ML19305B764: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 350: Line 350:
11 - 6
11 - 6


O k                                                                                                                PREDICTED TRENDS O    t k        [) j j I [[         lrTOP (NO LEAKAGE)
O k                                                                                                                PREDICTED TRENDS O    t k        [) j j I ((         lrTOP (NO LEAKAGE)
                               .8
                               .8
                                                                                   - ~ ~
                                                                                   - ~ ~
Line 885: Line 885:
       ~
       ~
1.00  -                                                        -
1.00  -                                                        -
C [[                                         ,
C ((                                         ,
H O
H O
e d
e d

Latest revision as of 08:48, 16 March 2020

Slide Presentation Entitled, Monticello Feedwater Nozzle Bypass Leakage Temp Monitoring.
ML19305B764
Person / Time
Site: Monticello Xcel Energy icon.png
Issue date: 02/21/1980
From:
NUTECH ENGINEERS, INC.
To:
Shared Package
ML19305B760 List:
References
REF-GTECI-A-10, REF-GTECI-RV, TASK-A-10, TASK-OR NUDOCS 8003200279
Download: ML19305B764 (48)


Text

___- __

~

~ ~~

O -

MONTICELLO NUCLEAR GENERATING PLANT FEEDWATER N0ZZLE BYPASS LEAKAGE TEMPERATURE MONITORING NRC/NSP/NUTECH MEETING AGENDA FEBRUARY 21, 1980 I. STRESS ANALYSIS

SUMMARY

4 ll. IECHNICAL BASIS FOR LEAKAGE MONITOR III. PHYSICAL INSTALLATION IV. INITIAL DATA ANALYSIS AND INTERPRETATION V. ADVANCED DATA ANALYSIS AND INTERPRETATION VI. CONCLUSIONS O

e 8 '

1 71' l _

I. STRESS ANALYSIS SUMARY e PRIMARY STRESS ANALYSIS

- SAFE-END STRESSES

- NozztE REINFORCEMENT e FATIGUE ANALYSIS

- SYSTEM CYCLING

- UNSTABLE Flow CYCLING

- RAPID CYCLING -

- COMBINED USAGE FACTORS (DESIGN BASIS LEAKAGE)

~

USAGE FACTOR VERSUS LEAKAGE e

9 l

I-1 nuteCh -

l g-

l I i N0ZZLE/SPARGER GEOMETRY AtlALYZED LOW ALLOY STEEL WELD NC12LE t

6.8G" l 4 SAFE-END O A508

% //u , _

p ' '"' "' p& {ST - s .s r. _I 4.4

{

s =. . ~/////,,,,,,,,

s, . ,j h'

.b 3: e -

h,j $l i .. a 8; =f L@ ..e di G m $ ,>  %

_,u..

, -o j

j A B

! ,, di ,

  • r< N t i m

>- t NTHERMAL St.EEVE (Ni- Cc- Fe) xm, , & ~ x .

~ ,,,.

' CA.S .BOM y M STEEL A WWg e l

i s ,

l.co,'R ao mp I

///

n.c o" j.ss _ s.ce lfc:o.ies" m wou.

Ess nutech

~

I-2 l

PRIMARY STRESS ANALYSIS RESULTS e NozztE REINFORCEMENT (AFTER CLAD REMOVAL)

REcutRED AREA -- 47.99 IN 2

AVAILABLE AREA -- 100,76 IN e PRIMARY STRESSES IN SAFE-END AND IHINNED DOWN PORTION OF N0ZZLE o -

, Summary of Primary Stresses In Safe-End and Thinned'Down Portion of No::le Pruary Nemorane Primary Membrane Plus Bending Stress (KSI) Stress (KSI)

Calculated l Allowaole Calculated Allowucle Section (Py l (S) m P,+Pb 1.55, A-A 17.57 l 17.7 22.05 l 26.55 B-B l 14.80 ,

17.7 17.42 26.55 (Safe-End Side) l B-B 14.80 26.7 17.42 40.05 (No::le Sida) , j, C-C i 14.80 26.7 17.51 40.05 O

nutech i_3

_ ___Q

1

-,g) mg VM K ,t 1 e . N  :'

SYSTEM CYCLING TRANSIENT (37.5 CYCLES PER YEAR)

REACTOR WATER

% Soc. ,

,. ==""""" """ *""

g me a uo. .b*/wn aswa sw -

o h m e. -

g gI too. -

5 ico.

TIME 7w ioco -

ions nr.

.=o nr. -

.t .. .

JW -

. .5 soo. .

