ML072570197

From kanterella
Jump to navigation Jump to search
Calculation PM-1057, Rev. 1, Re-analysis of Control Rod Drop Accident (CRDA) Using Alternate Source Terms.
ML072570197
Person / Time
Site: Peach Bottom  Constellation icon.png
Issue date: 06/18/2003
From: Boatright A
Exelon Nuclear
To:
Office of Nuclear Reactor Regulation
References
CC-AA-309-1001, Rev 0 PM-1057, Rev 1
Download: ML072570197 (43)


Text

003- PM 1057 Rev 1 CRDA CC-AA-309-1001 Exeloni. ATTACHMENT I Design Analysis Cover Sheet Revision 0 Nuclear I Last Fsage No.'%,

Analysis No. PM-1057 Revision 1 .-- ,

ECtECR Nqf 03 .ot"s-6 Revision 0

Title:

Re- na ysis of Control Rod Drop Accident (CRDA) Using Alternate Source Terms Peach Bottom Atomic Power Sttin~)Station IComponent(s) C Unit No.: 2 and 3 N/A Discipline SEAQ Description Code/

CRDA Keyword Safety Class S System Code 912 Structure NA CONTROLLED DOCUMENT REFERENCES Document No. From/To Document No. From/To Design Analysis PM-739. Rev. 0 From Drawing No. 6280-M-884, Rev. 2 From Design Analysis PM-764, Rev. 1 From Drawing No. C-23, Rev. 4 From Design Analysis PM-1059, Rev. 0 From Design Analysis PM-1055, Rev. 0 From UFSAR, Section 14.6.2, Rev 18 From/To Is this Design Analysis Safeguards? Yes [: NO{I No [@

Does this Design Analysis Contain Unverified Assumptions? Yes El ATI/AR#

Ifyes, complete Is a Supplemental Review Required? Yes F1 No [

Attachment 3 Preparer Aleem E. Boatright 4/14/2003 Print Name Date Reviewer Paul Reichert V114/2003 Print Name Sign Name Date Method of Review 0 Detailed Review C] Alternate Calculations El Testing Review Notes:

Approver Harold Rothstein iFo, Exteral An.1fsO (XY)

Exelon Reviewer

  • - .. . . Print Name Approver _J e*; .c2,,AI-.

Print Name SinName 0t Description of Revision (list affected pages for partials): Revise&dction 2.7. Section 6.2, and Attachment B to use CR normal intake flowrate of 20,600 cfm plus 1600 cfm for inleakage; Section 2.5.3 to elaborate on Sealing Steam System release treatment; Section 4.1 and Section 6.2, corrected Control Room dispersion coefficients; Section 5, added references 13 &14 drawings to support CR normal intake flowrates and sealing steam assumptions; Section 7 to show corrected CR dose. "

THIS DESIGN ANALYSIS SUPERCEDES: Design Analysis PM-1057, Rev. 0

CALCULATION NO. PM-1057 REV. NO. 001 PAGE NO. 2 Table of Contents

1. PURPOSE/OBJECTIVE ...................................... ........... ................................ 3
2. METHODOLOGY AND ACCEPTANCE CRITERIA ............................................................................................ 4 2 .1. G eneral D escription ...................................................................................................................................... 4 2 .2. C ore S o urce Ten n .............................................................................................................................................. 4 2.3. Fuel Damage Assessment .................................................................................................................... 4 2A. Radioactivity Transport ................................................................................................................................... 4 2 .5. R elease P athw ays .............................................................................................................................................. 4 2.6. Dose Conversion Factors ............................................................................................................................... 5 2.7. Control Room Dose Model ................................................................................................................................. 5 2.8. EAB and LPZ Dose Model ................................................................................................................................. 5 2.9.. Acceptance Criteria ................................................................................... ..................... 6
3. AS S U M P T ION S ...................................................... .............................................................................................. 7 4 . D ES IGN IN P U T ..................................................................................... ...................................................................

4.1. I/QCalculations (Meteorology) .............................................................................. 7......................................... 8 4 .2 . P lan t Data ................................................... .................................................................................. ................ 8 4.3. Control Room Data ............................................................. ............ .... ..................................................... 8 4.4. Source Terms ........................................................................... . ...............

............................. 8

5. REFERENCES ................................................................ .............. ........................... .. ................

......... 10 6 . C ALCU L A TION S ............................................................................... ........ ...... .. ................. ... ............. 11 6.1. Source Term Calculation ......... .......................... ........................ ............ 1 6.2. Dose Calculations ...............................................................................................................

7.

SUMMARY

AND 7.~~~~ O CUIN...............

CONCLUSIONS SU ~ . ............................ 14 MRN ............

....... '................ .................... .... ................................................................. 14

8. OWNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL DESIGN ANALYSIS ........................... 15 ATTACHMENTS:

A. Release Fraction Assessment Spreadsheet [2 pgs.]

B. RADTRAD Output File [12 pgs.]

C. RADTRAD Source Term "NIF" Input.[ 10 pgs. I D. RADTRAD Release Fraction "RFT" Input [I pg.]

E. Computer Disclosure Sheets [2 pgsi]

I CALCULATION NO. PM-1057 REV. NO. 001 _ PAGE NO. 3

1. PURPOSE/OBJECTIVE The objective of this calculation is to determine the radiological consequences of a Control Rod Drop Accident (CRDA) based on the use of Alternative Source Terms (AST) as defined in References 1 and 3. The design basis CRDA results in the release of radioactivity to the Condenser.

An isolated Condenser is assumed to exhaust at a rate of 1% per day, Ref. 1, Appendix C..

However, during operating conditions there are forced flow paths from the Turbine/Condenser. For instance, the CRDA can occur during mechanical vacuum pump (MVP) operation, which can exhaust unprocessed from the Condenser at a significantly larger rate.

A second forced flow path from the condenser is associated with maintenance of condenser vacuum using the Steam Jet Air Ejectors (SJAE). The Peach Bottom Atomic Power Station (PBAPS) augmented off-gas system provides SJAE flow processing which would eliminate iodine releases and greatly delay noble gas releases allowing for decay even with normal off-gas flow rates. This pathway will also be addressed in this calculation.

Thirdly, under normal operation, steam that contains activity Is released to the Gland Sealing Steam System. This release pathway is considered, and subsequently ruled out, in this calculation as well.

The Main Steam Line Radiation Monitor (MSLRM) provides an isolation function for the MSIV.

. ho. prevents any of the aforementioned forced flow paths from facilitating activity release following a CRDA. The maximum set-points on which the MSLRM trips assure that the regulatory limits for use of AST are not exceeded in the Control Room (CR), Exclusion Area Boundary (EAB), and Low Population Zone (LPZ).

[fCALCULATION NO. PM-1057 I REV. NO. 001 I PAGE NO. ,I

2. METHODOLOGY AND ACCEPTANCE CRITERIA 2.1. GeneralDescription Following a CRDA, radioisotopes postulated to be released will be transported through the Main Steam Lines (MSLs) directly to the Main Steam Condenser. From there, for a CRDA assumed to occur during MVP operation, it is expected that the MVP action, and all other forced flow paths, will automatically cease due to a trip of the MSLRM, which results from high radiation levels. This ensures that the only significant activity release will be from Condenser leakage. The Condenser is assumed to leak into the Turbine Building (TB) at a rate of 1% per day, and subsequently be released to the environment through one of two Turbine Building exhaust stacks, without filtration, and at that same rate, The dispersion that is modeled for this release pathway is defined by the

'/a's derived in Reference 5. The doses from either accident scenario should not exceed the acceptance criteria of the applicable regulatory guidance (Ref. 1, 6).

2.2. Core Source Term For conservatism, the CRDA core source terms are those associated with a DBA power level of 3528 MWth, as per reference 7.

2.3. Fuel Damage Assessment ITh- current design basis for fuel damage from a CRDA is based on GE14 10x10 fuel in an 87.33 equivalent fuel pin array. The fuel damage (number of rods with failed cladding and fuel melting) assumptions correspond to those of reference 12. Attachment A shows the parameters and breakdown of the fuel damage and subsequent activity released.

2.4. Radioactivity Transport Release fractions and transport fractions are per Reg. Guide 1.183, Appendix C and Table 3, as shown in the spreadsheet in Attachment A to this calculation.

2.5. Release Pathways 2.5.1. Turbine/Condenser 1%per day Leakage The Main Condenser is assumed to leak activity into the Turbine Building at a rate of 1% per day.

This activity is then released, unfiltered, to the environment by way of the TB/RB Exhaust Ventilation Stacks, taking no credit for holdup in the TB.

2.5.2. Steam Jet Air Ejector Discharge When in operation, the Steam Jet Air Ejectors discharge to the augmented off-gas system. Upon detection of high radiation levels by the MSLRM, the MSIV are isolated and the SJAE are shutdown, therefore this forced release path need not be considered.

CALCULATION NO. PM-1057 REV. NO00- . PAGE 2.5.3. Sealing Steam System As in the case of the SJAE, forced flow from a sealing steam exhauster is stopped following automatic isolation of the MSIV. The CRDA is postulated to release available radioactivity to BOP systems before MSIV isolation. MSIV isolation eliminates available driving steam. Even if the steam seal exhauster continues to operate, the steam piping downstream of the MSIV will be quickly depressurized. The approximately 1400 feet of 24 inch piping between the plant and the Main Stack (Ref. 14) will effectively contain the radioactivity. Therefore, this component is treated as an extension of the Turbine/Condenser Volume that is assumed to leak at 1% per day.

