ML18152B674

From kanterella
Revision as of 15:44, 12 September 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Enclosure 3 - ANS Anlwr May 2 2018 Presentations
ML18152B674
Person / Time
Issue date: 05/11/2018
From:
NRC/RES/DE
To:
Mehta S
Shared Package
ML18152B668 List:
References
Download: ML18152B674 (14)


Text

1 HighTemperatureReactors CodesandStandards ANS-NRCWorkshopMay2,2018DevelopersBWXTFramatome(previousAREVA)KairosPowerStarCoreNuclear XEnergySupportersDOE,DukeEnergy,EPRIandNEITechnologyOverview HighTemperatureGas CooledReactor(Framatome,XEnergy,StarCore)*GraphitemoderatorandHeliumcoolant*TriIsotropic(TRISO)coatedparticlefuel*Blockorpebbletypefuelelements*Fixed(block)ormoving(Pebble)core*Epithermalneutronspectrum*Primarysystempressure(~6MPa)*Coreinlet/outletTemperature(~325°C/~750°C)*SteamconditionsTemp/Press(~16Mpa,~560°C)5/2/20185/11/2018 5/11/2018 2TechnologyOverview KP FHR(KairosPower)*FluorideSalt CooledHighTemperatureReactor, whichleveragesTRISOparticlefuelinpebbleformandahightemperature,chemicallyinert, singlephasecoolant,flibe(7 Li 2 BeF 4).*FHRtechnologyrequireshightemperature,but lowpressure(andthusstress)materials.Inherent fissionproductretentionwiththecombinationof TRISOparticlefuelandflibecoolantwouldbenefitfromupdatedstandardsonSSCclassificationandtreatmentofsourceterms.5/2/2018 CodesandStandards*Similartoanyotherreactordesignourdesignswillbegovernedbyhundredsofcodesandstandards.

  • Mostwillbeoflittleconsequence;sincetheygovernroutinedesign,fabrication,construction,andinstallationactivities

-Heatexchangerdesignstandardsforairblastheatexchangerswhichwewillsimplyorderoutofacatalog-RelevantstandardswhichtheNRCwouldbemostinterestedinarevariousASME,IEEE,ASCEstandards-Thesestandardswillbeinvokedformajorpartsofthe nuclearisland,e.g.ASMEB&PVSectIII,Div.5HighTemperatureReactorsPage4 5/2/2018 5/11/2018 3 CodesandStandards ASMESectionIII,Div.5*SectionIII,Div.5includesgraphiteandotherhightemperaturematerials*Itprovideshightemperaturedesignrulesforsomeconventionalmaterials*ThevalueofthegraphitesectionofDiv.5remainstobeseen,since theyhaveneveractuallybeenappliedinpracticetothedesignof anactualreactor*Webelievetheyareusableandbeneficialbeyondthelaboratorycontext*Thepartsformetallicmaterialswillbeusefultousandessentialfor ournextgenerationofHTGRs,i.e.theVHTGR*GoodprogresshasalreadybeenmadeonDiv.5,wearenotcertain whethersubstantialadditionaleffortsareneededuntilwestartour designactivitiesPage5 5/2/2018TypicalStandardsforforHTGRs*Vessels ASMESectionIII*ReactorInternalsTBD SectionIIIDiv.5*SGs TEMAhelicalcoilstandard*Graphite ASMESectionIIIDiv.5*I&C IEEEStandard(AnalogorDigital)*RCCS ASMESectionIII*Valves TBD ASMESectionIII*Circulator TBD ASMESectionIII*SiloConcreteACIstandard*RefuelingmachineTBDroboticsorelevatorstandards 5/2/2018Page6 5/11/2018 4HTGRTWG PriorityStandards*ASME/ANSRA S 1.42013,"ProbabilisticRiskAssessmentStandardforAdvancedNonLWRNuclearPowerPlants,"(TrialUse)

