 8/17/95 6PM 8/11/10 8/11/10 8/26/95 8/26/95 8/17/95 8/17/95 9PM 8/11/10 8/26/95 8/26/95 8/14/95 8/17/95 8/14/95 In cases in which different worst weather periods are determined, the differences in the rolling average of the worst time periods are negligible.

For example, the rolling average of the 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> starting at 3AM on 6/23/2009 for an initial temperature of 1 lOF was determined to be 107.980'F.

For the 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> starting at 3AM on 8/18/1995, the rolling average is 107.9771F.

This is typical of all time periods in which the differing initial temperature causes a change in the worst weather period. Therefore, it is concluded that the 11 0IF and 120'F screenings produce essentially the same worst running average periods.In addition to determining the worst time span corresponding to the UHS transit time, it is also important to check for the worst weather for shorter time periods. It is possible that in screening based on transit time, a short span of bad weather can be missed if it is quickly followed by relatively mild weather.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 014 of 042 Because of this, the worst weather periods for 9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> and 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> have also been determined.

Table 06-4: Worst Weather -9 Hour and 12 Hour Period 9 Hour -L 12 Hour 1170F 120OF 19A0MF7/ 1201F 1) 7/22/019AM 7/22/019AM 6/23/09 6AM 1 6/23/09 6AM 2) 6/23/09 9AM 6/23/09 9AM 6/23/09 9AM 6/23/09 9AM 3) 6/23/95 9AM 6/23/95 9AM 6/23/95 6AM j 6/23/95 6AM Due to the prevalence of the 6/22/2009

-6/23/2009 in the 9 and 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> periods in Table 06-3 and the UHS transit time periods in Tables 06-2 and 06-3, LAKET-PC runs at each starting time are run starting on 6/22/2009 in addition to the worst weather periods found in Tables 06-2 and 06-3. This ensures that the worst 9 hour1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> and 12 hour1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> weather periods align with the initial accident heat loads exiting the UHS.06.4.2 Weather File Creation Weather files are created for each run based on the worst weather periods determined in Section 06.4.1.For the cases in Table 06-5, the worst weather file is created by inputting the worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> time (the transit time for 18 inches of sedimentation) period as determined in Tables 06-2 and 06-3 plus the following 31 days. An additional 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> is added since LAKET-PC requires a weather file comprised of weather input in multiples of 24.The weather conditions are taken from the file 'PIALSL9510.txt', creation of which is documented in Attachment K. The table below gives a summary of the start and end times used for creating the weather file based on a 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> transit time. The 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> transit time is used since it corresponds to the case with the most sedimentation (18 in.), which is expected to produce the most limiting temperature.

Table 06-5: Worst Weather Files File Name Start Time End Time WW 0.txt 8/18/1995 12AM 9/19/1995 11 PM WW_3.txt 8/18/1995 3AM 9/20/1995 2AM WW 6.txt 8/18/1995 6AM 9/20/1995 5AM WW 9.txt 6/22/2009 9AM J 7/25/2009 8AM WW 12.txt 6/22/2009 12PM 7/25/2009 11AM WW 15.txt 6/22/2009 3PM 7/25/2009 2PM WW 18.txt 8/11/2010 6PM 9/13/2010 5PM WW 21.txt 8/11/2010 9PM 9/13/2010 8PM WW 0-6.22.txt 6/22/2009 12AM 7/24/2009 11PM WW 3-6.22.txt 6/22/2009 3AM 7/25/2009 2AM WW 6-6.22.txt 6/22/2009 6AM 7/25/2009 5AM WW 18-6.22.txt 6/22/2009 6PM 7/25/2009 5PM WW_21-6.22.txt 6/22/2009 9PM 7/25/2009 8PM The file listings for these weather files are presented in Appendix 08. 1.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 015 of 042 06.4.3 Worst Weather Comparison For times at which 6/22/2009 is not chosen as the worst weather period for 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> in Table 06-2, cases are run using the given worst weather period and using the 6/22/2009 weather period. This is only done for the 1 8-inches of sedimentation cases (approximately 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> transit time), as these cases are expected to be the most limiting.

The results are shown in Table 06-6, below.Table 06-6: Worst Weather Comparison Case Start Time Initial Maximum Temperature Temperature 12AM Case 3a_12AM -6/22/2009 12AM 104.537F 104"53°F Case 3a_12AM-8.18 8/18/1995 12AM 104.53 0 F 104.53°F 3AM Case 3a_3AM 6/22/2009 3AM 102.72°F 105.757F Case 3a_3AM-8.18 8/18/1995 3AM 102.72°F 104.60-F 6AM Case 3a 6AM 6/22/2009 6AM 7 102.00'F 106.15-F Case 3a_6AM-8.18 8/18/19956AM L 102.00°F 103.72 0 F 6PM Case 3a-6PM 6/22/2009 6PM 104.75.F 104.75-F Case 3a 6PM-8.11 I 8/11/2010 6PM 104.75OF 104.75'F 9PM Case 3a 9PM 6/22/2009 9PM 104.75"F 104.75°F Case 3a_9PM-8.11 8/11/2010 6PM t 104.757F 10475°F As seen in the results of Table 06-6, the 6/22/2009 cases result in an equal maximum temperature (when the maximum temperature is the initial temperature) or higher maximum temperature for all time periods.Therefore, all cases will be run using the 6/22/2009 weather data as it produces the most limiting results.Cases with differing levels of sedimentation use the same weather files. This is acceptable since the weather files consist of the worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> plus the following 31 days and any extra time needed to make the number of entries in the weather file a multiple of 24. Due to the extra time added after the 31 days, these weather files are the same for the longer transit times of the lower sedimentation cases.06.5 Comparison to 33-24-30 Case As described in Section 02.1.5., Rev. 2 of Regulatory Guide 1.27 [Ref. 05.8] gives two alternatives for selecting the worst weather data.To determine which of these methods is most conservative, cases were run using weather files created using both alternatives.

The UHS transit time for 18 inches of sedimentation is approximately 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> (See Section 06.3). Therefore, a synthetic weather file period of 33 days is created consisting of the worst 33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> plus the worst 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> plus the worst 30 days. The worst 33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> and worst 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> time periods are determined from Tables 06-2 and 06-3. The worst 30-day time period was determined in Attachment M. Three different cases are run, one starting at 9 AM and the other two starting at 6 AM.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 016 of 042 Two 6 AM cases are run, one starting at the worst weather time period of 8/8/1995, and the other starting at 6/22/2009.

These weather files are summarized in Table 06-7.Table 06-7: 33-24-30 Case Weather Files 33- hr Start File Name Tm[ Time WW_33 6/22/2009 30.txt 9AM WW_33-24 8/18/1995 6AM.txt 6AM WW_33-24 6/22/2009 6AM2.txt 6AM 33-hr End Time 6/23/2009 5PM 8/19/1995 2PM 6/23/2009 2PM 24-hr Start 24-hr End 30-day Start 30-day End Time Time Time Time 1 6/22/2009 6/23/2009 7/21/1995 8/22/1995 6PM 5PM 6PM 8AM 6/22/2009 6/23/2009 7/21/1995 8/22/1995 3PM 2PM 3PM 5AM 6/22/2009 6/23/2009 7/21/1995 8/22/1995 3PM 2PM 3PM 5AM 1) An extra 15 hours1.736111e-4 days <br />0.00417 hours <br />2.480159e-5 weeks <br />5.7075e-6 months <br /> is added to make the entries in the weather file a multiple of 24 Case 3a_6AM and Case 3a_9AM use the worst 33-consecutive-day weather period, and the weather files used for these cases are described in Table 06-5.A comparison of the results of these cases is provided in Table 06-8, below.Table 06-8: 33-24-30 Case Comparison Case Initial Maximum Weather File Temperature Temperature 6AM Cases WW_33-24-30-6AM I WW_33-24-30-6AM.txt 102.00 104.73 WW_33-24-30-6AM2 WW_33-24-30-6AM2.txt 102.00 105.93 Case 3a_6AM WW_6-6.22.txt 102.00 106.15 9AM Cases WW_33-24-30 WW _33-24-30.txt 103.19 F 105.21 Case 3a_9AM WW_9.txt 103.19 105.31 The results in Table 06-8 show that the cases run with the 33-consecutive-day weather period result in a higher maximum temperature.

Since this is more conservative, the 33-consecutive-day weather period is used for the worst weather cases.06.6 Maximum Allowable Lake Temperature LAKET-PC [Ref. 05.2] is run to determine the UHS response to the heat load developed in Attachment P.Cases are run at four different sedimentation levels: 0 inches, 6 inches, 12 inches, and 18 inches. The time of day which the transient is assumed is critical when determining the maximum allowable initial temperature of the UHS. To account for the time of day at which the UHS transient may start, eight start times are used for all sedimentation levels.Each case is run with an initial temperature corresponding to the Technical Specification limits (see Design Input 04.5). Limiting weather data was determined in Sections 06.4 and 06.5, and the weather file dates are outlined in Table 06-5. The results of the LAKET runs are provided in Table 06-9.I PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 017 of 042 1 Table 06-9: Worst Temperature Cases.Sediment Initial UHS Case Weather Data I Maximum Plant Inlet Level (in.) Temp. (*F) Temp. ('F)Case 1a-12AM VVW_0-6.22.txt 0 104.53 104.53 Case la_3AM WW 3-6.22.txt 0 102.72 102.72 Case la_6AM WW_6-6.22.txt 0 102.00 -. 103.12 Case la_9AM WW_9.txt 0 103.19 104.33 Case la_12PM WW_12.txt 0 104.75 104.97 Case 1a_3PM WW_1 5.txt 0 104.75 104.75 Case Ia_6PM 'W_18-6.22.txt 0 104.75 104.75 Case la_9PM WW_21-6.22.txt 0 104.75 104.75 Case 2a_12AM WW_0-6.22.txt 6 104.53 105.21 Case 2a_3AM WW_3-6.22.txt

] 6 102.72 104.54 Case 2a_6AM WW_6-6.22.txt 6 102.00 103.21 Case 2a_9AM WW_9.txt 6 103.19 104.42 Case 2a_12PM WW_12.txt 6 104.75 104.99 Case 2a_3PM WWI 5.txt 6 104.75 104.75 Case 2a_6PM NWW_18-6.22.txt 6 104.75 104.75 Case 2a_9PM WW_21-6.22.txt 6 104.75 104.75 Case 3a_12AM 'W_0-6.22.txt 18 104.53 104.53 Case 3a 3AM / VW 3-6.22.txt 18 102.72 .105.75 Case 3a_6AM 'NW_6-6.22.txt 18 102.00 106.15 Case 3a 9AM .W 9.txt 18 103.19 105.31 Case 3a_12PM WW_12.txt 18 104.75 105.05 Case 3a_3PM WW_ 15.txt -, 18 104.75 104.75 Case 3a_6PM WW_18-6.22.txt 18 104.75 104.75 Case 3a_9PM WW_21-6.22.txt 18 104.75 104.75 Case4a_12AM W'W_0-6.22.txt 12 104.53 105.86 Case 4a_3AM i WW_3-6.22.xt 12 102.72 105.97 Case 4a_6AM 'WV_6-6.22.txt 12 102.00 105.33 Case 4a_ 9AM W_ 9.txt 12 1 103.19 104.54 Case4a 12PM WW_ 2txt 12 104.75 105.01 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 018 of 042 Sediment Initial UHS Maximum Plant Inlet Case Weather DataI Level (in.) Temp. (°F) Temp. (°F)Case 4a_3PM WW_1 5.txt 12 104.75 104.75 Case 4a6PM _WW _18-6.22.txt 12 104.75 104.75 Case4a_9PM WW_21-6.22.txt 12 104.75 104.75 Casea_9M W~_216.2.txt 12104.5 14.7 The results in Table 06-9 show that no cases exceed the maximum allowable plant inlet temperature of 1077F (Design Input 04.1). The most limiting case is 'Case 3a_6AM', which corresponds to 18 inches of sedimentation and an accident start time of 6AM.06.7 Maximum Net Evaporation Cases l c, 2c, 3c, and 4c are run to determine the maximum expected UHS drawdown at different sedimentation levels. These cases are run using the worst 30-day net evaporation weather period, which was determined to be 6/18/1954 to 7/18/1954 in Attachment M. The results of these cases are presented in Table 06-10.In addition to Cases I c through 4c, two additional cases were run to determine the sensitivity of the net evaporation to the wind power law exponent used by LAKET-PC [Ref. 05.2]. The power law equation is defined as [Ref. 05.2]: (Eq. 06-1)V1I ZI Where: v, = wind velocity at LAKET evaluation height (knots)V2 = wind velocity at anemometer height (knots)z, = LAKET evaluation height (2 meters = 6.562 feet)z, = Anemometer height (ft)a = Power law exponent The default exponent used when adjusting the wind from the anemometer height to the 2-meter height used in the LAKET-PC calculations is an exponent of 0.3 [Ref. 05.2]. The wind input to the weather file'30dayevap.txt' was altered to simulate an exponent of 0.1 in case 'NetEvap-0.

1' and an exponent of 0.2 in case 'NetEvap-0.2'.

The weather files with the adjusted wind speeds are 'NetEvap_0.1.txt' and'NetEvap_0.2.txt'.

These results are summarized in Table 06-10.Table 06-10: Worst Net Evaporation Cases Cas Weather..a Sediment I Initial Lake Maximum UHS Case Weather Data Level (in.) I Temp. (*F) I Drawdown (ft)Case 1c 30dayevap.txt 0 104.53 1.42 Case 2c 1 __61.Case 3c 30dayevap.txt 6 104.53 1.42 Case 3c 30dayevap.txt 18 104.53 1.42 Case 4c 30dayevap.txt 12 104.53 31.42 I II I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 019 of 042 Sediment Initial Lake Maximum UHS Case Weather DataI Level (in.) Temp. (°F) Drawdown (ft)NetEvap-0.1 NetEvap_0.1.txt 18 104.53 1.47 NetEvap-0.2 NetEvapO0.2.txt 18 104.53 1.45 As seen in the results from Table 06-10, the maximum UHS drawdown is around 1.5 feet. Please note that more limiting UHS drawdown of 2.27 would exist with consideration of inventory loss due to spent fuel pool makeup as documented in Section 17.1 of Attachment I. Reducing the power law exponent increases the UHS drawdown, but the change is relatively small.06.8 Wind Sensitivity Cases To determine the effects of a diurnal wind power law coefficient on the maximum UHS temperature, a weather file was created for a LAKET-PC run to incorporate the coefficients determined in EC 394434[Ref. 05.10]. The base weather case of 'WW_6-6.22.txt', provides wind speed values at a height of 33 feet. The adjusted wind speed at 2 meters was found using Eq. 06-1 and the power law exponents (a)from EC 394434 [Ref. 05.10]. These adjusted wind speed values were inserted into 'WW_6-6.22.txt' to create the new weather file, 'Diumal.txt'.

The LAKET-PC run 'Case Diurnal' was run to determine the maximum UHS temperature using the diurnal wind speed exponents.

For Case Wind_375, wind speeds were taken from EC 394434 [Ref. 05.10] as measured at an anemometer height of 375 feet. These wind speeds were multiplied by a wind speed ratio of 0.405, which is the calculated multiplier to adjust the wind speed from 375 feet at the meteorological tower to 2 meters (6.56 feet) above the UHS [Ref. 05.12]. These wind speeds were then converted to knots for entry into a LAKET weather file. These adjusted wind speed values were inserted into 'WW_6-6.22.txt' to create the new weather file, 'Wind_375.txt'.

The LAKET-PC run Case Wind_375 was then run with this weather file and the results are reported in Table 06-11.Table 06-11: Wind Sensitivity Runs Case Weather Data Sediment Initial Lake Maximum UHS Level (in.) Temp. (*F) Temperature

(°F)Case 3a_6AM WW_6-6.22.txt 18 102.00 " 106.15 Case Diurnal Diurnal.txt 18 102.00 105.08 Case Wind_375 Wind_375.txt 18 102.00 104.34.......,, ., .= I ....As seen in Table 06-11, the maximum UHS temperature from the diurnal case remains below the maximum UHS temperature of Case 3a_6AM, which uses a constant wind speed coefficient of 0.3.Therefore, the use of a constant coefficient of 0.3 is conservative.

The maximum UHS temperature of Case Wind_375 also remains below the maximum UHS temperature of Case 3a_6AM.06.9 UHS Mixing To determine the effect of mixing at the plant discharge into the UHS, several sensitivity cases were run in I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 020 of 042 LAKET-PC [Ref. 05.2]. These cases include a mixing region that is 10% the size of the UHS and a mixing region at 20% the size of the UHS. Microsoft Excel [Ref. 05.5] is used to calculate the temperature in the mixing zone, and LAKET-PC is used to calculate temperature for the remaining UHS.06.9.1 Non-Mixing Zone UHS Area and Volume -For these LAKET-PC runs, the area and volume of the UHS not in the mixing zone is needed. These values were calculated as 10% of the total UHS area and volume for the 10% sensitivity run and 20% of the total UHS area and volume for the 20% sensitivity run. The effective area is 57.9% and the effective volume is 63.4% as determined in Attachment J. The UHS drawdown curves for these cases are summarized in Table 06-12.Table 06-12: UHS Drawdown Curves for Mixing Zone Sensitivity Runs Total Area Total Volume Effective Area Effective Volume Elevation (acres) (acre-ft) (acres) (acre-ft)10% Mixing Region 689.98 73.19 306.00 42.38 194.00 689_ 71.78 234.72 41.56 148.81 688 70.34 163.71 40.72 103.79 687 26.73 91.98 15.48 58.32 686 20.00 54.00 11.58 34.24 685 12.08 39.42 6.99 24.99 20% Mixing Region 689.98 65.06 272.00 _ 37.67 172.45 689 63.80 208.64 36.94 132.28 688 62.52 145.52 36.20 92.26 687 -23.76 81.76 13.76 51.84 686 17.78 48.00 10.29 30.43 685 10.74 35.04 6.22 22.22 06.9.2 Mixing Zone Temperature

-The case 'Case3a_6AM.dat' is selected as the nominal case for the UHS mixing sensitivity runs. The temperature of the mixing zone is determined in Microsoft Excel, and then LAKET-PC is run to determine the impact on the UHS temperature in the non-mixing zone portion of the UHS. Multiple iterations of the LAKET-PC analysis are needed as these results are used in calculating the mixing zone temperature.

The change in the mixing zone temperature between time steps is input as the FPLANT variable in LAKET-PC.

Iterations are run until the desired convergence in the mixing zone temperature is achieved.Additional cases are run for 10% mixing starting at 9AM and 20% mixing starting at 12PM. This is to account for the reduced UHS transit time due to the reduced UHS volumes determined in Table 06-12.The Microsoft Excel [Ref. 05.5] equations used for the UHS mixing analysis are given in Appendix 08.2.I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 021 of 042 06.9.3 Results -The full Microsoft Excel [Ref. 05.5] results for the 10% mixing zone and 20% mixing zone cases are provided in Appendix 08.2. A summary of these results are provided in Table 06-13.Table 06-13: UHS Mixing Sensitivi Case Weather Data ty Runs Sediment Initial Lake Level (in.) Temp. (°F)6AM Cases Maximum UHS Temperature

(°F)Case 3a_6AM (0% Mixing) WW_6-6.22.txt 18 102.00 106.15 Mixing -10% WW_6-6.22.txt 18 102.00 104.32 Mixing -20% [ VWW 6-6.22.txt 18 102.00 104.66 9AM Cases Case 3a_9AM (0% Mixing)Mixing -10% -9AM I WW_9.txt 1 18 103.19 105.31----I- '--- I -WW_9.txt 18 103.19 104.67 12PM Cases Case La_12PM Cas 3a12gPM WW_12.txt 18 104.75 105.05 Mixing -20% -WW 12.txt 18 104.75 105.05 12PM -F- -As seen from the results in Table 06-13, the highest maximum UHS temperature occurs when no mixing zone is considered.

For the 12PM case, the maximum UHS temperature occurs three hours following the accident.

The UHS discharge to the plant at this time has not been through the mixing zone, which accounts for the temperature being identical between the mixing and non-mixing cases. It is considered conservative to run the cases in LAKET without adjusting the results for a mixing zone at the inlet of the UHS.I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 022 of 042 07.0 RESULTS AND CONCLUSIONS 07.1 Maximum Allowable Lake Temperature Summary Table 06-9 provides a summary of the maximum UHS temperatures for the maximum allowable initial temperatures given in the Tech Specs (see Design Input 04.1). The highest UHS temperature is 106.15 from Case 3c_6AM, which corresponds to an accident start time at 6:00 AM and 18 inches of sedimentation.

This remains below the maximum allowable UHS outlet temperature of 107°F. Figure 07.1 shows the UHS inlet temperature and UHS inlet temperature over the 33 day worst temperature event for Case 3c_6AM.07.2 Maximum Net Evaporation Summary Table 06-10 provides a summary of the maximum lake drawdown for the worst net evaporation cases.These results show that there is a maximum UHS drawdown of approximately 1.5 feet occuring at a sedimentation level of 0, 6, or 18 inches. In addition, it is shown that there is a small increase in the UHS drawdown when the power law exponent for the wind speed adjustment is decreased.

Please note that more limiting UHS drawdown of 2.27 would exist with consideration of inventory loss due to spent fuel pool makeup as documented in Section 17.1 of Attachment I Figure 07.2 shows the UHS drawdown over the worst 30 days for net evaporation from Case Ic.07.3 Compliance with Acceptance Criteria 07.3.1 Acceptance Criterion

  1. 1 -Peak Temperature

-As shown in Table 06-9, the maximum UHS temperature is not greater than 1077F for any of the worst weather cases. Therefore, Acceptance Criterion

  1. 1 is met.07.3.2 Acceptance Criterion
  1. 2 -UHS Drawdown -The maximum expected lake drawdown for the cases evaluated is given in Table 06-10 and summarized in Section 07.2. This will be used in calculation L-001355 [Ref. 05.6].I PROJECT NO. 11333-297 1

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 023 of 042 1 Figure 07.1, Case 3a_6AM: UHS LOCA Temperature Transient Worst 33-Day Temperature Period (d = 18", t = 0600 hrs, Ti = 102.0'F 150 140 130 120 110 E 100 90 80 70 60 0 5 10 15 20 25 30 Days Following Accident 35 I PROJECT NO. 11333-297 1

I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 024 of 042 1 Figure 07.2, Case Ic: UHS LOCA Drawdown Worst 30 Day Evaporation Weather Period (d = 0", t = 0000 hrs, Ti = 104.531F)690.2 690.0 689.8 689.6689.4 LU n 689.2 689.0 688.8 688.6 688.4 0 5 10 15 20 25 30 35 Days Following Accident IPROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 025 of 042 1 8.0 APPENDICES No. Title No. of Pages 08.1 Electronic File Listing 5 08.2 1UHS Mixing Results and Equations 4 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 026 of 042 Appendix 08.1 -Electronic File Listing APPENDIX 08.1 -ELECTRONIC FILE LISTING Weather Files File Name Size I Date PIALSL9510.txt 21,301 KB 3/09/2012 11:08 PM CST WW_33-24-30.txt 123 KB 9/5/2013 8:58 AM CST WW_33-24-30-6AM.txt 123 KB 9/5/2013 9:09 AM CST WW_33-24-30-6AM2.txt 123 KB 9/5/2013 9:08 AM CST WW _.txt 123 KB 1/28/2013 8:35 AM CST WW_3.txt 123 KB 1/28/2013 8:37 AM CST WW6 .txt 123 KB 1/28/2013 8:38 AM CST WW 9.txt WWI 2.txt WW-1l5txt WW_l 8.txt WW_21.txt WW 0-6.22.txt WW 3-6.22.txt WW_6-6.22.txt WW_18-6.22.txt WW_21-6.22.txt NetEvap_0.1 .txt NetEvap_0.2.txt Diurnal.txt Wind_375.txt 123 KB 1/28/2013 8:38 AM CST 123 KB .1/28/2013 8:39 AM CST 123 KB 1/28/2013 8:40 AM CST 123 KB 9/5/2013 10:23 AM CST 123 KB -1/28/2013 8:42 AM CST 123 KB 1/28/2013 11:07 AM CST 123 KB 1/28/2013 11:08 AM CST 123 KB F 1/28/2013 11:09AM CST 123 KB .1/28/2013 8:41 AM CST 12-3KB 1/28/2013 11:09 AM CST 116 KB 9/4/2013 10:10 AM CST 116 KB 9/4/2013 10:11 AM CST 123 KB 9/13/2013 2:26 PM CST 123 KB 9/20/2013 1:40 PM CST Weather Sorting Files ...File Name !Size Date WorstWeather_110.dat 1 KB 12/3/2012 10:12 AM CST WorstWeather_110Qout 299 KB 7/1 5/2013 3:29 PM CST WorstWeather 110.ptX --2,697 KB 7/15/2013 3:29 PM CST WorstWeather_120.dat 1 KB 11/30/2012 3:52 PM CST WorstWeather_120.out 299 KB 7/15/2013 3:31 PM CST Worst_Weather 120.pltX 2,697 KB 7/15/2013 3:31 PM CST Worst Weather Comparison File Name Size Case3a_12AM-8.18.dat 6 KB Case3a 12AM-8.18.out 129 KB Case3a_1 2AM-8.18.pltX 47 KB Date 9/18/2013 4:53 PM CST 9/18/2013 5:02 PM CST 9/18/2013 5:02 PM CST I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 027 of 042 Appendix 08.1 -Electronic File Listing Case3a 3AM-8.18.dat 6 KB 9/18/2013 4:51 PM CST-------------------

129KB 9/18/20135:051 PMCST Case3a 3AM-8.18.out 129 KB 9/18/2013 5:05 PM CST Case3a_3AM-8.18.pltX 47 KB -;9/18/2013 5:05 PM CST Case3a_6AM-8.18.dat 6 KB 9/18/2013 4:51 PM CST Case3a_6AM-8.18.out 129KB-- 9/18/2013 5:06 PM CST Case3a_6AM-8.18.pltX 47 KB 9/18/2013 5:06 PM CST Case3a 6PM-8.11.dat 6 KB 9/18/2013 4:52 PM CST Case3a_6PM-8.1 .out 129 KB 9/18/2013 5:07 PM CST Case3a_6PM-8.11 .pltX_ _ 47 KB 9/18/2013 5:07 PM CST Case3a69PM-8.11.dat 6 KB i 9/18/2013 4:52 PM CST Case3a_9PM-8.11.out

-129 KB '9/18/20135:09 PM CST Case3a_9PM-8.11 .pltXI 47 KB 9/18/2013 5:09 PM CST 33-24-30 Comparison

-File Name Size 'Date WW 33-24-30.dat

"_6KB 9/18/2013 4:58 PM CST WW_33-24-30.out 129 KB 9/18/2013 5:11 PM CST WW_33-24-30.pltX

_ 47 KB 9/18/2013 5:11 PM CST WW_33-24-30-6AM.dat

-6 KB 9/18/2013 4:58 PM CST WW 33-24-30-6AM.out 129 KB 1 9/18/2013 5:11 PM CST WW_33-24-30-6AM.pltX

-47 KB 9/18/2013 5:11 PM CST WW_33-24-30-6AM2.dat 7-6KB -9/18/2013 4:58 PM CST WW_33-24-30-6AM2.out 129 KB 9/18/2013 5:11 PM CST WW_33-24-30-6AM2.pltX 47 KB 9/18/2013 5:11 PM CST Worst Weather Files File Name Casela_12AM.dat

  • Size Date 6 KB i9/18/201 3 4:47 PM CST-case I a1_ -2MIVI.u1 IZZI ND Casela_12AM.pltX

-47 KB Casela_3AM.dat

] 6 KB Casela_3AM.out 129 KB Casela_3AM.pltX

,_47 KB Casela_6AM.dat 6 KB Ca~se la_6AMM.out

.. ... .... .1_2.9 KB Casela_6AM pltX ____47 KB Casela_9AM~dat 6 KB w I Ioi/UI a Z).LU ri1vi L'o I 9/18/2013 5:20 PM CST 1 9/18/2013 4:46 PM CST-5:19 P 9/18/2013 5:19 PM CST.... --

PM CST 9/18/2013 4:47 PM CST 9/18/2013 5:20 PM CST 9/18/2013 5:20 PM CST-79/18/2013 4:47 PM CST Casela 9AM.out Casela_9AM.pltX Casela_12PM.dat 129 KB 9/18/2013 5:20 PM CST 47 KB 9/18/2013 5:20 PM CST 6KB 9/18/2013 4:48 PM CST I PROJECT NO. 11333-297 I I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 028 of 042 Appendix 08.1 -Electronic File Listing Casela 12PM.out 129 KB 1 9/18/2013 5:20 PM CST.... 47 KB 9/18/2013 5:20 PM CST Casela_12PM.pltX KB- -Casela_3PM.dat 6 KB 9/18/2013 4:47 PM CST Casela_3PM.out I 129 KB 9/18/2013 5:20 PM CST Casela_3PM.pltX 47 KB 9/18/2013 5:20 PM CST Casela-6PM.dat

--6 KB 9/18/2013 4:47 PM CST Casela 6PM.out 129 KB -9/18/2013 5:20 PM CST Casela_6PM.pltX 47KB 9/18/2013 5:20PM CST Casela 9PM.dat 6 KB i 9/18/2013 4:47 PM CST Casela 9PM.out I 129 KB 9/18/2013 5:20 PM CST Casela_9PM.pltX 47 KB i 9/18/2013 5:20 PM CST Case2a 12AM.dat 6 KB 9/18/2013 4:49 PM CST Case2a-12AM.out 129 KB 9/18/2013 5:24 PM CST Case2a_12AM.pltX 47 KB 9/18/2013 5:24 PM CST Case2a 3AM.dat 6 KB 9/18/2013 5:27 PM CST Case2a_3AM.out 129 KB 9/18/2013 5:27 PM CST Case2a_3AM.pltX 47 KB 9/18/2013 5:27 PM CST Case2a_6AM.dat 6 KB 9/18/2013 4:48 PM CST Case2a_6AM.out 129 KB +9/18/2013 5:23 PM CST Case2a_6AM.pltX 47 KB 9/18/2013 5:23 PM CST Case2a_9AM.dat 6 KB 9/18/2013 4:49 PM CST Case2a_9AM.out 129 KB- 9/18/2013 5:23 PM CST Case2a_9AM.pltX I 47 KB 9/1812013 5:23 PM CST Case2a_12PM.dat I6 KB 9/18/2013 4:49 PM CST Case2a12PM.out

_129 KB 9/18/2013 5:24 PM CST Case2a_12PM.putX 47 KB I 9/18/2013 5:24 PM CST Case2a_3PM.dat 6KB 9/18/2013 4:48 PM CST Case2a_3PM.out

_129 KB .9/18/2013 5:23 PM CST Case2a_3PM.pltX 47 KB 79/18/2013 5:23 PM CST Case2a -6PM.dat 6KB 9/18/2013 4:49 PM CST Case2a_6PM.out 129 KB 9/18/2013 5:23 PM CST Case2a-6PM.pltX 47 KB 9/18/2013 5:23 PM CST Case2a_9PM.dat j 6 KB -9/18/2013 4:49 PM CST Case2a_9PM.out 129 KB T1/18/2013 5:24 PM CST Case2a_9PM.pltX

