ML18152B674

From kanterella
Jump to navigation Jump to search
Enclosure 3 - ANS Anlwr May 2 2018 Presentations
ML18152B674
Person / Time
Issue date: 05/11/2018
From:
NRC/RES/DE
To:
Mehta S
Shared Package
ML18152B668 List:
References
Download: ML18152B674 (14)


Text

1 HighTemperatureReactors CodesandStandards ANS-NRCWorkshop May2,2018 Developers BWXT Framatome(previousAREVA)

KairosPower StarCoreNuclear XEnergy Supporters DOE,DukeEnergy,EPRIandNEI TechnologyOverview HighTemperatureGasCooledReactor (Framatome,XEnergy,StarCore)

  • GraphitemoderatorandHeliumcoolant
  • TriIsotropic(TRISO)coatedparticlefuel
  • Blockorpebbletypefuelelements
  • Fixed(block)ormoving(Pebble)core
  • Epithermalneutronspectrum
  • Primarysystempressure(~6MPa)
  • Coreinlet/outletTemperature(~325°C/~750°C)
  • SteamconditionsTemp/Press(~16Mpa,~560°C) 5/2/2018 5/11/2018

5/11/2018 2

TechnologyOverview KPFHR (KairosPower)

  • FluorideSaltCooledHighTemperatureReactor, whichleveragesTRISOparticlefuelinpebble formandahightemperature,chemicallyinert, singlephasecoolant,flibe (7Li2BeF4).
  • FHRtechnologyrequireshightemperature,but lowpressure(andthusstress)materials.Inherent fissionproductretentionwiththecombinationof TRISOparticlefuelandflibe coolantwould benefitfromupdatedstandardsonSSC classificationandtreatmentofsourceterms.

5/2/2018 CodesandStandards

  • Similartoanyotherreactordesignourdesignswillbe governedbyhundredsofcodesandstandards.
  • Mostwillbeoflittleconsequence;sincetheygovern routinedesign,fabrication,construction,and installationactivities

- Heatexchangerdesignstandardsforairblastheat exchangerswhichwewillsimplyorderoutofacatalog

- RelevantstandardswhichtheNRCwouldbemost interestedinarevariousASME,IEEE,ASCEstandards

- Thesestandardswillbeinvokedformajorpartsofthe nuclearisland,e.g.ASMEB&PVSectIII,Div.5 High TemperatureReactors Page4 5/2/2018

5/11/2018 3

CodesandStandards ASMESectionIII,Div.5 SectionIII,Div.5includesgraphiteandotherhightemperature materials Itprovideshightemperaturedesignrulesforsomeconventional materials ThevalueofthegraphitesectionofDiv.5remainstobeseen,since theyhaveneveractuallybeenappliedinpracticetothedesignof anactualreactor Webelievetheyareusableandbeneficialbeyondthelaboratory context Thepartsformetallicmaterialswillbeusefultousandessentialfor ournextgenerationofHTGRs,i.e.theVHTGR GoodprogresshasalreadybeenmadeonDiv.5,wearenotcertain whethersubstantialadditionaleffortsareneededuntilwestartour designactivities Page5 5/2/2018 TypicalStandardsfor for HTGRs

  • Vessels ASMESectionIII
  • ReactorInternals TBD SectionIIIDiv.5
  • SGs TEMAhelicalcoilstandard
  • Graphite ASMESectionIIIDiv.5
  • I&C IEEEStandard(AnalogorDigital)
  • RCCS ASMESectionIII
  • Valves TBD ASMESectionIII
  • Circulator TBD ASMESectionIII
  • Refuelingmachine TBDroboticsorelevatorstandards 5/2/2018 Page6

5/11/2018 4

HTGRTWG PriorityStandards ASME/ANSRAS1.42013,ProbabilisticRiskAssessmentStandardfor AdvancedNonLWRNuclearPowerPlants,(TrialUse)

ANS30.1201x,IntegrationofRiskInformed,PerformanceBased PrinciplesandMethodsintoNuclearSafetyDesignforNuclearPower Plants(newstandard)

ANS30.2201x,CategorizationandClassificationofStructures,Systems, andComponentsforNewNuclearPowerPlants(newstandard)

ANSI/ANS53.12011,NuclearSafetyDesignProcessforModularHelium CooledReactorPlants,R2016 ANSI/ANS67.02.12014,NuclearSafetyRelatedInstrumentSensingLine PipingandTubingStandardforUseinNuclearPowerPlants ASMESectionIIIDivision5andrelatedASMECodesforwelds,piping,etc.

