ML15328A072: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(9 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 11/20/2015
| issue date = 11/20/2015
| title = Northwest Medical Isotopes, LLC - Document No. NWMI-2015-RAI-001, Revision 0, Appendices B, C, D, and E. Part 2 of 14
| title = Northwest Medical Isotopes, LLC - Document No. NWMI-2015-RAI-001, Revision 0, Appendices B, C, D, and E. Part 2 of 14
| author name = McManus G
| author name = Mcmanus G
| author affiliation = Northwest Medical Isotopes, LLC, Portage, Inc
| author affiliation = Northwest Medical Isotopes, LLC, Portage, Inc
| addressee name =  
| addressee name =  
Line 18: Line 18:


=Text=
=Text=
{{#Wiki_filter:*'°egl"NDTW£SM!IAZO~ENWMI-201 5-RAI-001Rev. 0Appendix B -EDF-3124-0008, Emissions from Natural Gas-Fired Boiler OperationB-i Document ID:EDF-3124-0008Revision ID:0AEffective Date: June 26, 2014Engineering Design FileI Emissions from Natural Gas-Fired Boiler and Emergency Diesel GeneratorOperationPortage Project No.: 3124Project Title: NWMI Environmental ReportPortageTEM-900209/29/09Rev. 0 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 1 of 51. Portage Project No.: 31242. Project/Task: NWMI Environmental Report3. DCN#4. Title: Emissions fr'om Natural Gas-Fired Boiler and Emergency Diesel Generator Operation5. NPH PC or SDC: N/A6. SSC Safety Category: N/A7 Summary: This EDF documents the methods used to calculate the emissions of CO, NOR, PM-10, PM-2.5, VOCCO2, VOC and SOx, from the two process steam boilers, the two HVAC boilers and the emergency generatorthat will be used for the operation of the NW/MI facility.7 Distribution: (Portage, Inc.)7. Review (R) and Approval (A) Signatures:(Identify minimum reviews and approvals. Additional reviews/approvals may be added.)_____Printed Name/____________RA Organization Signature DateAuthor/Design Agent a Gary McManus 61 !'[)''g'l[ dx' 6/26/14Independent Review R Dave T home , ,.6/26/14Independent Review RProject Manager R/A John Belier 6/26/14Registered Professional Engineer's Stamp (if required) Z]N/AINTRODUCTIONSeveral combustion sources at the proposed RPF would contribute to the gaseous effluents. Thesecombustion sources are two natural gas-fired boilers used for steam production and two natural gas-firedboilers used for heating. The two steam boilers and the two boilers used for heating each are releasedthrough two separate stacks. The boilers and generator all emit GO, NOx, PM, VOCs, and CO2.Theassumptions used for the four boilers are summarized in Table 1 below.
{{#Wiki_filter:NWMI-201 5-RAI-001
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 2 of 5Table 1. Boiler Operational ParametersSta od Steam Heat Boiler Fuel Energy Natural GasBoiler Factor Efficiency Content Consumption(lb/hr) (MBTU/lb) (%) MVBTU/hr (ft3/hr)Process #1 10000 9345 75 12460 12460Process #2 10000 9345 75 12460 12460HVAC #1 10000 9345 75 12896 12896IHVAC #2 10000 9345 75 12896 12896The emission factors used for the boilers are obtained from EPA 200, AP-42, Volume I, Table 1.4.1 andTable 1.4.2, these values are shown below in Table 2.Table 2. Emission Factors for Boilers.Pollutant Emission Factor UnitsCOa 84NOx a 50PM1 0 (Total) b 7.6 l/0 cPM1O (filterable) b 1.9lb6scVOC 5.5SO2 0.6CO2 d 120,000a. Controlled -Low NOx burnersb. All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometerin diameter. Therefore, the PM emission factors presented here may be used to estimatePM10, PM2.5 or PM1 emissions. Total PM is the sum of the filterable PM andcondensable PM. Condensable PM is the particulate matter collected using EPAMethod 202 (or equivalent). Filterable PM is the particulate matter collected on, or priorto, the filter of an EPA Method 5 (or equivalent) sampling train.c. Based on 100% conversion of fuel sulfur to SO2.Assumes sulfur content is naturalgas of 2,000 grains/106 cf. The SO2 emission factor in this table can be converted toother natural gas sulfur contents by multiplying the SO2 emission factor by the ratio ofthe site-specific sulfur content (grains/106scf) to 2,000 grains/106scf.d. Based on approximately 100% conversion of fuel carbon to CO2.CO2[lb/106 scfl =(3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO2, C =carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x 104 lb/106scf.
*'°egl"NDTW£SM!IAZO~E                                                                      Rev. 0 Appendix B -
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 3 of 5From Table 2 the hourly emission were calculated as follows:Emissions (lb/hr) = EF * (NGC/1 06)Where:EF = emission factor (lb/106scf)NGC =natural gas consumption (ft3/hr)For: CO = 84 * (12460/106)= 1.0 lb/hrTons/year =(1.0 lb/hr / 2000 lb/ton)
EDF-3124-0008, Emissions from Natural Gas-Fired Boiler Operation B-i
 
Document ID:EDF-3124-0008 Revision ID:0A Effective Date: June 26, 2014 Engineering Design File I Emissions from Natural Gas-Fired Boiler and Emergency Diesel Generator Operation Portage Project No.: 3124 Project
 
==Title:==
NWMI Environmental Report Portage                        TEM-9002 09/29/09 Rev. 0
 
TEM-9002                                      ENGINEERING DESIGN FILE                            EDF-31 24-0008 09/29/09                                                                                          Rev. 0A Rev. 0                                                                                            Page 1 of 5
: 1. Portage Project No.:     3124                2. Project/Task:   NWMI Environmental Report
: 3. DCN#
4.
 
==Title:==
Emissions fr'om Natural Gas-Fired Boiler and Emergency Diesel Generator Operation
: 5. NPH PC or SDC: N/A
: 6. SSC Safety Category: N/A 7 Summary: This EDF documents the methods used to calculate the emissions of CO, NOR, PM-10, PM-2.5, VOC CO 2, VOC and SOx, from the two process steam boilers, the two HVAC boilers and the emergency generator that will be used for the operation of the NW/MI facility.
7 Distribution: (Portage, Inc.)
: 7. Review (R) and Approval (A) Signatures:
(Identify minimum reviews and approvals. Additional reviews/approvals may be added.)_____
Printed Name/
Organization                       Signature             Date 61
____________RA Author/Design Agent             a   Gary McManus                           !'[)''g'l[ dx'           6/26/14 Independent Review               R   Dave Thome                    *  ,       ,.6/26/14 Independent Review               R Project Manager                 R/A John Belier                                                       6/26/14 Registered Professional Engineer's Stamp (if required)                                       Z]N/A INTRODUCTION Several combustion sources at the proposed RPF would contribute to the gaseous effluents. These combustion sources are two natural gas-fired boilers used for steam production and two natural gas-fired boilers used for heating. The two steam boilers and the two boilers used for heating each are released through two separate stacks. The boilers and generator all emit GO, NOx, PM, VOCs, and CO 2 . The assumptions used for the four boilers are summarized in Table 1 below.
 
TEM-9002                                                                                        EDF-31 24-0008 09/29/09 ENGINEERING DESIGN FILE                              Rev. 0A Rev. 0                                                                                          Page 2 of 5 Table 1. Boiler Operational Parameters Sta od   Steam Heat         Boiler       Fuel Energy     Natural Gas Boiler                            Factor         Efficiency       Content     Consumption (lb/hr)     (MBTU/lb)           (%)           MVBTU/hr         (ft3/hr)
Process #1             10000           9345             75             12460           12460 Process #2             10000           9345             75             12460           12460 HVAC #1               10000           9345             75             12896           12896 IHVAC #2             10000           9345             75             12896           12896 The emission factors used for the boilers are obtained from EPA 200, AP-42, Volume I, Table 1.4.1 and Table 1.4.2, these values are shown below in Table 2.
Table 2. Emission Factors for Boilers.
Pollutant                     Emission Factor                   Units COa                                                  84 NOx a                                                 50 PM1 0 (Total) b                                       7.6                   l/0     c PM1O (filterable) b                                   1.9lb                      6  sc VOC                                                  5.5 SO 2
* 0.6 CO 2 d                                             120,000
: a. Controlled -Low NOx burners
: b. All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM10, PM2.5 or PM1 emissions. Total PM is the sum of the filterable PM and condensable PM. Condensable PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.
: c. Based on 100% conversion of fuel sulfur to SO2. Assumes sulfur content is natural gas of 2,000 grains/10 6 cf. The SO2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO2 emission factor by the ratio of the site-specific sulfur content (grains/10 6 scf) to 2,000 grains/10 6 scf.
: d. Based on approximately 100% conversion of fuel carbon to CO 2 . CO2 [lb/10 6 scfl =
(3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO 2, C =
carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x 104 lb/106 scf.
 
TEM-9002                                    ENGINEERING DESIGN FILE                      EDF-31 24-0008 09/29/09                                                                                  Rev. 0A Rev. 0                                                                                    Page 3 of 5 From Table 2 the hourly emission were calculated as follows:
Emissions (lb/hr)   = EF * (NGC/1 06)
Where:
EF = emission factor (lb/10 6 scf)
NGC =natural gas consumption (ft3/hr)
For:               CO = 84 * (12460/106)
                        = 1.0 lb/hr Tons/year =(1.0 lb/hr / 2000 lb/ton)
* 24 hr/day
* 24 hr/day
* 7 days/week
* 7 days/week
* 50 weeks=4.4 tons/yr CO from Process boiler #1Total CO release is the sum of the two process boilers and the 2 HVAC boilers.The emissions were calculated in ton/yr assuming a boiler operation of 50 weeks per year. The results areshown in Table 3 below.Table 3. Emissions from the 4 natural gas fed boilersPollutant EmissionsProcess Boilers 1 & 2 (each) HVAC Boilers 1&2 (each) Total Emissions(lb/hr) (tons/yr) (lb/hr) (tons/yr) (tons/yr)CO 1.0E+00 4.4 1.1E+00 4.5 18NOx 6.2E-01 2.6 6.4E-01 2.7 11PMl0 (Total) 9.5E-02 0.40 9.8E-02 0.41 1.6PM10 (filterable) 2.4E-02 0.10 2.5E-02 0.10 0.40VOC 6.9E-02 0.29 7.1E-02 0.30 1.2SO2  7.5E-03 0.031 7.7E-03 0.032 0.13CO2  1.5E+03 6,300 1.5E+03 6,500 26,000Emergency Generator: The diesel generator is planned to be used for temporary operation and safeshutdown of the system if required. The emergency generator would emit CO, NOx, PM, SO2, VOCs,and CO2.The generator was assumed to be rated at 2,600 kw and the emission factors and annualemissions are shown below in Table 4Total Emissions were calculated as follows:Ei (kg) =EFi (g/kW-hr)
* 50 weeks
              =4.4 tons/yr CO from Process boiler #1 Total CO release is the sum of the two process boilers and the 2 HVAC boilers.
The emissions were calculated in ton/yr assuming a boiler operation of 50 weeks per year. The results are shown in Table 3 below.
Table 3. Emissions from the 4 natural gas fed boilers Pollutant                                          Emissions Process Boilers 1 & 2 (each) HVAC Boilers 1&2 (each)     Total Emissions (lb/hr)       (tons/yr)       (lb/hr)     (tons/yr)       (tons/yr)
CO                           1.0E+00           4.4         1.1E+00         4.5               18 NOx                          6.2E-01           2.6         6.4E-01         2.7               11 PMl0 (Total)                 9.5E-02           0.40         9.8E-02         0.41             1.6 PM10 (filterable)             2.4E-02           0.10         2.5E-02         0.10             0.40 VOC                          6.9E-02           0.29         7.1E-02         0.30             1.2 SO2                          7.5E-03           0.031         7.7E-03       0.032             0.13 CO 2                          1.5E+03           6,300       1.5E+03         6,500           26,000 Emergency Generator: The diesel generator is planned to be used for temporary operation and safe shutdown of the system if required. The emergency generator would emit CO, NOx, PM, SO 2 , VOCs, and CO 2. The generator was assumed to be rated at 2,600 kw and the emission factors and annual emissions are shown below in Table 4 Total Emissions were calculated as follows:
Ei (kg) =EFi (g/kW-hr)
* 0.001 (kg/g)
* 0.001 (kg/g)
* Power Rating (kw) x Hours Run per Year (hr/yr)Assumes 24 hours operation per year and 2,600 kw generator.
* Power Rating (kw) x Hours Run per Year (hr/yr)
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 4of 5Table 4. Emission Factors and Annual for Selected Pollutants (2,600 kw Emergency Generator)NOXa PM~ SO~abCOaNOxaa02PM"SOxa, bg/kW-hr ozikW-hr g/kW-hr oz/kW-hr g/kW-hr oz/kW-hr g/kW-hr oz/kW-hr g/kW-hr ozikW-hrEmission Factor3.3 0.12 7.9 0.28 710 25 0.43 0.015 2.5 0.087Emissions kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr kg/hr lb/hrStandby 2600 kW 8.7 19 21 45 1800 4000 1.1 2.4 6.4 14diesel______________________ _______generator per yearc 210 460 490 1000 44,000 97,000 27 59 150 340a Values from EPA, 2010, Compilation of Air Pollutant Emission Factors, Volume 1, Stationary Point and Area Sources, AP 42, Fifth Edition, U.S. Environmental ProtectionAgency, Office of Air and Radiation, Washington, D.C., 2010. Table 3.4.1b Assumes 0.5% sulfur content.SAssumes 24 hr/year operation for maintenance.
Assumes 24 hours operation per year and 2,600 kw generator.
TEM-900209129/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 5 of 5
 
TEM-9002                                                                ENGINEERING DESIGN FILE                                                            EDF-31 24-0008 09/29/09                                                                                                                                                    Rev. 0A Rev. 0                                                                                                                                                      Page 4of 5 Table 4. Emission Factors and Annual for Selected Pollutants (2,600 kw Emergency Generator)
PM~                           SO~ab COa                          NOXa NOxa                            a02                      PM"                           SOxa,b g/kW-hr       ozikW-hr       g/kW-hr       oz/kW-hr     g/kW-hr       oz/kW-hr       g/kW-hr       oz/kW-hr       g/kW-hr       ozikW-hr Emission Factor 3.3           0.12           7.9         0.28           710           25           0.43           0.015           2.5           0.087 Emissions                kg/hr         lb/hr         kg/hr         lb/hr         kg/hr         lb/hr       kg/hr           lb/hr         kg/hr         lb/hr Standby      2600 kW           8.7             19           21           45         1800           4000           1.1             2.4           6.4             14 diesel______________________                                                      _______
generator      per yearc         210           460           490         1000         44,000       97,000           27             59             150           340 a Values from EPA, 2010, Compilation of Air PollutantEmission Factors, Volume 1, Stationary Point and Area Sources, AP 42, Fifth Edition, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C., 2010. Table 3.4.1 b Assumes 0.5% sulfur content.
SAssumes 24 hr/year operation for maintenance.
 
TEM-9002                                                              ENGINEERING DESIGN FILE                                                                                                    EDF-31 24-0008 09129/09                                                                                                                                                                                        Rev. 0A Rev. 0                                                                                                                                                                                          Page 5 of 5


==Attachment:==
==Attachment:==
Excel spread sheet of calculationsPrrs 2... 934.52 Ofl for se~am at 25 xi9345 MN,75% Boiler Ef0,ienu,22440 MN, Fool cortent124600034,r Coo Cu,,,.14 1066;ha30% OxreessAo153004 ft3ft Coomkustio, AirPb btwgs l~ rate foreaoh of cxoo bolersPb,,t, vecndor infoocrmatioFIVAC 9672 MN, Pook HIVAC hooatg drrroalxISteam lteat Boirr Fuel Encrgr ata aI Stram Load I Factor I 0t19,m Cotnt Couso.75%Boilr, 03o¢nvEmlacion Farctor, Br Boil,,.Pollcteota Enilaslon Facoro UntllCO 84 hl4O ofNO,,' 50PMt0 (Tola[) ' 7.6PMI0 1 9VOC 5.5120,000 ___o A, P (62 2,O. 00.40006 .. r~t eik, = .u=*ad 2t, ho 00.1.aoc.0=nmct o od... eTh,,aoooorhePM l s siac fool. rp'*mlhtoo, re, bocod Io.OllcaboPM IO.,POl20.300Pld a...occ. TriPM iu th0 0.00000inh .0 ,000c.4c~o 08 70A Mo¢hod 202 6(,Op&u.210t FiO.8*2.kpM .i0 ,tt w .u00..Iof. e. The SO2o,,ooo..ao mt0. u. ho 0,0r0 to ud.h, c~a torO ..000r .ot,,o O10020t (t.faim16lt) ,flOo9.oou floal106 so002[100100 sel9 1 3.67) 1C01d,1C0D30 ..h0. CulON r.000,oJrOr.ru. 020.O00IO COC'006000t Iat O."f41by wtolt.dO D doy or 0(.44,204.z1o4 n6,2.050-09 4.446.23E-01 2026045E-02 2.72I19.47E-02 9.40 9.20E-02 0 42 162.970-02 0.10 2.45E-02 0.10 0.446.85E-02 1029 7.09E0 2 { 0.30 2.27.480-09 0.99 7.740-03 j 0 03 0.232.500'803 6.28E303 [ 1 55E0 3 630 25.359Enmhsbon. 8.,nPncoo,.Bollanl1&2 20b/hr) Each Esch (Ibthr
Excel spread sheet of calculations Prrs    2...
* iOPENWMI-201 5-RAI-001Rev. 0Appendix C -EDF-3124-0012, Emission Modeling for Process and IIVAC Boilers Using AERSCREENC-i Document ID:EDF-3124-0012Revision ID:1Effective Date: February 4, 2015Engineering Design FileEmission Modeling for Process and HVAC Boilers using AERSCREENPortage Project No.: 3124Project Title: NWMI Environmental Report4PortageTEM-900209/29/09Rev. 0 TEM-900209/29/09Rev. 01. Portage Project No.: 3124ENGINEERING DESIGN FILEEDF-3124-0012Rev. 1Page 1 of 202. Project/Task: NWMVI Enviromnmental Report3. DCNH#4. Title: Emission Modeling for Process and HVAC Boilers using AERSCREEN5. NPH PCor SDC: N/A6. SSC Safety Category: N/A7 Summary:This EDF documents the assumptions used and the results of the AERSCREEN modeling done for the 4 naturalgas fired boils used for the operation of the NWIVI facility. The results are then compared to the NAAQS andambient air concentrations.8 Distribution: (Portage, Inc.)9. Review (R) andApproval (A) Signatures: (Identify minimum reviews and approvals. Additional reviews/approvals mnay be added.)_____~Printed Name/R/A Organization Signature DateAuthor/Design Agent A Gary McManus () 2/04/15Independent Review R Dave Thorme ¢ 2/04/15Independent Review RProject Manager R/A John Beller 2/04/15Registered Professional Engineer's Stamp (if required) Z]N/A TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 2 of 20INTRODUCTIONAs described in EDF-3 124-0008 there will be two natural gas-fired boilers used for steamproduction and two natural gas-fired boilers used for heating. The two steam boilers and thetwo boilers used for heating each are released through two separate stacks. The boiler andgenerator all emit CO, NOx, PM, VOCs, and C02. The assumptions used for the four boilersand the associated emissions are summarized in Tables 1 and 2 below.Table 1. Boiler Operational ParametersSemBoiler Fuel Energy Natural GasSteam Load HeatBoiler Factor Efficiency Content Consumption(lb/br) (MBTU/lb) (%) MBTU/hr (ft3/hr)Process #1 10000 9345 75 12460 12460Process #2 10000 9345 75 12460 12460HVAC #1 10000 9345 75 12896 12896HVAC #2 10000 9345 75 12896 12896Table 2. Emissions From The Four Natural Gas Fed Boilers (EDF-3 12 1-0008)Pollutant _____________ EmissionsProcess Boilers 1 & 2 HVAC Boilers 1 &2 TotalS~Emissions(lb/hr) (tons/yr) (lb/br) (tons/yr) (tons/yr)CO 2.1E+00 8.8E+00 2.2E+00 9.1E+00 18NOx 1.2E+00 5.2E+00 1.3E+00 5.4E+00 11PM10 (Total) 1.9E-01 8.0E-01 2.0E-01 8.2E-01 1.6PM10 (filterable) 4.7E-02 2.0E-01 4.9E-02 2.1E-01 0.40VOC 1.4E-01 5.76E-01 1.4E-01 6.0E-01 1.2SO2 1.5E-02 6.3E-02 1.6E-02 6.5E-02 0.13CO2 3.0E+03 1.3E+04 3.1E+03 1.3E+04 26,000Emissions from the boiler activities were evaluated using AERSCREEN, Version 11126. Thisscreening model uses standard defaults for meteorology, and terrain values. Modeled emissionsincluded: PM-10, PM-2.5, CO, nitrogen, and sulfur oxides (NOx), and SOx.). The assumptionsused for the modeling are presented below.
0019*
TEM-900209/29109Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 3 of 20ASSSUMPTIONSThe input assumptions used for the AERSCREEN model are summarized in Table 3 and 4below. Since the four boilers vent through two identical stacks only one run was done. Theresults of the run were then combined to give the approximate concentrations at the receptorlocations.Table 3. AERSCREEN Input Stack ParametersSOURCE EMISSION RATE: 0.1260 g/s 1.000 lb/hrSTACK HEIGHT: 22.86 meters 75.00 feetSTACK INNER DIAMETER: 0.305 meters 12.00 inchesPLUME EXIT TEMPERATURE: 310.9 K 99.95 Deg FPLUME EXIT VELOCITY: 17.929 m/s 58.82 ft/sSTACK AIR FLOW RATE 2772 ACFM 2772 ACFMRURAL OR URBAN: RURAL RURALFLAGPOLE RECEPTOR HEIGHT: 1.83 meters 6.00 feetINITIAL PROBE DISTANCE -- 5000. meters 16404. feetTable 4. Makemet Meteorology ParametersMIN/MAX TEMPERATURE: 255.4 / 302.6 (K)MINIMUM WIND SPEED: 0.5 m/sANEMOMETER HEIGHT: 10 metersDOMINANT SURFACE PROFILE: GrasslandDOMINANT CLIMATE TYPE: Average MoistureDOMINANT SEASON: SpringALBEDO: 0.18BOWEN RATIO: *0.4ROUGHNESS LENGTH: 0.050 (meters)For this screening model, no downwash was considered in the calculations since exact locationsand dimensions are still in the design phase. The closest residential receptor was assumed to be asingle family home located approximately 375 meters SSE from the facility location. Usingthese assumptions the AERSCREEN model was run and the results were obtained. A completelisting of the model is included in Attachment 1.
I  Stram Load      IISteam lteat Factor I Boirr 0t19,m Fuel Encrgr Cotnt ata Couso a
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 4 of 20RESULTSThe final run results for the maximum concentration downwind of the facility are summarized inTable 5 below.Table 5. AERSCREEN Results.Maximum] Scaled J Scaled] Scaled [ScaledCalculation 1-Hour] 3-Hour 8-Hour J24-Hour AnnualProcdureConcentration aFlat Terrain (gig/m3) J(jPtg/m3) J(gig/m3) ](btg/m3) (Pig/m3)_________ 17 17 J 15 J 10 1.7a. Distance from Source to maximum concentration location 136.00 metersUsing the AERSCREEN results above as well as the maximum concentration at 375 meters fromattachment 1 (i.e., 10.83 jig/in3), Table 6 and 7 were completed.Table 6. Emissions from Process Steam Demand -Natural Gas-Fired BoilersModeledconcentration toHourly Emissions MaximumclstEmission for Both Steam concentrationPollutant Factor Boiler a @ 136 m b residentialreceptor (375 m)c(lb/hr) (jig/in3) (jig/in3)CO 84 2.1E+00 3.5E+01 2.3E+01NOx 50 1.2E+00 2.1E+01 1.4E+01PM-10 7.6 1.9E-01 3.2E+00 2.1E+00PM-2.5 1.9 4.7E-02 8.0E-01 5.1E-015.5 1.4E-01 2.3E+00 1.5E+00SO2 0.6 1.5 E-02 2.5E-01 1.6E-01CO2 120,000 3.0E+03 5.0E+04 3.2E+04a. Hourly emission from process boiler 1 and 2 each shown in EDF-3 124-0008.b. This is maximum 1- hour concentration calculated by AERSCREEN equals 1 7jg/m3 perlb/hrc. This represents the highest 1 hour concentration at the closest receptor of 375 meters andequals 11 jig/mn3per lb/hr TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 5 of 20Table 7. Emissions from 2-H VAC Natural Gas-Fired HeaterModeledHourly Emissions Maximum concentration toEmission for Both HVAC concentration closestPluatFactor Boiler a @ 136 m bresidentialreceptor (375 m)(lb/hr) ([.tg/m3) (jig/mn3)CO 84 2.2E+00 3.6E+01 2.3E+01NOx 50 1.3E+00 2.2E+01 1.4E+01PM10 7.6 2.0E-01 3.3E+00 2.1E+00PM-2.5 1.9 4.9E-02 8.2E-01 5.3E-01VOC 5.5 1.4E-01 2.4E+00 1.5E+00SO2 0.6 1.6E-02 2.6E-01 1.7E-01CO2  120,000 3.1E+03 5.2E+04 3.3E+04a. Hourly emission from process boiler 1 and 2 each shown EDF-3 124-0008b. This is maximum 1- hour concentration calculated by AERSCREEN at 136 m equals 17jtg/mn3 / lb/hrc. This represents the highest 1 hour concentration at the closest receptor of 375 meters andequals 11 jig/mn3/ lb/hrSince both boiler stacks are co-located with the same characteristics the total downwindconcentration was assumed to be additive. These values were then compared to the NationalAmbient Air Quality Standards (NAAQS) to see if any of the 1-hour air standards wereexceeded. This comparison is summarized in Table 8 below.Table 8. Maximum Release Concentration Comparison to NAAQS StandardsMimmModeled Percentage ofconcentration to closestAQ NAAQS Limit atPolltant 136rato@ clst residential NASAASPoint ofreceptor____(375 m)______ ______ Maximum(___g/m3)__(jig/r3) (ppm) (jig/mn3) ConcentrationCO 7.2E+0+/-.E01 4.0E+04 0.18%NOx 4.3E+012.E019+222PM10 6.5E+00 PM-2.5 1 .6E+001.E0003 46SO2 4.7E+00 .6CO2 5.1E-01 3.3E-01_NANANa. Maximum Concentration is the sum of the 2 process boilers and the 2 HVAC boilers ________b. Concentration at closest residencec. Values in Green are actual standard values; values in yellow are the converted values.d. 24-hour standard for PM-10 and PM-2.5 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 6 of 20From Table 8 it is apparent that the modeled release concentrations are all below the applicableNAAQS standards. Therefore no additional modeling is required at this time.A similar evaluation of the model emission concentrations was performed to determine if theemissions exceed the regional ambient concentrations of the listed pollutants. Regional values ofthe five regulated pollutants for Missouri were obtained from the Missouri Division ofEnvironmental Quality Web Site for different monitoring stations in the state. The Tables 9summarizes the data in Attachment 2 used to determine the average values.Table 9. Ambient Air of Rural/Urban MissouriAmbient Air of Rural/UrbanPollutant Missouri3)CO 3.8E+03NOx 2.1E+01PMl0 1.7E+01PM-2.5 1.1E+01SO2 7.0E+00CO2 NAA similar evaluation of the model emission concentrations was performed to determine if theemissions exceed the regional ambient concentrations of the listed pollutants. Regional values ofthe five regulated pollutants for Missouri were obtained from the Missouri Division ofEnvironmental Quality Web Site for different monitoring stations in the state. The Tables 9summarizes the data in Attachment 2 used to determine the average values. Similar comparisonwas done toTable 10. Comparison of Modeled Concentrations to Average Ambient levels around the StateMissouri.Maiu codeledtato AminoAro Percentage of Ambient Airconcentrationoto Rural/UrbanPollutant concenratio closest residential Misuiconcentration Point of@16b receptor (375 m) b MisuiMaximum Concentration(ig/m3) (#tg/m3) (#.g/m3) ____________CO 7.2E+0l 4.6E+0l 3.8E+03 1.9%NOx 4.3E+01 2.7E+0l 2.1E+01 203%PM10 6.5E+00 4.2E+00 1.7E+01 38%PM-2.5 l.6E+00 1.0E+00 1.1E+01 15%SO2 4.7E+00 3.0E+00 7.0E+00 7.3%CO2 5.lE-01 3.3E-01 NA NAa Maximum Concentration is the sum of the 2 process boilers and the 2 ITVAC boilersb Concentration at closest residence Attachment 1 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-3124.-0012Rev. 1Page 7 of 20ATTACHMENT 1.AERSCREEN FilesText File:Start date and time 02/05/15 08:19:04AERSCREEN 11126NWMI PROCESS BOILER-.........DATA ENTRY VALIDATIONMETRIC ENGLISH** STACKDATA **------------------Emission Rate: 0.1260 g/s 1.000 lb/hrStack Height: 22.86 meters 75.00 feetStack Diameter: 0.3 05 meters 12.00 inchesStack Temperature: 310.9 K 100.0 Deg FExit Velocity: 17.929 m/s 58.82 ft/sStack Flow Rate: 2771 ACFMModel Mode: RURALDist to Ambient Air: 1.0 meters 3. feet** BUILDING DATA **No Building Downwash Parameters** TERRAIN DATA * *No Terrain ElevationsSource Base Elevation: 0.0 meters0.0 feetProbe distance: 5000. meters 16404. feetFlagpole Receptor Height: 1.8 meters6. feetNo discrete receptors used** METEOROLOGY DATA **
934.52 BI~uO* Ofl for se~amat 25 xi 9345MN, 75%         BoilerEf0,ienu, 22440MN,     Fooloner* cortent 124600034,r CooCu,,,.14                             1066;ha 30%         OxreessAo 153004ft3ft  Coomkustio, Air                                                Emlacion Farctor, Br Boil,,.                                                    Enmhsbon.8.,n Pollcteota          Enilaslon Facoro        Untll                Pncoo,.Bollanl1&2 2 Pb        l~ rate foreaoh of cxoobolers btwgs 0b/hr) Each  {tons/*r} Esch    (Ibthr Pb,,t,vecndorinfoocrmatio                                  CO                        84             hl4O of            2.050-09          4.44 NO,,'                     50                                6.23E-01          202                                I1 6045E-02    2.72 PMt0 (Tola[)'                 7.6                                9.47E-02          9.40          9.20E-02    0 42    16 PMI0 (fl*orabe)bI                19                                2.970-02          0.10          2.45E-02    0.10    0.44 VOC                      5.5                                6.85E-02          1029          7.09E0 2 {  0.30    2.2 FIVAC    9672MN,     Pook HIVAChooatg drrroalx                                                                                                7.480-09          0.99          7.740-03 j  0 03    0.23
TEM-9002 ENGINEERING DESIGN FILE EDF-3124-001209/29/09 Rev. 1Rev. 0 Page 8 of 20Min/Max Temperature: 255.4 / 302.6 K 0.0 / 85.0 Deg FMinimum Wind Speed: 0.5 m/sAnemometer Height: 10.000 metersDominant Surface Profile: GrasslandDominant Climate Type: Average MoistureAERSCREEN output file:boilerl .out** AERSCREEN Run is Ready to BeginNo terrain used, AERMAP will not be runSURFACE CHAPRACTEPISTICS & MAKEMETObtaining surface characteristics...Using AERM4ET seasonal surface characteristics for Grassland with Average MoistureSeason Albedo Bo zoWinter 0.60 1.50 0.001Spring 0.18 0.40 0.050Summer 0.18 0.80 0.100Autumn 0.20 1.00 0.010Creating met files aerscreen_01_01.sfc & aerscreen_01 01.pflCreating met files aerscreen_02_01 .sfc & aerscreen_02 01 .pflCreating met files aerscreen_03_01 .sfc & aerscreen_03 01 .pflCreating met files aerscreen_04_01 .sfc & aerscreen_04 01 .pflPROBE started 02/05/15 08:19:34Running probe for Winter sector 1AERMOD Finishes Successfully for PROBE stage 1 Winter sector1***** WARNING MESSAGES *****
          .75%        Boilr, 03o¢nv                                              CO.,*                  120,000          ___                2.500'803      6.28E303    [    155E0 3  630 5E*3  25.359 o A, P (622,O. 00.40006 .. r~teik, = .u=*ad2t,ho00.
TEM-9002 ENGINEERING DESIGN FILE EDF-3124-001209/29/09 Rev. 1Rev. 0 Page 9 of 20*** NONE ***Running probe for Spring sector 1AERMOD Finishes Successfully for PROBE stage 1 Spring sector1*** NONE ***Running probe for Summer sector 1AERMOD Finishes Successfully for PROBE stage 1 Summer sector1******** WARNING MESSAGES ********** NONE **Running probe for Autumn sector 1AERMOD Finishes Successfully for PROBE stage 1 Autunmn sector1***** WARNING MESSAGES *********** NONE ***PROBE ended 02/05/15 08:19:3 8REFINE started 02/05/15 08:19:38AERMOD Finishes Successfully for REFINE stage 3 Spring sector1***** WARNING MESSAGES ******** NONE **REFINE ended 02/05/15 08:19:38AERSCREEN Finished SuccessfullyWith no errors or warningsCheck log file for detailsEnding date and time 02/05/15 08:19:39 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-3124-0012Rev. 1Page 10 of 20OUTPUT FILE:AERSCREEN 11126 / AERMOD 1234TITLE: NWMI PROCESS BOILER02/05/1508:19:38***************************** STACK PARAMETERS***q* **** *** ******* **** * **** *SOURCE EMISSION RATE: 0.1260 g/sSTACK HEIGHT: 22.86 metersSTACK INNER DIAMETER: 0.305 metersPLUME EXIT TEMPERATURE: 310.9 KPLUME EXIT VELOCITY: 17.929 in/sSTACK AIR FLOW RATE: 2772 ACFMRURAL OR URBAN: RURAL1.000 lb/hr75.00 feet12.00 inches100.0 Deg F58.82 ft/sFLAGPOLE RECEPTOR HEIGHT:INITIAL PROBE DISTANCE =1.83 meters6.00 feet5000. meters16404. feet****************BUILDING DOWNWASH PARAMETERS** *** **** ****** ** **NO BUILDING DOWNWASH HAS BEEN REQUESTED FOR THIS ANALYSIS************** PROBE ANALYSIS **************25 meter receptor spacing: 1. meters -5000. metersZo ROUGHNESSSECTOR LENGTH1-HR CONC DIST TEMPORAL(ug/m3) (in) PERIOD1" 0.050 16.70 150.0 SPR* -worst case flow sector TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Pagell1of 20********************** MAKEMET METEOROLOGY PARAMETERSMIN/MAX TEMPERATURE: 255.4 / 302.6 (K)MINIMUM WIND SPEED:0.5 rn/sANEMOMETER HEIGHT: 10.000 metersSURFACE CHARACTERISTICS INPUT: AERMET SEASONAL TABLESDOMINANT SURFACE PROFILE: GrasslandDOMINANT CLIMATE TYPE: Average MoistureDOMINANT SEASON: SpringALBEDO: 0.18BOWEN RATIO: 0.40ROUGHNESS LENGTH: 0.050 (meters)METEOROLOGY CONDITIONS USED TO PREDICT OVERALL MAXIMUMIMPACTYR MO DY JDY HR10 0105 5 12HO U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 BOWEN ALBEDO REF WS21.61 0.066 0.300 0.020 46. 39. -1.2 0.050 0.40 0.18 0.50HT REF TA HT10.0 302.6 2.0ESTIMATED FINAL PLUME HEIGHT (non-downwash): 37.4 metersMETEOROLOGY CONDITIONS USED TO PREDICT AMBIENT BOUNDARYIMPACT TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 12 of 20YR MO DY JDY HR10 01 01 5 12Ho U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 B OWEN ALBEDO REF WS1.17 0.049 0.100 0.020 27. 25. -7.8 0.050 0.40 0.180.50HT REF TA HT10.0 255.4 2.0ESTIMATED FINAL PLUME HEIGHT (non-downwash): 56.5 meters************************ AERSCREEN AUTOMATED DISTANCESOVERALL MAXIMUM CONCENTRATIONS BY DISTANCEMAXIMUMDIST 1-HR CONC(in) (ug/m3)1.00 0.2290E-0425.00 4.21650.00 8.39075.00 10.29100.00 15.11125.00 16.69150.00 16.70175.00 16.17200.00 15.43225.00 14.64250.00 13.87275.00 13.16300.00 12.49325.00 11.89350.00 11.33375.00 10.83400.00 10.37425.00 9.943MAXIMUMDIST 1-HR CONC(mn) (ug/m3)2525.00 4.1392550.00 4.1072575.00 4.0762600.00 4.0452625.00 4.0152650.00 3.9862675.00 3.9562700.00 3.9272725.00 3.8992750.00 3.8712775.00 3.8432800.00 3.8152825.00 3.7882850.00 3.7622875.00 3.7352900.00 3.7092925.00 3.6842950.00 3.659 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page1l3of 20450.00475.00500.00525.00550.00575.00600.00625.00650.00675.00700.00725.00750.00775.00800.00825.00850.00875.00900.00925.00950.00975.001000.001025.001050.001075.001100.001125.001150.001175.001200.001225.001250.001275.001300.001325.001350.001375.001400.001425.001450.001475.001500.001525.001550.001575.009.6099.3 159.0398.78 18.5398.3 108.0957.89 17.6997.5 177.3447.1797.0236.8746.7336.5976.4686.3446.2266.1126.0036.0396.1746.2876.3 806.4476.43 16.4 116.3866.3596.3286.2956.2596.2216.1826.14 16.0986.0556.0105.9655.9 195.8725.8265.7785.73 15.6832975.003000.003025.003050.003075.003100.003125.003150.003175.003200.003225.003250.003275.003300.003325.003350.003375.003400.003425.003450.003475.003500.003525.003550.003575.003600.003625.003650.003675.003700.003725.003750.003775.003800.003825.003850.003875.003900.003925.003950.003975.004000.004025.004050.004075.004100.003.6343.6093.5853.5613.5373.5 143.4913.4683.4463.4243.4023.3803.3593.3383.3 173.2963.2763.2563.2363.2173.1973.1783.1593.14 13.1223.1043.0863.0683.0513.0333.0162.9992.9822.9662.9492.9332.9172.90 12.8862.8702.8552.8392.8242.8 102.7952.780 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 14 of 201600.001625.001650.001675.001700.001725.001750.001775.001800.001825.001850.001875.001900.001925.001950.001975.002000.002025.002050.002075.002100.002125.002150.002175.002200.002225.002250.002275.002300.002325.002350.002375.002400.002425.002450.002475.002500.005.6365.5885.5415.4945.4475.4005.3535.3075.26 15.2 165.1715.1265.0825.03 84.9954.9524.9104.8684.8274.7864.7464.7064.6674.6294.5904.5534.5 154.4794.4434.4074.3724.3374.3034.2694.2364.2034.1714125.004150.004175.004200.004225.004250.004275.004300.004325.004350.004375.004400.004425.004450.004475.004500.004525.004550.004575.004600.004625.004650.004675.004700.004725.004750.004775.004800.004825.004850.004875.004900.004925.004950.004975.005000.002.7662.7522.7372.7242.7102.6962.6822.6692.6562.6432.6302.6172.6042.5912.5792.5 662.5542.5422.5302.5 182.5062.4942.4832.4712.4602.4492.4382.4272.4162.4052.3942.3 832.3732.3622.3522.341********************** AERSCREEN MAXIMUM IMPACT SUMMARYMAXIMUM SCALED SCALED SCALED SCALED TEM-9002 ENGINEERING 09/29109Rev. 01-HOUR 3-HOUR 8-HOUR 24-HOUFCALCULATION CONC CONC CONCPROCEDURE (ug/m3) (ug/m3) (ug/m3) (ug/niFLAT TERRAJN 16.81 16.81 15.13 10.08J1 FILEEDF-31 24-0012Rev. 1Page 15 of 20,.ANNUALCONC CONC[3) (ug/m3)1.68 1DISTANCE FROM SOURCE136.00 metersIMPACT AT THEAMBIENT BOUNDARY 0.2290E-04 0.2290E-04 0.2061E-04 0.1374E-04 0.2290E-05DISTANCE FROM SOURCE 100mtr1.00 meters TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 16 of 20Attachment 2Average ambient Pollutant Concentrations for MissouriTable 1. Levels of CO in Springfield MissouriMaximum MaximumYear 8-Hour Average 1-Hour Average(ppm) (ppm)1993 5.4 141994 5.9 121995 5 91996 3.3 71997 5 71998 5.1 61999 4.1 52000 2.8 52001 4.3 72002 3.5 62003 2.4 42004 3.4 52005 3 52006 2.1 .42007 2.6 42008 1.3 1.92009--- --1.5- ..---2.3 --2010 1.9 2.3Second Quarter 2013 1.1 2.3Average (ppm) 3.35E+00 5.73E+00Average ((gglm3) 3.84E+03 6.56E+03Table 2. Nitrogen Dioxide -Hillcrest High School SpringfieldYear Annual AverageYear (ppm)1993 0.0111994 0.0131995 0.0121996 0.0111997 0.0111998 0.0121999 0.0132000 0.0122001 0.0132002 0.01072003 0.01112004 0.0122005 0.01152006 0.01042007 0.012008 0.00892009 0.0083Through 3rd Quarter 0.0079Average (ppm) 1. 1OE-02Average (ug/m3) 2.08E+01 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 17 of 20Table 4. Inhalable PM10 -MSU SpringfieldAnnual Average Maximum 24 hr AverageYear(gg/m3) (gg/m3)1993 18 381994 18 581995 17 441996 18 641997 15 511998 17 431999 18 452000 18 47.2001 20 572002 18 462003 17 402004 16.7 362005 19.3 452006 15.7 352007 17.9 382008 15 392009 14 272010 17.2 362011 16.5 372012 16.9 38Average(jgg/m3) 17.16 43.2Table 5. Inhalable PM-2.5 MSU SpringfieldYear Annual AverageYear (ppm)1999 12.242000 12.282001 12.22002 12.72003 11.72004 10.912005 13.012006 10.822007 11.82008 10.72009 9.552010 9.892011 10.922012 10.09Average (ppm) 1.1 3E+0 1 TEM-900209/29/ 09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 18 of 20Table 6. Sulfur Dioxide MSU SpringfieldYear Annual AverageYear (ppm)1993 0.0031994 0.0051995 0.0021996 0.0031997 0.0021998 0.0031999 0.0042000 0.0032001 0.0042002 0.0032003 0.0022004 0.00142005 0.00172006 0.00192007 0.00182008 0.00222009 0.0022Average (ppm) 2.66E-03Average 6.97E+00 TEM-900209/29/09Rev. 0EGNEINGrat DESm iGNtILEDF-31 24-0012Rev. 1Page 19 of 20
1.aoc.0=nmctood... eTh,,aoooorhePM    l    ssiacfool. rp'*ml htoo, re, bocodIo.OllcaboPM    IO.,POl20.300Pld a...occ. Tri PM iuth00.00000inh . 0,000c.4c~o  08 70AMo¢hod  2026(,
Op&u.210t  FiO.8*2.kpM  .i0 thp.ioalo..,oaoIll6.ga...*pri
                                                                      ,tt  .u00..Iof.
w            2,*r~,00pn/t e. The SO2o,,ooo..ao m 00*t0. u. ho0,0r0      toud.h,c~atorO . .000r.ot,,o O 10020t (t.faim16lt)     ,flOo9.oou floal106 so 002[100100 sel9 13.67)1C01d,1C0D30  .. h0. CulON r.000,oJ rOr.ru.020.O00IOCOC'006000t                Iat O."f41by wtolt
                                                                      *0.000.dO D doy    0(.44,204.z1o4 or              n6,
 
NWMI-201 5-RAI-001
* =e*'ND*WEMEIA iOPE                                                                Rev. 0 Appendix C -
EDF-3124-0012, Emission Modeling for Process and IIVAC Boilers Using AERSCREEN C-i
 
Document ID:EDF-3124-0012 Revision ID:1 Effective Date: February 4, 2015 Engineering Design File Emission Modeling for Process and HVAC Boilers using AERSCREEN Portage Project No.: 3124 Project
 
==Title:==
NWMI Environmental Report 4Portage                                TEM-9002 09/29/09 Rev. 0
 
TEM-9002                                    ENGINEERING DESIGN FILE                                  EDF-3124-0012 09/29/09                                                                                              Rev. 1 Rev. 0                                                                                                Page 1 of 20
: 1. Portage Project No.:       3124
: 2. Project/Task:     NWMVI Enviromnmental Report
: 3. DCNH#
4.
 
==Title:==
Emission Modeling for Process and HVAC Boilers using AERSCREEN
: 5. NPH PCor SDC: N/A
: 6. SSC Safety Category: N/A 7 Summary:
This EDF documents the assumptions used and the results of the AERSCREEN modeling done for the 4 natural gas fired boils used for the operation of the NWIVI facility. The results are then compared to the NAAQS and ambient air concentrations.
8 Distribution: (Portage, Inc.)
: 9. Review (R) andApproval (A) Signatures:                     :*",
(Identify minimum reviews and approvals. Additional reviews/approvals mnay be added.)_____
                                    ~Printed Name/
R/A             Organization                       Signature                 Date Author/Design Agent             A Gary McManus                       () (*¢*dld                          2/04/15 Independent Review               R   Dave Thorme                             ¢                           2/04/15 Independent Review               R Project Manager                 R/A John Beller                                                           2/04/15 Registered Professional Engineer's Stamp (if required)                                       Z]N/A
 
TEM-9002                                ENGINEERING DESIGN FILE                              EDF-31 24-0012 09/29/09                                                                                      Rev. 1 Rev. 0                                                                                        Page 2 of 20 INTRODUCTION As described in EDF-3 124-0008 there will be two natural gas-fired boilers used for steam production and two natural gas-fired boilers used for heating. The two steam boilers and the two boilers used for heating each are released through two separate stacks. The boiler and generator all emit CO, NOx, PM, VOCs, and C02. The assumptions used for the four boilers and the associated emissions are summarized in Tables 1 and 2 below.
Table 1. Boiler Operational Parameters SemBoiler                Fuel Energy     Natural Gas Steam Load           Heat Boiler                          Factor       Efficiency       Content     Consumption (lb/br)       (MBTU/lb)         (%)           MBTU/hr           (ft3/hr)
Process #1         10000           9345             75             12460           12460 Process #2         10000           9345             75             12460           12460 HVAC #1           10000           9345             75             12896            12896 HVAC #2           10000             9345           75             12896            12896 Table 2. Emissions From The Four Natural Gas Fed Boilers (EDF-3 12 1-0008)
Pollutant       _____________                       Emissions Process Boilers 1 & 2         HVAC Boilers 1&2                     Total S~Emissions (lb/hr)       (tons/yr)         (lb/br)     (tons/yr)           (tons/yr)
CO             2.1E+00         8.8E+00         2.2E+00       9.1E+00                 18 NOx              1.2E+00         5.2E+00         1.3E+00       5.4E+00                 11 PM10 (Total)           1.9E-01         8.0E-01         2.0E-01         8.2E-01               1.6 PM10 (filterable)       4.7E-02         2.0E-01         4.9E-02         2.1E-01               0.40 VOC                1.4E-01       5.76E-01         1.4E-01       6.0E-01               1.2 SO2              1.5E-02         6.3E-02         1.6E-02       6.5E-02               0.13 CO2              3.0E+03         1.3E+04         3.1E+03       1.3E+04               26,000 Emissions from the boiler activities were evaluated using AERSCREEN, Version 11126. This screening model uses standard defaults for meteorology, and terrain values. Modeled emissions included: PM-10, PM-2.5, CO, nitrogen, and sulfur oxides (NOx), and SOx.). The assumptions used for the modeling are presented below.
 
TEM-9002                                                                              EDF-31 24-0012 09/29109                            ENGINEERING DESIGN FILE                          Rev. 1 Rev. 0                                                                                Page 3 of 20 ASSSUMPTIONS The input assumptions used for the AERSCREEN model are summarized in Table 3 and 4 below. Since the four boilers vent through two identical stacks only one run was done. The results of the run were then combined to give the approximate concentrations at the receptor locations.
Table 3. AERSCREEN Input Stack Parameters SOURCE EMISSION RATE:                               0.1260 g/s           1.000 lb/hr STACK HEIGHT:                                     22.86 meters             75.00 feet STACK INNER DIAMETER:                             0.305 meters           12.00 inches PLUME EXIT TEMPERATURE:                               310.9 K             99.95 Deg F PLUME EXIT VELOCITY:                               17.929 m/s             58.82 ft/s STACK AIR FLOW RATE                               2772 ACFM             2772 ACFM RURAL OR URBAN:                                       RURAL                 RURAL FLAGPOLE RECEPTOR HEIGHT:                           1.83 meters             6.00 feet INITIAL PROBE DISTANCE --                         5000. meters           16404. feet Table 4. Makemet Meteorology Parameters MIN/MAX TEMPERATURE:                         255.4 / 302.6 (K)
MINIMUM WIND SPEED:                                 0.5 m/s ANEMOMETER HEIGHT:                                 10 meters DOMINANT SURFACE PROFILE:                         Grassland DOMINANT CLIMATE TYPE:                       Average Moisture DOMINANT SEASON:                                   Spring ALBEDO:                                               0.18 BOWEN RATIO: *0.4 ROUGHNESS LENGTH:                               0.050 (meters)
For this screening model, no downwash was considered in the calculations since exact locations and dimensions are still in the design phase. The closest residential receptor was assumed to be a single family home located approximately 375 meters SSE from the facility location. Using these assumptions the AERSCREEN model was run and the results were obtained. A complete listing of the model is included in Attachment 1.
 