__47 KB 9/18/2013 5:24 PM CST Case3a.12AM.dat 6 KB 9/18/2013 4:52 PM CST Case3a 12AM.out 129 KB 9/18/2013 4:55 PM CST Case3a_12AM.pltX 47 KB 9/18/2013 4:55 PM CST Case3a 3AM.dat KB- 9/18/2013 4:51 PM CST Case3a_3AM.out 129 KB 9/18/2013 5:04 PM CST PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 029 of 042 Appendix 08.1 -Electronic File Listing Case3a_3AM.pltX 47 KB 9/18/2013 5:04 PM CST Case3a.6AM.dat 6.KB .9/18/20134:51 PM CST Case3a_6AM.out 129 KB 9/18/2013 5:06 PM CST Case3a 6AM.ptX 247 KB 9/18/2013 5:06 PM CST Case3a_9AM.dat

-ý __- ~KB -31/03:2P S Case3a_9AM.out 129 KB 1 9/18/2013 5:14 PM CST Case3a 9AM.patX 47 KB 5:14 PM CST Case3a 12PM.dat I6KB 9/18/2013 4:53 PM CST Case3a_12PM.out 129 KB 9/18/2013 5:29 PM CST Case3a_12PM.pltX 47 KB 9/18/2013 5:29 PM CST Case3a_3PM.dat 6 KB 9/18/2013 4:51 PM CST Case3a 3PM.out 129 KB 9/18/2013 5:30 PM CST Case3a_3PM.pltX Case3a_6PM.dat Case3a_6PM.out Case3a_6PM.pltX Case3a_9PM.dat Case3a_9PM.out Case3a_9PM.pltX Case4a 12AM.dat Case4a_12AM.out Case4a_12AM.pltX 47 KB 9/18/2013 5:30 PM CST 6 KB 9/18/2013 4:52 PM CST 129 KB 9/18/2013 5:07 PM CST 47 KB 9/18/2013 5:07 PM CST 6 KB 9/18/2013 4:52 PM CST 129 KB 9/18/2013 5:09 PM CST 47 KB 9/18/2013 5:09 PM CST 6 KB 9/18/2013 4:57 PM CST 129 KB 9/18/2013 5:36 PM CST 47 KB .9/1812013 5:36 PM CST 6 KB 9/18/2013 4:56 PM CST 129 KB I 9/18/2013 5:34 PM CST 47 KB [F9/18/2013 5:34 PM CST 6 KB 9/18/2013 4:57 PM CST 129 KB -9/18/2013 5:35 PM CST 417 KB 9/18/2013 5:35 PM CST 6 KB 9/18/2013 4:57 PM CST 129 KB 9/18/2013 5:35 PM CST 47 KB 9/18/2013 5:35 PM CST 6 KB 9/18/2013 4:57 PM CST 1 130 LenI 01AM/9fl1" £'l DKA C-T Case4a_3AM.out Case4a_3AM.pltX Case4a_6AM.dat Case4a_6AM.out Case4a_6AM.plX Case4a_9AM.dat Case4a_9AM.out Case4a_9AM.pltX Case4a_12PM.dat Case4a_12PM.out Case4a_12PM.pl1 Case4a_3PM.dat Case4a_3PM.out Case4a_3PM.pltX Case4a_6PM.dat 47 KB 6 KB 129 KB 47 KB 6 KB 9/18/2013 5:36 PM CST 9/18/2013 4:57 PM CST 9/18/2013 5:35 PM CST 9/18/2013 5:35 PM CST 9/18/2013 4:57 PM CST Case4a_6PM.out 129 KB 9/18/2013 5:35 PM CST Case4a_6PM.pltX 47 KB 9/18/2013 5:35 PM CST PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 030 of 042 Appendix 08.1 -Electronic File Listing Case4a_9PM.dat Case4a_9PM.out Case4a_9PM.pltX 16 KB 129 KB 47 KB 9/18/2013 4:57 PM CST 9/18/2013 5:35 PM CST 9/18/2013 5:35 PM CST Worst Net Evaporation Files File Name Size Date Caselc.dat 6 KB 9/18/2013 4:48 PM CST Caselc.out

] 125 KB 9/18/2013 5:43 PM CST Caselc.pltX l52 KB 9/18/2013 5:43 PM CST Case2c.dat 6KB -9/18/2013 4:49 PM CST Case2c.out 125 KB 9/18/2013 5:43 PM CST Case2c.pltX 43 KB 9/18/2013 5:43 PM CST Case3c.dat 6 KB 9/18/2013 4:53 PM CST Case3c.out 125 KB 9/18/2013 5:43 PM CST Case3c.pltX 43 KB 9/18/2013 5:43 PM CST Case4c.--

at 6KB 9/18/2013 4:58 PM CST Case4c.out 125 KB 9/18/2013 5:44 PM CST Case4c.pltX 43 KB 1 9/18/2013 5:44 PM CST NetEvap-0.1.dat 6 KB 9/20/2013 2:46 PM CST NetEvap-0.1.out j125 KB 9/20/2013 2:47 PM CST NetEvap-0.1 .pltX NetEvap-0.2.dat NetEvap-0.2.out NetEvap-0.2.pltX 43 KB 6 KB 125 KB 1-4KB 9/20/2013 2:47 PM CST 9/20/2013 2:46 PM CST 9/20/2013 2:47 PM CST 9/20/2013 2:47 PM CST UHS Mixing Files File Name Mixing-1 0%.dat Mixing-1 0%.out Mixing-10%.pltX Mixing-20%.dat Mixing-20%.out Mixing-20%.pltX Mixing-10%-9AM.dat Mixing-i0%-9AM_.out Mixing-10%-9AMppltX Mixing-20%-12PM.dat Mixing-20%-1 2PM.out Mixing-20%-12PM.pltX Size Date 6 KB 9/18/2013 6:02 PM CST 129 KB 9/18/2013 6:02 PM CST 57 KB 9/18/2013 6:02 PM CST 6 KB 9/19/2013 3:51 PM CST 129 KB 9/19/2013 3:52 PM CST 57 KB 9/19/2013 3:52 PM CST 6 KBO 9/27/2013 12:42 PM CST 129 KB 9/27/2013 12:42 PM CST 47 KB ' 9/27/2013 12:42 PM CST 6 KB 9/27/2013 12:27 PM CST 1 129 KB 9/27/2013 12:27 PM CST 47 KB 9/27/2013 12:27 PM CST I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 031 of 042 Appendix 08.1 -Electronic File Listing Wind Sensitivity Files File Name Size Date CaseDiural.dat 6 KB 9/20/2013 2:47 PM CST CaseDiurnal.out 129 KB 9/20/2013 2:47 PM CST CaseDiurnal.pltX 47 KB 9/20/2013 2:47 PM CST Case Wind 375.dat 6 KB 9/20/2013 2:40 PM CST Case Wind_375.out

___ 47 KB 9/20/2013 2:40 PM CST Case Wind_375.pltX 129 KB i 9/20/2013 2:40 PM CST I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 032 of 042 Appendix 08.2 -[IHS Mixing Results and Equations UHS Mixinp Enuations I A I C 1 ________ =MAX(B5:B748)

T=A(SC4) 4 E II G I H J 1 F i F !-4 -- --I-I-Mixing Zone Vol= =Input!E5"43560*0.1 x Temp Vnew= =65.3*60*60 5-nt3 K L 2 J10% Mixing T Nat TIN T OUT Plant Tout ft3 3 New LakeT 2.3c (*F)(*F)(*F)(°F)Plant DT LAKET DT Convergence DT LAKET DT i1 LAKET DT i2 4 =D5 =SUM(HS:H749)

=SUM(15:1749)

=MAX(J6:J749) 6780.91066338037 6801.35172098318 5 183 89.1909 106.123 102.003 =D5+H5 =(I$2*E5+G4*(I$1-1$2))/I$1 25.95 =G5-D5 =ABS(L5-15) 4.12 4.11894749635391 6 183.041666667 89.4723 110.516 101.636 =D6+H6 =(1$2*E6+G5"(I$1-152))/151 32.2 =G6-D6 =ABS(L6-16) 8.88 8.88489652038913 7 183.083333333 90.0218 114.694 101.624 =D7+H7 =(I$2*E7+G6*(I$1-1$2))/I$1 35.16 =G7-D7 =ABS(L7-17) 13.07 13.0655417737158 8 183.125 90.6814 118.317 101.727 =D8+H8 =(1$2*E8+G7 (I$1-152))/I$1 35.8 =G8-D8 =ABS(L8-18) 16.59 16.5874470293705 9 183.166666667 91.5572 119.772 102.132 =D9÷H9 =(1$2*E9+G8*(I$1-I$2))/I$l 25.36 =G9-D9 =ABS(L9-19) 17.64 17.639166059468 10 183.208333333 92.4975 120.614 102.624 =D10+H10 =(152"E10+G9"(151-1$2))/I$1 22.43 =G10-D10 =ABS(L10-110) 17.99 17.9856907466745 11 183.25 93.373 121.196 103.036 =D11+H11 =(1$2*E11+G10*(I$1-152))/I$1 21.26 =G11-D11 =ABS(L11-I111 18.16 18.1588049767235 12 183.291666667 94.1185 121.585 103.315 =D12+H12 =(1$2*E12+G11*(I$1-$2))/I$1 20.32 =G12-D12 =ABS(L12-112) 18.27 18.2671281051142 13 183.333333333 94.7224 121.784 103.464 =D13+H13 =(I$2*E13+G12*(I$1-152))/I$1 19.39 =G13-D13 =ABS(L13-113) 18.32 18.3200076256199 14 183.375 95.1096 121.813 103.403 =D14+H14 =(1$2*EI4+G13"(1$1-1$2))/I$1 18.57 =G14-D14 =ABS(L14-114) 18.41 18.4110056860162 15 183.416666667 95.2859 121.703 103.133 =D15+H15 =(1$2*El5÷G14*(I$1-152))/I$1 17.96 =G15-D15 =ABS(L15-115) 18.57 18.5665631208804 16 183.458333333 95.2445 121.451 102.671 =D16+H16 =(1$2*E16+G15*(I$1-152))/I$1 17.45 =G16-D16 =ABS(L16-116) 18.78 18.7780036366959 17 183.5 95.0577 121.074 102.104 =D17+H17 =(1$2*E17+G16*(I$1-1$2))/I$1 16.98 =G17-D17 =ABS([17-117) 18.97 18.9696153589219 18 183.541666667 94.8666 120.615 101.545 =D18+H18 =(1$2*E18+G17*(I$1-1$2))/I$1 16.64 =G18-D18 =ABS(L18-118) 19.07 19.0701161296132 19 183.583333333 94.5514 120.066 100.826 =D19+H19 =(1$2*E19+G18*(I$1-152))/I$1 16.35 =G19-D19 =ABS(L19-119) 19.24 19.2432379495846 20 183.625 94.2603 119.47 100.14 =D20+H20 =(1$2*E20÷G19*(I$1-152))/I$1 16.17 =G20-D20 =ABS(L20-120) 19.33 19.3325480173827 21 183.666666667 93.9183 119.936 99.4062 =D21+H21 =(J$2 E21+G20*(I$1-J$2))/I$1 22.29 =G21-D21 =ABS(L21-121) 20.53 20.5311853302293 22 183.708333333 93.6113 119.531 98.7207 =D22+H22 =(J$2*E22+G21*(1$1-J$2))/I$1 19.27 =G22-D22 =ABS(L22-122) 20.81 20.8097457619266 23 183.75 93.2993 118.625 98.0447 =D23+H23 =(J$2*E23+G22*(I$1-J$2))/I$1 17.13 =G23-D23 =ABS(L23-123) 20.58 20.5752106731427 24 183.791666667 92.9855 117.441 97.3806 =D24+H24 =(J$2*E24+G23*(I$1-J$2))/I$1 15.6 =G24-D24 =ABS(L24-124) 20.06 20.0604562300453 25 183.833333333 192.6697 116.138 96.7276 =D25+H25 =(J$2*E25+G24*(1$1-J$2))/I$1 14.46 =G25-D25 =ABS(L25-125) 19.41 19.4062193905123 26 183.875 92.3989 114.84 96.1396 =D26÷H26 =(J$2*E26+G25*(I$1-J$2))/I$1 13.79 =G26-D26 =ABS(L26-126) 18.7 18.6972751328943 27 183.916666667 92.1258 113.615 95.5546 =D27+H27 =(J$2*E27÷G26"(I$1-J$2))/I$1 13.42 =G27-D27 =ABS(L27-127) 18.06 18.0568116875153 28 183.958333333 92.0281 112.52 95.1697 =D28+H28 =(J$2*E28+G27*(5$1-J$2))/I$1 13.22 =G28-D28 =ABS(L28-128) 17.35 17.3501530945977 29 184 92.1894 111.592 95.0521 =D29+H29 =(J$2*E29+G28*(I$1-J$2))/I$1 13.05 =G29-D29 =ABS(L29-129) 16.54 16.54425585071 30 184.041666667 92.5473 110.831 95.1515 =D30+H30 =(J$2*E30+G29*(I$1-J$2))/I$1 12.8 =G30-D30 =ABS(L30-130) 15.68 15.6829268201775 31 184.083333333 93.1978 110.308 95.7779 =D31+H31 =(J$2*E31+G30*(I$1-J$2))/I$1 12.52 =G31-D31 =ABS(L31-131) 14.53 14.5262854333635 32 184.125 93.9705 109.989 96.5194 =D32+H32 =(J$2*E32÷G31*(I$1-J$2))/I$1 12.27 =G32-D32 =ABS([32-132) 13.47 13.4681312105408 33 184.166666667 94.8213 109.869 97.3392 =D33+H33 =(J$2*E33+G32*(I$1-J$2))/I$1 12.1 =G33-D33 =ABS(L33-133) 12.53 12.5337067960865 34 184.208333333 95.7017 109.938 98.1883 =D34+H34 =(J$2*E34+G33*(1$1-J$2))/I$1 11.98 =G34-D34 =ABS(L34-134) 11.75 11.7463564692429 35 184.25 96.5625 109.55 99.82 =D35+H35 =(J$2*E35+G34*(I$1-J$2))/I$1 11.88 =G35-D35 =ABS(L35-135) 10.46 10.4836879316764 36 184.291666667 97.3197 110.187 101.264 =D36+H36 =(J$2*E36÷G35*(I$1-J$2))/I$1 11.79 =G36-D36 =ABS(L36-136) 9.58 9.61461947731524 37 184.333333333 97.9185 111.083 102.741 =D37+H37 =(J$2*E37+G36*(I$1-J$2))/I$1 11.71 =G37-D37 =ABS(L37-137) 8.85 T.88439809897515 38 184.375 98.3195 111.904 104.248 =D38+H38 =(J$2*E38+G37*(I$1-J$2))/I$1 11.65 =G38-D38 =ABS(L38-138) 8.22 8.27055260429391 39 184.416666667 98.5568 113.037 104.316 =D39+H39 =(J$2*E39+G38*(I$1-J$2))/I$1 11.58 =G39-D39 =ABS(L39-139) 8.86 8.90858195779592 40 184.458333333 98.5639 113.623 104.132 =D40+H40 =(J$2*E40+G39*(I$1-J$2))/I$1 11.51 =G40-D40 =ABS(L40-140) 9.55 9.59792457235487 411184.6 98.412 113.831 104.067 =D41+H41 =(J$2*E41+G40*(I$1-J$2))/I$1 11.45 =G41-D41 =ABS(L41-141) 9.98 10.0364989203799 I PROJECT NO. 11333-297

