ML20339A069: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:GINNA/UFSAR 4           REACTOR                                                       1 4.1        
{{#Wiki_filter:GINNA/UFSAR Page 1 of 5 Revision 29 11/2020 4
REACTOR 1
4.1  


==SUMMARY==
==SUMMARY==
DESCRIPTION                                           2 4.1.1       REACTOR CORE                                                   2 4.1.2       WESTINGHOUSE OPTIMIZED FUEL ASSEMBLIES/422 VAN-               2 TAGE + FUEL ASSEMBLIES 4.1.3       RECONSTITUTED FUEL ASSEMBLIES                                 4 4.1.4       STARTUP REPORT                                               5
DESCRIPTION 2
4.1.1 REACTOR CORE 2
4.1.2 WESTINGHOUSE OPTIMIZED FUEL ASSEMBLIES/422 VAN-2 TAGE + FUEL ASSEMBLIES 4.1.3 RECONSTITUTED FUEL ASSEMBLIES 4
4.1.4 STARTUP REPORT 5  


==4.1         REFERENCES==
==4.1 REFERENCES==
FOR SECTION 4.1                                   6 4.2         FUEL SYSTEM DESIGN                                           7 4.2.1       DESIGN BASES                                                   7 4.2.1.1     Performance Objectives                                         7 4.2.1.2     Principal Design Criteria                                     7 4.2.1.2.1   Reactor Core Design                                           7 4.2.1.2.2   Suppression of Power Oscillations                             9 4.2.1.2.3   Redundancy of Reactivity Control                               9 4.2.1.2.4   Reactivity MODE 3 (Hot Shutdown) Capability                   9 4.2.1.2.5   Reactivity Shutdown Capability                               10 4.2.1.2.6   Reactivity Holddown Capability                               10 4.2.1.2.7   Reactivity Control Systems Malfunction                       11 4.2.1.2.8   Maximum Reactivity Worth of Control Rods                     12 4.2.1.2.9   Conformance With 1972 General Design Criteria               12 4.2.1.3     Safety Limits                                               13 4.2.1.3.1   Nuclear Limits                                               13 4.2.1.3.2   Reactivity Control Limits                                   13 4.2.1.3.3   Thermal and Hydraulic Limits                                 13 4.2.1.3.4   Mechanical Limits                                           14 4.2.1.3.4.1 Reactor Internals                                           14 4.2.1.3.4.2 Fuel Assemblies                                             15 4.2.1.3.4.3 Control Rods                                                 16 4.2.1.3.4.4 Control Rod Drive Assembly                                   16 4.2.2       FUEL SYSTEM DESIGN DESCRIPTION                               16 Page 1 of 5      Revision 29 11/2020
FOR SECTION 4.1 6
4.2 FUEL SYSTEM DESIGN 7
4.2.1 DESIGN BASES 7
4.2.1.1 Performance Objectives 7
4.2.1.2 Principal Design Criteria 7
4.2.1.2.1 Reactor Core Design 7
4.2.1.2.2 Suppression of Power Oscillations 9
4.2.1.2.3 Redundancy of Reactivity Control 9
4.2.1.2.4 Reactivity MODE 3 (Hot Shutdown) Capability 9
4.2.1.2.5 Reactivity Shutdown Capability 10 4.2.1.2.6 Reactivity Holddown Capability 10 4.2.1.2.7 Reactivity Control Systems Malfunction 11 4.2.1.2.8 Maximum Reactivity Worth of Control Rods 12 4.2.1.2.9 Conformance With 1972 General Design Criteria 12 4.2.1.3 Safety Limits 13 4.2.1.3.1 Nuclear Limits 13 4.2.1.3.2 Reactivity Control Limits 13 4.2.1.3.3 Thermal and Hydraulic Limits 13 4.2.1.3.4 Mechanical Limits 14 4.2.1.3.4.1 Reactor Internals 14 4.2.1.3.4.2 Fuel Assemblies 15 4.2.1.3.4.3 Control Rods 16 4.2.1.3.4.4 Control Rod Drive Assembly 16 4.2.2 FUEL SYSTEM DESIGN DESCRIPTION 16  