5 E ..

TIME 7

5 -

6 >

as ac.". no wr/sEc La 5 -

sf'T/SEC o

TIME I-4 nutech i

_ }

UNSTABLE FLOW CYCLING (7 CYCLES / MIN FOR 92 HOURS PER YEAR) 7REAcTea j '- 4 Y- -

-_2___-[

lac n TrumAm A) INCIPIENT FLOW STRATIFICATION 3

g a r. _

T FEEDWATER

<J ,

i i

+ i i B) SPARGER FILLED WITH FEEDWATER r < . , ,

Tnsca i,

e-Tarx Tom

% [; __

- N I N AI ,

i i i .

C) . SPARGER BACK-FILLING WITH REACTOR WATER nutech

~

r_s

RAPID CYCLING 7ALT = Ea(AT,_p) 2(1-4)

WHERE: AT p _p = X x C3xC4 x (T g - Tpy )

FW FLOW LEAKAGE A FaEm (3 RATE g4 RATE 1.0 15 CYC/HR .15 0 1.0 0 1.15 20 % 1.33

.5 GPM

.20 7500 CYC/HR .24 100 % 1.67 1.0 GPM

~

2.'0 1.'5 GPM INTERFERENCE LEAXAGE YEAR' FrT (IN) RATE (GPM) 1- .0062 0.0 2 .0055 0.0 3 .0048 0.0 BASED ON CORR 0 SIC 4 .0041 0,0 0F INITIAL INTER-FERENCE FIT AT 5 .0036- 0.13 RATE OF 0.0007 6 .0032 0.40. INCHES / YEAR 7 ;0028 0.74 8 .0025 1.10 9 , .0021 1.50 -

nutech I-6

Goo soo .;

C L 400 -

~

w . .

- l. ..... - . . 1 T'- n

!>=

AN  !

.. 5 REGION llRS/YR 8

6591 -d 1

200 -

b.'

2 3

1292 86 h

m 4 39 @

d

- 5 30 g

.. . s 4 o

" ~

7 48 m a 7 ,

8 192 o

-t o -

o io 30 so 4o so ao To ao so soo F E EDWAT E R Flow RATE (%) .

MONT!Cl!LLO RiiACTOR AND Fl!EDWATliR TliMI'liRATURi! DATA O ll T A I N ii D 1:R O M R ii V i liW 0 1: PLANT OPERATING RiiCORI)5 3

b a

O 7 .

==w

COMBINED FATIGUE USAflE FACTORS 1

(btSJcN BASIS LEAKAGE) l

\

d

. Safe Fai Hegion Bore Region 81end Radius Region Systen hele intpid System h e le Rapid Systen "I* I ' Rapid Cycling N Cycling WW Cycling " Cycling D Cycling

  • Cycling gy g"13, g 1 0.015 0.0055 -- 0.0205 0.0055 -- 0.002 0.045 0.0045 -- 0.002 0.00c.

2 0.030 0.01' J -- 0.041 0.011 -- 0.004 3.053 0.009 - 0.504 0.01*

3 0.04 5 0.0105 -- 0.0615 0.0165 -- 0.006 0.060 0.0135 -- 0.006 0.019.

4 0.000 0.0220 -- 0.082 0.022 -- 0.00s J.068 0.018 -- 0.008 0.02t 5 0.075 0.0275 ~ --

0.1025 0.0275 -- 0.011 0.076 0.5225 --

- 0.011 0.032.

6 0.090 0.0330 -- 0.123 0.033 -- 0.029 0.10 0.027 -- 0.029 0.05c

'7 0.105 0.0385 -- 0.1435 0.0385 -- 0.124' O.20 0.0315 --

0.124 0.155!

5 0.120 0.0440 -- 0.164 0.044 -- 0.482 0.56 0.036 -- 0.482' O.512 9 0.135 0.0495 -- 0.1845 0.0495 -- 1.615 1.70 0.0405 -- 1.615 1.653:

10 0.150 0.0550 -- 0.205 0.055 -- 2.749 2.84 0.045 -- 2.749 2.794

........ 4.......... .................... ........ ....... ..........., ......... ........ ....... ..................... ........

15 0.225 0.0825 -- 0.3075 20 0.300 0.110 -- 0.410 25 0.375 0.1375 -- 0.5125 30 0.450 0.165 -- 0.615 35 0.525 0.1925 -- 0.7175

.D * * ~D) "~d 'rY M 26 sfn oJ 11l "l

~

nutech

~

1-8

II. TECHNICAL BASIS FOR LEAKAGE MONITOR l l

e BASIC CONCEPT 1

e ANALYTICAL MODEL I

- INPUT l

- RESULTS  !

- CORRELATION WITH FIELD DATA

- USAGE FACTOR DETERMINATION e

nutech !

II - 1 i

e NUTECH BYPASS LEAKAGE TEMPERATURE MONITORING SYSTEM BASIC CONCEPT TEMPERATURE MONITOR REACTOR PMEssuRE VESSEL NOZZLE FEEDWATER NOZZLE SAFE END INTERFERENCE FIT l

/ \, j,.E TNE_L.mE.E

$ \j, h w - aw TEMPERATURE AT MONITORNG LOCATION TREACTOR"'% %

\

\ .

