AEP-NRC-2012-32, Core Operating Limits Report

From kanterella
Revision as of 00:55, 30 April 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Core Operating Limits Report
ML12138A210
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 05/03/2012
From: Gebbie J P
Indiana Michigan Power Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
AEP-NRC-2012-32
Download: ML12138A210 (18)


Text

INDIANA MICHIGAN POWERO A unit of American Electric Power Indiana Michigan Power One Cook Place Bridgman, MI 49106 IndianaMichiganPower.com AEP-NRC-2012-32 10 CFR 50.4 May 3, 2012 Docket No.: 50-316 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Donald C. Cook Nuclear Plant Unit 2 CORE OPERATING LIMITS REPORT Indiana Michigan Power Company, the licensee for Donald C. Cook Nuclear Plant Unit 2, is submitting the Core Operating Limits Report (COLR) for Unit 2 Cycle 20 in accordance with Technical Specification 5.6.5. Revision 0 of the Unit 2 Cycle 20 COLR is provided as an enclosure to this letter.There are no new or revised commitments in this letter. Should you have any questions, please contact Mr. Michael K. Scarpello, Regulatory Affairs Manager, at (269) 466-2649.Sincerely, Joel P. Gebbie Site Vice President DMB/kmh

Enclosure:

Donald C. Cook Nuclear Plant Unit 2 Cycle 20 Core Operating Limits Report, Revision 0 c: J.T. King, MPSC S. M. Krawec, AEP Ft. Wayne, w/o enclosure MDEQ -RMD/RPS NRC Resident Inspector C. D. Pederson, NRC Region III P. S. Tam, NRC Washington DC kbo I ENCLOSURE TO AEP-NRC-2012-32 Donald C. Cook Nuclear Plant Unit 2 Cycle 20 Core Operating Limits Report Revision 0 D. C.C.OOK UNIT..2.CYCLE.20, D. C. COOK UNIT 2 CYCLE 20 .- Revision 0: " " l " " "i ii" i i " i A .Donald. C, Cook: Nuclear Plant.ý.,.

U. it2 CyCle 20 Core. Operating Limits.. Report, Revision.O 0 Page 1 of.l6.

D. C. COOK UNIT. 2 CYCLE 20 Revisi on 0 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report for the Donald C. Cook Nuclear Plant Unit 2 CycleE20 has been prepared in aecordance with the requirements of Technical Specification 5.6.5.The analytical methods used.to determine the .core operating limits shall be those previously reviewed and approved by the Nuclear Regulatory Commission (NRC) in: .a. WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Methodology,-

July. 1985 b. WCAP-8385, Power Distribution Control and Load. Following Procedures

-Topical Report, September 1974 c. WCAP- 10216-P-A, Rev. 1iA, Relaxation of Constant Axial Offset Contrbl/FQ Surveillance Technical Specification, February 1994 d. Plant-specific adaptation (approved by Amendment 297, dated March 31,.2011) of WCAP-16009-P-A, "Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical.

Treatment of Uncertainty Method (ASTRuM)," Revision.:

..0.(Westinghouse".

Proprietary), approved by: letter from HU.N. Berkow, NRC, to J. A. Gresham, Westinghouse Electric Company, dated November 5,*2004 e. WCAP-12610-P-A, VANTAGE+ Fuel Assembly Reference Core Report,:April 1995.....f. ...WCAP-8745-P-A,..

Design. Bases for -the Thermal "Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986 g. WCAP-13749-P-A, Safety Evaluation Supporting the Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement, March 1997 The Technical Specifications affected by this report are listed below:.2.1.1 -Reactor Core SLs [Safety Limits]3.1.1 SHUTDOWN MARGIN.(SDM) 3.1.3 Moderator.

Temperature Coefficient (MTC)-3.1.5 " Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))N 3.2.2.:: Nuclear E.thalpy Rise Hot Channel Factor (F an)3.2.3 AXIAL FLUX DIFFERENCE (AFD),3.3.1 .Reactor~Trip.SYstem (lTS)Instrumentation 3.4.1 RCS .[Reactor.