GINNA/UFSAR 4.2.3     CORE COMPONENTS DESIGN DESCRIPTION                                     17 4.2.3.1   Fuel Assembly                                                           17 4.2.3.1.1 Top Nozzle, Springs, and Clamps                                         18 4.2.3.1.2 Bottom Nozzle                                                           18 4.2.3.1.3 Guide Thimbles                                                         19 4.2.3.1.4 Instrumentation Tube                                                   19 4.2.3.1.5 Grid Assemblies                                                         19 4.2.3.1.6 Fuel Rods                                                               20 4.2.3.1.7 Fuel Assembly Joints and Connections                                   20 4.2.3.1.8 Fuel Assembly Identification                                           21 4.2.3.2   Control Rods                                                           21 4.2.3.3   Neutron Source Assemblies                                               22 4.2.3.4   Plugging Devices                                                       22 4.2.3.5   Fuel Pellet and Cladding Design Considerations                         23 4.2.3.6   Reload Fuel Design                                                     23 4.2.3.6.1 Reload Fuel Design - Westinghouse Optimized Fuel                       23 4.2.3.6.2 Reload Fuel Design - Westinghouse OFA/VANTAGE + Fuel                   24 4.2.3.6.3 Reload Fuel Design - Westinghouse 422V+ Fuel                           24 4.2.3.7   Fuel Assembly and Rod Cluster Control Assembly Tests                   24 4.2.3.7.1 Reactor Evaluation Center Tests                                         24 4.2.3.7.2 Loading and Handling Tests                                             24 4.2.3.7.3 Axial and Lateral Bending Tests                                         24 4.2.4     DESIGN EVALUATION                                                       25 4.2.4.1   Fuel and Cladding Evaluation - Original Core                           25 4.2.4.2   Design Evaluation - Reload Optimized Fuel Assembly, OFA/VAN-           25 TAGE+ Fuel Assembly, and 422 VANTAGE+ Fuel Assembly Designs 4.2.4.2.1 Introduction                                                           25 4.2.4.2.2 Fuel Design                                                             26 4.2.4.2.3 Design for Seismic and Loss-of-Coolant Accident Forces                 26 4.2.4.2.4 Emergency Core Cooling System (ECCS) Calculation Loss-of-Coolant       26 Accident Cladding Models 4.2.4.2.5 Initial Fuel Conditions for Transient Analysis                         26 Page 2 of 5                Revision 29 11/2020
GINNA/UFSAR Page 2 of 5 Revision 29 11/2020 4.2.3 CORE COMPONENTS DESIGN DESCRIPTION 17 4.2.3.1 Fuel Assembly 17 4.2.3.1.1 Top Nozzle, Springs, and Clamps 18 4.2.3.1.2 Bottom Nozzle 18 4.2.3.1.3 Guide Thimbles 19 4.2.3.1.4 Instrumentation Tube 19 4.2.3.1.5 Grid Assemblies 19 4.2.3.1.6 Fuel Rods 20 4.2.3.1.7 Fuel Assembly Joints and Connections 20 4.2.3.1.8 Fuel Assembly Identification 21 4.2.3.2 Control Rods 21 4.2.3.3 Neutron Source Assemblies 22 4.2.3.4 Plugging Devices 22 4.2.3.5 Fuel Pellet and Cladding Design Considerations 23 4.2.3.6 Reload Fuel Design 23 4.2.3.6.1 Reload Fuel Design - Westinghouse Optimized Fuel 23 4.2.3.6.2 Reload Fuel Design - Westinghouse OFA/VANTAGE + Fuel 24 4.2.3.6.3 Reload Fuel Design - Westinghouse 422V+ Fuel 24 4.2.3.7 Fuel Assembly and Rod Cluster Control Assembly Tests 24 4.2.3.7.1 Reactor Evaluation Center Tests 24 4.2.3.7.2 Loading and Handling Tests 24 4.2.3.7.3 Axial and Lateral Bending Tests 24 4.2.4 DESIGN EVALUATION 25 4.2.4.1 Fuel and Cladding Evaluation - Original Core 25 4.2.4.2 Design Evaluation - Reload Optimized Fuel Assembly, OFA/VAN-25 TAGE+ Fuel Assembly, and 422 VANTAGE+ Fuel Assembly Designs 4.2.4.2.1 Introduction 25 4.2.4.2.2 Fuel Design 26 4.2.4.2.3 Design for Seismic and Loss-of-Coolant Accident Forces 26 4.2.4.2.4 Emergency Core Cooling System (ECCS) Calculation Loss-of-Coolant 26 Accident Cladding Models 4.2.4.2.5 Initial Fuel Conditions for Transient Analysis 26  


