ML20245H062

From kanterella
Jump to navigation Jump to search
Summary Technical Rept:Reactor Containment Bldg Integrated Leak Rate Test,Oyster Creek
ML20245H062
Person / Time
Site: Oyster Creek
Issue date: 03/31/1989
From:
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20245G859 List:
References
NUDOCS 8906290382
Download: ML20245H062 (44)


Text

_ - _ - _ . . . ._ ._ . _ _ _ - _

s f

SIM1ARY TECHNICAL REIVRT REACTOR CONTAINMENT BUILDING INTEGRATED LEAK RATE TEST OYSTER CREEK MARCH, 1989 (

1

- l 89062903B2 890616 PDR ADDCK 05000219 p PNU i

1 j

s 6

TABLE OF CONTENTS SECTION PAGE NO.

INTRODUCTION ............................................ 3 I. GENERAL DATA ............................................ 4 PRIMARY CONTAINMENT TEGNICAL DATA . . . . . . . . . . . . . . . . . . . . . . 4 TYPE A TEST DATA ........................................ 5 SUPPLEMENTAL TEST DATA .................................. 5 DEFINITIONS ............................................. 6 II. TYPE A TEST METHODS AND TEST RESULTS .................... 7 III. ACCEPTANCE CRITERIA - TYPE A TEST........................ 13 IV. SUPPLEMENTAL TEST........................................ 14 V. ACCEPTANCE CRITERI A - SUPPLEMENTAL TEST. . . . . . . . . . . . . . . . . . 17 VI. TYPE A TEST

SUMMARY

AND CONCLUSION ...................... 18 VII. TYPE A TEST OiRONOLOGY AND HIGHLIGHTS ................... 19 VIII. TYPE B AND TYPE C LOCAL LEAK RATE TESTS ................. 22 IX. SECONDARY CONTAINMENT LEAK RATE TEST .................... 31 ATTAGNENT I - CALCULATIONAL MET 10DS . . . . . . . . . . . . . . . . . . . . . . . . . 32 ATTACINENT II - LEAK RATE DETECTION SYSTEM .................... 37 ATTAGNENT III - SUPPORTING TEST DATA . . . . . . . . . . . . . . . . . . . . . . . . . . 42

+

4. .

Ih"IRODUCTION I

The Oyster Creek Primary Containment Integrated Leak Rate Test (PCILRT) was conducted on the dates of March 6, 7 and 8,1989. - The twenty-four (24) hour Type A Test was performed as reauired by 10CFR50, Appendix J; the. applicable Oyster Creek Technical Specifications; and Station  !

Procedure 666.5.007, " Primary Containment Integrated Leak Rate Test".

Guidance in conducting the test was provided by ANSI N45.2-1972, ANS/ ANSI 56.8-1981, and ANS/ ANSI 56.8-1987.

Included herein, in accordance with 10CFR50, Appendix J, and Oyster Creek Technical Specifications, is a summary of pertinent data, Type B and Type C local leak rate test results, an analysis and interpretation of test results, a Type A test chronology, and Secondary Containment Leak Rate Test results. A description of the leak detection system, calculational methods, and supporting test data are provided as attachments. Additional test supporting data is available for review at the station site in accordance with ANS/ ANSI 56.8-1987.

1 f

l l

I. GENERAL DATA OWNER: Jersey Central Power 6 Light / General Public Utilities PLANT: Oyster Creek, Unit i OPERATOR: General Public Utilities Nuclear DOCKET No. : 50-219 LOCATION: U.S. Highway Route 9, Forked River, New Jersey CONTAINMENT DESIGN: Mark I, General Electric Co.