Coolant System] Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits 3.9.1 Boron Concentration Page 2 of16 D. C. COOK UNIT 2. CYCLE 20 Revisioni0 D. C. COOK- UNIT.i;**:***:.

.**i* 2* CYCLE 20 Revision..

0*****:*2.0 OPERATING LIMITS The cycle-specific parameter limits listed in Section 1.0are presented in the following subsections.

These limits have been developed using* the NRC-approved.methodologiesspecified in Technicald Specification 5.6.5. -2.1 SAFETY LIMITS 2.1.1 Reactor Core. SLs (Specification 2.1. 1)In Modes I and 2 othe combinationof thermal power, pressurizer pressure, and the highest.loop averge temperature.(Tavg)shall not exceed the limits as shown.iin Figure 6 for.4 loop operation.

2.2 REACTIVITY CONTROL 2.2.1. SHUTDOWN MARGIN(SDM) (Specification 3.1.1)Shutdown margin shall be greater than or equal to 1.3% Ak/k for Tavg> 200°F Shutdown margin shall be greater than or equal to 1.0% Ak/k for Tavg r 200'F 2.2.2 Moderator Temperature Coefficient (MTC) (Specification 3.1.3)a. The MTC limits are:.The BOL/ARO-MTC shall be less positive or equal to the value given in Figure 1.The EOL/ARO/RTP-MTC shall be less negative or equal to -4.1OE-4 Ak/k/°F.This limit isbased onpa Tavg Program with -IFPvessel Tavg of 571.0 to 576.0 OF s. ri is a .o .a .T .m with Where: ARO stands for All Rods Out .-BOL stands for Beginning of Cycle Life'EOL stands for End of Cycle Life .

for Rated Thermal Power-HFP stands for Hot Full Thermal Power Page 3 of 16 D. C. COOK UNIT 2 CYCLE 20 Revision 0 b. The MTC Surveillance limit is:.The 300 ppm/ARO/RTP-MTC should be less negative or equal to. -3.20E-4 Ak/k/0 F at a HIFP vessel Tavg of 571.0 to 576.0 9F c. The Revised Predicted near-EOL 300 ppm MTC shall be calculated using Figure 7 and.the following algorithm:

Revised Predicted MTC = Predicted MTC + AFD Correction

+ Predicted Correction*

  • Predicted Correction is -0.30E-4 Ak/ki 0 F.If the Revised Predicted MTC is less negative than the: Surveillance Requirement (SR)3.1.3.2 limit (COLR 212.2.b) and all of the benchmark data contained in the surveillance procedure are met, then a MTC measurement in accordance with SR 3.1.3.2. is not required.d. The MTC Surveillanee limit is: The 60 ppm/ARO/RTP-MTC should be less negatives.r equal, to-3.90E-4 Ak/k/OF at a HFP vessel Ta.g of 571.0 to 576.0 PF 2.2.3 Shutdown Bank Insertion Limits (Specification 3.1.5).The shutdown rods shall be withdrawn to at least.228 steps.2.2.4 Control Bank Insertion Limits (Specifications 3.1.6)a. The.control rod banks shall be limited in physical insertion as shown in Figure 2...b. Successive Control Banks shall overlap by 100. steps. The sequence for Control Bank withdrawal shall be Control Bank A, Control Bank B, Control Bank C, and Control Bank 2.3 POWER DISTRIBUTION LIMITS 2.3.1 AXIAL FLUX DIFFERENCE (AFD) (Specification 3.2.3)a. The Allowable Operation Limits are provided in Figure 3.b. The .AFD. target band is +5% for a cycle average accumulated bumup.>0.0 MWD/MTU [Megawatt Days/Metric Ton Uranium].Page 4 of. 6 C. COOK UNIT 2 CYCLE.20.Rev~ision 0 D. C. COOK UNIT 2 CYCLE 20 Revision 0 2.3.2 Heat Flux Hot Channel Factor (FQ(Z)) (Specification 3.2.1)CFQ .... * ... .Fgc(Z) *K(Z)CF : P(Z)<2.CFQ
  • K(Z)".w (Z. 2 CF, " 'Z)" for P >.0.5 for PO..5 for P <. 0.5 for P o.5 e: P.. .", " TERMAL P.OWER W'here: ..P.-a. .c Q C 2.335.....
b. K(Z) is provided in Figure 4 c.:.. is the measured .bh6t channel factor including uncertainty and a 5% measurement uncertainty...
d. W.(Z) is provided in Table 1 for +5% AFD target band.a 3%manufacturing tolerance e. F()=F% (Z) x W(Z) x F.The W(z) values are generated assuming that they will be used for a full power surveillance.