-

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 033 of 042 Appendix 08.2 -UHS Mixing Results and Equations 0% Mixing Results (partial)0% Mixing T Nat T IN T OUT (*F) (*F) (*F) Actual Time 7/1/1900 12:00 AM 89.19 127.95 102.00 06:00 AM 7/1/1900 01:00 AM 89.47 133.84 101.64 07:00 AM 7/1/1900 02:00 AM 90.02 136.78 101.62 08:00 AM 7/1/1900 03:00 AM 90.68 137.53 101.73 09:00 AM 7/1/1900 04:00 AM 91.56 127.49 102.13 10:00 AM 7/1/1900 05:00 AM 92.50 125.05 102.62 11:00 AM 7/1/1900 06:00 AM 93.37 124.30 103.04 12:00 PM 7/1/1900 07:00 AM 94.12 123.64 103.32 01:00 PM 7/1/1900 08:00 AM 94.72 122.85 103.46 02:00 PM 7/1/1900 09:00 AM 95.11 121.97 103.40 03:00 PM 7/1/1900 10:00 AM 95.28 121.09 103.13 04:00 PM 7/1/1900 11:00 AM 95.24 120.12 102.67 05:00 PM 7/1/1900 12:00 PM 95.06 119.08 102.10 06:00 PM 7/1/1900 01:00 PM 94.87 118.19 101.55 07:00 PM 7/1/1900 02:00 PM 94.55 117.18 100.83 08:00 PM 7/1/1900 03:00 PM 94.26 116.31 100.14 09:00 PM 7/1/1900 04:00 PM 93.92 121.70 99.41 10:00 PM 7/1/1900 05:00 PM 93.61 117.99 98.72 11:00 PM 7/1/1900 06:00 PM 93.30 115.17 98.04 12:00AM 7/1/1900 07:00 PM 92.98 112.98 97.38 01:00 AM 7/1/1900 08:00 PM 92.67 111.19 96.73 02:00 AM 7/1/1900 09:00 PMj 92.40 109.93 96.14 03:00 AM 7/1/1900 10:00 PM 92.12 108.97 95.55 04:00 AM 7/1/1900 11:00 PM 92.03 108.39 95.17 05:00 AM 7/2/1900 12:00 AM 92.19 108.10 95.05 06:00 AM 7/2/1900 01:00 AM 92.55 107.95 95.15 07:00 AM 7/2/1900 02:00 AM 93.20 108.30 95.78 08:00 AM 7/2/1900 03:00 AM 93.97 108.79 96.52 09:00 AM 7/2/1900 04:00 AM 94.82 109.44 97.34 10:00 AM 7/2/1900 05:00 AM 95.70 110.17 98.19 11:00 AM 7/2/1900 06:00 AM 96.56 110.90 99.02 12:00 PM 7/2/1900 07:00 AM 97.32 111.53 99.74 01:00 PM 7/2/1900 08:00 AM 97.92 112.02 100.31 02:00 PM 7/2/1900 09:00 AM 98.32 112.68 104.88 03:00 PM 7/2/1900 10:00 AM 98.56 116.65 105.91 04:00 PM 7/2/1900 11:00 AM 98.56 117.36 106.15 05:00 PM 7/2/1900 12:00 PM 98.41 117.20 104.59 06:00 PM 7/2/1900 01:00 PM 98.21 115.25 103.65 07:00 PM 7/2/1900 02:00 PM 97.96 114.29 102.96 08:00 PM 7/2/1900 03:00 PM 97.58 113.42 102.18 09:00 PM 7/2/1900 04:00 PM 96.94 112.29 101.11 10:00 PM 7/2/1900 05:00 PM 96.35 111.26 100.13 11:00 PM 7/2/1900 06:00 PM 95.83 110.38 99.37 12:00 AM 7/2/1900 07:00 PM 95.38 109.58 98.61 01:00 AM 7/2/1900 08:00 PM 94.99 108.89 97.96 02:00 AM 7/2/1900 09:00 PM 94.47 108.34 98.94 03:00 AM 7/2/1900 10:00 PM 94.04 108.90 97.62 04:00 AM 7/2/1900 11:00 PM 93.81 107.80 1 96.69 05:00 AM PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 034 of 042 Appendix 08.2 -UHS Mixing Results and Equations 10% Mixing Results (partial)10% Mixing TNat TIN TOUT Plant Tout I MixTemp [ Vnew= 235080 309600 ft3 /hr Convergence LAKET LAKET (°F) (°F) (*F) (°F) Plant DT LAKET DT DT DT ii DT i2 7/1/1900 12:00 AM 89.19 106.12 102.00 127.95 106.121 25.95 4.12 0.00 4.12 4.12 7/1/1900 01:00 AM 89.47 110.52 101.64 133.84 110.521 32.2 8.88 0.00 8.88 8.88 7/1/1900 02:00 AM 90.02 114.69 101.62 136.78 114.69 35.16 13.07 0.00 13.07 13.07 7/1/1900 03:00 AM 90.68 118.32 101.73 137.53 118.31 35.8 16.59 0.00 16.59 16.59 7/1/1900 04:00 AM 91.56 119.77 102.13 127.49 119.77 25.36 17.64 0.00 17.64 17.64 7/1/1900 05:00 AM 92.50 120.61 102.62 125.05 120.61 22.43 17.99 0.00 17.99 17.99 7/1/1900 06:00 AM 93.37 121.20 103.04 124.30 121.19 21.26 18.16 0.00 18.16 18.16 7/1/1900 07:00 AM 94.12 121.59 103.32 123.64 121.581 20.32 18.27 0.00 18.27 18.27 7/1/1900 08:00 AM 94.72 121.78 103.46 122.85 121.78 19.39 18.32 0.00 18.32 18.32 7/1/1900 09:00 AM 95.11 121.81 103.40 121.97 121.811 18.57 18.41 0.00 18.41 18.41 7/1/1900 10:00 AM 95.29 121.70 103.13 121.09 121.701 17.96 18.57 0.00 18.57 18.57 7/1/1900 11:00 AM 95.24 121.45 102.67 120.12 121.451 17.45 18.78 0.00 18.78 18.78 7/1/1900 12:00 PM 95.06 121.07 102.10 119.08 121.071 16.98 18.97 0.00 18.97 18.97 7/1/1900 01:00 PM 94.87 120.62 101.55 118.19 120.62 16.64 19.07 0.00 19.07 19.07 7/1/1900 02:00 PM 94.55 120.07 100.83 117.18 120.07 16.35 19.24 0.00 19.24 19.24 7/1/1900 03:00 PM 94.26 119.47 100.14 116.31 119.47 16.17 19.33 0.00 19.33 19.33 7/1/1900 04:00 PM 93.92 119.94 99.41 121.70 119.94 22.29 20.53 0.00 20.53 20.53 7/1/1900 05:00 PM 93.61 119.53 98.72 117.99 119.53 19.27 20.81 0.00 20.81 20.81 7/1/1900 06:00 PM 93.30 118.63 98.04 115.17 118.62 17.13 20.58 0.00 20.58 20.58 7/1/1900 07:00 PM 92.99 117.44 97.38 112.98 1 117.44 15.6 20.06 0.00 20.06 20.06 7/1/1900 08:00 PM 92.67 116.14 96.73 111.19 116.13 14.46 19.41 0.00 19.41 19.41 7/1/1900 09:00 PM 92.40 114.84 96.14 109.93 114.841 13.79 18.70 0.00 18.70 18.70 7/1/1900 10:00 PM 92.13 113.62 95.55 108.97 113.61 13.42 18.06 0.00 18.06 18.06 7/1/1900 11:00 PM 92.03 112.52 95.17 108.39 112.52 13.22 17.35 0.00 17.35 17.35 7/2/1900 12:00 AM 92.19 111.59 95.05 108.10 111.60 13.05 16.54 0.00 16.54 16.54 7/2/1900 01:00 AM 92.55 110.83 95.15 107.95 110.831 12.8 15.68 0.00 15.68 15.68 7/2/1900 02:00 AM 93.20 110.31 95.78 108.30 110.30 12.52 14.53 0.00 14.53 14.53 7/2/1900 03:00 AM 93.97 109.99 96.52 108.79 109.99 12.27 13.47 0.00 13.47 13.47 7/2/1900 04:00 AM 94.82 109.87 97.34 109.44 109.871 12.1 12.53 0.00 12.53 12.53 7/2/1900 05:00 AM 95.70 109.94 98.19 110.17 109.931 11.98 11.75 0.00 11.75 11.75 7/2/1900 06:00 AM 96.56 109.55 99.82 111.70 110.30 11.88 10.48 0.00 10.46 10.48 7/2/1900 07:00 AM 97.32 110.19 101.26 113.05 i 110.88 11.79 9.61 0.00 9.58 9.61 7/2/1900 08:00 AM 97.92 111.08 102.74 114.45 1 111.63 11.71 8.88 0.00 8.85 8.88 7/2/1900 09:00 AM. 98.32 111.90 104.25 115.90 112.52 11.65 8.27 0.00 8.22 8.27 7/2/1900 10:00 AM 98.56 113.04 104.32 115.90 113.22 11.58 8.91 0.00 8.86 8.91 7/2/1900 11:00 AM 98.56 113.62 104.13 115.64 113.73 11.51 9.60 0.00 9.55 9.60 7/2/1900 12:00 PM 98.41 113.83 104.07 115.52 114.10 11.45 10.04 0.00 9.98 10.04 7/2/1900 01:00 PM 98.21 114.13 103.74 115.13 114.32 11.39 10.58 0.00 10.53 10.58 7/2/1900 02:00 PM 97.96 114.26 103.35 114.68 L 114.39 11.33 11.04 0.00 11.00 11.04 7/2/1900 03:00 PM 97.59 114.06 103.10 114.37 114.39 11.27 11.29 0.00 11.24 11.29 7/2/1900 04:00 PM 96.94 114.00 102.20 113.41 114.181 11.21 11.98 0.00 11.94 11.98 7/2/1900 05:00 PM 96.35 113.71 101.42 112.58 [ 113.85 11.16 12.43 0.00 12.40 12.43 7/2/1900 06:00 PM 95.84 112.93 101.33 112.43 1 113.55 11.1 12.22 0.00 12.20 12.22 7/2/1900 07:00 PM 95.38 112.85 100.74 111.78 113.181 11.04 12.44 0.00 12.43 12.44 7/2/1900 08:00 PM 94.99 112.55 100.07 111.06 112.741 10.99 12.67 0.00 12.66 12.67 7/2/1900 09:00 PM 94.47 112.08 99.20 110.14 112.201 10.94 12.99 0.00 12.99 12.99 7/2/1900 10:00 PM 94.04 111.52 98.41 109.30 111.59 10.89 13.18 0.00 13.17 13.18 7/2/1900 11:00 PM 93.81 110.94 97.80 108.64 110.97 10.84 13.17 0.00 13.17 13.17 PROJECT NO. 11333-297 I CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 035 of 042 Appendix 08.2 -UHS Mixing Results and Equations 20% Mixing Results (partial)20% Mixing T Nat T IN I TOUT Plant Tout Mix Temp Vnew= 235080 309600 ft3/hr°F LAKET LAKET LAKET (°F) (°) (*F) (*F) Plant DT LAKET DT Convergence DT DT il DT i2 DT B3 7/1/1900 12:00AM 89.19 10406 10200 127.95 104.06 25.95 2.06 0.00 2.06 2.06 2.06 7/1/1900 01:00 AM 89.47 107.181 101.64 133.84 107.17 32.2 5.54 0.00 5.54 5.54 5.54 7/1/1900 02:00 AM 90.02 110.271101.62 136.78 110.271 35.16 8.65 0.00 8.65 8.65 8.65 7/1/1900 03:00AM 90.68 113.12 101.73 137.53 113.121 35.8 11.39 0.00 11.39 11.39 11.39 7/1/1900 04:00 AM 91.56 114.62 102.13 127.49 114.621 25.36 12.49 0.00 12.49 12.49 12.49 7/1/1900 05:00AM 92.50 115.71 102.62 125.05 115.711 22.43 13.09 0.00 13.09 13.09 13.09 7/1/1900 06:00AM 93.37 116.61 103.04 124.30 116.611 21.26 13.57 0.00 13.57 13.57 13.57 7/1/1900 07:00 AM 94.12 117.35 103.32 123.64 117.34 20.32 14.03 0.00 14.03 14.03 14.03 7/1/1900 08:00 AM 94.72 117.91 103.46 122.85 117.92 19.39 14.45 0.00 14.45 14.45 14.45 7/1/1900 09:00 AM 95.11 118.34 103.40 121.97 118.34 18.57 14.94 0.00 14.94 14.94 14.94 7/1/1900 10:00AM 95.29 118.63 103.13 121.09 118.63 17.96 15.50 0.00 15.50 15.50 15.50 7/1/1900 11:00 AM 95.24 118.78j 102.67 120.12 118.79 17.45 16.11 0.00 16.12 16.11 16.11 7/1/1900 12:00 PM 95.06 118.81 102.10 119.08 118.82 16.98 16.71 0.00 16.71 16.71 16.71 7/1/1900 01:00 PM 94.87 118.76 101.55 118.19 118.75 16.64 17.21 0.00 17.21 17.21 17.21 7/1/1900 02:00 PM 94.55 118.59 100.83 117.18 118.59 16.35 17.76 0.00 17.76 17.76 17.76 7/1/1900 03:00 PM 94.26 118.351100.14 116.31 118.35 16.17 18.21 0.00 18.21 18.21 18.21 7/1/1900 04:00 PM 93.92 118.701 99.41 121.70 118.70 22.29 19.29 0.00 19.29 19.29 19.29 7/1/1900 05:00 PM 93.61 118.62 98.72 117.99 118.62 19.27 19.90 0.00 19.91 19.90 19.90 7/1/1900 06:00 PM 93.30 118.27 98.05 115.18 118.26 17.13 20.22 0.00 20.22 20.22 20.22 7/1/1900 07:00 PM 92.99 117.71 97.38 112.98 117.71 15.6 20.33 0.00 20.33 20.33 20.33 7/1/1900 08:00 PM 92.67 117.03 96.73 111.19 117.03 14.46 20.30 0.00 20.31 20.30 20.30 7/1/1900 09:00 PM 92.40 116.29 96.14 109.93 116.29 13.79 20.15 0.00 20.15 20.15 20.15 7/1/1900 10:00 PM 92.13 115.53 95.56 108.98 115.52 13.42 19.97 0.00 19.97 19.97 19.97 7/1/1900 11:00 PM 92.03 114.78 95.17 108.39 114.78 13.22 19.61 0.00 19.61 19.61 19.61 7/2/1900 12:00AM 92.19 114.08 95.05 108.10 114.08 13.05 19.03 0.00 19.03 19.03 19.03 7/2/1900 01:00 AM 92.55 113.44 95.15 107.95 113.44 12.8 18.29 0.00 18.10 18.29 18.29 7/2/1900 02:00AM 93.20 112.90 95.78 108.30 112.90 12.52 17.12 0.00 16.95 17.12 17.12 7/2/1900 03:00AM 93.97 112.01 97.07 109.34 112.531 12.27 15.46 0.00 9.78 1 15.46 15.46 7/2/1900 04:00AM 94.82 111.78 98.71 110.81 112.35 12.1 13.64 0.00 8.24 13.64 13.64 7/2/1900 05:00AM 95.70 111.86 100.40 112.38 112.35. 11.98 11.95 0.00 7.47 , 11.95 11.95 7/2/1900 06:00AM 96.56 111.901102.41 114.29 112.561 11.88 10.15 0.00 8.72 10.15 10.15 7/2/1900 07:00AM 97.32 112.56 103.10 114.89 112.801 11.79 9.70 0.00 9.21 9.70 9.70 7/2/1900 08:00AM 97.92 112.91,103.59 115.30 113.061 11.71 9.47 0.00 9.42 9.47 9.47 7/2/1900 09:00AM 98.32 112.97 104.23 115.88 113.36 11.65 9.13 0.00 9.69 9.13 9.13 7/2/1900 10:00AM 98.56 113.36 104.40 115.98 113.63 11.58 9.23 0.00 10.07 9.23 9.23 7/2/1900 11:00AM 98.56 113.69 104.37 115.88 113.86 11.51 9.50 0.00 10.55 9.50 9.50 7/2/1900 12:00 PM 98.41 113.61 104.66 116.11 114.10 11.45 9.44 0.00 10.98 9.44 9.44 7/2/1900 01:00 PM 98.21 114.00 104.45 115.84 114.28 11.39 9.83 0.00 11.45 9.83 9.83 7/2/1900 02:00 PM 97.96 114.20 104.21 115.54 114.41 11.33 10.20 0.00 11.91 10.20 10.20 7/2/1900 03:00PM 97.59 113.83 104.42 115.69 114.55 11.27 10.13 0.00 10.38 10.13 10.13 7/2/1900 04:00PM 96.94 114.11 103.69 114.90 114.58 11.21 10.89 0.00 12.17 10.89 10.89 7/2/1900 05:00 PM 96.35 114.141102.92 114.06 114.53 11.16 11.61 0.00 13.48 11.62 11.61 7/2/1900 06:00 PM 95.83 114.08 102.19 113.29 114.40 11.1 12.21 0.00 14.38 12.21 12.21 7/2/1900 07:00 PM 95.38 113.94 101.49 112.53 114.21 11.04 12.71 0.00 15.00 12.71 12.71 7/2/1900 08:00 PM 94.99 113.75 100.81 111.80 113.951 10.99 13.14 0.00 15.36 1 13.14 13.14 7/2/1900 09:00 PM 94.47 113.45 100.00 110.94 113.64 10.94 13.64 0.00 15.69 13.64 13.64 7/2/1900 10:00PM 94.03 113.13 99.26 110.15 113.27 10.89 14.02 0.00 15.81 14.02 14.02 7/2/1900 11:00 PM 93.81 112.811 98.65 109.49 112.881 10.84 14.22 0.00 15.71 1 14.22 14.22 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 036 of 042 Appendix 08.2 -UHS Mixing Results and Equations 10% -9AM Mixing Results (partial)10% Mixing -9AM T Nat T IN T OUT Plant Tout Mix Temp I Vnew= 235080 309600 ft3 /hr Convergence LAKET LAKET (°F) (CF) (°F) (°F) Plant DT LAKET DT DT DT il DT i2 7/1/1900 12:00 AM 89.81 107.31 103.19 129.14 107.31 25.95 4.12 0.00 4.12 4.12 7/1/1900 01:00 AM 90.70 111.82 103.54 135.74 111.83i 32.2 8.28 0.00 8.88 8.28 7/1/1900 02:00 AM 91.65 116.17 103.99 139.15 116.161 35.16 12.18 0.00 13.07 12.18 7/1/1900 03:00 AM 92.53 119.97 104.35 140.15 119.971 35.8 15.62 0.00 16.59 15.62 7/1/1900 04:00 AM 93.29 121.55 104.57 129.93 121.55 25.36 16.98 0.00 17.64 16.98 7/1/1900 05:00 AM 93.90 122.43 104.67 127.10 122.43 22.43 17.76 0.00 17.99 17.76 7/1/1900 06:00 AM 94.30 122.97 104.56 125.82 122.97 21.26 18.41 0.00 18.16 18.41 7/1/1900 07:00 AM 94.49 123.23 104.25 124.57 123.22 20.32 18.98 0.00 18.27 18.98 7/1/1900 08:00 AM 94.46 123.21 103.74 123.13 123.21 19.39 19.47 0.00 18.32 19.47 7/1/1900 09:00 AM 94.28 122.97 103.13 121.70 122.97 18.57 19.84 0.00 18.41 19.84 7/1/1900 10:00 AM 94.10 122.58 102.54 120.50 122.58 17.96 20.04 0.00 18.57 20.04 7/1/1900 11:00 AM 93.80 122.05 101.78 119.23 122.05 17.45 20.27 0.00 18.78 20.27 7/1/1900 12:00 PM 93.52 121.41 101.06 118.04 121.41 16.98 20.35 0.00 18.97 20.35 7/1/1900 01:00 PM 93.19 120.70 100.29 116.93 1 120.70! 16.64 20.41 0.00 19.07 20.41 7/1/1900 02:00 PM 92.89 119.94 99.57 115.92 119.94[ 16.35 20.37 0.00 19.24 20.37 7/1/1900 03:00 PM 92.59 119.16 98.86 115.03 119.16 16.17 20.30 0.00 19.33 20.30 7/1/1900 04:00 PM 92.29 119.43 98.17 120.46 119.43 22.29 21.26 0.00 20.53 21.26 7/1/1900 05:00 PM 91.98 118.87 97.49 116.76 118.871 19.27 21.38 0.00 20.81 21.38 7/1/1900 06:00 PM 91.72 117.86 96.88 114.01 117.86 17.13 20.98 0.00 20.58 20.98 7/1/1900 07:00 PM 91.46 116.60 96.27 111.87 116.611 15.6 20.33 0.00 20.06 20.33 7/1/1900 08:00 PM 91.37 115.29 95.86 110.32 115.291 14.46 19.43 0.00 19.41 19.43 7/1/1900 09:00 PM 91.54 114.08 95.72 109.51 114.081 13.79 18.36 0.00 18.70 18.36 7/1/1900 10:00 PM 91.90 113.07 95.80 109.22 j 113.07 13.42 17.27 0.00 18.06 17.27 7/1/1900 11:00 PM 92.56 112.31 96.21 109.43 1 1 112.31 13.22 16.10 0.00 17.35 16.10 7/2/1900 12:00AM 93.34 111.79 96.75 109.80 1 111.78 13.05 15.04 0.00 16.54 15.04 7/2/1900 01:00 AM 94.19 111.45 97.36 110.16 1 111.441 12.8 14.09 0.00 15.68 14.09 7/2/1900 02:00 AM 95.08 111.29 98.20 110.72 111.29 12.52 13.09 0.00 14.53 13.09 7/2/1900 03:00 AM 95.95 111.29 99.03 111.30 111.29 12.27 12.26 0.00 13.47 12.26 7/2/1900 04:00 AM 96.71 111.42 99.76 111.86 111.41 12.1 11.66 0.00 12.53 11.66 7/2/1900 05:00 AM 97.32 111.60 100.32 112.30 111.60 11.98 11.28 0.00 11.75 11.28 7/2/1900 06:00 AM 97.73 111.45 100.81 112.69 111.83 11.88 11.02 0.00 10.48 11.02 7/2/1900 07:00 AM 97.97 111.22 101.99 113.78 112.24 11.79 10.24 0.13 9.61 10.11 7/2/1900 08:00 AM 97.98 112.05 102.79 114.50 112.71 11.71 9.92 0.15 8.88 9.77 7/2/1900 09:00 AM 97.83 112.52 103.82 115.47 113.29 11.65 9.46 0.07 8.27 9.40 7/2/1900 10:00 AM 97.64 113.44 103.63 115.21 113.69 11.58 10.05 0.03 8.91 10.08 7/2/1900 11:00 AM 97.40 113.88 103.35 114.86 113.93 11.51 10.58 0.12 9.60 10.70 7/2/1900 12:00 PM 97.03 113.94 103.26 114.71 114.10 11.45 10.83 0.28 10.04 11.11 7/2/1900 01:00 PM 96.40 114.08 102.43 113.82 114.04 11.39 11.61 0.27 10.58 11.88 7/2/1900 02:00 PM 95.83 113.90 101.60 112.93 113.81 11.33 12.21 0.22 11.04 12.43 7/2/1900 03:00 PM 95.32 113.36 101.23 112.50 113.53 11.27 12.31 0.17 11.29 12.47 7/2/1900 04:00 PM 94.88 113.09 100.59 111.80 113.17 11.21 12.58 0.13 11.98 12.71 7/2/1900 05:00 PM 94.49 112.69 99.97 111.13 112.74 11.16 12.77 0.06 12.43 12.83 7/2/1900 06:00 PM 93.99 111.78 99.77 110.87 112.35 11.1 12.59 0.03 12.22 12.55 712/1900 07:00 PM 93.56 111.56 99.18 110.22 111.91 11.04 12.72 0.06 12.44 12.66 7/2/1900 08:00 PM 93.35 111.22 98.66 109.65 111.441 10.99 12.77 0.08 12.67 12.69 7/2/1900 09:00 PM 93.37 110.82 98.32 109.26 110.98 10.94 12.66 0.09 12.99 12.57 7/2/1900 10:00 PM 93.57 110.43 98.10 108.99 110.56 10.89 12.47 0.13 13.18 12.34 7/2/1900 11:00 PM 93.97 110.09 98.03 108.87 1 1 110.211 10.84 12.18 0.18 13.17 12.00 1 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 037 of 042 Appendix 08.2 -UHS Mixing Results and Equations 20% -12PM Mixing Results (partial)20% Mixing -12AM T Nat TIN -TOUT Plant Tout Mix Temp I Vnew= 235080 309600 ft3/hr LAKET LAKET LAKET (°F) (*F) (*F) (*F) Plant DT LAKET DT Convergence DT DT ii DT i2 DT 13 7/1/1900 12:00AM 90.05 106.81 104.75 130.70 106.81 25.95 2.06 0.00 2.06 2.06 2.06 7/1/1900 01:00 AM 90.84 109.98 104.96 137.16 109.98 32.2 5.02 0.00 5.54 5.02 5.02 7/1/1900 02:00AM 91.48 113.15 105.05 140.21 113.14 35.16 8.10 0.00 8.65 8.10 8.10 7/1/1900 03:00AM 91.91 116.02 104.92 140.72 116.03 35.8 11.10 0.00 11.39 11.10 11.10 7/1/1900 04:00 AM 92.14 117.48 104.59 129.95 117.48 25.36 12.89 0.00 12.49 12.89 12.89 7/1/1900 05:00AM 92.14 118.42 104.07 126.50 118.42 22.43 14.35 0.00 13.09 14.35 14.35 7/1/1900 06:00 AM 91.99 119.08 103.45 124.71 119.08, 21.26 15.63 0.00 13.57 I 15.63 15.63 7/1/1900 07:00 AM 91.84 119.51 102.85 123.17 119.51 20.32 16.66 0.00 14.03 16.66 16.66 7/1/1900 08:00 AM 91.58 119.72 102.08 121.47 119.71 19.39 17.64 0.00 14.45 L 17.64 17.64 7/1/1900 09:00 AM 91.33 119.73 101.34 119.91 119.73 18.57 18.39 0.00 14.94 18.39 18.39 7/1/1900 10:00AM 91.04 119.60 100.56 118.52 119.61 17.96 19.04 0.00 15.50 1 19.04 19.04 7/1/1900 11:00AM 90.77 119.37 99.84 117.29 119.36 17.45 19.53 0.00 16.11 19.53 19.53 7/1/1900 12:00 PM 90.50 119.02 99.12 116.10 119.02 16.98 19.90 0.00 16.71 19.90 19.90 7/1/1900 01:00 PM 90.23 118.61 98.42 115.06 118.611 16.64 20.19 0.00 17.21 i 20.19 20.19 7/1/1900 02:00 PM 89.95 118.13 97.73 114.08 118.14 16.35 20.40 0.00 17.76 20.40 20.40 7/1/1900 03:00 PM 89.71 117.63 97.11 113.28 117.63 16.17 20.52 0.00 18.21 20.52 20.52 7/1/1900 04:00 PM 89.47 117.75 96.50 118.79 117.75 22.29 21.25 0.00 19.29 21.25 21.25 7/1/1900 05:00 PM 89.41 117.50 96.08 115.35 117.50 19.27 21.42 0.00 19.90 21.42 21.42 7/1/1900 06:00 PM 89.60 117.041 95.94 113.07 117.041 17.13 21.10 0.00 20.22 I 21.10 21.10 7/1/1900 07:00 PM 89.99 116.47 96.01 111.61 116.47 15.6 20.46 0.00 20.33 20.46 20.46 7/1/1900 08:00 PM 90.67 115.88 96.41 110.87 115.88 14.46 19.47 0.00 20.30 19.47 19.47 7/1/1900 09:00 PM 91.46 115.35 96.94 110.73 115.35 13.79 18.41 0.00 20.15 18.41 18.41 7/1/1900 10:00 PM 92.34 114.88 97.54 110.96 114.89 13.42 17.34 0.00 19.97 17.35 17.34 7/1/1900 11:00 PM 93.25 114.52 98.17 111.39 114.52 13.22 16.35 0.00 19.61 16.35 16.35 7/2/1900 12:00AM 94.14 114.24 98.77 111.82 114.24 13.05 15.47 0.00 19.03 15.47 15.47 7/2/1900 01:00 AM 94.92 114.01 F-99.24 112.04 114.01 12.8 14.77 0.00 18.29 14.77 14.77 7/2/1900 02:00AM 95.55 113.80 99.54 112.06 113.81 12.52 14.26 0.00 17.12 14.27 14.26 7/2/1900 03:00 AM 95.98 112.97 100.40 112.67 113.69 12.27 13.29 0.00 15.46 13.29 13.29 7/2/1900 04:00 AM 96.24 112.91 101.39 113.49 113.67 12.1 12.28 0.00 13.64 12.12 12.28 7/2/1900 05:00 AM 96.27 113.221102.14 114.12 113.71 11.98 11.57 0.00 11.95 11.43 11.57 7/2/1900 06:00 AM 96.13 112.95 103.45 115.33 113.88 11.88 10.43 0.00 10.15 10.58 10.43 7/2/1900 07:00 AM 95.96 113.57 103.52 115.31 114.03 11.79 10.51 0.00 9.70 10.87 10.51 7/2/1900 08:00AM 95.73 113.88 103.44 115.15 114.15 11.71 10.71 0.00 9.47 11.25 10.71 7/2/1900 09:00 AM 95.40 113.62 103.68 115.33 114.27 11.65 10.60 0.00 9.13 11.41 10.60 7/2/1900 10:00AM 94.81 113.961102.97 114.55 114.30 11.58 11.33 0.00 9.23 12.11 11.33 7/2/1900 11:00AM 94.27 114.03 102.31 113.82 114.25 11.51 11.94 0.00 9.50 12.65 11.94 7/2/1900 12:00PM 93.80 113.711102.10 113.55 114.18 11.45 12.08 0.00 9.44 i 12.64 12.08 7/2/1900 01:00 PM 93.39 113.77 101.50 112.89 114.04 11.39 12.54 0.00 9.83 12.99 12.54 7/2/1900 02:00 PM 93.02 113.69 100.94 112.27 113.86 11.33 12.91 0.00 10.20 13.21 12.91 7/2/1900 03:00PM 92.55 113.12 100.72 111.99 113.66 11.27 12.94 0.00 10.13 13.03 12.94 7/2/1900 04:00 PM 92.15 113.09 100.14 111.35 113.42 11.21 13.28 0.00 10.89 I 13.23 13.28 7/2/1900 05:00 PM 91.96 112.97 99.62 110.78 113.14 11.16 13.53 0.00 11.61 I 13.31 13.53 7/2/1900 06:00 PM 92.00 112.76 99.26 110.36 112.85 11.1 13.60 0.00 12.21 I 13.19 13.60 7/2/1900 07:00 PM 92.23 112.61 98.93 109.97 112.55 11.04 13.63 0.00 12.71 I 13.00 13.63 7/2/1900 08:00 PM 92.66 112.34 98.82 109.81 112.26 10.99 13.45 0.00 13.14 12.63 13.45 7/2/1900 09:00 PM 93.27 112.10 98.91 109.85 112.01 10.94 13.10 0.00 13.64 12.11 13.10 7/2/1900 10:00 PM 93.94 111.87 99.08 109.97 111.80 10.89 12.72 0.00 14.02 11.65 12.72 7/2/1900 11:00 PM 94.66 111.68 99.36 110.20 111.63 10.84 12.27 0.00 14.22 11.22 12.27 I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 038 of 042 Appendix 08.2 -UHS Mixing Results and Equations 150 r Plant Outlet Temperature

--- Mixing Zone Temperature

---Plant Inlet Temperature 140 130 L-120 110 I-100 90 80--- ---*-- -S S -S *-S.0 0 2 3 4 Days Following Accident Fig. 08.2-1: Five Day Temperature Profile for the 10% Mixing Case 5 I PROJECT NO. 11333-297 1

CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 039 of 042 Appendix 08.2 -UHS Mixing Results and Equations 150 140 130120 110 I-100 90 80 0 1 2 3 4 5 Days Following Accident Fig. 08.2-2: Five Day Temperature Profile for the 20% Mixing Case PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 040 of 0427 Appendix 08.2 -UHS Mixing Results and Equations 0.E.S I-108 106 104 102 100 98 96 94 92 90 0 1 2 3 5 Days Following Accident Fig. 08.2-3: Plant Inlet Temperature for 6AM Cases PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 041 of 042 Appendix 08.2 -UHS Mixing Results and Equations 150 140 130 ,'_120 CL E S110 100 90 80 0 2 3 4 Days Following Accident 5 Fig. 08.2-4: Case Mixing -10% -9AM Results I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT 0, PAGE NO. 042 of 042 Appendix 08.2 -UHS Mixing Results and Equations 150 140 130120 CL 0.E* 110 I,-100 90 80 0 2 3 4 5 Days Following Accident Fig. 08.2-5: Case Mixing -20% -12PM Results I PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P1 of P58 Attachment P -Plant Temperature Rise for Rev. 8 Prepared:

Li. Date Daniel W. Nevill -Sargent & LundyLLc Reviewed:

Date 11/43 Stephen. J. Paarlberg.-

Sargelf& LundyLLc PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P2 of P58 ATTACHMENT P -TABLE OF CONTENTS Section Page No.P 1.0 P u rp o se .......................................................................................................................

P 3 P2.0 M ethodology

............................................................................................................

P4 P3.0 Assumptions

............................................................................................................

P5 P4.0 Design Inputs .............................................................................................................

P6 P 5 .0 R e feren ce s ....................................................................................................................

P 7 P6.0 Calculations

............................................................................................................

P8 P7.0 Summary and Conclusions

.......................................................................................

P9 P8.0 Limitations and Open Items ..................................................................................

PlO P9.0 Appendices

............................................................................................................

P11 (Total Pages -Attachment P (11) plus Appendices (47) for a Total of 58 pages)LIST OF APPENDICES No. I Title Page P9.1 Integrated UHS Heat Load P12 P9.2 _ Plant Temperature Rise Results __P39 P9.3 Excel Equations P57 (Total Appendix Pages -47)PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P3 of P58 P1.0 PURPOSE The purpose of this attachment is to determine the Core Standby Cooling System (CSCS)temperature rise across the plant based on the new heat load to the Ultimate Heat Sink (UHS) determined in Revision 4 of L-002453 [Ref. P5.1]. This temperature rise is to be used in the LAKET-PC [Ref. P5.3] model of the LaSalle County Station UHS.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P4 of P58 P2.0 METHODOLOGY The plant temperature rise is used in LAKET-PC [Ref. P5.3] to compute the rise in water temperature caused by the heat rejected to the UHS during the postulated accident.The total heat load rejected to the UHS is determined in Attachment D of L-002453 [Ref.P5,1]. The heat rejection rate is determined for an operating scenario that would maximize the heat load to the UHS. This scenario considers a Design Basis Loss of Coolant Accident (LOCA) on one unit and a reactor SCRAM on the non-LOCA unit coincident with a UHS design event (loss of the cooling lake) occurring 100 days after refueling of the non-LOCA unit. Both Residual Heat Removal (RHR) heat exchangers are in service to remove reactor heat on the LOCA unit. For the non-LOCA unit, one RHR heat exchanger is placed into suppression pool cooling mode (and later shutdown cooling mode), while the other RHR heat exchanger is placed into fuel pool cooling assist mode 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> after the initiation of the event.Once the total heat load rejected to the UHS is known, the temperature rise through the plant is determined by the following heat transfer equation: AT- Q (Eq. P3-1)where: AT = plant temperature rise ['F]Q = heat rejection rate to the UHS [BTU/hr]cP = specific heat capacity of water [BTU/(lbm-°F)]

In = mass flow rate [lbm/hr]The mass flow rate is determined by converting the Core Standby Cooling System (CSCS)volumetric flow rates of 65.3 ft 3/s and 86.0 ft 3/s (Design Input P4.2) to a mass flow rate at a density of 62.0 lbm/ft 3 (Assumption P3.1).P2.1 Computer Programs and Software The analysis performed herein utilizes Microsoft Excel 2003 [Ref. P5.4], which is commercially available.

The validation of Excel is implicit in the detailed review of all spreadsheets used in this analysis.

All computer nins were performed using PC No.ZD6661 under the Windows XP operating system. Excel Add-in function STMFUNC is used to calculate the thermal properties of water and steam at varying operating conditions

[Ref. P5.5]. The Excel Add-in finction STMFUJNC has been validated and approved for use in accordance with the S&L Quality Assurance (QA) program.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P5 of P58 P3.0 ASSUMPTIONS P3.1 Water Properties

-The properties of water are evaluated at a temperature of 1007F and atmospheric pressure.

The density and specific heat capacity of water at 100°F and I atm are 62.0 lb "/ft 3 and 0.998 BTU/lbm-°F, respectively

[Ref. P5.5].PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P6 of P58 P4.0 DESIGN INPUTS P4.1 Total Heat Load -The total heat load rejected to the UHS following a LOCA for one unit and a reactor SCRAM for the non-LOCA unit is determined in Attachment D of L-002453[Ref. P5.1 ].P4.2 CSCS Volumetric Flow -The total plant flow during the UHS analysis is 29,300 GPM (65.3 ft 3/s) for the first 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> of the event [Ref. P5.2, Attachment C]. The total plant flow is 38,600 gpm (86.0 ft3/s) after 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> [Ref. P5.2, Attachment C]. The total flow after 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> is based upon the cumulative flow contribution from thirteen CSCS pumps operating at design flow conditions (eight Residual Heat Removal (RHR)-Service Water pumps, 4,000 gpm each; three Diesel Generator (DG) pumps, two at 1,300 gpm and one at 2,000 gpm; and two High Pressure Core Spray DG pumps, 1000 gpm each) (See Attachment D). Prior to 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br />, two RHR Service Water pumps and one of the 1,300 gpm DG pumps are not in operation

[Ref. P5.2, Attachment C].PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P7 of P58 P

5.0 REFERENCES

P5.1 L-002453, "UHS Heat Load," Rev. 4.P5.2 SEAG 13-000074, "LaSalle County Station Transmittal of Design Information (TODI) for UHS Analyses," Rev. 0.P5.3 LAKET-PC Computer Program, Version 2.2, S&L Program No. 03.7.292-2.2, 7/31/2013.

P5.4 Microsoft Excel 2003, Sargent & Lundy LLC Program No. 03.2.286-1.0, dated 02/02/2004.

P5.5 STMFUNC (Steam Table Function Dynamic Link Library) S&L Program Number 03.7.598-2.0, dated 5/15/2003.

PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P8 of P58 P6.0 CALCULATIONS P6.1 Total and Integrated Generated Heat Load Rejected to the UHS The total heat load rejected to the UHS following a LOCA for one unit and a reactor SCRAM for the non-LOCA unit is determined in Attachment D of L-002453 [Ref. P5.1].These values are integrated in order to determine the heat load rejected to the UHS over the entire event. The integration uses the average total heat load between the current time step and the preceding time step.Exceptions to this method occur at two separate time steps. One exception to this method is for the integrated heat load at 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br />, which is when fuel pool cooling begins. The heat load rejected to the UHS increases at hour 16 due to inclusion of the fuel pool heat load. Therefore, at the 16 hour1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> time step only the UHS heat load from the preceding time step (15.21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) is utilized for integration.

The other exception occurs at the 4.13 hour1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> time step. Sensible heat is rejected to the UHS until 3.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> (12,600 seconds) after the design basis event [Ref. P5.1]. To account for the sensible heat load rejected to the UHS between the 3.33 hour3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> and 4.13 hour1.50463e-4 days <br />0.00361 hours <br />2.149471e-5 weeks <br />4.9465e-6 months <br /> time step, the heat load at 3.33 hours3.819444e-4 days <br />0.00917 hours <br />5.456349e-5 weeks <br />1.25565e-5 months <br /> is conservatively used for the UHS heat load integration.

These results are presented in Appendix P9.1 for MUR PU and are used to determine the temperature rise through the plant. The equations used in Excel for this calculation are included in Appendix P9.3.P6.2 Plant Temperature Rise In order to facilitate the creation of a LAKET-PC [Ref. P5.3] input file, the plant temperature rise results are determined in one hour increments.

This requires linear interpolation of the integrated total generated heat load found in L-002453 [Ref. P5.1] to determine the integrated total generated heat load at hourly intervals.

The plant temperature rise is calculated in Excel using Eq. P3-1. The results of this calculation are shown in Appendix P9.2, and equations used in Excel are included in Appendix P9.3.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P9 of P58 P7.0

SUMMARY

AND CONCLUSIONS The CSCS temperature rise across the plant following a postulated accident is determined in hourly intervals in order to be used as input to LAKET-PC [Ref. P5.3]. These results are given in Appendix P9.2.PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 P8.0 LIMITATIONS AND OPEN ITEMS P8.1 Limitations None.P8.2 Open Items None.ATTACHMENT P, PAGE P10 of P58 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P1 1 of P58 P9.0 APPENDICES LIST OF APPENDICES App. Title No. of Pages P9.1 Integrated UHS Heat Load 27 P9.2 Plant Temperature Rise Results 18 P9.3 Excel Equations 2 (Total Appendix Pages -47)PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P12 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Integrated Time Time Heat Load Total UHS UHS Heat (seconds) (hours) (Btu/s) Heat Load Load[Ref. P5.1] (Btulhr) (Btu)O.OOOE+00 0.00 _ 1.97E+04 7.10E+07 0.00E+00 6.000E+01 0.02 6.32E+04 2.28E+08 2.49E+06 1.200E+02 0.03 7.64E+04 2.75E+08 6.68E+06 1.800E+02 0.05 7.75E+04 2.79E+08 1.13E+07 2.400E+02 0.07 7.85E+04 2.83E+08 1.60E+07 3.OOOE+02 0.08 7.95E+04 2.86E+08 2.07E+07 3.600E+02 0.10 8.05E+04 2.90E+08 2.55E+07*4.200E+02 0.12 8.15E+04 2.93E+08 .L3.04E+07 4.800E+02 0.13 8.24E+04 2.97E+08 3.53E+07 5.400E+02 0.15 9.54E+04 3.44E+08 4.06E+07 6.OOOE+02

...0.17 9.63E+04 4 E+08 4.64E+07 3.451E+03 0.96 1.23E+05 j 4.42E+08 3.59E+08 6.301E+03 1.75 1.31E+05 4.73E+08 7.21E+08 9.152E+03 2.54 1.47E+05 5.29E+08 1.12E+09 1.200E+04 3.33 1.44E+05 5.19E+08 1.53E+09 1.485E+04 4.13 9.98E+04J 3.59E+08 1.94E+09 1.770E+04 4.92 9.42E+04 3.39E+08 2.22E+09 2.055E+04 5.71 8.95E+04 3.22E+08 2.48E+09 2.340E+04!