TEM-9002                                ENGINEERING DESIGN FILE                          EDF-31 24-0012 09/29/09                                                                                  Rev. 1 Rev. 0                                                                                    Page 4 of 20 RESULTS The final run results for the maximum concentration downwind of the facility are summarized in Table 5 below.
Table 5. AERSCREEN Results.
Calculation Maximum]
1-Hour]
Scaled 3-Hour J  Scaled]
8-Hour Scaled J24-Hour   [Scaled Annual ProcdureConcentration                          a Flat Terrain         (gig/m 3 ) J(jPtg/m3) J(gig/m3) ](btg/m3)             (Pig/m 3 )
_________             17             17       J   15       J     10         1.7
: a. Distance from Source to maximum concentration location 136.00 meters Using the AERSCREEN results above as well as the maximum concentration at 375 meters from attachment 1 (i.e., 10.83 jig/in 3), Table 6 and 7 were completed.
Table 6. Emissions from Process Steam Demand - Natural Gas-Fired Boilers Modeled concentration to Hourly Emissions       Maximumclst Emission        for Both Steam       concentration Pollutant            Factor               Boiler a         @ 136 m b           residential receptor (375 m) c (lb/hr)           (jig/in 3 )           (jig/in 3 )
CO                   84               2.1E+00             3.5E+01             2.3E+01 NOx                  50               1.2E+00             2.1E+01               1.4E+01 PM-10                 7.6               1.9E-01           3.2E+00             2.1E+00 PM-2.5                 1.9               4.7E-02             8.0E-01               5.1E-01 5.5               1.4E-01           2.3E+00               1.5E+00 SO2                  0.6               1.5 E-02           2.5E-01               1.6E-01 CO2              120,000             3.0E+03             5.0E+04             3.2E+04
: a. Hourly emission from process boiler 1 and 2 each shown in EDF-3 124-0008.
: b. This is maximum 1- hour concentration calculated by AERSCREEN equals 17jg/m3 per lb/hr
: c. This represents   the highest 1 hour concentration at the closest receptor of 375 meters and equals 11 jig/mn3 per lb/hr
 
TEM-9002                                                                                    EDF-31 24-0012 09/29/09                                ENGINEERING DESIGN FILE                              Rev. 1 Rev. 0                                                                                      Page 5 of 20 Table 7. Emissions from 2-H VAC Natural Gas-Fired Heater Modeled Hourly Emissions     Maximum               concentration to Emission          for Both HVAC     concentration               closest PluatFactor                          Boiler a       @ 136 m bresidential receptor (375 m)
(lb/hr)         ([.tg/m 3)             (jig/mn3)
CO                 84                 2.2E+00           3.6E+01                 2.3E+01 NOx                50                 1.3E+00           2.2E+01                 1.4E+01 PM10                7.6                 2.0E-01           3.3E+00                 2.1E+00 PM-2.5               1.9                 4.9E-02           8.2E-01                 5.3E-01 VOC                5.5                 1.4E-01         2.4E+00                 1.5E+00 SO2                0.6                 1.6E-02         2.6E-01                 1.7E-01 CO2              120,000               3.1E+03           5.2E+04                 3.3E+04
: a. Hourly emission from process boiler 1 and 2 each shown EDF-3 124-0008
: b. This is maximum 1- hour concentration calculated by AERSCREEN at 136 m equals 17 jtg/mn3 / lb/hr
: c. This represents the highest 1 hour concentration at the closest receptor of 375 meters and equals 11 jig/mn3 / lb/hr Since both boiler stacks are co-located with the same characteristics the total downwind concentration was assumed to be additive. These values were then compared to the National Ambient Air Quality Standards (NAAQS) to see if any of the 1-hour air standards were exceeded. This comparison is summarized in Table 8 below.
Table 8. Maximum Release Concentration Comparison to NAAQS Standards MimmModeled                                                                    Percentage of concentration closestAQ          to                                           NAAQS Limit at Polltant          136rato@       clst     residential     NASAASPoint                                       of receptor____(375 m)______                   ______                   Maximum
(___g/m3)__(jig/r3)                         (ppm)               (jig/mn3)         Concentration CO                7.2E+0+/-.E01                                                     4.0E+04                 0.18%
NOx               4.3E+012.E019+222 PM10              6.5E+00               42+001d*43 PM-2.5             1.6E+001.E0003                                                                           46 SO2              4.7E+00               30+0*19E0                                                          .6 CO2              5.1E-01                 3.3E-01_NANAN
: a. Maximum Concentration is the sum of the 2 process boilers and the 2 HVAC boilers                   ________
: b. Concentration at closest residence
: c. Values in Green are actual standard values; values in yellow are the converted values.
: d. 24-hour standard for PM-10 and PM-2.5
 
TEM-9002                              ENGINEERING DESIGN FILE                            EDF-31 24-0012 09/29/09                                                                                  Rev. 1 Rev. 0                                                                                    Page 6 of 20 From Table 8 it is apparent that the modeled release concentrations are all below the applicable NAAQS standards. Therefore no additional modeling is required at this time.
A similar evaluation of the model emission concentrations was performed to determine if the emissions exceed the regional ambient concentrations of the listed pollutants. Regional values of the five regulated pollutants for Missouri were obtained from the Missouri Division of Environmental Quality Web Site for different monitoring stations in the state. The Tables 9 summarizes the data in Attachment 2 used to determine the average values.
Table 9. Ambient Air of Rural/Urban Missouri Ambient Air of Rural/Urban Pollutant                      Missouri
(*tg/m 3 )
CO                           3.8E+03 NOx                          2.1E+01 PMl0                            1.7E+01 PM-2.5                           1.1E+01 SO2                          7.0E+00 CO2                              NA A similar evaluation of the model emission concentrations was performed to determine if the emissions exceed the regional ambient concentrations of the listed pollutants. Regional values of the five regulated pollutants for Missouri were obtained from the Missouri Division of Environmental Quality Web Site for different monitoring stations in the state. The Tables 9 summarizes the data in Attachment 2 used to determine the average values. Similar comparison was done to Table 10. Comparison of Modeled Concentrations to Average Ambient levels around the State Missouri.
Maiu       codeledtato               AminoAro           Percentage of Ambient Air concentrationoto          Rural/Urban Pollutant concenratio         closest residential         Misuiconcentration Point of
                  @16b       receptor (375 m) b           MisuiMaximum Concentration (ig/m3)             (#tg/m3)               (#.g/m3)         ____________
CO        7.2E+0l             4.6E+0l                 3.8E+03                       1.9%
NOx         4.3E+01             2.7E+0l                 2.1E+01                       203%
PM10       6.5E+00             4.2E+00                 1.7E+01                       38%
PM-2.5       l.6E+00             1.0E+00                 1.1E+01                       15%
SO2       4.7E+00             3.0E+00                 7.0E+00                       7.3%
CO2       5.lE-01             3.3E-01                   NA                         NA a Maximum Concentration is the sum of the 2 process       boilers and the 2 ITVAC boilers b Concentration at closest residence Attachment 1
 
TEM-9002                                                          EDF-3124.-0012 09/29/09                                  ENGINEERING DESIGN FILE Rev. 1 Rev. 0                                                            Page 7 of 20 ATTACHMENT 1.
AERSCREEN Files Text File:
Start date and time 02/05/15 08:19:04 AERSCREEN 11126 NWMI PROCESS BOILER DATA ENTRY VALIDATION METRIC                  ENGLISH
** STACKDATA       **------------------
Emission Rate:       0.1260 g/s             1.000 lb/hr Stack Height:       22.86 meters             75.00 feet Stack Diameter:       0.3 05 meters           12.00 inches Stack Temperature: 310.9 K                     100.0 Deg F Exit Velocity:     17.929 m/s               58.82 ft/s Stack Flow Rate:         2771 ACFM Model Mode:           RURAL Dist to Ambient Air:             1.0 meters           3. feet
** BUILDING DATA **
No Building Downwash Parameters
** TERRAIN DATA **
No Terrain Elevations Source Base Elevation: 0.0 meters              0.0 feet Probe distance: 5000. meters             16404. feet Flagpole Receptor Height:           1.8 meters          6. feet No discrete receptors used
** METEOROLOGY DATA **
 
TEM-9002 09/29/09                              ENGINEERING DESIGN FILE                 EDF-3124-0012 Rev. 1 Rev. 0                                                                         Page 8 of 20 Min/Max Temperature: 255.4 / 302.6 K       0.0 / 85.0 Deg F Minimum Wind Speed:         0.5 m/s Anemometer Height:       10.000 meters Dominant Surface Profile: Grassland Dominant Climate Type: Average Moisture AERSCREEN output file:
boilerl .out
** AERSCREEN Run is Ready to Begin No terrain used, AERMAP will not be run SURFACE CHAPRACTEPISTICS & MAKEMET Obtaining surface characteristics...
Using AERM4ET seasonal surface characteristics for Grassland with Average Moisture Season          Albedo Bo         zo Winter          0.60 1.50 0.001 Spring          0.18 0.40 0.050 Summer            0.18 0.80 0.100 Autumn            0.20 1.00 0.010 Creating met files aerscreen_01_01.sfc & aerscreen_01 01.pfl Creating met files aerscreen_02_01 .sfc & aerscreen_02 01 .pfl Creating met files aerscreen_03_01 .sfc & aerscreen_03 01 .pfl Creating met files aerscreen_04_01 .sfc & aerscreen_04 01 .pfl PROBE        started 02/05/15 08:19:34 Running probe for Winter sector 1 AERMOD Finishes Successfully for PROBE stage 1 Winter sector1
  *****       WARNING MESSAGES *****
 
TEM-9002 09/29/09                            ENGINEERING DESIGN FILE     EDF-3124-0012 Rev. 1 Rev. 0                                                         Page 9 of 20
          *** NONE     ***
Running probe for Spring sector 1 AERMOD Finishes Successfully for PROBE stage 1 Spring sector1
          *** NONE     ***
Running probe for Summer sector 1 AERMOD Finishes Successfully for PROBE stage 1 Summer sector1
    ********   WARNING MESSAGES         ********
          ** NONE **
Running probe for Autumn sector 1 AERMOD Finishes Successfully for PROBE stage 1 Autunmn sector1
    *****     WARNING MESSAGES         ********
          *** NONE ***
PROBE         ended 02/05/15 08:19:3 8 REFINE        started 02/05/15 08:19:38 AERMOD Finishes Successfully for REFINE stage 3 Spring sector1
    *****       WARNING MESSAGES       *****
          *** NONE **
REFINE       ended 02/05/15 08:19:38 AERSCREEN Finished Successfully With no errors or warnings Check log file for details Ending date and time 02/05/15 08:19:39
 
TEM-9002 09/29/09                                ENGINEERING DESIGN FILE                EDF-3124-0012 Rev. 1 Rev. 0                                                                          Page 10 of 20 OUTPUT FILE:
AERSCREEN 11126 / AERMOD 1234                                        02/05/15 08:19:38 TITLE: NWMI PROCESS BOILER
  *****************************             STACK PARAMETERS
***q* **** ***     ******* **** * ****
* SOURCE EMISSION RATE:                     0.1260 g/s          1.000 lb/hr STACK HEIGHT:                       22.86 meters          75.00 feet STACK INNER DIAMETER:                       0.305 meters          12.00 inches PLUME EXIT TEMPERATURE:                       310.9 K            100.0 Deg F PLUME EXIT VELOCITY:                     17.929 in/s          58.82 ft/s STACK AIR FLOW RATE:                       2772 ACFM RURAL OR URBAN:                         RURAL FLAGPOLE RECEPTOR HEIGHT:                        1.83 meters          6.00 feet INITIAL PROBE DISTANCE             =
5000. meters          16404. feet
        ****************BUILDING DOWNWASH PARAMETERS NO BUILDING DOWNWASH HAS BEEN REQUESTED FOR THIS ANALYSIS
**************                       PROBE ANALYSIS **************
25 meter receptor spacing: 1. meters - 5000. meters Zo      ROUGHNESS              1-HR CONC DIST         TEMPORAL SECTOR LENGTH                  (ug/m3)     (in)   PERIOD 1"         0.050       16.70     150.0     SPR
* - worst case flow sector
 
TEM-9002                            ENGINEERING DESIGN FILE                EDF-31 24-0012 09/29/09                                                                    Rev. 1 Rev. 0                                                                      Pagell1of 20
**********************       MAKEMET METEOROLOGY PARAMETERS MIN/MAX TEMPERATURE:             255.4 / 302.6 (K)
MINIMUM WIND SPEED:             0.5 rn/s ANEMOMETER HEIGHT:             10.000 meters SURFACE CHARACTERISTICS INPUT: AERMET SEASONAL TABLES DOMINANT SURFACE PROFILE: Grassland DOMINANT CLIMATE TYPE: Average Moisture DOMINANT SEASON:               Spring ALBEDO:             0.18 BOWEN RATIO:             0.40 ROUGHNESS LENGTH:             0.050 (meters)
METEOROLOGY CONDITIONS USED TO PREDICT OVERALL MAXIMUM IMPACT YR MO DY JDY HR 10 0105 5 12 HO    U* W* DT/DZ ZICNV ZIMCH M-O LEN                 Z0 BOWEN ALBEDO REF WS 21.61 0.066 0.300 0.020 46. 39.         -1.2 0.050 0.40 0.18   0.50 HT REF TA     HT 10.0 302.6 2.0 ESTIMATED FINAL PLUME HEIGHT (non-downwash):                   37.4 meters METEOROLOGY CONDITIONS USED TO PREDICT AMBIENT BOUNDARY IMPACT
 
TEM-9002                          ENGINEERING DESIGN FILE                EDF-31 24-0012 09/29/09                                                                  Rev. 1 Rev. 0                                                                    Page 12 of 20 YR MO DY JDY HR 10 01 01 5 12 Ho      U*   W* DT/DZ ZICNV ZIMCH M-O LEN           Z0 B OWEN ALBEDO REF WS 1.17 0.049 0.100 0.020 27. 25.       -7.8 0.050 0.40 0.18  0.50 HT REF TA           HT 10.0 255.4       2.0 ESTIMATED FINAL PLUME HEIGHT (non-downwash):               56.5 meters
************************     AERSCREEN AUTOMATED DISTANCES OVERALL MAXIMUM CONCENTRATIONS BY DISTANCE MAXIMUM                    MAXIMUM DIST      1-HR CONC          DIST      1-HR CONC (in)   (ug/m3)          (mn)    (ug/m3) 1.00 0.2290E-04        2525.00     4.139 25.00 4.216            2550.00     4.107 50.00 8.390            2575.00     4.076 75.00 10.29            2600.00     4.045 100.00 15.11            2625.00     4.015 125.00     16.69        2650.00     3.986 150.00 16.70            2675.00     3.956 175.00 16.17            2700.00     3.927 200.00 15.43            2725.00     3.899 225.00 14.64            2750.00     3.871 250.00 13.87            2775.00     3.843 275.00 13.16            2800.00     3.815 300.00 12.49            2825.00     3.788 325.00 11.89            2850.00     3.762 350.00 11.33            2875.00     3.735 375.00 10.83            2900.00     3.709 400.00 10.37            2925.00     3.684 425.00 9.943            2950.00     3.659
 
TEM-9002                  ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09                                          Rev. 1 Rev. 0                                            Page1l3of 20 450.00  9.609  2975.00  3.634 475.00  9.3 15  3000.00  3.609 500.00  9.039  3025.00  3.585 525.00  8.78 1  3050.00  3.561 550.00  8.539  3075.00  3.537 575.00  8.3 10  3100.00  3.5 14 600.00  8.095  3125.00  3.491 625.00  7.89 1  3150.00  3.468 650.00  7.699  3175.00  3.446 675.00  7.5 17  3200.00  3.424 700.00  7.344  3225.00  3.402 725.00  7.179  3250.00  3.380 750.00  7.023  3275.00  3.359 775.00  6.874  3300.00  3.338 800.00  6.733  3325.00  3.3 17 825.00  6.597  3350.00  3.296 850.00  6.468  3375.00  3.276 875.00 6.344  3400.00  3.256 900.00  6.226  3425.00  3.236 925.00  6.112  3450.00  3.217 950.00  6.003  3475.00  3.197 975.00  6.039  3500.00  3.178 1000.00  6.174  3525.00  3.159 1025.00  6.287  3550.00  3.14 1 1050.00  6.3 80  3575.00  3.122 1075.00  6.447  3600.00  3.104 1100.00  6.43 1  3625.00  3.086 1125.00  6.4 11  3650.00  3.068 1150.00  6.386  3675.00  3.051 1175.00  6.359  3700.00  3.033 1200.00  6.328  3725.00  3.016 1225.00  6.295  3750.00  2.999 1250.00  6.259  3775.00  2.982 1275.00  6.221  3800.00  2.966 1300.00  6.182  3825.00  2.949 1325.00  6.14 1  3850.00  2.933 1350.00  6.098  3875.00  2.917 1375.00  6.055  3900.00  2.90 1 1400.00  6.010  3925.00  2.886 1425.00  5.965  3950.00  2.870 1450.00  5.9 19  3975.00  2.855 1475.00  5.872  4000.00  2.839 1500.00  5.826  4025.00  2.824 1525.00  5.778  4050.00  2.8 10 1550.00  5.73 1  4075.00  2.795 1575.00  5.683  4100.00  2.780
 
TEM-9002                      ENGINEERING DESIGN FILE        EDF-31 24-0012 09/29/09                                                    Rev. 1 Rev. 0                                                      Page 14 of 20 1600.00  5.636    4125.00  2.766 1625.00  5.588      4150.00  2.752 1650.00  5.541      4175.00  2.737 1675.00  5.494      4200.00  2.724 1700.00  5.447      4225.00  2.710 1725.00  5.400      4250.00  2.696 1750.00  5.353      4275.00  2.682 1775.00  5.307      4300.00  2.669 1800.00  5.26 1    4325.00  2.656 1825.00  5.2 16    4350.00  2.643 1850.00  5.171      4375.00  2.630 1875.00  5.126      4400.00  2.617 1900.00  5.082      4425.00  2.604 1925.00  5.03 8    4450.00  2.591 1950.00  4.995      4475.00  2.579 1975.00  4.952      4500.00  2.5 66 2000.00  4.910      4525.00  2.554 2025.00  4.868      4550.00  2.542 2050.00  4.827      4575.00  2.530 2075.00  4.786      4600.00  2.5 18 2100.00  4.746      4625.00  2.506 2125.00  4.706      4650.00  2.494 2150.00  4.667      4675.00  2.483 2175.00  4.629      4700.00  2.471 2200.00  4.590      4725.00  2.460 2225.00  4.553      4750.00  2.449 2250.00  4.5 15    4775.00  2.438 2275.00  4.479      4800.00  2.427 2300.00  4.443      4825.00  2.416 2325.00  4.407      4850.00  2.405 2350.00  4.372      4875.00  2.394 2375.00  4.337      4900.00  2.3 83 2400.00  4.303      4925.00  2.373 2425.00  4.269      4950.00  2.362 2450.00  4.236      4975.00  2.352 2475.00  4.203      5000.00  2.341 2500.00  4.171
********************** AERSCREEN MAXIMUM IMPACT  
 
==SUMMARY==
 
MAXIMUM  SCALED     SCALED   SCALED SCALED
 
TEM-9002 09/29109                    ENGINEERING DESIGt* J1FILE          EDF-31 24-0012 Rev. 1 Rev. 0                                                          Page 15 of 20 1-HOUR    3-HOUR     8-HOUR 24-HOUF ,.ANNUAL CALCULATION      CONC      CONC      CONC   CONC   CONC PROCEDURE    (ug/m3) (ug/m3) (ug/m3) (ug/ni [3) (ug/m3)
FLAT TERRAJN     16.81   16.81     15.13   10.08  1.68 1 DISTANCE FROM SOURCE        136.00 meters IMPACT AT THE AMBIENT BOUNDARY 0.2290E-04 0.2290E-04 0.2061E-04 0.1374E-04 0.2290E-05 DISTANCE FROM SOURCE         100mtr 1.00 meters
 
TEM-9002                                  ENGINEERING DESIGN FILE                  EDF-31 24-0012 09/29/09                                                                            Rev. 1 Rev. 0                                                                              Page 16 of 20 Attachment 2 Average ambient Pollutant Concentrations for Missouri Table 1. Levels of CO in Springfield Missouri Maximum                      Maximum Year                    8-Hour Average               1-Hour Average (ppm)                       (ppm) 1993                           5.4                         14 1994                          5.9                         12 1995                            5                           9 1996                          3.3                           7 1997                            5                           7 1998                          5.1                           6 1999                          4.1                           5 2000                          2.8                           5 2001                          4.3                           7 2002                          3.5                           6 2003                          2.4                           4 2004                          3.4                           5 2005                            3                           5 2006                          2.1               .4 2007                          2.6                           4 2008                          1.3                         1.9 2009---     -     -1.5-           ..---                   2.3     --
2010                           1.9                         2.3 Second Quarter 2013                   1.1                         2.3 Average (ppm)                   3.35E+00                     5.73E+00 Average ((gglm3)                 3.84E+03                     6.56E+03 Table 2. Nitrogen Dioxide -Hillcrest High School Springfield Year                  Annual Average Year                        (ppm) 1993                                   0.011 1994                                  0.013 1995                                  0.012 1996                                  0.011 1997                                  0.011 1998                                  0.012 1999                                  0.013 2000                                    0.012 2001                                    0.013 2002                                    0.0107 2003                                    0.0111 2004                                    0.012 2005                                    0.0115 2006                                    0.0104 2007                                    0.01 2008                                    0.0089 2009                                    0.0083 Through 3rd Quarter                           0.0079 Average (ppm)                             1.1OE-02 Average (ug/m3)                           2.08E+01
 
TEM-9002                                        ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09                                                                Rev. 1 Rev. 0                                                                  Page 17 of 20 Table 4. Inhalable PM10 -MSU Springfield Annual Average           Maximum 24 hr Average Year (gg/m3)                     (gg/m3) 1993                   18                         38 1994                  18                         58 1995                  17                         44 1996                  18                         64 1997                  15                         51 1998                  17                         43 1999                  18                         45 2000                  18                         47.
2001                   20                         57 2002                  18                         46 2003                  17                         40 2004                16.7                         36 2005                19.3                         45 2006                15.7                         35 2007                  17.9                       38 2008                  15                         39 2009                  14                         27 2010                  17.2                       36 2011                16.5                         37 2012                  16.9                       38 Average(jgg/m 3)           17.16                       43.2 Table 5. Inhalable PM-2.5 MSU Springfield Year              Annual Average Year                (ppm) 1999                         12.24 2000                          12.28 2001                          12.2 2002                          12.7 2003                          11.7 2004                          10.91 2005                          13.01 2006                          10.82 2007                          11.8 2008                          10.7 2009                          9.55 2010                          9.89 2011                          10.92 2012                          10.09 Average (ppm)                       1.1 3E+0 1
 
TEM-9002                                                        EDF-31 24-0012 09/29/ 09                              ENGINEERING DESIGN FILE Rev. 1 Rev. 0                                                          Page 18 of 20 Table 6. Sulfur Dioxide MSU Springfield Year              Annual Average Year                (ppm) 1993                         0.003 1994                          0.005 1995                          0.002 1996                          0.003 1997                          0.002 1998                          0.003 1999                          0.004 2000                          0.003 2001                          0.004 2002                          0.003 2003                          0.002 2004                          0.0014 2005                          0.0017 2006                          0.0019 2007                          0.0018 2008                          0.0022 2009                          0.0022 Average (ppm)                   2.66E-03 Average (*g/m3)                  6.97E+00
 
TEM-9002                                                                                                        EDF-31 24-0012 09/29/09                                                                                                        Rev. 1 Rev. 0 DESmiGNtIL                              Page 19 of 20 EGNEINGrat


==Attachment:==
==Attachment:==
Excel spread sheets of calculationsInpur Data from VistaProcess 10000 pph 111111 ________934.52 Btu/lb h for steam at 25 psi& ____________ 9345 Mbh______ 75% [Boiler Efficiency_______________ 12460 Mbh Fuel energy content____________________ 12460 ft3/hr Gas Consumption 0.01246 1.046662 lb/hr______ 30% ___ Excess Air____ ___~Flue gas flow rate for each of two boilers~Flue, vendor informationgs velocitHVAC 962Mh Peak HVAC heating demandFlue gas flow rate frec ftobies ____~Flue, vendor informationFlue as velocity_ ____ _ __ _ _ _ __ _ _ _
Excel spread sheets of calculations Inpur Data from Vista Process        10000 pph 934.52 Btu/lb 111111 h   for steam at 25 psi&           ________
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 20 of 20Peeuauil 10000 i5J45 I 7:P% 1 24)l 12460Wva 2 100 _ 7 P 1H 2ELIEL. I ~~/fr)3.&tlb~h9 3.6 (,imU.&Di i~ a-i ,m- li- I m i5 i+Alit JIl134o0(16b): _______ O______ 0.6 ___SCOmlm 120.00I I,0 .4 11 4 0W L4 --IIMLOZ I 810 1 LSELO1 I o~16liE-CO I 10SE..60 I SIE.~CO I 2t25.(O I 6A7E~0CI 416~E1flF -OI -. -L42FO 0AL0 3 2 4-O3i0E.02 I 006 I IS5!~02 I 0.000.132.31L01 OI 1oA1L01 I ZIOG,0I167L6 I.. sl it,1 12]IE.0]zmos '~'-~' '~- I ~" s~ss, s o~o. J ~ IMat 51.~mUi~. mdi W)dIuhC~i ba*i~tCakiusm k~.m ThufE L~a1mIMIm8Itpemuu4bu..*y.u4.bimat~RL1S~Rfl ~amd TmdRI h~..damd~aimd~ua...~L Cc~a1bULkl~~Iut*s ~ Tb~PMut~. uuWcc.4~ ~t~wEinfl~Ctlillilli I 3mlawmiu' wmdii catm.,lo
____        9345 Mbh
* tll l 11 tilt4  
______      75% [Boiler             Efficiency________
* ;.~:"NOhWESMEICI$TNWMI-201 5-RAI-001Rev. 0Appendix D -EDF-3124-0013, On-Road Emissions for Vehicles During Operation0-i Document I D: EDF-3124-0013Revision ID:1Effective Date: July 31, 2015Engineering Design FileOn-Road Emissions for Vehicles During OperationPortage Project No.: 3124Project Title: NWMI Environmental ReportPortageTEM-900209/29/09Rev. 0 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0013Rev. 1Page 1 of 51. Portage Project No.: 31242. Project/Task:NWMvI Environmental Report3. DCN#4. Title: On-Road Emissions for Vehicles During Operation5s. NIPHPC orSDC: N/A6. SSC Safety Category: N/A7 Summary: This EDF provides a calculation of the on-road emissions associated with vehicles duringthe operation of the RPF.7 Distribution: (Portage, Inc.)7. Review (R) and Approval (A) Signatures:_(Identify minimum reviews and approvals. Additional reviews/approvals may be added.) .Printed NamerR/A Organization Signature DateAuthor/Design Agent a Gary McManus )~d 7/31/15Independent Review R Dave Thorne d@ Independent Review RProject Manager R/A John Beller 7/31/15Registered Professional Engineer's Stamp (if required) Z]N/A TEM-9002 ENGINEERING DESIGN FILE EDF-3124-001309/29/09 Rev. 1Rev. 0 Page 2of 5INTRODUCTION AND PURPOSEDuring the operations phase, vehicular air emissions would result from the commuting workforce andfrom routine deliveries to/from the proposed RPF. The California Air Resources Board EmissionDatabase (EMFAC201 1 http://www.arb.ca.gov/emfac/) was used to calculate on-road vehicle emissionfactors for this period. The model estimates vehicle emission factors based on fuel type, vehicle type,vehicle speed, and climatological normal for temperature and humidityThe volume of traffic generated during operations would be considerably lower than that expected duringconstruction. Additionally, the lands on the developed RPF site are either developed surfaces (buildings,paved parking/access road) or consist of either agricultural or landscaped uses. Consequently, limitingroutine vehicle use to paved areas would reduce emission of fugitive dust. In summary, impacts fromvehicular air emissions and fugitive dust during operations would be far less than during the constructionphase.ASSUMPTIONSOn-road vehicle emissions were calculated using emission rate in grams(g)/(vehicle miles traveled) +g/day(idle) + g/day(starting). Total mileage estimates for on-road vehicles during the construction periodare shown in Table 1. Calculations used to obtain the estimates are based on an average work force of 100vehicles per day using a specific vehicle ratio (60% light-duty autos, 30% light-duty gas trucks, and 10%light-duty diesel trucks) and a round trip of 40 mi/day. The vehicles include construction vehicles,delivery trucks, and employee vehicles. Though RPF operations are assumed to occur for 50 weeks ayear to allow for two weeks of maintenance and outages. On-road vehicle use is assume to occur for 52weeks a year to account for personnel and deliveries that occur during maintenance and outages.Table 1. Total Mileage Estimates for On-road Vehicles during OperationElquipment Activity Duration Total distance Traveled(quantity) (months/days) (kin) MilesWorkforce travel (60) Commute -light duty gas vehicles (12/260) 1,004,230 624,000Workforce travel (30) Commute -light duty gas trucks (1 2/260) 502,116 312,000Workforce travel (10) Commute -light duty diesel trucks (12/260) 167,372 104,000Estimates of the on-road vehicle emissions factors for different type vehicles for criteria pollutants andcarbon dioxide (CO2) are provided in Tables 2 through 4 below. These values are from the EMFAC seriesof models.
_______    12460 Mbh         Fuel energy content________________
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-3124-0013Rev. 1Page 3 of 5Table 2 Emission Factor from EMIFAC20l11(Running)CO NOx CO2 PM10 PM2.5 SOxVehicle Type (/ieLight Duty Auto (gas) 1.31E+00 1.24E-01 3.49E+02 1.89E-03 1.73E-03 3.51E-03Light duty Trucks (gas) 3.27E+00 3.36E-0i 4.02E+02 4.39E-03 4.01E-03 4.07E-03LgtdtTrcs3.36E-01 6.70E-01 3.56E+02 6.11E-02 5.62E-02 3.40E-03(diesel)Table 3 Emission Factor from EM7FAC2O1 1 (Idling)CO NOx CO2 PM10 PM2.5 SOx~Vehicle Type(g/vehicle/day)Light Duty Auto (gas) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.OOE+00Light duty Trucks (gas) 0.O0E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00LgtdtTrcs0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00(diesel)Table 4 Emission Factor from EMFAC20 11 (Stationary)Veil yeCO NOx CO2  PM10 PM2.5 SOxVhceTp (g/vehicle/day)Light Duty Auto (gas) 1.73E+01 1.13E+00 4.64E+02 1.86E-02 1.7E-02 4.95E-03Light duty Trucks (gas) 3.90E+01 2.13E+00 5.14E+02 3.37E-02 3.08E-02 5.84E-03LgtdtTrcs0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00(diesel)From Tables 1 through 4, the total emissions for each of the types of vehicles was calculated as shownbelow:The equations used to calculate total vehicle emissions are as follows:Total emission = emission (running) + emission (idling) + emission (stationary)Emissions while running = EFRi (days of operation) (miles/day) (number of vehicles)Emissions while idling =EFIi (days of operation) (number of vehicles)Emissions while idling = EFSi (days of operation) (number of vehicles)Where:EF~i = the individual emission factor for each pollutant, i.e. CO, NOx, C02, PM10,PM2.5 and SOx TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0013Rev. 1Page 4of 5Example for Light Duty Gas Autos (GO)CO EFR = 1.3 1E+00 g/mile x 624,000 miles= 8.17E+05gCO EFl = 0.00+00 g/vehicle/day x 60 vehicles x 260 days-0.00E+00 gCO EFS = 1.73E+01 g/vehicle/day x 60 vehicles x 260 days=-2.70E+05 gTotal CO Emissions = 8.17E+05 g + 0.00E+00 g + 2.70E+05 g1 1.09E+06 g (2.40E+03 lbs)Similar calculations were performed for all of the vehicles listed in Table 1. The results are shown inTable 5 below.Table 5. On-road emissions from construction Activitiesco NOx CO2  PM-b1 PM-2.5 SOxVehicle Type Fuel(kgs) (Ibs) (kgs) (ibs) (kgs) (lbs) (kgs) (bbs) (kgs) (lbs) (kgs) (Ibs)Light Duty Gas 1,085 2,392 95 210 225,239 496,569 1 3 1 3 2 5AutosLgTrDutys Gas 1,323 2,917 122 268 129,506 285,513 2 4 1 3 1 3LgTrutks Diesel 35 77 70 154 37,004 81,580 6 14 6 13 0 1Total (kg or lbs) 2,443 5,385 286 631 391,748 863,662 9 21 9 19 4 9Total (tonnes or tons) 2.4 2.7 0.3 0.3 392 432 0.009 0.010 0.009 0.010 0.004 0.004 EMFAC20OR Emission RatesRegion Type: StatewideRegion: CaliforniaCalendar Year: 2015Season: AnnualVehicle Classification: EMPAC2RO1 CategoriesRegion CalYr Season Veh_.Class Fuel MdlYr Speed(miles/hr)StatewIde 2015 Annual LDA GAS AggregateckggregatedStatewide 2015 Annoal LDT1 GAS AggregatecAggregatedStatewide 2015 Anoual LDT1 DRI AggregatecAggregatedo o~rcc N2Running -CO NOR COO PMIR PM2_s tOg I(gins/ssile)1.01E+00 1.24E-01 3.49E+02 1.RRE-R3 1.73E-00 3.51E-033.36E-Ri 6.70E-01 0.566+02 R.10E-R2 5.620-02 0.40E-03dli~ngCO "NOR COO PM1O PMOG GOR J[gms/vehlcle/duy)0 0 0 R 0 RO 0 0 R 0 R0 0 0 R S S1.73E+01 ~dling 49E0CO NOR COO PMIO PM2._ ROE(gms/vehslce/day)1.7+1 03E+00 4.E4E+021.8Et-S020.706-SO402 0RORO0nRD12.O3EO+000.46+R203.376-023R.ORE-0205'S.E4E-Rlight Duty Auto gaslightsOt/Truck gasLight Duty Truck dieselMiles624,0R0302,000004,0ooCO6.15E6+051.O2E.+]63.401+04NOR COO PMOE 'MO2_5 00O Vehicles0.05E+05 1.2E5E 08 .37E+00 0.25E+03 1.276+0 300E.RRE+04 0.70E+07 0.35E+035,.85E+R3 ,53E+R2 10Days CO260 0260 0260 .RNORCOO000PM0R PMO._5 ROE Vehicles Gays 2CO+50 NOR COO PMIOR PM2... ROEO 0 R 60 060 O.R 10 .776+04 7.24E+06 O.ROE+0O 2.RSE+02 7.72E+01]O 0 R 300 260 3.04E+0051.66E+O4 4.61E+05O.60E+RO22.40E*02 4.56E+01O 0 R0 O 260 0.006+00 0.00E+00 0.EO0E+00 0.00E+000,000+00 0.00E+00CR t60x CO, P01-to PM2StSVstlste Ttye Fontlitus) Phe) 1005) yhn) 0ni So'go) Old) flu ks) Osightliylu3At gos 1,RR5 2,002 92 210 2252,9 400,369 1 3 l 3 2Jt Truok 1,322 O,R17 [ 122 2RR 129.300 IRSOI3 2 4 ITeozloDt c dksel 05 77 7n[i 104 37.004 Ri,5tS S 4 6 1T'ostz 2443 } 50360 290 631 001,746 603,662 0 21 9 iTo0tdiol (t)2.4 2.7 0.0 0.3 392 432 R.009 00OlO 0.009 .00 .04 .004h'iz0imh"mz"0i-rnCD.  
____      12460 ft3/hr       Gas Consumption                               0.01246 1.046662 lb/hr
*;., NWMI-201 5-RAI-001Rev. 0Appendix E -Northwest Medical Isotopes, LLC Alternative Site EvaluationE-i 1111111 I Iw euraEAr/3l U3IRU31~iWA1UlAJIS3XUVU OI~J.T~ -e~PU WAT1m P'UW DWASTI MAN(T CA*WAES P03t 3....AL *alU,mtru, iss iw31W YAMu AII.3 1MIRTH WEST MEDICAL ISOTOPES, 118ALTERNATIVE SITE EVALUATISH'U..NWMIl Altermative Sits Locatiosm._ .II in i~niifi iii n II I~l ! ...J~ k... ......... iJ _ .!i![!! 1! F ! I ..... ... rr t Imlllll m flI]I _ -.l-T> University of Missouri Research Reactor (MURR) -Columbia, MO>. Discovery Ridge Research Park -Columbia, MO> Oregon State University (OSU) -Corvallis, OR> McClellan Business Park (McClellan) -Davis, CA-University of California at Davis (UC Davis) Research Reactor located at McClellanNDU\, -,, ' U-\\ LO Site Selectlen Criteria, , , ... .......... IIH .... III I ... .. Y ] 1 ... r] .1! 1 .. o 1, , I11 1 l f .... .. ...Il l ...Political and locallogistics supportAbility of NWMI to leverage connections for local logisticalsupport, based on regional politics and importance of project toeconomic develooment10Production logistics Number of 6-day Ci processed and delivered to distributor 10Radioactive, hazardous,and mixed secondarywaste generation (i.e., air,liquids, solids)Site ability to meet Federal, State, and local requirements andavailability of waste disposition pathway8Federal and State taxesand incentivesIncludes costs associated with sales tax, property tax, corporateincome tax, hiring credits, etc. Criteria does not include RPFownership and lease terms; these would be dealt with by NWMIseparately3Construction costs Site-specific cost estimates; variations in labor rates and materials; 2and construction indicesTotal Weight 60*e j WM Scoring Details mmdiiRessuht-- -6~ S -40: 1 1030 3 3030 3 3016 3 24Facility operations 4 40 4 40 3Txitingitc4 40 2 2Transportation 4 32 4 32 2Federal, State, county, and local require- 4 20 4 20 4 20 2 10ments to construct and operate facilityFeiaadtttxsnicnie 5 5 '15 391 3Available space 5 15 3 9 1 3 2 6Constr tiiiviosts4i8 4 3 6Natural or human-made disaster potential 3 3 3 3 4 4 2 2Percentaae 82% 73% 63% 489'Iii:~i0~.NWMIuSflmUTinA+/- IUIWS  
______      30%   ___         Excess Air____                                                     ___
........... ........ .. i / T III .... ....... .. ..l r ........ .I IIII /llll _ ,,,, I II l r i i flrilrT iiiiiiSUtilized SMART decision analysis methodology for site evaluations*
                          ~Flue                 gas flow rate for each of two boilers
                          ~Flue,                 vendor information
                            *~~Flue            gs velocit HVAC            962Mh             Peak HVAC heating demand Flue gas flow rate frec     ftobies       ____
                          ~Flue,                 vendor information Flue  as velocity_               ____     _   __ _ _   _   __ _   _ _
 
TEM-9002                                                        ENGINEERING DESIGN FILE                                          EDF-31 24-0012 09/29/09                                                                                                                        Rev. 1 Rev. 0                                                                                                                          Page 20 of 20 Peeuauil              10000           i5J45 I 7:P%   124)l           12460 Wva2                100               7       P
_      1H               2 P*                                                                                                                                                              ELIEL. I         ~
                                                                      ~/fr)3.&                       tlb~h9 3.6     (,imU.&                       Dii~     a-i     ,m- li- I   m i5       i     +AlitJI t.F;*0 *,'      I            I,0       .4       11     4   0W L4     IJP.-.*O  2*1WJ1      */0
                                                                                                                                                                                  --     I IMLOZ      I      810     1   LSELO1   I       o~       16        liE-CO   I 10SE..60 I SIE.~CO I 2t25.(O I 6A7E~0CI416~E l134o0(16b):                              _____
1flF    -OI         -. -       L42FO             0AL0 3     2                     4-O    I.IF*0
__ O______                0.6          ___
I ZIOG,0I167L6     I.. sl it,1 12]IE.0]
3i0E.02    I      006      I    IS5!~02  I       0.00    0.13      2.31L01 OI    1oA1L01 SCOmlm                  120.00                          zmos            '~'-~'        '~-      I    ~"          s~ss,     so~o. J ~                             I Mat 51.~mUi~. mdi W)dIuhC~i ba*i~tC akiusm k~.m ThufEL~a1mIMIm8Itpemuu4bu.
          .*y.u4.bimat~RL1S~Rfl ~amd TmdRI h~
            .. damd~aimd~ua...~L Cc~a1bULkl~
        ~Iut*s ~                                         Tb~
PMut~.         uuWcc.4~             ~t~wEinfl~
Ctlillilli 3mlawmiu'             I wmdii     catm.,lo O*
        *i*iid    tll l
* 11 tilt4
 
NWMI-201 5-RAI-001
* ;.~:"NOhWESMEICI$T                                                              Rev. 0 Appendix D -
EDF-3124-0013, On-Road Emissions for Vehicles During Operation 0-i
 
Document ID: EDF-3124-0013 Revision ID:1 Effective Date: July 31, 2015 Engineering Design File On-Road Emissions for Vehicles During Operation Portage Project No.: 3124 Project
 
==Title:==
NWMI Environmental Report Portage                          TEM-9002 09/29/09 Rev. 0
 
TEM-9002                                    ENGINEERING DESIGN FILE                                EDF-31 24-0013 09/29/09                                                                                          Rev. 1 Rev. 0                                                                                            Page 1 of 5
: 1. Portage Project No.:     3124                2. Project/Task:   NWMvI Environmental Report
: 3. DCN#
4.
 
==Title:==
On-Road Emissions for Vehicles During Operation 5s. NIPHPC orSDC: N/A
: 6. SSC Safety Category: N/A 7 Summary: This EDF provides a calculation of the on-road emissions associated with vehicles during the operation of the RPF.
7 Distribution: (Portage, Inc.)
: 7. Review (R) and Approval (A) Signatures:
_(Identify minimum reviews and approvals. Additional reviews/approvals may be added.)               .
Printed Namer R/A           Organization                       Signature               Date Author/Design Agent             a Gary McManus                     *    "(*T) )~d       '-*        7/31/15 Independent Review             R   Dave Thorne                   d@             ,*7/31/15 Independent Review             R Project Manager               R/A John Beller                                                         7/31/15 Registered Professional Engineer's Stamp (if required)                                         Z]N/A
 
TEM-9002 09/29/09                                    ENGINEERING DESIGN FILE                             EDF-3124-0013 Rev. 1 Rev. 0                                                                                           Page 2of 5 INTRODUCTION AND PURPOSE During the operations phase, vehicular air emissions would result from the commuting workforce and from routine deliveries to/from the proposed RPF. The California Air Resources Board Emission Database (EMFAC201 1 http://www.arb.ca.gov/emfac/) was used to calculate on-road vehicle emission factors for this period. The model estimates vehicle emission factors based on fuel type, vehicle type, vehicle speed, and climatological normal for temperature and humidity The volume of traffic generated during operations would be considerably lower than that expected during construction. Additionally, the lands on the developed RPF site are either developed surfaces (buildings, paved parking/access road) or consist of either agricultural or landscaped uses. Consequently, limiting routine vehicle use to paved areas would reduce emission of fugitive dust. In summary, impacts from vehicular air emissions and fugitive dust during operations would be far less than during the construction phase.
ASSUMPTIONS On-road vehicle emissions were calculated using emission rate in grams(g)/(vehicle miles traveled) +
g/day(idle) + g/day(starting). Total mileage estimates for on-road vehicles during the construction period are shown in Table 1. Calculations used to obtain the estimates are based on an average work force of 100 vehicles per day using a specific vehicle ratio (60% light-duty autos, 30% light-duty gas trucks, and 10%
light-duty diesel trucks) and a round trip of 40 mi/day. The vehicles include construction vehicles, delivery trucks, and employee vehicles. Though RPF operations are assumed to occur for 50 weeks a year to allow for two weeks of maintenance and outages. On-road vehicle use is assume to occur for 52 weeks a year to account for personnel and deliveries that occur during maintenance and outages.
Table 1. Total Mileage Estimates for On-road Vehicles during Operation Elquipment                        Activity Duration                           Total distance Traveled (quantity)                         (months/days)                     (kin)                         Miles Workforce travel (60)         Commute - light duty gas vehicles (12/260)     1,004,230                     624,000 Workforce travel (30)         Commute - light duty gas trucks (12/260)       502,116                       312,000 Workforce travel (10)         Commute - light duty diesel trucks (12/260)     167,372                       104,000 Estimates of the on-road vehicle emissions factors for different type vehicles for criteria pollutants and carbon dioxide (CO2) are provided in Tables 2 through 4 below. These values are from the EMFAC series of models.
 
TEM-9002                                      ENGINEERING DESIGN FILE                            EDF-3124-0013 09/29/09                                                                                        Rev. 1 Rev. 0                                                                                          Page 3 of 5 Table 2 Emission Factor from EMIFAC20l11 (Running)
CO           NOx           CO2               PM10         PM2.5             SOx Vehicle Type                                                 (/ie Light Duty Auto (gas)       1.31E+00     1.24E-01     3.49E+02           1.89E-03       1.73E-03       3.51E-03 Light duty Trucks (gas)     3.27E+00     3.36E-0i     4.02E+02           4.39E-03       4.01E-03       4.07E-03 LgtdtTrcs3.36E-01                 6.70E-01     3.56E+02           6.11E-02       5.62E-02       3.40E-03 (diesel)
Table 3 Emission Factor from EM7FAC2O1 1 (Idling)
CO           NOx         CO2               PM10         PM2.5             SOx~
Vehicle Type (g/vehicle/day)
Light Duty Auto (gas)       0.00E+00     0.00E+00     0.00E+00           0.00E+00     0.00E+00       0.OOE+00 Light duty Trucks (gas)     0.O0E+00     0.00E+00     0.00E+00           0.00E+00       0.00E+00       0.00E+00 LgtdtTrcs0.00E+00               0.00E+00     0.00E+00           0.00E+00     0.00E+00       0.00E+00 (diesel)
Table 4 Emission Factor from EMFAC20 11 (Stationary)
VhceTp VeilyeCO                      NOx           CO 2              PM10 (g/vehicle/day)
PM2.5            SOx Light Duty Auto (gas)       1.73E+01     1.13E+00     4.64E+02           1.86E-02       1.7E-02       4.95E-03 Light duty Trucks (gas)     3.90E+01     2.13E+00     5.14E+02           3.37E-02       3.08E-02       5.84E-03 LgtdtTrcs0.00E+00               0.00E+00     0.00E+00           0.00E+00     0.00E+00       0.00E+00 (diesel)
From Tables 1 through 4, the total emissions for each of the types of vehicles was calculated as shown below:
The equations used to calculate total vehicle emissions are as follows:
Total emission = emission (running) + emission (idling) + emission (stationary)
Emissions while running     = EFRi (days of operation) (miles/day) (number of vehicles)
Emissions while idling =EFIi (days of operation) (number of vehicles)
Emissions while idling   = EFSi (days of operation) (number of vehicles)
Where:
EF~i = the individual emission factor for each pollutant, i.e. CO, NOx, C0 2 , PM10, PM2.5 and SOx
 
TEM-9002 09/29/09 ENGINEERING DESIGN FILE                          EDF-31 24-0013 Rev. 1 Rev. 0                                                                                            Page 4of 5 Example for Light Duty Gas Autos (GO)
CO EFR     = 1.3 1E+00 g/mile x 624,000 miles
                                      = 8.17E+05g CO EFl   =   0.00+00 g/vehicle/day x 60 vehicles x 260 days
                                    - 0.00E+00 g CO EFS   =   1.73E+01 g/vehicle/day x 60 vehicles x 260 days
                                    =-2.70E+05g Total CO Emissions       =   8.17E+05 g + 0.00E+00 g + 2.70E+05 g 11.09E+06 g (2.40E+03 lbs)
Similar calculations were performed for all of the vehicles listed in Table 1. The results are shown in Table 5 below.
Table 5. On-road emissions from construction Activities co                  NOx               CO 2            PM-b1           PM-2.5           SOx Vehicle Type         Fuel (kgs)       (Ibs)   (kgs)     (ibs)   (kgs)       (lbs) (kgs)     (bbs) (kgs)     (lbs) (kgs)     (Ibs)
Light Duty         Gas   1,085       2,392     95     210   225,239     496,569   1         3     1         3   2         5 Autos LgTrDutys          Gas   1,323       2,917   122     268   129,506     285,513   2         4     1         3     1       3 LgTrutks        Diesel     35         77     70       154   37,004     81,580   6         14   6         13   0         1 Total (kg or lbs)       2,443       5,385   286     631   391,748     863,662   9       21     9         19   4         9 Total (tonnes or tons)       2.4         2.7   0.3       0.3     392         432   0.009     0.010 0.009     0.010 0.004     0.004
 
EMFAC20OR EmissionRates Type:Statewide Region Region:
California                                                                                                                                                                                                                                              o  o~r ccN2 CalendarYear:2015 Season:Annual Vehicle Classification:
EMPAC2RO1 Categories                                                          Running              -                                                dli~ng Region CalYr Season Veh_.Class       Fuel MdlYr Speed             CO      NOR        COO        PMIR PM2_s tOg I                              CO  "NOR  COO    PM1O PMOG      GOR J                CO     NOR     COO PMIO PM2._ ROE (miles/hr)                               (gins/ssile)                                                      [gms/vehlcle/duy)                                            ~dling 1.73E+01 (gms/vehslce/day)        49E0 StatewIde    2015Annual LDA          GAS  Aggregateckggregated 1.01E+00 1.24E-01 3.49E+02 1.RRE-R3         1.73E-003.51E-03                      0    0  0      R        0    R                    1.7+103E+004.E4E+021.8Et-S020.706-SO402 0R Statewide    2015Annoal LDT1        GAS  AggregatecAggregated                                                                                    O    0  0      R        0     R                  ORO0nRD12.O3EO+000.46+R203.376-023R.ORE-0205'S.E4E-R Statewide    2015Anoual LDT1        DRI  AggregatecAggregated 3.36E-Ri 6.70E-01 0.566+02 R.10E-R2          5.620-02 0.40E-03                      0    0  0      R        S    S Miles        CO      NOR        COO         PMOE 'MO2_5 00O Vehicles Days                  CO  NOR  COO 624,0R0    6.15E6+05                                                               260        0        0    PM0R O      PMO._5 0    ROE R    Vehicles 60    Gays 060 2CO+50 O.R    10NOR 7.24E+06
                                                                                                                                                                                                                  .776+04 COO O.ROE+0O PMIOR2.RSE+02  ROE PM2... 7.72E+01]
lightDutyAuto        gas lightsOt/Truck      gas    302,000    1.O2E.+]6 0.05E+05 1.2E5E 08 .37E+000.25E+031.276+0 300                260        0        0      O       0     R     300   260 3.04E+0051.66E+O44.61E+05O.60E+RO22.40E02 4.56E+01 LightDutyTruck      diesel  004,0oo    3.401+04 E.RRE+040.70E+07 0.35E+035,.85E+R3          ,53E+R2 10        260      .R          0      O        0    R0    O      260 0.006+000.00E+000.EO0E+00 0.00E+000,000+00 0.00E+00 CR                  t60x                   CO,             P01-to           PM2StS VstlsteTtye    Fontl itus)       Phe)     1005)     yhn)           I*      0ni     So'go)   Old) flu         b*  ks) Os ightliylu3At        gos       1,RR5     2,002     92       210         2252,9     400,369   1       3       l       3     2 Jt Truok       *s        1,322       O,R17 [   122       2RR         129.300 IRSOI3       2         4       I T'ostz c
TeozloDt  dksel       05 2443  }      77 50360 7n[i 290 104 631 37.004 Ri,5tS 001,746 603,662       0 S        4 21 6
9 1
i                                                                                                          h'i To0tdiol (t)2.4                               2.7       0.0       0.3         392       432     R.009     00OlO 0.009     .00   .04 .004                                                                                              z 0
i m
h"m z
                                                                                                                                                                                                                                                                "0 i-rn CD.
 
