ML20211J341: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML20211J341
| number = ML20211J341
| issue date = 09/30/1997
| issue date = 09/30/1997
| title = for Comment Issue of Proposed Rev 1 to Draft Rg 3.54, Sf Heat Generation in Independent Spent Fuel Storage Installation
| title = for Comment Issue of Proposed Rev 1 to Draft RG 3.54, Sf Heat Generation in Independent Spent Fuel Storage Installation
| author name =  
| author name =  
| author affiliation = NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
| author affiliation = NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)

Latest revision as of 11:22, 20 April 2023

for Comment Issue of Proposed Rev 1 to Draft RG 3.54, Sf Heat Generation in Independent Spent Fuel Storage Installation
ML20211J341
Person / Time
Issue date: 09/30/1997
From:
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
To:
References
TASK-*****, TASK-DG-3010, TASK-RE REGGD-03.054, REGGD-3.054, NUDOCS 9710080076
Download: ML20211J341 (40)


Text

/[ gnu %, U.S. NUCLEAR REGULATORY COMMISSION Septembor 1997 3 W ,} OFFICE OF NUCLEAR REGULATORY RESEARCH Division 3 i ,, "o,, - ?  ! Task DG-3010

[  % e,[,e / DRAFT REGULATORY GUIDE W)

Contact:

C.W. Nilsen (301)415 6209 DRAFT REGULATORY GUIDE DG-3010 (Proposed Revision 1 to Regulatory Guide 3.54)

SPENT FUEL HEAT GENERATION IN AN INDEPEN_ DENT SPENT FUEL STORAGE  % INSTALLATION /(%)

A. INTRODUCTION Mk)

Q> v Y$

in 10 CFR Part 72, " Licensing Requirements for the .IndepenQent Storage of Spent Nuclear emuy Fuel and High Level Radioactive Waste " paragraph (h)(1)#df'Section 72.122, "Overall C.. W' Requirements," requires that spent fuel cladding be prcr.ected6during storage against degradation #

I that leads to gross ruptures or the fuel must behtier is onfined such that degradation of the fuel

~ 9 sj during storage will not pose operational safEt !p(ob'lems with respect to its removal from storage, it h p has been shown that, under certain environmental conditions, high storage temperatures can cause Q %y degradation and gross rupture of thIfuel rodfto occur very rapidly, it is necessary to know what D D storage temperatures are anticipatedgng the life of the storage installation and that these temperatures will not significantly degrade the cladding to a point that causes gross ruptures. The e

temperature in an independsnt spent fuel storage installation is a function of the heat generated by

%g the stored fuel assembilt.3, Th'$ spent fuel storage system is required by 10 CFR 72.128(a)(4) to be yg 4 designed uith a) eat removal capability consistent with its importance to safety.

n Tt1 4

p yihtoriguide u presents a method acceptable to the Nuclear Regulatory g,,u "

Commissiort1NRC) staff for calculating heat generation rates for use as design input for an u

9710000076 970930 h,'

PDR REGGD llll,lillillililllhli lill'll lllilylillllllij t fil ll;ill111llilli li.Illlliliti 03.054 R PDR * ''

This regulatory guide is being issued in draf t form to involve the public in the early stages ot ?he development of a regulatory position in this area.

It has not received complete staff review and does not represent an cfficial NRC staff position, Public commente are being solicited on the draf t guide (including any implementation schedule) and its associated regulatory analysis or value/ impact statement. Comments should be accompanied by appropriate supporting data. Wntten commente may be submitted to the Rules and Directivec Branch, Division of Admin;strative Services, Office of Administration, u S. Nuclear Regulatory Commission, Washington, DC Copies of comments received may be examined at the NRC Public Document Acom, 2120 L Street NW , Washington, DC.

6 20555-0001.

Cranments will be most helpfulif received by January 2,1998.

Requests for single copies of regulatory guides or draft guides (which may be reproduced) or for placement on en automatic distribution list for single copies of future guides in specific divisions should be made b writing to the U.S Nuclear Regulatory Commission, Washington, DC 20555, Attention: Printing. Graphics and D.stribution Branch, Office of Administration; or by f ax at (301)415-5272

~

C, )

t) O' s : li = 1

independent spent fuel storage installation. The original guide, issued in September 1984, was based on validated analyses performed for pressurized water reactors (PWRs), and boiling-water reactors (BWRs) were considered only as a simple conservative extension of the PWR data base in this revision. the procedure for determining heat generation rates for both PWRs and BWRs is based on analyses of each reactor type using calculational methods that have been validated against measured heat generation data from PWR and BWR assemblies. This revision presents a methodology that is simpler and is therefore expected to be more useful to applicants and reviewers.

Regulatory guides are issued to describe and make available to the public such information as methods acceptable to the NRC staff for implementing specific parts of the Commission's regulations, techniques used by the staff in evaluating specific problems or postulated accidents, and guidance to applicants. Regulatory guides are not substitutes for regulations, and compliance with regulatory guides is not required. Regulatory guides are issued in draf t form for public comment to involve the public in the early stages of developing the regulatory positions. Draf t regulatory guides have not received complete staff review and do not represent official NRC staff positions.

)

This regulatory guide contains no information collection requirements and therefore is not subject to the requirements of the Paperwork Reduction Act of 1980 (44 U.S.C. 3501 et seq.).

B. DISCUSSION The methodology of NUREG/CR-5625'is appropriate for computing the heat generation rates of fuel assemblies from light-water-cooled power reactors as a function of burnup, specific power, and decay time. The computed heat generation results are used in the next section in a procedure for determining heat generation rates for PWR and BWR assemblies.

' Technical Support for a Proposed Decay Heat Guide Using SAS2H/ORIGEN-S Data, NUREG/CR-5625 (ORNL-6698), September 1994. Copies are avai'able for inspection or copying for a fee from the NRC Public Document Room at 2120 L Street NW., Washington, DC: the PDR's mailing address is Mail Stop LL-6, Washington, DC 20555; telephone (202)634-3273: fax (202)634-3343. Copies may be purchased at current rates from the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20402-9328 (telephone (202)512-2249]; or from the National TechnicalInformation Service by writing NTIS at 5285 Port Royal Road, Springfield, VA 22161.

2 I

s Calculations of decay heat have been verified by comparison with the existing data base of experirnentally measured decay heat rates for PWR and BWR spent fuel. The range of l parameter values in the procedure is considered to lie in the mainstream of typical burnup, specific power, enrichment, and coolir'g time. A detailed example is shown in Appendix A.

The following terms and units have been used in this guide.

TERMS AND UNITS USED IN GUIDE B, -

burnup in last cycle, mwd /kgU B,. , -

burnup in next-to last cycle, mwd /kgU B, -

fuel burnup increase for cycle i, mwd /kgU B,,, -

total burnup of discharged fuel, mwd /kgU E, -

initial fuel enrichment, wt-% 225U P -

specific power of fuel as in Equations 2 and 3, kW/kgU P,,, -

average cumulative specific power during 80% uptime, kW/kgU

?

P,,,, , -

average cumulative specific power (at 80%) through cycle e 1, the next to last cycle P. -

fuel-specific power during the last cycle e P,. , -

fuel-specific power during cycle e 1, the next to-last cycle

'S -

percentage safety f actor applied to decay heat rates, p,a T, -

cooling time of an assembly, in years T, - cycle time of last cycle before discharge, in days T, -

cycle time of next-to-last cycle, in days 7, -

cycle time of ith reactor operating cycle, including downtime for all but last ,

cycle of assembly history, in days T,,, -

reactor residence time of assembly, from first loading to p shutdown for discharge, in days

/7 - last-cycle short cooling time modification factor 3

1

f 'y - next-to-last cycle short cooling time f actor

/, -

2$5U initial enrichment modification f actor l /, - excess power adjustment f actor l

l p - heat generation rate of spent fuel assembly. W/kgU C. REGULATORY POSITION The following method for determining beat generation rates of reactor spent fuel assemblies is acceptable to the NRC staff. There may be fuel assemblies with characteristics that are sufficiently outside the mainstream of typical operations that they need a separate computation of the heat generation rate. A discussion of the characteristics of assumcd typical reactor operations is given in Appe idix B.

The first part of this section conte .is the definitions and derivations, as used in this guide, of parameters needed in the determination of the heat generation rate of a fuel assembly. The second part contains the procedure used in deriving the final heat rate of an l

assembly. Although allowance has been made to use simple adjustment f actors for cases that are somewhat atypical, many cases will probably not require any adiustment of the table heat rate other than the ufety factor.

Heat generation rate tables for actinides, fission products, and light elements are given in Appendix C for informational purposes only. They are not used directly in this guide's method for determining heat rates.

1. DEFINITIONS AND DERIVATIONS OF PARAMETERS The following definitions and derivations of parameters of the spent fuel assembly are used in the procedure in this guide.

1.1 Heat Generation Rate (p) s i

The heat generation rate of the spent fuel assembly is the recoverable thermal energy (from radioactive decay) of the assembly per unit time per unit fuel mass. The units for heat generation rate used in this guide are watts per kilogram U (W/kgU) where U is the initial l

I 4

, uranium loaded. Heat generation rate has also been referred to as decay heat rate, afterheat, or afterheat power.

1.2 Cycle and Cycle Times (T)

A cycle of the operating history for a fuel assembly is, with one exception, the duration between the time criticality is obtained for the initially loaded or reloaded reactor to the time at which the next reloaded core becomes critical. The exception is for the last cycle, in which the cycle ends with the last reactor shutdown before discharge of the assembly. T, denotes the elapsed time during cycle i for the assembly. Specifically, the first and last cycles are denoted by i = s (for start) and i = e (for end), respective ly. T,,,, the total residence time of the assembly, is the sum of all 7, for i = s through e, inclusive. Except for the last cycle for an assembly, the cycle times include the downtimes during reload. Cycle times,in this guide, are in days.

1.3 Fuel Burnup of the Assembly (B, and B,,,)

The fuel burnup of cycle i, B,, is the recoverable thermal energy per unit fuel mass during the cycle in units of megawatt days per metric ton (tonne) initial uranium (mwd /tU), or in the SI units: of mass used in this guide, megawatt days per kilogram U (mwd / kgu), B,is the best maximum estimate of the fuel assembly burnup during cycle i. B,,,is the total operating history burnup:

B,, = f Bj (Equation 1) i3 1.4 Sp_ecific Power of the Fuel (F,, P,, P,,,, and P,,,. ,)

Specific power has a unique meaning in this guide. The reason for developing this definition is to take into account the dif ferences between the actual operating history of the assembly and that used in the computation of the tabulated heat generation rates. The calculational model epplied an uptime (time at power) of 80% of the cycle time in all except the last cycle (of the discharged fuel assembly), which had no downtime. The definition of

/

4

% g The adopted tr'ternational System of units.

5

specific power, used here, has two basic characteristics. First, when the actual uptime experienced by the assembly exceeds the 80% applied in the SAS2H/ORIGEN S calculations, the heat rate derived by the guide procedure maintains equivalent accuracies within 1%.

Second, when the actual uptime experienced is lower than tha 80% applied in the calculations, the heat rate is reduced. The technicel basis for these characteristics is presented in NUREG/CR-5625.

The specific power of cycle i, or e (last cycle), in kW/kgU, using burnup in mwd /kgU, is determined by P' = 1000 O.8 7',

B' for i < e (Equation 2)

P' = 1000 B' for i = c T,

The average specific power over the entire operating history of a fuel assembly, using the same units as in Equation 2, is determined by:

]

1000 B'"

P" = '~l (Equation 3)

T, + 0 8 [ T, s.,

The average specific power through the next-to-last cycle is used in applying the adjustment f actor for short cooling time (see Regulatory Position 2.2). This pcrameter is determined by:

1000(B -B)

P,,,,,., =

4" "}

0.8 ( T,, - T,)

Note that B,, and P.,,, as derived here, are used in determining the heat generation rate with this guide. Also, for cooling times s7 years, P,is used in an adjustment formula. The method applied here acccmmodates storage of a fuel assembly outside the reactor during one or two cycles and returning it to the reactor. Then, B, = 0 may be set for allintermediate storage cycles. If the cooling time is short (i.e., < 10 years), the results derived here may be excessively high for cases in which the fuel was temporarily discharged. Other evaluation methods that include the incorporation of storage cycles in the power history may be preferable.