GINNA/UFSAR 4.2.4.2.6   Predicted Clad Collapse Time                                     26 4.2.4.2.7   Nuclear Design                                                   27 4.2.4.2.8   Fuel Assembly Hydraulic Lift-Off                                 27 4.2.4.2.9   Thermal-Hydraulic Analysis                                       28 4.2.4.2.9.1 Sensitivity Factors                                               28 4.2.4.2.9.2 WRB-1 Correlation                                                 28 4.2.4.2.9.3 Rod Bow Penalties                                                 28 4.2.4.2.9.4 DNBR Design Limits                                               29 4.2.4.3     Design Evaluation of Reconstituted Fuel Assemblies               30 4.2.5       CORE COMPONENTS TESTS AND INSPECTIONS                             30
GINNA/UFSAR Page 3 of 5 Revision 29 11/2020 4.2.4.2.6 Predicted Clad Collapse Time 26 4.2.4.2.7 Nuclear Design 27 4.2.4.2.8 Fuel Assembly Hydraulic Lift-Off 27 4.2.4.2.9 Thermal-Hydraulic Analysis 28 4.2.4.2.9.1 Sensitivity Factors 28 4.2.4.2.9.2 WRB-1 Correlation 28 4.2.4.2.9.3 Rod Bow Penalties 28 4.2.4.2.9.4 DNBR Design Limits 29 4.2.4.3 Design Evaluation of Reconstituted Fuel Assemblies 30 4.2.5 CORE COMPONENTS TESTS AND INSPECTIONS 30  


