ML072570190: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:002- PM-1 056 Rev 0 pH | {{#Wiki_filter:002- PM-1 056 Rev 0 pH CC-AA-309-1001 Exelon. Nuclear ATTACHMENT 1 Design Analysis Cover Sheet Revision 0 Last Page No.fl%,6 Analysis No. PM-1056 Revision 0 m-j. | ||
Station Component(s) | EClECR No. PB 02-00838 Revision 0 Title: Suppresion Pool pH Calculation for Alternative Source Terms Peach Bottom Atomic Power Station(s) Station Component(s) | ||
Unit No.: 2 and 3 N/A Discipline SEAQ Description Code)LOCA Keyword Safety Class S System Code 912 Structure NIA CONTROLLED DOCUMENT REFERENCES Document No. FromlTo Document No. From/To PBAPS Tech. Spec. Bases B 3.6.2.2, From Rev. 0 Is this Design Analysis Safeguards? | Unit No.: 2 and 3 N/A Discipline SEAQ Description Code) | ||
Yes L] No U Does this Design Analysis Contain Unverified Assumptions? | LOCA Keyword Safety Class S System Code 912 Structure NIA CONTROLLED DOCUMENT REFERENCES Document No. FromlTo Document No. From/To PBAPS Tech. Spec. Bases B 3.6.2.2, From Rev. 0 Is this Design Analysis Safeguards? Yes L] No U Does this Design Analysis Contain Unverified Assumptions? Yes [] No [ ATI!AR# | ||
Yes [] No [ ATI!AR#Is a Supplemental Review Required? | Is a Supplemental Review Required? Yes L] No [ If Yes, complete Is aSuplemetalAttachment 3 Preparer Lowell Yemin l _J1.Q ...... | ||
Yes L] No [ If Yes, complete Is aSuplemetalAttachment 3 Preparer Lowell Yemin l _J1.Q ...... 3120/2003 Prni Name Sign Name Date Reviewer Harold Rothstein t1 3/20/2003 Phnnl Name Sign Name Date Method of Review [J Detailed Review [ Alternate Calculations E] Testing Review Noles: Approver Harold Rothstein | * 3120/2003 Prni Name Sign Name Date Reviewer Harold Rothstein t1 3/20/2003 Phnnl Name Sign Name Date Method of Review [J Detailed Review [ Alternate Calculations E] Testing Review Noles: | ||
% _ 3/20/2003 Prnt Name , Sign Name Date (For Evter~I AnA8Vlyts | Approver Harold Rothstein % _ 3/20/2003 Prnt Name , Sign Name Date (For Drily)_____________________________ | ||
Exelon Reviewer ML)_% I-, ._SCi- | Evter~I AnA8Vlyts Exelon Reviewer ML)_% I-, ._SCi Dd t* | ||
THIS DESIGN ANALYSIS SUPERCEDES: | -. rin t N a rr D | ||
N/A r(ýý,cuuvrjONNo. | -k.... ' r" f v SJ MG . | ||
PM-1056 CALCLIATJON No. PM-1056 | Approver -_j_ *"*-'-O--- | ||
......................................................................................................................................... | ,J o:f*, 3/A0zi 3 Print Name Sign Name 1,ODte Description of Revision (list affected pages for partials): | ||
THIS DESIGN ANALYSIS SUPERCEDES: N/A | |||
3 ASSUM PTIONS/ENGINEERING JUDGEMENTS | |||
....................................................................................................... | r(ýý,cuuvrjONNo. PM-1056 CALCLIATJON No. PM-1056 II REV No 0 I PAGE2ofI5 REV. No. 0 I PAGE 2of 15 TABLE OF CONTENTS | ||
: 1. PURPOSE AND OBJECTIVE ......................................................................................................................................... 3 | |||
A ................................................................................................................ | : 2. M ETHODOLOGY AND ACCEPTANCE CRITERIA ............................................................................................ 3 | ||
3 | : 3. ASSUM PTIONS/ENGINEERING JUDGEMENTS ....................................................................................................... 3 | ||
.................................................................................................................................................................... | : 4. DESIGN INPUT ................................................ A................................................................................................................ 3 | ||
: 5. REFERENCES .................................................................................................................................................................... 4 | |||
.................... | : 6. CALCULATIONS .................... ................................................................. -1............................ .............. ............. 5 | ||
................................................................. | : 7. SUM MARY OF RESULTS AND CONCLUSIONS ..................................................................................................... 11 | ||
-1 ............................ | : 8. OWNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL DESIGN ANALYSIS .................. 14 9- ATTACHM ENTS .......................................................................................................................................................... 15 A -Determination of Total Exposed Cable.Quantities Inside Containment 49 PAGES B - Dose Assessment, Core.Cs & I, and Gamma Mean Free Path Determination 14 PAGES C - pH Transient Spreadsheet 4 PAGES D - pH Transient Spreadsheel Ceil Formula*s 10 PAGES E - pH Transient - Grand Gulf Reference Data 7 PAGES F - Reference 5.1 30PAGES G - Reference 5.2 26 PAGES H - E-Mail Memo and Attachments on SBLC from Mark Fry at PBAPS 16 PAGES I - Computer Disclosure Sheet 1 PAGE | ||
.............. | |||
............. | CALCULATION No. PM-1056 REV. No. 0 PAGE 3 of 15 | ||
: 1. Purpose and Objective In order to prevent iodine re-evolution following an accident, the pH of the Suppression Pool should be maintained above 7.0. The chemistry of this phenomenon and methods of pH control are discussed in References 5.1 and 5.5. | |||
..................................................................................................... | The Objective of this calculation is to detenrmine the pH of the Suppression Pool following a Loss of Coolant Accident based on the use of Alternative Source Terms as deflned in References 5.4 and 5.6. The pH values are detennined, as a function of time, with and without the addition of the sodium pentaborate in Ihe Standby Liquid Control System. The conditins required to maintain the Suppression Pool at a pH above 7.0 are determined. | ||
: 2. Methodology and Acceptance Criteria This calculation is based on the methodology developed for the equivalent calculation done for t'he Grand Gulf Nuclear Station, Unit I as revised December 2000. [Ref. 5.1 & 5.2]. The calculation formulas developed in these documents are accepted without independent verification. These references are included in this calculation as Attachments F and G. The accuracy of translation of the equations in these documents into spreadsheet cell formulas is verified by duplicating the Grand Gulf calcutation. This verification is presented as Attachment E and accurately duplicates all of the Grand Gulf results. | |||
14 ATTACHM ENTS .......................................................................................................................................................... | As noted in this calculation, injection of sodium pentaborate solution by the Standby Liquid Control System is a required function in order to control post-LOCA pH in the suppression pool, and prevent iodine re-evolution. | ||
15 A -Determination of Total Exposed Cable.Quantities Inside Containment B -Dose Assessment, Core.Cs & I, and Gamma Mean Free Path Determination C -pH Transient Spreadsheet D -pH Transient Spreadsheel Ceil | Based on the worst case beginning of cycle condition, injection should be completed within about. 30 hours after the start of the DBA-LOCA. Therefore, manual initiation is acceptable. Manual initiation of SBLCS is expected early in a DBA-LOCA as a result of emergency operating procedures and severe accident guidelines, particularly for events resulting in fuel damage that would be consistent with AST source terms. | ||
-Grand Gulf Reference Data F -Reference 5.1 G -Reference 5.2 H -E-Mail Memo and Attachments on SBLC from Mark Fry at PBAPS I -Computer Disclosure Sheet | Acceptance Criteria: Per the guidance of Appendix.A of Regulatory Guide 1.183 [Ref. 5.6], the Suppression Pool pH should be controlled at values of 7 or greater following loss of coolant accidents. | ||
: 2. Methodology and Acceptance Criteria This calculation is based on the methodology developed for the equivalent calculation done for t'he Grand Gulf Nuclear Station, Unit I as revised December 2000. [Ref. 5.1 & 5.2]. The calculation formulas developed in these documents are accepted without independent verification. | : 3. Assumptions/Engineering Judgements | ||
These references are included in this calculation as Attachments F and G. The accuracy of translation of the equations in these documents into spreadsheet cell formulas is verified by duplicating the Grand Gulf calcutation. | " The Suppression Pool is assumed to be well mixed so that the pH at any time can be represented by a single value. | ||
This verification is presented as Attachment E and accurately duplicates all of the Grand Gulf results.As noted in this calculation, injection of sodium pentaborate solution by the Standby Liquid Control System is a required function in order to control post-LOCA pH in the suppression pool, and prevent iodine re-evolution. | " For cable parameters, the cable data presented in Attachment A is used. It includes the exposed termination length of what is in a raceway. As a conservative estimale of the cable lengths in free air, an additional 5% of the raceway's totals are assumed to be in free air. A 10% contingency on the cable surface, reported in Attachment A, is also included. Radiolysis of surface coatings on the steel and concrete surfaces in the Drywell and Containment would not be significant contributors, since the coatings utilize non-chlorinaled polymers. | ||
Based on the worst case beginning of cycle condition, injection should be completed within about. 30 hours after the start of the DBA-LOCA. | : 4. Design Input Cable Data Cable lengths, diameters, and average jacket thickness are developed separately and presented in Attachment A. | ||
Therefore, manual initiation is acceptable. | Temperature Suppression Pool temperatures are taken from UJFSAR, Rev.15 Figure 14.6.12A. Since this revised curve extends only to 14 hours, the older UFSAR, Rev 14 curve, Figure 14.6-12 was used to extend the data to 278 hours and extrapolate to 720 hours. The older curve gives slightly lower temperatures in the area of overlap and is therefore conservative (Lower temperatures give higher calculated pH values). | ||
Manual initiation of SBLCS is expected early in a DBA-LOCA as a result of emergency operating procedures and severe accident guidelines, particularly for events resulting in fuel damage that would be consistent with AST source terms.Acceptance Criteria: | Extrapolation of the semilog plot is acceptable since the calculated pH is rather insensitive to temperature. At 30 days (720 hours) it requires a 36 FP increase to reduce the pH by 0.1. | ||
Per the guidance of Appendix.A of Regulatory Guide 1.183 [Ref. 5.6], the Suppression Pool pH should be controlled at values of 7 or greater following loss of coolant accidents. | |||
: 3. Assumptions/Engineering Judgements" The Suppression Pool is assumed to be well mixed so that the pH at any time can be represented by a single value." For cable parameters, the cable data presented in Attachment A is used. It includes the exposed termination length of what is in a raceway. As a conservative estimale of the cable lengths in free air, an additional 5% of the raceway's totals are assumed to be in free air. A 10% contingency on the cable surface, reported in Attachment A, is also included. | CALCULATION No. PM-1056 REV. No. 0 PAGE4 of 15 Sodium Pentaborate mass in SBLC Tank Per Technical Specification SR 3.1.7.7, the minimum B-10 stored in the SBLC tank is 162.7 lbs. In order to prepare this calculation, total boron is needed. The highest vendor supplied enrichment from Reference 5.7., included as attachment H, is 63.5 atom % B-10. For this calculation, 65 atom % B-i1] enrichment is assumed. Since B-10 has an atomic weight of 10.01, this gives 7373 gram-atoms of B-10 and 11,342 gram atoms of total boron. Since the formula of Sodium Pentaborate is Na2B,0Ot6 X10H 20, there are 1134 gram-mols of the pentaborate in the SBLC Tank. This calculation is performed on the pH calculation spread sheet at the top of columns U -Y. | ||
Radiolysis of surface coatings on the steel and concrete surfaces in the Drywell and Containment would not be significant contributors, since the coatings utilize non-chlorinaled polymers.4. Design Input Cable Data Cable lengths, diameters, and average jacket thickness are developed separately and presented in Attachment A.Temperature Suppression Pool temperatures are taken from UJFSAR, Rev.15 Figure 14.6.12A. | Suppression Pool Volume The limiting Tech. Spec. volume [Ref.5.8] is 122,900 cu. ft. from Tech. Spec. Bases B3.6.2.2. | ||
Since this revised curve extends only to 14 hours, the older UFSAR, Rev 14 curve, Figure 14.6-12 was used to extend the data to 278 hours and extrapolate to 720 hours. The older curve gives slightly lower temperatures in the area of overlap and is therefore conservative (Lower temperatures give higher calculated pH values).Extrapolation of the semilog plot is acceptable since the calculated pH is rather insensitive to temperature. | : 5. References 5.1 GGNS-98-0039, Rev. 3, "Entergy Operations Engineering Report for Suppression Pool pH and Iodine Re-Evolution Methodology", Applicable Site: Grand Gulf Nuclear Station, 12/20/00 5.2 XC-Ql 111-98013, Rev. 2, Grand Gulf Design Engineering Calculation "Suppression Pool pH Analysis", 12/20/00 5.3 PBAPS UFSAR Figure 14.6.12 (Rev. 14) "LOCA - Suppression Pool Temperature Response" and Figure 14.6.12A (Rev. 15), "Long Term Suppression Pool Temperature Response - Nonnal ECCS Flows" 5.4 NIJREG- 1465, "Accident Source Terms for Light-Water Nuclear Power Plants", February 1995 5.5 NUREG/CR-5950, "Iodine Evolution and pH Control", December 1992 5.6 U-tSNRC Regulatory Guide 1.183, "Alternative Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors". July 2000 5,7 E-mail Memo, Mark G. Fry, Chemistry Manager-PBAPS, Exelon to Harold Rothstein WGI, "PBAPS Standby Liquid Control (SBLC) Data" (Transmission of Eagle Picher Technologies Boron- 10 analysis and logs of Units 2 and 3 plant logs of pounds mass of Boron- 10 in SBLC Tank), December 27, 2002 (Attachment H) 5.8 Peach Bottom Technical Specification Bases B 3.6.2.2, Rev. 0 Containment Systems - Suppression Pool Water Level (Minimum volume). | ||
At 30 days (720 hours) it requires a 36 FP increase to reduce the pH by 0.1. | 5.9 Not used 5.10 GE Report NEDC-32963A, "Prediction of the Onset of fission Gas Release From Fuel in Generic BWR", March 2000 (Allows a 121-second delay in timing of fission product release following design basis accidents) 5.11 Not used 5.12 Radioactive Decay Data Tables by David C. Kocher, Report DOE/TIC-1 1026 T'echical information Center U.S. DOE, Washington, D.C., 1981 | ||
CALCULATION No. PM-1056 REV. No. 0 PAGE4 of 15 Sodium Pentaborate mass in SBLC Tank Per Technical Specification SR 3.1.7.7, the minimum B-10 stored in the SBLC tank is 162.7 lbs. In order to prepare this calculation, total boron is needed. The highest vendor supplied enrichment from Reference 5.7., included as attachment H, is 63.5 atom % B-10. For this calculation, 65 atom % B-i1] enrichment is assumed. Since B-10 has an atomic weight of 10.01, this gives 7373 gram-atoms of B-10 and 11,342 gram atoms of total boron. Since the formula of Sodium Pentaborate is | |||
is 122,900 cu. ft. from Tech. Spec. Bases B3.6.2.2.5. References 5.1 GGNS-98-0039, Rev. 3, "Entergy Operations Engineering Report for Suppression Pool pH and Iodine Re-Evolution Methodology", Applicable Site: Grand Gulf Nuclear Station, 12/20/00 5.2 XC-Ql 111-98013, Rev. 2, Grand Gulf Design Engineering Calculation "Suppression Pool pH Analysis", 12/20/00 5.3 PBAPS UFSAR Figure 14.6.12 (Rev. 14) "LOCA -Suppression Pool Temperature Response" and Figure 14.6.12A (Rev. 15), "Long Term Suppression Pool Temperature Response -Nonnal ECCS Flows" 5.4 NIJREG- 1465, "Accident Source Terms for Light-Water Nuclear Power Plants", February 1995 5.5 NUREG/CR-5950, "Iodine Evolution and pH Control", December 1992 5.6 U-tSNRC Regulatory Guide 1.183, "Alternative Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors". | I CA[.CULATHON No. PW-.1056 I REV. -No. 0 I PAGE 5of 15 CACLTO N.P-OEi RVN. I PAEof | ||
July 2000 5,7 E-mail Memo, Mark G. Fry, Chemistry Manager-PBAPS, Exelon to Harold Rothstein WGI, "PBAPS Standby Liquid Control (SBLC) Data" (Transmission of Eagle Picher Technologies Boron- 10 analysis and logs of Units 2 and 3 plant logs of pounds mass of Boron- 10 in SBLC Tank), December 27, 2002 (Attachment H)5.8 Peach Bottom Technical Specification Bases B 3.6.2.2, Rev. 0 Containment Systems -Suppression Pool Water Level (Minimum volume).5.9 Not used 5.10 GE Report NEDC-32963A, "Prediction of the Onset of fission Gas Release From Fuel in Generic BWR", March 2000 (Allows a 121-second delay in timing of fission product release following design basis accidents) 5.11 Not used 5.12 Radioactive Decay Data Tables by David C. Kocher, Report DOE/TIC-1 1026 T'echical information Center U.S. DOE, Washington, D.C., 1981 I CA[.CULATHON No. PW-.1056 I REV. -No. 0 I PAGE 5of 15 CACLTO N.P-OEi RVN. I PAEof 6. Calculations pH -Fundamental Relationships pH = -1log[H] 6-1[H'].[OH] | : 6. Calculations pH - Fundamental Relationships pH = -1log[H] 6-1 | ||
= Kw(T) 6-2 where:[HW] concentration of hydrogen ions in moles/liter | [H'].[OH] = Kw(T) 6-2 where: | ||
[OH = concentration of hydroxyl ions in moles/liter Kw,(T) ionization constant for water as a function of temperature T The data for Kw for T between 77 and 212 'F can be represented by the following correlation developed in Section 3.0 of Reference 5.1:-LogjoKw(T) | [HW] concentration of hydrogen ions in moles/liter | ||
= 15.5129 -2.24E-2 | [OH = concentration of hydroxyl ions in moles/liter Kw,(T) ionization constant for water as a function of temperature T The data for Kw for T between 77 and 212 'F can be represented by the following correlation developed in Section 3.0 of Reference 5.1: | ||
-LogjoKw(T) = 15.5129 - 2.24E-2 | |||
* T + 3.352E-5 | * T + 3.352E-5 | ||
* | * T2 6-3 Hydriodic Acid Production Iodine, accompanied by Cesium, is released during the Gap Release and Early In-Vessel Release phases. | ||
Since EOC conditions result in increased inventory of both acidic (iodine) and basic (cesium) compounds, pH values are calculated for both conditions. | Thfe following, equation, valid during the Early Vessel Release Phase, includes the release during the Gap Release Phase. See analysis in Reference 5.1 (Section 3.1 and Equation 3-1d). | ||
For conservatism, the EOC radiation doses are used for the BOC calculation. | Iodine and cesium core inventories are calculated for both beginning and end of cycle (BOC and EOC) conditions (See Attachnent B for a discussion of the assumed BOC conditions). Since EOC conditions result in increased inventory of both acidic (iodine) and basic (cesium) compounds, pH values are calculated for both conditions. For conservatism, the EOC radiation doses are used for the BOC calculation. | ||
The hydriodic acid concentration is governed by the following equation:[HJ](t) m i (120* VPOoL) * [t -(0.5 + t,,)] + mi/ (400 | The hydriodic acid concentration is governed by the following equation: | ||
* | [HJ](t) m i (120* VPOoL) * [t - (0.5 + t,,)] + mi/ (400 | ||
VFoOi, Suppression Pool volume (liters)I = time after start of accident (hrs) (includes tysp + Gap*Release | * Vl1,3 ,) 6-4 where: | ||
[0.5 hrs] + Early In-Vessel Release [1.5 hrs] durations for a t,,,, = 2.0336 hrs) [Ref. 5.6, Table 4, page 1.183-15]i tgp- time of onset of gap release = 121 seconds = 0.0336 hrs [Ref. 5.6]t, = 2.0336 hrs = end of Early In-Vessel Release[See Spreadsheet: | [HI](t) = concentration of Hydriodic Acid at time t (moles/liter) m, = core iodine inventory (gram-moles) | ||
Sheets 1 (EOC) and 5 (BOC), Col HI]Nitric Acid Production I CALCULATION No. PM-1056 1 REV. No. 0 1 PAGE 6 of 15 Nitric Acid is produced by radiolysis of the water in the Suppression Pool with a G value of 0.007 molecules HNO0/ 100 eV absorbed dose or 7.3E-6 g moles / megarad- liter [Ref 5.1, Section 3.2, Equation 3-2b].The nitric acid concentration is governed by the following equation:[1N03](t) | VFoOi, Suppression Pool volume (liters) | ||
= 7.3E-6 | I = time after start of accident (hrs) (includes tysp + Gap*Release [0.5 hrs] + Early In-Vessel Release [1.5 hrs] durations for a t,,,, = 2.0336 hrs) [Ref.5.6, Table 4, page 1.183-15] | ||
* D(i 0 o, 6-5[See Spreadsheet Col. 1]where:[I-NO 3](t) = nitric acid concentration at time t (moles/liter) | i tgp- time of onset of gap release = 121 seconds = 0.0336 hrs [Ref. 5.6] | ||
D(0pooJ = Total accumulated dose in Suppression Pool at time t (megarad)Hydrochloric Acid Production Hydrochloric Acid is produced by radiolysis of chlorinated polymer cable jacketing. | t, = 2.0336 hrs = end of Early In-Vessel Release | ||
Radiolysis of surfthce coatings on the steel and concrete surfaces in the Drywell and Containment would not, be significant contributors, since the coatings utilize nonchlorinated polymers.The calculation of the resulting concentration in the Suppression Pool is based on the equations in Section 3.3 of Reference 5.1 [see Ref. 5.2, Equations 5-1, 5-2, and 5-3]. These equations are in turn based on the following G value for HCI production in Hypalon chlorinated polymer given in Reference 5.5.GI.,= 2.115 molectules/lOWeV | [See Spreadsheet: Sheets 1 (EOC) and 5 (BOC), Col HI] | ||
= 3.512E-20 g moles HCI / MeV The hydrochloric acid concentration is governed by the following equations: | Nitric Acid Production | ||
I CALCULATION No. PM-1056 1 REV. No. 0 1 PAGE 6 of 15 Nitric Acid is produced by radiolysis of the water in the Suppression Pool with a G value of 0.007 molecules HNO0 | |||
/ 100 eV absorbed dose or 7.3E-6 g moles / megarad- liter [Ref 5.1, Section 3.2, Equation 3-2b]. | |||
The nitric acid concentration is governed by the following equation: | |||
[1N03](t) = 7.3E-6 | |||
* D(i 0 o, 6-5 | |||
[See Spreadsheet Col. 1] | |||
where: | |||
[I-NO 3](t) = nitric acid concentration at time t (moles/liter) | |||
D(0pooJ = Total accumulated dose in Suppression Pool at time t (megarad) | |||
Hydrochloric Acid Production Hydrochloric Acid is produced by radiolysis of chlorinated polymer cable jacketing. Radiolysis of surfthce coatings on the steel and concrete surfaces in the Drywell and Containment would not, be significant contributors, since the coatings utilize nonchlorinated polymers. | |||
The calculation of the resulting concentration in the Suppression Pool is based on the equations in Section 3.3 of Reference 5.1 [see Ref. 5.2, Equations 5-1, 5-2, and 5-3]. These equations are in turn based on the following G value for HCI production in Hypalon chlorinated polymer given in Reference 5.5. | |||
GI.,= 2.115 molectules/lOWeV = 3.512E-20 g moles HCI / MeV The hydrochloric acid concentration is governed by the following equations: | |||
Doses from beta and gamma radiation are calculated separately. | Doses from beta and gamma radiation are calculated separately. | ||
[-ICI](I) | [-ICI](I) = Guci / Vio*0 * (Stray / 2 + Sr,) / 40;,i, | ||
= Guci / 0 * (Stray / 2 + Sr,) / 40;,i, | * Dp(t) 6-6 where the effective cable surface area for P dose is: | ||
* Dp(t) 6-6 where the effective cable surface area for P dose is: S,, / 2 +- =f Do*1) *(f 2 | S,, / 2 +- =f Do*1) | ||
=. c/ Vpw,. * (Sy. + Sfo) * (1- e 4W TX) / i* (I -e -Iypal | *(f 2 2 + Lf0) | ||
* 6-7 where: Struy + Sr, =i | [See Spreadsheet Cols J & L] | ||
* Do * (Ltiy -Lfa)[See Spreadsheet Cols K & MI where: | [HCI]3(t) =. c/ Vpw,. * (Sy.+ Sfo) * (1- e | ||
..C..U .. | * 4W TX) / i | ||
Fryl- | * (I - e - Iypal | ||
= HCI concenaration from Beta radiation at hime t (g m0oesiliter) | * D*(t) 6-7 where: Struy + Sr, =i | ||
[HC1].(t) | * Do * (Ltiy - Lfa) | ||
= HCI concentration from Gamma radiation at time t (g moles/liter) | [See Spreadsheet Cols K & MI where: | ||
Dt = cable diameter (cm)4,fy = cable length in trays (raceways) (cm)Lfý = cable length in free air (cm)= linear beta absorption coefficient in air (1/em)l..iairý linear gamma absorption coefficient in air (1/cm)rj. = gamma free path (cm)PA hyat = linear gamma absorption coefficient in Hypalon (1/cm)th - | |||
Dy(t) -accumulated gamma dose per unit volume at time t (MeV/cnm)GHcI= 3.512E-20 (g moles HCI / MeV)VPCOL= Suppression Pool volume (Liters)SY -- | .. C..U IN~ | ||
Since EOC conditions result in increased inventory of both acidic (iodine) and basic (cesium) compounds, pH values are calculated for both conditions. | .. ... ....... RE .N. U .... . ...15 I CALCULATTONNo. | ||
For conservatism, the EOC radiation doses are used for the BOC calculation. | I Fryl-1050 RE*JV. No. 0 I PAGE 7of 15 I | ||
The cesium hydroxide concentration is governed by the following equation:[CsOHf](t) | [HC15j(t) = HCI concenaration from Beta radiation at hime t (g m0oesiliter) | ||
= (0.4 | [HC1].(t) = HCI concentration from Gamma radiation at time t (g moles/liter) | ||
Dt = cable diameter (cm) 4,fy = cable length in trays (raceways) (cm) | |||
Lfý = cable length in free air (cm) pvt* = linear beta absorption coefficient in air (1/em) l..iairý linear gamma absorption coefficient in air (1/cm) rj. = gamma free path (cm) | |||
PA hyat = linear gamma absorption coefficient in Hypalon (1/cm) th -lypalonjacket thickness (cm) | |||
Dp(t) = accumulated beta dose per unit volume at time t (MeV/cmin) | |||
Dy(t) - accumulated gamma dose per unit volume at time t (MeV/cnm) | |||
GHcI= 3.512E-20 (g moles HCI / MeV) | |||
VPCOL= Suppression Pool volume (Liters) | |||
SY =-- Cable surface area in trays (cm 2) 2 Sf, = Cable surface area in free air (cra ) | |||
CesiumHydroxide Production Cesium, accompanied by Iodine, is released during the Gap Release and Early In-Vessel Release phases. The following equation, valid during the Early Vessel Release Phase, includes the release during the Gap Release Phase. | |||