6 l

1.5 Assembly Cooling Time (T,)

O The cooling time, T,, of an assembly is the time elapsed from the last downtime of the reactor prior to its discharge (at end of T,) to the time at which the heat generation rate is desired. Cooling times, in this guide, are in years.

1.0 Assembly Initial Fuel Enrichment (E,)

The initial enrichment, E,, of the fuel assembly is' considered to be the average weight 2

percent "U in the uranium when it is first loaded into the reactor. Heat generation rates vary with initial enrichment for fuel having the same burnup and specific power; the heat rate increases with lower enrichment. If the enrichment is different from that used in the calculations at a given burnup and specific power, a correction factor is applied.

2. DETERMINATION OF HEAT GENERATION RATES

(

Directions for determining the heat generation rates of light water reactor (LWR) fuel

( assemblies from Tables 1 through 8 are given in this section. First, a heat rate, p, , is found by interpolation from Tables 1 through 3 at Tables 5 through 7. Next, a safety factor and all the necessary adjustment f actors are applied to determine the final heat generation rate, pf,,,,.

There are three adjustment factors (see Regulatory Positions 2.2 to 2.4) plus a safety factor (see Regulatory Position 2.5) that are applied in computing the final heat generation rate, pf,,,

from p, . In many cases, the adjustment factors are unity and thus are not needed. An alternative to these directions is the use of the light-water-reactor afterheat rate calculation-(LWRARC) code on a personal computer; the code is referred to in Regulatory Position 2.7.

This code evaluates p,.. and pf,, using the data and procedures established in this guide, p.

7

t Table 1 l IlWil Spent Fuel IIcat Generation llates, h atts Per Kilogram U, for Specific Power = 12 kW/kgU l

l Cooling Fuel Ilurnup, mwd /kgU Time.

20 25 30 35 40 45 Years 1.0 4.147 4.676 5.121 5.609 6.064 6.531 1.4 3.132 3.574 3.955 4.370 4.760 5.163 2.0 2.249 2.610 2.933 3.281 3.616 3.960 2.8 1.592 1.893 2.174 2.472 2.764 3.065 4.0 1,111 1.363 1.608 1.865 2.121 2.384 5.0 0.919 1.146 1.371 1.606 1.844 2.087 7.0 0.745 0.943 1.142 1.349 1.562 1.778 10.0 0.645 0.819 0.996 1.180 1.369 1.561 15.0 0.569 0.721 0.876 1.037 1.202 1.370 20.0 0.518 0.656 0.795 0.940 1.088 1.240 25.0 0.477 0.603 0.729 0.861 0.995 1.132 30.0 0.441 0.556 0.672 0.792 0.914 1.039 f 40.0 0.380 0.478 0.576 0.678 0.781 0.886 50.0 0.33i 0.416 0.499 0.587 0.674 0.764 60.0 0.292 U MM 0,438 0.513 0.589 0.666 70.0 0.259 0.324 0.387 0.454 0.520 0.587 80.0 0.233 0.291 0.347 0.405 0.464 0.523 90.0 0.212 0.263 0.313 0.365 0.418 0.470 100.0 0.194 0.241 0.286 0.333 0.380 0.427 110.0 0.179 0.222 0.263 0.306 0.348 0.391 5

9 8

Table 2 BWR Spent Fuelllent Generation Rates, Watts Per (V) ,

Kilogram U, for Ppecific Power = 20 kW/kgU Cooling Fuel Ilurnup, mwd /kgU Time, Years 20 25 30 35 40 45 1.0 5.548 6.266 6.841 7.455 8.000 8.571 1.4 4.097 4.687 5.173 5.690 6.159 6.647 2.0 2.853 3.316 3.718 4.142 4.540 4.950 2.8 1.929 2.296 2.631 2.982 3.324 3.673 7 4.0 1.262 1.549 1.827 2.117 2.410 2.705 5.0 1.001 1.251 1.501 1.760 2.024 2.292 7.0 0.776 0.985 1.199 1.420 1.650 1.882 10.0 0.653 0.838 1.023 1.215 1.413 1.616 15.0 0.576 0.731 0.890 1.056 1.227 1.403 20.0 0.523 0.663 0.805 0.954 1.107 1.263

/^s 25.0 0.480 0.608 0.737 0.871 1.009 1.150 30.0 C.444 0.560 0.678 0.800 0.925 1.053 40.0 0.382 0.481 0.579 0.682 0.786 0.893 50.0 0.332 0.417 0.501 0.588 0.677 0.767 60.0 0.292 0.365 0.438 0.513 0.589 0.666 70.0 0.259 0.324 0.386 0.452 0.518 0.585 80.0 0.233 0.290 0.345 0.403 0.460 0.519 90.0 0.211 0.262 0.311 0.362 0.413 0.465 100.0 0.193 0.239 0.283 0.329 0.375 0.421 110.0 0.178 0.220 0.260 0.302 0.343 0.385

("h 9

1 l

Table 3 BWil Spent Fuel lleat Generation llates, Watts Per Kilogram U, for Specific Power = 30 kW/kgU Cooling Fuel Burnup, blWd/kgU Time, Years 20 25 30 35 40 45 1.0 6.809 7.786 8.551 9.337 10.010 10.706 1.4 4.939 5.721 6.357 7.006 7.579 8.169 2.0 3.368 3.958 4.463 4.979 5.453 5.938 2.8 2.211 2.651 3.050 3.460 3.855 4.256 4.0 1.381 1.705 2.016 2.339 2 663 2.991 5.0 1.063 1.335 1.605 1.885 2.172 2.462 7.0 0.797 1.015 1.239 1.471 1.713 8.958 10.0 0.666 0.850 1.039 1.237 1.443 1.653 15.0 0.579 0.737 0.898 1.067 1.242 1,422 20.0 0.525 0.667 0.811 0.962 1.117 1.276 f 25.0 30.0 0.482 0.445 0.6i i 0.563 0.74i 0.681 0.877 0.805 i.0iv 0.931 i.i60 1.061 g

40.0 0.382 0.482 0.581 0.685 0.790 0.898 50.0 0.332 0.4 I 8 0.502 0.589 0.678 0.769 60.0 0.292 0.366 0.438 0.513 0.589 0.666 70.0 0.259 0.323 0.386 0.451 0.517 0584 80.0 0.232 0.289 0.344 0.401 0.459 0.517 90.0 0.210 0.261 0.310 0.361 0.411 0.463 100.0 0.192 0.238 0.282 0.327 0.372 0.418 110.0 0.177 0.219 0.259 0.300 0.340 0.382 9

10

b')

i Table 4

<V llWR Enrichments for Ilurnups in Tables Average Initial Fuel Burnup. Enrichment, mwd /kgU wt.% U 235 20 1.9 25 2.3 30 2.7 35 3.1 40 3,4

, 45 3.8 o

o 11

Table 5 PWR Spent 1.01 llent Generation Rates Watts Per Kilogram U, for Specific Power = 18 kW/kgU Cooling Fuel Burnup, mwd /kgU Time, Years 25 30 35 40 45 50 1.0 5.946 6.574 7.086 7.662 8.176 8.773 1.4 4.485 5.009 5.448 5.938 6.382 6.894 2.0 3.208 3.632 4.004 4.411 4.793 5.223 2.8 2.253 2.601 2.921 3.263 3.595 3.962 4.0 1.551 1.835 2,108 2.398 2.685 2.997 5.0 1.268 1.520 1.769 2.030 2.294 2.576 7.0 1.008 1.223 1.439 1.666 1.897 2.143 10.0 0.858 1.044 1.232 1.430 1.633 1.847 15.0 0.744 0.905 1.068 1.239 1.414 1.599 i 20.0 0.672 0.816 0.963 1.116 1.272 1.437 25.0 0.615 0.746 0.879 1.018 1.159 1.308 30.0 0.566 0.686 0.808 0.934 1.063 1.197 40.0 0.487 0.588 0.690 0.797 0.904 1.017 50.0 0.423 0.510 0.597 0.688 0.780 0.875 60.0 0.372 0.447 0.522 0.601 0.680 0.762 70.0 0.330 0.396 0.462 0.530 0.599 0.670 80.0 0.296 0.355 0.413 0.473 0.534 0.596 90.0 0.268 0.321 0.372 0.426 0.480 0.536 100.0 0.245 0.293 0.339 0.387 0.436 0.486 110.0 0.226 0.270 0.312 0.356 0.399 0.445 0

12

,- Table 6

( ) PWil Spent Fuel llent Generation Rates, Watts Per

\v/ Kilogram U, for Specific Power = 28 kW/kgU Cooling Fuel Burnup, mwd /kgU Time, Years 25 30 35 40 45 50 1.0 7.559 8.390 9.055 9.776 10.400 11.120 1.4 5.593 6.273 6.836 7.441 7.978 8.593 2.0 3.900 4.432 4.894 5.385 5.838 6.346 2.8 2.641 3.054 3.435 3.835 4.220 4.642 4.0 1.724 2.043 2.352 2.675 2.999 3.346 5.0 1.363 1.637 1.911 2.195 2.486 2.793 7.0 1.045 1.271 1.500 1.740 1.987 2.248 10.0 0.873 1.064 1.261 1.465 1.677 1.900 15.0 0.752 0.915 1.083 1.257 1.438 1.627 G

20.0 0.677 0.823 0.973 1.128 1.289 1.457 25.0 0.619 0.751 0.886 1.027 1.171 1.322 30.0 0.569 0.690 0.813 0.941 1.072 1.208 40.0 0.488 0.590 0.693 0.800 0.909 1.023 50.0 0.424 0.511 0.599 0.689 0.782 0.877 60.0 0.372 0.447 0.523 0.601 0.680 0.762 70.0 0.330 0.396 0.461 0.529 0.598 0.668 80.0 0.295 0.354 0.411 0.471 0.531 0.593 90.0 0.267 0.319 0.371 0.424 0.477 0.531 100.0 0.244 0.291 0.337 0.385 0.432 0.481 110.0 0.225 0.268 0.310 0.352 0.396 0.440

  • ry

%d 13

l Table 7 l PWit Spent l'ucl llcal Generation llates, Watts l'er Kilogram U, for Specific l'oner = 40 kW/kgU Coolin Fuel Ilurnup, mwd /kgU Time,

s'e n n. 25 30 35 40 45 50 1.0 8.946 10.050 10.900 11.820 12.580 13.466 1.4 6.514 7.400 8.111 8.8L 9.514 10.254 2.0 4.462 5.129 5.692 6.284 6.821 7.4I8 2.8 2.947 3.441 3.884 4.346 4.787 5.267 4.0 1.853 2.212 2.554 2.910 3.265 3.647 5.0 l.429 1.728 2.021 2.327 2.639 2.970 7.0 1.067 1.304 1.543 1.793 2.052 2.325 10.0 1.881 1.078 1.278 1.488 1.705 1.936 15.0 0.7.',4 0.921 1.091 1.268 1.452 1.645 20.0 0.678 0.827 0.978 1.136 1.298 1.469 25.0 0.619 0.754 0.890 1.032 1.178 1.331 30.0 0.570 0.693 0.816 0.945 1.077 1.215 40.0 0.488 0.592 0.695 0.803 0.912 1.026 50.0 0.423 0.512 0.599 0.691 0,783 0.879 60.0 0.371 0.448 0.522 0.601 0.680 0.762 70.0 0.329 0.396 0.461 0.529 0.597 0.668 80,0 0.294 0.353 0.410 0.470 0.530 0.592 i '

90.0 0.266 0.319 0.369 0.422 O.475 0.530 100.0 0.243 0.290 0.336 0.333 0.430 0.479 110.0 0.224 0.267 0.305 0.351 0.393 0.437 O