==4.2         REFERENCES==
==4.2 REFERENCES==
FOR SECTION 4.2                                       31 Table 4.2-1 NUCLEAR DESIGN DATA                                               33 Table 4.2-2 CORE MECHANICAL DESIGN PARAMETERS                                 35 Table 4.2-3 FUEL DESIGN                                                       38 Table 4.2-4 KINETIC PARAMETERS USED IN TRANSIENT ANALYSIS                     39 (WESTINGHOUSE OFA/VANTAGE+ AND 422V+ GINNA FUEL ASSEMBLY 14 x 14 FUEL) 4.3         RELOAD CORE NUCLEAR DESIGN                                       40 4.3.1       PRELIMINARY DESIGN PHASE                                         40 4.3.2       DETERMINATION OF NUCLEAR-RELATED KEY SAFETY                       41 PARAMETERS 4.3.2.1     Reactivity Control Aspects                                       41 4.3.2.1.1   Insertion Limits                                                 42 4.3.2.1.2   Total Rod Worth                                                   43 4.3.2.1.3   Trip Reactivity                                                   43 4.3.2.1.4   Differential Rod Worths                                           43 4.3.2.1.5   Summary                                                           44 4.3.2.2     Core Reactivity Parameters and Coefficients                       44 4.3.2.2.1   Moderator Temperature Coefficient                                 44 4.3.2.2.2   Fuel Temperature Coefficient                                     45 4.3.2.2.3   Boron Worth                                                       45 4.3.2.2.4   Delayed Neutrons                                                 45 4.3.2.2.5   Prompt Neutron Lifetime                                           45 4.3.2.2.6   Summary                                                           46 Page 3 of 5            Revision 29 11/2020
FOR SECTION 4.2 31 Table 4.2-1 NUCLEAR DESIGN DATA 33 Table 4.2-2 CORE MECHANICAL DESIGN PARAMETERS 35 Table 4.2-3 FUEL DESIGN 38 Table 4.2-4 KINETIC PARAMETERS USED IN TRANSIENT ANALYSIS (WESTINGHOUSE OFA/VANTAGE+ AND 422V+ GINNA FUEL ASSEMBLY 14 x 14 FUEL) 39 4.3 RELOAD CORE NUCLEAR DESIGN 40 4.3.1 PRELIMINARY DESIGN PHASE 40 4.3.2 DETERMINATION OF NUCLEAR-RELATED KEY SAFETY PARAMETERS 41 4.3.2.1 Reactivity Control Aspects 41 4.3.2.1.1 Insertion Limits 42 4.3.2.1.2 Total Rod Worth 43 4.3.2.1.3 Trip Reactivity 43 4.3.2.1.4 Differential Rod Worths 43 4.3.2.1.5 Summary 44 4.3.2.2 Core Reactivity Parameters and Coefficients 44 4.3.2.2.1 Moderator Temperature Coefficient 44 4.3.2.2.2 Fuel Temperature Coefficient 45 4.3.2.2.3 Boron Worth 45 4.3.2.2.4 Delayed Neutrons 45 4.3.2.2.5 Prompt Neutron Lifetime 45 4.3.2.2.6 Summary 46  


GINNA/UFSAR 4.3.2.3     Reactor Core Power Distribution                                           46 4.3.3       EVALUATION OF RELOADS WITH OFA/VANTAGE+ AND 422V+                         46 FUEL ASSEMBLIES 4.3.4       TESTS FOR REACTIVITY ANOMALIES                                             47
GINNA/UFSAR Page 4 of 5 Revision 29 11/2020 4.3.2.3 Reactor Core Power Distribution 46 4.3.3 EVALUATION OF RELOADS WITH OFA/VANTAGE+ AND 422V+
FUEL ASSEMBLIES 46 4.3.4 TESTS FOR REACTIVITY ANOMALIES 47  


==4.3         REFERENCES==
==4.3 REFERENCES==
FOR SECTION 4.3                                                 48 4.4         THERMAL AND HYDRAULIC DESIGN                                               49 4.4.1       DESIGN BASIS                                                               49 4.
FOR SECTION 4.3 48 4.4 THERMAL AND HYDRAULIC DESIGN 49 4.4.1 DESIGN BASIS 49 4.