TEST COMPLETION DATE: March 8,1989 PRIMARY CONTAINMENT TECINICAL DATA CONTAINMENT NET FREE AIR VOLUME 309,762 Cubic Feet DESIGN PRESSURES AND TEMPERATURES:

DRYWELL: 62 psig at 175*F and/or 35 psig at 281 F TORUS: 35 psig at 150 F DESIGN ACCIDENT PEAK PRESSURE, Pa 35 psig CALCULATED ACCIDENT PEAK TEMPERATURE 275 F (Drywell) 145 F (Torus)

TYPE A TEST DATA l 1

TEST METHOD: ABSOLUTE DATA ANALYSIS TECHNIQUE: MASS PIOT TYPE A TEST PRESSURE 37.87 PSIA MAXIMUM ALLOWABLE LEAKAGE RATE Lt : 0. 655% wt. / day MINIMUM TYPE A TEST DURATION: 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> MEASURED TYPE A TEST LEAKAGE RATE, Ltm: 0. 240% wt. / day UCL-95 CALCULATED LEAKAGE RATE 0. 243% wt. / day SUMP LEVEL CORRECTION (SEE PAGE 7) 0. 0233% wt. / day UNEXPOSED PENETRATIONS DURING TYPE A TEST (SEE PAGE 8) 0.0197% wt. / day TYPE A LEAKAGE RATE PRIOR TO STARTUP 0. 286% wt / day LEAKAGE REDUCTION OBTAINED FROM TYPE B AND TYPE C TEST PROGRAM AND REPAIRS DURING 12R REFUELING OUTAGE 0.061% wt. / day (SEE PAGE 9)

TYPE A LEAKAGE RATE "AS FOUND" IN 12R REFUELING OUTAGE 0. 347% wt. / day  !

SUPPLBfENTAL TEST DATA CALIBRATED LEAK SUPERIMPOSED:

0. 568% wt . / day MINIMUM SUPPLEMENTAL TEST DURATION: 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> SUPPLEMENTAL TEST PRESSURE: 37.60 PSIA MEASURED SUPPLEMENTAL TEST COMPOSITE LEAKAGE RATE, Lc: 0. 880% wt./ day l

l l

I

DEFINITIONS PARAMETER DEFINITION Pa, Calculated peak containment internal pressure related to the design basis accident,.in PSIG.

Pt Containment vessel reduced test pressure selected to measure the integrated leakage rate during the Type A Test, in PSIG.

1 La Maximum allowable leakage rate at pressure Pa, as specified in the Station Technical Specifications, in % wt. / day.

l Lt Maximum allowable leakage rate at pressure Pt ., in % wt. / day.

Lmt Total measured containment leakige rate at l

test pressure, 'obtained f rom testing the containment with its related components and systems.as close as practical to those-conditions' which would exist under the design basis accident, in % wt./ day.

Lo The known leakage rate superimposed on the containment during the supplemental test, in

% wt. / day.

Lc The composite leakage rate measured during the supplemental test, in t wt. / day.

Minimum Pathway Leakage The smaller leakage rate of in-series- valves tested individually, one-half the leakage rate for in-series valves tested f simultaneously by pressurizing between i valves, and the combined leakage for valves tested in parallel. )

Maximum Pathway Leakage The larger leakage rate of in-series valves tested individually, the total leakage rate for in-series valves tested simultaneously by pressurizing between valves, and the combined leakage rate for valves tested in pa rallel, i

l 1

l l

I 1

l l

i II. TYPE A TEST MEIBODS AND TEST RESULTS s

The containment leakage rate was detennined by utilizing the Absolute Analysis Method and the Mass Plot Calculational Techniaue. Changes in the water level of the reactor vessel were computed and included in each ,

data set collection. At the conclusion of the test, the results of the j Absolute and Mass Plot Methods were corrected to account for changes in -

the containment net-f ree air space due to water accumulation in the drywell sump. These results were further adiusted to incorporate the results of Type B and Type C local Leak Rate Testing (LLRT) for isolation valves which were not exposed to the test pressure. The level corrected leakage rates and the LLRT adjusted leakage rates are given below. A calculation of leakage for the last eight hours of the test was also conducted to ensure that the as-lef t condition of the containment remained below the acceptance criteria. The 'As-Found' Tvpe A test i '

result af ter shutdown was determined by adding the leak reductio-achiozed by pre- and post-repair Type B and Type C results condu <

during the outage to the corrected Type A test result.

