ML20206U219

From kanterella
Jump to navigation Jump to search
Rev 1 to Reg Guide 03.054,task DG-3010, Spent Fuel Heat Generation in Independent Spent Fuel Storage Installation
ML20206U219
Person / Time
Issue date: 01/31/1999
From:
NRC OFFICE OF NUCLEAR REGULATORY RESEARCH (RES)
To:
References
REGGD-03.054, REGGD-3.054, NUDOCS 9902120251
Download: ML20206U219 (14)


Text

_.

g* "2%

U.S. NUCLEAR REGULATORY COMMISSION Revision 1 9 SM- ) REGULATORY GUIDE y

January 1999 OFFICE OF NUCLEAR REGULATORY RESEARCH REGULATORY GUIDE 3.54 (Draft was issued as DG-3010)

SPENT FUEL HEAT GENERATION IN AN INDEPENDENT SPENT FUEL STORAGE INSTALLATION A. INTRODUCTION This regulatory guide presents a method acceptable to the Nuclear Regulatory Commission In 10 CFR Part 72, " Licensing Requirements for the (NRC) staff for calculating heat generation rates for Independent Storage of Spent Nuclear Fuel and High-use as design input for an independent spent fuel Level Radioactive Waste," paragraph (h)(1) of Section storage installation. The original guide, issued in 72.122, "Overall Requirements " requires that spent September 1984, was based on validated analyses fuel cladding be protected during storage against performed for pressurized-water reactors (PWRs),

degradation that leads to gross ruptures or the fuel must and boiling-water reactors (BWRs) were considered be otherwise confined such that degradation of the fuel only as a simple conservative extension of the PWR during storage will not pose operational safety data base.

In this revision, the procedure for o!

problems with respect to its removal from storage. It determining heat generation rates for both PWRs and has been shown that, under certain environmental BWRs is based on analyses of each reactor type using (d

conditions, high storage temperatures can cause calculational methods that have been validated against degradation and gross rupture of the fuel rods to occur measured heat generation data from PWR and BWR very rapidly. It is necessary to know what storage assemblies.

temperatures are anticipated during the life of the storage installation and that these temperatures will not This revision presents a methodology that is significantly degrade the cladding to a point that causes simpler and is therefore expected to be more useful to gross mptures. The temperature in an independent spent applicants and reviewers.

fuel storage installation is a function of the heat generated by the stored fael assemblies. The spent fuel This regulatory guide contains no information storage system is required by 10 CFR 72.128(a)(4) to be collection requirements and therefore is not subject to designed with a heat removal capability consistent with the requirements of the Paperwork Reduction Act of its importance to safety, 1980 (44 U.S.C. 3501 et seq.).

USNRC REGULATORY GUIDES The guides are issued in the followmg ten broad dnnsons-Regulatory Guedes are saued to desentes and make available to the pubic such mtorme.

N tion as methods acceptable to the NRC staff for implementmg specife parts of the

1. Power Reactors
6. Products Q

Commason's regulatens, techniques used by the stalt in evaluat ng specifs problems or 2 Research and Test reactors

7. Transportalon postulated accsoents, and data needed by the NRC staff m as rowew of appicatons fo,
3. Fuels and Matenals Facihtes
8. OccupatonalHealth permits and 6 censes. Regulatory gwdes are not substitutes for regulations, and comph.

4 Enwronmental and S:tmg 9 Antarust and Fmancial Revow g

j y

ance with them 4 not required Methods and solutens drfterent from those set out m the

5. Matenals and Plant Protection
10. General guides wvH be acceptable if they provide a base for the fmdmgs requisde to the issuance of Continuance Di a permll or hcense by the Comnusson_

Senge copes of regulatory gueues 'ney be obtained free of charge by wramg the Reproduc-The guKle was msved aftef consideraton of comments rece#ved from the pubic. Com.

ton and Distnbut on Servces Section. Oftce of the Chef Informate Offcer. U S. Nuclear monts and suggestons for anprovements m these gwdes are encou aged at all times, and Regulatory Commisson. Washngton, DC 20555 0001,or by fair at (313)415-2?"t. or by r

[

gutdes will be tensed, as appropnate. to accommocate comments and to reflect new otor, egnad to DISTRIBUTION @ NRC GOV.

/g maron or experance lasued guides may also be purchased from the Nahonal Technical lnformation Service on b/

Wittten comments may be submitted to the Rules and Directives Branch. ADM, O S Nuclear a standog order basis retriads on this service may be obtasned by wnting NTIS. 5285 Port Regulatory Commason. Washmgton. DC 20555 0001.

Royal Road. Spnngfield. VA 22161

/p f ' Vj 990212o251 990131 PDR RECCD y

03.054 R PDR f'

B. DISCUSSION S

- percentage safety factor applied to decay heat ratc5, p,a The methodology of NUREG/CR-5625 is Tc

- cooling time of an assembly,in years appropriate for computing the heat generation rates of T,

- cycle time of last cycle before discharge, in days fuel assemblies from light-water-cooled power T,.i

- cycle time of next-to-last cycle,in days reactors as a function of burnup, specific power, and T

- cycle time ofith reactor operating cycle, decay time. The computed heat generation results are including downtime for all but last cycle of used in the next section in a procedure for determining assembly history,in days heat generation rates for PWR and BWR assemblies.

T,,s

- reactor residence time of assernbly, from first loading to shutdown for discharge,in days Calculations of decay heat have been verified by j)

- last-cycle short cooling time moddication factor comparison with the existing data base of experimen-J'7

- next-to=-last cycle shon cooling time factor tally measured decay heat rates for PWR and BWR fe

- 235U initial c.:richment modification factor spent fuel. The range of parameter values in the 4

- excess power adjustment factor procedure is considered to lie in the mainstream of P

- heat generation rate of spent fuel assembly, typical burnup, specific power, enrichment, and W/kgU cooling time. A detailed example is shown in Appendix A.

C. REGULATORY POSITION The following terms and units have been used in The following method for determining heat this guide.

generation rates of reactor spent fuel assemblies is acceptable to the NRC staff. There may be fuel TERMS AND UNITS USED IN GUIDE assemblies with characteristics that are sufficiently outside the mainstream of typical operations that they B,

- burnup in last cycle, mwd /kgU need a separate computation of the heat generation B,.i

- bumup in next-to-last cycle, mwd /kgU rate. A discussion of the characteristics of assumed i

- fuel burnup increase for cycle i, mwd /kgU typical reactor operations is given in Appendix B.

B B,y,

- total burnup of discharged fuel, mwd /kgU E,

- initial fuel enrichment, wtSc 235U The first pan of this section contains the P

- specific power of fuel as in Equations 2 and 3, definitions and derivations, as used in this guide, of kW/kgU parameters needed in the determination of the heat Paw

- average cumulative specific power during 80ck generation rate of a fuel assembly. The second part uptime, kW/kgU contains the procedure used in deriving the final heat P,.,.i - average cumulative specific power (at 80%)

rate of an assembly. Although allowance has been through cycle c-1, the next-to-last cycle made to use simple adjustment factors for cases that are P,

- fuel-specific power during the last cycle e somewhat atypical, many cases will probably not P,.i

- fuel-specific power during cycle e-1, the next-require any adjustment of the table heat rate other than to-last cycle de safety factor.

P. Fu - lower and higher values of specific power that t

bracket the specific power valuc of Pav, Heat generation rate tables for actinides, fission

Prui,

- heat generation rate that is obtained from the products, and light elements are given in Appendix C table by interpolation between the lower and for informational purposes only. They are not used higher bracketing values directly in this guide's method for determining heat Fj;nai - final heat generation rate determined by rates.

l applying all adjustment factors, followed by the t

safety factor to the value P,ai, I. DEFINITIONS AND DERIVATIONS T, Tu - lower and higher time values in a table that OF PARAMETERS i

t bracket the cooling time of interest, Tc The following definitions and derivations of 1

  • rechnicai sur part for a Proposed D, cay Hear Guide using sAs2ni parameters of the spent fuel assembly are used in the OR/ GEN-s Data. NUREG/CR-5625 (ORNL-6698) September 1994.

procedure in this guide.

Copies are available for inspection or copying for a fee from the NRC

(

Public Document Room at 2120 L Street NW., Washington. DC; the PDR's mailing address is Mail Stop tL6. Washington. DC 20555; I.1 IIcht Generation Rate (p) telephc ne (202) 634-3273; faM202) 634-3343. Copies may be purchased f

at current rates from the LLS. Government Printing Office. P.O. Box The heat generation rate of the spent fuel assembly I

37082. Washington, DC 20402-9328 [tclephone (202) 512-1800?; or from l

the National Technical information Service by wnting NTis at Port Royal is the recoverable thermal energy (from radioactive Road Springfield, VA 22161.

decay) of the assembly per unit time per unit ruel mass.

3.54-2

The units for heat generation rate used in this guide are The technical basis for these characteristics is watts per kilogram U (W/kgU), where U is the initial presented in NUREG/CR-5625.

uranium loaded. Heat generation rate has also been The specific power of cycle i, or e (last cycle), in G

irferred to as decay heat rate, afterheat, or afterheat power.

kW/kgU, using burnup in mwd /kgU, is detennined by:

1.2 Cycle and Cycle Times (T,)

P, = 1000B' for i < e 0.8 T' A cycle of the operating history for a fuel assembly (Equation 2) is, with one exception, the duration between the time 1000 B, criticality is obtained for the initially loaded or T*

reloaded reactor to the time at which the next reloaded core becomes critical. The exception is for the last cycle, in which the cycle ends with the last reactor The average specific power over the entire shutdown before discharge of the assembly. T, denotes P?r ting history of a fuel assembly, using the same the elapsed time during cycle i for the assembly.

umts as m Equation 2, is determmed by:

Specifically, the first and last cycles are denoted by i =

s (for start) and i = e (for end), respectively. T, the 1000 B,

total residence time of the assembly, is the sumlf all b"

(Equation 3)

.-1 T, for i = s through e, inclusive. Except for the last T, + 0.8 E T, cycle for an assembly, the cycle times include the downtimes dunng reload. Cycle times, in this guide, are in days.

The average specific power through the next-to-1.3 Fuel Burnup of the Assembly (B' and B"")

I st cycle is used in applying the adjustment factor for short cooling time (see Regulatory Position 2.2). This The fuel burnup of cycle i B. s tie recoverable parameter is determined by:

thermal energy per unit fuel.ms'during the cycle in units of megawatt days per metric ton (tonne) initial 1000(B, - B,)

(

uranium (mwd /tU), orin the SI units of mass used in P,.i=

(Equation 4)

( ]j 2

-T')

this guide, megawatt days per kilogram U (mwd /

~

'v' kgU). B, is the best maximum estimate of the fuel assembly burnup during cycle i.

B, is the total operating history burnup:

Note that B, and P as derived here, are used in determining the heat g5, ration rate with this guide.

e

=fB (Equation 1)

Also, for cooling times $7 years, P, is used in an Bror adjustment fonnula. The method applied here 4

accommodates storing a fuel assembly outside the reactor during one or two cycles and retuming it to the 1.4 Specific Power of the Fuel (P,, P, P ' and P.< e )

reactor. Then, B, = 0 may be set for all intermediate Specific power has a unique meaning in this guide.

storage cycles. If the cooling time is short (i.e., s10 The reason for developmg this defimtion is to take int years), the results derived here may be excessively account the differences between the actual operating high for cases in which the fuel was temporarily i

discharged. Other evaluation methods that include the

{

history of the assembly and that used m the computation of the tabulated heat generation rates.

incorporation of storage cycles in the power history may be preferable.