14

l

' Table 8 PWit Enrichtnents for ilurnups in Tables

\~-

Average Initial fuel Ilurnup. Enrichment.

mwd /kgU wt.% U.235 25 '. 4 30 2.8 35 3.2 40 3.6 45 3.9 50 4.2 2.1 Computing Heat Flate Fiovided by Tables Tables 1 through 3 are for BWR fuel, and Tables S through 7 are for PWH fuel. The e heat rate:iin each ti ole pertain to a single average specific power and are listed as a function of total burnup and cooling time. Af ter determining P,,,, B,,,, and T,as above, select the next lower (L index) and next highei (H index) heat rate values from the tables so that:

P, s ?,,, s Pn B 1 B,,, s Bn i

and T s T, s Tn g

Compute p,,,, the heat Generation rate, at P,,,, B,,,, and T,, by proper interpolation between the tabulated values of heat rates at the lower and higher parameter limits. A linear interpolation should be used between heat rates for either burnup or specific power interralations. In computing the heat raie at 7,, the interpolation should be logarithmic in heat rate and linear in cooling time. Specifically, the interpo'ation fctmulas for interpolating in specific power, burnup, and cooling time are, respectively,

[ (Pm -P)

P = Pt t (Equ.ition 5) 15

P " Pt + (0,0, - Ot ) (Equation 6) p = pt exp "," ( T, - Tt ) (Equation 7) where p, and pu represent the tabulated or interpolated heat rates at the appropriate parameter limits corresponding to the L and H index. If applied in the sequence given above, Equation 5 would need to be used four times to obtain p values that correspond to B, and By at values of Tt and Tu. A rnini table of four p values at P,,,is now available to interpolate burnup and cooling time. Equation 6 would then be applied to obtain two values of p at 7, and Ty. One find mterpolation of these two p values (at P,,, and B,,,) using Equation 7 is needed to calculate the final p,.. value corresponding to P,,,, B,,,, and T,. The optional Lagrangian interpolation scheme offered by the LWRARC code is elso considered on acceptable method for Interpolating the decay heat data, if P,,, or B,,, f alls below the minimum table value range, the minimum table specific power or burnup, respectively, may be used conservatively. If P,,, exceeds the maximum table value, the table with the maximum specific power (Table 3 for BWR fuel and Table 7 for PWR fuel) may be used in addition to the adjustment f actor, /,,

described in Regulatory Position 2.3.

The tableJ should not be applied if B,,, exceeds the maximum burnup in the tables, or if T,is less than the minimum (1 year), if T, exceeds the maximum (110 years) cooling time of

, the tables, the 110 year value is acceptabio, although it may be too conservative.

'The user may apply either common logarithms or naturallogarithms and consistent antilogarithms.

2.2 ShorLCooling Time Factor.s /,.andff, The heat rates presented in Tables 1 through 3 and Tables 5 through 7 were computed from operating histories in which a constant specific power and an uptime of 80% of the cyck time were applied. Expected variations from these assumptions cause only minor changes

(<1%)in decay heat rates beyond approximately 7 years of r.ooling. However,if the specific 16

power near the end of the operating history is significantly different fit, n the average specific power, P.,,, p,,, needs to be adjusted if T, s 7. The ratios P,/P,,, and P,_,/P,,,,, are, respectively, used to determine the adjustment (Petorsf I and /', The factors reduce the heat rate p,,,if the corresponding ratio is less than 1 and increase the heat rate p,,,if the corresponding ratio is Dreater than 1. The formulas for the factors are below, f, = 1 when T, > 7 yeais or e = s (i.e., I cycle only) f7 = 1 + 0.35/#[ when 0 s R s 0.3 (Equation 8) f, = 1 + 0.251uT, when -0.3 s R < 0 f, = 1 - 0.075/T, when R < - 0.3 where R= P' -1 p (Equation 9) f7 = 1 when T, > 7 years or e<3 f7 = 1 + 0.10R'/f when 0 s R's 0.6 f,' = 1 + 0.08R'/T, when - 0.5 s R' < 0 (Equation 10) f{ = 1 - 0.04/T, when R' < - 0.5 where R'= P' "

-1 (Equation 11) pea.,

n it can be observed that there are upper limits to R and R'in Equations 8 and 10. It is recommended not to use the decay heat values of this guide if any of the following conditions occur:

if T, s 10 years and P,/P,,, > 1.3, if 10 years < T, s 15 years and P,/P,,, > 1.7, 17

1 i

if T, s 10 years and P,.,/P,,...., > 1.6.

Although it is safe to use the procedures in this guide, the heat rate values for p,,,,,, may be excessively high when T, s 7 years and P,/P.,, < 0.6, T, s 7 y e a r s a n d P,. , /P,... .. , < 0.4.

2.3 The Excess Power Adjustment Factor f, The maximum specific power, P .., used to generate the data in Tables 1 through 3 and Tables 5 through 7 is 40 kW/kgU for a PWR and 30 kW/kgU for a BWR, if P,,,, the average cumulative specific power, is more than 35% higher than P,,,,, (i.e.,54 kW/kgU for PWR fuct aad 40.5 kW/kgU for BWR fuel), the guide should not be used. When 1 < P ,/P,,,,, < 1.35, the guido can still be used, but an excess power adjustment f actor, f,, must be applied. Tha excess power adjustment f actor is

/, = /Pm /P, (Equation 12)

For P,,, s P,,,,,, f, = 1 2.4 Iha_ Enrichment _EnctorJ, The decay heat rates of Tables 1 through 3 and Tables 5 through 7 were calculated using initial enrichments of Tables 4 and 8. The enrichment f actor f,is used to adjust the value p, for the actualinitial enrichment of the assembly E,. To calculate /, the data in Tables 4 (BWR) or 8 (PWR) should be interpolated linearly to obtain the enrichment value E,,,

that corresponds to the assembly burnup, B,,, if E/E,,, < 0.6, the NRC staf f recommends nct using this guide. When E/E,,,2 0.6, set the enrichment f actor as follows:

/, = 1 + 0.01[a + b(T, d)lli E/E,,31 when E/E,,, s 1.5, (Equation 13)

/, = 1 - 0.005 la + b(T, d))

18

l when E/E,,, > 1.5, where the parameters a, b, and d vary with reactor type. E,, E,,,, and T,. These variables are defined in Tables 9 and 10.

Table 9 Enrichment Factor Parameter Values for BWR Assemblies Parameter Value Parameter E, /E,,, < 1 #'' #

in Equation 13 1 < T, < 40 T, > 40 1 < T, < 15 T, > 15 a 5.7 5.7 0.6 0.6 b -0.525 0.184 -0.72 0.06 d 40 40 55 15 Table 10 Enrichment Factor Parameter Values for PWR Assemblies

, Parameter value Parameter E, /E,,, < 1 E, /E,, > 1 In Equation -

13 1 < T, < 4 0 T, > 40 1 < T, < 20 T, > 2 0 a 4.8 4.8 1.8 1.8 b -0.6 0.133 -0.51 0.033 d 40 40 20 20 2.5 Safety Factor S Before obtaining the final heat rate pf,,,, an appropriate estimate of a percentage safety factor S should be determined. Evaluations of uncertainties performed as part of this project indicate that the safety factor should vary with burnup and cooling time.

For BWR assemblies:

S = 6.4 + 0.15 (B,,, - 20) + 0.044 (T, - 1) (Equation 14) 19 I

l For PWR assemblies:

S = 0.2 + 0.06 (B,,, - 25) + 0.050 (T, - 1) (Equation 15)

O The purpose of deriving spent fuel heat generation rates is usually to apply the heat rates in the computation of the temperatures for storage systems. A preferred engineering practice may be to calculate the temperatures prior to application of a final safety f actor. This practice is acceptable if S is accounted for in the more comprehensive safety factors applied to the calculated temperatures.

2.6 Final Heat Generation Rate Evaluation The equation for converting p,,,, determined in Regulatory Position 2.1, to the final heat generation rate of the assembly,is pr.,,, = (1 + 0.01 S) f, / ', f, f, p,,, (Equation 16) where /,, f',, f,, f,, and S are determined by the procedures given in Regulatory Positions 2.2 through 2.5.

2.7 Heat Rate Evaluation by LWRARC Code The LWRARC (light water reactor afterheat rate calculation) code is an MS DOS PC program that performs the calculations in this guide. The only input for cases in which the cooli'ig time exceeds 15 years are B,,,, T,,,, E,, and T,, Additionally, the short cooling time f actors require B, and T, of the last and next to last cycles. The code features a pull down menu system with data entry screens containing context sensitive help messages and verification dialog boxes. The menus may be used with either a keyboard or a mouse. The code printout (one page per case) contains the input data, the computed safety and ,

adjustment f actors, and the interpolated and final computed decay heat rates. The output file may be printed, observed on a monitor, or saved. Input cases may be saved, retrieved, duplicated, or stacked in the input file.

The LWRARC code may be requested from either the Radiation Shielding information Center (RSIC) or the Energy Science and Technology Sof tware Center (ESTSC):

20

l Radiation Shleiding Information Energy Science and Technology Sof tware Center Center Oak Ridge National Laboratory Oak Ridge National Laboratory l P.O. Box 2008 P.O. Box 1020 i Oak Rige, TN 37831 0362 Oak Ridge, TN 37831 1020 Telephone: (615)S74 0170 Telephone: (6151570 2600 FAX: (015)S74 6182 FAX: (615)S70 2865 D

9 21

! APPENDlX A SAMPLE CASE USING HEAT GENERATION RATE TABLES O

A BWR fuel assembly with an average fuel enrichment of 2.0 wt % 8"U was in the reactor for four cycles. Determine its final heat generation rate with safety f actors, using the method in this guide, at 4.2 years cooling time. Adequate details of the operating history associated with the fuel assembly are shown in Tetle A.1.

Table A.1 Sample Case Operating llistory Relative Time from Startup of Fuel. Days Accumulated llurnup Fuel (Ilest Maximum Estimate),

Cycle Startup Cycle Shutdow n ,

1 0 300 8.1 2 340 590 14.7 3 630 910 20.9 4 940 1240 26.3 Note that the output of the LWRARC code fo: h s case is shown in the first case of Appendix B of NUREG/CR 5625.'

' Technical Support for a Proposed Decay Heat Guide Using SAS2H/ORIGEN-S Data.

NUREGICR 5625 (ORNL 6698), September 1994. Copies are available for inspection or copying for a fee from the NRC Public Document Room at 2120 L Street NW., Washington, DC: the PDR's mailing address is Mail Stop LL-6, Washington, DC 20555; telephone (202)634 3273: fax (202)634 3343. Copies may be purchased at current rates from the U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20402 9328 [ telephone (202)512 2249); or from the National Technical Inforrnation Service by writing NTIS at 5285 Port Royal Road, Springfield, VA 22161, 22

Using Regulatory Position 1:

The following were given in the sample case (see Regulatory Position 1 for definitions):

T,,, = 1240 d B,,, = 26.30 mwd /kgU T, = 4.2 y E, = 2.6 wt % 8"U Cornpute T,, B , P , T,.i, P,i, P.,,,,, and P.,, from Regulatory Position 1 and Equ6tions 2 through 4.

T, = 1240 - 940 = 300 d B, = 26,300 - 20,900 = 5,400 kWd/kgU P, = (26,300 - 20,900)/300 = 18.00 kW/kgU T,.i = 940 - 630 = 310 d B,.i = 20.900 - 14,700 = 6,200 kWd/kgU P,.i = 6,200/10.8(310)] = 25.0 kW/kgU P.,,,i = 20,900/10.8(940)) = 27.793 kW/kgU P,,, = 26,300/1300 + 0.8 (940)) = 25.00 kW/kgU l

23

Using Regulatory Position 2 P,,, should be determined from P.,,, B,,,, and T,, as described in Ro0ulatory Position 2.1.

O First, select the nearest heat rate values in Tables 2 and 3 for the following limits:

P = 20 s P,,, s Py = 30 t

B, = 2 5 s B,,, s By = 30 T = 4 s T, s Tu = 5 t

Next, use the prescribed interpolation procedure for computing p,,, from the tabular data.

