ML18106A386: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML18106A386
| number = ML18106A386
| issue date = 03/16/1998
| issue date = 03/16/1998
| title = Final Version of Colr for Salem Unit Cycle 13
| title = Final Version of COLR for Salem Unit Cycle 13
| author name =  
| author name =  
| author affiliation = PUBLIC SERVICE ELECTRIC & GAS CO. OF NEW JERSEY
| author affiliation = PUBLIC SERVICE ELECTRIC & GAS CO. OF NEW JERSEY
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:*
{{#Wiki_filter:*               Attachment 1 1.0   CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Salem Unit 1 Cycle 13 has been prepared in accordance with the requirements of Technical Specification 6.9.1.9.
* Attachment 1 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Salem Unit 1 Cycle 13 has been prepared in accordance with the requirements of Technical Specification 6.9.1.9. The Technical Specifications affected by this report are listed below: 3/4.1.1.4 Moderator Temperature Coefficient 3 I 4 .1. 3 . 5 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor -FQ(Z) 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor -FNt.H ------
The Technical Specifications affected by this report are listed below:
---990324017 6 98031672 ', PDR ADOCK 050002 p PDR Page 1 of 7
3/4.1.1.4 Moderator Temperature Coefficient 3I 4 .1. 3 .5 Control Rod Insertion Limits 3/4.2.1       Axial Flux Difference 3/4.2.2       Heat Flux Hot Channel Factor - FQ(Z) 3/4.2.3       Nuclear Enthalpy Rise Hot Channel Factor - FNt.H
**
                        ------ ---------~\
* Attachment 1 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1. 0 are presented in the following subsections.
- - -990324017 6 98031672                               ',
These limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9 .1.9. 2.1 Moderator Temperature Coefficient (Specification 3/4.1.1.4) 2.1.1 The Moderator Temperature Coefficient (MTC) limits are: The BOL/ARO/HZP-MTC shall be less positive than 0 &/k/°F. The EOL/ARO/RTP-MTC shall be less negative than -4.4 x 10 4 &/k/°F. 2.1.2 The MTC Surveillance limit is: The 300 pprn/ARO/RTP-MTC should be less negative than or equal to -3.7xl0 4 &/k/°F. where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for Rated THERMAL POWER Page 2 of 7
PDR       ADOCK 050002 p                           PDR Page 1 of 7
*
 
* Attachment 1 2.2 Rod Insertion Limits (Specification 3/4.1.3.5) 2.2.1 The control rod banks shall be limited in physical insertion as shown in Figure 1. 2.3 Axial Flux Difference (Specification 3/4.2.1) [Constant Axial Offset Control (CAOC) Methodology]
                      **                 Attachment 1
2.3.1 The Axial Flux Difference (AFD) target band is +6%, -9%. 2.3.2 The AFD Acceptable Operation Limits are provided in Figure 2. 2.4 Heat Flux Hot Channel Factor -FQ(Z) (Specification 3/4.2.2) [F xy Methodology]
* 2.0   OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1. 0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9 .1.9.
where: FRTP Q 0.5 p
2.1   Moderator Temperature Coefficient (Specification 3/4.1.1.4) 2.1.1 The Moderator Temperature Coefficient (MTC) limits are:
* K(Z) for P > 0.5
The BOL/ARO/HZP-MTC shall be less positive than 0 &/k/°F.
* K(Z) for P::; 0.5 THERMAL POWER RATED THERMAL POWER 2.4.1 FtTP = 2. 40 2.4.2 K(Z) is provided in Figure 3. Page 3 of 7
The EOL/ARO/RTP-MTC shall be less negative than -4.4 x 104 &/k/°F.
2.1.2 The MTC Surveillance limit is:
The 300 pprn/ARO/RTP-MTC should be less negative than or equal to -3.7xl0 4 &/k/°F.
where:     BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for Rated THERMAL POWER Page 2 of 7
* Attachment 1 2.2 Contr~l Rod Insertion Limits (Specification 3/4.1.3.5) 2.2.1 The control rod banks shall be limited in physical insertion as shown in Figure 1.
2.3 Axial Flux Difference (Specification 3/4.2.1)
[Constant Axial Offset Control (CAOC) Methodology]
2.3.1 The Axial Flux Difference (AFD) target band is +6%, -9%.
2.3.2 The AFD Acceptable Operation Limits are provided in Figure 2.
2.4 Heat Flux Hot Channel Factor - FQ(Z) (Specification 3/4.2.2)
[Fxy Methodology]
* K(Z)   for P > 0.5 FRTP Q
* K(Z)   for P::; 0.5 0.5 THERMAL POWER where:    p RATED THERMAL POWER 2.4.1 FtTP = 2. 40 2.4.2 K(Z) is provided in Figure 3.
Page 3 of 7
* Attachment 1
* Attachment 1
* 2.4.3 where:
 