The calculational model applied an uptime (time at power) of 80% of the cycle time in all except the last cycle (of the discharged fuel assembly), which had no 1.5 Assembly Cooling Time (T) downtime. The definition of specific power, used here, has two basic characteristics. First, when the actual The cooling time, T, of an assembly is the tirne uptime experienced by the assembly exceeds the 80%

elapsed from the last downtime of the reactor prior to its discharge (at end of T to the time at which the heat generation rate is desired) Cooling times, in this guide applied in the SAS2H/ORIGEN-S calculations, the heat rate derived by the guide procedure maintains equivalent accuracies within 1%. Second, when the are in years.

actual uptime experienced is lower than the 80%

(3V'j applied in the calculations, the heat rate is reduced.

1.6 Assembly Initial Fuel Enrichment (E )

The initial enrichment, E of the fuel assembly is vrhe imemWional Syuem of Unh.

Considered to be the average w,,eight percent "U in the 2

3.54-3

I uranium when it is first loaded into the reactor. Heat p,'

pt a

p" _ p' (P

- P ) (Equation 5) generation rates vary with initial enrichment for fuel P = Pt +

t having the same burnup and specific power; the heat rate increases with lower enrichment.

If the enrichment is different from that used in the py-p calculations at a given burnup and specific power, a P = Pt + B - B (B,, - B )

(Equation 6) t correction factor is applied.

y t

2.

DETERMINATION OF IIEAT In(py/pt) (T, - T ) (Equation 7)

GENERATION RATES P=PtexP t

T" - TL Directions for determining the heat generation rates of light-water-reactor (LWR) fuel assemblies from Tables I through 8 are given in this section. First, a heat Where pt and py represent the tabulated or rate,p,,,,is found by interpolation from Tables l through interpolated heat rates at the approp tate parameter 3 or Tables 5 through 7. Next, a safety factor and all the limits corresponding to the L and H index. If applied in necessary adjustment factors are applied to determine the sequence given above, Equation 5 would need to be the final heat generation rate, p There are three used four times to obtain p values that correspond to B y,.

t adjustment facors (see Regulatory Positions 2.2 to 2.4) and B at values of T and T. A mini-table of fourp y

t y

plus a safety factor (see Regulatog Position 2.5) that are values at P,is now available to interpolate burnup and applied in computing the final heat generation rate,p cooling time. Equation 6 would then be applied to y,

from p,3. In many cases, the adjustment factors are unity obtain two values of p at T and T. One final t

y and thus are not needed. An altemative to these interpolation of these two p values (at P, and B,,)

directions is the use of the light-water-reactor afterheat using Equation 7 is needed to calculate the final p,3 rate calculation (LWRARC) code on a personal value corresponding to P,, B,,, and T,. The optional computer; the code is referred to in Regulatory Position Lagrangian interpolation scheme offered by the 2.7. This code evaluates p,, and p,,, using the data and LWRARC code is also considered an acceptable procedures established in this guide.

method for interpolating the decay heat data.

2.1 Computing Heat Rate Provided by Tables IfP or B,, falls below the minimum table value range, th,e minimum table-specific power or burnup, Tables 1 through 3 are for BWR fuel, and Tables 5 respectively, may be used conservatively. If P,

through 7 are for PWR fuel. The heat rates in each table exceeds the maximum table value, the table with the pertain to a single average specific power and are listed maximum specific power (Table 3 for BWR fuel and as a function of total burnup and cooling time. After Table 7 for PWR fuel) may be used in addition to the detennining P,, B,. and T,as above, select the next adjustment factor, f, described in Regulatory y

lower (L-index) crt next higher (H-index) heat rate Position 2.3.

values from the tables so that:

The tables should not be applied if B,,,, exceeds the psp,5P maximum burnup in the tables, or if T, is less than the t

y B $ B,, $B minimum (1 year). If T, exceeds the maximum (110 t

y and years) cooling time of the tables, the 110-year value is T 5 T, s T acceptable, although it may be too conservative.

t y

Compute p,,, the heat generation rate, at P,, B,,,

2.2 Short Cooling Time Factorsf,andf',

and T,, by proper interpolation between the tabulated values of heat rates at the lower and higher parameter The heat rates presented in Tables 1 through 3 and limits. A linear interpolation should be used between Tables 5 through 7 were computed from operating heat rates for either burnup or specific power histories in which a constant specific power and an interpolations. In computing the heat rate at T,, the uptime of 80% of the cycle time were applied.

interpolation should be logarithmic in heat rate and Expected variations from these assumptions cause linear in cooling time. Specifically, the interpolation only minor changes (sl%)in decay heat rates beyond formulas for interpolating in specific power, burnup, approximately 7 years of cooling. However, if the and cooling time are, respectively, specific power near the end of the operating history is 3.54-4

Table 1 BWR Spent Fuel IIcat Generation Rates, Watts Per Kilogram U, for Specific Power = 12 kW/kgU S

Cooling Fuel Burnup, mwd /kgU

Time, Years 20 25 30 35 40 45 1.0 4.147 4.676 5.121 5.609 6.064 6.531 1.4 3.132 3.574 3.955 4.370 4.7(O 5.163 2.0 2.249 2.610 2.933 3.281 3.616 3.960 2.8 1.592 1.893 2.174 2.472 2.764 3.065 4.0 1.111 1.363 1.608 1.865 2.121 2.384 5.0 0.919 1.146 1.371 1.606 1.844 2.087 7.0 0.745 0.943 1.142 1.349 1.562 1.778 10.0 0.645 0.819 0.996 1.180 1.369 1.561 15.0 0.569 0.721 0.876 1.037 1.202 1.370 20.0 0.518 0.656 0.795 0.940 1.038 1.240 25.0 0.477 0.603 0.729 0.861 0.995 1.132 c.x l%j) 30.0 0.441 0.556 0.672 0.792 0.914 1.039 40.0 0.380 0.478 0.576 0.678 0.781 0.886 50.0 0.331 0.416 0.499 0.587 0.674 0.764 60.0 0.292 0.365 0.438 0.513 0.589 0.666 70.0 0.259 0.324 0.387 0.454 0.520 0.587 80.0 0.233 0.291 0.347 0.405 0.464 0.523 90.0 0.212 0.263 0.313 0.365 0.4l8 0.470

(

100.0 0.194 0.241 0.286 0.333 0.380 0.427 110.0 0.I79 0.222 0.263 0.306 0.348 0.39i L

,A I

3.54-5

Table 2 IlWR Spent Fuel lleat Generation Rates, Watts Per Kilogram U, for Specific Power = 20 kW/kgU Cooling Fuel Burnup, mwd /kgU

Time, Years 20 25 30 35 40 45 1.0 5.548 6.266 6.841 7.455 8.000 8.571 1.4 4.097 4.687 5.173 5.690 6.159 6.647 2.0 2.853 3.316 3.718 4.142 4.540 4.950 2.8 1.929 2.296 2.631 2.982 3.324 3.673 4.0 1.262 1.549 1.827 2.117 2.410 2.705 5.0 1.001 1.251 1.501 1.760 2.024 2.292 7.0 0.776 0.985 1.199 1.420 1.650 1.882 10.0 0.658 0.838 1.023 1.215 1.413 1.616 15.0 0.576 0.731 0.890 1.056 1.227 1.403 20.0 0.523 0.663 0.805 0.954 1.107 1.263 25.0 0.480 0.608 0.737 0.871 1.009 1.150 30.0 0.444 0.560 0.678 0.800 0.925 1.053 40.0 0.382 0.481 0.579 0.682 0.786 0.893 50.0 0.332 0.417 0.501 0.588 0.677 0.767 60.0 0.292 0.365 0.438 0.513 0.589 0.666 70.0 0.259 0.324 0.386 0.452 0.518 0.585 80.0 0.233 0.290 0.345 0.403 0.460 0.519 l

90.0 0.211 0.262 0.311 0.362 0.413 0.465 100.0 0.193 0.239 0.283 0.329 0.375 0.421 110.0 0.178 0.220 0.260 0.302 0.343 0.385 1

eI 3.54-6

Tcbl: 3 BWR Spent Fuel Heat Generation Rates, Watts Per Kilogram U, for Specific Power = 30 kW/kgU Cooling Fuel Bumup, mwd /kgU

Time, Years 20 25 30 35 40 45 1.0 6.809 7.786 8.551 9.337 10.010 10.706 1.4 4.939 5.721 6.357 7.006 7.579 8.169 2.0 3.368 3.958 4.463 4.979 5.453 5.938 2.8 2.211 2.651 3.050 3.460 3.855 4.256 4.0 1.381 1.705 2.016 2.339 2.663 2.991 5.0 1.063 1.335 1.605 1.885 2.172 2.462 7.0 0.797 1.015 1.239 1.471 1.713 1.958 10.0 0.666 0.850 1.039 1.237 1.443 1.653 15.0 0.579 0.737 0.898 1.067 1.242 1.422 20.0 0.525 0.667 0.811 0.962 1.117 1.276 25.0 0.482 0.611 0.741 0.877 1.017 1.160 30.0 0.445 0.563 0.681 0.805 0.931 1.061 I

40.0 0.382 0.482 0.581 0.685 0.790 0.898 50.0 0.332 0.418 0.502 0.589 0.678 0.769 60.0 0.292 0.366 0.438 0.513 0.589 0.666 70.0 0.259 0.323 0.386 0.451 0.517 0.584 80.0 0.232 0.289 0.344 0.401 0.459 0.517 90.0 0.210 0.261 0.310 0.361 0.411 0.463 100.0 0.192 0.238 0.282 0.327 0.372 0.418

(

l10.0 0.177 0.219 0.259 0.300 0.340 0.382

\\

Table 4 BWR Enrichments for Burnups in Tables Fuel Bumup, Average Initial mwd /kgU Enrichment, f

wt 4 U-235 20 1.9 25 2.3 30 2.7

(~

35 3.1 (N) 40 3.4 45 3.8 3.54-7

Teble5 PWR Spent Fuel Heat Generation Rates, Watts Per Kilogram U, for Specific Power = 18 kW/kgU O

Cooling Fuel Burnup, mwd /kgU

Time, Years 25 30 35 40 45 50 1.0 5.946 6.574 7.086 7.662 8.176 8.773 1.4 4.485 5.009 5.448 5.938 6.382 6.894 2.0 3.208 3.632 4.004 4.411 4.793 5.223 2.8 2.253 2.601 2.921 3.263 3.595 3.962 4.0 1.551 1.835 2.108 2.398 2.685 2.997 5.0 1.268 1.520 1.769 2.030 2.294 2.576 7.0 1.008 1.223 1.439 1.666 1.897 2.143 10.0 0.858 1.044 1.232 1.430 1.633 1.847 15.0 0.744 0.905 1.068 1.239 1.414 1.599 20.0 0.672 0.816 0.963 1.116 1.272 1.437 l

25.0 0.615 0.746 0.879 1.018 1.159 1.308 30.0 0.566 0.686 0.808 0.934 1.063 1.197 40.0 0.487 0.588 0.690 0.797 0.904 1.017 50.0 0.423 0.510 0.597 0.688 0.780 0.875 60.0 0.372 0.447 0.522 0.601 0.680 0.762 70.0 0.330 0.396 0.462 0.530 0.599 0.670 80.0 0.296 0.355 0.413 0.473 0.534 0.596 90.0 0.268 0.321 0.372 0.426 0480 0.536 100.0 0.245 0.293 0.339 0.387 0.436 0.486 110.0 0.226 0.270 0.312 0.356 0.399 0.445 1

e 3.54-8

Tebir 6 PWR Spent Fuel IIcat Generation Rates, Watts Per Kilogram U, for Specific Power = 28 kW/kgU Cooling Fuel Burnup, mwd /kgU