. \

\

\

. \

'w_____________

~

FEEDwCER z

BYPASS LEAKAGE nutech II - 2

9 I

l i

h a .2 BTU / hr - f t - F

\T= 120 'F

" h a 8 6 4 81U / hr - f t - F 4*[T=550*F ,

I

!, // \\

/ A/M

//// \\\\

1

/ \\\N I I I I Q

,N

~

"h 2000 STU/hr.ff . F f (T a SEE TABLE T-l "h a 1000 STU/hr . f f *F h a TOS STU/br -f f - F d

' '[T = SEE TABLE T-1 T = 300 'F ANALYTICAL MODEL FOR LEAKAGE MONITOR HEAT TRANSFER CALCULATIONS u_3 nutech

1 ANNULUS FLUID TEMPERATURES FOR LEAKAGE MONITORING CALCULATIONS i

Location Normalized Temperature (I )

reactor feedwater

-(See Sketch BeloW) Zero Leakage Leakage 2.1.5 GPM Top Bottom Top Bottom A .86 - .95 .5- .62 .62 - .8 0.0 . 16 B .86 .95 .5 .72 .83 .88 .04 - .32 C .86 - .95 .68 - .82 .86 - .9 .9 .5 i .

\ "

, f / /

% 'M .- - - - - -- ~ - ~ - - -

J  % 9:

?

ks ^ k'.\

\

\

L w~n, w e

% NN NNN

[ .

l nutech II - 4

e

~

0 5

q)'?2

,b d_b e> ~"2 > 2b

)

R E E R W . 4 1

U O T P A

R L E L P U M (F

- E T S M T . 4 O . N M 1

)

T O E O E T L M T G O L E r T B E R A C U o O K I T B A T S s E N A eE o L O E a S M M r O

. 2 N 1

) R O N N E I

T (

I o z C i (

I D

L r E

A E

u R) S a N P E 1 O G E a I L A . 0 V r T A K 1

E s A C A E i L I

T E L n u Y L S C n

L A O N N A(

N r .

L A

M a

u r

L A

C

'- R A R

~ . 8 E a E H n F T e S M

u e

N A

, O R

F E

r e

C R

T T

A A

" g . 6 C

N A

s a

E l

l T

S u

I s G D N l i l l l l g I I n I o R

.\, \

i O y . s T N

r I O , . 4 u N I o G T

A u u

C t E O z G L -

z A 0 K C -

N A

/

T 4 .

E

. 2 L

. - - O 0 .. . .

4- 2 1

g. f$ p ,

e 03<2 @

b -

3kg7

- l m

to b

&f,

. .. ;:.y i p.

/

\.

4 s $

dk"7 regfg _ h -

j 1 x kr, g

w s k

    • a e '. Q M

. t'#/3M e o

}-e 4 g ,

P 3

O ,

- 2 *

, j, -

W 7

g 1 h5 g g O

W 5% ,%

g ) g ,p _s&,,celdsW l a c m .1 Ib iN 'q .

g =. i

'r,, , '

e iE ga i

30 e g 10 w w g, , . i- , : , i . . 1 . . i 3 I i I- r .6 , i i . e9-4 i . jr _ l 1.0 3 i 4 4 6 f

m - -t  :,'

i . __ .

. ., ., i . , . __.

i a I .i .I a i , ei iii . 6 , e, ,F - ) . . i l4 56.e y .i_._. . , .. ,, .. , .... .,, , .,, .,,, i ..

. . . . i : o ,. ,:,,

i. , .... .... . .. ....

,ii. ,,,, ii ,,.f.. . . .

if ,in ....

,s

' ~

_ _ _ I T h

3

, i

-1

,. u. .,,. .. .;.. . ,, ..  ;,. . . . . ....

s M '

o .. .  :

g ,

L) , .,- 1 , , .

<g, +. . , , ,, .

i. ..,4 . i. ..i> f 6 , , .. i i .... .

~._ y e s zn > ,

D -

i j, s' . ,- ii., . , , ,

=a -

.. i. . . ,, , .:.. ... . . . . ..., ., , . . . ,,,, ,,

o i . , : .... . .. . . .... . ,7 . .... . . , ... ,, . ,,,. u,, ini ....

e m , ,

b -

r' w

_  ! .; . s i ,

. ,'2

.. 8

/. .i i 4, i

. ti j _.._--

,f- -

r.__

3 ,

y < .

,z' -

a, ;

, , , , ,  :---4 m , , .i 4. , , , , , ,

c". 0.01

> ~ . ' _. - -

\

I

_ , W. $. i.e s.p.e

, = p. ,

, I i i i I l

, /

if.

i.,n..

