ML18072A013: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 01/31/2018
| issue date = 01/31/2018
| title = WCAP-18295-NP, Revision 0, Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis, Using Leak-Before-Break Methodology.
| title = WCAP-18295-NP, Revision 0, Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis, Using Leak-Before-Break Methodology.
| author name = Kirby C R
| author name = Kirby C
| author affiliation = Westinghouse Electric Co, LLC
| author affiliation = Westinghouse Electric Co, LLC
| addressee name =  
| addressee name =  
Line 18: Line 18:
=Text=
=Text=
{{#Wiki_filter:ENCLOSURE 7 TO AEP-NRC-2018-02 WCAP-18295-NP, Revision O "Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology" (Non-Proprietary)
{{#Wiki_filter:ENCLOSURE 7 TO AEP-NRC-2018-02 WCAP-18295-NP, Revision O "Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology" (Non-Proprietary)
I I I . WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-18295-NP Revision 0  Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology Westin house .. ,* .. , g ,, ... ,. ' January 2018 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-18295-NP Revision.O Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology January 2018 Author: Christopher R. Kirby* Structural Design and Analysis -I Reviewer: Eric D. Johnson* Structural Design and Analysis -II Approved: Benjamin A. Leber, Manager* Structural_ Design a11:d Analysis -II *Electronically approved records are authenticated in the electronic document management system. Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066, USA © 2018. Westingho:use Electric Company LLC All Rights Reserved *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 iii TABLE OF CONTENTS 1.0 Introduction ......................................................................................................................................... 1-1 1.1 Purpose ................................................................................................................................. 1-1 1.2 ScopeandObjectives ............................................................................................................ 1-1 1.3 References ............................................................................................................................. 1-2 2.0 Operation and Stability of the Reactor Coolant System .................................................................... 2-1 2.1 Stress Corrosion Cracking .................................................................................................... 2-1 2.2 Water Ham1ner ...................................................................................................................... 2-2 2.3 Low Cycle and High Cycle Fatigue ...................................................................................... 2-2 2.4 Other Possible Degradation During Service of the Accumulator Lines ............................... 2-3 2.5 References ................................................................. , ........................................................... 2-3 3.0 Pipe Geo1netry and Loading .......................... : ................................................................................... 3-1 3.1
* Calculations of Loads and Stresses ..... : ........................ : ................ : ....... : ......................... : ..... 3~1 3.2 Loads for Leak Rate Evaluation ................................................... ; ....................................... 3-1 3.3 Load Combination for Crack Stability Analyses .................................................................. 3-2 3.4 References ............................................................................................................................. 3-3 4.0 Material Characterization ................................................................................................................... 4-1 4.1 Accumulator Line Pipe Material and Weld Process ............................................................ .4-1 4.2 Tensile Properties .................................................................................................................. 4-1 4.3 Reference .............................................................................................................................. 4-1 5.0 Critical Locat.ions ........... , ................. , ....... , ........ , ....... , ........ , ....... , ................. , ........ ,. ....... , ......... ,. ....... , ...... 5-1 5 .1 Critical Locations .................................................................................................................. 5-1 6.0 Leak Rate Predictions ........................................................................................................................ 6-1 6.1 Introduction ........................................................................................................................... 6-1 6.2 General Considerations ................................................... : ..................................................... 6-1 6.3 Calculation Method ............................................................................................................... 6-1 6.4 Leak Rate Calculations ......................................................................................................... 6-2 6.5 References ............................................................................................................................. 6-3 7.0 Fracture Mechanics Evaluation .......................................................................................................... 7-1 7 .1 Global Failure Mechanism .................................................................................................... 7-1 7.2 Local Failure Mechanism ..................................................................................................... 7-2 7.3 Results of Crack Stability Evaluation ................................................................................... 7-2 7.4 References ............................................................................................................................. 7-2 8.0 Assessment of Fatigue Crack Growth ................................................................................................ 8-1 8. I References ............................................................................................................................. 8-1 9.0 Assessment of Margins ...................................................................................................................... 9-1 10.0 Conclusions ...................................................................................................................................... 10-1 Appendix A: Limit Moment. ......................................................................................................................... A-1 WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 LIST OF TABLES Table 3-1 Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines ....................................................................... 3-4 Table 3-2 Summary ofD.C. Cook Unit 2 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines ....................................................................... 3-5 Table 3-3 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop l ................................................................................. 3-6 Table 3-4 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for IO-inch Accumulator Injection Line Loop 2 ................................................................................. 3-7 Table 3-5 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 ..... ; ....... .-........ ; ................ ; ....... .-........ ; ....... .-........ ; ....... 3-8 Table 3-6 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for IO-inch Accumulator Injection Line Loop 4 ................................................................................. 3-9 Table 3-7 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for IO-inch Accumulator Injection Line Loop l ............................................................................... 3-10 Table 3-8 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 ............................................................................... 3-11 Table 3-9 Summary ofD.C Cook Unit 2 N_ormal Loads and Stresses for 1~-inch . . . Accumulator Injection Line Loop 3 ............................................................................... 3-12 Table 3-10 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 ............................................................................... 3-13 Table 3-11 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop l ............................................................................... 3-14 Table 3-12 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 2 ............................................................................... 3-15 Table 3-13 Summary of D.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 3 ............................................................................... 3-16 Table 3-14 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 4 ............................................................................... 3-17 Table 3-15 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 1 ............................................................................... 3-18 Table 3-16 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 ............................................................................... 3-19 Table 3-17 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 3 ............................................................................... 3-20 WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation) iv WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-18 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 4 ............................................................................... 3-21 Table 4-1 Mechanical Properties for IO-inch Accumulator Lines Material at Operating Temperatures for D.C. Cook Units 1 and 2 ..................................................................... .4-1 Table 5-1 Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for IO-inch Accumulator Lines and Critical Locations ................................... 5-1 Table 6-1 Flaw Sizes Yielding a Leak Rate of 8 gpm for the D.C. Cook Unit 1 and 2 10-inch Accumulator Lines ................................................................................................... 6-3 Table 7-1 Stability Results for the D.C. Cook Unit 1 and 2 IO-inch Accumulator Lines Based on Limit Load ........................................................................................................ 7-3 Table 9-1 Leakage Flaw Sizes, Cri_tical Flaw Sizes and Margins for D.C_. Cook Units 1 and 2 10-inch Accumulator Lines ........................................................................................... 9-1 WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation) V Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 3-5 Figure 3-6 Figure 3-7 Figure 3-8 Figure 3-_9 Figure 5-1 Figure 5-2 Figure 5-3 Figure 6-1 Figure 6-2 Figure 6-3 Figure 7-1 WESTINGHOUSE NON-PROPRIETARY CLASS 3 LIST OF FIGURES 10-inch Accumulator Line Layout Showing Segments for D.C. Cook Units 1 and 2 ............................................................................................................................... 3-22 D.C. Cook Unit 1 Accumulator Line Loop 1 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-23 D.C. Cook Unit 1 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-24 D.C. Cook Unit 1 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-25 D.C. Cook Unit 1 Accumulator Line Loop 4 Layout Showing Weld Locations
* with Node Points .... ; ....... ; ....... .-........ ; ....... .-........ ; ....... .-........ ; ....... .-........ ; ....... .-........ ; ....... ; .. 3-26 D.C. Cook Unit 2 Accumulator Line Loop 1 Layout Showing Weld Locations* with Node Points ............................................................................................................ 3-27 D.C. Cook Unit 2 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-28 D.C. Cook Unit 2 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-29 D.<;. Cook Unit 2 Accumulat~r Line Loop 4 Layout Showing_Weld Locations_ . . with Node Points ............................................................................................................ 3-30 Layout Showing Critical Location Loop 4 Unit 2 ........................................................... 5-2 Layout Showing Critical Locations Loop 3 Unit 2 .......................................................... 5-3 Layout Showing Critical Locations Loop 1 Unit 2 .......................................................... 5-4 Analytical Predictions of Critical Flow Rates of Steam-Water Mixtures ....................... 6-4 ]a,c,e Pressure Ratio as a Function ofL/D .................................................... 6-5 Idealized Pressure Drop Profile Through a Postulated Crack ......................................... 6-6 ]a,c,e Stress Distribution .................................................................................... 7-4 FigureA-1 Pipe with a Through-Wall Crack in Bending ................................................................ A-2 WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation) vi WESTINGHOUSE NON-PROPRIETARY CLASS 3 1-1


==1.0 INTRODUCTION==
WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-18295-NP                                                                                              January 2018 Revision 0 Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology I
1.1 PURPOSE The current structural design basis for the D.C. Cook Units 1 and 2 10-inch accumulator lines (from the cold legs Loop 1, Loop 2, Loop 3 and Loop 4) require postulating non-mechanistic circumferential and longitudinal pipe breaks. This results in additional plant hardware ( e.g., pipe whip restraints and jet shields) which would mitigate the dynamic consequences of the pipe breaks. It is, therefore, highly desirable to be realistic in the postulation of pipe breaks for the accumulator lines. Presented in this report are the descriptions of a mechanistic pipe break evaluation method and the analytical results that can be used for establishing that a circumferential type of break will not occur within the accumulator lines. The evaluations consider that circumferentially oriented flaws cover longitudinal cases. 1.2 SCOPE AND OBJECTIVES -The purpose of this investigation is to demonstrate Leak Before Break (LBB) for the D.C. Cook Units 1 and 2 accumulator lines from the cold legs Loop 1, Loop 2, Loop 3 and Loop 4 to the isolation valves near the accumulator tanks. Schematic drawings of the piping system are shown in Section 3.0. The recommendations and criteria proposed in SRP 3.6.3 (References 1-1 and 1-2) are used in this evaluation. The criteria and the resulting steps of the evaluation procedure can be briefly summarized as follows: 1. Calculate the applied loads based on as-built configuration. Identify the location(s) at which the highest.faulted stress oc;curs .. 2. Identify the materials and the material properties. 3. Postulate a through-wall flaw at the governing location(s ). The size of the flaw should be large enough so that the leakage is assured of detection with margin using the installed leak detection equipment when the pipe is subjected to normal operating loads. Demonstrate that there is a margin of 10 between the calculated leak rate and the leak detection capability. 4. Using maximum faulted loads in the stability analysis, demonstrate that there is a margin of 2 between the leakage size flaw and the critical size flaw. 5. Review the operating history to ascertain that operating experience has indicated no particular susceptibility to failure from the effects of corrosion, water hammer, or low and high cycle fatigue. 6. For the material types used in the plant, provide representative material properties. 7. Demonstrate margin on applied load by combining the faulted loads by absolute summation method. This report provides a fracture mechanics demonstration of accumulator line piping integrity for D.C. Cook Units 1 and 2 consistent with the NRC's position for exemption from consideration of dynamic effects (Reference 1-3). Introduction WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM_ ( This statement was added by the PRIME system upon its validation) I WESTINGHOUSE NON-PROPRIETARY CLASS 3 1-2 It should be noted that the terms "flaw" and "crack" have the same meaning and are used interchangeably. "Governing location" and "critical location" are also used interchangeably throughout the report.
I I .
Westin    .. ,*. , ghouse  '
    *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)


==1.3 REFERENCES==
WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-18295-NP Revision.O Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology January 2018 Author:         Christopher R. Kirby*
1-1 Standard Review Plan: Public Comments Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal Register/Vol. 52, No. 167/Friday August 28, 1987/Notices, pp. 32626-32633. 1-2 NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures. 1-3 Nuclear Regulatory Commission, 10 CFR 50, Modification of General Design Criteria 4 Requirements for Protection Against Dynamic Effects of Postulated Pipe Ruptures, Final Rule, -Federal -Register/Vol. -52, -No. 207 /Tuesday, -October 27, 1987 /Rules -and -Regulations, pp. 41288-41295. Introduction WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
Structural Design and Analysis - I Reviewer:       Eric D. Johnson*
WESTINGHOUSE NON-PROPRIETARY CLASS 3 2-1 2.0 OPERATION AND STABILITY OF THE REACTOR COOLANT SYSTEM 2.1 STRESS CORROSION CRACKING The Westinghouse reactor coolant system primary loops and connected Class 1 piping have an operating history that demonstrates the inherent operating stability characteristics of the design. This includes a low susceptibility to cracking failure from the effects of corrosion ( e.g., intergranular stress corrosion cracking (IGSCC)). This operating history totals over 1400 reactor-years, including 16 plants each having over 30 years of operation, 10 other plants each with over 25 years of operation, 11 plants each with over 20 years
Structural Design and Analysis - II Approved:       Benjamin A. Leber, Manager*
* of operation and 12 plants each with over 15 years of operation. In 1978, the United States Nuclear Regulatory Commission (USNRC) formed the second Pipe Crack Study Group. (The first Pipe Crack Study Group (PCSG) established iri 1975 addressed cracking in boiling water reactors only.) One of the objectives of the second PCSG was to include a review of the potential for stress corrosion cracking in Pressurized Water Reactors (PWRs ). The results of the study performed by the PCSG were presented in NUREG-0531 (Reference 2-1) entitled "Investigation and Evaluation of Stress Corrosion Cracking in Piping of Light Water Reactor Plants." In that report the PCSG stated: "The PCSG has determined that the potential for stress-corrosion cracking in PWR primary system piping is extremely low because the ingredients that produce IGSCC are not all present. . The. use of hydrazine additives and a hydrogen overpressure limit the oxygen in .the coolant to very low levels. Other impurities that might cause stress-corrosion cracking, such as halides or caustic, are also rigidly controlled. Only for brief periods during reactor shutdown when the coolant is exposed to the air and during the subsequent startup are conditions even marginally capable of producing stress-corrosion cracking in the primary systems of PWRs. Operating experience in PWRs supports this determination. To date, no stress corrosion cracking has been reported in the primary piping or safe ends of any PWR." For stress corrosion cracking (SCC) to occur in piping, the following three conditions must exist simultaneously: high tensile stresses, susceptible material, and a corrosive environment. Since some residual stresses and some degree of material susceptibility exist in any stainless steel piping, the potential for stress corrosion is minimized by properly selecting a material immune to SCC as well as preventing the occurrence of a corrosive environment. The material specifications consider compatibility with the system's operating environment (both internal and external) as well as other material in the system, applicable ASME Code rules, fracture toughness, welding, fabrication, and processing. The elements of a water environment known to increase the susceptibility of austenitic stainless steel to stress corrosion are: oxygen, fluorides, chlorides, hydroxides, hydrogen peroxide, and reduced forms of sulfur ( e.g., sulfides, sulfites, and thionates ). Strict pipe cleaning standards prior to operation and careful control of water chemistry during plant operation are used to prevent the occurrence of a corrosive environment. Prior to being put into service, the piping is cleaned internally and externally. During flushes and preoperational testing, water chemistry is controlled in accordance with written specifications. Operation and Stability of the Reactor Coolant System WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
Structural_ Design a11:d Analysis - II
WESTINGHOUSE NON-PROPRIETARY CLASS 3 2-2 Requirements on chlorides, fluorides, conductivity, and pH are included in the acceptance criteria for the piping. During plant operation, the reactor coolant water chemistry is monitored and maintained within very specific limits. Contaminant concentrations are kept below the thresholds known to be conducive to stress corrosion cracking with the major water chemistry control standards being included in the plant operating procedures as a condition for plant operation. For example, during normal power operation, oxygen concentration in the RCS is expected to be in the parts per billion (ppb) range by controlling charging flow chemistry and maintaining hydrogen in the reactor coolant at specified concentrations. Halogen concentrations are also stringently controlled by maintaining concentrations of chlorides and fluorides within the specified limits. Thus during plant operation, the likelihood of stress corrosion cracking is minimized. During 1979, several instances of cracking in PWR feedwater piping led to the establishment of the third PCSG. The investigations of the PCSG reported in NUREG-0691 (Reference 2-2) further confirmed that no occurrences of IGSCC have been reported for PWR primary coolant systems. Primary Water Stress Corrosion Cracking (PWSCC) occurred in V. C. Summer reactor vessel hot leg nozzle, Alloy 82/182 weld. It should be noted that this susceptible material is not found in the D.C. Cook Unit 1 and 2 accumulator lines. 2.2 WATER HAMMER . . . . . . . . . . . . Overall, there is a low potential for water hammer in the RCS and connecting accumulator lines since they are designed and operated to preclude the voiding condition in normally filled lines. The RCS and connecting accumulator lines including piping and components are designed for normal, upset, emergency, and faulted condition transients. The design requirements are conservative relative to both the number of transients and their severity. Relief valve actuation and the associated hydraulic transients following valve opening are considered in the system design. Other valve and pump actuations are relatively slow transients with no significant effect on the system dynamic loads. To ensure dynamic system stability, reactor coolant parameters are stringently controlled. Temperature during normal operation is maintained within a narrow range by the control rod positions; pressure is controlled also within a narrow range for steady-state conditions by the pressurizer heaters and pressurizer spray. The flow characteristics of the system remain constant during a fuel cycle because the only governing parameters, namely system resistance and the reactor coolant pump characteristics are controlled in the design process. Additionally, Westinghouse has instrumented typical reactor coolant systems to verify the flow and vibration characteristics of the system and the connecting auxiliary lines. Preoperational testing and operating experience has verified the Westinghouse approach. The operating transients of the RCS primary piping and connected accumulator lines are such that no significant water hammer can occur. 2.3 LOW CYCLE AND HIGH CYCLE FATIGUE The 1967 Edition of the B31.1 Code does not contain an explicit piping low cycle fatigue analysis requirement. The B31.1 piping complies with a stress range reduction factor to be applied to the allowable stress as a way to address fatigue from full temperature cycles for thermal expansion stress evaluation. The stress range reduction factor is 1.0 (i.e., no reduction) for equivalent full temperature Operation and Stability of the Reactor Coolant System WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
*Electronically approved records are authenticated in the electronic document management system.
WESTINGHOUSE NON-PROPRIETARY CLASS 3 2-3 cycles less than 7000. For D.C. Cook Units 1 and 2, the equivalent full temperature cycles for the applicable design transients are less than 7000, so no reduction is required. Pump vibrations during operation would result in high cycle fatigue loads in the piping system. During operation, an alarm signals the exceedance of the RC pump shaft vibration limits. Field vibration measurements have been made on the reactor coolant loop piping in a number of plants during hot functional testing. Stresses in the elbow below the RC pump have been found analytically to be very small, between 2 and 3 ksi at the highest. Field measurements on typical PWR plant indicate vibration stress amplitudes less than 1 ksi. When translated to the connecting accumulator lines, these stresses would be even lower, well below the fatigue endurance limit for the accumulator line materials and would result in an applied stress intensity factor below the threshold for fatigue crack growth. 2.4 OTHER POSSIBLE DEGRADATION DURING SERVICE OF THE ACCUMULATOR LINES The accumulator lines and the associated fittings for D.C. Cook Nuclear Power Plants are forged product forms, which are not susceptible to toughness degradation due to thermal aging. The maximum normal operating temperature of the accumulator piping is about 549&deg;F. This is well below the temperature that would cause any creep damage in stainless steel piping. Cleavage type failures are not a concern for the operating temperatures and the material used in the stainless steel piping of the accumulator lines. . . . . . . . . . . . . . Wall thinning by erosion and erosion-corrosion effects should not occur in the accumulator piping due to the low velocity, typically less than 1.0 ft/sec and the stainless steel material, which is highly resistant to these degradation mechanisms. Per NUREG-0691 (Reference 2-2), a study on pipe cracking in PWR piping reported only two incidents of wall thinning in stainless steel pipe and these were not in the accumulator line. The cause of wall thinning is related to the high water velocity and is therefore clearly not a mechanism that would affect the accumulator piping. Brittle fracture for stainless steel material occurs when the operating temperature is about -200&deg;F. Accumulator line operating temperature is higher than 120&deg;F and therefore, brittle fracture is not a concern for the accumulator line.
Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066, USA
                                      &#xa9; 2018. Westingho:use Electric Company LLC All Rights Reserved
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)


==2.5 REFERENCES==
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                                                                          iii TABLE OF CONTENTS 1.0        Introduction ......................................................................................................................................... 1-1 1.1      Purpose ................................................................................................................................. 1-1 1.2      ScopeandObjectives ............................................................................................................ 1-1 1.3      References ............................................................................................................................. 1-2 2.0        Operation and Stability of the Reactor Coolant System .................................................................... 2-1 2.1      Stress Corrosion Cracking .................................................................................................... 2-1 2.2      Water Ham1ner ...................................................................................................................... 2-2 2.3      Low Cycle and High Cycle Fatigue ...................................................................................... 2-2 2.4      Other Possible Degradation During Service of the Accumulator Lines ............................... 2-3 2.5      References ................................................................. ,........................................................... 2-3 3.0        Pipe Geo1netry and Loading .......................... :................................................................................... 3-1 3.1
2-1 Investigation and Evaluation of Stress-Corrosion Cracking in Piping of Light Water Reactor Plants, NUREG-0531, U.S. Nuclear Regulatory Commission, February 1979. 2-2 Investigation and Evaluation of Cracking Incidents in Piping in Pressurized Water Reactors, NUREG-0691, U.S. Nuclear Regulatory Commission, September 1980. Operation and Stability of the Reactor Coolant System WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Calculations of Loads and Stresses ..... :........................ :................ :....... :......................... :..... 3~1 3.2      Loads for Leak Rate Evaluation ................................................... ;....................................... 3-1 3.3      Load Combination for Crack Stability Analyses .................................................................. 3-2 3.4      References ............................................................................................................................. 3-3 4.0        Material Characterization................................................................................................................... 4-1 4.1      Accumulator Line Pipe Material and Weld Process ............................................................ .4-1 4.2      Tensile Properties .................................................................................................................. 4-1 4.3      Reference .............................................................................................................................. 4-1 5.0        Critical Locat.ions ........... ,................. , ....... ,........ , ....... ,........, ....... ,................. ,........,. ....... ,.........,. ....... ,...... 5-1 5.1      Critical Locations .................................................................................................................. 5-1 6.0        Leak Rate Predictions ........................................................................................................................ 6-1 6.1      Introduction ........................................................................................................................... 6-1 6.2      General Considerations ................................................... :..................................................... 6-1 6.3      Calculation Method ............................................................................................................... 6-1 6.4      Leak Rate Calculations ......................................................................................................... 6-2 6.5      References ............................................................................................................................. 6-3 7.0        Fracture Mechanics Evaluation .......................................................................................................... 7-1 7 .1      Global Failure Mechanism .................................................................................................... 7-1 7.2      Local Failure Mechanism ..................................................................................................... 7-2 7.3      Results of Crack Stability Evaluation ................................................................................... 7-2 7.4      References ............................................................................................................................. 7-2 8.0        Assessment of Fatigue Crack Growth ................................................................................................ 8-1
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3.0 PIPE GEOMETRY AND LOADING 3.1 CALCULATIONS OF LOADS AND STRESSES The stresses due to axial loads and bending moments are calculated by the following equation: where, cr F F M cr=-:--+ A Z stress (psi) axial load (lbs) M moment (in-lb) A pipe cross-sectional area (in2) z section modulus (in3) The moments for the desired loading combinations are calculated by the following equation: *where, X component of moment, Torsion Y component of bending moment M2 Z component of bending moment 3-1 (3-1) (3-2) The axial load and moments for leak rate predictions and crack stability analyses are computed by the methods to be explained in Sections 3.2 and 3.3. 3.2 LOADS FOR LEAK RATE EVALUATION The normal operating loads for leak rate predictions are calculated by the following equations: F Fnw + Frn + Fp (3-3) Mx = (Mx)nw + (Mx)rn (3-4) Mv (Mv)nw + (Mv)rn (3-5) Mz (Mz)nw + (Mz)rn (3-6) Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
: 8. I      References ............................................................................................................................. 8-1 9.0        Assessment of Margins ...................................................................................................................... 9-1 10.0        Conclusions ...................................................................................................................................... 10-1 Appendix A: Limit Moment. ......................................................................................................................... A-1 WCAP-18295-NP                                                                                                                                              January 2018 Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 The subscripts of the above equations represent the following loading cases: DW dead weight TH = p = normal thermal expansion load due to internal pressure 3-2 This method of combining loads is often referred to as the algebraic sum method (References 3-1 and 3-2). The LBB evaluations do not include moment effects due to pressure loading since the moment loading is significantly dominated by the thermal loads for normal operation and by the seismic loads for faulted events. The dimensions and normal operating conditions are given in Tables 3-1 and 3-2. The loads based on this method of combination are provided in Tables 3-3 to 3-10 at all the weld locations; The weld naming convention used in this report is as follows: Unit# -Isometric# -Spool Sheet# -Analysis Node# 3.3 LOAD COMBINATION FOR CRACK STABILITY ANALYSES In accordance with Standard Review Plan 3.6.3 (References 3-1 and 3-2), the absolute sum of loading components can be applied which results in higher magnitude of combined loads. If crack stability is demo~strat~d us.ing these r"oads," the LBB margin on *roads can be reduced from -V2 to 1.0. The absolute. summation ofloads is shown in the following equations: F = I F DW I + I F TH I + I F p I + I F SSEINERTIA I + I F SSEAM I Mx = I CMx)ow I + I (Mx)rn I + I (Mx)ssEINERTIAI + I (Mx)ssEAMI My= I (My)ow I+ I (My)rn I+ I (My)ssEINERTIAI + I (My)ssEAMI Mz = I (Mz)ow I + I (Mz)rn I + I (Mz)ssEINERTIAI + I (Mz)ssEAMI (3-7) (3-8) (3-9) (3-10) where subscript SSEINERTIA refers to safe shutdown earthquake inertia, SSEAM is safe shutdown earthquake anchor motion. It is noted that the D.C. Cook piping analyses consider Design Basis Earthquake (DBE) as the seismic criteria, which is equivalent to Safe Shutdown Earthquake (SSE). The loads so determined are used in the fracture mechanics evaluations (Section 7 .0) to demonstrate the LBB margins at the locations established to be the governing locations. These loads at all the weld locations are given in Tables 3-11 to 3-18. Notes: For the accumulator lines, the LBB analysis will not be performed at the locations after the isolation valve near the accumulator tank since any break after the isolation valve will not have any effect on the primary loop piping system since there are two check valves, and the one isolation valve will Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-3 prevent the break propagation to the primary loop piping system. Figure 3-1 shows typical 10-inch accumulator line layout showing segments for D.C. Cook Units 1 and 2.