LEVEL CORRECTION CALCULATION The UCL-95 calculated leakage rate was corrected to account for water accumulation into the containment sump as determined by the following ecuation:

LI = L + (24)(0.1338)(F1 - Fo)(100)

(309,762) T Whe re , Ll = Level corrected UCL-95 calculated leakage rate in % wt./ day L = UCL-9$ calculated leakage rate in % wt./ day 24 = 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> / day 0.1338 = conversion f actor for convert >ng gallons to cubic feet F1 = final sump integrator reading in gallons Fo = initial sump integrator reading in callons 100 = 100%

I 309,762 = containment net f ree-air space in cubic feet T = time interval between initial and final sump integrator reading in hours l l

f

- b

f

p. ..

Substituting Type A Test values, LI = 0.243% wt. / day + (24 hrs)(.1388 f t3)(535205 gal-534647 gal)(100) day gal (309,762 ft. 3) (25.75 hrs.)

= (0.243 + .0233) % wt./ day Ll = 0. 266% wt. / day LOCAL LEAK RATE TEST ADJUSIMENT The level corrected leakage rate is adjusted to include Types B 6 C test results of isolation valves which were not exposed to the Type A test pressure. The total leakage for this adjustment is the sum of the isolated penetration minimum pathway leak rates. A summary of these test results is as follows:

Leakage Rate (SCFli)

Penet ration e 20 psig Cleanup System f rom Reactor 0.266 Cleanup System to Reactor 1.593 Feedwater Check Valves (Northside) 1.580 Feedwater Check Valves (Southside) 0.232 Licuid Poison Check Valves 1.300 RBCCW f rom Drywell 0.806 RBCCW to Drywell 0.243 Reactor Water Sample Line 0. 01 2 Drywell Purge (This penetration was 0.634 exposed to test pressure; however, i downstream vent was unavailable)

TOTAL 6.666 SCFli e 20 psig l

l l

____-_7 l l l

I l

l The post Type A test local leakage rate adjustment is 6.666 SCFH corrected to a test pressure of 20 psig. This value must be converted to a leakage ]

i rate in % wt./ day and included in the Type A test as an added Local Leak Rate adjustment factor.

t

6. 666 SCFH = 0.0197% wt. / day

)

Therefore, the total post Type A test adjustment factor is an additional 1

0. 0197% wt. / day. J The Type A test results at the measured and at the 95% confidence level for the Absolute Mass Plot method are given belcw in Table I. Both the reactor level correction factor and the LLRT adjustment factor for the Absolute Mass Plot method are provided. A calculation of the leakage rate for the last eight hours of the.s test is also provided in Table I.

l TABLE I I

1 TYPE A TEST RFSULTS SUhMARY (Absolute Method) i Measured Measured 95% UCL 95% UCL Calculation (wt. % / day) (wt. % / day) (wt. % / day) (wt. % / day)

Techni aue (Uncorrected) (Corrected) (Uncorrected) (Corrected)

NMSS PLOT 0.240 0.283 0.243 0.286 8-Hour Window 0.222 0.265 - -

' AS-FOUND' (AFTER SHUTD0h'N) TYPE A TEST RESULT The Type A test result was adjusted to determine the As-Found Type A test condition by use of Type B and Type C test results. During the refuel ]

outage, an entire Local Leak Rate Test Program was conducted. The leakage j reduction achieved by repairs as determined by minimum pathway basis, is i added to the final corrected, 95% UCL Type A test result. {

i Tabula. ion of Type B and Type C tests are provided in Table III. The i leakage reduction obtained by repair is 20.654 SCFH. This value must be converted to a leakage rate in % wt/ day for inclusion in Type A test result.