.,i

. ....i ti

,. .,' . i . ..

e

,,,i 9 .

i,..,

6, v --

[ ,

  1. _-- L -

_ , .- . . % .-T. ~ . . .. -

t----

. . .._. . . . ..r .-.-, i .*-M _

i j

O,

-i

'- -- H . . . . . , .

.-- h , ,. .. ,

w- m .

. -: =.. ..-

i 0.001 r

~

O.2 0.4 0.6 0.8 1.0 1.2 1. 4 '

1 i

THERMAL SLEEVE BYPASS LEAKAGE (GPM) l l s

1 l

RAPID CYCLE FATIGUE USAGE CURVE FOR INTERPRETATION,0F LEAKAGE MONITORING DATA l

~

n_s nutech

l l

III. PHYSICAL INSTALLATION

. DETECTORS WELDABLE TYPE T (COPPER-CONSTANTAN)

THERMOCOUPLE ATTACHED TO N0ZZLE BY ELECTRIC RESISTANCE SPOT WELDING QUALIFICATION IESTS INDICATE THAT WELDS ARE R'ELIABLE, FREE OF CRACKS, LACK OF PENETRATION, OTHER ANOMALIES 4

MAX DEPTH OF HAZ IS 0.0023 INCHES MAX HARDNESS IS R C 52.5 l EVALUATION INDI' CATES THAT HAZ IS LESS THAN 1/10 0F SECTION XI ALLOWABLE FLAW SIZE FOR PLANAR INDICATIONS DETECTED DURIN3 PRE-SERVICE OR IN-SERVICE INSPECTIONS.

IHERM0 COUPLES VISUALLY EXAMINED ONCE PER OPERATING CYCLE.

CONCLUDE THAT THE SPOT WELDS WILL HAVE NO DETRIMENTAL EFFECT ON RPV INTEGRITY.

SIX THERMOCOUPLES PER N0ZZLE (345 , 0 , 15 , 165 , 180 , 190 ) -

AXIAL LOCATION SHOWN ON FIGURE ONE.

BASIS FOR AXIAL LOCATION SHOWN ON FIGURE TW0. -

III-1

. DATA PRESENTATION .

EXTENSION LEADS ROUTED BETWEEN RPV INSULATION AND BIO SHIELD TO JUNCTION B0X ON TOP 0F BIO SHIELD (SEE FIGURES THREE, FOUR AND FIVE).

ISI REQUIREMENTS CONSIDERED IN ROUTING 0F LEADS.

MULTIPAIR THERM 0 COUPLE EXTENSION LEAD CARRIES SIGNAL TO DW PENETRATION TO RECORDER.

RECORDER IS L&N SPE:DOMAX 250 MULTIPOINT LOCATED IN

, REACTOR BUILDING.

l

' . ACCURACY OF FW N0ZZLE TEMPERATURE MONITORING SYSTEM IS 20 F.

PROCESS COMPUTER IS USED TO READ 10 MINUTE AVERAGES OF OTHER PARAMETERS NEEDED FOR LEAKAGE CALCULATION.

0F FW TEMP t 1/2

! . FW FL0w 1/2% OF RANGE i

Rx press 1/2% OF RANGE INSTRUMENT ACCURACY OF SYSTEM IS 1 1 GP.M.

l CALIBRATION PERFORMED ON AN ANNUAL BACIS.

1 t

III - 2

e NCZELE ,,

)

T/C LOCATION SAFE-END, A508

'\ CLASS E.

1 s /

m- _ __A-

'[ ' -'

)  % ,-------- - - ~

j "b s,,

vlN\;

[ e't L

\ "

w / -_

/ Nrsam sessvu -

~

N/Oi FIGURE ONE. FW N0ZZLE T/C LOCATION III - 3

s -

_ - -2

O,,k . '< -

3,. hMg,.

3i'N.c . k:s,g '

7)hs. n,,

,,y

~,, .w

'b

< . , , s,g ~. j }.7,,';}2af;;; * ,

m .,. 's

,,, p

'f' ! $ .,.

" h',, ) 't:$ ,, .

z, .:4 Q ,

' i .:

o ':fk e -

3-

vAfsygg' Ah x 5  ::kh,'h'.

$ 1

~

w 7.,.. p *'*'k%i; -

'p3 o2 .a 4

a<

a ,

"" 5 w $ ~ ",:. ,. .,;'nfh wh

{ '^ . O, e bllk, E b=*t w

<g '\. V ' ,

o< c . ' ' ,. w -

> m fN

? .,

W a "(pf ,,;

s: "' A'. ~

h t h""^~

<r

< 0 w _w

>o

~;>,

y #

aZ .

>4 - e%, z

.'y4vfa " ,;... *. ,,a o

j 4

4. j{ ,

wi. -e 3

p

^

4,.z w J

4

' s <

y m ~ .

w U

.- ',".9',,..