==3.4 REFERENCES==
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                                               iv LIST OF TABLES Table 3-1           Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines ....................................................................... 3-4 Table 3-2            Summary ofD.C. Cook Unit 2 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines ....................................................................... 3-5 Table 3-3           Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop l ................................................................................. 3-6 Table 3-4            Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for IO-inch Accumulator Injection Line Loop 2 ................................................................................. 3-7 Table 3-5            Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 ..... ;....... .-........ ;................ ;....... .-........ ;....... .-........ ;....... 3-8 Table 3-6            Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for IO-inch Accumulator Injection Line Loop 4 ................................................................................. 3-9 Table 3-7            Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for IO-inch Accumulator Injection Line Loop l ............................................................................... 3-10 Table 3-8            Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 ............................................................................... 3-11 Table 3-9            Summary ofD.C Cook Unit 2 N_ormal Loads and Stresses for 1~-inch                                        .        .        .
3-1 Standard Review Plan: Public Comments Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal Register/Vol. 52, No. 167/Friday, August 28, 1987/Notices, pp. 32626-32633. 3-2 NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures. Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
Accumulator Injection Line Loop 3 ............................................................................... 3-12 Table 3-10          Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 ............................................................................... 3-13 Table 3-11          Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop l ............................................................................... 3-14 Table 3-12          Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 2 ............................................................................... 3-15 Table 3-13          Summary of D.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 3 ............................................................................... 3-16 Table 3-14          Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 4 ............................................................................... 3-17 Table 3-15          Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 1 ............................................................................... 3-18 Table 3-16          Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 ............................................................................... 3-19 Table 3-17          Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 3 ............................................................................... 3-20 WCAP-18295-NP                                                                                                                      January 2018 Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-4 Table 3-1 Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines Minimum Normal Operating Pipe Size & Wall Loop Segment Nodes Material Type Schedule Thickness Pressure Temperature (in)* (psig) (OF) I 416 to 412 A376 TP316 or IO-inch 0.896 2345 549 A403 WP316 Sch. 140 406-404 A376 TP316 or IO-inch 0.896 2235 549 A403 WP316 Sch. 140 1 II 404 to 450 A376 TP316 or IO-inch 0.896 2235 120 A403 WP316 Sch. 140 III 456 to 459 A376 TP316 or IO-inch 0.896 644 120 A403 WP316 Sch. 140 I 361 to 358 A376 TP316 or IO-inch 0.896 2345 549 A403 WP316 Sch. 140 352 to 350 A376 TP316 or IO-inch 0.896 2235 549 A403 WP316 Sch. 140 2 II 350 to 365 A376 TP316 or IO-inch 0.896 2235 120 A403 WP316 Sch. 140 III 368 to 374 A376 TP316 or IO-inch 0.896 644 120 A403 WP316 Sch. 140 I 171 to 168 A376 TP316 or IO-inch 0.896 2345 549 A403 WP316 Sch. 140 162 to 160 A376 TP316 or IO-inch 0.896 2235 549 A403 WP316 Sch. 140 3 II 160 to 200 A376 TP316 or IO-inch 0.896 2235 120 A403 WP316 Sch. 140 III 206 to 214 A376 TP316 or IO-inch 0.896 644 120 A403 WP316 Sch. 140 I 307 to 304 A376 TP316 or 10-inch 0.896 2345 549 A403 WP316 Sch. 140 296 to 294 A376 TP316 or 10-inch 0.896 2235 549 A403 WP316 Sch. 140 4 II 294 to 334 A376 TP316 or IO-inch 0.896 2235 120 A403 WP316 Sch. 140 III 340 to 344 A376 TP316 or IO-inch 0.896 644 120 A403 WP316 Sch. 140 Notes: Pipe Outer Diameter= 10.75 in. Figure 3-1 shows the Segments. Node numbers are shown in Tables 3-3 to 3-6, Tables 3-11 to 3-14, and Figures 3-2 to 3-5. The minimum wall thickness is conservatively based at the weld counterbore and not per ASME Code requirement. Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation) . ' I WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-5 Table 3-2 Summary ofD.C. Cook Unit 2 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines Minimum Normal Operating Material Type Pipe Size & Wall L_oop Segment Nodes Schedule Thickness Pressure Temperature (in) (psig) (OF) I 416 to 412 A376 TP316 or 10-inch 0.896 2345 549 A403 WP316 Sch. 140 406-404 A376 TP316 or 10-inch 0.896 2235 549 A403 WP316 Sch. 140 1 II A376 TP316 or 404 to 450 10-inch 0.896 2235 120 A403 WP316 Sch. 140 III 456 to 460 A376 TP316 or 10-inch 0.896 644 120 A403 WP316 Sch. 140 I 361 to 358 A376 TP316 or 10-inch 0.896 2345 549 A403 WP316 Sch. 140 352 to 350 A376 TP316 or 10-inch 0.896 2235 549 A403 WP316 Sch. 140 2 II A376 TP316 or 350 to 365 10-inch 0.896 2235 120 A403 WP316 Sch. 140 III 368 to 374 A376 TP316 or 10-incl). 0.896
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* 644* 120 A403 WP316 Sch. 140 I 171 to 168 A376 TP316 or 10-inch 0.896 2345 549 A403 WP316 Sch. 140 162 to 160 A376 TP316 or 10-inch 0.896 2235 549 A403 WP316 Sch. 140 3 II A376 TP316 or 160 to 200 10-inch 0.896 2235 120 A403 WP316 Sch. 140 III 206 to 214 A376 TP316 or 10-inch 0.896 644 120 A403 WP316 Sch. 140 I 307 to 304 A376 TP316 or 10-inch 0.896 2345 549 A403 WP316 Sch. 140 296 to 294 A376 TP316 or IO-inch 0.896 2235 549 A403 WP316 Sch. 140 4 II A376 TP316 or 294 to 334 10-inch 0.896 2235 120 A403 WP316 Sch. 140 III 340 to 344 A376 TP316 or 10-inch 0.896 644 120 A403 WP316 Sch. 140 Notes: Pipe Outer Diameter= 10.75 in. Figure 3-1 shows the Segments. Node numbers are shown in Tables 3-7 to 3-10, Tables 3-15 to 3-18, and Figures 3-6 to 3-9. The minimum wall thickness is conservatively based at the weld counterbore and not per ASME Code requirement. Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-3 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location Axial Force Node (lbs) 1-SI-29-4-416 150,544 1-SI-29-4-412 151,904 1-S1-29-3R-406 144,981 1-S1-29-3R-404Y 144,974 1-SI-29-3R-404Z 144,603 1-SI-29-3R-420N 145,021 1-SI-29-3R-420F 132,866 1-SI-29-2-426N 132,866 1-SI-29-2-426F 135,542 1-SI-29-2-428N 135,361 1-SI-29-2-428F 134,368 . 1-SI-29-2-430N 133,973 . 1-SI-29-2-430F 134,456 1-S1-29-2-434N 133,786 1-S1-29-1-434F 132,348 l-S1-29-1-442N 140,744 1-SI-29-1-446F 144,828 1-SI-29-1-450 144,385 1-SI-28-1-456 42,094 1-SI-28-1-459 40,082 Notes:
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                                            V Table 3-18          Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 4 ............................................................................... 3-21 Table 4-1          Mechanical Properties for IO-inch Accumulator Lines Material at Operating Temperatures for D.C. Cook Units 1 and 2 ..................................................................... .4-1 Table 5-1          Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for IO-inch Accumulator Lines and Critical Locations ................................... 5-1 Table 6-1          Flaw Sizes Yielding a Leak Rate of 8 gpm for the D.C. Cook Unit 1 and 2 10-inch Accumulator Lines ................................................................................................... 6-3 Table 7-1          Stability Results for the D.C. Cook Unit 1 and 2 IO-inch Accumulator Lines Based on Limit Load ........................................................................................................ 7-3 Table 9-1          Leakage Flaw Sizes, Cri_tical Flaw Sizes and Margins for D.C_. Cook Units 1 and 2 10-inch Accumulator Lines ........................................................................................... 9-1 WCAP-18295-NP                                                                                                                      January 2018 Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                                                                vi LIST OF FIGURES Figure 3-1          10-inch Accumulator Line Layout Showing Segments for D.C. Cook Units 1 and 2 ............................................................................................................................... 3-22 Figure 3-2          D.C. Cook Unit 1 Accumulator Line Loop 1 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-23 Figure 3-3          D.C. Cook Unit 1 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-24 Figure 3-4          D.C. Cook Unit 1 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-25 Figure 3-5          D.C. Cook Unit 1 Accumulator Line Loop 4 Layout Showing Weld Locations
* with Node Points .... ;....... ;....... .-........ ;....... .-........ ;....... .-........ ;....... .-........ ;....... .-........ ;....... ;.. 3-26 Figure 3-6          D.C. Cook Unit 2 Accumulator Line Loop 1 Layout Showing Weld Locations*
with Node Points ............................................................................................................ 3-27 Figure 3-7          D.C. Cook Unit 2 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-28 Figure 3-8          D.C. Cook Unit 2 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-29 Figure 3-_9          D.<;. Cook Unit 2 Accumulat~r Line Loop 4 Layout Showing_Weld Locations_                                                                  .        .
with Node Points ............................................................................................................ 3-30 Figure 5-1          Layout Showing Critical Location Loop 4 Unit 2 ........................................................... 5-2 Figure 5-2          Layout Showing Critical Locations Loop 3 Unit 2 .......................................................... 5-3 Figure 5-3          Layout Showing Critical Locations Loop 1 Unit 2 .......................................................... 5-4 Figure 6-1          Analytical Predictions of Critical Flow Rates of Steam-Water Mixtures ....................... 6-4 Figure 6-2                            ]a,c,e Pressure Ratio as a Function ofL/D .................................................... 6-5 Figure 6-3            Idealized Pressure Drop Profile Through a Postulated Crack ......................................... 6-6 Figure 7-1                        ]a,c,e Stress Distribution .................................................................................... 7-4 FigureA-1              Pipe with a Through-Wall Crack in Bending ................................................................ A-2 WCAP-18295-NP                                                                                                                                          January 2018 Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    1-1
 
==1.0        INTRODUCTION==
 
1.1        PURPOSE The current structural design basis for the D.C. Cook Units 1 and 2 10-inch accumulator lines (from the cold legs Loop 1, Loop 2, Loop 3 and Loop 4) require postulating non-mechanistic circumferential and longitudinal pipe breaks. This results in additional plant hardware (e.g., pipe whip restraints and jet shields) which would mitigate the dynamic consequences of the pipe breaks. It is, therefore, highly desirable to be realistic in the postulation of pipe breaks for the accumulator lines. Presented in this report are the descriptions of a mechanistic pipe break evaluation method and the analytical results that can be used for establishing that a circumferential type of break will not occur within the accumulator lines. The evaluations consider that circumferentially oriented flaws cover longitudinal cases.
1.2        SCOPE AND OBJECTIVES -
The purpose of this investigation is to demonstrate Leak Before Break (LBB) for the D.C. Cook Units 1 and 2 accumulator lines from the cold legs Loop 1, Loop 2, Loop 3 and Loop 4 to the isolation valves near the accumulator tanks. Schematic drawings of the piping system are shown in Section 3.0. The recommendations and criteria proposed in SRP 3.6.3 (References 1-1 and 1-2) are used in this evaluation.
The criteria and the resulting steps of the evaluation procedure can be briefly summarized as follows:
: 1.        Calculate the applied loads based on as-built configuration. Identify the location(s) at which the highest.faulted stress oc;curs .
: 2.        Identify the materials and the material properties.
: 3.        Postulate a through-wall flaw at the governing location(s ). The size of the flaw should be large enough so that the leakage is assured of detection with margin using the installed leak detection equipment when the pipe is subjected to normal operating loads. Demonstrate that there is a margin of 10 between the calculated leak rate and the leak detection capability.
: 4.        Using maximum faulted loads in the stability analysis, demonstrate that there is a margin of 2 between the leakage size flaw and the critical size flaw.
: 5.        Review the operating history to ascertain that operating experience has indicated no particular susceptibility to failure from the effects of corrosion, water hammer, or low and high cycle fatigue.
: 6.        For the material types used in the plant, provide representative material properties.
: 7.        Demonstrate margin on applied load by combining the faulted loads by absolute summation method.
This report provides a fracture mechanics demonstration of accumulator line piping integrity for D.C.
Cook Units 1 and 2 consistent with the NRC's position for exemption from consideration of dynamic effects (Reference 1-3).
Introduction                                                                                                    January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM_ ( This statement was added by the PRIME system upon its validation)
I
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    1-2 It should be noted that the terms "flaw" and "crack" have the same meaning and are used interchangeably.
"Governing location" and "critical location" are also used interchangeably throughout the report.
 
==1.3        REFERENCES==
 
1-1        Standard Review Plan: Public Comments Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal Register/Vol. 52, No. 167/Friday August 28, 1987/Notices, pp. 32626-32633.
1-2        NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures.
1-3        Nuclear Regulatory Commission, 10 CFR 50, Modification of General Design Criteria 4 Requirements for Protection Against Dynamic Effects of Postulated Pipe Ruptures, Final Rule,
        - Federal - Register/Vol. - 52, - No. 207 /Tuesday, -October 27, 1987/Rules -and - Regulations, pp. 41288-41295.
Introduction                                                                                                    January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    2-1 2.0        OPERATION AND STABILITY OF THE REACTOR COOLANT SYSTEM 2.1        STRESS CORROSION CRACKING The Westinghouse reactor coolant system primary loops and connected Class 1 piping have an operating history that demonstrates the inherent operating stability characteristics of the design. This includes a low susceptibility to cracking failure from the effects of corrosion (e.g., intergranular stress corrosion cracking (IGSCC)). This operating history totals over 1400 reactor-years, including 16 plants each having over 30 years of operation, 10 other plants each with over 25 years of operation, 11 plants each with over 20 years
* of operation and 12 plants each with over 15 years of operation.
In 1978, the United States Nuclear Regulatory Commission (USNRC) formed the second Pipe Crack Study Group. (The first Pipe Crack Study Group (PCSG) established iri 1975 addressed cracking in boiling water reactors only.) One of the objectives of the second PCSG was to include a review of the potential for stress corrosion cracking in Pressurized Water Reactors (PWRs). The results of the study performed by the PCSG were presented in NUREG-0531 (Reference 2-1) entitled "Investigation and Evaluation of Stress Corrosion Cracking in Piping of Light Water Reactor Plants." In that report the PCSG stated:
          "The PCSG has determined that the potential for stress-corrosion cracking in PWR primary system piping is extremely low because the ingredients that produce IGSCC are not all present.
        . The. use of hydrazine additives and a hydrogen overpressure limit the oxygen in .the coolant to very low levels. Other impurities that might cause stress-corrosion cracking, such as halides or caustic, are also rigidly controlled. Only for brief periods during reactor shutdown when the coolant is exposed to the air and during the subsequent startup are conditions even marginally capable of producing stress-corrosion cracking in the primary systems of PWRs. Operating experience in PWRs supports this determination. To date, no stress corrosion cracking has been reported in the primary piping or safe ends of any PWR."
For stress corrosion cracking (SCC) to occur in piping, the following three conditions must exist simultaneously: high tensile stresses, susceptible material, and a corrosive environment. Since some residual stresses and some degree of material susceptibility exist in any stainless steel piping, the potential for stress corrosion is minimized by properly selecting a material immune to SCC as well as preventing the occurrence of a corrosive environment. The material specifications consider compatibility with the system's operating environment (both internal and external) as well as other material in the system, applicable ASME Code rules, fracture toughness, welding, fabrication, and processing.
The elements of a water environment known to increase the susceptibility of austenitic stainless steel to stress corrosion are: oxygen, fluorides, chlorides, hydroxides, hydrogen peroxide, and reduced forms of sulfur (e.g., sulfides, sulfites, and thionates ). Strict pipe cleaning standards prior to operation and careful control of water chemistry during plant operation are used to prevent the occurrence of a corrosive environment. Prior to being put into service, the piping is cleaned internally and externally. During flushes and preoperational testing, water chemistry is controlled in accordance with written specifications.
Operation and Stability of the Reactor Coolant System                                                          January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    2-2 Requirements on chlorides, fluorides, conductivity, and pH are included in the acceptance criteria for the piping.
During plant operation, the reactor coolant water chemistry is monitored and maintained within very specific limits. Contaminant concentrations are kept below the thresholds known to be conducive to stress corrosion cracking with the major water chemistry control standards being included in the plant operating procedures as a condition for plant operation. For example, during normal power operation, oxygen concentration in the RCS is expected to be in the parts per billion (ppb) range by controlling charging flow chemistry and maintaining hydrogen in the reactor coolant at specified concentrations.
Halogen concentrations are also stringently controlled by maintaining concentrations of chlorides and fluorides within the specified limits. Thus during plant operation, the likelihood of stress corrosion cracking is minimized.
During 1979, several instances of cracking in PWR feedwater piping led to the establishment of the third PCSG. The investigations of the PCSG reported in NUREG-0691 (Reference 2-2) further confirmed that no occurrences of IGSCC have been reported for PWR primary coolant systems.
Primary Water Stress Corrosion Cracking (PWSCC) occurred in V. C. Summer reactor vessel hot leg nozzle, Alloy 82/182 weld. It should be noted that this susceptible material is not found in the D.C. Cook Unit 1 and 2 accumulator lines.
2.2        WATER HAMMER Overall, there is a low potential for water hammer in the RCS and connecting accumulator lines since they are designed and operated to preclude the voiding condition in normally filled lines. The RCS and connecting accumulator lines including piping and components are designed for normal, upset, emergency, and faulted condition transients. The design requirements are conservative relative to both the number of transients and their severity. Relief valve actuation and the associated hydraulic transients following valve opening are considered in the system design. Other valve and pump actuations are relatively slow transients with no significant effect on the system dynamic loads. To ensure dynamic system stability, reactor coolant parameters are stringently controlled. Temperature during normal operation is maintained within a narrow range by the control rod positions; pressure is controlled also within a narrow range for steady-state conditions by the pressurizer heaters and pressurizer spray. The flow characteristics of the system remain constant during a fuel cycle because the only governing parameters, namely system resistance and the reactor coolant pump characteristics are controlled in the design process. Additionally, Westinghouse has instrumented typical reactor coolant systems to verify the flow and vibration characteristics of the system and the connecting auxiliary lines. Preoperational testing and operating experience has verified the Westinghouse approach. The operating transients of the RCS primary piping and connected accumulator lines are such that no significant water hammer can occur.
2.3          LOW CYCLE AND HIGH CYCLE FATIGUE The 1967 Edition of the B31.1 Code does not contain an explicit piping low cycle fatigue analysis requirement. The B31.1 piping complies with a stress range reduction factor to be applied to the allowable stress as a way to address fatigue from full temperature cycles for thermal expansion stress evaluation. The stress range reduction factor is 1.0 (i.e., no reduction) for equivalent full temperature Operation and Stability of the Reactor Coolant System                                                          January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    2-3 cycles less than 7000. For D.C. Cook Units 1 and 2, the equivalent full temperature cycles for the applicable design transients are less than 7000, so no reduction is required.
Pump vibrations during operation would result in high cycle fatigue loads in the piping system. During operation, an alarm signals the exceedance of the RC pump shaft vibration limits. Field vibration measurements have been made on the reactor coolant loop piping in a number of plants during hot functional testing. Stresses in the elbow below the RC pump have been found analytically to be very small, between 2 and 3 ksi at the highest. Field measurements on typical PWR plant indicate vibration stress amplitudes less than 1 ksi. When translated to the connecting accumulator lines, these stresses would be even lower, well below the fatigue endurance limit for the accumulator line materials and would result in an applied stress intensity factor below the threshold for fatigue crack growth.
2.4        OTHER POSSIBLE DEGRADATION DURING SERVICE OF THE ACCUMULATOR LINES The accumulator lines and the associated fittings for D.C. Cook Nuclear Power Plants are forged product forms, which are not susceptible to toughness degradation due to thermal aging.
The maximum normal operating temperature of the accumulator piping is about 549&deg;F. This is well below the temperature that would cause any creep damage in stainless steel piping. Cleavage type failures are not a concern for the operating temperatures and the material used in the stainless steel piping of the accumulator lines.
Wall thinning by erosion and erosion-corrosion effects should not occur in the accumulator piping due to the low velocity, typically less than 1.0 ft/sec and the stainless steel material, which is highly resistant to these degradation mechanisms. Per NUREG-0691 (Reference 2-2), a study on pipe cracking in PWR piping reported only two incidents of wall thinning in stainless steel pipe and these were not in the accumulator line. The cause of wall thinning is related to the high water velocity and is therefore clearly not a mechanism that would affect the accumulator piping.
Brittle fracture for stainless steel material occurs when the operating temperature is about -200&deg;F.
Accumulator line operating temperature is higher than 120&deg;F and therefore, brittle fracture is not a concern for the accumulator line.
 
==2.5        REFERENCES==
 
2-1        Investigation and Evaluation of Stress-Corrosion Cracking in Piping of Light Water Reactor Plants, NUREG-0531, U.S. Nuclear Regulatory Commission, February 1979.
2-2        Investigation and Evaluation of Cracking Incidents in Piping in Pressurized Water Reactors, NUREG-0691, U.S. Nuclear Regulatory Commission, September 1980.
Operation and Stability of the Reactor Coolant System                                                          January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    3-1 3.0      PIPE GEOMETRY AND LOADING 3.1      CALCULATIONS OF LOADS AND STRESSES The stresses due to axial loads and bending moments are calculated by the following equation:
F    M                                                            (3-1) cr=-:--+
A      Z where, cr              stress (psi)
F                axial load (lbs)
M                moment (in-lb)
A                pipe cross-sectional area (in2) z                section modulus (in 3)
The moments for the desired loading combinations are calculated by the following equation:
(3-2)
*where, X component of moment, Torsion Y component of bending moment M2              Z component of bending moment The axial load and moments for leak rate predictions and crack stability analyses are computed by the methods to be explained in Sections 3.2 and 3.3.
3.2      LOADS FOR LEAK RATE EVALUATION The normal operating loads for leak rate predictions are calculated by the following equations:
F                Fnw + Frn + Fp                                                                            (3-3)
Mx      =        (Mx)nw + (Mx)rn                                                                            (3-4)
Mv              (Mv)nw + (Mv)rn                                                                            (3-5)
Mz              (Mz)nw + (Mz)rn                                                                            (3-6)
Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    3-2 The subscripts of the above equations represent the following loading cases:
DW              dead weight TH      =        normal thermal expansion p      =        load due to internal pressure This method of combining loads is often referred to as the algebraic sum method (References 3-1 and 3-2). The LBB evaluations do not include moment effects due to pressure loading since the moment loading is significantly dominated by the thermal loads for normal operation and by the seismic loads for faulted events.
The dimensions and normal operating conditions are given in Tables 3-1 and 3-2. The loads based on this method of combination are provided in Tables 3-3 to 3-10 at all the weld locations; The weld naming convention used in this report is as follows:
Unit# - Isometric# - Spool Sheet# -Analysis Node#
3.3        LOAD COMBINATION FOR CRACK STABILITY ANALYSES In accordance with Standard Review Plan 3.6.3 (References 3-1 and 3-2), the absolute sum of loading components can be applied which results in higher magnitude of combined loads. If crack stability is demo~strat~d us.ing these r"oads," the LBB margin on *roads can be reduced from -V2 to 1.0. The absolute.
summation ofloads is shown in the following equations:
F    = I FDW I + I FTH I + I F p I + I F SSEINERTIA I + I F SSEAM I                                          (3-7)
Mx = I CMx)ow I + I (Mx)rn I + I (Mx)ssEINERTIAI + I (Mx)ssEAMI                                              (3-8)
My= I (My)ow I+ I (My)rn I+ I (My)ssEINERTIAI + I (My)ssEAMI                                                  (3-9)
Mz = I (Mz)ow I + I (Mz)rn I + I (Mz)ssEINERTIAI + I (Mz)ssEAMI                                            (3-10) where subscript SSEINERTIA refers to safe shutdown earthquake inertia, SSEAM is safe shutdown earthquake anchor motion. It is noted that the D.C. Cook piping analyses consider Design Basis Earthquake (DBE) as the seismic criteria, which is equivalent to Safe Shutdown Earthquake (SSE).
The loads so determined are used in the fracture mechanics evaluations (Section 7 .0) to demonstrate the LBB margins at the locations established to be the governing locations. These loads at all the weld locations are given in Tables 3-11 to 3-18.
Notes: For the accumulator lines, the LBB analysis will not be performed at the locations after the isolation valve near the accumulator tank since any break after the isolation valve will not have any effect on the primary loop piping system since there are two check valves, and the one isolation valve will Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    3-3 prevent the break propagation to the primary loop piping system. Figure 3-1 shows typical 10-inch accumulator line layout showing segments for D.C. Cook Units 1 and 2.
 