See analysis in Reference 5.1 (Section 3.4 and Equation 3-4d). | |||
Iodine and cesium core inventories are calculated for both beginning and end of cycle (BOC and EOC) conditions (See Attachment B for a discussion of the assumed conditions). Since EOC conditions result in increased inventory of both acidic (iodine) and basic (cesium) compounds, pH values are calculated for both conditions. For conservatism, the EOC radiation doses are used for the BOC calculation. | |||
The cesium hydroxide concentration is governed by the following equation: | |||
[CsOHf](t) = (0.4 | |||
* nec- 0.475 | * nec- 0.475 | ||
* mi) / 3 | * mi) / 3 | ||
* Vo T o.) * [t -(0.5 + tgap)]+( 0.05 | * Vo T o.) * [t - (0.5 + tgap)] | ||
+( 0.05 | |||
* mc,- 0.0475 | * mc,- 0.0475 | ||
* ill) / VFooL 6-8[See Spreadsheet: | * ill) / VFooL 6-8 | ||
Sheets 1 (EOC) and 5 (BOC), Col 0][CsOH](t) | [See Spreadsheet: Sheets 1 (EOC) and 5 (BOC), Col 0] | ||
= concentration of Cesium Hydroxide at time t (g moles/liter) ml = core Iodine inventory (gram-moles) rnrc.- core Cesium inventory (gram-moles) | [CsOH](t) = concentration of Cesium Hydroxide at time t (g moles/liter) ml = core Iodine inventory (gram-moles) rnrc.- core Cesium inventory (gram-moles) | ||
'ýFPOOL= Suppression Pool volume (liters)t = time after start of accident (hrs) (includes tgap + Gap Release [0.5 hrs] + Early In-Vessel Release[1.5 hrs] durations for a = 2.0336 firs) [Ref. 5.6, Table 4, page 1.183-15]time of onset of gap release = 121 seconds = 0.0336 hrs [Ref. 5.6]= 2.0336 Irs = end of Early In-Vessel Release Final Pool pH Calculation (No SBLC Addition)The net Suppression Pool pH can be calculated from the total of the [H+] and [O-] concentrations using the following equations developed in Reference 5.1, Section 3.5. | 'ýFPOOL= Suppression Pool volume (liters) t = time after start of accident (hrs) (includes tgap + Gap Release [0.5 hrs] + Early In-Vessel Release | ||
CALCULATION No- PM-1056[H 4](t) = [H'](ýt=0) | [1.5 hrs] durations for a t,*., = 2.0336 firs) [Ref. 5.6, Table 4, page 1.183-15] | ||
+ [Hfi](t) + [1-N0 3](i) + [1C](1) | *,,= time of onset of gap release = 121 seconds = 0.0336 hrs [Ref. 5.6] | ||
+ [H11(t) + [llN0 3](t) + [HCI]() 6-9[See Spreadsheet Cot N][OHJ(t) = [O1-]ct=0) | = 2.0336 Irs = end of Early In-Vessel Release Final Pool pH Calculation (No SBLC Addition) | ||
A- [CSOH](I[OI-F](t) | The net Suppression Pool pH can be calculated from the total of the [H+] and [O-] concentrations using the following equations developed in Reference 5.1, Section 3.5. | ||
= 10i1't'/1i | |||
"(t=0) + [CsOlI](t) 6-10[See Spreadsheet Col P1 Accounting for the concentration of neutralized ions [x]: ( [[] -[x] ) * { [OH] -[xJ ) KITr)* []1 -'iH] + [OH-] -{([H1++[OH-])2 | CALCULATION No- PM-1056 I Tv. No, o 1rAGE 8 of Is __j | ||
-4*([Hf]*[OH]-Kw)}I(2 | [H 4 ](t) = [H'](ýt=0) + [Hfi](t) + [1-N0 3](i) + [1C](1) | ||
} / 2 6-11[See Spreadsheet Co] R]note: Kw = | [H+](t) = 10-li(t=0) + [H11(t) + [llN0 3](t) + [HCI]() 6-9 | ||
CALCULATION No. FM-1056 REV. No.0 PAGE 9 of 15 Effect of Sodium Pentaborate (SBLC) Addition The pH of the suppression Pool can be increased by the addition of Sodium Pentaborale from the Standby Liquid Control (SBLC) System.The limiting value (minimum weight) from Reference 5.7 is 210.6 lbs, but fbr conservative the more limiting value from Technical Specification SR 3.1.7.7 of 162.7 lbs is used. The limiting value is used since it minimizes the number of' moles available for buffering. | [See Spreadsheet Cot N] | ||
Addition of Sodium Pentaborate introduces a buffer into the Suppression Pool which will maintain the pool at a pH corresponding to the following equation: | [OHJ(t) = [O1-]ct=0) A-[CSOH](I | ||
[Ref. 5.1, See. 6.1, p. 21].pH = pK, + logio ([anion] / [acid]) 6-14 with data for K. fitted by the equation K, =(0.0585 | [OI-F](t) = 10i1't'/1i "(t=0) + [CsOlI](t) 6-10 | ||
* T+ 1.309)E-10 6-15[See Spreadsheet Col U]where: K; = bonrc acid dissociation constant-- negative of the log of the boric acid dissociation constant [See Spreadsheet Col .ZJ[anion] = borate concentration of [2B(OH)4-[acid] -boric acid concentration of [SH 3 1B0 3]based on the equation+ | [See Spreadsheet Col P1 Accounting for the concentration of neutralized ions [x]: | ||
* Na | ( [[] - [x] ) * { [OH] - [xJ ) KITr) | ||
* 10 H20 (g-moles)Boric acid (g-equivalents) | *[]1-'iH] + [OH-] - {([H1++[OH-])2 -4*([Hf]*[OH]-Kw)}I(2 }/2 6-11 | ||
= 8 | [See Spreadsheet Co] R] | ||
* | note: Kw = 10 --LAlgw) [See Equation 6-3 and Spreadsheet Co] Q] | ||
* 10 | The equation for the net [H+j becomes | ||
[ | [H-lt, = [Hi - [xi 6-12 | ||
= 2 | [See Spreadsheet Col S] | ||
* Na | and pH =logJ5([H'Wj 6-13 | ||
[HWIne, | [See Spreadsheet Col T] | ||
* Vi 6-16[See Spreadsheet Cot X]Boric acid (g-cquivalents) | |||
-8 | CALCULATION No. FM-1056 REV. No.0 PAGE 9 of 15 Effect of Sodium Pentaborate (SBLC) Addition The pH of the suppression Pool can be increased by the addition of Sodium Pentaborale from the Standby Liquid Control (SBLC) System. | ||
* | The limiting value (minimum weight) from Reference 5.7 is 210.6 lbs, but fbr conservative the more limiting value from Technical Specification SR 3.1.7.7 of 162.7 lbs is used. The limiting value is used since it minimizes the number of'moles available for buffering. | ||
+ [H-",t | Addition of Sodium Pentaborate introduces a buffer into the Suppression Pool which will maintain the pool at a pH corresponding to the following equation: [Ref. 5.1, See. 6.1, p. 21]. | ||
* VP-1 6-17 | pH = pK, + logio ([anion] / [acid]) 6-14 with data for K. fitted by the equation K, =(0.0585 | ||
6-14 becomes: | * T+ 1.309)E-10 6-15 | ||
* | [See Spreadsheet Col U] | ||
-[+].t | where: | ||
* Vx.o) / V,,,o, pH --logoKa +]og,o | K; = bonrc acid dissociation constant pK* --negative of the log of the boric acid dissociation constant [See Spreadsheet Col .ZJ | ||
* NaB 1 oO, 6 (g-moles) ' Vpoi) / Vp~1 CALCULATION No. PM-1056 REV. No. 0 PAGE I I of 15 7. Summary of Results and ConcJusions The post accident Suppression Pool pH is calculated as a function of time after accident initiation. | [anion] = borate concentration of [2B(OH) 4 - | ||
The results are shown below in Figures 7-1 and 7-2 for Beginning of Cycle (BOC) and End of Cycle (EOC) conditions respectively. | [acid] - boric acid concentration of [SH 3 1B0 3] | ||
These graphs are based on Excel spreadsheet calculations presented in Attachment C (Sheets I and 5). The inputs to the pH calculation of radiation. | based on the equation + | ||
doses and the Iodine and Cesium inventories are presented in Attachment B.The BOC (actually early cycle) condition produces the lowest pH and is therefore the limiting case.Without addition of sodium pentaborate from the Standby Liquid Control (SBLC) System, the pH in the Suppression Pool could drop below pH 7 after 30 hours, reaching pH 3.5 at 30 days. Therefore, SBLC addition is required to prevent iodine re-evolution. | Na2 B10 O16 + 16H20 <-> 2Na + 2B(OH)4- + 8H3B0 3 Therefore, Borate (g-equivalents) 2 | ||
* Na 2BoO, | |||
* 10 H20 (g-moles) | |||
Boric acid (g-equivalents) = 8 | |||
* Na2B3 10O1 | |||
* 10 H2 0 (g-moles) | |||
Using the methodology of Reference 5.1, the net strong acid equivalents [H4 ],,, calculated in Equation 5-12 are neutralized by the borate and the above equations become: | |||
Borate (g-equivalents) = 2 | |||
* Na 2B1 00 1 (g-moles) [HWIne, | |||
* Vi 6-16 | |||
[See Spreadsheet Cot X] | |||
Boric acid (g-cquivalents) - 8 | |||
* Na2 BlcO 16 (g-moles) + [H-",t | |||
* VP-1 6-17 | |||
SLCALCULATION No. PM-1056 I REV. No. 0 I PAUh 10 of 15 | |||
[See Spreadsheet Col Y] | |||
And equation. 6-14 becomes: | |||
(2 | |||
* Na2 II, 00,6 (g-roles) - [+].t | |||
* Vx.o) / V,,,o, pH --logoKa +]og,o (8 | |||
* NaB 1 oO, 6 (g-moles) [H],*j ' Vpoi) / Vp~ 1 6-18 | |||
[See Spreadsheet Col AA] | |||
CALCULATION No. PM-1056 REV. No. 0 PAGE I I of 15 | |||
: 7. Summary of Results and ConcJusions The post accident Suppression Pool pH is calculated as a function of time after accident initiation. The results are shown below in Figures 7-1 and 7-2 for Beginning of Cycle (BOC) and End of Cycle (EOC) conditions respectively. These graphs are based on Excel spreadsheet calculations presented in Attachment C (Sheets I and 5). The inputs to the pH calculation of radiation. doses and the Iodine and Cesium inventories are presented in Attachment B. | |||
The BOC (actually early cycle) condition produces the lowest pH and is therefore the limiting case. | |||
Without addition of sodium pentaborate from the Standby Liquid Control (SBLC) System, the pH in the Suppression Pool could drop below pH 7 after 30 hours, reaching pH 3.5 at 30 days. Therefore, SBLC addition is required to prevent iodine re-evolution. | |||
With timely SBLC addition, the Suppression Pool remains above pH 8 at 30 days (720 hours). | With timely SBLC addition, the Suppression Pool remains above pH 8 at 30 days (720 hours). | ||
[ CALCULATION No. PM-1056 I.REV. No. 0 PAGE 12 of 15 Figure 7-1 pH vs. Time -BEGINNING OF CYCLE | |||
I CALCULATION No. PM-1056 ! REV. No. 0 fPAGE 13of5 Figure 7-2 pH vs. Time -END OF CYCLE 10.00 8.00 7.00 6.00-M 5.00 | [ CALCULATION No. PM-1056 I.REV. No. 0 PAGE 12 of 15 Figure 7-1 pH vs. Time - BEGINNING OF CYCLE | ||
I CALC.LATION No. PM-1056 I KEN.No. 0 I PAGE, 14 of 15 8. OWNNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL DESIGN ANALYSIS DESIGN ANALYSIS NO. PM-1056 REV: 0 1. Do assumptions have sufficient rationale? | -L | ||
2, Are assumptions compatible with the way the plant is operated and with the licensing basis?.3. Do the design inputs have sufficient rationale? | --4 47; H EjtvI F | ||
I 9.00 -- | |||
1=* 1- t-1 t -u i 8.00 - | |||
3m | |||
- | |||
7.003 4: | |||
'ft ii-I- | |||
6.00 ii - | |||
w/o SLCS with StCS | |||
-- | |||
2.00 I- | |||
- 10F0 10-- -- | |||
105-flAil 0.00 2 | |||
ii 0.O0 4:>- | |||
I 100 1000 Time IHours) | |||
I CALCULATION No. PM-1056 ! REV. No. 0 fPAGE 13of5 Figure 7-2 pH vs. Time - END OF CYCLE | |||
.-- * , , , | |||
10.00 L- I - . m - m , | |||
4, 8.00 7.00 6.00- | |||
-TI | |||
- w/o SLCS M 5.00 | |||
- w-with SLGS | |||
~zzj -*- 000 4.00 - - | |||
3.00 2.00 1.00 0.00 I I | |||
I E I I I E I | |||
* i I f I L -~400 1 10 100 Time (Hours) | |||
I CALC.LATION No. PM-1056 I KEN.No. 0 I PAGE, 14 of 15 | |||
: 8. OWNNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL DESIGN ANALYSIS DESIGN ANALYSIS NO. PM-1056 REV: 0 Yes No N/A | |||
[] | |||
: 1. Do assumptions have sufficient rationale? | |||
2, Are assumptions compatible with the way the plant is operated and with the El licensing basis?. El | |||
[] C | |||
: 3. Do the design inputs have sufficient rationale? | |||
: 4. Are design inputs correct and reasonable? | : 4. Are design inputs correct and reasonable? | ||
El El | |||
[] 0 | |||
: 5. Are design inputs compatible with the way the plant is operated and with the licensing basis? | |||
: 6. Are Engineering Judgments clearly documented and justified? | |||
xr | |||
: 7. Are Engineering Judgments compatible with the way the plant is operated and with the licensing basis? El El | |||
: 8. Do the results and conclusions satisfy the purpose and objective of the design analysis? | |||
: 9. Are the results and conclusions compatible with the way the plant i5- operated and with the licensing basis? | |||
~El E | |||
: 10. Does the design analysis include the applicable design basis documentation? | |||
: 11. Have any limitations on the use of the resulls been identified and transmitted to the appropriate organizations? El | |||
: 12. Are there any tnverified assumptions? X E El | |||
: 13. Do all unverified assumptions have a tracking and closure mechanism in place'? | |||
EXELON REVIEWER: ". LiT. 34v/C&3 Print | |||
CALCULATION No. PNI-1056 REV. No. 0 PAGE 15 of 15 | |||
: 9. Attachments (Unless noted, Attachments are Calculated By and Checked By the same individuals as the Calculation) | |||
SPREADSHEET (ATh. D) INPUTS: CALC. BY: CHECKED | |||
476____________________________ | 476____________________________ | ||
497____________________________ | 497____________________________ | ||
10481_____________________ | 10481_____________________ _____________________________ | ||
_____________________________ | PM-1056, Rev. 0, Attachment D, Page D-4 of D-10 | ||
PM-1056, Rev. 0, Attachment D, Page D-4 of D-10 PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION R .S T [u v W x y IPH TRANSI ENT .BEGINNING OF CYCLE______ | |||
____ ___________ | PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION R . S T [u v W x y IPH TRANSI ENT .BEGINNING OF CYCLE______ ____ ___________ | ||
2 =.1 | 2 ______ ________________9si =.1 . mols Naý 3 127=U3*453 59 15./grams B31 1 0 .0 1 atomic wI. B-t10 4_______ _________ 6.atom 65 % B-1I=V3/X3 Lg.atoms B-t0 5 __________________ =X4N4*100 Igatoms toIJ_______ | ||
.mols Naý3 127=U3*453 59 15./grams | 8 _________________________________J_____________pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY 11 Rootsx iH+Y Neti pH K, g-equiv. 61B,00,6101 Borate Boric Acid 12 j,-3i ons/lit er Before SLC | ||
6.atom % B-1I=V3/X3 Lg.atoms B-t0 5 __________________ | $_______________________________________ 14 Net (H-i VpsL g-mols g-egoiv. g-equiv. | ||
=X4N4*100 Igatoms toIJ_______ | 13 EJN13.P1 3.SQRT(POWER(($Nl3+$P13).2)-(4*(N 3*Pl3-POWER(10.-$Q13)(f/ $13_$R1 153i008B31 39/00000 =Sl3*$B$3 =$V$2 =W13'2-Vl 3 =W1r8sV13 14 =(Nl4.Pl4.SORT(POWER ($Nl4.$P14L,2)-(4'(Nl4'P4-POWER(10,-$Ql4)))))/2 1=N4-$R14 I=-LOG10($514) =0.0585*B14+1.309 )/10000000000 =S14*$B53 =$V$2 =W14*2-Vl4 W14'8.V14 15 =(Nl5.P1 5-SORT(POWER(($N1 5+$P15(,2)-(4t(Nl5SPl5-POWER(10.4$015))))/ I=$NtS-$RIS I=-LOG1O($S1 5) =0.0585*B15.1.309 /10000000000 =S15$rB-S-3 =$V$2 =W 5*2-Vt S =W15*8+V15 16 =( N16+P16-SORT(POWE R(1$N1 6+$P B,)((1P6PWR1.$16))))/ =16-$R16 I=-LOG1g($516 =(0.05850816-1 .309)/10000000000 =S16'$B$3 =$V$2 =W16*2-V1B =W16*8.V16 17 =(Nl7+-Pl7.SORT(POWERtdSN17+SP17),2)-(4'(N17.P17POWFlR(10,-$017 )))))2 I=SN1i7-$R17 1=-LOG10($517) =(0.0585*B17+1 .309)/11000000000D =517*$B$3 =V2 =W17*2-V1 7 =W17*8+Vl7 18 =tNl8+Pl8-S0RT(POWER(($Nl8+$P18), H )~)D/2 | ||
8 _________________________________J_____________pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY 11 | .N818PWE(0-$Q18 1S$N18-$R18 1=-LOG1O($51 =0.0585*B818.130 )/10000000000 -=518$B$3 =$V$2 =W182-V18 =W1808V18 19 = N19-P19-SORT(POWER $SNl9n$P19.2)- 4* N19*Pl9-POWER 10,.6019)J)))/12 1=$Nl9-$R19 =-LOG(10(LS19 =(0.0585'B19+1.309)110000000000 =519S$B$3 =$V$2 =W192-V19 =W19*8-V19 20 =(N20'P20-SORT(POWER(($N20.$P20).2)- 4*(N20*P20-POWER 10,-$020 ))))12 I=$N20R2 S2 08 3-O1 20+.1309)/10000000000 I-S20'$B$3 =$V$2 =W20'2-V20- =W20*8-.V20 21 =(N21.P21-SORT(POWER(($N21 .$P21 ),2)-(4*(N21*P21-POWER(10,-$Q21 )))))/2 --$N21-$R21 1=-LOG10($S21) 0058 B2 +1.309)/10000000000 =S21 -'B$3 =$V$2 =W21 2-V21 =W21 8.V21 22 =(N22.P22-SORT(POWER((SN22.$P22).2)-(4'(N22*P22-POWER(10.-$022 )D)(/2 1=$N22-SR22 i =-LOG 10 $S22) - 08I2. 0)100000=522*$B$3 =$V$2 =W22*2-V22 =W22*8+V22 23 . 23P3-?S9RT(POWR($N3 ?2)?:.('*(N23R(1$OWE20-93))))Y)2 KO 0953 0085B3 Q-L29.9IQP -42S2 =S23$B$3 =$V$2 =W23-2-V23 =W38+ | ||
j,-3i ons/lit er Before SLC 14 Net (H-i VpsL g-mols g-egoiv. g-equiv.13 EJN13.P1 3.SQRT(POWER(($Nl3+$P13).2)-(4*(N 3*Pl3-POWER(10.-$Q13)(f/ | 24 =(N24.P24-SQRT(POWER(($N24+$P24),2J-(4(CN24'P24-POWER(10.-$O24)))))/2 ........... 4-R2 =-LOG1O($S24) . (0.0585*824+1.309(/iO000000 ..... =S24*$BS3 =$-V=$.$2 =W2-4*2-V24 _ =W2-4'8+V 24 25 =jN25.P25-SORT(POWER(($N25.$P25).2 - 4*N25*P25-POWER 10,-$025 ))))L2 ý=$N25-$R25 I1=-LOG1O(j52-5) 0(Q0585925+1.309)/10000000000 =S25-jB$3 ---- =$V$2 W5 ----- =VW258.V25 26 =(N26+P26-SQRl(POWER(($N26+SP26),2)-(4*(N26-P26-POWERý(10.-$O26)))))/2 =V$ W6*- | ||
$13_$R1 153i008B31 39/00000 =Sl3*$B$3 | 27 =(N27.P27-SORT(POWER(($N27+SP27).2)-(4'(N27'P27-POW+/-fR(10.-$027)))fl12 | ||
=$V$2 =W13'2-Vl 3 = | ... .________ | ||
($Nl4.$P14L,2)-(4'(Nl4'P4-POWER(10,-$Ql4)))))/2 1=N4-$R14 I=-LOG10($514) | .......... | ||
=0.0585*B14+1.309 | =$N27-$R27 | ||
)/10000000000 | . | ||
=S14*$B53 | =-LOG1O($527)......... ~0585 B27-.1309 /100(00000000 0585 B328ý+1.30.10000000000 S6$B3 | ||
=$V$2 =W14*2-Vl4 W14'8.V14 15 =(Nl5.P1 5-SORT(POWER(($N1 5+$P15(,2)-(4t(Nl5SPl5-POWER(10.4$015))))/ | =S27'$8$3 | ||
I=$NtS-$RIS I=-LOG1O($S1 | =58B3 | ||
_ ______ | |||
/10000000000 | =$V$2 | ||
= | =$V$2 | ||
=16-$R16 I=-LOG1g($516 | ___________5B6+.0)/000000 | ||
=(0.05850816-1 | =W27*2-V27 | ||
.309)/10000000000 | =W28*2-V28 | ||
=S16'$B$3 | =W27'8.V27 | ||
=$V$2 =W16*2-V1B | =W28'8.V28 28 f(N28oP28-SORT(POWER(($N28+$P28).2)-(4*(N28*P28-POWER(10,-$O28)))))/2 =$N28-$R28 LG1(5)__ | ||
=W16*8.V16 17 =(Nl7+-Pl7.SORT(POWERtdSN17+SP17),2)-(4'(N17.P17POWFlR(10,-$017 | 29 =(N29.P29-SORT(POWEBt($N29.SP29).2)-(4'(N29'P29-POWER(10.-SQ29)D)))l2 =$2-R9 =LOO829)...... =0.05815-129,1.309)l10100000000I =529'SB$3 =$V$2 =W29*2-V29 =W29*8=V29 30 fý(N30.P30-SQRT(POWER(($N0$P0.2-ýN30*P30-POWER(10.-$Q30(fl))/2 =$N30-$R3 =_LOG1OSS3O fJO 0585 B30+1.309 /110000000000 =530S$B$3 =$V$2 =W30*2-V30 I=W30*8=V30 31 =(N31.31SRTPOWER(($N31 .$P31) 2(-(4* N3P'P31-_POWER(10-$Q31 )))))/2 =$ 31-R1 -- LOG10 $S31) =00585*B31 1.309)/10000000000 =S31 *$B$3 =$V$2 =W31"24V31 =W31*8+V31 32 = N32.P32-SORT(POWER(($N32+$P32),2)-(4tN32*P32-POWER'n0-$032) )t)2 1=$N32$3 =_LOG1O($S32) -055B239/10000000000 =32;$B$3 =$V$2 =W322-V32 =W32*8=V32 33 =(N33-+P33-SORT(POWER(($N33+$P33t,2)-(4*(N33*P33-POWER(10.-$O33tt)1t2 1=$N33-$R33 1=-LOGJO $S33) 008 3+ 0100000=S33*$BS3 =$V$2 =W33*2-V33 =W33*8.V33 34 =(N34.P34-SORT(POWER(($N34+$P34),2)-(4*(N34*P34-POWER 10,4$034) )))/2 1=$N34-$R34 I=-LOGJO($531......-055344. 0 100000 =S34*0$3 =$V$2 =W34*2-V34 =W34*8.V34 1______________ | ||
)))))2 I=SN1i7-$R17 1=-LOG10($517) | 35 =(N35.P35-SOR1(POWER(($N35+SP35),2)-(4'(N35*P35-POVVER(10,-SO35)))))/2 1=$N35-$R35 I=-LOC1O($535) 1(0.0585*B351.1309)/10000000000 =535*$B$3 1$V$2 -W35*2-V35' -W15*8+V35 36 .I ___ _ _ ____ ____ | ||
=(0.0585*B17+1 | 37 4038_ ______ ___ __________ __ | ||
.309)/11000000000D | 389 _________________________ __________ ___________________ ____ | ||
=517*$B$3 | 3940 _________________________________________ _________________ ___________________ | ||
=V2 =W17*2-V1 7 =W17*8+Vl7 18 =tNl8+Pl8-S0RT(POWER(($Nl8+$P18), H .N818PWE(0-$Q18 | 41 ______________________________ | ||
4? | |||
=0.0585*B818.130 | -~ ____ . t 1 44 45 46 479 49 PM-1056, Rev. 0, Attachment D, Page D-5 of D-10 | ||
)/10000000000 | |||
-=518$B$3 | PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION Z z AA Pi 2 | ||
=$V$2 =W182-V18 | 3I 4 | ||
=W1808V18 19 = N19-P19-SORT(POWER | 5 6 | ||
$SNl9n$P19 | 7 8 LIQUID CONTROL [SLC] SOLUTIOP 10 11 pK. pH 12 -Ilog K. 15 14 =-LOG10(Ul3) =Z14+LOGIO((X14SS)(Y4$S)) | ||
.2)- 4* N19*Pl9-POWER 10,.6019)J)))/12 1=$Nl9-$R19 | 15 =-LOG10 U1) !=Z14+LOGIO((Xl4/$B$3)i(Y151S8S3)) | ||
=-LOG(10(LS19 | 16 =-LOG 10 U16) =Z16+LOGIO((X1I5$B$ )t(M 5BS$3 ))_______ | ||
=(0.0585'B19+1.309)110000000000 | 17 =-LOG10(Ul67 =Zl6+LOGIO (X16/$B$ )10LI ISB$3))________ | ||
=519S$B$3 | 189E-LOG10 U18 ZE184LOG1O((XI8ISBS3)t(Y181$BS3))________ | ||
=$V$2 =W192-V19 | 10(U20) 20O=-LOO21iLGO(2) [Z20+LOGl0 ((X20$3I(Y2OISBS3)) | ||
=W19*8-V19 20 =(N20'P20-SORT(POWER(($N20.$P20).2)- | !Z21+LOG1O((X21/$B$3)/(Y21/$B$3)) __~ | ||
4*(N20*P20-POWER 10,-$020 ))))12 I=$N20R2 3-O1 | 22 =-LLX310(U22) =Z22+LOG1 O(X21B3iY183) 2ý3=.LOG12(U23)_ =Z23+LOG1IO((X231S0$33y(Y23/!!$B3)L_ __ ___ | ||
=$V$2 =W20'2-V20- | 25 =ý-LOG 10(U-24)_ 'Z25+LOG1 O((X25/$El3)!(Y2/$ 83)) | ||
=W20*8-.V20 21 =(N21 .P21-SORT(POWER(($N21 | 26 =-LOG10(U25) !=Z25+LOG10((X25/$B$ )/(Y25l$B$3)) _ | ||
.$P21 ),2)-(4*(N21*P21-POWER(10,-$Q21 | 2L7-=-LOI0( 27) I=Z27+LOGIO (X27/$B$ )I(Y27Lý1SB3) 28 =-LOG 10(U28L__[1-Z28+LOG1 0((X281$8$3)!(Y_28/SBS3)) _ | ||
)))))/2 --$N21-$R21 1=-LOG10($S21) 0058 B2 +1.309)/10000000000 | 29_=-LOG10(U2 ) I=z29.LOG1O((X291SBS3)ffI28IBS3)) | ||
=S21 -'B$3 =$V$2 =W21 2-V21 =W21 8.V21 22 =(N22.P22-SORT(POWER((SN22.$P22).2)-(4'(N22*P22-POWER(10.-$022 )D)(/2 1=$N22-SR22 i =-LOG 10 $S22) -08I2. 0)100000=522*$B$3 | 30 =-LOG10(U30) =Z30OLOGl0 ((301S8$21)tC1301$B$3)) | ||
=$V$2 =W22*2-V22 | 3 -O1(3 1 Z3+OI(XISS)j(YjjI$R$31) 32 -LG0U2 Z3LO1(X25S)f(Y32,S8$3)) _ | ||
=W22*8+V22 23 .23P3-?S9RT(POWR($N3 | 313 =-LOG11 2(33' ýZ33+LZOG1O(3I83IY3 3 34 =-LOO10(U34 I=Z34.LOGIOftX34/S8S3I/Cv34/SBS3fl 35 =-LOGIO(U35) 1=Z35.LOG10((X35(S653)/(Y3515BS3)) -- -- - | ||
?2)?:.('*(N23R(1$OWE20-93))))Y)2 | 39I 41 42 -_ _ _ _ ___ ________________ | ||
43 44 45 _____________ | |||
=S23$B$3 =$V$2 =W23-2-V23 | |||
=W38+24 =(N24.P24-SQRT(POWER(($N24+$P24),2J-(4(CN24'P24-POWER(10.-$O24)))))/2 | |||
.... | |||
.(0.0585*824+1.309(/iO000000 | |||
..... =S24*$BS3 | |||
=$- V=$.$2 =W2-4*2-V24 | |||
_ =W2-4'8+V 24 25 =jN25.P25-SORT(POWER(($N25.$P25).2 | |||
-4*N25*P25-POWER 10,-$025 ))))L2 ý=$N25-$R25 I1=-LOG1O(j52-5) 0( | |||
=S25-jB$3 | |||
----=$V$2 W5 ----- =VW258.V25 26 =(N26+P26-SQRl(POWER(($N26+SP26),2)-(4*(N26-P26-POWERý(10.-$O26)))))/2 | |||
. | |||
=-LOG1O($527) | |||
......... | |||
~0585 B27-.1309 | |||
/100(00000000 | |||
=$V$2 = | |||
=$N28-$R28 LG1(5)__ | |||
=$2-R9 =LOO829)...... | |||
=0.05815-129,1.309)l10100000000I | |||
=529'SB$3 | |||
=$V$2 =W29*2-V29 | |||
=W29*8=V29 30 fý(N30.P30-SQRT(POWER(($N0$P0.2-ýN30*P30-POWER(10.-$Q30(fl))/2 | |||
=$N30-$R3 | |||
= | |||
/110000000000 | |||
=530S$B$3 | |||
=$V$2 =W30*2-V30 I=W30*8=V30 31 =(N31.31SRTPOWER(($N31 | |||
.$P31) 2(-(4* N3P'P31-_POWER(10-$Q31 | |||
)))))/2 =$ 31-R1 --LOG10 $S31) =00585*B31 1.309)/10000000000 | |||
=S31 *$B$3 =$V$2 =W31"24V31 | |||
=W31*8+V31 32 = N32.P32-SORT(POWER(($N32+$P32),2)-(4tN32*P32-POWER'n0-$032) )t)2 1=$N32$3 =_LOG1O($S32) | |||
-055B239/10000000000 | |||
=32;$B$3 =$V$2 =W322-V32 | |||
=W32*8=V32 33 =(N33-+P33-SORT(POWER(($N33+$P33t,2)-(4*(N33*P33-POWER(10.-$O33tt)1t2 1=$N33-$R33 1=-LOGJO $S33) 008 3+ 0100000=S33*$BS3 | |||
=$V$2 =W33*2-V33 | |||
=W33*8.V33 34 =(N34.P34-SORT(POWER(($N34+$P34),2)-(4*(N34*P34-POWER 10,4$034) | |||
)))/2 1=$N34-$R34 I=-LOGJO($531......-055344. | |||
0 100000 =S34*0$3 =$V$2 =W34*2-V34 | |||
=W34*8.V34 35 =(N35.P35-SOR1(POWER(($N35+SP35),2)-(4'(N35*P35-POVVER(10,-SO35)))))/2 1=$N35-$R35 I=-LOC1O($535) 1(0.0585*B351.1309)/10000000000 | |||
=535*$B$3 1$V$2 -W35*2-V35' -W15*8+V35 36 .I ___ _ _ ____ | |||
__________ | |||
___________________ | |||
_________________ | |||
___________________ | |||
41 ______________________________ | |||
4?-~ ____ .t 1 44 45 46 479 49 PM-1056, Rev. 0, Attachment D, Page D-5 of D-10 PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION z AA | |||
=Z14+LOGIO((X14SS)(Y4$S)) | |||
15 =-LOG10 U1) !=Z14+LOGIO((Xl4/$B$3)i(Y151S8S3)) | |||
16 =-LOG 10 U16) =Z16+LOGIO((X1I5$B$ )t(M 5BS$3 )) | |||
=Zl6+LOGIO (X16/$B$ )10LI ISB$3))________ | |||
20O =- | |||
((X20$3I(Y2OISBS3)) | |||
!Z21+LOG1O((X21/$B$3)/(Y21/$B$3)) | |||
__~22 =- | |||
=Z23+ LOG1IO((X231S0$33y(Y23/!!$B3)L_ | |||
'Z25+LOG1 O((X25/$El3)!(Y2/$ | |||
83))26 =-LOG10(U25) | |||
!=Z25+LOG10((X25/$B$ | |||
)/(Y25l$B$3)) | |||
30 =-LOG10(U30) | |||
=Z30OLOGl0 | |||
((301S8$21)tC1301$B$3)) | |||
3 -O1(3 1 Z3+OI(XISS)j(YjjI$R$31) 32 -LG0U2 Z3LO1(X25S)f(Y32,S8$3)) | |||
-- -- -39I 41 42 -_ _ _ _ ___ ________________ | |||
43 44 45 _____________ | |||
76___________- | 76___________- | ||
467 _______ ~ | 467 _______ ~____ | ||
48 F________ | |||
49 _______ _____________________ | |||
501______________________ | 501______________________ | ||
PM-1056, Rev. 0, Attachment D, Page D-6 of D-10 | |||
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION A B C D E F G 1 PEACH B50 pH TRANSIENT END OF CYCLE 2 Linear Absorption Coe 3 VpooL =122900*28.3168 Liters 1122900 tf1 Ubeta 4 mi =290 Iodine inventory [g-atom Ubeta hypalon 5 mcs =3200 Cesium inventory [g-ato Ugamma air 6 teap =12113600 Onset of Gap release [h Ugamma hypalon 7 r ypalo f-ama Ihe I" 8 r # p-t1TORUSAIR)1 ft-m 9 INTEGRATED DO 16 Be0a+Gamma. Gamma18 Beta1 9 8 Gamma7 0Beta2 11 TIME POOL Temp POOL DRYWELL ORYWELL TORUS | |||
9------------- | 9------------- | ||
34 =-POWER 10,-14 /POWER 10,-$T$13)+$034 | 34 =-POWER 10,-14 /POWER 10,-$T$13)+$034 =15.5129-0.0224*$B34-0.00003352*POWER(834,2 ( N34+P34-SQRT(POWER(($N34+$P34),2)-(4*(N34*P34-POWER 10,-$Q34) )))12 =$N34S$R_406 =-O1($341 =0085*1334+1 309)/10000000000 RM-E55519002$3..0035PWRB52 R(N35.P35-SQRT(POkWER(($N35+$P35)(2(-(4*(N35P3-PWR | ||
=15.5129-0.0224*$B34-0.00003352*POWER(834,2 ( N34+P34-SQRT(POWER(($N34+$P34),2)-(4*(N34*P34-POWER 10,-$Q34) | -35.- -- O-$Q35)))))/2 =$N35-$R3 1=LG $ O + | ||
)))12 =$N34S$R_406 | 3 PWR10_-1.4(/POWER 10,-$T$1)$3 -1.12--------------- 0003-- -POWE (B52 R35 L 10( S3 8 309)/10000000000 | ||
=-O1($341 | ______-~~~- | ||
=0085*1334+1 309)/10000000000 | _____ ---- -- _____ - - --- Tj-____ - --- ------ ____ | ||
-i6 _ _ __ | |||
=$N35-$R3 1=LG $ O +3 PWR10_-1.4(/POWER 10,-$T$1)$3 | 37___ _________ | ||
-1.12--------------- | 38_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I__ | ||
0003-- -POWE (B52 R35 L 10( S3 8 309)/10000000000 | 39_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _I_ _ _ _ _ _ _ _ _ | ||
______-~~~- | 47 I- -I -I 481 491 50I | ||
---- --_____ | _ _ _ I _ _ _ _ _ _ _ | ||
4 | PM-1056, Rev. 0, Attachment E, Page E-6 of E-7 | ||
13 =S13*$B$3 | |||
=$0$2'453.6/410 | GRAND GULF REFERENCE CALCULATION v w [ x y z AA___________ | ||
=W13*2-V13 j=W138+V13 | 4 _ | ||
=-LOG1 U13) =Zl3+LOG10((Xl3/$B$3)/(Yl3/$B§3))_ | _L0_ | ||
14 =S14S$BS3 | S_ +__9__ _ __,d 11 -- g-equiv. __Na2 B.1OH20t-2 Borate Boric Acid PIK pH 12 Net [H+] *Vpo0 L g-mols g-equiv. g-equiv. -log, 0 K. _______________ | ||
=$_Q$2453 6/410 =W14*2-V_14_ | 13 =S13*$B$3 =$0$2'453.6/410 =W13*2-V13 j=W138+V13 =-LOG1 U13) =Zl3+LOG10((Xl3/$B$3)/(Yl3/$B§3))_ | ||
=Wl4*8+V14- | 14 =S14S$BS3 =$_Q$2453 6/410 =W14*2-V_14_ =Wl4*8+V14- =-LOG10)U14)_ Z14+_-LOGi0((Xl4/$B$3)/(Y14/$B$3)) | ||
=-LOG10)U14)_ | 1T5 ~S5 3 =$0S2*453.6l410 =W15*2-VI5 I=Wl568+V5 =-LOG 10(Ul 5) fZ15 (X51$B$3)i kG1 Y15/$B$3)) | ||