NWMI-201 5-RAI-001
*;.,'Nn'WMS*D*ISOO*                                                                        Rev. 0 Appendix E -
Northwest Medical Isotopes, LLC Alternative Site Evaluation E-i
 
1111111 II PU WAT1m P'UW D w euraE            WASTI MAN(T CA*W AES P03t 3....AL alU Ar/3l U3IRU31~iWA1Ul WW*~M      AJIS3XUVU
                                      *TAIt OI~J.T~    -e~
          ,mtru, iss   iw 31W YAMu       AII
                                                                            .3         1 MIRTH WEST MEDICAL ISOTOPES, 118 ALTERNATIVE SITE EVALUATISH
'U..NWMIl
 
                  . J* III~l Altermative Sits Locatiosm J* * !_. .. .II inJ~k...
i~niifi iii n            .........iJ_. !i![!!
1!F! I l-T  ........rrt Imlllll mflI]I_-.
> University of Missouri Research Reactor (MURR) - Columbia, MO
>. Discovery Ridge Research Park -Columbia, MO
> Oregon State University (OSU) - Corvallis, OR
> McClellan Business Park (McClellan) - Davis, CA
    - University of California at Davis (UC Davis) Research Reactor located at McClellan NDU
                                                            \, ' -,,   U
                                                        -\\                                         LO
 
    , III,I , . . .... ... Y. *. ] ....... IIH ....1 Site Selectlen Criteria
                                                    ... r] . 1!                                                         1.. o 1,,   I11 1     lf ......... Ill ...
Political and local                        Ability of NWMI to leverage connections for local logistical                10 logistics support                          support, based on regional politics and importance of project to economic develooment Production logistics                       Number of 6-day Ci processed and delivered to distributor                   10 Radioactive, hazardous,                      Site ability to meet Federal, State, and local requirements and            8 and mixed secondary                          availability of waste disposition pathway waste generation (i.e., air, liquids, solids)
Federal and State taxes                      Includes costs associated with sales tax, property tax, corporate          3 and incentives                              income tax, hiring credits, etc. Criteria does not include RPF ownership and lease terms; these would be dealt with by NWMI separately Construction costs                           Site-specific cost estimates; variations in labor rates and materials;     2 and construction indices Total Weight                                                                                                           60
*ej            WM
 
Scoring Details mmdii                            Ressuht
                                                            --6~ S -
40: 1     10 Facility operations                       4 40 4 40 3    30  3      30 Txitingitc4                                  40 2 2 30  3      30 Transportation                            4 32 4 32 2    16  3      24 Federal, State, county, and local require- 4 20 4 20 4   20 2     10 ments to construct and operate facility Feiaadtttxsnicnie                              5 5 '15 391             3 Available space                           5 15 3   9 1     3 2       6 Constr    tiiiviosts4i8                         4     3     6 Natural or human-made disaster potential   3   3 3   3 4     4 2      2 Iii:~i Wei*,hted Percentaae                        82%   73%     63%       489'0
  ~.NWMI uSflmUTinA+/- IUIWS
 
    ........ .. i    / T III
                            . ............ .. l r .. ...... . I                            IIII
                                                                                              /llll_ ,,,,I II l ri i flrilrT iiiiii SUtilized SMART decision analysis methodology for site evaluations*


==Reference:==
==Reference:==
  *Based on Department of Energy's Guidebook to Decision-Making Methods (WSRC-IM-2002-00002)SDeveloped a list of site-specific criteriaCriteria weighted by their importance to NWMI's business plan* 10 = most important, 1 = least important) Each site scored on a scale of 1-5* 5 = most favorable, 1 = least favorable) Weighting applied to the raw scores to determine a total score for each location/~ iNWM I1,I°T I~aEV Elseovery Bilge Characteristics> Location* Columbia, MO is -125 miles west of St Louis, MO, on Highway 70* Potential RPF site is adjacent to MURR on University of Missouri campus> Existing Conditions* Site is on ground that has been historically used for agriculture> Roadways* Located near Highway 70; 5 miles from MURR (Columbia, MO)* No current roadway weight and height restrictions exist* Sufficient for transport of BRR Casks used for irradiated targets> Utilities* Required utilities are available through MU> Land Use* Land use is presently set aside for a technology research park/industrial> Soils* Soils are characterized by medium and narrow ridges with moderate to steep side slopes* Soils are clayey and formed in loess over glacial till; loess is thin or nonexistent on the side slopes* Area is broken up by a number of narrow and medium-sized stream bottoms* Soils report will be completed prior to RPF construction> Groundwater* Average depth to groundwater in Columbia, MO vicinity is ~180 feet> Environmental Site Conditions* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537@ NWMI _ _ _ _ _ _ _ _ _ _ _
  *Based on Department of Energy's Guidebook to Decision-Making Methods (WSRC-IM-2002-00002)
Current Dilscsvsry IRidge LaysutPhimI 13L0,0,tPlmE lOAMFts212* Ac/I,I...W* frMT tA Prelimimary RPF Iiscovery Ridge Site Laysut...... .,I,,I, , ..... , ,. .. .. .... .... .........a in a muEUU DEED flUME U~WEUYUt~M MUIR Site CharacteristicsI> Location* Columbia, MO is -125 miles west of St Louis, MO, on Highway 70* Potential RPF site is adjacent to MURR on University of Missouri campus> Existing Conditions* Potential RPF site is adjacent to existing building on a partially paved parking lot* Direct connection to existing reactor may require below ground construction> Roadways* MURR is located near Highway 70; Just off main campus of University of Missouri (Columbia, MO)* No current roadway weight and height restrictions exist* Sufficient for transport of BURR Casks used for irradiated targets> Utilities* Required utilities are available within MURR> Land Use* Potential RPF site is on University of Missouri's campus and adjacent to MURR* Land is available for industrial use> Soils/Groundwater* Sameas DR> Environmental Site Conditions* Prior to RPF construction, an Environmental ReportWil becmpeen DS!NWMI EUR,-Current Layout/RPF Layout.... .... .... ... .... ... I r r ll lll IIII IIIIIII .. .. ... ... /I /I I I II I ,,,ID .. .... ..I!1 I I ,t i l l OSUE Site Characteristics>. Location* OSU is located near the I-5 corridor in Corvallis,iOR (- 80 miles south of Portland, OR)* RPF site is adjacent to OSU Radiation Center(off SW Jefferson Way and SW 35th Street)> Existing Conditions* Potential RPF site -- immediately to the east ofthe reactor* Utilizing site would require relocation of twoexisting laboratory buildings and reroutingtransportation access to reactor bay (i.e., modifyroads)> Roadways* Access to OSU from I-5 requires traveling on theCorvallis-Lebanon Highway* Maximum weight limit of 80,000 lbs* Sufficient for transport of BRR Casks used forirradiated targets-...
SDeveloped a list of site-specific criteria
OSE Site Characterlstics (cmnii> Utilities* Sewer, water, and electrical are available (i.e, on 35th street)>. Land Use* Site is part of OSU Master Plan and in Sector B of the Corvallis City Zoning Code* Sector requires 33% open space and allows for maximum building height of 75 ft and a minimumsetback requirement of 40 ft from collector streets> Soils* According to the USDA* Soils on flood plains along Willamette River are well drained° Lower foothills around the western margin of the valley are underlain by soft to hard sedimentary rock,which has restricted permeability* Foothills are subject to earthflow and slumping, erosion, and varying cut-slope stability* Soils report will be completed prior to RPF construction> Groundwater* Water table varies between 10 and 25 feet below ground surface> Environmental Site Conditions* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537~NWMI OSU,-Current Site Layout/mPF' Layout.... ... ........ l ll lI IIIIII I III ....... ... 1[ " I il" " lI TII ...Preliminary RPF LayoutICurrent OSU Layout:;.. WMIM nU.,.:t II VNVU I¥11t McClellan Site Characteristics> Location* UC Davis, McClellan Nuclear Research Center (MNRC) is located off campus at McClellanBusiness Park, 10 miles northeast of Sacramento, CA near I-5 corridor* McClellan Air Force Base was closed in 1995 and privatized from 1995-2003 (i.e.,McClellan Business Park)> Existing Conditions* -45,000 sq ft clear span, high bay building --200 ft from reactor has been identified aspotential site for RPF* Existing infrastructure (i.e., buildings, roads) meet current CA seismic codes> Roadways* McClellan Business Park is located along 1-80 and is served by 4 major interchanges. WattAvenue boarders McClellan to the east* No current roadway weight and height restrictions exist* Sufficient for transport of BURR Casks used for irradiated targets-lvmms uiNWMI0 1 Ecl~lellam Sits Charactsristics (cent]> Utilities* McClellan Business Park provides three dedicated electrical substations* Power is available at existing building* Water and sewer are available at or near existing building> Land Use* McClellan Business Park and potential site resides in Core Airfield/Industrial district* Designated for manufacturing, light industrial and high-tech uses* Special Planning Area designation within Sacramento County's zoning ordinance> Soils* Soils in urban areas of Sacramento County have been drastically altered during development ofAir Force Base and privatization efforts* Cut areas consist mainly of truncated San Joaquin soils; Durixeralfs* Filled areas, which were once low areas, now consist of as much as 20" of physically mixed soilmaterial; Xerarents* Soils report will be completed prior to RPF construction> Groundwater* Depth to groundwater in Sacramento County varies between 2- 420 feet basin-wide> Environmental Site Conditions* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 5370~FNWMI.o. m5,uiu+/-i:w  
* Criteria weighted by their importance to NWMI's business plan
-Current Sits Layout/RPF Layeut.... J, .. .. llllllll l BF I] I]]]I]] .... II II III I I I ,,,j, / III l lTl]]ff r lrrr rrrrrrT : ii f i p _ .. iiJ4Preliminary RPF LayoutLo1!N.I4i1~--1Current McClellan LayoutM~n S~.3rwm~522A A~1' JG LOT 15PLaRw gvwQI Ia WAIrn11WIAgl3 TMq AWD wm~lrETAlSP.S WrATUl UQDWAre SCtmCLh MAILIT -AIEpf rmLOT 3uwrum I-urntIIWVA FIT=4PVR-ar IMW A£ NsmftANORTH EST MEEIDAL ISITIPES, LIIALTERNATIV SITE EVAUATION -DETILEE SI* , mN~a W M........
* 10 = most important, 1 = least important
Psilitcal and Local Logistics Support> DRIMURR* University has high-level of political and local support and local and county ties* NWMI Team Member MURR has extensive connection with state and local network; however,NWMI should not expect as much support as in Oregon* University and State of Missouri are aware of MURR's capability and current/previous 99Moendeavors, and relationship with DOE-N NSA and 99Mo community> OSU* NWMI has strongest network in OR; Samaritan and OSU have significant state and local ties* NWMI has been introduced to Oregon Governor* State of Oregon (including OSU) has significant interest in 99Mo business model due to FTEgeneration as well as educational and R&D aspects> McClellan* Limited local political support and local and county ties* NWMI has little or no network in California* California unlikely to have significant interest in 99Mo business due to nuclear aspect and minimalFTE generation (i.e., less than 50 FTEs)-..DR MURR OSU McClellan4 4 4 1BEUMIED IIII VYMI Sperations...... ............ !!l l l I I I F FI]H HF[[ ............ .......... .... ..... " ...... l ................................. .... Fr ......... I I ISDiscovery Ridge* NWMI would manage RPF* No reactor onsite> MURR* RPF to be entirely staffed and operated by university; NWMI and MURR would co-manage RPF* Will require a multi-story building due to land constraints and current research reactor facility layout; maypresent design/construction and operational challenges> OSU* Limited involvement in RPF operations; NWMI would manage RPF* Reactor will be co-located with RPF* Will require a multi-story building due to land constraints and current research reactor facility layout; maypresent design/construction and operational challenges* "Educational/R&D area" will need to be part of RPF (not requested by UC Davis or MURR)> McClellan* No involvement in management and operations of RPF since it will not be housed on UC Davis campus;proposed site is part of McClellan Business Park (which privatized McClellan Air Force Base in 2003 and has a99 year lease)* NWMI would manage RPF* Reactor located in McClellan Business Park and would be adjacent to proposed RPF location (within --200 ft)* Design and construction of transportation corridor required..DRMURR0 SU i~!i;!l!!~!i~~iiM cClellanil4 4 3 3&WMJa Preductlen Isgistlcs> Time product spends in transit and processing determines delivered target activitySPrimary irradiation reactor is MURR/Secondary reactors are OSTR and hypothetical thirdreactor>Transportation DistanceRPF Location: DR/MURR RPF Location: OSU RPF Location: McClellan..~ -. .~ .I --.- .-S--S *~ S ICovi i, OR iii~McClellan, CA200mi (40 hr)1800 mi (35 hr)Corvallis, ORMcClellan, CAColumbia, MO0520 mi (12 hr)20o0(40ohr)Corvallis, ORMcClellan, CAColumbia, MO50nii 1 i0Irradiated LEU Target Processing/Product Conditioning and Packaging*All sites will have same processing and product conditioning timeframes..DR4MURR23McClellan3~NW¢MI Trahnsprtation> Two high-priority transportation activities can effect 6-day curies delivered* Irradiated target to RPF via ground* 99Mo Product to Distributor via air or ground> Based on FEMA disaster declarations (1964-2007)* Transportation route between OSU and McClellan has a slightly greater density of disasterdeclarations than route between either location and DR/MURR* All routes require crossing significant mountain ranges, which may result in delays due toinclement weather* If RPF is located at DR/MU RR, more Rocky Mountain crossings may increase probability ofdelays0 0DR MUR QSU Mclellan' NWMI-------
          ) Each site scored on a scale of 1-5
Waste GenerationSRadioactive and Mixed Wastes*All potential RPF locations have a radioactive/mixed waste disposition pathways* Missouri (DR/MURR) sends waste to Waste Control Specialists, Inc. (located in TX) -twostate borders will be crossed during transport* Oregon (OSU) sends waste to U.S. Ecology located on the Hanford Nuclear Reservation(located in WA) -one state border will be crossed during transport* California (McClellan) sends waste to Envirocare Inc. (located in UT) -two state borders willbe crossed during transportSHazardous Waste* All potential RPF locations have disposition pathways for all types of hazardous waste* Disposal costs are expected to be more expensive in CA than in OR or MO (cannot beevaluated until more is known about type and quantity of waste).SDR MURR OU Mleln4 4 4 3* MI________________
* 5 = most favorable, 1 = least favorable
Feisral, Stats, and Loceal IequlremsentsSNRC licensing requirements (NUREG 1537) should not vary between sites becausethese are Federal requirements>Environmental Report (being developed under NUREG 1537 and NEPA) should not varybetween sites; each site already has an existing research reactor within close proximitySState and local requirements are expected to be most significant at McClellan and lessat OSU and DR/MURRSAir quality permitting and seismic design criteria are important aspects of the project butdifferences between locations are not anticipated to be significantSPublic Involvement (according to all Federal, State, and local requirements) is expectedto be more significant at McClellan and less at OSU and DR/MURRS 0DR MURR :OSU Mlellan4 4 4 24 NWMIWALiiii~i Feisral ani Stats Taxes anl incesntivesSales tax on equipment and construction materials* MO sales tax = 4.225%; Equipment/supplies exempt; Construction materials non-exempt* OR has no sales tax* CA sales tax = 7.75%; Equipment or construction materials non-exemptSCorporate Income Tax* Missouri: 6.25%* Oregon: 7.60%* California: 8.84%(Note: single sales factor apportionment is available in all 3 states; may be subject to income tax where product is sold)SProperty Tax* University properties (OSU and DR/MURR) present opportunity for reduced property taxesbased on the ownership model of government-owned facilities* McClellan does not appear to offer reduced property taxes* Cost savings will be determined by lease negotiationsSIncentives* Oregon and Missouri are likely to offer more competitive tax and incentive packages thanCaliforniaS SDR MURR OSU Mclellan5531 Available lpames> Discovery Ridge* Greenfield Location (Agricultural for many generations)SMURR* Site has sufficient space for initial build and has ability for limited future expansion (next toResearch Reactor)> OSU* Facility will be constructed on mostly greenfield (undeveloped) area on the(Northeast and East of Radiation Center)* Site has sufficient space for initial build and has ability for future expansion* RPF will need to include space for OSU educational and R&D use0SU campus-250 feet awaySMcClellan* Site has sufficient space for initial build and has ability for future expansion (,,from UC Davis Research Reactor)* RPF will have to fit within existing infrastructure; improvements can be made~0 *DR5MURR3OSUIMcClellan2:~ NWMI Construction CostsSRS Means City Construction Cost Indexes* DR/MURR (Columbia): 95.4* OSU (Corvallis): 98.6* McClellan (Davis/Sacramento): 109.9SDiscovery Ridge* Site has existing infrastructure and few restrictions to building design* Construction cost expected be similar to OSUSMURR* Site has existing infrastructure and few restrictions to building design* Construction cost expected be similar to OSU> OSU* Site has existing infrastructure and few restrictions to building design* Site may require demolition and reconstruction of existing laboratory buildings> McClellan* Site has existing building and infrastructure resulting in slight cost savings* Existing building may require structural/mechanical modifications to meet code which willincrease costs..:DR MURR OSU Mc~lellan44 3 3* NWMI,,u.
          ) Weighting applied to the raw scores to determine a total score for each location
Natiurl anl Man-Male Disaster PotentialDiscovery Ridge/MURR (Boone County)* Has most disaster declarations (storm and flooding plus tornado) but low-to-no earthquake riskSOSU (Benton County)* Has fewest disaster declarations (mostly storm and flooding) and a moderate to low earthquake risk>" McClellan (Sacramento County)* Has more disaster declarations than OSU and less than MURR (mostly storm and flooding) and ahigher earthquake riskof mfu~wtiuk wilb Mz 4.75 wli*t 50 yelu & 50klm'UeP e,,*u= djd 4 Le,.Mclela -Earthquk Risk MapOSU -cEaelhquakeaRisk Mai .0.....r, Discovery RidgeIMURR -Earthquake Risk Map-S 0-I -D UR S clla3 3 4 2NW2M I..........  
              /~         iNWM I 1,I°T I~aEV
*'°egl"NDTW£SM!IAZO~ENWMI-201 5-RAI-001Rev. 0Appendix B -EDF-3124-0008, Emissions from Natural Gas-Fired Boiler OperationB-i Document ID:EDF-3124-0008Revision ID:0AEffective Date: June 26, 2014Engineering Design FileI Emissions from Natural Gas-Fired Boiler and Emergency Diesel GeneratorOperationPortage Project No.: 3124Project Title: NWMI Environmental ReportPortageTEM-900209/29/09Rev. 0 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 1 of 51. Portage Project No.: 31242. Project/Task: NWMI Environmental Report3. DCN#4. Title: Emissions fr'om Natural Gas-Fired Boiler and Emergency Diesel Generator Operation5. NPH PC or SDC: N/A6. SSC Safety Category: N/A7 Summary: This EDF documents the methods used to calculate the emissions of CO, NOR, PM-10, PM-2.5, VOCCO2, VOC and SOx, from the two process steam boilers, the two HVAC boilers and the emergency generatorthat will be used for the operation of the NW/MI facility.7 Distribution: (Portage, Inc.)7. Review (R) and Approval (A) Signatures:(Identify minimum reviews and approvals. Additional reviews/approvals may be added.)_____Printed Name/____________RA Organization Signature DateAuthor/Design Agent a Gary McManus 61 !'[)''g'l[ dx' 6/26/14Independent Review R Dave T home , ,.6/26/14Independent Review RProject Manager R/A John Belier 6/26/14Registered Professional Engineer's Stamp (if required) Z]N/AINTRODUCTIONSeveral combustion sources at the proposed RPF would contribute to the gaseous effluents. Thesecombustion sources are two natural gas-fired boilers used for steam production and two natural gas-firedboilers used for heating. The two steam boilers and the two boilers used for heating each are releasedthrough two separate stacks. The boilers and generator all emit GO, NOx, PM, VOCs, and CO2.Theassumptions used for the four boilers are summarized in Table 1 below.
 
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 2 of 5Table 1. Boiler Operational ParametersSta od Steam Heat Boiler Fuel Energy Natural GasBoiler Factor Efficiency Content Consumption(lb/hr) (MBTU/lb) (%) MVBTU/hr (ft3/hr)Process #1 10000 9345 75 12460 12460Process #2 10000 9345 75 12460 12460HVAC #1 10000 9345 75 12896 12896IHVAC #2 10000 9345 75 12896 12896The emission factors used for the boilers are obtained from EPA 200, AP-42, Volume I, Table 1.4.1 andTable 1.4.2, these values are shown below in Table 2.Table 2. Emission Factors for Boilers.Pollutant Emission Factor UnitsCOa 84NOx a 50PM1 0 (Total) b 7.6 l/0 cPM1O (filterable) b 1.9lb6scVOC 5.5SO2 0.6CO2 d 120,000a. Controlled -Low NOx burnersb. All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometerin diameter. Therefore, the PM emission factors presented here may be used to estimatePM10, PM2.5 or PM1 emissions. Total PM is the sum of the filterable PM andcondensable PM. Condensable PM is the particulate matter collected using EPAMethod 202 (or equivalent). Filterable PM is the particulate matter collected on, or priorto, the filter of an EPA Method 5 (or equivalent) sampling train.c. Based on 100% conversion of fuel sulfur to SO2.Assumes sulfur content is naturalgas of 2,000 grains/106 cf. The SO2 emission factor in this table can be converted toother natural gas sulfur contents by multiplying the SO2 emission factor by the ratio ofthe site-specific sulfur content (grains/106scf) to 2,000 grains/106scf.d. Based on approximately 100% conversion of fuel carbon to CO2.CO2[lb/106 scfl =(3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO2, C =carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x 104 lb/106scf.
Elseovery Bilge Characteristics
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 3 of 5From Table 2 the hourly emission were calculated as follows:Emissions (lb/hr) = EF * (NGC/1 06)Where:EF = emission factor (lb/106scf)NGC =natural gas consumption (ft3/hr)For: CO = 84 * (12460/106)= 1.0 lb/hrTons/year =(1.0 lb/hr / 2000 lb/ton)
> Location
* Columbia, MO is -125 miles west of St Louis, MO, on Highway 70
* Potential RPF site is adjacent to MURR on University of Missouri campus
> Existing Conditions
* Site is on ground that has been historically used for agriculture
> Roadways
* Located near Highway 70; 5 miles from MURR (Columbia, MO)
* No current roadway weight and height restrictions exist
* Sufficient for transport of BRR Casks used for irradiated targets
> Utilities
* Required utilities are available through MU
> Land Use
* Land use is presently set aside for a technology research park/industrial
> Soils
* Soils are characterized by medium and narrow ridges with moderate to steep side slopes
* Soils are clayey and formed inloess over glacial till; loess is thin or nonexistent on the side slopes
* Area is broken up by a number of narrow and medium-sized stream bottoms
* Soils report will be completed prior to RPF construction
> Groundwater
* Average depth to groundwater inColumbia, MO vicinity is ~180 feet
> Environmental Site Conditions
* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537
        @   NWMI                                         _       _     _     _ _   _     _   _     _     _ _
 
Current Dilscsvsry IRidge Laysut PhimI        13L0,0,t PlmE lOAM Fts212* Ac
  /
I, I
    *NWMII W* frMT tA
 
Prelimimary RPF Iiscovery Ridge Site Laysut
                    ...... .,I,,I, , ..... , ,. .... .... . . ... . . . . . . . .
a in a       mu EUU DEED flUME U
  ~WEUYUt~M
 
MUIR Site Characteristics I> Location
* Columbia, MO is -125 miles west of St Louis, MO, on Highway 70
* Potential RPF site is adjacent to MURR on University of Missouri campus
> Existing Conditions
* Potential RPF site is adjacent to existing building on a partially paved parking lot
* Direct connection to existing reactor may require below ground construction
> Roadways
* MURR is located near Highway 70; Just off main campus of University of Missouri (Columbia, MO)
* No current roadway weight and height restrictions exist
* Sufficient for transport of BURR Casks used for irradiated targets
> Utilities
* Required utilities are available within MURR
> Land Use
* Potential RPF site is on University of Missouri's campus and adjacent to MURR
* Land is available for industrial use
> Soils/Groundwater
* Sameas DR
> Environmental Site Conditions
* Prior to RPF construction, an Environmental ReportWil becmpee n                                    D S!NWMI
 
EUR,     - rlllll r ....
CurrentLayout/
IIII IIIIIII
                    ... I
              .......     .... ...... /I/II     ..I!1 IIII,,,ID RPF Layout
                                                      . .....ilIl I ,t
*:NW/MI
 
OSUE Site Characteristics
>. Location
* OSU is located near the I-5 corridor inCorvallis,i OR (- 80 miles south of Portland, OR)
* RPF site is adjacent to OSU Radiation Center (off SW Jefferson Way and SW 35th Street)
> Existing Conditions
* Potential RPF site -- immediately to the east of the reactor
* Utilizing site would require relocation of two existing laboratory buildings and rerouting transportation access to reactor bay (i.e., modify roads)
> Roadways
* Access to OSU from I-5 requires traveling on the Corvallis-Lebanon Highway
* Maximum weight limit of 80,000 lbs
* Sufficient for transport of BRR Casks used for irradiated targets
 
OSE Site Characterlstics (cmnii
> Utilities
* Sewer, water, and electrical are available (i.e, on 35th street)
>. Land Use
* Site is part of OSU Master Plan and inSector Bof the Corvallis City Zoning Code
* Sector requires 33% open space and allows for maximum building height of 75 ft and a minimum setback requirement of 40 ft from collector streets
> Soils
* According to the USDA
* Soils on flood plains along Willamette River are well drained
          ° Lower foothills around the western margin of the valley are underlain by soft to hard sedimentary rock, which has restricted permeability
* Foothills are subject to earthflow and slumping, erosion, and varying cut-slope stability
* Soils report will be completed prior to RPF construction
> Groundwater
* Water table varies between 10 and 25 feet below ground surface
> Environmental Site Conditions
* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537
~NWMI
 
OSU, - CurrentSite Layout/
                      ....IIIIII
                            ... ........ l llI III lI ..........
mPF' Layout 1[" I il" " lI TII . . .
PreliminaryRPF Layout I
Current OSU Layout WMIM
:;.. U.,.:t II VNVU   n I¥11t
 
McClellan Site Characteristics
> Location
* UC Davis, McClellan Nuclear Research Center (MNRC) is located off campus at McClellan Business Park, 10 miles northeast of Sacramento, CA near I-5 corridor
* McClellan Air Force Base was closed in 1995 and privatized from 1995-2003 (i.e.,
McClellan Business Park)
> Existing Conditions
  * -45,000 sq ft clear span, high bay building --200 ft from reactor has been identified as potential site for RPF
* Existing infrastructure (i.e., buildings, roads) meet current CA seismic codes
> Roadways
* McClellan Business Park is located along 1-80 and is served by 4 major interchanges. Watt Avenue boarders McClellan to the east
* No current roadway weight and height restrictions exist
* Sufficient for transport of BURR Casks used for irradiated targets
    -l vmms uiNWMI0 1
 
Ecl~lellam Sits Charactsristics (cent]
> Utilities
* McClellan Business Park provides three dedicated electrical substations
* Power is available at existing building
* Water and sewer are available at or near existing building
> Land Use
* McClellan Business Park and potential site resides in Core Airfield/Industrial district
* Designated for manufacturing, light industrial and high-tech uses
* Special Planning Area designation within Sacramento County's zoning ordinance
> Soils
* Soils in urban areas of Sacramento County have been drastically altered during development of Air Force Base and privatization efforts
* Cut areas consist mainly of truncated San Joaquin soils; Durixeralfs
* Filled areas, which were once low areas, now consist of as much as 20" of physically mixed soil material; Xerarents
* Soils report will be completed prior to RPF construction
> Groundwater
* Depth to groundwater inSacramento County varies between 2- 420 feet basin-wide
> Environmental Site Conditions
* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 5370
          ~FNWMI
            .o. m5,uiu+/-i:w
 
. ...J,.. .. llllllll l   BFI]I))]I))
                                    . . .. II
                                              -  CurrentSits Layout/
IIIII        I    I     I   ,,,j,/
RPF Layeut IIIl lTl))ff r lrrr rrrrrrT
: ii f i p _ .. .J,,*L ii J
4 Preliminary RPF Layout Lo1 4
N.
I i1~ --1 Current McClellan Layout M~n S~.
3rwm~
5            22A A~
1'
:*.NWMI
 
                                          -IN*lZ JG    LOT 15 P.S WrATUl PW*  UQD PLaR                  WAre    SCtmCL Elhu._*    WA*h  MAILIT  -AIEpf r w    gvwQI Ia     WAIrn 11WIAgl3 TMq AWD wm~lrETAlS mLOT 3 uwrum      I-urnt
                        =4PV IIWVA FIT
                                                                                £           N L*wl R-ar IMW A smftA NORTH                    EST        MEEIDAL       ISITIPES, LII ALTERNATIV SITE EVAUATION -DETILEE SI
*   ,   W mN~a M........
 
Psilitcal and Local Logistics Support
> DRIMURR
* University has high-level of political and local support and local and county ties
* NWMI Team Member MURR has extensive connection with state and local network; however, NWMI should not expect as much support as in Oregon
* University and State of Missouri are aware of MURR's capability and current/previous 99Mo endeavors, and relationship with DOE-N NSA and 99Mo community
> OSU
* NWMI has strongest network inOR; Samaritan and OSU have significant state and local ties
* NWMI has been introduced to Oregon Governor
* State of Oregon (including OSU) has significant interest in99Mo business model due to FTE generation as well as educational and R&D aspects
> McClellan
* Limited local political support and local and county ties
* NWMI has little or no network in California
* California unlikely to have significant interest in99 Mo business due to nuclear aspect and minimal FTE generation (i.e., less than 50 FTEs)
DR       MURR       OSU     McClellan 4           4       4        1 BEUMIED I III VYMI
 
..................!!ll l   I I I FFI]H HF((
Sperations                      l                                              .........I
                                                                                                              ................................. . ...F[r*Fr                  II SDiscovery Ridge
* NWMI would manage RPF
* No reactor onsite
                > MURR
* RPF to be entirely staffed and operated by university; NWMI and MURR would co-manage RPF
* Will require a multi-story building due to land constraints and current research reactor facility layout; may present design/construction and operational challenges
                  > OSU
* Limited involvement in RPF operations; NWMI would manage RPF
* Reactor will be co-located with RPF
* Will require a multi-story building due to land constraints and current research reactor facility layout; may present design/construction and operational challenges
                          * "Educational/R&D area" will need to be part of RPF (not requested by UC Davis or MURR)
                  > McClellan
* No involvement in management and operations of RPF since itwill not be housed on UC Davis campus; proposed site is part of McClellan Business Park (which privatized McClellan Air Force Base in2003 and has a 99 year lease)
* NWMI would manage RPF
* Reactor located in McClellan Business Park and would be adjacent to proposed RPF location (within --200 ft)
* Design and construction of transportation corridor required DR          MURR                                        0 SU i~!i;!l!!~!i~~iiM cClellanil 4                4                                           3                 3
                                    &WMJa
 
Preductlen Isgistlcs
> Time product spends in transit and processing determines delivered target activity SPrimary irradiation reactor is MURR/Secondary reactors are OSTR and hypothetical third reactor
>Transportation Distance RPFLocation: DR/MURR                             RPF Location: OSU                               RPF Location: McClellan
  .. ~ -.       .~ .     I       -     -                 .- . -       S                       -- S     *~     S     I Covi      i,OR iii~         200mi (40 hr)     Corvallis, OR                      0          Corvallis, OR                  50nii 1  i McClellan, CA                1800 mi (35 hr)   McClellan, CA                520 mi (12 hr)                                       0 McClellan, CA Columbia, MO                  20o0(40ohr)
Columbia, MO Irradiated LEU Target Processing/Product Conditioning and Packaging
          *All sites will have same processing and product conditioning timeframes DR              MURR                    McClellan 4                  2        3              3
                ~NW¢MI
 
Trahnsprtation
> Two high-priority transportation activities can effect 6-day curies delivered
* Irradiated target to RPF via ground
* 99Mo Product to Distributor via air or ground
> Based on FEMA disaster declarations (1964-2007)
* Transportation route between OSU and McClellan has a slightly greater density of disaster declarations than route between either location and DR/MURR
* All routes require crossing significant mountain ranges, which may result indelays due to inclement weather
* IfRPF is located at DR/MU RR, more Rocky Mountain crossings may increase probability of delays 0  0 DR      MUR       QSU   Mclellan
        ' NWMI-------
 
Waste Generation SRadioactive and Mixed Wastes
  *All potential RPF locations have a radioactive/mixed waste disposition pathways
* Missouri (DR/MURR) sends waste to Waste Control Specialists, Inc. (located inTX) - two state borders will be crossed during transport
* Oregon (OSU) sends waste to U.S. Ecology located on the Hanford Nuclear Reservation (located inWA) - one state border will be crossed during transport
* California (McClellan) sends waste to Envirocare Inc. (located in UT) - two state borders will be crossed during transport SHazardous Waste
* All potential RPF locations have disposition pathways for all types of hazardous waste
* Disposal costs are expected to be more expensive in CA than in OR or MO (cannot be evaluated until more is known about type and quantity of waste)
                                                                                  . S DR        MURR       OU     Mleln 4           4         4        3
* MI________________
 
Feisral, Stats, and Loceal Iequlremsents SNRC licensing requirements (NUREG 1537) should not vary between sites because these are Federal requirements
>Environmental Report (being developed under NUREG 1537 and NEPA) should not vary between sites; each site already has an existing research reactor within close proximity SState and local requirements are expected to be most significant at McClellan and less at OSU and DR/MURR SAir quality permitting and seismic design criteria are important aspects of the project but differences between locations are not anticipated to be significant SPublic Involvement (according to all Federal, State, and local requirements) is expected to be more significant at McClellan and less at OSU and DR/MURR S  0 DR      MURR      :OSU     Mlellan 4        4         4       2 4  NWMI  wIii~iii*5t WALiiii~i iii*
 
Feisral ani Stats Taxes anl incesntives
*> Sales tax on equipment and construction materials
* MO sales tax = 4.225%; Equipment/supplies exempt; Construction materials non-exempt
* OR has no sales tax
* CA sales tax = 7.75%; Equipment or construction materials non-exempt SCorporate Income Tax
* Missouri: 6.25%
* Oregon: 7.60%
* California: 8.84%
(Note: single sales factor apportionment is available in all 3 states; may be subject to income tax where product is sold)
SProperty Tax
* University properties (OSU and DR/MURR) present opportunity for reduced property taxes based on the ownership model of government-owned facilities
* McClellan does not appear to offer reduced property taxes
* Cost savings will be determined by lease negotiations SIncentives
* Oregon and Missouri are likely to offer more competitive tax and incentive packages than California S    S DR          MURR             OSU Mclellan 5531
 
Available lpames
> Discovery Ridge
* Greenfield Location (Agricultural for many generations)
SMURR
* Site has sufficient space for initial build and has ability for limited future expansion (next to Research Reactor)
> OSU
* Facility will be constructed on mostly greenfield   (undeveloped) area on the       0 SU campus (Northeast and East of Radiation Center)
* Site has sufficient space for initial build and has ability for future expansion
* RPF will need to include space for OSU educational and R&D use SMcClellan
* Site has sufficient space for initial build and has ability for future expansion (,,-250 feet away from UC Davis Research Reactor)
* RPF will have to fit within existing infrastructure; improvements can be made
                                                                                    ~0
* DR        MURR        OSU    McClellan 5            3        I        2
:~ NWMI
 
Construction Costs SRS Means City Construction Cost Indexes
* DR/MURR (Columbia): 95.4
* OSU (Corvallis): 98.6
* McClellan (Davis/Sacramento): 109.9 SDiscovery Ridge
* Site has existing infrastructure and few restrictions to building design
* Construction cost expected be similar to OSU SMURR
* Site has existing infrastructure and few restrictions to building design
* Construction cost expected be similar to OSU
> OSU
* Site has existing infrastructure and few restrictions to building design
* Site may require demolition and reconstruction of existing laboratory buildings
> McClellan
* Site has existing building and infrastructure resulting inslight cost savings
* Existing building may require structural/mechanical modifications to meet code which will increase costs
:DR       MURR   OSU   Mc~lellan 44            3       3
* NWMI,,u.
 
Natiurl anl Man-Male Disaster Potential
:* Discovery Ridge/MURR (Boone County)
* Has most disaster declarations (storm and flooding plus tornado) but low-to-no earthquake risk SOSU (Benton County)
* Has fewest disaster declarations (mostly storm and flooding) and a moderate to low earthquake risk
>" McClellan (Sacramento County)
* Has more disaster declarations than OSU and less than MURR (mostly storm and flooding) and a higher earthquake risk Pm'ob*Ry of mfu~wtiuk wilb Mz 4.75 wli*t 50 yelu &50klm' UeP   e,,*u=   *m                  4  djd Le,.
Mclela   -Earthquk Risk Map OSU          Ma
                    -cEaelhquakeaRisk i                  . 0.....
r,                     Discovery RidgeIMURR - EarthquakeRisk Map
                                                                                                  -   S 0
                                        -I                 -D UR               S       clla 3                       3                4           2 NW2M I..........
 
NWMI-201 5-RAI-001
*'°egl"NDTW£SM!IAZO~E                                                                      Rev. 0 Appendix B -
EDF-3124-0008, Emissions from Natural Gas-Fired Boiler Operation B-i
 
Document ID:EDF-3124-0008 Revision ID:0A Effective Date: June 26, 2014 Engineering Design File I Emissions from Natural Gas-Fired Boiler and Emergency Diesel Generator Operation Portage Project No.: 3124 Project
 
==Title:==
NWMI Environmental Report Portage                        TEM-9002 09/29/09 Rev. 0
 
TEM-9002                                      ENGINEERING DESIGN FILE                            EDF-31 24-0008 09/29/09                                                                                          Rev. 0A Rev. 0                                                                                            Page 1 of 5
: 1. Portage Project No.:     3124                2. Project/Task:   NWMI Environmental Report
: 3. DCN#
4.
 
==Title:==
Emissions fr'om Natural Gas-Fired Boiler and Emergency Diesel Generator Operation
: 5. NPH PC or SDC: N/A
: 6. SSC Safety Category: N/A 7 Summary: This EDF documents the methods used to calculate the emissions of CO, NOR, PM-10, PM-2.5, VOC CO 2, VOC and SOx, from the two process steam boilers, the two HVAC boilers and the emergency generator that will be used for the operation of the NW/MI facility.
7 Distribution: (Portage, Inc.)
: 7. Review (R) and Approval (A) Signatures:
(Identify minimum reviews and approvals. Additional reviews/approvals may be added.)_____
Printed Name/
Organization                       Signature             Date 61
____________RA Author/Design Agent             a   Gary McManus                           !'[)''g'l[ dx'           6/26/14 Independent Review               R   Dave Thome                    *  ,       ,.6/26/14 Independent Review               R Project Manager                 R/A John Belier                                                       6/26/14 Registered Professional Engineer's Stamp (if required)                                       Z]N/A INTRODUCTION Several combustion sources at the proposed RPF would contribute to the gaseous effluents. These combustion sources are two natural gas-fired boilers used for steam production and two natural gas-fired boilers used for heating. The two steam boilers and the two boilers used for heating each are released through two separate stacks. The boilers and generator all emit GO, NOx, PM, VOCs, and CO 2 . The assumptions used for the four boilers are summarized in Table 1 below.
 
TEM-9002                                                                                        EDF-31 24-0008 09/29/09 ENGINEERING DESIGN FILE                              Rev. 0A Rev. 0                                                                                          Page 2 of 5 Table 1. Boiler Operational Parameters Sta od   Steam Heat         Boiler       Fuel Energy     Natural Gas Boiler                            Factor         Efficiency       Content     Consumption (lb/hr)     (MBTU/lb)           (%)           MVBTU/hr         (ft3/hr)
Process #1             10000           9345             75             12460            12460 Process #2             10000           9345             75             12460           12460 HVAC #1               10000           9345             75             12896           12896 IHVAC #2             10000           9345             75             12896           12896 The emission factors used for the boilers are obtained from EPA 200, AP-42, Volume I, Table 1.4.1 and Table 1.4.2, these values are shown below in Table 2.
Table 2. Emission Factors for Boilers.
Pollutant                     Emission Factor                   Units COa                                                  84 NOx a                                                 50 PM1 0 (Total) b                                       7.6                   l/0     c PM1O (filterable) b                                   1.9lb                      6  sc VOC                                                  5.5 SO 2
* 0.6 CO 2 d                                             120,000
: a. Controlled -Low NOx burners
: b. All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM10, PM2.5 or PM1 emissions. Total PM is the sum of the filterable PM and condensable PM. Condensable PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.
: c. Based on 100% conversion of fuel sulfur to SO2. Assumes sulfur content is natural gas of 2,000 grains/10 6 cf. The SO2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO2 emission factor by the ratio of the site-specific sulfur content (grains/10 6 scf) to 2,000 grains/10 6 scf.
: d. Based on approximately 100% conversion of fuel carbon to CO 2 . CO2 [lb/10 6 scfl =
(3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO 2, C =
carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x 104 lb/106 scf.
 
TEM-9002                                    ENGINEERING DESIGN FILE                      EDF-31 24-0008 09/29/09                                                                                  Rev. 0A Rev. 0                                                                                    Page 3 of 5 From Table 2 the hourly emission were calculated as follows:
Emissions (lb/hr)   = EF * (NGC/1 06)
Where:
EF = emission factor (lb/10 6 scf)
NGC =natural gas consumption (ft3/hr)
For:               CO = 84 * (12460/106)
                        = 1.0 lb/hr Tons/year =(1.0 lb/hr / 2000 lb/ton)
* 24 hr/day
* 24 hr/day
* 7 days/week
* 7 days/week
* 50 weeks=4.4 tons/yr CO from Process boiler #1Total CO release is the sum of the two process boilers and the 2 HVAC boilers.The emissions were calculated in ton/yr assuming a boiler operation of 50 weeks per year. The results areshown in Table 3 below.Table 3. Emissions from the 4 natural gas fed boilersPollutant EmissionsProcess Boilers 1 & 2 (each) HVAC Boilers 1&2 (each) Total Emissions(lb/hr) (tons/yr) (lb/hr) (tons/yr) (tons/yr)CO 1.0E+00 4.4 1.1E+00 4.5 18NOx 6.2E-01 2.6 6.4E-01 2.7 11PMl0 (Total) 9.5E-02 0.40 9.8E-02 0.41 1.6PM10 (filterable) 2.4E-02 0.10 2.5E-02 0.10 0.40VOC 6.9E-02 0.29 7.1E-02 0.30 1.2SO2  7.5E-03 0.031 7.7E-03 0.032 0.13CO2  1.5E+03 6,300 1.5E+03 6,500 26,000Emergency Generator: The diesel generator is planned to be used for temporary operation and safeshutdown of the system if required. The emergency generator would emit CO, NOx, PM, SO2, VOCs,and CO2.The generator was assumed to be rated at 2,600 kw and the emission factors and annualemissions are shown below in Table 4Total Emissions were calculated as follows:Ei (kg) =EFi (g/kW-hr)
* 50 weeks
              =4.4 tons/yr CO from Process boiler #1 Total CO release is the sum of the two process boilers and the 2 HVAC boilers.
The emissions were calculated in ton/yr assuming a boiler operation of 50 weeks per year. The results are shown in Table 3 below.
Table 3. Emissions from the 4 natural gas fed boilers Pollutant                                          Emissions Process Boilers 1 & 2 (each) HVAC Boilers 1&2 (each)     Total Emissions (lb/hr)       (tons/yr)       (lb/hr)     (tons/yr)       (tons/yr)
CO                           1.0E+00           4.4         1.1E+00         4.5               18 NOx                          6.2E-01           2.6         6.4E-01         2.7               11 PMl0 (Total)                 9.5E-02           0.40         9.8E-02         0.41             1.6 PM10 (filterable)             2.4E-02           0.10         2.5E-02         0.10             0.40 VOC                          6.9E-02           0.29         7.1E-02         0.30             1.2 SO2                          7.5E-03           0.031         7.7E-03       0.032             0.13 CO 2                          1.5E+03           6,300       1.5E+03         6,500           26,000 Emergency Generator: The diesel generator is planned to be used for temporary operation and safe shutdown of the system if required. The emergency generator would emit CO, NOx, PM, SO 2 , VOCs, and CO 2. The generator was assumed to be rated at 2,600 kw and the emission factors and annual emissions are shown below in Table 4 Total Emissions were calculated as follows:
Ei (kg) =EFi (g/kW-hr)
* 0.001 (kg/g)
* 0.001 (kg/g)
* Power Rating (kw) x Hours Run per Year (hr/yr)Assumes 24 hours operation per year and 2,600 kw generator.
* Power Rating (kw) x Hours Run per Year (hr/yr)
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 4of 5Table 4. Emission Factors and Annual for Selected Pollutants (2,600 kw Emergency Generator)NOXa PM~ SO~abCOaNOxaa02PM"SOxa, bg/kW-hr ozikW-hr g/kW-hr oz/kW-hr g/kW-hr oz/kW-hr g/kW-hr oz/kW-hr g/kW-hr ozikW-hrEmission Factor3.3 0.12 7.9 0.28 710 25 0.43 0.015 2.5 0.087Emissions kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr kg/hr lb/hrStandby 2600 kW 8.7 19 21 45 1800 4000 1.1 2.4 6.4 14diesel______________________ _______generator per yearc 210 460 490 1000 44,000 97,000 27 59 150 340a Values from EPA, 2010, Compilation of Air Pollutant Emission Factors, Volume 1, Stationary Point and Area Sources, AP 42, Fifth Edition, U.S. Environmental ProtectionAgency, Office of Air and Radiation, Washington, D.C., 2010. Table 3.4.1b Assumes 0.5% sulfur content.SAssumes 24 hr/year operation for maintenance.
Assumes 24 hours operation per year and 2,600 kw generator.
TEM-900209129/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0008Rev. 0APage 5 of 5
 
TEM-9002                                                                ENGINEERING DESIGN FILE                                                            EDF-31 24-0008 09/29/09                                                                                                                                                    Rev. 0A Rev. 0                                                                                                                                                      Page 4of 5 Table 4. Emission Factors and Annual for Selected Pollutants (2,600 kw Emergency Generator)
PM~                           SO~ab COa                          NOXa NOxa                            a02                      PM"                           SOxa,b g/kW-hr       ozikW-hr       g/kW-hr       oz/kW-hr     g/kW-hr       oz/kW-hr       g/kW-hr       oz/kW-hr       g/kW-hr       ozikW-hr Emission Factor 3.3           0.12           7.9         0.28           710           25           0.43           0.015           2.5           0.087 Emissions                kg/hr         lb/hr         kg/hr         lb/hr         kg/hr         lb/hr       kg/hr           lb/hr         kg/hr         lb/hr Standby      2600 kW           8.7             19           21           45         1800           4000           1.1             2.4           6.4             14 diesel______________________                                                      _______
generator      per yearc         210           460           490         1000         44,000       97,000           27             59             150           340 a Values from EPA, 2010, Compilation of Air PollutantEmission Factors, Volume 1, Stationary Point and Area Sources, AP 42, Fifth Edition, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C., 2010. Table 3.4.1 b Assumes 0.5% sulfur content.
SAssumes 24 hr/year operation for maintenance.
 
