ML18152B674
| ML18152B674 | |
| Person / Time | |
|---|---|
| Issue date: | 05/11/2018 |
| From: | NRC/RES/DE |
| To: | |
| Mehta S | |
| Shared Package | |
| ML18152B668 | List: |
| References | |
| Download: ML18152B674 (14) | |
Text
1 HighTemperatureReactors CodesandStandards ANS-NRCWorkshop May2,2018 Developers BWXT Framatome(previousAREVA)
KairosPower StarCoreNuclear XEnergy Supporters DOE,DukeEnergy,EPRIandNEI TechnologyOverview HighTemperatureGasCooledReactor (Framatome,XEnergy,StarCore)
- GraphitemoderatorandHeliumcoolant
- TriIsotropic(TRISO)coatedparticlefuel
- Blockorpebbletypefuelelements
- Fixed(block)ormoving(Pebble)core
- Epithermalneutronspectrum
- Primarysystempressure(~6MPa)
- Coreinlet/outletTemperature(~325°C/~750°C)
- SteamconditionsTemp/Press(~16Mpa,~560°C) 5/2/2018 5/11/2018
5/11/2018 2
TechnologyOverview KPFHR (KairosPower)
- FluorideSaltCooledHighTemperatureReactor, whichleveragesTRISOparticlefuelinpebble formandahightemperature,chemicallyinert, singlephasecoolant,flibe (7Li2BeF4).
- FHRtechnologyrequireshightemperature,but lowpressure(andthusstress)materials.Inherent fissionproductretentionwiththecombinationof TRISOparticlefuelandflibe coolantwould benefitfromupdatedstandardsonSSC classificationandtreatmentofsourceterms.
5/2/2018 CodesandStandards
- Similartoanyotherreactordesignourdesignswillbe governedbyhundredsofcodesandstandards.
- Mostwillbeoflittleconsequence;sincetheygovern routinedesign,fabrication,construction,and installationactivities
- Heatexchangerdesignstandardsforairblastheat exchangerswhichwewillsimplyorderoutofacatalog
- RelevantstandardswhichtheNRCwouldbemost interestedinarevariousASME,IEEE,ASCEstandards
- Thesestandardswillbeinvokedformajorpartsofthe nuclearisland,e.g.ASMEB&PVSectIII,Div.5 High TemperatureReactors Page4 5/2/2018
5/11/2018 3
CodesandStandards ASMESectionIII,Div.5 SectionIII,Div.5includesgraphiteandotherhightemperature materials Itprovideshightemperaturedesignrulesforsomeconventional materials ThevalueofthegraphitesectionofDiv.5remainstobeseen,since theyhaveneveractuallybeenappliedinpracticetothedesignof anactualreactor Webelievetheyareusableandbeneficialbeyondthelaboratory context Thepartsformetallicmaterialswillbeusefultousandessentialfor ournextgenerationofHTGRs,i.e.theVHTGR GoodprogresshasalreadybeenmadeonDiv.5,wearenotcertain whethersubstantialadditionaleffortsareneededuntilwestartour designactivities Page5 5/2/2018 TypicalStandardsfor for HTGRs
- Vessels ASMESectionIII
- ReactorInternals TBD SectionIIIDiv.5
- SGs TEMAhelicalcoilstandard
- Graphite ASMESectionIIIDiv.5
- I&C IEEEStandard(AnalogorDigital)
- RCCS ASMESectionIII
- Valves TBD ASMESectionIII
- Circulator TBD ASMESectionIII
- SiloConcrete ACIstandard
- Refuelingmachine TBDroboticsorelevatorstandards 5/2/2018 Page6
5/11/2018 4
HTGRTWG PriorityStandards ASME/ANSRAS1.42013,ProbabilisticRiskAssessmentStandardfor AdvancedNonLWRNuclearPowerPlants,(TrialUse)
ANS30.1201x,IntegrationofRiskInformed,PerformanceBased PrinciplesandMethodsintoNuclearSafetyDesignforNuclearPower Plants(newstandard)
ANS30.2201x,CategorizationandClassificationofStructures,Systems, andComponentsforNewNuclearPowerPlants(newstandard)
ANSI/ANS53.12011,NuclearSafetyDesignProcessforModularHelium CooledReactorPlants,R2016 ANSI/ANS67.02.12014,NuclearSafetyRelatedInstrumentSensingLine PipingandTubingStandardforUseinNuclearPowerPlants ASMESectionIIIDivision5andrelatedASMECodesforwelds,piping,etc.