Z14+_-LOGi0((Xl4/$B$3)/(Y14/$B$3)) | 16 =S16*$B$3 =$0$2*453.6/4 10 =W16*2-V16 =W16*8+V16 =-LOG10(U 16) =Z16+LOG10((Xl6/$B$3)/(Yl6/$B$3) 17 =Sl7r$B$3 =$Q$2*453.6/410 =Wl7*2-V17 =W17*8+V17 =-LOG-10(U1-7) =Z17+LOG!O((Xl7/$B$3)/(Yl7L$8$3))_ | ||
1T5 ~S5 3 =$0S2*453.6l410 | 18 =S1&$B$3 W$Q245.B410 =W182-18 =W1868+V18 =-LOG1O U18) =Zl8+LOG10()Xl8/$B$3)/(YlB/$B$) | ||
=W15*2-VI5 I=Wl568+V5 | 19 =S19*$B$3 =$Q$2*453 6/410 =W19*2-19 =W19*8+V19 =-LOG10 Ul 9) =Z19+LOG10((X19IB3)U 1 /$$)) | ||
=-LOG 10(Ul 5) fZ15 | 20 S20'$B$3 =$O$2*453.6/410 =W20*2-V20 =W20*8.V20 =-LOG10)U20) =Z20+LOG10((X20/$B$3)/(Y20/$B$3)ý 21 I=S21-$B$3 =$O$2*453.6/410 =W21*2-V21 =W21*8+V21 =-LOG10(U21) I Z21+LOG 10((X21/$B$3)/(Y21/SB$3) 22-S22*$B$3 =$O$2*453.61410 =W22*2-V22 =-LOG10 U22) L=Z22+L0G10((X22/$B$3)/(Y22/$B$3)1 | ||
16 =S16*$B$3 | -=W2268+V22 23 =S23*$B$3 =$Q$2*453 6/410 =_W23*2-23 =W23*8+V23 =-LOG10(U23) =Z23.LOG10( X23/$B$3L/Y Y23$B$3)) | ||
=$0$2*453.6/4 10 =W16*2-V16 | 24 =S24*$B$3 =$Q$2*453 6/4 10 =W24*2-V24 =W24*8vV24 =-LOGIO(U24) -Z24 +LOG I0((X241$B$3)1(Y241$B$3) 25 =S25*$B$3 =$Q$2*453.6/410 =W25*2-V25 =W25* +2 =-LOG10 U25) =_:Z25+LOG10((X25/$B$3)/(Y25/$B$3)) | ||
=W16*8+V16 | 26 =S26*$B$3 =$O$2*453.6/410 =W26*2-V26 j =W2668+V26 =-LOG10(U26) =Z26+LOG1O((X26/$B$3)I(Y26/$B$3)) | ||
=-LOG10(U | 27 =S27*$B$3 =$QS2*453.61410 =W27*2-V.27 I=W27'8+V27 -LOG.1O(U27)_ =Z27+LOG1O1((X?7-/$B$3)/(Y2.7/ý$B$.3)) | ||
28 -S-28-$B-$3 -- =$Q$2-*45-3.-6/410- | |||
=$Q$2*453.6/410 | =W2&82-V28TJ=W26&86+V28 =-LOG1O)U28) -Z28+L0G10( X28/$B$3)/(Y28/$B$3)) | ||
=Wl7*2-V17 | 29 =S29*$B$3 =$O$2*453.6/410 =W29*2-V29 I=W2968+V29 =-LOG1O U29) [=Z29+LOG10((X29/$B$3)/(Y29/$B$3)) | ||
=W17*8+V17 | 30 =S30*$B$3 =$0$2*453.6/410 =W30*2-V30]I=W30n6.V30 =-LOG10 U30 [=Z3 +ýLOG1O(30/$B$3))/(Y30/$B$3L) 31 =S31*$B$3 =$O$2*453.6/410 =W31*2-V31 =W31*8+V31 =-LOG10 U31) =Z31.LOG10)(X3 I$B$3 /Y31/$B$3)ý 32 =S32*$B$3 =$0$2'453.6/410 =W32*2-V32 J=W32*8+V32 =-LOG1O(U32) L=Z32+LOGIO((X32/$B$3)/(Y32/$B$3)ý 33 =S33*$B$3 . $0$2*453.6/410 =W33*2-V33 I=W33*8+V33 =-LOG10 U33~ =Z33+LOGl0(tX33(SB$3)1)Y 3j/ 3)) | ||
=-LOG-10(U1-7) | S34SB$3 | ||
=Z17+LOG!O((Xl7/$B$3)/(Yl7L$8$3))_ | §34 ýf _ =$Q'453.6/410 =W4-V3 W34*.8+V 3-4 -=- | ||
18 =S1&$B$3 W$Q245.B410 | L0-G 10(U 34) fZ34+O1I)X4 $)/)Y 34 1 B $3)) | ||
=W182-18 =W1868+V18 | 35 =S3.5-$B$3 =$QO$2*453.6/4 10 =W35*2-V35 _=W_35*8+V35 =-LOG iO(Y3)_ =Z35+LOG10)(X35/$3)(Y35L$B$3)) | ||
=-LOG1O U18) =Zl8+LOG10()Xl8/$B$3)/(YlB/$B$) | 36 371________ _______ ____ ______ | ||
19 =S19*$B$3 | 368 ______ _______ _____ _________________ | ||
=$Q$2*453 6/410 =W19*2-19 | 39 _______ _________________ | ||
=W19*8+V19 | |||
=-LOG10 Ul 9) =Z19+LOG10((X19IB3)U 1 /$$))20 S20'$B$3 =$O$2*453.6/410 | |||
=W20*2-V20 | |||
=W20*8.V20 | |||
=-LOG10)U20) | |||
=Z20+LOG10((X20/$B$3)/(Y20/$B$3)ý 21 I=S21-$B$3 | |||
=$O$2*453.6/410 | |||
=W21*2-V21 | |||
=W21*8+V21 | |||
=-LOG10(U21) | |||
I Z21 +LOG 10((X21/$B$3)/(Y21/SB$3) 22-S22*$B$3 | |||
=$O$2*453.61410 | |||
=W22*2-V22 | |||
= -LOG10 U22) L=Z22+L0G10((X22/$B$3)/(Y22/$B$3)1 23 =S23*$B$3 | |||
=$Q$2*453 6/410 =_W23*2-23 | |||
=W23*8+V23 | |||
=-LOG10(U23) | |||
=Z23.LOG10( X23/$B$3L/Y Y23$B$3))24 =S24*$B$3 | |||
=$Q$2*453 6/4 10 =W24*2-V24 | |||
=W24*8vV24 | |||
=-LOGIO(U24) -Z24 +LOG I0((X241$B$3)1(Y241$B$3) 25 =S25*$B$3 | |||
=$Q$2*453.6/410 | |||
=W25*2-V25 | |||
=W25* +2 =-LOG10 U25) =_:Z25+LOG10((X25/$B$3)/(Y25/$B$3)) | |||
26 =S26*$B$3 | |||
=$O$2*453.6/410 | |||
=W26*2-V26 j =W2668+V26 | |||
=-LOG10(U26) | |||
=Z26+LOG1O((X26/$B$3)I(Y26/$B$3)) | |||
27 =S27*$B$3 | |||
=$QS2*453.61410 | |||
=W27*2-V.27 I=W27'8+V27 | |||
=Z27+LOG1O1((X?7-/$B$3)/(Y2.7/ý$B$.3)) | |||
28 -S-28-$B-$3 | |||
--=$Q$2-*45-3.-6/410- | |||
=W2&82-V28TJ=W26&86+V28 | |||
=-LOG1O)U28) -Z28+L0G10( X28/$B$3)/(Y28/$B$3)) | |||
29 =S29*$B$3 | |||
=$O$2*453.6/410 | |||
=W29*2-V29 I =W2968+V29 | |||
=-LOG1O U29) [=Z29+LOG10((X29/$B$3)/(Y29/$B$3)) | |||
30 =S30*$B$3 | |||
=$0$2*453.6/410 | |||
=W30*2-V30]I=W30n6.V30 | |||
=-LOG10 U30 [=Z3 +ýLOG1O(30/$B$3))/(Y30/$B$3L) 31 =S31*$B$3 | |||
=$O$2*453.6/410 | |||
=W31*2-V31 | |||
=W31*8+V31 | |||
=-LOG10 | |||
=$0$2'453.6/410 | |||
=W32*2-V32 J=W32*8+V32 | |||
=-LOG1O(U32) | |||
L=Z32+LOGIO((X32/$B$3)/(Y32/$B$3)ý 33 =S33*$B$3 | |||
.$0$2*453.6/410 | |||
=W33*2-V33 I=W33*8+V33 | |||
=-LOG10 U33~ =Z33+LOGl0(tX33(SB$3)1)Y 3j/ 3))§34 ýf _ | |||
=W4-V3 | |||
$)/)Y 34 1 B $3))35 =S3.5-$B$3 | |||
=$QO$2*453.6/4 10 =W35*2-V35 | |||
_=W_35*8+V35 | |||
=-LOG iO(Y3)_ =Z35+LOG10)(X35/$3)(Y35L$B$3)) | |||
36 371________ | |||
_______ ____ | |||
39 _______ _________________ | |||
40___________________ | 40___________________ | ||
421_______ _______ _____ | |||
421_______ | l_____ | ||
_______ _____ ______ ______ _________________ | ______ | ||
46 | _____________________ | ||
______ _________________ | |||
46 _______ | |||
47 _______ | |||
48 ______ ______ . ____________{_______________ | |||
49.I___________________________ | 49.I___________________________ | ||
50 _______ ____________ | 50 _______ ____________ _____ ______________________ | ||
_____ ______________________ | |||
PM-1056. Rev. 0, Attachment E, Page E-7 of E-7}} | PM-1056. Rev. 0, Attachment E, Page E-7 of E-7}} |
Revision as of 02:40, 23 November 2019
ML072570190 | |
Person / Time | |
---|---|
Site: | Peach Bottom |
Issue date: | 03/28/2003 |
From: | Yemin L Exelon Nuclear |
To: | Office of Nuclear Reactor Regulation |
References | |
CC-AA-309-1001, Rev 0 PM-1056, Rev 0 | |
Download: ML072570190 (57) | |
Text
{{#Wiki_filter:002- PM-1 056 Rev 0 pH CC-AA-309-1001 Exelon. Nuclear ATTACHMENT 1 Design Analysis Cover Sheet Revision 0 Last Page No.fl%,6 Analysis No. PM-1056 Revision 0 m-j. EClECR No. PB 02-00838 Revision 0 Title: Suppresion Pool pH Calculation for Alternative Source Terms Peach Bottom Atomic Power Station(s) Station Component(s) Unit No.: 2 and 3 N/A Discipline SEAQ Description Code) LOCA Keyword Safety Class S System Code 912 Structure NIA CONTROLLED DOCUMENT REFERENCES Document No. FromlTo Document No. From/To PBAPS Tech. Spec. Bases B 3.6.2.2, From Rev. 0 Is this Design Analysis Safeguards? Yes L] No U Does this Design Analysis Contain Unverified Assumptions? Yes [] No [ ATI!AR# Is a Supplemental Review Required? Yes L] No [ If Yes, complete Is aSuplemetalAttachment 3 Preparer Lowell Yemin l _J1.Q ......
- 3120/2003 Prni Name Sign Name Date Reviewer Harold Rothstein t1 3/20/2003 Phnnl Name Sign Name Date Method of Review [J Detailed Review [ Alternate Calculations E] Testing Review Noles:
Approver Harold Rothstein % _ 3/20/2003 Prnt Name , Sign Name Date (For Drily)_____________________________ Evter~I AnA8Vlyts Exelon Reviewer ML)_% I-, ._SCi Dd t*
-. rin t N a rr D -k.... ' r" f v SJ MG .
Approver -_j_ *"*-'-O---
,J o:f*, 3/A0zi 3 Print Name Sign Name 1,ODte Description of Revision (list affected pages for partials):
THIS DESIGN ANALYSIS SUPERCEDES: N/A
r(ýý,cuuvrjONNo. PM-1056 CALCLIATJON No. PM-1056 II REV No 0 I PAGE2ofI5 REV. No. 0 I PAGE 2of 15 TABLE OF CONTENTS
- 1. PURPOSE AND OBJECTIVE ......................................................................................................................................... 3
- 2. M ETHODOLOGY AND ACCEPTANCE CRITERIA ............................................................................................ 3
- 3. ASSUM PTIONS/ENGINEERING JUDGEMENTS ....................................................................................................... 3
- 4. DESIGN INPUT ................................................ A................................................................................................................ 3
- 5. REFERENCES .................................................................................................................................................................... 4
- 6. CALCULATIONS .................... ................................................................. -1............................ .............. ............. 5
- 7. SUM MARY OF RESULTS AND CONCLUSIONS ..................................................................................................... 11
- 8. OWNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL DESIGN ANALYSIS .................. 14 9- ATTACHM ENTS .......................................................................................................................................................... 15 A -Determination of Total Exposed Cable.Quantities Inside Containment 49 PAGES B - Dose Assessment, Core.Cs & I, and Gamma Mean Free Path Determination 14 PAGES C - pH Transient Spreadsheet 4 PAGES D - pH Transient Spreadsheel Ceil Formula*s 10 PAGES E - pH Transient - Grand Gulf Reference Data 7 PAGES F - Reference 5.1 30PAGES G - Reference 5.2 26 PAGES H - E-Mail Memo and Attachments on SBLC from Mark Fry at PBAPS 16 PAGES I - Computer Disclosure Sheet 1 PAGE
CALCULATION No. PM-1056 REV. No. 0 PAGE 3 of 15
- 1. Purpose and Objective In order to prevent iodine re-evolution following an accident, the pH of the Suppression Pool should be maintained above 7.0. The chemistry of this phenomenon and methods of pH control are discussed in References 5.1 and 5.5.
The Objective of this calculation is to detenrmine the pH of the Suppression Pool following a Loss of Coolant Accident based on the use of Alternative Source Terms as deflned in References 5.4 and 5.6. The pH values are detennined, as a function of time, with and without the addition of the sodium pentaborate in Ihe Standby Liquid Control System. The conditins required to maintain the Suppression Pool at a pH above 7.0 are determined.
- 2. Methodology and Acceptance Criteria This calculation is based on the methodology developed for the equivalent calculation done for t'he Grand Gulf Nuclear Station, Unit I as revised December 2000. [Ref. 5.1 & 5.2]. The calculation formulas developed in these documents are accepted without independent verification. These references are included in this calculation as Attachments F and G. The accuracy of translation of the equations in these documents into spreadsheet cell formulas is verified by duplicating the Grand Gulf calcutation. This verification is presented as Attachment E and accurately duplicates all of the Grand Gulf results.
As noted in this calculation, injection of sodium pentaborate solution by the Standby Liquid Control System is a required function in order to control post-LOCA pH in the suppression pool, and prevent iodine re-evolution. Based on the worst case beginning of cycle condition, injection should be completed within about. 30 hours after the start of the DBA-LOCA. Therefore, manual initiation is acceptable. Manual initiation of SBLCS is expected early in a DBA-LOCA as a result of emergency operating procedures and severe accident guidelines, particularly for events resulting in fuel damage that would be consistent with AST source terms. Acceptance Criteria: Per the guidance of Appendix.A of Regulatory Guide 1.183 [Ref. 5.6], the Suppression Pool pH should be controlled at values of 7 or greater following loss of coolant accidents.
- 3. Assumptions/Engineering Judgements
" The Suppression Pool is assumed to be well mixed so that the pH at any time can be represented by a single value. " For cable parameters, the cable data presented in Attachment A is used. It includes the exposed termination length of what is in a raceway. As a conservative estimale of the cable lengths in free air, an additional 5% of the raceway's totals are assumed to be in free air. A 10% contingency on the cable surface, reported in Attachment A, is also included. Radiolysis of surface coatings on the steel and concrete surfaces in the Drywell and Containment would not be significant contributors, since the coatings utilize non-chlorinaled polymers.
- 4. Design Input Cable Data Cable lengths, diameters, and average jacket thickness are developed separately and presented in Attachment A.
Temperature Suppression Pool temperatures are taken from UJFSAR, Rev.15 Figure 14.6.12A. Since this revised curve extends only to 14 hours, the older UFSAR, Rev 14 curve, Figure 14.6-12 was used to extend the data to 278 hours and extrapolate to 720 hours. The older curve gives slightly lower temperatures in the area of overlap and is therefore conservative (Lower temperatures give higher calculated pH values). Extrapolation of the semilog plot is acceptable since the calculated pH is rather insensitive to temperature. At 30 days (720 hours) it requires a 36 FP increase to reduce the pH by 0.1.
CALCULATION No. PM-1056 REV. No. 0 PAGE4 of 15 Sodium Pentaborate mass in SBLC Tank Per Technical Specification SR 3.1.7.7, the minimum B-10 stored in the SBLC tank is 162.7 lbs. In order to prepare this calculation, total boron is needed. The highest vendor supplied enrichment from Reference 5.7., included as attachment H, is 63.5 atom % B-10. For this calculation, 65 atom % B-i1] enrichment is assumed. Since B-10 has an atomic weight of 10.01, this gives 7373 gram-atoms of B-10 and 11,342 gram atoms of total boron. Since the formula of Sodium Pentaborate is Na2B,0Ot6 X10H 20, there are 1134 gram-mols of the pentaborate in the SBLC Tank. This calculation is performed on the pH calculation spread sheet at the top of columns U -Y. Suppression Pool Volume The limiting Tech. Spec. volume [Ref.5.8] is 122,900 cu. ft. from Tech. Spec. Bases B3.6.2.2.
- 5. References 5.1 GGNS-98-0039, Rev. 3, "Entergy Operations Engineering Report for Suppression Pool pH and Iodine Re-Evolution Methodology", Applicable Site: Grand Gulf Nuclear Station, 12/20/00 5.2 XC-Ql 111-98013, Rev. 2, Grand Gulf Design Engineering Calculation "Suppression Pool pH Analysis", 12/20/00 5.3 PBAPS UFSAR Figure 14.6.12 (Rev. 14) "LOCA - Suppression Pool Temperature Response" and Figure 14.6.12A (Rev. 15), "Long Term Suppression Pool Temperature Response - Nonnal ECCS Flows" 5.4 NIJREG- 1465, "Accident Source Terms for Light-Water Nuclear Power Plants", February 1995 5.5 NUREG/CR-5950, "Iodine Evolution and pH Control", December 1992 5.6 U-tSNRC Regulatory Guide 1.183, "Alternative Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors". July 2000 5,7 E-mail Memo, Mark G. Fry, Chemistry Manager-PBAPS, Exelon to Harold Rothstein WGI, "PBAPS Standby Liquid Control (SBLC) Data" (Transmission of Eagle Picher Technologies Boron- 10 analysis and logs of Units 2 and 3 plant logs of pounds mass of Boron- 10 in SBLC Tank), December 27, 2002 (Attachment H) 5.8 Peach Bottom Technical Specification Bases B 3.6.2.2, Rev. 0 Containment Systems - Suppression Pool Water Level (Minimum volume).
5.9 Not used 5.10 GE Report NEDC-32963A, "Prediction of the Onset of fission Gas Release From Fuel in Generic BWR", March 2000 (Allows a 121-second delay in timing of fission product release following design basis accidents) 5.11 Not used 5.12 Radioactive Decay Data Tables by David C. Kocher, Report DOE/TIC-1 1026 T'echical information Center U.S. DOE, Washington, D.C., 1981
I CA[.CULATHON No. PW-.1056 I REV. -No. 0 I PAGE 5of 15 CACLTO N.P-OEi RVN. I PAEof
- 6. Calculations pH - Fundamental Relationships pH = -1log[H] 6-1
[H'].[OH] = Kw(T) 6-2 where: [HW] concentration of hydrogen ions in moles/liter [OH = concentration of hydroxyl ions in moles/liter Kw,(T) ionization constant for water as a function of temperature T The data for Kw for T between 77 and 212 'F can be represented by the following correlation developed in Section 3.0 of Reference 5.1:
-LogjoKw(T) = 15.5129 - 2.24E-2
- T + 3.352E-5
- T2 6-3 Hydriodic Acid Production Iodine, accompanied by Cesium, is released during the Gap Release and Early In-Vessel Release phases.
Thfe following, equation, valid during the Early Vessel Release Phase, includes the release during the Gap Release Phase. See analysis in Reference 5.1 (Section 3.1 and Equation 3-1d). Iodine and cesium core inventories are calculated for both beginning and end of cycle (BOC and EOC) conditions (See Attachnent B for a discussion of the assumed BOC conditions). Since EOC conditions result in increased inventory of both acidic (iodine) and basic (cesium) compounds, pH values are calculated for both conditions. For conservatism, the EOC radiation doses are used for the BOC calculation. The hydriodic acid concentration is governed by the following equation: [HJ](t) m i (120* VPOoL) * [t - (0.5 + t,,)] + mi/ (400
- Vl1,3 ,) 6-4 where:
[HI](t) = concentration of Hydriodic Acid at time t (moles/liter) m, = core iodine inventory (gram-moles) VFoOi, Suppression Pool volume (liters) I = time after start of accident (hrs) (includes tysp + Gap*Release [0.5 hrs] + Early In-Vessel Release [1.5 hrs] durations for a t,,,, = 2.0336 hrs) [Ref.5.6, Table 4, page 1.183-15] i tgp- time of onset of gap release = 121 seconds = 0.0336 hrs [Ref. 5.6] t, = 2.0336 hrs = end of Early In-Vessel Release [See Spreadsheet: Sheets 1 (EOC) and 5 (BOC), Col HI] Nitric Acid Production
I CALCULATION No. PM-1056 1 REV. No. 0 1 PAGE 6 of 15 Nitric Acid is produced by radiolysis of the water in the Suppression Pool with a G value of 0.007 molecules HNO0 / 100 eV absorbed dose or 7.3E-6 g moles / megarad- liter [Ref 5.1, Section 3.2, Equation 3-2b]. The nitric acid concentration is governed by the following equation: [1N03](t) = 7.3E-6
- D(i 0 o, 6-5
[See Spreadsheet Col. 1] where: [I-NO 3](t) = nitric acid concentration at time t (moles/liter) D(0pooJ = Total accumulated dose in Suppression Pool at time t (megarad) Hydrochloric Acid Production Hydrochloric Acid is produced by radiolysis of chlorinated polymer cable jacketing. Radiolysis of surfthce coatings on the steel and concrete surfaces in the Drywell and Containment would not, be significant contributors, since the coatings utilize nonchlorinated polymers. The calculation of the resulting concentration in the Suppression Pool is based on the equations in Section 3.3 of Reference 5.1 [see Ref. 5.2, Equations 5-1, 5-2, and 5-3]. These equations are in turn based on the following G value for HCI production in Hypalon chlorinated polymer given in Reference 5.5. GI.,= 2.115 molectules/lOWeV = 3.512E-20 g moles HCI / MeV The hydrochloric acid concentration is governed by the following equations: Doses from beta and gamma radiation are calculated separately. [-ICI](I) = Guci / Vio*0 * (Stray / 2 + Sr,) / 40;,i,
- Dp(t) 6-6 where the effective cable surface area for P dose is:
S,, / 2 +- =f Do*1)
*(f 2 2 + Lf0)
[See Spreadsheet Cols J & L] [HCI]3(t) =. c/ Vpw,. * (Sy.+ Sfo) * (1- e
- 4W TX) / i
* (I - e - Iypal
- D*(t) 6-7 where: Struy + Sr, =i
- Do * (Ltiy - Lfa)
[See Spreadsheet Cols K & MI where:
.. C..U IN~
.. ... ....... RE .N. U .... . ...15 I CALCULATTONNo.
I Fryl-1050 RE*JV. No. 0 I PAGE 7of 15 I [HC15j(t) = HCI concenaration from Beta radiation at hime t (g m0oesiliter) [HC1].(t) = HCI concentration from Gamma radiation at time t (g moles/liter) Dt = cable diameter (cm) 4,fy = cable length in trays (raceways) (cm) Lfý = cable length in free air (cm) pvt* = linear beta absorption coefficient in air (1/em) l..iairý linear gamma absorption coefficient in air (1/cm) rj. = gamma free path (cm) PA hyat = linear gamma absorption coefficient in Hypalon (1/cm) th -lypalonjacket thickness (cm) Dp(t) = accumulated beta dose per unit volume at time t (MeV/cmin) Dy(t) - accumulated gamma dose per unit volume at time t (MeV/cnm) GHcI= 3.512E-20 (g moles HCI / MeV) VPCOL= Suppression Pool volume (Liters) SY =-- Cable surface area in trays (cm 2) 2 Sf, = Cable surface area in free air (cra ) CesiumHydroxide Production Cesium, accompanied by Iodine, is released during the Gap Release and Early In-Vessel Release phases. The following equation, valid during the Early Vessel Release Phase, includes the release during the Gap Release Phase. See analysis in Reference 5.1 (Section 3.4 and Equation 3-4d). Iodine and cesium core inventories are calculated for both beginning and end of cycle (BOC and EOC) conditions (See Attachment B for a discussion of the assumed conditions). Since EOC conditions result in increased inventory of both acidic (iodine) and basic (cesium) compounds, pH values are calculated for both conditions. For conservatism, the EOC radiation doses are used for the BOC calculation. The cesium hydroxide concentration is governed by the following equation: [CsOHf](t) = (0.4
- nec- 0.475
- mi) / 3
- Vo T o.) * [t - (0.5 + tgap)]
+( 0.05
- mc,- 0.0475
- ill) / VFooL 6-8
[See Spreadsheet: Sheets 1 (EOC) and 5 (BOC), Col 0] [CsOH](t) = concentration of Cesium Hydroxide at time t (g moles/liter) ml = core Iodine inventory (gram-moles) rnrc.- core Cesium inventory (gram-moles)
'ýFPOOL= Suppression Pool volume (liters) t = time after start of accident (hrs) (includes tgap + Gap Release [0.5 hrs] + Early In-Vessel Release
[1.5 hrs] durations for a t,*., = 2.0336 firs) [Ref. 5.6, Table 4, page 1.183-15]
*,,= time of onset of gap release = 121 seconds = 0.0336 hrs [Ref. 5.6] = 2.0336 Irs = end of Early In-Vessel Release Final Pool pH Calculation (No SBLC Addition)
The net Suppression Pool pH can be calculated from the total of the [H+] and [O-] concentrations using the following equations developed in Reference 5.1, Section 3.5.
CALCULATION No- PM-1056 I Tv. No, o 1rAGE 8 of Is __j [H 4 ](t) = [H'](ýt=0) + [Hfi](t) + [1-N0 3](i) + [1C](1) [H+](t) = 10-li(t=0) + [H11(t) + [llN0 3](t) + [HCI]() 6-9 [See Spreadsheet Cot N] [OHJ(t) = [O1-]ct=0) A-[CSOH](I [OI-F](t) = 10i1't'/1i "(t=0) + [CsOlI](t) 6-10 [See Spreadsheet Col P1 Accounting for the concentration of neutralized ions [x]: ( [[] - [x] ) * { [OH] - [xJ ) KITr)
*[]1-'iH] + [OH-] - {([H1++[OH-])2 -4*([Hf]*[OH]-Kw)}I(2 }/2 6-11
[See Spreadsheet Co] R] note: Kw = 10 --LAlgw) [See Equation 6-3 and Spreadsheet Co] Q] The equation for the net [H+j becomes [H-lt, = [Hi - [xi 6-12 [See Spreadsheet Col S] and pH =logJ5([H'Wj 6-13 [See Spreadsheet Col T]
CALCULATION No. FM-1056 REV. No.0 PAGE 9 of 15 Effect of Sodium Pentaborate (SBLC) Addition The pH of the suppression Pool can be increased by the addition of Sodium Pentaborale from the Standby Liquid Control (SBLC) System. The limiting value (minimum weight) from Reference 5.7 is 210.6 lbs, but fbr conservative the more limiting value from Technical Specification SR 3.1.7.7 of 162.7 lbs is used. The limiting value is used since it minimizes the number of'moles available for buffering. Addition of Sodium Pentaborate introduces a buffer into the Suppression Pool which will maintain the pool at a pH corresponding to the following equation: [Ref. 5.1, See. 6.1, p. 21]. pH = pK, + logio ([anion] / [acid]) 6-14 with data for K. fitted by the equation K, =(0.0585
- T+ 1.309)E-10 6-15
[See Spreadsheet Col U] where: K; = bonrc acid dissociation constant pK* --negative of the log of the boric acid dissociation constant [See Spreadsheet Col .ZJ [anion] = borate concentration of [2B(OH) 4 - [acid] - boric acid concentration of [SH 3 1B0 3] based on the equation + Na2 B10 O16 + 16H20 <-> 2Na + 2B(OH)4- + 8H3B0 3 Therefore, Borate (g-equivalents) 2
- Na 2BoO,
- 10 H20 (g-moles)
Boric acid (g-equivalents) = 8
- Na2B3 10O1
- 10 H2 0 (g-moles)
Using the methodology of Reference 5.1, the net strong acid equivalents [H4 ],,, calculated in Equation 5-12 are neutralized by the borate and the above equations become: Borate (g-equivalents) = 2
- Na 2B1 00 1 (g-moles) [HWIne,
- Vi 6-16
[See Spreadsheet Cot X] Boric acid (g-cquivalents) - 8
- Na2 BlcO 16 (g-moles) + [H-",t
- VP-1 6-17
SLCALCULATION No. PM-1056 I REV. No. 0 I PAUh 10 of 15 [See Spreadsheet Col Y] And equation. 6-14 becomes: (2
- Na2 II, 00,6 (g-roles) - [+].t
- Vx.o) / V,,,o, pH --logoKa +]og,o (8
- NaB 1 oO, 6 (g-moles) [H],*j ' Vpoi) / Vp~ 1 6-18
[See Spreadsheet Col AA]
CALCULATION No. PM-1056 REV. No. 0 PAGE I I of 15
- 7. Summary of Results and ConcJusions The post accident Suppression Pool pH is calculated as a function of time after accident initiation. The results are shown below in Figures 7-1 and 7-2 for Beginning of Cycle (BOC) and End of Cycle (EOC) conditions respectively. These graphs are based on Excel spreadsheet calculations presented in Attachment C (Sheets I and 5). The inputs to the pH calculation of radiation. doses and the Iodine and Cesium inventories are presented in Attachment B.
The BOC (actually early cycle) condition produces the lowest pH and is therefore the limiting case. Without addition of sodium pentaborate from the Standby Liquid Control (SBLC) System, the pH in the Suppression Pool could drop below pH 7 after 30 hours, reaching pH 3.5 at 30 days. Therefore, SBLC addition is required to prevent iodine re-evolution. With timely SBLC addition, the Suppression Pool remains above pH 8 at 30 days (720 hours).
[ CALCULATION No. PM-1056 I.REV. No. 0 PAGE 12 of 15 Figure 7-1 pH vs. Time - BEGINNING OF CYCLE
-L --4 47; H EjtvI F
I 9.00 -- 1=* 1- t-1 t -u i 8.00 - 3m
-
7.003 4:
'ft ii-I-
6.00 ii - w/o SLCS with StCS
--
2.00 I-
- 10F0 10-- --
105-flAil 0.00 2 ii 0.O0 4:>- I 100 1000 Time IHours)
I CALCULATION No. PM-1056 ! REV. No. 0 fPAGE 13of5 Figure 7-2 pH vs. Time - END OF CYCLE
.-- * , , ,
10.00 L- I - . m - m , 4, 8.00 7.00 6.00-
-TI - w/o SLCS M 5.00 - w-with SLGS ~zzj -*- 000 4.00 - -
3.00 2.00 1.00 0.00 I I I E I I I E I
- i I f I L -~400 1 10 100 Time (Hours)
I CALC.LATION No. PM-1056 I KEN.No. 0 I PAGE, 14 of 15
- 8. OWNNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL DESIGN ANALYSIS DESIGN ANALYSIS NO. PM-1056 REV: 0 Yes No N/A
[]
- 1. Do assumptions have sufficient rationale?
2, Are assumptions compatible with the way the plant is operated and with the El licensing basis?. El [] C
- 3. Do the design inputs have sufficient rationale?
- 4. Are design inputs correct and reasonable?
El El [] 0
- 5. Are design inputs compatible with the way the plant is operated and with the licensing basis?
- 6. Are Engineering Judgments clearly documented and justified?
xr
- 7. Are Engineering Judgments compatible with the way the plant is operated and with the licensing basis? El El
- 8. Do the results and conclusions satisfy the purpose and objective of the design analysis?
- 9. Are the results and conclusions compatible with the way the plant i5- operated and with the licensing basis?
~El E
- 10. Does the design analysis include the applicable design basis documentation?