ANS20.1201x,NuclearSafetyCriteriaandDesignCriteriaforFluoride SaltCooledHighTemperatureReactorNuclearPowerPlants PotentialrevisionstoASTMstandardsthatareconsistentwithASMEcode requirements(e.g.Sec.IIIDiv.5,316SScompositioninTableHBBU1, RevisedCase2581)

Page7 5/2/2018 MissingStandards

  • Atthistimewecannotreadilyidentifyany additionalstandardsoutsidethecontextofan activedesignprogram Page8 5/2/2018

5/11/2018 5

Q&A Page9 5/2/2018

5/11/2018 1

MoltenSaltReactorsTechnologyWorkingGroupReport ByJasonRedd,PE Strategic Vision for Advanced Reactor Standards Workshop May 2, 2018 Technology Overview

  • MoltenSaltReactors(MSR)utilizesaltcompoundsinaliquid phasetoprovidereactorcorecooling,neutronmoderation, and/orfuelform.Typicallyoperatingatlowpressureandhigh temperature,MSRsarecapableofprovidinghighquality steamorprocessheatfornumeroususes.Awide combinationofnucleonics,fuel,andcoolantdesignsare underdevelopment.
  • CharacteristicsofsomeMSRdesignsthatdifferfromthe operatingLWRfleetinclude:highercoolanttemperatures, potentiallycorrosivesaltcompounds,higherfastneutron exposureofreactorinternalsandvessel,andliquidfuel circulatingoutsideofaconventionalreactorvessel.

2

5/11/2018 2

Benefit of Standards in the Licensing Process

  • TheNationalTechnologyTransferandAdvancementAct (March1996)codifiedexistingOMBguidancetoFederal agenciestoutilizeconsensusstandardswereappropriate.
  • ReactordevelopersandtheNRCStaffbenefitfromstandards whichcanbereviewedonce,andthenberecognizedas acceptableforusewithinthescopeofthestandardforother reactordesigns.
  • Costssavingsincludedesignersnothavingtoeachdevelopand justifytotheNRCStaffcommontechniquesandprocesses.
  • NRCStaffbenefitsbynothavingtorepeatedlyconsumereview timeandresourcesonissuescommontomultiplereactors.
  • Consensusstandardsreflectabroaderknowledgeand experiencebasethananyonereactordevelopercouldprovide whichreducestheuncertaintyinherentinanynewdesign.

3 Standards Needs

  • MSRtechnologycan bedeployedtodaybasedonexisting consensusstandardsandreactorspecificdesigndetails.
  • Suchanapproachisnotpreferableduetotheresourcesrequired toindividuallydevelopanddefendthedesigndetailswhichwould bebetteraddressedbyindustrystandards.
  • ManygeneralindustryandLWRcentricstandardsare completelyappropriateforMSRplants;thefurtherfromthe reactor,themoreexistingstandardsareapplicableormaybe easilyadoptedinMSRlicensingvialimitedexceptions.
  • Asarapidlydevelopingtechnology,standardsacceptance criterianeedstobeperformancebased,ratherthan prescriptive.

4

5/11/2018 3

Top 10 Standards

  • ACI-Standardforconcreteexposedtohighserviceand accidenttemperatures;
  • ANS20.2NuclearSafetyDesignCriteriaandFunctional PerformanceRequirementsforLiquidFuelMoltenSalt ReactorNuclearPowerPlants;
  • ANS30.1IntegratingRiskandPerformanceObjectivesinto NewReactorNuclearSafetyDesigns;
  • ANS30.2CategorizationandClassificationofStructures, Systems,andComponentsforNewNuclearPowerPlants;
  • ASME/ANSRAS1.4ProbabilisticRiskAssessmentStandard forAdvancedNonLWRNuclearPowerPlants; 5

Top 10 Standards (Continued)