Although the order is optional, the example here interpolates between specific powers, burnups, and then cooling times Denote the heat rate, p, as a function of specific power, burnup, and cooling time by p/P,B,T). The table values at P, and Fy for B, and T, are p(P,, B,, T,/ = p(20,25,4) = 1.549 p(Py, B,, T,1 = p(30,25,4) = 1.705 First, interpolate the above heat rates to P.,, using p/P,,,,25.4) = p(20,25,4) + F,(p(30,25,4)

- p(20,25,4))

where F, = (P,,, - P, J/(Pu -P, ) = 0.5 The result at p(P.,,,25.4) is p/P ,,,25,4) = 1.549 + 0.5 (1.705 - 1.549)

= 1.627 Tha other three values at P,,, are computed with a similar method:

p(P,,,,30,4) = 1.827 + 0.5 (2.016 - 1.827)

= 1.9215 p/P,,,,25,5) = 1.293 p(P,,,,30,5) = 1.553 These are heat 'Les at the burnup and time limits.

24

1 Second, interpolate each of the above pairs of heat rates to B,,, from the values at B, and B,,:

Fe = (8,,, - B J/(Bn - B ) = 0.26 i i p/P,,, B,,,,4) = 1.027 + 0.26 (1.9215 - 1.627)

= 1.7036

,) (P,,,, B,,,, 5 ) = 1.3606 Third, compute the heat rate at T, frorn the above values at Tg and Tu by an interpolation that is logarithmic in heat rate and linear in time:

F, = (T, - T, }/(Tu - Ts ) = 0.2 logip /P,,,, B,,,, T,1) = log 1.7036 + 0.2 (log 1.3606

- log 1.7036)

= 0.2118 p,,, = p/P,,,. B,,,, T,) = 10 ""' = 1.6 2 9 W/kg U With the value for p,,,, the formulas of Regulatory Positions 2.2 through 2.6 can be used to determine pf,,,,, Since T, < 7 y, use Equations 8 through 11 to calculate the short cooling time factors:

R = P,/P,,, - 1 = (18/2 5) - 1 = - 0.28

/, = 1 + 10.25( 0.28)l/4.2 = 0.983 R ' = P,. , /P,,, ,. , - 1 = - 0.100 5

/', = 1 + [0.08(-0.1005)l/4.2 = 0.998 Since P,,, < Py = P..., the excess power f actor, /, is unity, interpolating Table 4 enrichments to obtain the enrichment associated with the burnup yields E,,, = 2.3 + (2.7 - 2.3)(26.3 - 25)/(30 25)

= 2.404 The enrichment f actor, /,, is then calculated using Equation 13:

/, = 1 + 0.01 (8.376)(1 - 2.6/2.404) = 0.993 I because E, > E,,,

.25

The safety f actor, S. for a BWR is given in Equation 14:

S = 6.4 + 0.15 (26.3 - 20) + 0.044 (4.2 - 1)

= 7.49%

Then, using Equation 16, pra,,1 (1 + 0.01 S) fr l'y 1,1, p,,,

with the above adjustment f actors and p,,, yields p,,,, = 1.0749 x 0.983 x 0.998 x 1 x 0.993 x 1.629

= 1.0749 x 1.587 = 1.706 W/kgU Thus, the final heat generation rate, including th6 safety factor, of the Oiven fuel assembly is 1.706 W/kgU.

O 0

26

APPENDIX B ACCEPTABILITY AND LIMITS OF THE GUIDE Inherent difficulties arise in atterrpting to prepare a heat rate guide that has appropriate safety factors, is not excessively conservative, is easy to use, and applies to all commercial reactor spent fuel assemblies. In the endeavor to increase the value of the guide to licensees, the NRC staff made an effort to ensure that safe but not overly conservative heat rates were computed. The procedures and data recommended in the guide should be appropriate for most power reactor operations with only minor limitations in applicability, in general, the guide thould not be applied outside the parameters of Tables 1 through

8. These restrictions, in addition to certain limits on adjustment f actors, are given in the text.

The masr table I;mits are summarized in Table B.1.

Table B 1 Parameter Range for Applicability of the Regulatory Gulde Parameter BWR PWR T,(year) 1-110 1-110 D,,, (mwd /kgU) 20-45 25-50 P,,, (kW/kgU) 12-30 18-40 in using the guide, the lower limit on cooling time, T,, and the upper limit on burnup, B,,,, should never be extended. An adjustment f actor, f,, can be applied if the specific power, P,,,, does not exceed the maximum value of the tables by more than 35%. Thus, if P,,,is greater than 54 kW/gU for PWR fuel or 40.5 kW/kgU for BWR fuel, the guido should not be applied, The minimum table value of specific power or burnup can be used for values below the table range; however, if the real value is considerably less than the table minimum, the heat rate derived can be excessively conservative. Also, the upper cooling time limit is conservative for longer cooling times.

In preparing generic depletion / decay analyses for specific applications, the n.ost difficult condition to modelis the power operating history of the assembly.

27

Although a power history variation (other than the most extremo) does not significantly changa the decay heat rato af ter a cooling time of approximately 7 years,it can have significant influenco on the results in the first few years. Cooling time adjustment f actors, I, and I',, are applied to correct for variations in power history that dif fer from those used in the generation of the tables. For example, the heat rate at 1 year is increased substantially if the power in the last cycle is twice the average power of the assemb!y. The limits on the conditions in Regulatory Position 2.2 on ra'ios of cycle to average specific power are noodod; first, to derive cooling time adjustment f actors that are valid, and second, to exclude casos that are extremely atypical. Although these limits were determined so that the f actors are sofo, a reasonable degree of discretion should be used in the considerations of atypical assemblies- particularly with regard to their power histories.

Another variable that requires attention is the "Co content of the clad and structural materials. Cobalt 59 is partly transformed to "Co in the reactor and subsequently contributos to the decay heat rate. The "Co content used in deriving the tables here should apply only to assemblies containing Zircoloy clud fuel pins. The "Co contribution can become excessive for "Co contents found in stainless + steel clad fuel pins. Thus, the use of the guide for stainless-steel-c:ad assemblies should be limited to cooling times that exceed 20 years. Because "Co has a 5.27 year half life, the heat rato contribution from "Co is reduced by the f actor of 13.9 in 20 years.

In addition to the parameters used here, decay heat rates are a function of other variables to a lesser degree. Variations in moderator density (coolant pressure, temperature) can chango decay heat rates, although calculations indicated that the expected dif ferences (approximately 0.2% heat rato change per 1% change in water density, during any of the first 30 year decay times) are not sufficient to require additional corrections. The PWR decay heat rates in the tables were calculated for fuel assemblies containing water holes. Computed decay heat rates for assemblics containing burnable poison rods (BPRs) did not change significantly (< 1% during the first 30 year decay) from fuel assemblies containing water holes.

Several conditions were considered in deriving the safety f actors (Equations 14 and

15) that were developed for use in the guide. Partial uncertainties in the heat generation rates were computed for selected cases by applying the known standard deviations of half lives, 0 values, and fission yields of all the fission product nuclides that make a significant contribution to decay heat rates. This calculation did not account for uncertainties in 28

contributions produced by the neutron atisorption in nuclides in the reactor flux, or from variations in other parameters. In add! tion to the standard deviations in neutron cross sections, much of the uncertainty from neutron absorption aro:e from approximations in the model used in the depletion analysis, in developing the safety factors, these more indirect uncertainties were determined irom comparisons of the calculated total or individual nuclide decay heat rates with those determined by independent computational methods, as well as comparisons of heat rate measurements obtained for a variaty of reactor spent fuel assemblies, Note from the equations that the safety f actors increase with both burnup and cooling time. This increase in the safety f actor is a result of the increased importance of the actinides to the decay heat with increased burnup and cooling time together with the larger uncertainty in actinido predictions caused by model approximations and limited experimental data.

Whenever there is a unique difference in either the design or operating conditi .4 of a spent fuel assembly that is more extreme than that accepted here, another well qualified method of analysis that accounts for the oifferenr:e should be used.

(

A l

29 i

- . - , _ - - - - . - . _ _ _ . , _ . - - - - . ~ _ - . . - . - , _ , - . - _ , . - - -

APPENDIX.C CONTRIBUTIONS TO DECAY HEAT RATES BY ACTINIDES, FISSION PRODUCTS, AND LIGHT ELEMENTS The decay heat rates determined by the methods recommended in this guide are totals l

resulting from all sources of radioactive decay, in the tables of this Appendix C, the contributions to these totals from actinides, fission products, and light elements are listed separatoly. These values were used to construct the totals given in Tables 17. The values in this Appendix C represent some of the many results available from the codes described in NUREG/CR 5625.

Table C.1 BWR decay heat rates OVAgU) oflight elements. actinides.

and fission products, for specine power = 12 kWAgU, Set I t,reup a g0117J/ktW Cooling Burt.wp a 2 D1Hd/kgV linee LTihl ti Actinides ris Froa Tears i.lght El Actinides Fis Fro 3

. 7,il m W .74t 01 3.76ft*00 .0 4. 993E 02 4.850t O' 4.14 t t*00 3.4 t ot =0! " t95t 01 f.8691900 4 1.64tt 02 1.3 tit.0 3.205t*00 f.848t*02 54tE*01 .046t*00 J.0 8.054E Of : . tS TE *0 2 354t*00 f.480t-Of .fl0t*08 [.446t*00s 2.8 f.6 70t 02 .779t.0 4 6891400

. . 111 01 9.7841 0, 4.0 '.219t-02 .64tt 0 1.177t*00

".0771 01 . $tt-Ol 7.879t*0 604t*02 5.0 946t 02 .44tt 0 9.6!6t 0)

.370t 0t . 78t*05 6. l$t-0 .

7.0 480E*02 .685t 0 7.stLL 01 9.1341-0) ' .f45t*01 s. 81 0 10.0 9.8961 05 .74*t 0 6. 34 9t 0 4.708t 01 .!!BC 04 4. a tt 0:, 15.0 5.Itat 05 .8 tot 0 5.340t-0' i

E.443E-01 .390t*01 3.760t*01 20.0 .680E 08 .873t*0 , 4.660t 0 1.280t*03 435t *01 3.3 tit 0 l 25.0 417t 01 . 906t 01 4.1051 0',

6.770E 04 461E*0 l 2.918t*0 ,

30.0 .9tst.08 3.629t-0 1.978t-04 491E*0 ,<!.308t 0 40.0 I'.t66t*04

. 5 ? l t *04

.953t*05 f.849t 0 6.381E*05 495t*0 .