- 11. Have any limitations on the use of the resulls been identified and transmitted to the appropriate organizations? El
- 12. Are there any tnverified assumptions? X E El
- 13. Do all unverified assumptions have a tracking and closure mechanism in place'?
EXELON REVIEWER: ". LiT. 34v/C&3 Print
CALCULATION No. PNI-1056 REV. No. 0 PAGE 15 of 15
- 9. Attachments (Unless noted, Attachments are Calculated By and Checked By the same individuals as the Calculation)
SPREADSHEET (ATh. D) INPUTS: CALC. BY: CHECKED BY Attachment A - Determination of Dale Shailcross/ Lowell Yemin Total Exposed Cable Quantities Harold Rothstein Inside CoDtainment Attachment B - Dose Assessment, Aleem Boatright Paul Reichert Core Cs & I Inventory, and Gamma Mean Free Path Determination Attachment C - pH Transient Spreadsheet Attachment D - pH Transient Spreadsheet Cell Formulas Attachment E - pH Transient - Grand Gulf Reference Data Attachment F - Reference 5.1 Attachment G - Reference 5.2 Attachment H - Computer Disclosure Sheet
"Suppression Pool pH Calculation for Alternative Source Term" Attachment A Determination of Total Exposed Cable Quantities Inside Containment for Assessment of Impact of Radiolytic Chlorine Releases on Suppression Pool pH I. Purpose The purpose of this attachment is to provide a conservative basis for the calculation of Hydrochloric Acid addition to the suppression pool from radiolysis of exposed chloride-bearing materials inside the drywell during post-Loss of Coolant Accident (LOCA) conditions. The primary exposed chloride-bearing materials are the DuPont Hypalon (or Hypalon-like chlorosulfonated polyethylene rubbers from other manufacturers, such as Okonite) jackets typically used on containment power and control cable. Post-LOCA in-containment radioactivity exposure to these materials can lead to radiolytic breakdown with free chlorine radicals available for carryover as hydrochloric acid to the suppression pool by containment sprays or condensation, with resulting decreases in suppression pool pH. Cables in sealed metal conduits can be excluded from consideration, as there is no mechanism for any significant HCI produced to be released through the conduit (even if connections are assumed to leak, the HCI vapor formed is so chemically reactive that no significant amount would remain unreacted and available for release).
- 2. Background and Approach PBAPS Station Electrical Engineer Dale Shallcross developed a listing of the total drywell exposed cable inventory from the INDMS database. The resulting data on cable types and codes, location and length were tabulated and provided to WGI. Following subsequent WGI discussions with Mr.Shallcross on December 26, 2002, he confirmed the data would be a conservative approximation if an additional 10% of cable area is used to account for any missed cable and ifa 5% free air addition is made. He also provided by fax of that date a listing of cable codes vs. their maximum cable outer diameter. This data for each unit were listed in the following spreadsheets with the formulas shown on the last 2 pages (corresponding to the first and last page of the spreadsheets for each unit).
Mr. Shallcross also indicated that there is no cabling underwater or in the air space of the suppression pool. Hypalon may be used not only as an external cable jacket material, but also as a filler inside the jacket. Therefore, to conservatively account for such Hypalon use and in accordance with the equivalent assumptions used by Grand Gulf in Reference 5.2 of Calculation PM-1056, an equivalent chlorine-containing material thickness of 80% of the cable radius is used, considered as 100% Hypalon. Additional conservatism is provided by inclusion of all cable types as if they are all Hypalon or Hypalon-equivalent jacketed.
- 3. Results The data was used to develop individual and total cable volumes and the resulting volume-average cable radius [derived as the square root of the quantity (Total Cable Volume divided by pi and the Total Cable Length)]. The Hypalon thickness was then derived as 80% of this average cable radius. The calculations indicate that Unit 2 has the greater surface area of 1,837,364 square centimeters, and Unit 3 has the greater Hypalon average thickness of 0.70514 centimeters. For conservatism, this combination of the worst case from each unit is used.
PM-1056, Rev. 0, Attachment A Page A-I of A-49
PBAPS pH Calc., Draft Rev. 0 Attachment B Part 1: Determination of Post-LOCA Drywell/Torus and Suppression Pool Integrated y and 13 Energy, and Suppression Pool Integrated Doses for Suppression Pool pH Determination Part 2: Core Cesium and Iodine Determination
&
Part 3: Drywell and Torus Gamma Mean Free Path Determination
- 1. Part I Purpose The purpose of this analysis is to determine Post-LOCA Drywell/Containment and Suppression Pool Integrated y and 13energies, and Suppression Pool Integrated Doses for Suppression Pool pH Determination. This data is used in Attachment C of this calculation to detennine the radiolytic generation of acid input to the suppression pool.
During a DBA-LOCA, analyzed using Alternative Source Terms (AST), radioactivity is released from the reactor, first during a 1/2 hour gap release period, and then during an early in-vessel release period. Activity is then removed froin containment by decay only for conservatism and simplicity.
- 2. Approach This attachment calculates the total integrated ?yand 13energy released into drywell/containment at specific points in time, and total y plus 13Dose in the Suppression Pool water. For conservatism in this calculation, all activity is instantly distributed into the drywell and containment airspaces. The data is then used by the spreadsheets in Attachment C to calculate the change in the pH of the pool water as a function of time.
Initial activity in the core is taken from Reference 5.11. Release fractions and timing are per R.G. 1.183, Table 1. For simplicity, and because of its negligible effect, no credit is taken for the 121-second minimum anticipated time before the start of gap activity. No credit is taken for natural' deposition or suppression pool scrubbing. This maintains aerosols airborne to conservatively simulate theoretical plateout contributions. In general, significant amounts of plated-out material are likely to be washed into the suppression pool by condensed vapor flow or containment spray. Simultaneously, all non-noble gas releases are assumed to be instantly transported to, and uniformly mixed in, the suppression pool water. The calculation of the dose in the pool water, and the integrated energies from radiation in drywell/containment, parallel each other, up to the point of determining the total integrated y and 13energy released into containment at the specific time-steps used by Entergy in their GGNS Suppression Pool pH Analysis Calculation (No. XC-Q1 111-98013); the basis for this part of the Peach Bottom AST analysis. First, for each isotope the following list of parameters must be calculated or acquired: Parameter Origin Decay Constant RadTrad Standard Library Values Release Fractions from 0 to 0.5 hours and Reg. Guide 1.183, Table 1 0.5 to 2 hours PM-1056, Rev. 0, Attachment B, Page B-I of B-14
Initial Core Activity Reg. Guide 1.183 Activity in Drywell/Containment due to Calculated Herein, seebelow Gap Release at 0.5 hours Time Integrated Activity through 0.5 hours Calculated Herein, see below of Gap Release Activity in Drywell/Containnment due to Calculated Herein, see below Early In-vessel Release at 2 hours Time Integrated Activity through 2 hours of Calculated Herein, see below Early In-vessel Release Total Time Integrated Activity Released Calculated Herein, see below through 2 hours Total Activity in Drywell/Containnment at 2 Calculated Herein, see below hours Gamma (Photon) Emission Energy Radioactive Decay Data Tables, by David C. Kocher [Ref. 5.12] as compiled in RadDecay program Beta Particle Emission Energy Radioactive Decay Data Tables, by David C. Kocher [Ref. 5.12] as compiled in RadDecay program Calculated Values In order to evaluate the activity in containment, and subsequently the concentration of activity, it was necessary to develop finctions that took into account the Peach Bottom conditions, while providing the necessary inputs for the analysis model of GGNS.
- Activity in Drvwell/Containment up through 0.5 Hours (Due to Gap Release) a G(.5) = Ji05 X 0.5 0'e-0.5 =fo-0. x a'e -10.5 0.5 aG(;) = 4fo- t a,-e 0.5 f ,,=activity release fraction at 30 minutes, variable depending on isotope a,,= initial core activity, variable depending on isotope (Ci) e= constant 2= decay constant, variable depending on isotope (hours-')
t= time (hours) ('/t).5)= release fraction buildup over 0.5 hours related linearly (as done in RadTrad) Activity in Drywell/Containment up through 2 Hours (Due to Early In-vessel Release) 2-0.5 e-AM Ae- -A aE(2 ) =.fS-2 x- x ,, x J'5-2 xa,e 1.5 t -_. a _E(2)=J- x-1.5 xa,e PM-1056, Rev. 0, Attachment B, Page B-2 of B-14
f/*.5= activity release fraction at 2 hours, variable depending on isotope a,,= initial core activity, variable depending on isotope (Ci) e= constant A= decay constant, variable depending on isotope (hours- ) t= time (hours) (V1.5)= release fraction buildup over 1.5 hours related linearly (as done in RadTrad) Time Integrated Activity through 0.5 Hours (from Gap Release) aG(t) = ar, x ./,-0.5 x< 0. e 5 0.50. 0.5 0.5 AGOO-S.= faG(t)d(-1t '10. -= Jte-'dt 0 0 AGO-0O. -- \,-/0 0.5A.
- [1 - e-°" -. (0.52 + 1)] * :=activity release fraction at 2 hours, variable depending on isotope (1/,.)= release fraction buildup over 0.5 hours related linearly (as done in RadTrad) a,,= initial core activity, variable depending on isotope (Ci) e= constant 2= decay constant, variable depending on isotope (hours-)
t= time (hours) ac,(t)= activity in containment as a function of time, due to gap release (Ci) AGo_, .= 5 time integrated activity though 0.5 hours due to gap release (Ci-hours) Time Integrated Activity through 2 Hours (from Early In-vessel Release) aE (t) = a e- X .105 x x x [Note: Here i starts after 0.5 hour] 1.5 Sa,,e- 'x ,/0.S-z 1.5te-Aldt AEO- , = t)d,-t .E5 0 0 2 A E0 -I.~5 IA 2 . - e-""S(1.52 + 1) f.-0.5= activity release fraction at 2 hours, variable depending on isotope (//..)= release fraction buildup over 1.5 hours related linearly (as done in RadTrad) a,,= initial core activity, variable depending on isotope (Ci) e= constant A= decay constant, variable depending on isotope (hours-) t= time (hours) aE(t)= activity in containment as a function of time, due to early in-vessel release (Ci) AEOI.5= time integrated activity from 0.5 to 2 hours due to early in-vessel release (Ci-hours), after shutdown Total Time Integrated Activity Released in Drywell/Containment through 2 Hours A 2,,,,, = A GO0.5 + A E0-.5 PM-1056, Rev. 0, Attachment B, Page B-3 of B-14
AGO,,5= time integrated activity though 0.5 hours due to gap release (Ci-hours) AEOI-= time integrated activity froni 0.5 to 2 hours due to early in-vessel release (Ci-hours), after shutdown Total Activity in Drywell/Containment at 2 Hours. a(2),,,,= a(2) + a(0.5) x e-'5 a(0.5)= activity present in containment at 0.5 hours e= constant
,= decay constant, variable depending on isotope (hours-)
t= time (hours) When the above values are obtained for each isotope, the Activity in Containment can be calculated at given times, and subsequently the energy from the activity can be calculated in the following manner: Total Time Integrated Activity in Drywell/Containment at Specific Times (t hours) 2 a,i,,, = ( ') x (1 - eI't ) + A, a(2)1,,,,,= total activity in containment at 2 hours (Ci) a,,,,,,*= total time integrated activity released through 2 hours (Ci-hours) 2= decay constant, variable depending on isotope (hours-') t= time (hours) At this point, the above equation is used to calculate the activity at the given timesteps, due to 7 P3 and radiation and the values are sunmmed for all contributing sources, as used in the GGNS analysis model. Finally, the activity's radiation energy concentration is calculated by dividing over the airspace volume of containment. Subsequently, this data is input into the spreadsheet of Attachment C to calculate the concentration of HCI that results in the pool (due to the release of chlorine from the radiolysis of cables in primary containment), and its contribution to the pH transient. Of additional concern is the formation of Nitric Acid (HNO3), which contributes to the transient calculated in Attachment C, by serving to lower the pH in the pool. Any activity from sources found inunediately in the pool water is a factor in this acid's formation; therefore a dose to the water must also be calculated. Because the noble gas sources stay gaseous and do not mix with the pool water, we need only to consider non-noble gas sources in this calculation. As stated P3 earlier, up to the point of determining the total integrated y and energy released into containment at the specific time-steps, the calculation, of the dose in the pool water, and the integrated energies from radiation in containment parallel each other. As before, the activities at given timesteps are summed for all contributing sources and the radiation energy concentration is calculated. However, the Entergy designed spreadsheet used in Attachment C uses a dose value for its calculation directly to HNO3 concentration, so it was necessary to convert the energy concentration (MeV/cm 3) to dose (Mrad). The conversion factor PM-1056, Rev. 0, Attachment B, Page B-4 of B-14
was detenrined to equal 1.60209E-14 (Mrad/(MeV/cm3)h. When all concentrations were converted to doses, the y and P3 values were sumnmed and input into Attachment C to calculate the concentration of HNO 3 formed, and its contribution to the pH transient. Part 2: Core Cesium and Iodine Determination Cesium and Iodine released from the core during the DBA-LOCA have an impact on suppression pool pH. lodines can contribute to the formation of hydriodic acid, HI, and cesiums contribute to formation of Cesium Hydroxide, CsOH. There is significantly more Cesium available and released from the core than Iodine. Therefore, these materials lead the suppression pool to be basic essentially from the beginning of fission product release. The quantities of Cesium and Iodine, tabulated on page B-14, were taken from the PBAPS Loss of Coolant Accident (LOCA) calculation's attached Source Terms. Part 3: Drvwell and Containment Gamma Mean Free Path Determination Gamma mean free paths in the drywell are used to conservatively assess the size of the contained cloud that will irradiate cable. The determination of these values is perforned in a manner identical to that used for the GGNS assessment. That is, for the drywell, the entire radius of 34 feet from the reactor center to the drywell wall is used, neglecting shielding provided by the vessel and shield. PM-1056, Rev. 0, Attachment B, Page B-5 of B-14
PM-1056. Re-. 0 Att-ah nl-B
PM.1056.Rv 0. Atmchmenl 6
*41I IT If I8
PM-.W56. Rev.O.Attachment 8 U6? 6E 9E
PM 1056 Rev0. Aih*thmen,B Isotopic Class Nuclide 24 Hours 96 Hours 720 Hours 24 Hours 96 Hours 9 Am-241 1.31E-02 5.47E-02 4.15E-01 1.10E+02 4.56E+02 6 Ba-1 39 4.41E+02 4.41 E+02 4.41 E+02 3.68E+06 3.68E+06 6 Ba-140 9.05E+03 3.48E+04 1.45E+05 7.55E+07 2.90E+08 8 Ce-141 2.11 E+02 8.52E+02 4.98E+03 1.76E+06 7.11 E+06 8 Ce-143 1.53E+02 3.48E+02 4.03E+02 1.28E+06 2.90E+06 8 Ce-144 1.81 E+02 7.49E+02 5.51 E+03 1.51E+06 6.25E+06 9 Cm-242 5.96E+00 2.47E+01 1.77E+02 4.97E+04 2.06E+05 9 Cm-244 1.15E+00 4.79E+00 3.63E+01 9.59E+03 3.99E+04 7 Co-58 3.63E+00 1.49E+01 9.98E+01 3.03E+04 1.24E+05 7 Co-60 4.36E+00 1.82E+01 1.37E+02 3.64E+04 1.52E+05 3 Cs-134 1.14E+04 4.75E+04 3.56E+05 9.49E+07 3.96E+08 3 Cs-1 36 3.38E+03 1.31 E+04 5.51 E+04 2.82E+07 1.09E+08 3 Cs-137 1.01E+04 4.24E+04 3.21 E+05 8.46E+07 3.53E+08 2 1-131 7.24E+04 2.67E+05 8.56E+05 6.04E+08 2.23E+09 2 1-132 1.11E+04 1.11E+04 1.11 E+04 9.22E+07 9.23E+07 2 1-133 1.05E+05 1.90E+05 1.99E+05 8.79E+08 1.59E+09 2 1-134 3.76E+03 3.76E+03 3.76E+03 3.13E+07 3.13E+07 2 1-135 4.96E+04 5.47E+04 . 5.47E+04 4.14E+08 4.56E+08 1 Kr-85 3.56E+03 1.48E+04 1.12E+05 2.97E+07 1.24E+08 1 Kr-85m 1.45E+04 1.49E+04 1.49E+04 1.21E+08 1.25E+08 1 Kr-87 5.34E+03 5.34E+03 5.34E+03 4.45E+07 4.45E+07 1 Kr-88 2.35E+04 2.36E+04 2.36E+04 1.96E+08 1.97E+08 9 La-140 7.85E+01 1.95E+02 2.42E+02 6.55E+05 1.63E+06 9 La-141 1.66E+01 1.69E+01 1.69E+01 1.39E+05 1.41 E+05 9 La-142 4.68E+00 4.68E+00 4.68E+00 3.91 E+04 3.91 E+04 7 Mo-99 1.04E+03 3.1OE+03 4.91 E+03 8.71 E+06 2.58E+07 9 Nb-95 8.70E+01 3.52E+02 2.10E+03 7.26E+05 2.94E+06 9 Nd-147 3.32E+01 1.26E+02 4.86E+02 2.77E+05 1.05E+06 8 Np-239 2.72E+03 7.68E+03 1.12E+04 2.27E+07 6.40E+07
- 9. Pr-143 7.51E+01 2:90E+02 1.24E+03 6.26E+05 2.42E+06 8 PU-238 1.22E+00 5.09E+00. 3.86E+01 1.02E+04 4.25E+04 8 Pu-239 5.86E-02 2.05E-01 1.47E+00 4.89E+02 1.71 E+03 8 Pu-240 1.26E-01 5.28E-01 4.01 E+00 1.05E+03 4.40E+03 8 Pu-241 2.45E+01 1.02E+02 7.71 E+02 2.04E+05 8.49E+05 3 Rb-86 1.11E+02 4.39E+02 2.16E+03 9.26E+05 3.66E+06 7 Rh-105 4.93E+02 1.16E+03 1.37E+03 4.11 E+06 9.64E+06 7 Ru-103 9.89E+02 4.01E+03 2.45E+04 8.25E+06 3.35E+07 7 Ru-105 1.52E+02 1.57E+02 1.57E+02 1.27E+06 1.31 E+06 7 Ru-106 3.71 E+02 1.54E+03 1.14E+04 3.10E+06 1.29E+07 4 Sb-127 9.90E+02 3.21 E+03 6.28E+03 8.26E+06 2.68E+07 4 Sb-129 8.88E+02 9.12E+02 9.12E+02 7.41 E+06 7.61 E+06 5 Sr-89 4.94E+03 2.02E+04 1.29E+05 4.12E+07 1.68E+08 5 Sr-90 6.29E+02 2.62E+03 1.98E+04 5.25E+06 2.18E+07 5 Sr-91 2.77E+03 3.42E+03 3.43E+03 2.31 E+07 2.86E+07 5 Sr-92 8.28E+02 8.30E+02 8.30E+02 6.90E+06 6.92E+06 7 Tc-99m 3.24E+02 3.50E+02 3.50E+02 2.70E+06 2.92E+06 4 Te-127 4.72E+02 5.78E+02 5.79E+02 3.94E+06 4.83E+06 4 Te-127m 1.81 E+02 7.45E+02 5.21 E+03 1.51 E+06 6.22E+06
4 Te-129 1.39E+02 1.39E+02 1.39E+02 1.16E+06 1.16E+06 4 Te-129m 7.73E+02 3.12E+03 1.84E+04 6.45E+06 2.61E+07 4 Te-131m 1.89E+03 4.11E+03 4.63E+03 1.58E+07 3.43E+07 4 Te-132 1.63E+04 5.08E+04 8.93E+04 1.36E+08 4.24E+08 1 Xe-133 4.81E+05 1.66E+06 4.01E+06 4.02E+09 1.39E+10 1 Xe-135 5.97E+04 7.24E+04 7.25E+04 4;98E+08 6.04E+08 9 Y-90 5.68E+00 1.67E+01 2.60E+01 4.74E+04 1.39E+05 9 Y-91 6.42E+01 2.63E+02 1.72E+03 5.36E+05 2.19E+06 9 Y-92 1.16E+01 1.18E+01 1.18E+01 9.71E+04 9.82E+04 9 Y-93 2.36E+01 2.98E+01 2.98E+01 1.97E+05 2.48E+05 9 Zr-95 8.68E+01 3.56E+02 2.35E+03 7.24E+05 2.97E+06 9 Zr-97 5.10E+01 8.23E+01 8.40E+01 4.25E+05 6.86E+05
720 Hours 3.46E+03 3.68E+06 1.21 E+09 4.16E+07 3.36E+06 4.60E+07 1.48E+06 3.03E+05 8.343E+03 8.33E+05 1.14E+06 2.97E+09 4.60E+08 2.68E+09 7.14E+09 9.23E+07 1.66E+09 3.13E+07 4.56E÷08 9.37E+08 1.25E+08 4.45E+07 1.97E+08 2.02E+06 1.41E+05 3.91 E+04 4.1OE+07 1.75E+07 4.05E+06 9.32E+07 1.04E+07 3.22E+05
.1.23E+04 3.35E+04 6.43E+06 1.80E+07 1.14E+07 2.04E+08 1.31 E+06 9.52E+07 5.24E+07 7.61 E+06 1.08E+09 1.66E+08 2.86E+07 6.92E+06 2.92E+06 4.83E+06 4.35E+07
1.16E+06 1.54E+08 3.86E+07 7.45E+08 3.35E+10 6.05E+08 2.17E+05 1.43E+07 9.82E+04 2.49E+05 1.96E+07 7.01 E+05
Isotopic Class Nuclide 24 Hours 96 Hours 720 Hours 24 Hours 96 Hours 9 Am-241 3.19E-02 1.33E-01 1.01E+00 1.10E+02 4.56E+02 6 Ba-1 39 1.07E+03 1.07E+03 1.07E+03 3.68E+06 3.68E+06 6 Ba-140 2.20E+04 8.46E+04 3.52E+05 7.55E+07 2.90E+08 8 Ce-141 5.14E+02 2.07E+03 1.21E+04 1.76E+06 7.11 E+06 8 Ce-143 3.72E+02 8.46E+02 9.80E+02 1.28E+06 2.90E+06 8 Ce-144 4.39E+02 1.82E+03 1.34E+04 1.51 E+06 6.25E+06 9 Cm-242 1.45E+01 6.OOE+01 4.31E+02 4.97E+04 2.06E+05 9 Cm-244 2.80E+00 1.16E+01 8.82E+01 9.59E+03 3.99E+04 7 Co.58 8.83E+00 3.62E+01 2.43E+02 3.03E+04 1.24E+05 7 Co-60 1.06E+01 4.42E+01 3.34E+02 3.64E+04 1.52E+05 3 Cs-1 34 2.77E+04 1.16E+05 8.67E+05 9.49E+07 3.96E+08 3 Cs-1 36 8.22E+03 3.18E+04 1.34E+05 2.82E+07 1.09E+08
.3 Cs-1 37 2.47E+04 1.03E+05 7.82E+05 8.46E+07 3.53E+08 2 1-131 1.76E+05 6.50E+05 2.08E+06 6.04E+08 2.23E+09 2 1-132 2.69E+04 2.69E+04 2.69E+04 9.22E+07 9.23E+07 2 1-133 2.56E+05 4.63E+05 4.83E+05 8.79E+08 1.59E+09 2 1-134 9.14E+03 9.14E+03 9.14E+03 3.13E+07 3.13E+07 2 1-135 1.21E+05 1.33E+05 1.33E+05 4.14E+08 4.56E+08 9 La-140 1.91 E+02 4.74E+02 5.89E+02 6.55E+05 1.63E+06 9 La-141 4.04E+01 4.12E+01 4.12E+01 1.39E+05 1.41 E+05 9 La-142 1.14E+01 1.14E+01 1.14E+01 3.91 E+04 3.91 E+04 7 Mo-99 2.54E+03 7.54E+03 1.20E+04 8.71 E+06 2.58E+07 9 Nb-95 2.12E+02 8.57E+02 5.1OE+03 7.26E+05 2.94E+06 9 Nd-147 8.09E+01 3.07E+02 1.18E+03 2.77E+05 1.05E+06 8 Np-239 6.62E+03 1.87E+04 2.72E+04 2.27E+07 6.40E+07 9 Pr-143 1.83E+02 7.06E+02 3.03E+03 6.26E+05 2.42E+06 8 Pu-238 2.97E+00 1.24E+01 9.39E+01 1.02E+04 4.25E+04 8 Pu-239 1.42E-01 4.98E-01 3.58E+00 4.89E+02. 1.71E+03 8 Pu-240 3.06E-01 1.28E+00 9.76E+00 1.05E+03 4.40E+03 8 Pu-241 5.95E+01 2.48E+02 1.88E+03 2.04E+05 8.49E+05 3 Rb-86 2.70E+02 1.07E+03 5.26E+03 9.26E+05 3.66E+06 7 Rh-105 1.20E+03 2.81E+03 3.33E+03 4.11 E+06 9.64E+06 7 Ru-103 2.41 E+03 9.76E+03 5.95E+04 8.25E+06 3.35E+07 7 Ru-105 3.70E+02 3.81E+02 3.81E+02 1.27E+06 1.31 E+06 7 Ru-106 9.03E+02 3.75E+03 2.78E+04 3.1OE+06 1.29E+07 4 Sb-1 27 2.41 E+03 7.81E+03 1.53E+04 8.26E+06 2.68E+07 4 Sb-129 2.1.6E+03 2.22E+03 2.22E+03 7.41 E+06 7.61 E+06 5 Sr-89 1.20E+04 4.91E+04 3.14E+05 4.12E+07 1.68E+08 5 Sr-90 1.53E+03 6.37E+03 4.83E+04 5.25E+06 2.18E+07 5 Sr-91 6.75E+03 8.33E+03 8.34E+03 2.31 E+07 2.86E+07 5 Sr-92 2.01 E+03 .2.02E+03 2.02E+03 6.90E+06 6.92E+06 7 Tc-99m 7.89E+02 8.51E+02 8.51E+02 2.70E+06 2.92E+06 4 Te-127 1.15E+03 1.41E+03 1.41E+03 3.94E+06 4.83E+06 4 Te-1 27m 4.40E+02 1.81E+03 1.27E+04 1.51 E+06 6.22E+06 4 Te-129 3.38E+02 3.38E+02 3.38E+02 1.16E+06 1.16E+06 4 Te-129m 1.88E+03 7.60E+03 4.48E+04 6.45E+06 2.61 E+07 4 Te-131m 4.60E+03 1.OOE+04 1.13E+04 1.58E+07 3.43E+07 4 Te-132 3.97E+04 1.24E+05 2.17E+05 1.36E+08 4.24E+08
9 Y-90 1.38E+01 4.06E+01 6.33E+01 4.74E+04 1.39E+05 9 Y-91 1.56E+02 6.40E+02 4.18E+03 5.36E+05 2.19E+06 9 Y-92 2.83E+01 2.86E+01 2.86E+01 9.71 E+04 9.82E+04 9 Y-93 5.73E+01 7.24E+01 7.25E+01 1.97E+05 2.48E+05 9 Zr-95 2.11 E+02 8.66E+02 5.73E+03 7.24E+05 2.97E+06 9 Zr-97 1.24E+02 2.OOE+02 2.04E+02 4.25E+05 6.86E+05
720 Hours 3.46E+03 3.68E+06 1.21E+09 4.16E+07 3.36E+06 3.43E+03 4.60E+07 1.48E+06 3.03E+05 8.33E+05 1.14E+06 2.97E+09 4.60E+08 2.68E+09 7.14E+09 9.23E+07 1.66E+09 3.13E+07 4.56E+08 2.02E+06 1.41 E+05 3.91 E+04 4.10E+07 1.75E+07 4.05E+06 9.32E+07 1.04E+07 3.22E+05 1.23E+04 3.35E+04 6.43E+06 1.80E+07 1.14E+07 2.04E+08 1.31 E+06 9.52E+07 5.24E+07 7.61 E+06 1.08E+09 1.66E+08 2.86E+07 6.92E+06 2.92E+06 4.83E+06 4.35E+07 1.16E+06 1.54E+08 3.86E+07 7.45E+08
2.17E+05 1.43E+07 9.82E+04 2.49E+05 1.96E+07 7.01 E+05
pH vs. Time - BEGINNING OF CYCLE. 10.00 ...
............. .....