  • ANS 30.1201x,"IntegrationofRiskInformed,Performance Based PrinciplesandMethodsintoNuclearSafetyDesignforNuclearPowerPlants"(newstandard)*ANS 30.2201x,"CategorizationandClassificationofStructures,Systems, andComponentsforNewNuclearPowerPlants"(newstandard)*ANSI/ANS53.12011,"NuclearSafetyDesignProcessforModularHelium CooledReactorPlants",R2016*ANSI/ANS67.02.1 2014,"NuclearSafetyRelatedInstrument SensingLine PipingandTubingStandardforUseinNuclearPowerPlants"*ASMESectionIIIDivision5andrelatedASMECodesforwelds,piping,etc.*ANS 20.1201x,"NuclearSafetyCriteriaandDesignCriteriaforFluoride Salt CooledHighTemperatureReactorNuclearPowerPlants"*PotentialrevisionstoASTMstandardsthatareconsistentwithASMEcoderequirements(e.g.Sec.IIIDiv.5,316SScompositioninTableHBB U 1,RevisedCase2581)Page7 5/2/2018 MissingStandards*Atthistimewecannotreadilyidentifyany additionalstandardsoutsidethecontextofanactivedesignprogramPage8 5/2/2018 5/11/2018 5 Q&APage9 5/2/2018 5/11/2018 1MoltenSaltReactorsTechnologyWorkingGroupReport ByJasonRedd,PEStrategicVisionforAdvancedReactorStandardsWorkshop*MoltenSaltReactors(MSR)utilizesaltcompoundsinaliquid phasetoprovidereactorcorecooling,neutronmoderation,and/orfuelform.Typicallyoperatingatlowpressureandhightemperature,MSRsarecapableofprovidinghighqualitysteamorprocessheatfornumeroususes.Awidecombinationofnucleonics,fuel,andcoolantdesignsar e underdevelopment.*CharacteristicsofsomeMSRdesignsthatdifferfromtheoperatingLWRfleetinclude:highercoolanttemperatures,potentiallycorrosivesaltcompounds,higherfastneutronexposureofreactorinternalsandvessel,andliquidfuelcirculatingoutsideofaconventionalreactorvessel.2 5/11/2018 2*TheNationalTechnologyTransferandAdvancementAct(March1996)codifiedexistingOMBguidancetoFederalagenciestoutilizeconsensusstandardswereappropriate.
  • ReactordevelopersandtheNRCStaffbenefitfromstandards whichcanbereviewedonce,andthenberecognizedasacceptableforusewithinthescopeofthestandardforother reactordesigns.*CostssavingsincludedesignersnothavingtoeachdevelopandjustifytotheNRCStaffcommontechniquesandprocesses.
  • NRCStaffbenefitsbynothavingtorepeatedlyconsumereview timeandresourcesonissuescommontomultiplereactors.*Consensusstandardsreflectabroaderknowledgeandexperiencebasethananyonereactordevelopercouldprovide whichreducestheuncertaintyinherentinanynewdesign.3*MSRtechnologycanbedeployedtodaybasedonexistingconsensusstandardsandreactor specificdesigndetails.*Suchanapproachisnotpreferableduetotheresourcesrequired toindividuallydevelopanddefendthedesigndetailswhichwould bebetteraddressedbyindustrystandards.
  • ManygeneralindustryandLWRcentricstandardsarecompletelyappropriateforMSRplants;the"furtherfromthereactor",themoreexistingstandardsareapplicableormaybe easilyadoptedinMSRlicensingvialimitedexceptions.
  • Asarapidlydevelopingtechnology,standardsacceptancecriterianeedstobeperformancebased,ratherthanprescriptive.
  • MSRstandardsneedsarefocusedaroundmaterialsanddesignstandards.

4 5/11/2018 3*ACI-Standardforconcreteexposedtohighserviceandaccidenttemperatures;