Time, Years 25 30 35 40 45 50 1.0 7.559 8.390 9.055 9.776 10.400 11.120 1.4 5.593 6.273 6.836 7.441 7.978 8.593 2.0 3.900 4.432 4.894 5.385 5.838 6.346 2.8 2.641 3.054 3.435 3.835 4.220 4.642 4.0 1.724 2.043 2.352 2.675 2.999 3.346 5.0 1.363 1.637 1.911 2.195 2.486 2.793 7.0 1.045 1.271 1.500 1.740 1.987 2.248 10.0 0.873 1.064 1.261 1.465 1.677 1.900 15.0 0.752 0.91.5 1.083 1.257 1.438 1.627 20.0 0.677 0.823 0.973 1.128 1.289 1.457 es.s 25.0 0.619 0.751 0.886 1.027 1.171 1.322 i

\\

()

30.0 0.569 0.690 0.813 0.941 1.072 1.208 40.0 0.488 0.590 0.693 0.800 0.909 1.023 50.0 0.424 0.511 0.599 0.689 0.782 0.877 60.0 0.372 0.447 0.523 0.601 0.680 0.762 70.0 0.330 0.396 0.461 0.529 0.598 0.668 80.0 0.295 0.354 0.411 0.471 0.531 0.593 90.0 0.267 0.319 0.371 0.424 0.477 0.531 100.0 0.244 0.291 0.337 0.385 0.432 0.481 110.0 0.225 0.268 0.310 0.352 0.396 0.440 I,h L.J 3.54-9

Ttble 7 PWR Spent Fuel lieat Generation Rates, Watts Per l

Kilogram U, for Specific Powcr = 40 kW/kgU O

Cooling Fuel Bumup, mwd /kgU

Time, Years 25 30 35 40 45 50 1.0 8.946 10.050 10.900 11.820 12.580 13.466 1.4 6.514 7.400 8.111 8.863 9.514 10.254 2.0 4.462 5.129 5.692 6.284 6.821 7.418 2.8 2.947 3.441 3.884 4.346 4.787 5.267 4.0 1.853 2.212 2.554 2.910 3.265 3.647 5.0 1.429 1.728 2.021 2.327 2.639 2.970 7.0 1.067 1.304 1.543 1.793 2.052 2.325 10.0 0.881 1.078 1.278 1.488 1.705 1.936 15.0 0.754 0.921 1.091 1.268 1.452 1.645 20.0 0.678 0.827 0.978 1.136 1.298 1.469 25.0 0.619 0.754 0.890 1.032 1.178 1.331 30.0 0.570 0.693 0.816 0.945 1.077 1.215 40.0 0.488 0.592 0.695 0.803 0.912 1.026 50.0 0.423 0.512 0.599 0.691 0.783 0.879 60.0 0.371 0.448 0.522 0.601 0.680 0.762 1

70.0 0.329 0.396 0.461 0.529 0.597 0.668 80.0 0.294 0.353 0.410 0.470 0.530 0.592 90.0 0.266 0.319 0.369 0.422 0.475 0.530 100.0 0.243 0.290 0.336 0.383 0.430 0.479 i

l10.0 0.224 0.267 0.308 0.351 0.393 0.437 9i 3.54-10

___________________]

l 1

I i

Ttble8 PWR Enrichments for Burnups in Tables S

Fuel Burnup, Average Initial mwd /kgU Enrichment, wt-% U-235 25 2.4 30 2.8 35 3.2 40 3.6 45 3.9 50 4.2 significantly different from the average specific It can be observed that there are upper limits to R power, P,,, p needs to be adjusted if T,ly, used to s 7. The a.9d R'in Equations 8 and 10. It is recommended to not g

ratios P/P,, and P,. /P

., are, respective use the decay heat values of this guide if any of the determine the adjustmen't"[actorsf,andf',. The factors following conditions occur:

reduce the heat ratep,,if the corresponding ratio is less than 1 and increase the heat rate p,, if the if T, s 10 years and P,/P,, > 1.3, corresponding ratio is greater than 1. The formu'as for if 10 years < T if T, s 10 years, s 15 years and P,/P,, > 1.7, the factors are below.

and P,.,/P,,, > 1.6 f, = 1 when T' > 7 years or e = s (i.e., I cycle only)

Although it is safe to use the procedures in this guide, the heat rate values forpy, may be excessively 7(3}

f, = 1 + 0.25R/T,f, = 1 + 0.35R/[ when 0 s R s 0.3 high when b

when -0.3 s R <0 f, = 1 - 0.075/T, when R < - 0.3 (Equation 8) 7 a d

(,

0.4.

where 2.3 The Excess Power Adjustment Factorf, P*

R=

-1 (Equation 9)

The maximum specific power, P,,,, used to P

generate the data in Tables I through 3 and Tables 5 aw through 7 is 40 kW/kgU for a PWR and 30 kW/kgU for a BWR. If P,,, the average cumulative specific power,

(

f, = 1 when T,> 7 years or is more than 35% higher than P,,,.(i.e.,54 kW/kgU for e<3 PWR fuel and 40.5 kW/kgU for BWR fuel), the guide fl = 1 + 0.10R'/[when 0 s R's 0.6 should not be used. When 1 < P,fP,,,, s 1.35, the guide can still be used, but an excess power adjustment f, = 1 + 0.08R'/T, when - 0.5 s R' < 0 factor, f,, must be applied.

The excess power fl = 1 - 0.04/T, when R' < - 0.5 (Equation 10) adjustment factor is where

/, = /P,/P, (Equation 12)

(

P' ' '

R' =

-1 (Equation 11)

P,,,,. i For P,, s P,,,,

f, = 1 Q

, t 4

,)

3.54-11 I

2 4 The Errichm:nt Factorf, 2.5 Safity Fcctor S The decay heat rates of Tables I through 3 and Before obtaining the final heat rate p#g an Tables 5 through 7 were calculated using initial appropriate estimate of a percentage safety factor S enrichments of Tables 4 and 8. The enrichment factorf{

should be determined. Evaluations of uncertainties is used to adjust the value p,, for the actual initia performed as part of this project indicate that the safety enrichment of the assembly E,. To calculatef,, the data factor should vary with burnup and cooling time.

in Tables 4 (BWR) or 8 (FWR) should be interpolated linearly to obtain the enrichment value E, that For BWR assemblies:

(Equation 14) corresponds to the assembly burnup,

. IfE

<0.6, the NRC staff recommends not using is gui. When S = 6.4 + 0.15 (B"- 20) + 0.044 (T - 1)

E/E,20.6, set the enrichment factor as follows:

f, = 1 + 0.Ol[a + b(T, - d)][l - E/E,]

S = 6.2 + 0.06 (B"- 25) + 0.050 (T - 1) when E/E, s 1.5, 3

The purpose of deriving spent fuel heat generation f< = 1 - 0.005 [a + b(T - d)]

rates is usually to apply the heat rates in the r

when E/E* > 1.5*

computation of the temperatures for storage systems.

A preferred engineering practice may be to calculate the temperatures prior to application of a final safety where the parameters a, b, and d vary with reactor type, factor. This practice is acceptable if S is accounted for E,, E,, and T,. These variables are def' ed in Tables 9 in the more comprehensive safety factors applied to the m

and 10.

calculated temperatures.

Table 9 Enrichment Factor Parameter Values for BWR Assemblies Para eter Parameter Value Equation 13 E, /E, < l E, /E, > 1 15 T, s 40 T, > 40 I s T,515 T, > 15 a

5.7 5.7 0.6 0.6 b

-0.525 0.184

-0.72 0.%

d 40 40 15 15 Table 10 Enrichment Factor Parameter Values for PWR Assemblies Parameter Parameter value j

in

[

Equation E,/E,5 1 E,/E,> 1 1 s T, s 40 T, > 40 15 T,5 20 T, > 20 a

4.8 4.8 1.8 1.8 b

-0.6 0.133

-0.51 0.033 d

40 40 20 20 3.54-12

2.6 Final Heat Generation Rate Evaluation help messages and verification dialog boxes. The menus may be used with either a keyboard or a mouse.

The equation for converting p,3, determined in The code printout (one prae per case) contains the Regulatory Position 2.1, to the final heat generation input data, the computed safety ed adjustment factors, I

rate of the assembly,is and the interpolated and final ccmputed decay heat rates. The output file may be printed, observed on a P.a = (1 + 0.0lS)f,f,f,f,p,, (Equation 16) monitor, or saved. Input cases may be saved, retrieved, f

duplicated, or stacked in the input file.

where f f7 f, f,, and S are determined by 7

the procedures giv,en in Regulatory Positions 2.2 The LWRARC code may be requested from the through 2.5.

Radiation Safety Information Computational Center (RSICC).

2.7 Heat Rate Evaluation by LWRARC Code The LWRARC (light-water-reactor afterheat rate Radiation Safety Information calculation) code is an MS-DOS PC program that Computational Center performs the calculations in this guide. The only input Oak Ridge National Laboratory for cases in which the cooling time exceeds 15 years P.O. Box 2008 are B T,, E, and T, Additionally, the short cooling Oak Ridge, TN 37831-6362 y

time factors require B, and T, of the last and next-to-last Telephone: (423)574-6176 cycles. The code features a pull-down menu system FAX: (423)S74-6182 with data entry screens containing con: ext-sensitive Electronic Mail: PDC @oml.cov I

3.54-13

APPENDIX A SAMPLE CASE USING IIEAT GENERATION RATE TABLES A BWR fuel assembly with an average fuct T, = 1240 - 940 = 300 d enrichment of 2.6 wt-% 235U was in the reactor for four cycles. Determine its final heat generation rate with B, = 26,300 - 20,900 = 5,400 kWd/kgU safety factors, using the method in this guide, at 4.2 years cooling time. Adequate details of the operating P, = (26,300 - 20,900)/300 = 18.00 kW/kgU history associated with the fuel assembly are shown in Table A.I.

T,., = 940 - 630 = 310 d Table A.1 Sample Case Operating IIistory Relative Time from Startup of Fuel, Days Accumulated Burnup Fuel (Best Maximum Estimate),

l Cycle Cycle Startup Cycle Shutdown mwd /kgU l

1 0

300 8.1 2

340 590 14.7 3

630 910 20.9 4

940 1240 26.3 9l Note that the output of the LWRARC code for this B,., = 20,900 - 14,700 = 6,200 kWd/kgU case is shown in the first case of Appendix B of l

NUREG/CR-5625.'

P,., = 6,200/[0.8(310)] = 25.0 kW/kgU Using Regulatory Position 1 P,,., = 20,900/[0.8(940)] = 27.793 kW/kgU The following were given in the sample case (see P,, = 26,300/[300 + 0.8 (940)] = 25.00 kW/kgU Regulatory Position 1 for definitions):

T,,, = 1240 d Using Regulatory Position 2 B,, = 26.30 mwd /kgU P, should be determined from P,,, B,,, and T,, as described in Regulatory Position 2.1. First, select the T, = 4.2 y nearest heat rate values in Tables 2 and 3 for the following limiu-E, = 2.6 wt-% 235U P = 20 $ P,, s P = 30 t

y Compute T B,, P, T P from Regulatory Position 1,and.h,qu,a.,,

P,,,.,,

and Ptions 2 througf4.

B = 25 s B,, s B = 30 g,

t y

' Technical Support for a Pror~d Decay Heat Guide Using SAS2H/

I 4 T=5 L

c y

OR/ GEN S Data, NUREG/Ch-225 (ORNL-6698). September 1994.

Copics are available for irnpection or copying for a fee frorn the NRC Next, use the prescribed interpolation procedure Public Document Room at 2120 L Street NW., Washington, DC; the PDR's mailing address is Mail Stop LL-6, Washington, DC 20555; forcomputingp from the tabulardata. Although the g

telephone (202) 634-3273; fax (202) 634-3343. Copies may be purchased order is optional, the example here interpolates at current rates from the 115. Government Pnnting Ofnce, P.O. Box between spCCific powers, burnups, and then cooling 37082, Washington, DC 20402-9328 [ telephone (202) 512-1800]; or from times. Denote the heat rate, p, as a function of the National Technical Infonnation Service by writing NTIS at Port Royal Road Spnngfield. VA 22161.

spcCific power, burnup, and cooling time byp(P,B, T).