, . w O Mg ~'T$T.Y,$ ..,. ' 1. +

I '.:

a .. ,,,,,z 3

"' i :

Di

%y. o,r. ,Qif,[ .;.'? . . ' ' . .

,n.

~'

, r

.e w

$g:

'^

2W :.

. "# s~.+,

~

- - %7 ,,p

' " ' " ,~ ~ '3,_

c-- '. -

's>~~

g .

- a w f,c 2

s

Yl

~

! u

$ J '"

"Y ""

t.L., ,

, I.,. u vg w-h;r, hg4 ,

Y),

9fi%

.;pzy;

.h[.t

'*T o e, * #* N gj _ SO10V3H1

. 1

  • dW31 c3:1tvWWCN MJ11 III '4

I FIGURE THREE. ~ LOLIER T/C LOCATI0ftS l

l

/

(

l%* W:

180* C u.s *- o- ~

/S$* ~ .

N FEEDUATER fiOZZ'.E BOTT0ii VIEW 7 INDICATES T/C LOCATIt.N O INDICATES HOLD DOWN CLIF LOCATION l

III - 5

FIGURE FOUR. UPPER T/C LOCATI0flS Y

(

9,,4 w; o* .

su*- o-- -

Y N ,

FEEDt!ATER (10ZZLE TOP VIBI 7 INDICATES T/C LOCATIOil O INDICATES HOLD DOWil CLIP LOCATION ,

i III - 6 ,

FIGURE FIVE: T/C INTEGRAL LEAD WIRE ROUTING

\

T/C INTEGRAL LEA; '.! IRES BIOLOGIC AL SHIELD -

RPV p

i e r

L e - -- 3

( F,W N,0 Z Z L E o

r ' - - -i l

\

\

BIOLOGIC AL SHIELD U

III - 7

IV. INITIAL DATA ANALYSIS AND INTERPRETATION e FIELD DATA MONITORING PROCEDURE

- DATA RECORDED

- FREQUENCY

- INTERPRETATION e

SUMMARY

OF FIELD DATA TO DATE

- LEAKAGE PROJECTIONS

- USAGE FACTOR PROJECTIONS 5

e k

l l

l Iv - 1 nutech

P i

FIELD DATA MONITORING PROCEDURES e PERIODICALLY RECORD TEMPERATURES OF ALL SIX THERMOCOUPLES ON EACH N0ZZLE AT OR NEAR FULL

REACTOR POWER.

e SIMULTANEOUSLY OBTAIN FOLLOWING DATA FROM PLANT

, PROCESS COMPUTER i -

FEEDWATER INLET TEMPERATURE i -

FEEDWATER FLOW RATE REACTOR PRESSURE / TEMPERATURE e CALCULATE NORMALIZED THERMOCOUPLE TEMPERATURE IN j ACCORDANCE WITH FOLLOWING EQUATION T= T7/C T*

T REACTOR

-T g e CA.LCULATE THERMAL SLEEVE BYPASS LEAKAGE IN ACCORDANCE WITH FOLLOWING EQUATION:

L(GPM) = (3.14-4.9x10-3 Q g

-3.53T)[m e EXTRAPOLATE MEASURED LEAKAGE TO 100% POWER l . IV - 2 I .

TYPICAL RESULT OF FEEDWATER BYPASS LEAKAGE MONITORING AT MONTICELLO DATE: 2/6/80 .

FLOW RATE:.- 74.6%

TREACTOR: 545.60F TFEEDWATER: 358.8 UF (N0ZZLES A & B) 356.4 0F (N0ZZLES C & D)

TEMP LEAKAGE THERMOCOUPLE N0ZZLE AZIMUTH T/C LOCATION OF T (GPM) 1 A 345 TOP 532 . 93 2 A 000 TOP 527 . 90 3 A 015 TOP 523 . 88

. 4 A 165 Borr0M 520 . 86 0 5 A 180 BOTTOM 516 . 84 0 6 A 195 BOTTOM 515 . 84 0 7 B 345 TOP 536 . 95-8 B 000 TOP 536 . 95 9 B 015 -TOP 536 .95 10 3 165 BOTTOM 505 .78 0.03 11 B 180 BOTTOM 493 .72 0.31 12 B 195 BOTTOM 501 .76 0.12 13 C 345 TOP 534 .94 14' C 000 TOP 534 .94 15 C 015 TOP 534 .94 16 C 165 BOTTOM 515 .84 0 i 17 C 180 BOTTOM 18 C 195 BOTTOM 504 .78 0.03

19 D 345 TOP 534 .94

! 20 D 000 TOP 535 .94 21 D 015 TOP 535 .94 22 D 165 BOTTOM 476 .63 0.74 23 D 180 BOTTOM 494 .73 0.26 24 D 195 BOTTOM 508 .80 0 l

8

\

. IV - 3

1.25 -

LEAKAGE HONITOR /

1.0 - DATA /

0  ; N0ZZLE D /

/-

x  ;; N0ZZLE B '

f f Q '

/

/

Ei .75 - - --

PROJECTED RATE OF f f SEAL DEGRADATION / /

2 to BASED ON DESIGN / /

, E . ASIS CO ION /

2 .35 GPM ' '

n l / /

' ~

.50 s

. / .