==3.4        REFERENCES==
 
3-1        Standard Review Plan: Public Comments Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal Register/Vol. 52, No. 167/Friday, August 28, 1987/Notices, pp. 32626-32633.
3-2        NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures.
Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    3-4 Table 3-1      Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines Minimum Normal Operating Pipe Size &        Wall Loop      Segment          Nodes        Material Type                        Thickness      Pressure Temperature Schedule (in)*      (psig)          (OF)
A376 TP316 or          IO-inch I        416 to 412                                              0.896          2345            549 A403 WP316            Sch. 140 A376 TP316 or          IO-inch 406-404                                                0.896          2235            549 A403 WP316            Sch. 140 1            II A376 TP316 or          IO-inch 404 to 450                                              0.896          2235            120 A403 WP316            Sch. 140 A376 TP316 or          IO-inch III        456 to 459                                              0.896          644            120 A403 WP316            Sch. 140 A376 TP316 or          IO-inch I        361 to 358                                              0.896          2345            549 A403 WP316            Sch. 140 A376 TP316 or          IO-inch 352 to 350                                              0.896          2235            549 A403 WP316            Sch. 140 2            II A376 TP316 or          IO-inch 350 to 365                                              0.896          2235            120 A403 WP316            Sch. 140 A376 TP316 or          IO-inch III        368 to 374                                              0.896          644            120 A403 WP316            Sch. 140 A376 TP316 or          IO-inch I        171 to 168                                              0.896        2345            549 A403 WP316            Sch. 140 A376 TP316 or          IO-inch 162 to 160                                              0.896          2235            549 A403 WP316            Sch. 140 3            II A376 TP316 or          IO-inch 160 to 200                                              0.896          2235            120 A403 WP316            Sch. 140 A376 TP316 or          IO-inch III        206 to 214                                              0.896          644            120 A403 WP316            Sch. 140 A376 TP316 or          10-inch I        307 to 304                                              0.896        2345            549 A403 WP316            Sch. 140 A376 TP316 or          10-inch 296 to 294                                              0.896        2235            549 A403 WP316            Sch. 140 4            II A376 TP316 or            IO-inch 294 to 334                                              0.896        2235            120 A403 WP316            Sch. 140 A376 TP316 or          IO-inch III        340 to 344                                              0.896          644            120 A403 WP316            Sch. 140 Notes: Pipe Outer Diameter= 10.75 in. Figure 3-1 shows the Segments. Node numbers are shown in Tables 3-3 to 3-6, Tables 3-11 to 3-14, and Figures 3-2 to 3-5.
The minimum wall thickness is conservatively based at the weld counterbore and not per ASME Code requirement.
Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    3-5 Table 3-2      Summary ofD.C. Cook Unit 2 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines Minimum          Normal Operating Pipe Size &          Wall L_oop      Segment          Nodes        Material Type                          Thickness      Pressure Temperature Schedule (in)        (psig)          (OF)
A376 TP316 or          10-inch I        416 to 412                                              0.896        2345            549 A403 WP316            Sch. 140 A376 TP316 or          10-inch 406-404                                                0.896        2235            549 A403 WP316            Sch. 140 1          II A376 TP316 or          10-inch 404 to 450                                              0.896        2235            120 A403 WP316            Sch. 140 A376 TP316 or          10-inch III        456 to 460                                              0.896          644            120 A403 WP316            Sch. 140 A376 TP316 or          10-inch I        361 to 358                                              0.896        2345            549 A403 WP316            Sch. 140 A376 TP316 or          10-inch 352 to 350                                              0.896        2235            549 A403 WP316            Sch. 140 2            II A376 TP316 or          10-inch 350 to 365                                              0.896        2235            120 A403 WP316            Sch. 140 A376 TP316 or          10-incl).
III        368 to 374                                              0.896
* 644*            120 A403 WP316            Sch. 140 A376 TP316 or          10-inch I        171 to 168                                              0.896        2345            549 A403 WP316            Sch. 140 A376 TP316 or          10-inch 162 to 160                                              0.896        2235            549 A403 WP316            Sch. 140 3            II A376 TP316 or          10-inch 160 to 200                                              0.896        2235            120 A403 WP316            Sch. 140 A376 TP316 or          10-inch III        206 to 214                                              0.896          644            120 A403 WP316            Sch. 140 A376 TP316 or          10-inch I        307 to 304                                              0.896        2345            549 A403 WP316            Sch. 140 A376 TP316 or          IO-inch 296 to 294                                              0.896        2235            549 A403 WP316            Sch. 140 4            II A376 TP316 or          10-inch 294 to 334                                              0.896        2235            120 A403 WP316            Sch. 140 A376 TP316 or          10-inch III        340 to 344                                              0.896          644            120 A403 WP316            Sch. 140 Notes: Pipe Outer Diameter= 10.75 in. Figure 3-1 shows the Segments. Node numbers are shown in Tables 3-7 to 3-10, Tables 3-15 to 3-18, and Figures 3-6 to 3-9.
The minimum wall thickness is conservatively based at the weld counterbore and not per ASME Code requirement.
Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    3-6 Table 3-3      Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location                Axial Force                  Moment                Total Stress Node                        (lbs)                    (in-lbs)                (psi) 1-SI-29-4-416                  150,544                    572,540                  14,500 1-SI-29-4-412                  151,904                    480,244                  13,087 1-S1-29-3R-406                  144,981                    372,401                  11,129 1-S1-29-3R-404Y                  144,974                    359,707                  10,927 1-SI-29-3R-404Z                  144,603                    329,751                  101439 1-SI-29-3R-420N                  145,021                    138,676                  7,428 1-SI-29-3R-420F                  132,866                    302,148                  9,579 1-SI-29-2-426N                  132,866                    610,416                  14,462 1-SI-29-2-426F                  135,542                    584,316                  14,145 1-SI-29-2-428N                  135,361                    511,059                  12,978 1-SI-29-2-428F                  134,368                    418,866                  11,482
            . 1-SI-29-2-430N                  133,973 .                  187,196                  7,798.
1-SI-29-2-430F                  134,456                    217,782                  8,300 1-S1-29-2-434N                  133,786                    596,012                  14,267 1-S1-29-1-434F                  132,348                    606,825                  14,386 l-S1-29-1-442N                  140,744                      19,109                5,379 1-SI-29-1-446F                  144,828                    24,490                  5,612 1-SI-29-1-450                  144,385                      36,111                  5,780 1-SI-28-1-456                  42,094                    48,043                  2,279 1-SI-28-1-459                  40,082                    75,149                  2,636 Notes:
* See Figure 3-2
* See Figure 3-2
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 572,540 480,244 372,401 359,707 329,751 138,676 302,148 610,416 584,316 511,059 418,866 187,196 217,782 596,012 606,825 19,109 24,490 36,111 48,043 75,149 Total Stress (psi) 14,500 13,087 11,129 10,927 101439 7,428 9,579 14,462 14,145 12,978 11,482 7,798. 8,300 14,267 14,386 5,379 5,612 5,780 2,279 2,636 3-6 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-7 Table 3-4 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location Axial Force Node (lbs) 1-Sl-31-4-361 150,050 1-SI-31-4-358 150,454 1-S1-31-3R-352 143,522 1-S1-3 l-3R-350X 143,515 1-S1-31-3R-350Z 137,879 1-S1-31-3R-348F 137,317 1-S1-31-3R-348N 148,662 1-S1-31-3R-344F 148,661 1-S1-31-2-344N 145,839 1-S1-31-2-342F 146,048 1-S1-31-2-342N 146,006 1-S1-31-2-340F 146,140 1-S1-31-2-340N 146,570 1-SI-3 l-1A-338F 147,466 1-SI-31-1A-338N 148,841 l-S1-31-1A-332F 141,852 1-S1-31-IA-332N 140,753 1-S1-31-IA-330F 140,754 1-SI-3 l-lA-324 141,694 l-S1-31-1A-324Y 144,566 1-SI-31-IA-365 144,181 1-S1-30-1-369N 41,878 1-S1-30-1-372F 40,592 1-SI-30~ 1-374 40,592 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                     3-7 Table 3-4     Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location                 Axial Force                 Moment                  Total Stress Node                       (lbs)                    (in-lbs)                    (psi) 1-Sl-31-4-361                 150,050                     553,834                    14,186 1-SI-31-4-358                 150,454                     464,800                    12,790 1-S1-31-3R-352                 143,522                     360,126                    10,882 1-S1-3 l-3R-350X                 143,515                     349,881                    10,719 1-S1-31-3R-350Z                 137,879                     329,396                    10,191 1-S1-31-3R-348F                 137,317                     146,068                    7,267 1-S1-31-3R-348N                 148,662                     305,946                    10,209 1-S1-31-3R-344F                 148,661                     583,194                    14,601 1-S1-31-2-344N                 145,839                     543,364                    13,868 1-S1-31-2-342F                 146,048                     429,755                    12,076 1-S1-31-2-342N                 146,006                     341,910                    10,683 1-S1-31-2-340F                 146,140                     228,057                    8,884 1-S1-31-2-340N                 146,570                     173,557                    8,036 1-SI-3 l-1A-338F                 147,466                     601,975                    14,855 1-SI-31-1A-338N                 148,841                     616,807                    15,139 l-S1-31-1A-332F                 141,852                     49,529                    5,901 1-S1-31-IA-332N                 140,753                     34,468                    5,623 1-S1-31-IA-330F                 140,754                     34,318                    5,621 1-SI-3 l-lA-324                 141,694                     60,896                    6,076 l-S1-31-1A-324Y                 144,566                     42,505                    5,888 1-SI-31-IA-365                 144,181                     38,709                    5,814 1-S1-30-1-369N                   41,878                     33,833                    2,046 1-S1-30-1-372F                   40,592                     43,134                    2,147 1-SI-30~ 1-374                 40,592                     56,445                    2,358 Notes:
* See Figure 3-3
* See Figure 3-3
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 553,834 464,800 360,126 349,881 329,396 146,068 305,946 583,194 543,364 429,755 341,910 228,057 173,557 601,975 616,807 49,529 34,468 34,318 60,896 42,505 38,709 33,833 43,134 56,445 Total Stress (psi) 14,186 12,790 10,882 10,719 10,191 7,267 10,209 14,601 13,868 12,076 10,683 8,884 8,036 14,855 15,139 5,901 5,623 5,621 6,076 5,888 5,814 2,046 2,147 2,358 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-5 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location Axial Force Node (lbs) 1-SI-33-4-171 . 149,402 1-SI-33-4-168 149,924 1-S1-33-3R-162 142,990 1-S1-33-3R-160Y 142,990 1-S1-33-3R-160Z 144,283 1-S1-33-3R-174N 144,756 1-S1-33-3R-174F 132,912 1-SI-33-3R-178N 132,912 1-S1-33-2-178F 135,855 1-SI-33-2-l SON 135,647 1-SI-33-2-1 SOF 135,829 1-S1-33-2-182N 135,715 1-SI-33-2-182F 135,186 1-S1-33-2-184N 134,254 1-S1-33-1A-l84F 132,807 1-SI-33-1A-190N 140,752 1-SI-33-lA-196 140,684 1-S1-33-1A-196Y 143,247 1-SI-33-lA-200 142,911 1-Sl-32-1-206 40,580 1-SI-32-1-214 38,140 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-8 Table 3-5       Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location                 Axial Force                 Moment                Total Stress Node                       (lbs)                  (in-lbs)                  (psi) 1-SI-33-4-171               . 149,402                   545,932                14,037 1-SI-33-4-168                 149,924                   457,435                  12,654 1-S1-33-3R-162                   142,990                   350,539                  10,711 1-S1-33-3R-160Y                   142,990                   339,778                  10,540 1-S1-33-3R-160Z                   144,283                   320,142                  10,276 1-S1-33-3R-174N                   144,756                   159,702                  7,751 1-S1-33-3R-174F                   132,912                   329,603                  10,015 1-SI-33-3R-178N                   132,912                   587,067                  14,094 1-S1-33-2-178F                 135,855                   544,167                  13,520 1-SI-33-2-l SON                 135,647                   426,577                  11,650 1-SI-33-2-1 SOF                 135,829                   337,504                  10,246 1-S1-33-2-182N                   135,715                   250,216                  8,859 1-SI-33-2-182F                 135,186                   188,126                  7,856 1-S1-33-2-184N                   134,254                   625,921                  14,758 1-S1-33-1A-l84F                 132,807                   642,494                  14,968 1-SI-33-1A-190N                   140,752                   82,640                  6,386 1-SI-33-lA-196                 140,684                   98,910                  6,641 1-S1-33-1A-196Y                   143,247                   91,767                  6,621 1-SI-33-lA-200                 142,911                   82,455                  6,461 1-Sl-32-1-206                   40,580                   111,590                  3,231 1-SI-32-1-214                   38,140                   133,951                  3,498 Notes:
* See Figure 3-4
* See Figure 3-4
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 545,932 457,435 350,539 339,778 320,142 159,702 329,603 587,067 544,167 426,577 337,504 250,216 188,126 625,921 642,494 82,640 98,910 91,767 82,455 111,590 133,951 Total Stress (psi) 14,037 12,654 10,711 10,540 10,276 7,751 10,015 14,094 13,520 11,650 10,246 8,859 7,856 14,758 14,968 6,386 6,641 6,621 6,461 3,231 3,498 3-8 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-6 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location Axial Force Node (lbs) 1-SI-35-4-307 149,603 1-SI-35-4-304 150,581 1-S1-35-3RR-296 143,647 1-S1-35-3RR-294Y 143,639 1-S1-35~3RR~294Z 144,601 1-S1-35-3RR-31 ON 145,069 1-S1-35-3RR-310F 132,993 1-S1-35-3RR-314N 132,994 1-S1-35-2R-314F 135,495 1-S1-35-2R-316N 135,287 1-S1-35-2R-316F 135,605 1-S1-35-2R-318N 135,493 l-S1-35-2R-318F 134,824 1-S1-35-2R-320N 133,895 l-S1-35-1-320F 132,895 1-S1-35-1-326N 140,594 1-S1-35-l-330F 144,765 l-SI-35-1-334 144,242 l-SI-34-1-340 42,031 1-SI-34-1-343 40,948 1-SI-34-1-344 40,949 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                     3-9 Table 3-6     Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location               Axial Force                 Moment                Total Stress Node                       (lbs)                  (in-lbs)                  (psi) 1-SI-35-4-307                 149,603                   558,147                  14,238 1-SI-35-4-304               150,581                   465,700                  12,809 1-S1-35-3RR-296                 143,647                   361,774                  10,912 1-S1-35-3RR-294Y                 143,639                   353,398                  10,779 1-S1-35~3RR~294Z                 144,601                   331,148                  10,461 1-S1-35-3RR-31 ON                 145,069                   143,595                  7,507 1-S1-35-3RR-310F                 132,993                   316,630                  9,813 1-S1-35-3RR-314N                 132,994                   595,022                  14,223 1-S1-35-2R-314F                 135,495                   558,636                  13,737 1-S1-35-2R-316N                 135,287                   442,239                  11,885 1-S1-35-2R-316F                 135,605                   354,324                  10,504 1-S1-35-2R-318N                   135,493                   268,494                  9,140 l-S1-35-2R-318F                 134,824                   206,128                  8,128 1-S1-35-2R-320N                 133,895                   596,295                  14,275 l-S1-35-1-320F                 132,895                   605,939                  14,392 1-S1-35-1-326N                 140,594                   37,566                  5,666 1-S1-35-l-330F                 144,765                   29,682                  5,692 l-SI-35-1-334                 144,242                   18,672                  5,499 l-SI-34-1-340                 42,031                     27,037                  1,944 1-SI-34-1-343                 40,948                     38,853                  2,092 1-SI-34-1-344                 40,949                     50,665                  2,280 Notes:
* See Figure 3-5
* See Figure 3-5
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 558,147 465,700 361,774 353,398 331,148 143,595 316,630 595,022 558,636 442,239 354,324 268,494 206,128 596,295 605,939 37,566 29,682 18,672 27,037 38,853 50,665 Total Stress (psi) 14,238 12,809 10,912 10,779 10,461 7,507 9,813 14,223 13,737 11,885 10,504 9,140 8,128 14,275 14,392 5,666 5,692 5,499 1,944 2,092 2,280 3-9 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-7 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location Axial Force Node (lbs) 2-SI-56-10-416 149,651 2-SI-56-10-412 150,029 2-SI-56-9-406 143,099 2-S1-56-9-404Y 143,099 2-S1-56-9-404Z 144,000 2-S1-56-9-420N 144,458 2-S1-56-8-420F 133,182 2-S1-56-8-426N 133,182 2-S1-56-8-426F 136,019 2-S1-56-7-428N 135,811 2-SI-56-7-428F 136,040 2-SI-56-7-430N 135,930 2-SI-56-7-430F 135,377 2-S1-56-6-434N 134,428 2-S1-56-6-434F 133,012 2-S1-56-5-442N 140,759 2-S1-56-4-446F 144,982 2-SI-56-4-450 144,461 2-SI-56-3-456 41,893 2-S1-56-3-458F 40,084 2-SI-56-3-460 40,083 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-10 Table 3-7       Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location                 Axial Force                 Moment                Total Stress Node                       (lbs)                    (in-lbs)                  (psi) 2-SI-56-10-416                 149,651                   543,376                  14,005 2-SI-56-10-412                 150,029                   460,335                  12,704 2-SI-56-9-406                 143,099                   371,247                  11,042 2-S1-56-9-404Y                 143,099                   364,094                  10,929 2-S1-56-9-404Z                 144,000                   333,400                  10,475 2-S1-56-9-420N                 144,458                   137,677                  7,392 2-S1-56-8-420F                 133,182                   294,094                  9,463 2-S1-56-8-426N                 133,182                   585,298                  14,076 2-S1-56-8-426F                 136,019                   544,178                  13,526 2-S1-56-7-428N                 135,811                   430,650                  11,721 2-SI-56-7-428F                 136,040                   344,620                  10,366 2-SI-56-7-430N                 135,930                   267,996                  9,148 2-SI-56-7-430F                 135,377                   200,323                  8,056 2-S1-56-6-434N                 134,428                   585,021                  14,116 2-S1-56-6-434F                 133,012                   601,203                  14,321 2-S1-56-5-442N                 140,759                     19,495                  5,386 2-S1-56-4-446F                   144,982                   24,925                  5,624 2-SI-56-4-450                   144,461                   36,168                  5,784 2-SI-56-3-456                   41,893                     46,418                  2,246 2-S1-56-3-458F                   40,084                     70,391                  2,561 2-SI-56-3-460                 40,083                     84,642                  2,787 Notes:
* See Figure 3-6
* See Figure 3-6
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 543,376 460,335 371,247 364,094 333,400 137,677 294,094 585,298 544,178 430,650 344,620 267,996 200,323 585,021 601,203 19,495 24,925 36,168 46,418 70,391 84,642 Total Stress (psi) 14,005 12,704 11,042 10,929 10,475 7,392 9,463 14,076 13,526 11,721 10,366 9,148 8,056 14,116 14,321 5,386 5,624 5,784 2,246 2,561 2,787 3-10 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-8 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location Axial Force Node (lbs) 2-SI-57-10-361 150,058 2-SI-57-10-358 150,601 2-SI-57-9-352 143,667 2-S1-57-9-350X 143,667 2-S1-57-9-350Z 137,932 2-S1-57-9-348F 137,369 2-S1-57-8-348N 148,713 2-S1-57-8-344F 148,713 2-S1-57-8-344N 145,886 2-S1-57-7-342F 146,134 2-S1-57-7-342N 146,088 2-S1-57-7-340F 146,250 2-S1-57-7-340N 146,749 2-S1-57-6-338F 147,823 2-S1-57-6-338N 148,892 2-S1-57-5-332F 141,297 2-S1-57-4-332N 141,478 2-SI-57-4-326F 141,478 2-S1-57-4-326N 142,887 2-S1-57-4-324Y 136,719 2-SI-57-4-365 136,328 2-SI-57-3-368 34,048 2-SI-57-3-374 40,010 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-11 Table 3-8       Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location                 Axial Force                 Moment                Total Stress Node                       (lbs)                  (in-lbs)                  (psi) 2-SI-57-10-361                 150,058                   545,366                  14,052 2-SI-57-10-358                 150,601                   455,303                  12,645 2-SI-57-9-352                 143,667                   352,318                  10,763 2-S1-57-9-350X                 143,667                   342,929                  10,614 2-S1-57-9-350Z                 137,932                   330,093                  10,204 2-S1-57-9-348F                 137,369                   146,848                  7,281 2-S1-57-8-348N                 148,713                   307,489                  10,235 2-S1-57-8-344F                 148,713                   583,312                  14,604 2-S1-57-8-344N                 145,886                   543,484                  13,871 2-S1-57-7-342F                 146,134                   429,243                  12,071 2-S1-57-7-342N                 146,088                   340,780                  10,668 2-S1-57-7-340F                 146,250                   226,938                  8,870 2-S1-57-7-340N                 146,749                   172,793                  8,030 2-S1-57-6-338F                 147,823                   608,808                  14,976 2-S1-57-6-338N                   148,892                   618,226                  15,164 2-S1-57-5-332F                 141,297                     88,253                  6,495 2-S1-57-4-332N                 141,478                     86,492                  6,473 2-SI-57-4-326F                 141,478                   99,948                  6,686 2-S1-57-4-326N                   142,887                   111,859                  6,926 2-S1-57-4-324Y                   136,719                   132,788                  7,035 2-SI-57-4-365                 136,328                   103,172                  6,552 2-SI-57-3-368                 34,048                   115,867                  3,064 2-SI-57-3-374                 40,010                     86,160                  2,808 Notes:
* See Figure 3-7
* See Figure 3-7
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 545,366 455,303 352,318 342,929 330,093 146,848 307,489 583,312 543,484 429,243 340,780 226,938 172,793 608,808 618,226 88,253 86,492 99,948 111,859 132,788 103,172 115,867 86,160 Total Stress (psi) 14,052 12,645 10,763 10,614 10,204 7,281 10,235 14,604 13,871 12,071 10,668 8,870 8,030 14,976 15,164 6,495 6,473 6,686 6,926 7,035 6,552 3,064 2,808 3-11 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-9 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location Axial Force Node (lbs) 2-SI-58-10-171 149,588 2-SI-58-10-168 150,011 2-SI-58-9-162 143,081 2-SI-58-9-I60Y 143,081 2-SI-58-9-l60Z 144,042 2-SI-58-9-174N 144,604 2-SI-58-8-l 74F 132,871 2-SI-58-8-178N 132,871 2-SI-58-8-l 78F 135,786 2-SI-58-7-180N 135,537 2-SI-58-7-180F 135,723 2-SI-58-7-182N 135,592 2-SI-58-7-I82F 134,989 2-SI-58-6-I84N 133,878 2-SI-58-6-l 84F 132,765 2-SI-58-5-190N 139,574 2-SI-58-4-I94F 144,633 2-SI-58-4-196Y 143,610 2-SI-58-4-200 143,270 2-SI-58-3-206 40,939 2-SI-58-3-212F 38,842 2-SI-58-3-214 38,842 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-12 Table 3-9     Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location                 Axial Force                 Moment                Total Stress Node                       (lbs)                    (in-lbs)                  (psi) 2-SI-58-10-171                 149,588                   542,679                  13,992 2-SI-58-10-168                 150,011                   454,313                  12,608 2-SI-58-9-162                 143,081                   351,593                  10,731 2-SI-58-9-I60Y                 143,081                   341,851                  10,576 2-SI-58-9-l60Z                 144,042                   320;594 .                10,274 2-SI-58-9-174N                 144,604                   160,824                  7,764 2-SI-58-8-l 74F                 132,871                   330,395                  10,026 2-SI-58-8-178N                 132,871                   587,453                  14,098 2-SI-58-8-l 78F                 135,786                   545,092                  13,533 2-SI-58-7-180N                 135,537                   427,002                  11,653 2-SI-58-7-180F                 135,723                   337,416                  10,241 2-SI-58-7-182N                 135,592                   249,711                  8,846 2-SI-58-7-I82F                 134,989                   187,744                  7,843 2-SI-58-6-I84N                 133,878                   630,745                  14,821 2-SI-58-6-l 84F                 132,765                   641,494                  14,951 2-SI-58-5-190N                 139,574                     38,643                  5,647 2-SI-58-4-I94F                 144,633                     39,516                  5,843 2-SI-58-4-196Y                 143,610                     43,662                  5,872 2-SI-58-4-200                 143,270                     58,945                  6,102 2-SI-58-3-206                   40,939                     84,090                  2,809 2-SI-58-3-212F                   38,842                   108,533                  3,120 2-SI-58-3-214                   38,842                   106,898                  3,094 Notes:
* See Figure 3-8
* See Figure 3-8
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 542,679 454,313 351,593 341,851 320;594 . 160,824 330,395 587,453 545,092 427,002 337,416 249,711 187,744 630,745 641,494 38,643 39,516 43,662 58,945 84,090 108,533 106,898 Total Stress (psi) 13,992 12,608 10,731 10,576 10,274 7,764 10,026 14,098 13,533 11,653 10,241 8,846 7,843 14,821 14,951 5,647 5,843 5,872 6,102 2,809 3,120 3,094 3-12 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation}
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-10 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location Axial Force Node (lbs) 2-SI-59-10-307 150,095 2-SI-59-10-304 150,649 2-SI-59-9-296 143,709 2-SI-59-9-294Y 143,715 2-SI-59-9-294Z 144,752 2-SI-59-9-31 ON 145,176 2-SI-59-8-3 lOF 132,973 2-SI-59-8-314N 132,974 2-SI-59-8-314F 135,386 2-S1-59-7-316N 135,177 2-SI-59-7-316F 135,523 2-SI-59-7-31 SN 135,407 2-S1-59-7-318F 134,713 2-S1-59-6-320N 133,784 2-SI-59-6-320F 132,870 2-S1-59-5-326N 140,587 2-SI-59-4-330F 145,954 2-SI-59-4-334 145,430 2-SI-59-3-340 42,862 2-SI-59-3-344 40,932 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation}
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-13 Table 3-10 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location                 Axial Force                   Moment              Total Stress Node                       (lbs)                    (in-lbs)                (psi) 2-SI-59-10-307                 150,095                     554,493                14,198 2-SI-59-10-304                 150,649                     462,270                12,757 2-SI-59-9-296                 143,709                     357,048                10,840 2-SI-59-9-294Y                 143,715                     348,610                10,706 2-SI-59-9-294Z                 144,752                   . 338,702                10,587 2-SI-59-9-31 ON                 145,176                     138,638                7,433 2-SI-59-8-3 lOF                 132,973                     312,445                9,746 2-SI-59-8-314N                 132,974                     596,893                14,252 2-SI-59-8-314F                 135,386                     561,931                13,785 2-S1-59-7-316N                 135,177                     445,283                11,930 2-SI-59-7-316F                 135,523                     357,096                10,545 2-SI-59-7-31 SN                 135,407                     271,143                9,179 2-S1-59-7-318F                 134,713                     208,346                8,160 2-S1-59-6-320N                 133,784                     597,562                14,292 2-SI-59-6-320F                 132,870                     605,979                14,392 2-S1-59-5-326N                 140,587                     40,839                  5,718 2-SI-59-4-330F                 145,954                     33,498                  5,795 2-SI-59-4-334                 145,430                     25,819                  5,655 2-SI-59-3-340                 42,862                     14,809                  1,781 2-SI-59-3-344                 40,932                     35,700                  2,042 Notes:
* See Figure 3-9
* See Figure 3-9
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 554,493 462,270 357,048 348,610 . 338,702 138,638 312,445 596,893 561,931 445,283 357,096 271,143 208,346 597,562 605,979 40,839 33,498 25,819 14,809 35,700 Total Stress (psi) 14,198 12,757 10,840 10,706 10,587 7,433 9,746 14,252 13,785 11,930 10,545 9,179 8,160 14,292 14,392 5,718 5,795 5,655 1,781 2,042 3-13 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-14 Table 3-11 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location Axial Force Node (lbs) 1-SI-29-4-416 153,672 1-SI-29-4-412 153,946 1-S1-29-3R-406 146,721 1-S1-29-3R-404Y 146,708 1-S1-29-3R-404Z 148,186 1-S1-29-3R-420N 147,785 1-S1-29-3R-420F 150,017 1-S1-29-2-426N 149,655 1-S1-29-2-426F 147,300 1-S1-29-2-428N 147,466 1-S1-29-2-428F 148,333 1-S1-29-2-430N 148,854 1-S1-29-2-430F 148,404 l-SI-29-2-434N 149,155 l-S1-29-1-434F 150,250 1-S1-29-1-442N 143,611 1-S1-29-1-446F 149,385 1-SI-29-1-450 148,910 1-SI-28-1-456 46,553 1-SI-28-1-459 43,989 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-14 Table 3-11 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location               Axial Force                 Moment                Total Stress Node                       (lbs)                    (in-lbs)                (psi) 1-SI-29-4-416                 153,672                   942,766                  20,477 1-SI-29-4-412                 153,946                   781,220                  17,928 1-S1-29-3R-406                 146,721                   541,792                  13,875 1-S1-29-3R-404Y                 146,708                   511,106                  13,388 1-S1-29-3R-404Z                 148,186                   469,759 .                12,786 1-S1-29-3R-420N                 147,785                   211,852                  8,687 1-S1-29-3R-420F                 150,017                   359,241                  11,102 1-S1-29-2-426N                 149,655                   665,307                  15,937 1-S1-29-2-426F                 147,300                   650,728                  15,621 1-S1-29-2-428N                 147,466                   585,585                  14,595 1-S1-29-2-428F                 148,333                   485,703                  13,044 1-S1-29-2-430N                 148,854                   253,259                  9,381 1-S1-29-2-430F                 148,404                   265,934                  9,566 l-SI-29-2-434N                 149,155                   664,249                15,902 l-S1-29-1-434F                 150,250                   654,108                15,781 1-S1-29-1-442N                 143,611                   203,227                  8,399 1-S1-29-1-446F                 149,385                   157,310                  7,880 1-SI-29-1-450                 148,910                   210,917                  8,712 1-SI-28-1-456                 46,553                     312,358                  6,627 1-SI-28-1-459                   43,989                   325,555                  6,744 Notes:
* See Figure 3-2
* See Figure 3-2
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 942,766 781,220 541,792 511,106 469,759 . 211,852 359,241 665,307 650,728 585,585 485,703 253,259 265,934 664,249 654,108 203,227 157,310 210,917 312,358 325,555 Total Stress (psi) 20,477 17,928 13,875 13,388 12,786 8,687 11,102 15,937 15,621 14,595 13,044 9,381 9,566 15,902 15,781 8,399 7,880 8,712 6,627 6,744 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-12 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location Axial Force Node (lbs) 1-SI-31-4-361 154,404 1-SI-31-4-358 152,740 1-S1-31-3R-352 145,511 1-S1-3l-3R-350X 145,498 1-S1-31-3R-350Z 147,631 1-S1-31-3R-348F 147,051 1-S1-3 l-3R-348N 149,869 1-S1-31-3R-344F 149,387 1-S1-31-2-344N 147,035 1-S1-31-2-342F 147,236 1-S1-31-2-342N 146,912
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* 1-S1-31-2-340F 147,103 l-S1-31-2-340N 147,764 1-S1-31-1A-338F 148,728 1-S1-31-1A-338N 149,712 1-S1-31-1A-332F 146,225 1-S1-31-1A-332N 147,023 l-S1-31-1A-330F 146,976 1-SI-3 l-IA-324 141,935 l-S1-31-IA-324Y 145,662 l-SI-31-IA-365 145,212 1-S1-30-l-369N 42,645 1-S1-30-1-372F 45,895 1-SI-30-1-374 45,911 Notes:
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-15 Table 3-12 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location                 Axial Force                 Moment                Total Stress Node                         (lbs)                    (in-lbs)                (psi) 1-SI-31-4-361                   154,404                   952,033                  20,650 1-SI-31-4-358                   152,740                   789,100                  18,009 1-S1-31-3R-352                   145,511                   548,357                  13,935 1-S1-3l-3R-350X                   145,498                   508,389                  13,301 1-S1-31-3R-350Z                   147,631                   486,646                  13,034 1-S1-31-3R-348F                   147,051                   240,974                  9,121 1-S1-3 l-3R-348N                   149,869                   372,305                  11,303 1-S1-31-3R-344F                   149,387                   638,071                  15,496 1-S1-31-2-344N                   147,035                   610,125                  14,968 1-S1-31-2-342F                   147,236                   495,600                  13,162 1-S1-31-2-342N                   146,912                   408,000                  11,762
* 1-S1-31-2-340F                   147,103                   288,840                  9,882 l-S1-31-2-340N                   147,764                   231,000                  8,989 1-S1-31-1A-338F                   148,728                   689,316                  16,284 1-S1-31-1A-338N                   149,712                   673,084                  16,062 1-S1-31-1A-332F                   146,225                   140,085                  7,493 1-S1-31-1A-332N                   147,023                   154,999                  7,758 l-S1-31-1A-330F                   146,976                   128,480                  7,337 1-SI-3 l-IA-324                 141,935                   139,947                  7,337 l-S1 IA-324Y                   145,662                   297,275                  9,963 l-SI-31-IA-365                   145,212                     171,169                  7,949 1-S1-30-l-369N                   42,645                     121,272                  3,459 1-S1-30-1-372F                   45,895                    141,382                  3,895 1-SI-30-1-374                   45,911                     133,357                  3,768 Notes:
* See Figure 3-3
* See Figure 3-3
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment Total Stress (in-lbs) (psi) 952,033 20,650 789,100 18,009 548,357 13,935 508,389 13,301 486,646 13,034 240,974 9,121 372,305 11,303 638,071 15,496 610,125 14,968 495,600 13,162 408,000 11,762 288,840 9,882 231,000 8,989 689,316 16,284 673,084 16,062 140,085 7,493 154,999 7,758 128,480 7,337 139,947 7,337 297,275 9,963 171,169 7,949 121,272 3,459 141,382 3,895 133,357 3,768 3-15 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-13 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location Axial Force Node (lbs) 1-SI-33-4-171 154,449 1-SI-33-4-168 151,850 l-S1-33-3R-162 144,623 l-S1-33-3R-l60Y 144,616 l-S1-33-3R-l60Z 147,423 1-S1-33-3R-174N 146,959 1-S1-33-3R-174F 149,946 l-S1-33-3R-l 78N 149,575 l-S1-33-2-178F 147,267 l-S1-33-2-180N 147,477 ' l-S1-33-2-180F 146,974 l-S1-33-2-182N 147,107 l-S1-33-2-l 82F 147,947 1-S1-33-2-184N 148,927 1-S1-33-1A-l 84F 149,821 1-S1-33-1A-190N 144,313 l-SI-33-lA-196 143,545 1-S1-33-1A-196Y 149,256 l-SI-33-lA-200 148,879 l-SI-32-1-206 46,374 l-SI-32-1-214 48,770 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-16 Table 3-13 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location               Axial Force                 Moment                Total Stress Node                       (lbs)                    (in-lbs)                  (psi) 1-SI-33-4-171               154,449                   901,426                  19,850 1-SI-33-4-168               151,850                   761,463                  17,539 l-S1-33-3R-162                 144,623                   536,440                  13,714 l-S1-33-3R-l60Y                 144,616                   498,873                  13,119 l-S1-33-3R-l60Z                 147,423                   442,778                  12,332 1-S1-33-3R-174N                 146,959                   258,020                  9,388 1-S1-33-3R-174F                 149,946                   400,054                  11,746 l-S1-33-3R- l 78N               149,575                   640,568                  15,542 l-S1-33-2-178F                 147,267                   609,999                  14,975 l-S1-33-2-180N                 147,477                   485,807                  13,015
              ' l-S1-33-2-180F                 146,974                   397,219                  11,594 l-S1-33-2-182N                 147,107                   301,798                  10,087 l-S1-33-2-l 82F               147,947                   237,093                  9,092 1-S1-33-2-184N                 148,927                   694,425                  16,372 1-S1-33-1A-l 84F                 149,821                   711,587                  16,676 1-S1-33-1A-190N                 144,313                   276,976                  9,593 l-SI-33-lA-196                 143,545                   304,639                  10,003 1-S1-33-1A-196Y                 149,256                   399,444                  11,711 l-SI lA-200                 148,879                   255,528                  9,418 l-SI-32-1-206                 46,374                   222,432                  5,196 l-SI-32-1-214                 48,770                   239,236                  5,549 Notes:
* See Figure 3-4
* See Figure 3-4
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 901,426 761,463 536,440 498,873 442,778 258,020 400,054 640,568 609,999 485,807 397,219 301,798 237,093 694,425 711,587 276,976 304,639 399,444 255,528 222,432 239,236 Total Stress (psi) 19,850 17,539 13,714 13,119 12,332 9,388 11,746 15,542 14,975 13,015 11,594 10,087 9,092 16,372 16,676 9,593 10,003 11,711 9,418 5,196 5,549 3-16 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-17 Table 3-14 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location Axial Force Node (lbs) 1-SI-35-4-307 154,554 1-SI-35-4-304 152,576 1-SI-35-3RR-296 145,345 1-SI-35-3RR-294Y 145,332 1-S1-35-3RR-294Z 147,986 1-S1-35-3RR-3 l0N 147,518 1-S1-35-3RR-3 l0F 149,705 1-S1-35-3RR-314N 149,405 1-SI-35-2R-314F 147,354 1-SI-35-2R-316N 147,555 1-SI-35-2R-316F 146,931 1-SI-35-2R-318N 147,080 1-SI-35-2R-3 l 8F 148,019 1-SI-35-2R-320N 149,016 1-SI-35-1-320F 149,633 1-SI-35-1-326N 142,784 1-SI-35-1-330F 147,894 1-SI-35-1-334 147,326 1-SI-34-1-340 45,110 1-SI-34-1-343 43,528 1-SI-34-1-344 43,360 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-17 Table 3-14 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location                 Axial Force                 Moment                Total Stress Node                       (lbs)                    (in-lbs)                (psi) 1-SI-35-4-307                 154,554                   933,994                20,370 1-SI-35-4-304                 152,576                   766,603                17,647 1-SI-35-3RR-296                   145,345                   521,590                13,505 1-SI-35-3RR-294Y                   145,332                   485,618                12,935 1-S1-35-3RR-294Z                   147,986                   474,798                12,859 1-S1-35-3RR-3 l0N                   147,518                   218,605                  8,784 1-S1-35-3RR-3 l0F                 149,705                   368,180                11,232 1-S1-35-3RR-314N                   149,405                   635,330                15,453 1-SI-35-2R-314F                   147,354                   613,318                15,031 1-SI-35-2R-316N                   147,555                   500,811                13,256 1-SI-35-2R-316F                   146,931                   417,057                11,906 1-SI-35-2R-318N                   147,080                   330,240                10,536 1-SI-35-2R-3 l 8F                 148,019                   263,726                  9,517 1-SI-35-2R-320N                   149,016                   669,413                15,979 1-SI-35-1-320F                   149,633                   653,715                15,753 1-SI-35-1-326N                   142,784                   201,489                  8,342 1-SI-35-1-330F                   147,894                   156,026                  7,806 1-SI-35-1-334                 147,326                   155,105                  7,771 1-SI-34-1-340                   45,110                   231,951                  5,301 1-SI-34-1-343                   43,528                   244,127                  5,437 1-SI-34-1-344                   43,360                   222,408                  5,087 Notes:
* See Figure 3-5
* See Figure 3-5
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 933,994 766,603 521,590 485,618 474,798 218,605 368,180 635,330 613,318 500,811 417,057 330,240 263,726 669,413 653,715 201,489 156,026 155,105 231,951 244,127 222,408 Total Stress (psi) 20,370 17,647 13,505 12,935 12,859 8,784 11,232 15,453 15,031 13,256 11,906 10,536 9,517 15,979 15,753 8,342 7,806 7,771 5,301 5,437 5,087 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-15 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location Axial Force Node (lbs) 2-SI-56-10-416 154,850 2-SI-56-10-412 152,074 2-SI-56-9-406 144,653 2-SI-56-9-404Y 144,644 2-SI-56-9-A04Z *147,675 2-SI-56-9-420N 147,200 2-SI-56-8-420F 149,883 2-SI-56-8-426N 149,401 2-SI-56-8-426F 146,934 2-SI-56-7-428N 147,130 2-SI-56-7-428F 146,624 2-S1-56-7-430N 146,754 2-SI-56-7-430F 147,567 2-SI-56-6-434N 148,583 2-SI-56-6-434F 149,711 2-SI-56-5-442N 143,803 2-SI-56-4-446F 149,901 2-SI-56-4-450 149,341 2-SI-56-3-456 46,670 2-SI-56-3-458F 44,438 2-SI-56-3-460 44,252 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-18 Table 3-15 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location                 Axial Force                 Moment                Total Stress Node                       (lbs)                    (in-lbs)                (psi) 2-SI-56-10-416                 154,850                   881,028                  19,542 2-SI-56-10-412                 152,074                   738,135                  17,178 2-SI-56-9-406                 144,653                   540,790                  13,784 2-SI-56-9-404Y                   144,644                   510,587                  13,305 2-SI-56-9-A04Z                 *147,675                   474,565                  12,844 2-SI-56-9-420N                   147,200                   221,137                  8,813 2-SI-56-8-420F                 149,883                   360,838                  11,122 2-SI-56-8-426N                   149,401                   635,776                  15,460 2-SI-56-8-426F                 146,934                   605,903                  14,898 2-SI-56-7-428N                   147,130                   496,465                  13,171 2-SI-56-7-428F                 146,624                   409,344                  11,773 2-S1-56-7-430N                   146,754                   330,436                  10,528 2-SI-56-7-430F                 147,567                   261,721                  9,469 2-SI-56-6-434N                   148,583                   654,713                  15,731 2-SI-56-6-434F                 149,711                   649,740                  15,693 2-SI-56-5-442N                   143,803                   225,713                  8,763 2-SI-56-4-446F                 149,901                   169,423                8,091 2-SI-56-4-450                 149,341                   224,348                  8,941 2-SI-56-3-456                   46,670                   334,073                  6,975 2-SI-56-3-458F                   44,438                   339,098                  6,974 2-SI-56-3-460                   44,252                   297,910                  6,315 Notes:
* See Figure 3-6
* See Figure 3-6
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 881,028 738,135 540,790 510,587 474,565 221,137 360,838 635,776 605,903 496,465 409,344 330,436 261,721 654,713 649,740 225,713 169,423 224,348 334,073 339,098 297,910 Total Stress (psi) 19,542 17,178 13,784 13,305 12,844 8,813 11,122 15,460 14,898 13,171 11,773 10,528 9,469 15,731 15,693 8,763 8,091 8,941 6,975 6,974 6,315 3-18 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-16 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location Axial Force Node (lbs) 2-SI-57-10-361 154,785 2-SI-57-10-358 152,910 2-SI-57-9-352 145,580 2-SI-57-9-350X 145,569 2-SI-57-9-350Z 147,817 2-SI-57-9-348F 147,242 2-SI-57-8-348N 150,193 2-SI-57-8-344F 149,631 2-SI-57-8-344N 147,232 2-SI-57-7-342F 147,461 2-SI-57-7-342N 147,082 2-SI-57-7-340F 147,290 2-SI-57-7-340N 148,059 2-SI-57-6-338F 149,189 2-SI-57-6-338N 149,941 2-SI-57-5-332F 144,134 2-SI-57-4-332N 144,113 2-SI-57-4-326F 144,098 2-SI-57-4-326N 143,623 2-S1-57-4-324Y 147,576 2-SI-57-4-365 147,983 2-SI-57-3-368 49,754 2-SI-57-3-374 43,079 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-19 Table 3-16 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location                 Axial Force                 Moment                Total Stress Node                       (lbs)                    (in-lbs)                  (psi) 2-SI-57-10-361                 154,785                   930,327                20,320 2-SI-57-10-358                 152,910                   780,228                  17,875 2-SI-57-9-352                 145,580                   550,743                  13,975 2-SI-57-9-350X                   145,569                   511,768                  13,358 2-SI-57-9-350Z                 147,817                   481,026                  12,952 2-SI-57-9-348F                 147,242                   247,668                  9,234 2-SI-57-8-348N                 150,193                   383,617                  11,494 2-SI-57-8-344F                   149,631                   639,502                  15,527 2-SI-57-8-344N                   147,232                   612,808                  15,018 2-SI-57-7-342F                 147,461                   500,072                  13,241 2-SI-57-7-342N                 147,082                   408,334                  11,774 2-SI-57-7-340F                   147,290                   289,277                  9,895 2-SI-57-7-340N                   148,059                   237,803                  9,108 2-SI-57-6-338F                 149,189                   689,628                  16,306 2-SI-57-6-338N                   149,941                   674,341                  16,091 2-SI-57-5-332F                   144,134                   265,896                  9,411 2-SI-57-4-332N                   144,113                   261,199                  9,336 2-SI-57-4-326F                 144,098                   251,473                  9,181 2-SI-57-4-326N                   143,623                   256,107                  9,237 2-S1-57-4-324Y                   147,576                   407,080                  11,772 2-SI-57-4-365                 147,983                   281,549                  9,798 2-SI-57-3-368                 49,754                   210,309                  5,126 2-SI-57-3-374                 43,079                   187,522                  4,524 Notes:
* See Figure 3-7
* See Figure 3-7
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 930,327 780,228 550,743 511,768 481,026 247,668 383,617 639,502 612,808 500,072 408,334 289,277 237,803 689,628 674,341 265,896 261,199 251,473 256,107 407,080 281,549 210,309 187,522 Total Stress (psi) 20,320 17,875 13,975 13,358 12,952 9,234 11,494 15,527 15,018 13,241 11,774 9,895 9,108 16,306 16,091 9,411 9,336 9,181 9,237 11,772 9,798 5,126 4,524 3-19 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                       January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-17 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location Axial Force Node (lbs) 2-SI-58-10-171 155,131 2-SI-58-10-168 152,408 2-SI-58-9-162 145,111 2-SI-58-9-160Y 145,101 2-SI-58-9-160Z 147,868 2-S1-58-9-174N 147,313 2-S1-58-8-174F 150,295 2-S1-58-8-178N 149,785 2-S1-58-8-178F 147,541 . 2-S1-58-7-180N 147,779 2-S1-58-7-180F . 147,170 2-S1-58-7-182N 147,331 2-S1-58-7-182F 148,328 2-S1-58-6-184N 149,512 2-S1-58-6-184F 150,085 2-S1-58-5-190N 144,043 2-S1-58-4-194F 156,146 2-S1-58-4-196Y 147,601 2-SI-58-4-200 147,198 2-SI-58-3-206 44,594 2-S1-58-3-212F 47,965 2-SI-58-3-214 47,974 Notes:
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-20 Table 3-17 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location                 Axial Force                 Moment                Total Stress Node                       (lbs)                    (in-lbs)                  (psi) 2-SI-58-10-171                 155,131                     963,864                  20,864 2-SI-58-10-168                 152,408                     816,935                  18,438 2-SI-58-9-162                 145,111                     586,733                  14,529 2-SI-58-9-160Y                 145,101                     546,305                  13,888 2-SI-58-9-160Z                 147,868                     482,583                  12,978 2-S1-58-9-174N                 147,313                     276,331                  9,691 2-S1-58-8-174F                 150,295                     414,861                  11,993 2-S1-58-8-178N                 149,785                     648,744                  15,679 2-S1-58-8-178F                 147,541 .                   620,256                  15,147 2-S1-58-7-180N                 147,779                     497,191                  13,206 2-S1-58-7-180F .               147,170                   .409,449                . 11,794 2-S1-58-7-182N                 147,331                     312,371                  10,262 2-S1-58-7-182F                 148,328                     248,448                  9,286 2-S1-58-6-184N                 149,512                     720,276                  16,803 2-S1-58-6-184F                 150,085                     729,325                  16,967 2-S1-58-5-190N                   144,043                   183,813                  8,107 2-S1-58-4-194F                 156,146                   220,688                  9,128 2-S1-58-4-196Y                   147,601                   338,570                  10,687 2-SI-58-4-200                 147,198                   202,172                  8,512 2-SI-58-3-206                 44,594                     160,676                  4,154 2-S1-58-3-212F                 47,965                     208,334                  5,030 2-SI-58-3-214                 47,974                     196,809                  4,848 Notes:
* See Figure 3-8
* See Figure 3-8
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 963,864 816,935 586,733 546,305 482,583 276,331 414,861 648,744 620,256 497,191 .409,449 312,371 248,448 720,276 729,325 183,813 220,688 338,570 202,172 160,676 208,334 196,809 Total Stress (psi) 20,864 18,438 14,529 13,888 12,978 9,691 11,993 15,679 15,147 13,206 . 11,794 10,262 9,286 16,803 16,967 8,107 9,128 10,687 8,512 4,154 5,030 4,848 3-20 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                       January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Table 3-18 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location Axial Force Node (lbs) 2-SI-59-10-307 155,202 2-SI-59-10-304 152,894 2-SI-59-9-296 145,478 2-S1-59-9-294Y 145,476 2-S1-59~9-294Z 147,968 2-SI-59-9-31 ON 147,567 2-SI-59-8-3 lOF 149,838 2-S1-59-8-314N 149,475 2-S1-59-8-314F 147,647 2-SI-59-7-316N 147,848 2-S1-59-7-316F 147,148 2-S1-59-7-318N 147,299
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* 2-S1-59-7-318F 148,309 2-S1-59-6-320N 149,290 2-S1-59-6-320F 149,797 2-S1-59-5-326N 143,537 2-SI-59-4-330F 149,661 2-SI-59-4-334 149,098 2-SI-59-3-340 46,391 2-SI-59-3-344 44,025 Notes:
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-21 Table 3-18 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location                 Axial Force                 Moment                Total Stress Node                       (lbs)                  (in-lbs)                  (psi) 2-SI-59-10-307                 155,202                   970,257                20,968 2-SI-59-10-304                 152,894                   794,224                  18,096 2-SI-59-9-296                 145,478                   534,370                  13,712 2-S1-59-9-294Y                   145,476                   494,266                  13,077 2-S1-59~9-294Z                   147,968                   483,080                  12,990 2-SI-59-9-31 ON                 147,567                   228,424                  8,941 2-SI-59-8-3 lOF                 149,838                   371,593                  11,291 2-S1-59-8-314N                   149,475                   641,406                  15,552 2-S1-59-8-314F                   147,647                   624,363                  15,216 2-SI-59-7-316N                   147,848                   509,412                  13,402 2-S1-59-7-316F                   147,148                   421,203                  11,980 2-S1-59-7-318N                   147,299
* 331,829                  10,570 2-S1-59-7-318F                 148,309                   267,901                  9,593 2-S1-59-6-320N                   149,290                   674,205                  16,065 2-S1-59-6-320F                 149,797                   656,912                  15,809 2-S1-59-5-326N                   143,537                   236,480                  8,923 2-SI-59-4-330F                 149,661                   188,469                  8,384 2-SI-59-4-334                 149,098                   190,010                  8,388 2-SI-59-3-340                 46,391                   276,428                  6,052 2-SI-59-3-344                 44,025                   292,096                  6,215 Notes:
* See Figure 3-9
* See Figure 3-9
* Axial force includes pressure Pipe Geometry and Loading WCAP-18295-NP Moment (in-lbs) 970,257 794,224 534,370 494,266 483,080 228,424 371,593 641,406 624,363 509,412 421,203 331,829 267,901 674,205 656,912 236,480 188,469 190,010 276,428 292,096 Total Stress (psi) 20,968 18,096 13,712 13,077 12,990 8,941 11,291 15,552 15,216 13,402 11,980 10,570 9,593 16,065 15,809 8,923 8,384 8,388 6,052 6,215 3-21 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Axial force includes pressure Pipe Geometry and Loading                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 _ I _..&sect;~gment 111......j ~1.-segmentll Segment I Cold Leg I I J 3-22 Accumulator Tank .,. Figure 3-110-inch Accumulator Line Layout Showing Segments for D.C. Cook Units 1 and 2 Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-23 Figure 3-2 D.C. Cook Unit 1 Accumulator Line Loop 1 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Loop2 Cold Leg 3-24 Figure 3-3 D.C. Cook Unit 1 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. (This.statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-25 "' 1'4 Figure 3-4 D.C. Cook Unit 1 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 * * * .;,... Loop4 Cold leg ' .", * ... ** 3-26 Figure 3-5 D.C. Cook Unit 1 Accumulator Line Loop 4 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 llC COLO L~G LOqP-1 3-27 Figure 3-6 D.C. Cook Unit 2 Accumulator Line Loop 1 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation) I WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-28 Figure 3-7 D.C. Cook Unit 2 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Pipe Geometry and Loading WCAP-18295-NP
* Points January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-29 Figure 3-8 D.C. Cook Unit 2 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-30 "( ** Figure 3-9 D.C. Cook Unit 2 Accumulator Line Loop 4 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 4-1 4.0 MATERIAL CHARACTERIZATION 4.1 ACCUMULATOR LINE PIPE MATERIAL AND WELD PROCESS The material type of the accumulator line for D.C. Cook Units 1 and 2 is A376 TP316 (seamless pipe) and A403 WP316 (wrought fittings) for the pipe and fittings, respectively. The welding processes used are Submerged Arc Weld (SAW) and Shielded Metal Arc Weld (SMAW). In the following sections the tensile properties of the materials are presented for use in the Leak-Before-Break analyses. 4.2 TENSILE PROPERTIES
* Certified Material Test Reports (CMTRs) with mechanical properties were not readily available for the D.C. Cook Units 1 and 2 accumulator lines. For the D.C. Cook Units 1 and 2 accumulator lines, the ASME Code mechanical properties were used to establish the tensile properties for the Leak-Before-Break analyses. The tensile properties for the pipe material are provided in Table 4-1 for the Units 1 and 2 accumulator lines. For the A376 TP316 pipe material and the A403 WP316 fitting material, the representative properties at operating temperatures are established from the tensile properties interpolated from Section II of the ASME Boiler and Pressure Vessel Code (Reference 4-1). Code tensile properties at the operating . temperatures were obtained by interpolaHng between vadous tensile Code properties. The modulus of elasticity value was also interpolated from ASME Code properties, and Poisson's ratio was taken as 0.3. 4.3 REFERENCE 4-1 ASME Boiler and Pressure Vessel Code, Section II, Part D, "Properties (Customary) Materials," 2007 Edition up to and including 2008 Addenda. Table 4-1 Mechanical Properties for 10-inch Accumulator Lines Material at Operating Temperatures for D.C. Cook Units 1 and 2 Material A376 TP316 A403 WP316 A376 TP316 A403 WP316 Material Characterization WCAP-18295-NP Temperature (OF) 549 120 Modulus of Yield Strength Elasticity (E) (psi) (ksi) 25,606 19,461 27,992 28,960 Ultimate Strength (psi) 71,800 75,000 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 5-1 5.0 CRITICAL LOCATIONS 5.1 CRITICAL LOCATIONS The Leak-Before-Break (LBB) evaluation margins are to be demonstrated for the critical locations (governing locations). Such locations are established based on the loads (Section 3.3) and the material properties established in Section 4.2. These locations are defined below for the D.C. Cook accumulator lines. Critical Locations for the 10-inch accumulator lines (see Table 5-1): The welds in the accumulator line are fabricated using Shielded Metal Arc Weld (SMAW) and Submerged Arc Weld (SAW) for field and shop welds. The pipe material type is A376 TP 316 or A403 WP316 which have identical_ material properties. _ The governing locations _were_ established on the basis of the_ pipe geometry, material type, operating temperature, operating pressure, and the highest faulted stresses at the welds. Table 5-1 shows the highest faulted stresses and the corresponding weld location node for each welding process type in each segment of the IO-inch accumulator lines, enveloping both D.C. Cook Units 1 and 2. Definition of the piping segments and the corresponding operating pressure and temperature parameters are from Tables 3-1 and 3-2. Figures 5-1 through 5-3 show the location of the critical welds. ITable 5-1 Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines* and *critical Locations Segment Pipe Size I IO-inch II IO-inch III IO-inch Critical Locations WCAP-18295-NP Welding Operating Process Pressure (psig) SMAW 2,345 SAW 2,235 SMAW 2,235 SAW 2,235 SMAW 2,235 SAW 644 SMAW 644 Operating Maximum Temperature Faulted Stress {&deg;F) (psi) 549 20,968 549 13,888 549 14,529 120 16,803 120 16,967 120 6,974 120 6,975 Weld Location Node 2-SI-59-I0-307 2-SI-58-9-160Y 2-SI-58-9-162 2-SI-58-6-184N 2-SI-58-6-l 84F 2-SI-56-3-458F 2-SI-56-3-456 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation) 
"' * ** .... RC COI.D UG \** LlltiP 4 Critical Locations WCAP-18295-NP WESTINGHOUSE NON-PROPRIETARY CLASS 3 "* 1--------'*
* Critical Location: Segment I SMAW weld Figure 5-1 Layout Showing Critical Location Loop 4 Unit 2 5-2 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Critical Location: Segment II SMAW weld Critical Location: Segment II SAW weld Critical Location: Segment II SMAW/SAW weld Critical Locations WCAP-18295-NP Figure 5-2 Layout Showing Critical Locations Loop 3 Unit 2 5-3 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
Critical Locations WCAP-18295-NP WESTINGHOUSE NON-PROPRIETARY CLASS 3 Critical Location: Segment Ill SMAW weld Critical Location: Segment Ill SAW weld Figure 5-3 Layout Showing Critical Locations Loop 1 Unit 2 5-4 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 6-1 6.0 LEAK RATE PREDICTIONS