6.50 8.57E+04 3.09E+08 12.73E+09 2.626E+04 7.29 8.26E+04 2.97E+08 2.97E+09 2.911E+04I 8.09 7.99E+04 2.88E+08 3.20E+09 3.196E+04 8.88 7.69E+04 2.77E+08 3.43E+09 3.481E+04 9.67 7.46E+04 2.68E+08{3.64E+09 3.766E+04 10.46 7.26E+04 2.61E+08 3.85E+09 4.051E+04 11.25 7.08E+04 2.55E+08 4.06E+09 4.336E+04 12.04 6.94E+04 2.50E+08 4.26E+09 4.6211+_04 12.84 6.81 E+04 2.45E+08 4.45E+09 4.906E+04 13.63 6.71E+04 2.41E+08 4.64E+09 5.191E+04 14.42 6.61E+04 2.38E+08__

4.83E+09 5.476E+04 15.21 6.53E+04 2.35E+08 5.02E+09 5.761E+04 16.00 -1.30E+05 4.69E+08o 5.21E+09 6.046E+04 16.79 1.13E+05 4.08E+08 5.56E+09 6.331E+04 17.59 1.01E+05 3.63E+08 5.86E+09 6.616E+04 18.38 9.16E+04 3.30E+08 6.13E+09 6.901E+04 19.17 8.47E+04 3.05E+08 6.39E+09 7.186E+04 19.96 7.97E+04 2.87E+08 6.62E+09 7.472E+04 20.76 7.59E+04 2.73E+08 6.84E+09 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P13 of P58 Appendix P9.1: Integrated UHS Heat Load"tTotal UHS T UHS Integrated Time Time Heat Load H Load UHS Heat (seconds) (hours) (Btu/s) Heat Load[Ref.(Btulhr)

[ 5ef. P _. _ (Btu)7.757E+04 21.55 7.30E+04 2.63E+08 7.05E+09 8.042E+04 22.34 7.13E+04 -2.57E+08 7.26E+09 8.327E+04 23.13 7.06E+04 2.54E+08 7.46E+09 8.612E+04 23.92 7.OOE+04 2.52E+08 .7.66E+09 8.897E+04 24.71 6.94E+04 2.50E+08 7.86E+09 9.182E+04 25.51 6.81E+04 2.45E+08 8.06E+09 9.467E+041 26.30 6.68E+04 2.40E+08 8.25E+09 9.752E+04 27.09 6.57E+04 2.37E+08 8.44E+09 1.004E+05 27.89 6.49E+04 2.34E+08 8.63E+09 1.032E+05 28.671 6.43E+04 7 231E+08 8.81 E+09 1.061E+05 29.47 j 6.37E+04 2.29E+08 8.99E+09 1.089E+05 30.25__ 6.33E+04 2.28E+08 9.17E+09 1.118E+05 31.06 6.29E+04 2.27E+08 9.35E+09 1.146E+05 31.83 6.26E+04 2.25E+08 9.53E+09 1.175E+05 32.64 6.23E+04 2.24E+08 9.71E+09 1.203E+05 33.42 _ 6.20E+04 2.23E+08 9.88E+09 1.232E+05 34.22 6.17E+04 2.22E+08 1.01E+10 1.260E+05 35.00 6.14E+04 2.21E+08 1.02E+10 1.289E+05 35.81 6.12E+04 2.20E+08 1.04E+10 1.317E+05 36.58 1 6.09E+04 2.19E+081 1.06E+10 1*.346E+05J 37.39 6.07E+04 I 2.18E+08[

1.08E+10 1.374E+05 38.17 -6.04E+04 2.17E+08 1.09E+10 1.40311+05 38.97 02E+04 2.17E+08 1.11E+10 1.431E+05 39.75 5.99E+04 2.16E+08 1.13E+10 1.460E+05 40.56 5.97E+04 2.15E+08 1.14E+10 1.488E+05 41.33 5.94E+04 2.14E+08 1.16E+10 1.517E+05 42.14 5.92E+04 2.13E+08t 1.18E+10 1.545E+05 42.92 5.89E+041 2.12E+08 1.20E+10 1.574E+05 43.72 5.87E+04 2.11 E+08 1.21E+10 1.602E+05 44.50 5.85E+04 2.11E+08 I 1.23E+10 1.631E+05 45.31 5.83E+04 2.1 OE+08 1.25E+10 1.659E+05]

46.08 5.80E+04 2.09E+08 1.26E+10 1.688E+05 46.89 5.78E+04 2.08E+08 1.28E+10 1.716E+05 47.67 5.76E+04 2.07E+08 1.29E+10 1.745E+05 48.47 5.74E+04 2.07E+08 1.31E+10 1.773E+05 49.25 5.73E+04 2.06E+08 1.33E+10 1.802E+05 50.06 5.71E+04 2.06E+08 1.34E+10 1.830E+05 50.83 5.69E+04 2.05E+08 1.36E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P14 of P58 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT F, PAGE P14 of P58 Appendix P9.1: Integrated UHS Heat Load-UH Total UHS Integrated Time Time Heat Load Total UHS UHS Heat (seconds) (hours) (Btu/s) Heat Load Load[Ref. P5.1] (Btu/hr) (Btu)1.859E+05 51.64 5.68E+04 ! 2.04E+08 1.38E+10 1.887E+05 52.42 5.66E+04 2.04E+08 I1.39E+10 1.916E+05 53.22 5.65E+04 2.03E+08 I 1.41E+10 1.944E+05 54.00 5.63E+04 2.03E+08 1.42E+10 1.973E+05

-54.81 5.62E+04 [2.02E+08 1.44E+10 2.001E+05 55.58 5.60E+04 1 2.02E+08 I._1.46E+10 2.030E+05 56.39 5.58E+04 I 2.01E+08 1 1.47E+10 2.058E+05 L 57.17 5.57E+04 2.OOE+08 1.49E+10 2.087E+05 57.97 5.56E+04_-

2.00E+08 1.50E+10 2.115E+05 58.75 5.54E+04 1.99E+08 1.52E+10 2.144E+05 59.56 5.53E+04 1.99E+08 1.54E+10 2.172E+05 60.33 5.51E+04 1.98E+08-1.55E+10 2.201E+05 61.14 5.50E+04 1.98E+08 1.57E+10 2.229E+05 61.92 5.48E+04 1.97E+08 1.58E+10 2.258E+05 62.72 5.47E+04 1.97E+08 1.60E+10 2.286E+05 1 63.50 5.46E+04 1.96E+08 1.61E+10 2.315E+05 64.31 5.44E+04 1.96E+08 1.63E+10 2.343E+05 65.08 5.43E+04 1.95E+08 1.65E+10 2.372E+05 65.89 5.41E+04 1.95E+08 1.66E+10 2.401E+05 66.69 5.40E+04 1.94E+08 1.68E+10 2.429E+05 67.47 5.39E+04 1.94E+08 1.69E+10 2.458E+05 68.28 5.37E+04 1.93E+08 1.71E+10 2.486E+05 69.06 5.36E+04 1.93E+08 1.72E+10 2.515E+05 69.86 5.34E+04_

1.92E+08 1.74E+10 2.543E+05 70.64 5.33E+04 1.92E+08 1.75E+10 2.572E+05 71.44 5.32E+04 1.91E+08 1.77E+10 2.600E+05 72.22 5.30E+04 1.91E+08 1.78E+10 2.629E+05 73.03 5.59E+04 2.01E+08 1.80E+10 2.657E+05 73.81 5.53E+04 1.99E+08 1.81 E+10 2.686E+05 74.61 5.44E+04 1.96E+08 1.83E+10 2.714E+05 75.39 5.37E+04 1.93E+08 1.85E+10 2.743E+05 76.19 5.33E+04 1.92E+08 1.86E+10 2.771E+05 76.97 5.29E+04 1.91E+08 1.88E+10 2.800E+05 77.78 5.27E+04 1.90E+08 1.89E+10 2.828E+05 78.56 5.25E+04 1.89E+08 1.91E+10 2.857E+05 79.36 5.23E+04 1.88E+08 1.92E+10 2.885E+05 80.14 5.21E+04 1.88E+08 1.94E+10 2.914E+05 80.94 5.20E+04 I 1.87E+08 1.95E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P15 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Total UHS Integrated Time Time Heat Load Heat Load UHS Heat (seconds) (hours) (Btu/s) Load[Ref. P5.1] (Btu/hr) (Btu)2.942E+05 81.72 5.19E+04 1.87E+08 1.97E+10 2.971E+05 82.53 5.18E+04 1.86E+08 1.98E+10 2.999E+05 83.311 5.16E+04 1.86E+08 1.99E+10 3.028E+05 84.11 5.15E+04 1.86E+08 2.01E+10 3.056E+05 1_84.89 5.14E+04 1i.85E+08 2.02E+10 3.085E+05 85.69 5.13E+04 1.85E+08 2.04E+10 3.113E+05 86.47 5.12E+04 1.84E+08 2.05E+10 3.142E+05 87.28 5.11E+04 1.84E+08 2.07E+10 3.170E+05 88.06 5.1OE+04 1.84E+08 2.08E+10 3.199E+05 88.86 5.09E+04 1.83E+08 2.10E+10 3.227E+05 89.64 5.08E+04 1.83E+08 2.11E+10 3.256E+05 90.44 5.07E+04 1.83E+08 2.13E+10 3.284E+05 91.22 5.06E+04 1.82E+08 2.14E+10 3.313E+05 92.03 5.05E+04 1.82E+0812.16E+10 3.341E+05 92.81 5.04E+04 1.81E+08 2.17E+10 3.370E+05 93.61 5.03E+04 1.81E+08 2.18E+10 3.398E+05 94.39 5.02E+04 1.81E+08 j_2.20E+10 3.427E+05 95.19 5.01E+04 1.80E+08 2.21E+10 3.455E+05 95.97 5.OOE+04 1.80E+08 2.23E+10 3.484E+05 96.78 4.99E+04 1.80E+08 2.24E+10 3.512E+05 97.56 4.99E+04 1.79E+08 2.26E+10 3.541E+05 I 98.36 4.98E+04 1.79E+08 i 2.27E+10 3.569E+05 99.14 4.971E+04 1.79E+08 2.28E+10 3.598E+05 99.94 4.96E+04 1.79E+08 2.30E+10 3.626E+05 100.72 4.95E+041 1.78E+08 2.31E+10 3.655E+05 101.53 _1 4.95E+04 1.78E+08 2.33E+10 3.683E+05 102.31 4.94E+04 1.78E+08 2.34E+10 3.712E+05 103.11 4.93E+04 1.78E+08 2.35E+10 3.740E+05 103.89 4.92E+04 1.77E+08 2.37E+10 3.769E+05 104.69 4.92E+04 1.77E+08 2.38E+10 3.797E+05 105.47 4.91E+04 1.77E+08 2.40E+10 3.826E+05 106.28 4 90E+04 1.76E+08 2.41E+10 3.854E+05 107.06 I 4.89E+04 1.76E+08 2.42E+10 3.883E+05 107.86 4.89E+04 1.76E+08 2.44E+10 3.911E+05 108.64 4.88E+04 1.76E+08 2.45E+10 3.940E+05 109.44 4.87E+04 1.75E+08 2.47E+10 3.968E+05 110.22 4.86E+04 i 1.75E+08 2.48E+10 3.997E+05 111.03 4.85E+04 1.75E+08 2.49E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P16 of P58 Appendix P9.1: Integrated UHS Heat Load Tot a UHS TUHS Integrated Time Time Heat Load Total UHS UHS Heat (seconds) (hours) (Btuls) eat Load Load.. ... , .[Ref. P5.1] ( h _ (Btu)4.025E+05 111.81 4.85E+04 1.75E+08 2.51E+10 4.054E+05 112.61 4.84E+04 1.74E+08 2.52E+10 4.082E+05 113.39 -4.83E+04 1.74E+08 253E+10 4.111E+05_

114.19 4.83E+04 174E+08 2.55E+10 4.139E+05 114.97 4.82E+04 1.74E+08 2.56E+10 4.168E+05 115.78 4.81E+04 1.73E+08 2.58E+10 4.196E+05 j 116.56 4.80E+04 1.73E+08 2.59E+10 4.225E+05 117.36 4.80E+04 1.73E+08 2.60E+10 4.253E+051 118.14j4.79E+04

_1__1.72E+08I2.62E+10 4.282E+05 118.94 4.78E+04 1.72E+08 2.63E+10 4.310E+05 119.72 -4.78E+04 1.72E+08 2.64E+10 4.339E+05 120.53 4.77E+04 1.72E+08 2.66E+10 4.367E+05 121.31 5.44E+04 1.96E+08 2.67E+10 4.396E+05 122.11 5.28E+04 1.90E+08 2.69E+10 4.424E+05 122.89 j5.11E+04 1.84E+08 2.70E+10 4.453E+05 123.69 4.99E+04 1.80E+08 2.72E+10 4.481E+05 124.47 4.91E+04 1.77E+08 2.73E+10 4.510E+05 125.28 4.85E+04 1.75E+08 2. 75E+10 4.538E+05 126.06 4.81E+04 1.73E+08 2.76E+10 4.567E+05 126.86 L4.78E+04 1.72E+08 2.77E+10 4.595E+05 127.64 4.76E+04 1.71E+08 2 2.79E+10 4.624E+05 128.44 4.74E+04 1.71E+08 2.80E+10 4.652E+05 129.22 4.73E+04 1.70E+08 2.81E+10 4.681E+05 130.03 4.72E+04 1.70E+08 2.83E+10 4.709E+05 130.81 4.71E+04 1.70E+08 2.84E+10 4.738E+05 131.61 4.70E+04 1.69E+08 2.85E+10 4.767E+05 132.42 4.69E+04 1.69E+08 2.87E+10 4.795E+05 133.19 4.69E+04 1.69E+08 2.88E+10 4.824E+05 134.00 4.68E+04 1.69E+08 2.89E+10 4.852E+05 134.78 4.68E+04 1.68E+08 2.91E+10 4.881E+05 135.58 4.67E+04 1.68E+08 2.92E+10 4.909E+05 136.58 4.66E+04 1.68E+08 2.93E+10 4.938E+05 137.17 4.66E+04 1.68E+08 2.95E+10 4.966E+05 137.94 4.65E+04 1.67E+08 I 2.96E+10 4.995E+05 138.75 4.65E+04 1.67E+08 2.97E+10 5.023E+05 139.53 4.64E+04 1.67E+08 2.99E+10 5.052E+05 140.33 4.64E+04 1.67E+08 3.OOE+10 5.080E+05 141.11 4.63E+04 1.67E+08 3.01E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P17 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS T Integrated Time Time Heat Load Total.UHS UHS Heat (seconds) (hours) (Btu/s) Heat Load Load* (Btulhr)[Ref. P5.1] (Btu)5.109E+05 141.92 4.63E+04 1.67E+08 3.03E+10 5.137E1+05 142.69 4.62E+04 1.66E+08 3.04E+10 5.166E+05 143.50 4.62E+04 1.66E+08 3.05E+10 5.194E+05 144.28 4.61E+04 1.66E+08 3.07E+10 5.223E+05 145.08 5.91E+04 2.13E+08 3.08E+10 5.251E+05 145.86 5.77E+04 2.08E+08 3.10E+10 5.280E+05 146.67 5.38E+04 1.94E+08 3.11E+10 5.308E+05 147.44 5.13E+04 1.85E+08!

3.13E+10 5.337E+05 148.25 4.95E+04 1.78E+08 _ 3.14E+10 5.365E+05 t 149.03 4.83E+04 1.74E+08__

3.16E+1_0 5.394E+05 149.83 4.75E+04 1.71E+08 3.17E+10 5.422E+05 150.61 4.69E+04 1.69E+08 3.18E+10 5.451E+05 151.42 4.65E+04 1.67E+08 3.20E+10 5.479E+05 152.19 4.62E+04 1.66E+08 3.21E+10 5.508E+05 153.00 4.60E+04 1.65E+08 3.22E+10 5.536E+05 153.78 4.58E+04 1.65E+08 3.24E+10 5.565E+05 154.58 4.57E+04 1.64E+08 3.25E+10 5.593E+05 155.36 4.56E+04 1.64E+08 3.26E+10 5.622E+05!

156.17 1 4.55E+04 i.64E+08 ] 3.28E+10 5.650E+05 156.94 1 4.54E+04 1.6 3 E+0 8 I 3.29E+10 5.679E+05 157.75 I 4.53E+04

  • 1.63E+08 3.30E+10 5.707E+05 158.53 4.53E+04 1.63E+08 3.31E+10 5.736E+05 159.33 4.52E+04 1.63E+08 3.33E+10 5.764E+05 160.11 I 4.52E+04 I 1.63E+08 3.34E+10 5.793E+05 160.92 4.51 E+04 T 1.62E+08 3.35E+10 5.821E+05 161.69 1 4.51E+04 j 1.62E+08 3.37E+10 5.850E+05 162.50 4.50E+04 1.62E+08 3.38E+10 5.878E+05 163.28 4.50E+04 1.62E+08 3.39E+10 5.907E+05 164.08 4.49E+04 1.62E+08 3.40E+10 5.935E+05 164.86 4.49E+04 1.62E+08 3.42E+10 5.964E+051 165.67 4.48E+04 1.61E+08 3.43E+10 5.992E+05 166.44 4.48E+04 1.61 E+08 3.44E+10 6.021E+05 167.25 4.47E+04 1.61E+08 3.46E+10 6.049E+05 168.03 4.47E+04 1.61E+08 3.47E+10 6.078E+05 168.83 4.46E+04 1.61E+08 3.48E+10 6.106E+05 169.61 4.46E+04 1.61E+08 3.49E+10 6.135E+05 170.42 4.46E+04 1.60E+08 3.51E+10 6.163E+05 171.19 4.45E+04 1.60E+08 3.52E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P18 of P58 Appendix P9.1: Integrated UHS Heat Load Total UH Total UHS Integrated Time Time Heat Load Hoad UHS Heat (seconds) (hours) (Btu/s) HetuLoad Load.[Ref.-P5.1]. (Btuhr) (Btu)6.192E+05 172.00 4.45E+04 1.60E+08 3.53E+10 6.220E+05 172.78 4.45E+04 1.60E+08 3.54E+10 6.249E+05 173.58 4.44E+04 1.60E+08 3.56E+10 6.277E+05 174.36 4.44E+04 1.60E+08 3.57E+10 6.306E+05 175.17 4.44E+04 1.60E+08 ]3.58E+10 6.334E+05 175.94 4.43E+04 j 1.60E+08 3.59E+10 6.363E+05 176.75 4.43E+04 _ 1.59E+08 3.61E+10 6.391E+05 177.53 4.43E+04 1.59E+08 3.62E+10 6.420E+05 178.33 4.42E+04 1.59E+08 3.63E+10 6.448E+05 179.11 4.42E+04 1.59E+08 3.65E+10 6.477E+05 179.92 4.42E+04 1.59E+08 3.66E+10 6.505E+05 180.69 4.41E+04 1.59E+08 3.67E+10 6.534E+05 181.50 4.41E+04j 1.59E+08 3.68E+10 6.562E+05 182.28 4.41E+04 1.59E+08 .L3.70E+10 6.591E+05 183.08 4.40E+04 1.58E+08 3.71E+10 6.619E+05 183.86 j 4.40E+04 1.58E+08 3.72E+10 6.64811+05 184.67 4.40E+04 1.58E+08 3.73E+10 6.676E+05 185.44 4.39E+04 1.58E+08 3.75E+10 6.705E+05 186.25 4.39E+04 1.58E+08 3.76E+10 6.733E+05 187.03 4.38E+04 1.58E+08 3.77E+10 6.762E+05 187.83 j 4.38E+04 1.58E+08 3.78E+10 6.790E+05 188.61 4.38E+04 1.58E+08 3.80E+10 6.819E+05 189.42 4.37E+04 1.57E+08 3.81E+10 6.847E+05 190.19 4.37E+04 1.57E+08 j 3.82E+10 6.876E+05 191.00 4.37E+04 1.57E+08 3.83E+10 6.904E+05i 191.78 4.36E+04 1.57E+08 3.85E+10 6.933E+05 192.58 4.36E+04 1.57E+08 3.86E+10 6.961E+05 193.36 4.36E+04 1.57E+08 '3.87E+10 6.961E+05 194.17 4.35E+04 1.57E+08 3.88E+10 7.018E+05 194.94 4.35E+04 1.57E+08 3.90E+10 7.047E+05 195.75 4.35E+04 1.57E+08 3.91E+10 7.075E+05 196.53 4.35E+04 1.56E+08 3.92E+10 7.104E+05 197.33 4.34E+04 1.56E+08 J 3.93E+10 7.132E+05 198.11 4.34E+04 1.56E+08 -3.94E+10 7.161E+05 198.92 4.34E+04 1.56E+08 3.96E+10 7.190E+05 199.72 4.33E+04 1.56E+08 3.97E+10 7.218E+05 200.50 1 4.33E+04 1.56E+08 3.98E+10 7.247E+05 201.31 4.33E+04 1.56E+08 3.99E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P19 of P58 Time Time (seconds) (hours)7.275E+05 202.08 7.304E+05 202.89 7.332E+05 203.67 Appendix P9.1: Integrated UHS Heat Load Total UHS Integrated Heat Load UHS Heat (Btuls) Heat Load Load[Ref. P5.1] (Btu)4.32E+04 1.56E+08 4.01E+10 4.32E+04 1.56E+08 4.02E+10 4.32E+04 1.55E+08 4.03E+10 7.361E+05 1 204.47 4.31 E+04 1.55E+08 ! 4.04E+10 7.389E+05I 205.25 4.31 E+04 1_1.55E+08 4.06E+10 7.418E+05 206.06 4.31 E+04 1.55E+08 4.07E+10 7.446E+05 206.83 4.30E+04 I 1.55E+08 4.08E+10 7.475E+05 207.64 L_4.30E+04 1.55E+08 4.09E+10 7.503E+05 208.42 4.30E+04 1.55E+08 4.10E+10 7.532E+05 209.22 4.29E+04 1.55E+08 4.12E+10 7.560E+05 210.00 4.29E+04 1.54E+08 4.13E+10 7.589E+05 210.81 4.29E+04 1.54E+08 4.14E+10 7.617E+05 211.58 4.29E+04 1.54E+08 4.15E+10 7.646E+05 212.39 4.28E+04 1.54E+08 4.17E+10 7.674E+05 213.17 4.28E+04 1.54E+08 4.18E+10 7.703E+05I 213.97 4.28E+04 1.54E+08 4.19E+10 7.731E+05 214.75 4.27E+04 1.54E+08 4.20E+10 7.760E+05 , 215.56 4.27E+04 I 1.54E+08 4.22E+10 7.788E+05i 216.33 4.27E+04 1.54E+08 4.23E+10 7.81 7 E+0 5 2 1 7.1 4 4.26E+04 1.54E+08 I4.24E+10 7.845E+05 217.92 4.26E+04 1.53E+08 4.25E+10 7.874E+05 218.72 4.26E+04 1.53E+08 4.26E+10 7.902E+05 219.50 4.26E+04 1.53E+08 4.28E+10 7.931E+05 220.31 4.25E+04 1.53E+08 4.29E+10 7.959E+05 221.08 4.25E+04 1.53E+08 4.30E+10 7.988E+05 221.89 4.25E+04 1.53E+08 4.31E+10 8.016E+051 222.67 4.24E+04 1.53E+08 4.32E+10 8.045E+05 1 223.47 4.24E+04 1.53E+08 4.34E+10 8.073E+05!

224.25 4.24E+04 1.53E+08 4.35E+10 8.102E+05 225.06 4.24E+04 1.52E+08 4.36E+10 8.130E+05

.225.83 4.23E+04 1.52E+08 8.159E+05 226.64 4.23E+04 1.52E+08 8.187E+05 227.42 4.23E+04 1.52E+08 8.216E+05 228.22 4.23E+04 1.52E+08 8.244E+05 229.00 4.22E+04 1 .52E+08 8.273E+05 229.81 4.22E+04 1.52E+08 8.301E+05 230.58 4.22E+04 1.52E+08 8.330E+05 231.39 4.22E+04 1.52E+08 4.37E+10 4.38E+10-4.40E+10 4.41E+10 4.42E+10 4.43E+10 4.44E+10 r!4.46E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P20 of P58 Appendix P9.1: Integrated UHS Heat Load I I Total UHS Integrated Time Time Heat Load Total UHS UHS Heat (seconds) (hours) (Btu/s) Heat Load Load... .. ... ._[Ref. P5.1] ( hr(Btu)8.358E+05 232.17 4.21E+04 1.52E+08 4.47E+10 8.387E+051 232.971 4.21E+04 I 1.52E+08 j 4.48E+10 8.415E+05 233.75 4.21 E+04 1.52E+08 4.49E+10 8.444E+05 234.56 4.21,E+04 1.51E+08 4.50E+10 8.472E+05 235.33 4.20E+04 1.51E+08 4.52E+10 8.501E+05 236.14 4.20E+04 1.51E+08 14.53E+10 8.529E+05 236.92 4.20E+041 1.51E+08 4.54E+10 8.558E+05 237.72 4.20E+04 1.51E+08 4.55E+10 8.586E+05 238.50 4.20E+04 1.51E+08 4.56E+10 8.615E+05 239.31 4.19E+04 1.51E+08 j4.58E+10 8.643E+05 240.08 1 4.19E+04 F 1.51E+08 4.59E+10 8.672E+05 240.89 4.19E+04 1.51E+08 4.60E+10 8.700E+05 241.67 4.19E+04 1.51E+08 4.61E+10 8.729E+05 242.47 4.18E+04 F 1.51E+08 4.62E+10 8.757E+05 243.25 4.18E+04 F 1.51E+08 I 4.64E+10 8.786E+05 1244.06 4.18E+04 1.50E+08 4.65E+10 8.814E+05

-244.83 4.18E+04 F 1.50E+08 4.66E+10 8.843E+05 245.64 4.18E+04 1.50E+08 4.67E+10 8.871E+05 246.42 4.17E+04 1.50E+08 4.68E+10 8.900E+05 247.22 4.17E+04 1.50E+08 .4.70E+10 8.928E+05 248.00 F 4.17E+04 1.50E+08 4.71E+10 8.957.E+05 248.81 4.17E+04 1.50E2+08 4.72E+10 8.985E+05_

249.58 I 4.17E+04 1.50E+08 4.73E+10 9.014E+05 F 250.39 4.16E+04 1.50E+08 4.74E+10 9.042E+05

_ 251.17 4.16E+04 1.50E+08 4.76E+10 9.071E+05 251.97 4.16E+04 I 1.50E+08 4.77E+10 9.099E+05, 252.75 4.16E+04 1.50E+08 4.78E+10 9.128E+05 253.56 4.15E+04.1.50E+08 4.79E+10 9.156E+05 254.33 4.15E+04 1.49E+08 4.80E+10 9.185E+05 255.14 4.15E+04 1.49E+08 4.81E+10 9.213E+05 255.92 4.15E+04 1.49E+08 4.83E+10 9.242E+05 256.72 4.15E+04 1 1.49E+08 4.84E+10 9.270E+05 257.50 4.14E+04 1.49E+08 4.85E+10 9.299E+05 258.31 4.14E+04 1.49E+08 4.86E+10 9.327E+05 I259.08 4.14E+04 1 .49E+08-j4.87E+10 9.356E+05 259.89 4.14E+04 1.49E+08 4.89E+10 9.384E+05 260.67 4.14E+04 1.49E+08 I 4.90E+10 9.413E+05 261.47 4.13E+04 1.49E+08 4.91E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P21 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Integrated Time Time Heat Load Total UHS IHS Heat (seconds) (hours) (Btu/s) (BtuLhr) Load[Ref. P5.1] (Btu/hr) (Btu)9.441-E+05 262.25 .4.13E+04 1.49E+08 4.92E+10 9.470E1+05 263.06 4.13E+04 1.49E+08 4.93E+10 9.498E.05 263.83 4.13E+04 1.49E+08 4.94E+10 9.527E+05 264.64 4.12E+04 1.48E+08 4.96E+10 9.556E+05 265.44 1_4.12E+04 1.48E+08 4.97E+10 9.584E+05 266.22 4.12E+04 1.48E+08 4.98E+10 9.613E+05 267.03 4.12E+04 1.48E+08 4.99E+10 9.641E+05 267.81 4.12E+04 J 1.48E+08_-

5.00E+10.9670E+05 268.61 4.11E+04 1.48E+08 5.01E+10 96 0 05 I .5... ....9.698E+05 269.39 4.11 E+04 1.48E+08 5.03E+10 9.727E+05 270.19 j 4.11E+04 1.48E+08 5.04E+10 9.755E+O5_

270.97 4.11E+04 1.48E+08 5.05E+10 9.784E+05 271.78 1 4.11E+04 1.48E+08 5.06E+10 9.812E+05 272.56 4.1OE+04 1.48E+08 5.07E+10.9.841E+05 273.36 4.1OE+04 1.48E+08 5.09E+10 9.869E+05 274.14 4.1OE+04 1.48E+08 5.10E+10 9.898E+05 274.94 4.1OE+04 1.48E+08 5.11E+10 9.926E+05 275.72 4.1OE+04 1.47E+08 5.12E+10 9.955E+05 276.53 4.09E+04 1.47E+08 5.13E+10 9.983E+05 277.31 4.09E+04 1.47E+08 5.14E+10 1.001E+06 278.06 4.0912+04 1.47E+08 5.15E+10 1.004E+06 278.89 4.09E+04 1.47E+08 5.17E+10 1.007E+06 279.72 4.09E+04 1.47E+08 5.18E+10 1.010E+06 280.56 4.09E+04 1.47E+08 5.19E+10 1.013E+06 281.39 4.08E+04 1.47E+08 5.20E+10 1.015E+06 281.94 4.08E+04 1.47E+08 5.21E+10 1.018E+06 282.78 [ 4.08E+04 1.47E+08 5.22E+10 1.021E+06 283.61 4.08E+04 1.47E+08 5.24E+10 1.024E+06 284.44 4.08E+04 1.47E+08 5.25E+10 1.027E+06 285.28 4.07E+04 1.47E+08 5.26E+10 1.030E+061 286.11 I 4.07E+04 _ 1.47E+08 5.27E+10 1.033E+06 286.941 4.07E+04 1.47E+08 5.28E+10 1.035E+06 287.50 j 4.07E+04 1.47E+08 5.29E+10 1.038E+06

_288.33__

4.07E+04 1.46E+08 5.31E+10 1.041E+06_

1__289.17

-4.07E+04

  • 1.46E+08 5.32E+10 1.044E+06 290.001 4.07E.+

1.46E+08 5.33E+10 1.047E+06 290.83 4.06E+04 1.46E+08 5.34E+10 1.050E+06 291.67 4.06E+04 1.46E+08 5.35E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P22 of P58 Appendix P9.1: Integrated UHS Heat Load Total UuHS Integrated Time Time Heat Load Total UHSHeat (seconds) (hours) (Btu/s) Heat Load Load[Ref. P5.1] (Btu)1.052E+06 292.22 4.06E+04 1.46E+08 5.36E+10 1.055E+06 293.06 4.06E+04 1.46E+08 5.37E+10 1.058E+06 293.89 4.06E+04 1.46E+08 j 5.39E+10 1.061E+061 294.72 4.06E+04 1.46E+08 5.40E+10 1.064E+06" 295.56 4.05E+04 1.46E+08 5.41E+10 1.067E+06 296.39 4.05E+04 1.46E+08 j 5.42E+10 1.070E+06[

297.22 4.05E+04 1.46E_+08 5.44E+10 1.072E+06 1 297.78 4.05E+04 1.46E+08 5.44E+10 1.075E+06 298.61 4.05E+04 1.46E+08 5.46E+10 1.078E+06 299.44 4.05E+04 1.46E+08 5.47E+10 1.081 E+06 300.28 4.05E+04 1.46E+08 5.48E+10 1.084E+06 301.11 4.04E+04 1.46E+08 5.49E+10 1.-087E+06 301.94 4.04E+04 1.46E+08 5.50E+10 1.090E+06 302.78 4.04E+04 1.45E+08 5.52E+10 1.092E+06 303.33 4.04E+04 1.45E+08 5.52E+10 1.095E+06 304.17 4.04E+04 1.451+08 5.54E+10 1.098E+06 305.00 4.04E+04 1.45E+08 5.55E+10 1.101E+06 305.83 4.03E+04 1.45E+08 5.56E+10 , 1.104E+06 306.67 4.03E+04 1.45E+08 5.57E+10 1.107E+06 307.50 4.03E+04 1.45E+08 5.58E+10 1.109E+06 308.06 4.03E+04 1.45E+08 5.59E+10 1.112E+06 308.89 4.03E+04 1.45E+08 5.60E+10 1.115E+06 309.72 4.03E+04 1.45E+08 5.62E+10 1.118E+06 310.56 4.03E+04 1.45E+08 5.63E+10 1.121E+06 311.39 4.02E+04 1.45E+08 5.64E+10 1.124E+06 312.22 4.02E+04 1.45E+08 5.65E+10 1.127E+06 313.06 4.02E+04 1.45E+08 5.6711+10 1.129E+06 313.61 4.02E+04 1.45E+08 5.67E+10 1.132E+06 314.44 4.02E+04 i 1.45E+08 5.69E+10 1.135E+06 315.28 4.02E+04 j 1.45E+08 5.70E+10 1.138E+06 316.11 4.01E+04 1.45E+08 5.71E+10 1.141E+06 316.94 4.01E+04 _1.44E+08 5.72E+10 1.144E+06 317.78 4.01E+04 1.44E+08 5.73E+10 It , -1 .1 Q zI A n11 l-. "I 7 1 AAr:+On r, 7rA1., 1.149E_ 06 I 1 4 E-- 1.44E.08 1.149E+06 319.17 4.01E+04 1.44E+08 1.152E+06 320.00 4.01E+04 1.44E+08 1.155E+06 320.83 4.O1E+04 I 1.44E+08 1.158E+06 321.67 4.00E+04 t1.44E+08 5.75E+10 5.77E+10 5.78E+10 5.79E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P23 of P58 Appendix P9.1: Integrated UHS Heat Load Toa Integrated Total UJHS ITotal UHS USHa Time Time Heat Load l UHS Heat (seconds) (hours) (Btu/s) Heat Loa Load[_Ref.P5.]. (Btu/hr) (Btu)1.161E+06 322.50 4.00E+04 1.44E+08 5.80E+10 1.164E+06 323.33 4.00E+04 1.44E+08 5.81E+10 1.166E+06 323.89 4.OOE+04 1.44E+08 1 5.82E+10 1.169E+06 324.72 4.00E+04 1.44E+08 5.83E+10 1.172E+06 325.56 4.OOE+04 1.44E+08 5.85E+10 1.175E+06 326.39 j 4.OOE+04 1.44E+08 5.86E+10 1.178E+06 327.22 3.99E+04 1.44E+08-5.87E+10 1.181E+06 328.06 3.99E+04 1.44E+08 5.88E+10:1.184E+06 328.89 3.99E+04 1.44E+08 5.89E+10 1.186E+06 329.44 -3; 9E+04 -1.44E+08 5.90E+10 1.189E+06 330.28 3.99E+04 1.44E+08 5.91E+10 1.192E+06 331.11 3.99E+04 1.44E+08 5.93E+10 1.195E+06 331.94 3.99E+04 1.43E+08 5.94E+10 1.198E+06 332.78 3.98E+04 1.43E+08 5.95E+10 1.201E+06 333.61 3.98E+04 1.43E+08 5.96E+10 1.2014E+06 33.61 .98E-0 1.4E_0 5.96E__ __10 1-204+_06_