2.5.4. Mechanical Vacuum Pump The operation of the Mechanical Vacuum Pump as well as forced flow from it is ceased by trips initiated upon detection of high radiation levels by the MSLRM. Therefore, any activity in this system is held up in the Condenser, and this forced release path need not be considered.

2.6. Dose Conversion Factors The revised Dose Conversion Factors (DCFs) from the U.S. Federal Guidance Report 11 & 12 (Ref. 10,11) are used for this analysis. The RADTRAD code inputs these values directly from its internal database, and when used in spreadsheet analyses they are input directly.

2.7. Control Room Dose Model For this analysis, as performed using the RADTRAD code, the Peach Bottom Unit 2 & 3 Control Room is modeled as a closed volume of 176,000 ft 3. Normal maximum flow into the CR of 20,600 cfm, and a conservative assumption of 1600 cfm for the unknown unfiltered inleakage into the CR is used. Flow into the CR is therefore assumed to be 22,200 cfm, and to balance the system for analytical purposes, an equal flow of air is considered to leave the CR. No credit is taken for any filtration of flows into the CR.

The air that enters the CR originates from a source that is characterized by a dispersion factor, calculated using ARCON96 in Reference 5. Following a CRDA, the MVPs and all other force flow paths are immediately de-energized, isolating the MSIVs. The remaining activity, which is assumed to have all accumulated in the Condenser, leaks into the Turbine Building at a rate of 1% per day.

The subsequent release into the environment from the Turbine Building is postulated to escape through the worst of two TB/Reactor Building (RB) Ventilation Exhaust Stacks. The total dose in the Control Room over the 24-hour period is the result of the released activities that enter through the air intake. The methodologies significant to this analysis are the dose consequence analysis in NUREG/CR 6604 Section 2.3 (Ref. 4) and the Radioactive Decay Calculations, Section 2.4.3.

2.8. EAB and LPZ Dose Model The EAB and LPZ %/o'shave been determined in reference 5, and are located, respectively, 1040m and 7300m from the postulated release points. Because of the distance of these locations from the plant, the release is simplified to be all from one point for the duration of the accident. Having determined these dispersion factors, the total dose is modeled in RADTRAD 3.03 using the same nodal breakdown as used in determining the CR total dose.

-CALCULATIONNO. PM-1057 ) REV. NO. 00] PE NO. 6 2.9. Acceptance Criteria Radiological doses resulting from a design basis CRDA for the control room operator and a person located at EAB or LPZ are to be less than the regulatory dose limits as given in Table 2.

Table 2.1. Regulatory Dose Limits SDose Type Control Room (rem) EA :ndLZ (rem)

[TEDE Dose 5a 6.36'-

Notes:

S10 CFR 50.67 (Ref. 6) b SRP 15.0.1 (Ref. 3), Reg. Guide 1.183 (Ref. 1)

CALCULATION NO. PM-1057 JREV. NO. 001 JPAGE NO. 7

3. ASSUMPTIONS
1. Core inventory was based on a DBA power level of 3528 MWth to account for uncertainty in the Rated Thermal Power Level of 3514 MWth.
2. An average power peaking factor of 1.7 per pin was assumed, as per Ref. 12. 10% of the core inventory of noble gases and iodines are released from the fuel gap (Appendix C of Ref. 1). Release fractions of other nuclide groups contained in the fuel gap are detailed in Table 3 of Reg. Guide 1.183 (Ref. 1).
3. 0.77% of the fuel will melt during the CRDA (Ref. 12). 100% of noble gases and 50%.

of the lodines contained in the melted fuel fraction are assumed to be released to the reactor coolant (Appendix C of Ref. 1). Fractions of other nuclides released from the melted fuel are used from Table 1 of Reg. Guide 1.183 (Ref. 1). Though these are described as LOCA values for fuel melt release, they are used to conservatively supplement for missing guidance in regards to the other nuclide groups.

4. The activity released from the fuel from either the gap or from fuel pellets is assumed to be instantaneously mixed with the reactor coolant within the pressure vessel (Ref.

3).

5. 100% of all noble gases, 10% of the iodines, and 1% of remaining nuclides are transported to the Turbine/Condenser (Ref. 1, 3).
6. Of the activity that reaches the turbine and condenser, 100% of the noble gases, 10% of the iodine, and 1% of the particulate nuclides are available for release to the environment. (Appendix C of Ref. 1).
7. The MVP, SJAE, and augmented off gas systems are all immediately shutdown due to the automatic MSIV isolation function of the MSLRM caused by the high radiation levels following a CRDA.
8. Once all forced flow paths are automatically disabled, all leakage from the main steam turbine condenser leaks to the atmosphere from the TB/RB Ventilation Exhaust Stack at a rate of 1% per day, for a period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> (Ref. 1, 3). This becomes the only release of concern to this design basis accident.
9. The control room occupancy factor was determined to be 1 because the duration of this analysis of the CRDA is 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

CALCULATION NO. PM-1057 REV. NO. 001 PAGE NO. 8

4. DESIGN INPUT 4.1. r/o Calculations (Meteorology)

The CR '/a values input to RADTRAD were taken from the ARCON96 results of the PBAPS Design Caic. PM-1055, as performed by Washington Group Int. (WGI) (Ref. 5). The xa's calculated by ARCON96 is calculated from the worst-case TB/RB Exhaust Ventilation Stack release to the Control Room normal fresh air intake.

The CR atmospheric relative concentrations used are as follows (Ref. 5):

x/. =1.18E-03 sec/M 3 (0-2 hours)

'/a =9.08E-04 sec/mr33 (2-8 hours)

"/a =4.14E-04 sec/m (8-24 hours)

The EAB and LPZ PAVAN calculated '/0 values input to RADTRAO, were also taken from the results of the PBAPS Design CaIc. PM-1055, as performed by WGI (Ref. 5). The EAB/LPZ atmospheric relative concentrations used are as follows (Ref. 5):

EAB Y/a =4.25E-04 sec/m3 (0-2 hours)

LPZ 1/0 =2.08E-05 sec/m33 (0-8 hours) 1/0 =1.37E-05 sec/rm (8-24 hours) 4.2. PlantData

, DBA Power Level (Ref. 9) 3528 MWth

  • Radial Peaking Factor (Ref. 12) 1.7
  • Number of Failed Fuel Rods (bounding case for IWx1O bundle type)(Ref. 12) 1200
  • Isotopic Release Fractions, as per Reg. Guide 1.183 (Ref. 1) See Attachment A 4.3. Control Room Data

" Volume of Control Room, ft3 (UFSAR 15.6.5) (Ret. 7) 176,000

" Control Room Normal Intake Flow, scfm (Ref. 13) 20,600

  • Assumed Unfiltered In-leakage, scfm 1600 4.4. Source Terms The AST values used in this analysis were derived using guidance outlined in Reg. Guide 1.183. A list of 60 core isotopic nuclides and their curie per megawatt activities were extracted from

[ CALCULATION NO. PM-1057 I REV. NO. 001 [ PAGE NO. 9 1 Attachment A of Calculation PM-1059 (Ref. 8) for input into the RADTRAD "NIF" (see Attachment C). The release fractions associated with all of these nuclide groups, as detailed in Reg. Guide 1.183, were applied to their given groupsin Attachment A, and subsequently input into the RAOTRAO "RTF", as seen in Attachment 0. RAOTRAD uses these two fifes combined with the power of 3528 MWth (Ref. 9) to develop the source terms for this CRDA.

I . L... .... [....... .....* .. . .... . ... 1 . O . 0... . . O..1 I CALCULA I ION NO. PM- 1057 SREV. NO. 001 I PAGE NO. 10 1 I

5. REFERENCES
1. USNRC Regulatory Guide 1.183, "Alternative Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors", July 2000.
2. Peach Bottom Unit 2 & 3, UFSAR, Revision 14, April, 2000.
3. USNRC SRP 15.0.1, Rev. 0, Radiological Consequences Using Alternate Source Terms.
4. NUREG/CR-6604, "RADTRAD: A Simplified Model for RADionuclide Transport and Removal And Dose Estimation", April1998, and Supplement 1, June 1999.
5. PBAPS Design Analysis PM-1055, "Calculation of Alternative Source Term Onsite and Offsite 1/o Values", Rev.0.
6. 10 CFR 50.67
7. PBAPS Design Analysis PM-764, "Control Room Habitability for Power Rerate", Rev. 1.
8. PBAPS Design Analysis PM-1059, "Re-analysis of Fuel Handling Accident (FHA) Using Alternative Source Terms", Rev.0.
9. PBAPS Design Analysis PM-739, "Power Rerate Control Rod Drop Dose Verification and Rerated Dose", Rev. 0.
10. U.S. Federal Guidance Report No. 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion".,

1988.

11. U.S. Federal Guidance Report No.12, "External Exposure to Radionuclides in Air, Water, and Soil", 1993.
12. NEDE-31152P, Rev. 7, "General Electric Fuel Bundle Designs", June 2000.
13. PBAPS Drawing No. 6280-M-884, Sht. 2, "QAD Diagram Control Room HVAC", Rev. 2.
14. PBAPS Drawing No C-23, "Vent Stack Piping Plan, Profile & Sections", Rev. 4.

I CALCULATION NO. PM-1057 1.REV. NO. 001 I PAGE NO. 11

6. CALCULATIONS 6.1. Source Term Calculation For the RADTRAD calculation, a list of 60 core isotopic nuclides and their activities were extracted from Attachment A of Design Analysis PM-1059 (Ref. 8) for input into the RADTRAD "NIF" (see Attachment C). RADTRAD uses these activities, in curies per megawatt, then applies nuclide release fractions and an input core power to calculate a core source term. The AST release fractions associated with all of these nuclide groups are derived using guidance outlined in Reg.