  • ANS 20.2"NuclearSafetyDesignCriteriaandFunctionalPerformanceRequirementsforLiquid FuelMolten SaltReactorNuclearPowerPlants";*ANS 30.1"IntegratingRiskandPerformanceObjectivesintoNewReactorNuclearSafetyDesigns";*ANS 30.2"CategorizationandClassificationofStructures,Systems,andComponen tsforNewNuclearPowerPlants";*ASME/ANSRA S 1.4"ProbabilisticRiskAssessmentStandardforAdvancedNonLWRNuclearPowerPlants";5*ASMEBPVSec.IIIDiv.5-Seekadditionalcontentonconsiderationsforcorrosionandcontactirradiationdamage;*ASMEBPVSec.IIIDiv.5-Needmorematerialoptionssuchashighstrengthnickelalloystobroadentheapprovedmaterialchoicesfor hightemperaturestructuralapplications;
  • ASMEBPVSec.IIIDiv.5-Needmorematerialoptions(metallic,graphite,etc.)forcorecomponentsinahighfastneutronfluxenvironment;
  • ASMEBPVSec.III-Directionregardingdesign,materials,andfabricationofstructuralcomponentscladorlinedwithcorrosionresistantmaterials;
  • ASTMandAWS-Refractoryalloysneeddevelopmentwork-i.e.weldingtechniques,fabricationtechniques,joiningtechniques,understandingofembrittlementandfracturebehavior.6 5/11/2018 4*AmongtheprecedingTop10standards,thebelowtopicsare thehighestprioritytoabroadcrosssectionofMSRdevelopers;representativesoftheMSRTWGwillvolunteerto supportthebelowefforts:*ASMEBPVSec.IIIDiv.5-Needmorematerialoptionssuchas highstrengthnickelalloystobroadentheapprovedmaterial choicesforhightemperatureapplications;
  • ASMEBPVSec.III-Directionregardingdesign,materials,andfabricationofstructuralcomponentscladorlinedwithcorrosionresistantmaterials;
  • ASTM-Refractoryalloysneeddevelopmentwork-i.e.weldingtechniques,fabricationtechniques,joiningtechniques,understandingofembrittlementandfracturebehavior.7QUESTIONS?

8 Advanced Reactor Standards Workshop May 2, 2018Fast Reactor Working GroupMultiple developers working on multiple technologiesSpans variety of fast reactor technologies in development 2 ARCColumbia BasinElysium IndustriesGeneral AtomicsGEHydromine OkloTerraPowerWestinghouseDukeExelonSouthernStudsvikScandpowerEPRI NEI Industry EngagementFast reactors offer a near limitless source of clean and affordable energy, which have attracted the participation of a diverse group of technology developers and other stakeholdersThe FRWG works with developers and fast reactor stakeholders to further the state-of-the-art

łTechnology development

łRegulatory

łInternational collaboration 3High Level PerspectivesDiverse technologies spanning a spectrum of technical readiness with varying needsGeneral consensus that standards need to be modernized as the industry grows, but are generally adequate to support initial deployment strategies

łConcerns about certain technology-specific gaps

łConcerns about standards development timeframes and delays 4

High Level PerspectivesStandards are most effective when there are multiple industry stakeholders with significant technology maturity and overlap, who have a sophisticated understanding of what is needed in particular areasMust consider industry needs in light of industry maturityStandard modernization will become increasingly useful as the advanced reactor industry grows 5Paradigm Shifts from LWRs 6LWRs (PWR& BWR)Non-LWRs Fuel UO 2Metals, oxides, carbides,nitrides, salts CladdingZirconiumalloysSteels, ceramics, nocladding CoolantWaterSodium, lead, other liquid metals, gas, saltsModeratorWaterGraphite, hydrides, nomoderator SpectrumThermalFast, epithermal, thermal Temperature280ºC to 320ºC300ºC to >850ºC Fuel cycle1 to 2 yearsUp to 60 years,possibly more Standards of InterestNQA-1łUseful to advanced reactor work currently

łContinue to modernize as appropriate and as needed 7Standards of InterestMaterials

łStructural alloys, cladding materials, and coating materials fo r the temperature ranges and fluencesof interestBPV code for GFR

łConcrete considerations at high temperature and fluenceI&CłSpectral, material, temperature, and lifetime considerationsFuel and material handling variations 8

Standards of InterestDecay heat

łDifferent from LWR standard due to fast spectrum, fuel manage ment, and fuel configuration variationsRisk-informed design and risk analysis

łImportant to consider implications of inherent safety characteristicsGeneral reactor design standardsVarying considerations for fire protection, operations, offsite/backup power, and seismic standards 9Standards GapsStandards gap analysis efforts for sodium fast reactors provides initial insights into future standards needsThis work benefits other technologies

łSimilar investigations may be desired, but results must be ke pt in context to technology and industry maturity 10