TEM-9002                                                              ENGINEERING DESIGN FILE                                                                                                    EDF-31 24-0008 09129/09                                                                                                                                                                                        Rev. 0A Rev. 0                                                                                                                                                                                          Page 5 of 5


==Attachment:==
==Attachment:==
Excel spread sheet of calculationsPrrs 2... 934.52 Ofl for se~am at 25 xi9345 MN,75% Boiler Ef0,ienu,22440 MN, Fool cortent124600034,r Coo Cu,,,.14 1066;ha30% OxreessAo153004 ft3ft Coomkustio, AirPb btwgs l~ rate foreaoh of cxoo bolersPb,,t, vecndor infoocrmatioFIVAC 9672 MN, Pook HIVAC hooatg drrroalxISteam lteat Boirr Fuel Encrgr ata aI Stram Load I Factor I 0t19,m Cotnt Couso.75%Boilr, 03o¢nvEmlacion Farctor, Br Boil,,.Pollcteota Enilaslon Facoro UntllCO 84 hl4O ofNO,,' 50PMt0 (Tola[) ' 7.6PMI0 1 9VOC 5.5120,000 ___o A, P (62 2,O. 00.40006 .. r~t eik, = .u=*ad 2t, ho 00.1.aoc.0=nmct o od... eTh,,aoooorhePM l s siac fool. rp'*mlhtoo, re, bocod Io.OllcaboPM IO.,POl20.300Pld a...occ. TriPM iu th0 0.00000inh .0 ,000c.4c~o 08 70A Mo¢hod 202 6(,Op&u.210t FiO.8*2.kpM .i0 ,tt w .u00..Iof. e. The SO2o,,ooo..ao mt0. u. ho 0,0r0 to ud.h, c~a torO ..000r .ot,,o O10020t (t.faim16lt) ,flOo9.oou floal106 so002[100100 sel9 1 3.67) 1C01d,1C0D30 ..h0. CulON r.000,oJrOr.ru. 020.O00IO COC'006000t Iat O."f41by wtolt.dO D doy or 0(.44,204.z1o4 n6,2.050-09 4.446.23E-01 2026045E-02 2.72I19.47E-02 9.40 9.20E-02 0 42 162.970-02 0.10 2.45E-02 0.10 0.446.85E-02 1029 7.09E0 2 { 0.30 2.27.480-09 0.99 7.740-03 j 0 03 0.232.500'803 6.28E303 [ 1 55E0 3 630 25.359Enmhsbon. 8.,nPncoo,.Bollanl1&2 20b/hr) Each Esch (Ibthr
Excel spread sheet of calculations Prrs    2...
* iOPENWMI-201 5-RAI-001Rev. 0Appendix C -EDF-3124-0012, Emission Modeling for Process and IIVAC Boilers Using AERSCREENC-i Document ID:EDF-3124-0012Revision ID:1Effective Date: February 4, 2015Engineering Design FileEmission Modeling for Process and HVAC Boilers using AERSCREENPortage Project No.: 3124Project Title: NWMI Environmental Report4PortageTEM-900209/29/09Rev. 0 TEM-900209/29/09Rev. 01. Portage Project No.: 3124ENGINEERING DESIGN FILEEDF-3124-0012Rev. 1Page 1 of 202. Project/Task: NWMVI Enviromnmental Report3. DCNH#4. Title: Emission Modeling for Process and HVAC Boilers using AERSCREEN5. NPH PCor SDC: N/A6. SSC Safety Category: N/A7 Summary:This EDF documents the assumptions used and the results of the AERSCREEN modeling done for the 4 naturalgas fired boils used for the operation of the NWIVI facility. The results are then compared to the NAAQS andambient air concentrations.8 Distribution: (Portage, Inc.)9. Review (R) andApproval (A) Signatures: (Identify minimum reviews and approvals. Additional reviews/approvals mnay be added.)_____~Printed Name/R/A Organization Signature DateAuthor/Design Agent A Gary McManus () 2/04/15Independent Review R Dave Thorme ¢ 2/04/15Independent Review RProject Manager R/A John Beller 2/04/15Registered Professional Engineer's Stamp (if required) Z]N/A TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 2 of 20INTRODUCTIONAs described in EDF-3 124-0008 there will be two natural gas-fired boilers used for steamproduction and two natural gas-fired boilers used for heating. The two steam boilers and thetwo boilers used for heating each are released through two separate stacks. The boiler andgenerator all emit CO, NOx, PM, VOCs, and C02. The assumptions used for the four boilersand the associated emissions are summarized in Tables 1 and 2 below.Table 1. Boiler Operational ParametersSemBoiler Fuel Energy Natural GasSteam Load HeatBoiler Factor Efficiency Content Consumption(lb/br) (MBTU/lb) (%) MBTU/hr (ft3/hr)Process #1 10000 9345 75 12460 12460Process #2 10000 9345 75 12460 12460HVAC #1 10000 9345 75 12896 12896HVAC #2 10000 9345 75 12896 12896Table 2. Emissions From The Four Natural Gas Fed Boilers (EDF-3 12 1-0008)Pollutant _____________ EmissionsProcess Boilers 1 & 2 HVAC Boilers 1 &2 TotalS~Emissions(lb/hr) (tons/yr) (lb/br) (tons/yr) (tons/yr)CO 2.1E+00 8.8E+00 2.2E+00 9.1E+00 18NOx 1.2E+00 5.2E+00 1.3E+00 5.4E+00 11PM10 (Total) 1.9E-01 8.0E-01 2.0E-01 8.2E-01 1.6PM10 (filterable) 4.7E-02 2.0E-01 4.9E-02 2.1E-01 0.40VOC 1.4E-01 5.76E-01 1.4E-01 6.0E-01 1.2SO2 1.5E-02 6.3E-02 1.6E-02 6.5E-02 0.13CO2 3.0E+03 1.3E+04 3.1E+03 1.3E+04 26,000Emissions from the boiler activities were evaluated using AERSCREEN, Version 11126. Thisscreening model uses standard defaults for meteorology, and terrain values. Modeled emissionsincluded: PM-10, PM-2.5, CO, nitrogen, and sulfur oxides (NOx), and SOx.). The assumptionsused for the modeling are presented below.
0019*
TEM-900209/29109Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 3 of 20ASSSUMPTIONSThe input assumptions used for the AERSCREEN model are summarized in Table 3 and 4below. Since the four boilers vent through two identical stacks only one run was done. Theresults of the run were then combined to give the approximate concentrations at the receptorlocations.Table 3. AERSCREEN Input Stack ParametersSOURCE EMISSION RATE: 0.1260 g/s 1.000 lb/hrSTACK HEIGHT: 22.86 meters 75.00 feetSTACK INNER DIAMETER: 0.305 meters 12.00 inchesPLUME EXIT TEMPERATURE: 310.9 K 99.95 Deg FPLUME EXIT VELOCITY: 17.929 m/s 58.82 ft/sSTACK AIR FLOW RATE 2772 ACFM 2772 ACFMRURAL OR URBAN: RURAL RURALFLAGPOLE RECEPTOR HEIGHT: 1.83 meters 6.00 feetINITIAL PROBE DISTANCE -- 5000. meters 16404. feetTable 4. Makemet Meteorology ParametersMIN/MAX TEMPERATURE: 255.4 / 302.6 (K)MINIMUM WIND SPEED: 0.5 m/sANEMOMETER HEIGHT: 10 metersDOMINANT SURFACE PROFILE: GrasslandDOMINANT CLIMATE TYPE: Average MoistureDOMINANT SEASON: SpringALBEDO: 0.18BOWEN RATIO: *0.4ROUGHNESS LENGTH: 0.050 (meters)For this screening model, no downwash was considered in the calculations since exact locationsand dimensions are still in the design phase. The closest residential receptor was assumed to be asingle family home located approximately 375 meters SSE from the facility location. Usingthese assumptions the AERSCREEN model was run and the results were obtained. A completelisting of the model is included in Attachment 1.
I  Stram Load      IISteam lteat Factor I Boirr 0t19,m Fuel Encrgr Cotnt ata Couso a
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 4 of 20RESULTSThe final run results for the maximum concentration downwind of the facility are summarized inTable 5 below.Table 5. AERSCREEN Results.Maximum] Scaled J Scaled] Scaled [ScaledCalculation 1-Hour] 3-Hour 8-Hour J24-Hour AnnualProcdureConcentration aFlat Terrain (gig/m3) J(jPtg/m3) J(gig/m3) ](btg/m3) (Pig/m3)_________ 17 17 J 15 J 10 1.7a. Distance from Source to maximum concentration location 136.00 metersUsing the AERSCREEN results above as well as the maximum concentration at 375 meters fromattachment 1 (i.e., 10.83 jig/in3), Table 6 and 7 were completed.Table 6. Emissions from Process Steam Demand -Natural Gas-Fired BoilersModeledconcentration toHourly Emissions MaximumclstEmission for Both Steam concentrationPollutant Factor Boiler a @ 136 m b residentialreceptor (375 m)c(lb/hr) (jig/in3) (jig/in3)CO 84 2.1E+00 3.5E+01 2.3E+01NOx 50 1.2E+00 2.1E+01 1.4E+01PM-10 7.6 1.9E-01 3.2E+00 2.1E+00PM-2.5 1.9 4.7E-02 8.0E-01 5.1E-015.5 1.4E-01 2.3E+00 1.5E+00SO2 0.6 1.5 E-02 2.5E-01 1.6E-01CO2 120,000 3.0E+03 5.0E+04 3.2E+04a. Hourly emission from process boiler 1 and 2 each shown in EDF-3 124-0008.b. This is maximum 1- hour concentration calculated by AERSCREEN equals 1 7jg/m3 perlb/hrc. This represents the highest 1 hour concentration at the closest receptor of 375 meters andequals 11 jig/mn3per lb/hr TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 5 of 20Table 7. Emissions from 2-H VAC Natural Gas-Fired HeaterModeledHourly Emissions Maximum concentration toEmission for Both HVAC concentration closestPluatFactor Boiler a @ 136 m bresidentialreceptor (375 m)(lb/hr) ([.tg/m3) (jig/mn3)CO 84 2.2E+00 3.6E+01 2.3E+01NOx 50 1.3E+00 2.2E+01 1.4E+01PM10 7.6 2.0E-01 3.3E+00 2.1E+00PM-2.5 1.9 4.9E-02 8.2E-01 5.3E-01VOC 5.5 1.4E-01 2.4E+00 1.5E+00SO2 0.6 1.6E-02 2.6E-01 1.7E-01CO2  120,000 3.1E+03 5.2E+04 3.3E+04a. Hourly emission from process boiler 1 and 2 each shown EDF-3 124-0008b. This is maximum 1- hour concentration calculated by AERSCREEN at 136 m equals 17jtg/mn3 / lb/hrc. This represents the highest 1 hour concentration at the closest receptor of 375 meters andequals 11 jig/mn3/ lb/hrSince both boiler stacks are co-located with the same characteristics the total downwindconcentration was assumed to be additive. These values were then compared to the NationalAmbient Air Quality Standards (NAAQS) to see if any of the 1-hour air standards wereexceeded. This comparison is summarized in Table 8 below.Table 8. Maximum Release Concentration Comparison to NAAQS StandardsMimmModeled Percentage ofconcentration to closestAQ NAAQS Limit atPolltant 136rato@ clst residential NASAASPoint ofreceptor____(375 m)______ ______ Maximum(___g/m3)__(jig/r3) (ppm) (jig/mn3) ConcentrationCO 7.2E+0+/-.E01 4.0E+04 0.18%NOx 4.3E+012.E019+222PM10 6.5E+00 PM-2.5 1 .6E+001.E0003 46SO2 4.7E+00 .6CO2 5.1E-01 3.3E-01_NANANa. Maximum Concentration is the sum of the 2 process boilers and the 2 HVAC boilers ________b. Concentration at closest residencec. Values in Green are actual standard values; values in yellow are the converted values.d. 24-hour standard for PM-10 and PM-2.5 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 6 of 20From Table 8 it is apparent that the modeled release concentrations are all below the applicableNAAQS standards. Therefore no additional modeling is required at this time.A similar evaluation of the model emission concentrations was performed to determine if theemissions exceed the regional ambient concentrations of the listed pollutants. Regional values ofthe five regulated pollutants for Missouri were obtained from the Missouri Division ofEnvironmental Quality Web Site for different monitoring stations in the state. The Tables 9summarizes the data in Attachment 2 used to determine the average values.Table 9. Ambient Air of Rural/Urban MissouriAmbient Air of Rural/UrbanPollutant Missouri3)CO 3.8E+03NOx 2.1E+01PMl0 1.7E+01PM-2.5 1.1E+01SO2 7.0E+00CO2 NAA similar evaluation of the model emission concentrations was performed to determine if theemissions exceed the regional ambient concentrations of the listed pollutants. Regional values ofthe five regulated pollutants for Missouri were obtained from the Missouri Division ofEnvironmental Quality Web Site for different monitoring stations in the state. The Tables 9summarizes the data in Attachment 2 used to determine the average values. Similar comparisonwas done toTable 10. Comparison of Modeled Concentrations to Average Ambient levels around the StateMissouri.Maiu codeledtato AminoAro Percentage of Ambient Airconcentrationoto Rural/UrbanPollutant concenratio closest residential Misuiconcentration Point of@16b receptor (375 m) b MisuiMaximum Concentration(ig/m3) (#tg/m3) (#.g/m3) ____________CO 7.2E+0l 4.6E+0l 3.8E+03 1.9%NOx 4.3E+01 2.7E+0l 2.1E+01 203%PM10 6.5E+00 4.2E+00 1.7E+01 38%PM-2.5 l.6E+00 1.0E+00 1.1E+01 15%SO2 4.7E+00 3.0E+00 7.0E+00 7.3%CO2 5.lE-01 3.3E-01 NA NAa Maximum Concentration is the sum of the 2 process boilers and the 2 ITVAC boilersb Concentration at closest residence Attachment 1 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-3124.-0012Rev. 1Page 7 of 20ATTACHMENT 1.AERSCREEN FilesText File:Start date and time 02/05/15 08:19:04AERSCREEN 11126NWMI PROCESS BOILER-.........DATA ENTRY VALIDATIONMETRIC ENGLISH** STACKDATA **------------------Emission Rate: 0.1260 g/s 1.000 lb/hrStack Height: 22.86 meters 75.00 feetStack Diameter: 0.3 05 meters 12.00 inchesStack Temperature: 310.9 K 100.0 Deg FExit Velocity: 17.929 m/s 58.82 ft/sStack Flow Rate: 2771 ACFMModel Mode: RURALDist to Ambient Air: 1.0 meters 3. feet** BUILDING DATA **No Building Downwash Parameters** TERRAIN DATA * *No Terrain ElevationsSource Base Elevation: 0.0 meters0.0 feetProbe distance: 5000. meters 16404. feetFlagpole Receptor Height: 1.8 meters6. feetNo discrete receptors used** METEOROLOGY DATA **
934.52 BI~uO* Ofl for se~amat 25 xi 9345MN, 75%         BoilerEf0,ienu, 22440MN,     Fooloner* cortent 124600034,r CooCu,,,.14                             1066;ha 30%         OxreessAo 153004ft3ft  Coomkustio, Air                                                Emlacion Farctor, Br Boil,,.                                                    Enmhsbon.8.,n Pollcteota          Enilaslon Facoro        Untll                Pncoo,.Bollanl1&2 2 Pb        l~ rate foreaoh of cxoobolers btwgs 0b/hr) Each  {tons/*r} Esch    (Ibthr Pb,,t,vecndorinfoocrmatio                                  CO                        84             hl4O of            2.050-09          4.44 NO,,'                     50                                6.23E-01          202                                I1 6045E-02    2.72 PMt0 (Tola[)'                 7.6                                9.47E-02          9.40          9.20E-02    0 42    16 PMI0 (fl*orabe)bI                19                                2.970-02          0.10          2.45E-02    0.10    0.44 VOC                      5.5                                6.85E-02          1029          7.09E0 2 {  0.30    2.2 FIVAC    9672MN,     Pook HIVAChooatg drrroalx                                                                                                7.480-09          0.99          7.740-03 j  0 03    0.23
TEM-9002 ENGINEERING DESIGN FILE EDF-3124-001209/29/09 Rev. 1Rev. 0 Page 8 of 20Min/Max Temperature: 255.4 / 302.6 K 0.0 / 85.0 Deg FMinimum Wind Speed: 0.5 m/sAnemometer Height: 10.000 metersDominant Surface Profile: GrasslandDominant Climate Type: Average MoistureAERSCREEN output file:boilerl .out** AERSCREEN Run is Ready to BeginNo terrain used, AERMAP will not be runSURFACE CHAPRACTEPISTICS & MAKEMETObtaining surface characteristics...Using AERM4ET seasonal surface characteristics for Grassland with Average MoistureSeason Albedo Bo zoWinter 0.60 1.50 0.001Spring 0.18 0.40 0.050Summer 0.18 0.80 0.100Autumn 0.20 1.00 0.010Creating met files aerscreen_01_01.sfc & aerscreen_01 01.pflCreating met files aerscreen_02_01 .sfc & aerscreen_02 01 .pflCreating met files aerscreen_03_01 .sfc & aerscreen_03 01 .pflCreating met files aerscreen_04_01 .sfc & aerscreen_04 01 .pflPROBE started 02/05/15 08:19:34Running probe for Winter sector 1AERMOD Finishes Successfully for PROBE stage 1 Winter sector1***** WARNING MESSAGES *****
          .75%        Boilr, 03o¢nv                                              CO.,*                  120,000          ___                2.500'803      6.28E303    [    155E0 3  630 5E*3  25.359 o A, P (622,O. 00.40006 .. r~teik, = .u=*ad2t,ho00.
TEM-9002 ENGINEERING DESIGN FILE EDF-3124-001209/29/09 Rev. 1Rev. 0 Page 9 of 20*** NONE ***Running probe for Spring sector 1AERMOD Finishes Successfully for PROBE stage 1 Spring sector1*** NONE ***Running probe for Summer sector 1AERMOD Finishes Successfully for PROBE stage 1 Summer sector1******** WARNING MESSAGES ********** NONE **Running probe for Autumn sector 1AERMOD Finishes Successfully for PROBE stage 1 Autunmn sector1***** WARNING MESSAGES *********** NONE ***PROBE ended 02/05/15 08:19:3 8REFINE started 02/05/15 08:19:38AERMOD Finishes Successfully for REFINE stage 3 Spring sector1***** WARNING MESSAGES ******** NONE **REFINE ended 02/05/15 08:19:38AERSCREEN Finished SuccessfullyWith no errors or warningsCheck log file for detailsEnding date and time 02/05/15 08:19:39 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-3124-0012Rev. 1Page 10 of 20OUTPUT FILE:AERSCREEN 11126 / AERMOD 1234TITLE: NWMI PROCESS BOILER02/05/1508:19:38***************************** STACK PARAMETERS***q* **** *** ******* **** * **** *SOURCE EMISSION RATE: 0.1260 g/sSTACK HEIGHT: 22.86 metersSTACK INNER DIAMETER: 0.305 metersPLUME EXIT TEMPERATURE: 310.9 KPLUME EXIT VELOCITY: 17.929 in/sSTACK AIR FLOW RATE: 2772 ACFMRURAL OR URBAN: RURAL1.000 lb/hr75.00 feet12.00 inches100.0 Deg F58.82 ft/sFLAGPOLE RECEPTOR HEIGHT:INITIAL PROBE DISTANCE =1.83 meters6.00 feet5000. meters16404. feet****************BUILDING DOWNWASH PARAMETERS** *** **** ****** ** **NO BUILDING DOWNWASH HAS BEEN REQUESTED FOR THIS ANALYSIS************** PROBE ANALYSIS **************25 meter receptor spacing: 1. meters -5000. metersZo ROUGHNESSSECTOR LENGTH1-HR CONC DIST TEMPORAL(ug/m3) (in) PERIOD1" 0.050 16.70 150.0 SPR* -worst case flow sector TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Pagell1of 20********************** MAKEMET METEOROLOGY PARAMETERSMIN/MAX TEMPERATURE: 255.4 / 302.6 (K)MINIMUM WIND SPEED:0.5 rn/sANEMOMETER HEIGHT: 10.000 metersSURFACE CHARACTERISTICS INPUT: AERMET SEASONAL TABLESDOMINANT SURFACE PROFILE: GrasslandDOMINANT CLIMATE TYPE: Average MoistureDOMINANT SEASON: SpringALBEDO: 0.18BOWEN RATIO: 0.40ROUGHNESS LENGTH: 0.050 (meters)METEOROLOGY CONDITIONS USED TO PREDICT OVERALL MAXIMUMIMPACTYR MO DY JDY HR10 0105 5 12HO U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 BOWEN ALBEDO REF WS21.61 0.066 0.300 0.020 46. 39. -1.2 0.050 0.40 0.18 0.50HT REF TA HT10.0 302.6 2.0ESTIMATED FINAL PLUME HEIGHT (non-downwash): 37.4 metersMETEOROLOGY CONDITIONS USED TO PREDICT AMBIENT BOUNDARYIMPACT TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 12 of 20YR MO DY JDY HR10 01 01 5 12Ho U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 B OWEN ALBEDO REF WS1.17 0.049 0.100 0.020 27. 25. -7.8 0.050 0.40 0.180.50HT REF TA HT10.0 255.4 2.0ESTIMATED FINAL PLUME HEIGHT (non-downwash): 56.5 meters************************ AERSCREEN AUTOMATED DISTANCESOVERALL MAXIMUM CONCENTRATIONS BY DISTANCEMAXIMUMDIST 1-HR CONC(in) (ug/m3)1.00 0.2290E-0425.00 4.21650.00 8.39075.00 10.29100.00 15.11125.00 16.69150.00 16.70175.00 16.17200.00 15.43225.00 14.64250.00 13.87275.00 13.16300.00 12.49325.00 11.89350.00 11.33375.00 10.83400.00 10.37425.00 9.943MAXIMUMDIST 1-HR CONC(mn) (ug/m3)2525.00 4.1392550.00 4.1072575.00 4.0762600.00 4.0452625.00 4.0152650.00 3.9862675.00 3.9562700.00 3.9272725.00 3.8992750.00 3.8712775.00 3.8432800.00 3.8152825.00 3.7882850.00 3.7622875.00 3.7352900.00 3.7092925.00 3.6842950.00 3.659 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page1l3of 20450.00475.00500.00525.00550.00575.00600.00625.00650.00675.00700.00725.00750.00775.00800.00825.00850.00875.00900.00925.00950.00975.001000.001025.001050.001075.001100.001125.001150.001175.001200.001225.001250.001275.001300.001325.001350.001375.001400.001425.001450.001475.001500.001525.001550.001575.009.6099.3 159.0398.78 18.5398.3 108.0957.89 17.6997.5 177.3447.1797.0236.8746.7336.5976.4686.3446.2266.1126.0036.0396.1746.2876.3 806.4476.43 16.4 116.3866.3596.3286.2956.2596.2216.1826.14 16.0986.0556.0105.9655.9 195.8725.8265.7785.73 15.6832975.003000.003025.003050.003075.003100.003125.003150.003175.003200.003225.003250.003275.003300.003325.003350.003375.003400.003425.003450.003475.003500.003525.003550.003575.003600.003625.003650.003675.003700.003725.003750.003775.003800.003825.003850.003875.003900.003925.003950.003975.004000.004025.004050.004075.004100.003.6343.6093.5853.5613.5373.5 143.4913.4683.4463.4243.4023.3803.3593.3383.3 173.2963.2763.2563.2363.2173.1973.1783.1593.14 13.1223.1043.0863.0683.0513.0333.0162.9992.9822.9662.9492.9332.9172.90 12.8862.8702.8552.8392.8242.8 102.7952.780 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 14 of 201600.001625.001650.001675.001700.001725.001750.001775.001800.001825.001850.001875.001900.001925.001950.001975.002000.002025.002050.002075.002100.002125.002150.002175.002200.002225.002250.002275.002300.002325.002350.002375.002400.002425.002450.002475.002500.005.6365.5885.5415.4945.4475.4005.3535.3075.26 15.2 165.1715.1265.0825.03 84.9954.9524.9104.8684.8274.7864.7464.7064.6674.6294.5904.5534.5 154.4794.4434.4074.3724.3374.3034.2694.2364.2034.1714125.004150.004175.004200.004225.004250.004275.004300.004325.004350.004375.004400.004425.004450.004475.004500.004525.004550.004575.004600.004625.004650.004675.004700.004725.004750.004775.004800.004825.004850.004875.004900.004925.004950.004975.005000.002.7662.7522.7372.7242.7102.6962.6822.6692.6562.6432.6302.6172.6042.5912.5792.5 662.5542.5422.5302.5 182.5062.4942.4832.4712.4602.4492.4382.4272.4162.4052.3942.3 832.3732.3622.3522.341********************** AERSCREEN MAXIMUM IMPACT SUMMARYMAXIMUM SCALED SCALED SCALED SCALED TEM-9002 ENGINEERING 09/29109Rev. 01-HOUR 3-HOUR 8-HOUR 24-HOUFCALCULATION CONC CONC CONCPROCEDURE (ug/m3) (ug/m3) (ug/m3) (ug/niFLAT TERRAJN 16.81 16.81 15.13 10.08J1 FILEEDF-31 24-0012Rev. 1Page 15 of 20,.ANNUALCONC CONC[3) (ug/m3)1.68 1DISTANCE FROM SOURCE136.00 metersIMPACT AT THEAMBIENT BOUNDARY 0.2290E-04 0.2290E-04 0.2061E-04 0.1374E-04 0.2290E-05DISTANCE FROM SOURCE 100mtr1.00 meters TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 16 of 20Attachment 2Average ambient Pollutant Concentrations for MissouriTable 1. Levels of CO in Springfield MissouriMaximum MaximumYear 8-Hour Average 1-Hour Average(ppm) (ppm)1993 5.4 141994 5.9 121995 5 91996 3.3 71997 5 71998 5.1 61999 4.1 52000 2.8 52001 4.3 72002 3.5 62003 2.4 42004 3.4 52005 3 52006 2.1 .42007 2.6 42008 1.3 1.92009--- --1.5- ..---2.3 --2010 1.9 2.3Second Quarter 2013 1.1 2.3Average (ppm) 3.35E+00 5.73E+00Average ((gglm3) 3.84E+03 6.56E+03Table 2. Nitrogen Dioxide -Hillcrest High School SpringfieldYear Annual AverageYear (ppm)1993 0.0111994 0.0131995 0.0121996 0.0111997 0.0111998 0.0121999 0.0132000 0.0122001 0.0132002 0.01072003 0.01112004 0.0122005 0.01152006 0.01042007 0.012008 0.00892009 0.0083Through 3rd Quarter 0.0079Average (ppm) 1. 1OE-02Average (ug/m3) 2.08E+01 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 17 of 20Table 4. Inhalable PM10 -MSU SpringfieldAnnual Average Maximum 24 hr AverageYear(gg/m3) (gg/m3)1993 18 381994 18 581995 17 441996 18 641997 15 511998 17 431999 18 452000 18 47.2001 20 572002 18 462003 17 402004 16.7 362005 19.3 452006 15.7 352007 17.9 382008 15 392009 14 272010 17.2 362011 16.5 372012 16.9 38Average(jgg/m3) 17.16 43.2Table 5. Inhalable PM-2.5 MSU SpringfieldYear Annual AverageYear (ppm)1999 12.242000 12.282001 12.22002 12.72003 11.72004 10.912005 13.012006 10.822007 11.82008 10.72009 9.552010 9.892011 10.922012 10.09Average (ppm) 1.1 3E+0 1 TEM-900209/29/ 09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 18 of 20Table 6. Sulfur Dioxide MSU SpringfieldYear Annual AverageYear (ppm)1993 0.0031994 0.0051995 0.0021996 0.0031997 0.0021998 0.0031999 0.0042000 0.0032001 0.0042002 0.0032003 0.0022004 0.00142005 0.00172006 0.00192007 0.00182008 0.00222009 0.0022Average (ppm) 2.66E-03Average 6.97E+00 TEM-900209/29/09Rev. 0EGNEINGrat DESm iGNtILEDF-31 24-0012Rev. 1Page 19 of 20
1.aoc.0=nmctood... eTh,,aoooorhePM    l    ssiacfool. rp'*ml htoo, re, bocodIo.OllcaboPM    IO.,POl20.300Pld a...occ. Tri PM iuth00.00000inh . 0,000c.4c~o  08 70AMo¢hod  2026(,
Op&u.210t  FiO.8*2.kpM  .i0 thp.ioalo..,oaoIll6.ga...*pri
                                                                      ,tt  .u00..Iof.
w            2,*r~,00pn/t e. The SO2o,,ooo..ao m 00*t0. u. ho0,0r0      toud.h,c~atorO . .000r.ot,,o O 10020t (t.faim16lt)     ,flOo9.oou floal106 so 002[100100 sel9 13.67)1C01d,1C0D30  .. h0. CulON r.000,oJ rOr.ru.020.O00IOCOC'006000t                Iat O."f41by wtolt
                                                                      *0.000.dO D doy    0(.44,204.z1o4 or              n6,
 
NWMI-201 5-RAI-001
* =e*'ND*WEMEIA iOPE                                                                Rev. 0 Appendix C -
EDF-3124-0012, Emission Modeling for Process and IIVAC Boilers Using AERSCREEN C-i
 
Document ID:EDF-3124-0012 Revision ID:1 Effective Date: February 4, 2015 Engineering Design File Emission Modeling for Process and HVAC Boilers using AERSCREEN Portage Project No.: 3124 Project
 
==Title:==
NWMI Environmental Report 4Portage                                TEM-9002 09/29/09 Rev. 0
 
TEM-9002                                    ENGINEERING DESIGN FILE                                  EDF-3124-0012 09/29/09                                                                                              Rev. 1 Rev. 0                                                                                                Page 1 of 20
: 1. Portage Project No.:       3124
: 2. Project/Task:     NWMVI Enviromnmental Report
: 3. DCNH#
4.
 
==Title:==
Emission Modeling for Process and HVAC Boilers using AERSCREEN
: 5. NPH PCor SDC: N/A
: 6. SSC Safety Category: N/A 7 Summary:
This EDF documents the assumptions used and the results of the AERSCREEN modeling done for the 4 natural gas fired boils used for the operation of the NWIVI facility. The results are then compared to the NAAQS and ambient air concentrations.
8 Distribution: (Portage, Inc.)
: 9. Review (R) andApproval (A) Signatures:                     :*",
(Identify minimum reviews and approvals. Additional reviews/approvals mnay be added.)_____
                                    ~Printed Name/
R/A             Organization                       Signature                 Date Author/Design Agent             A Gary McManus                       () (*¢*dld                          2/04/15 Independent Review               R   Dave Thorme                             ¢                           2/04/15 Independent Review               R Project Manager                 R/A John Beller                                                           2/04/15 Registered Professional Engineer's Stamp (if required)                                       Z]N/A
 
TEM-9002                                ENGINEERING DESIGN FILE                              EDF-31 24-0012 09/29/09                                                                                      Rev. 1 Rev. 0                                                                                        Page 2 of 20 INTRODUCTION As described in EDF-3 124-0008 there will be two natural gas-fired boilers used for steam production and two natural gas-fired boilers used for heating. The two steam boilers and the two boilers used for heating each are released through two separate stacks. The boiler and generator all emit CO, NOx, PM, VOCs, and C02. The assumptions used for the four boilers and the associated emissions are summarized in Tables 1 and 2 below.
Table 1. Boiler Operational Parameters SemBoiler                Fuel Energy     Natural Gas Steam Load           Heat Boiler                          Factor       Efficiency       Content     Consumption (lb/br)       (MBTU/lb)         (%)           MBTU/hr           (ft3/hr)
Process #1         10000           9345             75             12460           12460 Process #2         10000           9345             75             12460           12460 HVAC #1           10000           9345             75             12896            12896 HVAC #2           10000             9345           75             12896            12896 Table 2. Emissions From The Four Natural Gas Fed Boilers (EDF-3 12 1-0008)
Pollutant       _____________                       Emissions Process Boilers 1 & 2         HVAC Boilers 1&2                     Total S~Emissions (lb/hr)       (tons/yr)         (lb/br)     (tons/yr)           (tons/yr)
CO             2.1E+00         8.8E+00         2.2E+00       9.1E+00                 18 NOx              1.2E+00         5.2E+00         1.3E+00       5.4E+00                 11 PM10 (Total)           1.9E-01         8.0E-01         2.0E-01         8.2E-01               1.6 PM10 (filterable)       4.7E-02         2.0E-01         4.9E-02         2.1E-01               0.40 VOC                1.4E-01       5.76E-01         1.4E-01       6.0E-01               1.2 SO2              1.5E-02         6.3E-02         1.6E-02       6.5E-02               0.13 CO2              3.0E+03         1.3E+04         3.1E+03       1.3E+04               26,000 Emissions from the boiler activities were evaluated using AERSCREEN, Version 11126. This screening model uses standard defaults for meteorology, and terrain values. Modeled emissions included: PM-10, PM-2.5, CO, nitrogen, and sulfur oxides (NOx), and SOx.). The assumptions used for the modeling are presented below.
 
TEM-9002                                                                              EDF-31 24-0012 09/29109                            ENGINEERING DESIGN FILE                          Rev. 1 Rev. 0                                                                                Page 3 of 20 ASSSUMPTIONS The input assumptions used for the AERSCREEN model are summarized in Table 3 and 4 below. Since the four boilers vent through two identical stacks only one run was done. The results of the run were then combined to give the approximate concentrations at the receptor locations.
Table 3. AERSCREEN Input Stack Parameters SOURCE EMISSION RATE:                               0.1260 g/s           1.000 lb/hr STACK HEIGHT:                                     22.86 meters             75.00 feet STACK INNER DIAMETER:                             0.305 meters           12.00 inches PLUME EXIT TEMPERATURE:                               310.9 K             99.95 Deg F PLUME EXIT VELOCITY:                               17.929 m/s             58.82 ft/s STACK AIR FLOW RATE                               2772 ACFM             2772 ACFM RURAL OR URBAN:                                       RURAL                 RURAL FLAGPOLE RECEPTOR HEIGHT:                           1.83 meters             6.00 feet INITIAL PROBE DISTANCE --                         5000. meters           16404. feet Table 4. Makemet Meteorology Parameters MIN/MAX TEMPERATURE:                         255.4 / 302.6 (K)
MINIMUM WIND SPEED:                                 0.5 m/s ANEMOMETER HEIGHT:                                 10 meters DOMINANT SURFACE PROFILE:                         Grassland DOMINANT CLIMATE TYPE:                       Average Moisture DOMINANT SEASON:                                   Spring ALBEDO:                                               0.18 BOWEN RATIO: *0.4 ROUGHNESS LENGTH:                               0.050 (meters)
For this screening model, no downwash was considered in the calculations since exact locations and dimensions are still in the design phase. The closest residential receptor was assumed to be a single family home located approximately 375 meters SSE from the facility location. Using these assumptions the AERSCREEN model was run and the results were obtained. A complete listing of the model is included in Attachment 1.
 
TEM-9002                                ENGINEERING DESIGN FILE                          EDF-31 24-0012 09/29/09                                                                                  Rev. 1 Rev. 0                                                                                    Page 4 of 20 RESULTS The final run results for the maximum concentration downwind of the facility are summarized in Table 5 below.
Table 5. AERSCREEN Results.
Calculation Maximum]
1-Hour]
Scaled 3-Hour J  Scaled]
8-Hour Scaled J24-Hour   [Scaled Annual ProcdureConcentration                          a Flat Terrain         (gig/m 3 ) J(jPtg/m3) J(gig/m3) ](btg/m3)             (Pig/m 3 )
_________             17             17       J   15       J     10         1.7
: a. Distance from Source to maximum concentration location 136.00 meters Using the AERSCREEN results above as well as the maximum concentration at 375 meters from attachment 1 (i.e., 10.83 jig/in 3), Table 6 and 7 were completed.
Table 6. Emissions from Process Steam Demand - Natural Gas-Fired Boilers Modeled concentration to Hourly Emissions       Maximumclst Emission        for Both Steam       concentration Pollutant            Factor               Boiler a         @ 136 m b           residential receptor (375 m) c (lb/hr)           (jig/in 3 )           (jig/in 3 )
CO                   84               2.1E+00             3.5E+01             2.3E+01 NOx                  50               1.2E+00             2.1E+01               1.4E+01 PM-10                 7.6               1.9E-01           3.2E+00             2.1E+00 PM-2.5                 1.9               4.7E-02             8.0E-01               5.1E-01 5.5               1.4E-01           2.3E+00               1.5E+00 SO2                  0.6               1.5 E-02           2.5E-01               1.6E-01 CO2              120,000             3.0E+03             5.0E+04             3.2E+04
: a. Hourly emission from process boiler 1 and 2 each shown in EDF-3 124-0008.
: b. This is maximum 1- hour concentration calculated by AERSCREEN equals 17jg/m3 per lb/hr
: c. This represents   the highest 1 hour concentration at the closest receptor of 375 meters and equals 11 jig/mn3 per lb/hr
 
TEM-9002                                                                                    EDF-31 24-0012 09/29/09                                ENGINEERING DESIGN FILE                              Rev. 1 Rev. 0                                                                                      Page 5 of 20 Table 7. Emissions from 2-H VAC Natural Gas-Fired Heater Modeled Hourly Emissions     Maximum               concentration to Emission          for Both HVAC     concentration               closest PluatFactor                          Boiler a       @ 136 m bresidential receptor (375 m)
(lb/hr)         ([.tg/m 3)             (jig/mn3)
CO                 84                 2.2E+00           3.6E+01                 2.3E+01 NOx                50                 1.3E+00           2.2E+01                 1.4E+01 PM10                7.6                 2.0E-01           3.3E+00                 2.1E+00 PM-2.5               1.9                 4.9E-02           8.2E-01                 5.3E-01 VOC                5.5                 1.4E-01         2.4E+00                 1.5E+00 SO2                0.6                 1.6E-02         2.6E-01                 1.7E-01 CO2              120,000               3.1E+03           5.2E+04                 3.3E+04
: a. Hourly emission from process boiler 1 and 2 each shown EDF-3 124-0008
: b. This is maximum 1- hour concentration calculated by AERSCREEN at 136 m equals 17 jtg/mn3 / lb/hr
: c. This represents the highest 1 hour concentration at the closest receptor of 375 meters and equals 11 jig/mn3 / lb/hr Since both boiler stacks are co-located with the same characteristics the total downwind concentration was assumed to be additive. These values were then compared to the National Ambient Air Quality Standards (NAAQS) to see if any of the 1-hour air standards were exceeded. This comparison is summarized in Table 8 below.
Table 8. Maximum Release Concentration Comparison to NAAQS Standards MimmModeled                                                                    Percentage of concentration closestAQ          to                                           NAAQS Limit at Polltant          136rato@       clst     residential     NASAASPoint                                       of receptor____(375 m)______                   ______                   Maximum
(___g/m3)__(jig/r3)                         (ppm)               (jig/mn3)         Concentration CO                7.2E+0+/-.E01                                                     4.0E+04                 0.18%
NOx               4.3E+012.E019+222 PM10              6.5E+00               42+001d*43 PM-2.5             1.6E+001.E0003                                                                           46 SO2              4.7E+00               30+0*19E0                                                          .6 CO2              5.1E-01                 3.3E-01_NANAN
: a. Maximum Concentration is the sum of the 2 process boilers and the 2 HVAC boilers                   ________
: b. Concentration at closest residence
: c. Values in Green are actual standard values; values in yellow are the converted values.
: d. 24-hour standard for PM-10 and PM-2.5
 
TEM-9002                              ENGINEERING DESIGN FILE                            EDF-31 24-0012 09/29/09                                                                                  Rev. 1 Rev. 0                                                                                    Page 6 of 20 From Table 8 it is apparent that the modeled release concentrations are all below the applicable NAAQS standards. Therefore no additional modeling is required at this time.
A similar evaluation of the model emission concentrations was performed to determine if the emissions exceed the regional ambient concentrations of the listed pollutants. Regional values of the five regulated pollutants for Missouri were obtained from the Missouri Division of Environmental Quality Web Site for different monitoring stations in the state. The Tables 9 summarizes the data in Attachment 2 used to determine the average values.
Table 9. Ambient Air of Rural/Urban Missouri Ambient Air of Rural/Urban Pollutant                      Missouri
(*tg/m 3 )
CO                           3.8E+03 NOx                          2.1E+01 PMl0                            1.7E+01 PM-2.5                           1.1E+01 SO2                          7.0E+00 CO2                              NA A similar evaluation of the model emission concentrations was performed to determine if the emissions exceed the regional ambient concentrations of the listed pollutants. Regional values of the five regulated pollutants for Missouri were obtained from the Missouri Division of Environmental Quality Web Site for different monitoring stations in the state. The Tables 9 summarizes the data in Attachment 2 used to determine the average values. Similar comparison was done to Table 10. Comparison of Modeled Concentrations to Average Ambient levels around the State Missouri.
Maiu       codeledtato               AminoAro           Percentage of Ambient Air concentrationoto          Rural/Urban Pollutant concenratio         closest residential         Misuiconcentration Point of
                  @16b       receptor (375 m) b           MisuiMaximum Concentration (ig/m3)             (#tg/m3)               (#.g/m3)         ____________
CO        7.2E+0l             4.6E+0l                 3.8E+03                       1.9%
NOx         4.3E+01             2.7E+0l                 2.1E+01                       203%
PM10       6.5E+00             4.2E+00                 1.7E+01                       38%
PM-2.5       l.6E+00             1.0E+00                 1.1E+01                       15%
SO2       4.7E+00             3.0E+00                 7.0E+00                       7.3%
CO2       5.lE-01             3.3E-01                   NA                         NA a Maximum Concentration is the sum of the 2 process       boilers and the 2 ITVAC boilers b Concentration at closest residence Attachment 1
 
TEM-9002                                                          EDF-3124.-0012 09/29/09                                  ENGINEERING DESIGN FILE Rev. 1 Rev. 0                                                            Page 7 of 20 ATTACHMENT 1.
AERSCREEN Files Text File:
Start date and time 02/05/15 08:19:04 AERSCREEN 11126 NWMI PROCESS BOILER DATA ENTRY VALIDATION METRIC                  ENGLISH
** STACKDATA       **------------------
Emission Rate:       0.1260 g/s             1.000 lb/hr Stack Height:       22.86 meters             75.00 feet Stack Diameter:       0.3 05 meters           12.00 inches Stack Temperature: 310.9 K                     100.0 Deg F Exit Velocity:     17.929 m/s               58.82 ft/s Stack Flow Rate:         2771 ACFM Model Mode:           RURAL Dist to Ambient Air:             1.0 meters           3. feet
** BUILDING DATA **
No Building Downwash Parameters
** TERRAIN DATA **
No Terrain Elevations Source Base Elevation: 0.0 meters              0.0 feet Probe distance: 5000. meters             16404. feet Flagpole Receptor Height:           1.8 meters          6. feet No discrete receptors used
** METEOROLOGY DATA **
 
TEM-9002 09/29/09                              ENGINEERING DESIGN FILE                 EDF-3124-0012 Rev. 1 Rev. 0                                                                         Page 8 of 20 Min/Max Temperature: 255.4 / 302.6 K       0.0 / 85.0 Deg F Minimum Wind Speed:         0.5 m/s Anemometer Height:       10.000 meters Dominant Surface Profile: Grassland Dominant Climate Type: Average Moisture AERSCREEN output file:
boilerl .out
** AERSCREEN Run is Ready to Begin No terrain used, AERMAP will not be run SURFACE CHAPRACTEPISTICS & MAKEMET Obtaining surface characteristics...
Using AERM4ET seasonal surface characteristics for Grassland with Average Moisture Season          Albedo Bo         zo Winter          0.60 1.50 0.001 Spring          0.18 0.40 0.050 Summer            0.18 0.80 0.100 Autumn            0.20 1.00 0.010 Creating met files aerscreen_01_01.sfc & aerscreen_01 01.pfl Creating met files aerscreen_02_01 .sfc & aerscreen_02 01 .pfl Creating met files aerscreen_03_01 .sfc & aerscreen_03 01 .pfl Creating met files aerscreen_04_01 .sfc & aerscreen_04 01 .pfl PROBE        started 02/05/15 08:19:34 Running probe for Winter sector 1 AERMOD Finishes Successfully for PROBE stage 1 Winter sector1
  *****       WARNING MESSAGES *****
 
TEM-9002 09/29/09                            ENGINEERING DESIGN FILE     EDF-3124-0012 Rev. 1 Rev. 0                                                         Page 9 of 20
          *** NONE     ***
Running probe for Spring sector 1 AERMOD Finishes Successfully for PROBE stage 1 Spring sector1
          *** NONE     ***
Running probe for Summer sector 1 AERMOD Finishes Successfully for PROBE stage 1 Summer sector1
    ********   WARNING MESSAGES         ********
          ** NONE **
Running probe for Autumn sector 1 AERMOD Finishes Successfully for PROBE stage 1 Autunmn sector1
    *****     WARNING MESSAGES         ********
          *** NONE ***
PROBE         ended 02/05/15 08:19:3 8 REFINE        started 02/05/15 08:19:38 AERMOD Finishes Successfully for REFINE stage 3 Spring sector1
    *****       WARNING MESSAGES       *****
          *** NONE **
REFINE       ended 02/05/15 08:19:38 AERSCREEN Finished Successfully With no errors or warnings Check log file for details Ending date and time 02/05/15 08:19:39
 
TEM-9002 09/29/09                                ENGINEERING DESIGN FILE                EDF-3124-0012 Rev. 1 Rev. 0                                                                          Page 10 of 20 OUTPUT FILE:
AERSCREEN 11126 / AERMOD 1234                                        02/05/15 08:19:38 TITLE: NWMI PROCESS BOILER
  *****************************             STACK PARAMETERS
***q* **** ***     ******* **** * ****
* SOURCE EMISSION RATE:                     0.1260 g/s          1.000 lb/hr STACK HEIGHT:                       22.86 meters          75.00 feet STACK INNER DIAMETER:                       0.305 meters          12.00 inches PLUME EXIT TEMPERATURE:                       310.9 K            100.0 Deg F PLUME EXIT VELOCITY:                     17.929 in/s          58.82 ft/s STACK AIR FLOW RATE:                       2772 ACFM RURAL OR URBAN:                         RURAL FLAGPOLE RECEPTOR HEIGHT:                        1.83 meters          6.00 feet INITIAL PROBE DISTANCE             =
5000. meters          16404. feet
        ****************BUILDING DOWNWASH PARAMETERS NO BUILDING DOWNWASH HAS BEEN REQUESTED FOR THIS ANALYSIS
**************                       PROBE ANALYSIS **************
25 meter receptor spacing: 1. meters - 5000. meters Zo      ROUGHNESS              1-HR CONC DIST         TEMPORAL SECTOR LENGTH                  (ug/m3)     (in)   PERIOD 1"         0.050       16.70     150.0     SPR
* - worst case flow sector
 
TEM-9002                            ENGINEERING DESIGN FILE                EDF-31 24-0012 09/29/09                                                                    Rev. 1 Rev. 0                                                                      Pagell1of 20
**********************       MAKEMET METEOROLOGY PARAMETERS MIN/MAX TEMPERATURE:             255.4 / 302.6 (K)
MINIMUM WIND SPEED:             0.5 rn/s ANEMOMETER HEIGHT:             10.000 meters SURFACE CHARACTERISTICS INPUT: AERMET SEASONAL TABLES DOMINANT SURFACE PROFILE: Grassland DOMINANT CLIMATE TYPE: Average Moisture DOMINANT SEASON:               Spring ALBEDO:             0.18 BOWEN RATIO:             0.40 ROUGHNESS LENGTH:             0.050 (meters)
METEOROLOGY CONDITIONS USED TO PREDICT OVERALL MAXIMUM IMPACT YR MO DY JDY HR 10 0105 5 12 HO    U* W* DT/DZ ZICNV ZIMCH M-O LEN                 Z0 BOWEN ALBEDO REF WS 21.61 0.066 0.300 0.020 46. 39.         -1.2 0.050 0.40 0.18   0.50 HT REF TA     HT 10.0 302.6 2.0 ESTIMATED FINAL PLUME HEIGHT (non-downwash):                   37.4 meters METEOROLOGY CONDITIONS USED TO PREDICT AMBIENT BOUNDARY IMPACT
 
TEM-9002                          ENGINEERING DESIGN FILE                EDF-31 24-0012 09/29/09                                                                  Rev. 1 Rev. 0                                                                    Page 12 of 20 YR MO DY JDY HR 10 01 01 5 12 Ho      U*   W* DT/DZ ZICNV ZIMCH M-O LEN           Z0 B OWEN ALBEDO REF WS 1.17 0.049 0.100 0.020 27. 25.       -7.8 0.050 0.40 0.18  0.50 HT REF TA           HT 10.0 255.4       2.0 ESTIMATED FINAL PLUME HEIGHT (non-downwash):               56.5 meters
************************     AERSCREEN AUTOMATED DISTANCES OVERALL MAXIMUM CONCENTRATIONS BY DISTANCE MAXIMUM                    MAXIMUM DIST      1-HR CONC          DIST      1-HR CONC (in)   (ug/m3)          (mn)    (ug/m3) 1.00 0.2290E-04        2525.00     4.139 25.00 4.216            2550.00     4.107 50.00 8.390            2575.00     4.076 75.00 10.29            2600.00     4.045 100.00 15.11            2625.00     4.015 125.00     16.69        2650.00     3.986 150.00 16.70            2675.00     3.956 175.00 16.17            2700.00     3.927 200.00 15.43            2725.00     3.899 225.00 14.64            2750.00     3.871 250.00 13.87            2775.00     3.843 275.00 13.16            2800.00     3.815 300.00 12.49            2825.00     3.788 325.00 11.89            2850.00     3.762 350.00 11.33            2875.00     3.735 375.00 10.83            2900.00     3.709 400.00 10.37            2925.00     3.684 425.00 9.943            2950.00     3.659
 
TEM-9002                  ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09                                          Rev. 1 Rev. 0                                            Page1l3of 20 450.00  9.609  2975.00  3.634 475.00  9.3 15  3000.00  3.609 500.00  9.039  3025.00  3.585 525.00  8.78 1  3050.00  3.561 550.00  8.539  3075.00  3.537 575.00  8.3 10  3100.00  3.5 14 600.00  8.095  3125.00  3.491 625.00  7.89 1  3150.00  3.468 650.00  7.699  3175.00  3.446 675.00  7.5 17  3200.00  3.424 700.00  7.344  3225.00  3.402 725.00  7.179  3250.00  3.380 750.00  7.023  3275.00  3.359 775.00  6.874  3300.00  3.338 800.00  6.733  3325.00  3.3 17 825.00  6.597  3350.00  3.296 850.00  6.468  3375.00  3.276 875.00 6.344  3400.00  3.256 900.00  6.226  3425.00  3.236 925.00  6.112  3450.00  3.217 950.00  6.003  3475.00  3.197 975.00  6.039  3500.00  3.178 1000.00  6.174  3525.00  3.159 1025.00  6.287  3550.00  3.14 1 1050.00  6.3 80  3575.00  3.122 1075.00  6.447  3600.00  3.104 1100.00  6.43 1  3625.00  3.086 1125.00  6.4 11  3650.00  3.068 1150.00  6.386  3675.00  3.051 1175.00  6.359  3700.00  3.033 1200.00  6.328  3725.00  3.016 1225.00  6.295  3750.00  2.999 1250.00  6.259  3775.00  2.982 1275.00  6.221  3800.00  2.966 1300.00  6.182  3825.00  2.949 1325.00  6.14 1  3850.00  2.933 1350.00  6.098  3875.00  2.917 1375.00  6.055  3900.00  2.90 1 1400.00  6.010  3925.00  2.886 1425.00  5.965  3950.00  2.870 1450.00  5.9 19  3975.00  2.855 1475.00  5.872  4000.00  2.839 1500.00  5.826  4025.00  2.824 1525.00  5.778  4050.00  2.8 10 1550.00  5.73 1  4075.00  2.795 1575.00  5.683  4100.00  2.780
 