Guide 1.183, as applied in Attachment A. The final gap release and fuel melt release fraction calculated In that attachment, for each nuclide group, is then input into the RADTRAD "RTF", as seen in Attachment D.. RADTRAD applies the input core power of 3528 MWth (Ref. 9) to these two input files to develop the core source term activities for this CRDA.

6.2. Dose Calculations The RADTRAD v. 3.03 computer code is used to determine PBAPS 2 & 3 CRDA doses at the three dose points cited in Reg. Guide 1.183 (Ref. 1); the Exclusion Area Boundary (EAB), Low Population Zone (LPZ). and Control Room. RADTRAD is a simplified model of RADionuclide Transport and Removal And Dose Estimation developed for the NRC and endorsed by the NRC as an acceptable methodology for reanalysis of the radiological consequences of design basis accidents.

RADTRAD estimates the releases using the reference Alternate Source Term source terms and a.ýturmptions. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The technical basis for the RADTRAD code is documented in Section 2 of NUREG/CR-6604 (Ref. 4).

The following is a parameter and descriptions listing of input into the RADTRAD model for the calculation of the limiting scenario of immediate automatic MSIV isolation on MSLRM trip, followed by a condenser leak at 1% / day:

A. Compartments

1. Reactor Coolant - This compartment represents the cooling water within the primary containment vessel.
a. Compartment type - Other - since it is not the environment or control room.
b. Volume - 1 f - This nominal value, used to simplify input, is based on there being a fractional leak rate associated with this compartment.
c. Source term fraction - 1.0 - All of the source term is generated in the reactor coolant.
d. Compartment features - none selected.
2. Condenser - This compartment is the internal volume of the steam condenser.
a. Compartment type - Other - since it is not the environment or control room.
b. Volume - 1 fe - This nominal value, used to simplify input, is based on there being a fractional leak rate associated with this compartment..
c. Source term fraction - 0.0
d. Compartment features - none selected.

I CA('XULATION NO. PM-1057 [TTALCU.LAT1ON NO.I1PM-1057 I PAGE NO.12 J REV. NO. 001 REV. NO. 00 1 .[ PAGE NO._ 12_j

3. Environment
a. Compartment type - Environment
4. Control Room
a. Compartment type - Environment - Control Room
b. Volume - 176,000 ft3 - Ventilated volume.
c. Source term fraction - 0.0
d. Compartment features - none selected.

B. Transfer Pathways

1. Filtered Flow, Reactor Coolant to Condenser
a. From Compartment 1 - Reactor Coolant
b. To Compartment 2- Condenser
c. Transfer mechanism - "Filter" selected
d. Filter Efficiency Panel - Flow rate - 275 cfm - With the Reactor Coolant volume set to the nominal value of 1 ft, this flow rate transfers 99% of the intended activity to the Condenser within 1 second.
e. Filter Efficiency Panel - Filter efficiency is 0.0%, as no filtration is considered for this accident analysis.
f. Active Pathway - Yes
2. Filtered Flow, Condenser to Environment
a. From Compartment 2- Condenser
b. To Compartment 3 - Environment
c. Transfer mechanism - 'Filter" selected -
d. Filter Efficiency Panel - Flow rate - 0.000006944 cfm for 0-24 hrs - This conservatively ignores any holdup in the Condenser. This also shows that activity leaks from the Condenser at a rate of 1% per day for the duration of the accident.
e. Filter Efficiency Panel - Filter efficiency is 0.0%, as no filtration is considered for this accident analysis.
f. Active Pathway - Yes
3. Filtered Flow, Environment to Control Room
a. From Compartment 3 - Environment
b. To Compartment 4 - Control Room
c. Transfer mechanism - "Filter" selected -

d; Filter Efficiency Panel - Flow rate - 22,200 cfm - Normal maximum CR intake flowrate of 20,600 cfn, and 1600 cfm of unfiltered inleakage, for the duration of the accident.

e. Filter Efficiency Panel - Filter efficiency is 0.0%, as no filtration is considered for this accident analysis.
f. Active Pathway - Yes
4. Filtered Flow, Control Room to Environment
a. From Compartment 4 - Control Room
b. To Compartment 3 - Environment
c. Transfer mechanism - "Filter" selected -
d. Filter Efficiency Panel - Flow rate - 22,200 cfm - CR exhaust flowrate of 20,600 cfm.

and 1600 cfm of unfiltered inleakage, for the duration of the accident.

e. Filter Efficiency Panel - Filter efficiency is entered as 100.0% iodine chemical for all time periods. This is the exit from the control room to the environment; the filtration

CALCULATION NO. PM-1057 REV. NO. 001 E PAGE NO.3 prevents a double counting of the iodine release. Note that the noble gas release will still be re-circulated between the control room and the outside environment.

f. Active Pathway - Yes C. Dose Locations
1. Exclusion Area Boundary
a. In Compartment 3 - Environment
b. Breathing Rate Default - not checked
c. x/Q - 4.25E-04 sec/m3 for 0-2 hrs - This shows the dispersion to the EAB associated with the TB/RB Exhaust Ventilation Stack release point for the first 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> of the CRDA; EAB dose is only calculated for 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> as per regulatory guidance.
d. Breathing Rate - 3.47E-04 m 3/sec - this is the Reg. Guide 1.25 specified breathing rate. This value is entered from time 0 to the end of the accident.

.2. Low Population Zone a, In Compartment 2 - Environment

b. Breathing Rate Default - Not selected
c. I/Q - 2.08E-05 sec/rn for 0-8 hrs; 1.37E-05 sec/d 3 for 8-24 hrs; - This shows the dispersion to the LPZ associated with the TB/RB Exhaust Ventilation Stack release point for the duration of the CRDA.
d. Breathing Rate - 3.47E-04 m3lsec for 0-8 hrs; 1.75E-04 m3/sec for 8-24 hrs - this is the Reg. Guide 1.25 specified breathing rate assuming a time dependant reduction.
3. Control Room
a. In Compartment 3 - Control Room
b. Breathing Rate Default - not checked
c. X/( - 1.18-03 sec/rn3 for 0-2 hrs; 8.91 E-04 sec/rm 3 for 2-8 hrs; 4.OOE-04 sec/i 3 for 8-24 hrs; - This shows the dispersion to the CR associated with the TB/RB Exhaust Ventilation Stack release point for the duration of the CRDA
d. Breathing Rate - 3.47E-04 m3/sec for 0-24 hrs - this is the Reg. Guide 1.25 specified breathing rate.
e. Occupancy Factor - I - For the duration of the accident.

D. Source Term

a. The "PeachBottom AST Source Terms.nif' file [Attachment C] reflects the PBAPS core activities, and is modified to reflect the "Alternate Source Term" activities provided by reference 8.
b. The power level of 3528.00 MWth, as per Section 4.2 above, accounts for uncertainty.
c. There is no credited delay in the release of activity.
d. The 'PBAPS crda-releasefractions.rff' file [Attachment D] is designed to reflect gap activity fractions per RG 1.183, Appendix C.

The source terms, which are calculated in Section 6.1 above, are input as a separate RADTRAD "NIF" file. This file is included in Attachment C.

WGI has pre-qualified RADTRAD for application to perform such calculations, as documented in the Computer Disclosure Sheet of Attachment E. The new design basis RADTRAD simulations utilized the design input parameters as provided in Section 4.

I1 REV. NO. O~Jl LPA~iE NO.~jj I CALCULATION CALCULATION NO. NO. PM-1057 HVI-1057 REV.;N'O. 001 _LýA(j_ E N.0_-__ý L-i

7.

SUMMARY

AND CONCLUSIONS Table 3 provides the results from the RADTRAD code, as well as the prescribed dose acceptance criteria, Table 7.1. RADTRAD Analysis Results and Comparisons to the Acceptance Criteria EAB LPZ CR Prescribed Dose Limits (TEDE)/ 6.25 remn 6.25 rem/ 5 rem/

Basis Document RG 1.183 RG 1.183 10CFR50.67 RADTRAD Analysis Results (1%.of the Condenser free volume 0.065 rem 0.012 rem 0.302 rem leakage per day)

For the case analyzed in this calculation assuming automatic isolation of the MSIV upon MSLRM trip, no SGTS, and no CREF credited at any point during the 24-hour accident, the limiting CR dose is 0.302 rem. This limiting dose is well below the acceptance criteria, so it is verified that no off-gas or Control Room intake filtration is needed following a Control Rod Drop Accident.

It

[ CALCUI.A'IION NO. PM-1057 I REV. NO. 001

8. OWNER'S ACCEPTANCE REVIEW CHECKLIST FOR EXTERNAL DESIGN ANALYSIS DESIGN ANALYSIS NO. _PM-1057_REV: 1 Yes No N/A
1. Do assumptions have sufficient rationale? yMEl D
2. Are assumptions compatible with the way the plant is operated and with the '3 J0 0 licensing basis?
3. Do the design inputs have sufficient rationale?
4. Are design inputs correct and reasonable? 0 -
5. Are design inputs compatible with the way the plant is operated and with the 11 0 licensing basis?
6. Are Engineering Judgments clearly documented and justified? 0[0
7. Are Engineering Judgments compatible with the way the plant is operated and with the licensing basis? " 0[
8. Do the results and conclusions satisfy the purpose and objective of the design [3 analysis?
9. Are the results and conclusions compatible with the way the plant is operated and with the licensing basis?0
10. Does the design analysis include the applicable design basis documentation?
11. Have any limitations on the use of the results been Identified and transmitted to the appropriate organizations? W l [0
12. Are there any unverified assumptions? [ Z [
13. Do all unverified assumptions have a tracking and closure mechanism in place? 0 0.