20. 654 SCFH = 0.061% wt / day Therefore, the total ' As-Found' adiustment factor is an additional
0. 061 % wt. / day. I l

9

_-__-_____-__-_____O

The ' As-Found' (af ter shutdown) Type A result is as follows:

Type A, 95% UCL, and corrected Leak Rate (f rom Table I) 0. 286% wt/ day Type B and Type C pre- and post-repair leak differential 0.061% wt/ day TOTAL = 0. 347% wt/ day Therefore, T'/pe A Test result ' As Found' (af ter shutdown) is 0.347% wt/ day.

l 1

ANALYSIS AND INTERPRETATION Figure I is a graphical description of the Type A test performance as determined by the absolute Mass Plot Analysis technicie. As previously described in Section II, each data point is corrected for reactor water level by calculating the corresponding change in air mass inside the reactor vessel. As displayed in Figure I, the measured leakage rate and the 95% UCL were relatively constant from 9-hours of elapsed time to the end of the 24-hour test period. In addition, the calculation of measured leakage over the last eight hours verified that no large leakage paths were exposed near the end of the test.

l f

(

1

_ _ _ . -- - l

~

i FIGURE I l TYPE A TEST TREND GRAPH l i

r e

". ~. 95% UCL o }

o A .

i'

~

d- d-G G O O CC o 1 F

E w.r,- w~ -u a.d- o. d- .

p I N N MEASURED l

b.

l w o w,. g 3 3 o w

~ -

Wa- d-G E

r w ~.

ag. g.

.J w w -

- e w sc 4 x2

. c ..

wo. wo u .a z

w oo oe w-LA 5 C z o- co-O D l v c  ;

l w

cc r +

1 w +

a. * -

ao o o

N tom ~

o cro* '

8 8.. . p.

- . . . . 0.00 2'.90 5.00 e.70 l's . 60  !

1i.50 l'7.90 2'0.30 2'3.20 2b.ic HOUR $ i ELAPSED TIME i

l . _ _ _ _ _ _ _ . _

1 l

l III. ACCEPTANCE CRITERIA - TYPE A TEST 10CFR50, Appendix J reaut res that the leakage rate, Ltm (at the 95t, upper confidence level) shall be less than 0.75 Lt.

Calculation of L tm in t, wt./ day Lt"La (P t/Pa )l/2 Lt = 1.0% wt./ day (37.87 psia /49.70 psia)l/2 Lt= 0. 873% wt. / day Lm*

t 0.75 Lt = 0. 75 (0. 8731, wt. / day)

Therefore, L tm n 0. 655% wt. / day l

l l

_ _ ___0

1 IV. SUPPLEMENTAL TEST ,

In accordance 'with 10CFR50, Appendix J, a supplemental test was performed at the conclusion of the Type A test to provide a definitive method for verifying the measurement capability and integrity of the leak detection instrumentation.

The supplemental test utilized the superimposed leak verification method in which a calibrated leak was superimposed on the existing leaks from the primary containment. A leakage rate of 3.22 SCFM was introduced into the leak detection system and the corresponding composite leakage rate was determined by utilizing the ASsolute Analysis and the Mass Plot Calculational technique. The results of the supplemental test are given in Table II.

TABLE II SUPPLEMENTAL TEST RESULTS (DATA AT 4.25 liOURS INTO SUPPLEMENTAL TEST)

Parameter Leakage Rate (% wt./ day)

Lo 0.568 Lm t

0.240 Lt 0.873

, Lc 0.880 l

I l

(

.L J

i l

ANALYSIS AND INTERPRETATION l

Figure II is a graphical description of the supplemental test perfomance {

as detemined by the Absolute Method and Mass Plot Analysis techniaue. i The plot indicated a continuously decreasing tendency of the UCL-95 leak rate and the measured leak rate.

i f

i l

t i

l 1

L

i i

FIGURE II FOUR HOUR TEST GRAPH o o m -

. .y. .... . .. ... .

i d

W 9 e

.g.

8 8 95% UCL c, we wo we o ;- c.d- .

N N MEASURED r I,.

07 09-

-g. g.

w w 2 2 .

ao e r- o W d~

~ d" c

W w$ $

Jg. .g. -

a w w -

> c-m w@ c4 wo wo u J z

w -

o.e om w

LA.

g ,.. . C$.