TEM-9002                      ENGINEERING DESIGN FILE        EDF-31 24-0012 09/29/09                                                    Rev. 1 Rev. 0                                                      Page 14 of 20 1600.00  5.636    4125.00  2.766 1625.00  5.588      4150.00  2.752 1650.00  5.541      4175.00  2.737 1675.00  5.494      4200.00  2.724 1700.00  5.447      4225.00  2.710 1725.00  5.400      4250.00  2.696 1750.00  5.353      4275.00  2.682 1775.00  5.307      4300.00  2.669 1800.00  5.26 1    4325.00  2.656 1825.00  5.2 16    4350.00  2.643 1850.00  5.171      4375.00  2.630 1875.00  5.126      4400.00  2.617 1900.00  5.082      4425.00  2.604 1925.00  5.03 8    4450.00  2.591 1950.00  4.995      4475.00  2.579 1975.00  4.952      4500.00  2.5 66 2000.00  4.910      4525.00  2.554 2025.00  4.868      4550.00  2.542 2050.00  4.827      4575.00  2.530 2075.00  4.786      4600.00  2.5 18 2100.00  4.746      4625.00  2.506 2125.00  4.706      4650.00  2.494 2150.00  4.667      4675.00  2.483 2175.00  4.629      4700.00  2.471 2200.00  4.590      4725.00  2.460 2225.00  4.553      4750.00  2.449 2250.00  4.5 15    4775.00  2.438 2275.00  4.479      4800.00  2.427 2300.00  4.443      4825.00  2.416 2325.00  4.407      4850.00  2.405 2350.00  4.372      4875.00  2.394 2375.00  4.337      4900.00  2.3 83 2400.00  4.303      4925.00  2.373 2425.00  4.269      4950.00  2.362 2450.00  4.236      4975.00  2.352 2475.00  4.203      5000.00  2.341 2500.00  4.171
********************** AERSCREEN MAXIMUM IMPACT  
 
==SUMMARY==
 
MAXIMUM  SCALED     SCALED   SCALED SCALED
 
TEM-9002 09/29109                    ENGINEERING DESIGt* J1FILE          EDF-31 24-0012 Rev. 1 Rev. 0                                                          Page 15 of 20 1-HOUR    3-HOUR     8-HOUR 24-HOUF ,.ANNUAL CALCULATION      CONC      CONC      CONC   CONC   CONC PROCEDURE    (ug/m3) (ug/m3) (ug/m3) (ug/ni [3) (ug/m3)
FLAT TERRAJN     16.81   16.81     15.13   10.08  1.68 1 DISTANCE FROM SOURCE        136.00 meters IMPACT AT THE AMBIENT BOUNDARY 0.2290E-04 0.2290E-04 0.2061E-04 0.1374E-04 0.2290E-05 DISTANCE FROM SOURCE         100mtr 1.00 meters
 
TEM-9002                                  ENGINEERING DESIGN FILE                  EDF-31 24-0012 09/29/09                                                                            Rev. 1 Rev. 0                                                                              Page 16 of 20 Attachment 2 Average ambient Pollutant Concentrations for Missouri Table 1. Levels of CO in Springfield Missouri Maximum                      Maximum Year                    8-Hour Average               1-Hour Average (ppm)                       (ppm) 1993                           5.4                         14 1994                          5.9                         12 1995                            5                           9 1996                          3.3                           7 1997                            5                           7 1998                          5.1                           6 1999                          4.1                           5 2000                          2.8                           5 2001                          4.3                           7 2002                          3.5                           6 2003                          2.4                           4 2004                          3.4                           5 2005                            3                           5 2006                          2.1               .4 2007                          2.6                           4 2008                          1.3                         1.9 2009---     -     -1.5-           ..---                   2.3     --
2010                           1.9                         2.3 Second Quarter 2013                   1.1                         2.3 Average (ppm)                   3.35E+00                     5.73E+00 Average ((gglm3)                 3.84E+03                     6.56E+03 Table 2. Nitrogen Dioxide -Hillcrest High School Springfield Year                  Annual Average Year                        (ppm) 1993                                   0.011 1994                                  0.013 1995                                  0.012 1996                                  0.011 1997                                  0.011 1998                                  0.012 1999                                  0.013 2000                                    0.012 2001                                    0.013 2002                                    0.0107 2003                                    0.0111 2004                                    0.012 2005                                    0.0115 2006                                    0.0104 2007                                    0.01 2008                                    0.0089 2009                                    0.0083 Through 3rd Quarter                           0.0079 Average (ppm)                             1.1OE-02 Average (ug/m3)                           2.08E+01
 
TEM-9002                                        ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09                                                                Rev. 1 Rev. 0                                                                  Page 17 of 20 Table 4. Inhalable PM10 -MSU Springfield Annual Average           Maximum 24 hr Average Year (gg/m3)                     (gg/m3) 1993                   18                         38 1994                  18                         58 1995                  17                         44 1996                  18                         64 1997                  15                         51 1998                  17                         43 1999                  18                         45 2000                  18                         47.
2001                   20                         57 2002                  18                         46 2003                  17                         40 2004                16.7                         36 2005                19.3                         45 2006                15.7                         35 2007                  17.9                       38 2008                  15                         39 2009                  14                         27 2010                  17.2                       36 2011                16.5                         37 2012                  16.9                       38 Average(jgg/m 3)           17.16                       43.2 Table 5. Inhalable PM-2.5 MSU Springfield Year              Annual Average Year                (ppm) 1999                         12.24 2000                          12.28 2001                          12.2 2002                          12.7 2003                          11.7 2004                          10.91 2005                          13.01 2006                          10.82 2007                          11.8 2008                          10.7 2009                          9.55 2010                          9.89 2011                          10.92 2012                          10.09 Average (ppm)                       1.1 3E+0 1
 
TEM-9002                                                        EDF-31 24-0012 09/29/ 09                              ENGINEERING DESIGN FILE Rev. 1 Rev. 0                                                          Page 18 of 20 Table 6. Sulfur Dioxide MSU Springfield Year              Annual Average Year                (ppm) 1993                         0.003 1994                          0.005 1995                          0.002 1996                          0.003 1997                          0.002 1998                          0.003 1999                          0.004 2000                          0.003 2001                          0.004 2002                          0.003 2003                          0.002 2004                          0.0014 2005                          0.0017 2006                          0.0019 2007                          0.0018 2008                          0.0022 2009                          0.0022 Average (ppm)                   2.66E-03 Average (*g/m3)                  6.97E+00
 
TEM-9002                                                                                                        EDF-31 24-0012 09/29/09                                                                                                        Rev. 1 Rev. 0 DESmiGNtIL                              Page 19 of 20 EGNEINGrat


==Attachment:==
==Attachment:==
Excel spread sheets of calculationsInpur Data from VistaProcess 10000 pph 111111 ________934.52 Btu/lb h for steam at 25 psi& ____________ 9345 Mbh______ 75% [Boiler Efficiency_______________ 12460 Mbh Fuel energy content____________________ 12460 ft3/hr Gas Consumption 0.01246 1.046662 lb/hr______ 30% ___ Excess Air____ ___~Flue gas flow rate for each of two boilers~Flue, vendor informationgs velocitHVAC 962Mh Peak HVAC heating demandFlue gas flow rate frec ftobies ____~Flue, vendor informationFlue as velocity_ ____ _ __ _ _ _ __ _ _ _
Excel spread sheets of calculations Inpur Data from Vista Process        10000 pph 934.52 Btu/lb 111111 h   for steam at 25 psi&           ________
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0012Rev. 1Page 20 of 20Peeuauil 10000 i5J45 I 7:P% 1 24)l 12460Wva 2 100 _ 7 P 1H 2ELIEL. I ~~/fr)3.&tlb~h9 3.6 (,imU.&Di i~ a-i ,m- li- I m i5 i+Alit JIl134o0(16b): _______ O______ 0.6 ___SCOmlm 120.00I I,0 .4 11 4 0W L4 --IIMLOZ I 810 1 LSELO1 I o~16liE-CO I 10SE..60 I SIE.~CO I 2t25.(O I 6A7E~0CI 416~E1flF -OI -. -L42FO 0AL0 3 2 4-O3i0E.02 I 006 I IS5!~02 I 0.000.132.31L01 OI 1oA1L01 I ZIOG,0I167L6 I.. sl it,1 12]IE.0]zmos '~'-~' '~- I ~" s~ss, s o~o. J ~ IMat 51.~mUi~. mdi W)dIuhC~i ba*i~tCakiusm k~.m ThufE L~a1mIMIm8Itpemuu4bu..*y.u4.bimat~RL1S~Rfl ~amd TmdRI h~..damd~aimd~ua...~L Cc~a1bULkl~~Iut*s ~ Tb~PMut~. uuWcc.4~ ~t~wEinfl~Ctlillilli I 3mlawmiu' wmdii catm.,lo
____        9345 Mbh
* tll l 11 tilt4  
______      75% [Boiler             Efficiency________
* ;.~:"NOhWESMEICI$TNWMI-201 5-RAI-001Rev. 0Appendix D -EDF-3124-0013, On-Road Emissions for Vehicles During Operation0-i Document I D: EDF-3124-0013Revision ID:1Effective Date: July 31, 2015Engineering Design FileOn-Road Emissions for Vehicles During OperationPortage Project No.: 3124Project Title: NWMI Environmental ReportPortageTEM-900209/29/09Rev. 0 TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0013Rev. 1Page 1 of 51. Portage Project No.: 31242. Project/Task:NWMvI Environmental Report3. DCN#4. Title: On-Road Emissions for Vehicles During Operation5s. NIPHPC orSDC: N/A6. SSC Safety Category: N/A7 Summary: This EDF provides a calculation of the on-road emissions associated with vehicles duringthe operation of the RPF.7 Distribution: (Portage, Inc.)7. Review (R) and Approval (A) Signatures:_(Identify minimum reviews and approvals. Additional reviews/approvals may be added.) .Printed NamerR/A Organization Signature DateAuthor/Design Agent a Gary McManus )~d 7/31/15Independent Review R Dave Thorne d@ Independent Review RProject Manager R/A John Beller 7/31/15Registered Professional Engineer's Stamp (if required) Z]N/A TEM-9002 ENGINEERING DESIGN FILE EDF-3124-001309/29/09 Rev. 1Rev. 0 Page 2of 5INTRODUCTION AND PURPOSEDuring the operations phase, vehicular air emissions would result from the commuting workforce andfrom routine deliveries to/from the proposed RPF. The California Air Resources Board EmissionDatabase (EMFAC201 1 http://www.arb.ca.gov/emfac/) was used to calculate on-road vehicle emissionfactors for this period. The model estimates vehicle emission factors based on fuel type, vehicle type,vehicle speed, and climatological normal for temperature and humidityThe volume of traffic generated during operations would be considerably lower than that expected duringconstruction. Additionally, the lands on the developed RPF site are either developed surfaces (buildings,paved parking/access road) or consist of either agricultural or landscaped uses. Consequently, limitingroutine vehicle use to paved areas would reduce emission of fugitive dust. In summary, impacts fromvehicular air emissions and fugitive dust during operations would be far less than during the constructionphase.ASSUMPTIONSOn-road vehicle emissions were calculated using emission rate in grams(g)/(vehicle miles traveled) +g/day(idle) + g/day(starting). Total mileage estimates for on-road vehicles during the construction periodare shown in Table 1. Calculations used to obtain the estimates are based on an average work force of 100vehicles per day using a specific vehicle ratio (60% light-duty autos, 30% light-duty gas trucks, and 10%light-duty diesel trucks) and a round trip of 40 mi/day. The vehicles include construction vehicles,delivery trucks, and employee vehicles. Though RPF operations are assumed to occur for 50 weeks ayear to allow for two weeks of maintenance and outages. On-road vehicle use is assume to occur for 52weeks a year to account for personnel and deliveries that occur during maintenance and outages.Table 1. Total Mileage Estimates for On-road Vehicles during OperationElquipment Activity Duration Total distance Traveled(quantity) (months/days) (kin) MilesWorkforce travel (60) Commute -light duty gas vehicles (12/260) 1,004,230 624,000Workforce travel (30) Commute -light duty gas trucks (1 2/260) 502,116 312,000Workforce travel (10) Commute -light duty diesel trucks (12/260) 167,372 104,000Estimates of the on-road vehicle emissions factors for different type vehicles for criteria pollutants andcarbon dioxide (CO2) are provided in Tables 2 through 4 below. These values are from the EMFAC seriesof models.
_______    12460 Mbh         Fuel energy content________________
TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-3124-0013Rev. 1Page 3 of 5Table 2 Emission Factor from EMIFAC20l11(Running)CO NOx CO2 PM10 PM2.5 SOxVehicle Type (/ieLight Duty Auto (gas) 1.31E+00 1.24E-01 3.49E+02 1.89E-03 1.73E-03 3.51E-03Light duty Trucks (gas) 3.27E+00 3.36E-0i 4.02E+02 4.39E-03 4.01E-03 4.07E-03LgtdtTrcs3.36E-01 6.70E-01 3.56E+02 6.11E-02 5.62E-02 3.40E-03(diesel)Table 3 Emission Factor from EM7FAC2O1 1 (Idling)CO NOx CO2 PM10 PM2.5 SOx~Vehicle Type(g/vehicle/day)Light Duty Auto (gas) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.OOE+00Light duty Trucks (gas) 0.O0E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00LgtdtTrcs0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00(diesel)Table 4 Emission Factor from EMFAC20 11 (Stationary)Veil yeCO NOx CO2  PM10 PM2.5 SOxVhceTp (g/vehicle/day)Light Duty Auto (gas) 1.73E+01 1.13E+00 4.64E+02 1.86E-02 1.7E-02 4.95E-03Light duty Trucks (gas) 3.90E+01 2.13E+00 5.14E+02 3.37E-02 3.08E-02 5.84E-03LgtdtTrcs0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00(diesel)From Tables 1 through 4, the total emissions for each of the types of vehicles was calculated as shownbelow:The equations used to calculate total vehicle emissions are as follows:Total emission = emission (running) + emission (idling) + emission (stationary)Emissions while running = EFRi (days of operation) (miles/day) (number of vehicles)Emissions while idling =EFIi (days of operation) (number of vehicles)Emissions while idling = EFSi (days of operation) (number of vehicles)Where:EF~i = the individual emission factor for each pollutant, i.e. CO, NOx, C02, PM10,PM2.5 and SOx TEM-900209/29/09Rev. 0ENGINEERING DESIGN FILEEDF-31 24-0013Rev. 1Page 4of 5Example for Light Duty Gas Autos (GO)CO EFR = 1.3 1E+00 g/mile x 624,000 miles= 8.17E+05gCO EFl = 0.00+00 g/vehicle/day x 60 vehicles x 260 days-0.00E+00 gCO EFS = 1.73E+01 g/vehicle/day x 60 vehicles x 260 days=-2.70E+05 gTotal CO Emissions = 8.17E+05 g + 0.00E+00 g + 2.70E+05 g1 1.09E+06 g (2.40E+03 lbs)Similar calculations were performed for all of the vehicles listed in Table 1. The results are shown inTable 5 below.Table 5. On-road emissions from construction Activitiesco NOx CO2  PM-b1 PM-2.5 SOxVehicle Type Fuel(kgs) (Ibs) (kgs) (ibs) (kgs) (lbs) (kgs) (bbs) (kgs) (lbs) (kgs) (Ibs)Light Duty Gas 1,085 2,392 95 210 225,239 496,569 1 3 1 3 2 5AutosLgTrDutys Gas 1,323 2,917 122 268 129,506 285,513 2 4 1 3 1 3LgTrutks Diesel 35 77 70 154 37,004 81,580 6 14 6 13 0 1Total (kg or lbs) 2,443 5,385 286 631 391,748 863,662 9 21 9 19 4 9Total (tonnes or tons) 2.4 2.7 0.3 0.3 392 432 0.009 0.010 0.009 0.010 0.004 0.004 EMFAC20OR Emission RatesRegion Type: StatewideRegion: CaliforniaCalendar Year: 2015Season: AnnualVehicle Classification: EMPAC2RO1 CategoriesRegion CalYr Season Veh_.Class Fuel MdlYr Speed(miles/hr)StatewIde 2015 Annual LDA GAS AggregateckggregatedStatewide 2015 Annoal LDT1 GAS AggregatecAggregatedStatewide 2015 Anoual LDT1 DRI AggregatecAggregatedo o~rcc N2Running -CO NOR COO PMIR PM2_s tOg I(gins/ssile)1.01E+00 1.24E-01 3.49E+02 1.RRE-R3 1.73E-00 3.51E-033.36E-Ri 6.70E-01 0.566+02 R.10E-R2 5.620-02 0.40E-03dli~ngCO "NOR COO PM1O PMOG GOR J[gms/vehlcle/duy)0 0 0 R 0 RO 0 0 R 0 R0 0 0 R S S1.73E+01 ~dling 49E0CO NOR COO PMIO PM2._ ROE(gms/vehslce/day)1.7+1 03E+00 4.E4E+021.8Et-S020.706-SO402 0RORO0nRD12.O3EO+000.46+R203.376-023R.ORE-0205'S.E4E-Rlight Duty Auto gaslightsOt/Truck gasLight Duty Truck dieselMiles624,0R0302,000004,0ooCO6.15E6+051.O2E.+]63.401+04NOR COO PMOE 'MO2_5 00O Vehicles0.05E+05 1.2E5E 08 .37E+00 0.25E+03 1.276+0 300E.RRE+04 0.70E+07 0.35E+035,.85E+R3 ,53E+R2 10Days CO260 0260 0260 .RNORCOO000PM0R PMO._5 ROE Vehicles Gays 2CO+50 NOR COO PMIOR PM2... ROEO 0 R 60 060 O.R 10 .776+04 7.24E+06 O.ROE+0O 2.RSE+02 7.72E+01]O 0 R 300 260 3.04E+0051.66E+O4 4.61E+05O.60E+RO22.40E*02 4.56E+01O 0 R0 O 260 0.006+00 0.00E+00 0.EO0E+00 0.00E+000,000+00 0.00E+00CR t60x CO, P01-to PM2StSVstlste Ttye Fontlitus) Phe) 1005) yhn) 0ni So'go) Old) flu ks) Osightliylu3At gos 1,RR5 2,002 92 210 2252,9 400,369 1 3 l 3 2Jt Truok 1,322 O,R17 [ 122 2RR 129.300 IRSOI3 2 4 ITeozloDt c dksel 05 77 7n[i 104 37.004 Ri,5tS S 4 6 1T'ostz 2443 } 50360 290 631 001,746 603,662 0 21 9 iTo0tdiol (t)2.4 2.7 0.0 0.3 392 432 R.009 00OlO 0.009 .00 .04 .004h'iz0imh"mz"0i-rnCD.  
____      12460 ft3/hr       Gas Consumption                               0.01246 1.046662 lb/hr
*;., NWMI-201 5-RAI-001Rev. 0Appendix E -Northwest Medical Isotopes, LLC Alternative Site EvaluationE-i 1111111 I Iw euraEAr/3l U3IRU31~iWA1UlAJIS3XUVU OI~J.T~ -e~PU WAT1m P'UW DWASTI MAN(T CA*WAES P03t 3....AL *alU,mtru, iss iw31W YAMu AII.3 1MIRTH WEST MEDICAL ISOTOPES, 118ALTERNATIVE SITE EVALUATISH'U..NWMIl Altermative Sits Locatiosm._ .II in i~niifi iii n II I~l ! ...J~ k... ......... iJ _ .!i![!! 1! F ! I ..... ... rr t Imlllll m flI]I _ -.l-T> University of Missouri Research Reactor (MURR) -Columbia, MO>. Discovery Ridge Research Park -Columbia, MO> Oregon State University (OSU) -Corvallis, OR> McClellan Business Park (McClellan) -Davis, CA-University of California at Davis (UC Davis) Research Reactor located at McClellanNDU\, -,, ' U-\\ LO Site Selectlen Criteria, , , ... .......... IIH .... III I ... .. Y ] 1 ... r] .1! 1 .. o 1, , I11 1 l f .... .. ...Il l ...Political and locallogistics supportAbility of NWMI to leverage connections for local logisticalsupport, based on regional politics and importance of project toeconomic develooment10Production logistics Number of 6-day Ci processed and delivered to distributor 10Radioactive, hazardous,and mixed secondarywaste generation (i.e., air,liquids, solids)Site ability to meet Federal, State, and local requirements andavailability of waste disposition pathway8Federal and State taxesand incentivesIncludes costs associated with sales tax, property tax, corporateincome tax, hiring credits, etc. Criteria does not include RPFownership and lease terms; these would be dealt with by NWMIseparately3Construction costs Site-specific cost estimates; variations in labor rates and materials; 2and construction indicesTotal Weight 60*e j WM Scoring Details mmdiiRessuht-- -6~ S -40: 1 1030 3 3030 3 3016 3 24Facility operations 4 40 4 40 3Txitingitc4 40 2 2Transportation 4 32 4 32 2Federal, State, county, and local require- 4 20 4 20 4 20 2 10ments to construct and operate facilityFeiaadtttxsnicnie 5 5 '15 391 3Available space 5 15 3 9 1 3 2 6Constr tiiiviosts4i8 4 3 6Natural or human-made disaster potential 3 3 3 3 4 4 2 2Percentaae 82% 73% 63% 489'Iii:~i0~.NWMIuSflmUTinA+/- IUIWS  
______      30%   ___         Excess Air____                                                     ___
........... ........ .. i / T III .... ....... .. ..l r ........ .I IIII /llll _ ,,,, I II l r i i flrilrT iiiiiiSUtilized SMART decision analysis methodology for site evaluations*
                          ~Flue                 gas flow rate for each of two boilers
                          ~Flue,                 vendor information
                            *~~Flue            gs velocit HVAC            962Mh             Peak HVAC heating demand Flue gas flow rate frec     ftobies       ____
                          ~Flue,                 vendor information Flue  as velocity_               ____     _   __ _ _   _   __ _   _ _
 
TEM-9002                                                        ENGINEERING DESIGN FILE                                          EDF-31 24-0012 09/29/09                                                                                                                        Rev. 1 Rev. 0                                                                                                                          Page 20 of 20 Peeuauil              10000           i5J45 I 7:P%   124)l           12460 Wva2                100               7       P
_      1H               2 P*                                                                                                                                                              ELIEL. I         ~
                                                                      ~/fr)3.&                       tlb~h9 3.6     (,imU.&                       Dii~     a-i     ,m- li- I   m i5       i     +AlitJI t.F;*0 *,'      I            I,0       .4       11     4   0W L4     IJP.-.*O  2*1WJ1      */0
                                                                                                                                                                                  --     I IMLOZ      I      810     1   LSELO1   I       o~       16        liE-CO   I 10SE..60 I SIE.~CO I 2t25.(O I 6A7E~0CI416~E l134o0(16b):                              _____
1flF    -OI         -. -       L42FO             0AL0 3     2                     4-O    I.IF*0
__ O______                0.6          ___
I ZIOG,0I167L6     I.. sl it,1 12]IE.0]
3i0E.02    I      006      I    IS5!~02  I       0.00    0.13      2.31L01 OI    1oA1L01 SCOmlm                  120.00                          zmos            '~'-~'        '~-      I    ~"          s~ss,     so~o. J ~                             I Mat 51.~mUi~. mdi W)dIuhC~i ba*i~tC akiusm k~.m ThufEL~a1mIMIm8Itpemuu4bu.
          .*y.u4.bimat~RL1S~Rfl ~amd TmdRI h~
            .. damd~aimd~ua...~L Cc~a1bULkl~
        ~Iut*s ~                                         Tb~
PMut~.         uuWcc.4~             ~t~wEinfl~
Ctlillilli 3mlawmiu'             I wmdii     catm.,lo O*
        *i*iid    tll l
* 11 tilt4
 
NWMI-201 5-RAI-001
* ;.~:"NOhWESMEICI$T                                                              Rev. 0 Appendix D -
EDF-3124-0013, On-Road Emissions for Vehicles During Operation 0-i
 
Document ID: EDF-3124-0013 Revision ID:1 Effective Date: July 31, 2015 Engineering Design File On-Road Emissions for Vehicles During Operation Portage Project No.: 3124 Project
 
==Title:==
NWMI Environmental Report Portage                          TEM-9002 09/29/09 Rev. 0
 
TEM-9002                                    ENGINEERING DESIGN FILE                                EDF-31 24-0013 09/29/09                                                                                          Rev. 1 Rev. 0                                                                                            Page 1 of 5
: 1. Portage Project No.:     3124                2. Project/Task:   NWMvI Environmental Report
: 3. DCN#
4.
 
==Title:==
On-Road Emissions for Vehicles During Operation 5s. NIPHPC orSDC: N/A
: 6. SSC Safety Category: N/A 7 Summary: This EDF provides a calculation of the on-road emissions associated with vehicles during the operation of the RPF.
7 Distribution: (Portage, Inc.)
: 7. Review (R) and Approval (A) Signatures:
_(Identify minimum reviews and approvals. Additional reviews/approvals may be added.)               .
Printed Namer R/A           Organization                       Signature               Date Author/Design Agent             a Gary McManus                     *    "(*T) )~d       '-*        7/31/15 Independent Review             R   Dave Thorne                   d@             ,*7/31/15 Independent Review             R Project Manager               R/A John Beller                                                         7/31/15 Registered Professional Engineer's Stamp (if required)                                         Z]N/A
 
TEM-9002 09/29/09                                    ENGINEERING DESIGN FILE                             EDF-3124-0013 Rev. 1 Rev. 0                                                                                           Page 2of 5 INTRODUCTION AND PURPOSE During the operations phase, vehicular air emissions would result from the commuting workforce and from routine deliveries to/from the proposed RPF. The California Air Resources Board Emission Database (EMFAC201 1 http://www.arb.ca.gov/emfac/) was used to calculate on-road vehicle emission factors for this period. The model estimates vehicle emission factors based on fuel type, vehicle type, vehicle speed, and climatological normal for temperature and humidity The volume of traffic generated during operations would be considerably lower than that expected during construction. Additionally, the lands on the developed RPF site are either developed surfaces (buildings, paved parking/access road) or consist of either agricultural or landscaped uses. Consequently, limiting routine vehicle use to paved areas would reduce emission of fugitive dust. In summary, impacts from vehicular air emissions and fugitive dust during operations would be far less than during the construction phase.
ASSUMPTIONS On-road vehicle emissions were calculated using emission rate in grams(g)/(vehicle miles traveled) +
g/day(idle) + g/day(starting). Total mileage estimates for on-road vehicles during the construction period are shown in Table 1. Calculations used to obtain the estimates are based on an average work force of 100 vehicles per day using a specific vehicle ratio (60% light-duty autos, 30% light-duty gas trucks, and 10%
light-duty diesel trucks) and a round trip of 40 mi/day. The vehicles include construction vehicles, delivery trucks, and employee vehicles. Though RPF operations are assumed to occur for 50 weeks a year to allow for two weeks of maintenance and outages. On-road vehicle use is assume to occur for 52 weeks a year to account for personnel and deliveries that occur during maintenance and outages.
Table 1. Total Mileage Estimates for On-road Vehicles during Operation Elquipment                        Activity Duration                           Total distance Traveled (quantity)                         (months/days)                     (kin)                         Miles Workforce travel (60)         Commute - light duty gas vehicles (12/260)     1,004,230                     624,000 Workforce travel (30)         Commute - light duty gas trucks (12/260)       502,116                       312,000 Workforce travel (10)         Commute - light duty diesel trucks (12/260)     167,372                       104,000 Estimates of the on-road vehicle emissions factors for different type vehicles for criteria pollutants and carbon dioxide (CO2) are provided in Tables 2 through 4 below. These values are from the EMFAC series of models.
 
TEM-9002                                      ENGINEERING DESIGN FILE                            EDF-3124-0013 09/29/09                                                                                        Rev. 1 Rev. 0                                                                                          Page 3 of 5 Table 2 Emission Factor from EMIFAC20l11 (Running)
CO           NOx           CO2               PM10         PM2.5             SOx Vehicle Type                                                 (/ie Light Duty Auto (gas)       1.31E+00     1.24E-01     3.49E+02           1.89E-03       1.73E-03       3.51E-03 Light duty Trucks (gas)     3.27E+00     3.36E-0i     4.02E+02           4.39E-03       4.01E-03       4.07E-03 LgtdtTrcs3.36E-01                 6.70E-01     3.56E+02           6.11E-02       5.62E-02       3.40E-03 (diesel)
Table 3 Emission Factor from EM7FAC2O1 1 (Idling)
CO           NOx         CO2               PM10         PM2.5             SOx~
Vehicle Type (g/vehicle/day)
Light Duty Auto (gas)       0.00E+00     0.00E+00     0.00E+00           0.00E+00     0.00E+00       0.OOE+00 Light duty Trucks (gas)     0.O0E+00     0.00E+00     0.00E+00           0.00E+00       0.00E+00       0.00E+00 LgtdtTrcs0.00E+00               0.00E+00     0.00E+00           0.00E+00     0.00E+00       0.00E+00 (diesel)
Table 4 Emission Factor from EMFAC20 11 (Stationary)
VhceTp VeilyeCO                      NOx           CO 2              PM10 (g/vehicle/day)
PM2.5            SOx Light Duty Auto (gas)       1.73E+01     1.13E+00     4.64E+02           1.86E-02       1.7E-02       4.95E-03 Light duty Trucks (gas)     3.90E+01     2.13E+00     5.14E+02           3.37E-02       3.08E-02       5.84E-03 LgtdtTrcs0.00E+00               0.00E+00     0.00E+00           0.00E+00     0.00E+00       0.00E+00 (diesel)
From Tables 1 through 4, the total emissions for each of the types of vehicles was calculated as shown below:
The equations used to calculate total vehicle emissions are as follows:
Total emission = emission (running) + emission (idling) + emission (stationary)
Emissions while running     = EFRi (days of operation) (miles/day) (number of vehicles)
Emissions while idling =EFIi (days of operation) (number of vehicles)
Emissions while idling   = EFSi (days of operation) (number of vehicles)
Where:
EF~i = the individual emission factor for each pollutant, i.e. CO, NOx, C0 2 , PM10, PM2.5 and SOx
 
TEM-9002 09/29/09 ENGINEERING DESIGN FILE                          EDF-31 24-0013 Rev. 1 Rev. 0                                                                                            Page 4of 5 Example for Light Duty Gas Autos (GO)
CO EFR     = 1.3 1E+00 g/mile x 624,000 miles
                                      = 8.17E+05g CO EFl   =   0.00+00 g/vehicle/day x 60 vehicles x 260 days
                                    - 0.00E+00 g CO EFS   =   1.73E+01 g/vehicle/day x 60 vehicles x 260 days
                                    =-2.70E+05g Total CO Emissions       =   8.17E+05 g + 0.00E+00 g + 2.70E+05 g 11.09E+06 g (2.40E+03 lbs)
Similar calculations were performed for all of the vehicles listed in Table 1. The results are shown in Table 5 below.
Table 5. On-road emissions from construction Activities co                  NOx               CO 2            PM-b1           PM-2.5           SOx Vehicle Type         Fuel (kgs)       (Ibs)   (kgs)     (ibs)   (kgs)       (lbs) (kgs)     (bbs) (kgs)     (lbs) (kgs)     (Ibs)
Light Duty         Gas   1,085       2,392     95     210   225,239     496,569   1         3     1         3   2         5 Autos LgTrDutys          Gas   1,323       2,917   122     268   129,506     285,513   2         4     1         3     1       3 LgTrutks        Diesel     35         77     70       154   37,004     81,580   6         14   6         13   0         1 Total (kg or lbs)       2,443       5,385   286     631   391,748     863,662   9       21     9         19   4         9 Total (tonnes or tons)       2.4         2.7   0.3       0.3     392         432   0.009     0.010 0.009     0.010 0.004     0.004
 
EMFAC20OR EmissionRates Type:Statewide Region Region:
California                                                                                                                                                                                                                                              o  o~r ccN2 CalendarYear:2015 Season:Annual Vehicle Classification:
EMPAC2RO1 Categories                                                          Running              -                                                dli~ng Region CalYr Season Veh_.Class       Fuel MdlYr Speed             CO      NOR        COO        PMIR PM2_s tOg I                              CO  "NOR  COO    PM1O PMOG      GOR J                CO     NOR     COO PMIO PM2._ ROE (miles/hr)                               (gins/ssile)                                                      [gms/vehlcle/duy)                                            ~dling 1.73E+01 (gms/vehslce/day)        49E0 StatewIde    2015Annual LDA          GAS  Aggregateckggregated 1.01E+00 1.24E-01 3.49E+02 1.RRE-R3         1.73E-003.51E-03                      0    0  0      R        0    R                    1.7+103E+004.E4E+021.8Et-S020.706-SO402 0R Statewide    2015Annoal LDT1        GAS  AggregatecAggregated                                                                                    O    0  0      R        0     R                  ORO0nRD12.O3EO+000.46+R203.376-023R.ORE-0205'S.E4E-R Statewide    2015Anoual LDT1        DRI  AggregatecAggregated 3.36E-Ri 6.70E-01 0.566+02 R.10E-R2          5.620-02 0.40E-03                      0    0  0      R        S    S Miles        CO      NOR        COO         PMOE 'MO2_5 00O Vehicles Days                  CO  NOR  COO 624,0R0    6.15E6+05                                                               260        0        0    PM0R O      PMO._5 0    ROE R    Vehicles 60    Gays 060 2CO+50 O.R    10NOR 7.24E+06
                                                                                                                                                                                                                  .776+04 COO O.ROE+0O PMIOR2.RSE+02  ROE PM2... 7.72E+01]
lightDutyAuto        gas lightsOt/Truck      gas    302,000    1.O2E.+]6 0.05E+05 1.2E5E 08 .37E+000.25E+031.276+0 300                260        0        0      O       0     R     300   260 3.04E+0051.66E+O44.61E+05O.60E+RO22.40E02 4.56E+01 LightDutyTruck      diesel  004,0oo    3.401+04 E.RRE+040.70E+07 0.35E+035,.85E+R3          ,53E+R2 10        260      .R          0      O        0    R0    O      260 0.006+000.00E+000.EO0E+00 0.00E+000,000+00 0.00E+00 CR                  t60x                   CO,             P01-to           PM2StS VstlsteTtye    Fontl itus)       Phe)     1005)     yhn)           I*      0ni     So'go)   Old) flu         b*  ks) Os ightliylu3At        gos       1,RR5     2,002     92       210         2252,9     400,369   1       3       l       3     2 Jt Truok       *s        1,322       O,R17 [   122       2RR         129.300 IRSOI3       2         4       I T'ostz c
TeozloDt  dksel       05 2443  }      77 50360 7n[i 290 104 631 37.004 Ri,5tS 001,746 603,662       0 S        4 21 6
9 1
i                                                                                                          h'i To0tdiol (t)2.4                               2.7       0.0       0.3         392       432     R.009     00OlO 0.009     .00   .04 .004                                                                                              z 0
i m
h"m z
                                                                                                                                                                                                                                                                "0 i-rn CD.
 
NWMI-201 5-RAI-001
*;.,'Nn'WMS*D*ISOO*                                                                        Rev. 0 Appendix E -
Northwest Medical Isotopes, LLC Alternative Site Evaluation E-i
 
1111111 II PU WAT1m P'UW D w euraE            WASTI MAN(T CA*W AES P03t 3....AL alU Ar/3l U3IRU31~iWA1Ul WW*~M      AJIS3XUVU
                                      *TAIt OI~J.T~    -e~
          ,mtru, iss   iw 31W YAMu       AII
                                                                            .3         1 MIRTH WEST MEDICAL ISOTOPES, 118 ALTERNATIVE SITE EVALUATISH
'U..NWMIl
 
                  . J* III~l Altermative Sits Locatiosm J* * !_. .. .II inJ~k...
i~niifi iii n            .........iJ_. !i![!!
1!F! I l-T  ........rrt Imlllll mflI]I_-.
> University of Missouri Research Reactor (MURR) - Columbia, MO
>. Discovery Ridge Research Park -Columbia, MO
> Oregon State University (OSU) - Corvallis, OR
> McClellan Business Park (McClellan) - Davis, CA
    - University of California at Davis (UC Davis) Research Reactor located at McClellan NDU
                                                            \, ' -,,   U
                                                        -\\                                         LO
 
    , III,I , . . .... ... Y. *. ] ....... IIH ....1 Site Selectlen Criteria
                                                    ... r] . 1!                                                         1.. o 1,,   I11 1     lf ......... Ill ...
Political and local                        Ability of NWMI to leverage connections for local logistical                10 logistics support                          support, based on regional politics and importance of project to economic develooment Production logistics                       Number of 6-day Ci processed and delivered to distributor                   10 Radioactive, hazardous,                      Site ability to meet Federal, State, and local requirements and            8 and mixed secondary                          availability of waste disposition pathway waste generation (i.e., air, liquids, solids)
Federal and State taxes                      Includes costs associated with sales tax, property tax, corporate          3 and incentives                              income tax, hiring credits, etc. Criteria does not include RPF ownership and lease terms; these would be dealt with by NWMI separately Construction costs                           Site-specific cost estimates; variations in labor rates and materials;     2 and construction indices Total Weight                                                                                                           60
*ej            WM
 
Scoring Details mmdii                            Ressuht
                                                            --6~ S -
40: 1     10 Facility operations                       4 40 4 40 3    30  3      30 Txitingitc4                                  40 2 2 30  3      30 Transportation                            4 32 4 32 2    16  3      24 Federal, State, county, and local require- 4 20 4 20 4   20 2     10 ments to construct and operate facility Feiaadtttxsnicnie                              5 5 '15 391             3 Available space                           5 15 3   9 1     3 2       6 Constr    tiiiviosts4i8                         4     3     6 Natural or human-made disaster potential   3   3 3   3 4     4 2      2 Iii:~i Wei*,hted Percentaae                        82%   73%     63%       489'0
  ~.NWMI uSflmUTinA+/- IUIWS
 
    ........ .. i    / T III
                            . ............ .. l r .. ...... . I                            IIII
                                                                                              /llll_ ,,,,I II l ri i flrilrT iiiiii SUtilized SMART decision analysis methodology for site evaluations*


==Reference:==
==Reference:==
  *Based on Department of Energy's Guidebook to Decision-Making Methods (WSRC-IM-2002-00002)SDeveloped a list of site-specific criteriaCriteria weighted by their importance to NWMI's business plan* 10 = most important, 1 = least important) Each site scored on a scale of 1-5* 5 = most favorable, 1 = least favorable) Weighting applied to the raw scores to determine a total score for each location/~ iNWM I1,I°T I~aEV Elseovery Bilge Characteristics> Location* Columbia, MO is -125 miles west of St Louis, MO, on Highway 70* Potential RPF site is adjacent to MURR on University of Missouri campus> Existing Conditions* Site is on ground that has been historically used for agriculture> Roadways* Located near Highway 70; 5 miles from MURR (Columbia, MO)* No current roadway weight and height restrictions exist* Sufficient for transport of BRR Casks used for irradiated targets> Utilities* Required utilities are available through MU> Land Use* Land use is presently set aside for a technology research park/industrial> Soils* Soils are characterized by medium and narrow ridges with moderate to steep side slopes* Soils are clayey and formed in loess over glacial till; loess is thin or nonexistent on the side slopes* Area is broken up by a number of narrow and medium-sized stream bottoms* Soils report will be completed prior to RPF construction> Groundwater* Average depth to groundwater in Columbia, MO vicinity is ~180 feet> Environmental Site Conditions* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537@ NWMI _ _ _ _ _ _ _ _ _ _ _
  *Based on Department of Energy's Guidebook to Decision-Making Methods (WSRC-IM-2002-00002)
Current Dilscsvsry IRidge LaysutPhimI 13L0,0,tPlmE lOAMFts212* Ac/I,I...W* frMT tA Prelimimary RPF Iiscovery Ridge Site Laysut...... .,I,,I, , ..... , ,. .. .. .... .... .........a in a muEUU DEED flUME U~WEUYUt~M MUIR Site CharacteristicsI> Location* Columbia, MO is -125 miles west of St Louis, MO, on Highway 70* Potential RPF site is adjacent to MURR on University of Missouri campus> Existing Conditions* Potential RPF site is adjacent to existing building on a partially paved parking lot* Direct connection to existing reactor may require below ground construction> Roadways* MURR is located near Highway 70; Just off main campus of University of Missouri (Columbia, MO)* No current roadway weight and height restrictions exist* Sufficient for transport of BURR Casks used for irradiated targets> Utilities* Required utilities are available within MURR> Land Use* Potential RPF site is on University of Missouri's campus and adjacent to MURR* Land is available for industrial use> Soils/Groundwater* Sameas DR> Environmental Site Conditions* Prior to RPF construction, an Environmental ReportWil becmpeen DS!NWMI EUR,-Current Layout/RPF Layout.... .... .... ... .... ... I r r ll lll IIII IIIIIII .. .. ... ... /I /I I I II I ,,,ID .. .... ..I!1 I I ,t i l l OSUE Site Characteristics>. Location* OSU is located near the I-5 corridor in Corvallis,iOR (- 80 miles south of Portland, OR)* RPF site is adjacent to OSU Radiation Center(off SW Jefferson Way and SW 35th Street)> Existing Conditions* Potential RPF site -- immediately to the east ofthe reactor* Utilizing site would require relocation of twoexisting laboratory buildings and reroutingtransportation access to reactor bay (i.e., modifyroads)> Roadways* Access to OSU from I-5 requires traveling on theCorvallis-Lebanon Highway* Maximum weight limit of 80,000 lbs* Sufficient for transport of BRR Casks used forirradiated targets-...
SDeveloped a list of site-specific criteria
OSE Site Characterlstics (cmnii> Utilities* Sewer, water, and electrical are available (i.e, on 35th street)>. Land Use* Site is part of OSU Master Plan and in Sector B of the Corvallis City Zoning Code* Sector requires 33% open space and allows for maximum building height of 75 ft and a minimumsetback requirement of 40 ft from collector streets> Soils* According to the USDA* Soils on flood plains along Willamette River are well drained° Lower foothills around the western margin of the valley are underlain by soft to hard sedimentary rock,which has restricted permeability* Foothills are subject to earthflow and slumping, erosion, and varying cut-slope stability* Soils report will be completed prior to RPF construction> Groundwater* Water table varies between 10 and 25 feet below ground surface> Environmental Site Conditions* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537~NWMI OSU,-Current Site Layout/mPF' Layout.... ... ........ l ll lI IIIIII I III ....... ... 1[ " I il" " lI TII ...Preliminary RPF LayoutICurrent OSU Layout:;.. WMIM nU.,.:t II VNVU I¥11t McClellan Site Characteristics> Location* UC Davis, McClellan Nuclear Research Center (MNRC) is located off campus at McClellanBusiness Park, 10 miles northeast of Sacramento, CA near I-5 corridor* McClellan Air Force Base was closed in 1995 and privatized from 1995-2003 (i.e.,McClellan Business Park)> Existing Conditions* -45,000 sq ft clear span, high bay building --200 ft from reactor has been identified aspotential site for RPF* Existing infrastructure (i.e., buildings, roads) meet current CA seismic codes> Roadways* McClellan Business Park is located along 1-80 and is served by 4 major interchanges. WattAvenue boarders McClellan to the east* No current roadway weight and height restrictions exist* Sufficient for transport of BURR Casks used for irradiated targets-lvmms uiNWMI0 1 Ecl~lellam Sits Charactsristics (cent]> Utilities* McClellan Business Park provides three dedicated electrical substations* Power is available at existing building* Water and sewer are available at or near existing building> Land Use* McClellan Business Park and potential site resides in Core Airfield/Industrial district* Designated for manufacturing, light industrial and high-tech uses* Special Planning Area designation within Sacramento County's zoning ordinance> Soils* Soils in urban areas of Sacramento County have been drastically altered during development ofAir Force Base and privatization efforts* Cut areas consist mainly of truncated San Joaquin soils; Durixeralfs* Filled areas, which were once low areas, now consist of as much as 20" of physically mixed soilmaterial; Xerarents* Soils report will be completed prior to RPF construction> Groundwater* Depth to groundwater in Sacramento County varies between 2- 420 feet basin-wide> Environmental Site Conditions* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 5370~FNWMI.o. m5,uiu+/-i:w  
* Criteria weighted by their importance to NWMI's business plan
-Current Sits Layout/RPF Layeut.... J, .. .. llllllll l BF I] I]]]I]] .... II II III I I I ,,,j, / III l lTl]]ff r lrrr rrrrrrT : ii f i p _ .. iiJ4Preliminary RPF LayoutLo1!N.I4i1~--1Current McClellan LayoutM~n S~.3rwm~522A A~1' JG LOT 15PLaRw gvwQI Ia WAIrn11WIAgl3 TMq AWD wm~lrETAlSP.S WrATUl UQDWAre SCtmCLh MAILIT -AIEpf rmLOT 3uwrum I-urntIIWVA FIT=4PVR-ar IMW A£ NsmftANORTH EST MEEIDAL ISITIPES, LIIALTERNATIV SITE EVAUATION -DETILEE SI* , mN~a W M........
* 10 = most important, 1 = least important
Psilitcal and Local Logistics Support> DRIMURR* University has high-level of political and local support and local and county ties* NWMI Team Member MURR has extensive connection with state and local network; however,NWMI should not expect as much support as in Oregon* University and State of Missouri are aware of MURR's capability and current/previous 99Moendeavors, and relationship with DOE-N NSA and 99Mo community> OSU* NWMI has strongest network in OR; Samaritan and OSU have significant state and local ties* NWMI has been introduced to Oregon Governor* State of Oregon (including OSU) has significant interest in 99Mo business model due to FTEgeneration as well as educational and R&D aspects> McClellan* Limited local political support and local and county ties* NWMI has little or no network in California* California unlikely to have significant interest in 99Mo business due to nuclear aspect and minimalFTE generation (i.e., less than 50 FTEs)-..DR MURR OSU McClellan4 4 4 1BEUMIED IIII VYMI Sperations...... ............ !!l l l I I I F FI]H HF[[ ............ .......... .... ..... " ...... l ................................. .... Fr ......... I I ISDiscovery Ridge* NWMI would manage RPF* No reactor onsite> MURR* RPF to be entirely staffed and operated by university; NWMI and MURR would co-manage RPF* Will require a multi-story building due to land constraints and current research reactor facility layout; maypresent design/construction and operational challenges> OSU* Limited involvement in RPF operations; NWMI would manage RPF* Reactor will be co-located with RPF* Will require a multi-story building due to land constraints and current research reactor facility layout; maypresent design/construction and operational challenges* "Educational/R&D area" will need to be part of RPF (not requested by UC Davis or MURR)> McClellan* No involvement in management and operations of RPF since it will not be housed on UC Davis campus;proposed site is part of McClellan Business Park (which privatized McClellan Air Force Base in 2003 and has a99 year lease)* NWMI would manage RPF* Reactor located in McClellan Business Park and would be adjacent to proposed RPF location (within --200 ft)* Design and construction of transportation corridor required..DRMURR0 SU i~!i;!l!!~!i~~iiM cClellanil4 4 3 3&WMJa Preductlen Isgistlcs> Time product spends in transit and processing determines delivered target activitySPrimary irradiation reactor is MURR/Secondary reactors are OSTR and hypothetical thirdreactor>Transportation DistanceRPF Location: DR/MURR RPF Location: OSU RPF Location: McClellan..~ -. .~ .I --.- .-S--S *~ S ICovi i, OR iii~McClellan, CA200mi (40 hr)1800 mi (35 hr)Corvallis, ORMcClellan, CAColumbia, MO0520 mi (12 hr)20o0(40ohr)Corvallis, ORMcClellan, CAColumbia, MO50nii 1 i0Irradiated LEU Target Processing/Product Conditioning and Packaging*All sites will have same processing and product conditioning timeframes..DR4MURR23McClellan3~NW¢MI Trahnsprtation> Two high-priority transportation activities can effect 6-day curies delivered* Irradiated target to RPF via ground* 99Mo Product to Distributor via air or ground> Based on FEMA disaster declarations (1964-2007)* Transportation route between OSU and McClellan has a slightly greater density of disasterdeclarations than route between either location and DR/MURR* All routes require crossing significant mountain ranges, which may result in delays due toinclement weather* If RPF is located at DR/MU RR, more Rocky Mountain crossings may increase probability ofdelays0 0DR MUR QSU Mclellan' NWMI-------
          ) Each site scored on a scale of 1-5
Waste GenerationSRadioactive and Mixed Wastes*All potential RPF locations have a radioactive/mixed waste disposition pathways* Missouri (DR/MURR) sends waste to Waste Control Specialists, Inc. (located in TX) -twostate borders will be crossed during transport* Oregon (OSU) sends waste to U.S. Ecology located on the Hanford Nuclear Reservation(located in WA) -one state border will be crossed during transport* California (McClellan) sends waste to Envirocare Inc. (located in UT) -two state borders willbe crossed during transportSHazardous Waste* All potential RPF locations have disposition pathways for all types of hazardous waste* Disposal costs are expected to be more expensive in CA than in OR or MO (cannot beevaluated until more is known about type and quantity of waste).SDR MURR OU Mleln4 4 4 3* MI________________
* 5 = most favorable, 1 = least favorable
Feisral, Stats, and Loceal IequlremsentsSNRC licensing requirements (NUREG 1537) should not vary between sites becausethese are Federal requirements>Environmental Report (being developed under NUREG 1537 and NEPA) should not varybetween sites; each site already has an existing research reactor within close proximitySState and local requirements are expected to be most significant at McClellan and lessat OSU and DR/MURRSAir quality permitting and seismic design criteria are important aspects of the project butdifferences between locations are not anticipated to be significantSPublic Involvement (according to all Federal, State, and local requirements) is expectedto be more significant at McClellan and less at OSU and DR/MURRS 0DR MURR :OSU Mlellan4 4 4 24 NWMIWALiiii~i Feisral ani Stats Taxes anl incesntivesSales tax on equipment and construction materials* MO sales tax = 4.225%; Equipment/supplies exempt; Construction materials non-exempt* OR has no sales tax* CA sales tax = 7.75%; Equipment or construction materials non-exemptSCorporate Income Tax* Missouri: 6.25%* Oregon: 7.60%* California: 8.84%(Note: single sales factor apportionment is available in all 3 states; may be subject to income tax where product is sold)SProperty Tax* University properties (OSU and DR/MURR) present opportunity for reduced property taxesbased on the ownership model of government-owned facilities* McClellan does not appear to offer reduced property taxes* Cost savings will be determined by lease negotiationsSIncentives* Oregon and Missouri are likely to offer more competitive tax and incentive packages thanCaliforniaS SDR MURR OSU Mclellan5531 Available lpames> Discovery Ridge* Greenfield Location (Agricultural for many generations)SMURR* Site has sufficient space for initial build and has ability for limited future expansion (next toResearch Reactor)> OSU* Facility will be constructed on mostly greenfield (undeveloped) area on the(Northeast and East of Radiation Center)* Site has sufficient space for initial build and has ability for future expansion* RPF will need to include space for OSU educational and R&D use0SU campus-250 feet awaySMcClellan* Site has sufficient space for initial build and has ability for future expansion (,,from UC Davis Research Reactor)* RPF will have to fit within existing infrastructure; improvements can be made~0 *DR5MURR3OSUIMcClellan2:~ NWMI Construction CostsSRS Means City Construction Cost Indexes* DR/MURR (Columbia): 95.4* OSU (Corvallis): 98.6* McClellan (Davis/Sacramento): 109.9SDiscovery Ridge* Site has existing infrastructure and few restrictions to building design* Construction cost expected be similar to OSUSMURR* Site has existing infrastructure and few restrictions to building design* Construction cost expected be similar to OSU> OSU* Site has existing infrastructure and few restrictions to building design* Site may require demolition and reconstruction of existing laboratory buildings> McClellan* Site has existing building and infrastructure resulting in slight cost savings* Existing building may require structural/mechanical modifications to meet code which willincrease costs..:DR MURR OSU Mc~lellan44 3 3* NWMI,,u.
          ) Weighting applied to the raw scores to determine a total score for each location
Natiurl anl Man-Male Disaster PotentialDiscovery Ridge/MURR (Boone County)* Has most disaster declarations (storm and flooding plus tornado) but low-to-no earthquake riskSOSU (Benton County)* Has fewest disaster declarations (mostly storm and flooding) and a moderate to low earthquake risk>" McClellan (Sacramento County)* Has more disaster declarations than OSU and less than MURR (mostly storm and flooding) and ahigher earthquake riskof mfu~wtiuk wilb Mz 4.75 wli*t 50 yelu & 50klm'UeP e,,*u= djd 4 Le,.Mclela -Earthquk Risk MapOSU -cEaelhquakeaRisk Mai .0.....r, Discovery RidgeIMURR -Earthquake Risk Map-S 0-I -D UR S clla3 3 4 2NW2M I..........}}
              /~         iNWM I 1,I°T I~aEV
 