.889t 01 50.0 r.57tE*05 .984E.08 ,l.245t*01 P

t.566t*05 4801 0 .417t 01 60.0 3.099t 05 .88tt 0 . 77(t *0 'l 1.409E 05 459E 01 . 1361-05 70.0 1.681t*05 .8431 0 .40lt 01 3.0let*05 ' .4 4tE

  • 01 8. 98 8t *0 2 80.0 1.176t 05 .800t 0 . 100t=01 8.483!-06 404t Ol 7 308t 02 90.0 9.609E 06 .756t.0 8.767t*02 7.5 7 5t *06 157tt 0 5.6t6t-02 4.926E 06 1.345t*0)3 4.4511 02 100.0 8.447F-06 110.0 1 78!E*0 7.666t 06 1.6?lt 0 6.939E*0t 5.493t-02 T8ble C.2 BWR decay heat lates OVAgU) oflight elements, actinides, and Gssion products, for specific powef = 12 kWAgU, Set 2 Cwrmur
  • 30INd/kgV Coc I & rig Burmwp s J U1Hd/LgU Light El Actinides Fit Fred Light El Actimages Fis Fred 5.16ft.0f 6.440E-01 4.4t!!*00 1.0 $.38 tF-02 8.103C 0) 4. 746t*00 1.7901-0! 4.46tt 0 i 3.478t*00 1.4 3.918t-02 5.694E 01 3.768t*00 3 187E 02 3.076t=0l 2.594t*00 2.0 3.299t-02 4.003E 01 t.848t*00
2. 790t *02 2.448t *01 1. 901t *00 2.8 E.889t 02 3.tt9t*0 P.ltottoo I' 2.141t*02 2.257t*0) }.359t*00 4.0 2.4 tot-02 2.976t 0 .541E*00 2.03it*02 2.241t-01 a.it7t*00 5.0 2.llit-02 t,950t 0 '

. 290E*00 1.5511-02 t. f ?0E *01 8.994t-O n 7.0 3.610t*02 2.96tt*01 . 017t*00 1.019t=0! t.ll6t-0 7.538t-01 10.0 1.080f-02 2.9tst 08 8.704t*01 5.400t*01 2.369t-0)36.384t.04 15.0 5.6tst*03 3.005t 08 7.306t=0.

t.843E-05 f.399t-01 5.525t*01 20.0 2.969t-03 3.004t 01 6.3671 0 <

l .5111 -01 2.412t *01 4. 86 5t -0 5 25.0 1.586t-03 2.989 8.140t=04 2.412t-01 4.2971-01 30.0 8.587t 04 2.944[ 084.5.605t L-Cl 0i 94 9t *01 2.484t*04 t.385t 04 3.37tt-01 40.0 2.654E-04 t.895t*01 3.68tr-0 8.490t *05 2.138t *0 5 t.656t-o' 50.0 9.20tt-ob t.808t 01 3.0571 0) 3.5261 05 2.200t 01 E.096t 0 60.0 3.844t-05 2.719t-01 t.4t tt-01

1. 90tt =05 t . !!81-0 8 1. 6 5 7t 0 ,

70.0 2.09lt 05 2.630E 01 1.906t*01

1. 316t-05 2.156t-01 t e310E 01 80.0 1.45tt-05 2.545t*01 1.508E-Ol
1. 06 81 -05 2. 0 94t 0 3 1. 0 8 7E 01 90.0 1.145t*05 2.460E 01 1.198t 01 9.240E-06 t.015t=01 8.206E-02 100.0 9.910E-06 f.18tt-01 9.441E 02 8.344t-06 1. 9 7BE-01 6.4 95E-0 2 110.0 8. 94 8t-06 2. 309t *01 7.4 73t
  • 02 0 31

l T0ble C 3 BWP. decay hev r8tes (W/kgU) of hght elements. 8ctmides.

and Ossion product 3, for specine power - 12 LWAgU. Set 3 putnup s (M3d gU CoiUng Twenwp a 4ffl%do g U 16me e EigT f [1 7 tTElcTe T T Tiod 7eere Laeht TFETI66d.. rie rted 6.46 7t *0t 1 008t e00 5.00lt *00 .0 $.15 91 02 1.196E600 6. tB9E *00 4.027t*02 r.. tWE 0 4.00ft*00 .4 4.089t *0t 8.674t *01 4.(60t e00 3.190t*0f $. .481-0 3.0let*00 '.0 1.300te00

{.970t*02 4.,.875t*0 Met *0 , P. fitt e00 s.8 1.439t 1.0 lit *02*0t 6.t$$t 5.lFit*0 0) J.$l ?t *00 r.497t 02 .iC9E600 4.0 f . 5 3 51 0 t 4.1911 0 ' .88et*00 P.175t*02 T!*0 .440te00 5.0 '.20tt*0t 4.?!!!*0 .$93Ee00

.657t*0t >.8{0t*0

>.81 .164t*0m 7.0 .688t*0f 4.6ftt*0 .291t*00

.llti-Of 3.797E*0 '.???t-0' 10.0 ..Ittt*0t 4.6t6f*0 .0tTte00 i.600t*05 .. F60t *0' 8.lt9t*0 15.0 $.etit 05 4.635t*0 9.110t-0 L . 0 6 61

  • 01 L.Filt*0 f.1)tt*0 20.0 3.llet*03 4.414t*0 7.910t*0

.641t.03 ,.65$t*0 6.J00t 0 t$.0 3.678t-05 4.38tt 0 6.978t*0 .

8.90$t 04 . 190t*0 5.b45t 0 10.0 r t 9t *0.' 6.ltit-0 f.7748-04 . 466t*0 4.l4FE*0 40.0 9.086t*04 f.848t-04 4. 4 429t*0: 4.824t-0 9.ff?t*06 L. lt0t *0 3.4fft-0 50.0 1.008t-04 i.840E 0' 3.797E-0 4 lPt-06 :,.16ft*0 . 60.0 4.206t*06 ,.666t* '.996t*0 J.ulot 0$ L.064L 0  !'. 834t 70)t 0+0 70.0  ;'.3571-05 1.60ft.0c '.167t 0

.H$ot*05 ;' . 94 8t *0 .688t 0 40.0 .629t*05 L.3$8t*0 .

.8Ftt*0

.fttt*05 M.840t*0 .335t-0 90.0 507t*05 3.ttst*0 488t*0

.074t*05 f.75t .057t 0 100.0 .35tt*05 5.099t*0 .

.l?tt 0 9.704t*06 2.646[*0 E 0, 0.36&t 03 110.0 .0 tit 05 2.985t 0, 1.tF9C*02 T8ble C.4 BWR dec8y he8t F8tes (WAgU) oflight elements,8ctinides.

and Ossion products, for specine powet = 20 kWAgU, Set i Buteur a to Und/bgv Co2 ling Dutove e 25 nddikgV Timee ---

Light El Ac t inida s Fie rted yests Light El &ct6medes Flo Ftod 6.181t-0! t.957t*0 $.190t*00 .0 6.173t*02 4.366t 0 $.744te00

4. 084t +0 t ;' . 0 36t -0 . 3.8511600 .4 4.4470 0t 3.citt*0 4.348t*00 S.t F8t-Of : .398t*0 , u.680te00 <  !.0 5.605t-02 P.068t 0 3.073te00 f.88tt-02 .ll9E 0 .789t*00 2.8 e.lt1t-02 .6481 0 P.100t*00 2.36tt 02 .Citt 0 . 1111000 4.0 f.6CEE-02 .5)lt 0 L.370E*00

".047t-02 .064t*0 8.744t-08 5.0 2.t6tt*02 .536t*0  ;.0FIE400

.$58t*08 .Allt*0 6.49 5t *0 5 7.0 1.716t=0! .58tt*0 6.30lt 01

.0!!E*02 .401t+0 $.Ittt-OL 10.0 1.14$t*02 .646t-C 6.6201 01 J L.8 99E *0 $ .tTit*0 4.4 8 tE *c' 15.0 9.90$t-0) .Flot*0 $.6 tit *0 f.748t*05 .317t*0 }.064E-0 20.0 3. 081 t -O S . 788t *0. 4.8101-0)1 1.436t 01 .384t 0 . 406t 0, 25.0 1.625t*05 .826t 0 , 4.titt*01 7.570t-04 416t*0 3.Oltt*01 10.0 8.640t*04 .8498-0 i 3.745C 01 f.19tt*04 4604 0 466t*0

.3661 01 40.0 2.554E 04 .865t*01 f.9)tt 05 6.9861 05 .865E-0l 60.0 .85)( 08 U.31EE*01 8.365t-05 U.Fitt 05 .447t 0 .473t*01 60.0 .l.3ttt*05 .826t 01 ' .8281-01 449ta06 ' 4ttE*0 , . 3 64E 0 ,

70.0 . 7481-05 . 791t*08 445t-08 i.0t7E-0$ 406t 0 9.2001-02 80.0 ,.200t*05 7511-01 i.1431 01 4.55tt-06 i.37tt*0 . F.tS6t*0t 90.0  %.719t-06 7851 01 9.040t+0!

F.6188-06 1.358t*0, $.767t*02 100.0 8.519E 06 ,675t*01 7.155t*02

6. 966t *06 1. 324t*04 4 2 565t*02 110.0 7.?ttt*06 ,.615t*01 $.664t-02 32

Table C3 BWR decay heat lates OVAgU) of light elements. 8ctuudes.

and nssion products, for specine power = 20 LW/kgU. Set 2 Botnup 8 15~INd g U Coollt.g BurnvP

  • ITIUFE tU CIi W Tl Ac4inTRe71: TTol r$ LTiWU 6etinedes e t e s ~11 6.880t *0t 5.899t 01 6. lett *09 1.0 7.171E 02 7.$48t 01 6 489t e00 4.7t41 Ot 4.1011 9) 4.fl6t*00 14 4.978t 0! 5 30!E 0 S.Ilote00

).8168 Of f.844t 05 3. Tite 00 f.0 4.074t-Of ).731t 0 l.7tet*00 s.348t-02 f.t144 01 i' 701400 2.8 5.548f-02 1 014t-0 '.4451600 t.7998-02 t.30$t*01 89t*00 4.0 2.964t-02 M.785t 0 .009fe00

'.430t*02 f.097E 0: . 2 6 7t e00 5.0 '.8741 02 M.76ft 0 .458te00

.846E 02 2.130t*0 , 9.6 Tit 0 .

7.0 .966t 02 M.779t-9 .Ittt+00

..tl3t on t.18tt 0 7.9 tit-O' 30.0 .309t 02 f.809t-0 . 9.207t 0 6.1861-0 i 2.148t*0 6. 6 9&t 0' 15.0 6.794r-0 f.8$8t 0 7.654t 0 3.348E 0 L , $.740t 0 20.0 L.574t-0 f.8*6t-0 6.6661 0 1.775t 01 f(.tsot*0

. t 9 9t -0 &.0$lt*0 fl.0 .9021-0 f.8ilt-0 $.816t*0 9.818t 04 f.305t 0 4.46tt 0 30.0 .0 tit-03 f.8 tit 0 5.lfot*0 2.868t 04 f.2891 0 1.50lt*0 40.0 1. l t it-04 f. 7611 0 4.05%1 0 9.588t *05 f.itot 0 f.757t-0 $0.0 ,.060t 04 f.6att 0 l.198t*0 3.8581 05 f.t00t 0 '. 76t 0 i 60.0 0.300E 05 f.609t 0 '.Stot*0

' .016t

  • 0$ t.144E 0

.[rtet 0 i 70,0 '.240t-0$ t.5t9t*0 .998t 0

.357t-06 f.087t 0 .360E-0 l 80.0 .490t*06 2.4$0t 0 .$75t 0

.079t 05 ".031t 01 .076t 0 ,

90.0  ?&t-0 ..f46t 0

'P.313t*06 .977E-Ol 8.Sitt 02 l00.0 .37tt-05 r.3

.009t-0$ {.)05t*0 9.8$91 08 8.4261-06 .9t$t*01 6.74tt 02 al0.0 9.0491-06 2.234E 0, 7.804t*02 Table C.6 BWR decay heat r8tes OvikgU) oflight elements,8ctinides, and 6:sion product). for specinc power - 20 kWAgU. Set 3 Dvsnur a 40 TQ CLgU Cooling Dutnwr s 45 !!WdikgU T3mee Light El Actinides- Tie'It'od yests L.1ght E3 Ac tinide s Flo Fred s

7.4811 02 9.488t *01 6. 9 76t *00 1.0 7. 70l t *02 1. l t 9t *00 7. 365t *00

$.filt 02 6.75f t 0 5.48tt*00 1.4 5.876t 02 8.133E 0 5.780Ee00

4. tent 02 4.826t 0 4.Ol6te00 4.4ttt-02 3.848t-0t 1.908t=0) 4.$15te00 *00 f.0 5.7t61-02 5.987t 0 f.8 tite 00 2.8 3

4.875t 0, 3.147t 5 lt0E 02 1.615t 0 2.Olbte00 4.0 3.224t-02 4.507t-0 ".!!!!*00 f.711t 02 ).595t 0 1.658t*00 5.0 .80lt 02 4.444f-0 i

i .8 tot *C0 f.06tt 0! 1.58tt 0 . 1.278tt00 7.0 4

.lllt 02 4.405t-0 <.420t400 n.380t-et $.575t 0 1.04tte00 10 0 ,.166t*00 7.174t 01 3.5&ct *0. 8.65ft-01 15.0 7 4t?t-et 4.368t-0 . 9.673t-01 3.780E-05 1.nlit 01 7.517t 01 t0.0 5.914t-0$

4ttt-05 4.280t*0 4.I'.lt-0 , 8.400E-01 6.608t+0 25.0 i'.090E-03 9.099E*0, 7.lett 0 3.016E 1.089t 03OS 5.46ft 3.407t 01 0) 5.814t-0 30.0 .llit*03 4.006t*0l 6.$l$t 0l 1.34tt-04 3.tB8t 01 4.$13t*0 .