3.54-14

1 The table values at P, and P for B, and T are y

t With the value for p, the formulas of Regulatory p(P, B. T ) = p(20,25,4) = 1.549 Positions 2.2 through 2.6 can be used to determinep,.

t t t Since T, s 7 y, use Equations 8 through 11 to calcufate 9

p(P,, B, T ) = p(30,25,4) = 1.705 the short cooling time factors:

t t First, interpolate the above heat rates to P,, using R = P,/P,, - 1 = (18/25)- 1 = - 0.28 p(P,25,4) = p(20,25,4) + F,[p(30,25,4)

-p(20,25,4)]

f, = 1 + [0.25(-0.28)]/4.2 = 0.983 where R' = P,., /P,,., - 1 = -0.1005 F, = (P,,- P J/(P -P ) = 0.5 t

y t

f,7 = 1 + [0.08(-0.1005)]/4.2 = 0.998 The result at p(P,,,25,4) is Since P,, s P = P,,,, the excess power factor,, is y

p(P,,,25,4) = 1.549 + 0.5 (1.705 - 1.549) unity. Interpolating Table 4 enrichments to obtai the

= 1.627 enrichment associated with the burnup yields The other three values at P,, are computed with a Em = 2.3 + (2.7 - 2.3)(26.3 - 25)/(30 - 25) similar method:

_g p(P,,,30,4) = 1.827 + 0.5 (2.016 - 1.827)

= 1.9215 The enrichment factor, f is then calculated using f

Equation 13:

p(P,,,25,5) = 1.293

,y p(P,,,30,5) = 1.553

~

i V

These are heat rates at the burnup and time limits.

because E, > E, Second, interpolate each of the above pairs of The safety factor, S, fora BWR is given in Equation 14:

heat rates to B,, from the values at B and B :

t y

F, = (B,,- B )/(B - B ) = 0.26 S - 6.4 + 0.15 (26.3 - 20) + 0.044 (4.2 - 1) t y

t p(P,,B,,,4) = 1.627 + 0.26 (1.9215 - 1.627)

=1.7036 Then, using Equation 16, P(P,gB,,,5) = 1.3606 p,,,,, = (1 + 0.01 S)f,f',ff,p,

}

Third, compute the heat rate at T, from the above values at T, and T by an interpolation that is with the above adjustment factors and p, yields t

y

[

logarithmic in heat rate and linear in time:

f p

= 1.0749 x 0.983 x 0.998 x 1 x 0.993 x 1.629 y

F, = (T, -T,)/(T -T,) = 0.2 y

l log [p(P,,B,j,)] = log 1.7036 + 0.2

= 1.0749 x 1.587 = 1.706 W/kgU T

(log 1.3606 -log 1.7036)

= 0.2118 Thus, the final heat generation rate, including the l

safety factor, of the given fuel assembly is p, =p(P,,B,,T)= 10a2ns = 1.629 W/kgU l.706 W/kgU.

x, 3.54-15

APPENDIX B ACCEPTABILITY AND LIMITS OF TIIE GUIDE O

Inherent difficulties arise in attempting to prepare applied to correct for variations in power history that a heat rate guide that has appropriate safety factors,is differ from those used in the generation of the tables. For not excessively conservative, is easy to use, and example, the heat rate at 1 year is increased substantially applies to all commercial reactor spent fuel assemblies.

if the power in the last cycle is twice the average power In the endeavor to increase the value of the guide to of the assembly. The limits on the conditions in licensees, the NRC staff made an effort to ensure that Regulatog Position 2.2 on ratios of cycle to average safe but not overly conservative heat rates were specific power are needed; first, to derive cooling time computed. The procedures and data recommended in adjustment factors that are valid, and second, to exclude the guide should be appropriate for most power reactor cases that are extremely atypical. Although these limits operations with only minor limitations in applicability.

were determined so that the factors are safe, a reasonable

(

degree of discretion should be used in the considerations in general, the guide should not be applied outside the of atypical assemblies-particularly with regard to their parameters of Tables I through 8. These restrictions,in power histories.

addition to certain limits on adjustment factors, are given in the text. The major table limits are summarized in Another variable that requires attention is the "Co Table B.I.

content of the clad and structural materials. Cobalt-59 l

Table B.1 Parameter Range for Applicability of the Regulatory Guide Parameter BWR PWR 1

T,(year) 1-110 1-110 B,(mwd /kgU) 20-45 25-50 l

P,(kW/kgU) 12-30 18-40 I

I In using the guide, the lower limit on cooling time, is partly transformed to "Co in the reactor and j

T,, and the upper limit on burnup, B,, should never be subsequently contributes to the decay heat rate. The extended. An adjustment factor, f,, can be applied if "Co content used in deriving the tables here should the specific power, P,, does not exceed the maximum apply only to assemblies containing Zircaloy-clad fuel value of the tables by more than 35% Thus,if P,is pins. The "Co contribution can become excessive for greater than 54 kW/gU for PWR fuel or 40.5 kW/kgU "Co contents found in stainless-steel-clad fuel pins.

for BWR fuel, the guide should not be applied. The Thus, the use of the guide for stainless-steel-clad minimum table value of specific power or burnup can assemblies should be limited to cooling times that j

be used for values below the table range; however, if exceed 20 years. Because "Co has a 5.27-year half-the real value is considerably less than the table life, the heat rate contribution from "Co is reduced by minimum, the heat rate derived can be excessively the factor of 13.9 in 20 years.

l conservative. Also, the upper cooling time limit is conservative for longer cooling times.

In addition to the parameters used here, decay heat rates are a function of other variables to a lesser degree.

In preparing generic depletion / decay analyses for Variations in moderator density (coolant pressure, specific applications, the most difficult condition to temperature) can change decay heat rates, although model is the power operating history of the assembly.

calculations indicated that the expected differences Although a power history variation (other than the most (approximately 0.2% heat rate change per 1 % change extreme) does not significantly change the decay heat in water density, during any of the first 30-year decay rate after a cooling time of approximately 7 years, it can times) are not sufficient to require additional have significant influence on the results in the first few corrections. The PWR decay heat rates in the tables l

years. Cooling time adjustment factors,f, andf',, are were calculated for fuel assemblies containing water 3.54-16 b

holes. Computed d: cay heat rates for assemblies total or individual nuclide decay heat rates with those containing burnable poison rods (BPRs) did not determined by independent computational methods, change significantly (51% during the first 30-year as well as comparisons of heat rate measurements 9

decay) from fuel assemblies containing water holes.

obtained for a variety of reactor spent fuel assemblies.

Note from the equations that the safety factors Several conditions were considered in deriving increase with both burnt:p and cooling time. This the safety factors (Equations 14 and 15) that were increase in the safety factoris a result of the increased developed for use in the guide. Partial uncertainties importance of the actinides to the decay heat with in the heat generation rates were computed for increased burnup and cooling time together with the selected cases by applying the known standard larger uncertainty in actinide predictions caused by deviations of half-lives, Q-values, and fission yields model approximations and limited experimental data.

of all the fission product nuclides that make a significant contribution to decay heat rates. This Whenever the design or operating conditions for a calculation did not account for uncertainties in spent fuel assembly exceed the parameter ranges contributions produced by the neutron absorption in accepted in this guide, another well-qualified method nuclides in the reactor flux, or from variations in other of analysis that accounts for the exceptions should be parameters. In addition to the standard deviations in used. A well-qualified method would be one that has a neutron cross sections, much of the uncertainty from technical basis that is validated against measured heat-neutron absorption arose from approximations in the rate data and has been demonstrated to provide model used in the depletion analysis. In developing conservative heat-rate estimates (i.e., per justified the safety factors, these mare indirect uncertainties safety factors consistent with the measured data) for were determined from comparisons of the calculated the extended design or operating conditions.

O 1

\\v l

n fG' 3.54-17 b...

I APPENDIX C CONTRIBUTIONS TO DECAY HEAT RATES BY ACTINIDES, FISSION PROJECTS, AND LIGHT ELEMENTS The decay heat rates determined by the methods recommended in this guide are totals resulting from all sources of radioactive decay. In the tables of this Appendix C, the contributions to these totals from actinides, fission products, and light elements are listed separately. These values were used to construct the totals given in Tables 1-7. The values in this Appendix C represent some of the many results available from tha codes described in NUREG/CR-5625.

Table C.1 BWR decay heat rates (WAgU) oflight elements, Sctinide5 and fission products, for specific power = 12 kWAgU, Set I paraer 8 EU #9ss/ROU Gesataf Burnup m.E5 FIND /kgV Tame.

Light ga Astan Wes Fia Fre"I years Light El Actinsees FAs Free 4.T11E-4 2,3 PIE *01 3. 76tt+00 1.0 4.993E-02 4.850E-01 4.141E+00 3.430E-02 E.295E-01 2.869E+00 1.4 3.64tE-02 3.315E-01 3.20M+00 2.841E-et 1.54tt-01 2.064E*00 2.0 5.054E-02 2.2575 01 3.354E+00 2.440E-et 1.210E-03 1.444E*00 2.8 f.470E-02 3.779E-01 1.689E+00 2.977E-Og 1.123E-01 9.784E-08 4.0 8.239E-02 1.641E-el 3.177t+00 3.804E-02 1.132E-41 7.879E-01 5.0 1.944E-et -.64t8-88 9.626E-01 9.154E-05 1.245E-01 5. } 35E-41 1.370E=et 1.178E-08 6.

7.0 1.440E-et '.683E-81 7.595E-el 138E-01 10.8 9.896E-05 :.744E-el 4.549E-05

4. 701E-05 1. 328E-01 4. 31EE-01 15.0 5.18lE-85 1.820E-41 5.340E-01 f.443E-05 1.390E-03 3.748E-01 20.0 2.640E-03 1.873E-61 4. 640E-01 1.380E-43 1.4!7E-el 3.321E-01 25.0 1.417E-03 3.906E-01 4.ls5E-el
6. 770E-e4 1.463E-el 2. 958E-el 30.0 7.573E-04 8.925E-el 3.629E-01 1.971E-04 1.491E-01 E.308E-03 40.0 2.266E-04 8.953E-01 2.049E-05 6.381E-05 1.495E-01 1.819E-01 5s.0 7.571E-05 1.9344-01 E.245E-el 2.566E-05 1.440E-03 1.457E-01 60.0 5.09pE-05 1.8stE-01 1.77tE-01 1.409E-85 1.459E-01 1.134E-01 70.0 1.681E-05 1.845E-el 1.441E-03
1. 0145-45 1.43tt-01 8. 983E-et 80.0 1.174E-05 1.800E-41 1.100E-01
8. 48eE-46 1.404E-01 7.108E-et 90.0 9.609E-04 3.756E-01 4.767E-02 l

7.57M-06 1.375E-01 5. 626E-02 200.0 8.447E-06 1.78tE-el 4.939E-02

6. 926E-06 1. 345E-01 4.453E-et 110.0
1. 666E-06 1.671E-01 5.493E-et T8ble C.2 BWR dec8y heet rates (WAgU) oflight elements, @h, and fission products. for specific power = 12 kWAgU, Set 2 sursup 8 50 ! Die /kgU Geeling Duragy a 55 rued /kfU Time e l

Lagat El Ast5nwes Fis Free years LApht El Actinides ria Fred f

1.,36tt-02 6.440t-el 4.4m++00 3.0 5.315E-et 5.103E-01 4.746E+00

. 90E-02 4. m ti i.4 00 1.4 5.918E-st 5.69 E-i 3.7 m +.