334.44 3.98E+04 1.43E+08 5.97E+10 1.206E+06 335.00 3.98E+04 1.43E+08 5.98E+10*1209E+06 335.83 3.98E+04 1.43E+08 5.99E+10 1.212E+06 336.67 3.98E+04 1.43E+08 6.01E+10_1215E+6.1 337.50 3.97E+04 1.43E+08 6.02E+10 1.218E+06 338.33 3.97E+04 1.43E+08 6.03E+10 1.221E+06 339.17 3.97E+04 1.43E+08 6.04E+10 1.224E+06 340.00 3.97E+04 1.43E+08 6.05E+10 1.226E+06 340.56 3.97E+04 1.43E+08 6.06E+10 1.229E+06 341.39 3.97E+04 1.43E+08 6.07E+10 1.232E+06 342.22 3.97E+04 1.43E+08 6.08E+10 1.235E+06 343.06 3.97E+04 1.43E+08 6.10E+10 1.238E+06 343.89 I 3.96E+04 1.43E+08 6.11E+10 1.241E+06 344.72 3.96E+04 1.43E+08 6.12E+10 1.243E+06 345.28 3.96E+04 1.43E+08 6.13E+ 10 1-246E+06 346.11 3.96E+04 1.43E+08 6.141+-10 1.249E+06 346.94 3.96E+04 1.42E+08 6.15E+10 1.252E+06 347.78 3.96E+04 1.42E+08 6.16E+10 1.255E+06 348.61 3.96E+04 1.42E+08 16.18E+10 1.258E+06 349.44 3.95E+04 1.42E+08 6.19E+10 1.261E+06 350.28 3.95E+04 1.42E+08 6.20E+10 1.263E+06 350.83 3.95E+04 1.42E+08 6.21E+10 1.266E+06 351.67 3.95E+04 1.42E+08 6.22E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P24 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS T Integrated Time Time Heat Load Total.UHS UHS Heat (seconds) (hours) (Btus) LdLoa[Ref. P5.11] (Btu/hr) (Btu)1.269E+06 352.50 3.95E+04 1.42E+08 6.23E+10 1.272E+06 353.33 I 3.95E+04 1.42E+08 6.24E+10 1.275E+06 354.17 3.95E+04 1.42E+08 6.25E+10 1.278E+06 355.00 J 3.94E+04 1.42E+08 6.27E+10 1.281E+06 355.83 1 3.94E+04 1.42E+08]

6.28E+10 1.283E+06 356.39 3.94E+04 1.42E+08 6.29E+10 1.286E+06 357.22 3.94E+04 1.42E+08L 6.30E+10 1.289E+06 358.06 3.94E+04 , 1.42E+08 6.31E+10 1.292E+06j 358.89 3.94E+04 1.42E+08 .6.32E+10 1.295E+061 359.72{- 3.94E+04 i1.42E+08 I 6.33E+10 1.298E+06-i

-360.56----

3.93E+04 ---142E+08- 6.35E+10 1.300E+06 361.11 3.93E+04 1.42E+08 6.35E+10 1.303E+06 361.94 3.93E+04 1.42E+08 6.37E+10 1.306E+06 j 362.78 3.93E+04 1.41E+08 6.38E+10 1.309E+06 363.61 3.93E+04 1.41E+08 6.39E+10 1.312E+06-364.44 3.93E+04 -1.41 E+08 6.40E+10 1.315E+06 365.28 3.93E+04 1.41E+08 6.41E+10 1.318E+06-366.11 I 3.92E+04 1.41E+08 6.42E+10 1.320E+06 366.67 3.92E+04 1.41E+08 6.43E+10 1.323E1+06 367.50 3.92E+04 1.41E+08 6.44E+10 1.326E+06 368.33 3.92E+04 1.41E+08 6.46E+10 1.329E+06 369.17 3.92E+04 1.41E+08 6.47E+10 1.332E+06 370.00 3.92E+04 1.41E+08 6.48E+10 1.335E+06 370.83 3.92E+04 1.41 E+08 6.49E+ 10 1.338E+06]

371.67 3.91E+04 1.41E+08 -6.50E+10 1.340E+06 372.22 3.91 E+04 1.41E+08 6.51E+10 1.343E+06 I 373.06 3.91E+04 1.41E+08 6.52E+10 1.346E+06 373.89 3.91E+04 1.41E+08 6.53E+10 1.346E+06 373.89 3.91E+04 1.41E+08 6.53E+10 1.349E+061 374.72 3.91E+04 1.41E+08 6.55E+10 1.352E+06 375.56 3.91E+04 1.41E+08 6.56E+10 1.357E+06 376.39 3.91E+04 1.41E+08 6.57E+10 1.357E+06 376.94 3.91E+04 1.41 E+08 6.58E+10 1.360E+06 377.78 3.90E+04 1.41E+08 6.60E+10 1.363E+06 378.61 3.90E+04 1.40E+08 6.60E+10 1.366E+06 379.44 3.90E+04 1.40E+08 6.61E+10 1.369E+06 380.28 3.90E+04 1.40E+08 6.62E+10 1.372E+06 381.11 3.90E+04 1.40E+08 6.64E+10 1.375E+06 381.94 3.90E+04 1.40E+08 6.65E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P25 of P58 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P25 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Total UHS Integrated Time Time Heat Load UHS Heat (seconds) (hours) (Btuls) Heat Load Load[Ref. P5.1] I (Bt..hr) (Btu)1.377E+06 382.50 3.90E+04 I 1.40E+08 6.65E+10 1.380E+06 383.33 3.90E+04 1.40E+08 6.67E+10 1.383E+06 384.17 3.89E+04 1.40E+08 6.68E+10 1.386E+06 385.00 3.89E+04 1.40E+08 6.69E+10 1.389E+06 385.83 3.89E+04 1.40E+08 6.70E+10 1.392E+06 386.67 3.89E+04 1.40E+08 6.71E+10 1.395E+06 387.50 3.89E+04 1.40E+08 6.72E+10 1.397E+06 388.06 3.89E+04 1.40E+08 6.73E+10 1.400E+06 388.89 3.89E+04 1.40E+08 6.74E+10 1.403E+06 389.72 3.88E+04 1.40E+08 6.76E+ 10 1.406E+06 390.56 3.88E+04 1.40E+08 6.77E+10 1.409E+06 391.39 3.88E+04 1.40E+08 6.78E+10 1.412E+06 392.22 3.88E+04 1.40E+08 6.79E+10 1.414E+06 392.78 3.88E+04 1.40E+08 6.80E+10 1.417E+06 393.61 3.88E+04 1.40E+08 6.81E+10 1.4- 39444 1.420E+06 395.28 3.88E+04 1.40E+08 6.82E+10 1.423E+06 395.28 3.87E+04 1.39E+08 6.83E+10 1.426E+06 396.11 3.87E+04 1.39E+08 6.85E+10 1.429E+06 396.94 3.87E+04 L 1.39E+08 6.86E+10 1.432E+06 397.78 3.87E+04 K 1.39E+08 6.87E+10 1.434E+06 398.33 I 3.87E+04 1.39E+08 6.88E+10 1.437E+06 399.17 3.87E+04 1,39E+08 6.89E+10 1.443E+06 400.00 1 3.87E+04 1I.3 91E+08 6.91E+10-1.4436E06 400.83 3.87E+04 1.39E+08 j_6.91E+10 1.446E+06 j 401.67 3.86E+04 1.39E+08 6.92E+10 1.449E+06 402.50 3.86E+04 1.39E+08 1 6.93E+10 1.452E+06-403.33 3.86E+04 _K1.39E+08 6.95E+10 1.454E+06 403.89 3.86E+04 1.39E+08 6.95E+10 1.457E+06 404.72 3.86E+04 I 1.39E+08 6.96E+10 1.460E+06 405.56 3.86E+04 1.39E+08 J 6.98E+10 1.463E+06 406.39 3.86E+04 1.39E+08 6.99E+10 1.466E+06 407.22 3.86E+04 1.39E+08 7.01E+10 1.469E+06 408.06 3.85E+04 1.39E+08 7.01E+10 1.474E+06 408.89 3.85E'-04 1.39E+08 I 72E+10 1.477E+06 409.48 3.85E+04 1.39E+08 7.04E+10 1.474E+06:

4109.284 3.85E+04 I1.39E+08 1.480E+06 411.11 3.85E+04 1.39E+08 7.05E+10 1.483E+06 411.94 3.85E+04 1.38E+08 7.07E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P26 of P58 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P26 of P58 Appendix P9.1: Integrated UHS Heat Load TTotal UHS Integrated Time Time Heat Load Total UHS UHS Heat (seconds) (hours) (Btu/s) Het Load Load[Ref.p5.1] (BtuP5,11 (Btu)1.486E+06 412.78 1_3.85E+04 I 1.38E+08 7.08E+10 1.489E+06 413.61 3.84E+04 1.38E+08 7.09E+10 1.491E+06 414.17 3.84E+04-1.38E+08 J 7.10E+10 1.494E+06 415.00 3.84E+04 I 1.38E+08 7.11E+10 1.497E+06 415.83 3.84E+04 1.38E+08]

7.12E+10 1.500E+06 416.67 3.84E+04 t 1.38E+08 7.13E+10 1.503E+06 417.50 3.84E+04 1.38E+08 7.14E+10 1.506E+06 418.33 3.84E+04 1.38E+08 7.15E+10 1.509E+06I 419.17 3.84E+04 1.38E+08 7.16E+10 1.51 -1E+06 1_419.72 3.83E+04 1i.38E+08 7.17E+10 1.514E+06 I 420.56 3.83E+04 1.38E+08 7.18E+10 1.517E+06 421.39 3.83E+04 1.38E+08 7.20E+10 1.520E+06 422.22 3.83E+04 1.38E+08 7.21E+10 1.523E+06j 423.06 3.83E+04 1.38E+08.7.22E+10 1.526E+06 423.89 3.83E+04 1.38E+08 7.23E+10 1.529E+06 424.72 3.83E+04 1.38E+08 7.24E+10 1.531E+06 425.28 3.83E+04 1.38E+08 7.25E+10 1.534E+06 426.11 3.83E+04 1.38E+08 7.26E+10 1.537E+06 426.94 3.83E+04 1.38E+08 7.27E+10 1.540E+06 427.78 3.82E+04 1.38E+08 I 7.28E+10 1.543E+06 428.61 3.82E+04 1.38E+08 7.30E+10 1.546E+061 429.44 i 3.82E+04 1.38E+08 7.31E+10 1.546E+06 430.00 3.82E+04 1.38E+08 7.31E+10 3.82E+04 1.38E+08 7.35E+10 1.564E+06 431.67 3.82E+04 1.37E+08l 7.31E+10 1.551E+06 432.50 3.82E+04 1.37E+08 7.33E+10 1.566E+06 433.33 3.82E+04 1.37E+08 7.34E+10 1.568E+06 434.51 3.82E+04 1.37E+08 7.35E+10 1.560E+06 435.30 3.81E+04 1.37E+08 7..3E+10 1.574E+06 437.22 3.81E+04 1.37E+08 -7.41E+10 1.577E+06 438.06 3.81E+04 1.37E+08 7.42E+10 1.580E+06 438.89 3.81E+04 1.37E+08 7.44E+10 1.583E+06 439.72 3.81E+04 1.37E+08 7.45E+10 1.586E+06 440.56 3.81E+04 1.37E+08 7.46E+10 1.588E+06 441.11 3.81E+04 1.37E+08 7.47E+10 1.591E+06 441.94 3.81E+04 1.37E+08 7.48E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P27 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Total UHS Integrated Time Time Heat Load H eat ad UHS Heat (seconds) (hours) (Btuls) Heat Load Load[Ref. P5.1] ( , (Btu)1.594E+06 442.78 3.81E+04 1.37E+08 7.49E+10 1.597E+06 443.61 3.80E+04 1.37E+08 7.50E+10 1.600E+06 444.44 3.80E+04 1.37E+08 7.51E+10 1.603E+06 445.28 3.80E+04 1.37E+08 7.52E+10 1.605E+06 445.83 3.80E+04 1.37E+08 7.53E+10 1.608E+06 446.67 3.80E+04 1.37E+08 7.54E+10 1.611E+06-447.50 3.80E+04 -.3711+08 7.55E+10 1.614E+06 448.33 3.80E+04 1.37E+08-7.57E+10 1.617E+06 449.17 3.80E+04 1.37E+08 7.58E+10 1.620E+06 450.00 3.80E+04 1.37E+08 7.59E+10 1.623E+06 450.83 3.80E+04 1.37E+08 7.60E+10 1.625E+061 451.39 3.79E+04 1.37E+08 7.61E+10 1.628E+06 452.22 3.79E+04 1.37E+08 7.62E+10 1.631E+06 453.06 3.79E+04 1.37E+08 7.63E+10 1.634E+06 453.89 3.79E+04 1.36E+08 7.64E+10 1.637E+06 454.72 3.79E+04 1.36E+08 7.65E+10 1.640E+06 455.56 3.79E+04 1.36E+08 7.66E+10 1.643E+06 456.39 3.79E+04 I 1.36E+08 7.68E+10 1.645E+06

.456.94 1 3.79E+04 1.36E+08 7.68E+10 1.648E+06 1 457.78 3.79E+04 1 i1.36E+08 7.69E+10 1.651E+06 458.61 i 3.79E+04 I 1.36E+08 7.71E+10 1.654E+06 459.44 -3.78E+04 1.36E+08 7.72E+10 1-.657E+06 460.28 3.78.E-+04 1...6E0 8 7.73E+10 1.660E+06 461.11 3.78E+04 1.36E+08 7.74E+10 1.662E+06 461.67 3.78E+04 1.36E+08 7.75E+10 1.665E+06 462.50 3.78E+04 1.36E+08 7.76E+10 1.668E+06 463.33 3.78E+04 1.36E+08 7.77E+10 1.671E+06 464.17 3.78E+04 1.36E+08 7.78E+10 1.674E+06 465.00 3.78E+04 1.36E+08 7.79E+10 167 6 465783 3.78E+04 1.36E+08 7.80E+10 1.680E+06 466.67 3.78E+04 1.36E+08 7.82E+10 1.682E+06 468.06 3.78E+04 1.36E+08 7.82E+10 1.685E+06 468.06 3.77E+04 1.36E+08 7.83E+10 1.688E+06 468.89 3.77E+04 1.36E+08 7.85E+10 1.691E+06 469.72 3.77E+04 1.36E+08 7.86E+10 1.694E+06 470.56 3.77E+04 1.36E+08 7.87E+10 1.697E+06 471.39 3.77E+04 1.36E+08 7.88E+10 1.700E+06 472.22 3.77E+04 1.36E+08 7.89E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P28 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS TIntegrated Time Time Heat Load Total UHS UHS Heat (seconds) (hours) (Btu/s) Heat Load[Ref. P5.1] (Bu 1.702E+06 472.78 3.77E+04 1.36E+08 7.90E+10 1.705E+06 473.61 3.77E+04 1.36E+08 7.91E+10 1.708E+061 474.44 3.77E+04 I 1.36E+08 7.92E+10 1.711E+06 475.28 j 3.77E+041 1.36E+08 7.93E+10 1.714E+06-476.11 3.76E+04 1.36E+08 7.94E+10 1.717E+06 476.94 3.76E+04 1.35E+08 7.96E+10 1.720E+06 477.78! 3.76E+04 1.35E+08 7.97E+10 1.722E+06 478.331 3.76E+04 I 1.35E+08 7.97E+10 1.725E+06 479.17 3.76E+04 1.35E+08 7.99E+10 1.728E+06 480.00 [ 3.76E+04 1.35E+08 8.00E+10 1.731E+06 480.83 3.76E+04 1.35E+08 8.01E+10 1.734E+06 481.67 3.76E+04 1.35E+08 8.02E+10 1.737E+061 482.50 3.76E+04 1.35E+08 8.03E+10 1.739E+06 483.06 3.76E+04 1.35E+08 8.04E+10 1.742E+06 483.89 3.75E+04 1.35E+08 8.05E+10 1.745E+06 484.72 3.75E+04 1.35E+08 8.06E+10 1.748E+06 485.56 3.75E+04 1.35E+08 8.07E+10 1.751E+06 486.39 3.75E+04 1.35E+08 8.08E+10 1.754E+06 487.22 3.75E+04 1.35E+08 8.09E+10 1.757E+06 488.06 3.75E+04 1.35E+08 8.11E+10 1.759E+06 488.61 3.75E+04 1.35E+08 8.11E+10 1.762E+06 489.441 3.75E+04 1.35E+08 i 8.12E+10 1.765E+061 490.28 3.75E+04 1.35E+08 8.14E+10 1.768E+06 491.11 3.75E+04 1.35E+08 8.15E+10 1.771E+06-1 491.94 3.75E+04 1.35E+08 8.16E+10 1.774E+06 492.78 3.74E+04 1.35E+08 8.17E+10 1.777E+06_

493.61 3.74E+04 1.35E+08 j 8.18E+10 1.779E+06 494.17 3.74E+04 1.35E+08 8.19E+10 1.782E+06 495.00 3.74E+04 1.35E+08 8.20E+10 1.785E+06 495.83 3.74E+04 1.35E+08 8.21E+10 1.788E+06 496.67 3.74E+04 1.35E+08 8.22E+10 1.791E+06 497.50 3.74E+04 1.35E+08 8.23E+10 1.794E+06 498.33 3.74E+04 1.35E+08 8.24E+10 1.796E+06 498.89 3.74E+04 1.35E+08 8.25E+10 1.799E+06 499.72 3.74E+04 1.35E+08 8.26E+10 1.802E+06 500.56_- 3.74E+04 I 1.35E+08 8.27E+10 1.805E+06 501.39 3.73E+04 1.34E+08 8.29E+10 1.808E+06 502.22 3.73E+04 1.34E+08 8.30E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P29 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Total UHS Integrated Time Time Heat Load Heat Load UHS Heat (seconds) (hours) (Btuls) Lotad Loa d[Ref. P5.1] (Btu/hr) ..tu)1.811E+06 503.06 _ 3.73E+04 1.34E+081 8.31E+10 1.814E+06 503.89 3.73E+04 1.34E+08 I 8.32E+10 1.816E+06 504.44. 3.73E+04 1.34E+08 j 8.33E+10 1.819E+06 505.28 4.34E+04 1.56E+08 i 8.34E+10 1.822E+06 506.11 4.24E+04 1.53E+08 1- 8.35E+10 1.825E+06 506.94 4.07E+04 1.47E+08 L 8.36E+10 1-82811+06 507.78 3.9611+04 1.43E+08 8.38E+10 1.831E+061 508.61 3.89E+04 .1.40E+08 I 8.39E+10 1.834E+06 509.44 3.83E+04-J 1.38E+08 8.40E+10 1.836E+06 I 510.00 3.80E+04 1.37E+08 8.41E+10 1.839E+06 I 510.83 3.78E+04 I 1.36E+08 8.42E+10 1.842E+06 511.67 3.76E+04 L 1.35E+08 8.43E+10 1.845E+06 512.50 3.75E+04 1.35E+08 8.44E+10 1.848E+06 513.33 3.74E+04 1.35E+08 8.45E+10 1.851E+06 514.17 3.73E+04 1.34E+08 8.46E+10 1.853E+06 514.72 3.73E+04 1.34E+08 8.47E+10 1.856E+06 515.56 3.72E+04 1.34E+08 8.48E+10 1.859E+06 516.39 3.72E+04 1.34E+08 8.49E+10 1.862E+06 517.22 3.72E+04 1.34E+08 8.50E+10 1.865E+06 518.06 1 3.72E+041 1.34E+08 8.52E+10 1.868E+06 518.89 j 3.72E+04 1.34E+08 8.53E+10 1.871E+06 519.72 3.72E+04 1.34E+08 8.54E+10 1.873E1+06 520.28 3.71-E+04

-1.34E+08 8.54E+10 1.876E+06 521.11 3.71E+04 1.34E+08 8.56E+10 1.879E+06j 521.94 3.71E+04 I 1.34E+08 8.57E+10 1.882E+06 522.78 3.71E+04 1.34E+08 .L8.58E+10 1.885E+06K 523.61 3.71E+04 1.34E+08 8.59E+10 1.888E+06 524.44 3.71E+04 1.34E+08 8.60E+10 1.891E+06 6 525.28 3.71E+04 1.33E+08 8.61E+10 1.893E+06 525.83 1_3.71 E+04 1.33E+08 8.62E+10 1.896E+061 526.67 3.71E+04 1.33E+08 8.63E+10 1.899E+06.

527.50 3.71E+04 1.33E+08 8.64E+10 1.902E+06 1528.33 3.70E+04 1.33E+08 8.65E+10 1.905E+06 529.17 3.70E+04 1.33E+08 8.66E+10 1.908E+06 530.00 3.70E+04 1.33E+08 8.67E+10 1.911E+06 530.83 3.70E+04 1.33E+08 8.69E+10 1.913E+06 531.39 3.70E+04 1.33E+08 -869E+10 1.916E+06 532.22 -3.70E+04 1.33E+08 8.70E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P30 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS T Integrated Time Time Heat Load Total UHS UHS Heat (seconds) (hours) (Btu/s) (BtuLhr)o..... .... .._ _ [R e f. P 5 .1] .......(B tu )1.919E+06 533.06 3.70E+04 1.33E+08 8.72E+10 1.922E+06I 533.89 3.70E+04 1.33E+08 8.73E+10 1.925E+06 534.72 3.70E+04 1.33E+08 8.74E+10 1.928E+06 535.56 3.70E+04 1.33E+08 8.75E+10 1.930E+06 536.11 _3.70E+04 1.33E+081 8.76E+10 1.933r+06 536.94 3.69E+04 1.33E+08 8.77E+10 1.936E+06 537.78 3.69E+04 1.33E+08 8.78E+10 1.939E+06 538.61 3.69E+041 1.33E+08 8.79E+10 1.942E+06 539.44 j 3.69E+04 1.33E+08 8.80E+10 1.945E+06 540.28 f3.69E+04r 1.33E+08 8.81E+10 1.948E+06 541.11 I 3.69E+04 1" 1.33E+08 L8.82E+10 1.950E+06 541.67 3.69E+04 1.33E+08 8.83E+10 1.953E+06 542.50 3.69E+04 1.33E+08 8.84E+10 1.956E+06 543.33 3.69E+04 1.33E+08 8.85E+10 1.959E+06 544.17 3.69E+04 1.33E+08 8.86E+10 1.962E+06 545.00 1_3.69E+04 1.33E+08 8.87E+10 1.965E+06 545.83 3.69E+04 1.33E+08 8.89E+10 1.968E+06 546.67 3.69E+04 1.33E+08 8.90E+10 1.970E+06

[ 547.22 _ 3.68E+04 1.33E+08 _8.90E+10 1.973E+06 548.06 1 3.68E+04 j 1.33E+08 8.91E+10 1.976E+06 548.89 F 3.68E+04 1.33E+08 8.93E+10 1.979E+06 549.72 3.68E+04 1.33E+08 8.94E+10 1.982E+06 550.56 3.68E+04 .32E+08 8.95E+10 1.985E+06 551.391 3.68E+04 1.32E+08 8.96E+10 1.987E+061 551.94 3.68E+04 1.32E+08 8.97E+10 1.990E+06 552.78 3.68E+04 1.32E+08 8.98E+10 1.993E+06 553.61 3.68E+04 1.32E+08 8.99E+10 1.996E+06 554.44 3.68E+04 1.32E+08 9.00E+10 1.999E+06 555.28 3.68E+04 1.32E+08 9.01E+10 2.002E+06 556.11 3.67E+04 1.32E+08 9.02E+10 2.005E+06 556.94 3.67E+04 1.32E+08 9.03E+10 2.007E+06

/ 557.50 3.67E+04 1.32E+08 9.04E+10 2.010E+06 558.33 3.67E+04 1.32E+08 9.05E+10 2.013E+06 559.17 3.67E+04 1.32E+08 19.06E+10 2.016E+06 560.00 3.67E+04 1.32E+08 9.07E+10 2.019E+06 560.83 3.67E+04 1.32E+08 9.08E+10 2.022E+06 561.67 3.67E+04 1.32E+08 9.09E+10 2.025E+06 562.50 3.67E+04 1.32E+08 9.11E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P31 of P58 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P31 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS -t UHS Integrated Time Time Heat Load Teaotalod UHS Heat I Btuls Heat LOad (seconds) (hours) (Btuls) (Btu/hr) Load.[Ref. P5.11] (Btu)2.027E+06 563.06 3.67E+04 1.32E+08 9.11E+10 2.030E+06 563.89 3.67E+04 11.32E+08 9.12E+10 2.0335+06 564.72 3.67E+04 -1.32E+08 9.14E+10 2.036E+06 565.56 3.675+04 1.32E+08 9.15E+10 2.039E+06 566.39 3.67E+04 1.32E+08 9.16E+10 2.042E+06 567.22 I 3.66E+04 1.32E+08 9.17E+10 2.044E+06 567.78 3.66E+04 1.32E+08 9.18E+10 2.047E+06 568.61 3.66E+04 1.32E+08 9.19E+10 2.050E+06 569.44 3.66E+04 1.32E+08 9.20E+10 2.053E+06 570.28 3.66E+04 1.32E+08 9.21E+10 2.056E+06 571.11 3.66E+04 I1.32E+08 9.22E+10 2.059E+06 571.94 3.66E+04 1.32E+08 9.22E+10 2.062E+06 572.78 3.66E+04 1.32E+08 9.24E+10 2.064E+06 573.33 3.66E+04 1.32E+08 9.25E+10 2.067E+06 574.17 3.66E+04 1.32E+08 9.26E+10 2.070E+06 575.007 3.66E+04 1.32E+08 9.27E+10 2.073E+06 575.83 3.66E+04 1.32E+08 9.28E+10 2.076E+06 576.67 3.66E+04 I 1.32E+08 9.29E+10 2.079E+06 577.50 3.65E+04 1.32E+08 9.30E+10 2.082E+06 578.33 3.65E+04 1.32E+08 9.31E+10 2.084E+06 578.89 3.65E+04 1.32E+08 9.31E+10 2.087E+06 579.72 3.65E+04 I 1.32E+08 9.33E+10 2.090E+06 580.56 3.65E+04 1.31E+08 9.34E+10 2.093E+06 581.39 3.65E+04 1.31E+08_1 9.35E+10 2.096E+06 582.22 3.65E+04 1.31E+08 9.37E+10 2.099E+06 583.06 3.65E+04 1.31E+08 9.38E+10 2.101 E+06 583.61 3.65E+04 1.31E+08 9.38E+10 2.104E+06 584.44 3.65E+04 1.31E+08 9.39E+10 2.107E+06_

585.28 3.65E+04 1.31E+08 9.41E+10 2.1101+06 586.11 3.65E+04j 1.31E+08 9.42E+10 2.113E+06 586.94 3.65E+04 1.311+08 9.43E+10 2.116E+06 1587.78 3.65E+04 1.31E+08 9.44E+10 2.119E+06 588.61 3.65E+04 1.31E+08 9.45E+10 2.121E+06 589.17 3.64E+04 1.31E+08 9.46E+10 2.124E+06 590.00 3.64E+04 1.31E+08 9.47E+10 2.127E+06 590.83 3.64E+04 1.31E+08 9.45E+10 2.130E+06 591.67 3.64E+04 1.31E+08 9.49E+10 2.133E+06 592.50 3.64E+04 1.31E+08 9.50E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P32 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Total UHS Integrated Time Time Heat Load UHS Heat Heat LOad (seconds) (hours) (Btu/s) Het Load Load.[Ref. P5.1] i +(Btu/h (Btu)2.136E+06 593.33 3.64E+04 1.31E+08 9.51E+10 2.139E+06 594.17 3.64E+04 1.31E+08 952E+10 2.141E+06 594.72 3.64E+04 1.31E+08 9.53E+10 2.144E+06 595.56 3.64E+04 1.31E+08 9.54E+10 2.147E+06 596.39 3.64E+04 1.31E+08 -9.55E+10 2.150E+06 597.22 3.64E+04 1.31E+08 I 9.56E+10 2.153E+06 598.06 3.64E+04 1.31E+08 I 9.57E+10 2.156E+06 598.89 3.64E+04 1.31E+08 L 9.58E+10 2.159E+06 i 599.72 3.64E+04 1.31E+08 9.60E+10 2.161E+06 600.28 3.64E+04 1.31E+08 9.60E+10 2.164E+06 601.11 3.631+04 1.31E+08 9.61E+10 2.167E+06 601.94 3.63E+04 1.31E+08 9.62E+10 2.170E+06 602.78 3.63E+04 1.31E+08 9.64E+10 2.17312+06 603.61 3.63E+04 1.31E+08__l 9.65E+10 2.176E+06 604.44 3.63E+04 1.31E+08 I 9.66E+10 2.178E+06 605.00 3.63E+04 1.31E+08 I 9.66E+10 2.181E+06 605.83 3.63E+04 1.31E+08 9.68E+10 2.184E+06 606.67 3.63E+04 1.31E+08 9.69E+10 2.187E+06 607.50 3.63E+04 1.31E+08 9.70E+10 2.190E+06 608.33 3.63E+04 1.31E+08 9.71E+10 2.193E+06 609.17 3.63E+04 1.31E+08 9.72E+10 2.196E+06 610.00 3.63E+04 1.31E+08 9.73E+10 2.198E+06 610.56 3.63E+04 1.31E+08 9.74E+10 2.201E+06 611.39 3.63E+04 1.31E+08 9.75E+10 2.204E+06 612.22 3.63E+04 1.31E+08 9.76E+10 2.207E+06 613.06 3.62E+04 1.30E+08 9.77E+10 2.210E+06

.613.89 3.62E+04 1.30E+08 9.78E+10 2.213E+06 614.72 3.62E+04 1.30E+08 9.79E+10 2.216E+06 615.56 3.62E+04 i1.30E+08 9.80E+10 2.218E+06 616.11 3.62E+04 1.30E+08 9.81E+10 2.221E+06 616.94 3.62E+04 1.30E+08 9.82E+10 2.224E+06 617.78 3.62E+04 1.30E+08 9.83E+10 2.227E+06 618.61 3.62E+04 1.30E+08 9.84E+10 2.230E+06

!619.44 3.6211+04 1.30E+08J 9.85E+10 2.2E0 61.1 36EI-4 13E0 9.86E+10 2.233E+06 620.28 3.62E+04 1.30E+08 9.86E+10 2.235E+06 620.83 3.62E+04 1.30E+08 9.87E+10 2.238E+06 621.67 3.62E+04 1.30E+08 9.88E+10 2.241E+06 622.50 3.62E+04 1.30E+08 9.89E+10 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P33 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Total UHS Integrated Time Time Heat Load Heat Load UHS Heat (seconds) (hours) (BtU/s) (Btuthr) Load[Ref. P5.1] F (Btu)2.244E+06 623.33 3.62E+04 1.30E+08 9.90E+10 2.247E+06 624.17 3.61 E+04 1.30E+08 9.91E+10 2.250E+06t 625.00 3.61E+04 1.30E+08 9.92E+10 2.253E+06 625.83 3.61E1+04 1.30E+08 9.9412+1 2.255E+06_

626.39 3.61E+04 1.30E+08 1 9.94E+10 2.258E+06 627.22 3.61E+04 1.30E+08 9.95E+10 2.261E+06 628.06 3.61_E+04 1.30E+08 L 9.96E+10 2.264E+06 628.89 3.61E+04-1.30E+08 9.98E+10 2.267E+06 629.72 3.61 E+04 1.30E+08 9.99E+10 2.270E+06 630.56 3.61E+04 1.30E+08 1.00E+11 2.273E+06 631.39 3.61E+04 1.30E+08 .1.00E+11 2.275E+06 631.94 3.61.E+04 1.30E+08 1..E+11 2.278E+06 632.78 3.61E+04 1.30E+08 j 1.00E+11 2.281E+061 633.61 3.61E+04 1.30E+08 1.00E+11 2.284E+061 634.44 3.61E+04 1.30E+08 1.00E+11 2.287E+06 635.28 3.61E+04 1.30E+08 1.01E+11 2.290E+06.