9.00 _ _ -- _ ..... . . J. - 77771 _ _ __ .-- 8.00 - -.... ... .._-.... . ... 7.00
-- F --. I 6.00 5.00 ... . . . . . . * - - -- t-::: " ith S LC S 4.00 3.00 2.00 1.00 0.00 1 10 100 .1000 Time (Hours)
(PBAPS) PM-1056 Rev 0 AST pH Attachments C, D, E Main Calc Spreadsheets BOC Graph
pH vs. Time - END OF CYCLE 10.00 9.00 i i i i!ii
, , I i
I iI I I L , 8.00 7.00 4Vq 6.00 t- I I INEH 1ý 4ý4 - T-t- Ll
=0. 5.00 Tý 4 Eý Jý ýN ý __________ +
- 1t A
/--wo SLOS with SLCS WC2*_
4.00 t44ývý 4ýq 3.00 44 - I Frtýý-- 2.00 3fla 1.00 0.00 1 _.... 10 Time (Hours) 100 1000 (PBAPS) PM-1056 Rev 0 AST pH Attachments C, D, E Main Calc Spreadsheets EOC Graph
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION A I B C o 6F E GH I K L MN 1 PEACH BOTTOM pH CALCULATION pH TRANSIENT BEGINNING OF CYCLE Cable Data 22 2 2 " Linear Absorption Coefficients 4 SAt,-a [cm ] 2.021.100 Cable Surface [trays]- Drywelt + 10% contingency 3 VpOOL 3.480E+06 Liters. 1122900 ft3 Ubeta air 1.980E-02 1/cm SA 1. [Cm!'l 101.055 Cable Surface [free air]- Drywell + 10% contingency 1 2 4 , mlT 1.700E.02 Iodine inventory [9-atoms] EOC . Uibea hypalon 52.08 1/cm Se e [cm ] 0 Cable Surface [trays] -TORUS + 10% contingency 2 5 mcs
- 1.600E+03 Cesium inventory (g-atoms] EOC'9 Ugarma air 3.75E-05 1/cm S fa [cm ] 0 Cable Surface [free air] - TORUS + 10% contingency 6 tap 3.361E-02 Onset of Gap release [hrsm2Laanma hyPalon .0090 1/cm I 7 r I.*re * -ý!_r-,'OEL) 1036.32 cm th [cm] 070514 Hypalon Jacket ThSckness 8 r -re. erTORUS-AIR]
- 464.82 cm 9 INTEGRATED DOSES 8 0 10 Beta+Gamma' Gamma' Beta"i Gammae Betar8 From Beta From Gamma From Beta From Gamma 11 TIME POOL Temp POOL DRYWELL DRYWELL TORUS AIR TORUS AIR {Hi] - [HNO,3 [HCL] -DRYWELL - [HCL] -DRYWELL [HCL] -CONTAIus[HCL] -CONTAIN"Total [H+]J [CsOH j 12 Hours Dg F" Mrad MeVm MeV/cm g-mols/liter g-molstlsliter g-molslliter g-molts/liter 9-molstliter g-ionstliter g-mols/liter 13 0 80 0 OOE+00 5.012E-06 0.000E+0_
14 1 175 3 120E-07 5.324E-06 4.565E-05 15 2 187 1.435E-01 3415E+12 1.494E612 3+12 7.190E07 1.048E-06 8.077E-07 4.774L-06 0.00E+00 0.000E+00 1.236E-05 9.922E-00 16 2.0336 188 1.496E-01 3.557E+12 1.556E÷12 7071E+12 2.205E+12 7.327E-07 1.092E-06 8.414E-07 4.973E-06 0.OOOE.00 0.OOOE+00 1.265E-05 1.010E-04 17 3 192 3.093E-01 7.224E+12 3.184E+12 1.452E+13 4.654E+12 7.327E-07 2 258E-06 1.722E-06 1.010E-05 0.OOOEO00 0.000E+00 1.982E-05 1.010E-04 18 5 199 5.717E-01 1.299E+13 5.868E+12 2.658E+13 8.862E+12 7.327E-07 4.174E-06 3.173E-06 1.816E-05 0.000E+00 0.0006+00 3.125E-05 1.010E-04 19 12 204 1.189E+00 2.485E+13 1.227E+13 5.412E+13 1.958E+13 7.327E-07 8680E-06 6633E-06 3.473E-05 0.OOOE+00 0.000E+00 5.579E-05 1.010E-04 20 18 198 1.557E+00 3.103E+13 1.624E+13 7.012E+13 2.639E+13 7.327E-07 1.136E-05 8.782E-06 4.338E-05 0 OOOE+00 0.000E+00 6.927E-05 1.010E-04 21 24 197 1.852E+00 3.578E+13 1.953E+13 8.281E+13 3.199E61 3 7327E-07 1.352E-05 1.056E-05 5.002E-05 0.000E+00 0.000+E00 7.985E-05 1.010E-04 22 48 190 2.700E+00 4.929E+13 2.943E+13 1.194E+14 4801E+13 7.327E-07 1.971E-05 1.592E-05 6.890E-05 0.000E+00 0.0006+00 1.103E-04 1.010E-04 23 72 177 3.319E600 5.937E+13 3.686E+13 1.466E+14 5910E+13 7.327E-07 2.423E-05 1.993E-05 8.300E-05 0.000E+00 0.0006+00 1.329E-04 1.010E-04 24 96 160 3.839E600 6801E+13 4.306E613 1.700E+14 6.796E+13 7.327E-07 2802E-05 2.329E-05 9.506E-05 0.000E+00 .0.000+E00 1.521E-04 1010E-04 25 120 153 4.304E+00 7578E+13 4.847E613 1.912E+14 7.562E+13 7.327E-07 3.142E-05 2 621E-05 1 059E-04 0 000E+00 0.000E+00 1.693E-04 1.010E-04 26 150 149 4839E+00 8.466E+13 5.441E+13 2.157E+14 8.420E+13 7.327E-07 3 532E-05 2.943E-05
- 1.183E-04 0.0006+00 0.0006E00 1 BBE-04 1.010E-04 27 200 142 5.651E+00 9.801E613 6279E+13 2.534E+14 9.696E+13 7.327E-07 4.125E-05 3.396E-05 1.370E-04 0000E+00 00006+00 2.180E-04 1.010E-04 28 240 138 6.250E+00 1.077E+14 6.844E-13 2.813E+14 1.062E+14 7327E-07 4.562E-05 3.701E-05 1.505E-04 0.000E+00 00006+00 2.389E-04 1.010E-04 29 300 132 7.081E+00 1.209E+14 7.557E+13 3.202E+14 1.188E+14 7.327E-07 5.169E-05 4.087E-05 1.689E-04 0.000E+00 0.000E+00 2.672E-04 1.010E-04 30 360 127 7.847E+00 1.328E+14 8.146E+13 3.563E614 1 301E+14 7.327E-07 5.729E-05 4.406E-05 1.856E-04 0.000E+00 0.0006+00 2.927E-04 1.010E-04 31 400 124 8.328E+00 1.402E+14 8.486E+13 3.791E+14 1 37.1E+14 7.327E-07 6.079E-05 4.589E-05 1.960E-04 0.O00E+00 0.000E+00 3.084E-04 1.010E-04 32 480 123 9.230E+00 1 540E+14 9.071E613 4.221E+14 1.500E+14 7.327E-07 6.738E-05 4.905E-05 2.152E-04 0.000E+00 0.000E+00 3.374E-04 1010E-04 33 600 120 1.047E+01 1.727E+ 14 97806+13 4.817E+14 1.672E+14 7.327E-07 7.642E-05 5.289E-05 2.413E-04 0.000E+00 0.0006+00 37646-04 1.010E-04 34 700 1 119 1142E+01 1.870E614 1.027E+14 5.280E+14 1.801E+14 7.327E-07 8.338E-05 5.556E-05 2.613E-04 0.000E+00 0.000E+00 4060E-04 1010E-04 35 720 117 1.161E+01 1.897E+14 1.036E+14 5.369E+14 1.825E+14 7.327E-07 8472E-05 5.605E-05 2.652E-04 0.000E+00 0.000E+00 4.117E-04 1.010E-04 36 37 NOTES 141 Acid dissociation constant from: Entery Eng. Report GGNS-98_-0039 Rev.3, Sect.6.1.p.21 38 1 Entergy Eng. Report GGNS-98-0039 Rev.3, Equation 3-1d [30+90 min release duration] 15 Entergy CaIc. XC-011111-98013 Rev.2. Section 5.7 39 2 Ibid. Equation 3-25b16 See attachment B for gamma free paths 40 3 Ibid. 6uation 3E 4d 30.90 min release durationi PBAPS UFSAR Fig. 14.6.12 IRev.14) and Fig. I_4.6.12A (Rev. 15) 41 4 Ibid. Table A-1 18 A.ttachment B 42 5 Ibid. Equation 3-3a 19 Attachment B 43 6 Ibid, Equalion 3-3b 20 USNRC Reg. Guide 1 13
- 44. 7 Ibid, Equation 3-5a: Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 21 Tech Spec SR 3.1 7.7 minimum B-10 stored in SBLC tank of 162.7 lbs, conservatively less than from 45 8 Ibid, Equation 3-5b: Entergy CaIc. XC-011111-98013 Rev.2, Section 5-7 plant chemistry data transmited via E-mail by Mark G. Fry on 12/27/2002, 46 9 Ibid. Equation 3-0a; Entergy CaIc. XC-O11111-98013 Rev.2, Section 5-7 ncluded as Attachment H. 65 atom % B-10 enrichment used, bounding 47 10 Ibid. Equation 3-5d, Entergy Cate. XC-Q11111-98013 Rev.2. Section 5-7 the=igbest 635 atom% B-10 from Attachment H 48 11 Ibid. Equation 3-5d; Entergy CaIc. XC-Q11111-98013 Rev.2. Section 5-7 22 1Cable ata from Attachment A.
49 12 I bid. Equation 3-5e: Entergy Calc. XC-Q11111-98013 Rev.2, Section 5-7 50 13 Min. Suppression Pool volume from PBAPS Tech. Spec. Bases B 3.6.2.2 PM-1056; Rev. 0, Attachment C, Page C-1 of C-4
. PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOl. pH CALCULATION P . R S T U I V W Y Z AA. AB 1 PH TRANSIENT BEGINNING OF CYCLE I I 2 Cable Data 1 1134.24 g. mots Na 2B, 0O,6*10H2O Added 3 1.837,364 Cable Surface [Trays] - DRYWELL (cm2] 162.7 73799.09 lb/grams B-10"Y 10.01 atomic ml. B-10 4 91,868 Cable Surface [Free air] - DRYWELL [cm2] 65.60 atom % B-10" 7372.54 g. atoms B-10 5 0 Cable Surface [Free air] - TORUS [cm2] 11342.36 g.atoms total boron 6 0 Cable Surface [Trays) - TORUS [cm2]
8 pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY LIQUID CONTROL [SLC] SOLUTION 10
" Total (OH.) -LO(Kw) x -Root Net[H]] pH t Strong Acid g-equiv. Na2BoOlB't0H2Oj . "
Borate Boric Acid pl<, pH
- 12) g-ions/liter g-ions/liter Before SLC I Net [H+]
- Vo, g-mols . I a-ectuis. I a-oasis. I *log.K, 15 131 1.995E-09 1.394E+01 I -3.197E-101 5 012E-06 1.744E+0J1 1134.2 2251
'1 90911 "9.2 M.62 14 1 4.565E-05 2072E-021 1134.2 2 9074 8.941 8.4 "151 "9.922E-05 1.278E-02. 1134.2 2268 9074 8.911 * .3 8.431 1.231E-0E 1.285E-0: 1134.2 2266 90741 8.91 8.31 8.361 1.254E-091 1.528E-021 1134.2 2268 90741 890 8.30 18 1.010E-041 1.238E+01I 3.125E-051 5.938E-091 8.231 1.295E-00 2.066E-0; 1134.2 2268 90741 8.89 8.29 191 1.010E-041 1.234E+01I 5.578E-05 1 014E-081 7.991 1.324E-091 3.530E-021 1134.2 2268 8.28 20 1.010E-04 1.239E+01I 6.926E-051 1.277E-081 7.891 1.289E-00 4 445E-0 1134.2 2268 8.29 iTI 1.010E-041 1.240E+01 I 7.983E-051 1.875E-1 7t. 1134.2 2268 9074 8.29 22 1.010E-04 1.247E+01 1.010E-04 9.289E-06 5031 1.242E-00 1134.2 2236 9106 8.30 23 1.010E-04 1.2606+01 1.0106-04 3.189E-05 4 50 1.166E-00 1.110E+0; 1134.2 2157 9185 893 8.30 24 1.010E-04 1.0671-091 1 779E+021 11342 2091 9252 8.971 8.331 25 1 31 4.171 1.026E-09 2.377E+0: 1134.2 2031 9312 8 99 8.33 1 4.061 1.003E-091 3.056E+021 1134.2 1963 9380 9.00 8.32 27 1.010E-041 1.301E+01I 1.010E-041 1.169E-041 3.931 9.616E-10 4.070E+0; 1134.2 1862 94811 9.021 8.31 281 1.010E-041 1.306E+011 1.010E-.04 1.379E-041 3.861 9.382M-10 4.798E+02 1134.2 1789 29 1.010E-041 1.314E+011 1.010E-041 1:662E-041 3.781 9.031E-10 5.785E+0; 1134.2 1690 301 1.010E-041 1.321E+011 1.010E-04 1.917E-041 3 721 1134.2 31 1.010E-041 1.325E+011 1 010E-041 2.074E-041 3.681 f 1134.2 321 1.010E-041 1.326E+01 1.010E-04 2 364E-r4 1134.2 1446 98971 907 8.23 33 1.010E-041 1.331 E,01 I 1.010E-041 2.754E-041 1134.2 1310 10032[ 9.081 8.201 34 8.271E-10 1.061E+01 1134.2 1207 101351 9.08 8.16 35 36 37 38 39 40 41 43~ _ _ _ _ _ _ ___ __ _ _ _ _ _ _ _ _
_L5 ______ _____ _____ ______ _____ _____ _______ PM-1056, Rev. 0, Attachment C. Page C-2 of C-4
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION A B I C I F G H I J K L M N 0 1 PEACH BOTTOM pH CALCULATIONI pH TRANSIENT END OF CYCLE Cable Data 2 Linear Absorption Coefficients 4 SAtr1 [cm'] 2.021.100 Cable Surface [trays)- Drywell + 10% contingency 2 3 VPOOL 3.480E+06 Liters [122900 ft'[ Ubeta air 1.960E-02 1/cm SAra [cm ] 101.055 Cable Surface [free air]- Drywell + 10% contingency 4 mi 2.900E+0.2 Iodine inventory {g-atoms] EOC" Ubeta hypalon 52.08 1/cm Se _' [cm2[ 0 Cable Surface [trays] - TORUS + 10% contingency 5 mIc 3.200E+03 Cesium inventory [g-atoms] EOCr Up- air 3.75E-05 1/cm Sea [cm'] 0 Cable Surface [free air] - TORUS + 10% contingency 6 tvap 3.361E-02 Onset of Gap release [hrs] Ugamma hypalon 0099 1/cm. I " 7 rl . h1 l RL-L]s 1036.32 cm th [cm] 0.70514 Hypalon Jacket Thickness " 8rig.. 1- pathTORUS AIR)" 464.82 cm .9 INTEGRATED DOOSES 0 10 _. Beta+Gamma1 Gamma Betaii Gamma1n Beta" From Beta From Gamma From Beta From Gamma 11 TIME POOL Temp POOL DRYWELL DRYWELL TORUS AIR TORUS AIR [HI] [HNO} [HCL[ -ORYWELL [HCL[ -ORYVELL' [HCL[ -CONTAIN [HCL[ -CONTAIN5 Total [H.] r [CsOH[ 12 Hours beg F Mrad MeV/cm MeVeV/c m V/cm
- MeV/cm' g-mols/liter g-mols/liter g-molsiliter 9-moli/liter g-mol/ls/ier 13 0 80 O.00E+00 5.012E-06 0.000E -O-(
14 1 .175 .. 5.322E-07 5.544E-06 9.304E-0,= 15 2 187 1.435E-01 3.415E+12 1.494E012 6.783E+12 2.113E+12 1.227E-06 1.048E-06 8.077E-07 4.774E-06. 0 O0OE+00 O.OO0E+00 1.287E-05 2.024E-01 16 2.0336 188 1.496E-01 3.557E+12 1.556E+12 7.071E+12 2.205E-12 1.250E-06 1.092E-06 8.414E-07 4.973E-06 O.0OE00 0.0O00000 1.317E-05 2.061E-01 17 3 192 3.093E-01 7.224E+12 3.184E+12 1.452E+13 4.654E. +12 1.250E-06 2.258E-06 1.722E-06 1.010E-05 0.OOOE00 O.O000.00 2.034E-05 2.061E-O' 18 5 199 5.717E-01 1.299E-13 5.868E+12 2 6580+13 8.862E0,12 1.250E-06 4.174E-06 3.173E-06 1.816E-05 0.000E+00 0.OOOE+00 3.177E-05 2.061E-0' 19 12 204 1.189E+00 2.485E+13 1.227E+13 5.412E-13 1.958E+13 1.250E-06 8 680E-06 6.633E-06 3 473E-05 O.OOOE+00 O.OOOE+00 5.631E-05 2.061E-0' 20 18 198 1.557E000 3.103E+13 1.624E+13 7.012E+13 2.639E+13 1.250E-06 1.136E-05 8.782E-06 4 338E-05 0 OOOE+00 O.OOOE+00 6.979E-05 2.061E-0' 21 24 197 1 852E+00 3.578E+13 1.953E+13 8.281E+13 3.199E+13 1.250E-06 1.352E-05 1.056E-05 5.002E-05 O.00O0OO+ 0.OO0E+00 8 037E-05 2 061E-0-1 22 48 . 190 2.700E+00 4.929E+13 2 943E+13 1.194E+14 4.801E+13 1.250E-06 1.971E-05 1.592E-05 6.890E-05 0 0000+00 O.O0OE+00 1.108E-04 2.061E-04 23 72 177 3.319E+00 5.937E013 3686E+13 1.466E+14 5.910E+13 1.250E-06, 2.423E-05 1.993E-05 8.300E-05 O.0000+00+ 000010+00 1.334E-04 2.061E-04 24 196 160 3.839E+00 6.801E+13 4.306E013 1.700E+14 6.796E+13 1.250E-06 2.802E-05 2.329E-05 9.506E-05 O.OOE+0000 0.OE000 1.526E-04 2.061E-04 25 120 153 4.304000 75780+13 4.847Eu13 1.9120+14 7.5620+13 1.250E-06 31420-05 2 621E-05 1.059E-04 O.0OOE00 O.OO0E+00 1.698E-04 2.061E-04 26 150 149 . 4 839E+00 8.466E+13 5.4410E13 2.1570+14 8.420E+13 1.2500-06 3.532E-05 2.943E-05 1.183E-04 0.OOOE+00 0.0000+00 1.894E-04 2.061E-04 27 200 142 5.651E000 9.801E+13 6 279E+13 2.534E+14 9 696E+13 1.250E-06 4.125E-05 3.396E-05 1 370E-04 0.000+00 0.00+00 2.1950-04 2.0610-0' 28 240 138 6.250E+00 1.077E+14 6 844E+13 2.813E+14 1.062E+14 1.250E-06 4.562E-05 3.701-05 1.505E-04 0000OO+00 2.3940-04 2.0610-04 29 300 132 7.081E+00 1.209E+14 7.557E+13 3.202E+141 1.188E+14 "1.250E-06 5.169E-05 4.087E-05 1.689E-04 0.0000+00 0.000E000 2.678E-04 2.061E-04 3601 1271 7.847E+OC 1.328E0141 8.146E+13 3 563E+14 1.301E+141 1 250E-061 5.729E-05 4.406E-051 1.856E-04 0.00OE+00 O.00OE+00 2 932E-041 2.061E-04 400 8.328E+00 1.402E+14 8.486E+13 3.791E+141 1.371E+14 . 1 2500-06 6.0790-05 4.589E-05 1.960E-0 0.000E+00 00000+00 3089E-04 2.061E-04 480 9.230E+00 1.540E+14 9.071E+13 4.221E+14 1.500E+14 1.2500-06 67380-05 4.905E-05 2 152E-04 0O00OE+00 0.O00E+00 3.379E-04 2.061E-0' 33 600 1201 1.047E+01 1.727E+14 9.780E+13 4.817E+14 1.672E+14 1.250E-06 7 642E-05 5.289E-05 2.413E-04 0.0000.00 . 0.00E+00 3.769E-04 2.061E-0' 34 700 . 119 1.142E+01 1.870E+14 1.027E+14 5.280E+144 1.801E+14 1.250E-06 8.338E-05 5.556E-05 2.613E-04 0.0000E00 O.O00E+00 4.065E-04 2.061E-0'z 35 *
- 720 1171 1.161E+01 1.897E+14 1.036E+14 5.369E+141 1.825E014 1.250E-06 8.472E-05 5.605E-05 2.652E-04 O.000E+00 0.O00E+00 4.122E-04 2 061E-0/
T6 37 14 Acrd dissocialion constant from: Entergy Eng. Report GGNS-98-l 039 Rev.3, Sect.6.1,p.21 38 v.3, Equalton 3-1d [30+90 min release duration] 1: XC-011111-98013 Roy.2 Section5. 39 1, I B for gamma free paths 40 3 Ibid. E 6 12 Rev 14) and Fin 14 6 12A Rev 1,1 411 4 Ibid, I 18 Attachmenlt 42 5 Ibid. Equation 3-3a 19 Attachment B 43_-_--_--_ 6Fb-id. Equation 3-3b I_______ ______I_________ 7 bid. Equation 3-5a: Entergy Caic. XC-Q11111-98013 Ren.2. Section 5.7 20 USNRC Reg Guide 1.183 21 Tech Spec SR 3 1.7.7 minimum B-10 stonred in SBLC tank of 162.7 lbs, conservatively less than fron 44 45 iquation 3n5b: Entergy Calc. XC-O11111-98013 Rev.2, Section 5-7 Y iplant chemistry data transmitted via E-mail by Mark G. Fry on 12/27/2002. 1 1 1 46 Eguation 3-0a; Entergy Calc. XC-Q11111-98013 Rev.2. Section 5-7 included as Attachment H. 65 atom % B-10 enrichment used, bounding 47 10 Ibid, E 111-98013 Re..2. Section 5-7 the hiohest 63.5 atom% B-10 from Attachment 48 11 Ibid. E 111-98013 Rev.2. Section 5-7 22 Cable Data fromAttachment A. 49 12 Ibid, Equation 3-5e; Entergy Calc. XC-Q1111 50o _--_13 Min Suppression Pool volume from PBAPS - mi _______ I________ . [ ______ I______ PM-1056, Rev. 0, Attachment C. Page C-3 of C4
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION p 0 R S I T I U I v W x Y z AA AEB 1 pH TRANSIENT END OF CYCLE 2 Cable Data 22 1134.24 g. mols Na.1B,00, 10H20 Added 3 1.837,364 Cable Surface [Traes] - DRYWELL (cm21 1627 737999.09 lbgram% B-102' 10.01 atomic m. B-10 4 91,868 Cable Surface [Free air] -DRYWELL [cm2[ 65.00 atom % B-102 7372.54 g atoms B-10 5 0 Cable Surface [Free air] - TORUS [cm2[ 11342.36 g atoms lotal boron 6 0 Cable Surface [Trays] - TORUS [cm2] 8 pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY LIQUID CONTROL [SLC] SOLUTION 9I 10 Strong Acid 11 T. g-equiv. Na 2B,.O16"10H 20 Borate Boric Acid pK. pH 12 9-isosfiter g-ionslliter Before SLC Net (H+]
- V " g-mobs g-eqLiv. g-equa. -IogsK .
13 1.995E-09 1.394E+01 -3.197E-10 5.012E-06 5.30 5.989E-10 1.744E+01 1134.2 2251 9091 9.22 8.62 14 9.305E-05 1.262E01 5.541E-06, 2.745E-09 9.56 1.155E-09 9.553E-03 .1134.2 2269 9074 8.94 8.34 15 2.025E-04 1.250E-01 1 287E-05 1.682E-09 877 1.225E-09 5.855E-03 11342 2269 9074 9.91 8.31 16 2061 E-04 1.249E01 1.317E-05 1 691E-09 8.77 1.231E-09 5.884E-03 1134.2 2268 9074 8.91 8.31 17 2.061E-04 1.245E01 2.034E-05 1.920E-091 972 1.2549-09 6 680E-03 1134.2 2269 9074 990 8.30 18 2.0619E-04 1 236.01 3.177E-05 2.376E-09 9.62 1.295E.09 8.268E-03 1134.2 2269 9074 699 8.29 19 2.061E-04 1.234E+01 5.630E-05 3.063E-09 9.51 1.324E-09 1.066E-02 1134.2 2269 9074 9.69 8.28 20 2.061E-04 1.239E+01 6.979E-05 2.975E-09 8.53 1.289E-09 1.035E-02 1134.2 2269 9074 6.89 8.29 21 2.061E-04 1.240E.01 8.036E-05 3.158E-09 6.50 1.283E0-9 1.099E-02 1134.2 2269 9074 9.89 8.29 22 2.0616-04 1.247E.01 1.108E-04 3.579E-09 8.45 1.242E-09 1.245E-02 1134.2 2269 9074 6.91 8.30 23 2.0616E-04 1.260901 1.3346-04 3.469E-09 8.46 1.166E-09 1.207E-02 1134.2 2269 9074 6.93 8.33 24 2.0616-04 1.279E+01 1.526E-04 3.0536-09 952 1.067E-09 1 062E-02 11342 2269 9074 .97 8.37 25 2.0619E-04 1.287991 1.698E-04 3712E-09 8.43 1.026E-09 1 292E-02 11342 2269 9074 6.99 8.39 26 2061E-04 2 1.292E01 198949-04 7.174E-09 9.14 1003E-09 2.497E-02 1134.2 2268 9074 900 8.40 27 2.0616E-04 1 301901 2.0619-04 1 235-05 4.91 9.6166-110 4.299E+01 1134.2 2225 9117 9.02 8.40 29 2.061E-04 1 3069.01 2.061E-04 3.3269-05 4.46 9.382E-10 1.158E+02 1134.2 2153 9190 9.03 8.40 29 2.0616E-04 1.314201 2.0619E-04 6.164-05 4.21 9.031E-10 2.145E+02 1134.2 2054 9288 9.04 8.39
- 30. 2.061E-04, 1.32101 2.0619E-04 8.711-05 4.06 8.7399-10 3.032E+02 1134.2 1965 9377 9.06 8.38 31 201E0 .2E0 .6E0 .2E0 .9853-0 3.578E +02* 1134.2 191 9432 9.07 8.37 3 2.6E0 1.2E0 2.6E0 .1E0 3.885510 4.587E+02 1134.2 1101 9533 9.071 8.35 5.944E+02 1134.2 74 9668 8.32 3, .6 -4 201 132+1 -4 204-4 30 .7E1 6 974E+02 1134.2 1711 9771 9.88.29 35
.3E0201E0 6 -0 .6E0 618 5 - 7 172E+02 1134 2 1551 9791 9.98.29 41 [-
42 i-490 46 43i 47 44i 49, 45I 46i 47i 48i M5i PM-1056, Reo 0, Attachment C, Page C-4 of C-4
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION A B [ C I D E I F7 I G - I H I 1 PEACH BO1 I pH TRANSIENT 'EGINNING OF CYCL I 2 Linear Absorption I 3 3 VPOOL =122900"28.3168 ;Liters [122900 ft 3 Ueta *ir ;0.0198 1/cm 4 MI =170 Iodine inventory [g-atoms] 152.08 1/cm Uteta hypalon Mi. =1600 Cesium inventory [g-atom Ugamma air 0.0000375 1/cm 6 ______ __________ ___________ ___________ I. ______ 6 t-aa :121/3600 IlOnset of Gap release [hrs Uarmm. hvynnlu 10.099 1/cm 34 7 r (w- mDRWJELLI" = f- P-, -30.48 cm 8 r [g,,. tr p.,TORUS Ae!=15.25*30.48 cm 9 INTEGRATEI)D td 3my 18 10 ,Beta-Gamma In
......... iTRATE Betan *m Beta" . ...... .. .... . ...... 8 11 TIME POOL Temp i POOL DRYWELL DRYWELL TORUS AIR TORUS AIR [HNO3 ] 2 12 Hours I Mrad MeV/cm' MeV/cm" MeV/cm" MeV/cm' I g-mols/liter g-mols/fiter 13 0 80 10 14 1 175 _1 -=$B$41(120*$B$3)'($A14-(0.5-$B$S6))_$B$41(400.$B$3) 15 2 187 0.143500086508842 3415252526559.5 1493516901702.39 16782790405603.09 2112853924362.65 =$B$4/(120*$B$3y*($A15-(0.5+$B$6))+$B$4f(400"$B$3) =0.0000073"$C1 5 16 =0.5+1.5+B6 188 0.149634733015881 3557433766582.65 1555848397608.08 17070702227895.83 2205232001151.76 $B$4/1120 $B$31($At16-0.5+$B$6)).$B$4/(400$B$3) =0.0000073"$C16 17 3 192 0.309341836086142 7223665685898.47 3184466482938.89 14522270407907.7 .4653989461673.07 H$16 =0.0000073"$C17 18 5 199 0.571714238137557 12993742725588.9 5867592321860.4 26579195436675.8 '8861664876224.85 =H$16 =0.0000073-$C18 19 12 204 :1.18897340652801 24846754835583.8 12285274440332.4 54124658556267.7 19580415772096.5 =H$16 =0 0000073*$C19 20 18 198 11.55683327582913 31033162634725.7 16238511537328.7 70115732616255 26393164623873.5 '=H$16 =0.0000073"$C20 21 24 197 11.85191915601109 3578387807763.8 19532321678811.2 F82812650068300.5 31988772986659.7 ý=H$16 =0.0000073*$C21 22 48 190 '2.69999350899574 49289591172808.2 29429378072763.1 119362761252454 48011228084913.2 H$16 =0 0000073"$C22 23 72 ----------- 177 13.31896426382511 59373911524643.9 36857885649250 146641045030486 59103260447932.9 -H$16 =0.0000073'$C23 24 96 160 3.839025927095 68006216910072.3 43061765946118.8 170021885936274 . 67961305910172.6 H$16 25 120 153 [4.30449745517556 75777204350529.3 48460947167744.3 191216585122999 75621430881437 '=H$16 =0.0000073"$C25 26 150 ]149 14.83863042922377 84663108071843.2 54411194958229.2 215749512205084 84199682180048.8 IH$16 27 200 [142 ----------- 15.65123374775693 98005925381916 !62794391540543.6 1253363489030894 96959403927412.6 H$16 000000073$C26 28 240 [138 6.24993554889672 107669540194174 68442614993399.4 1281251300182045 106185426030441 [=H$16 =0.0000073"$C28 0 000n7~$2 29 300 132 :7.08123504117198 120857131002314 75570313182062.1 1320201031278407 118768378954490 H+/-$16 =0.0000073"$C29 30 360 127 7.84729286641128 1132800350275133 81462258405056.5 !356330536069072 130127193615785 !=H$16 =0.0000073"$C30 31 1400 124 8.32796771895153 140208197049268 184862166864990.9 379118949506557 137136062051670 ;=H$16 =.000073"$C31 153971254659635 90707083398776.2 422140895644603 150041841567683 1 H$16 0.000073"$C32 32 480 123 19.23016582533999 33 600 120 .10.4680366999075 172651749035525 97804662138577.5 481694348263629 167224642525045 j=H$16 =.000073"$C33 34 700 119 111.4213133856566 186955852261398 102732737437929 1527952520751998 180060583153812 =H$16 0.000073"$C34 __
35 720 117 11.6052404151638 189712487101709 103642526077636 1536915254530628 182499580739728 '=H$16 =0.0000073"$C35 36 371I NOTES 14 .Acid dissociation constant from: EntergyEng. Report GGNS-98-00 381 Ester En .e orlC 15 111-980.13 Rev.2. Section 5.7 39 12 Ibd Euton 3-2 16 1See attachment B for gamma free paths 40 3 lbid,Eguatiofl3-4dL3. S( AtRev.a14cBB14.6.1
'PBAPSULFSAR Fi.1..21 A Rev. 5) 41 1j7 18 ýAttachment -bid,TableA-iý 42 5 bid, Equation 3-3a E 19 IAttachment B 4ý3 bhid.Equation 3-3b " 120 . U..SNRC Re Guide 1.183 44 7 bid, Equation 3-nLa 21 Tech Spec SR 3.1.7.7 minimum B-10 stored in SBLC tank of 162.7 45 6 [bid,Equation 3S:Ej . . . . . .. . . .. .... . i la ntchemistr . . .p.7. . . .p . . . . r.
d-ata dt tas
-. ...... tra~ns~mitted ite via i E-mail... by Mark il..by.. G.Fry a...... . on.o12127_ .ry 2..... ... ..........