==6.1 INTRODUCTION==
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   3-22 I
The purpose of this section is to discuss the method which is used to predict the flow through postulated through-wall cracks and present the leak rate calculation results for through-wall circumferential cracks. 6.2 GENERAL CONSIDERATIONS The flow of hot pressurized water through an opening to a lower back pressure causes flashing which can result in choking. For long channels where the ratio of the channel length, L, to hydraulic diameter, D8, (L/DH) is greater than [ ]a,c,e 6.3 CALCULATION METHOD The basic method used in the leak rate calculations is the method developed by [ ]a,c,e The flow rate through a crack was calculated in the following manner. Figure 6-1 (from Reference 6-2) was used to estimate the critical pressure, Pc, for the accumulator line enthalpy condition and an assumed flow. Once Pc was found for a given mass flow, the [ ]a,c,e was found from Figure 6-2 (taken from Reference 6-2). For all cases considered, [ ]",c,e therefore, this method will yield the two-phase pressure drop due to momentum effects as illustrated in Figure 6-3, where P0 is the operating pressure. Now using the assumed flow rate, G, the frictional pressure drop can be calculated using LlPr= [ where the friction factor f is determined using the [ was obtained from fatigue crack data on stainless steel samples. these calculations was [ r,c,e (6-1) ]"'c,e The crack relative roughness, E, The relative roughness value used in The frictional pressure drop using equation 6-1 is then calculated for the assumed flow rate and added to the [ ]a,c,e to obtain the total pressure drop from the primary system to the atmosphere. Leak Rate Predictions WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
J I
WESTINGHOUSE NON-PROPRJETARY CLASS 3 6-2 That is, for the accumulator line: Absolute Pressure -14.7 = [ ]a,c,e (6-2) for a given assumed flow rate G. If the right-hand side of equation 6-2 does not agree with the pressure difference between the accumulator line and the atmosphere, then the procedure is repeated until equation 6-2 is satisfied to within an acceptable tolerance which in turn leads to a flow rate value for a given crack size. For the single phase cases with lower temperature, leakage rate is calculated by the following equation (Reference 6-4) with the crack opening area obtained by the method from Reference 6-3. Q = A (2gllP/kp )&deg;"5 ft3 /sec; (6-3) Where, L'lP = pressure difference between stagnation and back pressure (lb/ft2), g = acceleration of gravity (ft/sec2), p = fluid density at atmospheric pressure (lb/ft3), k = friction loss including passage loss, inlet and outlet of the through-wall crack, A= crack opening area (ft2). 6.4 LEAK RATE CALCULATIONS Leak rate calculations were made as a function of crack length at the governing locations previously identified in Section 5.1. The normal operating loads_ of Table 3-3 through Table 3-6 (for Unit 1), and . Table 3-7 thro&#xb5;gh Table 3-10 (for Unit 2) were applied,in th.ese calculations .. The crack opening areas were estimated using the method of Reference 6-3 and the leak rates were calculated using the formulation described above. The material properties of Section 4.2 (see Table 4-1) were used for these calculations. The flaw sizes to yield a leak rate of 8 gpm were calculated at the governing locations and are given in Table 6-1 for D.C. Cook Unit 1 and Unit 2. The flaw sizes so determined are called leakage flaw sizes. The D.C. Cook Unit 1 and 2 RCS pressure boundary leak detection system meets the intent of Regulatory Guide 1.45 and meets a leak detection capability of 0.8 gpm. Thus, to satisfy the margin of 10 on the leak rate, the flaw sizes (leakage flaw sizes) are determined which yield a leak rate of 8 gpm. Leak Rate Predictions WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
Accumulator Tank .,.
WESTINGHOUSE NON-PROPRIETARY CLASS 3 6-3
_ I_..&sect;~gment 111......j
                          ~1.-segmentll ~
Segment I Cold Leg Figure 3-110-inch Accumulator Line Layout Showing Segments for D.C. Cook Units 1 and 2 Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                     Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)