3.187E-et 3.076E-01 E.594E+00 2.0 3.299E-02 4.003E-01 2.848E+08 E.790E-02 E.44tE-01 1.901E+00 2.8 2.889E-Ot 3.129E-01 E.130E*00 2.343E-02 2.253E-01 1.359Eteo 4.0 f.4 tee-02 E.976E-01 1.545E+0e t.e57E-02 E.241E-01 1.127E+00 5.0 2.lltE-02 2.950E 01 1.290C+0e 1.551E-02 E.ITOE-01 8.994E-el 7.0 1.610E-02 2.96t1-01 1.0371+00 8.039E-et 2.316E-01 7.538E-01 10.0 3.080E-02 2.985E-et s.704E-01 5.400E-03 2.349E-et 4.334E-el 15.0 5.6tSE-05 3.0058-01 7.306E-05 2.MIE-05 2.399E-01 5.523E-01 20.0 2.969E-e3 3.404E-01 6.367E-et 1.511E-03 f.4ttE-el 4.463E-01 25.0 1.586E-03 E.989E-01 5.643E-01 8.140E-04 f.'t EE-01 4.297E-el 30.8 8.587E-04 1.064E-et 4.949E-el 3.484E-04 f.35W 41 3.373E41 40.0 2.6545-64 E.895E-01 3.84tE-el 4.490E45 2.334E-es 0.".eE-01 50.0 9.20ff-05 2.808E-01 3.0575-01 3.528E-65 f.280E-01 t.096E-nl 60.0 3.844E-05 2.73pE-el a.48tE-el 1.900E-05 t.118E-01 1.657E-01 10.0 1.091E-OS 2.630E-01 1.906E-01 1.316E-05 t.154E-01 t r310E-01 40.0 1.41tE-05 1.545E-el

,.508E-01 1.061E-05 2.096E-01 1.057E-01 90.0 1.145E-05 2.460E-01 1.195E-01 9.244E-06 2.015E-03 8.206E-02 100.9 9.930E-06 E.3421-01 9.44tt-02

8. 544E-06 3. 97st-01 6.495E-et 110.0 4.94tE-06 E.309E-01 7.473E-et 3.54-18 i

l I

Table CJ BWR. decay heat rates (W/kgU) oflight elements, actinides, and fission products, for specific power = 12 kW/kgU, Set 3 Burnup a 40 MHd/kgU Cooling Burnup a 45 NHd/kgu Tim e.

Light El Actinides Fis Frod years Lagnt El Actinades Fis Frod 5.46TE-02 1.008E*00 5.001E+00 1.0 5.559E-02 1.186E+00 5.289E*00 4.027E-02 7.180E-01 4.002E+00 1.4 4.089E-02 8.574E-01 4.265E +00 3.390E-02 5.141E-01 3.068E+00 2.0 3.439E-02 6.255E-01 3.300E+00 2.970E-02 4.198E-01 Z.315E+00 2.8 3.013E-02 5.175E-01 2.517E+00 2.497E-02 3.875E-01 3.709E*00 4.0 2.533E-0Z 4. 791E-01 1.880E *00 2.173E-0Z 3.827E-01 1.440E+00 5.0 2.205E-02 4.723E-01 1.593E+00 1.657E-02 3.810E-01 1.166E+00 7.0 1.681E-02 4.678E-01 1.293E*00 1.112E-02 5. 79 7E-01 9. 777E-01 10.0 1.129E-02 4.626E-01 1.087E *00 5.800E-03 3.760E-01 8.199E-01 15.0 5.892E-03 4.533E-01 9.110E-01 3.066E-03 3. 711E-01 7.139E 20.0 3.Il8E-05 4.434E-01 7.930E-01 1.64]E-03 3.653E-01 6.280E-01 25.0 1.671E-03 4.332E-01 6.973E-01 8.90$E-04 3.590E-01 5.545E-01 30.0 9.086E-04 4.229E-OR 6.155E-01 2.773E-04 3.456E-01 4.347E-01 40.0 2.841E-04 4.029E-01 4.824E-01 9.697E-05 3.320E-01 3.422E-01 50.0 1.001E-04 3.840E-01 3.797E-01 4.118E-05 3.188E-01 2.701E-01 60.0 4.286E-05 3.666E-01 2.996E-01 2.250E-05 3.064E-01 2.134E-01 70,0 2.35 7E-05 3.505E-01 2. 36 7E-01 1.550E-05 2. 948E-01 1.688E-01 80.0 1.629E-05 3.358E-01 3.872E-01 1.Z42E-05 2.840E-01 1.335E-01 90.0 1.30 TE-05 3.223E-01 1.481E-01 1.078E-05 2.739E-01 1.057E-01 100.0 1.135E-05 3.099E-01 1.172E-01 9.704E-06 2.646E-01 8.36SE-02 110.0 1.022E-05 2.985E-01 9.279E-CZ Oh Table C.4 BWR decay heat rates (W/kgU) oflight elements,8ctinides, and fission products, for specific power = 20 kW/kgU, Set 1 i

Burnup a 20 MHd/kgV Cooling Burnup a 25 MHd/kgU Time.

Light El Actinades Fia Prod years Light El Actinados Fis Frod 6.181E-02 2. 95 7E-01 5.190E + 00 1.0 6.57FE-0Z 4.366E-01 5.764E+00 4.084E-02 2.036E-01 3.853E*00 1.4 4.447E-02 3.012E-01 4.341E+00 3.278E-02 1.398E-01 2.680E+00 2.0 3.605E-02 2.068E-01 3.073E+00 2.83ZE-02 1. 319E-01 1. 789E+00 2.8 3.123E-02 1.648E-01 2.100E+00 2.36ZE-0Z 1.051E-01 1.133E*00 4.0 2.608E-02 1.531E-01 1.370E+00

2. 04 7E-02 1.0 64E-01 8. 744E-01 5.0 2.262E-02 1.536E-01 1.075E+00 1.553E-0Z 1.113E-O! 6.493E-CI 7.0 1.716E-02 1.582E-01 8.101E-01 1.032E-02 1.181E-Ol 5.29eE-01 10.0 1.14 5E-02 1. 646 E-C 1 6. 6 20E -01 5.299E-03 1.271E-01 4.431E-01 15.0 5.905E-03 1.730E-01 5.521E-01
2. 748E-0 3 1. 33 7E-01 3.866E-01 Z0.0 3.081E-03 1.788E-CA 4.810E-01 1
1. 4 36E -03 1. 384E-01 3. 406E -01 25.0 1.623E-03 1.826E-01 4.235E-01 l

7.570E-04 1.416E-01 3. 012E-01 30.0 8.640E-04 1.849E-01 3.743E-01 2.182E-04 1.450E-01 2.366E-01 40.0 2.554E-04 1.865E-01 2.939E-01

6. 936E-05 1.456E-01 1.865E-01 50.0 6.361E-05 1.853E-01 2.315E-01 E. 712E-05 1.447E-01 1.473E-01 60.0 3.322E-05 1.826E-01 1.828E-01 1.449E-05 1.428E-01 1.164E-01 70.0
1. 748E-05 1. 791 E-01 1.445E-01
1. 0 27E -05 1. 404E-01 9. 208E-0 2 80.0 1.200E-05 1.753E-01 1.143E-01 8.551E-06 1.37tE-01 7.286E-02 90.0 9.719E-06 1.713E-01 9.040E-02 7.618E-06 1.351E-01 5.767E-02 300.0 8.519E-06 1. 6 73E-01 7.155E-02
6. 966E -06 1. 324E-01 4; 565E-02 110.0 7.722E-06 1.635E-01 5.664E-02 1

[]

v 3.54-19

Table C.5 BWR decay heat rates (W/kgU) oflight elements, actinides, and fission products, for specific power = 20 kW/kgU, Set 2 30 mwd /kgU Cooling Burnup a 35 IIHd/kgU Burnup a

Time, Light El Actinides Fis Prod years Light El Actinides Fis Pred 6.880E-02 5.899E-01 6. letE+00 1.0 7.175E-Ot 7.543E-01 6.629E+00 4.724E-02 4.101E-01 4.716E+00 1.4 4.971E-02 5.30!E-01 5.110E+00 3.856E-02 2.844E-01 3.395E+00 2.0 4.0 74E-02 3. 731E-01 3. 728E +00 3.348E-02 2.276E-01 E.370E*00 2.8 3.541E-Ot 3.014E-01 2.645E+00 2.799E-02 Z.103E-01 1.589E+00 4.0 2.964E-02 2.783E-01 1.809E+00 2.430E-Or t.09 7E-01 1.267E+00 5.0 2.574E-02 E.762E-01 1.458E +00 1.846E-02 2.130E-01 9.671E-01 7.0 1.956E-02 2.779E-91 1.123E*00 1.233E-02 2.181E-01 7.921E-01 10.0 1.309E-02 2.809E-01 9.207E-01 6.586E-03 E.243E-01 6.595E-01 15.0 6.7940-03 E.858E-01 7.654E-01 3.348E-03 E.280E-01 5.740E-01 20.0 3.574E-03 f.846E-01 6.656E-01
1. 775E-03 2.299E-01 5.051E-01 E5.0 1.90tE-03 2.839E-01 5.855E-01 9.518E-04 E.305E-01 4.46tE-01 30.0 1.OESE-03 2.8t!E-01 5.170E-01 2.868E-04 2.289E-01 3.501E-01 40.0 3.12 7E-04 2. 76 3E-01 4.055E-01 9.588E-05 2.250E-01 2.757E-01 50.0 1.060E-04 2.68PE-01 3.193E-01 3.858E-05 2.200E-01 2.176E-01 60.0 4.300E-05 Z.609E-01 E.520E-01 2.016E-05 2.144E-01 1.720E-01 70.0 2.240E-05 2.529E-01 1.991E-01 1.35TE-05 2.087E-01 1.360E-01 80.0 1.490E-05 2.450E-01 1.575E-01 1.079E-05 2.031E-01 1.076E-01 90.0 1.172E-05 2.375E-01 1.246E-01
9. 353E-06 1. 97 7E-01 8.518E-02 100.0 1.009E-05 2.303E-01 9.859E-CE 8.426E-06 1.925E-01 6.74tE-02 !!0.0 9.049E-06 2.236E-01 7.804E-02 Table C.6 BWR decay heat rates (W/kgU) oflight elements, actinides, and fission products, for specific power = 20 kW/kgU, Set 3 Burpup a 40 NMd/kgU Cooling Burnup 8 45 MNd/kgU
Time, Light El Actinides Fim Prod years Light El Actinides Fis Prod 7.481E-02 9.488E-01 6.976E*00 1.0 7.701E-02 1.129E*00 7.365E+00 5.211E-02 6.75tE-01 5.45tE+00 1.4 5.376E-02 8.133E-01 5.780E+00 4.281E-02 4.826E-01 4.015E+00 2.0 4.4 TOE-02 5.798E-01 4.315E+00 I
3. 726E-0Z 3. 937E-01 f.893E +00 2.8 3.848E-02 4.673E-01 3.14 7E *00 3.!!CE-OZ 3.635E-01 2.015E*00 4.0 3.t24E-02 4.507E-01 2.22EE+00
2. 711E-02 3.593E-01 1.638E +00 5.0 2.4 01E-02 4.444E-01 1.820E +00 2.06tE-02 3.582E-01 1.271E*00 7.0 2.131E-02 4.405E-01 1.420E*00 1.380E-02 3.575E-O! 1.04tE+00 10.0 1.427E-02 4.351E-01 1.166E+00 7.174E-05 3.550E-01 8.652E-01 15.0 7.42EE-03 4.280E-01 9.673E-01 3.780E-05 3.511E-01 7.517E-01 20.0 3.914E-05 4.I'etE-01 8.400E-01 2.016E-05 3.46tE-01 6.608E-01 25.0 2.090E-03 4.099E-01 7.38tE-01 1.089E-05 3.407E-01 5.834E-01 30.0 1.131E-03 4.006E-01 6.515E-01 3.34tE-04 3.288E-01 4.573E-01 40.0 3.486E-04 3.823E-01 5.105E-01 1.14tE-04 3.165E-01 3.600E-01 50.0 1.197E-04 3.650E-01 4.018E-01 4.668E-05 3.046E-01 2.840E-01 60.0 4.9Z1E-05 3.490E-01 3.170E-01 I