CIF--------- ------------ !included as Attachment H. 65 atom % B-10 enrichment used, bou_ 4-6 -------------- uation 3-6a 47]10 lbid, Equation 3-5d: Ei jthe highest 63.5 atom% B-10 from Attachment H Equation 3-5d E-' 22 [Cable Data from Attachment A. Assume 5% of Tray cable surface 49L12 ccn 1" Ibid. Equation 3-5e; E6 NUin 'I11nnrnninn Pnn 51 13 Supression Poo PM-1056, Rev. 0, Attachment D, Page D-1 of D-10
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION I K L 1ICable Data 22 I 2 SAtray [cm]i=$P$3"1.1 lCable Surface [trays]- Drywell+ 10% contingency 2 3 SAfa (cm ]1=$P$4.1 1 1Cable Surface [free air]- Drywell + 10% contingency 4 SB tray [cmr] =$P$60.-95 1.1 JCable Surface [trays] - TORUS + 10% conlingency 2 5 SBf. [cm ] =P6*1.1*0.05 [Cable Surface [free air] - TORUS + 10% contingency 7 0.61865 Hypalon Jacket Thickness __9I 10 From Beta From Gamma From Beta 11 [HCL[-ORYWELL [HCL[-DRYWELO [HCL[ -CONTAINW 12 g-mols/iter g-mols/liler g-mols/liter 13 14 15 =3.512E-201$B$3"($K$20.9512-=$K$3)I$H$3*$E15 =3.512E-20/$6$3 ($K$2*0.95$K$3) (1-EXP(-$H$5*$H$7)) $H$5*(1-EXP(-$H$6*$K$7)$D15 =3.512E-201SB$3*$K$4O.9512+$K$5)/$H$3*$E15 16 =3.512E-2015B$3*($K$2"0.9512+$K$3)/$H$3'$E16 =3.512E-20/$B$3*($K$2"0.95+$K$3)*1-EXP(-$H$5*$H$7))/$H$5(1-EXP(-$H$6*$K$7)y$D16 =3.512E-20/5B$3"($K$4*0.9512+$K$5)/$H$3*$E16 17 =3.512E-2015B$3*($K$2"0.95/2+$K$3)ISH$3"$E17 3 512E-20$6$$3*($K$2*0.95+$K$3)'(1-ExP(-$H$5*$H$7))/$H$5*(1-ExP(-$H$6$K$7)$D17 :=3.512E-20153($K$4"O.95I2+$K$5)I$H$3$E17 18 =3.512E-201$B$3*($K$2*0.9512+$K$3)/$H$3*$E18 =3.512E-20$B$3($K$2095+$K$3)[1-EXP(-$H$5**$$7)[f$H$5[1-ExPP($H$6s$K$7))*$D18 [=3.512E-20/$B$3"($K$4-0.9512+$K$5)/$H$3*$E18 19 =3.512E-20/$B$3*($K$2"0.9512+$K$3)IH$33$E1 9 =3.512E-20/$B$3"($K$2*0.95+$K$3)[(1-EXP(-$H$5*$H$7))/$H$5*(1EXP-$H$6$K$7))$D9 I=3.512E-20/5B$3[($K$4*0.9512+$K$5)/$H$3-$E19 20 =3.512E-2015B$3[($K$2*O.9512=$K$3)I$H$3*$E20 =3.512E-20/$B$3"($K$2*0.95+$K$3)*(1-EXP(-$H$5SH$7))/$H$5[1l-EXP(-$H$6*$K$7)SO$D20 j=3.512E-20/1B$3ý_$K$4"95/2$K$5)_$H$3"$E20 21 =3.512E-201$B$3"($K$2*O.9512+$K$3)/$H$3*$E21 . =3.512E-20/$8$3"($K$2"0.95+$K$3)*(1-EXP(-H*ý$H7 H -EXP(-$H$6*$K$7)'$D21 1=3.512E-20153($K$40.9512.$K$5)I$H$3$E21 22 =3.512E-2015B$3 $K$2".9512+$K$3)I$H$3$E22 =3.512E-201$B$3($K$2*095.$K$3)(1-EXP(-$H$5*$H$7))/$H$5*(1-EXP(-$H$6$K$7[)$022 [=3.512E-20/5B$3($K$4O.9512+$K$5)/SH$3$E22 23 =3.512E-2015B$3°($K$2*0.95I2.$K$3)I$H$3"$E23 ;=3.512E-201$B$3*Z $ $31-EXP(-$H$5"$H$7 I$H$5*(1-EXP(-$H$6$K$_7)$D23 -3.512E2015B$3($K$4*0.9512+$K$5)I$H$3*$E23 24 K($K$220095$K$3).(1-E9XP.-$H$5*$H$7.9/$H$5/{EXPP(2 H7)S$E 43.53.51E 1=3.512E320$B ($K$4*0.95/2+SK$5)[/$H$3$E24 25 =3.512E-20/$B$3"($K$2*0.95/2+$K$3)I$H$3"$E25 1=3.512E-201$B$3($K$20.95u$K$3)'(1-ExP(-$H$5 $H$7))$H$5(1-ExP(-$H$6$K$7))$D25 1=3.512E-2015B$3"($K$4*0.9512$K$5)I$H$3-$E25 26 =3.512E-2015B$3"($K$2*O9512u$K$3)y$H$3$E26 I=3.512E.20$B$3[($K$2.0.5+$K$3)*(1.EXP[*$H$-5*$H$7[)$H$-5-(1*ExP[$.$H$6s$-K$-7-))$D26 I=3.512E-20/$B$3*($K$4¶0.=95/2+$K$5)/$H$3"$E26 27 =3.512E-201$B$3"[$K$2°0.9512÷$K$3)/$H$53$E27 -3.512E-20/$B$3($K$2'0.g5+$K$3)'(1-EXP(-$H$5*$H$7))/$H$5(1-EXP-$H$6$K$$ W$D27 1=3.512E-205B$3($K$4*.95/2+$K$5 )$H$3"$E27 28 =3.512E-20/$B$3($K$2".95/2+$K$3)/$H$3$E28 =3.512E-20__B$3 SK$2* g5u$K$3 1-EXPP-$H$5$H$7)/$H$5[1-EXP(-$H$6$K$7))$028 l=3.512E-20153($K$4*0.952+$K$5)I$H$3"$E28 29 =3.512E-2015B$3($K$2O.9525+K$3)/$H$3'$E29 =3.512E-201$B$3 ($K$2"0.95+$K$3(1-EXP -$H$5*$H$7 )H$5(.1-EXP(- '$K57)'$D29 1=3.512E-2015B$3($K$4O.95/2$K$5)/$H$3*SE29 30 =3.512E-20/$B$3*($K$2"0.95/2+$K$3)I$H$3*$E30 =3.512E-20/$B$3[$K$20.g5$K$3' 1-EXP(-$H$5$H$7))I$H$5(I-EXP(-$H$6$K$7))$030 =3.512E.20tS3($K$4*.95f2.SK$5)ISH$3$E30 31 =3.512E-2015B$3*($K$2*0.95/2+$K$3)I$H$3"$E31 =3.512E-20/$B$3*($K$2"0.95+$K$3)[(1-EXP(-$H$5$H$7)/$H$5§(1-EXP(-$H$6*$K$7))$D31 1=3.512E-20/5B$3*3$K$4*0.95/2+$K$5)/$H$3*$E31 32 =3.512E-201$B$3*($K$2*0.95/2+$K$3I$H$3"$E32 =3512E-20/$B$3-($K$2'0.g5+$Kt*S3(1-EXP(-$H$5*$Fj [$H$5(1-EXP(-$H$6$1K$7)$)$D32 i=3.512E-20/1B$3*($K$4*0.95/2+$K$5)f$H$3"$E32 33 =3.512E-201$B$3-($K$/20.952+$K$ H$3*$E33 ($K$20.5K3
-EXP(-5$ H$5$ H$S(-EXP(-$H$6"$K$7)) $D33 1=3.512E-20/5B$3"($K$4"0.95/2÷$K$5)/$H$3"$E33 34 =3.512E-20/$B$3*[$K$2*0.9512+$K$3)I$H$3*$E34 =3.512E-20/$B$3"($K$20.95$K$3)(1-*-E-$H5H7 XP-$H6$K$7))'$D34 * =3.512E-20/$B$3°($K$4*0.95/2+$K$5 YSH$3$E34 35 =3.512E-201$B$3"($K$2*0.95/2.$K$3)/$H$3*$E35 =3`512E-201$8$3($K$2*0.95a$K$3)[(1-EXP(-SHS5*$H$7))[SHH$S1*EXP(-$H$6*$K$7)[[$S35 =3.512E-20fSB$3*(SK$4.9512+SK)/$H$3"SE35 37 3,88 39 40 41 43 44 45 47 48 49 50 PM-1056, Rev. 0, Attachment D, Page D-2 of D-10
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION M. N
-I.
1 2 3 4 5 6 7 8 10 From Gamma 11 [HCL]-CONTAINt Total [H., 7 12 g-molsfliler 9-ions/liter 13 F=POWER(10,-$T$13)+$H14
=POWER 05 +1$H134+$113+$J13*$K13+$L13+SM13 14 ]=POWER(10,-$T$1)_I$Hl4 -$114+$J14+$K14+$L14+SM14 15 =3.512E-20/$B$3"($K$4°0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7)1$D 1 -5115SJ15. SK15+$St5e5M 15 16 =3.512E-20/$B$3*($K$4'0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5(1-EXPI-$H$6*$K$7G)*$D16 - =POWE R(10,-$T$1-3)+$H 16- '$116-$J16+$K16+$L16+$5M16 17 =3.512E-20/$B$3_($K$4*0.95+$K$ -E $H-$H$E$K$7) PX '$17 =POWER(T 3$H1 7 $117+$J17+$K17+$L17.$M17 18 =3.512E-20/$B$3*($K$4*0.95v$K$5)l(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7) K$018 =POWER(10,-$T +$H18 +$118+$J 18+$K1 8÷$L 18+$SM 18 19 =3.512E-20I$B$3*($K$4*0.95+$K$5)*l1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D19 =POWER1-T$13 $H19 +$119+$J19+$K19+$L19--+$M19 20 =3.512E-20/$B$3*($K$4*0.95+$K$5)1-EXP(-$H$51$H$8))/$H$5* 1-EXP(-$H$6*$K$7))*$D20 =POWER 105 +11$H20+ +$120+$J20s$K20-$L20+$M20 21 =3.512E-20/$B$3'($K$4-0.95.$K$5) (1-EXP(-$H$5*$H$8))/$H$51-ExP(-$H$6'$K$7 $021 =POWERl -$$13)+$H21++$121+$J21 ; $K21+$L21+$M21 22 =3.512E-20/$B$3 $K$40.95+$K$5)*(--EXP($H$5'$H$8))/SH$5*(l.EXP(-$H$6*$K$7))*$D22 10,-$TS13).$H22+ $POWER +$122+$J22+$K22+$L22+$M22 23 =-3.512E-20/*B$3*($K$4.*.95-$K$5)'(l-EXP(-$H$5'$H$8))/$H$5-(--EXP(-$H$6*$K$7))_-$D23 .. ..... P S,-$T$13).$H234 .O +$123+$J23_$K23+$L23+$M23..
24 =3.512E-20/$B$S3*$K$40.95 +$K$5)*(1-EXP(-$H$5 $H$8))/$H$_5( 1-EXP(-$H$6*$K$7))*SO -D24 ........ J=POWER(10,-_$T$13)+$H24+ -$124+$J24+$K24+$L24+$M24 I=POWER( -$ $H25 25 =3.512E-2/E3$B$3'*$K$4*0.95+$K$5)*(1-EXP(-$H$5'$H$8))/$H$5*(1-EXP(-$H$6'$K$7))*$D25 ........ POWER(10$T$13).$H26+ +$125+$J25÷$K25+$L25+$M25 26 =3.512E-20/$B$3*($K$4*0.95+$K$5)-(1-EXP(-$H$5'$H$8) /$H$51-E-xP(-$H$6$K$7))*$D26*3
+$126+SJ26+$K26+$L268$M26 27 =3.512E-20/$B$3" $K$4t0.95+$K$5)*S1-EXP(-$H$5'$H$8))/$H$5*(1-EXP(-$H$6'$K$7 )'$D27 =POWER(10,-$T$13)VS$H27- $127+$J27+$K27÷$L27.$M27 28 =3.512E-20/$B$3'($K$4*0.95+$K$5)*(1-EXP(-$H$55$H$8))/$H$5*(1-EXP(-$H$6S$K$7))*$D28 P E 0 )+$13 128+
29 =3.512E-201$B$3*($K$4*0.95+$K$5)* 1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D29 =POWER 10,-$T$13)$H 30 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8 ))$H$5(1-EXP(-$H$6*$K$7 )*$D30 =POWER ,T$13)+$H30. +$130+$J30+$K30+$L30+$M30 31 =3.512E-20/$B$3*($K$4*0.95+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6°$K$7))*SD31 =POWER(10.-$T$13)+$H31. +$131+$J31 +$K31 ÷$L31+$M31 32 =3.512E-20/$B$3" $K$4"0.95.$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D32 =POWER(10,-$T$13)+$H32, +$132+$J32+$K32.$L32+$M32 33J=3. 812P-2O/SRS3'lSKS4'09B.8KS5t'l1.FXPl-SHH8RltfSH'll.Pt(P(-SI-/CR7~t'Sfl33 =PCIWF R~tO .T$13t+$H/3, +$133+$J33+$K33+$L33$M33 S341=3 . ..Ida-. .... .. . \( ....K $4.- ... .... i . . X.. \ .. .. ..... ii .... . \ . .. . \ ... . ..... t . . .. 4
-P* . W... R \ 1 ... . , ...
H!
. + - (- (1- - H F, K 711 =POWER(10,-$T$13)+$H34+$134+$J34+$K34+$L34+$M34 35 =3.512E-20$B$3"($K$4'0.95+$K$5)*(1-EXP(-$H$55$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$D35 =POWER(10,-$T$13)+$H35+$135+$J35+$K35+$L35+$M35 36 37 38 39 41 43 44 4 54. . . .. . . . .. . . . . . . . . . . . .. . .. . . . . . . . . .. . . .. . .. . . . . . . . . . . . . . . .. .. .. . .. .. . . .
46 47 48 49 150 PM-1056, Rev. 0, Attachment D, Page D-3 of D-10
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION 2 3 4 0
-CabIeý Da ta 22 1837364 =$P$3-0.05 P__ }________ _ _ _ _ _
Cable Surface [Trays] - DRYWELL lcm2] Cable Surface [Free air] - DRYWELL lcm2[ _ _ _ _ 5 1=P6*0.05 iCable Surface [Free air]- TORUS [cm2] 6 0 iCable Surface [Trays] - TORUS ()cm2[ 11 jCsOH] Total [OH.J -LOG[Kw) 12 g-mols/liler g-ions/niler =15.5129-0.0224"$B_13+0.00003352*POWERB_13,2) 13 0 i=POWER 10,-14 /POWER 10,-$T$13)+$013 =15.5129-0.02245Bl3.0.00003352'POWER(B13. 14 =(0.4$B$5-0.475$B$4)(3'$B$3) $A14-(0.5+$B$6))-(0.05$B$5-0.0475$B$4)/$B$3 =POWER(10,-14)/POWER(10,-$T$13+$014 =15.5129-0.02245$B14.0.00003352*POWER(E1.2 15 =(.4*$B$5-0.475*$$4 I 3 *$B$3
*($A15-(0.5+$B$6))÷(0.055$B$5-0.0475*$B$4)/$B$3 =POWER(10,-14)IPOWER(10,-$T$13)+5015 =15.5129-0.0224$B 15+0.00003352*POWER 615.2) 18 =(0.4"$B$5-0.475*$B$4)/(3*$B$3)*($Al6-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/SB$3 =POWER(10,-14)/POWER(10,-$T$13)+$016 =15.5129-0.0224"$S16+0.00003352°POWER(B16,2) =$O517 =POWER10,-014 /POWER10,-$T$13)+$O17 =15.5129-0.0224$B 17+0.00003352"POWER(B 17,2) 18 =$O516 =POWER 10,-1"Z)/POWER(10,-$T$13)+$ 018 =15.5129-0.0224S$B18+0.00003352"POWER(B18,2 19 =$O516 =POWER 10,41POWER 10,-$T$13 +$O19 = 15.5129-0.0224"$B19+0.00003352"POWER[B19,2) 20 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$020 =15.5129-0.0224"$B20+0.00003352°POWER(B20.4) 21 =$O$16 =POWER(10,-14)/POWER(10,-$T$13)+$021 =15.5129-0.0224"$B21+0.00003352"POWER(B21,2) 22 =$O$16 =POWER(10044 POWER(10.-$T$13)+$022 { =15.5129-0.0224*$B22+0.00003352*POWER(B22,2)_
24$0_$_16...... .......... ............ .. =POW.ER_)10,-14)IPOWER)10O-$T$1 3)_$_024_ =115.5129-0.0224 5$B24÷0.00003352"POWER.B24.42)...... 25 =$O516 =POWER)(1,-14)/POWER(1 0,-$T$13 -025 =15.5129-0.0224*$B25+0.00003352*POWER(B23.2) 26_=$0516 ............--.----. ...--.---..--------------................- - =PpOWW ER)10,-14)/POWER( 0 0,-$T$13)$5 26_........ 15.5129-0.0224*.SB24 +0.00003352POWER(B26*,2) 7=$518 =POWER- =15.5129-0.0224$E27+0 00003352-POWER)EB272)_____ -/POWER(10,-$T$13)$-27 8=$5016 =POWER 10,-14*.POWER10,-$T13)+$O28 =15.5129-0.0224"$28+0 00003352POWE RB28,2) 29$7 16 =POWER=104 ,-4POWER 10. +$O29 -15.5129-0.0224$B29+0.00003352'POWER(B27,2) 30 =$O516 =POWER)10,-$T$13)+$030 =15.5129-0.02245$630+0.00003352*POWEfR(B30,2) 31 =$O516 32 =S0516 f=POWER)ý1041)POWVER)10-T$1
=POWER(10,-14)/POWER(10,-$T$13)+$03131502 1=1 5:5129-0.02245E31 .0.00003352'P0WER)E31.2 =15.5129-0.0224"$B31÷0.00003352*POWERB30.2) _
31=$O$16 I=POWER(10,- 14)/POWER( 10.-$T$13)+$O32 552-.241B2÷.0032 OER* _ 33 =$O516 34 =$S516 35 =$O516 36I =POWER(10,-14)/POWER(10,-$T$13)+$O33
=POWER(10,-14)/POWER 10,-$T$13)+$O34 =POWER(10,-14)/POWER(10,-$T$13)-$035
{=15.5129-0.0224"$B33+0.00003352*POWER(B33,2)
=15.5129-0.02245$B34+0.00003352"POWER(B34,2) =15.5129-0 0224"$B35+0.00003352*POWER(B35,2) 40 ________
4141 ___________________________________________ ________________________ _____________________________ 432 - - . . ~ _________________________________________________ 423 ___________________________ _________ I_________________ _________ _______ .. - 454___________________________________ _______ ______ 465 _________________________________________ ______________________ __________________________ 476____________________________ 497____________________________ 10481_____________________ _____________________________ PM-1056, Rev. 0, Attachment D, Page D-4 of D-10
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION R . S T [u v W x y IPH TRANSI ENT .BEGINNING OF CYCLE______ ____ ___________ 2 ______ ________________9si =.1 . mols Naý 3 127=U3*453 59 15./grams B31 1 0 .0 1 atomic wI. B-t10 4_______ _________ 6.atom 65 % B-1I=V3/X3 Lg.atoms B-t0 5 __________________ =X4N4*100 Igatoms toIJ_______ 8 _________________________________J_____________pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY 11 Rootsx iH+Y Neti pH K, g-equiv. 61B,00,6101 Borate Boric Acid 12 j,-3i ons/lit er Before SLC
$_______________________________________ 14 Net (H-i VpsL g-mols g-egoiv. g-equiv.
13 EJN13.P1 3.SQRT(POWER(($Nl3+$P13).2)-(4*(N 3*Pl3-POWER(10.-$Q13)(f/ $13_$R1 153i008B31 39/00000 =Sl3*$B$3 =$V$2 =W13'2-Vl 3 =W1r8sV13 14 =(Nl4.Pl4.SORT(POWER ($Nl4.$P14L,2)-(4'(Nl4'P4-POWER(10,-$Ql4)))))/2 1=N4-$R14 I=-LOG10($514) =0.0585*B14+1.309 )/10000000000 =S14*$B53 =$V$2 =W14*2-Vl4 W14'8.V14 15 =(Nl5.P1 5-SORT(POWER(($N1 5+$P15(,2)-(4t(Nl5SPl5-POWER(10.4$015))))/ I=$NtS-$RIS I=-LOG1O($S1 5) =0.0585*B15.1.309 /10000000000 =S15$rB-S-3 =$V$2 =W 5*2-Vt S =W15*8+V15 16 =( N16+P16-SORT(POWE R(1$N1 6+$P B,)((1P6PWR1.$16))))/ =16-$R16 I=-LOG1g($516 =(0.05850816-1 .309)/10000000000 =S16'$B$3 =$V$2 =W16*2-V1B =W16*8.V16 17 =(Nl7+-Pl7.SORT(POWERtdSN17+SP17),2)-(4'(N17.P17POWFlR(10,-$017 )))))2 I=SN1i7-$R17 1=-LOG10($517) =(0.0585*B17+1 .309)/11000000000D =517*$B$3 =V2 =W17*2-V1 7 =W17*8+Vl7 18 =tNl8+Pl8-S0RT(POWER(($Nl8+$P18), H )~)D/2
.N818PWE(0-$Q18 1S$N18-$R18 1=-LOG1O($51 =0.0585*B818.130 )/10000000000 -=518$B$3 =$V$2 =W182-V18 =W1808V18 19 = N19-P19-SORT(POWER $SNl9n$P19.2)- 4* N19*Pl9-POWER 10,.6019)J)))/12 1=$Nl9-$R19 =-LOG(10(LS19 =(0.0585'B19+1.309)110000000000 =519S$B$3 =$V$2 =W192-V19 =W19*8-V19 20 =(N20'P20-SORT(POWER(($N20.$P20).2)- 4*(N20*P20-POWER 10,-$020 ))))12 I=$N20R2 S2 08 3-O1 20+.1309)/10000000000 I-S20'$B$3 =$V$2 =W20'2-V20- =W20*8-.V20 21 =(N21.P21-SORT(POWER(($N21 .$P21 ),2)-(4*(N21*P21-POWER(10,-$Q21 )))))/2 --$N21-$R21 1=-LOG10($S21) 0058 B2 +1.309)/10000000000 =S21 -'B$3 =$V$2 =W21 2-V21 =W21 8.V21 22 =(N22.P22-SORT(POWER((SN22.$P22).2)-(4'(N22*P22-POWER(10.-$022 )D)(/2 1=$N22-SR22 i =-LOG 10 $S22) - 08I2. 0)100000=522*$B$3 =$V$2 =W22*2-V22 =W22*8+V22 23 . 23P3-?S9RT(POWR($N3 ?2)?:.('*(N23R(1$OWE20-93))))Y)2 KO 0953 0085B3 Q-L29.9IQP -42S2 =S23$B$3 =$V$2 =W23-2-V23 =W38+
24 =(N24.P24-SQRT(POWER(($N24+$P24),2J-(4(CN24'P24-POWER(10.-$O24)))))/2 ........... 4-R2 =-LOG1O($S24) . (0.0585*824+1.309(/iO000000 ..... =S24*$BS3 =$-V=$.$2 =W2-4*2-V24 _ =W2-4'8+V 24 25 =jN25.P25-SORT(POWER(($N25.$P25).2 - 4*N25*P25-POWER 10,-$025 ))))L2 ý=$N25-$R25 I1=-LOG1O(j52-5) 0(Q0585925+1.309)/10000000000 =S25-jB$3 ---- =$V$2 W5 ----- =VW258.V25 26 =(N26+P26-SQRl(POWER(($N26+SP26),2)-(4*(N26-P26-POWERý(10.-$O26)))))/2 =V$ W6*- 27 =(N27.P27-SORT(POWER(($N27+SP27).2)-(4'(N27'P27-POW+/-fR(10.-$027)))fl12
... .________ .......... =$N27-$R27 . =-LOG1O($527)......... ~0585 B27-.1309 /100(00000000 0585 B328ý+1.30.10000000000 S6$B3 =S27'$8$3 =58B3
_ ______
=$V$2 =$V$2
___________5B6+.0)/000000
=W27*2-V27 =W28*2-V28 =W27'8.V27 =W28'8.V28 28 f(N28oP28-SORT(POWER(($N28+$P28).2)-(4*(N28*P28-POWER(10,-$O28)))))/2 =$N28-$R28 LG1(5)__
29 =(N29.P29-SORT(POWEBt($N29.SP29).2)-(4'(N29'P29-POWER(10.-SQ29)D)))l2 =$2-R9 =LOO829)...... =0.05815-129,1.309)l10100000000I =529'SB$3 =$V$2 =W29*2-V29 =W29*8=V29 30 fý(N30.P30-SQRT(POWER(($N0$P0.2-ýN30*P30-POWER(10.-$Q30(fl))/2 =$N30-$R3 =_LOG1OSS3O fJO 0585 B30+1.309 /110000000000 =530S$B$3 =$V$2 =W30*2-V30 I=W30*8=V30 31 =(N31.31SRTPOWER(($N31 .$P31) 2(-(4* N3P'P31-_POWER(10-$Q31 )))))/2 =$ 31-R1 -- LOG10 $S31) =00585*B31 1.309)/10000000000 =S31 *$B$3 =$V$2 =W31"24V31 =W31*8+V31 32 = N32.P32-SORT(POWER(($N32+$P32),2)-(4tN32*P32-POWER'n0-$032) )t)2 1=$N32$3 =_LOG1O($S32) -055B239/10000000000 =32;$B$3 =$V$2 =W322-V32 =W32*8=V32 33 =(N33-+P33-SORT(POWER(($N33+$P33t,2)-(4*(N33*P33-POWER(10.-$O33tt)1t2 1=$N33-$R33 1=-LOGJO $S33) 008 3+ 0100000=S33*$BS3 =$V$2 =W33*2-V33 =W33*8.V33 34 =(N34.P34-SORT(POWER(($N34+$P34),2)-(4*(N34*P34-POWER 10,4$034) )))/2 1=$N34-$R34 I=-LOGJO($531......-055344. 0 100000 =S34*0$3 =$V$2 =W34*2-V34 =W34*8.V34 1______________ 35 =(N35.P35-SOR1(POWER(($N35+SP35),2)-(4'(N35*P35-POVVER(10,-SO35)))))/2 1=$N35-$R35 I=-LOC1O($535) 1(0.0585*B351.1309)/10000000000 =535*$B$3 1$V$2 -W35*2-V35' -W15*8+V35 36 .I ___ _ _ ____ ____ 37 4038_ ______ ___ __________ __ 389 _________________________ __________ ___________________ ____ 3940 _________________________________________ _________________ ___________________ 41 ______________________________ 4? -~ ____ . t 1 44 45 46 479 49 PM-1056, Rev. 0, Attachment D, Page D-5 of D-10
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION Z z AA Pi 2 3I 4 5 6 7 8 LIQUID CONTROL [SLC] SOLUTIOP 10 11 pK. pH 12 -Ilog K. 15 14 =-LOG10(Ul3) =Z14+LOGIO((X14SS)(Y4$S)) 15 =-LOG10 U1) !=Z14+LOGIO((Xl4/$B$3)i(Y151S8S3)) 16 =-LOG 10 U16) =Z16+LOGIO((X1I5$B$ )t(M 5BS$3 ))_______ 17 =-LOG10(Ul67 =Zl6+LOGIO (X16/$B$ )10LI ISB$3))________ 189E-LOG10 U18 ZE184LOG1O((XI8ISBS3)t(Y181$BS3))________ 10(U20) 20O=-LOO21iLGO(2) [Z20+LOGl0 ((X20$3I(Y2OISBS3))
!Z21+LOG1O((X21/$B$3)/(Y21/$B$3)) __~
22 =-LLX310(U22) =Z22+LOG1 O(X21B3iY183) 2ý3=.LOG12(U23)_ =Z23+LOG1IO((X231S0$33y(Y23/!!$B3)L_ __ ___ 25 =ý-LOG 10(U-24)_ 'Z25+LOG1 O((X25/$El3)!(Y2/$ 83)) 26 =-LOG10(U25) !=Z25+LOG10((X25/$B$ )/(Y25l$B$3)) _ 2L7-=-LOI0( 27) I=Z27+LOGIO (X27/$B$ )I(Y27Lý1SB3) 28 =-LOG 10(U28L__[1-Z28+LOG1 0((X281$8$3)!(Y_28/SBS3)) _ 29_=-LOG10(U2 ) I=z29.LOG1O((X291SBS3)ffI28IBS3)) 30 =-LOG10(U30) =Z30OLOGl0 ((301S8$21)tC1301$B$3)) 3 -O1(3 1 Z3+OI(XISS)j(YjjI$R$31) 32 -LG0U2 Z3LO1(X25S)f(Y32,S8$3)) _ 313 =-LOG11 2(33' ýZ33+LZOG1O(3I83IY3 3 34 =-LOO10(U34 I=Z34.LOGIOftX34/S8S3I/Cv34/SBS3fl 35 =-LOGIO(U35) 1=Z35.LOG10((X35(S653)/(Y3515BS3)) -- -- - 39I 41 42 -_ _ _ _ ___ ________________ 43 44 45 _____________ 76___________- 467 _______ ~____ 48 F________ 49 _______ _____________________ 501______________________ PM-1056, Rev. 0, Attachment D, Page D-6 of D-10
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION A B C D E F G 1 PEACH B50 pH TRANSIENT END OF CYCLE 2 Linear Absorption Coe 3 VpooL =122900*28.3168 Liters 1122900 tf1 Ubeta 4 mi =290 Iodine inventory [g-atom Ubeta hypalon 5 mcs =3200 Cesium inventory [g-ato Ugamma air 6 teap =12113600 Onset of Gap release [h Ugamma hypalon 7 r ypalo f-ama Ihe I" 8 r # p-t1TORUSAIR)1 ft-m 9 INTEGRATED DO 16 Be0a+Gamma. Gamma18 Beta1 9 8 Gamma7 0Beta2 11 TIME POOL Temp POOL DRYWELL ORYWELL TORUS AIR TORUS AIR 12 Hours [eg D lrMrad
ýF MeV/cm' e/m MeV/cm' MeV/cm' 13 5 80 14 T175 15 2 187 0.143500086508842 3415252526559.5 1493516901702.39 16782790405603.09 2112853924362.65 16 =0.5+1.5+B6 188 0.149634733015881 3557433766582.65 1555848397608.08 7070702227895.83 2205232001151.76 17 3 192 0.309341836086142 7223665685898.47 3184466482938.89 14522270407907.7 4653989461673.07 18 5 199 0.571714238137557 12993742725588.9 5867592321860.4 26579195436675.8 8861664876224.85 19 12 204 1.18897340652801 24846754835583.8 12265274440332.4 54124658556267.7 19580415772096.5 20 18 198 1.55683327582913 31033162634725.7 16238511537328.7 70115732616255 26393164623873.5 21 24 197 1.85191915601109 35783878087763.8 19532321678811.2 82812650068300.5 31988772986659.7 22 48 190 2.69999350899574 49289591172808.2 29429378072763.1 119362761252454 480112280849132 23 72 177 3.31896426382511 59373911524643.9 36857885649250 146641045030486 59103260447932.9 24 96 160 3.63902585927095 68006216910072.3 43061765946118.8 170021885936274 67961305910172.6 25 120 153 4.30449745517556 75777204350529.3 48469947167744.3 191216585122999 75621430881437 26 150 149 4.83863042922377 84663108071843.2 54411194958229.2 215749512205084 84199682180048.8 27 200 142 5.65123374775693 98005925381916.4 62794391540543.6 253363489030894 96959403927412.6 28 240 138 6.24993554889672 107669540194174 68442614993399.4 281251300182045 106185426030441 29 300 132 7.08123504117198 120857131002314 75570313182062.1 320201031278407 118768378954490 30 360 127 7.84729286641128 132800350275133 81462258405056.5 356330536069072 130127193615785 31 400 124 8.32796771895153 140208197049268 84862166864990.9 379118949506557 137136062051670 32 480 123 9.23016582533999 153971254659635 90707083398776.2 422140895644603 150041841567683 33 600 120 10.4680366999075 172651749035525. 97804662138577.5 481694348263629 167224642525045 34 700 119 11.4213133856566 186955852261398 102732737437929 527952520751998 180060583153812 35 720 117 11.6052404151638 189712487101709 10364252607763E 536915254530628 182499580739728 36 37 NOTES 14 38 1 Entergy Eng. Report 15 39 2 Ibid. Equation 3-2b 16 40 3 Ibid, Equation 3-4d [3 17 41 4 Ibid, Table A-1 18 42 5 Ibid. Equation 3-3a 19 43 6 Ibid, Equation 3-3b 20 44 7 Ibid, Equation 3-5a; 21 45 8 Ibid, Equation 3-5b; 46 9 Ibid. Equation 3-2a:
47 10 Ibid. Equation 3-5d: E 22 4811 Ibid, Equation 3-5d: E. 49112 "D 113 I PM-1056, Rev. 0, Attachment D, Page D-7 of D-10
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION H N 0 2 3 0.0198 1/cm 4 52.08 l/cm 5 0.0000375 1/cm 6 0.099 1/cm 7 =34*30.48 cm 8 =15.25*30.48 cm 9 10 11 [HI] [HNO3] 2 Total [H+] * [CsOH] " 12 g-mols/liter g-tools/liter g-ions/liter g-mols/liter 13 0 =POWER(10,-$T$13)+$H13+$113+$SJ13+$K13+$L13+$M1=3 14 =$B$4/(120H$B$3)*($A-14-0.5+$B$6))+$B$4/(400*$B$3) =POWER(10,-$T$13)+$H14+$114+$J14+$K14+$L24+$M24 =(0.4'$B$5-0.475"6$B$4)/(3"$B$3)($A14-(0.5+$B$6))+(0 05*$B$5-O.0475"$B$4)/$B$3 15 =$B$41(1206$B$3)-($A15-(O.5ý:$B$6))+$B$41(400*$B$3) =0.0000073"$C15 =POWER(10,-$T$13)+$H15+$115+$J15+$K 15+$L5+$M15 =(0.40$B$5-0.475*$B$4)/136$B$3)*($A15-(0.5+$B$6)/+(0.05"$B$5-0.0475'$8$4)/$B$3 16 =$B$416120*$B$3)'($A16-10.5+$B$6))÷$B$4/{400*$B$3) =0.0000073'$C16 =POWER(10.-$T$13)+$H16+$116+$J16+$K16+$L16+$M16 =(0.4"$B$5-0.475"$B$4)/(3"$B$3)'($A16-(0.5+$B$6))+(0.05*$B$5-0.04756$B$4)/$B$3 317
=H$16 =0.0000073"$C17 =POWER(10,-$T$13)+$H317+$117+$J17+$K17+$L 17+$M17 =$O516 18 =H$16 =0.0000073"$C18 =POWER(10,-$T$13)+$H18+$118+$J18+$K18+$L18+$M18 =$O516 19 =H$16 =0.0000073"$C19 =POWER(10;-$T$13)+$H19+$119+$J19+$K19+$L19+$M19 =$O516 20 =H$16 =0 0000073"$C20 =POWER( 10,-$T$13)+$H20+$120+$J20+$K20+$L20+$M20 =$5016 21 =H$16 =0.0000073"$C21 =POWER 10,-$T$13)+$H21+$121+$J21+$K21+$L21+$M21 =$0516 22 =H$16 =0.0000073"$C22 =POWER(10,-$T$13)+$H22+$122+$J22+$K22+$L22+$M22 =$5016 23 =H$16 =0.0000073"$C23 =POWER(10,-$T$13)+$H23+$123+$J23+$K23+$L23+$M23 =$5016 24 =H$16 =0.0000073"$C24 =POWER(10,-$T$13)+$H24+$124+$J24+$K24+$L24+$M24 =$5016 25 =H$16 =0.0000073"$C25 =POWER(10,-$T$13)+$H25+$125+$J25+$K25+$L25+$M25 =$O516 26 =H$16 =0.0000073*$C26 =POWER(t 0,-$T$13)+$H26+$126+$J26+$K26+$L26+$M26 =$O$16 27 =H$16 =0.00000736$C27 =POWER(10,-$T$13)+$H27+$127+$J27+$K27+$L27+$M27 =$O516 28 =H$16 =0.0000073"$C28 =POWER(10,-$T$13)+$H28+$128+$J28+$K26+$L28+$M28 =$O$16 29 =H$16 =0.0000073"$C29 =POWER(10.-$T$13)+$H29+$129+$J29+$K29+$L29+$M29 =$0$16 30 =H$16 =0.0000073'$C30 =POWER(10.-$T$13)+$H30+$130+$J30+$K30+$L30+$M30 =$0$16 31 =H$16 =0.0000073"$C31 =POWER(10,-$T$13)+$H31+$131+$J31+$K31÷$L31÷$M31 =$O$16 32 =H$16 =0.0000073"$C32 =POWER(10,-$T$13)+$H32+$132+$J32+$K32+$L32+$M32 =$0$16 33 =H$16 =0.0000073"$C33 =POWER(10,-$T$13)+$H33+$133+$J33+$K33+$L33+$M33 =$O516 34 =H$16 =0.0000073"$C34 =POWER(10,-$T$13)+$H34+$134+$J34+$K34+$L34+$M34 =$O516 35 =H$16 =0.0000073"$C35 =POWER(10,-$T$13)+$H35+$135+$J35+$K35+$L35+$M35 =$O516 36 37 Acid dissociation constant from: Entergy Eng. Report GGNS-986 38 Entergy CaIc. XC-Q11111-98013 Rev.2, Section 5.7 39 See attachment B for gamma free paths 40 PBAPS UFSAR Fig. 14.6.12 (Rev.14) and Fig. 14.6.12A (Rev. 1E 41 Attachment B 42 Attachment B 43 USNRC Reg. Guide 1.183 44 Plant chemistry data transmitted via E-mail by Mark G. Fry 12127, 45 minimum lbs.mass of boron-10 used (PBAPS Unit 2 - 12/0711 46 atom% B-1 0 from Eagle Picher Report of Analysis Job #00-0771 47 Cable Data from Attachment A. Assume 5% of Tray cable surfac 48 PM-1056, Rev 0. Attachment D, Page D-8 of 0-10
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION P Q R S T 1 pH TRANSIENT 22 2 Cable Data 3 1837364 Cable Surface [Trays] - DRYWELL [cm2] 4 =$P$3"0.05 Cable Surface [Free air. - DRYWELL [cm2] 5 =P6'0.05 Cable Surface [Free air] - TORUS [cm2] 6 0 Cable Surface [Trays] -TORUS [cm2] 7 8 9 10 11 Total [OH+] -LOG(Kw) Root x - Net [H+] pH l' 12 g-ions/liter g-ions/liter Before SLC 13 =POWER(10,-14)/POWER(10.-$T$13)+$013 =15.5129-0.0224*$B13+0.00003352"POWER(B13,2) =(N13+P13-SORT(POWER(($N13+$P13).2)-(4*(N13"P13-POWER(10,-$013)))))/2 =$N13-$R13 5.3 14 =POWER(10,-14)/POWER(10,-$T$13)+$014 =15.5129-0.0224*$B14+0.00003352*POWER(B14,2) =(N14+P14-SORT(POWER(($N14+$P14).2)-(4*(N14"P14-POWER(10,-$014)))))/2 =$N14-$R14 =-LOG10($S14) 15 =POWER(10,-14)/POWER(10,-$T$13)+$015 =15.5129-0.0224"$B15+0.00003352*POWERB615,2) =(N15+P15-SQRT(POWER(($N15+$P15),2)-(4*(N15*P15-POWER(10,-$015)))))/2 =$N15-$R15 =-LOG10($S15 16 =POWER(10,-14)/POWER(10,-$T$13)+$016 =15.5129-0.0224*$B16+0.00003352'POWER(B16.2) =(N16+P16-SORT(POWER(($N16+$P16),2)-(4 (N16"P16-POWER(10,-$Q16)))))/2 =$N16-$R16 =-LOG10($S16) 17 =POWER 10,-14)/POWER(10,-$T$13)+$017 =15.5129-O.0224"$B17+O.00003352*POWER B17.2) = N17+P17-SORT(POWER ($N17+$P17),2)-(4"{N17"P17-POWER 10,-$017)))))/2 =$N17-$R17 =-LOG10D$S17) 18 =POWER( 10.-14)/POWER( 10.-$T$13)+$018 =15.5129-0.0224"$B18+0.00003352*POWER(B18.2) =(N18+-P18-SORT(POWER(($N18+$P18).2)-(4'(N 18*P18-POWER(10.-$Q18)))))/2 =$N18-$R18 -LOG10($S18) 19 =POWER(10,-14)/POWER(10,-$T$13)+$O19 =15.5129-0.0224*$B19+0.00003352*POWER(B19,2) =(N19+P19-SORT(POWER(($N19+$P19).2)-(4'(N 19*P19-POWER(10,-$019)))))/2 =$N19-$R19 =-LOG10($S19) 20 =POWER(10,-14)/POWER(10.-$T$13)+$020 =15.5129-0.0224'$B20+0.00003352*POWER(B20,2) =(N20+P20-SORT(POWER(($N20+$P20).2)-(4*(N20*P20-POWER(10,-$020)))))/2 =$N20-$R20 =-LOG10($S20) 21 =POWER(10,-14)/POWER(10,-$T$13)+$O21 =15.5129-0.0224*$B21+0.00003352'POWER(B21.2) =(N21+P21-SORT(POWER(($N21+$P21).2)-(4'(N21'P21-POWER(10,-$021)))))/2 =$N21-$R21 =-LOG10($S21) 22 =POWER 10,-14)/POWER(10,-$T$13)+$O22 =15.5129-0.0224*$B22+0.00003352'POWER(B22,2) =(N22+P22-SORT(POWER(($N22÷$P22),2)-(4*(N22"P22-POWER(10,-$022)))))/2 =$N22-$R22 =-LOG10($S22) 23 =POWER(10,-14)/POWER(10,-$T$13)+$O23 =15.5129-0.0224'$B23+0.00003352'POWER(B23.2) =(N23+P23-SQRT(POWER(($N23+$P23),2)-(4*(N23*P23-POWER(10,-$Q23)))))/2 =$N23-$R23 =-LOG10($S23) 24 =POWER(10,-14)/POWER(10,-$T$13)+$024 =15.5129-0 0224'$B24+0.00003352*POWER]B24.2) =(N24+P24-SQRT(POWER(]$N24+$P24),2)-(4*(N24'P24-POWER(10,-$024)))))/2 =$N24-$R24 =-LOG10($S24) 25 =POWER(10,-14)/POWER(10,-$T$13)+$025 =15.5129-0.0224"$B25+0.00003352*POWER(B25.2) =(N25+P25-SQRT(POWER ($N25+$P25),2)-(4"(N25*P25-POWER(10.-$Q25)))))/2 =$N25-$R25 =-LOG10($S25) 26 =POWER( 10-14)/POWER( 10,-$T$13)+$026 =15.5129-0.0224*$B26+0.00003352'POWER(B26.2) =(N26+P26-SORT(POWER(($N26+$P26),2)-(4*(N26"P26-POWER(10,-$026)))))/2 =$N26-$R26 =-LOG10($S26) 27 =POWER(10.-14)/POWER(10,-$T$13)+$027 =15.5129-0.0224*$B27+0.00003352'POWER(B27,2) =(N27+P27-SORT(POWER(($N27+$P27),2)-(4*(N27*P27-POWER 10,-$027)))))/2 =$N27-$R27 =-LOG10($S27) 28 =POWER(10,-14)/POWER(10.-$T$13)+$028 =15.5129-0.0224*$B28+0.00003352*POWER(628.2) =(N28+P28-S0RT(POWER(($N28+$P28).2)-(4"(N28*P28-POWER( 10.-$O28)))))/2 =$N28-$R28 =-LOG10($S28) 29 =POWER(10,-14)/POWER(10.-$T$13)+$029 =15.5129-0.0224*$B29+0.00003352*POWER(B29,2) =(N29+P29-SORT(POWER(($N29+$P29).2)-(4*(N29*P29-POWER(10,-$029)))))/2 =$N29-$R29 =-LOG10($S29) 30 =POWER(10.-14)/POWER(10.-$T$13)+$030 =15.5129-0.0224*$B30+0.00003352*POWER(B30,2) =(N30+P30-S0RT(POWER(($N30+$P30),2)-(4'(N30'P30-POWER(10,-$030)))))/2 =$N30-$R30 =-LOG10($S30) 31 =POWER(10,-14)/POWER(10.-$T$13)+$O31 =15.5129-0.0224*$B31+0.00003352"POWER(B31.2) =(N31+P31-SQRT(POWER(($N31+$P31),2)-(4*(N31"P31-POWER(10,-$031)))))/2 =$N31-$R31 =-LOG10($S31) 32 =POWER(10,-14)/POWER( 10,-$T$13)+$032 =15.5129-0.0224'$B32+0.00003352'POWER(B32.2) =(N32+P32-SORT(POWER(($N32÷$P32),2)-(4*(N32'P32-POWER(10,-$Q32)))))/2 =$N32-$R32 =-LOG10($S32) 33 =POWER( 10,-14)/POWER( 10,-$T$13)+$033 =15.5129-0.0224'$B33+0.00003352"POWER(B33.2) =(N33+P33-SORT(POWER(($N33+$P33),2)-(4'(N33"P33-POWER(10,-$Q33)))))/2 =$N33-$R33 =-LOG10($S33) 34 =POWER(10,-14)/POWER( 10,-$T$13)+$034 =15.5129-0.0224'$B34+0.00003352*POWER(B34.2) =(N34+P34-SORT(POWER(($N34+$P34),2)-(4'(N34"P34-POWER(10.-$Q34)))))/2 =$N34-$R34 =-LOG10($S34) 35 =POWER(10,-14)/POWER(10.-$T$13)+$035 =15.5129-0.0224"$B35+0.00003352*POWER(B35.2) =(N35+P35-SORT(POWER(($N35÷$P35).2)-(4"(N35*P35-POWER(10,-$035)))))/2 =$N35-$R35 =-LOG10($$35) 36 37 38 39 4O 41 42 43 44 45 4§ 471 48 49 50 PM-1056, Rev. 0, Attachment D, Page D-9 of D-10
PEACH BOTTOM ATOMIC POWER STATION TRANSIENT POOL pH CALCULATION U V .W X Y Z AA AB 1 END OF CYCLE 2 =V5/10 g. mols Na 2 B, 0 01 6 10H2 0 A 3 210.6 =U3'453.59 lb./grams B-1021 10.01 atomic wt. B-10 4 62.98 atom % B-10" =V3/X3 g. atoms B-10 5 =X4N4"100 g.atoms total boron 6* 7 8 pH EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY LIQUID CONTROL [SLCI SOLUTION 9 10 Strong Acid 11 K. g-equiv. NaB,*oO*10H 2 0 Borate Boric Acid pK, pH 12 14 Net [H +]* VPOOL g-mols g-equiv. g-equiv. -IogloK. 15 13 (0.0585B13+1.309)/10000000000 S$13"$B$3 =$V$2 =W13*2-V13 =W13*8+V13 =-LOG10(U13) =Z13+LOG10((XI315B$3)I(Y1315B$3)) 14 =(0.0585"B14+1.309)/10000000000 =S14"$B$3 =$V$2 =W14"2-V14 =W14"8+V14 =-LOG10 U14) =Zl4+LOG10(X 141$B$3)I(Yl41$B$3)) 15 =(0.0585"B15+1.309)/10000000000 =S15"$B$3 =$V$2 =W15"2-V15 =W15"8+V15 =-LOG10U15) =Z15+LOG10(Xl51$B$3)/(Y1S/$B$3)) 16 =(0.0585"B16+1.309)/10000000000 =S16"$B$3 =$V$2 :W16"2-V16 =W16*8+V16 =-LOG10(U16) =Z16+LOG1O((X16/B$3)/(Y16/$B$3)) 17 =(0.0585"B17+1.309)/10000000000 =S17"$B$3 =$V$2 =W17"2-V17 =W178+V17 =-LOG10(U17) =Z17+LOG10((X17/$B$3)/(Y17/$B$3)) 18 =(0.0585"B18+1.309)/10000000000 =S18*$B$3 =$V$2 =W18*2-V18 =W18*8+Vl8 =-LOG10(U18) =Z18+LOG1O((X1lB$B$3)/(Y18/$B$3)) 19 =(0.0585"B19+1.309)/10000000000 =S19"$B$3 =$V$2 =W19"2-V19 =W19*8÷V19 =-LOG10(U19) =Z19+LOG1O((X19/$B$3)/(Y19/$B$3)) 20 (0.0585"B20+1.309)110000000000 =S20"$B$3 =$V$2 =W20"2-V20 =W20*8+V20 =-LOG10(U20) =Z20+LOG10((X2015B$3)/(Y20/$B$3)) 21 =(0.0585"821+ 1.309)/10000000000 =$21"$8$3 =$V$2 =W21*2-V21 =W21"8+V21 =-LOG10(U21) =Z21+LOG10((X21/$B$3)/(Y21/1B$3)) 22 =(0.0585"B22+1.309)/10000000000 :S22"$B$3 =$V$2 =W22*2-V22 =W22*8+V22 :-LOG10(U22) =Z22+LOG10((X22/$B$3)/(Y22/1B$3)) 23 =(0.0585"B23+1.309)/10000000000 =S23"$B$3 =$V$2 =W23*2-V23 =W23"8+V23 =-LOG10(U23) =Z23+LOG10((X23/$B$3)/(Y23/1B$3)) 24 =(0.0585"B24+1.309)110000000000 =S24'$B$3 =$V$2 =W24"2-V24 =W24*8+V24 =-LOG10(U24) =Z24+LOG1O((X2415B$3)/(Y24/1B$3)) 25 =(0.0585"B25+1.309)/10000000000 =S25"$B$3 =$V$2 =W25*2-V25 =W25*8+V25 =-LOG10U25) =Z25+LOG10((X25/$B$3)I(Y25/$B$3)) 26 = 0.0585*B26+1.309)/10000000000 =S26"$B$3 =$V$2 =W26"2-V26 =W26*8+V26 =-LOG10U26) =Z26+LOG1O (X2615B$3)I(Y26/1B$3)) 27 = 0.0585"B27+1.309)/10000000000 =S27"$B$3 =$V$2 =W27*2-V27 =W27*8+V27 =-LOGlO(U27) =Z27+LOG10((X271$B$3)/(Y27/$B$3)) 28 =(0.0585"B28+1.309)/10000000000 =S28"$B$3 =$V$2 =W28*2-V28 =W28'8+V28 =-LOG10(U28) =Z28+LOGI0((X28/1B$3)/(Y28/$B$3)) 29 =(0.0585"B29+1.309)/10000000000 =S29"$B$3 =$V$2 =W29*2-V29 =W29"8+V29 =-LOG10(U29) =Z29+LOGI8((X29/1B$3)/(Y29/$B$3)) 30 =(0.0585"830+1.309)/10000000000 -S30"$B$3 =$V$2 =W30*2-V30 =W30"8+V30 =-LOG10(U30) =Z30+LOGIO((X30/1B$3)/(Y30/$B$3)) 31 =(0.0585"B31+1.309)/10000000000 =S31"$B$3 =$V$2 =W31"2-V31 =W31*8+V31 =-LOG10(U31) =Z31+LOGIO((X31/1B$3)/(Y31/1B$3)) 32 =(0.0585"B32+1.309)/10000000000 =S32"$B$3 =$V$2 =W32*2-V32 =W32'8+V32 =-LOG10(U32) =Z32+LOGIO((X32/$B$3)/(Y32/1B$3)).
=(0.0585"B33+1.309)/10000000000 =S33"$B$3 =$V$2 -W33*2-V33 =W33*8+V33 =-LOG10(U33) =Z33÷LOG10((X33/1B$3)/(Y33/1B$3))
34 =(0.0585"B34+1.309)/10000000000 =S34"$B$3 =$V$2 =W34*2-V34 =W34*8+V34 =-LOG10(U34) =Z34+LOG10((X34/$B$3)/(Y34/1B$3)) _L=0.0585"B35+ 1.309)/1000000000C :$35*$B$3 =$V$2 =W35*2-V35 =W36*8+V35 =-LOG10(U35) =Z35+LOG10((X3515B$3)1(Y3515B$3)
- 46 47 48 PM-1056, Rev. 0, Attachment 0, Page D-10 of D-10
GRAND GULF REFERENCE CALCULATION A B C D E F G H I I J K L M N 0 P 1 CASE 1 GRAND GULF REFERENCE DATA pH TRANSIENTI I I I Ibs
- 2. 4 tLinear Absorption Coefficients 4 LA 5 [tb]y 873.65 Cable Length [trays]- Zone A SLC 5800
.VpooL.4.841E+06 Liters [Min.Tech Spec Basis B 3.6.2.2m Ubeta air 1980E-02, LA Ib] 873.65 Cable Length [free air]- Zone A 4 M~1 325 Iodine inventory [g-atoms] Ubeta hyrpalon 52.081 /cm LB ray VIb] 14049.27 Cable Length [trays] - Zone B 5 2400 Cesium inventory [g-atoms] _ Ugann . ai.r 3.75E-05 1/cm LB f. [Ib]l 1561.03 Cable Length [free air] - Zone B t 2 6 gan 0.0336 Onset of Gap release [hrs] Uga...a hypalon 0.099 1/cm R0 [cm ]/IbI 800 Cable Area 7_r_ kL tr. pat-A] 1112.51cm th [cm]l 0.7112 Hypalon Jacket Thickness 8 1rl..... a.. I 13841cm _ F-o am "__
1a INTEGRATED DOSES i I CONCENTRATIONS i 10 Beta+Gamma Gamma Beta Gamma Beta ] From Beta iFrom Gamma From Beta From 11 TIME POOL Temp POOL DRYWELL DRYWELL :ONTAINMEN1 CONTAINMENT [HI] [HNO 3] 2 [HCL}-A [HCL]-A [HCL] CL-B ' Total [H+] [C ] TlOGK 12 Hours Deg F Mrad MeV/cm MeV/cm'iT MeV/cm MeV/cm' g-mols/liter g-mols/liter g-mols/liter g-mols/liter g-mols/Iiter g-mols/liter g-ions/liter g-mols/liter g-ions/liter 13 77 0.OOE+00 . 5.012E-06 O.0O00E+00 2.00E-09' 1,399E+01 14 1] 160 4.288E-07 ! 5.4418-06 4.7472E-05 4.75E 05l 1.279E+01 15 2 . 160 1.3783E+00 1.4200E+12 2.8733E+12 0.0000E+00 1.1220E+12j 9.8825E-07 1.00E-5 1.104E-061 1.067E-06 2.824E-06 0.000E+00 2.106E-05 1.0295E-04 1.03E 04 1.279E+01 16 2.03361 160 1.3792E+00 1.4506E+12 2.8784E+12 0.0000E+001 1.2148E+12 1.0071E-06 1.0078-05 1.106E-06] 1.090E-06 3.057E-06 0.000E+00 2.134E-05 1.0481E-04 1.05E-041 1,279E+01 17 3 159.1 1.4049E+00 2.16308+12 3.0235E+12 6.6925E+10 1.2908E+121 1.0071E-06 1.026E-05 1.161E-06 1.625E-06 3.249E-06 5.560E-07 2.287E-05 1.0481E-04 1.05E-041 1,280E801 18 5] 155.5 1.4581E+00 3.0991E+12 3.32088+12 6.4671E+11 1.4468E+12i 1.0071E-061 .1.064E-051 1.276E-06 2.328E-06 3.641E-06 5.373E-06 2 928E-05 1.04818-04 1.05804 1.284E+01 19 12] . 149.2 1.64258+00 4.7032E+12 -.4.33128+12 +1 1.9789E+12 1.0071E-061 1.199E8-5 1. 6 64 E-06[ 3.533E-06 4.980E-06 1.363E-05 4.181E-05 1.04818-04 1.058-04 1.2928+01 20 181 146.4 1.79858+00 5.44628+12 5.16098+12 2.10068+12] 2.4183E+12! 1.0071E-06 1.313E-05 1.982E-061 4.091E-06 6.086E-06 1.745E-05 .4.876E-05 1.0481E-04 1.05E-041 1.295E+01 21 241 144.3 1.9526E+00 5.9733E+12 5.9584E+12 2.4271E+12 2.8430E+12ý 1.0071E-061 1.425-05 2.289E-061 4.487E-06 7.155E-06 2.0168-05 5.437E-05 1 0481E-04 1.05E-041 1.298E+01 22 . 481 139.4 2.5509E+00 7.2434E+12 8.8503E+12 3.2138E+12 4.4038E+12 1.0071E-061 1.862E-051 3.400E-061 5.442E-06 1.108E-05 2.670E-05 7.126E-05 1.0481E-041 1.05E-04i 1 304E+01 23 72]- 136.5 3.12138+00 7.98638+1 11319E+13 367408+12 5.76498E12 1.0718-06]229-05 4.348E-6r 6.0-008-6 .151 3.528-05t 8.418E-05 1.0481E-04 1.058-041 1.3088+01 24 96 134.4 3.6648E+00 8.5135E+12 1.3425E+13 4.0005E+12 6.9521E+121 1.0071E-08 2.6758-05 5.1578-06' 6.396E-06 1.750E-051 33238-05 9 506E-05 1.0481E-04 1.05E-041 1.311E+01 25" 0- 132.8 4.18308-E0- 8.92248+1 1.5-224+3 4. 8+12- 7.9874E+1;1.0071E06 3.0 5.8488-06 6.7038-06 2.010E-051 3.5348-05 1.045E-04 1.04818-04 1.05E-041 1.3138+01 26 150i 131.3 4.7966E+00 9.3312E+12 1.7105E+131 4.5071E+121 9.0975E+12ý 1.0071E-06i 3.502E-05 6.571E-061 7.010E-06 2.290E-05 3.744E-05 1.150E-04 1.0481E-04_ 1.05E-04 1.3158+01 27 200 129.2 5.7409E+00 9.8584E+12 1.9521E+13 4.8336E+12' 1.0574E+131 1.0071E-061 4.191E-05 7.499E-061 7.406E-06 2.661E-05 4.016E-05 1.296E-04 1.0481E-04 1.05E-041 1.318E+01 28 240 127.9 6.4313E+00 1.0192E+13 2.0955E+13 5.04058+12 1.1486E+131 1.0071E-06 4.695E-05 8.050E-06! 7.657E-06 2.891E-05 4.187E-05 1.395E-04 1.0481E-04 .1.05E-041 1.320E+01 29 300 126.3 7.3686E+00 1.0601E+13 2.2506E+131 5.29388+12 1.25198+13 1.00718-06 5.3798-05 8.645E-061 7.964E-06 3.151E-051 4.398E-05 1.519E-04 1.0481E-04 1.05E-04! 1.322E+01 9 04 7 06 30 3601 125 8.1999E+00 1.0935E+13- 2.3551E+13, 5.5007E+121 1.3252E+13! 1.0071E-061 5.986E-05l . E- l 8.215E-06 3.335E-05 4.5700-05 1.6220-04 1.0481E-04 1.05E-04, 1.324E+01 3 O- 124.3 8.70118E+00 1.1128E+13 2.40409- 31 5620-3E+12 1.36f8E+1Y.6 -0671E 06.352E-05 9.!23-88E--06-- E-06 3.427E-05 4.669E-05 1.681E:04* *.0481E-04 05E-04; 1.325E+01 32 480 123 9.5911E+00 1.1463E+13 2.4727E+13 5.8272E+121 1.4143E+131 1.0071E-06 7.002E-05 9.4998-06 8.612E-06 3.559E-05 4.841E-05 .1.781E-041 1.0481E-04 1.05E-041 1.326E+01 33 6001 121.4' 1.0685E+01 1.1871E+13 2.52598+13 6.08058+12' 1.4592E+13ý 1.0071E-06 7.8E-05 9.703E-06 8.918E-06 3.672E-051 5.051E-05 1.899E-04ý 1.0481E-04 1.05E-041 1,329E+01 -34 . 700 120.31 1417E+01 1.2154E+131 2.5472E+131 6.2555E+12 1.4791E+13 1.0071E-06 8.334E-05 9.785E-06, 9.131E-06 3.722E-051 5.197E-05 1.975E-04 1.0481E-04 1.05E-04T 1.330E+01 35 720 1 120.11 1.15468+01 1.22058+131 2.55008+1 6.28758+12E 1.4 E041 3 !.06 7 1 9495-063 9.1698-0637 - 5 O4 ..... 1.0-38 1 Entergy Eng. Report GGNS-98-0039 Rev.3 , Equation 3-1d [30+90 min release duration] 14 Acid dissociation constant from: Entergy Eng. Rep. GGNS-98-0039 Rev.3, Sect.6.1,p.21 715 "* 3Ii T qaio -- A --
-d[09 -min release -- duration] -- - -- -- - -- -- - -- -- -
Entergyac. XC-011111-98013 Rev.2, Section 5.7 42 5 1bid, Equation 3-3a; Enterg y CaIc. XC-Q11111-98013 Rev.2, Equation 5-1
- 43 6 Ibid, Equation 3-3b: Entergy Calc. XC-01 1111-98013 Rev.2, Equation 5-2 44 7 Ibid, Equation 3-5a: Enter Cabc. XC-Q1 1111-98013 Rev.2, Section 5.7 ___
45 8 bid, Equation 3-Sb; EnteryCalc. XC-Q11111-98013 Rev.2, Section 5.7 _ 46 9 Ibid, Equation 3-0a; Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.7 _ 47 10 Ibid, Equation 3-5d; Entergy Caic. XC-Q11111-98013 Rev.2. Section 5.7 ---- -- . 48 12 Ibid, Equation 3-Se; Entergy CaIc. XC-Q11111-98013 Rev.2, Section 5.7 _ _" 49 12 Ibid, E uation 3-5e; Enter y Calc. XC-Q11111-98013 Rev.2, Section 5.7 "50 13 Entergy Calc. XC-Q11111-98013 Rev.2, Section 5.2.2 1 - _ _ PM-1056, Rev. 0, Attachment E, Page E-1 of E-7
GRAND GULF REFERENCE CALCULATiON R I s I T I U I V I w Ix IY I Z I A I AB I AC 1 -i ~1 -~ 2 \Ia B O Added [MW=410] 2 1 0 16 3 4
+ ~r~-4 5
6 7-7i
*-
8
*-0;
_ __ _pH _ I_ _ _ EFFECT OF ADDITION OF SODIUM PENTABORATE STANDBY LIQUID CONTROL [SLC] SOLUTION _ _ __ _ StrongAcidI ODU __ _ 11 Root x : Net [H+) 7PHiT K. g-equiv. Na 2B1 oO 0 6 Borate Boric Acid p1< pH 12 9-ions/liter . .Net [H+]
- Vpoo g-mols g-equiv. g-equiv. i -log,.iK 13 -61360E-11: 5.0119E-06 5.300 5.8135E-10 2.4262E+01 6416.8 12809 513591 9.24 8.63 14 _5.4368E-06 3.8846E-09 8.411 1..0669E-09J 1.8805E-02 6416.8 12834 51334 ...... 8W97 8.37 15 2.1054E-05 1.99406E-09 8.700 1.669K-0 9.65296-03 6416.8 12834 513341 8.97 8.37 16 2.1338E-05 1.9563E-09 8.709 1.0669E-09 9 4701E-03 6416.8 12834 51334: 8.971 8.37 17 2.2864E-05' 1.9450E-09 8.711 1.0616E-09 9.4153E-03 6416.8 12834 513341 8.97 8.37 18 2.92796-05 1.9127E-09 8.718 1 0406E-09 9.2569E-03 6416.8 12834 513341 8.98 8.38 19 4.1812E-05 1.9216E-09 8.716 10037E-09 9.3022E-03 6416.8 12834 51334- 9.00 8.40 20 4.8757E-056 1.9925E-09 . 8.701 9.8734E-10 9.6456E-03 64168 12834 513341 9.01 8.40(
21 5.4365E-051 2.0826E-09 8.681 9.7506E-10 1.0082E-02 6416.8 . 12834 51334] 9.01 8.41 22 7.1261E-05:; 2.7075E-09 8.567 9.4639E-10 1.3107E-021 6416.8 12834 51334: .9.02 8.42 23 8.4179E-05! 4.0324E-09 8.394 9.2943E-10 1.9520E-02 6416.8 12834 51334 9.03 8.43 24 9.5048E-05! 7.9891E-09 8.098 9.1714E-10 3.86746-02 6416.8 12834; 5133 9.04 8.44 25 1.0438E-04, 1.7016E-07 6.769 9.0778E-10 8.23736-01 6416.8 12833 5 13351 9.04 8.44 1 26 1.0481E-041 1.0148E-05 4.994 8.9901E-10 4.9124E+011 641.6.8 12784 513831 9.05 8.44 1 27 1.0481E-041 2.4789E-05 4.606 8.8672E-10 1.2000E+02 6416.8 127141 514541 9.05 8.45 28 1.0481E-04, 3.4644E-05 4.460 8.7912E-10 1.677"6E02 64168 12666 51502 906 8.45 29 1.0481E-04! 4.7093E-05 4.3271 8.6976E-10 2.2797E+02 6416.8 12606 51562i 9.06i 8.45 30 1.0481604 5.73776-05 4.241 8.6215E-1 2.7775E+021 6416.8 12556 51612 906 8.45 31 1.0481E-04: 6.3287E-05 4.199 8.58066-10 3.0636E+02 6416.8 12527 51641 9.07 8.45 32 1.0481E-04! 7.3336E-05 4 135 8.5045E-10 3.5501E+02. 6416.8 12479 51689i, 9.07 8.45 33 1.0481-04 8 5066E-05 4.070 8.4109E-10 4.1179E+02 6416.8 12422 51746 908 8.46 34 1.0481604 92659E-05 4.033 8.3466E-10 4.4855E+02 64168 12385 517831_ 9.08 8.46 3_5 .0481604 9.39866-0 4.0278.33496-10 4.5497E+02 6416.8 12379 51789; 9.08 8.46 36 _______ ______1_____ ____ _____ ____ ___ ___ ________ 38 40 41 ______1______1 ____ ___ ___ 42 _ _ 43 ___ 4,4 ______ ___________ _____ __________ ____ ___ ___ 74- I __ 7915-46 _______ ______ __________ 5o76! PM-1056, Rev. 0, Attachment E, Page E-2 of E-7
GRAND GULF REFERENCE CALCULATION CASE 1 A 2 A- IGRAND
.. ... B GULF REFEREI I = C [ID -- -ijnapH TAsEEI TNEN F Lier Absorption G Coefficiý, H 100198 3 VpOOL =170954"28.3168_
4m]=325 tLiters [Min'zech Spec Basis E
-iIodine inventory [g-atoms].
TRANSIENTair
- 1 Ubta 52.0 8
_____________________ Ubetahypalon 5 mc=2400 Cesium inventory [g-atoms) air ______.....-- 10.0010375 t 6 ap =121/3600 Onset of Gap release [hrs] . Ua.a.. hypalon 0.099 8 F - . ....,*384 11.. 9
-1. Beta+Gamma-.- INTEGRATED Gamma DOSES.I Beta lI " Gamma Betal* i 11 TIME POOL-Temp 10~~ aGam POOL --
amaBt DRYWELA 3 DRYWELL-A [ amaBt---------------- DRY WELL-B
- DRYWELL-B
------- ---------- ----------------.