==6.5 REFERENCES==
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                  3-23 Figure 3-2 D.C. Cook Unit 1 Accumulator Line Loop 1 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                    Revision 0
6-1 [ ]a,c,e 6-2 M. M, El-Wakil, "Nuclear Heat Transport, International Textbook Company," New York, N.Y, 1971. 6-3 Tada, H., "The Effects of Shell Corrections on Stress Intensity Factors and the Crack Opening Area of Circumferential and a Longitudinal Through-Crack in a Pipe," Section 11-1, NUREG/CR-3464, September 1983. 6-4 Crane, D. P., "Handbook of Hydraulic Resistance Coefficient," Flow of Fluids through Valves,
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* Fittings, and Pipe by the Engineering Division of Crane, 1981, Technical Paper No. 410. Table 6-1 Segment I II III Leak Rate Predictions WCAP-18295-NP Flaw Sizes Yielding a Leak Rate of 8 gpm for the D.C. Cook Unit 1 and 2 10-inch Accumulator Lines Pipe Size Welding Weld Location Process Node 10-inch SMAW 2-SI-59-10-307 SAW 2-SI-58-9-160Y SMAW 2-SI-58-9-162 10-inch SAW 2-SI-58-6-184N SMAW 2-SI-58-6-184F SAW 2-SI-56-3-458F 10-inch 2-SI-56-3-456 SMAW Leakage Flaw Size (in) 2.79 3.68 3.64 3.03 3.01 9.17 9.57 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3 6-4 a,c,e STAGNATION ENTHALPY C1o2 Btullb> Figure 6-1 Analytical Predictions of Critical Flow Rates of Steam-Water Mixtures Leak Rate Predictions WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                  3-24 Loop2 Cold Leg Figure 3-3 D.C. Cook Unit 1 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading                                                                                    January 2018 WCAP-18295-NP                                                                                                    Revision 0
WESTINGHOUSE NON-PROPRIETARY CLASS 3 Figure 6-2 [ Leak Rate Predictions WCAP-18295-NP LENGTH/DIAMETER RATIO (UO> i3,c,e Pressure Ratio as a Function of LID 6-5 a,c.e January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
*** This record was final approved on 1/18/2018 9:40:03 AM. (This.statement was added by the PRIME system upon its validation)
WESTINGHOUSE NON-PROPRIETARY CLASS 3 a,c,e [ Figure 6-3 Idealized Pressure Drop Profile Through a Postulated Crack Leak Rate Predictions WCAP-18295-NP 6-6 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3 7-1 7.0 FRACTURE MECHANICS EVALUATION 7.1 GLOBAL FAILURE MECHANISM Determination of the conditions which lead to failure in stainless steel should be done with plastic fracture methodology because of the large amount of deformation accompanying fracture. One method for predicting the failure of ductile material is the plastic instability method, based on traditional plastic limit load concepts, but accounting for strain hardening and taking into account the presence of a flaw. The flawed pipe is predicted to fail when the remaining net section reaches a stress level at which a plastic hinge is formed.
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                  3-25 1'4 Figure 3-4 D.C. Cook Unit 1 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                  3-26
                                                                                          ~    ...**
Loop4 Cold leg Figure 3-5 D.C. Cook Unit 1 Accumulator Line Loop 4 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                  3-27 llC COLO L~G LOqP-1 Figure 3-6 D.C. Cook Unit 2 Accumulator Line Loop 1 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
I
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                  3-28 Figure 3-7 D.C. Cook Unit 2 Accumulator Line Loop 2 Layout Showing Weld Locations with Node
* Points Pipe Geometry and Loading                                                                                    January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                  3-29 Figure 3-8 D.C. Cook Unit 2 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading                                                                                    January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                  3-30
                "(
Figure 3-9 D.C. Cook Unit 2 Accumulator Line Loop 4 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading                                                                                      January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    4-1 4.0        MATERIAL CHARACTERIZATION 4.1        ACCUMULATOR LINE PIPE MATERIAL AND WELD PROCESS The material type of the accumulator line for D.C. Cook Units 1 and 2 is A376 TP316 (seamless pipe) and A403 WP316 (wrought fittings) for the pipe and fittings, respectively. The welding processes used are Submerged Arc Weld (SAW) and Shielded Metal Arc Weld (SMAW).
In the following sections the tensile properties of the materials are presented for use in the Leak-Before-Break analyses.
4.2        TENSILE PROPERTIES
* Certified Material Test Reports (CMTRs) with mechanical properties were not readily available for                            the D.C. Cook Units 1 and 2 accumulator lines. For the D.C. Cook Units 1 and 2 accumulator lines,                                the ASME Code mechanical properties were used to establish the tensile properties for                                            the Leak-Before-Break analyses. The tensile properties for the pipe material are provided in Table 4-1 for                      the Units 1 and 2 accumulator lines.
For the A376 TP316 pipe material and the A403 WP316 fitting material, the representative properties at operating temperatures are established from the tensile properties interpolated from Section II of the ASME Boiler and Pressure Vessel Code (Reference 4-1). Code tensile properties at the operating
. temperatures were obtained by interpolaHng between vadous tensile Code properties.
The modulus of elasticity value was also interpolated from ASME Code properties, and Poisson's ratio was taken as 0.3.
4.3        REFERENCE 4-1        ASME Boiler and Pressure Vessel Code, Section II, Part D, "Properties (Customary) Materials,"
2007 Edition up to and including 2008 Addenda.
Table 4-1          Mechanical Properties for 10-inch Accumulator Lines Material at Operating Temperatures for D.C. Cook Units 1 and 2 Temperature          Modulus of              Yield Strength            Ultimate Material                (OF)            Elasticity (E)                (psi)            Strength (psi)
(ksi)
A376 TP316 549                25,606                    19,461                71,800 A403 WP316 A376 TP316 120                27,992                  28,960                  75,000 A403 WP316 Material Characterization                                                                                      January 2018 WCAP-18295-NP                                                                                                      Revision 0
    *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    5-1 5.0        CRITICAL LOCATIONS 5.1        CRITICAL LOCATIONS The Leak-Before-Break (LBB) evaluation margins are to be demonstrated for the critical locations (governing locations). Such locations are established based on the loads (Section 3.3) and the material properties established in Section 4.2. These locations are defined below for the D.C. Cook accumulator lines.
Critical Locations for the 10-inch accumulator lines (see Table 5-1):
The welds in the accumulator line are fabricated using Shielded Metal Arc Weld (SMAW) and Submerged Arc Weld (SAW) for field and shop welds. The pipe material type is A376 TP 316 or A403 WP316 which have identical_ material properties. _The governing locations _were_ established on the basis of the_
pipe geometry, material type, operating temperature, operating pressure, and the highest faulted stresses at the welds.
Table 5-1 shows the highest faulted stresses and the corresponding weld location node for each welding process type in each segment of the IO-inch accumulator lines, enveloping both D.C. Cook Units 1 and 2.
Definition of the piping segments and the corresponding operating pressure and temperature parameters are from Tables 3-1 and 3-2. Figures 5-1 through 5-3 show the location of the critical welds.
ITable 5-1        Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines* and *critical Locations Welding        Operating          Operating          Maximum            Weld Location Segment Pipe Size                            Pressure        Temperature        Faulted Stress Process                                                                      Node (psig)              {&deg;F)              (psi)
I        IO-inch        SMAW              2,345                549              20,968            2-SI-59-I0-307 SAW              2,235                549              13,888          2-SI-58-9-160Y II        IO-inch        SMAW              2,235                549              14,529            2-SI-58-9-162 SAW              2,235                120              16,803          2-SI-58-6-184N SMAW              2,235                120              16,967            2-SI-58-6-l 84F III        IO-inch        SAW              644                120              6,974          2-SI-56-3-458F SMAW              644                120              6,975            2-SI-56-3-456 Critical Locations                                                                                              January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    5-2 RC COI.D UG \ *
* LlltiP 4
                        ....      1--------
Critical Location:
Segment I SMAW weld Figure 5-1 Layout Showing Critical Location Loop 4 Unit 2 Critical Locations                                                                                            January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    5-3 Critical Location:
Segment II SMAW weld Critical Location:
Segment II SAW weld Critical Location:
Segment II SMAW/SAW weld Figure 5-2 Layout Showing Critical Locations Loop 3 Unit 2 Critical Locations                                                                                            January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    5-4 Critical Location:
Segment Ill SMAW weld Critical Location:
Segment Ill SAW weld Figure 5-3 Layout Showing Critical Locations Loop 1 Unit 2 Critical Locations                                                                                            January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    6-1 6.0        LEAK RATE PREDICTIONS
 
==6.1        INTRODUCTION==
 
The purpose of this section is to discuss the method which is used to predict the flow through postulated through-wall cracks and present the leak rate calculation results for through-wall circumferential cracks.
6.2        GENERAL CONSIDERATIONS The flow of hot pressurized water through an opening to a lower back pressure causes flashing which can result in choking. For long channels where the ratio of the channel length, L, to hydraulic diameter, D8 ,
(L/DH) is greater than [
          ]a,c,e 6.3        CALCULATION METHOD The basic method used in the leak rate calculations is the method developed by [
                      ]a,c,e The flow rate through a crack was calculated in the following manner. Figure 6-1 (from Reference 6-2) was used to estimate the critical pressure, Pc, for the accumulator line enthalpy condition and an assumed flow. Once Pc was found for a given mass flow, the [                                                                        ]a,c,e was found from Figure 6-2 (taken from Reference 6-2).                                      For all cases considered, [
                  ]",c,e therefore, this method will yield the two-phase pressure drop due to momentum effects as illustrated in Figure 6-3, where P0 is the operating pressure. Now using the assumed flow rate, G, the frictional pressure drop can be calculated using LlPr= [                                                                (6-1) where the friction factor f is determined using the [                              ]"'c,e The crack relative roughness, E, was obtained from fatigue crack data on stainless steel samples. The relative roughness value used in these calculations was [                                  r,c,e The frictional pressure drop using equation 6-1 is then calculated for the assumed flow rate and added to the [                                                                                ]a,c,e to obtain the total pressure drop from the primary system to the atmosphere.
Leak Rate Predictions                                                                                            January 2018 WCAP-18295-NP                                                                                                        Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRJETARY CLASS 3                                                    6-2 That is, for the accumulator line:
Absolute Pressure - 14.7 = [                                            ]a,c,e (6-2) for a given assumed flow rate G. If the right-hand side of equation 6-2 does not agree with the pressure difference between the accumulator line and the atmosphere, then the procedure is repeated until equation 6-2 is satisfied to within an acceptable tolerance which in turn leads to a flow rate value for a given crack size.
For the single phase cases with lower temperature, leakage rate is calculated by the following equation (Reference 6-4) with the crack opening area obtained by the method from Reference 6-3.
Q = A (2gllP/kp)&deg;" 5 ft 3/sec;                                                        (6-3)
Where, L'lP = pressure difference between stagnation and back pressure (lb/ft2), g = acceleration of gravity (ft/sec2), p = fluid density at atmospheric pressure (lb/ft3), k = friction loss including passage loss, inlet and outlet of the through-wall crack, A= crack opening area (ft2).
6.4        LEAK RATE CALCULATIONS Leak rate calculations were made as a function of crack length at the governing locations previously identified in Section 5.1. The normal operating loads_ of Table 3-3 through Table 3-6 (for Unit 1), and
. Table 3-7 thro&#xb5;gh Table 3-10 (for Unit 2) were applied,in th.ese calculations.. The crack opening areas were estimated using the method of Reference 6-3 and the leak rates were calculated using the formulation described above. The material properties of Section 4.2 (see Table 4-1) were used for these calculations.
The flaw sizes to yield a leak rate of 8 gpm were calculated at the governing locations and are given in Table 6-1 for D.C. Cook Unit 1 and Unit 2. The flaw sizes so determined are called leakage flaw sizes.
The D.C. Cook Unit 1 and 2 RCS pressure boundary leak detection system meets the intent of Regulatory Guide 1.45 and meets a leak detection capability of 0.8 gpm. Thus, to satisfy the margin of 10 on the leak rate, the flaw sizes (leakage flaw sizes) are determined which yield a leak rate of 8 gpm.
Leak Rate Predictions                                                                                          January 2018 WCAP-18295-NP                                                                                                      Revision 0
  *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    6-3
 
==6.5        REFERENCES==
 
6-1         [
                                                                                                          ]a,c,e 6-2       M. M, El-Wakil, "Nuclear Heat Transport, International Textbook Company," New York, N.Y, 1971.
6-3       Tada, H., "The Effects of Shell Corrections on Stress Intensity Factors and the Crack Opening Area of Circumferential and a Longitudinal Through-Crack in a Pipe," Section 11-1, NUREG/CR-3464, September 1983.
6-4       Crane, D. P., "Handbook of Hydraulic Resistance Coefficient," Flow of Fluids through Valves,
* Fittings, and Pipe by the Engineering Division of Crane, 1981, Technical Paper No. 410.
Table 6-1       Flaw Sizes Yielding a Leak Rate of 8 gpm for the D.C. Cook Unit 1 and 2 10-inch Accumulator Lines Welding             Weld Location               Leakage Flaw Size Segment Pipe Size Process                   Node                         (in)
I        10-inch       SMAW                 2-SI-59-10-307                     2.79 SAW               2-SI-58-9-160Y                     3.68 SMAW                 2-SI-58-9-162                     3.64 II        10-inch SAW               2-SI-58-6-184N                     3.03 SMAW                 2-SI-58-6-184F                     3.01 SAW               2-SI-56-3-458F                     9.17 III        10-inch SMAW                2-SI-56-3-456                     9.57 Leak Rate Predictions                                                                                            January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                     6-4 a,c,e STAGNATION ENTHALPY C1o2 Btullb>
Figure 6-1 Analytical Predictions of Critical Flow Rates of Steam-Water Mixtures Leak Rate Predictions                                                                                         January 2018 WCAP-18295-NP                                                                                                     Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                     6-5 a,c.e LENGTH/DIAMETER RATIO (UO>
Figure 6-2 [                i3,c,e Pressure Ratio as a Function of LID Leak Rate Predictions                                                                                          January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                     6-6 a,c,e
[
Figure 6-3 Idealized Pressure Drop Profile Through a Postulated Crack Leak Rate Predictions                                                                                         January 2018 WCAP-18295-NP                                                                                                     Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                     7-1 7.0       FRACTURE MECHANICS EVALUATION 7.1       GLOBAL FAILURE MECHANISM Determination of the conditions which lead to failure in stainless steel should be done with plastic fracture methodology because of the large amount of deformation accompanying fracture. One method for predicting the failure of ductile material is the plastic instability method, based on traditional plastic limit load concepts, but accounting for strain hardening and taking into account the presence of a flaw.
The flawed pipe is predicted to fail when the remaining net section reaches a stress level at which a plastic hinge is formed.
* The stress level at which this occurs is termed as the flow stress. The flow stress is generally taken as the average of the yield and ultimate tensile strength of the material at the temperature of interest. This methodology has been shown to be applicable to ductile piping through a large number of experiments and will be used here to predict the critical flaw size in accumulator line piping. The failure criterion has been obtained by requiring equilibrium of the section containing the
* The stress level at which this occurs is termed as the flow stress. The flow stress is generally taken as the average of the yield and ultimate tensile strength of the material at the temperature of interest. This methodology has been shown to be applicable to ductile piping through a large number of experiments and will be used here to predict the critical flaw size in accumulator line piping. The failure criterion has been obtained by requiring equilibrium of the section containing the
* flaw (Figure 7-1) when loads are applied. The detailed development is provided in Appendix A for a through-wall circumferential flaw in a pipe with internal pressure, axial force, and imposed bending moments. The limit moment for such a pipe is given by: ]a,c,e where: [. ]a,c,e The analytical model described above accurately accounts for the piping internal pressure as well as imposed axial force as they affect the limit moment. Good agreement was found between the analytical predictions and the experimental results (Reference 7-1). For application of the limit load methodology, the material, including consideration of the configuration, must have a sufficient ductility and ductile tearing resistance to sustain the limit load. Fracture Mechanics Evaluation WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
* flaw (Figure 7-1) when loads are applied. The detailed development is provided in Appendix A for a through-wall circumferential flaw in a pipe with internal pressure, axial force, and imposed bending moments. The limit moment for such a pipe is given by:
WESTINGHOUSE NON-PROPRIETARY CLASS 3 7-2 7.2 LOCAL FAILURE MECHANISM The local mechanism of failure is primarily dominated by the crack tip behavior in terms of crack-tip blunting, initiation, extension and finally cracks instability. The local stability will be assumed if the crack does not initiate at all. It has been accepted that the initiation toughness measured in terms of J1c from a integral resistance curve is a material parameter defining the crack initiation. If, for a given load, the calculated I-integral value is shown to be less than the J10 of the material, then the crack will not initiate: Stability analysis using this approach is perfonned for selected location. 7.3 RESULTS OF CRACK STABILITY EVALUATION A stability analysis based on limit load was performed. D.C. Cook Units 1 and 2 shop and field welds utilize SMAW and SAW weld processes. The "Z" factor for SMAW and SAW (References 7-2 and 7-3) are as follows: . Z = 1.15 [1.0 + 0.013 (OD-4)] for SMAW Z = 1.30 [1.0 + 0.010 (OD-4)] for SAW where OD is the outer diameter of the pipe in inches. The Z-factors for the SMAW and SAW were calculated for the critical locations, using the pipe outer diameter (OD) of 10.75 inches. The applied faulted loads (Table 3-11 through Table 3-14 for Unit 1 and Table* 3-15 through Table 3-18 for Unit 2) were increased by the Z factor. Material *properties. were* used from Table 4-1. Table 7-1 summarizes the results of the stability analyses based on limit load for Unit 1 and 2. The leakage flaw sizes are also presented in the same table. Additionally, elastic-plastic fracture mechanics (EPFM) I-integral analysis for through-wall circumferential crack in a cylinder is performed for select locations using the procedure in the EPRI Fracture Mechanics Handbook (Reference 7-4). Table 7-1 shows the results of this analysis.
                                                                                  ]a,c,e where:
[.
                                                                          ]a,c,e The analytical model described above accurately accounts for the piping internal pressure as well as imposed axial force as they affect the limit moment. Good agreement was found between the analytical predictions and the experimental results (Reference 7-1). For application of the limit load methodology, the material, including consideration of the configuration, must have a sufficient ductility and ductile tearing resistance to sustain the limit load.
Fracture Mechanics Evaluation                                                                                   January 2018 WCAP-18295-NP                                                                                                     Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)


==7.4 REFERENCES==
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    7-2 7.2        LOCAL FAILURE MECHANISM The local mechanism of failure is primarily dominated by the crack tip behavior in terms of crack-tip blunting, initiation, extension and finally cracks instability. The local stability will be assumed if the crack does not initiate at all. It has been accepted that the initiation toughness measured in terms of J1c from a J-integral resistance curve is a material parameter defining the crack initiation. If, for a given load, the calculated I-integral value is shown to be less than the J 10 of the material, then the crack will not initiate:
7-1 Kanninen, M. F., et. al., "Mechanical Fracture Predictions for Sensitized Stainless Steel Piping with Circumferential Cracks," EPRI NP-192, September 1976. 7-2 Standard Review Plan; Public Comment Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal Register/Vol. 52, No. 167/Friday,August 28, 1987/Notices, pp. 32626-32633. 7-3 NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures. 7-4 Kumar, V., German, M.D. and Shih, C. P., "An Engineering Approach for Elastic-Plastic Fracture Analysis," EPRI Report NP-1931, Project 1237-1, Electric Power Research Institute, July 1981. Fracture Mechanics Evaluation WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
Stability analysis using this approach is perfonned for selected location.
WESTINGHOUSE NON-PROPRIETARY CLASS 3 7-3 Table 7-1 Stability Results for the D.C. Cook Unit 1 and 2 10-inch Accumulator Lines Based on Limit Load Welding Weld Location Segment Pipe Size Process Node I 10-inch SMAW 2-SI-59-10-307 *sAW 2-SI-58-9-160Y II 10-inch SMAW 2-SI-58-9-162 SAW 2-SI-58-6-184N SMAW 2-SI-58-6-184F III 10-inch SAW 2-SI-56-3-458F SMAW 2-SI-56-3-456 Note: 1. Calculated based on the methodology in Section 7.2 Fracture Mechanics Evaluation WCAP-18295-NP Critical Flaw Size (in) 10.04 11.88 12.32 11.66 12.30 18.341 19.141 . Leakage Flaw Size (in) 2.79 3.68 3.64 3.03 3.01 9.17 9.57. January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
7.3       RESULTS OF CRACK STABILITY EVALUATION A stability analysis based on limit load was performed. D.C. Cook Units 1 and 2 shop and field welds utilize SMAW and SAW weld processes. The "Z" factor for SMAW and SAW (References 7-2 and 7-3) are as follows:
Fracture Mechanics Evaluation WCAP-18295-NP WESTINGHOUSE NON-PROPRIETARY CLASS 3 7-4 Neutral Axis Figure 7-1 [ ]3,c,e Stress Distribution January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation) ------_ ___:____J WESTINGHOUSE NON-PROPRIETARY CLASS 3 8-1 8.0 ASSESSMENT OF FATIGUE CRACK GROWTH The fatigue crack growth (FCG) analysis is not a requirement for the LBB analysis (see References 8-1 and 8-2) since the LBB analysis is based on the postulation of a through-wall flaw, whereas the FCG analysis is performed based on the surface flaw. In addition Reference 8-3 has indicated that, "the Commission deleted the fatigue crack growth analysis in the proposed rule. This requirement was found to be unnecessary because it was bounded by the crack stability analysis." Also, since the growth of a flaw which leaks 8 gpm would be expected to be minimal between the time that leakage reaches 8 gpm and the time that the plant would be shutdown; therefore, only a limited number of cycles would be expected to occur.  
                . Z = 1.15 [1.0 + 0.013 (OD-4)] for SMAW Z = 1.30 [1.0 + 0.010 (OD-4)] for SAW where OD is the outer diameter of the pipe in inches.
The Z-factors for the SMAW and SAW were calculated for the critical locations, using the pipe outer diameter (OD) of 10.75 inches. The applied faulted loads (Table 3-11 through Table 3-14 for Unit 1 and Table* 3-15 through Table 3-18 for Unit 2) were increased by the Z factor. Material *properties. were* used from Table 4-1. Table 7-1 summarizes the results of the stability analyses based on limit load for Unit 1 and 2. The leakage flaw sizes are also presented in the same table.
Additionally, elastic-plastic fracture mechanics (EPFM) I-integral analysis for through-wall circumferential crack in a cylinder is performed for select locations using the procedure in the EPRI Fracture Mechanics Handbook (Reference 7-4). Table 7-1 shows the results of this analysis.