ANS20.1201x,NuclearSafetyCriteriaandDesignCriteriaforFluoride SaltCooledHighTemperatureReactorNuclearPowerPlants PotentialrevisionstoASTMstandardsthatareconsistentwithASMEcode requirements(e.g.Sec.IIIDiv.5,316SScompositioninTableHBBU1, RevisedCase2581)
Page7 5/2/2018 MissingStandards
- Atthistimewecannotreadilyidentifyany additionalstandardsoutsidethecontextofan activedesignprogram Page8 5/2/2018
5/11/2018 5
Q&A Page9 5/2/2018
5/11/2018 1
MoltenSaltReactorsTechnologyWorkingGroupReport ByJasonRedd,PE Strategic Vision for Advanced Reactor Standards Workshop May 2, 2018 Technology Overview
- MoltenSaltReactors(MSR)utilizesaltcompoundsinaliquid phasetoprovidereactorcorecooling,neutronmoderation, and/orfuelform.Typicallyoperatingatlowpressureandhigh temperature,MSRsarecapableofprovidinghighquality steamorprocessheatfornumeroususes.Awide combinationofnucleonics,fuel,andcoolantdesignsare underdevelopment.
- CharacteristicsofsomeMSRdesignsthatdifferfromthe operatingLWRfleetinclude:highercoolanttemperatures, potentiallycorrosivesaltcompounds,higherfastneutron exposureofreactorinternalsandvessel,andliquidfuel circulatingoutsideofaconventionalreactorvessel.
2
5/11/2018 2
Benefit of Standards in the Licensing Process
- TheNationalTechnologyTransferandAdvancementAct (March1996)codifiedexistingOMBguidancetoFederal agenciestoutilizeconsensusstandardswereappropriate.
- ReactordevelopersandtheNRCStaffbenefitfromstandards whichcanbereviewedonce,andthenberecognizedas acceptableforusewithinthescopeofthestandardforother reactordesigns.
- Costssavingsincludedesignersnothavingtoeachdevelopand justifytotheNRCStaffcommontechniquesandprocesses.
- NRCStaffbenefitsbynothavingtorepeatedlyconsumereview timeandresourcesonissuescommontomultiplereactors.
- Consensusstandardsreflectabroaderknowledgeand experiencebasethananyonereactordevelopercouldprovide whichreducestheuncertaintyinherentinanynewdesign.
3 Standards Needs
- MSRtechnologycan bedeployedtodaybasedonexisting consensusstandardsandreactorspecificdesigndetails.
- Suchanapproachisnotpreferableduetotheresourcesrequired toindividuallydevelopanddefendthedesigndetailswhichwould bebetteraddressedbyindustrystandards.
- ManygeneralindustryandLWRcentricstandardsare completelyappropriateforMSRplants;thefurtherfromthe reactor,themoreexistingstandardsareapplicableormaybe easilyadoptedinMSRlicensingvialimitedexceptions.
- Asarapidlydevelopingtechnology,standardsacceptance criterianeedstobeperformancebased,ratherthan prescriptive.
4
5/11/2018 3
Top 10 Standards
- ACI-Standardforconcreteexposedtohighserviceand accidenttemperatures;
- ANS20.2NuclearSafetyDesignCriteriaandFunctional PerformanceRequirementsforLiquidFuelMoltenSalt ReactorNuclearPowerPlants;
- ANS30.1IntegratingRiskandPerformanceObjectivesinto NewReactorNuclearSafetyDesigns;
- ANS30.2CategorizationandClassificationofStructures, Systems,andComponentsforNewNuclearPowerPlants;
- ASME/ANSRAS1.4ProbabilisticRiskAssessmentStandard forAdvancedNonLWRNuclearPowerPlants; 5
Top 10 Standards (Continued)
- ASMEBPVSec.IIIDiv.5-Seekadditionalcontentonconsiderations forcorrosionandcontactirradiationdamage;
- ASMEBPVSec.IIIDiv.5-Needmorematerialoptionssuchashigh strengthnickelalloystobroadentheapprovedmaterialchoicesfor hightemperaturestructuralapplications;
- ASMEBPVSec.IIIDiv.5-Needmorematerialoptions(metallic, graphite,etc.)forcorecomponentsinahighfastneutronflux environment;
- ASMEBPVSec.III-Directionregardingdesign,materials,and fabricationofstructuralcomponentscladorlinedwithcorrosion resistantmaterials;
- ASTMandAWS-Refractoryalloysneeddevelopmentwork-i.e.