==4.2       DESCRIPTION==
==4.2 DESCRIPTION==
AND EVALUATION OF THE THERMAL-HYDRAU-                         49 LIC DESIGN AND ANALYSIS OF RELOAD CORES 4.4.2.1     Hydraulic Evaluation                                                       49 4.4.2.2     Thermal and Hydraulic Key Safety Parameters                               49 4.4.2.2.1   Engineering Hot-Channel Factors                                           50 4.4.2.2.2   Axial Fuel Stack Shrinkage                                                 50 4.4.2.2.3   Fuel Temperatures                                                         50 4.4.2.2.4   Rod Internal Pressure                                                     50 4.4.2.2.5   Core Thermal Limits                                                       51 4.4.2.2.6   Key Safety Parameters for Specific Events                                 52 4.4.2.3     VIPRE Code                                                                 52 4.4.2.3.1   Steady-State Analysis                                                     53 4.4.2.3.2   Transient Analysis                                                         53 4.4.3       THERMAL-HYDRAULIC METHODOLOGY FOR OFA/VANTAGE+                             53 and 422V+ FUEL ASSEMBLY DESIGN EVALUATION 4.4.3.1     General                                                                   53 4.4.3.2     Rod Bow                                                                   55 4.4.4       THERMAL AND HYDRAULIC TESTS AND INSPECTIONS                               55 4.4.5       REACTOR COOLANT FLOW MEASUREMENT                                           55 4.4.5.1     Pump Power                                                                 56 4.4.5.2     Secondary Heat Balance                                                     56 4.4.5.3     Elbow Tap Differential Pressure                                           56 4.4.5.4     Core Exit Thermocouple                                                     56 4.4.5.5     Pump Power-Differential Pressure                                           57 4.4.5.6     Experience                                                                 58 4.4.5.7     Low Flow Trip Setpoint                                                     59 4.4.5.8     Precision Calorimetric Measurement for Reactor Coolant System Flow         59
AND EVALUATION OF THE THERMAL-HYDRAU-LIC DESIGN AND ANALYSIS OF RELOAD CORES 49 4.4.2.1 Hydraulic Evaluation 49 4.4.2.2 Thermal and Hydraulic Key Safety Parameters 49 4.4.2.2.1 Engineering Hot-Channel Factors 50 4.4.2.2.2 Axial Fuel Stack Shrinkage 50 4.4.2.2.3 Fuel Temperatures 50 4.4.2.2.4 Rod Internal Pressure 50 4.4.2.2.5 Core Thermal Limits 51 4.4.2.2.6 Key Safety Parameters for Specific Events 52 4.4.2.3 VIPRE Code 52 4.4.2.3.1 Steady-State Analysis 53 4.4.2.3.2 Transient Analysis 53 4.4.3 THERMAL-HYDRAULIC METHODOLOGY FOR OFA/VANTAGE+
and 422V+ FUEL ASSEMBLY DESIGN EVALUATION 53 4.4.3.1 General 53 4.4.3.2 Rod Bow 55 4.4.4 THERMAL AND HYDRAULIC TESTS AND INSPECTIONS 55 4.4.5 REACTOR COOLANT FLOW MEASUREMENT 55 4.4.5.1 Pump Power 56 4.4.5.2 Secondary Heat Balance 56 4.4.5.3 Elbow Tap Differential Pressure 56 4.4.5.4 Core Exit Thermocouple 56 4.4.5.5 Pump Power-Differential Pressure 57 4.4.5.6 Experience 58 4.4.5.7 Low Flow Trip Setpoint 59 4.4.5.8 Precision Calorimetric Measurement for Reactor Coolant System Flow 59  


==4.4         REFERENCES==
==4.4 REFERENCES==
FOR SECTION 4.4                                                 63 Table 4.4-1 THERMAL AND HYDRAULIC DESIGN PARAMETERS                                   65 Page 4 of 5                      Revision 29 11/2020
FOR SECTION 4.4 63 Table 4.4-1 THERMAL AND HYDRAULIC DESIGN PARAMETERS 65  