EXELON REVIEWER:" ý,AkljL / , I/ DATE:

DATE:_____

A 1 B C 0 j E F G H I i J K I CRDA AST RADTRAD INPUTS DERIVATION - RELEASE FRACTION THAT REACHES THE CONDENSER USING RG 1.183 APP. C 2 " -r, " V*[Z - V [ -- v

  • 3 C stants I

-ý- .... ....... -- - --.- a-7 -iODi .ioa F-ra-c*] -ofrods-in

  • C-0,rei*t ga" avityr-els poetial 1200"(87.33 pins peras-em ,yx 764 assembies in 'c-re)

" .. ......... I f- T_ 4 9 A -------ctivity --------- release potential: ith peaking IX.0to i 10 _0.0077 3 I Fractobnof fu~elin24`ed-r0odsa--SUried_.'~  ? ...

...... l

!NEDE 3 152P 14ER Mel0.tefuel a-M-i~ty relese poleýnwtlel with 1152P 07 -ekn

-007 12 7 + -- - -----................- ......

"* !ead-*-X R m " - -- h * -* O-E*3 --- fro

- - -------.--- 1.-0 --

7-"1"1 20 ~~~

3.57E.03

." i

~ ~ n .03o%0o5o%'

4_90 0 5x.o--

2,___.0 16 Ac- vt ActiWAty ___ _____ ___ ___ ____ ____ __

1,'7 As-fyR la-e- eas.. I .. i - _ _ _

17 -- i:t_ I. e Duration . I t) t ---Released urat.on*.* -h, 18 Reesd 14 1 from

.G-from

____% -,0 13[ 1.OOOE-03!F

.. le-3.-

7

- _---_elle, from-

._ 2_ ,___

7- 000CE013 - E- __ _

15 20 10.00% . 100.00D%7 100.0 _ _ _ _ 0)% 2.118E0 2" Iodine: - f *lodi' u 1 1 I [-. -_

24 Re1Teae -3 1.00%Fr4i% -v--s----

3.6691E-07 Cesium:

____1At n,__o


~~E0_ .17100N 1772E I 27 Ttotim - Strontium: -

280,0 100. 0  % 00+0-00% 4.7086E-10 _ _ _I 29 Barium:_ _ _ 2 _ _ _ __ _ _ _

30 000 00001000%

U00% 40El0 31 Ruthe nium:' -% !u '

.3%J 1~V 000E00%____2%Rlte~r: -

7_3 Crium'Cetium.

34 00%- 100 O000E.0 _ ___ __ ___-~ 0.05% 1.177E-11:

Larittanum Lanlhanurn:~

36 0.00%1.00% ~100%~ 0.00OOE4-00'4 ~ ~ 2 4o~2 37_______ _ - - -

4 r-- 71 7 7 !

....- ..... I------ --- - - - - - - - __

41 From APpendix C.Paragraph 1 (for Noble gases and Iodine) arid Table 3 (for Cesium. an Alkali Metal) of Regulatory Guide 1.1183 42 'ýrm ApNct C, paragraphs 33 6f Regula-tory Guide 1.183 43 'f'ro Appenix C, pargraph 3.4of Regulatory Guid 1.183 4.4 'Fromn Rag. Guide 1.183, Talble 1,Early In-vessel Release Column. with a 100% Noble Gas and 50% Iodine release from fuel 45 meTi per Appendix C P Ypargrp 1. foll&Mng sublrdion of the gap release fraction. T7 ORDARe~as~

.PM- -rslioss 1057, Rev. 1.Attahrtisont A, Page I of 2

ICRDA ASTA RDRAL L- F IG H I I i I

.. . ,. J Value ii 5 1200 -__--_-_---E3----

Failed fuel rods - boul

?I ___ 'Fuel rod in lull core .NEDE31152P (87.331 ____

-7f =ASA . -IFraction Oarods in con, ý-2ý00(871.33 pinsper 1.7 .: Peaking factor IEE31152P I

=ArAh ____ ____ Gapo ac*mty release P,_ _ 1.7 x078 kg077 .Fraction of fuel In falls I--

=AWA0 Welted fual ivfty ' .030575X 007Y1-

_ __ _ ___ t-- -- -i -- - --

ActMty Availablefor __. Ac"__ . ...............

Activity Released Release Duration (h); -.- Released Duralion (h):

Reae fn----~---- r from 0.001 Garor'Gp essep Cond Notis. Gases: Met___Fue_ _No__e Gase__ :

-1,1-=A$ A20B2*C20 * . ... .... =(1-A20)  ;AS 11PH20*820"C20 i .. .. ..

... ... .. o1= .2 - z c 2 . -A* * 'B Z 0.12 Z ----_C .-.

00.01 oo .-

i-----..--.-Iodine:.'

=A9A24854C24 .0.2

.=ASi1 1H24"B24*C24 Tellurium! 7Tellurum:

0 ofc lo fAPA26*B26*C251 060 =ASiI¶2'82C2

. 0.-01 . ....... .=-AWA286"26'C28 Stroeum

  • 0.02 sv~Maium:

S9=AtlIH28W1B28C28 arilumir ...... __..... Ba .ri.n ooi $'A30'B3D"C30 -T-A$1___30*3O 0.02 -

Rutenium: henium

.0.01 - 0.01 =AgA32BWC3* - _(_0.0005 ASI H324B32*C34

- Lanthanum: Lanthanum:

. 06

. -0 . . 0.01 =A$S9A3 B36T36 ....... ,100002 =A$S1VH3S36C36 37*

-y - - +i -------- ___x_,___"

41 FrmApendix C.p 42 'From Appendix C_,_____

43

- 1~~

SFrom-R Gi Reg. Guide 113ab..Res

1. 183, 1 able 1,.Early In-vessel Release Column, Clm.wj Noe Gas with a 100% Nobie G and a

50% Iodine release from fuel 45 mertirN per Appendlxq I-3 Formulas PM-1057, Rev. I, Auaclment A. Page 2c1`2

PBAPS-CRDA - 20600cfm Normal CR Intake RatcoO RADTRAD Version 3.03 (Spring 2001) run on 4/11/2003 at 15:09:33 44 #4#*444*#44####44**444#44*4#4######44*##44########*4*####4###44####*#

44##4##44###*####*##############*##44*4#4444#4*#4#4###*####4#4###444###4#

File information

  1. 444#4#*4*4#44####4#*4##444#4#44####444444#444###4###*#4###4#4###4#4####

Plant file 2P:\Users\Nuc\Exelon EOC\Discipline Files\Process\AST\Peach Bottom AST\Pbaps CRDA\RADTRAD\PBAPS-CRDA - 20600cfm Normal. CR Intake Rate.psf inventory file = c:\program fi.iles\radtrad3-03\defaults\peach bottom ast source terms . nif Release file = p:\users\nuc\exelon eoc\discipline. fiies\process\ast\peach bottom ast\pbaps crda\radtrad\pbaps crda-release fractions.rft Dose Conversion file = c:\program files\radtrad3-03\defaults\fgrl1&12.inp

          1. #### ##### # # 4 ##### # # 4#*4 4 4
  • 444 #4 44 #
      1. 0# #* # #### # # # # # #
  1. # # # # 4 # # # 4
  1. #### . 4 #4 ####
  • Radtrad 3.03 4/15/2001 PSAPS Units 2 & 3 CRDA - No CREF or SGTS - 20,600 cfm Normal CR Intake Nuclide Inventory File:

c:\program files\radtrad3-C3\defaults\peach bottom ast source Letrqs~nif

.Plant Power Level:

3. 5280E+03.

Compartments:

4 Compartment 1:

Reactor Coolant 3

1.000OE+00 0

0 0

0 0

Compartment 2:

Condenser 3

  • .000oE+00 0

0V 0

Cornpartme-t .3:

PM-1057, Rev. 1, Attachment B, Page 1 of 12

PBAPS-CRDA - 20600cfm Normal CR Intake Rate.oa Environment 2

O.OOOE+00 0

0 0

0 0

Compartment 4:

Control Room 1

1.7600E+05 0

0 0

0 Pathways:

. 5 Pathway 1:

Reactor Coolant to condenser 1

2 2

Pathway 2:

Condenser to environment 2

3 Pathway 3:

Environment to Control Room 3

4 2

Pathway 4:

Control Room .to Environment 4

3 2

Pathway 5:

Reactor Cool ant to Environment 3

2 End of Plant Model File Scenario Description Name:

Plant Model Filename:

Source Term:

1 1 1.000CE+00 c:\prograrn "iles\radtrad3-03\defaults\igrll&12.inp p: \u.ser.9\nuc\exehIn eoc\discipline fi .es\process\ast\peach bottcm astxpbaps crda\radtrad'pbaps crda-release fractionrs.rft 0.O00O0OE00 PM- 1057, Rev. 1, Attachment B, Page 2 of 12

PBAPS-CRDA - 20600cfm Normal CR Intake Raie.oO 9.50COE-01 4.8500E-02 1.5000E-03 I..OOOE+O0 Overlying Pool:

0 0.O000E4O0 0

0 0

0 Compartments:

4 Compartment 1:

0 1

0 0

0 0

0 0

Compartment 2:

0 1

00 0

0 0

0 0

0 Compartment 2:

0 0

0 00 0

0 0

0 0

0 0

0 0

C 0

Pathwavs:

b Pathway 1:

0 C,

PM-1057, Rev. 1, Attachment B, Page 3 of 12

PBAPS-CRDA - 2O600cfm Noumal CR Intake Rate.oO 0

1.