40.0 .L.486t* 94 5.823E-01 5. ltit 01 3

1.14tt 04 3.165t 01 3.6001-0 $0.0 .197t 44 1.6E0E-04 4. Clot 01 4.668f 05 3.046t 01 2.840t-0 60.0 4. 9 tit *05 3.490E-01 3.l?ct 01 M 44tt 05 2.95tt 01 n.244t 0 70.0 f.585t-05 1.34tt 01 n.505E ci

.626t 05 2.8!6t+08 . 7 75t-O' 80.0 . 7 tot-05 3.207t*0 988E-01

.t?8t 05 2.727t-0! 404E 0', 90.0 . 360t-05 1.084E 0 .567E+0

. 090E 05 f.6 35t 0 ,.!!1E 01 500.0 9.843t 06 2.S$0E 0

, 8. 796E-02 140.0

. 159f 05 2.970E 0 .240t-0):

.038t 05 f.866t -0 , 9.817E-Of 33

T0ble C.7 BWR decay heat rates OVAgU) of h@t elements, actuudes, and 6ssion products. for specific powef = 30 LWAE U, Set i Burmvp a gfhwd/b gy coollny Evgr.vp e gE~HM37kg y Timee Lignt El' Ac tinTsie s Fis fit 3 roers [Ti W ta 6c t ir.ide s eis fiFJ l F.19 t Of J.580t O' 6.475[600 l.0 1.

l 4.62 E-Og .896t*0 4.711t*00 3.4 8.106t-023.89ff*0l5.llst*00 6 080E *02 .731E-Os 397te00 l L.56 t-Of .t09E 0 3.20lE*00 f.0 3.910E*02 .924t*0 3.Ft6E400 l .L.046E 0! .06fE 0 2.074te00 f.8 3.405t*0t . 567t*0 i.460Ee00 i'.Sitt Ot .ci tE *0' l.t$$teco 4.0 ".850E of .47tt 0 .529E*00 i

.188t*02 .0t8t*0 9.184t *0 5.0 P.450E-Of . 48tt-0 .!6tE*00

.481E 02 .079E 0 6.Ft5E-0 F.0 .855E-0! . 510E 0 8.45CE*0

.300t*02 .14tt 0 5.398E 0 ,

10.0 ,.tl5t 0J .5971 0 6.716t 0 h . 618t.

  • 0 5 .itit 0 4.49tt 0 .

45.0 6.856t 0  ;

.684E*0 , 5.619E*0 J . 918E

  • 0 3 . 308E *0 }.916t-0 .

20.0 a.309E-01 .745t 0 4.890t 0

,.5ftE*0$ .3571-0 {.450E*0. ,

25.0 '

.FitE*05 .786t*0 4.304t+0 0.005t 04 .Stit ;.

..;;;s.O 30.0 'i.f ttt-04 .88tt 0 1.804t*0 f.290E*04 .4t FE 0  !.396E .

40.0 [.70lE.04 .438t-0 f.986E 0 F.194E*05 456E 0 .888t. .

50.0 e.718E 05 .8t1E 0 ;'.lltE*0

.749t*05 .4tfE*0 .49tE.00 .

60.0 l.40tE 05 ' .799E 0 .857E-C 459E*05 . 4llt 0 . . l F 9E - ,

10.0 ,.T44E*05 .F67E-0 460E*0

.0t tt 05 . 89E 0 9. 3 t tE02.0 80.0 t.203E*05 .F50t-0 . 168E 0 ,

8.564E*06 . 64t*0 F.l?6t*02 90.0 9.Fl6E-06 .695E-0 . 9.185E*0J F.635t*06 : . 18E*0 5.858E-02 800.0 b.589E*06 .455E*0 P.26tE Or 6.986E*06 L.31tE-0 4.621E*02 110.0 7.745E*06 .618E 0, 5.754E-02 Table C.8 BWR decay heat rates OVAgU) oflight elements. $ctirddes, and fission products, for specine powel = 30 kWAgU, Set 2 Surmur a 30 NHd/bgU Cooling Surnup a 35 IIHd/kgU Times Light'El Actinides Ils'Tio3 years Litht El Actinides fia Frod 8.51tE*0! 5.349E*01 7.931E*00 10 8.934t of 6.945E-01 0.553E*C0 5.454E 02 3. 770E-0) 5.925E *00 14 5.80lt 02 4.955E-ol 6.454t*00 4.lO7E*02 f.666E-05 4.153E*00 f.0 4.609E 02 5.5tLE*01 4.E90E *00 5.704E*02 2.l?0E*0' ".796E*00 2.8 3.9 7tE-02 f.885E-05 3.lltE *00 3.084t*02 2.0t .181Ee00 4.0 3.309E-02 2.680E*01 2.038E400 2.67tt-02 E.0tlE it 0 0 . ,.!?6E*00 5.0 2.868E 02 f.664t 01 4 590E*00 2.021E-Of 2.058E 01 1.015E e00 7.0 2.176t*02 2.685E *01 1.181E *00 1.351E*02 2.lltE-01 8.144E.01 10.0 1.451E*02 f.718E*01 9.504E-0 6.976E-03 f.ll8E.01 6.756E-01 15.0 7.523E 0) 2.753E*01 7.844E 0 L.648t +05 2.2 3 9E 01 5.85tt-01 20.0 5.94tt 05 f.766t-01 6.811E*0

. 9ttE-01 2.24tE*04 5.151E*01 (5.0 2.096E 05 f.763E-01 5.988E-0

.0!!E-0) t.t$lt 08 4.550E 05 30.0 1.126t*03 2.749E.01 5.tcet 04 3.076E.04 2.t40E*01 1.569E-01 40.0 3.404E*04 2.697E 01 4.146E-01 1.014t*04 2.20$E-01 t.8tlE*05 50.0 1.118E 04 t.629E-01 3.t44E 01 4.00!E 05 2.159E 01 t.fl9E*05 60.0 4.5 tee *05 2.555E-0' t.576E*01

. . 751E 01 70.0 311E 05 t.4 79E-0 2.056E 01

' .369E 056E-05 t .108E al 2.054E 01 *01 '

.387t*01 80.0 516E 05 t.404t *0 1.610E*01

. 085E-05 f.001E*0 ,.097E-01 ; 90.0 .384E-05 2.38tt-0 8.t?4E 01 9.393E*06 1.ti9E*0 i 4.68tE-of 100.0 . cit t -05 2.264E -0 . 1.008E 01 8.46tE 06 1.900E 0l 6,875E-08 110.0 .099E*06 2.200E 0, 7.979E*02 i

j i

Table C.9 BWR decay heat tates OVAgU) oflight elements. actinides, and Dssion products, for specinc power = 30 kWAgU, Set 3 Butmo- a 40 Hdd/kgU Leslied evenup a 45 Mdd/kgV Times Licht El Actinides F 4e f red years Light El Actin & des Fia Itod

9. Fit *0t 8.840t-0. 9.029E*00 .0
6. 10L 08 6.34$t*0 6.687t*00 .4 9. 716f *02 1 065t *00 9.566( 600 4 tit.0t 4.590t 0 4.945t*00 6.410E-Of 7.106t *01 f. 334t *00 4.2415-0t 1.780t*0 1.t35t*00 P.0 28 5.llfE*0t $.651t*0 $.3ttt*00

..$47t*0 '. FTt*00 4.43%E-dt 4.694t*0 3.74tt*00 1.$38t.02

.06Et=0! .4701 0 . 94t *00 4.0 i.Falt 02 4.357t*0 2.816t*00

$.0 ..tElt 02 4.t99t 0

.329t.0U l.461E*0L . 4ft*00 F.0 <'.436t*0t 4.f64E-0 '..50TE600 000t *00

.556t 0, 0 .081t*00 10.0

.010E 0 ', 3.44 3.460t*0 .6t9E-02 4.t!4t 0 ..t14t*00 4.24 5t *0

{t

  • 18 899t 0

. 40 rt 0 ll.0 8.45Tt*03 4.149t-0 9.9stt+0

,' . 3 6 5t = 0 7. 719t =0 20.0 4.4$lt-05 4.06Tt*0 8.655t 0

f. *st.c 6 785t-0 i

25.0 H.3FtE*03 .9 sot 0 F.600t*0 16E 0. , . 5.9871 0

.. ,.ll 3E -0 .

30.0 .telt* .89tE*0 6. T0 rt -0

l. 03E.04 D.U0tE*0 4.69tt-0 40.0 i.919E.03 $.!$5t*0

.240t 04 ;,.086t 0 3.693E 0 50.0 04 .Flet*0 4.836t

.32st+04 3. 5 5 3r *0 0 i.00lt.05 t.973L-0 , t . 914t at .

60.0 li.3435-05 3.400E-0 3.263E*0

'.555t 05 2.866t+0 '.305t 0 .

< 70,0 J,750E 05 6CE*0 2.578E-0

.66 9E.05 f. 76 $t *0 .

.Stit-0 ,

'0.0 . ??t+05 . IIE-0 '.03 9t =0

.29FE 0$ t.673t*0 .

. 441 t

  • 0 ' . 90.0 . 76t-05 14E+0 .615E 0

.108t 05 3 54)(+0 340t=0! 100.0 73E-05 2.906E 0 .376t-0 1.983E*06 ( $0lE-0 9.024t-02 110.6

. 04TE-05 f.006E*0  ;

.010E-0 Table C.10 PWR decay heat rates OVAgU) oflight elements, actirtides, and Dssion products. for specific power - 18 kW/kgU, Set i Bermur

  • E5 nH4/kfU Geelant Burnwp e 351RR&/kg y Timee Light El Actin \ des Fis Psod years L19ht El Actinides Fis Ftod 5.309E600 1.0 1.t691-0. S.98tt+01 5.855t*00 119et.014.377E0 06tt 01 3.00tt*0' 4.079E*00 1.4 ].130E-0 4.091t-04 4.447E*00 9.5 79E-Of P. 04 bt *0 f.908t*00 2.0 3.0tlE-0 . 2. stet *01 3.24 9t *00 4.5501 0t 1.620t*0 , '.006t*00 2.8 9.ll3t*02 2.248E 04 2.f36E*00 7.26ft-02 .50bt=0 ,

.3taE*00 4,0 F.74tE-02 2.07tt=0' l.650E*00 6.15tE-Ot . 515E-0 .053E*00 5.0 6.771E-cr 2.071t-0 1.245t*00 4.169E 02 1.56TE*0 . 4.031E 08 7.0 5 198t 02 2.116E=0 9.59FE*01 3.t751-02 .. 4tt-0. 6.609t-01 10.0 3.49tE 02 2.18tr 0 F.935E 01 I.696%.02 .739E*04 5.530E-c4 15.0 1.E08t-03 2.864t 0 6.600t*0 8.8064-03 .807t.01 4.SttL*0 20.0 9.389E*05 2.318t*O 5.18 9t *0 4.589t*03 .855E-0. 4.247t 0) 25.0 2.406t-05 .stSE-0 3.755t*0, 3

30.0 4.894E-03 t. 351t +01 h.040E 0 .