636.11 3.61E+04 1.30E+08 j 1.00E+11 2.292E+061 636.67 3.60E+04 1.30E+08 1.01E+11 2.295E+06 637.50 3.60E+04 1.30E+08 1.01E+11 2.298E+06-!

638.33 3.60E+04 1.30E+08 1.01E+11 2.301E+06 639.17 3.60E+04 1.30E+08 1.01E+11 2.304E+06 640.00 3.60E+04 1.30E+08 1.01E+11 2.307E+06 640.83 3.60E+04 j 1.30E+08 1.01E+11 2.310E+06 641.67 3.60E+04 1.30E+08 1.01E+11 2.312E+06, 642.22 3.60E+04 1.30E+08 1.010E+1 1 2.315E+06 643.06 3.60E+04 1.30E+08 1.02E+11 2.318E+06 643.89 3.60E+04 1.30E+08 1.02E+11 2.321E+06 644.72 3.60E+04 1.29E+08 1.02E+11 2.324E+06 645.56 3.60E+04 1.29E+08 { 1.02E+11 2.327E+06 646.39 3.60E+04 j 1.29E+08 1.02E+11 2.330E+06 647.22 3.60E+04 1.29E+08 1.02E+11 2.332E+06 647.78 3.59E+04 1.29E+08 1.02E+11 2.335E+06 64861 3.59E+04 1.29E+08 1.02E+11 2.338E+06 649.44 3.59E+04 1.29E+08 1.02E+11 2.341E+06 650.28 L3.59E+04 1.29E+08 1.03E+11 2.344E+06 F 651.11 3.59E+04 1.29E+08 1.03E+11 2.347E¢06' 651.94 3.59E+04 1.29E+08 1.03E+11 2.349E+06 652.50 3.59E+04 1.29E+08 1.03E+1 1 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P34 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Total UHS Integrated Time Time Heat Load .oa UHS Heat (seconds) (hours) (Btuls) (Btu/hr) Load... ..... .[R ef. P 5 .1] _. ...._ (B tu)2.352E+06 653.33 3.59E+04 1.29E+08 1.03E+11 2.355E+06 654.17 " 3.59E+04 1.29E+08 1.03E+11 2.358E+06 655.00 3.59E+04 1.29E+08 1.03E+11 2.361E+06 655.83 3.59E+04 1.29E+08 1.03E+11 2.364E+06 656.67 j 3.59E+04 1.29E+08 1.03E+ 11 2.367E+06 657.50 3.59E+04 1.29E+08 1.03E+11 2.369E+06 658.06 3.59E+04 1.29E+08 1.04E+11 2.372E+06 658.89 3.59E+04 1.29E+08 1.04E+11 2.375E+06 659.72 3.58E+04 1.29E+08 1.04E+11 2.378E+06 1660.56 3.58 -E+04 1 -.29E+08___

104E+1 1 2.381E+06 661.39 3.58E+04 1.29E+08 1.04E+11 2.384E+06 662.22 3.58E+04 1.29E+08 1.04E+11 2.387E+06 663.06 3.58E+04 1.29E+08 1.04E+11 2.389E+06 663.61 3.58E+04 1.29E+08 1.04E+11 2.392E+06 664.44 3.58E+04 1.29E+08 1.04E+11 2.395E+06 665.28 3.58E+04 1.29E+08 1.04E+ 11 2.398E+06 666.11 3.58E+04 1.29E+08 1.05E+11 2.401E+06 666.94 3.58E+04 1.29E+08 1.05E+11 2.404E+06 667.78 3.58E+04 1.29E+08 1.05E+11 2.407E+06 668.61 3.58E+04 1.29E+08 1.05E+11 2.409E+06 669.17 3.58E+04 1.29E+08 1.05E+11 2.412E+06 670.00 3.58E+04 1.29E+08 1.05E+11 2.415E+06 670.83 3.58E+04 1.29E+08 1.051+11 2.418E+06 671.67 3.58E+04 1.29E+08 1.05E+11 2.421E+06, 672.50 j 3.57E+04 1.29E+08 1.05E+11 2.424E+06 673.33 3.57E+04 1.29E+08 1.06E+11 2.426E+06 1673.89 3.57+04 1.29E+08 1.06E1+11 2.429E+06 674.72 3.57E+04 1.29E+08 1.06E+11 2.432E+06 675.56 3.57E+04 1.29E+08 1.06E+11 2.435E+06 676.39 3.57E+04 1.29E+08 1.06E+ 11 2.438E+06 677.22 3.57E+04 1. 29E+08 1.06E+11 2.441E+067 678.06 3.57E+04 1.29E+08 1.06E+11 2.444E+06 678.89 3.57E+04 1.28E+08 1.06E+ 11 2.446E+06 679.44 3.57E+04 1.28E+08 1.06E+11 2.449E+06 680.28 3.57E+04 1.28E+08 1.06E+11 2.452E+06 681.11 3.57E+04 1.28E+08 1.07E+11 2.455E+06 681.94 3.57E+04 1.28E+08 1.07E+11 2.458E+06 682.78 3.57E+04 1.28E+08 1.07E+ 11 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P35 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS Integrated Time Time Heat Load toad UHS Heat (seconds) (hours) (Btuls) Heat Load Load[Ref. P5.1] (Btu/hr) (Btu)2.461E+06 683.61 3.57E+04 1.28E+08 1.07E+11 2.464E+061 684.44 3.57E+04 1.28E+08 1.07E+11 2.466E+06 685.00 3.56E+04 1.28E+08 1.07E+11 2.469E+06]

685.83 3.56E+04 1.28E+08 1.07E+1 1 2.472E+06 686.67 3.56E+04 1.28E+08 1.07E+11 2.475E+06 687.50 3.56E+04 1.28E+08 1.07E+ 11 2.478E+061688.3313.56E+04 1.28E+08 2.481E+06 689.17 3.56E+04 I 1.28E+08 1.08E+11 2.483E+06j 689.72 3.56E+04 I 1.28E+08 1.08E+11 2.486E+06 690.56 3.56E+04 i1.28E+08 1.08E+11 2.489E+06 691.39 3.56E+04 1.28E+08 1.08E+1 1 2.492E+06 692.22 3.56E+04 1.28E+08 1.08E+ 11 2.495E+06 693.06 3.56E+04 1.28E+08 1.08E+ 11 2.495E+06 693.89 3.56E+04 1.28E+08 1.08E+11 2.498+06 693.89 3.56E+04 1.28E+08 1.08E+11 2.501E+06 694.72 3.56E+04 I 1.28E+08 1.08E+ 11 2.503E+06 F 695.28 3.56E+04 1.28E+08 1.08E+ 11 2.506E+06 696.11 3.56E+04 1.28E+08 1.08E+ 11 2.509E+06 696.94 3.56E+04 1.28E+08 1.09E+ 11 2.512E+06 697.78 3.55E+04 1.28E+08 1.09E+11 2.515E+06 698.61 3.55E+04 1.28E+08 1.09E+11 2.518E+06 699.44 3.55E+04 1.28E+08 1.09E+11 2.5218E+06 699.44 3.55E+04 I1.28E+08 1.0911+11 2.521E+06 700.28 3.55E+04 1.28E+08 1.09E+11 2.526E+06 700.83 3.55E+04 1.28E+08 1.09E+11 2.529E+06 701.67 3.55E+04 1.28E+08 1.09E+11 2.532E+06 702.50 3.55E+04 1.28E+08J 1.09E+11 2.535E+06 703.33 3.55E+04 1.28E+08 1.09E+11 2.538E+06 705.17 3.55E+04 1.28E+08 1.0E+11 2.513E+06 705.00 3.55E+04 1.28E+08 1.10E+11 2.543E+06 705.6 I 3.55E+04 1.28E+08 1.10E+11 2.546E+06 706.39 3.55E+04 1.28E+08 1.10E+11 2.549E+06 707.22 3.55E+04 1 .28E+I08 1.10E+ 11 2.552E+06 708.89 1 3.55E+04 1.28E+08 1.10E+11 2.555E+06 709.72 3.55E+04-1.28E+08 1 1.10E+11 2.558E+06-i 710.56 _j.5 4 E+0 4 1.28E+08 1.10E+11 2.560E+06 711.11 3.54E+04 1.28E+08 1.10E+11 2 711.94 3.54E+04 1.28E+08 1.10E+11 2.566E+06 712.78 3.54E+04 1.28E+08 1.1IE+11 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P36 of P58 Appendix P9.1: Integrated UHS Heat Load] i ~Total uHs .Itgae Total UHS Integrated Time Time Heat Load ... UHS Heat (seconds) (hours) (Btu/s) Heat Load Load.. .. .... ..... .[Ref. P5.11 (u r (Btu)2.569E+06 713.61 3.54E+04 1.28E+08 1.11E+11 2.572E+06 714.44 3.54E+04 1.27E+08 1.11E+11 2.575E+06 715.28 3.54E+04 1.27E+08 1.11E+1 1 2.578E+06 716.11 3.54E+04 1.27E+08 1.11E+11 2.580E+06 716.67 3.54E+04 1.27E+08 1.11E+11 2.583E+06 717.50 3.54E+04 1.27E+08 1.11E+11 2.586E+06 718.33 3.54E+04 1.27E+08 1.11E+11 2.589E+06 719.17 3.54E+04 1.27E+08 1.11E+11 2.592E+06 r 720.00 3.54E+04 1.27E+08 1.11E+11 2.595E+06 j 720.83 3.54E+04 1.27E+08 1.12E+11 2.597E+06 721.39 3.54E+04 1.27E+08 1.12E+11 2.600E+06 722.22 3.54E+04 1.27E+08 1.12E+11 2.603E+06 723.06 3.53E+04 1.27E+08 1.12E+11 2.606E+06 723.89 3.53E+04 1.27E+08L 1.12E+11 2.609E+06 724.72 3.53E+04 1.27E+08 1.12E+11 2.612E+06 725.56 3.53E+04 1.27E+08 1.12E+11 2.615E+06 726.39 3.53E+04 1.27E+08 1.12E+11 2.617E+06 726.94 3.53E+04 1.27E+08 1.12E+11 2.620E+06 727.78 3.53E+04 1.27E+08 1.12E+11 2.623E+06 728.61 3.53E+04 1.27E+08 1.13E+11 2.626E+06 729.44 3.53E+04 1.27E+08 1.13E+11 2.629E+06 730.28 3.53E+04 1.27E+08 1.13E+11 2.632E+06 731.11 3.53E+04 j 1.27E+08 1.13E+11 2.635E+06 731.94 3.53E+04 1.27E+08 _ 1.13E+11 2.637E+06 732.50 3.53E+04 1.27E+08 1.13E+11 2.640E+06 733.33 3.53E+04 1.27E+08 1.13E+11 2.643E+06 734.17 3.53E+04 1.27E+08 1.13E+11 2.646E+06 735.00 3.53E+04 1 .27E+08 1.13E+11 2.649E+06 735.83 3.53E+04 1.27E+08 1.13E+11 2.652E+06 736.67 3.53E+04 1.27E+08 1.14E+11 2.655E+06 737.0 3.52E+04 _1.27E+08 1.14E+ 11 2.655E+06 738.50 3.52E+04 1.27E+08 1.14E+11 2.663E+066 738.89 3.52E+04 1.27E+08 -1.14E+11 2.660E+06i 739.72 3.52E+04 1.27E+08 1.14E+11 2.666E+06 1740.56 *3.52E+04 1,27E+08 1.14E+1 1 2.669E+06 741.39 3.52E+04 1.27E+08 1.14E+11 2.672E+06 742.22 3.52E+04 1.27E+08 1.14E+11 2.674E+06 742.78 3.52E+04 1.27E+08 1.14E+11 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P37 of P58 Appendix P9.1: Integrated UHS Heat Load I Total UHS Integrated Time Time Heat Load Total UHS UHS Heat (seconds) (hours) (Btu/s) HeatLoad Load.. [.Ref. P5.1] __ B ) (Btu)2.677E+06 743.61 3.52E+04 1.27E+08 1.14E+11 2.680E+06 744.44 3.52E+04 1.27E+08 1.15E+11 2.683E+06 745.28 3.52E+04 1.27E+08 1.15E+11 2.686E+06 746.11 3.52E+04 1.27E+08 1.15E+11 2.689E+06_

746.94 1 3.52E+04 __1.27E+08

-1.15E+11 2.692E+06 747.78 3.52E+04 1.27E+08 1.15E+11 2.694E+06 748.33 3.52E+04 1.27E+08 1.15E+11 2.697E+06 749.17 i3.52E+04 1.27E+08i 1.15E+11 2.700E+06 750.00 3.52E+04 1.27E+08 1.15E+11 2.703E+06 750.83 3.52E+04 1.27E+08 1.15E-11 2.706E+06 751.67 3.52E+04 1.27E+08 T1.15E+11 2.709E+06 752.50 3.52E+04 1.27E+08 71.16E+111 2.712E+06 753.33 3.52E+04 1.27E+08 1.16E+11 2.714E+06 753.89 3.51E+04 1.27E+08 1.16E+11 2.717E+06 754.72 3.51E+04 1.27E+08 1.16E+11 2.720E+06 755.56 3.51E+04 1.26E+08 1.16E+11 2.723E+06 756.39 3.51 E+04 1.26E+08 1.16E+11 2.726E+06 757.22 3.51E+04 1.26E+08 1.16E+11 2.729E+06 758.06 3.51E+04 1.26E+08 1.16E+11 2.731E+06 758.61 3.51 E+04 1.26E+08 1 1.16E+11 2.734E+06 759.44 3.51E+04 1.26E+08 1.16E+11 2.737E+06 760.28 3.51_E+04 1.26E+08 1.17E+11 2.740E+06t 761.11 3.51E+04 1.26E+08 1.17E+11 2.743E+06 761.94 3.51E+04 1.26E+08 11.17E+11 2.746E+06 762.78 3.51E+04 1.26E+08 1.17E+11 2.749E+06 763.61 3.51E+04 1.26E+08 1.17E+11 2.751E+06 764.17 3.51E+04 1.26E+08 1.17E+11 2.754E+06

.765.00 3.51E+04 1.26E+08 1.17E+11 2.757E+06 765.83 3.51E+04 T 1.26E+08 1.17E+11 2.760E+06 766.678 3.51E+04 I 1.26E+08 1.17E+11 2.763E+06 767.50 3.51E+04 1.26E+08 1.17E+11 2.766E+06 768.33 3.51 E+04 i1.26E+08 1.18E+11 2.769E+06 769.17 3.51E+04 1.26E+08 1.18E+11 2.771E+06 769.72 3.50E+04 1.26E+08 + 1.18E+11 2.774E+06 770.56 3.50E+04 1.26E+08 1.18E+11 2.777E+06 771.39 3.50E+04 1.26E+08 1.18E+11 2.780E+06 772.22 3.5011+04 1.2611+08 1.18E-11 2.783E+06 773.06 3.50E+04 1.26E+08 1.18E+11 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P38 of P58 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P38 of P58 Appendix P9.1: Integrated UHS Heat Load Total UHS TotalUHS Integrated Time Time Heat Load Total UHS Heat (seconds) (hours) (Btuls) Heat LOad Load[Ref. P5.1] (Btu,-r) (Btu)2.786E+06 773.89 j 3.50E+04 1.26E+08 1.18E+11 2.788E+06 774.44 3.50E+04 1.26E+08 1.18E+11 2.791E+06 775.28 3.50E+04 j 1.26E+08 1.18E+11 2.794E+06 776.11 3.50E+04 1.26E+08 1.19E+11 2.797E+06 776.94 3.50E+04 1.26E+08 1.19E+11 2.800E+06 777.78 3.50E+04 1.26E+08 1.19E+11 2.803E+06j 778.61 3.50E+04 "1.26E+08 1.19E+11 2.806E+06 779.44 3.50E+04 1.26E+08 1.19E+11 2.808E+06 780.00 3.50E+04 1.26E+08 1.19E+11 2.811E+06 780.83[ 3.50E+04 i.26E+O8 j_.19E+11 2.814E+06 781.67 3.50E+04 1.26E+08 1.19E+11 2.817E+06 782.50 3.50E+04 1.26E+08 ' 1.19E+11 2.820E+06 783.33 3.50E+04 1.26E+08 1.19E+11 2.823E+06 784.17 1 3.50E+04 1.26E+08 120E+11 2.826E+06 785.00 3.49E+04 1.26E+08 1.20E+11 2.828E+06 785.56 3.49E+04 1.26E+08 1.20E+11 2.831E+06 786.39 3.49E+04 1.26E+08 1.20E+11 2.834E+06 787.22 3.49E+04 1.26E+08 J 1.20E+11 2.837E+06 788.06 3.49E_+_04 1.2_6E+08 1_20+11_2.840E+06 788.89 3.49E+04 1.26E+08 1.20E+11 2.843E+06 789.72 3.49E+04 1.26E+08 I 1.20E+11 2.845E+06 790.28 $ 3.49E+04 1 .26E+08 1.20E+11 2.848E+06 791.11 --3.49E+04 1.26E+08 1.20E+11 2.851E+061 791.94 3.49E+04 1.26E+08 1.21E+11 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P39 of P58 Appendix P9.2: Plant Temperature Rise Results Heat Rate Starting Ending Integrated per Plant Time Time UHS Heat Te Temperature (hr) (hr) (cfs) Load (BTU) Tihrstep Rise (*F)(hr) (hr) -____0 1 65.3 3.78E+08 13.78E+08 25.95 1 2 65.3 8.46E+08 4.68E+08 32.20 2 3 65.3 1.36E+09 5.11E+08 35.16 3 -4 65.3 --- 1.88E+09 5.21E+08 35.80-- !4 1 5 65.3 2.25E+09 3.69E+08 25.36 5 .6 1 65.3 2.57E+09 i 3.26E+08 22.43 6 1 7 .65.3 2.88E+09 3.09E+081 21.26 7 8 65.3 3.18E+09 2.96E+08 r 20.32 8 9 65.3 3.46E+09 2.82E+08 19.39 9 10 65.3 3.73E+09 2.70E+08 18.57 10 11 6 3.99E+09 2.61E+08 17.96 11 2 65.3 4.24E+09 2.54E+08 17.45 12 13 65.3 4.49E+09 2.47E+08 16.98 13 14 65.3 4.73E+09 2.42E+08 16.64 14 15 65.3 4.97E+09 2.38E+08 16.35 15 16 65.3 5.21E+09 2.35E+08 16.17 16 17 86.0 5.63E+09 4.27E+08 22.29 17 1 18 86.0 6.OOE+09 3.69E+08 19.27 18 19 86.0 6.33E+09 3.28E+08 17.13 19 20 86.0 6.63E+09 2.99E+08 I 15.60 20 21 86.0 6.91E+09 2.77E+08 14.46 21 22 86.0 7.17E+09 2.64E+08I 13.79 22 23 86.0 7.43E+09 2.57E+08 13.42 23 .24 86.0 7.68E+09 2.53E+08 13.22 24 25 -- 86.0 1-7.93E+09-!

2.50E+08-

--13.05----- 26 86.0 I 8.18E+09 2.45E+08 I-12.80 261 277 86.0 8.42E+09 2.40E+08 12.52 27 28 86.0 8.65E+09 2.35E+08 -12.27 28 I 29 86.0 8.88E+09 1 2.32E+08 1 12.10 29 30 86.0 9.11E+09 2.30E+08 11.98 30 I 31_ 86.0 _ 9.34E+09 _ 2.28E+08-11.88 31 1 32 86.0 -9.57E+09 12.26E+08 11.79 32 I 33 -86.0 9.79E+09 2.24E+08 i 11.71 331 34 86.0 1.OOE+10 2.23E+08 I 11.65 34 !- 35 _ 86.0 J 1.02E+10 2.22E+081 11.58 ,_ 35J_ 36 ...86.0 _ 1.05E+10 2.21 E+08t __11.51 ...-_36 37 86.0 1.07E+10 I 2.19E+08J-11.45_37 -_ 38 86.0 j_1009E+10 2.18E+08 11.39 38 39 86.0 1.11E+10 L_217E+08 11.33 39 -40 86.0 1.13E+10 l 2.16E+08 11.27_i 40 41 86.0 1.15E+10 2.15E+081 11.21 41 42 86.0 1.18E+10-2.14E+8 11.16 42 143 j 86.0 1.20E+10 2.13E+08 11.10 43 44 86.0 1.22E+10 2.12E+08 11.04 44 45 86.0 1.24E+10 I 2.11E+08 __ 10.99 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P40 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Time (hr)45 46 .-47_ j 48 1 49-j 50 51 52 53 54 Ending IntegratedI Heat Rate Plant Time Flow Rate UHS Heat per Temperature (hr) (cfs) ep Rise (°F)()Load(BTU) e(BTU/hr)46 86.0 i 1.26E+10 2.10E+08 10.94 47 L 86.0 j 1.28E+10 2.09E+08 1 0.8 9 [48 -86.0 I 1.30E '+10 2.08E+08 ! 10.84 49 -J 86.0 1.32E+10 2.07E+08 10.79 50 86.0 1.34E+10 2.06E+08 10.75 51 86.0 1.36E+10 2.05E+08 10.71 52 86.0 1.38E+10 2.05E+08 10.68 53 86.0 f 1.40E+10CI 2.04E+08 10.64 54 86.0 1.42E+10 2.03E+08 10.60 55 86.0 f 1.44E+10 2.02E+08 10.56 55 56 86.0 1.46E+10 2.02E+08 10.53 56 57 86.0 1.49E+10 2.01E+08 I 10.49 57 --58 86.0 1.51E+10 I 2.OOE+08 I 10.46 58 59 86.0 1.53E+10 2.OOE+08 10.42 59 60 86.0 1.54E+10 1.99E+08 f 10.39 60 61 86.0 1.56E+10 1.98E+08 10.35 61 -62 86.0 1.58E+10 1.98E+08 10.32 62 63 86.0 1.60E+10 1.97E+08 10.29 63 64 86.0 1.62E+10 1.96E+08 10.25 64 65 86.0 1.64E+10 I 1.96E+08 10.22 65 66 86.0 1.66E+10 I 1.95E+08 10.19 66 67 86.0 1.68E+10 1.95E+08 10.15 67 68-- 86.0 _ 1.70E+10 1.94E+08 10.12 68 69 86.0 , 1.72E+10 1.93E+08 10.09__69 I__ 70 86.0 1.74E+1i_01-_

1.93E+08 _l 10.06 70 71 I 86.0 1.76E+10 _ 1.92E+08 10.02I-71 .1 72 .86.0 1.78E+10 1.91E+08 9.99 72 73 86.0 1.80E+10 1.95E+08 10.18 73 J 74 i 86.0 -1.82E+10 1.99E+081 10.41 74 75 86.0 1.84E+10 1.96E+08 10.25 75 ------76--- 86.0 1.86E+10 1.93E+08 10.10 76 77 I 86.0 1.88E+10 1.91E+08 I 9.99 77 78 -86.0 1.90E+10 1.90E+08I 9.91 78 79 86.0 11.91E+10 6_1.89E+08 9.86 79 1 80 86.0 1.93E+10 1.88E+08I 9.82 80--r 81 86.0 I.95E+10 1.87E+087-9.79 1 81 j18 2 86.0 1.97E+10 1.87E+08 9.75 82 I 83 1 86.0 1.99E+10 1.86E+08 _ 9.73 83 84 1 86.0 2.01E+10 1.86E+08 9.70 i 84 85 p 86.0 2.03E+10 1.85E+08 9.67 85 86 86.0 2.04E+10 1.85E+08 9.65 86 -87 86.0 1 2.06E+10 1.84E+08 9.62 87 88 86.0 -2.08E+10 1 1.84E+08 9.60________-

--I--88 89 86.0 2.1E+10 1.83E+08 9.58 89 90 86.0 2.12E+10 ; 1.83E+08J--

9.55 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P41 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Endin Integrated Heat Rate Plant Time Time UHS Heat per Temperature (hr) (hr) (cfs) Load (BTU) TimesteP Rise (°F)(BTU/hr)90 91 86.0 2.14E+10 1.83E+08 9.53 91

  • 92 F 86.0 2.15E+l1 1.82E+08 9.51 92 j 93 86.0 2.17E+10 1.82E+08 9.48 93 F94F 86.0 2.19E+10 1.81E+08 9.46 9 95 86.0 2.21E+10 1.81E+08 9.43 95 L 96 F 86.0 2.23E+10 1.80E+08 9.41 96 I 97-1 86.0 2.25E+10 1.80E+08 9.39 97 j 98 86.0 2.26E+10 1.79E+08 9.37 98! 99 86.0 2.28E+10 1.79E+08 9.35 99 100 86.0 2.30E+10 1.79E+08 9.33 100 101 [ 86.0 2.32E+10 1.78E+08 9.31 101 102 86.0 2.33E+10 1.78E+08 9.30 102 103 86.0 2.35E+10 1.78E+08 9.28 103 104 86.0 2.37E+10 1.77E+08 9.26 104 1 105 86.0 2.39E+10 1.77E+08 9.24 105 1 106 86.0 2.41E+10 1.77E+08 9.22 106 107 86.0 2.42E+10 1.76E+08 9.21 107 108 86.0 2.44E+10i.

1.76E+08 9.19 108 F 109 86.0 2.46E+10 -1.76E+081 9.17 109_1 110 86.0 I_2.48E+10 1 1.75E+08 9.15 110 111 86.0 F 2.49E+10 1.75E+08 9.13 111 112 86.0 _2.51E+10 1.75E+08 9.11 112 113 86.0 2.53E+10 1.74E+08 9.10 113 114 86.0 2.55E+10 1.74E+08 9.08 114 115 86.0 2.56E+10 1.74E+08 9.07 115 116 86.0 _j 2.58E+10 1.73E+08 9.05_116 117 1-86.0-' 2.60E+10 1.73E+08 9.03 117 118 F 86.0 2.61E+10 1.73E+08 9.01 118 119 86.0 2.63E+10 1.72E+08 9.00 119 120 86.0 J 2.65E+10 1.72E+08 8.98 120 121 86.0 -2.67E+10--, 1.78E+08 9.27 121 122 86.0 12.69E+10 1.90E+08 9.93 122 F 123 86.0 F 2.70E+10 _ 1.87E+08 F1 9.76 123 124 86.0 j 2.72E+10 1.81E+08 9.43 124 125 86.0 F 2.74E+10 1.77E+08 9.23 125 126 86.0 2.76E+10 1.745+08 9.10 126 F 127 86.0 2.78E+10 1.73E+08 9.01 127 .F 128 86.0 2.79E+10 1.71E+08 8.95 128 129 86.0 2.81E+10j1.1+08 8.91 129 130 86.0 2.84E+10 1.70E+08 8.8910 130 131 86.0 2.84E+10 1.70E+08 8.86 1312 132 86.0 2.86E+10 1.69E+08 8.84 132! 133fl 86.0 F2.88E+10 1.69E+08 8.82 133 134 86.0 2.89E+10 1.69E+08 8.81 134 F 135 86.0 2.91E+10 1.68E+08 8.79 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P42 of P58 Appendix P9.2: Plant Temperature Rise Results Startingi Ending Integrated Heat e Plant Time 1 Time flo UHS Heat Temperature (hr) (hr) Load (BTU) Timestep Temprtr t (BTU/sr) Rise (0 F)(BTU/hr)1351136 86.0 i 2.93E+10 1.68E+08 8.78 136 137 86.0 2.94E+10 1.68E+08 8.76 137 138 86.0 2.96E+10 1.68E+08 8.75 1381 139 86.0 2.98E+10 1.67E+08-8.74 139 1 140 86.0 2.99E+10I 1.67E+08 8.72 140 141 86.0 3.01E+10 1.67E+08 8.71 1 141 142 86.0 3.03E+10 1.67E+08 8.70 142 143 86.0 3.04E+10 1.66E+08_

8.68 143 144 86.0 3.06E+10 1.66E+08 8.67 144J 145 86.0 3.08E+10 1.83E+08 9.55 145 146 86.0 3.10E+10 2.07E+08 10.82 1461 147 86.0 3.12E+10 1.97E+08 10.28 147 1 148 86.0 3.14E+10I 1.85E+08 9.65 148 l 149 86.0 3.16E+10 1.77E+08 9.26 149 150 86.0 3.17E+10 1.72E+08 8.98 150 151 86.0 3.19E+ iL[1.69E+08 8.83 , 151 i 152 86.0 3.21E+10 I 1.67E+08 8.73 152 I 153 86.0 ,-3.22E+10 1.66E+08 8.67 153_ 154! 86.0 3.24_E+10 1.65E+08 8.62 154._ 155 86.0 3.26E+10 1.64E+08 8.59 155 156 j 86.0 3.27E+10 -1.64E+08 I 8.56 156 157__ 86.0 3.29E+10 1.64E+08 1 8.54 157-- 158 86.0 3.31E+10 1.63E+08 8.52 158 159 86.0 3.32E+10-i 1.63E+08 8.51 I 159 160 86.0 3.34E+10 I1.63E+081 8.50-- 160 161-1 86.0 3.35E+10I_1.63E+08

-8.48 161 __162 86.0 3.37E+10 1.62E+08 8.47 162 163 86.0 3.39E+10 1.62E+08 8.46 163-I 164 86.0 3.40E+10 1.62E+08 r 8.45 164 165 86.0 3.42E+10 1.62E+08 8.44 165 166 86.0 1 3.44E+10 1.61E+08 8.43 166 167 86.0 3.45E+10 1.61E+08 8.41 167 168 86.0 3.47E+10 1.61E+08 8.40 168 169 86.0 73.48E+10 1.61E+08I 8.39 169 170 86.0 3.50E+10 1.61E+08 j 8.38 _170 171 86.0 3.52E+10 1.60E+08 838172 86.0 3.53E+10 1.60E+08 8.37 172 173 86.0 3.55E+101 1.60E+08 8.36 173 174 86.0 3.56E+10 1.60E+08 8.35 174 175 86.0 .358E+10 1,60E+08 8.34 175 176 -86.0 __ .3.60E+10 1.60E+08 8.33 176 177 86.0 3.61E+10 1.60E+08 8.33 177 178 86.0 3.63E+10 1.59E+08-8.32 178 179 86.0 3.64E+10 1.59E+08 8.31 179 180O 86.0 3.66E+10 1.59E+08 8.30 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P43 of P58 Appendix P9.2: Plant Temperature Rise Results Startingi Ending Flow Rate Integrated Heat Rate Plant Time Time UHS Heat per Temperature (h)I (hr)) Lod ,U Timestep, (hrTU(crs)Rise

(°F)180) 181hr)Load (BTU) (BTU/hr) Rise 8 180 181 86.0 3.68E+10 1.59E+08 8.29 181 182 86.0 3.69E+10 1.59E+08 I 8.29 182 183 86.0 3.71E+10 1.59E+08 I 8.28 183 184 86.0 3.72E+10 1.58E+08 .8.27 14 185 86.0 __ 3.745_+1_0.