2.44tE-05 2.95tE-01 2.244E-01 70.0 2.583E-05 3.34tE-01 E.50SE-01 1.626E-05 E.8Z6E-01 1.775E-01 80.0 1.720E-05 3.207E-01 1.981E-01 1.278E-05 2.727E-01 1.404E-01 90.0 1.350E-05 3.084E-01 1.567E-01 1.098E-05 Z.635E-01 1.111E-01 100.0 1.159E-05 2.970E-01 1.240E-01 l

9.843E-06 E.550E-01 8.796E-02 110.0 1.038E-05 2.866E-01 9.817E-02 l

l 1

1

)

O 3.54-20

{

I Q

Table C.7 BWR decay heat rates (W/kgU) of light elements, actmides, kfu) and fission products, for specific power = 30 kW/kgU, Set I l

Burnup a 20 mwd /kgU Cooiing Burnup = 25 llWd/kgU

Time, Lagnt El Actinides Fis Prod years Laght El Actinades Fiz Fred 7.591E-02 2.580E-01 6.475E+00 1.0 8.104E-02 3.892E-01 7.316E*00
4. 6 21 E-02 1.816E-01 4. 711E *00 1.4 5.080E-02 2.731E-01 5.397E*00 5.561E-02 1.Z89E-01 3.203E+00 2.0 3.970E-02 1.924E-0! 3.726E*00
3. 046E-0 2 1. 06 tE -01 2. 0 74E
  • 00 2.8 3.405E-02 1.56 7E-01 2.4 60E
  • 00 2.529E-02 1.01tE-01 1.255E+00 4.0 2.830E-0Z 1.472E-01 1.529E*00 2.188E-02 1.028E-01 9.384E-01 5.0 2.450E-02 1.48tE-01 1.16tE+00 1.655E-0E 1.079E-01 6.725E-01 7.0 1.855E-0Z 1.530E-01 8.4 35E-01 1.100E-02 1.148E-01 5.39BE-01 10.0
1. 235E-02 1.597E-Cl 6. 776E-01 5.63BE-03 1.241E-01 4.49tE-01 15.0
6. 356E-03 1.684E-ol 5.619E-01 2.918E-03 1.308C-01 3.916E-01 20.0
3. 30 9E-03 1. 745E-01 4.8 90E-01 1.5 ZEE-0 3 1. 357E-01 3.450E-01 25.0 1.738E-03 1.786E-01 4.304E-01 8.005E-04 1.391E ;; ;.*;;; G1 30.0 9.tZ2E-04 1.81tE-01 3.804E-01
2. 2 90E-04 1. 4Z 7E -01 2. 3 96 E-01 40.0 2.701E-04 1.831E-01 2.986E-OI 7.194E-05 1.436E-01 1.88BE-01 50.0
8. 718E-05 1.825E-01 Z.352E-01
2. 76 95-05 1.42EE-01 1.491E-01 60.0 3.40ZE-05 1.799E-01 1.857E-01 1.45 9E-05 1.411E-01 1.179E-01 70.0
1. 764E-05 1. 76 7E-C I 1.468E-01
1. 0 2 9E-05 1. 389E-01 9. 322E-02 80.0 1.203E-05 1.730E-01 1.161E-01 8.564E-06 1.364E-01 7.376E-Ot 90.0 9.736E-06 1.693E-03 9.185E-02
7. 6 35E-06 1. 3 38E-01 5.8 38E-02 100.0 8.539E-06 1.655E-Cl 7.269E-02 6.986E-06 1.31EE-01 4.621E-02 110.0 7.745E-06 1.61BE-01 5.754E-02 l

A Table C.8 BWR decay heat rates (W/kgU) oflight elements, actinides, and fission products, for specific power - 30 kW/kgU, Set 2 Surnup = 30 MHd/kgU Cooling Burnup a 35 llad/kgu

Time, Light L1 Actinides Fin Frod years Light El Actinides Fis Prod 8.512E-02 5.349E-01 7.931E+00 1.0
8. 934E-02 6. 945E-01 8.5 5fE +00 5.45',E-02 3.770E-01 5.925E600 1.4 5.803E-02 4.935E-01 6.454E+00 4.307E-02 2.666E-01 4.153E+00 2.0 4.609E-02 3.525E-01 4.ESCE+00 3.704E-0Z t.170E-01 2.796E+00 E.8 3.971E-02 2.883E-01 3.13ZE+00 3.084E-Og 2.0ZIE-01 1.783E*00 4.0 3.309E-02 2.680E-01 2.038E +00 2.67tE-0Z t.021E-01 1.176E+00 5.0 2.868E-02 2.644E-Ol 1.590E*00 Z.025E-02 2.058E-01 1.013E+00 7.0 2.176E-02 Z 685E-01 1.181E+00 1.3$1E-02 2.11tE-Ol 8.144E-01 10.0 1.453E-02 2.718E-01 9.504E-01 6.976E-03 E.178E-01 6.736E-01 15.0 7.523E-03 2. 753E-01 7.844E-01 3.648E-03 2.219E-01 5.855E-01 20.0
3. 94EE-0 3 E. 766E-01 6.811E -01 1.92tE-03 2.242E-01 5.151E-01 25.0 2.096E-03 2.763E-01 5.988E-01 1.031E-03 E.251E-01 4.550E-01 30.0 1.126E-03 2.719E-01 5.tBBE-01 3.076E-04 2.240E-01 3.569E-01 40.0 3.404E-04 2.6 9 7E-01 4.146E-01 1.014E-04 2.206E-Ol 2.881E-01 50.0 1.138E-04 2.629E-01 3.264E-01 4.00!E-05 2.159E-01 2.219E-01 60.0 4.528E-05 Z.555E-01 2.576E-01 2.056E-05 2.108E-01 1.753E-01 70.0 2.311E-05 2.479E-01 2.036E-01
1. 36*E-05 2.054E-01 1. 38 7E-01 80.0 1.516E-05 2.404E-01 1.610E-01 1.085E-05 2.001E-01 1.097E-01 90.0 1.184E-05 2.33ZE-01 1.274E.01 9.393E-06 1.949E-Ol 8.682E-02 100.0
1. 015E-05 2.264E-01 1.008E-01 8.461E-06 1.900E-01 6 873E-0Z 110.0 9.099E-06 E.200E-01 7.979E-02 O

lIO 3.54-21 l

1 Table C.9 BWR decay heat rates (W/kgU) oflight elements, actinides, and fission products, for specific power = 30 kW/kgU, Set 3 f

Durnup a 40 11Hd/kgu cooling Burnvp a 45 f1Hd/kgU

Time, Light El Actinides Fis Frod years Light El Actinades Fas Prod
9. 371E-02 8.840E-01 9.029E*00 1.0 9.716E-02 1.063E+00 9.546E600 6.150E-or 6.345E-01 6.883E*00 1.4 6.410E-02 7.70$E-Ol 7.334E+00
4. 91tE-02 4.590E-01 4. 945E *00 2.0 5.13tE-02 5.651E-01 5.32EE*00 4.241E-02 3.780E-01 3.435E*00 2.8 4.435E-OZ 4.694E-01 3.74tE+00 3.538E-0Z 3.507E-01 2.tTTE e00 4.0 3.701E-02 4.357E-01 2.518E+00 3.068E-02 3.470E-01 1.794E+00 5.0 3.211E-02 4.299E-01 2.000E+00 2.329E-0Z 3.463E-01 1.34!E*00 7.0 2.438E-OZ 4.264E-Ol 1.507E+00 1.556E-02 3.460E-01 1.081E+00 10.0 1.629E-0Z 4.224E-03 1.214E+00 8.070E-03 3.441E-01 8.899E-01 15.0 8.457E-05 4.149E-01 9.98tE-01 4.243E-03 3.407E-01 7.719E-01 20.0 4.451E-05 4.067E-01 8.653E-01 E.258E-03 3.363E-01 6.783E-01 E5.0 f.37tE-03 3.980E-Ol 7.600E-01 1.216E-03 3.313E-01 5.987E-01 30.0 1.281E-03 3.89tE-01 6.707E-01 3.703E-04 3.20tE-01 4.69tE-01 40.0 3.919E-04 3.718E-01 5.255E-01 1.248E-04 3.086E-05 3.693E-01 50.0 1.328E-04 3.553E-01 4.136E-01 5.001E-05 2.973E-01 2.914E-03 60.0 5.343E-05 3.400E-01 3.263E-01 Z.555E-05 2.866E-01 2.303E-01 70,0 E.730E-05 3.260E-01 2.578E-01 1.669E-05 2. 765E-01 1.822E-01 80.0 1.777E-05 3.131E-01 E.039E-01 1.297E-05 2.671E-01 1.441E-01 90.0 1.376E-05 3.014E-Ol 1.613E-01 1.1085-05 2.583E-01 1.140E-01 100.0 1.173E-05 2.906E-01 1.Z76E-01 9.913E-06 E.501E-01 9.024E-02 110.0 1.047E-05 2.806E-01 3.010E-Cl Table C.10 PWR decay heat rates (W/kgU) oflight elements, actinides, and fissio:1 product 3, for specific power = 18 kW/kgU, Set 1 Burnup a 25 TDhi/kgU Cooling Burner a 30 f1Hd/kgU Time.

Light El Actinides Fis Prod years Light El Actinides Fis Frod 1.19eE-01 4. 377E-01 5. 389E +00 1.0 1.269E-01 5.91FE-01 5.855E+00 l

1.06tE-01 3.00ZE-01 4.079E*00 1.4 1.130E-01 4. 091E-01 4. 487E

  • 00 9.579E-02 2.045E-01 E.90BE*00 2.0 1.021E-01 2.814E-01 3.249E+00 8.550E-02 1.620E-01 2.006E+00 2.8 9.313E-Ot 2.241E-01 2.tB6E+00 7.26tE-02 1.505E-01 1.328E +00 4.0 7.74tt-02 2.07tE-01 1.550E*00 i

6.351E-Of 1.515E-01 1.053E+00 5.0 6.773E-02 2.071E-01 1.245E+00 l

4.369E-02 1.567E-01 8.031E-01 7.0 5.191E-02 2.116E-01 9.597E-Cl 3.275E-02 1.64tE-01 6.609E-Ol 10.0 3.49tE-02 2.18tE-01 7.935E-01 l

1.6965-02 1.739E-01 5.530E-01 15.0 1.808E-02 2.264E-01 6.600E-01 8.8064-03 1.807E-01 4.8ttE-01 20.0 9.389E-03 2.318E-01 5.709E-01

(

4. 589E-03 1.855E-01 4. 247E-01 25.0 4.894E-03 1.351E-01 S.060E-01 l

2.406E-03 3.835E-03 3.755E-01 30.0 2.566E-03 E.367E-01 4.471E-01 l

6.87tE-04 1.910E-01 2.948E-01 40.0 7.34tE-04 2.366E-01 3.509E-01 l

2.235E-04 1.90SE-01 2.323E-01 50.0 2.399E-04 E.336E-OI t.764E-01 9.681E-05 1.88tE-01 1.834E-01 60.0 1.047E-04 2.290E-01 2.18tE-Ol