/ /

/

/ /

/ / K

.25 *

/

/

/k N

/ / <

/ / .

/ f N0ZZLES

/ A&C 1.0 2.0 3.0 3

C

@ . TIME SINCE SPARGER (YEARS) h 7

INSTALLATION

PROJECTED FATIGUE USAGE FACTOR BASED ON LEAKAGE

- MONITOR RESULTS 0.5

N0ZZLE D ,

0,il -

w------a N0ZZLE B

$ 0.3 -

2 e i w 0.2 - .

S

!E u_

O.1 -

3 -

1.0 2.0 3.0 C

TIME SINCE SPt.RGER INSTALLATION (YEARS) m-

V. ADVANCED DATA ANALYSIS AND INTERPRETATION e OBJECTIVES

- IMPROVE ACCURACY

- CONSIDER LOCAL LEAKAGE e APPROACH

- MORE DETAILED LOOK AT FIELD DATA TO ESTABLISH BASE-LINE AND TRENDS

- CIRCUMFERENTI AL HEAT FLOW MODEL TO EXPLAIN LOWER THAN EXPECTED TOP-TO-BOTTOM GRADIENT

, - FLUID FLOW / JET MODEL TO ADDRESS LOCAL LEAKAGE EFFECTS e RESULTS E

G V-1 O

e a

.- 1 FIELD DATA .

e top IC'S hot ALL IIME e BOTTOM TC'S: Noz~A & C hot Noz B & D COLD e TC a 180 IS Nor ALWAYS COLDEST e DoWN IREND WITH IIME FoR D Noz 345' 0*

=

15' -

+

( _

195' 180* 165*

. .nutech V-2

1.0. '

E r

1 i

8 .9  ;.____ - -

K C J- "1 g

.8 w-

~~(,

p"M: h/k' Y KlAAT

'AjshJ "

c?

8m SE EG .7 s.g

?

u O!b um b,

f g .6 z

I

.5 N0ZZLE A (Non-LEAKING) -

11/78 12/78 1/79 2/79 3/79 4/79 5/79 6/79 7/79 8/79 9/7910/7911/7912/7h 1/80 2/Hil 3 ~

TIME (MONTHS)

C q$ BOTTOM TilERM0 COUPLE TEMPERATURES VS IIME FOR 95% To 100% RATED FEEDWATER FLOW

( -' ' ~

l 1.0 .

~~

l

~

, I r ,

e g _ ._ _ . . _ _

K" Li '

- 5

~

y a

.8 > K g rs -

(N g y, /N w t=

i- j#

~

( N/

- r N-~ t95 'f/c

.=

h,$ .7 . . . . - - . . - .

8 D by y

.WTlw -

SE un N

m /\ y s h ~a

/

N

g. .6 - - . . .. _ . _ .  % s/ N N g,s fr/c z

.5 _' . _ - _

N0ZZLE D (LEAKING) 1 11/78 12/78 1/79 2/79 3/79 4/79 5/79 6/79 7/79 8/79 9/7910/7911/7912/791/80 2/His 3 TlHE (HONTHS)

BoTTon THERMOCOUPLE IEMPERATURES VS IIME O FoR 95% To 100% RATED FEEDWATER FLOW 3

1.0 . .

ZERO LEAKAGE IREND CURVES INITIAL CORRELATION (P II-7) ,

U

.9 -

[ADVANCEDCORRELATION '9 q .

%~W,J -c n

x  : _; e <,//!

,  ! j ";

$ s u n' ~

_ ~;

8 g x c o e .8  % x -

~ _ u . p. 8, ,8 s o w - --

c n

g N 3 5 {_{

aI " ~q" ~~a a

a u -

< U '7 a b .7 8

m /

fI *g l l BOTJ.0F EREE T /g'S 14 *--S RAC! N G. -

,6 UU a

E n 1 Z '5 g FALL 1978

'l 1 STARTUP i: .I .