When a part power surveillance is performed, the W(z) values should be multiplied by the factor liP when P is> 0.5. When P is < 0.5, the W(z) values should be multiplied by the factor: 1./(0.5)" or 2.0. This is consistent with the adjustment in the FQ(z) limit at part power conditions.

Page. 5 of 16 A C. COOK UNIT 2 CYCLE 20.RevWon.0 D. C.CO K U IT .CYLE 0.Rvison.f. For Cycle 20, Fp =.1.02 for all burnups associated with Note 2a.of SR 3.2.1.2, except as shown in the table below.. When no penalty is required, Fp = 1.00..Cycle Burnup Fp, Penalty Multiplier (MWD/MTU)..

__. __:" _... __._ ._:__.0 1.020 150 1.035 3.17 1.039 484 1.045 818 1.04.8.985 .1.048 1152 .1.047"139 .1.045.1486 1.043 1653 1.040 182.1 A.039 1988 .1.038 2155 1.0 .36-2322 1.03 3 2489 .....1.030.2656 .1.02.6 2823. .*.. .1.022 3000 1. 1M02 The 'bun up. .r .ang only covers where Fp exceeds 1.02. inear interpo.lation i adequate for intermediate cycle burnups.2.3.3 Nuclear Enthalpy Rise Hot Channel Factor (FN) (Secification 3.2.2)FHý CF~:* (1+ PFAH *(.-P)).T HERMIAL POWER Whee: =RATED THERMAL:POWVER.

a. CF~ 1.548 b. PFA= 0.3..Page 6 of 16 91 JO L asud.JJ UMf~eIU.0U3ud

.~spnoinu tudd OOtZ jo. uo qJu uouoo uoioq au elrJ~u JOJ OOULIMOIIL 0AI)VAISU03

)"V'~ % I usp. ou uPP!LVM 6 P o U!puop eqT spuno q uoqL,4uaouoo:

si1qj +11flSLe/j S6'0.>~e~

"..A JO. p~~~.I0J AXLLS am sonjuA* Suipuodsomoo atp 'oouumoflp c4!1!qtp'UO Ipj!A 'SenIeA'SISXluV A4jus On +stj XI o ~uianja-i aql puq jvu~p Suienjei atp 'SA eqj jo suortp!od poIljIJ uE jo uopv.4uapouo uoioq aqj.1v6'E uOIu~OIiOadS) uopt,4uQOeoDu.0j uoa Z+ !sd. V*ZLf:; a q iiu'qs 0-nssgJd jazjnssgld T (uvc uoi u~fl!oadS)sl.-, S ~W!1 (R u) IQ uiolualprmfl tuoiJ aininmd G Mold puuEaj ' onidwo T 'eanssoxj SD-dI-Z IA[3JSA.S Il4V103,90OJLV911 g.-g aifaij Ut UMOIIs sEa amE suiodlps jL7 .iaoMOCeAO PI.LE Qv ejn~~dtuoijoAJ ouj C, C uopv~gpodS).

uouutuii (SL-H) ui;eisXS dTi IOUOO~ 1 0 UOIS!A4H Oz H3~DA3 z JlDf MOOD a (I.