{

6.071E-05 1.849E-01 1.450E-Cl 70.0 6.620E-05 2.238E-01 1.724E-CI 4.91tE-05 1.81tE-01 1.147E-01 80.0 5.379E-05 2.183E-01 1.364E-01 4.4 25E-05 1. 77tE-01 9.0 7tE-02 90.0 4.856E-05 2.127E-01 1.079E-05 4.133E-05 1.735E-01 7.180E-02 100.0 4.541E-05 f.07tE-01 0.539E=Of 3.904E-05 1.693E-01 5.684E-02 110.0 4.293E-05 2.019E-01 6.759E-02 l

l O

3.54-22

{

i 1

\\

Table C.11 PWR decay heat rates (W/kgU) oflight elements, actinides, d

and fission products, for specinc power = 18 kW/kgU, Set 2 Bertiup = 35 11Hd/kgU Cooling Burnup a 40 11Wd/kgU

Time, Light El Actinides Fis Prod years Light El Actinides Fis P. U3
1. 319E-01 7. 60 ZE-01 6.194E *00 1.0 1.365E-01 9.352E C1 6.590E*00 1.177E-01 5. 30'5E-01 4. 800E *00 1.4 1.221E-01 6.608E-01 5.255E+00 1.064E-01 3.696E-01 3.5Z8E*c0 2.0 1.105E-01 4.680E-01 3.833E*00 9.506E-02 Z.965E-01 2.5Z9E+00 Z.8 9.8 70E-0 2 3. 797E-01 2. 785E +00 8.077E-0Z Z. 736E-01 1.754E*00 4.0 8.386E-02 3.507E-01 1.963E+00 7.064E-02 Z.721E-01 1.4Z6E+00 5.0 7.335E-02 3.4 76E-01 1.609E+00 5.416E-02 2. 751E-01 1.110E+00 7.0 5.623E-0Z 3.486E-01 1.261E*00 3.643E-02 2.798E-01 9.162E-01 10.0 3.783E-02 3.50SE-01 1.041E+00 1.887E-0Z Z.852E-01 7.640E-01 15.0 1.959E-02 3.522E-01 8.670E-01
9. 797E-03 2.879E-01 6.649E-01 20.0 1.017E-02 3.515E-01 7.540E-01 5.108E-03 2.888E-01 5.850E-01 E5.0 5.305E-03 3.49ZE-01 6.630E-01 2.680E-03 2.882E-Os 5.167E-01 30.0
2. 784E-03 3.457E-01 5.854E-01 7.683E-04 2.841E-01 4.052E-01 40.0
7. 997E-04 3. 36 7E-01 4.590E-01 2.5Z5E-04 Z. 778E-01 3.191E-01 50.0 2.641E-04 3.264E-01 3.614E-01 1.114E-04 2.705E-01 2.518E-01 60.0 1.175E-04 3.156E-01 E.852E-OI 7.106E-05 Z.6tBE-01 1.990E-01 70.0 7.559E-05 3.049E-01 2.2535-01 5.804E-05 2.551E-01 1.574E-01 80.0 6.201E-05 2.947E-01 1.78ZE-01 5.251E-05 2.476E-01 1.245E-01 90.0 5.621E-05 Z.849E-01 1.410E-01
4. 916E-05 2.404E-01 9.855E-OZ 100.0 5.267E-05 2.758E-01 1.116E-01 4.65ZE-05 2.335E-01 7.801E-0Z 110.0 4.989E-05 2.672E-01 8.831E-02 I n

/

1 Table C.12 PWR decay heat rates (W/kgU) oflight elements, actinides, U

and fission products, for specinc power = 18 kW/kgU, Set 3 -

Burnup a 45 MHd/kgU cooling Burnup a 50 MHd/kgU Time.

Light El Actinides Fis Prod years Laght El Actinades Fiz Prod 1.410E-01 1.144E+00 6.891E+00 1.0 1.458E-01 1.354Ee00 7.273E+00 1.264E-01 8.180E-01 5.435E+00 3.4 1.308E-01 9.824E-01 5.781E+00 1.144E-01 5.883E-01 4.090E+00 Z.0 1.185E-01 7.198E-01 4.385E+00 1.0Z2E-01 4.820E-01 3.011E*00 2.5 1.059E-01 5.973E-01 3.259E*00 8.685E-02 4.454E-01 2.153E+00 4.0 8.996E-0Z 5.533E-01 2.354E *00 7.597E-02 4.399E-01 1.778E*00 5.0 7.869E-02 5.452E-01 1.952E+00 5.824E-02 4. 378E-01 1.401F+00 7.0 6.033E-02 5.395E-01 1.543E+00 3.9tBE-0Z 4.3ESE-01 1.158E+00 10.0 4.059E-02 5.32ZE-01 1.274E+00 2.029E-02 4.31EE-01 9..*>Z8E-01 15.0 2.10ZE-02 5.200E-01 1.058E *00 1.054E-02 4.251E-01 8.367E-01 20.0 1.092E-02 5.074E-01 9.187E-01 5.498E-03 4.181E-01 7.354E-01 25.0 5.6 98E-05 4. 947E-01 8.0 72E-01 2.88 7E-03 4.106E-01 6.491E-01 30.0 2.993E-03 4.821E-01 7.12ZE-01 8.315E-04 3. 94 7E-C I 5. 08 7E -01 40.0 8.641E-04 4.580E-01 5.579E-01

2. 766E-04 3.789E-01 4.004E-01 50.0 2.891E-04 4.356E-01 4.391E-01 1.246E-04 3.636E-01 3.157E-01 60.0 1.315E-04 4.15ZE-01 3.464E-01 8.104E-05 3.493E-01 2.496E-01 70.0
8. 632E-05 3. 966E-01 Z.737E-01

(

6.684E-05 3.360E-01 1.574E-01 80.0 7.150E-05 3.797E-01 2.164E-01 1

6.072E-05 3.Z36E-01 1.562E-01 90.0 6.507E-05 3.643E-01 1. 71tE-01 5.696E-05 3.121E-01 1.236E-01 100.0 6.108E-05 3.50tE-01 1.355E-01 5.398E-05 3.014E-01 9.-783E-02 110.0 5.792E-05 3.373E-01 1.073E-01 O

i iV 3.54-23 l

Table C.13 PWR decay heat rates (W/kgU) oflight elements, actinides.

and fission products, for specific power = 28 kW/kgU, Set 1

(

Burnup s 25 MHd/kgU Cooling Burnap

r. 30 MHd/kgU Tim e,

Light El Actinides Fis Prod years Cight El Actinides Fis Prod 1.361E-01 3.874E-01 7.036E400 1.0 1.4 6 t E-01 5. 340E-01 7. 710E + 00 1.181E-01 2. 700E-01 5. 205E + 00 1.4

1. 27EE-01 3. 7 34E -01 5. 77ZE
  • 00 1.058E-01 1.885E-01 3.606E+00 2.0 1.144E-01 2.615E-01 4.056E*00 9.420E-02 1.527E-01 E.394E*00 2.8 1.OZOE-01 2.115E-01 2.741E*00
7. 992E-02 1.436E-01 1.500E *00 4.0 8.653E-02 1.973E-01 I.759E*00 6.986E-02 1.450E-01 1.148E+00 5.0 7.564E-02 1.977E-01 1.364E+00
5. 353E -0 2 1.506E-01 8.4 t CE-01 7.0 5.796E-02 2.026E-01 1.010E+00 3.607E-02 1.583E-01 6.791E-01 10.0 3.898E-02 2.096E-01 8.159E-01 1.864E-02 1.685E-DI 5.645E-01 15.0 2.018E-02 2.184E-01 6.764E-01 9.672E-03 1.757E-01 4.916E-01 20.0 1.047E-02 2.243E-01 5.tS3E-01 5.038E-03 1.808E-01 4.329E-01 25.0 5.454E-03 Z.280E-01 5.176E-01 2.638E-03 1.841E-01 3.826E-01 30.0 E.857E-03 2. 300E-01 4.573E-01 7.49 7E-04 1.871E-01 3.004E-01 40.0 8.1Z4E-04 E.30EE-01 3.58CE-01 E.405E-04 1.870E-01 2.367E-01 50.0 Z.611E-04 2.281E-01 Z.876E-01 1.015E-04 1.850E-01 1.869E-01 60.0 1.106E-04 Z.241E-01 E.231E-01 6.210E-05 1.8ZOE-01 1.477E-01 70.0
6. 793E-05 Z.193E-01 1.763E-01
4. 961E-05 1. 786E-01 1.168E-0 8 80.0 5.440E-05 2.141E-01 1.394E-01 4.450E-05 1.749E-01 9.243E-02 90.0 4.886E-05 2.089E-01 1.103E-01 4.150E-05 1.711E-05 7.315E-02 100.0 4.561E-05 2.038E-01 8.730E-02
3. 919E-05 1. 6 74E-01 5. 791E-0Z !!0.0 4.311E-05 1.988E-01 6.911E-02 Table C.14 PWR decay heat rates (W/kgU) oflight elements, actinides, and fission products, for specific power - 28 kW/kgU, Set 2 Burnup a 35 f1Hd/kgU cooling Burnup a 40 itHd/kgU Timee Light El Actinides Fis Prod years Light El Actinides Fis Frod 1.539E-01 6.960E-01 8.205E*00 1.0 1.613E-01 8.674E-01 8.747E+00 1.353E-01 4.903E-01 6.211E+00 1.4 1.420E-01 6.!?0E-01 6'682E+00 1.214E-01 3.464E-01 4.426E+00 2.0 1.278E-01 4.41ZE-01 4.816E*00 1.08tE-01 Z.81tE 31 3.046E+00 g.8 1.139E-01 3.609E-01 3.360E+00 9.18tE-02 2.612E-01 1. 999E +00 4.0 9.670E-02 3.548E-01 f.244E*00 8.ctcE-02 2.603E-01 1.570E+00 5.0 8.455E-0Z 3.3ZZE-01 1.778E*00 6.151E-02 2.637E-01 1.175E +00 7.0 6.479E-02 3. 338E-01 1.341E *00 4.137E-02 2.689E-01 9.505E-01 10.0 4.357E-02 3. 365E-01 1.085E+00 2.141E-02 2.749E-11 7.863E-CI 15.0 2.Z55E-02 3.387E-01 8.958E-01 1.111E-02 2.783E-01 6.83tE-01 20.0 1.171E-02 3.387E-01 7.776E-01 5.789E-03 2.797E-01 6.008E-01 25.0 6.098E-05 3.371E-CI 6.835E-01

)

3.033E-03 2. 796E-01 5. 306E-01 30.0 3.195E-05 3.342E-01 6.034E-01 8.63tE-04 2.763E-01 4.161E-01 40.0 9.102E-04 3.Z63E-01 4.730E-01 i

2. 78tE-04 E. 70 7E-01 3. 2 76E-01 50.0 2.940E-04 3.168E-01 3.723E-01

)

1.185E-04 Z.640E-01 2.586E-01 60.0 1.258E-04 3.068E-01 E.938E-01 7.316E-05 2.568E-01 2.043E-01 70.0 7.803E-05 2.969E-01 2.322E-01 5.877E-05 2.496E-01 1.616E-01 80.0 6.Z86E-05 Z.873E-01 1.836E-01

5. 28 7E-05 2.426E-01 1.278E-01 90.0 5.663E-05 2. 782E-01 1.452E-01
4. 940E-05 2. 353E-O l 1. 01 ZE-01 100.0 5.Z95E-05 2.695E-01 1.149E-01 4.6735-05 Z.294E-01 8:008E-02 110.0 5.012E-05 2.614E-01 9.096E-0Z O'