Elseovery Bilge Characteristics
> Location
* Columbia, MO is -125 miles west of St Louis, MO, on Highway 70
* Potential RPF site is adjacent to MURR on University of Missouri campus
> Existing Conditions
* Site is on ground that has been historically used for agriculture
> Roadways
* Located near Highway 70; 5 miles from MURR (Columbia, MO)
* No current roadway weight and height restrictions exist
* Sufficient for transport of BRR Casks used for irradiated targets
> Utilities
* Required utilities are available through MU
> Land Use
* Land use is presently set aside for a technology research park/industrial
> Soils
* Soils are characterized by medium and narrow ridges with moderate to steep side slopes
* Soils are clayey and formed inloess over glacial till; loess is thin or nonexistent on the side slopes
* Area is broken up by a number of narrow and medium-sized stream bottoms
* Soils report will be completed prior to RPF construction
> Groundwater
* Average depth to groundwater inColumbia, MO vicinity is ~180 feet
> Environmental Site Conditions
* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537
        @   NWMI                                         _       _     _     _ _   _     _   _     _     _ _
 
Current Dilscsvsry IRidge Laysut PhimI        13L0,0,t PlmE lOAM Fts212* Ac
  /
I, I
    *NWMII W* frMT tA
 
Prelimimary RPF Iiscovery Ridge Site Laysut
                    ...... .,I,,I, , ..... , ,. .... .... . . ... . . . . . . . .
a in a       mu EUU DEED flUME U
  ~WEUYUt~M
 
MUIR Site Characteristics I> Location
* Columbia, MO is -125 miles west of St Louis, MO, on Highway 70
* Potential RPF site is adjacent to MURR on University of Missouri campus
> Existing Conditions
* Potential RPF site is adjacent to existing building on a partially paved parking lot
* Direct connection to existing reactor may require below ground construction
> Roadways
* MURR is located near Highway 70; Just off main campus of University of Missouri (Columbia, MO)
* No current roadway weight and height restrictions exist
* Sufficient for transport of BURR Casks used for irradiated targets
> Utilities
* Required utilities are available within MURR
> Land Use
* Potential RPF site is on University of Missouri's campus and adjacent to MURR
* Land is available for industrial use
> Soils/Groundwater
* Sameas DR
> Environmental Site Conditions
* Prior to RPF construction, an Environmental ReportWil becmpee n                                    D S!NWMI
 
EUR,     - rlllll r ....
CurrentLayout/
IIII IIIIIII
                    ... I
              .......     .... ...... /I/II      ..I!1 IIII,,,ID RPF Layout
                                                      . .....ilIl I ,t
*:NW/MI
 
OSUE Site Characteristics
>. Location
* OSU is located near the I-5 corridor inCorvallis,i OR (- 80 miles south of Portland, OR)
* RPF site is adjacent to OSU Radiation Center (off SW Jefferson Way and SW 35th Street)
> Existing Conditions
* Potential RPF site -- immediately to the east of the reactor
* Utilizing site would require relocation of two existing laboratory buildings and rerouting transportation access to reactor bay (i.e., modify roads)
> Roadways
* Access to OSU from I-5 requires traveling on the Corvallis-Lebanon Highway
* Maximum weight limit of 80,000 lbs
* Sufficient for transport of BRR Casks used for irradiated targets
 
OSE Site Characterlstics (cmnii
> Utilities
* Sewer, water, and electrical are available (i.e, on 35th street)
>. Land Use
* Site is part of OSU Master Plan and inSector Bof the Corvallis City Zoning Code
* Sector requires 33% open space and allows for maximum building height of 75 ft and a minimum setback requirement of 40 ft from collector streets
> Soils
* According to the USDA
* Soils on flood plains along Willamette River are well drained
          ° Lower foothills around the western margin of the valley are underlain by soft to hard sedimentary rock, which has restricted permeability
* Foothills are subject to earthflow and slumping, erosion, and varying cut-slope stability
* Soils report will be completed prior to RPF construction
> Groundwater
* Water table varies between 10 and 25 feet below ground surface
> Environmental Site Conditions
* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537
~NWMI
 
OSU, - CurrentSite Layout/
                      ....IIIIII
                            ... ........ l llI III lI ..........
mPF' Layout 1[" I il" " lI TII . . .
PreliminaryRPF Layout I
Current OSU Layout WMIM
:;.. U.,.:t II VNVU   n I¥11t
 
McClellan Site Characteristics
> Location
* UC Davis, McClellan Nuclear Research Center (MNRC) is located off campus at McClellan Business Park, 10 miles northeast of Sacramento, CA near I-5 corridor
* McClellan Air Force Base was closed in 1995 and privatized from 1995-2003 (i.e.,
McClellan Business Park)
> Existing Conditions
  * -45,000 sq ft clear span, high bay building --200 ft from reactor has been identified as potential site for RPF
* Existing infrastructure (i.e., buildings, roads) meet current CA seismic codes
> Roadways
* McClellan Business Park is located along 1-80 and is served by 4 major interchanges. Watt Avenue boarders McClellan to the east
* No current roadway weight and height restrictions exist
* Sufficient for transport of BURR Casks used for irradiated targets
    -l vmms uiNWMI0 1
 
Ecl~lellam Sits Charactsristics (cent]
> Utilities
* McClellan Business Park provides three dedicated electrical substations
* Power is available at existing building
* Water and sewer are available at or near existing building
> Land Use
* McClellan Business Park and potential site resides in Core Airfield/Industrial district
* Designated for manufacturing, light industrial and high-tech uses
* Special Planning Area designation within Sacramento County's zoning ordinance
> Soils
* Soils in urban areas of Sacramento County have been drastically altered during development of Air Force Base and privatization efforts
* Cut areas consist mainly of truncated San Joaquin soils; Durixeralfs
* Filled areas, which were once low areas, now consist of as much as 20" of physically mixed soil material; Xerarents
* Soils report will be completed prior to RPF construction
> Groundwater
* Depth to groundwater inSacramento County varies between 2- 420 feet basin-wide
> Environmental Site Conditions
* Prior to RPF construction, an Environmental Report will be completed per NUREG-1 5370
          ~FNWMI
            .o. m5,uiu+/-i:w
 
. ...J,.. .. llllllll l   BFI]I))]I))
                                    . . .. II
                                              -  CurrentSits Layout/
IIIII        I   I     I   ,,,j,/
RPF Layeut IIIl lTl))ff r lrrr rrrrrrT
: ii f i p _ .. .J,,*L ii J
4 Preliminary RPF Layout Lo1 4
N.
I i1~ --1 Current McClellan Layout M~n S~.
3rwm~
5            22A A~
1'
:*.NWMI
 
                                          -IN*lZ JG   LOT 15 P.S WrATUl PW*  UQD PLaR                  WAre    SCtmCL Elhu._*    WA*h  MAILIT  -AIEpf r w    gvwQI Ia    WAIrn 11WIAgl3 TMq AWD wm~lrETAlS mLOT 3 uwrum      I-urnt
                        =4PV IIWVA FIT
                                                                                £          N L*wl R-ar IMW A smftA NORTH                    EST         MEEIDAL       ISITIPES, LII ALTERNATIV SITE EVAUATION -DETILEE SI
*   ,   W mN~a M........
 
Psilitcal and Local Logistics Support
> DRIMURR
* University has high-level of political and local support and local and county ties
* NWMI Team Member MURR has extensive connection with state and local network; however, NWMI should not expect as much support as in Oregon
* University and State of Missouri are aware of MURR's capability and current/previous 99Mo endeavors, and relationship with DOE-N NSA and 99Mo community
> OSU
* NWMI has strongest network inOR; Samaritan and OSU have significant state and local ties
* NWMI has been introduced to Oregon Governor
* State of Oregon (including OSU) has significant interest in99Mo business model due to FTE generation as well as educational and R&D aspects
> McClellan
* Limited local political support and local and county ties
* NWMI has little or no network in California
* California unlikely to have significant interest in99 Mo business due to nuclear aspect and minimal FTE generation (i.e., less than 50 FTEs)
DR       MURR       OSU     McClellan 4           4       4        1 BEUMIED I III VYMI
 
..................!!ll l   I I I FFI]H HF((
Sperations                      l                                              .........I
                                                                                                              ................................. . ...F[r*Fr                  II SDiscovery Ridge
* NWMI would manage RPF
* No reactor onsite
                > MURR
* RPF to be entirely staffed and operated by university; NWMI and MURR would co-manage RPF
* Will require a multi-story building due to land constraints and current research reactor facility layout; may present design/construction and operational challenges
                  > OSU
* Limited involvement in RPF operations; NWMI would manage RPF
* Reactor will be co-located with RPF
* Will require a multi-story building due to land constraints and current research reactor facility layout; may present design/construction and operational challenges
                          * "Educational/R&D area" will need to be part of RPF (not requested by UC Davis or MURR)
                  > McClellan
* No involvement in management and operations of RPF since itwill not be housed on UC Davis campus; proposed site is part of McClellan Business Park (which privatized McClellan Air Force Base in2003 and has a 99 year lease)
* NWMI would manage RPF
* Reactor located in McClellan Business Park and would be adjacent to proposed RPF location (within --200 ft)
* Design and construction of transportation corridor required DR          MURR                                        0 SU i~!i;!l!!~!i~~iiM cClellanil 4               4                                            3                 3
                                    &WMJa
 
Preductlen Isgistlcs
> Time product spends in transit and processing determines delivered target activity SPrimary irradiation reactor is MURR/Secondary reactors are OSTR and hypothetical third reactor
>Transportation Distance RPFLocation: DR/MURR                             RPF Location: OSU                               RPF Location: McClellan
  .. ~ -.       .~ .     I       -     -                 .- . -       S                       -- S     *~     S     I Covi      i,OR iii~         200mi (40 hr)     Corvallis, OR                      0          Corvallis, OR                  50nii 1  i McClellan, CA                1800 mi (35 hr)   McClellan, CA                520 mi (12 hr)                                       0 McClellan, CA Columbia, MO                  20o0(40ohr)
Columbia, MO Irradiated LEU Target Processing/Product Conditioning and Packaging
          *All sites will have same processing and product conditioning timeframes DR              MURR                    McClellan 4                  2        3              3
                ~NW¢MI
 
Trahnsprtation
> Two high-priority transportation activities can effect 6-day curies delivered
* Irradiated target to RPF via ground
* 99Mo Product to Distributor via air or ground
> Based on FEMA disaster declarations (1964-2007)
* Transportation route between OSU and McClellan has a slightly greater density of disaster declarations than route between either location and DR/MURR
* All routes require crossing significant mountain ranges, which may result indelays due to inclement weather
* IfRPF is located at DR/MU RR, more Rocky Mountain crossings may increase probability of delays 0  0 DR      MUR       QSU   Mclellan
        ' NWMI-------
 
Waste Generation SRadioactive and Mixed Wastes
  *All potential RPF locations have a radioactive/mixed waste disposition pathways
* Missouri (DR/MURR) sends waste to Waste Control Specialists, Inc. (located inTX) - two state borders will be crossed during transport
* Oregon (OSU) sends waste to U.S. Ecology located on the Hanford Nuclear Reservation (located inWA) - one state border will be crossed during transport
* California (McClellan) sends waste to Envirocare Inc. (located in UT) - two state borders will be crossed during transport SHazardous Waste
* All potential RPF locations have disposition pathways for all types of hazardous waste
* Disposal costs are expected to be more expensive in CA than in OR or MO (cannot be evaluated until more is known about type and quantity of waste)
                                                                                  . S DR        MURR       OU     Mleln 4           4         4        3
* MI________________
 
Feisral, Stats, and Loceal Iequlremsents SNRC licensing requirements (NUREG 1537) should not vary between sites because these are Federal requirements
>Environmental Report (being developed under NUREG 1537 and NEPA) should not vary between sites; each site already has an existing research reactor within close proximity SState and local requirements are expected to be most significant at McClellan and less at OSU and DR/MURR SAir quality permitting and seismic design criteria are important aspects of the project but differences between locations are not anticipated to be significant SPublic Involvement (according to all Federal, State, and local requirements) is expected to be more significant at McClellan and less at OSU and DR/MURR S  0 DR      MURR      :OSU     Mlellan 4        4         4       2 4  NWMI  wIii~iii*5t WALiiii~i iii*
 
Feisral ani Stats Taxes anl incesntives
*> Sales tax on equipment and construction materials
* MO sales tax = 4.225%; Equipment/supplies exempt; Construction materials non-exempt
* OR has no sales tax
* CA sales tax = 7.75%; Equipment or construction materials non-exempt SCorporate Income Tax
* Missouri: 6.25%
* Oregon: 7.60%
* California: 8.84%
(Note: single sales factor apportionment is available in all 3 states; may be subject to income tax where product is sold)
SProperty Tax
* University properties (OSU and DR/MURR) present opportunity for reduced property taxes based on the ownership model of government-owned facilities
* McClellan does not appear to offer reduced property taxes
* Cost savings will be determined by lease negotiations SIncentives
* Oregon and Missouri are likely to offer more competitive tax and incentive packages than California S    S DR          MURR             OSU Mclellan 5531
 
Available lpames
> Discovery Ridge
* Greenfield Location (Agricultural for many generations)
SMURR
* Site has sufficient space for initial build and has ability for limited future expansion (next to Research Reactor)
> OSU
* Facility will be constructed on mostly greenfield   (undeveloped) area on the       0 SU campus (Northeast and East of Radiation Center)
* Site has sufficient space for initial build and has ability for future expansion
* RPF will need to include space for OSU educational and R&D use SMcClellan
* Site has sufficient space for initial build and has ability for future expansion (,,-250 feet away from UC Davis Research Reactor)
* RPF will have to fit within existing infrastructure; improvements can be made
                                                                                    ~0
* DR        MURR        OSU    McClellan 5            3        I        2
:~ NWMI
 
Construction Costs SRS Means City Construction Cost Indexes
* DR/MURR (Columbia): 95.4
* OSU (Corvallis): 98.6
* McClellan (Davis/Sacramento): 109.9 SDiscovery Ridge
* Site has existing infrastructure and few restrictions to building design
* Construction cost expected be similar to OSU SMURR
* Site has existing infrastructure and few restrictions to building design
* Construction cost expected be similar to OSU
> OSU
* Site has existing infrastructure and few restrictions to building design
* Site may require demolition and reconstruction of existing laboratory buildings
> McClellan
* Site has existing building and infrastructure resulting inslight cost savings
* Existing building may require structural/mechanical modifications to meet code which will increase costs
:DR       MURR   OSU   Mc~lellan 44            3       3
* NWMI,,u.
 
Natiurl anl Man-Male Disaster Potential
:* Discovery Ridge/MURR (Boone County)
* Has most disaster declarations (storm and flooding plus tornado) but low-to-no earthquake risk SOSU (Benton County)
* Has fewest disaster declarations (mostly storm and flooding) and a moderate to low earthquake risk
>" McClellan (Sacramento County)
* Has more disaster declarations than OSU and less than MURR (mostly storm and flooding) and a higher earthquake risk Pm'ob*Ry of mfu~wtiuk wilb Mz 4.75 wli*t 50 yelu &50klm' UeP   e,,*u=   *m                  4  djd Le,.
Mclela   -Earthquk Risk Map OSU          Ma
                    -cEaelhquakeaRisk i                  . 0.....
r,                     Discovery RidgeIMURR - EarthquakeRisk Map
                                                                                                  -   S 0
                                        -I                 -D UR               S       clla 3                      3               4           2 NW2M I..........}}

Latest revision as of 08:46, 19 March 2020

Northwest Medical Isotopes, LLC - Document No. NWMI-2015-RAI-001, Revision 0, Appendices B, C, D, and E. Part 2 of 14
ML15328A072
Person / Time
Site: Northwest Medical Isotopes
Issue date: 11/20/2015
From: Mcmanus G
Northwest Medical Isotopes, Portage
To:
Office of Nuclear Reactor Regulation
Shared Package
ML15328A010 List:
References
NWMI-LTR-2015-005 EDF-3124-0008, EDF-3124-0012, Rev. 1, EDF-3124-0013, Rev. 1, NWMI-2015-RAI-001, Rev. 0
Download: ML15328A072 (64)


Text

NWMI-201 5-RAI-001

  • '°egl"NDTW£SM!IAZO~E Rev. 0 Appendix B -

EDF-3124-0008, Emissions from Natural Gas-Fired Boiler Operation B-i

Document ID:EDF-3124-0008 Revision ID:0A Effective Date: June 26, 2014 Engineering Design File I Emissions from Natural Gas-Fired Boiler and Emergency Diesel Generator Operation Portage Project No.: 3124 Project

Title:

NWMI Environmental Report Portage TEM-9002 09/29/09 Rev. 0

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0008 09/29/09 Rev. 0A Rev. 0 Page 1 of 5

1. Portage Project No.: 3124 2. Project/Task: NWMI Environmental Report
3. DCN#

4.

Title:

Emissions fr'om Natural Gas-Fired Boiler and Emergency Diesel Generator Operation

5. NPH PC or SDC: N/A
6. SSC Safety Category: N/A 7 Summary: This EDF documents the methods used to calculate the emissions of CO, NOR, PM-10, PM-2.5, VOC CO 2, VOC and SOx, from the two process steam boilers, the two HVAC boilers and the emergency generator that will be used for the operation of the NW/MI facility.

7 Distribution: (Portage, Inc.)

7. Review (R) and Approval (A) Signatures:

(Identify minimum reviews and approvals. Additional reviews/approvals may be added.)_____

Printed Name/

Organization Signature Date 61

____________RA Author/Design Agent a Gary McManus  !'[)g'l[ dx' 6/26/14 Independent Review R Dave Thome * , ,.6/26/14 Independent Review R Project Manager R/A John Belier 6/26/14 Registered Professional Engineer's Stamp (if required) Z]N/A INTRODUCTION Several combustion sources at the proposed RPF would contribute to the gaseous effluents. These combustion sources are two natural gas-fired boilers used for steam production and two natural gas-fired boilers used for heating. The two steam boilers and the two boilers used for heating each are released through two separate stacks. The boilers and generator all emit GO, NOx, PM, VOCs, and CO 2 . The assumptions used for the four boilers are summarized in Table 1 below.

TEM-9002 EDF-31 24-0008 09/29/09 ENGINEERING DESIGN FILE Rev. 0A Rev. 0 Page 2 of 5 Table 1. Boiler Operational Parameters Sta od Steam Heat Boiler Fuel Energy Natural Gas Boiler Factor Efficiency Content Consumption (lb/hr) (MBTU/lb) (%) MVBTU/hr (ft3/hr)

Process #1 10000 9345 75 12460 12460 Process #2 10000 9345 75 12460 12460 HVAC #1 10000 9345 75 12896 12896 IHVAC #2 10000 9345 75 12896 12896 The emission factors used for the boilers are obtained from EPA 200, AP-42, Volume I, Table 1.4.1 and Table 1.4.2, these values are shown below in Table 2.

Table 2. Emission Factors for Boilers.

Pollutant Emission Factor Units COa 84 NOx a 50 PM1 0 (Total) b 7.6 l/0 c PM1O (filterable) b 1.9lb 6 sc VOC 5.5 SO 2

  • 0.6 CO 2 d 120,000
a. Controlled -Low NOx burners
b. All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM10, PM2.5 or PM1 emissions. Total PM is the sum of the filterable PM and condensable PM. Condensable PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.
c. Based on 100% conversion of fuel sulfur to SO2. Assumes sulfur content is natural gas of 2,000 grains/10 6 cf. The SO2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO2 emission factor by the ratio of the site-specific sulfur content (grains/10 6 scf) to 2,000 grains/10 6 scf.
d. Based on approximately 100% conversion of fuel carbon to CO 2 . CO2 [lb/10 6 scfl =

(3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO 2, C =

carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x 104 lb/106 scf.

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0008 09/29/09 Rev. 0A Rev. 0 Page 3 of 5 From Table 2 the hourly emission were calculated as follows:

Emissions (lb/hr) = EF * (NGC/1 06)

Where:

EF = emission factor (lb/10 6 scf)

NGC =natural gas consumption (ft3/hr)

For: CO = 84 * (12460/106)

= 1.0 lb/hr Tons/year =(1.0 lb/hr / 2000 lb/ton)

  • 24 hr/day
  • 7 days/week
  • 50 weeks

=4.4 tons/yr CO from Process boiler #1 Total CO release is the sum of the two process boilers and the 2 HVAC boilers.

The emissions were calculated in ton/yr assuming a boiler operation of 50 weeks per year. The results are shown in Table 3 below.

Table 3. Emissions from the 4 natural gas fed boilers Pollutant Emissions Process Boilers 1 & 2 (each) HVAC Boilers 1&2 (each) Total Emissions (lb/hr) (tons/yr) (lb/hr) (tons/yr) (tons/yr)

CO 1.0E+00 4.4 1.1E+00 4.5 18 NOx 6.2E-01 2.6 6.4E-01 2.7 11 PMl0 (Total) 9.5E-02 0.40 9.8E-02 0.41 1.6 PM10 (filterable) 2.4E-02 0.10 2.5E-02 0.10 0.40 VOC 6.9E-02 0.29 7.1E-02 0.30 1.2 SO2 7.5E-03 0.031 7.7E-03 0.032 0.13 CO 2 1.5E+03 6,300 1.5E+03 6,500 26,000 Emergency Generator: The diesel generator is planned to be used for temporary operation and safe shutdown of the system if required. The emergency generator would emit CO, NOx, PM, SO 2 , VOCs, and CO 2. The generator was assumed to be rated at 2,600 kw and the emission factors and annual emissions are shown below in Table 4 Total Emissions were calculated as follows:

Ei (kg) =EFi (g/kW-hr)

  • 0.001 (kg/g)
  • Power Rating (kw) x Hours Run per Year (hr/yr)

Assumes 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> operation per year and 2,600 kw generator.

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0008 09/29/09 Rev. 0A Rev. 0 Page 4of 5 Table 4. Emission Factors and Annual for Selected Pollutants (2,600 kw Emergency Generator)

PM~ SO~ab COa NOXa NOxa a02 PM" SOxa,b g/kW-hr ozikW-hr g/kW-hr oz/kW-hr g/kW-hr oz/kW-hr g/kW-hr oz/kW-hr g/kW-hr ozikW-hr Emission Factor 3.3 0.12 7.9 0.28 710 25 0.43 0.015 2.5 0.087 Emissions kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr Standby 2600 kW 8.7 19 21 45 1800 4000 1.1 2.4 6.4 14 diesel______________________ _______

generator per yearc 210 460 490 1000 44,000 97,000 27 59 150 340 a Values from EPA, 2010, Compilation of Air PollutantEmission Factors, Volume 1, Stationary Point and Area Sources, AP 42, Fifth Edition, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C., 2010. Table 3.4.1 b Assumes 0.5% sulfur content.

SAssumes 24 hr/year operation for maintenance.

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0008 09129/09 Rev. 0A Rev. 0 Page 5 of 5

Attachment:

Excel spread sheet of calculations Prrs 2...

0019*

I Stram Load IISteam lteat Factor I Boirr 0t19,m Fuel Encrgr Cotnt ata Couso a

934.52 BI~uO* Ofl for se~amat 25 xi 9345MN, 75% BoilerEf0,ienu, 22440MN, Fooloner* cortent 124600034,r CooCu,,,.14 1066;ha 30% OxreessAo 153004ft3ft Coomkustio, Air Emlacion Farctor, Br Boil,,. Enmhsbon.8.,n Pollcteota Enilaslon Facoro Untll Pncoo,.Bollanl1&2 2 Pb l~ rate foreaoh of cxoobolers btwgs 0b/hr) Each {tons/*r} Esch (Ibthr Pb,,t,vecndorinfoocrmatio CO 84 hl4O of 2.050-09 4.44 NO,,' 50 6.23E-01 202 I1 6045E-02 2.72 PMt0 (Tola[)' 7.6 9.47E-02 9.40 9.20E-02 0 42 16 PMI0 (fl*orabe)bI 19 2.970-02 0.10 2.45E-02 0.10 0.44 VOC 5.5 6.85E-02 1029 7.09E0 2 { 0.30 2.2 FIVAC 9672MN, Pook HIVAChooatg drrroalx 7.480-09 0.99 7.740-03 j 0 03 0.23

.75% Boilr, 03o¢nv CO.,* 120,000 ___ 2.500'803 6.28E303 [ 155E0 3 630 5E*3 25.359 o A, P (622,O. 00.40006 .. r~teik, = .u=*ad2t,ho00.

1.aoc.0=nmctood... eTh,,aoooorhePM l ssiacfool. rp'*ml htoo, re, bocodIo.OllcaboPM IO.,POl20.300Pld a...occ. Tri PM iuth00.00000inh . 0,000c.4c~o 08 70AMo¢hod 2026(,

Op&u.210t FiO.8*2.kpM .i0 thp.ioalo..,oaoIll6.ga...*pri

,tt .u00..Iof.

w 2,*r~,00pn/t e. The SO2o,,ooo..ao m 00*t0. u. ho0,0r0 toud.h,c~atorO . .000r.ot,,o O 10020t (t.faim16lt) ,flOo9.oou floal106 so 002[100100 sel9 13.67)1C01d,1C0D30 .. h0. CulON r.000,oJ rOr.ru.020.O00IOCOC'006000t Iat O."f41by wtolt

  • 0.000.dO D doy 0(.44,204.z1o4 or n6,

NWMI-201 5-RAI-001

  • =e*'ND*WEMEIA iOPE Rev. 0 Appendix C -

EDF-3124-0012, Emission Modeling for Process and IIVAC Boilers Using AERSCREEN C-i

Document ID:EDF-3124-0012 Revision ID:1 Effective Date: February 4, 2015 Engineering Design File Emission Modeling for Process and HVAC Boilers using AERSCREEN Portage Project No.: 3124 Project

Title:

NWMI Environmental Report 4Portage TEM-9002 09/29/09 Rev. 0

TEM-9002 ENGINEERING DESIGN FILE EDF-3124-0012 09/29/09 Rev. 1 Rev. 0 Page 1 of 20

1. Portage Project No.: 3124
2. Project/Task: NWMVI Enviromnmental Report
3. DCNH#

4.

Title:

Emission Modeling for Process and HVAC Boilers using AERSCREEN

5. NPH PCor SDC: N/A
6. SSC Safety Category: N/A 7 Summary:

This EDF documents the assumptions used and the results of the AERSCREEN modeling done for the 4 natural gas fired boils used for the operation of the NWIVI facility. The results are then compared to the NAAQS and ambient air concentrations.

8 Distribution: (Portage, Inc.)

9. Review (R) andApproval (A) Signatures:  :*",

(Identify minimum reviews and approvals. Additional reviews/approvals mnay be added.)_____

~Printed Name/

R/A Organization Signature Date Author/Design Agent A Gary McManus () (*¢*dld 2/04/15 Independent Review R Dave Thorme ¢ 2/04/15 Independent Review R Project Manager R/A John Beller 2/04/15 Registered Professional Engineer's Stamp (if required) Z]N/A

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 2 of 20 INTRODUCTION As described in EDF-3 124-0008 there will be two natural gas-fired boilers used for steam production and two natural gas-fired boilers used for heating. The two steam boilers and the two boilers used for heating each are released through two separate stacks. The boiler and generator all emit CO, NOx, PM, VOCs, and C02. The assumptions used for the four boilers and the associated emissions are summarized in Tables 1 and 2 below.

Table 1. Boiler Operational Parameters SemBoiler Fuel Energy Natural Gas Steam Load Heat Boiler Factor Efficiency Content Consumption (lb/br) (MBTU/lb) (%) MBTU/hr (ft3/hr)

Process #1 10000 9345 75 12460 12460 Process #2 10000 9345 75 12460 12460 HVAC #1 10000 9345 75 12896 12896 HVAC #2 10000 9345 75 12896 12896 Table 2. Emissions From The Four Natural Gas Fed Boilers (EDF-3 12 1-0008)

Pollutant _____________ Emissions Process Boilers 1 & 2 HVAC Boilers 1&2 Total S~Emissions (lb/hr) (tons/yr) (lb/br) (tons/yr) (tons/yr)

CO 2.1E+00 8.8E+00 2.2E+00 9.1E+00 18 NOx 1.2E+00 5.2E+00 1.3E+00 5.4E+00 11 PM10 (Total) 1.9E-01 8.0E-01 2.0E-01 8.2E-01 1.6 PM10 (filterable) 4.7E-02 2.0E-01 4.9E-02 2.1E-01 0.40 VOC 1.4E-01 5.76E-01 1.4E-01 6.0E-01 1.2 SO2 1.5E-02 6.3E-02 1.6E-02 6.5E-02 0.13 CO2 3.0E+03 1.3E+04 3.1E+03 1.3E+04 26,000 Emissions from the boiler activities were evaluated using AERSCREEN, Version 11126. This screening model uses standard defaults for meteorology, and terrain values. Modeled emissions included: PM-10, PM-2.5, CO, nitrogen, and sulfur oxides (NOx), and SOx.). The assumptions used for the modeling are presented below.

TEM-9002 EDF-31 24-0012 09/29109 ENGINEERING DESIGN FILE Rev. 1 Rev. 0 Page 3 of 20 ASSSUMPTIONS The input assumptions used for the AERSCREEN model are summarized in Table 3 and 4 below. Since the four boilers vent through two identical stacks only one run was done. The results of the run were then combined to give the approximate concentrations at the receptor locations.

Table 3. AERSCREEN Input Stack Parameters SOURCE EMISSION RATE: 0.1260 g/s 1.000 lb/hr STACK HEIGHT: 22.86 meters 75.00 feet STACK INNER DIAMETER: 0.305 meters 12.00 inches PLUME EXIT TEMPERATURE: 310.9 K 99.95 Deg F PLUME EXIT VELOCITY: 17.929 m/s 58.82 ft/s STACK AIR FLOW RATE 2772 ACFM 2772 ACFM RURAL OR URBAN: RURAL RURAL FLAGPOLE RECEPTOR HEIGHT: 1.83 meters 6.00 feet INITIAL PROBE DISTANCE -- 5000. meters 16404. feet Table 4. Makemet Meteorology Parameters MIN/MAX TEMPERATURE: 255.4 / 302.6 (K)

MINIMUM WIND SPEED: 0.5 m/s ANEMOMETER HEIGHT: 10 meters DOMINANT SURFACE PROFILE: Grassland DOMINANT CLIMATE TYPE: Average Moisture DOMINANT SEASON: Spring ALBEDO: 0.18 BOWEN RATIO: *0.4 ROUGHNESS LENGTH: 0.050 (meters)

For this screening model, no downwash was considered in the calculations since exact locations and dimensions are still in the design phase. The closest residential receptor was assumed to be a single family home located approximately 375 meters SSE from the facility location. Using these assumptions the AERSCREEN model was run and the results were obtained. A complete listing of the model is included in Attachment 1.

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 4 of 20 RESULTS The final run results for the maximum concentration downwind of the facility are summarized in Table 5 below.

Table 5. AERSCREEN Results.

Calculation Maximum]

1-Hour]

Scaled 3-Hour J Scaled]

8-Hour Scaled J24-Hour [Scaled Annual ProcdureConcentration a Flat Terrain (gig/m 3 ) J(jPtg/m3) J(gig/m3) ](btg/m3) (Pig/m 3 )

_________ 17 17 J 15 J 10 1.7

a. Distance from Source to maximum concentration location 136.00 meters Using the AERSCREEN results above as well as the maximum concentration at 375 meters from attachment 1 (i.e., 10.83 jig/in 3), Table 6 and 7 were completed.

Table 6. Emissions from Process Steam Demand - Natural Gas-Fired Boilers Modeled concentration to Hourly Emissions Maximumclst Emission for Both Steam concentration Pollutant Factor Boiler a @ 136 m b residential receptor (375 m) c (lb/hr) (jig/in 3 ) (jig/in 3 )

CO 84 2.1E+00 3.5E+01 2.3E+01 NOx 50 1.2E+00 2.1E+01 1.4E+01 PM-10 7.6 1.9E-01 3.2E+00 2.1E+00 PM-2.5 1.9 4.7E-02 8.0E-01 5.1E-01 5.5 1.4E-01 2.3E+00 1.5E+00 SO2 0.6 1.5 E-02 2.5E-01 1.6E-01 CO2 120,000 3.0E+03 5.0E+04 3.2E+04

a. Hourly emission from process boiler 1 and 2 each shown in EDF-3 124-0008.
b. This is maximum 1- hour concentration calculated by AERSCREEN equals 17jg/m3 per lb/hr
c. This represents the highest 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> concentration at the closest receptor of 375 meters and equals 11 jig/mn3 per lb/hr

TEM-9002 EDF-31 24-0012 09/29/09 ENGINEERING DESIGN FILE Rev. 1 Rev. 0 Page 5 of 20 Table 7. Emissions from 2-H VAC Natural Gas-Fired Heater Modeled Hourly Emissions Maximum concentration to Emission for Both HVAC concentration closest PluatFactor Boiler a @ 136 m bresidential receptor (375 m)

(lb/hr) ([.tg/m 3) (jig/mn3)

CO 84 2.2E+00 3.6E+01 2.3E+01 NOx 50 1.3E+00 2.2E+01 1.4E+01 PM10 7.6 2.0E-01 3.3E+00 2.1E+00 PM-2.5 1.9 4.9E-02 8.2E-01 5.3E-01 VOC 5.5 1.4E-01 2.4E+00 1.5E+00 SO2 0.6 1.6E-02 2.6E-01 1.7E-01 CO2 120,000 3.1E+03 5.2E+04 3.3E+04

a. Hourly emission from process boiler 1 and 2 each shown EDF-3 124-0008
b. This is maximum 1- hour concentration calculated by AERSCREEN at 136 m equals 17 jtg/mn3 / lb/hr
c. This represents the highest 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> concentration at the closest receptor of 375 meters and equals 11 jig/mn3 / lb/hr Since both boiler stacks are co-located with the same characteristics the total downwind concentration was assumed to be additive. These values were then compared to the National Ambient Air Quality Standards (NAAQS) to see if any of the 1-hour air standards were exceeded. This comparison is summarized in Table 8 below.

Table 8. Maximum Release Concentration Comparison to NAAQS Standards MimmModeled Percentage of concentration closestAQ to NAAQS Limit at Polltant 136rato@ clst residential NASAASPoint of receptor____(375 m)______ ______ Maximum

(___g/m3)__(jig/r3) (ppm) (jig/mn3) Concentration CO 7.2E+0+/-.E01 4.0E+04 0.18%

NOx 4.3E+012.E019+222 PM10 6.5E+00 42+001d*43 PM-2.5 1.6E+001.E0003 46 SO2 4.7E+00 30+0*19E0 .6 CO2 5.1E-01 3.3E-01_NANAN

a. Maximum Concentration is the sum of the 2 process boilers and the 2 HVAC boilers ________
b. Concentration at closest residence
c. Values in Green are actual standard values; values in yellow are the converted values.
d. 24-hour standard for PM-10 and PM-2.5

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 6 of 20 From Table 8 it is apparent that the modeled release concentrations are all below the applicable NAAQS standards. Therefore no additional modeling is required at this time.

A similar evaluation of the model emission concentrations was performed to determine if the emissions exceed the regional ambient concentrations of the listed pollutants. Regional values of the five regulated pollutants for Missouri were obtained from the Missouri Division of Environmental Quality Web Site for different monitoring stations in the state. The Tables 9 summarizes the data in Attachment 2 used to determine the average values.

Table 9. Ambient Air of Rural/Urban Missouri Ambient Air of Rural/Urban Pollutant Missouri

(*tg/m 3 )

CO 3.8E+03 NOx 2.1E+01 PMl0 1.7E+01 PM-2.5 1.1E+01 SO2 7.0E+00 CO2 NA A similar evaluation of the model emission concentrations was performed to determine if the emissions exceed the regional ambient concentrations of the listed pollutants. Regional values of the five regulated pollutants for Missouri were obtained from the Missouri Division of Environmental Quality Web Site for different monitoring stations in the state. The Tables 9 summarizes the data in Attachment 2 used to determine the average values. Similar comparison was done to Table 10. Comparison of Modeled Concentrations to Average Ambient levels around the State Missouri.

Maiu codeledtato AminoAro Percentage of Ambient Air concentrationoto Rural/Urban Pollutant concenratio closest residential Misuiconcentration Point of

@16b receptor (375 m) b MisuiMaximum Concentration (ig/m3) (#tg/m3) (#.g/m3) ____________

CO 7.2E+0l 4.6E+0l 3.8E+03 1.9%

NOx 4.3E+01 2.7E+0l 2.1E+01 203%

PM10 6.5E+00 4.2E+00 1.7E+01 38%

PM-2.5 l.6E+00 1.0E+00 1.1E+01 15%

SO2 4.7E+00 3.0E+00 7.0E+00 7.3%

CO2 5.lE-01 3.3E-01 NA NA a Maximum Concentration is the sum of the 2 process boilers and the 2 ITVAC boilers b Concentration at closest residence Attachment 1

TEM-9002 EDF-3124.-0012 09/29/09 ENGINEERING DESIGN FILE Rev. 1 Rev. 0 Page 7 of 20 ATTACHMENT 1.

AERSCREEN Files Text File:

Start date and time 02/05/15 08:19:04 AERSCREEN 11126 NWMI PROCESS BOILER DATA ENTRY VALIDATION METRIC ENGLISH

    • STACKDATA **------------------

Emission Rate: 0.1260 g/s 1.000 lb/hr Stack Height: 22.86 meters 75.00 feet Stack Diameter: 0.3 05 meters 12.00 inches Stack Temperature: 310.9 K 100.0 Deg F Exit Velocity: 17.929 m/s 58.82 ft/s Stack Flow Rate: 2771 ACFM Model Mode: RURAL Dist to Ambient Air: 1.0 meters 3. feet

    • BUILDING DATA **

No Building Downwash Parameters

    • TERRAIN DATA **

No Terrain Elevations Source Base Elevation: 0.0 meters 0.0 feet Probe distance: 5000. meters 16404. feet Flagpole Receptor Height: 1.8 meters 6. feet No discrete receptors used

    • METEOROLOGY DATA **

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-3124-0012 Rev. 1 Rev. 0 Page 8 of 20 Min/Max Temperature: 255.4 / 302.6 K 0.0 / 85.0 Deg F Minimum Wind Speed: 0.5 m/s Anemometer Height: 10.000 meters Dominant Surface Profile: Grassland Dominant Climate Type: Average Moisture AERSCREEN output file:

boilerl .out

    • AERSCREEN Run is Ready to Begin No terrain used, AERMAP will not be run SURFACE CHAPRACTEPISTICS & MAKEMET Obtaining surface characteristics...

Using AERM4ET seasonal surface characteristics for Grassland with Average Moisture Season Albedo Bo zo Winter 0.60 1.50 0.001 Spring 0.18 0.40 0.050 Summer 0.18 0.80 0.100 Autumn 0.20 1.00 0.010 Creating met files aerscreen_01_01.sfc & aerscreen_01 01.pfl Creating met files aerscreen_02_01 .sfc & aerscreen_02 01 .pfl Creating met files aerscreen_03_01 .sfc & aerscreen_03 01 .pfl Creating met files aerscreen_04_01 .sfc & aerscreen_04 01 .pfl PROBE started 02/05/15 08:19:34 Running probe for Winter sector 1 AERMOD Finishes Successfully for PROBE stage 1 Winter sector1

          • WARNING MESSAGES *****

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-3124-0012 Rev. 1 Rev. 0 Page 9 of 20

      • NONE ***

Running probe for Spring sector 1 AERMOD Finishes Successfully for PROBE stage 1 Spring sector1

      • NONE ***

Running probe for Summer sector 1 AERMOD Finishes Successfully for PROBE stage 1 Summer sector1

                • WARNING MESSAGES ********
    • NONE **

Running probe for Autumn sector 1 AERMOD Finishes Successfully for PROBE stage 1 Autunmn sector1

          • WARNING MESSAGES ********
      • NONE ***

PROBE ended 02/05/15 08:19:3 8 REFINE started 02/05/15 08:19:38 AERMOD Finishes Successfully for REFINE stage 3 Spring sector1

          • WARNING MESSAGES *****
      • NONE **

REFINE ended 02/05/15 08:19:38 AERSCREEN Finished Successfully With no errors or warnings Check log file for details Ending date and time 02/05/15 08:19:39

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-3124-0012 Rev. 1 Rev. 0 Page 10 of 20 OUTPUT FILE:

AERSCREEN 11126 / AERMOD 1234 02/05/15 08:19:38 TITLE: NWMI PROCESS BOILER

                                                          • STACK PARAMETERS
      • q* **** *** ******* **** * ****
  • SOURCE EMISSION RATE: 0.1260 g/s 1.000 lb/hr STACK HEIGHT: 22.86 meters 75.00 feet STACK INNER DIAMETER: 0.305 meters 12.00 inches PLUME EXIT TEMPERATURE: 310.9 K 100.0 Deg F PLUME EXIT VELOCITY: 17.929 in/s 58.82 ft/s STACK AIR FLOW RATE: 2772 ACFM RURAL OR URBAN: RURAL FLAGPOLE RECEPTOR HEIGHT: 1.83 meters 6.00 feet INITIAL PROBE DISTANCE =

5000. meters 16404. feet

                                • BUILDING DOWNWASH PARAMETERS NO BUILDING DOWNWASH HAS BEEN REQUESTED FOR THIS ANALYSIS
                            • PROBE ANALYSIS **************

25 meter receptor spacing: 1. meters - 5000. meters Zo ROUGHNESS 1-HR CONC DIST TEMPORAL SECTOR LENGTH (ug/m3) (in) PERIOD 1" 0.050 16.70 150.0 SPR

  • - worst case flow sector

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Pagell1of 20

                                            • MAKEMET METEOROLOGY PARAMETERS MIN/MAX TEMPERATURE: 255.4 / 302.6 (K)

MINIMUM WIND SPEED: 0.5 rn/s ANEMOMETER HEIGHT: 10.000 meters SURFACE CHARACTERISTICS INPUT: AERMET SEASONAL TABLES DOMINANT SURFACE PROFILE: Grassland DOMINANT CLIMATE TYPE: Average Moisture DOMINANT SEASON: Spring ALBEDO: 0.18 BOWEN RATIO: 0.40 ROUGHNESS LENGTH: 0.050 (meters)

METEOROLOGY CONDITIONS USED TO PREDICT OVERALL MAXIMUM IMPACT YR MO DY JDY HR 10 0105 5 12 HO U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 BOWEN ALBEDO REF WS 21.61 0.066 0.300 0.020 46. 39. -1.2 0.050 0.40 0.18 0.50 HT REF TA HT 10.0 302.6 2.0 ESTIMATED FINAL PLUME HEIGHT (non-downwash): 37.4 meters METEOROLOGY CONDITIONS USED TO PREDICT AMBIENT BOUNDARY IMPACT

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 12 of 20 YR MO DY JDY HR 10 01 01 5 12 Ho U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 B OWEN ALBEDO REF WS 1.17 0.049 0.100 0.020 27. 25. -7.8 0.050 0.40 0.18 0.50 HT REF TA HT 10.0 255.4 2.0 ESTIMATED FINAL PLUME HEIGHT (non-downwash): 56.5 meters

                                                • AERSCREEN AUTOMATED DISTANCES OVERALL MAXIMUM CONCENTRATIONS BY DISTANCE MAXIMUM MAXIMUM DIST 1-HR CONC DIST 1-HR CONC (in) (ug/m3) (mn) (ug/m3) 1.00 0.2290E-04 2525.00 4.139 25.00 4.216 2550.00 4.107 50.00 8.390 2575.00 4.076 75.00 10.29 2600.00 4.045 100.00 15.11 2625.00 4.015 125.00 16.69 2650.00 3.986 150.00 16.70 2675.00 3.956 175.00 16.17 2700.00 3.927 200.00 15.43 2725.00 3.899 225.00 14.64 2750.00 3.871 250.00 13.87 2775.00 3.843 275.00 13.16 2800.00 3.815 300.00 12.49 2825.00 3.788 325.00 11.89 2850.00 3.762 350.00 11.33 2875.00 3.735 375.00 10.83 2900.00 3.709 400.00 10.37 2925.00 3.684 425.00 9.943 2950.00 3.659

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page1l3of 20 450.00 9.609 2975.00 3.634 475.00 9.3 15 3000.00 3.609 500.00 9.039 3025.00 3.585 525.00 8.78 1 3050.00 3.561 550.00 8.539 3075.00 3.537 575.00 8.3 10 3100.00 3.5 14 600.00 8.095 3125.00 3.491 625.00 7.89 1 3150.00 3.468 650.00 7.699 3175.00 3.446 675.00 7.5 17 3200.00 3.424 700.00 7.344 3225.00 3.402 725.00 7.179 3250.00 3.380 750.00 7.023 3275.00 3.359 775.00 6.874 3300.00 3.338 800.00 6.733 3325.00 3.3 17 825.00 6.597 3350.00 3.296 850.00 6.468 3375.00 3.276 875.00 6.344 3400.00 3.256 900.00 6.226 3425.00 3.236 925.00 6.112 3450.00 3.217 950.00 6.003 3475.00 3.197 975.00 6.039 3500.00 3.178 1000.00 6.174 3525.00 3.159 1025.00 6.287 3550.00 3.14 1 1050.00 6.3 80 3575.00 3.122 1075.00 6.447 3600.00 3.104 1100.00 6.43 1 3625.00 3.086 1125.00 6.4 11 3650.00 3.068 1150.00 6.386 3675.00 3.051 1175.00 6.359 3700.00 3.033 1200.00 6.328 3725.00 3.016 1225.00 6.295 3750.00 2.999 1250.00 6.259 3775.00 2.982 1275.00 6.221 3800.00 2.966 1300.00 6.182 3825.00 2.949 1325.00 6.14 1 3850.00 2.933 1350.00 6.098 3875.00 2.917 1375.00 6.055 3900.00 2.90 1 1400.00 6.010 3925.00 2.886 1425.00 5.965 3950.00 2.870 1450.00 5.9 19 3975.00 2.855 1475.00 5.872 4000.00 2.839 1500.00 5.826 4025.00 2.824 1525.00 5.778 4050.00 2.8 10 1550.00 5.73 1 4075.00 2.795 1575.00 5.683 4100.00 2.780

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 14 of 20 1600.00 5.636 4125.00 2.766 1625.00 5.588 4150.00 2.752 1650.00 5.541 4175.00 2.737 1675.00 5.494 4200.00 2.724 1700.00 5.447 4225.00 2.710 1725.00 5.400 4250.00 2.696 1750.00 5.353 4275.00 2.682 1775.00 5.307 4300.00 2.669 1800.00 5.26 1 4325.00 2.656 1825.00 5.2 16 4350.00 2.643 1850.00 5.171 4375.00 2.630 1875.00 5.126 4400.00 2.617 1900.00 5.082 4425.00 2.604 1925.00 5.03 8 4450.00 2.591 1950.00 4.995 4475.00 2.579 1975.00 4.952 4500.00 2.5 66 2000.00 4.910 4525.00 2.554 2025.00 4.868 4550.00 2.542 2050.00 4.827 4575.00 2.530 2075.00 4.786 4600.00 2.5 18 2100.00 4.746 4625.00 2.506 2125.00 4.706 4650.00 2.494 2150.00 4.667 4675.00 2.483 2175.00 4.629 4700.00 2.471 2200.00 4.590 4725.00 2.460 2225.00 4.553 4750.00 2.449 2250.00 4.5 15 4775.00 2.438 2275.00 4.479 4800.00 2.427 2300.00 4.443 4825.00 2.416 2325.00 4.407 4850.00 2.405 2350.00 4.372 4875.00 2.394 2375.00 4.337 4900.00 2.3 83 2400.00 4.303 4925.00 2.373 2425.00 4.269 4950.00 2.362 2450.00 4.236 4975.00 2.352 2475.00 4.203 5000.00 2.341 2500.00 4.171

                                            • AERSCREEN MAXIMUM IMPACT

SUMMARY

MAXIMUM SCALED SCALED SCALED SCALED

TEM-9002 09/29109 ENGINEERING DESIGt* J1FILE EDF-31 24-0012 Rev. 1 Rev. 0 Page 15 of 20 1-HOUR 3-HOUR 8-HOUR 24-HOUF ,.ANNUAL CALCULATION CONC CONC CONC CONC CONC PROCEDURE (ug/m3) (ug/m3) (ug/m3) (ug/ni [3) (ug/m3)

FLAT TERRAJN 16.81 16.81 15.13 10.08 1.68 1 DISTANCE FROM SOURCE 136.00 meters IMPACT AT THE AMBIENT BOUNDARY 0.2290E-04 0.2290E-04 0.2061E-04 0.1374E-04 0.2290E-05 DISTANCE FROM SOURCE 100mtr 1.00 meters

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 16 of 20 Attachment 2 Average ambient Pollutant Concentrations for Missouri Table 1. Levels of CO in Springfield Missouri Maximum Maximum Year 8-Hour Average 1-Hour Average (ppm) (ppm) 1993 5.4 14 1994 5.9 12 1995 5 9 1996 3.3 7 1997 5 7 1998 5.1 6 1999 4.1 5 2000 2.8 5 2001 4.3 7 2002 3.5 6 2003 2.4 4 2004 3.4 5 2005 3 5 2006 2.1 .4 2007 2.6 4 2008 1.3 1.9 2009--- - -1.5- ..--- 2.3 --

2010 1.9 2.3 Second Quarter 2013 1.1 2.3 Average (ppm) 3.35E+00 5.73E+00 Average ((gglm3) 3.84E+03 6.56E+03 Table 2. Nitrogen Dioxide -Hillcrest High School Springfield Year Annual Average Year (ppm) 1993 0.011 1994 0.013 1995 0.012 1996 0.011 1997 0.011 1998 0.012 1999 0.013 2000 0.012 2001 0.013 2002 0.0107 2003 0.0111 2004 0.012 2005 0.0115 2006 0.0104 2007 0.01 2008 0.0089 2009 0.0083 Through 3rd Quarter 0.0079 Average (ppm) 1.1OE-02 Average (ug/m3) 2.08E+01

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 17 of 20 Table 4. Inhalable PM10 -MSU Springfield Annual Average Maximum 24 hr Average Year (gg/m3) (gg/m3) 1993 18 38 1994 18 58 1995 17 44 1996 18 64 1997 15 51 1998 17 43 1999 18 45 2000 18 47.