= 1. 77 for the unrodded core planes 2.13 for the core plane containing Bank D control rods 2.5 Nuclear Enthalpy Rise Hot Channel Factor -fNt-H (Specification 3/4.2.3) = FftP [1.0 + PFlili (1.0 -P)] Operation with FN t.H values equal to or less than those given by the above equation are acceptable.
====2.4.3 where====
where: P THERMAL POWER RATED THERMAL POWER 2.5.1 FftP = 1.65 2.5.2 PFlili = 0.3 Page 4 of 7
F~TP  =1. 77     for the unrodded core planes 2.13     for the core plane containing Bank D control rods 2.5 Nuclear Enthalpy Rise Hot Channel Factor - fNt-H (Specification 3/4.2.3)
*
F~  = FftP [1.0 + PFlili (1.0 - P)]
* Attachment I FIGURE 3 K(Z) -NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1. 2 1. 0 -N a: 0. 8 0 e.. u "' z H :.:: ca 0.. 0. 6 Q Czl N H 0 z 0.4 0.2 * * * * . 0.0 0 2 -----........
Operation with FNt.H values equal to or less than those given by the above equation are acceptable.
""-------FQ K(:z;) HEIGHT (ft) .......... . ............. . ...............
THERMAL POWER where:   P RATED THERMAL POWER 2.5.1 FftP = 1.65 2.5.2 PFlili = 0.3 Page 4 of 7
2.40 1. 0 0.0 2.40 1. 0 6.0 2.22 0.925 12.0 4 8 10 12 CORE HE::HT (Feet) Page 5 of 7
* Attachment I
--* Attachment 1
* FIGURE 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT
* FIGURE 1 ROD BANK INSERTION LIMITS vs. THERMAL POWER 24 0 / ) 0 v 1117.5,2281 v 170.8,2281 o I IBANK Bl :I I 0 10' 1861 22 20 18
: 1. 2
* I 1100,1701 16 0 140 120 * *
          ~
* v 100 ii 80 60 40 20
: 1. 0
* 0 0 10, 581 10 I II v I IBANK Cl / v v I v I / I IBANK Cl II I / I y J 129' 0 v 20 30 so 60 70 80 90 PERCENT OF  
- N a: 0. 8 0
:HERMA!. POWER (\)
e..
* I
u         *
* FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 I ( *ll. 90) I I (+ll, 90l I 80 I \ !UNACCEPTABLE' OPERATION I \ I UNACCEPTABLE I OPERATION I !ACCEPTABLE OPERATION  
~                              FQ           K(:z;)           HEIGHT (ft) z H
\
2.40 2.40
* I \ I \ I ( *31, 50) l I (+31, SOll
: 1. 0                   0.0
* 20 0 *50 *40 *30 -20
: 1. 0                   6.0 ca0.. 0. 6 2.22           0.925                 12.0 Q
* 10 0 10 20 30 40 l:I..UX  
Czl N
:\ Delta Il Page 7 of 7 50}}
H
~
0
          ~
z 0.4 0.2 0.0 0      2        4                           8             10           12 CORE HE::HT (Feet)
Page 5 of 7
* Attachment 1 FIGURE 1 ROD BANK INSERTION LIMITS vs. THERMAL POWER 24 0
                  /
v
        ~
                                                          )
22 0
        ~
        ~
v       1117.5,2281                           170.8,2281 20 o     I     IBANK Bl
:I10' 1861                             I 18 0 I                           1100,1701 I
16 0 I
II IBANK Cl                       v v
        ~
                                                                        /
140
        ~
v
        ~
I 120
        ~
v                                   I v
100              /
80
        ~
I       IBANK Cl ii II 60 I
        ~
10, 581                              /
I 40 y
J 20 0
0 10      20 129' 0 30 v           so   60     70     80     90 PERCENT OF     ~~7~J  :HERMA!. POWER (\)
 
    *                     "J!.~tachment    I FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 I ( *ll. 90) I               I (+ll, 90l I 80 I                 \       IUNACCEPTABLE  I
          !UNACCEPTABLE' OPERATION I                       \       OPERATION I                                 \
                                        !ACCEPTABLE OPERATION I
I                                          \
                                                                    \
I ( *31, 50) l                                                 I (+31, SOll 20 0
  *50       *40   *30       -20
* 10   0     10   20     30     40   50 l:I..UX DIFFER::~JCE :\ Delta Il Page 7 of 7}}

Latest revision as of 04:57, 3 February 2020

Final Version of COLR for Salem Unit Cycle 13
ML18106A386
Person / Time
Site: Salem PSEG icon.png
Issue date: 03/16/1998
From:
Public Service Enterprise Group
To:
Shared Package
ML18106A385 List:
References
COLR-980316, NUDOCS 9803240176
Download: ML18106A386 (7)


Text

  • Attachment 1 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for Salem Unit 1 Cycle 13 has been prepared in accordance with the requirements of Technical Specification 6.9.1.9.