[..] H 12 Hours Deg Mrd .. MeV/c ---- MeV/cF .eV/cm* ......- - -MVc3- g-m-os/litr .. 130 77 *_*_*_I __ I 10 1466 " .16=$B$4/(120"$B$3)ý(A1-(0 5+$B$6)+L$B$4/(400"$3 121611.3783 1420000000000 ý2873300000000 i0 1122000000000 =$B$4/(120"$EB53) "($A 15-(().5+$B$6)) +$B$41(400"$8$3)- 16 =0.5+1.5-B6 160 11.3792 11450600000000 12878400000000 0 1214800000000 0=$B41(120$B$3)*$A16-(O.5+$B$6))+$B$4/(400*$B$ 17 3 159.1 - 1.4049 .2163000000000 13023500000000 66925000000 12908000000 18 5 155.54581 3099100000000 3320800000000 64671000000066bo 144680000(0000 ________H$16___________ 19 12 149.2 1.6425 14703200000000 4331200000000 1640400000000 1978900000000 =H$16 20 18 146.4 1.7985 5446200000000 5180900000000 2100600000000 12418300000000 =H$1-6 21 24 1.9528 -1443 5973300000000 595840000000 2427100000000 o284300000000 7=$16 22 48 139.4 .5509 . 72434000000 850300000000 80000 3213800000000 14403800000000 I=H$16 72 ý136.5 3.1213 7986300000000 111319000000000 3674000000000. 5764900000000 4=H$t6 24 96 134.4 6648 8513500000000 13425000000000 4000500000000 6952100000000 =H$16 25 120 1132.8 14.183 8922400000000 15224000000000 14253800000000 7987400000000 =H$16 26 150 131.3 4.7966 9331200000000 117105000000000 14507100000000 19097500000000 =H$16 200 129.2_ 5.7409 9.858400000000 _l19521000000000 14833600000000 '10574000000000 I=H$16_ _ 28 240 127.9 6.4313 10192000000000 20955000000000 5040500000000 11486000000000 =H$16 29 300 1126.3 7.3686 10601000000000 22506000000000 15293800000000 12519000000000 I=H$16 30 360 125 8.1999 10935000000000 23551000000000 5500700000000 13252000000000 !=H$16 31 400 124.3
- 8.7011 11128000000000 124049000000000 5620300000000 13618000000000 1=H$16 32 480 123 9.5911 11463000000000 124727000000000 J582720000000 14143000000000 ,=H$16 33 600 121.4 10.685 11871000000000 2525900000000 6080500000000 14592000000000 I=H$16 "
34 700 1120.-3-............... 11.417 12154000000000 2547200 -60000-- - -555*00-660000-0-- -------- 1479100000000 -=H ........ ................. 720 120.1 .. ....... 12205000000000__oo 125500000000000 _r287500000000 6... oH$16 14819000000000 NOTES I I / IJ__ 38 1 Enterg nE. Report GG [ _ I_* 14 39 40 3Ibid, Ibid, Equation Equation 3-2b 3-4d [30+d* _ _ __*__15 41 4 Ibid. Table A-1 _1 "_ " " _ 42 5 bid, Equation 3-3a; Ent* 736Ibid , Equation 3-3b: Ent*
- ---- - ------ -- - . ------.... . -- - -- -
43~ 6 -. bd qua-tio-n Eut 3-3b:--- - -----------. 44 7 Ibid, Equation3-5a: Entel _________________________________________ ---------- 45 8 Ibid, Equation 3-5b; Ente! 4619 ]Ibid, Equation 3-0a; E_ 47 10 Ibid. Equation 3-5d: Entt_ 48111 Ibid, Equation 3-5d; Ent_ 49 12 Ibbid, Equation 3-5e; Ent_ 50113 Enterqy Catc. XC-Q111' I 1 _ I PM-1056, Rev. 0, Attachment E, Page E-3 of E-7
GRAND GULF REFERENCE CALCULATION I L JK L 2 Laney [Ib]1873.65 Cable Length [trays]- Zone A 3 1/cm LRo [Ib 873.65 Cable Length [free air]- Zone A 4 1/cm rth [Ib] 14049.27 Cable Length [trays] - Zone B 5 1/cm Cable Length [tree air[ - Zone B 6 1/cm R5 [cm ]IIb 800 'able Area 7 cm -ylon Jacket Thickness 9 _ _ CONCENTRATIONS__ _ _ _ _ _ _ __ __ _ _ _ _ _ _ 10 [From Beta IFrom GammaFrmBt 11 [HN0 3[ 2 [HCL] -A - - - - -[HCL] --A -c [HL--6 12 g-mots/titer g-mols/liter I. . . .. . . . -mols/titer g-mots/liter 16 10.0000073*$C16 =3.512E-20/$B$3$~iks$6(i$K$21+$K 3)/H $E18 =351 E2/B3K6$$+K3 -EXP-$H5H7)$$XP(P($$$$) $06 31 -20I$B$3*$K$6*($K$4/2.$K$5)I$H$3'$G16 351E.01Br$$6(K$/2$K3/$$3E 0.0007'C17 71351220$B3K$($$2$$3 1X2:H$$t$) 1 Y$H5 FX($H$'$K$7))'$017 =3.512E:0$3K6(K4/$$5$H3G1 18 =0.0000073'$C16 =3.512E-20/$8$3*$K$6*($K$2/ +$K$3)/$H$3*$E 18=.1E_ 0/$B$3*$K$6*($K$2+$K$3)y(l-EXP(-$H$5*$H$7))/$H$5s(1-EXP(.$H$I $) $08;312-0$$$$(K$4/2+$K$5)I$H$3*$G 18 19 =0.0000073-$C17 =-3.512E-20/$B$3_*$K$6($K$2/2+$K$3)/$H$3*$El7 I=3.512E-20/$B$3*$K$6]$ýK$2+$K$3)( "-E F(-$H$5'$H$7))/ý$H$5t-EXP(-$H$68$K$7 $0Dl719I3.51 2E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3r$G 19 20 =0.0000073-$C18 $2/+$$3)/$I-Mý$E0
;352-0$$~K6$ 1=3.512E-20/$B$3*$K$6'($K$2+$K$3)*(l-EXP(-$H$5*$H$7))/$H$5*(1-EXF(-$H$6*$KS7))$020 T=351 2EýY-0/fd$B$K-$-6'($K$4/2+$K$5)/$H$3*$Gl0 1=0.0000073'$C19 =3.512E-20/$B$3*$K$6*($K$2/2.-$K$3)/$H$3*$El91'=3.51 2E-20/$B$3*$K$6]($K$2+$K$3)*(l-EXP(-$H$5'$H$7))/$H$5(1l-EXP(-$H$6*$K$7)) $0291=I3.51 2E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$Gl1 22 =0.0000073*$C22 =3.512E-20/$B$3*$K$6*($K$212+$K$3)/$H$3*$E 22 1=3512E-201$ B$3*$K$6']$K$2+$K$3y*(l-EXP(-$H$5*$H$7))/$H$5*(l-EXP(-$H$6'$K$7 ) $D02J =3.512E-20/$B$3X$K$6*($K$4/2+$K$5)/$H$3*$G22 23 =0.0000073'$C21 =3.512E-20/$B3$3*$K$6*($K$2/2-$K$3)/$H$3*$E23 =3.ý1,2E-20/ý$B$3:$K$6'($K$2.$K$3)*(l-EXP(-$H$5'$H$7))/$H$5*(1-EXP(-$H$6*$K$7)) $023 J 3.51 2E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G23 24 =0.0000073*$C24 =3.512E-20/$B$3*$K$6]($K$2/2+$K$3)/$H$3*$E24 _3.51 2E_20/$B$3 K$6 ($K$2-$K$3)*(l-EXP(-$H$5*$H$7))/$H$5*(l-EXP(-$H$6*$K$7)J $024 13.51 2E-20/$B$3*$K$6]($K$4/2-$K$5)/$H$3*$022 25 =0.0000073*$C25 =3.512E-20/$B$3*$K$68($K$2/2f-$K$3)/$H-$3'$E23 =-3.512E-20/$B3$3*$K$6*($K$2v$K$3)*(l-EXP(-$H$5'$H$7 )/$H$5*(l-EXP(-$H$6*$K$7)) $025 I 3 51 2E-20/$B$3*$K$6*($K$4/2.$K$5)I$H$3*$G25 26 =0.0000073:$C26 =3.512E-20/$B$3'$K$6'($K$2/2+$K$3)/$H$3"$E24 1=3.51 2E-20/$B$3*$K$6*($K$2+$K$3y:(1 -EXP(-$H$5*$H$7))/$H$5*(l-EXP(-$H$6*$K$7) $026 3.51 2E-20/$B$3*$K$6*($K$4/2r-$K$5]/$H$3*$G24 27 =0.0000073 $C25 =3:512E-20/$B$3'$K$6-$K$2/2+$K$3)/$H$3*$E25 1=3.512E-20/$B$3X$K$6*($K$2.$K$3)*(l-EXP(-$H$5*$H$7))/$H$5'(l-EXP(-$H$6*$K$7)) $027 =351 2E-20/$B$3'$K$6*($K$4L2.$K$5)/$H$3*$G27 28 =0.0000073*$C28 =3.512E-20/$B$3'$K$6*($K$2/2+$K$3)/$H$3*$E28 1=3.51 2E-20/$B$3*$K$6*($K$2--$K$3y*(1-EXP(-$H$5*$H-$7))/$H$5*(1-EXP(-$H$6'$K$7)) $028 J 3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G26 29 =0.0000073'$C27 =3.512E-20/$B$3*$K$_($K$2/2-$K$3)/$H$3r$E27 =-3.512E-20/$B$3*$K$6*($K$2+$K$3)*(1-EXP(-$H$5*$H$7 )/$H$5*(1-EXP(-$H$6*$K$7)) $029 I 3.51 2E-20/$B$3$K$6($K$4/2+$K$5)/$H$3*$G29 30 =0.0000073*$C30 =3.512E-20/$B$3-$K$6-($K$2/2+$K$3)/$H$3i$E3 I3.512E-20/$B$3'$K$6*($K$2+$K$3)(l-EXP(-$H$5*$H$7))/$H$5*(l-EXP(-$H$6*$K$7)) $03 1E2/B3K6(K42$$)$2$3 31 =0.0000073*$C31 =3.512E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3'$E391=3.512E-20/$B$3'$K$6- $K$2+$K$3)(1-EXFP(-$H$5'$H$7]/H51-EXP(-$H$6*$K$7)*$03 29 13.512E-20/$B$3*$K$6*($K$4 2+$K$5)/$H$3*$G29 32 =0 0000073*$C32 =3.512E-20/$B$3'$K$6'($K$2/2.-$K$3)/$H$3*$E30 1=3.512E-20/$B$3*$K$6 ($K$2.$K$3(1X-EXP(-$H$5*$H$7))/$H$5* 1-EXP(-$H$6*$K$7 )$D03 1=3.512E-20/$B$3*$K$6*($K$4/2+$K$5)/$H$3*$G32 33 =0.0000073*$C31 =3.12E-20/$B$3*$K$6*($K$2/2+$K$3)/$H$3*$E33 1=3.512E-20/$B$3*$K$6'($K$2+-$K$3)'(-EXP(-$H$5*$H$7))/$H$5*(_- EXP($H$6*$K$7 )jO33 i=3.512E-20/$B$3*$K$6*($K$4/2+$K$5)Iýý$H$3*$G33 34 =0.0000073*$C34 =3.512E-20/$B$3*$K$6-($K$2/2.-$K$3)/$H$3'$E32 T=3.512E-20/$B$3*$K$6*($K$2.$K$3y*(1-EXP(-$H$5'$H$7 )/$H$5*(1 EXP(-$$$$]$3 =3.51 2E-20/$B$3r$K$6*($K$4/24$K$5)/$H$3'$G32 35 =0.0000073*$C35 =3.512E-20/_$B$3*$K$6ý($K$2/2vý$KK$3)/$$H4$$E353 -=3.512E.20/$B$3*$K$6'($K$2.$K$3)-(1-EXP]-$H$5* $7))LkH$L(1-EXP](-$H$6$K$7)r$D35 1=3.51 2E-20/$B$3X$K$6'($K$4/2+$K$5)/$H$3*$G35 =352 --- $-=---- $3)/-----E -3 .-- - ----- - -- - ))$$5(-EXP-$H6*K$-- $3-- I -
38 Acid dissociation coasti 39_ 40 teg2a9.X-O _ _ _ _ 1En_______________________ _ _ _ _ _ _ _ _ _ 1__ _____ __________________________________________ ____________11_________ _ _ _ _ _ _ _ _ _ _ 44 _____ 45 _____ 46 ______ ________________1.________________ 4847 ____________________________ _____________________________________ ____________________ 48 ____________________ ______________ 491 _______ _________________________ ------ ____________________________________________ PM-1056, Rev. 0, Attachment E, Page E-4 of E-7
GRAND GULF REFERENCE CALCULATION M .. N 0N. 2 3 4 5 6 7 8 10 From Gamma 11 [HCL -B--- ---------------------------- Toa [-+ --------------------- -C-- 12 g-mols/liter g-ions/liter g-mols/liter 13 * =POWER(10,-$T$13)+$H13+$113+$J13+$K13+$L13+$M13 0 14 _=POWER10,_-$T$13)+$H14+$114+$J14+$K14+$L14+$M14 = -(.4*$B$5-0.475"$B$4)I(3X$$3)*($Ai4-(0 5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 15 =3.512E-20/$B$r3$K$6'($K$4+$K$5)r(1-EXP(-$H$5'$H$8))/$H$5*N1-EXP(-$H$68$K$7)) $F15 =POWER(10,-$T$13)+$HI5+$115+$J15+$K15+$L15+$M15 =(0.4*$B$5-0.475*$B$4)I(3*$B$3)'($A15-(0.5+$B$6))+(0.05*$B$5-0.0475*$B$4)/$B$3 1T =3.512E-20/$B$3r$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))p$F16 =POWER(10,-$T$13)+$H16+$116+$J16+$K16+$L16+$M16 =(0 4"$B$5-0.475*$B$4)/(3*$B$3)-($A16-(0.5+$B$6))+(0.05*$B$5-0.04751$B$4)/$B$3 17 -3.512E-20/$B$3_$K$6.($K$4+$K$5y(1-EXP(-$H$555H$8))/$H$5(1_(EXP(-$H$6$_ $K$7))p$F17 =POWER(10,-$T$13)+$H 17+$t17 +$J17+$1 K 7+$L 17+$M 17 =$C$16 1.8 =3512E-20/$-B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F18 =POWER(10,-$T$13)+$H18+$118+$J18+$K18+$L18+$M18 =$O$16 19 =3.512E-20/$B$3*$K$6*($K$4+$K$5)jl-EXP(-$H$5'$H$8))/$H$5*(1-EXP(-$H$61$K$7))-$P19 =POWER 10.-$T$13)v$H19+$I19+$J19+$K19+$L19+$M19 =$O$16 20 =3.512E-20/$B$3*$K$6*($K$4+$K$5) (1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))p$F20 =POWER(10,-$T$13)+$H20+$120+$J20+$K20+$L20+$M20 =$O$16 21 =3.512E-20/$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F21 =POWER(10,-$T$13)+$H21+$121+$J21+$K21+$L21+$M21 =$O$16 22 =3.512E-20/$B$3*$K$6($K$4+$K$5)`y(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F22 =POWER(10,-$T$13)+$H22+$122+$J22+$K22+$L22+$M22 =$O$16 23 =3.512E-201$B$3*$K$6*($K$4+$K$5)*(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6*$K$7))*$F23 =POWER(10,-$T$13)+$H23+$123+$J23+$K23+$L23.$M23 =$O516 24 =3.512E-20/$B$31$K$6*($K$4v$K$51-EXP(-$H$5*$H$8))/$H$5*1-EXP(-$H$6*$K$7))$F24 =POWER 10,-$T$13)+$H24+$1244-$J24+$K24+$L24+$M24 =$O516 25 =3.512E-20/$B$3Y$K$6*($K$4+$K$5)*(1-EXP(-$H$51$H$8))/$H$5*(l1-EXP(-$H$6*$K$7))*$F25 =POWER(10,-$T$13)+$H25+$125+$J25+$K25+$L25+$M25 =$O516 26 =3.512E-20/$B$3*$K$6*($K$4+$K$5)'(1-EXP(-$H$5*$H$8))/$H$5*(l1-EXP(-$H$6*$K$7))*$F26 =POWER(10,-$T$13)+$H26+$126÷$J26+$K26+$L26+$M26 =$O516 27 =3.512E-20/$B$3*$K$6*($K$4+$K$5)1-EXP(--$-H$5$H$8))I$H$5*(i-EXP($H-$-6*$K$7))$F27 =POWER(10,-$T$13)+$H-27+-$27+$J27+$K27+$L27+$M27 =$0$16 28 =3.512E-20/$B$3*$K$6U($K$4+$K$5)-(1-EXP(-$H$5 $H$8))/$H$5 (1-EXP(-$H$6 MK$7))'$F2 =POWER(10,-$T$13)+$H28+$126+$J28+$K28+$L28 +$M28 =50516 29 =3.512E-20/$B$3*$K$ 6($K$4+$K$5)p(1-EXP(-$H$5 $H$8))/$H$5*(1-EXP(-$H$6-K$K7))-$F29 =POWER(10,-$T$13)+$H29+$129+$J29+$K29+$L29+$M29 =$5016 30 =3.512E-20/$3 $$ K$6($K$4+$K$5)*(1 -EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6$ K$7))*$F30 =POWER(10,-$T$13)+$H30+$130+$J30+$K30+$L30+$M30 =$5016 31 =3.512E-20/$B$ 3$K$6 ($K$4+$K$5) (1-EXP(-$H$55$H$8))/$H$5 (1-EXP(-$H$6$K$7)) $F31 =POWER(10,-$T$13)+$H31+$131+$J31+$K31+$L31+$M31 =$O$16 32 =3.512E-20/$B$3*$K$6*($K$4+$K$5)'(1-EXP(-$H$5*$H$8))/$H$5*(1-EXP(-$H$6'$K$7))'$F32 =POWER(10,-$T$13)+$H32+$132+$J32+$K32+$L32+$M32 =$O516 33 =3;.512E-20-/$8$3'$K$6' $K$4+$K$$5Y(1-EXPL5H$5'$H$8))/--$5'-1-EXP-4H$ý6$K$7))*$F33 =POWER_04-$T$13)+$H33+$133+$J33+$K33+$L33+$M33 =$O$16 34 =3.512E:20/$B$3*$K$6*($K$4+$K$5) (1-EXP(-$H$5'$H$8))/SH$5*(1-ExP(-$H$6'$K$7)) $F34 =POWER(10,-$T$13)+$H34+$134+$J34+$K34+$L34+$M34 =$O516 35 =3._512E-2O/$B$3K-$6$-($K$4+$K$5-)(1-EXP(--$*H5$5*$H$8))/$H$5-'(1-EXP(-$H$6S$K$7))p$F35- =POWER(10,$T$13)-$H35+$135+$J35+$K35+$L35+SM35 =$O$16 36 37 3T 39 4F 41 42 43 44 45 46 47 48 49 50 PM-1056, Rev. 0, Attachment E, Page E-5 of E-7
GRAND GULF REFERENCE CALCULATION 1 Q R sS T U 2 SLC [Ibs] 5800 Na 2 BIO110HO Added [MW=410J -___I____ 4 8 - -------- - - ---- - - ------ - -
------------ - -- - - -------- - - - - ------------ - - - - --- --- - - --------------- - - . --- ------- -------------- iL--------------- -------
77 8 ________________pH EFFECT OF ADDITION OF SODIU 10--------- -- ------- ----- ------------------ - ------ [ --- t 11 Total [OF-+ -L(G(Kw) Rotx Net[0;1- pH ~ i K, 12 g-ions~liter g-ions/liter ____________________________ 13 =POWER(10,-14)/POWER(10,-$T$13)+$013 =15.5129-0.0224*$813+0.00003352*POWER(Bl3,2) =(Nl3+P13-SORT(POWER(($N1 3v$P1 3(.2)-(4C(Nl3*Pl3-POWER(10.-$013)((((/2_ =$N13-$R1 3 15.3 =(0.0585 813+1 .309)/10000000000 14 =POWýRJ1_0A4lýPOWERj10c$T$13+$O14_ =15.5129-0.0224'$B14+0.000033521'OWER(B14,2L =(N 14+P14-SQRTAPOWER(($N14+$Pi~j.)1 4( j4P14-POWER(.0,-§O14j))))i2 =$N 4-$R14 --LOG1O($S14LAO 0585 B314+1.30 -9)/10000000000 - 15 =POWER(10.-14)/POWER(10,-$T$13)+$015 =15.5129-0.0224581l5+0.00003352*POWER(Bl5.2) =(Nl5+Pl5-SORT(POWER(($Nl5+$P1 5),2)-(4*(N15*P15-POWER(10,-$O15)(/2 =CN15-$R5415=LG _$S5 (0.0585-615+1 .309)/10000000000 16 =POWER(10,-14)/POWER(10,-$T$13)+$016 =15.5129-0.0224*$Bl6+0.00003352*POWER(Bl6.2) .=(Nl6+Pl -SORT(POWER(($N16+$Pl6),2)-(4*(N1 6*P16-POWER(10,-$Ql6())))/2 =$Nl6-$Rl6 --LOG1O($S16)' =(0.0585 816+1 .309(/10000000000 17 =POWER(10.-14)/POWERý(10,-$T$13)+$017 =15.51 29-1.022411317+0.00003352 POWER(Bl7,2aL [t1,7+P17-SORT(PýOWERý(($N17+SP!7J.2)-(4K(N17'P1 7-_POWER(10..$Oi 7))D ~
=$1-R7 -LOG1O($S17) _(0.0585 B17+1.309)/10000000000 18 POWR10-$T1 0-1 +$1~=1 /PWE .519-.024'$18-0.00035P0WR(18,-2 [=(N8.P_-SRT(POWER(($N18.$Pl8(,2)-(4*(Nl8*P8-POWER(10.-$018)~)I I$8-R8I-LOG10($S18) =(0.0585 8lB1-.309)/10000000000 19 =POWER 10,-14 /POWER(10.-$T$1 3)-soig 1=15.5129-0.0224*$B19+0.00003352*POWER(Bl9,2) [=(N 19-Pl9-SQRT(POWER(($N19+$Pl9).2)-(4*(Nl9*Pl9-POWER(10.-$Ql9)))))/2 [=$N19-$R19 ILG1(S9 (055B91.0)0000000000 20 =POWER 10,-14)/POWER 10.-$T$13)+$020 1=15.5129-0.0224*$B20--0.00003352*POWER(B20.2) =(N20+P20-SQRT(POWER(($N20--$P20),2)-(4C(N20*P20-POWER(10,-$020)))))/2 [=$N20-$R20 I=-LOG1O($S20) =(0.0585*820+1.309)/10000000000 21 =POWER(10,-14)/POWER(10,-$T$13).$021 1=15.5129-0.0224*$B21 +0.00003352-POWER(B21 .2) =(N21 +P21-SQRT(POWER(($N21 +$P21 (.2(-(4*(N21-P21-POWER(10,-$Q21 ))()/2 [=$N21-$R21 1=-LOG 10($S21) =(0.0585-821+1 .309(l10000000000 22 =POWER 10,-14)/POWER 10,-$T$13)+$022 I=15.5129-0.0224*$B22+0.00003352*POWER(B22,2) =(N22+P22-SORT(POWER(($N22-$P22),2)-(4'(N22*P22-POWER(10,-$022())))(/2 [=$N22-$R22 J=-LOG1O($S22) ý(0.0585 B22+1.309)/10000000000 23 =POWER 10,-14)/POWER 10,-$T$13)+$023 =15.5.129-0.0224'$B23+0.00003352-POWER(B23.2) =(N23-P23-SORT(POWE R(($N23+$P23),2)-(4*(N23*P23- POWER(10$2))(/ 1 N2$R3I-L 10($S23) !=(0.0585'B23+1 309)/10000000000 24 =POWER(10,-14)/POWER(10,-$T$1 3)+$024 =15.5129-0.0224'$B24+0.00003352-P0WER(B24.2) =(N24-P24-SORT(POWER ((N24+$P24),2)-(41(N24P24-POWýER(10. $024))())/ý2 I=$N245-$R224 I-LOG 10($S24) '(0.0585*1324+1 .309(/10000000000 25 =POWER 10,-14)/POWER 10,-$T$13)+$025 =15.5129-0.0224*$B25+F0.00003352-POWER(B25,2) =(N25.P25-SQRT(POWER(($N25+$P25),2)-(4*(N25*P25-POWER( 10,_$02,)()(/ IN25- R5 :_LOG10($Sý25( I' (05ý85 B 5.130g)/10000000000 26 =POWER 10,-14 /POWER 10.-$T$13(+$026 =15.5129-0.0224*$B26+0.00003352*POWER(B26,2) =(N26-.P26-SORT(POWER(($N26-$P26),2)-(4C(N26*P26-POWER(10,-$Q26)))))/2 I=$N26-$R28 I=-LOG10($S6 (0058 RB256--109)/10000000000 2 PWR0..................i)+/-$O27 =15.5129-.242700032PWRB,2 =(2+2-OTPWR$2+P7.(C(2P27-O EýR(10.-$Q27)((((/2 [=$N27-$R27 1-LOG10($S27) -(00585 E327+1.39/OOO00 28 POER(0.14(VOER(1,$$1)$2 =552-0.0224'$828.0.00003352-P0WERý(B728_.2 =(N28+P27-SORT(POWER(($N28.$P28(,2)-(4(ýN28P27-POWR 055881 39/OOOOO .0-08~(2I$2-R8!-O1(S8 29 =POWER(10.-14)/POWER(10,-$T$13).$029 =15.5129-0.0224*$B82+0.00003352*POWER(828.2) =(N28+P28-SQRT(POWER(($N28+$P29),2)-(4'(N29;P28-POWER(10,-$O298fl(2 j=$N29-$R29 1=-LOG 10)($S22 =(0.0585 B82+1 .309(/10000000000 30 =POWER 10,-14)/POWER 10,-$T$13)+$030 =15.5129-0.0224*$B30+0.00003352*POWER(B30.2) =(N30+P30-SQRT(POWER(($N30.$P30),2)-(4*(N30nP3O-POWER(10,-$030())((/2_ I=$30-R3 0.0585*830+1.309)/10000000000 1-O1O130 31 =POWER(10,-14)/POWER(10,-$T$13)+$031 =15.5129-0.0224*$B31 +0 00003352*POWER(B31 .2)_=jN3l +P31-SQRT(POWER(($N31 v$P31),2)-(i 3P1-OE(0S3)))2I$3-R1 ý -O1 $S31) =(0.0585-B31 +1.309)/10000000000 32 =POWER(10,-14)/POWER(10,-$T$13)+$032 =15.5129-0.0224*$B32+0.00003352*POWER(B32,2) =(N32+P32-SQRT(POWER( SN32+$P32),2)-(4*(N32*P32-POWER 10,-$Q32~)()l2 =$N32-$R32 ý=-LOG1O($S32) ý= 0:0585*B32+1.309)/10000000000 33 =PWR(0-15.5129-0.0224-$B33+0.-00-003352rPOWER(B33,2)_ =N ------ S-QRT(POWER(($N33+$P33(.2J)-ý4(-N-33-'P33-POWERý(10.-$033))J))/2 -$N33-$R3.3 =.LOGj1O($S33)_= -- ---------------
9------------- 34 =-POWER 10,-14 /POWER 10,-$T$13)+$034 =15.5129-0.0224*$B34-0.00003352*POWER(834,2 ( N34+P34-SQRT(POWER(($N34+$P34),2)-(4*(N34*P34-POWER 10,-$Q34) )))12 =$N34S$R_406 =-O1($341 =0085*1334+1 309)/10000000000 RM-E55519002$3..0035PWRB52 R(N35.P35-SQRT(POkWER(($N35+$P35)(2(-(4*(N35P3-PWR
-35.- -- O-$Q35)))))/2 =$N35-$R3 1=LG $ O +
3 PWR10_-1.4(/POWER 10,-$T$1)$3 -1.12--------------- 0003-- -POWE (B52 R35 L 10( S3 8 309)/10000000000 ______-~~~- _____ ---- -- _____ - - --- Tj-____ - --- ------ ____
-i6 _ _ __
37___ _________ 38_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I__ 39_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _I_ _ _ _ _ _ _ _ _ 47 I- -I -I 481 491 50I _ _ _ I _ _ _ _ _ _ _ PM-1056, Rev. 0, Attachment E, Page E-6 of E-7
GRAND GULF REFERENCE CALCULATION v w [ x y z AA___________ 4 _ _L0_ S_ +__9__ _ __,d 11 -- g-equiv. __Na2 B.1OH20t-2 Borate Boric Acid PIK pH 12 Net [H+] *Vpo0 L g-mols g-equiv. g-equiv. -log, 0 K. _______________ 13 =S13*$B$3 =$0$2'453.6/410 =W13*2-V13 j=W138+V13 =-LOG1 U13) =Zl3+LOG10((Xl3/$B$3)/(Yl3/$B§3))_ 14 =S14S$BS3 =$_Q$2453 6/410 =W14*2-V_14_ =Wl4*8+V14- =-LOG10)U14)_ Z14+_-LOGi0((Xl4/$B$3)/(Y14/$B$3)) 1T5 ~S5 3 =$0S2*453.6l410 =W15*2-VI5 I=Wl568+V5 =-LOG 10(Ul 5) fZ15 (X51$B$3)i kG1 Y15/$B$3)) 16 =S16*$B$3 =$0$2*453.6/4 10 =W16*2-V16 =W16*8+V16 =-LOG10(U 16) =Z16+LOG10((Xl6/$B$3)/(Yl6/$B$3) 17 =Sl7r$B$3 =$Q$2*453.6/410 =Wl7*2-V17 =W17*8+V17 =-LOG-10(U1-7) =Z17+LOG!O((Xl7/$B$3)/(Yl7L$8$3))_ 18 =S1&$B$3 W$Q245.B410 =W182-18 =W1868+V18 =-LOG1O U18) =Zl8+LOG10()Xl8/$B$3)/(YlB/$B$) 19 =S19*$B$3 =$Q$2*453 6/410 =W19*2-19 =W19*8+V19 =-LOG10 Ul 9) =Z19+LOG10((X19IB3)U 1 /$$)) 20 S20'$B$3 =$O$2*453.6/410 =W20*2-V20 =W20*8.V20 =-LOG10)U20) =Z20+LOG10((X20/$B$3)/(Y20/$B$3)ý 21 I=S21-$B$3 =$O$2*453.6/410 =W21*2-V21 =W21*8+V21 =-LOG10(U21) I Z21+LOG 10((X21/$B$3)/(Y21/SB$3) 22-S22*$B$3 =$O$2*453.61410 =W22*2-V22 =-LOG10 U22) L=Z22+L0G10((X22/$B$3)/(Y22/$B$3)1
-=W2268+V22 23 =S23*$B$3 =$Q$2*453 6/410 =_W23*2-23 =W23*8+V23 =-LOG10(U23) =Z23.LOG10( X23/$B$3L/Y Y23$B$3))
24 =S24*$B$3 =$Q$2*453 6/4 10 =W24*2-V24 =W24*8vV24 =-LOGIO(U24) -Z24 +LOG I0((X241$B$3)1(Y241$B$3) 25 =S25*$B$3 =$Q$2*453.6/410 =W25*2-V25 =W25* +2 =-LOG10 U25) =_:Z25+LOG10((X25/$B$3)/(Y25/$B$3)) 26 =S26*$B$3 =$O$2*453.6/410 =W26*2-V26 j =W2668+V26 =-LOG10(U26) =Z26+LOG1O((X26/$B$3)I(Y26/$B$3)) 27 =S27*$B$3 =$QS2*453.61410 =W27*2-V.27 I=W27'8+V27 -LOG.1O(U27)_ =Z27+LOG1O1((X?7-/$B$3)/(Y2.7/ý$B$.3)) 28 -S-28-$B-$3 -- =$Q$2-*45-3.-6/410-
=W2&82-V28TJ=W26&86+V28 =-LOG1O)U28) -Z28+L0G10( X28/$B$3)/(Y28/$B$3))
29 =S29*$B$3 =$O$2*453.6/410 =W29*2-V29 I=W2968+V29 =-LOG1O U29) [=Z29+LOG10((X29/$B$3)/(Y29/$B$3)) 30 =S30*$B$3 =$0$2*453.6/410 =W30*2-V30]I=W30n6.V30 =-LOG10 U30 [=Z3 +ýLOG1O(30/$B$3))/(Y30/$B$3L) 31 =S31*$B$3 =$O$2*453.6/410 =W31*2-V31 =W31*8+V31 =-LOG10 U31) =Z31.LOG10)(X3 I$B$3 /Y31/$B$3)ý 32 =S32*$B$3 =$0$2'453.6/410 =W32*2-V32 J=W32*8+V32 =-LOG1O(U32) L=Z32+LOGIO((X32/$B$3)/(Y32/$B$3)ý 33 =S33*$B$3 . $0$2*453.6/410 =W33*2-V33 I=W33*8+V33 =-LOG10 U33~ =Z33+LOGl0(tX33(SB$3)1)Y 3j/ 3)) S34SB$3
§34 ýf _ =$Q'453.6/410 =W4-V3 W34*.8+V 3-4 -=-
L0-G 10(U 34) fZ34+O1I)X4 $)/)Y 34 1 B $3)) 35 =S3.5-$B$3 =$QO$2*453.6/4 10 =W35*2-V35 _=W_35*8+V35 =-LOG iO(Y3)_ =Z35+LOG10)(X35/$3)(Y35L$B$3)) 36 371________ _______ ____ ______ 368 ______ _______ _____ _________________ 39 _______ _________________ 40___________________ 421_______ _______ _____ l_____ ______ _____________________ ______ _________________ 46 _______ 47 _______ 48 ______ ______ . ____________{_______________ 49.I___________________________ 50 _______ ____________ _____ ______________________ PM-1056. Rev. 0, Attachment E, Page E-7 of E-7}}