_ 1.58E +08 _j 8...826 ..185 186 86.0 3.75E+10 1.58E+08I 8.25 186 187 86.0 3.77E+10 1.58E+08 L 8.24 187 188 86.0 3.79E+10 1.58E+08 8.24 188 189 86.0 3.80E+10 1.58E+08 8.23 189 190 86.0 3.82E+10 1.57E+08 8.22 190 191 86.0 3.83E+10 1.57E+08-8.21 191 192 86.0-_-- 3.85E+10 1.57E+08 8.20 192 193 86.0 3.86E+10 1.57E+08 I 8.20-193] 194 86.0 3.88E+10 1.57E+08 8.19 1941 195 [ 86.0 3.90E+10 [ 1.57E+08 8.18 195 196 86.0 3.91E+10 1.57E+08 8.17 196 197 86.0 3.93E+10 1.56E+08 8.17 197 j 198 I 86.0 3.94E+10I 1.56E+08 8.16 198 199 86.0 3.96E+10 1.56E+08 8.15 199 200 86.0 3.97E+10 1.56E+08 I 8.14 200 201 86.0 3.99E+10 1.56E+08 8.14 201 202 86.0 __ 4.01E+10 1.56E+08 8.13 202 j 203 86.0 4.02E+10 1.56E+08 8.12 203 1204 86.0 1 4.04E+10 j 1.55E+08 8.11 204_ ',_ 205 .... 86.0_ _I__4.05E+10 1.55E+08 8.11 205 206 I 86.0 4.07E+10 1.55E+08 8.10 206 207 86.0 4.08E+10 1.55E+08!

8.09 207 I 208 86.0 4.10E+10 1.55E+08 8.08 208 209 86.0 4.11E+10 1.55E+08 l 8.08 209 .210 86.0 4.13E+10 1.55E+08l 8.07 2101 211 86.0 4.14E+10 1.54E+08 I 8.06 211 212 86.0 -4.16E+10 1.54E+08!

8.05 212 213 86.0 4.18E+10 1.54E+08 8.05 213 I 214 86.0 .1 4.19E+10 1.54E+08 j 8.04 214 1 215 j 86.0 I 4.21E+10 I 1.54E+08 8.03_215 [ 216 .86.0 4.22E+10 1.54E+_08 8.02 216 217 .86.0 4.24E+10 I1.54E+08 8.02 217 218 .86.06- 4.25E+10I 1.53E+084_

891_218 219 86.0 4.27E+10 1.53E+08_

8.00__219 220 86.0 -4.28E+ 10 1.53E+08 8.00 220 221 86.0 I 4.30E+10 1.53E+08 7.99 221 -222 ' 86.0 .1- 4.31E+10 1.53E+08 G- 7.98 222 1- 223 86.0 4.33E+10 I 1.-3-E+08-7.98 223 224 86.0 4.34E+10-1.53E+08 7.97 224 225 86.0 4.36E+10 1.53E+08 7.96 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P44 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Ending Integrated Heat Rate Plant Flow Rate per Temperature Time Time (cfs) UHS Heat Timestep Rise (°F)r) (hr) Load (BTU) (BTU/hr) R 225 I 226 j 8 6.0 4.37E+10i 1.52E+08 7.96 226 L2271 86.0 4.39E+10 1.52E+08 7.95 227 228 286.0 4.41E+10 1.52E+08 .- .7.95 228 _229 86.0 4.42E+10 1.52E+08 7.94-229 230 -86.0 4.44E+10 [ 1.52E+08 7.93 230 231 86.0 4.45E+10 1.52E+08 7.93 231 232 I 86.0 4.47E+10 1.52E+08 -7.92 232 233 86.0 4.48E+10 1.52E+08[

7.92 233 234 86.0 4.50E+10 1.52E+08 7.91 234 235 86.0 4.51E+10 1.51E+08 7.91 235f 236 86.0 4.53E+10 1.51E+08 7.90 236 237 2- 86.0 4.54E+10 1.51E+08 7.90 237 238 86.0 4.56E+10 1. 1E+08i 7.89 238 239 I 86.0 4.57E+10 1.51E+08 7.88 239 240 86.0 4.59E+10 1.51 E+08 7.88 240 241 86.0 4.60E+10 1.51E+08 7.87 241 242 I 86.0 4.62E+10 1.51E+081 7.87 242 243 86.0 4.63E+10 1.51E+08 7.86 243 244 I 86.0 4.65E+10 1.51E+08 7.86 244 245 86.0 4.66E+10 1 1.50E+081-7.85 245 _246 86.0 4.68E+10 1.50E+08 I 7.85 246 247 86.0 4.69E+10 1.50E+08 1 7.84 247 248 86.0 .4.71E+10 ! 1.50E+081 7.84 248 249 86.0 4.72E+10 1.50E+08I 7.83 249 250 86.0 4.74E+10 1.50E+08 7.83 250 251 86.0

  • 4.75E+10 1.50E+08 7.82 251 252 86.0 4.77E+10 1.50E+08
  • 7.82 252 253 86.0 4.78E+10 1.50E+08 [ 7.81 253 254j 86.0 4.80E+10 1.50E+08 7.81 254 255 1 86.0 I 4.81E+10 I 1.49E+08 7.80 255 256 .86.0 4.83E+10 1.49E+08 -7.80 256 I 257 I 86.0 4.84E+10 1.49E+08 I 7.79 257 I 258 1 86.0 I 4.86E+10 I 1.49E+08 I 7.79 258 259 1 86.0 4.87E+10 j 1.49E+08 7.78 259 I 260 86.0 4.89E+10 1.49E+081 7.78 260 261 86.0 4.90E+10 1.49E+08 7.77 261 262 86.0 -4.92E+1-0--

1., 49E+08 7.-77-262_ 263 86.0 1 4.93E+10 11.49E+08 j 7.76 263 264 86.0 1 4.95E+10 1.49E+08 _ 7.76 264 1 265 86.0 4.96E+10 1.481E+08_

7.75 2 6 5 266 8 6.0 j 4.98E+10 1.48E+08 7.75 266 267 86.0 1 4.99E+10 1.48E+08 7.74 267 268 86.0 5.01E+10 1.48E+08 7.74 268 269-I 86.0 5.02E+10 1.48E+08 7.73 269 270 86.0 5.04E+10_,1.48E+08 7.73 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P45 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Ending Integrated Heat Rate Plant Ti EnTime FowRt UHS Heat per Pan T Time Times Temperature (hr) (hr) Load (BTU) (BTUihr) Rise (*F)270 271 86.0 15.05E+10 1.48E+08 r 7.72 271 272 86.0 5.07E+10 1.48E+08 7.72 2721 273 86.0 5.08E+101.

1.48E+08 7.71 273 274 86.0.---j-09E+10-;

._ 1.48E+08 .1 7..71 274 1 275 r 86.0_ ! 5.11E+10 1.48E+08.!

7.70 S275 1276 86.0 5.12E+10 1.47E+08L 7.70 276: 277 86.0 5.14E+10 1.47E+08 7.69 277 278 86.0 -_5.15E+10 L 1.47E+08 7.69 278 279 86.0 5.17E+10L 1.47E+08 7.69 279j 280 86.0 I 5.18E+10 1.47E+08 7.68 280 281 86.0 5.20E+10 1.47E+08 I 7.68 281 282 86.0 5.21E+10 1.47E+08 7.67 282 _._283 86.0 5.23E+10 1.47E+08 7.67 283 1284 86.0 5.24E+10 1.47E+081 7.67 284 285 86.0 5.26E+10 1.47E+08 7.66 285 286 86.0 5.27E+10 1.47E+08 7.66 286 287 86.0 5.29E+10 1.47E+08 7.65_287 288 j 86.0 5.30E+10 1.47E+08 7.65 288 289 86.0 5.32E+10 1.46E+08 7.65 289 290 86.0 -__5.33E+10 1.46E+08 7.64 290 291_! 86.0 5.34E+10 J 1.46E+08 7.64 291 292 86.0 5.36E+10 1.46E+08.

763 292 293 86.0 5.37E+10 1.46E+08 7.63 I 294 I 86.0 5.391E+10 1.46E+08 7.63 294 295 _ 86.0 5.40E+10 1.46E+08 7.62 295 296 86.0 5.42E+10 1.46E+08 7.62 1 296 297 86.0 5.43E+10 1.46E+08 7.62 297 298 86.0 5.45E+10 1.46E+08 7.61 298 299 86.0 5.46E+10 1.46E+08 7.61 299 300 86.0 5.48E+10 1.46E+08 7.61 300 301 86.0 5.49E+ 1 _ 1.4_6_E+08 7.60 301 302 I 86.0__ 5.50E+10 1_.46E+08 7.60 302 303 86.0 .5.52E+10 1.45E+08 _7.59 303 304 86.0 5.53E+10 1.45E+08 I 7.59 304 305 86.0 5.55E+10 1.45E+08 7.59-3 66 8 86-.0 -i5-56-E+10-1-1.4-5E&N-1

-7.5-8 305J 307 86.0 5.58E+10 1.45E+08I 7.58 307 308 86.0 5.59E+10 1.45E+08 7.58 308 309 86.0 5.61E+10 [ 1.45E+08 7.57=309 t- 310 86.0 5.62E+10 1.45E+08 I 7.57 310 311 86.0 5.64E+10 1.45E+08_

7.57 311 312 86.0 5.65E+10 1.45E+08 7.56 312 __ 313 86.0 15.66E+10 1.45E+08 7.56 313 1 314 86.0 5.68E+10 1.45E+08 i 7.55 314 F 315 86.0 5.69E+10 .1.45E+08 1 7.55 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P46 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Ending Integrated Heat Rate Plant Flow Rate per Time Time UHS Heat step Temperature (hr) (hr) Load (BTU) I(BTUehr)

Rise (F)315 1 316 _. 86.0 5.71E+10 1.45E+08t 7.55 316 _317 86.0 5.72E+10 1.45E+081 7.54 317 318 86.0 5.74E+10 1.44E+08 7.54 .318 319 86.0 5.75E+10' 1.44E+08 I 7.54 319 ! 320 86.0 5.77E+10I 1.44E+08 7.53 320I 321 86.0 5.78E+10 1.44E+08 ] 7.53 321 322 86.0 5.79E+10.;

1.44E+08 7.53 322- 323 86.0 _L5.81E+10 1.44E+08 7.52 323 ] 324 86.0 5.82E+10 1.44E+08 7.52 324 325 86.0 5.84E+10 1.44E+08 7.52 325 326 86.0 5.85E+10 [1.44E+08 7.51 326 I 327 86.0 1 5.87E+10 F 1.44E+08 7.51 327 I 328 86.0 5.88E+10 I 1.44E+08 7.51 328 329 86.0 5.90E+10 I 1.44E+08__

7.50 329 330 86.0 5.91E+10 I 1.44E+08 7.50 330 331 86.0 5.92E+10 1.44E+08 7.49 331_I1332 I 86.0 5.94E+10 I 1.44E+08 7.49 332 1 333 86.0 5.95E+10 I 1.43E+08 7.49 333[334 86.0 1 5.97E+10 .j 1.43E+08 .7.48 334 335 86.0 5.98E+10 1.43E+08 I 7.48 35 336 86. I6.00E+19 14E+8 7.48 -336 337 86.0 6.01E+10 1.43E+08 7.47 -337 338 86.0 6.02E+10+

1.43E+08 I 7.47 338 I 339 i 86.0 '_ 6.04E+10 1.43E+08.__1

--- 7.47 339 340 j 86.0 .6.05E+10 1.43E+08 I 7.46 340 I 341 i. 86.0 6.07E+10 ! 1.43E+08 -7.46 341 342 .. 86.0 6.08E+10i 1.43E+08 7.46 342 I 343_ 86-0 6-10E+10 1.43E+08 7 745 343 3 .86.0 6.11E+10 .43+08 7.45 344 I 345 86.0 6.12E+10 I 1.43E+08 7.45-345 346 I 86.0 1 6.14E+10 1.43E+08j 7.44 346 347 -86.0 6.15E+10 1.43E+08 7.44 347 I 348 86.0 6.17E+10 i1.42E+08 I 7.44;348 349 86.0 6.18E+10 1.42E+08 7.43 349 1 350 86.0 6.20E+10 1.42E+08 7.43 350 351 86.0 6.21E+10 1.42E+08 __7.43 351 352 86.0 I 6.22E+10I 1.42E+08 7.42 352 353 86.0 6.24E+10 1.42E+08 7.42 353 354 86.0 6.25E+10 1.42E+08 7.42" 354 i9 355 8 6.0 6.27E+10_[

1.42E+08 7.41 355 356 --86.0 -6.28E+10 0 1.42E+08-7.41-356 357 86.0 6.29E+10_1.42E+08 7.41 357 358 I 86.0 6.31E+10 L 1.42E+087 7.40 358 359 86.0 6.32E+10 1.42E+08 7.40 _359 360 86.0 6.34E+10 [ 1.42E+08 7.40 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P47 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Ending Integrated Heat Rate Plant EnigFlow Rate per Pln Time Time I Flow UHS HeatR Integra Temperature (hr) (hr) (cfs) Tietp Rie(F Load (BTU) TUimerte (h) (r La(T (BTU/hr) Rise (°F)360 361 86.0 6.35E+10 1.42E+08 7.39 361 J 362 j 86.0 6.37E+10 1.42E+08 7.39 362 363 86_.0_ J. 6.38E+10__:

1.42E+08 7.39-363 364 86.0 6.39E+10 1.41E+08 _7.38 364 365 86.0 6.41E+10 1.41E+08 7.38 365 : 366 86.0 6.42E+10-1.41E+08 7.38 366 367 86.0 6.44E+10 1.41E+08 7.37 367 _ 368 86.0 6.45E+101 1.41E+08 7.37 368 369 86.0 6.46E+10 1.41E+08 7.37 369 370 86.0 6.48E+10 1.41E+08 7.36 370 371 86.0 6.49E+10 1.41E+08 7.36 371 { 372 86.0 6.51E+10 1.41E+08 7.36 372 373 86.0 6.52E+10 1.41E+08 7.35_373 374 86.0 6.54E+10 1.41E+08 7.35 374 375 86.0 6.55E+10 [ 1.41E+08 7.35 375 376 86.0 6.56E+10 I 1.41E+08 7.34 376 377 86.0 6.58E+10 1.41E+08 7.34 377 378 86.0 I6.59E+10 J 1.41E+08 7.34 378 379 86.0 6.61E+10 1.41E+08 7.33 379 380-i 86.0 6.62E+10-1.40E+081I 7.33 J__380 381 86.0 _ 6.63E+10 1.40E+08I 7.33 381 I 382 86.0 '6.65E+10 1.40E+08I 7.33 382 1383 86.0 6.66E+10 1.40E+08I 7.32 383 I-384 i 86.0 .6.68E+10 1.40E+08-I 7.32 384 _385 86.0 6.69E+10 i1.40E+08 7.32 __385 386 86.0 6.70E+10 1.40E+08 7.31 386 _ 387 86.0 6.72E+10-1.40E+08 7.31 387 I 388 86.0 6.73E+10 J 1.40E+08 7.31 3881 389 86.0 6.75E+10 1.40E+08 7.30 389 ! 390 86.0 6.76E+109 1.40E+08 7.30 390-1 391 86.0 6.77E-10 1.40E+08 7.30 391 -392 W86.0 6.79E+10 !- 1.40E+08-7.29 --392 393 86.0 6.80E+10 1.40E+08 .7.29 393 I 394 86.0 6.82E+10 1.40E+08 7.29 394 F 395 86.0 6.83E+10 1.40E+08 7.28 395 396 86.0 6.84E+10 i 1.39E08 7.28 396 397 86.0 6.86E+10 ---139E+0- 7.28 397 398 86.0 6.87E+10 1.39E+08 7.28 398 399 86.0 6.89E+10{1.39E+08 7.27 399 400 86.0 6.90E+10 1.39E+08 7.27 400 401 86.0 6.91E+10 1.39E+08 7.27 401 402 86.0 ! 6.93E+10 1.39E+08 7.26 402 403 86.0 6.94E+10 1.39E+08 -7.26 403 404 86.0 6.95E+10 1.39E+08 7.26 404 1 405 86.0 6.97E+10 i1-39E+08 7.25 1 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P48 of P58 Appendix P9.2: Plant Temperature Rise Results.1Heat Rate Starting Ending Integrated Her Plant Time Time i UHS Heat p Temperature Time (estep ise(°F (h r) (hr) ( Load (BTU) Timestep ,_____ _____ .I (BTU/hr)____________

405 [ 406 86.0 1 6.98E+10 1.39E+08 7.25 406 407 86.0 7.00E+10 1.39E+08 7.25 407 '-408 86.0-,--7.01-E+410 1 1.39E+08 1 7.24 408 409 86.0 I 7.02E+10 1.39E+08 I 7.24 409 410 86.0 7.04E+10 1.39E+08 7.24 410 411 86.0 7.05E+10 1.39E+08 7.23.411] 412 I 86.0 7.07E+10 1.39E+081 7.23 412 1 413 86.0 7.08E+10 1.38E+08 7.23* 413 414 86.0 7.09E+10 1.38E+08 7.23 414 415 86.0 7.11E+10 1.38E+08 7.22 415 416 86.0 7.12E+10 1.38E+08 7.22 416 _ 417 86.0 7.14E+10 1.38E+08 7.22 417 418 86.0 7.15E+10 1.38E+08 7.21 418 _ 419 86.0 7.16E+10 1.38E+08 7.21 419 420 86.0 7.18E+10 1.38E+08 7.21 420 L 421 86.0 7.19E+10 1.38E+08 7.20 421 422 86.0 7.20E+10 1.38E+08 7.20 422 423 86.0 7.22E+10 1.38E+08 7.20 42:3 424 : 7.23E+10 1.38E+08__

7.20 424 1 425 1 86.0 7.25E+10 1.38E+08 1 7.19 425 426 f_86.-0 7--.2.o6E+

_ 101ý.- 9_426 427, 86.0 7.27E+10 1.38E+08 7.19 427 428 86.0 _ 7.29E+10 I 1.38E+08 I 7.19:-428-- 429 -86.0 7.30E+10 0 1.38E+08 7.19 4,29 430 86.o J7.31E+10 1 1.38E+08 7.18 430 431 86.0 7.33E+10 1.38E+08 7.18 431j434I 86.0 7.34E+10 1.38E+08 7.18 432- I4-33 -8'6'.0 7.36E+10 1.37E+08 ___7.18 433 J434 1 86.0 1 7.37E10 1.37E+08 7.17 43641 435 86.0 7.38E+10I 1.37E+08 I 7.17 435 I 436 86.0 7.40E+10I 1.37E+081 7.17 436 1437 1_86.0 7-ý.41E+10-

-1.37E-+08.-

7.17 437 I 438 86.0 7.42E+10 I_1.37E+08I 7.16 438 J-439 I 86.0 7.44E+10 I1 1.37E+081 7.16 439 1 440 86.0 7.45E+10 I 1.37E+08 I 7.16 1440 1441 --1 86.0 -_7.47E+l 0 1.37E+08 I 7.16 441 442 86.0 I 7.48E+10 1.37E+08 7.15* 2 j 443 86.0 r 7.49E+10 J 1.37E+08 7.15 443 L 444 86.0 7.51E+10 1.37E+08 7.15 444 445 86.0 7.52E+10 1.37E+08 I 7.15 445 -446 86.0 7.53E+10 1.37E+081 7.14--1 446 447 86.0 7.55E+10i 1.37E+08 7.14 447 448 86.0 7.56E+10 I 1.37E+08 7.14 448 449 86.0 7.57E+10 1.37E+08 7.14 449 I 450 86.0 7.59E+10 1.37E+08 7.14 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P49 of P58 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P49 of P58 Appendix P9.2: Plant Temperature Rise Starting Ending F Integrated Heat Rate Plant Time Time F a UHS Heat per Temperature Time Time (cfs) Load (BTU) Timestep (BTU/hr) Rise (°F)450 .451 [ 86.0 7.60E+10 1.37E+08 7.13 451 j 452 86.0 7.62E+10 1.37E+08 7.13 45271 453 86.0 7.63E+10!1 1.37E+08 7.13__453 -454 -J 86.0 7.64E+ 10 [ 1.37E+08 7.13 454 455 86.0 7.66E+10 I 1.36E+08 7.12 455 456 86.0 7.67E+ 10 J 1.36E+08 7.12 456 I 457 86.0 7.68E+10 1.36E+08 7.12 457 458 86.0 7.70E+10t 1.36E+08 7.12 45458 459 86.0 7.71E+10 1.36E+08 7.11 459 460 86.0 7.72E+10 1.36E+08 7.11 460 461 86.0 7.74E+10 1.36E+08 7.11 461 j 462 86.0 7.75E+10-1.36E+08 7.11 462J 463 86.0 7.77E+10 1.36E+08 7.11 463 464 86.0 7.78E+10 1.36E+08 7.10_464 I 465 86.0 7.79E+10 1.36E+08 7.10 465 1 466 86.0 7.81E+10 1.36E+08 7.10 466 467 86.0 7.82E+1 1.36E+08 7.10 467 468 86.0 J 7.83E+ 10 1.36E+08 7.09 468 46 9- 860 '7.85E+10 I 1.36E+08 7.09 469 I 470 86.0 ' 7.86E+10 1.36E+08 7.09 470 I 471 86.0 7.87E+10 1.36E+08 7.09 471 [ 472 .86.0~ 7.89E+10 1.36E+08 _ 7.08 472 + 473 86.0 7.90E+10 1.36E+08 7.08 4473 j474 86.0 7.92E+10 j 1.36E+08 7.08 474 I 475 86.0 7.93E+10 1.36E+08 7.08 475 476 86.0 7.94E+10 1.36E+08 7.08 476 I 477 86.0 7.96E+10 1.35E+08 7.07 4771 478 86.0 7.97E+10 1.35E+081 7.07 -478 479 86.0 7.98E+10 1.35E+08 7.07 479 480 86.0 8.00E+10 1.35E+08 7.07 480 481 86.0 8.01E+10 1.35E+08 7.06 481 J 482 86.0 8.02E+10 1.35E+08 7.06 482 1483 86.0 8.04E+10 1.35E+081 7.06 483 1 484 I 86.0 8.05E+10 I 1.35E+08 1 7.06 Results 484 485 86.0 8.06E+10I 1.35E+081 7.05 485. 486 86.0 8.08E+10 j 1.35E+08 7.05 486 487 86.0 18.09E+10 I 1.35E+08-I 7.05 .487 I 488 I 86.0 8.10E+10 I 1.35E+08 7.05 488 489 86.0 r8.12E+10 J1.35E+08 705 489_ 490 -86.0 8.13E+10 1.35E+08 1 7.04 490 I 491 I 86.0 8.15E+10 1.35E+08 7.04 491 492 86.0 8.16E+10 1.35E+08 7.04_ _492 I 493 86.0 8.17E+10 1.35E+08 7.04 493__ 494 86.0 8.19E+10 1.35E+08 I 7.04 494 I 495 86.0 8.20E+10 1.35E+08 7.03 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P50 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Ending Heat Rate Plant TimeFlow Rate UHS Heatd per I Temperature (hr) (hr) (cfs) Load(BTU) (BTU/hr) Rise (*F)495 496 86.0 8.21E+10 1.35E+08 7.03 496 497 86.0 I 8.23E+10 1.35E+08L 7.03 497 498 86.0 8.24E+10 1.35E+08 7.03 498 8 499 86.0 8.25E+1 _ 1.35E+08 7.02 ....499 500 86.0i 8.27E+10 1.35E+08 7.02 500 501 j 86.0 I 8.28E+10 i 1.34E+08 7.02 501 502 I 86.0 8.29E+10 j 1.34E+08 7.02 502 503 86.0 8.31E+10 [ 1.34E+08 7.02 503 504 86.0 I 8.32E+10 _ 1.34E+08 7.01 504 505 86.0 8.33E+10 1.40E+081 7.33 505 F 506 86.0 8.35E+10 1.52E+08 I 7.93 506 -507 86.0 8.36E+10 1.50E+08 7.83 507 I 508 86.0 8.38E+10 I 1.44E+08 7.51 508 1509 86.0 8.39E+10 [ 1.40E+08 7.33 509 510 86.0 8.41E+10 1.38E+08 7.20 510 511 86.0 8.42E+10 1.36E+08 7.11 511 512 I 86.0 8.43E+10 1.35E+08 7.07 _512 51_3 86.0 8.45E+10 1.35E+08 7.04 513 514 86.0 8.46E+10 .1.35E+08 7.02 514 515 86.0 8.47E+10 1.34E+08j 7.01 5151516 86.0 8.49E+10 1.34E+08 7.00 I 516 517 86.0 8.50E+10 1_1.34E+08

_ 6.99 517 518 : 86.0 8.51E+10 1.34E+08 6.99 518 519 86.0 8.53E+10 1.34E+08I 6.99 519 520 86.0 8.54E+10 I 1.34E+08 I 6.98 -_520 521 I 86.0 8.55E+10 1.34E+08[

6.98 521 --522 ! 86.0 8.57E+10 1. 34E+08 6.98 522 ! 523 86.0 8.58E+10 I 1-34E+08 6.97--523-] 524 86.0 8.59E+10-1 1.34E+08 1" 6.97 524 525 86.0 8.61E+10I 1.34E+08 6.97 525 526 86.0 8.62E+10 I 1.33E+08 6.97 526 I 527 86.0 8.63E+10 1.33E+08 6.97 527 I 528 86.0 8.65E+10 I 1.33E+08 6.96 _1 528 1 529 86.0 1 8.66E+10 ' 1.33E+08 6.96 5291 530 86.0 8.67E+10 1.33E+08 6.96 530 1-531 86.0 8.69E+10 1.33E+08 6.96 531] 532 .86.0 8.70E+10 1.33E+08 6.95 532 533 86.0 I 8.71E+10 1.33E+08 6.95 533 534 86.0 8.73E+10 1.33E+08 6.95 534 535 86.0 8.74E+10 1.33E+08 6.95 535 536 86.0 8.75E+10 1.33E+08 6.95 .536 537 86.0 8.77E+10 1.33E+08 6.95 537 538 86.0 8.78E+10 1.33E+08 6.94 I 538 539 86.0 8.79E+10 1.33E+08 6.94 539 540 86.0 8.81E+10 1.33E+08 L 6.94 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P51 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Ending Integrated Heat Rate Plant En In Flow Rate Iper l Time Time UHS Heat Timestep erature (hr) (hr) (cfs) Load(BTU) (BT Rise (*F)540 541 1 86.0 8.82E+10 1.33E+08 6.94 541 I 542 86.0 8.83E+10 j 1.33E+08 6.93 542 543 86.0 8.85E+10 1.33E+08 6.93 543 544 86.0 8.86E+10 1.33E+08 6.93 544 545 -86.0 8.87E+10 1.33E+08 6.93 545 546 86.0 I 8.89E+10 1.33E+08 6.93 546 547 I 86.0 8.90E+10 1.33E+08 6.92 547 548 -86.0 8.91E+10 1.33E+08 6.92 548 549 1 86.0 8.93E+10 1.33E+08 6.92 5491 550 86.0 8.94E+10 1.33E+08 6.92 550l 551 86.0 8.95E+10 1.32E+08 6.92 551 --552 1 86.0 8.97E+10-1 1.32E+08 6.91 552 553 86.0 8.98E+10 I 1.32E+08 6.91 k553] 1554 86.0 8.99E+10 I 1.32E+081 6.91 554 555 86.0 9.01E+10 1.32E+08 _ 6.91 555 556 86.0 9.02E+10 1.32E+08 6.91 556 557 1 86.0 9.03E+10 1.32E+08 6.90 557 I 558 86.0 9.05E+10 1.32E+08 6.90 5581 559 86.0 9.06E+10 1.32E+08I 6.90 559 560 86.0 9.07E+10 1.32E+08 6.90 560 561 86.0 9.09E+10 1.32E+08 6.90 561 _ 562 86.0 9.10E+10 1.32E+08 6.90 562 563 86.0 9.11E+10 1.32E+08 6.89 563 I 564 .86.0 9.13E+10 1.32E+08 6.89 564 565 86.0 9.14E+10 6.89 565 I 566 I 86.0 9.15E+10j 1.32E+08 6.89 566 1567 86.0 9.17E+10 1.32E+08--

6.89 567 1 568 1 86.0 9.18E+101 1.32E+08 6.89 5687T 569 I 86.0 9.19E+10 1.32E+08 6.88 569 1 570 86.0 1 9.20E+10 1 1.32E+08 1 6.88 570 1571 86.0 1 9.22E+10 I 1.32E+08 6.88 571 I 572 86.0 9.23E+10 1.32E+08 6.88 5721 573 86.0 9.24E+10I 1.32E+08 I 6.88 573 I 574 86.0 -9.26E+10 1.32E+08 6.88 574 1 575 86.0 9.27E+10_

1.32E+08 6.87---575 576---;! 86.0__ 9.2.8E+10 1.32E+08J

-6.87 1 576I._577L9 86.0 9.30E+10 I 1.32E+08 6.87 577 ý 578 86.0 9.31E+10 1.32E+08j 6.87 578. 579 86.0 9.32E+10 1.32E+08 6.87 579 1.580 -86.0

  • 9.34E+10 1.32E+081 6.86__5.80 i 581 I 86.0_' _'9.35E+10_1 1.31E+08 6.86 581 582 ' 86.0 -: 9.36E+10 I 1.31E+08 6.8 6 582 r 583 86.0 9.38E+10 I 1.31E+08 6.86 583 j 584 86.0 9.39E+10 1.31E+08 6.86 584 i 585 86.0 .l 9"40E+10_;

1.31E+08 6.86 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P52 of P58 Appendix P9.2: Plant Temperature Rise Results Starting!