==8.1 REFERENCES==
==7.4        REFERENCES==
8-1 Standard Review Plan; Public Comment Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal RegisterNol. 52, No. 167/Friday, August 28, 1987/Notices, pp. 32626-32633. 8-2 NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures. 8-3 Nuclear Regulatory Commission, 10 CFR 50, Modification of General Design Criteria 4 Requirements for Protection Against Dynamic Effects of Postulated Pipe Ruptures, Final Rule, Feder!:11 RegisterNol. 52, No. 2_07/Tuesday, October 27, 1987/Rules and .ReguJations, pp. 41288-41295. Assessment of Fatigue Crack Growth WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3 9-1 9.0 ASSESSMENT OF MARGINS The results of the leak rates of Section 6.4 and the corresponding stability evaluations of Section 7.3 are used in performing the assessment of margins. Margins are shown in Table 9-1 for Unit 1 and 2. All the LBB recommended margins are satisfied. In summary, margins at the critical locations relative to: 1. Flaw Size -Using faulted loads obtained by the absolute sum method, a margin of 2 or more exists between the critical flaw and the flaw having a leak rate of 8 gpm (the leakage flaw). 2. Leak Rate -A margin of 10 exists between the calculated leak rate from the leakage flaw and the plant leak detection capability of 0.8 gpm. 3. Loads -At the critical locations the leakage flaw was shown to be stable using the faulted loads obtained by the absolute sum method (i.e., a flaw twice the leakage flaw size is shown to be stable; hence the leakage flaw size is stable). A margin of 1 on loads using the absolute summation of faulted load combinations is satisfied. Table 9-1 Leakage Flaw Sizes, Critical Flaw Sizes and Margins for D.C. Cook Units 1 and 2 10-inch Accumulator Lines Welding Weld Location Critical Segment Pipe Size Process Node Flaw Size (in) ACC-1 IO-inch SMAW 2-SI-59-10-307 I0.04 SAW 2-SI-58-9-160Y 11.88 ACC-11 IO-inch SMAW 2-SI-58-9-162 12.32 SAW 2-SI-58-6-184N 11.66 SMAW 2-SI-58-6-184F 12.30 ACC-III IO-inch SAW 2-SI-56-3-458F 18.34 SMAW 2-SI-56-3-456 19.14 Notes: 1. Margin of 2.0 demonstrated based on the methodology in Section 7 .2 Assessment of Margins WCAP-18295-NP Leakage Flaw Size (in) 2.79 3.68 3.64 3.03 3.01 9.17 9.57 Margin 3.6 3.2 3.4 3.8 4.1 >2.01 >2.01 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
7-1        Kanninen, M. F., et. al., "Mechanical Fracture Predictions for Sensitized Stainless Steel Piping with Circumferential Cracks," EPRI NP-192, September 1976.
WESTINGHOUSE NON-PROPRIETARY CLASS 3 10-1  
7-2        Standard Review Plan; Public Comment Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal Register/Vol. 52, No. 167/Friday,August 28, 1987/Notices, pp. 32626-32633.
7-3        NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures.
7-4        Kumar, V., German, M.D. and Shih, C. P., "An Engineering Approach for Elastic-Plastic Fracture Analysis," EPRI Report NP-1931, Project 1237-1, Electric Power Research Institute, July 1981.
Fracture Mechanics Evaluation                                                                                  January 2018 WCAP-18295-NP                                                                                                      Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    7-3 Table 7-1          Stability Results for the D.C. Cook Unit 1 and 2 10-inch Accumulator Lines Based on Limit Load Critical      Leakage Flaw Welding            Weld Location Segment          Pipe Size                                                      Flaw Size            Size Process                  Node (in)              (in)
I          10-inch        SMAW              2-SI-59-10-307                10.04              2.79
                                      *sAW              2-SI-58-9-160Y                11.88              3.68 II          10-inch        SMAW                2-SI-58-9-162                12.32              3.64 SAW              2-SI-58-6-184N                11.66              3.03 SMAW              2-SI-58-6-184F                12.30              3.01 1
III          10-inch          SAW              2-SI-56-3-458F                18.34              9.17 1
SMAW                2-SI-56-3-456                19.14    .          9.57.
Note:
: 1. Calculated based on the methodology in Section 7.2 Fracture Mechanics Evaluation                                                                                  January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    7-4 Neutral Axis Figure 7-1 [            ]3,c,e Stress Distribution Fracture Mechanics Evaluation                                                                                  January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
                                                                                                                                - ----- _ ___:____J
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                    8-1 8.0        ASSESSMENT OF FATIGUE CRACK GROWTH The fatigue crack growth (FCG) analysis is not a requirement for the LBB analysis (see References 8-1 and 8-2) since the LBB analysis is based on the postulation of a through-wall flaw, whereas the FCG analysis is performed based on the surface flaw. In addition Reference 8-3 has indicated that, "the Commission deleted the fatigue crack growth analysis in the proposed rule. This requirement was found to be unnecessary because it was bounded by the crack stability analysis."
Also, since the growth of a flaw which leaks 8 gpm would be expected to be minimal between the time that leakage reaches 8 gpm and the time that the plant would be shutdown; therefore, only a limited number of cycles would be expected to occur.
 
==8.1        REFERENCES==
 
8-1       Standard Review Plan; Public Comment Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal RegisterNol. 52, No. 167/Friday, August 28, 1987/Notices, pp. 32626-32633.
8-2       NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures.
8-3       Nuclear Regulatory Commission, 10 CFR 50, Modification of General Design Criteria 4 Requirements for Protection Against Dynamic Effects of Postulated Pipe Ruptures, Final Rule, Feder!:11 RegisterNol. 52, No. 2_07/Tuesday, October 27, 1987/Rules and .ReguJations, pp. 41288-41295.
Assessment of Fatigue Crack Growth                                                                             January 2018 WCAP-18295-NP                                                                                                     Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                     9-1 9.0       ASSESSMENT OF MARGINS The results of the leak rates of Section 6.4 and the corresponding stability evaluations of Section 7.3 are used in performing the assessment of margins. Margins are shown in Table 9-1 for Unit 1 and 2. All the LBB recommended margins are satisfied.
In summary, margins at the critical locations relative to:
: 1.         Flaw Size - Using faulted loads obtained by the absolute sum method, a margin of 2 or more exists between the critical flaw and the flaw having a leak rate of 8 gpm (the leakage flaw).
: 2.         Leak Rate - A margin of 10 exists between the calculated leak rate from the leakage flaw and the plant leak detection capability of 0.8 gpm.
: 3.         Loads - At the critical locations the leakage flaw was shown to be stable using the faulted loads obtained by the absolute sum method (i.e., a flaw twice the leakage flaw size is shown to be stable; hence the leakage flaw size is stable). A margin of 1 on loads using the absolute summation of faulted load combinations is satisfied.
Table 9-1         Leakage Flaw Sizes, Critical Flaw Sizes and Margins for D.C. Cook Units 1 and 2 10-inch Accumulator Lines Critical        Leakage Welding             Weld Location Segment         Pipe Size                                                       Flaw Size      Flaw Size        Margin Process                   Node (in)           (in)
ACC-1           IO-inch         SMAW               2-SI-59-10-307               I0.04           2.79              3.6 SAW               2-SI-58-9-160Y                 11.88           3.68              3.2 ACC-11           IO-inch         SMAW                 2-SI-58-9-162               12.32           3.64              3.4 SAW               2-SI-58-6-184N                 11.66           3.03              3.8 SMAW               2-SI-58-6-184F               12.30           3.01              4.1 ACC-III           IO-inch         SAW               2-SI-56-3-458F                 18.34           9.17            >2.0 1 SMAW               2-SI-56-3-456                 19.14           9.57            >2.0 1 Notes:
: 1. Margin of 2.0 demonstrated based on the methodology in Section 7 .2 Assessment of Margins                                                                                           January 2018 WCAP-18295-NP                                                                                                     Revision 0
  *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   10-1


==10.0 CONCLUSION==
==10.0 CONCLUSION==
S This report justifies the elimination of accumulator lines break from the structural design basis for D.C. Cook Units 1 and 2 as follows: a. Stress corrosion cracking is precluded by use of fracture resistant materials in the piping system and controls on reactor coolant chemistry, temperature, pressure, and flow during normal operation. Note: Alloy 82/182 welds do not exist at the D.C. Cook Units 1 and 2 accumulator lines. b. Water hammer should not occur in the accumulator line piping because of system design, testing, and operational considerations. c. The effects oflow and high cycle fatigue on the integrity of the accumulator line piping are negligible. d. Ample margin exists between the leak rate of small stable flaws and the capability of the D.C. Cook Units 1 and 2 reactor coolant system pressure boundary leakage detection systems. e. Ample margin exists between the small stable flaw sizes of item ( d) and larger stable flaws. f. Ample margin exists in the material properties used to demonstrate end-of-service life (fully aged) stability of the critical flaws. For the critical locations, flaws are identified that will be stable because of the ample margins described in d, e, and f above. Based on loading, pipe geometry, welding process, and material properties considerations, enveloping critical (governing) locations were determined at which Leak-Before-Break crack stability evaluations were made. Through-wall flaw sizes were postulated which would cause a leak at a rate often (10) times the leakage detection system capability of the plant. Large margins for such flaw sizes were demonstrated against flaw instability. Finally, fatigue crack growth assessment was shown not to be an issue for the accumulator line piping. Therefore, the Leak-Before-Break conditions and margins are satisfied for D.C. Cook Units 1 and 2 accumulator line piping. It is demonstrated that the dynamic effects of the pipe rupture resulting from postulated breaks in the accumulator line piping need not be considered in the structural design basis of D.C. Cook Units 1 and 2. Conclusions WCAP-18295-NP January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
S This report justifies the elimination of accumulator lines break from the structural design basis for D.C.
Appendix A: Limit Moment WCAP-18295-NP WESTINGHOUSE NON-PROPRIETARY CLASS 3 APPENDIX A: LIMIT MOMENT ] ~c,e A-1 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
Cook Units 1 and 2 as follows:
WESTINGHOUSE NON-PROPRIETARY CLASS 3 4) o,r---~--------------------(ii Figure A-1 Pipe with a Through-Wall Crack in Bending Appendix A: Limit Moment WCAP-18295-NP A-2 January 2018 Revision 0 *** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
: a.     Stress corrosion cracking is precluded by use of fracture resistant materials in the piping system and controls on reactor coolant chemistry, temperature, pressure, and flow during normal operation.
WCAP-18295-NP Revision 0 Proprietary Class 3 **This page was added to the quality record by the PRIME system upon its validation and shall not be considered in the page numbering of this document.** Author Approval Kirby Christopher R Jan-16-2018 14:21 :34 Reviewer Approval Johnson Eric D Jan-17-201814:51:15 Manager Approval Leber Benjamin A Jan-18-2018 09:40:03 Files approved on Jan-18-2018 *** Thls record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
Note: Alloy 82/182 welds do not exist at the D.C. Cook Units 1 and 2 accumulator lines.
}}
: b.     Water hammer should not occur in the accumulator line piping because of system design, testing, and operational considerations.
: c.     The effects oflow and high cycle fatigue on the integrity of the accumulator line piping are negligible.
: d. Ample margin exists between the leak rate of small stable flaws and the capability of the D.C. Cook Units 1 and 2 reactor coolant system pressure boundary leakage detection systems.
: e. Ample margin exists between the small stable flaw sizes of item (d) and larger stable flaws.
: f. Ample margin exists in the material properties used to demonstrate end-of-service life (fully aged) stability of the critical flaws.
For the critical locations, flaws are identified that will be stable because of the ample margins described in d, e, and f above.
Based on loading, pipe geometry, welding process, and material properties considerations, enveloping critical (governing) locations were determined at which Leak-Before-Break crack stability evaluations were made. Through-wall flaw sizes were postulated which would cause a leak at a rate often (10) times the leakage detection system capability of the plant. Large margins for such flaw sizes were demonstrated against flaw instability. Finally, fatigue crack growth assessment was shown not to be an issue for the accumulator line piping. Therefore, the Leak-Before-Break conditions and margins are satisfied for D.C.
Cook Units 1 and 2 accumulator line piping. It is demonstrated that the dynamic effects of the pipe rupture resulting from postulated breaks in the accumulator line piping need not be considered in the structural design basis of D.C. Cook Units 1 and 2.
Conclusions                                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   A-1 APPENDIX A: LIMIT MOMENT
                                                                      ] ~c,e Appendix A: Limit Moment                                                                                      January 2018 WCAP-18295-NP                                                                                                    Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3                                                   A-2 4) o,r---~--------------------
(ii Figure A-1 Pipe with a Through-Wall Crack in Bending Appendix A: Limit Moment                                                                                     January 2018 WCAP-18295-NP                                                                                                     Revision 0
*** This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)
 
WCAP-18295-NP Revision 0                                                                                                                               Proprietary Class 3
        **This page was added to the quality record by the PRIME system upon its validation and shall not be considered in the page numbering of this document.**
Author Approval Kirby Christopher R Jan-16-2018 14:21 :34 Reviewer Approval Johnson Eric D Jan-17-201814:51:15 Manager Approval Leber Benjamin A Jan-18-2018 09:40:03 Files approved on Jan-18-2018
            *** Thls record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)}}

Latest revision as of 13:39, 23 February 2020

WCAP-18295-NP, Revision 0, Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis, Using Leak-Before-Break Methodology.
ML18072A013
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 01/31/2018
From: Kirby C
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
AEP-NRC-2018-02 WCAP-18295-NP, Rev 0
Download: ML18072A013 (63)


Text

ENCLOSURE 7 TO AEP-NRC-2018-02 WCAP-18295-NP, Revision O "Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology" (Non-Proprietary)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-18295-NP January 2018 Revision 0 Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology I

I I .

Westin .. ,*. , ghouse '

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-18295-NP Revision.O Technical Justification for Eliminating Accumulator Line Rupture as the Structural Design Basis for D.C. Cook Units 1 and 2, Using Leak-Before-Break Methodology January 2018 Author: Christopher R. Kirby*

Structural Design and Analysis - I Reviewer: Eric D. Johnson*

Structural Design and Analysis - II Approved: Benjamin A. Leber, Manager*

Structural_ Design a11:d Analysis - II

  • Electronically approved records are authenticated in the electronic document management system.

Westinghouse Electric Company LLC 1000 Westinghouse Drive Cranberry Township, PA 16066, USA

© 2018. Westingho:use Electric Company LLC All Rights Reserved

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 iii TABLE OF CONTENTS 1.0 Introduction ......................................................................................................................................... 1-1 1.1 Purpose ................................................................................................................................. 1-1 1.2 ScopeandObjectives ............................................................................................................ 1-1 1.3 References ............................................................................................................................. 1-2 2.0 Operation and Stability of the Reactor Coolant System .................................................................... 2-1 2.1 Stress Corrosion Cracking .................................................................................................... 2-1 2.2 Water Ham1ner ...................................................................................................................... 2-2 2.3 Low Cycle and High Cycle Fatigue ...................................................................................... 2-2 2.4 Other Possible Degradation During Service of the Accumulator Lines ............................... 2-3 2.5 References ................................................................. ,........................................................... 2-3 3.0 Pipe Geo1netry and Loading .......................... :................................................................................... 3-1 3.1

  • Calculations of Loads and Stresses ..... :........................ :................ :....... :......................... :..... 3~1 3.2 Loads for Leak Rate Evaluation ................................................... ;....................................... 3-1 3.3 Load Combination for Crack Stability Analyses .................................................................. 3-2 3.4 References ............................................................................................................................. 3-3 4.0 Material Characterization................................................................................................................... 4-1 4.1 Accumulator Line Pipe Material and Weld Process ............................................................ .4-1 4.2 Tensile Properties .................................................................................................................. 4-1 4.3 Reference .............................................................................................................................. 4-1 5.0 Critical Locat.ions ........... ,................. , ....... ,........ , ....... ,........, ....... ,................. ,........,. ....... ,.........,. ....... ,...... 5-1 5.1 Critical Locations .................................................................................................................. 5-1 6.0 Leak Rate Predictions ........................................................................................................................ 6-1 6.1 Introduction ........................................................................................................................... 6-1 6.2 General Considerations ................................................... :..................................................... 6-1 6.3 Calculation Method ............................................................................................................... 6-1 6.4 Leak Rate Calculations ......................................................................................................... 6-2 6.5 References ............................................................................................................................. 6-3 7.0 Fracture Mechanics Evaluation .......................................................................................................... 7-1 7 .1 Global Failure Mechanism .................................................................................................... 7-1 7.2 Local Failure Mechanism ..................................................................................................... 7-2 7.3 Results of Crack Stability Evaluation ................................................................................... 7-2 7.4 References ............................................................................................................................. 7-2 8.0 Assessment of Fatigue Crack Growth ................................................................................................ 8-1
8. I References ............................................................................................................................. 8-1 9.0 Assessment of Margins ...................................................................................................................... 9-1 10.0 Conclusions ...................................................................................................................................... 10-1 Appendix A: Limit Moment. ......................................................................................................................... A-1 WCAP-18295-NP January 2018 Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 iv LIST OF TABLES Table 3-1 Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines ....................................................................... 3-4 Table 3-2 Summary ofD.C. Cook Unit 2 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines ....................................................................... 3-5 Table 3-3 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop l ................................................................................. 3-6 Table 3-4 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for IO-inch Accumulator Injection Line Loop 2 ................................................................................. 3-7 Table 3-5 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 ..... ;....... .-........ ;................ ;....... .-........ ;....... .-........ ;....... 3-8 Table 3-6 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for IO-inch Accumulator Injection Line Loop 4 ................................................................................. 3-9 Table 3-7 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for IO-inch Accumulator Injection Line Loop l ............................................................................... 3-10 Table 3-8 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 ............................................................................... 3-11 Table 3-9 Summary ofD.C Cook Unit 2 N_ormal Loads and Stresses for 1~-inch . . .

Accumulator Injection Line Loop 3 ............................................................................... 3-12 Table 3-10 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 ............................................................................... 3-13 Table 3-11 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop l ............................................................................... 3-14 Table 3-12 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 2 ............................................................................... 3-15 Table 3-13 Summary of D.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 3 ............................................................................... 3-16 Table 3-14 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 4 ............................................................................... 3-17 Table 3-15 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 1 ............................................................................... 3-18 Table 3-16 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 ............................................................................... 3-19 Table 3-17 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 3 ............................................................................... 3-20 WCAP-18295-NP January 2018 Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 V Table 3-18 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for IO-inch Accumulator Injection Line Loop 4 ............................................................................... 3-21 Table 4-1 Mechanical Properties for IO-inch Accumulator Lines Material at Operating Temperatures for D.C. Cook Units 1 and 2 ..................................................................... .4-1 Table 5-1 Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for IO-inch Accumulator Lines and Critical Locations ................................... 5-1 Table 6-1 Flaw Sizes Yielding a Leak Rate of 8 gpm for the D.C. Cook Unit 1 and 2 10-inch Accumulator Lines ................................................................................................... 6-3 Table 7-1 Stability Results for the D.C. Cook Unit 1 and 2 IO-inch Accumulator Lines Based on Limit Load ........................................................................................................ 7-3 Table 9-1 Leakage Flaw Sizes, Cri_tical Flaw Sizes and Margins for D.C_. Cook Units 1 and 2 10-inch Accumulator Lines ........................................................................................... 9-1 WCAP-18295-NP January 2018 Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 vi LIST OF FIGURES Figure 3-1 10-inch Accumulator Line Layout Showing Segments for D.C. Cook Units 1 and 2 ............................................................................................................................... 3-22 Figure 3-2 D.C. Cook Unit 1 Accumulator Line Loop 1 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-23 Figure 3-3 D.C. Cook Unit 1 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-24 Figure 3-4 D.C. Cook Unit 1 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-25 Figure 3-5 D.C. Cook Unit 1 Accumulator Line Loop 4 Layout Showing Weld Locations

  • with Node Points .... ;....... ;....... .-........ ;....... .-........ ;....... .-........ ;....... .-........ ;....... .-........ ;....... ;.. 3-26 Figure 3-6 D.C. Cook Unit 2 Accumulator Line Loop 1 Layout Showing Weld Locations*

with Node Points ............................................................................................................ 3-27 Figure 3-7 D.C. Cook Unit 2 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-28 Figure 3-8 D.C. Cook Unit 2 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points ............................................................................................................ 3-29 Figure 3-_9 D.<;. Cook Unit 2 Accumulat~r Line Loop 4 Layout Showing_Weld Locations_ . .

with Node Points ............................................................................................................ 3-30 Figure 5-1 Layout Showing Critical Location Loop 4 Unit 2 ........................................................... 5-2 Figure 5-2 Layout Showing Critical Locations Loop 3 Unit 2 .......................................................... 5-3 Figure 5-3 Layout Showing Critical Locations Loop 1 Unit 2 .......................................................... 5-4 Figure 6-1 Analytical Predictions of Critical Flow Rates of Steam-Water Mixtures ....................... 6-4 Figure 6-2 ]a,c,e Pressure Ratio as a Function ofL/D .................................................... 6-5 Figure 6-3 Idealized Pressure Drop Profile Through a Postulated Crack ......................................... 6-6 Figure 7-1 ]a,c,e Stress Distribution .................................................................................... 7-4 FigureA-1 Pipe with a Through-Wall Crack in Bending ................................................................ A-2 WCAP-18295-NP January 2018 Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 1-1

1.0 INTRODUCTION

1.1 PURPOSE The current structural design basis for the D.C. Cook Units 1 and 2 10-inch accumulator lines (from the cold legs Loop 1, Loop 2, Loop 3 and Loop 4) require postulating non-mechanistic circumferential and longitudinal pipe breaks. This results in additional plant hardware (e.g., pipe whip restraints and jet shields) which would mitigate the dynamic consequences of the pipe breaks. It is, therefore, highly desirable to be realistic in the postulation of pipe breaks for the accumulator lines. Presented in this report are the descriptions of a mechanistic pipe break evaluation method and the analytical results that can be used for establishing that a circumferential type of break will not occur within the accumulator lines. The evaluations consider that circumferentially oriented flaws cover longitudinal cases.

1.2 SCOPE AND OBJECTIVES -

The purpose of this investigation is to demonstrate Leak Before Break (LBB) for the D.C. Cook Units 1 and 2 accumulator lines from the cold legs Loop 1, Loop 2, Loop 3 and Loop 4 to the isolation valves near the accumulator tanks. Schematic drawings of the piping system are shown in Section 3.0. The recommendations and criteria proposed in SRP 3.6.3 (References 1-1 and 1-2) are used in this evaluation.

The criteria and the resulting steps of the evaluation procedure can be briefly summarized as follows:

1. Calculate the applied loads based on as-built configuration. Identify the location(s) at which the highest.faulted stress oc;curs .
2. Identify the materials and the material properties.
3. Postulate a through-wall flaw at the governing location(s ). The size of the flaw should be large enough so that the leakage is assured of detection with margin using the installed leak detection equipment when the pipe is subjected to normal operating loads. Demonstrate that there is a margin of 10 between the calculated leak rate and the leak detection capability.
4. Using maximum faulted loads in the stability analysis, demonstrate that there is a margin of 2 between the leakage size flaw and the critical size flaw.
5. Review the operating history to ascertain that operating experience has indicated no particular susceptibility to failure from the effects of corrosion, water hammer, or low and high cycle fatigue.
6. For the material types used in the plant, provide representative material properties.
7. Demonstrate margin on applied load by combining the faulted loads by absolute summation method.

This report provides a fracture mechanics demonstration of accumulator line piping integrity for D.C.

Cook Units 1 and 2 consistent with the NRC's position for exemption from consideration of dynamic effects (Reference 1-3).

Introduction January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM_ ( This statement was added by the PRIME system upon its validation)

I

WESTINGHOUSE NON-PROPRIETARY CLASS 3 1-2 It should be noted that the terms "flaw" and "crack" have the same meaning and are used interchangeably.

"Governing location" and "critical location" are also used interchangeably throughout the report.

1.3 REFERENCES

1-1 Standard Review Plan: Public Comments Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal Register/Vol. 52, No. 167/Friday August 28, 1987/Notices, pp. 32626-32633.

1-2 NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures.

1-3 Nuclear Regulatory Commission, 10 CFR 50, Modification of General Design Criteria 4 Requirements for Protection Against Dynamic Effects of Postulated Pipe Ruptures, Final Rule,

- Federal - Register/Vol. - 52, - No. 207 /Tuesday, -October 27, 1987/Rules -and - Regulations, pp. 41288-41295.

Introduction January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 2-1 2.0 OPERATION AND STABILITY OF THE REACTOR COOLANT SYSTEM 2.1 STRESS CORROSION CRACKING The Westinghouse reactor coolant system primary loops and connected Class 1 piping have an operating history that demonstrates the inherent operating stability characteristics of the design. This includes a low susceptibility to cracking failure from the effects of corrosion (e.g., intergranular stress corrosion cracking (IGSCC)). This operating history totals over 1400 reactor-years, including 16 plants each having over 30 years of operation, 10 other plants each with over 25 years of operation, 11 plants each with over 20 years

  • of operation and 12 plants each with over 15 years of operation.

In 1978, the United States Nuclear Regulatory Commission (USNRC) formed the second Pipe Crack Study Group. (The first Pipe Crack Study Group (PCSG) established iri 1975 addressed cracking in boiling water reactors only.) One of the objectives of the second PCSG was to include a review of the potential for stress corrosion cracking in Pressurized Water Reactors (PWRs). The results of the study performed by the PCSG were presented in NUREG-0531 (Reference 2-1) entitled "Investigation and Evaluation of Stress Corrosion Cracking in Piping of Light Water Reactor Plants." In that report the PCSG stated:

"The PCSG has determined that the potential for stress-corrosion cracking in PWR primary system piping is extremely low because the ingredients that produce IGSCC are not all present.

. The. use of hydrazine additives and a hydrogen overpressure limit the oxygen in .the coolant to very low levels. Other impurities that might cause stress-corrosion cracking, such as halides or caustic, are also rigidly controlled. Only for brief periods during reactor shutdown when the coolant is exposed to the air and during the subsequent startup are conditions even marginally capable of producing stress-corrosion cracking in the primary systems of PWRs. Operating experience in PWRs supports this determination. To date, no stress corrosion cracking has been reported in the primary piping or safe ends of any PWR."

For stress corrosion cracking (SCC) to occur in piping, the following three conditions must exist simultaneously: high tensile stresses, susceptible material, and a corrosive environment. Since some residual stresses and some degree of material susceptibility exist in any stainless steel piping, the potential for stress corrosion is minimized by properly selecting a material immune to SCC as well as preventing the occurrence of a corrosive environment. The material specifications consider compatibility with the system's operating environment (both internal and external) as well as other material in the system, applicable ASME Code rules, fracture toughness, welding, fabrication, and processing.

The elements of a water environment known to increase the susceptibility of austenitic stainless steel to stress corrosion are: oxygen, fluorides, chlorides, hydroxides, hydrogen peroxide, and reduced forms of sulfur (e.g., sulfides, sulfites, and thionates ). Strict pipe cleaning standards prior to operation and careful control of water chemistry during plant operation are used to prevent the occurrence of a corrosive environment. Prior to being put into service, the piping is cleaned internally and externally. During flushes and preoperational testing, water chemistry is controlled in accordance with written specifications.

Operation and Stability of the Reactor Coolant System January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 2-2 Requirements on chlorides, fluorides, conductivity, and pH are included in the acceptance criteria for the piping.

During plant operation, the reactor coolant water chemistry is monitored and maintained within very specific limits. Contaminant concentrations are kept below the thresholds known to be conducive to stress corrosion cracking with the major water chemistry control standards being included in the plant operating procedures as a condition for plant operation. For example, during normal power operation, oxygen concentration in the RCS is expected to be in the parts per billion (ppb) range by controlling charging flow chemistry and maintaining hydrogen in the reactor coolant at specified concentrations.

Halogen concentrations are also stringently controlled by maintaining concentrations of chlorides and fluorides within the specified limits. Thus during plant operation, the likelihood of stress corrosion cracking is minimized.

During 1979, several instances of cracking in PWR feedwater piping led to the establishment of the third PCSG. The investigations of the PCSG reported in NUREG-0691 (Reference 2-2) further confirmed that no occurrences of IGSCC have been reported for PWR primary coolant systems.

Primary Water Stress Corrosion Cracking (PWSCC) occurred in V. C. Summer reactor vessel hot leg nozzle, Alloy 82/182 weld. It should be noted that this susceptible material is not found in the D.C. Cook Unit 1 and 2 accumulator lines.

2.2 WATER HAMMER Overall, there is a low potential for water hammer in the RCS and connecting accumulator lines since they are designed and operated to preclude the voiding condition in normally filled lines. The RCS and connecting accumulator lines including piping and components are designed for normal, upset, emergency, and faulted condition transients. The design requirements are conservative relative to both the number of transients and their severity. Relief valve actuation and the associated hydraulic transients following valve opening are considered in the system design. Other valve and pump actuations are relatively slow transients with no significant effect on the system dynamic loads. To ensure dynamic system stability, reactor coolant parameters are stringently controlled. Temperature during normal operation is maintained within a narrow range by the control rod positions; pressure is controlled also within a narrow range for steady-state conditions by the pressurizer heaters and pressurizer spray. The flow characteristics of the system remain constant during a fuel cycle because the only governing parameters, namely system resistance and the reactor coolant pump characteristics are controlled in the design process. Additionally, Westinghouse has instrumented typical reactor coolant systems to verify the flow and vibration characteristics of the system and the connecting auxiliary lines. Preoperational testing and operating experience has verified the Westinghouse approach. The operating transients of the RCS primary piping and connected accumulator lines are such that no significant water hammer can occur.