GINNA/UFSAR 4.5         REACTOR MATERIALS                                             67 4.5.1       CONTROL ROD DRIVE SYSTEM STRUCTURAL MATERIALS                 67 4.5.2       REACTOR INTERNALS MATERIALS                                   67 4.6         FUNCTIONAL DESIGN OF REACTIVITY CONTROL SYSTEM               68 FIGURES Figure 4.2-1 Typical Rod Cluster Control Assembly Figure 4.2-2 Fuel Assembly and Control Cluster Cross Section Figure 4.2-3 14 x 14 OFA and 422V+ Fuel Assemblies Figure 4.2-4 OFA and 422V+ Top Nozzle Assemblies Figure 4.2-5 Debris Filter Bottom Nozzle Figure 4.2-6 Optimized Guide Thimble Assembly Figure 4.2-7 Optimized Instrumentation Tube Figure 4.2-8 Mid-Grid Connection Figure 4.2-9 Removable Top Nozzle and Top Grid Connection Figure 4.3-1 Control Rod Cluster Groups Figure 4.4-1 Typical Pump Power Versus Flow Curves Page 5 of 5      Revision 29 11/2020}}
GINNA/UFSAR Page 5 of 5 Revision 29 11/2020 4.5 REACTOR MATERIALS 67 4.5.1 CONTROL ROD DRIVE SYSTEM STRUCTURAL MATERIALS 67 4.5.2 REACTOR INTERNALS MATERIALS 67 4.6 FUNCTIONAL DESIGN OF REACTIVITY CONTROL SYSTEM 68 FIGURES Figure 4.2-1 Typical Rod Cluster Control Assembly Figure 4.2-2 Fuel Assembly and Control Cluster Cross Section Figure 4.2-3 14 x 14 OFA and 422V+ Fuel Assemblies Figure 4.2-4 OFA and 422V+ Top Nozzle Assemblies Figure 4.2-5 Debris Filter Bottom Nozzle Figure 4.2-6 Optimized Guide Thimble Assembly Figure 4.2-7 Optimized Instrumentation Tube Figure 4.2-8 Mid-Grid Connection Figure 4.2-9 Removable Top Nozzle and Top Grid Connection Figure 4.3-1 Control Rod Cluster Groups Figure 4.4-1 Typical Pump Power Versus Flow Curves}}

Latest revision as of 13:09, 29 November 2024

9 to Updated Final Safety Analysis Report, Chapter 4, Reactor, Table of Contents
ML20339A069
Person / Time
Site: Ginna Constellation icon.png
Issue date: 11/20/2020
From:
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML20339A309 List: ... further results
References
Download: ML20339A069 (5)


Text

GINNA/UFSAR Page 1 of 5 Revision 29 11/2020 4

REACTOR 1

4.1

SUMMARY

DESCRIPTION 2

4.1.1 REACTOR CORE 2

4.1.2 WESTINGHOUSE OPTIMIZED FUEL ASSEMBLIES/422 VAN-2 TAGE + FUEL ASSEMBLIES 4.1.3 RECONSTITUTED FUEL ASSEMBLIES 4

4.1.4 STARTUP REPORT 5

4.1 REFERENCES

FOR SECTION 4.1 6

4.2 FUEL SYSTEM DESIGN 7

4.2.1 DESIGN BASES 7

4.2.1.1 Performance Objectives 7

4.2.1.2 Principal Design Criteria 7

4.2.1.2.1 Reactor Core Design 7

4.2.1.2.2 Suppression of Power Oscillations 9

4.2.1.2.3 Redundancy of Reactivity Control 9

4.2.1.2.4 Reactivity MODE 3 (Hot Shutdown) Capability 9

4.2.1.2.5 Reactivity Shutdown Capability 10 4.2.1.2.6 Reactivity Holddown Capability 10 4.2.1.2.7 Reactivity Control Systems Malfunction 11 4.2.1.2.8 Maximum Reactivity Worth of Control Rods 12 4.2.1.2.9 Conformance With 1972 General Design Criteria 12 4.2.1.3 Safety Limits 13 4.2.1.3.1 Nuclear Limits 13 4.2.1.3.2 Reactivity Control Limits 13 4.2.1.3.3 Thermal and Hydraulic Limits 13 4.2.1.3.4 Mechanical Limits 14 4.2.1.3.4.1 Reactor Internals 14 4.2.1.3.4.2 Fuel Assemblies 15 4.2.1.3.4.3 Control Rods 16 4.2.1.3.4.4 Control Rod Drive Assembly 16 4.2.2 FUEL SYSTEM DESIGN DESCRIPTION 16