2001 20 57 2002 18 46 2003 17 40 2004 16.7 36 2005 19.3 45 2006 15.7 35 2007 17.9 38 2008 15 39 2009 14 27 2010 17.2 36 2011 16.5 37 2012 16.9 38 Average(jgg/m 3) 17.16 43.2 Table 5. Inhalable PM-2.5 MSU Springfield Year Annual Average Year (ppm) 1999 12.24 2000 12.28 2001 12.2 2002 12.7 2003 11.7 2004 10.91 2005 13.01 2006 10.82 2007 11.8 2008 10.7 2009 9.55 2010 9.89 2011 10.92 2012 10.09 Average (ppm) 1.1 3E+0 1

TEM-9002 EDF-31 24-0012 09/29/ 09 ENGINEERING DESIGN FILE Rev. 1 Rev. 0 Page 18 of 20 Table 6. Sulfur Dioxide MSU Springfield Year Annual Average Year (ppm) 1993 0.003 1994 0.005 1995 0.002 1996 0.003 1997 0.002 1998 0.003 1999 0.004 2000 0.003 2001 0.004 2002 0.003 2003 0.002 2004 0.0014 2005 0.0017 2006 0.0019 2007 0.0018 2008 0.0022 2009 0.0022 Average (ppm) 2.66E-03 Average (*g/m3) 6.97E+00

TEM-9002 EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 DESmiGNtIL Page 19 of 20 EGNEINGrat

Attachment:

Excel spread sheets of calculations Inpur Data from Vista Process 10000 pph 934.52 Btu/lb 111111 h for steam at 25 psi& ________

____ 9345 Mbh

______ 75% [Boiler Efficiency________

_______ 12460 Mbh Fuel energy content________________

____ 12460 ft3/hr Gas Consumption 0.01246 1.046662 lb/hr

______ 30% ___ Excess Air____ ___

~Flue gas flow rate for each of two boilers

~Flue, vendor information

  • ~~Flue gs velocit HVAC 962Mh Peak HVAC heating demand Flue gas flow rate frec ftobies ____

~Flue, vendor information Flue as velocity_ ____ _ __ _ _ _ __ _ _ _

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 20 of 20 Peeuauil 10000 i5J45 I 7:P% 124)l 12460 Wva2 100 7 P

_ 1H 2 P* ELIEL. I ~

~/fr)3.& tlb~h9 3.6 (,imU.& Dii~ a-i ,m- li- I m i5 i +AlitJI t.F;*0 *,' I I,0 .4 11 4 0W L4 IJP.-.*O 2*1WJ1 */0

-- I IMLOZ I 810 1 LSELO1 I o~ 16 liE-CO I 10SE..60 I SIE.~CO I 2t25.(O I 6A7E~0CI416~E l134o0(16b): _____

1flF -OI -. - L42FO 0AL0 3 2 4-O I.IF*0

__ O______ 0.6 ___

I ZIOG,0I167L6 I.. sl it,1 12]IE.0]

3i0E.02 I 006 I IS5!~02 I 0.00 0.13 2.31L01 OI 1oA1L01 SCOmlm 120.00 zmos '~'-~' '~- I ~" s~ss, so~o. J ~ I Mat 51.~mUi~. mdi W)dIuhC~i ba*i~tC akiusm k~.m ThufEL~a1mIMIm8Itpemuu4bu.

.*y.u4.bimat~RL1S~Rfl ~amd TmdRI h~

.. damd~aimd~ua...~L Cc~a1bULkl~

~Iut*s ~ Tb~

PMut~. uuWcc.4~ ~t~wEinfl~

Ctlillilli 3mlawmiu' I wmdii catm.,lo O*

  • i*iid tll l
  • 11 tilt4

NWMI-201 5-RAI-001

  • ;.~:"NOhWESMEICI$T Rev. 0 Appendix D -

EDF-3124-0013, On-Road Emissions for Vehicles During Operation 0-i

Document ID: EDF-3124-0013 Revision ID:1 Effective Date: July 31, 2015 Engineering Design File On-Road Emissions for Vehicles During Operation Portage Project No.: 3124 Project

Title:

NWMI Environmental Report Portage TEM-9002 09/29/09 Rev. 0

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0013 09/29/09 Rev. 1 Rev. 0 Page 1 of 5

1. Portage Project No.: 3124 2. Project/Task: NWMvI Environmental Report
3. DCN#

4.

Title:

On-Road Emissions for Vehicles During Operation 5s. NIPHPC orSDC: N/A

6. SSC Safety Category: N/A 7 Summary: This EDF provides a calculation of the on-road emissions associated with vehicles during the operation of the RPF.

7 Distribution: (Portage, Inc.)

7. Review (R) and Approval (A) Signatures:

_(Identify minimum reviews and approvals. Additional reviews/approvals may be added.) .

Printed Namer R/A Organization Signature Date Author/Design Agent a Gary McManus * "(*T) )~d '-* 7/31/15 Independent Review R Dave Thorne d@ ,*7/31/15 Independent Review R Project Manager R/A John Beller 7/31/15 Registered Professional Engineer's Stamp (if required) Z]N/A

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-3124-0013 Rev. 1 Rev. 0 Page 2of 5 INTRODUCTION AND PURPOSE During the operations phase, vehicular air emissions would result from the commuting workforce and from routine deliveries to/from the proposed RPF. The California Air Resources Board Emission Database (EMFAC201 1 http://www.arb.ca.gov/emfac/) was used to calculate on-road vehicle emission factors for this period. The model estimates vehicle emission factors based on fuel type, vehicle type, vehicle speed, and climatological normal for temperature and humidity The volume of traffic generated during operations would be considerably lower than that expected during construction. Additionally, the lands on the developed RPF site are either developed surfaces (buildings, paved parking/access road) or consist of either agricultural or landscaped uses. Consequently, limiting routine vehicle use to paved areas would reduce emission of fugitive dust. In summary, impacts from vehicular air emissions and fugitive dust during operations would be far less than during the construction phase.

ASSUMPTIONS On-road vehicle emissions were calculated using emission rate in grams(g)/(vehicle miles traveled) +

g/day(idle) + g/day(starting). Total mileage estimates for on-road vehicles during the construction period are shown in Table 1. Calculations used to obtain the estimates are based on an average work force of 100 vehicles per day using a specific vehicle ratio (60% light-duty autos, 30% light-duty gas trucks, and 10%

light-duty diesel trucks) and a round trip of 40 mi/day. The vehicles include construction vehicles, delivery trucks, and employee vehicles. Though RPF operations are assumed to occur for 50 weeks a year to allow for two weeks of maintenance and outages. On-road vehicle use is assume to occur for 52 weeks a year to account for personnel and deliveries that occur during maintenance and outages.

Table 1. Total Mileage Estimates for On-road Vehicles during Operation Elquipment Activity Duration Total distance Traveled (quantity) (months/days) (kin) Miles Workforce travel (60) Commute - light duty gas vehicles (12/260) 1,004,230 624,000 Workforce travel (30) Commute - light duty gas trucks (12/260) 502,116 312,000 Workforce travel (10) Commute - light duty diesel trucks (12/260) 167,372 104,000 Estimates of the on-road vehicle emissions factors for different type vehicles for criteria pollutants and carbon dioxide (CO2) are provided in Tables 2 through 4 below. These values are from the EMFAC series of models.

TEM-9002 ENGINEERING DESIGN FILE EDF-3124-0013 09/29/09 Rev. 1 Rev. 0 Page 3 of 5 Table 2 Emission Factor from EMIFAC20l11 (Running)

CO NOx CO2 PM10 PM2.5 SOx Vehicle Type (/ie Light Duty Auto (gas) 1.31E+00 1.24E-01 3.49E+02 1.89E-03 1.73E-03 3.51E-03 Light duty Trucks (gas) 3.27E+00 3.36E-0i 4.02E+02 4.39E-03 4.01E-03 4.07E-03 LgtdtTrcs3.36E-01 6.70E-01 3.56E+02 6.11E-02 5.62E-02 3.40E-03 (diesel)

Table 3 Emission Factor from EM7FAC2O1 1 (Idling)

CO NOx CO2 PM10 PM2.5 SOx~

Vehicle Type (g/vehicle/day)

Light Duty Auto (gas) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.OOE+00 Light duty Trucks (gas) 0.O0E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 LgtdtTrcs0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 (diesel)

Table 4 Emission Factor from EMFAC20 11 (Stationary)

VhceTp VeilyeCO NOx CO 2 PM10 (g/vehicle/day)

PM2.5 SOx Light Duty Auto (gas) 1.73E+01 1.13E+00 4.64E+02 1.86E-02 1.7E-02 4.95E-03 Light duty Trucks (gas) 3.90E+01 2.13E+00 5.14E+02 3.37E-02 3.08E-02 5.84E-03 LgtdtTrcs0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 (diesel)

From Tables 1 through 4, the total emissions for each of the types of vehicles was calculated as shown below:

The equations used to calculate total vehicle emissions are as follows:

Total emission = emission (running) + emission (idling) + emission (stationary)

Emissions while running = EFRi (days of operation) (miles/day) (number of vehicles)

Emissions while idling =EFIi (days of operation) (number of vehicles)

Emissions while idling = EFSi (days of operation) (number of vehicles)

Where:

EF~i = the individual emission factor for each pollutant, i.e. CO, NOx, C0 2 , PM10, PM2.5 and SOx

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-31 24-0013 Rev. 1 Rev. 0 Page 4of 5 Example for Light Duty Gas Autos (GO)

CO EFR = 1.3 1E+00 g/mile x 624,000 miles

= 8.17E+05g CO EFl = 0.00+00 g/vehicle/day x 60 vehicles x 260 days

- 0.00E+00 g CO EFS = 1.73E+01 g/vehicle/day x 60 vehicles x 260 days

=-2.70E+05g Total CO Emissions = 8.17E+05 g + 0.00E+00 g + 2.70E+05 g 11.09E+06 g (2.40E+03 lbs)

Similar calculations were performed for all of the vehicles listed in Table 1. The results are shown in Table 5 below.

Table 5. On-road emissions from construction Activities co NOx CO 2 PM-b1 PM-2.5 SOx Vehicle Type Fuel (kgs) (Ibs) (kgs) (ibs) (kgs) (lbs) (kgs) (bbs) (kgs) (lbs) (kgs) (Ibs)

Light Duty Gas 1,085 2,392 95 210 225,239 496,569 1 3 1 3 2 5 Autos LgTrDutys Gas 1,323 2,917 122 268 129,506 285,513 2 4 1 3 1 3 LgTrutks Diesel 35 77 70 154 37,004 81,580 6 14 6 13 0 1 Total (kg or lbs) 2,443 5,385 286 631 391,748 863,662 9 21 9 19 4 9 Total (tonnes or tons) 2.4 2.7 0.3 0.3 392 432 0.009 0.010 0.009 0.010 0.004 0.004

EMFAC20OR EmissionRates Type:Statewide Region Region:

California o o~r ccN2 CalendarYear:2015 Season:Annual Vehicle Classification:

EMPAC2RO1 Categories Running - dli~ng Region CalYr Season Veh_.Class Fuel MdlYr Speed CO NOR COO PMIR PM2_s tOg I CO "NOR COO PM1O PMOG GOR J CO NOR COO PMIO PM2._ ROE (miles/hr) (gins/ssile) [gms/vehlcle/duy) ~dling 1.73E+01 (gms/vehslce/day) 49E0 StatewIde 2015Annual LDA GAS Aggregateckggregated 1.01E+00 1.24E-01 3.49E+02 1.RRE-R3 1.73E-003.51E-03 0 0 0 R 0 R 1.7+103E+004.E4E+021.8Et-S020.706-SO402 0R Statewide 2015Annoal LDT1 GAS AggregatecAggregated O 0 0 R 0 R ORO0nRD12.O3EO+000.46+R203.376-023R.ORE-0205'S.E4E-R Statewide 2015Anoual LDT1 DRI AggregatecAggregated 3.36E-Ri 6.70E-01 0.566+02 R.10E-R2 5.620-02 0.40E-03 0 0 0 R S S Miles CO NOR COO PMOE 'MO2_5 00O Vehicles Days CO NOR COO 624,0R0 6.15E6+05 260 0 0 PM0R O PMO._5 0 ROE R Vehicles 60 Gays 060 2CO+50 O.R 10NOR 7.24E+06

.776+04 COO O.ROE+0O PMIOR2.RSE+02 ROE PM2... 7.72E+01]

lightDutyAuto gas lightsOt/Truck gas 302,000 1.O2E.+]6 0.05E+05 1.2E5E 08 .37E+000.25E+031.276+0 300 260 0 0 O 0 R 300 260 3.04E+0051.66E+O44.61E+05O.60E+RO22.40E02 4.56E+01 LightDutyTruck diesel 004,0oo 3.401+04 E.RRE+040.70E+07 0.35E+035,.85E+R3 ,53E+R2 10 260 .R 0 O 0 R0 O 260 0.006+000.00E+000.EO0E+00 0.00E+000,000+00 0.00E+00 CR t60x CO, P01-to PM2StS VstlsteTtye Fontl itus) Phe) 1005) yhn) I* 0ni So'go) Old) flu b* ks) Os ightliylu3At gos 1,RR5 2,002 92 210 2252,9 400,369 1 3 l 3 2 Jt Truok *s 1,322 O,R17 [ 122 2RR 129.300 IRSOI3 2 4 I T'ostz c

TeozloDt dksel 05 2443 } 77 50360 7n[i 290 104 631 37.004 Ri,5tS 001,746 603,662 0 S 4 21 6

9 1

i h'i To0tdiol (t)2.4 2.7 0.0 0.3 392 432 R.009 00OlO 0.009 .00 .04 .004 z 0

i m

h"m z

"0 i-rn CD.

NWMI-201 5-RAI-001

  • .,'Nn'WMS*D*ISOO* Rev. 0 Appendix E -

Northwest Medical Isotopes, LLC Alternative Site Evaluation E-i

1111111 II PU WAT1m P'UW D w euraE WASTI MAN(T CA*W AES P03t 3....AL alU Ar/3l U3IRU31~iWA1Ul WW*~M AJIS3XUVU

  • TAIt OI~J.T~ -e~

,mtru, iss iw 31W YAMu AII

.3 1 MIRTH WEST MEDICAL ISOTOPES, 118 ALTERNATIVE SITE EVALUATISH

'U..NWMIl

. J* III~l Altermative Sits Locatiosm J* * !_. .. .II inJ~k...

i~niifi iii n .........iJ_. !i![!!

1!F! I l-T ........rrt Imlllll mflI]I_-.

> University of Missouri Research Reactor (MURR) - Columbia, MO

>. Discovery Ridge Research Park -Columbia, MO

> Oregon State University (OSU) - Corvallis, OR

> McClellan Business Park (McClellan) - Davis, CA

- University of California at Davis (UC Davis) Research Reactor located at McClellan NDU

\, ' -,, U

-\\ LO

, III,I , . . .... ... Y. *. ] ....... IIH ....1 Site Selectlen Criteria

... r] . 1! 1.. o 1,, I11 1 lf ......... Ill ...

Political and local Ability of NWMI to leverage connections for local logistical 10 logistics support support, based on regional politics and importance of project to economic develooment Production logistics Number of 6-day Ci processed and delivered to distributor 10 Radioactive, hazardous, Site ability to meet Federal, State, and local requirements and 8 and mixed secondary availability of waste disposition pathway waste generation (i.e., air, liquids, solids)

Federal and State taxes Includes costs associated with sales tax, property tax, corporate 3 and incentives income tax, hiring credits, etc. Criteria does not include RPF ownership and lease terms; these would be dealt with by NWMI separately Construction costs Site-specific cost estimates; variations in labor rates and materials; 2 and construction indices Total Weight 60

  • ej WM

Scoring Details mmdii Ressuht

--6~ S -

40: 1 10 Facility operations 4 40 4 40 3 30 3 30 Txitingitc4 40 2 2 30 3 30 Transportation 4 32 4 32 2 16 3 24 Federal, State, county, and local require- 4 20 4 20 4 20 2 10 ments to construct and operate facility Feiaadtttxsnicnie 5 5 '15 391 3 Available space 5 15 3 9 1 3 2 6 Constr tiiiviosts4i8 4 3 6 Natural or human-made disaster potential 3 3 3 3 4 4 2 2 Iii:~i Wei*,hted Percentaae 82% 73% 63% 489'0

~.NWMI uSflmUTinA+/- IUIWS

........ .. i / T III

. ............ .. l r .. ...... . I IIII

/llll_ ,,,,I II l ri i flrilrT iiiiii SUtilized SMART decision analysis methodology for site evaluations*

Reference:

  • Based on Department of Energy's Guidebook to Decision-Making Methods (WSRC-IM-2002-00002)

SDeveloped a list of site-specific criteria

  • Criteria weighted by their importance to NWMI's business plan
  • 10 = most important, 1 = least important

) Each site scored on a scale of 1-5

  • 5 = most favorable, 1 = least favorable

) Weighting applied to the raw scores to determine a total score for each location

/~ iNWM I 1,I°T I~aEV

Elseovery Bilge Characteristics

> Location

  • Columbia, MO is -125 miles west of St Louis, MO, on Highway 70

> Existing Conditions

  • Site is on ground that has been historically used for agriculture

> Roadways

  • Located near Highway 70; 5 miles from MURR (Columbia, MO)
  • No current roadway weight and height restrictions exist
  • Sufficient for transport of BRR Casks used for irradiated targets

> Utilities

  • Required utilities are available through MU

> Land Use

  • Land use is presently set aside for a technology research park/industrial

> Soils

  • Soils are characterized by medium and narrow ridges with moderate to steep side slopes
  • Soils are clayey and formed inloess over glacial till; loess is thin or nonexistent on the side slopes
  • Area is broken up by a number of narrow and medium-sized stream bottoms
  • Soils report will be completed prior to RPF construction

> Groundwater

  • Average depth to groundwater inColumbia, MO vicinity is ~180 feet

> Environmental Site Conditions

  • Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537

@ NWMI _ _ _ _ _ _ _ _ _ _ _

Current Dilscsvsry IRidge Laysut PhimI 13L0,0,t PlmE lOAM Fts212* Ac

/

I, I

  • NWMII W* frMT tA

Prelimimary RPF Iiscovery Ridge Site Laysut

...... .,I,,I, , ..... , ,. .... .... . . ... . . . . . . . .

a in a mu EUU DEED flUME U

~WEUYUt~M

MUIR Site Characteristics I> Location

  • Columbia, MO is -125 miles west of St Louis, MO, on Highway 70

> Existing Conditions

  • Potential RPF site is adjacent to existing building on a partially paved parking lot
  • Direct connection to existing reactor may require below ground construction

> Roadways

  • MURR is located near Highway 70; Just off main campus of University of Missouri (Columbia, MO)
  • No current roadway weight and height restrictions exist
  • Sufficient for transport of BURR Casks used for irradiated targets

> Utilities

  • Required utilities are available within MURR

> Land Use

  • Potential RPF site is on University of Missouri's campus and adjacent to MURR
  • Land is available for industrial use

> Soils/Groundwater

  • Sameas DR

> Environmental Site Conditions

  • Prior to RPF construction, an Environmental ReportWil becmpee n D S!NWMI

EUR, - rlllll r ....

CurrentLayout/

IIII IIIIIII

... I

....... .... ...... /I/II ..I!1 IIII,,,ID RPF Layout

. .....ilIl I ,t

  • NW/MI

OSUE Site Characteristics

>. Location

  • OSU is located near the I-5 corridor inCorvallis,i OR (- 80 miles south of Portland, OR)
  • RPF site is adjacent to OSU Radiation Center (off SW Jefferson Way and SW 35th Street)

> Existing Conditions

  • Potential RPF site -- immediately to the east of the reactor
  • Utilizing site would require relocation of two existing laboratory buildings and rerouting transportation access to reactor bay (i.e., modify roads)

> Roadways

  • Access to OSU from I-5 requires traveling on the Corvallis-Lebanon Highway
  • Maximum weight limit of 80,000 lbs
  • Sufficient for transport of BRR Casks used for irradiated targets

OSE Site Characterlstics (cmnii

> Utilities

  • Sewer, water, and electrical are available (i.e, on 35th street)

>. Land Use

  • Site is part of OSU Master Plan and inSector Bof the Corvallis City Zoning Code
  • Sector requires 33% open space and allows for maximum building height of 75 ft and a minimum setback requirement of 40 ft from collector streets

> Soils

  • According to the USDA
  • Soils on flood plains along Willamette River are well drained

° Lower foothills around the western margin of the valley are underlain by soft to hard sedimentary rock, which has restricted permeability

  • Foothills are subject to earthflow and slumping, erosion, and varying cut-slope stability
  • Soils report will be completed prior to RPF construction

> Groundwater

  • Water table varies between 10 and 25 feet below ground surface

> Environmental Site Conditions

  • Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537

~NWMI

OSU, - CurrentSite Layout/

....IIIIII

... ........ l llI III lI * ..........

mPF' Layout 1[" I il" " lI TII . . .

PreliminaryRPF Layout I

Current OSU Layout WMIM

.. U.,.
t II VNVU n I¥11t

McClellan Site Characteristics

> Location

  • UC Davis, McClellan Nuclear Research Center (MNRC) is located off campus at McClellan Business Park, 10 miles northeast of Sacramento, CA near I-5 corridor
  • McClellan Air Force Base was closed in 1995 and privatized from 1995-2003 (i.e.,

McClellan Business Park)

> Existing Conditions

  • -45,000 sq ft clear span, high bay building --200 ft from reactor has been identified as potential site for RPF
  • Existing infrastructure (i.e., buildings, roads) meet current CA seismic codes

> Roadways

  • McClellan Business Park is located along 1-80 and is served by 4 major interchanges. Watt Avenue boarders McClellan to the east
  • No current roadway weight and height restrictions exist
  • Sufficient for transport of BURR Casks used for irradiated targets

-l vmms uiNWMI0 1

Ecl~lellam Sits Charactsristics (cent]

> Utilities

  • McClellan Business Park provides three dedicated electrical substations
  • Power is available at existing building
  • Water and sewer are available at or near existing building

> Land Use

  • McClellan Business Park and potential site resides in Core Airfield/Industrial district
  • Designated for manufacturing, light industrial and high-tech uses
  • Special Planning Area designation within Sacramento County's zoning ordinance

> Soils

  • Soils in urban areas of Sacramento County have been drastically altered during development of Air Force Base and privatization efforts
  • Cut areas consist mainly of truncated San Joaquin soils; Durixeralfs
  • Filled areas, which were once low areas, now consist of as much as 20" of physically mixed soil material; Xerarents
  • Soils report will be completed prior to RPF construction

> Groundwater

  • Depth to groundwater inSacramento County varies between 2- 420 feet basin-wide

> Environmental Site Conditions

  • Prior to RPF construction, an Environmental Report will be completed per NUREG-1 5370

~FNWMI

.o. m5,uiu+/-i:w

. ...J,.. .. llllllll l BFI]I))]I))

. . .. II

- CurrentSits Layout/

IIIII I I I ,,,j,/

RPF Layeut IIIl lTl))ff r lrrr rrrrrrT

ii f i p _ .. .J,,*L ii J

4 Preliminary RPF Layout Lo1 4

N.

I i1~ --1 Current McClellan Layout M~n S~.

3rwm~

5 22A A~

1'

  • .NWMI

-IN*lZ JG LOT 15 P.S WrATUl PW* UQD PLaR WAre SCtmCL Elhu._* WA*h MAILIT -AIEpf r w gvwQI Ia WAIrn 11WIAgl3 TMq AWD wm~lrETAlS mLOT 3 uwrum I-urnt

=4PV IIWVA FIT

£ N L*wl R-ar IMW A smftA NORTH EST MEEIDAL ISITIPES, LII ALTERNATIV SITE EVAUATION -DETILEE SI

  • , W mN~a M........

Psilitcal and Local Logistics Support

> DRIMURR

  • University has high-level of political and local support and local and county ties
  • NWMI Team Member MURR has extensive connection with state and local network; however, NWMI should not expect as much support as in Oregon
  • University and State of Missouri are aware of MURR's capability and current/previous 99Mo endeavors, and relationship with DOE-N NSA and 99Mo community

> OSU

  • NWMI has strongest network inOR; Samaritan and OSU have significant state and local ties
  • NWMI has been introduced to Oregon Governor
  • State of Oregon (including OSU) has significant interest in99Mo business model due to FTE generation as well as educational and R&D aspects

> McClellan

  • Limited local political support and local and county ties
  • California unlikely to have significant interest in99 Mo business due to nuclear aspect and minimal FTE generation (i.e., less than 50 FTEs)

DR MURR OSU McClellan 4 4 4 1 BEUMIED I III VYMI

..................!!ll l I I I FFI]H HF((

Sperations l .........I

................................. . ...F[r*Fr II SDiscovery Ridge

  • NWMI would manage RPF
  • No reactor onsite

> MURR

  • RPF to be entirely staffed and operated by university; NWMI and MURR would co-manage RPF
  • Will require a multi-story building due to land constraints and current research reactor facility layout; may present design/construction and operational challenges

> OSU

  • Limited involvement in RPF operations; NWMI would manage RPF
  • Reactor will be co-located with RPF
  • Will require a multi-story building due to land constraints and current research reactor facility layout; may present design/construction and operational challenges
  • "Educational/R&D area" will need to be part of RPF (not requested by UC Davis or MURR)

> McClellan

  • No involvement in management and operations of RPF since itwill not be housed on UC Davis campus; proposed site is part of McClellan Business Park (which privatized McClellan Air Force Base in2003 and has a 99 year lease)
  • NWMI would manage RPF
  • Reactor located in McClellan Business Park and would be adjacent to proposed RPF location (within --200 ft)
  • Design and construction of transportation corridor required DR MURR 0 SU i~!i;!l!!~!i~~iiM cClellanil 4 4 3 3

&WMJa

Preductlen Isgistlcs

> Time product spends in transit and processing determines delivered target activity SPrimary irradiation reactor is MURR/Secondary reactors are OSTR and hypothetical third reactor

>Transportation Distance RPFLocation: DR/MURR RPF Location: OSU RPF Location: McClellan

.. ~ -. .~ . I - - .- . - S -- S *~ S I Covi i,OR iii~ 200mi (40 hr) Corvallis, OR 0 Corvallis, OR 50nii 1 i McClellan, CA 1800 mi (35 hr) McClellan, CA 520 mi (12 hr) 0 McClellan, CA Columbia, MO 20o0(40ohr)

Columbia, MO Irradiated LEU Target Processing/Product Conditioning and Packaging

  • All sites will have same processing and product conditioning timeframes DR MURR McClellan 4 2 3 3

~NW¢MI

Trahnsprtation

> Two high-priority transportation activities can effect 6-day curies delivered

  • Irradiated target to RPF via ground
  • 99Mo Product to Distributor via air or ground

> Based on FEMA disaster declarations (1964-2007)

  • Transportation route between OSU and McClellan has a slightly greater density of disaster declarations than route between either location and DR/MURR
  • All routes require crossing significant mountain ranges, which may result indelays due to inclement weather
  • IfRPF is located at DR/MU RR, more Rocky Mountain crossings may increase probability of delays 0 0 DR MUR QSU Mclellan

' NWMI-------

Waste Generation SRadioactive and Mixed Wastes

  • All potential RPF locations have a radioactive/mixed waste disposition pathways
  • Missouri (DR/MURR) sends waste to Waste Control Specialists, Inc. (located inTX) - two state borders will be crossed during transport
  • Oregon (OSU) sends waste to U.S. Ecology located on the Hanford Nuclear Reservation (located inWA) - one state border will be crossed during transport
  • California (McClellan) sends waste to Envirocare Inc. (located in UT) - two state borders will be crossed during transport SHazardous Waste
  • All potential RPF locations have disposition pathways for all types of hazardous waste
  • Disposal costs are expected to be more expensive in CA than in OR or MO (cannot be evaluated until more is known about type and quantity of waste)

. S DR MURR OU Mleln 4 4 4 3

  • MI________________

Feisral, Stats, and Loceal Iequlremsents SNRC licensing requirements (NUREG 1537) should not vary between sites because these are Federal requirements

>Environmental Report (being developed under NUREG 1537 and NEPA) should not vary between sites; each site already has an existing research reactor within close proximity SState and local requirements are expected to be most significant at McClellan and less at OSU and DR/MURR SAir quality permitting and seismic design criteria are important aspects of the project but differences between locations are not anticipated to be significant SPublic Involvement (according to all Federal, State, and local requirements) is expected to be more significant at McClellan and less at OSU and DR/MURR S 0 DR MURR :OSU Mlellan 4 4 4 2 4 NWMI wIii~iii*5t WALiiii~i iii*

Feisral ani Stats Taxes anl incesntives

  • > Sales tax on equipment and construction materials
  • MO sales tax = 4.225%; Equipment/supplies exempt; Construction materials non-exempt
  • OR has no sales tax
  • CA sales tax = 7.75%; Equipment or construction materials non-exempt SCorporate Income Tax
  • Missouri: 6.25%
  • Oregon: 7.60%
  • California: 8.84%

(Note: single sales factor apportionment is available in all 3 states; may be subject to income tax where product is sold)

SProperty Tax

  • University properties (OSU and DR/MURR) present opportunity for reduced property taxes based on the ownership model of government-owned facilities
  • McClellan does not appear to offer reduced property taxes
  • Cost savings will be determined by lease negotiations SIncentives

Available lpames

> Discovery Ridge

  • Greenfield Location (Agricultural for many generations)

SMURR

  • Site has sufficient space for initial build and has ability for limited future expansion (next to Research Reactor)

> OSU

  • Facility will be constructed on mostly greenfield (undeveloped) area on the 0 SU campus (Northeast and East of Radiation Center)
  • Site has sufficient space for initial build and has ability for future expansion
  • RPF will need to include space for OSU educational and R&D use SMcClellan
  • Site has sufficient space for initial build and has ability for future expansion (,,-250 feet away from UC Davis Research Reactor)
  • RPF will have to fit within existing infrastructure; improvements can be made

~0

  • DR MURR OSU McClellan 5 3 I 2
~ NWMI

Construction Costs SRS Means City Construction Cost Indexes

  • DR/MURR (Columbia): 95.4
  • OSU (Corvallis): 98.6
  • McClellan (Davis/Sacramento): 109.9 SDiscovery Ridge
  • Site has existing infrastructure and few restrictions to building design
  • Construction cost expected be similar to OSU SMURR
  • Site has existing infrastructure and few restrictions to building design
  • Construction cost expected be similar to OSU

> OSU

  • Site has existing infrastructure and few restrictions to building design
  • Site may require demolition and reconstruction of existing laboratory buildings

> McClellan

  • Site has existing building and infrastructure resulting inslight cost savings
  • Existing building may require structural/mechanical modifications to meet code which will increase costs
DR MURR OSU Mc~lellan 44 3 3
  • NWMI,,u.

Natiurl anl Man-Male Disaster Potential

  • Discovery Ridge/MURR (Boone County)
  • Has most disaster declarations (storm and flooding plus tornado) but low-to-no earthquake risk SOSU (Benton County)
  • Has fewest disaster declarations (mostly storm and flooding) and a moderate to low earthquake risk

>" McClellan (Sacramento County)

  • Has more disaster declarations than OSU and less than MURR (mostly storm and flooding) and a higher earthquake risk Pm'ob*Ry of mfu~wtiuk wilb Mz 4.75 wli*t 50 yelu &50klm' UeP e,,*u= *m 4 djd Le,.

Mclela -Earthquk Risk Map OSU Ma

-cEaelhquakeaRisk i . 0.....

r, Discovery RidgeIMURR - EarthquakeRisk Map

- S 0

-I -D UR S clla 3 3 4 2 NW2M I..........

NWMI-201 5-RAI-001

  • '°egl"NDTW£SM!IAZO~E Rev. 0 Appendix B -

EDF-3124-0008, Emissions from Natural Gas-Fired Boiler Operation B-i

Document ID:EDF-3124-0008 Revision ID:0A Effective Date: June 26, 2014 Engineering Design File I Emissions from Natural Gas-Fired Boiler and Emergency Diesel Generator Operation Portage Project No.: 3124 Project

Title:

NWMI Environmental Report Portage TEM-9002 09/29/09 Rev. 0

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0008 09/29/09 Rev. 0A Rev. 0 Page 1 of 5

1. Portage Project No.: 3124 2. Project/Task: NWMI Environmental Report
3. DCN#

4.

Title:

Emissions fr'om Natural Gas-Fired Boiler and Emergency Diesel Generator Operation

5. NPH PC or SDC: N/A
6. SSC Safety Category: N/A 7 Summary: This EDF documents the methods used to calculate the emissions of CO, NOR, PM-10, PM-2.5, VOC CO 2, VOC and SOx, from the two process steam boilers, the two HVAC boilers and the emergency generator that will be used for the operation of the NW/MI facility.

7 Distribution: (Portage, Inc.)

7. Review (R) and Approval (A) Signatures:

(Identify minimum reviews and approvals. Additional reviews/approvals may be added.)_____

Printed Name/

Organization Signature Date 61

____________RA Author/Design Agent a Gary McManus  !'[)g'l[ dx' 6/26/14 Independent Review R Dave Thome * , ,.6/26/14 Independent Review R Project Manager R/A John Belier 6/26/14 Registered Professional Engineer's Stamp (if required) Z]N/A INTRODUCTION Several combustion sources at the proposed RPF would contribute to the gaseous effluents. These combustion sources are two natural gas-fired boilers used for steam production and two natural gas-fired boilers used for heating. The two steam boilers and the two boilers used for heating each are released through two separate stacks. The boilers and generator all emit GO, NOx, PM, VOCs, and CO 2 . The assumptions used for the four boilers are summarized in Table 1 below.

TEM-9002 EDF-31 24-0008 09/29/09 ENGINEERING DESIGN FILE Rev. 0A Rev. 0 Page 2 of 5 Table 1. Boiler Operational Parameters Sta od Steam Heat Boiler Fuel Energy Natural Gas Boiler Factor Efficiency Content Consumption (lb/hr) (MBTU/lb) (%) MVBTU/hr (ft3/hr)

Process #1 10000 9345 75 12460 12460 Process #2 10000 9345 75 12460 12460 HVAC #1 10000 9345 75 12896 12896 IHVAC #2 10000 9345 75 12896 12896 The emission factors used for the boilers are obtained from EPA 200, AP-42, Volume I, Table 1.4.1 and Table 1.4.2, these values are shown below in Table 2.

Table 2. Emission Factors for Boilers.

Pollutant Emission Factor Units COa 84 NOx a 50 PM1 0 (Total) b 7.6 l/0 c PM1O (filterable) b 1.9lb 6 sc VOC 5.5 SO 2

  • 0.6 CO 2 d 120,000
a. Controlled -Low NOx burners
b. All PM (total, condensable, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM10, PM2.5 or PM1 emissions. Total PM is the sum of the filterable PM and condensable PM. Condensable PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.
c. Based on 100% conversion of fuel sulfur to SO2. Assumes sulfur content is natural gas of 2,000 grains/10 6 cf. The SO2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO2 emission factor by the ratio of the site-specific sulfur content (grains/10 6 scf) to 2,000 grains/10 6 scf.
d. Based on approximately 100% conversion of fuel carbon to CO 2 . CO2 [lb/10 6 scfl =

(3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO 2, C =

carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x 104 lb/106 scf.

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0008 09/29/09 Rev. 0A Rev. 0 Page 3 of 5 From Table 2 the hourly emission were calculated as follows:

Emissions (lb/hr) = EF * (NGC/1 06)

Where:

EF = emission factor (lb/10 6 scf)

NGC =natural gas consumption (ft3/hr)

For: CO = 84 * (12460/106)

= 1.0 lb/hr Tons/year =(1.0 lb/hr / 2000 lb/ton)

  • 24 hr/day
  • 7 days/week
  • 50 weeks

=4.4 tons/yr CO from Process boiler #1 Total CO release is the sum of the two process boilers and the 2 HVAC boilers.

The emissions were calculated in ton/yr assuming a boiler operation of 50 weeks per year. The results are shown in Table 3 below.

Table 3. Emissions from the 4 natural gas fed boilers Pollutant Emissions Process Boilers 1 & 2 (each) HVAC Boilers 1&2 (each) Total Emissions (lb/hr) (tons/yr) (lb/hr) (tons/yr) (tons/yr)

CO 1.0E+00 4.4 1.1E+00 4.5 18 NOx 6.2E-01 2.6 6.4E-01 2.7 11 PMl0 (Total) 9.5E-02 0.40 9.8E-02 0.41 1.6 PM10 (filterable) 2.4E-02 0.10 2.5E-02 0.10 0.40 VOC 6.9E-02 0.29 7.1E-02 0.30 1.2 SO2 7.5E-03 0.031 7.7E-03 0.032 0.13 CO 2 1.5E+03 6,300 1.5E+03 6,500 26,000 Emergency Generator: The diesel generator is planned to be used for temporary operation and safe shutdown of the system if required. The emergency generator would emit CO, NOx, PM, SO 2 , VOCs, and CO 2. The generator was assumed to be rated at 2,600 kw and the emission factors and annual emissions are shown below in Table 4 Total Emissions were calculated as follows:

Ei (kg) =EFi (g/kW-hr)

  • 0.001 (kg/g)
  • Power Rating (kw) x Hours Run per Year (hr/yr)

Assumes 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> operation per year and 2,600 kw generator.

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0008 09/29/09 Rev. 0A Rev. 0 Page 4of 5 Table 4. Emission Factors and Annual for Selected Pollutants (2,600 kw Emergency Generator)

PM~ SO~ab COa NOXa NOxa a02 PM" SOxa,b g/kW-hr ozikW-hr g/kW-hr oz/kW-hr g/kW-hr oz/kW-hr g/kW-hr oz/kW-hr g/kW-hr ozikW-hr Emission Factor 3.3 0.12 7.9 0.28 710 25 0.43 0.015 2.5 0.087 Emissions kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr kg/hr lb/hr Standby 2600 kW 8.7 19 21 45 1800 4000 1.1 2.4 6.4 14 diesel______________________ _______

generator per yearc 210 460 490 1000 44,000 97,000 27 59 150 340 a Values from EPA, 2010, Compilation of Air PollutantEmission Factors, Volume 1, Stationary Point and Area Sources, AP 42, Fifth Edition, U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, D.C., 2010. Table 3.4.1 b Assumes 0.5% sulfur content.

SAssumes 24 hr/year operation for maintenance.

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0008 09129/09 Rev. 0A Rev. 0 Page 5 of 5

Attachment:

Excel spread sheet of calculations Prrs 2...

0019*

I Stram Load IISteam lteat Factor I Boirr 0t19,m Fuel Encrgr Cotnt ata Couso a

934.52 BI~uO* Ofl for se~amat 25 xi 9345MN, 75% BoilerEf0,ienu, 22440MN, Fooloner* cortent 124600034,r CooCu,,,.14 1066;ha 30% OxreessAo 153004ft3ft Coomkustio, Air Emlacion Farctor, Br Boil,,. Enmhsbon.8.,n Pollcteota Enilaslon Facoro Untll Pncoo,.Bollanl1&2 2 Pb l~ rate foreaoh of cxoobolers btwgs 0b/hr) Each {tons/*r} Esch (Ibthr Pb,,t,vecndorinfoocrmatio CO 84 hl4O of 2.050-09 4.44 NO,,' 50 6.23E-01 202 I1 6045E-02 2.72 PMt0 (Tola[)' 7.6 9.47E-02 9.40 9.20E-02 0 42 16 PMI0 (fl*orabe)bI 19 2.970-02 0.10 2.45E-02 0.10 0.44 VOC 5.5 6.85E-02 1029 7.09E0 2 { 0.30 2.2 FIVAC 9672MN, Pook HIVAChooatg drrroalx 7.480-09 0.99 7.740-03 j 0 03 0.23

.75% Boilr, 03o¢nv CO.,* 120,000 ___ 2.500'803 6.28E303 [ 155E0 3 630 5E*3 25.359 o A, P (622,O. 00.40006 .. r~teik, = .u=*ad2t,ho00.

1.aoc.0=nmctood... eTh,,aoooorhePM l ssiacfool. rp'*ml htoo, re, bocodIo.OllcaboPM IO.,POl20.300Pld a...occ. Tri PM iuth00.00000inh . 0,000c.4c~o 08 70AMo¢hod 2026(,

Op&u.210t FiO.8*2.kpM .i0 thp.ioalo..,oaoIll6.ga...*pri

,tt .u00..Iof.

w 2,*r~,00pn/t e. The SO2o,,ooo..ao m 00*t0. u. ho0,0r0 toud.h,c~atorO . .000r.ot,,o O 10020t (t.faim16lt) ,flOo9.oou floal106 so 002[100100 sel9 13.67)1C01d,1C0D30 .. h0. CulON r.000,oJ rOr.ru.020.O00IOCOC'006000t Iat O."f41by wtolt

  • 0.000.dO D doy 0(.44,204.z1o4 or n6,

NWMI-201 5-RAI-001

  • =e*'ND*WEMEIA iOPE Rev. 0 Appendix C -

EDF-3124-0012, Emission Modeling for Process and IIVAC Boilers Using AERSCREEN C-i

Document ID:EDF-3124-0012 Revision ID:1 Effective Date: February 4, 2015 Engineering Design File Emission Modeling for Process and HVAC Boilers using AERSCREEN Portage Project No.: 3124 Project

Title:

NWMI Environmental Report 4Portage TEM-9002 09/29/09 Rev. 0

TEM-9002 ENGINEERING DESIGN FILE EDF-3124-0012 09/29/09 Rev. 1 Rev. 0 Page 1 of 20

1. Portage Project No.: 3124
2. Project/Task: NWMVI Enviromnmental Report
3. DCNH#

4.

Title:

Emission Modeling for Process and HVAC Boilers using AERSCREEN

5. NPH PCor SDC: N/A
6. SSC Safety Category: N/A 7 Summary:

This EDF documents the assumptions used and the results of the AERSCREEN modeling done for the 4 natural gas fired boils used for the operation of the NWIVI facility. The results are then compared to the NAAQS and ambient air concentrations.

8 Distribution: (Portage, Inc.)

9. Review (R) andApproval (A) Signatures:  :*",

(Identify minimum reviews and approvals. Additional reviews/approvals mnay be added.)_____

~Printed Name/

R/A Organization Signature Date Author/Design Agent A Gary McManus () (*¢*dld 2/04/15 Independent Review R Dave Thorme ¢ 2/04/15 Independent Review R Project Manager R/A John Beller 2/04/15 Registered Professional Engineer's Stamp (if required) Z]N/A

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 2 of 20 INTRODUCTION As described in EDF-3 124-0008 there will be two natural gas-fired boilers used for steam production and two natural gas-fired boilers used for heating. The two steam boilers and the two boilers used for heating each are released through two separate stacks. The boiler and generator all emit CO, NOx, PM, VOCs, and C02. The assumptions used for the four boilers and the associated emissions are summarized in Tables 1 and 2 below.

Table 1. Boiler Operational Parameters SemBoiler Fuel Energy Natural Gas Steam Load Heat Boiler Factor Efficiency Content Consumption (lb/br) (MBTU/lb) (%) MBTU/hr (ft3/hr)

Process #1 10000 9345 75 12460 12460 Process #2 10000 9345 75 12460 12460 HVAC #1 10000 9345 75 12896 12896 HVAC #2 10000 9345 75 12896 12896 Table 2. Emissions From The Four Natural Gas Fed Boilers (EDF-3 12 1-0008)

Pollutant _____________ Emissions Process Boilers 1 & 2 HVAC Boilers 1&2 Total S~Emissions (lb/hr) (tons/yr) (lb/br) (tons/yr) (tons/yr)

CO 2.1E+00 8.8E+00 2.2E+00 9.1E+00 18 NOx 1.2E+00 5.2E+00 1.3E+00 5.4E+00 11 PM10 (Total) 1.9E-01 8.0E-01 2.0E-01 8.2E-01 1.6 PM10 (filterable) 4.7E-02 2.0E-01 4.9E-02 2.1E-01 0.40 VOC 1.4E-01 5.76E-01 1.4E-01 6.0E-01 1.2 SO2 1.5E-02 6.3E-02 1.6E-02 6.5E-02 0.13 CO2 3.0E+03 1.3E+04 3.1E+03 1.3E+04 26,000 Emissions from the boiler activities were evaluated using AERSCREEN, Version 11126. This screening model uses standard defaults for meteorology, and terrain values. Modeled emissions included: PM-10, PM-2.5, CO, nitrogen, and sulfur oxides (NOx), and SOx.). The assumptions used for the modeling are presented below.

TEM-9002 EDF-31 24-0012 09/29109 ENGINEERING DESIGN FILE Rev. 1 Rev. 0 Page 3 of 20 ASSSUMPTIONS The input assumptions used for the AERSCREEN model are summarized in Table 3 and 4 below. Since the four boilers vent through two identical stacks only one run was done. The results of the run were then combined to give the approximate concentrations at the receptor locations.

Table 3. AERSCREEN Input Stack Parameters SOURCE EMISSION RATE: 0.1260 g/s 1.000 lb/hr STACK HEIGHT: 22.86 meters 75.00 feet STACK INNER DIAMETER: 0.305 meters 12.00 inches PLUME EXIT TEMPERATURE: 310.9 K 99.95 Deg F PLUME EXIT VELOCITY: 17.929 m/s 58.82 ft/s STACK AIR FLOW RATE 2772 ACFM 2772 ACFM RURAL OR URBAN: RURAL RURAL FLAGPOLE RECEPTOR HEIGHT: 1.83 meters 6.00 feet INITIAL PROBE DISTANCE -- 5000. meters 16404. feet Table 4. Makemet Meteorology Parameters MIN/MAX TEMPERATURE: 255.4 / 302.6 (K)

MINIMUM WIND SPEED: 0.5 m/s ANEMOMETER HEIGHT: 10 meters DOMINANT SURFACE PROFILE: Grassland DOMINANT CLIMATE TYPE: Average Moisture DOMINANT SEASON: Spring ALBEDO: 0.18 BOWEN RATIO: *0.4 ROUGHNESS LENGTH: 0.050 (meters)

For this screening model, no downwash was considered in the calculations since exact locations and dimensions are still in the design phase. The closest residential receptor was assumed to be a single family home located approximately 375 meters SSE from the facility location. Using these assumptions the AERSCREEN model was run and the results were obtained. A complete listing of the model is included in Attachment 1.

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 4 of 20 RESULTS The final run results for the maximum concentration downwind of the facility are summarized in Table 5 below.

Table 5. AERSCREEN Results.

Calculation Maximum]

1-Hour]

Scaled 3-Hour J Scaled]

8-Hour Scaled J24-Hour [Scaled Annual ProcdureConcentration a Flat Terrain (gig/m 3 ) J(jPtg/m3) J(gig/m3) ](btg/m3) (Pig/m 3 )

_________ 17 17 J 15 J 10 1.7

a. Distance from Source to maximum concentration location 136.00 meters Using the AERSCREEN results above as well as the maximum concentration at 375 meters from attachment 1 (i.e., 10.83 jig/in 3), Table 6 and 7 were completed.