WINTER 1980 i C00LDOWN o J

,q

@ 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

}O FEEDWATER FLOW RATE (% OF RATED) - ~

7 N0ZZLE A - BOTTOM TiteRM0courLE TEMPERATURES VS FEEDWATER fl OW RATE (POWER LEVEL)

1.0 ADVANCED 2ERO LEAKAGE

'9 g

] F N *(

H ' '

TREND CURVE .9 F '

e a:

\

N x

[

, j i

N ~ ~,, 1 o N < > < '

% , g o o o o o, s u .8 '- - ' '

- :l ;p  : i *g l

sf _5_ \ " ' N U H 'I a:  % o an I u v% =

o en, n N. k I

, ll ; g ] ]

, s l ,

t itit u o 3, 'I,~,

g

$ .7

" J h i  !!. u I!  !,!

f g

@ IE '

- - . x c. _ gg_ N 3

.7 tc i

~

)  %

F a- j . j LOWER BOUND OF N g{ .6 'g l N0ZZLE D DATA s o

.6

]"

O FALL 1978

.5  :: STARTUP lt J

" l WINTER 1980 i

C00LDOWN o j "3

g 10% 20% 30% 11 0 % 50% 60%. 70% 80% 90% 100%

@) FEEDWATER FLOW RATE (% OF RATED)

O s- N0ZZlE D - BOTTOM TilERM0 COUPLE IEMPERkTURES VS FEEDWATER flow RATE (POWER LEVEL)

CIRCUMFERENTAL HEAT FLOW MODEL

,~

Tg=1.0 hTet=d.90 Tg = 0.0 a

  • f-}-T3 2 0.50 To 0.70 5

AXISYMMETRIC MODEL Tet = 1.0 -

f i,

+ -

q Tg = 0.0 (3

! V  ; 7_x l

- l 1

RING __

e/

MODEL V-7 nutech  !

1.00 - D-B O d H e -

h - 1000, t - .625 A

$ 0 250, t = .625 and

- " b y .B h=

,

  • h - 1000, t - 1.25 m a.-

/ -

<:- - 250, t - 1.25 and 4 gg C I) h - 1000, t- 1.875

=

b t:

~/

o < - A h- 250, t - 1.875 3$ D b*

O ' ' ' ' ' ' ' ' ' ' ' '

0.0 75 90 O 15 30 45 60 4

ANGlil.AR LOCATION (DliG FROM BOTTOH)

RING MODlil. ItnSULTS - OUTSIDI! SURPACli 3

Tl!MPlillATulti!S FOR Col.D FLUID STRATIFIliD

{ in norr0M so SnGunuT OF N0zzon g

a-

~

1.00 - -

C (( ,

H O

e d

m o A h = 1000, t= 625 o w -

H H .

.50 .

B h= 250, t= .625 and h = 1000, t = 1.25

< ut a.- .

LLS -

oH _ C h= 250, t = 1.25 and h = 1000, t= 1.875 s n. C -

B D h= 250, t = 1.875 h

A 0,0 .

0 15 30 45 ,

60 75 90 ANGilLAR LOCATION (DEG FROM BOTTOM)

RING MODEL RESULTS - OUTSIDE SURFACE 3

Tl!MPliRATURES FOR COLD FLUID STRATIFIllD (f) IN BOTTOM 60* SEGMENT OF N0ZZLE O

7

l APPLICATION OF RING MODEL RESULTS e COMPARISON OF RING MODEL RESULTS TO FIELD DATA i LEADS TO CONCLUSION THAT CASE B APPROXIMATION IS MOST APPLICABLE WITH COLD FLUID STRATIFIED 1 0 0 BETWEEN 30 AND 60 o ASSUMING SAME APPR0XIMATION STILL APPLICABLE TO LEAKAGE CASE LEADS TO FOLLOWING ADJUSTMENT TO AXISYMMETRIC ANALYSIS:

T zggg -

T1 .5 LEAKAGE GPM FLUID TEMPERATURE .53 METAL TEMPERATURE .43 (AXISYMMETRIC ANAL);

METAL TEMPERATURE .39 (RING MODEL)

O V - 10

)

~

I l

FLUID TEMPERATURE OBSERVATIONS  !

FROM SPARGER TEST DATA ,

1 TOP -

l HOT SAFE END BLEND RADIUS (SEAL) --

o MIXING BOTTOM  : -C00 .

r, _x o

^

TOP THERMOCOUPLE LOCATIONS n

( )

9 HOT

.__ __ .- _ _=

~

=

OLD 3 MIXING

. 3 l -

nutech V-11

JET MODEL ,

e TURBULENT JET e INITIAL VELOCITY BASED ON FLOW AND PRESSURE DROP e FOUND DISTANCE TO REACH 1 FT/SEC JET PEN N _ _

DIST. 9 JET PENETRATION (GPM) DIST. (IN.)

4 q  !=

L e ose .5 1.0 1.5 e" ]

i 90 1.1 3.2 ' 5.8 d 180 .3 1.1 2.0 360 .1 .3 7 i

e ASSUMPTION - GRAVITY PULLS JET STREAM TO BOTTOM llHEN JET VELOCITY REACHES 1 FT/SEC l l l

nutech -

' 12

^ -

UNIFORM

~

LEAKAGE o

~

LOGL LEAKAGE -

AT BOTTOM l -

LOW LOCAL -.