6.87tt-04 ' 910(*0L 2.948E-0 40.0 2.366E 03 2.36TE-05 4.47tE.0 .

f.255E-04 .905t*01 M . 32 3E +0 i

50.0 7.34tt +04 f.366E 01 3.be9E 01 9.68 E*05 .48tF*01 60.0 2.399E-04 f.336E*0 f. 64t*01 4.07)E*05 .849E 01 ' . 434E-08 450t-01 1.047E-04 2.290E*0 2. StE OL 1

70.0 6.620E*05 2.236E-0 ,. 24E Ol 4.91tt-05 . 412 E -0 . 14TE*01 40.0 4.4t$t.05

.77tE*0 . 9.0 Tit 02 90.0 5.379E-05 t.183E-0 ,' .364t 01 4.135E-05 .735E-0 , F.460E*02 100.0 4.856E-05 2. l t ?E-0 ; . 0 79E

  • 01 3.904E-05 .693E*01 $ . 664 E-02 110.0 4.54tE-05 t.0FtE*01 5.539t*0t 4.Z93E-05 2.019E-01 6.7$9E 02

'n 35 N

Table C.ll PV'R decay heat f ates OVAgU) oflight element 1. actinides, and Assion product 3, for specific powet = 18 kWAgU, Set 2

~

8vanur e 35 IliM/6 V Codling ~Furnup a 40 Ildd/LgV Times Light (1 Actinides Fis FIU3 years Light El Actinides Fit FIE3

.319E 01 7.60f t Ol 4.194t *00 1.0 ].365E

. l ? TE.01 $ . 30 5t -01 4.800E e00 1.4 s.ttit 01 01 9.Ittt 0) $.1$5E*00 6 6081-01 6.590t400

. 0641-01 3.696t-01 >.$tett00 2.0 8.105t 01 4.680E 04 3.835tt00 9.506t 02 t.965t 05 4 .St9t*00 2.8 9.870E-0t 3. 797t 0$ ".785t*00 8.077t 02 f.736E 0I .7541400 4.0 6.386t Of 3.$0?!-05 .963te00 7.0(4t-02 f.7 tit 0$ .4t6t*00 50 7.336t-02 3.476t-04 .609E400

$.416E 02 2.7$1E-03 ,.ll0t*00 7.0 $.6 tit 02 3.486t O' .t68te00 3.64 3t 02 2.79tt-01 9.lett-01 $0.0 .785t Of 3.$08t 0 ~.048tt00 1.887t *02 f.85tt 01 7.640E-04 15.0 .9591-02 8.670E-0 9.797t*03 t-879E-05 4.649E-O' 20.0 .0l ?t 02 lEttt-0

$151-0 7.540E*0 -

$.308t 03 f.888t-04 6.8$0E-0 25.0 $.305t 03 .49tt 0 6.630t-0 .

f.680E 03 f.88tE 0. 5 1671 0 30.0 2. 784E-0 3 3.457E 0 $ 8b4t 0 i f.685t 04 f.841E-04 4.05tE-0 40.0 7.997E 04 3.367E 0 4.$ tot 04

3. l ti t -0 $0.0 2.641t 04 3.264t 0 3.614t*05 f.$tSt 04 f.??8E-0.Il4E 04 f 0705t 60.0 t.$18E ,

0' 1.175E 04 3.156t 0 f.85ft 0 7.106t-05 2.6tst-0 .9 tot-0 ,

70.0 7.allt 0$ 3.049E 0 ;l.tS3t 0 5.804E 05 2.S$lt-0 . $ 74t =0 . 80.0 6.20lE*05 f.P47E 0 .

.78tE-0 ,

5.2$10 05 f.476t-01 i.245t 0 ,

90.0 $.6tlE-05 g.849t-0 .610E 0 l 4.916t-0$ t.404T Cl 9.855E 02 100.0 $.267E 0$ t.758t 04 .ll4E-Ol 4.65tt-0$ t.335t-01 7.80lt-02 110.0 4.989E-0$ 2.67tt.cl 8.831E-02 Table C.12 PWR decay heat f ates OVAgU) of ligFt element 1, actinides, and 61sion product 1, for specific powet = 18 kW/kgU, Set 3 BurnvP a 45 MHd/kgU Cooling Burnvp a 5$~EHd/kgU Times Light E3 Actinades F3s Frod years Light El Ac tin ide s Fis Fio3

.410E 01 1.144E*00 6.891t400 1.0 1.458t 01 1.354Ee00 7.273E400

. .!64T 01 8.180E-Ol $.438tt00 1.4 1. 308E -01 9.824t -01 5. 78114 00

. 144E-01 $.883E-04 4.090E400 f.0 1.185E-01 7.198E-On 4.385E e00 1.0t!E 04 4.820E-01 3.311E400 2.8 1.059E 01 $.973E-On 3.259E000 8.685E 02 4.454t-vl 2.153E *00 4.0 8.996E Ot 5.$33t-01 t.354E e00 7.597E-Ot 4.399E-Ol .77ett00 $.0 7.869E-02 5.45tE-01 '.9stE400

$.824t 02 4.tT8E-01 40lte03 7.0 6.033t-02 $.393E-01 L.$43[*00 3.918E-02 4.3fCE-01 . 15BE*00 10.0 4.059t 02 $.3ttE-01 ,.274t*00 t.029E 02 4.11tE-Ol 9.420E-01 15.0 {.1021-02 $ 200E 01 1.05B1400 1.054t-02 4.t$lt-01 8.367t 01 20.0 a.09tt-02 $.074t-01 9.387E-Ol 5.498t-03 4.881t-01 7.554t 04 25.0 $.6tBE-03 4 t47E-08 8.07tE-01 f.88?E-03 4.106E 04 6.491E 01 30.0 2.993E-03 4.8 tit-On 7.lttt-01 8.315E-04 3. 94 TE 0 3 $. 06 TE 0 8 40.0 8.641E-04 4.580E 01 $.$79E-OI 2.766E-04 3.789E*01 4.004t 01 $0.0 3.8911-04 4.356t-01 4.391L 01 1.246E-04 3.636E-04 3.ll?E-Ol 60.0 1.315t-04 4.15tE-01 3.464E-01 8.104t*0$ 3.493E-01 2.496E 0 8 70.0 8.63tt-05 3.964t-01 2.737E Ol 6.684E-05 3.360E-Ol 1.574E-01 80.0 7.150E-05 3. 797E 01 2.164E-01 6.07tt-05 3.2 36t-El 1 56tt-01 90.0 6.507E-05 3.643E-01 8.71tt-01

$ 696t-05 3.ltlt-01 1.236E Ol 100.0 6.108E 05 3.50tt 01 1.355E-01

5. 398E-05 3.014E-Ol t r783E-Og 110.0 $. 79tE-05 3.373E 01 1.0 73E-01 36

Table C,13 PWR decay heat rates OVAgU) oflight elements, actimdel.

and 6sliori products, for specific powet = 28 kWAgU. Set i Burnvr a 15WLTru cov1&n, Esvenvr a 3MRL1gu limes LTv1RI 6ctinia.Trini43 yeses ra,ht El 6ctinides ris TA

.36tt*01 3.874t 0, 7.036t *00 1.0

.188t-01 '. 700t *0 . $.205t*00 1.4 1.710te00

.0$0t-0) .885t*0 3.406te00 2.0

.27tt 01 3.7l4t-0546tt 01 $.340t-0) $.77tt 400 9.4f0E-02 .5271-0 '. 394f000 .444t*01 f.6 Et*0i 4.066t*00 2.8 .020E*01 ,!.l'$1 0 ..!.7411400 7.99tt-0! 436t*0 500te00 4.0 8.653t*0t 9731 0 769t*00 6.9tst 02 450t*0 .348t*00 5.0 7.564t*0t . .9771 0 .Sunt*00 6.368t-02 .506t 0 , 3.410E-01 7.0 $.796t 02 2.026t 0

.0 CE.00 l.60*t-Of .kS3t*0 6.798t*01 10.0 3.898t ot t.096t 0 8.thtt 0 1.864t 02 685t 0 $.64St-0 16.0 P.018t-0! t.164t*0 6.76*t 0 9.67tt 03 .7 bit *0 4. 916 t *0 }310.0 . 0471- 5.995E*0 8.038t 01 .808t 0 4.3t9t*0 25.0 H.454E01 Of f.frot 0 $.176t*0 2.243t*0 f.638E-05 .84 t *0 3.8261 0 .

10.0 t.tsrt 03 t.300t*0 . 4.673E 0 7.497E 04 .87}.t 0 3.004t-0 40.0 8.lt4t*04 E.308! 0 3.t.$tE-0 870t*0 ' 3671 -0 10.0 f.611t*04 2.f88 ;0 f.8tof 0 f406t-04 0 )E*04 .8501 0 .

869E+b 40.0 1.106t*04 f.J41 -0 :.f3 it*0

6. 2 l10E -05 .820E*0 ,

. 4 7 7E -0 70.0 6. 79 8t -05 2. 98t*0 .76 4.961t*05 7861 0 . L .168t *0 80.0 5.440E-06 2. 4tE*0 .

!t 0 396t*0 4.450t 05 74 9E *0 8 9. f 4 8t-02 90.0 4.t86E 0$ t.089t*0 .: 05t 0 4.1$0E 05 .718t 01 7.31$t 02 300.0 9.568t 05 f.038t*0 , 8. ?)CE *0,l 1.919E 05 .674k 01 5.7911-02 110.0 4.388t 05 1.988t*0, 6.938t 02 Table C.14 PWR decay heat rate 3 OV/kgU) oflight elements, actinides, and nision pmducts, for specinc power = 28 kW/kgU, Set 2 S Surnup a }D;WdogU Light El Actinides Fis Prod years Cooling Time.

Eurnvp e 40 HHd/kpU Light El Actinides fia Frod 1.5392 0} 6.960E 01 8.20f t*00 1.0 .615E-0) 8.674t 0 8. 74 7t + 00

. { elf-01 4. 903t *0 l 6. tlll *00 1.4 4201-08 6.170t 0 6.66tt+00

.236t 01 3.464E 0 , 4.486t*00 2.0 .278E*01 4.41tE*0 4.816te00

.08tt-01 t.8 tt 0 ,

i.046tt00 3.4 L.139t*01 3.60$E-0 3.360t*00

9. lett 02 2.6}3 tE-0 . 99 Pt e 00 4.0 9.6 70t*02 3.348E*0 f.244t*00 8.0 tee-02 f.60$f 01 . 570t*00 5.0 8.455E Ot 3.3t tt *01 ' .778E *00
6. 5tE*02 t.637E-01 ..l?5t*00 7.0
4. 37E 02 f.689E 01 9.505t*01 10.0 6.4 79E *02 3. 338E-01 1.348t*00
t. 4lt-02 2.749t il 7.863E-01 4.357E Of 3.365E 01 ,.e85E*00 15.0 2.t5tt 02 3.387E-0 8.9581 01
3. IlE-02 f. 783E *01 6.837E-01 20.0 1.17 81 02 3.387E-0 7.776t 01
6. 789t +0 3 t. 797t 01 6.008E-01 25.0 6.098t-03 1.378t*0. 6.835E Cl 5.058t 03 f.796E cl 5 306t-01 30.0 3.195t-03 1.34tt 01 e.034E 0) 8.65tt 04 f . 76 3E
  • 01 4.16 8 t -0 3 40.0 9.lett-04 3.te 3E 01 a . 730s-01

'..18%C-04 78tt-04 t .2.6401 70 7t-00 5 3.276t-01 50.0 f.940E-04 3.16&t*01 1.723E 03 ee.0 4.tS8E-04 3.068E *01 f. 4 32E-01 f.3161-05 2.568E-0}1 t.586E-On P.043E-01 70.0 7.803t 05 2.969E 01 i:.3ttt 01 5.877t-05 2.itet ol .616t-01 80.0 6.284L-05 2.873t 01 .836t*01 5.tS7t-05 t.4t6E-01 .2781 01 90.0 5.663E*05 f.78tt*01 46tt-01 4.9*0E-05 2.3531 01 . 0ltt-01 100.0 5.295E-05 f.69&E*01 .149E 01 4.6 73E-05 2.294E 01 8:0081-02 340.0 5.OltE*05 f.414t-01 9.096E 02 0 37

l Table C.15 PWR decay heat lates OV/kgU) of hght elements, actmides.