Ending Flow Ra Integrated Heat Rate Plant Time Time UHS Heat pe Temperature (hr) (hr) (cfs) ILoad (BTU) Timestep Rise (*F)(BTU/hr)585 .586 86.0 9.42E+10 1.31E+08 j 6.86 586 587 86.0 9.43E+10 1.31E+081 6.85 587 588 86.0 9.44E+10 1.31E+08 6.85 588 589 86.0 9.45E+10 1.31E+08 6.85 589 590 86.0 9.47E+10 1.31E+)8 6.85 590 .591 86.0 -9.48E+10 1.31E+08 1 6.85 591 592 86.0 9.49E+10 I 1.31E+08 [ 6.85 592 593 86.0 9.51E+10 1.31E+08 6.84 593 594 86.0 9.52E+10 1.31E+08 6.84 594 595 86.0 9.53E+10 1.31E+08 6.84 595 596 86.0 9.55E+10 1.31E+08 6.84 596 3 597 1-86.0-1 9.56E+10 1.31E+08 6.84 597 598 86.0 9.57E+10 1.31E+08[

6.84 598 599 86.0 9.59E+10 1.31E+08 6.83 599 600 86.0 9.60E+10 1.31E+08 .6.83 6001601 86.0 9.61E+10 1.31E+08I 6.83 601 602 86.0 I 9.62E+10 1.31E+08 6.83 602 603 86.0 9.64E+10 1.31E+08 6.83 603 604 86.0 9.65E+10 1.31E+08 _ 6.83 604 605 86.0 9.66E+10 1.31E+08 6.82 605 _606 86.0 9.68E+10 1.31E+08 6.82____606 607

  • 86.0 9.69E+10 1.31E+08 6.82 607_ 608 _; 86._0 _ .70E+10 1.31 E+08 6.82 608 609 86.0 I 9.72E+10 1.31E+08-6.82-1 609 610 86.0 9.73E+10 1.31E+08 6.82 611 611 86.0 I 9.74E+10 !1.31E+08 6.81 611 612 86.0 9.76E+10 1.31E+08 6.81 61l2 613 86.0 977E+10 1.30E+08 6.81 613 614 86.0 9.78E+10 1.30E+08 .6.81 614j- 615 86.0 I 9.79E+10 I 1.30E+08 6.81 615 616 I 86.0 -9.81E+10 _ 1.30E+08 6.81 616 617 -__86.0 9.8 2E 1.30E+08 -6.1 617 618 86.0 I 9.83E+10 1.30E+08 I 6.80 618 619 86.0 f 9.85E+10Oi 1.30E+08 6.80* 619L 620 86.0 9.86E+101_1.30E+08 6.80 620 621 86.0 I 9.87E+10 1.30E+08 6.80 1 621 622 86.0 9.89E+10 1.30E+08 6.80 622 623 86.0 9.90E+10 1.30E+08 6.80 623 624 86.0 9.91E+10 _ 1.30E+08[

6.79 , 624 625 86.0 9.92E+10J 1.30E+08 I 6.79 625 626 86.0 I 9.94E+10 1.30E+08 6.79-626 627 86.0 -9.95E+10_1

.30E+08 6.79 627 628 86.0 9.96E+10 1.30E+08 6.79_-628 629 86.0 9.98E+10 6.79 629 630 86.0 9.99E+10.

1.30E+08 -. 6.78 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P53 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Ending Flow Ra Integrated Heat Rate Plant te Io per Time Time t UHS Heat per .Temperature (hr) (hr) ( Load (BTU) Timete Rise (*F)] ~(BTUlhr)630 631 86.0 1.-i 1+11 1.30E+08 -6.78_-63-21 632 1-86.0 I1 .OOE+1 1 1 1.30E+08 j 6.78_6_32.. 633 __86.0 1.00E+11 1.30E+08 6.78 633 4 634 86.0 I_1.00E+11

! 1.30E+08 1 6.78 6341 635_..__.I.

86.0 [1.01E+11 1.30E+08J 6.78 635 636 86.0 1.01E+11 1.30E+08 6.77 6361 [637 86.0 1.01E+11 1.30E+08J 6.77 637 638 86.0 1.01E+11 1.30E+08 -6.77 638 639 86.0 1.01E+11 1.30E+08 6.77 639 640 86.0 1.01E+11 1.30E+08 6.77 640 641 F 8 6.0 _ 1.01E+11 1.30E+08]

6.77 641j 642 86.0 1.01E+11 1.30E+081 6.77 642 643 86.0 L 1.02E+ 11 1.30E+08_

6.76 6431. 644 86.0 1.02E+11 I1.30E+08 F 6.76 644 645 86.0 1.02E+11 1.30E+08 I 6.76 6451 646 86.0. 1.02E+11 1.29E+081 6.76 646" 647 86.0 1.02E+11 1.29E+08 6.76 6471 648 86.0 1.02E+11 1.29E+08 6.76 648 I 649 I 86.0 1.02E+11 1.29E+08 6.75 649__ 650 86.0 -1.02E+11 i 1.29E+08 6.75 650 ...65 1i 86.0 1.03E+11 I 1.29E+08 6.75 651 652 1 86.0 1.03E+11 1.29E+08 I 6.75 652 653 86.0 I 1.03E+11 I 1.29E+08 I 6.75 653 1 654 I 86.0 i 1.03E+11 1.29E+08 6.75 654 655 86.0 1.03E+11 I 1.29E+08 6.74 656 6567 86.0 I 1.03E+11 1.29E+08 ! 6.74 657 658 86.0 1.04E+11 1.29E+08 6.74 658 659 j 86.0 1.04E+11 1.29E+08 6.74 6:ý58:= 659 86.0 1.04E+1 1 1.29E+08 6.74 659 660 86.0 I 1.04E+11 1.29E+08 6.74 6_60 661 86.0 1.04E+11 _ 1.29E+08_

6.743 .661 662 86.0 1.04E+11 1.29E+08 6.73 662 I 6634 86.0 1.04E+11 1.29E+08 6.73 663 664 86.0 1.04E+ 11 1.29E+08 6.73 664 665 86.0 1.04E+11 1.29E+08 6.73 665 666 86.0 1.05E+11 I 1.29E+08 6.73 666] 667 86.0 I_1.05E+11 1.29E+08 6.73 667 668 86.0 1 1.05E+11 1.29E+08 6.72 668 669 86.0 I 1.05E+11 1 1.29E+08 6.72 66 670~ 86.0

  • 1.05E+ 11 i1.29E+08 I 6.72 670 i 671 6.0-- -.0-5E+11-1.2gE+0

..6.72 671 672 86.0 1.05E+11 I 1.29E+08 6.72 672 673 86.0 _ 1.05E+11 1.29E+08 6.72 673 674 86.0 1.06E+11 1.29E+08 6.72___674_ 675 86.0 1.06E+11 1.29E+08 6.71 j PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P54 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Ending Integrated Heat Rate Plant Flow Rate per Tern Time Time (cfs) UHS Heat Timestep Re (hr) (hr) Load (BTU) (BTU/hr) Rise (°F)675 676 86.0 1 1.06E+11 1.29E+08 6.71 676 _ 677 86.0 1.06E+11 1.291E+08 6.71 677 678 1 86.0 1.06E+11 1.29E+08 6.71 678--- 679 186.0 1.06E+11 1.29E+08 6.71 679 j 680 86.0 1.06E+11 1.28E+08 6.71 680 681 -86.0 1.06E+11 1.28E+08 1_6.71 681 682~ 86.0 1.07E+11 1.28E+08 6.70 682I 683 86.0 1.07E+11 1.28E+08 6.70 6832 684 86.0 1.07E+11 1.28E+08 6.70 684 685 86.0 1.07E+11 1.28E+08 j 6.70 685 686 86.0 1 1.07E+11 1.28E+08 6.70 686 687 86.0 i 1.07E+11 1.28E+08 6.70 687 688 86.0 1.07E+11 1.28E+08 f 6.69 688 689 86.0 1.08E+11 I 1.28E+08I 6.69 689 690 86.0 1.08E+11 1.28E+08 6.69 690 691 86.0 1.08E+11 1.28E+08__

6.69 691 692 86.0 1.08E+11 1.28E+08 .6.69 692 693 86.0 _j 1.08E+11 _ 1.28E+08 6 6.69 6 693 694 __86.0 1.08E+11 1.28E+08 I 6.696 694 695 86.0 1.08E+1 1 i1.28E +08 [ 6.68 694 695 86.0 1.08E+11 _ 1.28E+08 6.68__ I 695 696 86.0 I 1.08E+11 1.28E+08 6.68 696 697 86.0 71.09E+11 1.28E+08 6.68 697 698 9 86.0 1.09E+11 1.28E+08 6.68 698 699 i 86.0 1.09E+11 1.28E+08 6.68 699 700 _ 86.0 I 1.09E+1_1

_1.28E+08 6.6_8 700 701 I 86.0 1.09E+11 1.28E+08 6.68 701 702 86.0 1.09E+11 1.28E-+-08 6.67 702 703 86.0 1.09E+11 1.28E+08 6.67 703 ]-7704 8-86.0 1.09E+11 1.28E+08 6.67 704 1 705 86.0 1.10E+11I 1.28E+08 6.67 77 705 706 86.0 .1 1.10E+11 1.28E+08 _ 6.67.706 1 707 1- 86.0 1.10E+11 1.28E+08 I 6.67 707 708 i 86.0 1.10E+11 1 1.28E+08 7 7081- 709 I 86.0 .1.10E+11 .1.28E+08 6.66 709 710 86.0 1.10E+11 1.28E+08 6.66 710 711 86.0 1.10E+11 I 1.28E+081 6.66 711 --712 86.0 1.10E+11 1.28E+08 6.66 712 713 1 86.0 ;1.11E+11 1.28E+08 6.66 713 714 86.0 I 1.1E+111.28E+08 6.66 714 715 86.0 1.11E+11 1.275+08 6.65 715 716 86.0__ 1.11E+11 1 1.27E+08 6.65 716 717 86.0 i 1.11E+11 1.27E+08 6.65 717 718 86.0 -1.11E+11 1.27E+08 6.65 718 719 86.0 1.11E+11 1.27E+08 6.65 719 726 86.0 11.11E+11 1.27E+08 6.65 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P55 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Time (hr)720 721 722 723 724 725 726 Heat Rate Ending Flow Rate eIntegrated r Time UHS Heat T* p (hr) (cfs) Load (BTU imesteP TU) (BTU/hr)721 86.0 1.12E+11 .1.27E+08!722 86.0 1.12E+11 I 1.27E+08 723 86.0 1.12E+11 1.27E+08 724 86.0 1.12E+11 1.27E+08 725 86.0 1.12E+11 1.27E+08 726 86.0 1.12E+11 I 1.27E+08 Plant Temperature Rise (*F)6.65 6.64 6.64 6.64 6.64 6.64 727 86.0 1.12E+11 I 1.27E+08 6.64 727 728 86.0 1.12E+11 728 729 86.0 1.13E+11 729 730 86.0 1.13E+11 730 731 86.0 1.13E+11 731 732 86.0 1.13E+11_'

732 733 86.0 1.13E+11 733 734 86.0 1.13E+11 734 735 86.0 1.13E+11 735 736 86.0 1.14E+11 736 737 86.0 1.14E+11 737 738 86.0 1.14E+11 738 739 1 86.0 1.14E+ 11 739 740 86.0 i 1.14E+11 740 741 86.0 I1.14E+11 7411 742 86.0 1.14E+11 742 I 743 86.0 :114E11 743 744 86.0 1.15E+11 744 I 745 86.0 1.15E+11 745 I 746 86.0 1.15E+11 746 74i 86.0 1.15E+11 747 748 1 86.0 1.15E+11 748 749 86.0 1.15E+11 749 750 86.0 1.15E+11 750 751 86.0 1.15E+11 751 752 86.0 1.16E+11 752 753 86.0 1.16E+11 753 754 86.0 1.16E+11 754 755 86.0 1.16E+11 755 756 86.0 1.16E+11 756 757 86.0 1.16E+11 757 -758 86.0 1.16E+11 758 759 86.0 1.16E+11 759 I 760 86.0 1.17E+11 760 ] 761 86.0 1.17E+11 761 762 86.0 1.17E+11 762 763 86.0 1.17E+11 763 764 86.0 1.17E+11 764 765 86.0 1.17E+11 1.27E+08 I 6.64 1.27E+081 6.64 1.27E+08 I 6.63 1.27E+08 I 6.63 1.27E+08 6 6.63 1.27E+08 I 6.63 1.27E+08 I 6.63 1.27E+08 6.63"1.27E+08-6.63 1.27E+08 6.63 1.27E+08 6.62 1.27E+08 6.62 1.27E+08 I 6.62 1.27E+08 6.62 1.27E+08 6.62 1.27E+08 6.62 1.27E+08I 6.62 1.27E+08 .. 6.62 1 .27E+08 6.62 1.27E+08 6.61 1.27E+08 6.61 1.27E+08r 6.61 1.27E+08 6.61 1.27E+08 I 6.61 1.27E+08.

6.61 1.27E+08 I 6.61 1.27E+08 I 6.61 1.27E+08 I 6.60 1.26E+08 6.60 1.26E+08 -6.60 1.26E+08 6.60 1.26E+08 1 6.60 1.26E+08 6.60 1.26E+08 6.60 1.26E+08 6.60 1.26E+08 6.59 1.26E+08 6.59 1.26E+08 j 6.59 J PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P56 of P58 Appendix P9.2: Plant Temperature Rise Results Starting Time (hr)Ending Time (hr)Flow Rate Integrated (cfs) UHS Heat Load (BTU)Heat Rate per Timestep (BTU/hr)Plant Temperature Rise ('F)765 [ 766 86.0 1.17E+11 766 [767 86.0 1.17E+11 767 _768 86.0 1.18E+11 768 769 86.0 1.18E+11 7691 770 86.0 1.18E+11 770 771 7 86.0 1.18E+11 771 772 86.0 1.18E+11 772 773 86.0 1.18E+11 773 774 86.0 1.18E+11 774 775 86.0 1.18E+11 775 776 86.0 1.19E+11 776 777 86.0 1.19E+11 1.26E+08 1.26E+08 1.26E+08 1.26E+08 1.26E+08 1.26E+08 1.26E+08 1.26E+08 1.26E+08 1.26E+08 1.26E+08 1 .26E+08 6.59 6.59 6.59 6.59-1 6.59 1 6.58 6.58 6.58 6.58 6.58 6.58 6.58 777 778 86.0 1.19E+11 1.26E+08 6.58 778 779 .86.0 119E+11 I 1.26E+08 { 6.58 779 780 86.0 1.19E+11 F 1.26E+08 6.57 780 781 86.0 1.19E+11 1.26E+08 6.57 781H782 86.0 1.19E+11 1.26E+08 ' 657 782 783 86.0 1.19E+11 1.26E+08 i 6.57 783 784 86.0 1.20E+11 1.26E+081 6.57 784 I 785 86.0 1.20E+11 1.26E+08 .6.57 785 i 86 860 1.20E+1 1 1.26E+08 _ 6.57 785 I 786 7 86.0 1.20E+11 1.26E+08 [ 6.57 786 j 78 86.0 1 1.20E+11 1.26E+08 6.57 787 1 788 86.0 1.20E+11 1.26E+08 I 6.57 788-1 789 86.0 1.20E+11 1.26E+08 I 6.57 789 790 86.0 1.20E+11 1.26E+08 _ 6.57 790 I 791 1 86.0 -1.20E+11 1.26E+08 I 6.57 791{ 792 86.0 1.21E+11 T 1.26E+08 6.57 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P57 of P58 Appendix P9.3: Excel Equations Integrated UHS Heat Load Equations A I B C D 1 Time ITime Total UHS Heat Load Integrated UHS Heat Load 2 Seconds Hours BTUIhr BTU 3 0 =A3/3600 70974500 0 4 60 =A4/3600 227506921.442497

=(C3+C4)/2*(B4-B3)+D3 5 120 =A5/3600 275031004.627322

=(C4+C5)/2*(B5-B4)+D4 6 180 =A6/3600 278889380.509937

=(C5+C6)/2*(B6-B5)+D5 7 240 =A7/3600 282644648.159748

=(C6+C7)/2*(B7-B6)+D6 8 300 =A8/3600 286299374.760107

=(C7+C8)/2*(B8-B7)+D7 9 360 =A9/3600 289856095.608311

=(C8+C9)/2*(B9-B8)+D8 10 420 =A1 0/3600 293317314.115603

=(C9+C1 0)/2*(B1 0-B9)+D9 11 480 =A11/3600 296685501.807169

=(CC10+C11)/2*(B113B10)+D10 12 540 =A1 2/3600 343523098.322145

=(C1 1 +C1 2)/2*(B1 2-B11)+D 11 13 600 =A13/3600 346712511.413607

=(C12+C13)/2*(B13-B12)+D12 14 3451 =A14/3600 441783283.320893

=(C1 3+C1 4)/2*(BI14-B1 3)+D 13 15 6301 =A1 5/3600 473170223.236624

=(C1 4+C 1 5)/2*(B1 5-B1 4)+D 14 16 9152 =A1 6/3600 528760943.735491

=(C1 5+CI 6)/2*(B1 6-B1 5)+D 15 17 12000 =A17/3600 519091778.174626

=(C16+C17)/2*(B1 7-B16)+D16 18 14850 =A1 8/3600 359428890

=(C17)*(B18-B17)+D17 19 17700 =A1 9/3600 339095598.333333

=(C1 8+C1 9)/2*(B1 9-B1 8)+D 18 20 20550 =A20/3600 322295431.666667

=(C19+C20)/2*(B20-B19)+D19 21 23400 =A21/3600 308557015

=(C20+C21)/2*(B21 -B20)+D20 22 26260 =A22/3600 297328342.777778

=(C21+C22)/2*(B22-B21)+D21 23 29110 =A23/3600 287571967.777778

=(C22+C23)/2*(B23-B22)+D22 24 31960 =A24/3600 276985259.444444

=(C23+C24)/2*(B24-B23)+D23 25 34810 =A25/3600 268393440

=(C24+C25)/2*(B25-B24)+D24 26 37660 =A26/3600 261201865

=(C25+C26)/2*(B26-B25)+D25 27 40510 =A27/3600 254949342.777778

=(C26+C27)/2*(B27-B26)+D26 28 43360 =A28/3600 249681781.666667

=(C27+C28)/2*(B28-B27)+D27 29 46210 1=A29/3600 245278781.666667

=(C28+C29)/2*(B29-B28)+D28 30 49060 =A30/3600 241448815

=(C29+C30)/2*(B30-B29)+D29 31 51910 =A31/3600 238054990

=(C30+C31)/2*(B31 -B30)+D30 32 =A32/3600 234938259.444444

=(C31 +C32)/2*(B32-B31)+D31 33 57610 =A33/3600 469308546.541219

=(C32)*(B33-B32)+D32 34 60460 =A34/3600 407852051.111111

=(C33+C34)/2*(B34-B33)+D33 35 63310 =A35/3600 362828250.483871

=(C34+C35)/2*(B35-B34)+D34 36 66160 =A36/3600 329583531.935484

=(C35+C36)/2*(B36-B35)+D35 37 69010 =A37/3600 305037949.52381

=(C36+C37)/2*(B37-B36)+D36 38 71860 =A38/3600 286794408.27957

=(C37+C38)/2*(B38-B37)+D37 39 74720 =A39/3600 273077790

=(C38+C39)/2*(B39-B38)+D38 40 77570 =A40/3600 262786654.784946

=(C39+C40)/2*(B40-B39)+D39 41 80420 I =A41/3600 256810372.258065

=(C40+C41)/2*(B41 -B40)+D40 PROJECT NO. 11333-297 CALCULATION NO. L-002457 REVISION NO. 8 ATTACHMENT P, PAGE P58 of P58 Appendix P9.3: Excel Equations Plant Temperature Rise Equations I A B C ID I E IF G I H I I I J I K I L M I N 0s P 1 1 TS Flowrate 65.3 _ cfs _ Mass Flow =$D$1$D$2*36O Ibm/hr / S Flowrate 186 cfsM F $L$VL$23600 Ibm/hlr 2 Density 62 .bm/ft3 cp j=cpt(14.3,100)

BTU/,bm-F/

.Density 6 -6 ,bm/ft3 I cP -cpt(14.3,100)

BTUbm-F] A 8 C , 1__ E F Starting Endng Time Tine 1 (hr) (hr)2 0 1 4 =83 =A4-1 5 :134 =A5+1 6 z85 =A6+1 7 =85 =A7+1 8 =87 =A$*1 9 =88 10 =B9 =A10,1 11 --810 =A,11-I 12 =811 =412÷1 13 =812 =A13-1 14 =113 =414-1 15 =814 =,'15-1 16 =815 =A16-1 7 =8816 =W17+1 18 =817 =A18-1 19 =818 =:A19-1 297819 21 =:20 =A21+1 2i =821 =:22+1 ff =822 =A23-1 24 =823 =,24÷1 25 7824 =A25*I 29 =825 =,Q6+1 27 =826 =:27+1 2_ =B27 =A28+1=828 zA29+1 30 =829 =A30+1 31 =830 :;,31÷1 32 =831 =432-1=332 =A33+1 4=33 =A34+1 Flow Rate (CIS)=55.3=55,3= .3=55ý.3=553=F=.3:653=953=65;.3=85=85=85=86=85=85=:6=85=85=85:95=86.'=85=85 Integrated Generated Heat Load (BTU)=FORECASTt$82,OFFSET(Total!$D$3:5$1003.RATCH(S2.Total!SS3:$8$1003

,1,I,02 =FORECAST

$83.OFFSET(Total!$D$3:5D$1003.IATCH(S83.ThtaI!$B$3:$B$1003,1ý-1,0

=FORECAST(SB4.OFFSET(Total!$D$3:SD$1003.IAATCH(I$4,Total!$8$3:$B$1003.1;,-1,0 2,.OFFSET(TotaI!$8S3:$B$1003,MATCHI$84,TotaI!$8$3:$8S1003.1;-1,0,21)

=FORECAST($85.OFFSET(Total!$D$3:SD$1003.MAATCH(I8r5.Total!$8$3:$8$1003,V1,1.2:

OFFSET(TotaI!$853:$$1003.LhATCH($85,TataII$B$3:$8$1S03 1 A0.2:1,=FORECAST($B6OFFSET(Total!$0$3:SD$1003,.MATCH(S86.TotaI!$B$3:$B$1003.1

-1.0.2, OFFSET(Tota6!$8$3:5B$1003.IAATCHt$S6.TotaI!$8$3:$8S1003.1,-1.0.2!)

=FORECAST($87,OFFSETlTotai!$D$3:$D$1003,MATCH(S87`Total!SB$3:$B$1003.1>1.0.21.OFFSET(Tota!S8$3:$8$1003.MATCH$87.Tota1!$8$3:$BS1003.11,-1.02)

=FORECAST(SB89OFFSET(Total!SD$3:SD$1003.fMTCH{S89.Total!S8$3:$951003.1,-1.0 2:.0FFSET(Total!,S$3:$8$1003 .IATCHi$88.TotaI!$853:$B$1003.1;1,0.2;)

=FORECASTV581OFFSETjqotal!$D$3:SD$1003If4ATCH(S89.Tota!$S$3.$8$1003.1:-I.0

.2.OFFSET(Total$8S3:$B$1003.JITCHlSBg.TotaO!$8$3:$BS1003.1

-1.0.2,)=FORECST5$810 OFFSETITotaI!S0$3:SD$1003.ItATCH($B11,Totai!$8$3:$8$1003.1 1.0 2 ,OFFSET(Totafl$8535B$1003.MATCH($B11.Total!SBS3:$8$1003.1;-1,0.2:

=FORECASTM$811OFFSETjTotaI!S)S3:SD$1003,f4,TCHl$811.TotaI!$8$3.$851003.1 1.0 2.OFFSETTotal!$853

=FORECAST$S8123OFFSETtTotaI!$053:$D$1003.IA TCHISB12.Total!$B$3

$851003.1:-!,0.2.OFFSETiTotalS5B$3$5B$1003.10, TCH(S812.TotaI!SB$3:$851003.1;-l.0,2.:

=FORECAST SB13 OFFSET(Total!SD$3:ýD$1003MIAATCHISB13,Total!8$3

$B$1003.1;-1.0.2..OFFSETý(otaI!$B$3:BS10031AATCH($813,TotaI!SBS3:$B$1003.1,-1.0.2.:

=FORECAST 5814 OFFSET(Total!$D$3:$0$1003.,I TCH($BI4.Total!$8$3:$8$1003.11-1.0.2.,OFFSETiTotaI!$B$3$8$1003.14TCH($B14.TotaI!SBS3:SB$1003.1-1.0.2ý1

=FORECAST($815 OFFSET(Total!SD$3:SD$1003.l TCH($815.Total!$8$3:$8$1003.1

>1.0.2.,OFFSETITotal!$B$3

$B51003,MATCH(SB15,TotaI!B$$3:$B$1003.1-1.0.2.,=FORECAST($8157OFFSET(Total!SD$3:SD$1003.IATCH($B16,TotaI!$853:$851003.1

-1,0.2 OFFSET(Total!$8$3

$851003,.tATCH($B16,Total!SB$3:$851003.1,.10.2,;

=FORECASTiSB17,OFFSET(Tota!$D$3:S)$1003.MATCHISBI7.TotaI!$B$3.$8$1003.1

-1.0 2! OFFSET(Total!SB$3$B$1003.LIATCHi$S17.Total!SBS3:$851003.11-1,02'i

=FORECkSTi$818 OFFSET(TotaI!SO$3:SD$1003.14ATCH(S819.TotaI!$8$3

$8$1003.1

-1.0.2F.OFFSETiTotaI!S83:$$1l003.IAýTCH(i$18.TotaI!$853:$58100311+02 7FORECASTi$SB19 OFFSETiTotalI!SD$3:SC$1003.1.ATCHISB19.Total$B$3

$851003.1

-1 0.2'.OFFSET(TotaI!SB$3.$8B1003,M TCH(SB19.Total!58S3:$8$1003.

I 1.0.21 0;=FORECAST$820.OFFSETtTotal!SD$3:SC$1003.j4ATCH1,B20,Totatf$853

$8$1003.1ý-1.0 2OFFSETJTotaI!$B$3$B$1003.MATCH(5B20 Total!SB$3:

$B1003.11+02

=FORECAST

$B21 OFFSETTotal!SD$3:$$1003.hATCH'$821.TotaI!$8S3 5851003.1>1.0 2,OFFSET(TotaI!$B$3

$8$1003.1,tTCHiSB21.TotaI!S8S3:$81003,1.10 2ýý=FORECAST,$22 OFFSET(Totat!SD$3:S,$1003.MATCH($822.ToaI

$BS3 $8$1003.1 1.0 2,OFFSET.TotaI!$B$3 1-.0.2'.OFFSET(Total!$B$3 SB$1003,1IATCH(SB23.Total!S8S3:SB$1003.1)-I

,01

$B$1003.HATCHýS824,Total.WS3:$B$1003.1ý1-l.02

=FORECST($B25 OFFSET(TotaI!IS$3:$0$1003 ,tIATCH($825.Totat!$8$3:$B$1003.1

,-1,0.2>OFFSET(TotaI!$B$3

$B$1003.1,IATCH(5826.Total!S8$3:SB$1003.1,-i.0.2

=FORECAST($B25.OFFSETiTotal!SD$3:S$1003.tt4TCH($826.Totai$8$3S$B$1003.1

-12.02,OFFSETcTotaI!$B$3:$B$1003,MATCH($826,TotaI!SB$3:$B1003.1'-1.0.2 I=FORECAST$827.OFFSETITotal!SD$3ýS$1003.hiATCH'$B27.TotaIt$8$3:$B$1003.1

>!0.2u,.OFFSET(TotaI!$B$3:$B$1003,14ATCH(SB27,Total.$8S3:$B$10031)-1.0.2',=FORECAST($B28.OFFSETITotaI!SD$3:$$1003.kIATCHI$828.TotaI!$8$3:$6$1003.1 1,0 2:.OFFSETITotaI!$8$3:$B$1003,M4ATCH($B28.Total.S853:$B$1003,.110.

=FORECAST($829.-FFSET(Tota8!0D$3
SD$1003.81ATCH0SB20,Tol3I!$B$3:$0$1003,100

.12)I.OFFSET0TotaI!2B$3.$B$1003.1ATCH($B29,Total!$BS3:$B$1003,1ý-102ý;

=FORECASTi$B30.OFFSETITota!SD$3:0$1003.},ATCH($830,Totai!$8$3:$8$1003,1

-1.02:,OFFSETtTotaI!$B$35$81003.jATCH(S830.TotaI!$B$3:$B$1003.11-10.2

=FORECAST($831.OFFSETiTotal!50$3:$D$1003,IATCHlSB31.TotaI!B$358$1003,1

)-1.0.2.OFFSET(TotaI!8$3:$851003.MATCH(SB31.Total!S8$3:$B51003ý1-l.102

=FORECA5T$832,OFFSETITotaI!$D$3:SD$1003.MATCH($632,Totat!$B$3$651003.1

>1.0 2.OFFSET(TotaI0$B$35B$1003.2 TCHt$832,TotaI!S6$3:$B51003.1

-1 0,2:=FORECAST(5833,OFFSET1otaI!t$3:SD$1003.4, TCHI$833,Total!$8$38$E1003,1

'1,0.2.,OFFSETiTotaI!$B$3 58$1003.1MATCH(SB33.TotaI!SS$3:$B$1003,1>1.0,2

=FORECASTiSB34.OFFSETiqotaI!$D$3:$0$1003MATCH($834.Total$8$3

$851003,1

-1.0 2..0FFSET(TotaI!$B$3 SB$1003,.ATCH(SB34.TotaI!S$B3:$5B1003,1;-1.0.2.;

Heat Rate per rimestep Plant TemperatureRise (Deg F)=D2[B2-12I

'=$E2/SH$li-H$2

=lD3-D21'AB3-,3'.

$ES 1-SH1$2=(04-03D4 9444-B$E41.-l$1$I-I$S2

=lO6-D5~l86ý.BA5.

S=$E65$H$1lSH$2

=(0D7-0D;(B7-A7ý

%$E7If5HS$H$2

=(DS-D7V(8S-ASW

&$ElSH$1i5IH$2

=(D9-D8'f89-AI9

=(D10.-D;i810-410

'-$E10,'H$1$,$2

=(D1 1-D 1 0ý?1 11411: ý$Ell115H

-15H2=(D12-0 11 1,121 l2: 'ý$E

=(D13-D124B1341-A13

-$E1354H$1&K$2

=TO14-013AB 14-A14 %:S14'H$1iVI$H2-A1: -$E 15&V..$1SH$2

=(D 16-01 ý (B 1 6-ý16; ý-$EW16H$1I1..$2

=(D17-D lI5'#(B 17-A17. T $E17TSH$1t$H$2

=(D18-D17)14B18.A18'

ý-E18I5PS11P$2

=(D 19-D 18 ý2(B 19-419' ýS$E19W$I1SPS2

=:020-D19y;B20-20)

'$E20NSPVSPS2

=(D21-D209,21-21ý

=(D22-21)21B22-422ý

$E22,'SPSISP$2

=(023-D22

!B23-A23:

ý$E23$P$1,SP$2

= D24-02...824.A24,

=(D25-.249B25A2ý

'$E25,P1SPS1'PS2

=lD26-D259AB25-AQ6

'-$E26.SPS1t$P$2

$E27$PS$1SP$2

=(D28-D27'1282-A28:ý

$E2,SE$1$SP$2

=1D29-D289,B29-,29;

'=$E29-$1$V$PS2

=(030-D291,830-30'

':EM30P$11SP$2

=4D31-D30)AB31-A31:ý

$E31/SPSV$PS$2

=:032-D31,'B 3 2-A32 Z =$E32)$1P$VP52

=(D33-D3Z iB33A33; ý$E33,,P$1;5P$2

='D34-D33

'B34.A34ý

'$E34$FP$1$PS2 PROJECT NO. 11333-297