2.3 LOW CYCLE AND HIGH CYCLE FATIGUE The 1967 Edition of the B31.1 Code does not contain an explicit piping low cycle fatigue analysis requirement. The B31.1 piping complies with a stress range reduction factor to be applied to the allowable stress as a way to address fatigue from full temperature cycles for thermal expansion stress evaluation. The stress range reduction factor is 1.0 (i.e., no reduction) for equivalent full temperature Operation and Stability of the Reactor Coolant System January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 2-3 cycles less than 7000. For D.C. Cook Units 1 and 2, the equivalent full temperature cycles for the applicable design transients are less than 7000, so no reduction is required.

Pump vibrations during operation would result in high cycle fatigue loads in the piping system. During operation, an alarm signals the exceedance of the RC pump shaft vibration limits. Field vibration measurements have been made on the reactor coolant loop piping in a number of plants during hot functional testing. Stresses in the elbow below the RC pump have been found analytically to be very small, between 2 and 3 ksi at the highest. Field measurements on typical PWR plant indicate vibration stress amplitudes less than 1 ksi. When translated to the connecting accumulator lines, these stresses would be even lower, well below the fatigue endurance limit for the accumulator line materials and would result in an applied stress intensity factor below the threshold for fatigue crack growth.

2.4 OTHER POSSIBLE DEGRADATION DURING SERVICE OF THE ACCUMULATOR LINES The accumulator lines and the associated fittings for D.C. Cook Nuclear Power Plants are forged product forms, which are not susceptible to toughness degradation due to thermal aging.

The maximum normal operating temperature of the accumulator piping is about 549°F. This is well below the temperature that would cause any creep damage in stainless steel piping. Cleavage type failures are not a concern for the operating temperatures and the material used in the stainless steel piping of the accumulator lines.

Wall thinning by erosion and erosion-corrosion effects should not occur in the accumulator piping due to the low velocity, typically less than 1.0 ft/sec and the stainless steel material, which is highly resistant to these degradation mechanisms. Per NUREG-0691 (Reference 2-2), a study on pipe cracking in PWR piping reported only two incidents of wall thinning in stainless steel pipe and these were not in the accumulator line. The cause of wall thinning is related to the high water velocity and is therefore clearly not a mechanism that would affect the accumulator piping.

Brittle fracture for stainless steel material occurs when the operating temperature is about -200°F.

Accumulator line operating temperature is higher than 120°F and therefore, brittle fracture is not a concern for the accumulator line.

2.5 REFERENCES

2-1 Investigation and Evaluation of Stress-Corrosion Cracking in Piping of Light Water Reactor Plants, NUREG-0531, U.S. Nuclear Regulatory Commission, February 1979.

2-2 Investigation and Evaluation of Cracking Incidents in Piping in Pressurized Water Reactors, NUREG-0691, U.S. Nuclear Regulatory Commission, September 1980.

Operation and Stability of the Reactor Coolant System January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-1 3.0 PIPE GEOMETRY AND LOADING 3.1 CALCULATIONS OF LOADS AND STRESSES The stresses due to axial loads and bending moments are calculated by the following equation:

F M (3-1) cr=-:--+

A Z where, cr stress (psi)

F axial load (lbs)

M moment (in-lb)

A pipe cross-sectional area (in2) z section modulus (in 3)

The moments for the desired loading combinations are calculated by the following equation:

(3-2)

  • where, X component of moment, Torsion Y component of bending moment M2 Z component of bending moment The axial load and moments for leak rate predictions and crack stability analyses are computed by the methods to be explained in Sections 3.2 and 3.3.

3.2 LOADS FOR LEAK RATE EVALUATION The normal operating loads for leak rate predictions are calculated by the following equations:

F Fnw + Frn + Fp (3-3)

Mx = (Mx)nw + (Mx)rn (3-4)

Mv (Mv)nw + (Mv)rn (3-5)

Mz (Mz)nw + (Mz)rn (3-6)

Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-2 The subscripts of the above equations represent the following loading cases:

DW dead weight TH = normal thermal expansion p = load due to internal pressure This method of combining loads is often referred to as the algebraic sum method (References 3-1 and 3-2). The LBB evaluations do not include moment effects due to pressure loading since the moment loading is significantly dominated by the thermal loads for normal operation and by the seismic loads for faulted events.

The dimensions and normal operating conditions are given in Tables 3-1 and 3-2. The loads based on this method of combination are provided in Tables 3-3 to 3-10 at all the weld locations; The weld naming convention used in this report is as follows:

Unit# - Isometric# - Spool Sheet# -Analysis Node#

3.3 LOAD COMBINATION FOR CRACK STABILITY ANALYSES In accordance with Standard Review Plan 3.6.3 (References 3-1 and 3-2), the absolute sum of loading components can be applied which results in higher magnitude of combined loads. If crack stability is demo~strat~d us.ing these r"oads," the LBB margin on *roads can be reduced from -V2 to 1.0. The absolute.

summation ofloads is shown in the following equations:

F = I FDW I + I FTH I + I F p I + I F SSEINERTIA I + I F SSEAM I (3-7)

Mx = I CMx)ow I + I (Mx)rn I + I (Mx)ssEINERTIAI + I (Mx)ssEAMI (3-8)

My= I (My)ow I+ I (My)rn I+ I (My)ssEINERTIAI + I (My)ssEAMI (3-9)

Mz = I (Mz)ow I + I (Mz)rn I + I (Mz)ssEINERTIAI + I (Mz)ssEAMI (3-10) where subscript SSEINERTIA refers to safe shutdown earthquake inertia, SSEAM is safe shutdown earthquake anchor motion. It is noted that the D.C. Cook piping analyses consider Design Basis Earthquake (DBE) as the seismic criteria, which is equivalent to Safe Shutdown Earthquake (SSE).

The loads so determined are used in the fracture mechanics evaluations (Section 7 .0) to demonstrate the LBB margins at the locations established to be the governing locations. These loads at all the weld locations are given in Tables 3-11 to 3-18.

Notes: For the accumulator lines, the LBB analysis will not be performed at the locations after the isolation valve near the accumulator tank since any break after the isolation valve will not have any effect on the primary loop piping system since there are two check valves, and the one isolation valve will Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-3 prevent the break propagation to the primary loop piping system. Figure 3-1 shows typical 10-inch accumulator line layout showing segments for D.C. Cook Units 1 and 2.

3.4 REFERENCES

3-1 Standard Review Plan: Public Comments Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal Register/Vol. 52, No. 167/Friday, August 28, 1987/Notices, pp. 32626-32633.

3-2 NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures.

Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-4 Table 3-1 Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines Minimum Normal Operating Pipe Size & Wall Loop Segment Nodes Material Type Thickness Pressure Temperature Schedule (in)* (psig) (OF)

A376 TP316 or IO-inch I 416 to 412 0.896 2345 549 A403 WP316 Sch. 140 A376 TP316 or IO-inch 406-404 0.896 2235 549 A403 WP316 Sch. 140 1 II A376 TP316 or IO-inch 404 to 450 0.896 2235 120 A403 WP316 Sch. 140 A376 TP316 or IO-inch III 456 to 459 0.896 644 120 A403 WP316 Sch. 140 A376 TP316 or IO-inch I 361 to 358 0.896 2345 549 A403 WP316 Sch. 140 A376 TP316 or IO-inch 352 to 350 0.896 2235 549 A403 WP316 Sch. 140 2 II A376 TP316 or IO-inch 350 to 365 0.896 2235 120 A403 WP316 Sch. 140 A376 TP316 or IO-inch III 368 to 374 0.896 644 120 A403 WP316 Sch. 140 A376 TP316 or IO-inch I 171 to 168 0.896 2345 549 A403 WP316 Sch. 140 A376 TP316 or IO-inch 162 to 160 0.896 2235 549 A403 WP316 Sch. 140 3 II A376 TP316 or IO-inch 160 to 200 0.896 2235 120 A403 WP316 Sch. 140 A376 TP316 or IO-inch III 206 to 214 0.896 644 120 A403 WP316 Sch. 140 A376 TP316 or 10-inch I 307 to 304 0.896 2345 549 A403 WP316 Sch. 140 A376 TP316 or 10-inch 296 to 294 0.896 2235 549 A403 WP316 Sch. 140 4 II A376 TP316 or IO-inch 294 to 334 0.896 2235 120 A403 WP316 Sch. 140 A376 TP316 or IO-inch III 340 to 344 0.896 644 120 A403 WP316 Sch. 140 Notes: Pipe Outer Diameter= 10.75 in. Figure 3-1 shows the Segments. Node numbers are shown in Tables 3-3 to 3-6, Tables 3-11 to 3-14, and Figures 3-2 to 3-5.

The minimum wall thickness is conservatively based at the weld counterbore and not per ASME Code requirement.

Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-5 Table 3-2 Summary ofD.C. Cook Unit 2 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines Minimum Normal Operating Pipe Size & Wall L_oop Segment Nodes Material Type Thickness Pressure Temperature Schedule (in) (psig) (OF)

A376 TP316 or 10-inch I 416 to 412 0.896 2345 549 A403 WP316 Sch. 140 A376 TP316 or 10-inch 406-404 0.896 2235 549 A403 WP316 Sch. 140 1 II A376 TP316 or 10-inch 404 to 450 0.896 2235 120 A403 WP316 Sch. 140 A376 TP316 or 10-inch III 456 to 460 0.896 644 120 A403 WP316 Sch. 140 A376 TP316 or 10-inch I 361 to 358 0.896 2345 549 A403 WP316 Sch. 140 A376 TP316 or 10-inch 352 to 350 0.896 2235 549 A403 WP316 Sch. 140 2 II A376 TP316 or 10-inch 350 to 365 0.896 2235 120 A403 WP316 Sch. 140 A376 TP316 or 10-incl).

III 368 to 374 0.896

  • 644* 120 A403 WP316 Sch. 140 A376 TP316 or 10-inch I 171 to 168 0.896 2345 549 A403 WP316 Sch. 140 A376 TP316 or 10-inch 162 to 160 0.896 2235 549 A403 WP316 Sch. 140 3 II A376 TP316 or 10-inch 160 to 200 0.896 2235 120 A403 WP316 Sch. 140 A376 TP316 or 10-inch III 206 to 214 0.896 644 120 A403 WP316 Sch. 140 A376 TP316 or 10-inch I 307 to 304 0.896 2345 549 A403 WP316 Sch. 140 A376 TP316 or IO-inch 296 to 294 0.896 2235 549 A403 WP316 Sch. 140 4 II A376 TP316 or 10-inch 294 to 334 0.896 2235 120 A403 WP316 Sch. 140 A376 TP316 or 10-inch III 340 to 344 0.896 644 120 A403 WP316 Sch. 140 Notes: Pipe Outer Diameter= 10.75 in. Figure 3-1 shows the Segments. Node numbers are shown in Tables 3-7 to 3-10, Tables 3-15 to 3-18, and Figures 3-6 to 3-9.

The minimum wall thickness is conservatively based at the weld counterbore and not per ASME Code requirement.

Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-6 Table 3-3 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 1-SI-29-4-416 150,544 572,540 14,500 1-SI-29-4-412 151,904 480,244 13,087 1-S1-29-3R-406 144,981 372,401 11,129 1-S1-29-3R-404Y 144,974 359,707 10,927 1-SI-29-3R-404Z 144,603 329,751 101439 1-SI-29-3R-420N 145,021 138,676 7,428 1-SI-29-3R-420F 132,866 302,148 9,579 1-SI-29-2-426N 132,866 610,416 14,462 1-SI-29-2-426F 135,542 584,316 14,145 1-SI-29-2-428N 135,361 511,059 12,978 1-SI-29-2-428F 134,368 418,866 11,482

. 1-SI-29-2-430N 133,973 . 187,196 7,798.

1-SI-29-2-430F 134,456 217,782 8,300 1-S1-29-2-434N 133,786 596,012 14,267 1-S1-29-1-434F 132,348 606,825 14,386 l-S1-29-1-442N 140,744 19,109 5,379 1-SI-29-1-446F 144,828 24,490 5,612 1-SI-29-1-450 144,385 36,111 5,780 1-SI-28-1-456 42,094 48,043 2,279 1-SI-28-1-459 40,082 75,149 2,636 Notes:

  • See Figure 3-2
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-7 Table 3-4 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 1-Sl-31-4-361 150,050 553,834 14,186 1-SI-31-4-358 150,454 464,800 12,790 1-S1-31-3R-352 143,522 360,126 10,882 1-S1-3 l-3R-350X 143,515 349,881 10,719 1-S1-31-3R-350Z 137,879 329,396 10,191 1-S1-31-3R-348F 137,317 146,068 7,267 1-S1-31-3R-348N 148,662 305,946 10,209 1-S1-31-3R-344F 148,661 583,194 14,601 1-S1-31-2-344N 145,839 543,364 13,868 1-S1-31-2-342F 146,048 429,755 12,076 1-S1-31-2-342N 146,006 341,910 10,683 1-S1-31-2-340F 146,140 228,057 8,884 1-S1-31-2-340N 146,570 173,557 8,036 1-SI-3 l-1A-338F 147,466 601,975 14,855 1-SI-31-1A-338N 148,841 616,807 15,139 l-S1-31-1A-332F 141,852 49,529 5,901 1-S1-31-IA-332N 140,753 34,468 5,623 1-S1-31-IA-330F 140,754 34,318 5,621 1-SI-3 l-lA-324 141,694 60,896 6,076 l-S1-31-1A-324Y 144,566 42,505 5,888 1-SI-31-IA-365 144,181 38,709 5,814 1-S1-30-1-369N 41,878 33,833 2,046 1-S1-30-1-372F 40,592 43,134 2,147 1-SI-30~ 1-374 40,592 56,445 2,358 Notes:

  • See Figure 3-3
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-8 Table 3-5 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 1-SI-33-4-171 . 149,402 545,932 14,037 1-SI-33-4-168 149,924 457,435 12,654 1-S1-33-3R-162 142,990 350,539 10,711 1-S1-33-3R-160Y 142,990 339,778 10,540 1-S1-33-3R-160Z 144,283 320,142 10,276 1-S1-33-3R-174N 144,756 159,702 7,751 1-S1-33-3R-174F 132,912 329,603 10,015 1-SI-33-3R-178N 132,912 587,067 14,094 1-S1-33-2-178F 135,855 544,167 13,520 1-SI-33-2-l SON 135,647 426,577 11,650 1-SI-33-2-1 SOF 135,829 337,504 10,246 1-S1-33-2-182N 135,715 250,216 8,859 1-SI-33-2-182F 135,186 188,126 7,856 1-S1-33-2-184N 134,254 625,921 14,758 1-S1-33-1A-l84F 132,807 642,494 14,968 1-SI-33-1A-190N 140,752 82,640 6,386 1-SI-33-lA-196 140,684 98,910 6,641 1-S1-33-1A-196Y 143,247 91,767 6,621 1-SI-33-lA-200 142,911 82,455 6,461 1-Sl-32-1-206 40,580 111,590 3,231 1-SI-32-1-214 38,140 133,951 3,498 Notes:

  • See Figure 3-4
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-9 Table 3-6 Summary ofD.C. Cook Unit 1 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 1-SI-35-4-307 149,603 558,147 14,238 1-SI-35-4-304 150,581 465,700 12,809 1-S1-35-3RR-296 143,647 361,774 10,912 1-S1-35-3RR-294Y 143,639 353,398 10,779 1-S1-35~3RR~294Z 144,601 331,148 10,461 1-S1-35-3RR-31 ON 145,069 143,595 7,507 1-S1-35-3RR-310F 132,993 316,630 9,813 1-S1-35-3RR-314N 132,994 595,022 14,223 1-S1-35-2R-314F 135,495 558,636 13,737 1-S1-35-2R-316N 135,287 442,239 11,885 1-S1-35-2R-316F 135,605 354,324 10,504 1-S1-35-2R-318N 135,493 268,494 9,140 l-S1-35-2R-318F 134,824 206,128 8,128 1-S1-35-2R-320N 133,895 596,295 14,275 l-S1-35-1-320F 132,895 605,939 14,392 1-S1-35-1-326N 140,594 37,566 5,666 1-S1-35-l-330F 144,765 29,682 5,692 l-SI-35-1-334 144,242 18,672 5,499 l-SI-34-1-340 42,031 27,037 1,944 1-SI-34-1-343 40,948 38,853 2,092 1-SI-34-1-344 40,949 50,665 2,280 Notes:

  • See Figure 3-5
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-10 Table 3-7 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 2-SI-56-10-416 149,651 543,376 14,005 2-SI-56-10-412 150,029 460,335 12,704 2-SI-56-9-406 143,099 371,247 11,042 2-S1-56-9-404Y 143,099 364,094 10,929 2-S1-56-9-404Z 144,000 333,400 10,475 2-S1-56-9-420N 144,458 137,677 7,392 2-S1-56-8-420F 133,182 294,094 9,463 2-S1-56-8-426N 133,182 585,298 14,076 2-S1-56-8-426F 136,019 544,178 13,526 2-S1-56-7-428N 135,811 430,650 11,721 2-SI-56-7-428F 136,040 344,620 10,366 2-SI-56-7-430N 135,930 267,996 9,148 2-SI-56-7-430F 135,377 200,323 8,056 2-S1-56-6-434N 134,428 585,021 14,116 2-S1-56-6-434F 133,012 601,203 14,321 2-S1-56-5-442N 140,759 19,495 5,386 2-S1-56-4-446F 144,982 24,925 5,624 2-SI-56-4-450 144,461 36,168 5,784 2-SI-56-3-456 41,893 46,418 2,246 2-S1-56-3-458F 40,084 70,391 2,561 2-SI-56-3-460 40,083 84,642 2,787 Notes:

  • See Figure 3-6
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-11 Table 3-8 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 2-SI-57-10-361 150,058 545,366 14,052 2-SI-57-10-358 150,601 455,303 12,645 2-SI-57-9-352 143,667 352,318 10,763 2-S1-57-9-350X 143,667 342,929 10,614 2-S1-57-9-350Z 137,932 330,093 10,204 2-S1-57-9-348F 137,369 146,848 7,281 2-S1-57-8-348N 148,713 307,489 10,235 2-S1-57-8-344F 148,713 583,312 14,604 2-S1-57-8-344N 145,886 543,484 13,871 2-S1-57-7-342F 146,134 429,243 12,071 2-S1-57-7-342N 146,088 340,780 10,668 2-S1-57-7-340F 146,250 226,938 8,870 2-S1-57-7-340N 146,749 172,793 8,030 2-S1-57-6-338F 147,823 608,808 14,976 2-S1-57-6-338N 148,892 618,226 15,164 2-S1-57-5-332F 141,297 88,253 6,495 2-S1-57-4-332N 141,478 86,492 6,473 2-SI-57-4-326F 141,478 99,948 6,686 2-S1-57-4-326N 142,887 111,859 6,926 2-S1-57-4-324Y 136,719 132,788 7,035 2-SI-57-4-365 136,328 103,172 6,552 2-SI-57-3-368 34,048 115,867 3,064 2-SI-57-3-374 40,010 86,160 2,808 Notes:

  • See Figure 3-7
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-12 Table 3-9 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 2-SI-58-10-171 149,588 542,679 13,992 2-SI-58-10-168 150,011 454,313 12,608 2-SI-58-9-162 143,081 351,593 10,731 2-SI-58-9-I60Y 143,081 341,851 10,576 2-SI-58-9-l60Z 144,042 320;594 . 10,274 2-SI-58-9-174N 144,604 160,824 7,764 2-SI-58-8-l 74F 132,871 330,395 10,026 2-SI-58-8-178N 132,871 587,453 14,098 2-SI-58-8-l 78F 135,786 545,092 13,533 2-SI-58-7-180N 135,537 427,002 11,653 2-SI-58-7-180F 135,723 337,416 10,241 2-SI-58-7-182N 135,592 249,711 8,846 2-SI-58-7-I82F 134,989 187,744 7,843 2-SI-58-6-I84N 133,878 630,745 14,821 2-SI-58-6-l 84F 132,765 641,494 14,951 2-SI-58-5-190N 139,574 38,643 5,647 2-SI-58-4-I94F 144,633 39,516 5,843 2-SI-58-4-196Y 143,610 43,662 5,872 2-SI-58-4-200 143,270 58,945 6,102 2-SI-58-3-206 40,939 84,090 2,809 2-SI-58-3-212F 38,842 108,533 3,120 2-SI-58-3-214 38,842 106,898 3,094 Notes:

  • See Figure 3-8
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation}

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-13 Table 3-10 Summary ofD.C. Cook Unit 2 Normal Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 2-SI-59-10-307 150,095 554,493 14,198 2-SI-59-10-304 150,649 462,270 12,757 2-SI-59-9-296 143,709 357,048 10,840 2-SI-59-9-294Y 143,715 348,610 10,706 2-SI-59-9-294Z 144,752 . 338,702 10,587 2-SI-59-9-31 ON 145,176 138,638 7,433 2-SI-59-8-3 lOF 132,973 312,445 9,746 2-SI-59-8-314N 132,974 596,893 14,252 2-SI-59-8-314F 135,386 561,931 13,785 2-S1-59-7-316N 135,177 445,283 11,930 2-SI-59-7-316F 135,523 357,096 10,545 2-SI-59-7-31 SN 135,407 271,143 9,179 2-S1-59-7-318F 134,713 208,346 8,160 2-S1-59-6-320N 133,784 597,562 14,292 2-SI-59-6-320F 132,870 605,979 14,392 2-S1-59-5-326N 140,587 40,839 5,718 2-SI-59-4-330F 145,954 33,498 5,795 2-SI-59-4-334 145,430 25,819 5,655 2-SI-59-3-340 42,862 14,809 1,781 2-SI-59-3-344 40,932 35,700 2,042 Notes:

  • See Figure 3-9
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-14 Table 3-11 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 1-SI-29-4-416 153,672 942,766 20,477 1-SI-29-4-412 153,946 781,220 17,928 1-S1-29-3R-406 146,721 541,792 13,875 1-S1-29-3R-404Y 146,708 511,106 13,388 1-S1-29-3R-404Z 148,186 469,759 . 12,786 1-S1-29-3R-420N 147,785 211,852 8,687 1-S1-29-3R-420F 150,017 359,241 11,102 1-S1-29-2-426N 149,655 665,307 15,937 1-S1-29-2-426F 147,300 650,728 15,621 1-S1-29-2-428N 147,466 585,585 14,595 1-S1-29-2-428F 148,333 485,703 13,044 1-S1-29-2-430N 148,854 253,259 9,381 1-S1-29-2-430F 148,404 265,934 9,566 l-SI-29-2-434N 149,155 664,249 15,902 l-S1-29-1-434F 150,250 654,108 15,781 1-S1-29-1-442N 143,611 203,227 8,399 1-S1-29-1-446F 149,385 157,310 7,880 1-SI-29-1-450 148,910 210,917 8,712 1-SI-28-1-456 46,553 312,358 6,627 1-SI-28-1-459 43,989 325,555 6,744 Notes:

  • See Figure 3-2
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-15 Table 3-12 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 1-SI-31-4-361 154,404 952,033 20,650 1-SI-31-4-358 152,740 789,100 18,009 1-S1-31-3R-352 145,511 548,357 13,935 1-S1-3l-3R-350X 145,498 508,389 13,301 1-S1-31-3R-350Z 147,631 486,646 13,034 1-S1-31-3R-348F 147,051 240,974 9,121 1-S1-3 l-3R-348N 149,869 372,305 11,303 1-S1-31-3R-344F 149,387 638,071 15,496 1-S1-31-2-344N 147,035 610,125 14,968 1-S1-31-2-342F 147,236 495,600 13,162 1-S1-31-2-342N 146,912 408,000 11,762

  • 1-S1-31-2-340F 147,103 288,840 9,882 l-S1-31-2-340N 147,764 231,000 8,989 1-S1-31-1A-338F 148,728 689,316 16,284 1-S1-31-1A-338N 149,712 673,084 16,062 1-S1-31-1A-332F 146,225 140,085 7,493 1-S1-31-1A-332N 147,023 154,999 7,758 l-S1-31-1A-330F 146,976 128,480 7,337 1-SI-3 l-IA-324 141,935 139,947 7,337 l-S1 IA-324Y 145,662 297,275 9,963 l-SI-31-IA-365 145,212 171,169 7,949 1-S1-30-l-369N 42,645 121,272 3,459 1-S1-30-1-372F 45,895 141,382 3,895 1-SI-30-1-374 45,911 133,357 3,768 Notes:
  • See Figure 3-3
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-16 Table 3-13 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 1-SI-33-4-171 154,449 901,426 19,850 1-SI-33-4-168 151,850 761,463 17,539 l-S1-33-3R-162 144,623 536,440 13,714 l-S1-33-3R-l60Y 144,616 498,873 13,119 l-S1-33-3R-l60Z 147,423 442,778 12,332 1-S1-33-3R-174N 146,959 258,020 9,388 1-S1-33-3R-174F 149,946 400,054 11,746 l-S1-33-3R- l 78N 149,575 640,568 15,542 l-S1-33-2-178F 147,267 609,999 14,975 l-S1-33-2-180N 147,477 485,807 13,015

' l-S1-33-2-180F 146,974 397,219 11,594 l-S1-33-2-182N 147,107 301,798 10,087 l-S1-33-2-l 82F 147,947 237,093 9,092 1-S1-33-2-184N 148,927 694,425 16,372 1-S1-33-1A-l 84F 149,821 711,587 16,676 1-S1-33-1A-190N 144,313 276,976 9,593 l-SI-33-lA-196 143,545 304,639 10,003 1-S1-33-1A-196Y 149,256 399,444 11,711 l-SI lA-200 148,879 255,528 9,418 l-SI-32-1-206 46,374 222,432 5,196 l-SI-32-1-214 48,770 239,236 5,549 Notes:

  • See Figure 3-4
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-17 Table 3-14 Summary ofD.C. Cook Unit 1 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 1-SI-35-4-307 154,554 933,994 20,370 1-SI-35-4-304 152,576 766,603 17,647 1-SI-35-3RR-296 145,345 521,590 13,505 1-SI-35-3RR-294Y 145,332 485,618 12,935 1-S1-35-3RR-294Z 147,986 474,798 12,859 1-S1-35-3RR-3 l0N 147,518 218,605 8,784 1-S1-35-3RR-3 l0F 149,705 368,180 11,232 1-S1-35-3RR-314N 149,405 635,330 15,453 1-SI-35-2R-314F 147,354 613,318 15,031 1-SI-35-2R-316N 147,555 500,811 13,256 1-SI-35-2R-316F 146,931 417,057 11,906 1-SI-35-2R-318N 147,080 330,240 10,536 1-SI-35-2R-3 l 8F 148,019 263,726 9,517 1-SI-35-2R-320N 149,016 669,413 15,979 1-SI-35-1-320F 149,633 653,715 15,753 1-SI-35-1-326N 142,784 201,489 8,342 1-SI-35-1-330F 147,894 156,026 7,806 1-SI-35-1-334 147,326 155,105 7,771 1-SI-34-1-340 45,110 231,951 5,301 1-SI-34-1-343 43,528 244,127 5,437 1-SI-34-1-344 43,360 222,408 5,087 Notes:

  • See Figure 3-5
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-18 Table 3-15 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 1 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 2-SI-56-10-416 154,850 881,028 19,542 2-SI-56-10-412 152,074 738,135 17,178 2-SI-56-9-406 144,653 540,790 13,784 2-SI-56-9-404Y 144,644 510,587 13,305 2-SI-56-9-A04Z *147,675 474,565 12,844 2-SI-56-9-420N 147,200 221,137 8,813 2-SI-56-8-420F 149,883 360,838 11,122 2-SI-56-8-426N 149,401 635,776 15,460 2-SI-56-8-426F 146,934 605,903 14,898 2-SI-56-7-428N 147,130 496,465 13,171 2-SI-56-7-428F 146,624 409,344 11,773 2-S1-56-7-430N 146,754 330,436 10,528 2-SI-56-7-430F 147,567 261,721 9,469 2-SI-56-6-434N 148,583 654,713 15,731 2-SI-56-6-434F 149,711 649,740 15,693 2-SI-56-5-442N 143,803 225,713 8,763 2-SI-56-4-446F 149,901 169,423 8,091 2-SI-56-4-450 149,341 224,348 8,941 2-SI-56-3-456 46,670 334,073 6,975 2-SI-56-3-458F 44,438 339,098 6,974 2-SI-56-3-460 44,252 297,910 6,315 Notes:

  • See Figure 3-6
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-19 Table 3-16 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 2 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 2-SI-57-10-361 154,785 930,327 20,320 2-SI-57-10-358 152,910 780,228 17,875 2-SI-57-9-352 145,580 550,743 13,975 2-SI-57-9-350X 145,569 511,768 13,358 2-SI-57-9-350Z 147,817 481,026 12,952 2-SI-57-9-348F 147,242 247,668 9,234 2-SI-57-8-348N 150,193 383,617 11,494 2-SI-57-8-344F 149,631 639,502 15,527 2-SI-57-8-344N 147,232 612,808 15,018 2-SI-57-7-342F 147,461 500,072 13,241 2-SI-57-7-342N 147,082 408,334 11,774 2-SI-57-7-340F 147,290 289,277 9,895 2-SI-57-7-340N 148,059 237,803 9,108 2-SI-57-6-338F 149,189 689,628 16,306 2-SI-57-6-338N 149,941 674,341 16,091 2-SI-57-5-332F 144,134 265,896 9,411 2-SI-57-4-332N 144,113 261,199 9,336 2-SI-57-4-326F 144,098 251,473 9,181 2-SI-57-4-326N 143,623 256,107 9,237 2-S1-57-4-324Y 147,576 407,080 11,772 2-SI-57-4-365 147,983 281,549 9,798 2-SI-57-3-368 49,754 210,309 5,126 2-SI-57-3-374 43,079 187,522 4,524 Notes:

  • See Figure 3-7
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-20 Table 3-17 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 3 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 2-SI-58-10-171 155,131 963,864 20,864 2-SI-58-10-168 152,408 816,935 18,438 2-SI-58-9-162 145,111 586,733 14,529 2-SI-58-9-160Y 145,101 546,305 13,888 2-SI-58-9-160Z 147,868 482,583 12,978 2-S1-58-9-174N 147,313 276,331 9,691 2-S1-58-8-174F 150,295 414,861 11,993 2-S1-58-8-178N 149,785 648,744 15,679 2-S1-58-8-178F 147,541 . 620,256 15,147 2-S1-58-7-180N 147,779 497,191 13,206 2-S1-58-7-180F . 147,170 .409,449 . 11,794 2-S1-58-7-182N 147,331 312,371 10,262 2-S1-58-7-182F 148,328 248,448 9,286 2-S1-58-6-184N 149,512 720,276 16,803 2-S1-58-6-184F 150,085 729,325 16,967 2-S1-58-5-190N 144,043 183,813 8,107 2-S1-58-4-194F 156,146 220,688 9,128 2-S1-58-4-196Y 147,601 338,570 10,687 2-SI-58-4-200 147,198 202,172 8,512 2-SI-58-3-206 44,594 160,676 4,154 2-S1-58-3-212F 47,965 208,334 5,030 2-SI-58-3-214 47,974 196,809 4,848 Notes:

  • See Figure 3-8
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-21 Table 3-18 Summary ofD.C. Cook Unit 2 Faulted Loads and Stresses for 10-inch Accumulator Injection Line Loop 4 Weld Location Axial Force Moment Total Stress Node (lbs) (in-lbs) (psi) 2-SI-59-10-307 155,202 970,257 20,968 2-SI-59-10-304 152,894 794,224 18,096 2-SI-59-9-296 145,478 534,370 13,712 2-S1-59-9-294Y 145,476 494,266 13,077 2-S1-59~9-294Z 147,968 483,080 12,990 2-SI-59-9-31 ON 147,567 228,424 8,941 2-SI-59-8-3 lOF 149,838 371,593 11,291 2-S1-59-8-314N 149,475 641,406 15,552 2-S1-59-8-314F 147,647 624,363 15,216 2-SI-59-7-316N 147,848 509,412 13,402 2-S1-59-7-316F 147,148 421,203 11,980 2-S1-59-7-318N 147,299

  • 331,829 10,570 2-S1-59-7-318F 148,309 267,901 9,593 2-S1-59-6-320N 149,290 674,205 16,065 2-S1-59-6-320F 149,797 656,912 15,809 2-S1-59-5-326N 143,537 236,480 8,923 2-SI-59-4-330F 149,661 188,469 8,384 2-SI-59-4-334 149,098 190,010 8,388 2-SI-59-3-340 46,391 276,428 6,052 2-SI-59-3-344 44,025 292,096 6,215 Notes:
  • See Figure 3-9
  • Axial force includes pressure Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-22 I

J I

Accumulator Tank .,.

_ I_..§~gment 111......j

~1.-segmentll ~

Segment I Cold Leg Figure 3-110-inch Accumulator Line Layout Showing Segments for D.C. Cook Units 1 and 2 Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-23 Figure 3-2 D.C. Cook Unit 1 Accumulator Line Loop 1 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-24 Loop2 Cold Leg Figure 3-3 D.C. Cook Unit 1 Accumulator Line Loop 2 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. (This.statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-25 1'4 Figure 3-4 D.C. Cook Unit 1 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-26

~ ...**

Loop4 Cold leg Figure 3-5 D.C. Cook Unit 1 Accumulator Line Loop 4 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-27 llC COLO L~G LOqP-1 Figure 3-6 D.C. Cook Unit 2 Accumulator Line Loop 1 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

I

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-28 Figure 3-7 D.C. Cook Unit 2 Accumulator Line Loop 2 Layout Showing Weld Locations with Node

  • Points Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-29 Figure 3-8 D.C. Cook Unit 2 Accumulator Line Loop 3 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 3-30

"(

Figure 3-9 D.C. Cook Unit 2 Accumulator Line Loop 4 Layout Showing Weld Locations with Node Points Pipe Geometry and Loading January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 4-1 4.0 MATERIAL CHARACTERIZATION 4.1 ACCUMULATOR LINE PIPE MATERIAL AND WELD PROCESS The material type of the accumulator line for D.C. Cook Units 1 and 2 is A376 TP316 (seamless pipe) and A403 WP316 (wrought fittings) for the pipe and fittings, respectively. The welding processes used are Submerged Arc Weld (SAW) and Shielded Metal Arc Weld (SMAW).

In the following sections the tensile properties of the materials are presented for use in the Leak-Before-Break analyses.

4.2 TENSILE PROPERTIES

  • Certified Material Test Reports (CMTRs) with mechanical properties were not readily available for the D.C. Cook Units 1 and 2 accumulator lines. For the D.C. Cook Units 1 and 2 accumulator lines, the ASME Code mechanical properties were used to establish the tensile properties for the Leak-Before-Break analyses. The tensile properties for the pipe material are provided in Table 4-1 for the Units 1 and 2 accumulator lines.

For the A376 TP316 pipe material and the A403 WP316 fitting material, the representative properties at operating temperatures are established from the tensile properties interpolated from Section II of the ASME Boiler and Pressure Vessel Code (Reference 4-1). Code tensile properties at the operating

. temperatures were obtained by interpolaHng between vadous tensile Code properties.

The modulus of elasticity value was also interpolated from ASME Code properties, and Poisson's ratio was taken as 0.3.

4.3 REFERENCE 4-1 ASME Boiler and Pressure Vessel Code,Section II, Part D, "Properties (Customary) Materials,"

2007 Edition up to and including 2008 Addenda.

Table 4-1 Mechanical Properties for 10-inch Accumulator Lines Material at Operating Temperatures for D.C. Cook Units 1 and 2 Temperature Modulus of Yield Strength Ultimate Material (OF) Elasticity (E) (psi) Strength (psi)

(ksi)

A376 TP316 549 25,606 19,461 71,800 A403 WP316 A376 TP316 120 27,992 28,960 75,000 A403 WP316 Material Characterization January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 5-1 5.0 CRITICAL LOCATIONS 5.1 CRITICAL LOCATIONS The Leak-Before-Break (LBB) evaluation margins are to be demonstrated for the critical locations (governing locations). Such locations are established based on the loads (Section 3.3) and the material properties established in Section 4.2. These locations are defined below for the D.C. Cook accumulator lines.

Critical Locations for the 10-inch accumulator lines (see Table 5-1):

The welds in the accumulator line are fabricated using Shielded Metal Arc Weld (SMAW) and Submerged Arc Weld (SAW) for field and shop welds. The pipe material type is A376 TP 316 or A403 WP316 which have identical_ material properties. _The governing locations _were_ established on the basis of the_

pipe geometry, material type, operating temperature, operating pressure, and the highest faulted stresses at the welds.

Table 5-1 shows the highest faulted stresses and the corresponding weld location node for each welding process type in each segment of the IO-inch accumulator lines, enveloping both D.C. Cook Units 1 and 2.

Definition of the piping segments and the corresponding operating pressure and temperature parameters are from Tables 3-1 and 3-2. Figures 5-1 through 5-3 show the location of the critical welds.

ITable 5-1 Summary ofD.C. Cook Unit 1 Piping Geometry and Normal Operating Condition for 10-inch Accumulator Lines* and *critical Locations Welding Operating Operating Maximum Weld Location Segment Pipe Size Pressure Temperature Faulted Stress Process Node (psig) {°F) (psi)

I IO-inch SMAW 2,345 549 20,968 2-SI-59-I0-307 SAW 2,235 549 13,888 2-SI-58-9-160Y II IO-inch SMAW 2,235 549 14,529 2-SI-58-9-162 SAW 2,235 120 16,803 2-SI-58-6-184N SMAW 2,235 120 16,967 2-SI-58-6-l 84F III IO-inch SAW 644 120 6,974 2-SI-56-3-458F SMAW 644 120 6,975 2-SI-56-3-456 Critical Locations January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 5-2 RC COI.D UG \ *

  • LlltiP 4

.... 1--------

Critical Location:

Segment I SMAW weld Figure 5-1 Layout Showing Critical Location Loop 4 Unit 2 Critical Locations January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 5-3 Critical Location:

Segment II SMAW weld Critical Location:

Segment II SAW weld Critical Location:

Segment II SMAW/SAW weld Figure 5-2 Layout Showing Critical Locations Loop 3 Unit 2 Critical Locations January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 5-4 Critical Location:

Segment Ill SMAW weld Critical Location:

Segment Ill SAW weld Figure 5-3 Layout Showing Critical Locations Loop 1 Unit 2 Critical Locations January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 6-1 6.0 LEAK RATE PREDICTIONS

6.1 INTRODUCTION

The purpose of this section is to discuss the method which is used to predict the flow through postulated through-wall cracks and present the leak rate calculation results for through-wall circumferential cracks.

6.2 GENERAL CONSIDERATIONS The flow of hot pressurized water through an opening to a lower back pressure causes flashing which can result in choking. For long channels where the ratio of the channel length, L, to hydraulic diameter, D8 ,

(L/DH) is greater than [

]a,c,e 6.3 CALCULATION METHOD The basic method used in the leak rate calculations is the method developed by [

]a,c,e The flow rate through a crack was calculated in the following manner. Figure 6-1 (from Reference 6-2) was used to estimate the critical pressure, Pc, for the accumulator line enthalpy condition and an assumed flow. Once Pc was found for a given mass flow, the [ ]a,c,e was found from Figure 6-2 (taken from Reference 6-2). For all cases considered, [

]",c,e therefore, this method will yield the two-phase pressure drop due to momentum effects as illustrated in Figure 6-3, where P0 is the operating pressure. Now using the assumed flow rate, G, the frictional pressure drop can be calculated using LlPr= [ (6-1) where the friction factor f is determined using the [ ]"'c,e The crack relative roughness, E, was obtained from fatigue crack data on stainless steel samples. The relative roughness value used in these calculations was [ r,c,e The frictional pressure drop using equation 6-1 is then calculated for the assumed flow rate and added to the [ ]a,c,e to obtain the total pressure drop from the primary system to the atmosphere.

Leak Rate Predictions January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRJETARY CLASS 3 6-2 That is, for the accumulator line:

Absolute Pressure - 14.7 = [ ]a,c,e (6-2) for a given assumed flow rate G. If the right-hand side of equation 6-2 does not agree with the pressure difference between the accumulator line and the atmosphere, then the procedure is repeated until equation 6-2 is satisfied to within an acceptable tolerance which in turn leads to a flow rate value for a given crack size.

For the single phase cases with lower temperature, leakage rate is calculated by the following equation (Reference 6-4) with the crack opening area obtained by the method from Reference 6-3.

Q = A (2gllP/kp)°" 5 ft 3/sec; (6-3)

Where, L'lP = pressure difference between stagnation and back pressure (lb/ft2), g = acceleration of gravity (ft/sec2), p = fluid density at atmospheric pressure (lb/ft3), k = friction loss including passage loss, inlet and outlet of the through-wall crack, A= crack opening area (ft2).

6.4 LEAK RATE CALCULATIONS Leak rate calculations were made as a function of crack length at the governing locations previously identified in Section 5.1. The normal operating loads_ of Table 3-3 through Table 3-6 (for Unit 1), and

. Table 3-7 throµgh Table 3-10 (for Unit 2) were applied,in th.ese calculations.. The crack opening areas were estimated using the method of Reference 6-3 and the leak rates were calculated using the formulation described above. The material properties of Section 4.2 (see Table 4-1) were used for these calculations.

The flaw sizes to yield a leak rate of 8 gpm were calculated at the governing locations and are given in Table 6-1 for D.C. Cook Unit 1 and Unit 2. The flaw sizes so determined are called leakage flaw sizes.

The D.C. Cook Unit 1 and 2 RCS pressure boundary leak detection system meets the intent of Regulatory Guide 1.45 and meets a leak detection capability of 0.8 gpm. Thus, to satisfy the margin of 10 on the leak rate, the flaw sizes (leakage flaw sizes) are determined which yield a leak rate of 8 gpm.

Leak Rate Predictions January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 6-3

6.5 REFERENCES

6-1 [

]a,c,e 6-2 M. M, El-Wakil, "Nuclear Heat Transport, International Textbook Company," New York, N.Y, 1971.

6-3 Tada, H., "The Effects of Shell Corrections on Stress Intensity Factors and the Crack Opening Area of Circumferential and a Longitudinal Through-Crack in a Pipe," Section 11-1, NUREG/CR-3464, September 1983.

6-4 Crane, D. P., "Handbook of Hydraulic Resistance Coefficient," Flow of Fluids through Valves,

  • Fittings, and Pipe by the Engineering Division of Crane, 1981, Technical Paper No. 410.

Table 6-1 Flaw Sizes Yielding a Leak Rate of 8 gpm for the D.C. Cook Unit 1 and 2 10-inch Accumulator Lines Welding Weld Location Leakage Flaw Size Segment Pipe Size Process Node (in)

I 10-inch SMAW 2-SI-59-10-307 2.79 SAW 2-SI-58-9-160Y 3.68 SMAW 2-SI-58-9-162 3.64 II 10-inch SAW 2-SI-58-6-184N 3.03 SMAW 2-SI-58-6-184F 3.01 SAW 2-SI-56-3-458F 9.17 III 10-inch SMAW 2-SI-56-3-456 9.57 Leak Rate Predictions January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 6-4 a,c,e STAGNATION ENTHALPY C1o2 Btullb>

Figure 6-1 Analytical Predictions of Critical Flow Rates of Steam-Water Mixtures Leak Rate Predictions January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 6-5 a,c.e LENGTH/DIAMETER RATIO (UO>

Figure 6-2 [ i3,c,e Pressure Ratio as a Function of LID Leak Rate Predictions January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 6-6 a,c,e

[

Figure 6-3 Idealized Pressure Drop Profile Through a Postulated Crack Leak Rate Predictions January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 7-1 7.0 FRACTURE MECHANICS EVALUATION 7.1 GLOBAL FAILURE MECHANISM Determination of the conditions which lead to failure in stainless steel should be done with plastic fracture methodology because of the large amount of deformation accompanying fracture. One method for predicting the failure of ductile material is the plastic instability method, based on traditional plastic limit load concepts, but accounting for strain hardening and taking into account the presence of a flaw.

The flawed pipe is predicted to fail when the remaining net section reaches a stress level at which a plastic hinge is formed.

  • The stress level at which this occurs is termed as the flow stress. The flow stress is generally taken as the average of the yield and ultimate tensile strength of the material at the temperature of interest. This methodology has been shown to be applicable to ductile piping through a large number of experiments and will be used here to predict the critical flaw size in accumulator line piping. The failure criterion has been obtained by requiring equilibrium of the section containing the
  • flaw (Figure 7-1) when loads are applied. The detailed development is provided in Appendix A for a through-wall circumferential flaw in a pipe with internal pressure, axial force, and imposed bending moments. The limit moment for such a pipe is given by:

]a,c,e where:

[.

]a,c,e The analytical model described above accurately accounts for the piping internal pressure as well as imposed axial force as they affect the limit moment. Good agreement was found between the analytical predictions and the experimental results (Reference 7-1). For application of the limit load methodology, the material, including consideration of the configuration, must have a sufficient ductility and ductile tearing resistance to sustain the limit load.

Fracture Mechanics Evaluation January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 7-2 7.2 LOCAL FAILURE MECHANISM The local mechanism of failure is primarily dominated by the crack tip behavior in terms of crack-tip blunting, initiation, extension and finally cracks instability. The local stability will be assumed if the crack does not initiate at all. It has been accepted that the initiation toughness measured in terms of J1c from a J-integral resistance curve is a material parameter defining the crack initiation. If, for a given load, the calculated I-integral value is shown to be less than the J 10 of the material, then the crack will not initiate:

Stability analysis using this approach is perfonned for selected location.

7.3 RESULTS OF CRACK STABILITY EVALUATION A stability analysis based on limit load was performed. D.C. Cook Units 1 and 2 shop and field welds utilize SMAW and SAW weld processes. The "Z" factor for SMAW and SAW (References 7-2 and 7-3) are as follows:

. Z = 1.15 [1.0 + 0.013 (OD-4)] for SMAW Z = 1.30 [1.0 + 0.010 (OD-4)] for SAW where OD is the outer diameter of the pipe in inches.

The Z-factors for the SMAW and SAW were calculated for the critical locations, using the pipe outer diameter (OD) of 10.75 inches. The applied faulted loads (Table 3-11 through Table 3-14 for Unit 1 and Table* 3-15 through Table 3-18 for Unit 2) were increased by the Z factor. Material *properties. were* used from Table 4-1. Table 7-1 summarizes the results of the stability analyses based on limit load for Unit 1 and 2. The leakage flaw sizes are also presented in the same table.

Additionally, elastic-plastic fracture mechanics (EPFM) I-integral analysis for through-wall circumferential crack in a cylinder is performed for select locations using the procedure in the EPRI Fracture Mechanics Handbook (Reference 7-4). Table 7-1 shows the results of this analysis.

7.4 REFERENCES

7-1 Kanninen, M. F., et. al., "Mechanical Fracture Predictions for Sensitized Stainless Steel Piping with Circumferential Cracks," EPRI NP-192, September 1976.

7-2 Standard Review Plan; Public Comment Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal Register/Vol. 52, No. 167/Friday,August 28, 1987/Notices, pp. 32626-32633.

7-3 NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures.

7-4 Kumar, V., German, M.D. and Shih, C. P., "An Engineering Approach for Elastic-Plastic Fracture Analysis," EPRI Report NP-1931, Project 1237-1, Electric Power Research Institute, July 1981.

Fracture Mechanics Evaluation January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 7-3 Table 7-1 Stability Results for the D.C. Cook Unit 1 and 2 10-inch Accumulator Lines Based on Limit Load Critical Leakage Flaw Welding Weld Location Segment Pipe Size Flaw Size Size Process Node (in) (in)

I 10-inch SMAW 2-SI-59-10-307 10.04 2.79

  • sAW 2-SI-58-9-160Y 11.88 3.68 II 10-inch SMAW 2-SI-58-9-162 12.32 3.64 SAW 2-SI-58-6-184N 11.66 3.03 SMAW 2-SI-58-6-184F 12.30 3.01 1

III 10-inch SAW 2-SI-56-3-458F 18.34 9.17 1

SMAW 2-SI-56-3-456 19.14 . 9.57.

Note:

1. Calculated based on the methodology in Section 7.2 Fracture Mechanics Evaluation January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 7-4 Neutral Axis Figure 7-1 [ ]3,c,e Stress Distribution Fracture Mechanics Evaluation January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

- ----- _ ___:____J

WESTINGHOUSE NON-PROPRIETARY CLASS 3 8-1 8.0 ASSESSMENT OF FATIGUE CRACK GROWTH The fatigue crack growth (FCG) analysis is not a requirement for the LBB analysis (see References 8-1 and 8-2) since the LBB analysis is based on the postulation of a through-wall flaw, whereas the FCG analysis is performed based on the surface flaw. In addition Reference 8-3 has indicated that, "the Commission deleted the fatigue crack growth analysis in the proposed rule. This requirement was found to be unnecessary because it was bounded by the crack stability analysis."

Also, since the growth of a flaw which leaks 8 gpm would be expected to be minimal between the time that leakage reaches 8 gpm and the time that the plant would be shutdown; therefore, only a limited number of cycles would be expected to occur.

8.1 REFERENCES

8-1 Standard Review Plan; Public Comment Solicited; 3.6.3 Leak-Before-Break Evaluation Procedures; Federal RegisterNol. 52, No. 167/Friday, August 28, 1987/Notices, pp. 32626-32633.

8-2 NUREG-0800 Revision 1, March 2007, Standard Review Plan: 3.6.3 Leak-Before-Break Evaluation Procedures.

8-3 Nuclear Regulatory Commission, 10 CFR 50, Modification of General Design Criteria 4 Requirements for Protection Against Dynamic Effects of Postulated Pipe Ruptures, Final Rule, Feder!:11 RegisterNol. 52, No. 2_07/Tuesday, October 27, 1987/Rules and .ReguJations, pp. 41288-41295.

Assessment of Fatigue Crack Growth January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 9-1 9.0 ASSESSMENT OF MARGINS The results of the leak rates of Section 6.4 and the corresponding stability evaluations of Section 7.3 are used in performing the assessment of margins. Margins are shown in Table 9-1 for Unit 1 and 2. All the LBB recommended margins are satisfied.

In summary, margins at the critical locations relative to:

1. Flaw Size - Using faulted loads obtained by the absolute sum method, a margin of 2 or more exists between the critical flaw and the flaw having a leak rate of 8 gpm (the leakage flaw).
2. Leak Rate - A margin of 10 exists between the calculated leak rate from the leakage flaw and the plant leak detection capability of 0.8 gpm.
3. Loads - At the critical locations the leakage flaw was shown to be stable using the faulted loads obtained by the absolute sum method (i.e., a flaw twice the leakage flaw size is shown to be stable; hence the leakage flaw size is stable). A margin of 1 on loads using the absolute summation of faulted load combinations is satisfied.

Table 9-1 Leakage Flaw Sizes, Critical Flaw Sizes and Margins for D.C. Cook Units 1 and 2 10-inch Accumulator Lines Critical Leakage Welding Weld Location Segment Pipe Size Flaw Size Flaw Size Margin Process Node (in) (in)

ACC-1 IO-inch SMAW 2-SI-59-10-307 I0.04 2.79 3.6 SAW 2-SI-58-9-160Y 11.88 3.68 3.2 ACC-11 IO-inch SMAW 2-SI-58-9-162 12.32 3.64 3.4 SAW 2-SI-58-6-184N 11.66 3.03 3.8 SMAW 2-SI-58-6-184F 12.30 3.01 4.1 ACC-III IO-inch SAW 2-SI-56-3-458F 18.34 9.17 >2.0 1 SMAW 2-SI-56-3-456 19.14 9.57 >2.0 1 Notes:

1. Margin of 2.0 demonstrated based on the methodology in Section 7 .2 Assessment of Margins January 2018 WCAP-18295-NP Revision 0
      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 10-1

10.0 CONCLUSION

S This report justifies the elimination of accumulator lines break from the structural design basis for D.C.

Cook Units 1 and 2 as follows:

a. Stress corrosion cracking is precluded by use of fracture resistant materials in the piping system and controls on reactor coolant chemistry, temperature, pressure, and flow during normal operation.

Note: Alloy 82/182 welds do not exist at the D.C. Cook Units 1 and 2 accumulator lines.

b. Water hammer should not occur in the accumulator line piping because of system design, testing, and operational considerations.
c. The effects oflow and high cycle fatigue on the integrity of the accumulator line piping are negligible.
d. Ample margin exists between the leak rate of small stable flaws and the capability of the D.C. Cook Units 1 and 2 reactor coolant system pressure boundary leakage detection systems.
e. Ample margin exists between the small stable flaw sizes of item (d) and larger stable flaws.
f. Ample margin exists in the material properties used to demonstrate end-of-service life (fully aged) stability of the critical flaws.

For the critical locations, flaws are identified that will be stable because of the ample margins described in d, e, and f above.

Based on loading, pipe geometry, welding process, and material properties considerations, enveloping critical (governing) locations were determined at which Leak-Before-Break crack stability evaluations were made. Through-wall flaw sizes were postulated which would cause a leak at a rate often (10) times the leakage detection system capability of the plant. Large margins for such flaw sizes were demonstrated against flaw instability. Finally, fatigue crack growth assessment was shown not to be an issue for the accumulator line piping. Therefore, the Leak-Before-Break conditions and margins are satisfied for D.C.

Cook Units 1 and 2 accumulator line piping. It is demonstrated that the dynamic effects of the pipe rupture resulting from postulated breaks in the accumulator line piping need not be considered in the structural design basis of D.C. Cook Units 1 and 2.

Conclusions January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 A-1 APPENDIX A: LIMIT MOMENT

] ~c,e Appendix A: Limit Moment January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WESTINGHOUSE NON-PROPRIETARY CLASS 3 A-2 4) o,r---~--------------------

(ii Figure A-1 Pipe with a Through-Wall Crack in Bending Appendix A: Limit Moment January 2018 WCAP-18295-NP Revision 0

      • This record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)

WCAP-18295-NP Revision 0 Proprietary Class 3

    • This page was added to the quality record by the PRIME system upon its validation and shall not be considered in the page numbering of this document.**

Author Approval Kirby Christopher R Jan-16-2018 14:21 :34 Reviewer Approval Johnson Eric D Jan-17-201814:51:15 Manager Approval Leber Benjamin A Jan-18-2018 09:40:03 Files approved on Jan-18-2018

      • Thls record was final approved on 1/18/2018 9:40:03 AM. ( This statement was added by the PRIME system upon its validation)