3.54-24

\\

I Table C.15 PWR decay heat rates (WAgU) oflight elemer,ts, actinides,

/7 and fission products, for specific power = 28 kWAgU, Set 3 1/

Burnup a 45 tiHd/kgu Cooling Burnup = 50 MHd/kgU

,U

Time, Light El Actinides Fis Frod years L2ght El Actinides Fis Prod 1.690E-01 1.073E+00 9.156E+00 1.0 1 767E-01 1.28tE+00 9.661E+00 1.493E-01 7. 710E-01 7. 058E *00 1.4 1.565E-01 9. 334E-01 7.503E *00 1.344E-01 5.585E-01 5.145E+00 2.0 1.410E -01 6.8 70E-01 5. 518E + 00 1.199E -01 4. 603E-01 3. 640E
  • 00 2.8
1. tS8E-01 5. 721 E-01 3. 944E + 00 1.01EE-01 4.267E-01 2.471E*00 4.0 1 06BE-01 5,310E-01 2.708E+0u 8.901E-02 4.218E-01 1.975E+00 5.0 9.341E-02 5.234E-01 2.176E*00 6.821E-02 4.20tE-01 1.499E+00 7.0 7.158E-02 5.180E-01 1.658E+00 4.587E-02 4.189E-01 1.21EE *00 10.0 4.814E-02 5.116E-01 1.340E+00 2.374E-02 4.151E-01 9.993E-01 15.0 2.49tE-02 5.003E-01 1.10ZE+00 1.233E-02 4.098E-01 8.666E-01 20.0 1.294E-02 4.886E-01 9.552E-01 6.4ttE-0 5 4.036E-"1 '

r at 25.0 6.741E-05 4.766E-01 8.587E-01 3.366E-03 3.96 7E-01 6. '19E-01 7

30.0 3.534E-03 4.648E-01 7.400E-01 9.603E-04 3.820E-01 5. 26 4E-01 40.0 1.009E-05 4.420E-01 5.796E-01 3.114E-04 3.67tE-01 4.143E-01 50.0 3.285E-04 4.209E-01 4.560E-01 1.34tE-04 3.529E-01 3.269E-01 60.0 1.424E-04 4.016E-01 3.598E-01 8.388E-05 3.394E-01 Z.583E-01 70.0

8. 954E-05 3.841E-01 2.84tE-01 6.784E-05 3.269E-01 2.04tE-01 80.0 7.264E-05 3.681E-01 2.Z47E-01 6.121E-05 3.15tE-01 1.616E-01 90.0 6.563E-05 3.536E-01 1.778E-01 5.729E-05 3.044E-01 1.279E-01 100.0 6.146E-05 3.404E-01 1.40 7E-01 5.425E-05 Z.943E-01 1.01tE-01 110.0 5 823E-05 3.28tE-01 1.114E-01 lp Table C.16 PWR decay heat rates (WAgU) oflight elements, actinides, and fission products, for specific power - 40 kWAgU, Set 1

)

Burnup 8 Z5 mwd /kgU cooling Burnup s 30 MHd/kgU

.J

Time, Light El Actinides Fis Prod years Light El Actinides Fis Prod 1.485E-01 3.419E-01 8.456E+00 1.0
1. 60 7E -01 4.800E-01 9.41 tE + 00
1. tS 9E-01 2.435E-01 6.145E + 00 1.4 1.374E-01 3.420E-01 4.921E+00 1.119E-01 1.754E-01 4.175E +00 2.0 1.tt4E-01 f.459E-01 4. 761E+00
9. 944E-02 1.4 58E-01 2.70ZE+00 2.8 1.088E-01 2.033E-01 3.129E+00
8. 4 28E -02 1. 389E -01 1.630E*00 4.0 9.225E-02 1.917E-01 1.928E+00
7. 36 5E-02 1.406E-01 1.215E+00 5.0 8.061E-02 1. 926E-01 1.455E+00 5.641E-0Z 1.463E-01 8.646E-01 7.0 6.175E-02 1. 977E-01 1.045E+00 3.793E-02 1.543E-01 6.886E-01 0.0 4.15tE-02 2.049E-01 8.315E-01 1.963E-02 1.646E-01 5.700E-01 15.0 2.148E-02 2.140E-01 6.85PE-01 1.019E-02 1.721E-01 4.960E-01 to.O 1.115E-02 2.203E-01 5.960E-01
5. 304E-0 3 1. 773E-01 4. 36 7E-01 25.0 5.805E-03 2.24tE-01 5.243E-01 2.776E-03 1.808E-01 3.859E-01 30.0 3.038E-03 2.265E-01 4.631E-01 7.86 7E-04 1.841E-01 3. 0 30E-01 40.0 8.61tE-04 2.274E-01 3.635E-01 Z.505E-04 1.84tE-01 2.387E-01 50.0 2.743E-04 2.253E-01 E.86tE-01 1.04tE-04 1.825E-01 1.884E-01 60.0 1.143E-04 2.236E-01 2.tS9E-01 6.28 7E-05 1. 79 7E-01 1.489E-01 70.0 6.90ZE-05 2.170E-01 1.785E-01 4.985E-05 1.764E-01 1.178E-01 80.0 5.479E-05 2.120E-01 1.41EE-01 4.459E-05 1.728E-01 9.320E-02 90.0
4. 905E-05 2.070E-01 1.117E-01 4.155E-05 1.69tE-01 7.376E-02 100.0 4.574E-05 2.020E-01 8.839E-02 3.923E-05 1.656E-01 5.839E-02 110.0 4.32tE-05 1.97tE-01 6.997E-CZ f~h

\\

\\

/

w/

3.54-25

Table C.17 PWR decay heat rates (W/kgU) oflight elements, actinides, and fission products, for specific power = 40 kW/kgU, Set 2 l

Burnap = 35 ffHd/kgU cooling Burnup = 40 HWd/kgU

Time, l

Light El Actinides Fis Prod years

' Light El Actinides tis Prod i

1.706E-01 6.341E-01 1.010E*01 1.0 1.800E-01 7.998E-01 1.004E+01 l

1.469E-01 4.538E-01 7.510E+00 1.4

1. 557E-01 5. 766E-01 8.131 E
  • 00 f
1. 311 E-01 3. Z 77E-01 5. 235E
  • 00 2.0 1.393E-01 4.201E-01 5.725E+00 1.167E-01 E.709E-01 3.496E+00 Z.8 1.239E-01 3.48 7E-01 3.873E+00 9.891E-02 2.538E-01 E.201E+00 4.0 1.053E-01 3.tS8E-01 2.479E*00 8.644E-02 2.534E-01 1.681E+00 5.0 9.183E-0Z 3.238E-01 1.911E*00 6.621E-02 E.571E-01 1.Zt0E*00 7.0 7.034E-02 3.257Es01 1.397E*00 4.45EE-02 2.626E-01 9.713E-01 10.0
4. 729E-0Z 3.287E-01 1.11EE*00 2.304E-02 2.689E-01 7.990E-01 15.0 2.447E-02 3.314E-01 9.125E-01 i

1.195E-02 2.726E-01 6.934E-01 20.0 1.270E-02 3.318E-O! 7.911E-01 6.224E-03 2.743E-01 6.096E-01 25.0 6.612E-03 3.306E-01 6.951E-01

3. 258E-03 2. 745E-01 5. 381E-01 30.0 3.461E-03 3.281E-01 6.136E-01 9.ZIBE-04 2.717E-01 4.220E-01 40.0 9.818E-04 3.207E-01 4.809E-01 l

2.946E-04 2.66EE-01 3.323E-01 50.0 3.134E-04 3.117E-01 3.786E-01 1

1.Z30E-04 2.601E-01 2.622E-01 60.0 1.311E-04 3.022E-01 2.987E-01 l

7.449E-05 2.533E-01 2.07tE-01 70.0 7.960E-05 2.9tTE-01 E.360E-01

5. 9Z4E-05 2.464E-01 1.639E-01 80.0 6.340E-05 2.834E-01 1.866E-01 5.310E-05 2.396E-01 1.296E-01 90.0 5.688E-05 2.746E-01 1.477E-01 4.956E-05 2.331E-01 1.026E-01 100.0 5.313E-05 2.663E-01 1.169E-01 4.686E-05 2.268E-01 8.121E-02 110.0 5.027E-05 2.585E-01 9.249E-02 O

Table C.18 PWR decay heat rates (W/kgU) oflight elements, actinides, and fission products, for specific power - 40 kW/kgU, Set 3 Durnup a 45 MHd/kgu Cooling Burnup a 50 MHd/kgU

Time, Light El Actinides Fis Prod years Light El Actinados Fis Frod
1. 901E-01 9. 994E-01 1.139E+01 1.0 2.001E-01 1.206E+00 1.206E+01 1.65ZE-01 7.266E-01 8.622E+00 1.4 1.746E-01 8.867E-01 9.193E+00 1.480E-01 5.346E-01 6.138E+00 2.0 1.565E-01 6.612E-01 6.600E+00 1.318E-01 4.460E-01 4.209E+00 E.8
1. 3 94E-01 5.560E-01 4.572E+00
1. !! 8E-01 4.157E-01 2. 738E + 00 4.0 1.182E-01 5.18%E-01 3.010E*00 9.767E-02 4.114E-01 2.130E*00 5.0 1.033E-01 5.114E-01 2.355E+0G 7.482E-02 4.10tE-01 1.367E+00 7.0 7.917E-0Z 5.064E-01 1.739E+00 5.030E-0Z 4.09tE-01 1.246E+0C 10.0 5.323E-02 5.003E-01 1.382E+00 t.603E-Or 4.059E-01 1.020E *00 15.0 E.754E-02 4.896E-01 1.128E+00 l

1.351E-02 4.01CE-01 8.835E-01 20.0 1.429E-02 4.783E-01 9.761E-01

)

7.034E-03 3.951E-01 7.759E-01 25.0 7.443E-03 4.668E-01 8.56BE-C1 3.68tE-05 3.886E-01 6.846r.-01 30.0 3.897E-03 4.554E-01 7.557E-01 1.045E-05 3.746E-01 5.363E-01 40.0 1.107E-03 4. 334E-01 5. 918E-01 3.345E-C4 3.604E-01 4.ZEIE-01 50.0 3.549E-04 4.130E-01 4.657E-01 1.406E-04 3.466E-01 3.330E-01 60.0

1. 4 9 7E-04 3.943E-01 3.673E-01 8.574E-05 3.336E-01 2.431E-01 70.0 9.166E-05 3.773E-01 f.90ZE-01 6.84BE-05 3.215E-01 2.08CE-01 80.0 7.336E-05 3.620E-01 2.295E-01 6.151E-05 3.!O3E-01 1.646E-01 90.0 6.596E-05 3.480E-01 1.815E-01 5.749E-05 2.998E-01 1.302E-01 100.0 6.16EE-05 3.351E-01 1.4 3 7E-01 5.44tE-05 2.902E-01 1.031E-01 110.0 5.841E-05 3.234E-01 1.137E-01 0

3.54-26

_-Y

Velue / Impact St:tement A Value/ Impact Statement was published with Regulatory Guide 3.54 when it was issued in September 1994.

O.

No changes are necessary, so a separate value/ impact statement for this proposed Revision 1 has not been prepared.

)

A copy of the value/ impact statement is available for inspection or copying for a fee in the Commission's Public

~'

Document Room at 2120 L Street NW., Washington, DC, under Regulatory Guide 3.54. The PDR's mailing l

address is the Mail Stop LL-6, Washington, DC 20555; telephone (202) 634-3273; fax (202) 634-3343.

.4 I

.\\

v L

I a

\\v/

3.54-27

[

~

ll NU C

WL P

A E E

A N

S A

H R L

I R

TO N

U E

Y F G

FF T GIN I

OC O UT RI L E A

PL

,N AD R B D T S NU AS C OT TI RA N

E 2YT E

0 E

US 5C SS S

,E 5O 5

M 0 M 30 0 I 0

0S 1

IS O

N PO S

F P

TI E

AR R GS IM ET T AC NL N D A O

S FS G

EEM 4 SA 7

I PL A

!D

_