weldingtechniques,fabricationtechniques,joiningtechniques, understandingofembrittlementandfracturebehavior.
6
5/11/2018 4
Priority Standards
- AmongtheprecedingTop10standards,thebelowtopicsare thehighestprioritytoabroadcrosssectionofMSR developers;representativesoftheMSRTWGwillvolunteerto supportthebelowefforts:
- ASMEBPVSec.IIIDiv.5-Needmorematerialoptionssuchas highstrengthnickelalloystobroadentheapprovedmaterial choicesforhightemperatureapplications;
- ASMEBPVSec.III-Directionregardingdesign,materials,and fabricationofstructuralcomponentscladorlinedwithcorrosion resistantmaterials;
- ASTM-Refractoryalloysneeddevelopmentwork-i.e.welding techniques,fabricationtechniques,joiningtechniques, understandingofembrittlementandfracturebehavior.
7 QUESTIONS?
8
Advanced Reactor Standards Workshop May 2, 2018 Fast Reactor Working Group
Multiple developers working on multiple technologies
Spans variety of fast reactor technologies in development 2
ARC Columbia Basin Elysium Industries General Atomics GE Hydromine Oklo TerraPower Westinghouse Duke Exelon Southern Studsvik Scandpower EPRI NEI
Industry Engagement
Fast reactors offer a near limitless source of clean and affordable energy, which have attracted the participation of a diverse group of technology developers and other stakeholders
The FRWG works with developers and fast reactor stakeholders to further the state-of-the-art Technology development Regulatory International collaboration 3
High Level Perspectives
Diverse technologies spanning a spectrum of technical readiness with varying needs
General consensus that standards need to be modernized as the industry grows, but are generally adequate to support initial deployment strategies Concerns about certain technology-specific gaps Concerns about standards development timeframes and delays 4
High Level Perspectives
Standards are most effective when there are multiple industry stakeholders with significant technology maturity and overlap, who have a sophisticated understanding of what is needed in particular areas
Must consider industry needs in light of industry maturity
Standard modernization will become increasingly useful as the advanced reactor industry grows 5
Paradigm Shifts from LWRs 6
Non-LWRs Fuel UO2 Metals, oxides, carbides, nitrides, salts Cladding Zirconium alloys Steels, ceramics, no cladding Coolant Water Sodium, lead, other liquid metals, gas, salts Moderator Water Graphite, hydrides, no moderator Spectrum Thermal Fast, epithermal, thermal Temperature 280ºC to 320ºC 300ºC to >850ºC Fuel cycle 1 to 2 years Up to 60 years, possibly more
Standards of Interest
NQA-1 Useful to advanced reactor work currently Continue to modernize as appropriate and as needed 7
Standards of Interest
Materials Structural alloys, cladding materials, and coating materials for the temperature ranges and fluences of interest
BPV code for GFR Concrete considerations at high temperature and fluence
I&C Spectral, material, temperature, and lifetime considerations
Fuel and material handling variations 8
Standards of Interest
Decay heat Different from LWR standard due to fast spectrum, fuel management, and fuel configuration variations
Risk-informed design and risk analysis Important to consider implications of inherent safety characteristics
General reactor design standards
Varying considerations for fire protection, operations, offsite/backup power, and seismic standards 9
Standards Gaps
Standards gap analysis efforts for sodium fast reactors provides initial insights into future standards needs
This work benefits other technologies Similar investigations may be desired, but results must be kept in context to technology and industry maturity 10