  • ASMEBPVSec.IIIDiv.5-Seekadditionalcontentonconsiderations forcorrosionandcontactirradiationdamage;
  • ASMEBPVSec.IIIDiv.5-Needmorematerialoptionssuchashigh strengthnickelalloystobroadentheapprovedmaterialchoicesfor hightemperaturestructuralapplications;
  • ASMEBPVSec.IIIDiv.5-Needmorematerialoptions(metallic, graphite,etc.)forcorecomponentsinahighfastneutronflux environment;
  • ASMEBPVSec.III-Directionregardingdesign,materials,and fabricationofstructuralcomponentscladorlinedwithcorrosion resistantmaterials;
  • ASTMandAWS-Refractoryalloysneeddevelopmentwork-i.e.

weldingtechniques,fabricationtechniques,joiningtechniques, understandingofembrittlementandfracturebehavior.

6

5/11/2018 4

Priority Standards

  • AmongtheprecedingTop10standards,thebelowtopicsare thehighestprioritytoabroadcrosssectionofMSR developers;representativesoftheMSRTWGwillvolunteerto supportthebelowefforts:
  • ASMEBPVSec.IIIDiv.5-Needmorematerialoptionssuchas highstrengthnickelalloystobroadentheapprovedmaterial choicesforhightemperatureapplications;
  • ASMEBPVSec.III-Directionregardingdesign,materials,and fabricationofstructuralcomponentscladorlinedwithcorrosion resistantmaterials;
  • ASTM-Refractoryalloysneeddevelopmentwork-i.e.welding techniques,fabricationtechniques,joiningtechniques, understandingofembrittlementandfracturebehavior.

7 QUESTIONS?

8

Advanced Reactor Standards Workshop May 2, 2018 Fast Reactor Working Group

 Multiple developers working on multiple technologies

 Spans variety of fast reactor technologies in development 2

ARC Columbia Basin Elysium Industries General Atomics GE Hydromine Oklo TerraPower Westinghouse Duke Exelon Southern Studsvik Scandpower EPRI NEI

Industry Engagement

 Fast reactors offer a near limitless source of clean and affordable energy, which have attracted the participation of a diverse group of technology developers and other stakeholders

 The FRWG works with developers and fast reactor stakeholders to further the state-of-the-art Technology development Regulatory International collaboration 3

High Level Perspectives

 Diverse technologies spanning a spectrum of technical readiness with varying needs

 General consensus that standards need to be modernized as the industry grows, but are generally adequate to support initial deployment strategies Concerns about certain technology-specific gaps Concerns about standards development timeframes and delays 4

High Level Perspectives

 Standards are most effective when there are multiple industry stakeholders with significant technology maturity and overlap, who have a sophisticated understanding of what is needed in particular areas

 Must consider industry needs in light of industry maturity

 Standard modernization will become increasingly useful as the advanced reactor industry grows 5

Paradigm Shifts from LWRs 6

LWRs (PWR & BWR)

Non-LWRs Fuel UO2 Metals, oxides, carbides, nitrides, salts Cladding Zirconium alloys Steels, ceramics, no cladding Coolant Water Sodium, lead, other liquid metals, gas, salts Moderator Water Graphite, hydrides, no moderator Spectrum Thermal Fast, epithermal, thermal Temperature 280ºC to 320ºC 300ºC to >850ºC Fuel cycle 1 to 2 years Up to 60 years, possibly more

Standards of Interest

 NQA-1 Useful to advanced reactor work currently Continue to modernize as appropriate and as needed 7

Standards of Interest

 Materials Structural alloys, cladding materials, and coating materials for the temperature ranges and fluences of interest

 BPV code for GFR Concrete considerations at high temperature and fluence

 I&C Spectral, material, temperature, and lifetime considerations

 Fuel and material handling variations 8

Standards of Interest

 Decay heat Different from LWR standard due to fast spectrum, fuel management, and fuel configuration variations

 Risk-informed design and risk analysis Important to consider implications of inherent safety characteristics

 General reactor design standards

 Varying considerations for fire protection, operations, offsite/backup power, and seismic standards 9

Standards Gaps

 Standards gap analysis efforts for sodium fast reactors provides initial insights into future standards needs

 This work benefits other technologies Similar investigations may be desired, but results must be kept in context to technology and industry maturity 10