3 0.0000E+00 2.75002402 0.O0000+00 O.0000E+00 O.000oG+00

1. 6670E-01 0. 0000F+.00 0. 0000EC0 0.0000E+00 0.0000E+00 2.4000E+01 o .OOOOE.+0,0 O.0004E+00 0.0000E+00 O.0000E+00 0

0 0

0 0

0 Pathway 2:

0 0

0 0

0 1

O. 0002+00 6.94409-06 0. 000EýOc O.O000E+00 0.00-OE+00 2.4000E+01 0.00002+00 0.0000O400 0.0000E4-00 0.O00OE+CO 0

0 0

0 0

0 Pathway 3:

0 0

0 0

0 1

2 0.O0002i0O 2.2200E+04 0.0000E,00 0.0000E+00 O.0000E+00 2.4000E+01 0.0000E+00 0.O0000E+00 0.0000E+00 0.0000E200 0

0 0

0 0

0 Pathway 4:

0 0

0 0

2

(,.o. 000+00 2 .2200E+04 .1.0000E202 O.00OE+02 .0000E+02

2. 4000E+01 0.O000C*O00 Iu,0 OCO,V+i'0 0.0000E-',0 3,. 0000E+00 0l PM-lI)5-7, Rev. 1, Attachment B, Page 4 of 12

PBAPS-CRDA - 20600cfm Normal CR Intake Rate.oO 0

0 0

Pathway .5.

0 0

0 0

1 O.OOOOE-00 0.00COE-00 0.OOOCE+00 C.0000E400 0.OOOGE+00 0

0 0

0 0*

Dose Locations:

3 Location 1:

EAB 3

1 2

0.0000E+00 4.2500E-04 2.O000E+00 O.O000E+00 2

0.0000E+00 3.470OE-04 2.00COE-*00 0,OOOOE+00 0

Location 2:

LPZ 3

1 3

0.0000E+00 2.0800E-05 8.0000E+00 1. 3700E-05

2. 4000gE401 0.OOOOE+00

.1 3

3,4700E-04 0.000OE+00 1.7500E-04 2.4000E 0. 0.0000E+00 0

Location 3:

Control Room 4

0 1

2 0.0000E 00 3.4700E-04 2.400E-01 0.OGOOEtO i

2 0.O0000EPO 1.000CF+00 PM- 1057, Rev. I, Attachment B, Page 5 of 12

PBAPS-CRDA - 2060 0 cfm Normal CR Intake RateoO 2.4000E+01 0.0000E+00 Effective Volume Location:

I 4

O.0000E+00 .1.1800E-03 2.0000E+00 9.O800E-04 8.000DE+00 4.1400E-04 2.4000E+0! 0.OOOOE+00 Simulation Parameters:

0.OOOOE+00 1.OOOE-04 1.O000OC-02 I.COOOE-03 l.O000E-Ol l.OOOCE-02 1.O0000+O0 1.OOOE+00 2.,4000F+01 D.0Q00E+00 Output Filename:

P:\Users\Nuc\ExelOn EOC\0iscipline Files\Process\AST\Peach Dc.tt.omn AST\Pbaps CRDA\RADTRAD\PBAPS-CRDA - 20600cfm Normal CR Intake Rate.oO I

2 1

0 I

End of Scenario File RADTRAD Version 3.03 (Spring 2001) run on 4/11/2003 at 15:09:33

        1. ############################## ###############1##4##### ######

Plant Description Number of Nuclides 60 Inventory Power 1.OO00E+00 MWth Plant Power Level 3,5280E+03 M*th Number of compartments = 4 Compartment information Compartment number I (Source term fraction - 1.0000E+00 Name: Reactor Coolant Compartment volume - 1.0.000E+00 (Cubic feet)

Compartment type i.s Normal Pathways into and cut of compartment 1 Exit Pathway Number 1: Reactor Coolant to condenser Exit Pathway Number 5: Reactor Coolant to Environrmeno Compartment number 2 Name: Condenser Compartment volume = .OCOOE+00 Cbi. feet)

Compartmrnt t'ype is Normal Pathways into and out of compartment 2 19M-1057, Rev. I. Attachment B, Page 6 of 12

PBAPS-CRDA - 20600dfm Normal CR Intake Rate.oo Inlet Pathway Number 1: Reactor Coolant to condenser Exit Pathway Number 2: Condenser to environrment Compartment number 3 Name: Environment Compartment type is Environment Pathways into and out of compartment 3 inlet Pathway Number 2: Condenser to environment Inlet Pathway Number 4: Control Room to Environment Inlet Pathway Number. 5: Reactor Coolant to Environment Exit Pathway Number 3: Environment to Control Room Compartment number 4 Name: Control Room Compartment volume= 1.7600E+05 (Cuhi.c feet)

Compartment type is Control Room Pathways into and out of compartment 4 Inlet Pathway Number 3: Environment to Control Room Exit Pathway Number 4: Control Room to Environment Total number of pathways 5

-fififi##i#######fi##f#if#fi#### i##f#if######ififi#fif #########iii#ifffiii#if#if ififif RADTRAD Version 3.03 (Spring 2001) run on 4/11/2003 at 15:09:33 ifi######i#if0##################0#####if#fftfi~ffffiii~fffii~ffffffffiii##########if*

      1. 4 # # ##4## ## # ##
  1. f # # #i # #i
  1. # # 4 # # # # # #

4 # # # ##### # k #

Dose OutpLIU Detailed model information at time (H) 0.0010 EAD Doses:.

Time Celta (h) dose= (rem)i .00 Wholef...1342E-05.

Body Thyroid 1-230E-04 TEDE

.i5163E-05 Accumulated dose (rem) if i342E-05 1.2i0E-04 1.5163E-05 LOZ Doses:

Time )h( ý- 0.0010 Whole Body Thyroid TEDE Delta dose (rem) 5.5509E-07 5.8-78E-06 7.42i11--07 PM-1057, Rev. 1, Attachment B, Page 7 of 12

PBAPS-CRDA - 206(X)cfm Normal CR Intake Rate.o0 Accumu.lated dose (rem) 5.5509E-07 5.8878E-06 7.4211E-07 Control Room Doses:

Time (h) - 0.0010 Whole Body Thyroid TEDE Delta dose (rem) 3.8156E-09 8.0073E-C7 2.9250-E08 Accumulated dose (rem) 3.8156E-09 8.0073E-C7 2.9250E-08 Detailed model information at time (H() 0.0020 EAB Doses:

Time 'h) = 0.0020 Whole Body Thyroid TEDE Delta dose (rem) 2.8387E-05 2.9800E-04 3.7853E-05 Accumulated dose (rem) 3.9729E-05 4.1831E-04 5.3016E-05 LPZ Doses:

Time 1h) - 0.0020 Whole Body Thyroid TEDE Delta dose (rem) 1.3893E-06 1.4585E-05 1.8526E-06 Accumulated dose (rem) 1.9444E-06 2.0472E-05 2.5947E-06 Control Room Doses:

Time (h) - 0.0020 Whole Body Thyroid TEDE Delta dose (rem) 2.6698E-08 5.5852,-06 2.0410E-07 Accumulated dose (rem) 3.0514E-08 6.3860E-06 2.3335E-07 Detailed model information at time (H) ý 0.1667 EAB Dcses:

Time (h) = 0.1667 Whole Body Thyroid TEDE Delta dose (rem) 4.7804E-03 5.0511E-02 6.3841E-03 Accumulated dose (rem) 4.8201E-03 5.0930E-02 6. 4371E-03 LPZ Doses:

Time 'h) - 0.1667 Whole Body Thyroid TEDE Delta dose (rem) 2.3396E-04 2.4721E-03 3.1244E-04 Accumulated dose (rem) 2.3590E-04 2.4926Z-03 3.1504E-04 Control Room Doses:

Time (h) 0.1667 Whole Body Thyroid TEDE Delta dose (rem) 2.8945E-04 6.0870E-02 2.2217E-03 Accumulated dose (rem) 2.8948E-04 6.0877E-02 2.2220E-03 Detailed model information at time (DI - 2.0000 EAB Doses:

Time (h) - 2.0000 Whole Body 11hy ro.;d TEDE Delta dose ýrem) 4.1143E-02 5.8619E-02 5, .12F32- 0 1 Accumulated dose (rem; 4.5963n-02 6.5056E-02 LPZ Coses:

PM-1057, Rev. I, Attachment B, Page 8 of 12

PBAPS-CRDA - 20600cfm Normal CR Intake Rate.o(

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 2.0136E-03 2.7061E-02 2.8689E-03 Accumulated dose (rem) 2.2495E-03 2.9553E-02 3.1839E-03 Control Room Doses:

Time (h) = 2.0000 Whole Body Thyroid TEDE Delta dose (rem) 5.6296E-03 1.15034E+00 5.3142E-02 Accumulated dose (rem) 5.9191E-03 1.5642E+00 5.5364E-02 Detailed model information at time (H) 8.0000 EAB Doses:

Time (h) a8.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.0000E+00 0.C000E+00 O.O000E+00 Accumulated dose (rem) 4.5963E-02 6.0386E-01 6.5056E-02 LPZ Doses:

Time (h) = 8.0000 Whole Body Thyroid TEDE Delta dose (rem) 2.8665E-03 8.3621E-02 5.4873E-03 Accumulated dose (rem) 5.1159E-03 1.1317E--Ol 8.6712E-03 Control Room Doses:

Time (h).- 8.000 Whole Body Thyroid TEDE Delta dose (rem) 6. 4012E-03 3.6768E200 1.2164E-01 Accumulated dose (rem) 1.2320E-02 5.2411E+00 1.7701E-01 Detailed model information at time 1H) = 24.0000 EAB Doses:

Time (h) = 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.0000E+00 0.O000E+00 0.0000E-00 Accumulated dose (rem; 4.5963E-02 6.0386E-01 6.5056E-02 LPZ Doses:

Time (h) ý- 24.0000 Whole Body Thyroid TEDE Delta dose (rem) 1.1995E-03 6.5498E-02 3.2351E-03 Accumulated dose (rem) 6.3154E-03  !.7867E-01 1.1906E-02 Control Room Doses:

Time (h) - 24.0000 Whole Body Thyroid TEDE Delta dose (rem) I.8732E-03 3.9688E+DC 1.2523E-01 Accumulated dose (rem; 1.4194E-02 9.2 C98E200 3.0223E-01

.41 1 1-131. S;rnary PM-1057, Rev. I, Attachment B, Page 9 of 12

0 PBAPS-CRDA - 206 0cfrm Normal CR Intake Rate.uO0 Reactor Coolant Condenser )Environment Time (hr) 1-131 (Curies) 1-131 (Curies) 1-131 (Cur~es) 2..3030E-06 0.010 1. 4193E+02 1. 4792E+02

0. 001 1. 7566E+02 2.7228E+03 5.3505E-04 0,002 6 0866E+00 3.2729E+03 1.8604E-03
0. 167 0.OOOOE+00 3.2765E+03 2.2677E-01
0. 420 .DO000E+00 3.27 31E+03 5 .7237E-01 0.670 0 .0000E+00 3.2699.403 9.1312E-01 0.920 o. 0000E+00 3.2666E+03 1,2535E-00 S.300 0.OOOE+00 3.26167+03 1.77702E+00 3.2577E-03 2.i7T76E+00 1 .600 0. 0000OR+00 I. 900 0 OOOOE+00 3.2538E+03 2.5845E+00 2.000 0. 0000E+00 3.2525E+03 2.7200E-+/-00 2.300 0. 0000E+00 3.2486E+03 3.1262E+00 2 .600 0. 0000E00 3.244j7E+03 3.5319E+00 2 900 0. 0000E+00 3.2408E+03 3.9372E+00 3.200 0. OCOE+00 3.2369EF03 4.3419E+00 3.. 500 O. OOOOE+00 3.2330E+03 4.7462E+00 3.800 0.0000Ef00 3.2291E+03 5.1500E+00
4. 100 O OOOOE+00 3.2252E+03 5.5533E+00 4.400 0. OOOOE+00 3.2213E*03 5.9561F,+00 4.700 0. O0OE+00 3.217'5E+03 6.3584E+00 5.000 0. 0000E+00 3. 2136E+03 6.7602EO00 5.300 0. O000E+00 3.2097E+03 7. 1616E+00
5. 600 0. 0000E+00 3.2059k:+03 7.5625E+00
5. 900 0.OOOE+00 3.2020E+03 7.9629E+00 6.200 0 O000E+00 3.11982E+03 9.3628E+00 6.500 0. 0000E+00 3.1943E+03 8.7622E+00 6.800 o. OOOOE+00 .3.1905E+03 9. 1612E+00 7.100 O o00bE+00 3.1867E+03 9.5597E+00
7. 400 0. 0000E+00 3.1828E+.03 9.9577E.00 7.700 0. OOOOE+00 3.1790E+03 '.0355E+01 8.000 0.0000E+00 3.1752E+03 1.0752E+01
8. 300 0 OOOOE+00 :3.1714E+03 1. :149E+01
8. 600 0. OOOOE+00 3.1676E+03 1.1545E+01
8. 900 3.1637E+03 3.1940E+01 0.OOOOE+00 3.1599E+03 1.,2336E+G0 9.200 0. 0000E+00
9. 500 0. 00 OOE+00

.0.0000E+00 3. 1561F403 1.2730E+01 9.800 0 0COOE+00 3. 1524E+03 1.3124E+01 0 100 0 OOOOE+00 3. 1486E+03 1.3518E+01 1C. 400 0.00OOEt-00 3. 1448Eý03 1.3911E+01 24.000 O.0000E400 2.9779E+03 3.1228E01 Control Room Time rhx) 1-131 (Curies) 0.000 2.8466E-08 0 .00,1 6.5991E-06.

0,002 2.2874E-05 0.167 1. 5955E-03 0.420 2 1346E-03 0.670 2.2116E-03 0.920 2.2213E-03 1,300 -1299E-03

1. 600 2.22173E-03 SI 9 C 2.2147c-03
2. 000 .2.2138E-'03
2. 30:) 1. 754 1E-C3 PM-v1057, Rev. 1,Attachment B, Page 10 of 12

PBAPS-CRDA - 20600cfm Nomial CR Intake Rate.oO 2.600 1.70486-03 2,900 1.69790-03 3.200 1,6954E-03 3.500 1,6933E-03 3.800 1.6912E-03 4.100 1.6892E-03 4.400 ,.6872E-03 4.700 1.6852E-03 5.000 1.6831E-03 5.300 1.68116-03 5.600 1.6791E-03 5.900 1.6771E-03 6.200 1.6751E-03 6.500 1.6730E-03 6,800 1.6710E-03 7.100 1.6690E-03 3.400 1.66-10Z-03 7.700 1.66500-03 8.000 1.6630E-03 8.300 8.5066E-04 8.600 7.6605E-04 8.900 7.5651E-04 9.200 7.5471E-04 9.500 7.5371E-04 9.800 3.52796-04 10.100 1.5189E-04

].0.400 7.5098E-04 24.000 7.1114E-04 Cumulative Dose Summary

  1. ##1###### #k#######1###1###4##*########*### ##########9###

EAB LPZ Control Room Time Thyroid TEDE Thyroid TEDE Thyroid TEDE (hr) (rem) Irem) (rem) (rem) (rem) (rem) 0.000 0.O000E+00 O.00OOEf0o 0.0000E+00 0.0000 O00 0.0000E+00 0.0000E600 0.001 1.2030E-04 1.5163E-05 5.8878E-06 7 .4211E-07 8.0073E-03 2.92506-08 0.002 4.1831E-04 5.3016E-05 2.04726-05 2.5947E-06 6.3860E-06 2.33356-07

0. 167 5.0930E-02 6.4371E-03 2.4926E-03 3. 1504E-04 6.08376-02 2.2220E-03 0.420 I .2833E-01 1.5824E-02 6.2804E--03 7.7442E-04 2.4853E-01 9.02080-03 0.6)0 2.04386-O1 2.46086-02 1.0002F-02 1 .2043F-03 4.5512E-01 1.6460E-02
0. 920 2. 801CE-01 3.2956E-02 1.3708E-02 1 .61296-03 6.6538E-01 2.3925E-02 1..300 3.94656-01 4.49716-02 1.9315E-02 2.2009E-03 9.8336E-01 3.5151E-02
1. 600 4.8460E-01 5.3886E-02 2.37170-02 2.63726-03 1.233]E+00 4.38856-02 1.900 5.'74110-01 6.2335E-02 2.80980-02 3.0508E-03 1.48166E+00 5.2511E-02 2.000 6. 03860-01 6.5056E-02 2.9553E-02 3.1839E-03 1.5642E400 5.5364Z-02 2.300 6. 0386E-01 6. 5056E-02 3.39070-02 3.5303E-03 1.7778+/-+00 6.27116-02
2. 600 6. 03860-01 6.5056E-02 3.8240E-02 3.9384E-03 1.96946+/-00 6. 9258E-02
2. 900 6. 0386E-01 6.5056E-02 4.2553F.-02 4.2898E-03 2.1580E+00 7,5665E-02
3. 200 6. 0386E-01 6. 5056E-02 4.6847E-02 4.6260E-03 2.34 556400 8.2001E-02 3 500 6. 0386E-01 6 5056E-02 5. 1123E-02 4.9482E-03 2.5321F+00 8. 8279E-02 3.800 6.0386E-01 6.5056E-02 5 .53796-02 5.2576E-03 2.71-19F+00 9. 45006-02 4 tOO 6. 0386E-01 6. 5056E-02 5. 9617E;-02 5.5551E-03 2.90306+0.0 1. 0061E-0' 4 400 6. 03860-01 6.5056E-02 6. 3836 -02 5.84176-03 3.08762E600 1.0679E-01 4 .00 6.0336E-01 6.5056E-02 6. 80406-02 6.1183E-03 3.2707E+00 1. 12866-01 S0 000 6.0386E-01 6.5056F-02 7.22256!:-02 6.36856E-03 .3. 45346100 . 1.998 -03.