\?y LEAKAGE _ _

AT TOP 7

's l

THE TEMP MONITOR DETECTS THESE CASES ADEQUATELY WITH j NO SPECIAL EVALUATION REQUIRED l

V-13 .

nutech e

_ e-HIGH LOCAL LEAKAGE AT 2 .

TOP l

v 8c -

SPECIAL EVALUATION REQUIRED 1

ASSUMPTIONS: l

  • JET MODEL/ DENSITY IREND
  • LEAKAGE INCREASED WITH IIME I
  • ASSUME LEAKAGE IS LINEAR WITH POWER EVALUATION: .

START OF LEAKAGE ,

C o oO o0 co cg

  • TEMP VS TIME O g - JET STREAM PASSES TC gg

$0c0 c ogooo

, TIME (MONTHS)

~~~-

o '~~----

e oa 3 TEMP VS POWER

  • a o aa EXTRAPOLATE LEAKAGE 5

s 's-.

C TO RATED CCNDITIONS PCWER (%)

y_13 nutech

'i CONCLUSIONS FROM FLUID FLOW / JET MODEL e NO SPECIAL EVALUATION REQUIRED FOR LOCIAL LEAKAGE AT'3OTTOM AND LOW LEAKAGES AT TOP 4

e HIGH LOCIAL LEAKAGES AT IOP DETECTED BY SPECIAL EVALUATION e "HIGH" IOP LEAKAGE IS 1 GPM x 90 OR ABOVE 6

e e

. V-15 -

~ -

9 i

i ADVANCED LEAKAGE MONITOR CORRELATION RESULTS

, Dx -

1.0 g , , , , , , , , ,

E .

I--

. 5 9 - -

y G ,

' ~ - _~~~

s < - -

'" @ .8 -

~- 1 ZERO O J LEAKAGE

= .7 - -

ADVANCED CORRELATION o *6 - ~

S= ---- ORIGINAL CORRELATION E$

z = !;; .s _

O p cc ,

bi5 '~~_~-

PH@ .4 - _

3* '-----. _ _ 1. 5 GPFj.

5 , LEAKAGc 2 .3 - .

E

' ' ' ' ' i i i -i

.2-0 20 40 60 80 100 FEEDWATER FLOW RATE (% OF RATED) l l

l PROCEDURE e BASE LINE DATA e TAKE DATA PERIODICALLY AT RATED POWER e IAKE DATA DURING POWER LOADING AND UNLOADING IF LEAKAGE IS DETECTED l e ALWAYS USE MINIMUM IHERM0 COUPLE IEMPERATURE AT EACH N0ZZLE v-16 nutech 9

J 1.0

^

t .

Oi

" ADVANCED CORRELATION , / /

/

? E '75

- l t 2 -

ci

, /

y

.50 ,

h / ORIGIONAL CORRELATION

.25 -

a ' E I g 0 1.0 2.0 3.0 TIME SINCE SPARGER INSTALLATION (YRS) r PROJECTED LEAKAGE FOR MONTICELLO

I PROJECTED FATIGUE USAGE FACTOR FOR N0ZZLE D 0.5 - BLEND RADIUS - BASED ON ADVANCED LEAKAGE l MONITOR CORRELATION g 0.4 .___.

b .

f /

< w /

BASED'ON ADVANCED d; 0.3

/ /,j

. =>

$ LEAKAGE CORRELATION y

/ '

S / .

"- - 1

/

02 /

/

0.1 -

/ /

BASED ON ORIGINAL

,/p LEAKAGE CORRELATION s#

~~~~'~~~~_ ' ' ' ' '

s 0.0 2.0 3.0 0 1.0 g$ TIME SINCE SPARGER. INSTALLATION

r (YEARS)

, ; t .'

.~

VI CONCLUSIONS e LEAKAGE MONITORING SYSTEM IS ABLE TO DETECT RELATIVELY SMALL AMOUNTS OF BYPASS LEAKAGE ( 3 To .5 GPM) e THE ABILITY TO DETECT SUCH LEAKAGE THROUGH SHUTDOWN LEAK CHECK IS QUESTIONABLE BECAUSE OF DIFFERENTIAL EXPANSION OF SAFE-END AND THERMAL SLEEVE DURING OPERATION e ADVANCED ANALYSIS AND DATA INTERPRETATION LEADS TO REFINEMENTS BUT NO MAJOR CHANGES NEW BASELINE + SLIGHT REDUCTION IN SENSITIVITY LOCAL STREAMING EFFECTS, IF PRESENT; CAN BE ADDRESSED BY MONITORING AT REDUCED POWER LEVELS e MONTICELLO N0ZZLES B AND D SHOW MODERATE LEAKAGE, BUT PROJECTED USAGE FACTOR ACCUMULATION THROUGH NEXT PLANNED SPARGER REPLACEMENT IS LOW l

l VI - 1  !

l e