A C. COOK UNIT 2 CYCLE 20 Revision 0*. C.COOK.NIT 2CYCLE20.Reisio 0 FIGURE, 1: MODERATOR TEMPERATURE COEFFICIENT (MTC) LIMITS 1.0 0.5 LL 0I-'T x'0 F-0.0-.5..LUNACCEPTABLE OPERATION-ACCEPTABLE OPEkATION]

--" ' ..' " "--, '--" '-"". : " ' ' ' ' -"" " ' '-1.0 0 ." 10 :"20 30 40 50 ' 60 70 ' 80 : 90 100 Percent Rated Thermal Power.:Page 8 of 16 D. C. COOK UNIT 2 CYCLE 20.Revision 0 FIGURE 2 ROD BANK INSERTION LIMITS VERSuS THERMAL *POWER.250 --" -"' ' 1....225 _ _ _ _ _ _2(52.9%,.228) 100 Step Overlap I.200 BANC... .(100 %,189)-175 o o 125 (0%, 28)0 0 BANK D 0~0.10 20.:. 30 40 50. :60. .70 POWER (% of Rated Thermal Power)Page 9.of.16 D. C. COOK UNIT 2 CYCLE 20ý:'Rcvision 0 D .C C O O U N I 2 C Y L 20 .R evision 0.-... .FIGURE 3 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTIONOF RATED THERMAL POW ER (RTP)100 x.0 0 C-O-S .O.." ....0 ..* 90*80 7o 60: 60 4o, 30 20 10.0 FLUX DIFFERENCE (DELTA-I)Page 10 of 16 D. C. COOK UNIT 2 CYCLE 20 Revision 0 FIGURE 4 K(Z) -NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT..: 1.2 1.0 (D w LLI 0.w*N oJ 0.8 0.6 0.4 (0.0,..1.0)

_ __ _ _ _ (8.425,1.0)

_ _ _.(12.0, 0.925).0.2 0.0 12. " 0.2.4 S" CORE 6 HEIGHT (FT)8 10 12 Page 11 of 16 D.C. COOK UNIT 2 CYCLE 20 Revision0 FIGURE 5.(Page' 1: of 2)Reactor Trip System Instrumentation Trip. Setpoints Overtemiperature AT Trip Setpoint~~~~I i -. :: Overtemperature AT. AT [K 1 -T)[1+ .3 S.4') 4.1 (...Where: AT.. Measured RCS.AT OF AT 0 Indicated AT at RATED THERMAL POWER, OF,.O Averagetempierature;e .F.T .= "Nominal Tevd at RATED THERMAL POWER, 576.0.F)P ..= Pressurizer Pressure, psig iv Nominai RCSoperating pressure (2235 psig)I+,r 2 s *The function .generated by the lead-lag:

controller for Tavg dynamic compensation

.I, X2 ..Time constants utilized.in the lead-lag controller.for.T," ..: > ' 28secs....

'E 2 ..... .S " " Laplace transfonn operator, sec " Ki 1.9*X 2 A .01331 0 F:.K 3..0.00058/psig fi (A[) = -3.5.{3 3%.(qqb)}'

whenqt-qb:<-33%.RTP 00% of RTP.: when -33% RTP< 4t -qb < 6% RTP.+10 {(qt- qb)- 6%} .'when -q- qb >6% RTP where q, and qb are percent RATED THERMAL "POVWER in: the upper and lower halves of the. core respectively, and qt + qb is total THERMAL.POWER in percent RATED THERMAL POWER.* This is a Safety Analysis value. Refer to Technical Requirements Manual for .nominal value. of this coefficient used in programming the trip setpoint..Page 120of 16 A C. COOK UNIT 2 CYCLE 20 Revision 0 D.C.COKUNT.

YCE.0Reiso 0.FIGURE 5.(Page 2 of 2)-Overpower AT Trip Setpoint T -K.(T-T")-f 2 (AI)]Overpower AT < AT. [K 4-K5 Where: AT = Measured RCS.AT, OF AT 0= Indicated AT at RATED TIMRMAL POWER, OF.T=

  • Average temperature, 0 F T" Nominal Ta at RATED THERMAL POWER, (5 576.0 -F).%K 1.16*K > ."0.02/9F for increasing average temperature;-Ks

= 0 for decreasing average.temperature 1K6 : .00 197/'F for T greater than T" ;1<6=0 for T less than or equal to T" T.3S I +.T 3 S 13: T- The function generated by the rate lag controller for Tavg dynamic compensation