The Technical Specifications affected by this report are listed below:

3/4.1.1.4 Moderator Temperature Coefficient 3I 4 .1. 3 .5 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor - FQ(Z) 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor - FNt.H


---------~\

- - -990324017 6 98031672 ',

PDR ADOCK 050002 p PDR Page 1 of 7

    • Attachment 1
  • 2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1. 0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9 .1.9.

2.1 Moderator Temperature Coefficient (Specification 3/4.1.1.4) 2.1.1 The Moderator Temperature Coefficient (MTC) limits are:

The BOL/ARO/HZP-MTC shall be less positive than 0 &/k/°F.

The EOL/ARO/RTP-MTC shall be less negative than -4.4 x 104 &/k/°F.

2.1.2 The MTC Surveillance limit is:

The 300 pprn/ARO/RTP-MTC should be less negative than or equal to -3.7xl0 4 &/k/°F.

where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for Rated THERMAL POWER Page 2 of 7

  • Attachment 1 2.2 Contr~l Rod Insertion Limits (Specification 3/4.1.3.5) 2.2.1 The control rod banks shall be limited in physical insertion as shown in Figure 1.

2.3 Axial Flux Difference (Specification 3/4.2.1)

[Constant Axial Offset Control (CAOC) Methodology]

2.3.1 The Axial Flux Difference (AFD) target band is +6%, -9%.

2.3.2 The AFD Acceptable Operation Limits are provided in Figure 2.

2.4 Heat Flux Hot Channel Factor - FQ(Z) (Specification 3/4.2.2)

[Fxy Methodology]

  • K(Z) for P > 0.5 FRTP Q
  • K(Z) for P::; 0.5 0.5 THERMAL POWER where: p RATED THERMAL POWER 2.4.1 FtTP = 2. 40 2.4.2 K(Z) is provided in Figure 3.

Page 3 of 7

  • Attachment 1

2.4.3 where

F~TP =1. 77 for the unrodded core planes 2.13 for the core plane containing Bank D control rods 2.5 Nuclear Enthalpy Rise Hot Channel Factor - fNt-H (Specification 3/4.2.3)

F~ = FftP [1.0 + PFlili (1.0 - P)]

Operation with FNt.H values equal to or less than those given by the above equation are acceptable.

THERMAL POWER where: P RATED THERMAL POWER 2.5.1 FftP = 1.65 2.5.2 PFlili = 0.3 Page 4 of 7

  • Attachment I
  • FIGURE 3 K(Z) - NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT
1. 2

~

1. 0

- N a: 0. 8 0

e..

u *

~ FQ K(:z;) HEIGHT (ft) z H

2.40 2.40

1. 0 0.0
1. 0 6.0 ca0.. 0. 6 2.22 0.925 12.0 Q

Czl N

H

~

0

~

z 0.4 0.2 0.0 0 2 4 8 10 12 CORE HE::HT (Feet)

Page 5 of 7

  • Attachment 1 FIGURE 1 ROD BANK INSERTION LIMITS vs. THERMAL POWER 24 0

/

v

~

)

22 0

~

~

v 1117.5,2281 170.8,2281 20 o I IBANK Bl

I10' 1861 I 18 0 I 1100,1701 I

16 0 I

II IBANK Cl v v

~

/

140

~

v

~

I 120

~

v I v

100 /

80

~

I IBANK Cl ii II 60 I

~

10, 581 /

I 40 y

J 20 0

0 10 20 129' 0 30 v so 60 70 80 90 PERCENT OF ~~7~J :HERMA!. POWER (\)

  • "J!.~tachment I FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 I ( *ll. 90) I I (+ll, 90l I 80 I \ IUNACCEPTABLE I

!UNACCEPTABLE' OPERATION I \ OPERATION I \

!ACCEPTABLE OPERATION I

I \

\

I ( *31, 50) l I (+31, SOll 20 0

  • 50 *40 *30 -20
  • 10 0 10 20 30 40 50 l:I..UX DIFFER::~JCE :\ Delta Il Page 7 of 7