PM-1057, Rev. I, Attachment B, Page IIof 12

PBAPS-CRDA - 20600cfm Norma) CR Intake Rate.oO 5 300 6.0386E-01 6.5056E-02 7.6393E-02 6.6442E-03 3.635'3E00 1.2487E-01

5. 600 6. 0386E-01 6.5056E-02 8.0544F-02 6.8949E-03 3.81662+00 1.3081E-01
5. 900 6. 0386E-01 6.5056E-02 8.4679E-02 7.1381E-03 3. 9971 Et00 1.3671E-01
6. 200 6.0386E-01 6.5056E-02 8.8797E-02 7.3744E-03 4. 1768E+00 I 4257E-0l 6.500 6. 0386E-01 6.5056E-02 9.2899.-02 7.6043E-03 4 .3559R+00 1.4839E-01
6. 800 6. 0386E-01 6.5056E-02 9.6985E-C2 7.828iE-03 4.5343E#00 1.5418E-01 7.100 6.0386E-01 6.5056E-02 1.0106E-01, 8.0464E-03 4. 7120E+00 1. 5994E-01 7.400 6. 0386E-01 6.5056E-02 1 .0511E-0I 8.2595E-03 4,8890E+00 1. 6566E-01 7.700 6. 0386E-01 6.5056E-02 1.0915E-01 8.4676E-03 5. 0654E200 1.7135E-01 8.000 6. 0386E-01 6.5056E-02 1.1317E-01 8. 6712E-03 5.2411E+00 1.7701E-01
8. 300 6. 0386E-01 6.5056E-02 1. 1451E-01. 9.76162-03 5 3603E+00 1.80842-01 8 .600 6. 0386E-01 6. 5056E-02 1. 1583E-01 8.8495E-03 5. 44386+00 1.8352E-01
8. 900 6.0386E-01 6. 5056E-02 1. 1715E-01 8.9350E-03 5. 5235w+/-0C I .9608E-01 9.200 6' 0386F-01 6.5056E-02 1.1847E-01 9.0184E-03 5.6025E+00 1. 8861E-Cl
9. 500 6.0386E-01 6. 5056E-02 1.1978E-01 9.0997E-03 5.6811E1+00 1 .9112E-01 9.800 6.0386E-01 6. 5056E-02 1.2109E-01 9.1790E-03 5.7595E-00 1 9362E-01 10.I00 6.0386E-01 6.5056E-02 1.2240w-0C 9.2566E-03 5.8376E+00 1. 9612E-01
10. 400 6.0386E-01 6.5056E-02 1.23'0E-01 9.3324E-03 5.9154E+00 1.9859E-01 24.000 6.0386E-01 6.5056E-02 1.78672-01 1.1906E-02 9.2098E+00 3. 0223E-01 Worst Two-Hour Doses EAB Time Whole Body Thyroid TEDE (hr) (rem) (rem) (rem) 0.0 4.5963E-02 6. 0386E-01 6.5056E-02 PM-1057, Rev. I, Attachment B, Page 12 of 12

Peach Bottom AST Source Terms,nif Nuclide Inventory Name: Source Terms per this calculation Peach Bottom IFBAPS) AST -in Ci/MW Power Levw!t:

0.1000E+01 Nuc2 ides, 60 Nuc.hide 001:

Cc- 58 7

0.611!7120000Ef07 0.5800E4D2 0.1529E+03 none 0.0000E+00 n~n*? O, OOOOE+CO none O.O000E+C*0 Nuclide 002:

('o-60 7

0.1663401096E+09 0.60008+02

.C.1830E+03 none 0.0000E+00 none 0.0000E+00 none 0.000GCE00 Nuclide C03:

Kr-85 1

0.3382974720E+09 0.8500E+02 0.3946E+03 none 0.000O8+00 none O..O000E+00 none 0.0000E+00 Nuclide 004:

Kr-85m 1

0.1612800000E+05 0.8500E+02 0.8313E+04 Kr-85 0.2100E+00 none 0.0000E+00 none 0.0000E+00 Nucli.de 005:

Kr-87 0.4578000000E+C4 0.8700E+02 0.1633E.,05 Rb-8? O.10008E+C none 0.0000O400 none O.OCOOE+00 NucI-de 006:

1

-10224000002+C5 0.88002+02 0.2303E+05 PM-1057, Rev. 1, Attachment C, Page I of 10

Peach Botlom AST Source Terms.nif Rb-88 0.1000E+01 none 0.0000E+00 none 0.0000-+00 Nuclide 007:

Rb-86 3

0.1.61222 4000E+07 0.8600E+02 0.6518E+02 none O.O000E+00 none O.0000E+O0 none 0.C0000+00 NOclide 008:

Sr-89 5

0.4363200000E+07 0.8900E+02 0.2798E+05 none 0.0000E+00 none O.0000E+00 none 0.0000E+00 Nuclide 009:

S5-90 5

0.9189573120E+09 0.9000E+02 0.3178E+04 Y-90 0.1000E+01 none O.00OE+O0 none 0.0000E+00 Nuclide C10:

St-91 5

0,3420000000E+05 0.9100E+02 0.3801 F+05 Y-91m 0.590CE+00 Y-91 0.4200EO00 none 0.000CEf00 Nuclide 0l:

Sr-92 5

0.9756000000E+04 0.9200E+02 0.4017F+05 Y-92 0.1000E2Cl none G.0000E+-0 none 0.0000E+00 Nuclide Y-90 9

0. 2304 00000CE,06 0.3272E+04 C. 00C0~+0C' none 0. 0000E+OC none 0. OOOOr:tOC PM-1057. Rev, 1, Attachment C, Page 2 of 10

Peach Bottom AST Source Terms.nif Nuclide 013:

Y- 91.

9.

.Q. 5055264O00E+07

0. 9100E+02 0.3448E405 none 0.0000EI-00 none 0.0000E+00 none 0.0000E+00 Nuc1ide 014:

Y-92 9 0.1274400000E+05 C. 9200E+02 0.4029E+05 none 0.0000E+00 none 0.OOOOE+00 none (0.000E+00 Nuclide 015:

Y-93 9

0.3636000000P,+05 0.9300E+02 0.4526E+05 Zr-93 0.I0C0E+01 none 0.0000E+C0 none 0.0000E+00 Nuclide 016:

Zr-95 9

0,55278720007+07 0.9500E+02 0.4489E+05 Nb-95m 0.7000E-02 Nb-95 0.9900E+00 hone 0.0000E+OC Nuclide 7 017:

Zr-9 9

0.60840000002+n5

0. 9700E202 0.4657E+05 Nb-97m 0.9500E+00 Nb-97 0.5300E-01 none 0.0000E+00 Nuciide 018:

Nb-95 9

0.3036960000z+07

0. 95C0'402 C0.4S412E>05 none 0. 0307*00-none .0.002OE+00 none C.OOCOC100 Nuclide 019:

Mo-99 Ip PM-1057, Rev. 1, Attachment C, Page 3 of 10

Peach Bottom AS'r Source Terms.nif 0.2376000000E206 0.9900",+02 0.5078+05 Tc-99m 0.8800E*00 Tc-99 0,1200E+0O none 0.0000E-00 Nuclide 020:

Tc-99m 7

0.2167200000E+05 0.9900p:+02 0.4447E+05 Tc-99 0.1000E+01 none O.OOOC.400 none 0.00O0EfOo Nuclide 021:

RU -103 7

3,339379200'EC07 0.1030E+03 3.4202t+05 Rh-103m 0.1000E+01 none 0.0000EO00 ncne 0.OOOOE+00 Nuclide 022:

Ru- 105 7

0.1598400000E+05

0. 1050R+03 0.2908E+05 Rh-105 0.1000E*01 none 0.OOOOE+00 none 0.0000E:+00 Nuclide *023:

Ru-106 7

0.3181248000E+08 0.1060E+03 0.1730E+05 Rh-106 0.1000E+01 none 0.O000E+00 none 0.0000E+00 NuclLde 024:

Rh-105 7

0.1272960000E+06 0.1050E+03

0. 2752f+05 none 0.0000E+00 none 0.O000E++/-0 none 0.0000E+00 Nuclide 025:

Sb-127 4

0.33264000000E06 0.1270F+03

0. 2596-. +04 PM-1057. Rev. 1, Attachment C, Page 4 of 10

Peach Botton AST Source Terms.nif Te-127-n 0,160O+00 Te-127 0.9200E+00 none 0.O00O+C0 Nuclide 026:

Sb- 129 4

0.1555200000E+05 0.1290Et03

0. 8638E+04 Te-129m 0.2200E+00 Te-129 0.7700E+00 none 0.000OE*00 Nuclide 027:

Te-127 4

0.3366000000E+05 0.1270E-03 0.,2873E+04 none 0.0000E+00 none 0.OOO0E+00 none O.0000E*O00 Nuclide 028:

Te-12 7 m 4

0.9417600000E+07 0.1270E*03 0.3855E÷03 Te-127 0.9800E+00 none O.OCOOE+00 none 0.00O0E+00 Nuclide 029:

Te-129 4

0.4176000000E+04 0.1290E+.03 0.850 1E+04 1-129 O.IOO0E+02 none 0.0000E+00 none C.OOOE+0C Nuclide 03C:

Te-12n9m 4

0.2903040000E+07

0. 1290E+03
0. 1267E+04 Te-129 0.6500E+00

-1.29 0.3500E+06 none 0.O000E+00

.Nuclide 031:

Te.- 1.3.m

4 0,I080000000E*06
0. 1310E+03 0.3869E+04 T'-31 0.2200E+00 f-]31 O.7800 :+00 none O.CO00CE.00 PM-1057, Rev. 1. Attachment C. Page 5 of 10

Peach Bottom AST Source Terms.nif Nuclide 032:

Te-132 4

0.2815200000E+06 0.1320E+03

0. 3821E+05 1-132 0.O.O]E+0]

none O.0000E+00 none 0.0000E+00 Nuclide 033:

1-131 2

0.6946560000E+06 0.1310E+03 o.2C87E+35 Xe-131.m 0.11.00E-01 none 0.0000E+00 none 0.0000E+00 Nuclide 034:

1-132 2

0.8280000000E+04

0. 1320E+03 0.3881E+05 none O.0008E+00 none 0.O0000+00 none O.OOCOE+00 Nuclide 035:

I-133 2

0.7488000000E+05 0.1330E+03 0.5556E+05 Xe-133m 0.2900E-01 Xe-133 0.9700E-00 none 0.0000E+00 Nuclide 036:

1-134 2

0.3156000000E+04 0.1.340E+03 0.6165E+05 none 0.0000E+00 none O.0000E+00 none 0.O000E400 Nuclide 037:

1-135 2

0,2379600000E÷05 0.1350E+03 0.5192E-05 Xe-135m C;.500E+00 Xe-135 0.8500E-00 none 0.0G000"+00 tjucliýde 038:

Xe-133 i

PM-1057, Rev. 1, Attachment C, Page 6 of 10

Peach Botlorn AST Source Terms.nif 0.4531680000E+06

0. 1330E+03 0.5491E+05 none O.0000E+00' none O.C000E400 ole LO.DOOD0O Nuclide 039:

Xe- 135 0.32712400003E+05 0.1350E+03

0. 22282f05 Cs-135 0.1000F+02 none 0.0000E+00.

none C.0000E÷00 Nuclide 040:

Cs-134 3

0.65071771202+08 0.134,0E+03 0.7280E+04 none 0.0000E-00 none C,00OOE+00 none 0.0000+E00 Nuclide 041:

Cs-136 3

0.1131840000F+07 0.1360E+03 0.20271+04 none 0.0000E+00 none O.0000E+00 none O.00002+00 Nuclide 042:

Cs-1337 3

0.94672800002+09 0.1370E 03 0.4538E+04 Ba-13 7 m 0.9500E+00 none 0.0000E00 none 0.00002E00 Nuclide 043:

Ba-139 6

0.4962000000E+04 0.1390E+03 0.5084E+05

,ione O.O-OCOE+rO none 0.000E2+0C n0one O.000E+Ol Nuclide 044:

Oa-140 6

0. 21007360002+37 C.1'100E+-03 C. 4*i962E÷5 PM-1057, Rev. 1, Attachment C, Page 7 of 10

Peach Bottom AST Source Terms.nif Lia-140 0.1000E+01 none O.O000E-00 none 00000E+00 Nuclide 045:

La-140 9

0.1449792000F,+06 0.1400E+03 0.5019E+05 none O.OOOOE+O0 none 0.0000E400 none 0.OOOOE+00 Nuclide 046:

La-141 9

0.1414800000F+05 0.1410E-C3 0.4640E+05 Ce-1.41 C.IOOOE+01 none O.0000E+-00 none 0.0000E+00 Nuclide 047:

La-142 9

0.5S50000000E+04

0. i420E÷03 0.4532E+05 none 0.OOOOE+00 none 0.0000E+O0 none 0.0000E+00 Nuclide 048:

Ce-141 8

0.280908640CE+07 0.1410E+03 0.4492E+05 none 0.0000£+O0 none I0000tE+O0 none 0.0000E+00 Nuclide 049:

Ce.243 8

0.1188000000E+06 0.1430E£403 0.4427E+05 Pr-143 C.1000E+o1 none 0.0000E+OC none I. oCOOE#:O0 Nuclide 050:

Ce-144 8

0.2456352000£E08

0. 1440E4-03
0. 359 F;+0, Fr-144m 0.1&00E-GI Pr-144 0.9800E+00 ner000E+Oe PM-1057, Rev. 1. Attachment C, Page 8 of 10

Peach Botonm AST Source Terms.nif Nuclide 051: i Pr-143 9

0.I11715840004+07 0.1430E-03 0 .4293E205 none 0.0000E+00 none 0.0000E+00 none O.0OO02E4O0 Nuclide 052:

Nd-1447 9

0.9486720000E+06 0.1470E+03 0.18382+05 4

Prn-1 7 0.1C000E0I none 0.0000E+00 none 0.0000E+00 Nuclide 053:

Np-239 8

0.2034720000E+06 0.2390E+03 0.5397F+06 Pu-239 O.10002EOI none 0. 0000E+O0 none 0.00002+00 Nuclide 054:

Pu-238 8

0.2768963824F>l0 0.2380E+03 0.17962i+03 u-234 0.1000E+01 none O.0000÷+00 none 0.0000Z+00 Nuclide 055:

Pu-239 8

0. 75943364404E12 0.23902*03 0.1:20C+02 U-235 0.1000E+01 none 0.0000E+00 none 0.0000E+00 Nuclide 056:

Pu-240 0.2062920312E+12 0.2400E+03 0.1288E-02 U-236 0.1000E401 none 0.O0OOE+00 none O.O000O+00 Wuclide 057:

Pu-24 1 9.

PM-1O7, Rev. I, Attachmcnt C. Page 9 of WO

Peach Bottom AST Source Terms.nif 0.4544294400 E,09 0.2410E+C3

0. 6182E*04 U-237 0.2400E-04 Am-241 C.20000E-01 none 0.0000E+0O Nuclide 058:

Am-241 9

0.1.3639194-2E+11 0.2410E+03

0. 9528E+01 Np-23T 0. 1.000p+01.

-one 0.0000E+00 none 0.0000E+00 Nuc1ide 059:

Cm-242 9

0.1406592000E+08 0.2420E+03 0.2388E+04 Pu-238 O.1000E+Ol none 0.000COEf0 none 0.000OEs+00 Nuclide 060:

Cm-244 9

0.5715081360E+09 0.2440E+03 0.2602E+03 Pu-240 0.1000E+01 none 0. 0000E+0O0 none 0.000011÷00 End of Nuclear Tnventory File PM-1057, Rev. 1, Attachment C, Page I)0 of 10

PBAPS CRDA-release fractions.rft Release Fraction and Timing Name:

Peach Bottom Atomic Power Station Duration (h): Control Rod Drop AccIor~t 0.0010D+00 0.0010D+00 O.0000D+00 O.GOOOD+00 Noble Gases:

3.0575E-03 2.1189E-04 0.0000D+00 O.0000D+00 Iodine:

3.0575E-05 1,0594E-06 0.0000E+00 0.0000E+00 Cesium:

3.6691E-07 4.7086E-09 O,0000E+00 0.0000E+00 Tell 1 uri urn:

OO0000E+00 1.1772E-09 0.0000E+00 0.0000*+00 Strontium:

O.0000E+00 4.7086E-10 0.0000E+00 0. OOOOE,00 Barium:

0.000OE.O0 4.7086E-10 0.0000E+00 0. 09000J-00 Ruthenium:

O.OOOOE+O0 5.8858E-11 0.0000E+00 0.0000E+00 Cerium:

0.O000E+00 4.1772E-11 0,00OOE+00 0.0000E+00 Lanthanum:

O.0000E+00 4.7086E-12 0.OOOOE+00 0.0002E+00 Non-Radioacti ve Aercsoi.s (kg):

O.0000E+00 0.0000E+00 O.0000E+00 0.O0000E+00 End of Releas e File PM-1057, Rev. 1, Attachment D, Page 1 of I

Computer Disclosure Sheet Discipline Nuclear Client: Exelon Corporation Date: April 14, 2003 Project: Peach Bottom Atomic Power Station CRDA AST Job No.

Program(s) used Rev No. Rev Date Calculation Set No.: PM-1057, Rev. 1 Attachment A spreadsheet N/A NIA Status [ ] Prelim.

[X] Final

[ Void WGI Prequalification [ J Yes

[XJ No Run No.

Description:

Analysis

Description:

Spreadsheet used to perform dose assessments for CRDA, as described in calculation.

The attached computer output has been reviewed, the input data checked, And the results approved for release. Input criteria for this analysis were established.

By: *On: 2.2O3 Run by: .Boatright Checked by: P. Reichert Approved by: H. Rothstein 2A,.(j ./Z*;t Remarks:

This spreadsheet is applied in a straight-forward manner and was hand checked. Attachment A includes the spreadsheet in both normal and formula display mode and therefore is completely documented.

PM-1057, Rev. 1, Attachment E, Page I of 2

..... `... ..... ...... '"

... ..I"...- " ....... ".-... .........

Computer Disclosure Sheet Discipline Nuclear Client: Exelon Corporation Date: April 14, 2003 Project: Peach Bottom Atomic Power Station CRDA AST Job No.

Program(s) used: Rev No. Rev Date Calculation Set No.: PM-1057, Rev. 1 RADTRAD 3.03 Runs in Att. B 0 12/23/2002 RADTRAD 3.03 NIF File in Att. C 0 12/23/2002 Status [ ] Prelim.

RADTRAD 3.03 RFT File in Att. D 0 12/23/2002 [X] Final

[ Void WGI Prequalification [ X] Yes

[ ]No Run No.

Description:

Analysis

Description:

RADTRAD output files, where applied to calculations of CRDA dose assessments, as described in calculation.

The attached computer output has been reviewed, the input data checked, And the results approved for release. Input criteria for this analysis were established.

By: On: 4/2003 Run by: A. Boatright Checked by: P, Reichert Approved by: H. Rothstein 2

.,Ld/ -

Remarks:

The RADTRAD computer code is applied in a manner fitting its intended purpose, and well within it's operating parameters. All outputs were hand checked. Attachments C & D include the Nuclide Information File and Release Fraction and Timing File used by the RADTRAD code and generated specifically for the Peach Bottom Atomic Power Station. Both were-also hand checked for accuracy.

PM-1057, Rev. 1, Attachment E, Page 2 of 2

..................... . . .