l and fission products. for specific power = 28 kW/kgU. Set 3 b u t rivp e 4Mdagy cooling Byer.up a 5f M d/kgW

'imee

[TgTTI Actinides FTs7 M , ears Ught El~~ Actinides F 78M

.6 90E 0,1.073E e00 9. 3 56E e00 .0 .767E-01 1.28tte00 9.641Ee00

.493E 0 7.Fl0E 08 7.058E e00 4 .565E-01 9.314E 0 7.503Ee00

.344E-0 $.58tt-01 5.14 bee 00 m.0 .410E 08 6.870E-0 5.518Ee00

.199E 0 . 4.60lE*0 1.640E*00 2.8 .25EE 03 5.7tlE 0 3,9441000 i.0lff 0, 4.!67E 0 '.4FIE*00 4.0 .068E-Ol 5.310E-0 2.700Etow 8.908t 02 4.t!SE 0 . 975E e00 E.0 9.34tE-02 5.J34E 0 ' . l ?6E e 00

6. Silt 0t 4.;'Ott.-0 .499Ee00 1.0 7.lE8E*02 5. 8 01. 0 .

.658Ee00 4.b87E-02 4. 89E 0 .titte00 0.0 4.814E 02 5.,16E 0 .340ce00

. 1.991E*0 5.0 49tt-02 5.00lt-0 . LO! Econ 1*174E-0t4.51E-0 35E 02 4.09BE 0 0.666E 0 20.0 .294t*0t 4.884E 0 1. Bit [*0 6.4t!E *01 4.0 36t ** * * * *t a t 25.0 6.741E 03 4.766E-0 8.387E-0 3.366E 05 3.967E 0: 6.98tt 0 10.0 1.536E*03 4.64BE*0 400E-0 9.603E-04 5.8t0E 0 5.364E 0 40.0 .009E-03 4.420E-0 .796E 0 .

3.ll4E 04 1.67tE-0 4.l41E*0 ,

50.0 l.!85E-04 4.209E*0 4.f60E 0 1.34tE*04 3.5t9E*0 3.t49t 0 60.0 ,.4t=E 04 4.014E 0 3.5tBE-0 8.368E-05 L.394E 0 t.telt-0 70.0 8.954E-05 3.84lt 0 ,llf.84t[-0 6.'t4E 05  ;.t69E*0 P.04tt 0 . 80.0 7.264E-05 ' .68 E-0 . t4 7E -0 ,

6. ltlt-05 i.15tE 0' .616E-0 90.0

, 6.563E-05 ',.534E-0 .778E-0 5.ft9E-05 .;.044E 0 .279E*0 , 300.0 6.346t*05 l.404E-0 .

407E-0i 5.4tSE 05 f.943E-0 .08 tE-0 i 130.0 5.823C-05 3.tStE 0, . 114[*01 Table C.16 PWR decay heat rates OV/kgU) oflight elements, actinides, and fission products, for specific power = 40 kW/kgU, Set i Durmur s Z5 HWd/kgU coolir.g Burmur a 30 MHd/kgV Times Light El Ac t inide s Its Fr53 Light El Actinides Fis Prod yeste L.485E-0} ].0 .607E-01 4.800E-OL 9.4tJte00

.gf 9E-O n 3.419E

' .415t
  • 0) 0 38.4F4Ee00 6 45Ee00 s.4 .374E*01 1.420E-0 6.92 .Ee00

..lt9E*08 .754E 0: 4 i?5Ee00 f.0 .824E-0 2.459E*0 4. 6IEe00 9.944E-02 , . 4 5&E -0 ' t 2.8 . 0 8 St. -0 '.053E-0 ,l. 29Ee00 8.4tBE 02 .389E 0 . l.J0tE*00 .630Ee00 4.0 9.ItEE 02 .9tFE 0 .928Ee00 7.365E-02 406E*01 1.tl5E*00 5.0 0.061E-02 .9t6E*0 455Ee00 5.64tE Ot 463E*01 8.646E 01 7.0 6.l?tE-Ot i.977E-0 . 045Ee00 1.795E-02 .545E Ol 6.884E-0 .

  • 0.0 4.lltE-02 3.049E-0 0. 315 E-O '

945E 02 .644E 0 5.700E-0 i 15.0 2.148E-02 2.140E-0 . 6.8s9E-0

,.019E*02 .7tlE*0 4.960E*01 E0.0 l.ll5E-02 2.203E 0i 5.960E 0 .

5. 304E 01 ' .??!E*0 4.367E*0) 25.0 5.805E 03 2.24tE-01 5.241E-0 2.776E-03 .808E*C l.859E 01 30.0 3.038E-03 2.265E 0: 4.631E-0 7.867E 04 .641E*01 3.030E-01 40.0 8.6 8 tE-04 f.t?4E O' 3.635E 0

.505E 04 .04tt-01 ;'.307E-01 50.0 f.743E-04 2.253E-0 2.86f t 0:

.04tE-04 .885t*01 .884t*01 60.0 1.145E-04 f.'l6E-0 8.259E 0' 6.tS?E*05 .797E-01 ,.489E-01 70.0 6.90tE-06 2.L70E 0 1.785E 0 ,

4.985E 05 .764E-01 1.178E-01 80.0 5.479E-0E t. ,t0E 0 , 4 tE-0, 4.459E 05 . 728E 01 9.320E-02 90.0 4.905E 05 2.0 70E-0 , .1 }3 7E 01 4.155E 05 4 69tE*01 7.376E-02 }00.0 4.574E 05 2.0t0E-OL 8.839E Ot 3.923E*05 1.656E*01 5.819E-Of 310.0 4.3ttE*05 8.97tE-01 6.997E-0!

38

Table C.17 PWR decay heat rates (WAgU) oflight clerwentl. actitudes, and 633 ion products, for specific power = 40 kWAgU, Set 2 ovinvy Nimdagu cooline avenur a erirm ov ilme e LTEria AcTTaideo rr7ird years LTehTW*rcT niden ris 7753 1706t.0.6.341801{.0 4 St*0 4.538t*0 i.510t*00 lot *01 l.0 .800E 01 7.99tt 0 8 1.064t

  • 01 s.4 . 55 7t
  • 01 5. 76 6t -0 8.llit*00 7 7t *0 5.t35t*00 .395t 0 4.t0lt 0 5.it3E*00 1 3(1{t

.left-0, 0.

8.7 3 {091 0

. 3.496t*00 9.8911-02 t.538E 0 '.20lt*00 t.0 2.8 1.239t 0 3.487t 0 3.875t*00 8,644t-02 f.534t-0 4.0 1.0511 0 3.tS8t-0 <.479E*00 '

,.68tt*00 5.0 9.185t 02 L.tl8E 0 911t*00 6.6 tit-of 2.578t*0 ..ttot*00 7.0 7.014t-Ot 3. t S7tso 197E*00 4.45t1 0t f.626t-Ol 9. ?llt*0' l0.0 4. 729t 0t .i.287t=0: . ltt*00 7.990E-0 35.0 f.447E 02 ';.314t-01 9 25t*01 il304E-01t.689E03 196E 02 f.7!6E-Ol 6.934t*0 (0.0 1.270t-02 .>.318t 08 7.91 6.tt4t 03 2.743E-Ol 6.0961 0 f5.0 6.68tt-03 1.306t-01 6.95}t-01 1t 01 3.t$8t 03 {.745t*0 5. 38 tt 30.0 3.461t*03 3 t8it=0 6.836t 0 9.!!8E-04 t.717t*0 4.f tet-O' 40.0 9.6 tot 04 3* tort-0 4.809t=0 f.946t 04 f.63ft 0 3.325t*0 50.0 3.834t 04 3.llTE*0 3.786t*0 1.2301-04 t.6011 01 t.6ttt*0 7.449E 05 f.533t 0. '.07tE=0 60.0 70.0 1 3181 04 3.cttt 0 , t.987t 0 5.924E-05 f.464t-0 . 63PE-c 00.0 F. 960t-05 2.9 tit-0 l.360E 04 5.310t 05 t.396t 0 . 2961-0 90.0 6.340t 05 f.834F 0 .666t 01

4. 956t 05 f.33 31 01 .0tet-0 , 300.0 5.688t 05 . 746t-0 , .4 7 7E -01 5.335t-05 t.663E 0 1.169t Ol 4.686E-05 2.268E 08 8.ltit 02 !!0.0 5.027E-05 2.585E-0. 9.f49E*02 Table C.18 PWR decay heat fates (WAgU) oflight elements, actinides, and fission products, fot specific powet - 40 kWAgU, Set 3 Durnup a 45 FMdagy CoolTip Burnur a 5F HW4/kgU Time, Light [1 Actinides FAs Pf53 years Light El Actin 6 des ria Fi63 190lt019.994t-081.139t*01 l.0 2.00lt 01 1.206t*00 1,t06t*01

.65tt-01 7.266t 01 8.6221 *00 s.4 8.746E Ol 8.867t-01 9.195t*00 1.480E 01 5. 346t-0 4 6.138t *00 2.0 1.565t-01 6.6110 08 6.600t*00 1.318t 01 4.460E-03 4.209t*00 2.8 .3'4t ol 5.5602 04 4.57tt+00 1.1181-01 4.15 7E -0 2.7381600 4.0 . 18tt-01 5.104E 05 3.010E *00 9.767E-02 4.llet 0)3 P.130t*00 5.0 . 0331 01 5.ll4E Ol R.355t*00 7.48t1-02 4.10tt-01 .567E*00 7.0 7.917t-02 5.064E 01 3.739t*00 5.030t 02 4.09tt=01 .246t*0L $0.0 8tt*00 H.60 5E 02 4.0591-01 .Ct0E*00 15.0 5.32SE 2.754t-et02 5.003E-ol 4.89et-01 3.I 1.)tet*00 h .354t 02 4.Oltt 01 8.835t-On 70.0 1.489t of 4. 785t-08 9. 74 8 t *0:

?.034t 03 3.951t 01 7.769t-04 25.0 7.445t c3 4.668E-01 8.568E 0 5.68tt-03 3.886t-01 6.846t.-01 30.0 1.045t-03 3.744E-01 5.363E Ol 40.0 3.897t 0 3 4.554E-01 7 E5 7t-0 .

5.3*5t-04 1.604t-3) 4.ttit 01 50.0 1.107t-0 5 4. 334E 01 5.930E-On 1.406t-04 3.466t-03 3.330E-04 60.0 3.549E-04 4.130t 01 4.657E-01 8.576t 05 3.336t-01 2.631[-01 70.0 1.4971-04 3.**3t-01 3.673E-01 6.649t-05 3.tl5E-On '.080E-01 80.0 9.366E 05 3.773t-01 t.90tt 04 6.llit-05 3.103E 01 .646E-01 90.0 7.336E-05 3.6t0E-01 2.295E-On

5. 749t 05 2.9981-01 .30*t-0) 100.0 6.596t 05 3.480E-01 1.815t-01 5.44tt 05 f.90tt 01 .03It-01 110.0 4.16EE 05 3.358E-01 1.437t e) 5.8 sit 05 1.234t-01 1.137t-ci

~-

39

VALUEllMPACT STATEMENT A Valuellmpact Statement was published with Regulatory Guide 3,54 when it was issued O

in September 1994 No changes are necessary, so a separate value/ impact statement for this proposed Revis!on 1 has not been prepared. A copy of the value/ impact statement is available for inspection or copying for a fee in the Commission's Public Document Room at 2120 L Street NW., Washington, DC, under Regulatory Guide 3.54. The PDR's mailing address is Mail Stop LL 6, Washir.gton, DC 20555; telephone (202)634 3273: f ax (202)634 3343, ,

\

/

UNITED STATES FIRST CLASS MAIL NUC6 EAR REGULATORY COMMISSION POSTAoE AND FEES PAID 4 WASHINGTON, DC 20555 0001 p gySt[RC OFFICIAL BUSINESS PENALTY FOR PntVATE uSE s300 l

O\

40 O

_ _ _ _ _ _ l