Table 6. Emissions from Process Steam Demand - Natural Gas-Fired Boilers Modeled concentration to Hourly Emissions Maximumclst Emission for Both Steam concentration Pollutant Factor Boiler a @ 136 m b residential receptor (375 m) c (lb/hr) (jig/in 3 ) (jig/in 3 )

CO 84 2.1E+00 3.5E+01 2.3E+01 NOx 50 1.2E+00 2.1E+01 1.4E+01 PM-10 7.6 1.9E-01 3.2E+00 2.1E+00 PM-2.5 1.9 4.7E-02 8.0E-01 5.1E-01 5.5 1.4E-01 2.3E+00 1.5E+00 SO2 0.6 1.5 E-02 2.5E-01 1.6E-01 CO2 120,000 3.0E+03 5.0E+04 3.2E+04

a. Hourly emission from process boiler 1 and 2 each shown in EDF-3 124-0008.
b. This is maximum 1- hour concentration calculated by AERSCREEN equals 17jg/m3 per lb/hr
c. This represents the highest 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> concentration at the closest receptor of 375 meters and equals 11 jig/mn3 per lb/hr

TEM-9002 EDF-31 24-0012 09/29/09 ENGINEERING DESIGN FILE Rev. 1 Rev. 0 Page 5 of 20 Table 7. Emissions from 2-H VAC Natural Gas-Fired Heater Modeled Hourly Emissions Maximum concentration to Emission for Both HVAC concentration closest PluatFactor Boiler a @ 136 m bresidential receptor (375 m)

(lb/hr) ([.tg/m 3) (jig/mn3)

CO 84 2.2E+00 3.6E+01 2.3E+01 NOx 50 1.3E+00 2.2E+01 1.4E+01 PM10 7.6 2.0E-01 3.3E+00 2.1E+00 PM-2.5 1.9 4.9E-02 8.2E-01 5.3E-01 VOC 5.5 1.4E-01 2.4E+00 1.5E+00 SO2 0.6 1.6E-02 2.6E-01 1.7E-01 CO2 120,000 3.1E+03 5.2E+04 3.3E+04

a. Hourly emission from process boiler 1 and 2 each shown EDF-3 124-0008
b. This is maximum 1- hour concentration calculated by AERSCREEN at 136 m equals 17 jtg/mn3 / lb/hr
c. This represents the highest 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> concentration at the closest receptor of 375 meters and equals 11 jig/mn3 / lb/hr Since both boiler stacks are co-located with the same characteristics the total downwind concentration was assumed to be additive. These values were then compared to the National Ambient Air Quality Standards (NAAQS) to see if any of the 1-hour air standards were exceeded. This comparison is summarized in Table 8 below.

Table 8. Maximum Release Concentration Comparison to NAAQS Standards MimmModeled Percentage of concentration closestAQ to NAAQS Limit at Polltant 136rato@ clst residential NASAASPoint of receptor____(375 m)______ ______ Maximum

(___g/m3)__(jig/r3) (ppm) (jig/mn3) Concentration CO 7.2E+0+/-.E01 4.0E+04 0.18%

NOx 4.3E+012.E019+222 PM10 6.5E+00 42+001d*43 PM-2.5 1.6E+001.E0003 46 SO2 4.7E+00 30+0*19E0 .6 CO2 5.1E-01 3.3E-01_NANAN

a. Maximum Concentration is the sum of the 2 process boilers and the 2 HVAC boilers ________
b. Concentration at closest residence
c. Values in Green are actual standard values; values in yellow are the converted values.
d. 24-hour standard for PM-10 and PM-2.5

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 6 of 20 From Table 8 it is apparent that the modeled release concentrations are all below the applicable NAAQS standards. Therefore no additional modeling is required at this time.

A similar evaluation of the model emission concentrations was performed to determine if the emissions exceed the regional ambient concentrations of the listed pollutants. Regional values of the five regulated pollutants for Missouri were obtained from the Missouri Division of Environmental Quality Web Site for different monitoring stations in the state. The Tables 9 summarizes the data in Attachment 2 used to determine the average values.

Table 9. Ambient Air of Rural/Urban Missouri Ambient Air of Rural/Urban Pollutant Missouri

(*tg/m 3 )

CO 3.8E+03 NOx 2.1E+01 PMl0 1.7E+01 PM-2.5 1.1E+01 SO2 7.0E+00 CO2 NA A similar evaluation of the model emission concentrations was performed to determine if the emissions exceed the regional ambient concentrations of the listed pollutants. Regional values of the five regulated pollutants for Missouri were obtained from the Missouri Division of Environmental Quality Web Site for different monitoring stations in the state. The Tables 9 summarizes the data in Attachment 2 used to determine the average values. Similar comparison was done to Table 10. Comparison of Modeled Concentrations to Average Ambient levels around the State Missouri.

Maiu codeledtato AminoAro Percentage of Ambient Air concentrationoto Rural/Urban Pollutant concenratio closest residential Misuiconcentration Point of

@16b receptor (375 m) b MisuiMaximum Concentration (ig/m3) (#tg/m3) (#.g/m3) ____________

CO 7.2E+0l 4.6E+0l 3.8E+03 1.9%

NOx 4.3E+01 2.7E+0l 2.1E+01 203%

PM10 6.5E+00 4.2E+00 1.7E+01 38%

PM-2.5 l.6E+00 1.0E+00 1.1E+01 15%

SO2 4.7E+00 3.0E+00 7.0E+00 7.3%

CO2 5.lE-01 3.3E-01 NA NA a Maximum Concentration is the sum of the 2 process boilers and the 2 ITVAC boilers b Concentration at closest residence Attachment 1

TEM-9002 EDF-3124.-0012 09/29/09 ENGINEERING DESIGN FILE Rev. 1 Rev. 0 Page 7 of 20 ATTACHMENT 1.

AERSCREEN Files Text File:

Start date and time 02/05/15 08:19:04 AERSCREEN 11126 NWMI PROCESS BOILER DATA ENTRY VALIDATION METRIC ENGLISH

    • STACKDATA **------------------

Emission Rate: 0.1260 g/s 1.000 lb/hr Stack Height: 22.86 meters 75.00 feet Stack Diameter: 0.3 05 meters 12.00 inches Stack Temperature: 310.9 K 100.0 Deg F Exit Velocity: 17.929 m/s 58.82 ft/s Stack Flow Rate: 2771 ACFM Model Mode: RURAL Dist to Ambient Air: 1.0 meters 3. feet

    • BUILDING DATA **

No Building Downwash Parameters

    • TERRAIN DATA **

No Terrain Elevations Source Base Elevation: 0.0 meters 0.0 feet Probe distance: 5000. meters 16404. feet Flagpole Receptor Height: 1.8 meters 6. feet No discrete receptors used

    • METEOROLOGY DATA **

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-3124-0012 Rev. 1 Rev. 0 Page 8 of 20 Min/Max Temperature: 255.4 / 302.6 K 0.0 / 85.0 Deg F Minimum Wind Speed: 0.5 m/s Anemometer Height: 10.000 meters Dominant Surface Profile: Grassland Dominant Climate Type: Average Moisture AERSCREEN output file:

boilerl .out

    • AERSCREEN Run is Ready to Begin No terrain used, AERMAP will not be run SURFACE CHAPRACTEPISTICS & MAKEMET Obtaining surface characteristics...

Using AERM4ET seasonal surface characteristics for Grassland with Average Moisture Season Albedo Bo zo Winter 0.60 1.50 0.001 Spring 0.18 0.40 0.050 Summer 0.18 0.80 0.100 Autumn 0.20 1.00 0.010 Creating met files aerscreen_01_01.sfc & aerscreen_01 01.pfl Creating met files aerscreen_02_01 .sfc & aerscreen_02 01 .pfl Creating met files aerscreen_03_01 .sfc & aerscreen_03 01 .pfl Creating met files aerscreen_04_01 .sfc & aerscreen_04 01 .pfl PROBE started 02/05/15 08:19:34 Running probe for Winter sector 1 AERMOD Finishes Successfully for PROBE stage 1 Winter sector1

          • WARNING MESSAGES *****

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-3124-0012 Rev. 1 Rev. 0 Page 9 of 20

      • NONE ***

Running probe for Spring sector 1 AERMOD Finishes Successfully for PROBE stage 1 Spring sector1

      • NONE ***

Running probe for Summer sector 1 AERMOD Finishes Successfully for PROBE stage 1 Summer sector1

                • WARNING MESSAGES ********
    • NONE **

Running probe for Autumn sector 1 AERMOD Finishes Successfully for PROBE stage 1 Autunmn sector1

          • WARNING MESSAGES ********
      • NONE ***

PROBE ended 02/05/15 08:19:3 8 REFINE started 02/05/15 08:19:38 AERMOD Finishes Successfully for REFINE stage 3 Spring sector1

          • WARNING MESSAGES *****
      • NONE **

REFINE ended 02/05/15 08:19:38 AERSCREEN Finished Successfully With no errors or warnings Check log file for details Ending date and time 02/05/15 08:19:39

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-3124-0012 Rev. 1 Rev. 0 Page 10 of 20 OUTPUT FILE:

AERSCREEN 11126 / AERMOD 1234 02/05/15 08:19:38 TITLE: NWMI PROCESS BOILER

                                                          • STACK PARAMETERS
      • q* **** *** ******* **** * ****
  • SOURCE EMISSION RATE: 0.1260 g/s 1.000 lb/hr STACK HEIGHT: 22.86 meters 75.00 feet STACK INNER DIAMETER: 0.305 meters 12.00 inches PLUME EXIT TEMPERATURE: 310.9 K 100.0 Deg F PLUME EXIT VELOCITY: 17.929 in/s 58.82 ft/s STACK AIR FLOW RATE: 2772 ACFM RURAL OR URBAN: RURAL FLAGPOLE RECEPTOR HEIGHT: 1.83 meters 6.00 feet INITIAL PROBE DISTANCE =

5000. meters 16404. feet

                                • BUILDING DOWNWASH PARAMETERS NO BUILDING DOWNWASH HAS BEEN REQUESTED FOR THIS ANALYSIS
                            • PROBE ANALYSIS **************

25 meter receptor spacing: 1. meters - 5000. meters Zo ROUGHNESS 1-HR CONC DIST TEMPORAL SECTOR LENGTH (ug/m3) (in) PERIOD 1" 0.050 16.70 150.0 SPR

  • - worst case flow sector

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Pagell1of 20

                                            • MAKEMET METEOROLOGY PARAMETERS MIN/MAX TEMPERATURE: 255.4 / 302.6 (K)

MINIMUM WIND SPEED: 0.5 rn/s ANEMOMETER HEIGHT: 10.000 meters SURFACE CHARACTERISTICS INPUT: AERMET SEASONAL TABLES DOMINANT SURFACE PROFILE: Grassland DOMINANT CLIMATE TYPE: Average Moisture DOMINANT SEASON: Spring ALBEDO: 0.18 BOWEN RATIO: 0.40 ROUGHNESS LENGTH: 0.050 (meters)

METEOROLOGY CONDITIONS USED TO PREDICT OVERALL MAXIMUM IMPACT YR MO DY JDY HR 10 0105 5 12 HO U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 BOWEN ALBEDO REF WS 21.61 0.066 0.300 0.020 46. 39. -1.2 0.050 0.40 0.18 0.50 HT REF TA HT 10.0 302.6 2.0 ESTIMATED FINAL PLUME HEIGHT (non-downwash): 37.4 meters METEOROLOGY CONDITIONS USED TO PREDICT AMBIENT BOUNDARY IMPACT

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 12 of 20 YR MO DY JDY HR 10 01 01 5 12 Ho U* W* DT/DZ ZICNV ZIMCH M-O LEN Z0 B OWEN ALBEDO REF WS 1.17 0.049 0.100 0.020 27. 25. -7.8 0.050 0.40 0.18 0.50 HT REF TA HT 10.0 255.4 2.0 ESTIMATED FINAL PLUME HEIGHT (non-downwash): 56.5 meters

                                                • AERSCREEN AUTOMATED DISTANCES OVERALL MAXIMUM CONCENTRATIONS BY DISTANCE MAXIMUM MAXIMUM DIST 1-HR CONC DIST 1-HR CONC (in) (ug/m3) (mn) (ug/m3) 1.00 0.2290E-04 2525.00 4.139 25.00 4.216 2550.00 4.107 50.00 8.390 2575.00 4.076 75.00 10.29 2600.00 4.045 100.00 15.11 2625.00 4.015 125.00 16.69 2650.00 3.986 150.00 16.70 2675.00 3.956 175.00 16.17 2700.00 3.927 200.00 15.43 2725.00 3.899 225.00 14.64 2750.00 3.871 250.00 13.87 2775.00 3.843 275.00 13.16 2800.00 3.815 300.00 12.49 2825.00 3.788 325.00 11.89 2850.00 3.762 350.00 11.33 2875.00 3.735 375.00 10.83 2900.00 3.709 400.00 10.37 2925.00 3.684 425.00 9.943 2950.00 3.659

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page1l3of 20 450.00 9.609 2975.00 3.634 475.00 9.3 15 3000.00 3.609 500.00 9.039 3025.00 3.585 525.00 8.78 1 3050.00 3.561 550.00 8.539 3075.00 3.537 575.00 8.3 10 3100.00 3.5 14 600.00 8.095 3125.00 3.491 625.00 7.89 1 3150.00 3.468 650.00 7.699 3175.00 3.446 675.00 7.5 17 3200.00 3.424 700.00 7.344 3225.00 3.402 725.00 7.179 3250.00 3.380 750.00 7.023 3275.00 3.359 775.00 6.874 3300.00 3.338 800.00 6.733 3325.00 3.3 17 825.00 6.597 3350.00 3.296 850.00 6.468 3375.00 3.276 875.00 6.344 3400.00 3.256 900.00 6.226 3425.00 3.236 925.00 6.112 3450.00 3.217 950.00 6.003 3475.00 3.197 975.00 6.039 3500.00 3.178 1000.00 6.174 3525.00 3.159 1025.00 6.287 3550.00 3.14 1 1050.00 6.3 80 3575.00 3.122 1075.00 6.447 3600.00 3.104 1100.00 6.43 1 3625.00 3.086 1125.00 6.4 11 3650.00 3.068 1150.00 6.386 3675.00 3.051 1175.00 6.359 3700.00 3.033 1200.00 6.328 3725.00 3.016 1225.00 6.295 3750.00 2.999 1250.00 6.259 3775.00 2.982 1275.00 6.221 3800.00 2.966 1300.00 6.182 3825.00 2.949 1325.00 6.14 1 3850.00 2.933 1350.00 6.098 3875.00 2.917 1375.00 6.055 3900.00 2.90 1 1400.00 6.010 3925.00 2.886 1425.00 5.965 3950.00 2.870 1450.00 5.9 19 3975.00 2.855 1475.00 5.872 4000.00 2.839 1500.00 5.826 4025.00 2.824 1525.00 5.778 4050.00 2.8 10 1550.00 5.73 1 4075.00 2.795 1575.00 5.683 4100.00 2.780

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 14 of 20 1600.00 5.636 4125.00 2.766 1625.00 5.588 4150.00 2.752 1650.00 5.541 4175.00 2.737 1675.00 5.494 4200.00 2.724 1700.00 5.447 4225.00 2.710 1725.00 5.400 4250.00 2.696 1750.00 5.353 4275.00 2.682 1775.00 5.307 4300.00 2.669 1800.00 5.26 1 4325.00 2.656 1825.00 5.2 16 4350.00 2.643 1850.00 5.171 4375.00 2.630 1875.00 5.126 4400.00 2.617 1900.00 5.082 4425.00 2.604 1925.00 5.03 8 4450.00 2.591 1950.00 4.995 4475.00 2.579 1975.00 4.952 4500.00 2.5 66 2000.00 4.910 4525.00 2.554 2025.00 4.868 4550.00 2.542 2050.00 4.827 4575.00 2.530 2075.00 4.786 4600.00 2.5 18 2100.00 4.746 4625.00 2.506 2125.00 4.706 4650.00 2.494 2150.00 4.667 4675.00 2.483 2175.00 4.629 4700.00 2.471 2200.00 4.590 4725.00 2.460 2225.00 4.553 4750.00 2.449 2250.00 4.5 15 4775.00 2.438 2275.00 4.479 4800.00 2.427 2300.00 4.443 4825.00 2.416 2325.00 4.407 4850.00 2.405 2350.00 4.372 4875.00 2.394 2375.00 4.337 4900.00 2.3 83 2400.00 4.303 4925.00 2.373 2425.00 4.269 4950.00 2.362 2450.00 4.236 4975.00 2.352 2475.00 4.203 5000.00 2.341 2500.00 4.171

                                            • AERSCREEN MAXIMUM IMPACT

SUMMARY

MAXIMUM SCALED SCALED SCALED SCALED

TEM-9002 09/29109 ENGINEERING DESIGt* J1FILE EDF-31 24-0012 Rev. 1 Rev. 0 Page 15 of 20 1-HOUR 3-HOUR 8-HOUR 24-HOUF ,.ANNUAL CALCULATION CONC CONC CONC CONC CONC PROCEDURE (ug/m3) (ug/m3) (ug/m3) (ug/ni [3) (ug/m3)

FLAT TERRAJN 16.81 16.81 15.13 10.08 1.68 1 DISTANCE FROM SOURCE 136.00 meters IMPACT AT THE AMBIENT BOUNDARY 0.2290E-04 0.2290E-04 0.2061E-04 0.1374E-04 0.2290E-05 DISTANCE FROM SOURCE 100mtr 1.00 meters

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 16 of 20 Attachment 2 Average ambient Pollutant Concentrations for Missouri Table 1. Levels of CO in Springfield Missouri Maximum Maximum Year 8-Hour Average 1-Hour Average (ppm) (ppm) 1993 5.4 14 1994 5.9 12 1995 5 9 1996 3.3 7 1997 5 7 1998 5.1 6 1999 4.1 5 2000 2.8 5 2001 4.3 7 2002 3.5 6 2003 2.4 4 2004 3.4 5 2005 3 5 2006 2.1 .4 2007 2.6 4 2008 1.3 1.9 2009--- - -1.5- ..--- 2.3 --

2010 1.9 2.3 Second Quarter 2013 1.1 2.3 Average (ppm) 3.35E+00 5.73E+00 Average ((gglm3) 3.84E+03 6.56E+03 Table 2. Nitrogen Dioxide -Hillcrest High School Springfield Year Annual Average Year (ppm) 1993 0.011 1994 0.013 1995 0.012 1996 0.011 1997 0.011 1998 0.012 1999 0.013 2000 0.012 2001 0.013 2002 0.0107 2003 0.0111 2004 0.012 2005 0.0115 2006 0.0104 2007 0.01 2008 0.0089 2009 0.0083 Through 3rd Quarter 0.0079 Average (ppm) 1.1OE-02 Average (ug/m3) 2.08E+01

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 17 of 20 Table 4. Inhalable PM10 -MSU Springfield Annual Average Maximum 24 hr Average Year (gg/m3) (gg/m3) 1993 18 38 1994 18 58 1995 17 44 1996 18 64 1997 15 51 1998 17 43 1999 18 45 2000 18 47.

2001 20 57 2002 18 46 2003 17 40 2004 16.7 36 2005 19.3 45 2006 15.7 35 2007 17.9 38 2008 15 39 2009 14 27 2010 17.2 36 2011 16.5 37 2012 16.9 38 Average(jgg/m 3) 17.16 43.2 Table 5. Inhalable PM-2.5 MSU Springfield Year Annual Average Year (ppm) 1999 12.24 2000 12.28 2001 12.2 2002 12.7 2003 11.7 2004 10.91 2005 13.01 2006 10.82 2007 11.8 2008 10.7 2009 9.55 2010 9.89 2011 10.92 2012 10.09 Average (ppm) 1.1 3E+0 1

TEM-9002 EDF-31 24-0012 09/29/ 09 ENGINEERING DESIGN FILE Rev. 1 Rev. 0 Page 18 of 20 Table 6. Sulfur Dioxide MSU Springfield Year Annual Average Year (ppm) 1993 0.003 1994 0.005 1995 0.002 1996 0.003 1997 0.002 1998 0.003 1999 0.004 2000 0.003 2001 0.004 2002 0.003 2003 0.002 2004 0.0014 2005 0.0017 2006 0.0019 2007 0.0018 2008 0.0022 2009 0.0022 Average (ppm) 2.66E-03 Average (*g/m3) 6.97E+00

TEM-9002 EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 DESmiGNtIL Page 19 of 20 EGNEINGrat

Attachment:

Excel spread sheets of calculations Inpur Data from Vista Process 10000 pph 934.52 Btu/lb 111111 h for steam at 25 psi& ________

____ 9345 Mbh

______ 75% [Boiler Efficiency________

_______ 12460 Mbh Fuel energy content________________

____ 12460 ft3/hr Gas Consumption 0.01246 1.046662 lb/hr

______ 30% ___ Excess Air____ ___

~Flue gas flow rate for each of two boilers

~Flue, vendor information

  • ~~Flue gs velocit HVAC 962Mh Peak HVAC heating demand Flue gas flow rate frec ftobies ____

~Flue, vendor information Flue as velocity_ ____ _ __ _ _ _ __ _ _ _

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0012 09/29/09 Rev. 1 Rev. 0 Page 20 of 20 Peeuauil 10000 i5J45 I 7:P% 124)l 12460 Wva2 100 7 P

_ 1H 2 P* ELIEL. I ~

~/fr)3.& tlb~h9 3.6 (,imU.& Dii~ a-i ,m- li- I m i5 i +AlitJI t.F;*0 *,' I I,0 .4 11 4 0W L4 IJP.-.*O 2*1WJ1 */0

-- I IMLOZ I 810 1 LSELO1 I o~ 16 liE-CO I 10SE..60 I SIE.~CO I 2t25.(O I 6A7E~0CI416~E l134o0(16b): _____

1flF -OI -. - L42FO 0AL0 3 2 4-O I.IF*0

__ O______ 0.6 ___

I ZIOG,0I167L6 I.. sl it,1 12]IE.0]

3i0E.02 I 006 I IS5!~02 I 0.00 0.13 2.31L01 OI 1oA1L01 SCOmlm 120.00 zmos '~'-~' '~- I ~" s~ss, so~o. J ~ I Mat 51.~mUi~. mdi W)dIuhC~i ba*i~tC akiusm k~.m ThufEL~a1mIMIm8Itpemuu4bu.

.*y.u4.bimat~RL1S~Rfl ~amd TmdRI h~

.. damd~aimd~ua...~L Cc~a1bULkl~

~Iut*s ~ Tb~

PMut~. uuWcc.4~ ~t~wEinfl~

Ctlillilli 3mlawmiu' I wmdii catm.,lo O*

  • i*iid tll l
  • 11 tilt4

NWMI-201 5-RAI-001

  • ;.~:"NOhWESMEICI$T Rev. 0 Appendix D -

EDF-3124-0013, On-Road Emissions for Vehicles During Operation 0-i

Document ID: EDF-3124-0013 Revision ID:1 Effective Date: July 31, 2015 Engineering Design File On-Road Emissions for Vehicles During Operation Portage Project No.: 3124 Project

Title:

NWMI Environmental Report Portage TEM-9002 09/29/09 Rev. 0

TEM-9002 ENGINEERING DESIGN FILE EDF-31 24-0013 09/29/09 Rev. 1 Rev. 0 Page 1 of 5

1. Portage Project No.: 3124 2. Project/Task: NWMvI Environmental Report
3. DCN#

4.

Title:

On-Road Emissions for Vehicles During Operation 5s. NIPHPC orSDC: N/A

6. SSC Safety Category: N/A 7 Summary: This EDF provides a calculation of the on-road emissions associated with vehicles during the operation of the RPF.

7 Distribution: (Portage, Inc.)

7. Review (R) and Approval (A) Signatures:

_(Identify minimum reviews and approvals. Additional reviews/approvals may be added.) .

Printed Namer R/A Organization Signature Date Author/Design Agent a Gary McManus * "(*T) )~d '-* 7/31/15 Independent Review R Dave Thorne d@ ,*7/31/15 Independent Review R Project Manager R/A John Beller 7/31/15 Registered Professional Engineer's Stamp (if required) Z]N/A

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-3124-0013 Rev. 1 Rev. 0 Page 2of 5 INTRODUCTION AND PURPOSE During the operations phase, vehicular air emissions would result from the commuting workforce and from routine deliveries to/from the proposed RPF. The California Air Resources Board Emission Database (EMFAC201 1 http://www.arb.ca.gov/emfac/) was used to calculate on-road vehicle emission factors for this period. The model estimates vehicle emission factors based on fuel type, vehicle type, vehicle speed, and climatological normal for temperature and humidity The volume of traffic generated during operations would be considerably lower than that expected during construction. Additionally, the lands on the developed RPF site are either developed surfaces (buildings, paved parking/access road) or consist of either agricultural or landscaped uses. Consequently, limiting routine vehicle use to paved areas would reduce emission of fugitive dust. In summary, impacts from vehicular air emissions and fugitive dust during operations would be far less than during the construction phase.

ASSUMPTIONS On-road vehicle emissions were calculated using emission rate in grams(g)/(vehicle miles traveled) +

g/day(idle) + g/day(starting). Total mileage estimates for on-road vehicles during the construction period are shown in Table 1. Calculations used to obtain the estimates are based on an average work force of 100 vehicles per day using a specific vehicle ratio (60% light-duty autos, 30% light-duty gas trucks, and 10%

light-duty diesel trucks) and a round trip of 40 mi/day. The vehicles include construction vehicles, delivery trucks, and employee vehicles. Though RPF operations are assumed to occur for 50 weeks a year to allow for two weeks of maintenance and outages. On-road vehicle use is assume to occur for 52 weeks a year to account for personnel and deliveries that occur during maintenance and outages.

Table 1. Total Mileage Estimates for On-road Vehicles during Operation Elquipment Activity Duration Total distance Traveled (quantity) (months/days) (kin) Miles Workforce travel (60) Commute - light duty gas vehicles (12/260) 1,004,230 624,000 Workforce travel (30) Commute - light duty gas trucks (12/260) 502,116 312,000 Workforce travel (10) Commute - light duty diesel trucks (12/260) 167,372 104,000 Estimates of the on-road vehicle emissions factors for different type vehicles for criteria pollutants and carbon dioxide (CO2) are provided in Tables 2 through 4 below. These values are from the EMFAC series of models.

TEM-9002 ENGINEERING DESIGN FILE EDF-3124-0013 09/29/09 Rev. 1 Rev. 0 Page 3 of 5 Table 2 Emission Factor from EMIFAC20l11 (Running)

CO NOx CO2 PM10 PM2.5 SOx Vehicle Type (/ie Light Duty Auto (gas) 1.31E+00 1.24E-01 3.49E+02 1.89E-03 1.73E-03 3.51E-03 Light duty Trucks (gas) 3.27E+00 3.36E-0i 4.02E+02 4.39E-03 4.01E-03 4.07E-03 LgtdtTrcs3.36E-01 6.70E-01 3.56E+02 6.11E-02 5.62E-02 3.40E-03 (diesel)

Table 3 Emission Factor from EM7FAC2O1 1 (Idling)

CO NOx CO2 PM10 PM2.5 SOx~

Vehicle Type (g/vehicle/day)

Light Duty Auto (gas) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.OOE+00 Light duty Trucks (gas) 0.O0E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 LgtdtTrcs0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 (diesel)

Table 4 Emission Factor from EMFAC20 11 (Stationary)

VhceTp VeilyeCO NOx CO 2 PM10 (g/vehicle/day)

PM2.5 SOx Light Duty Auto (gas) 1.73E+01 1.13E+00 4.64E+02 1.86E-02 1.7E-02 4.95E-03 Light duty Trucks (gas) 3.90E+01 2.13E+00 5.14E+02 3.37E-02 3.08E-02 5.84E-03 LgtdtTrcs0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 (diesel)

From Tables 1 through 4, the total emissions for each of the types of vehicles was calculated as shown below:

The equations used to calculate total vehicle emissions are as follows:

Total emission = emission (running) + emission (idling) + emission (stationary)

Emissions while running = EFRi (days of operation) (miles/day) (number of vehicles)

Emissions while idling =EFIi (days of operation) (number of vehicles)

Emissions while idling = EFSi (days of operation) (number of vehicles)

Where:

EF~i = the individual emission factor for each pollutant, i.e. CO, NOx, C0 2 , PM10, PM2.5 and SOx

TEM-9002 09/29/09 ENGINEERING DESIGN FILE EDF-31 24-0013 Rev. 1 Rev. 0 Page 4of 5 Example for Light Duty Gas Autos (GO)

CO EFR = 1.3 1E+00 g/mile x 624,000 miles

= 8.17E+05g CO EFl = 0.00+00 g/vehicle/day x 60 vehicles x 260 days

- 0.00E+00 g CO EFS = 1.73E+01 g/vehicle/day x 60 vehicles x 260 days

=-2.70E+05g Total CO Emissions = 8.17E+05 g + 0.00E+00 g + 2.70E+05 g 11.09E+06 g (2.40E+03 lbs)

Similar calculations were performed for all of the vehicles listed in Table 1. The results are shown in Table 5 below.

Table 5. On-road emissions from construction Activities co NOx CO 2 PM-b1 PM-2.5 SOx Vehicle Type Fuel (kgs) (Ibs) (kgs) (ibs) (kgs) (lbs) (kgs) (bbs) (kgs) (lbs) (kgs) (Ibs)

Light Duty Gas 1,085 2,392 95 210 225,239 496,569 1 3 1 3 2 5 Autos LgTrDutys Gas 1,323 2,917 122 268 129,506 285,513 2 4 1 3 1 3 LgTrutks Diesel 35 77 70 154 37,004 81,580 6 14 6 13 0 1 Total (kg or lbs) 2,443 5,385 286 631 391,748 863,662 9 21 9 19 4 9 Total (tonnes or tons) 2.4 2.7 0.3 0.3 392 432 0.009 0.010 0.009 0.010 0.004 0.004

EMFAC20OR EmissionRates Type:Statewide Region Region:

California o o~r ccN2 CalendarYear:2015 Season:Annual Vehicle Classification:

EMPAC2RO1 Categories Running - dli~ng Region CalYr Season Veh_.Class Fuel MdlYr Speed CO NOR COO PMIR PM2_s tOg I CO "NOR COO PM1O PMOG GOR J CO NOR COO PMIO PM2._ ROE (miles/hr) (gins/ssile) [gms/vehlcle/duy) ~dling 1.73E+01 (gms/vehslce/day) 49E0 StatewIde 2015Annual LDA GAS Aggregateckggregated 1.01E+00 1.24E-01 3.49E+02 1.RRE-R3 1.73E-003.51E-03 0 0 0 R 0 R 1.7+103E+004.E4E+021.8Et-S020.706-SO402 0R Statewide 2015Annoal LDT1 GAS AggregatecAggregated O 0 0 R 0 R ORO0nRD12.O3EO+000.46+R203.376-023R.ORE-0205'S.E4E-R Statewide 2015Anoual LDT1 DRI AggregatecAggregated 3.36E-Ri 6.70E-01 0.566+02 R.10E-R2 5.620-02 0.40E-03 0 0 0 R S S Miles CO NOR COO PMOE 'MO2_5 00O Vehicles Days CO NOR COO 624,0R0 6.15E6+05 260 0 0 PM0R O PMO._5 0 ROE R Vehicles 60 Gays 060 2CO+50 O.R 10NOR 7.24E+06

.776+04 COO O.ROE+0O PMIOR2.RSE+02 ROE PM2... 7.72E+01]

lightDutyAuto gas lightsOt/Truck gas 302,000 1.O2E.+]6 0.05E+05 1.2E5E 08 .37E+000.25E+031.276+0 300 260 0 0 O 0 R 300 260 3.04E+0051.66E+O44.61E+05O.60E+RO22.40E02 4.56E+01 LightDutyTruck diesel 004,0oo 3.401+04 E.RRE+040.70E+07 0.35E+035,.85E+R3 ,53E+R2 10 260 .R 0 O 0 R0 O 260 0.006+000.00E+000.EO0E+00 0.00E+000,000+00 0.00E+00 CR t60x CO, P01-to PM2StS VstlsteTtye Fontl itus) Phe) 1005) yhn) I* 0ni So'go) Old) flu b* ks) Os ightliylu3At gos 1,RR5 2,002 92 210 2252,9 400,369 1 3 l 3 2 Jt Truok *s 1,322 O,R17 [ 122 2RR 129.300 IRSOI3 2 4 I T'ostz c

TeozloDt dksel 05 2443 } 77 50360 7n[i 290 104 631 37.004 Ri,5tS 001,746 603,662 0 S 4 21 6

9 1

i h'i To0tdiol (t)2.4 2.7 0.0 0.3 392 432 R.009 00OlO 0.009 .00 .04 .004 z 0

i m

h"m z

"0 i-rn CD.

NWMI-201 5-RAI-001

  • .,'Nn'WMS*D*ISOO* Rev. 0 Appendix E -

Northwest Medical Isotopes, LLC Alternative Site Evaluation E-i

1111111 II PU WAT1m P'UW D w euraE WASTI MAN(T CA*W AES P03t 3....AL alU Ar/3l U3IRU31~iWA1Ul WW*~M AJIS3XUVU

  • TAIt OI~J.T~ -e~

,mtru, iss iw 31W YAMu AII

.3 1 MIRTH WEST MEDICAL ISOTOPES, 118 ALTERNATIVE SITE EVALUATISH

'U..NWMIl

. J* III~l Altermative Sits Locatiosm J* * !_. .. .II inJ~k...

i~niifi iii n .........iJ_. !i![!!

1!F! I l-T ........rrt Imlllll mflI]I_-.

> University of Missouri Research Reactor (MURR) - Columbia, MO

>. Discovery Ridge Research Park -Columbia, MO

> Oregon State University (OSU) - Corvallis, OR

> McClellan Business Park (McClellan) - Davis, CA

- University of California at Davis (UC Davis) Research Reactor located at McClellan NDU

\, ' -,, U

-\\ LO

, III,I , . . .... ... Y. *. ] ....... IIH ....1 Site Selectlen Criteria

... r] . 1! 1.. o 1,, I11 1 lf ......... Ill ...

Political and local Ability of NWMI to leverage connections for local logistical 10 logistics support support, based on regional politics and importance of project to economic develooment Production logistics Number of 6-day Ci processed and delivered to distributor 10 Radioactive, hazardous, Site ability to meet Federal, State, and local requirements and 8 and mixed secondary availability of waste disposition pathway waste generation (i.e., air, liquids, solids)

Federal and State taxes Includes costs associated with sales tax, property tax, corporate 3 and incentives income tax, hiring credits, etc. Criteria does not include RPF ownership and lease terms; these would be dealt with by NWMI separately Construction costs Site-specific cost estimates; variations in labor rates and materials; 2 and construction indices Total Weight 60

  • ej WM

Scoring Details mmdii Ressuht

--6~ S -

40: 1 10 Facility operations 4 40 4 40 3 30 3 30 Txitingitc4 40 2 2 30 3 30 Transportation 4 32 4 32 2 16 3 24 Federal, State, county, and local require- 4 20 4 20 4 20 2 10 ments to construct and operate facility Feiaadtttxsnicnie 5 5 '15 391 3 Available space 5 15 3 9 1 3 2 6 Constr tiiiviosts4i8 4 3 6 Natural or human-made disaster potential 3 3 3 3 4 4 2 2 Iii:~i Wei*,hted Percentaae 82% 73% 63% 489'0

~.NWMI uSflmUTinA+/- IUIWS

........ .. i / T III

. ............ .. l r .. ...... . I IIII

/llll_ ,,,,I II l ri i flrilrT iiiiii SUtilized SMART decision analysis methodology for site evaluations*

Reference:

  • Based on Department of Energy's Guidebook to Decision-Making Methods (WSRC-IM-2002-00002)

SDeveloped a list of site-specific criteria

  • Criteria weighted by their importance to NWMI's business plan
  • 10 = most important, 1 = least important

) Each site scored on a scale of 1-5

  • 5 = most favorable, 1 = least favorable

) Weighting applied to the raw scores to determine a total score for each location

/~ iNWM I 1,I°T I~aEV

Elseovery Bilge Characteristics

> Location

  • Columbia, MO is -125 miles west of St Louis, MO, on Highway 70

> Existing Conditions

  • Site is on ground that has been historically used for agriculture

> Roadways

  • Located near Highway 70; 5 miles from MURR (Columbia, MO)
  • No current roadway weight and height restrictions exist
  • Sufficient for transport of BRR Casks used for irradiated targets

> Utilities

  • Required utilities are available through MU

> Land Use

  • Land use is presently set aside for a technology research park/industrial

> Soils

  • Soils are characterized by medium and narrow ridges with moderate to steep side slopes
  • Soils are clayey and formed inloess over glacial till; loess is thin or nonexistent on the side slopes
  • Area is broken up by a number of narrow and medium-sized stream bottoms
  • Soils report will be completed prior to RPF construction

> Groundwater

  • Average depth to groundwater inColumbia, MO vicinity is ~180 feet

> Environmental Site Conditions

  • Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537

@ NWMI _ _ _ _ _ _ _ _ _ _ _

Current Dilscsvsry IRidge Laysut PhimI 13L0,0,t PlmE lOAM Fts212* Ac

/

I, I

  • NWMII W* frMT tA

Prelimimary RPF Iiscovery Ridge Site Laysut

...... .,I,,I, , ..... , ,. .... .... . . ... . . . . . . . .

a in a mu EUU DEED flUME U

~WEUYUt~M

MUIR Site Characteristics I> Location

  • Columbia, MO is -125 miles west of St Louis, MO, on Highway 70

> Existing Conditions

  • Potential RPF site is adjacent to existing building on a partially paved parking lot
  • Direct connection to existing reactor may require below ground construction

> Roadways

  • MURR is located near Highway 70; Just off main campus of University of Missouri (Columbia, MO)
  • No current roadway weight and height restrictions exist
  • Sufficient for transport of BURR Casks used for irradiated targets

> Utilities

  • Required utilities are available within MURR

> Land Use

  • Potential RPF site is on University of Missouri's campus and adjacent to MURR
  • Land is available for industrial use

> Soils/Groundwater

  • Sameas DR

> Environmental Site Conditions

  • Prior to RPF construction, an Environmental ReportWil becmpee n D S!NWMI

EUR, - rlllll r ....

CurrentLayout/

IIII IIIIIII

... I

....... .... ...... /I/II ..I!1 IIII,,,ID RPF Layout

. .....ilIl I ,t

  • NW/MI

OSUE Site Characteristics

>. Location

  • OSU is located near the I-5 corridor inCorvallis,i OR (- 80 miles south of Portland, OR)
  • RPF site is adjacent to OSU Radiation Center (off SW Jefferson Way and SW 35th Street)

> Existing Conditions

  • Potential RPF site -- immediately to the east of the reactor
  • Utilizing site would require relocation of two existing laboratory buildings and rerouting transportation access to reactor bay (i.e., modify roads)

> Roadways

  • Access to OSU from I-5 requires traveling on the Corvallis-Lebanon Highway
  • Maximum weight limit of 80,000 lbs
  • Sufficient for transport of BRR Casks used for irradiated targets

OSE Site Characterlstics (cmnii

> Utilities

  • Sewer, water, and electrical are available (i.e, on 35th street)

>. Land Use

  • Site is part of OSU Master Plan and inSector Bof the Corvallis City Zoning Code
  • Sector requires 33% open space and allows for maximum building height of 75 ft and a minimum setback requirement of 40 ft from collector streets

> Soils

  • According to the USDA
  • Soils on flood plains along Willamette River are well drained

° Lower foothills around the western margin of the valley are underlain by soft to hard sedimentary rock, which has restricted permeability

  • Foothills are subject to earthflow and slumping, erosion, and varying cut-slope stability
  • Soils report will be completed prior to RPF construction

> Groundwater

  • Water table varies between 10 and 25 feet below ground surface

> Environmental Site Conditions

  • Prior to RPF construction, an Environmental Report will be completed per NUREG-1 537

~NWMI

OSU, - CurrentSite Layout/

....IIIIII

... ........ l llI III lI * ..........

mPF' Layout 1[" I il" " lI TII . . .

PreliminaryRPF Layout I

Current OSU Layout WMIM

.. U.,.
t II VNVU n I¥11t

McClellan Site Characteristics

> Location

  • UC Davis, McClellan Nuclear Research Center (MNRC) is located off campus at McClellan Business Park, 10 miles northeast of Sacramento, CA near I-5 corridor
  • McClellan Air Force Base was closed in 1995 and privatized from 1995-2003 (i.e.,

McClellan Business Park)

> Existing Conditions

  • -45,000 sq ft clear span, high bay building --200 ft from reactor has been identified as potential site for RPF
  • Existing infrastructure (i.e., buildings, roads) meet current CA seismic codes

> Roadways

  • McClellan Business Park is located along 1-80 and is served by 4 major interchanges. Watt Avenue boarders McClellan to the east
  • No current roadway weight and height restrictions exist
  • Sufficient for transport of BURR Casks used for irradiated targets

-l vmms uiNWMI0 1

Ecl~lellam Sits Charactsristics (cent]

> Utilities

  • McClellan Business Park provides three dedicated electrical substations
  • Power is available at existing building
  • Water and sewer are available at or near existing building

> Land Use

  • McClellan Business Park and potential site resides in Core Airfield/Industrial district
  • Designated for manufacturing, light industrial and high-tech uses
  • Special Planning Area designation within Sacramento County's zoning ordinance

> Soils

  • Soils in urban areas of Sacramento County have been drastically altered during development of Air Force Base and privatization efforts
  • Cut areas consist mainly of truncated San Joaquin soils; Durixeralfs
  • Filled areas, which were once low areas, now consist of as much as 20" of physically mixed soil material; Xerarents
  • Soils report will be completed prior to RPF construction

> Groundwater

  • Depth to groundwater inSacramento County varies between 2- 420 feet basin-wide

> Environmental Site Conditions

  • Prior to RPF construction, an Environmental Report will be completed per NUREG-1 5370

~FNWMI

.o. m5,uiu+/-i:w

. ...J,.. .. llllllll l BFI]I))]I))

. . .. II

- CurrentSits Layout/

IIIII I I I ,,,j,/

RPF Layeut IIIl lTl))ff r lrrr rrrrrrT

ii f i p _ .. .J,,*L ii J

4 Preliminary RPF Layout Lo1 4

N.

I i1~ --1 Current McClellan Layout M~n S~.

3rwm~

5 22A A~

1'

  • .NWMI

-IN*lZ JG LOT 15 P.S WrATUl PW* UQD PLaR WAre SCtmCL Elhu._* WA*h MAILIT -AIEpf r w gvwQI Ia WAIrn 11WIAgl3 TMq AWD wm~lrETAlS mLOT 3 uwrum I-urnt

=4PV IIWVA FIT

£ N L*wl R-ar IMW A smftA NORTH EST MEEIDAL ISITIPES, LII ALTERNATIV SITE EVAUATION -DETILEE SI

  • , W mN~a M........

Psilitcal and Local Logistics Support

> DRIMURR

  • University has high-level of political and local support and local and county ties
  • NWMI Team Member MURR has extensive connection with state and local network; however, NWMI should not expect as much support as in Oregon
  • University and State of Missouri are aware of MURR's capability and current/previous 99Mo endeavors, and relationship with DOE-N NSA and 99Mo community

> OSU

  • NWMI has strongest network inOR; Samaritan and OSU have significant state and local ties
  • NWMI has been introduced to Oregon Governor
  • State of Oregon (including OSU) has significant interest in99Mo business model due to FTE generation as well as educational and R&D aspects

> McClellan

  • Limited local political support and local and county ties
  • California unlikely to have significant interest in99 Mo business due to nuclear aspect and minimal FTE generation (i.e., less than 50 FTEs)

DR MURR OSU McClellan 4 4 4 1 BEUMIED I III VYMI

..................!!ll l I I I FFI]H HF((

Sperations l .........I

................................. . ...F[r*Fr II SDiscovery Ridge

  • NWMI would manage RPF
  • No reactor onsite

> MURR

  • RPF to be entirely staffed and operated by university; NWMI and MURR would co-manage RPF
  • Will require a multi-story building due to land constraints and current research reactor facility layout; may present design/construction and operational challenges

> OSU

  • Limited involvement in RPF operations; NWMI would manage RPF
  • Reactor will be co-located with RPF
  • Will require a multi-story building due to land constraints and current research reactor facility layout; may present design/construction and operational challenges
  • "Educational/R&D area" will need to be part of RPF (not requested by UC Davis or MURR)

> McClellan

  • No involvement in management and operations of RPF since itwill not be housed on UC Davis campus; proposed site is part of McClellan Business Park (which privatized McClellan Air Force Base in2003 and has a 99 year lease)
  • NWMI would manage RPF
  • Reactor located in McClellan Business Park and would be adjacent to proposed RPF location (within --200 ft)
  • Design and construction of transportation corridor required DR MURR 0 SU i~!i;!l!!~!i~~iiM cClellanil 4 4 3 3

&WMJa

Preductlen Isgistlcs

> Time product spends in transit and processing determines delivered target activity SPrimary irradiation reactor is MURR/Secondary reactors are OSTR and hypothetical third reactor

>Transportation Distance RPFLocation: DR/MURR RPF Location: OSU RPF Location: McClellan

.. ~ -. .~ . I - - .- . - S -- S *~ S I Covi i,OR iii~ 200mi (40 hr) Corvallis, OR 0 Corvallis, OR 50nii 1 i McClellan, CA 1800 mi (35 hr) McClellan, CA 520 mi (12 hr) 0 McClellan, CA Columbia, MO 20o0(40ohr)

Columbia, MO Irradiated LEU Target Processing/Product Conditioning and Packaging

  • All sites will have same processing and product conditioning timeframes DR MURR McClellan 4 2 3 3

~NW¢MI

Trahnsprtation

> Two high-priority transportation activities can effect 6-day curies delivered

  • Irradiated target to RPF via ground
  • 99Mo Product to Distributor via air or ground

> Based on FEMA disaster declarations (1964-2007)

  • Transportation route between OSU and McClellan has a slightly greater density of disaster declarations than route between either location and DR/MURR
  • All routes require crossing significant mountain ranges, which may result indelays due to inclement weather
  • IfRPF is located at DR/MU RR, more Rocky Mountain crossings may increase probability of delays 0 0 DR MUR QSU Mclellan

' NWMI-------

Waste Generation SRadioactive and Mixed Wastes

  • All potential RPF locations have a radioactive/mixed waste disposition pathways
  • Missouri (DR/MURR) sends waste to Waste Control Specialists, Inc. (located inTX) - two state borders will be crossed during transport
  • Oregon (OSU) sends waste to U.S. Ecology located on the Hanford Nuclear Reservation (located inWA) - one state border will be crossed during transport
  • California (McClellan) sends waste to Envirocare Inc. (located in UT) - two state borders will be crossed during transport SHazardous Waste
  • All potential RPF locations have disposition pathways for all types of hazardous waste
  • Disposal costs are expected to be more expensive in CA than in OR or MO (cannot be evaluated until more is known about type and quantity of waste)

. S DR MURR OU Mleln 4 4 4 3

  • MI________________

Feisral, Stats, and Loceal Iequlremsents SNRC licensing requirements (NUREG 1537) should not vary between sites because these are Federal requirements

>Environmental Report (being developed under NUREG 1537 and NEPA) should not vary between sites; each site already has an existing research reactor within close proximity SState and local requirements are expected to be most significant at McClellan and less at OSU and DR/MURR SAir quality permitting and seismic design criteria are important aspects of the project but differences between locations are not anticipated to be significant SPublic Involvement (according to all Federal, State, and local requirements) is expected to be more significant at McClellan and less at OSU and DR/MURR S 0 DR MURR :OSU Mlellan 4 4 4 2 4 NWMI wIii~iii*5t WALiiii~i iii*

Feisral ani Stats Taxes anl incesntives

  • > Sales tax on equipment and construction materials
  • MO sales tax = 4.225%; Equipment/supplies exempt; Construction materials non-exempt
  • OR has no sales tax
  • CA sales tax = 7.75%; Equipment or construction materials non-exempt SCorporate Income Tax
  • Missouri: 6.25%
  • Oregon: 7.60%
  • California: 8.84%

(Note: single sales factor apportionment is available in all 3 states; may be subject to income tax where product is sold)

SProperty Tax

  • University properties (OSU and DR/MURR) present opportunity for reduced property taxes based on the ownership model of government-owned facilities
  • McClellan does not appear to offer reduced property taxes
  • Cost savings will be determined by lease negotiations SIncentives

Available lpames

> Discovery Ridge

  • Greenfield Location (Agricultural for many generations)

SMURR

  • Site has sufficient space for initial build and has ability for limited future expansion (next to Research Reactor)

> OSU

  • Facility will be constructed on mostly greenfield (undeveloped) area on the 0 SU campus (Northeast and East of Radiation Center)
  • Site has sufficient space for initial build and has ability for future expansion
  • RPF will need to include space for OSU educational and R&D use SMcClellan
  • Site has sufficient space for initial build and has ability for future expansion (,,-250 feet away from UC Davis Research Reactor)
  • RPF will have to fit within existing infrastructure; improvements can be made

~0

  • DR MURR OSU McClellan 5 3 I 2
~ NWMI

Construction Costs SRS Means City Construction Cost Indexes

  • DR/MURR (Columbia): 95.4
  • OSU (Corvallis): 98.6
  • McClellan (Davis/Sacramento): 109.9 SDiscovery Ridge
  • Site has existing infrastructure and few restrictions to building design
  • Construction cost expected be similar to OSU SMURR
  • Site has existing infrastructure and few restrictions to building design
  • Construction cost expected be similar to OSU

> OSU

  • Site has existing infrastructure and few restrictions to building design
  • Site may require demolition and reconstruction of existing laboratory buildings

> McClellan

  • Site has existing building and infrastructure resulting inslight cost savings
  • Existing building may require structural/mechanical modifications to meet code which will increase costs
DR MURR OSU Mc~lellan 44 3 3
  • NWMI,,u.

Natiurl anl Man-Male Disaster Potential

  • Discovery Ridge/MURR (Boone County)
  • Has most disaster declarations (storm and flooding plus tornado) but low-to-no earthquake risk SOSU (Benton County)
  • Has fewest disaster declarations (mostly storm and flooding) and a moderate to low earthquake risk

>" McClellan (Sacramento County)

  • Has more disaster declarations than OSU and less than MURR (mostly storm and flooding) and a higher earthquake risk Pm'ob*Ry of mfu~wtiuk wilb Mz 4.75 wli*t 50 yelu &50klm' UeP e,,*u= *m 4 djd Le,.

Mclela -Earthquk Risk Map OSU Ma

-cEaelhquakeaRisk i . 0.....

r, Discovery RidgeIMURR - EarthquakeRisk Map

- S 0

-I -D UR S clla 3 3 4 2 NW2M I..........