GINNA/UFSAR Page 2 of 5 Revision 29 11/2020 4.2.3 CORE COMPONENTS DESIGN DESCRIPTION 17 4.2.3.1 Fuel Assembly 17 4.2.3.1.1 Top Nozzle, Springs, and Clamps 18 4.2.3.1.2 Bottom Nozzle 18 4.2.3.1.3 Guide Thimbles 19 4.2.3.1.4 Instrumentation Tube 19 4.2.3.1.5 Grid Assemblies 19 4.2.3.1.6 Fuel Rods 20 4.2.3.1.7 Fuel Assembly Joints and Connections 20 4.2.3.1.8 Fuel Assembly Identification 21 4.2.3.2 Control Rods 21 4.2.3.3 Neutron Source Assemblies 22 4.2.3.4 Plugging Devices 22 4.2.3.5 Fuel Pellet and Cladding Design Considerations 23 4.2.3.6 Reload Fuel Design 23 4.2.3.6.1 Reload Fuel Design - Westinghouse Optimized Fuel 23 4.2.3.6.2 Reload Fuel Design - Westinghouse OFA/VANTAGE + Fuel 24 4.2.3.6.3 Reload Fuel Design - Westinghouse 422V+ Fuel 24 4.2.3.7 Fuel Assembly and Rod Cluster Control Assembly Tests 24 4.2.3.7.1 Reactor Evaluation Center Tests 24 4.2.3.7.2 Loading and Handling Tests 24 4.2.3.7.3 Axial and Lateral Bending Tests 24 4.2.4 DESIGN EVALUATION 25 4.2.4.1 Fuel and Cladding Evaluation - Original Core 25 4.2.4.2 Design Evaluation - Reload Optimized Fuel Assembly, OFA/VAN-25 TAGE+ Fuel Assembly, and 422 VANTAGE+ Fuel Assembly Designs 4.2.4.2.1 Introduction 25 4.2.4.2.2 Fuel Design 26 4.2.4.2.3 Design for Seismic and Loss-of-Coolant Accident Forces 26 4.2.4.2.4 Emergency Core Cooling System (ECCS) Calculation Loss-of-Coolant 26 Accident Cladding Models 4.2.4.2.5 Initial Fuel Conditions for Transient Analysis 26

GINNA/UFSAR Page 3 of 5 Revision 29 11/2020 4.2.4.2.6 Predicted Clad Collapse Time 26 4.2.4.2.7 Nuclear Design 27 4.2.4.2.8 Fuel Assembly Hydraulic Lift-Off 27 4.2.4.2.9 Thermal-Hydraulic Analysis 28 4.2.4.2.9.1 Sensitivity Factors 28 4.2.4.2.9.2 WRB-1 Correlation 28 4.2.4.2.9.3 Rod Bow Penalties 28 4.2.4.2.9.4 DNBR Design Limits 29 4.2.4.3 Design Evaluation of Reconstituted Fuel Assemblies 30 4.2.5 CORE COMPONENTS TESTS AND INSPECTIONS 30

4.2 REFERENCES

FOR SECTION 4.2 31 Table 4.2-1 NUCLEAR DESIGN DATA 33 Table 4.2-2 CORE MECHANICAL DESIGN PARAMETERS 35 Table 4.2-3 FUEL DESIGN 38 Table 4.2-4 KINETIC PARAMETERS USED IN TRANSIENT ANALYSIS (WESTINGHOUSE OFA/VANTAGE+ AND 422V+ GINNA FUEL ASSEMBLY 14 x 14 FUEL) 39 4.3 RELOAD CORE NUCLEAR DESIGN 40 4.3.1 PRELIMINARY DESIGN PHASE 40 4.3.2 DETERMINATION OF NUCLEAR-RELATED KEY SAFETY PARAMETERS 41 4.3.2.1 Reactivity Control Aspects 41 4.3.2.1.1 Insertion Limits 42 4.3.2.1.2 Total Rod Worth 43 4.3.2.1.3 Trip Reactivity 43 4.3.2.1.4 Differential Rod Worths 43 4.3.2.1.5 Summary 44 4.3.2.2 Core Reactivity Parameters and Coefficients 44 4.3.2.2.1 Moderator Temperature Coefficient 44 4.3.2.2.2 Fuel Temperature Coefficient 45 4.3.2.2.3 Boron Worth 45 4.3.2.2.4 Delayed Neutrons 45 4.3.2.2.5 Prompt Neutron Lifetime 45 4.3.2.2.6 Summary 46