.Time constant utilized in the rate lag controller for Tavg; 3 1 10 secs.S .. Laplace transform ioperator, sec.fi (A])=0.0* This is a Safety Analysis value. Refer to Technical Requirements Manual for. nominal value of this coefficient used in programming the trip setpoint.Page 13 of 16 D. C. COOK UNIT 2 CYCLE 20.D.. C. COOK.UNIT

.2.CYCLE20.Revision 0 FIGURE 6 Reactor Core Safety Limits U-C tM I-C.* L I' .I _ _ _ _ _ _ I ' 1 ..' " .I _ _1_ I.0 0.2 0.4 0.6 0.8 1 1.2 PoWer (fraCtion of rated thermal power)'DESCRIPTION OF SAFETY LIMITS PRESSURE.

Power .Tavg Power Tavg Power Tavg Power. Tavg (psia) (frac) (s F) (frac) ( F) (frac) ( F) (frac) ( F)1775 0.00 615.4 0.98 583.8 1.02 580.9 1.2 558.1 2000. 0.00. 631A8 0.6 605.8 0.96: 597.5, 1.2 568.5 2100 0.00 639.1 .0.82 , 614.0 0.96 601.6 1.2 573.1 2250 0.00 649.2 0.72 628.6 0.98 605.2 1.2 580.4 2400 ..0.00 659.0.:1.

'0.62 642.0 1.1 599.0 1.2 588.1 UNIT 2 ReactorCore Safety Limits Page.14 ofl6.

D. C. COOK UNIT 2 CYCLE 20 .Revision 0 .FIGURE 7 Unit 2 Cycle 20 Predicted HlF ARO 300 PPM MTC Versus Burnup-2.46E-04;-2.486E-04

-2. 05 E-04 S.. -2.52L-04

." .., .."224-5 E-04. ".-2.546E-04:

-2.560E-04 , .-2.2E-04.* 2..6..,. ." .4"'.. $ .17,000. ..18,000 19,000 20,000.:....Cycle Bumup (MWDIMTU), -* .21,000":"Burnup (MWD/MTU)

MTC (pcmI 0 F). MTC (Aklk/F).....17,000 m24.411 -2.4411E-04 18,000 -24.798 -2.4798E-04

..-19,000

-25.178 -2.5178E-04 20,000 -25.537 -2.5537E-04 21,000 :-25.908.

-2.5908E-04 Page 15.of 16 D. C. COOK UNIT 2 CYCLE 20 Revision 0 TABLE 1 D. C. Cook Unit 2 Cycle 20 Wo(Z) Function I 1 12 2.20 3.20 1l 3.40 1 1 3.00 1.0848 1.0870 1 1.0891 1.0907 1 1.09111I.0918 I 1.012 1,0886 1.0860 1 1.0850 1 1.08M 1 1.0870 1 1.0005 1 1.029 1.0943 20 1 3.80 1 IAM 1 1.0874 1 1.0895 1 1.0010 1 1.0918 1 1.0917 1 IAMS .1 1.0875 1.0959T 1.10M 1 1.1040 1.1045 21 1400 1.0864 1.0882 1.08" l.91 I 1091 7 I-W 1.0915 1 1.090 1 1.0870 1.1009 1 1.1076 1 1.1122*1.1129..0 1 0~ 1 1-c 1 1.120g 1.w91I 1.0w011 1 1.1278 1.017 1.095 1.1076 1 1.1162 1 1.1255 I.1,0721 1.1 1.1023 1,01 1.09 2717 1.1022 I I 47 1 ,IL20 1.0957

  • 1.0942 I 1.F0927 1.0924 1 1.0956 1.0C)0 1 1.1014 1.1028 1 1.109 1i.1049 1 1.1051 1 I.6 111.0 1 1.000M 1 1.0000 1.0 0000 I .0000 I 1.0000 .1 .00001 1.0000 1 1.0000 1 1.0000 1.0000 1 1.0000 Top and bottom 10% of core excluded.Page 16 of 16