GINNA/UFSAR Page 4 of 5 Revision 29 11/2020 4.3.2.3 Reactor Core Power Distribution 46 4.3.3 EVALUATION OF RELOADS WITH OFA/VANTAGE+ AND 422V+

FUEL ASSEMBLIES 46 4.3.4 TESTS FOR REACTIVITY ANOMALIES 47

4.3 REFERENCES

FOR SECTION 4.3 48 4.4 THERMAL AND HYDRAULIC DESIGN 49 4.4.1 DESIGN BASIS 49 4.

4.2 DESCRIPTION

AND EVALUATION OF THE THERMAL-HYDRAU-LIC DESIGN AND ANALYSIS OF RELOAD CORES 49 4.4.2.1 Hydraulic Evaluation 49 4.4.2.2 Thermal and Hydraulic Key Safety Parameters 49 4.4.2.2.1 Engineering Hot-Channel Factors 50 4.4.2.2.2 Axial Fuel Stack Shrinkage 50 4.4.2.2.3 Fuel Temperatures 50 4.4.2.2.4 Rod Internal Pressure 50 4.4.2.2.5 Core Thermal Limits 51 4.4.2.2.6 Key Safety Parameters for Specific Events 52 4.4.2.3 VIPRE Code 52 4.4.2.3.1 Steady-State Analysis 53 4.4.2.3.2 Transient Analysis 53 4.4.3 THERMAL-HYDRAULIC METHODOLOGY FOR OFA/VANTAGE+

and 422V+ FUEL ASSEMBLY DESIGN EVALUATION 53 4.4.3.1 General 53 4.4.3.2 Rod Bow 55 4.4.4 THERMAL AND HYDRAULIC TESTS AND INSPECTIONS 55 4.4.5 REACTOR COOLANT FLOW MEASUREMENT 55 4.4.5.1 Pump Power 56 4.4.5.2 Secondary Heat Balance 56 4.4.5.3 Elbow Tap Differential Pressure 56 4.4.5.4 Core Exit Thermocouple 56 4.4.5.5 Pump Power-Differential Pressure 57 4.4.5.6 Experience 58 4.4.5.7 Low Flow Trip Setpoint 59 4.4.5.8 Precision Calorimetric Measurement for Reactor Coolant System Flow 59

4.4 REFERENCES

FOR SECTION 4.4 63 Table 4.4-1 THERMAL AND HYDRAULIC DESIGN PARAMETERS 65

GINNA/UFSAR Page 5 of 5 Revision 29 11/2020 4.5 REACTOR MATERIALS 67 4.5.1 CONTROL ROD DRIVE SYSTEM STRUCTURAL MATERIALS 67 4.5.2 REACTOR INTERNALS MATERIALS 67 4.6 FUNCTIONAL DESIGN OF REACTIVITY CONTROL SYSTEM 68 FIGURES Figure 4.2-1 Typical Rod Cluster Control Assembly Figure 4.2-2 Fuel Assembly and Control Cluster Cross Section Figure 4.2-3 14 x 14 OFA and 422V+ Fuel Assemblies Figure 4.2-4 OFA and 422V+ Top Nozzle Assemblies Figure 4.2-5 Debris Filter Bottom Nozzle Figure 4.2-6 Optimized Guide Thimble Assembly Figure 4.2-7 Optimized Instrumentation Tube Figure 4.2-8 Mid-Grid Connection Figure 4.2-9 Removable Top Nozzle and Top Grid Connection Figure 4.3-1 Control Rod Cluster Groups Figure 4.4-1 Typical Pump Power Versus Flow Curves