3, O sn U C w

C I wev m m

g <g.

e g. . . .

3 N

inn.

g.

g. . g-o e o o d- -d- m , , ,

0.00 0.53 1.06 1.59 2'.12 2'.65 3'.18 3'.71 9'.29 9'. 7' ELAPSED TIME HOURS i

l j

i l

V. ACCEPTANCE CRITERTA - SUPPLEMENTAL TEST In order for a successful supplemental test, the results must satisfy the following order relationship as derived f rom ANS/ ANSI 56.8-1987:

(Lo + L tm .25 Lt ) E Q 5 (Lo + L tm + .25 Lt)

Substituting appropriate values f rom Table II, the acceptance criteria order relationship provides the following results:

(. 568 + . 240 . 218) g . 880 6 (. 568 + . 240 + . 218)

.590 6 .880 E 1.026 As can be seen above, the results from the supplemental test satisfy the acceptance criteria order relationship. It is therefore, concluded that a successful supplemental test was performed.

8

i .g '

VI. TYPE A TEST SlMIARY AND CONCLUSION A. "As-Found" Results The results of the "As Found" containment leakage rate met the acceptance criteria reaut red hv 10CFR50, Appendix J. Local leak rate testing prior to. Type A testing indicated no excessive leakage of any testable penetration which could result in an unsatisfactory Type A test. Documentation of Local Leak Rate tests is shown in Table III. During Type A testing, containment leakage was far below the acceptance criteria for the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> test period. The data was verified by completing a satisf actory supplemental test. The Type A test result was adjusted by the difference between post- and pre-repair local- leak rate results. The net 'As-Found' Type A test result was below acceptance criteria. It is, therefore, concluded that the Type A "As Found" test was successfully completed and the containment integrity requirements were far better than reaut red by 10CFR50, Appendix J.

B. "As-Left" Results The results of the twenty-four hour Type A test. determined a primary containment leakage rate well below that reauired by 10CFR50, Appendix J. The accuracy of the test data has been verified by the satisfactory performance of a four-hour supplemental test. It is therefore, concluded that the validity of the test data has been confirmed and has met the acceptance criteria of 10CFR50, Appendix J.

i l

I 4

VII. TYPE A TEST CHRONOLOGY AND HIGLIGHTS The chronology of significant events prior to and during the performance of the Type A test is as follows:

DATE TIME EVENT 02/22/89 Completed QC inspection of the containment ,

st ruc ture.

03/05/89 14:30 Completed installation of leak detection system instrumentation.

03/05/89 15:28 Completed one-point calibration checks. i 1

03/06/89 01:55 Completed testing of all Type A test I computer sof tware and verifying input data.

03/06/89 08:00 Completed drywell airlock Local Leak Rate Test.

03/06/89 09:40 All system line-ups completed and procedure requirements met. Permission granted to begin pressurization.

03/06/89 09:55 Advanced ILRT computer code to

' pressurization' mode. Drywell pressurization initiated.

03/06/89 18:00 Temperature indication of (2) RTDs dropped below calibration range. Operations reduced drywell cooling to restore instruments to calibration range.

NOTE: Air source (outside atmosphere) was approximately 25 F.

03/06/89 20:55 Control Room reduced cooling to Drywell.

03/06/89 21 :22 Containment pressure reached 37. 512 PSIA. 1 03/06/89 21 :4 3 Isolated pressure source f rom containment.

03/06/89 22:00 Advanced ILRT computer code to

' stabilization' mode.

1 i

03/06/89 23:50 Drywell high pressure gages were mistakenly  ;

isolated per direction of project engineer.

03/07/89 02:15 DrywelI sump pumped down. Initia1 and final integrator readings recorded.

NOTE: Drywell sump was pumped down intermi ttently when requi red.

Times, initial and final integrator reading' were recorded.

03/07/89 02:30 Control Room reduced Drywell cooling due to mi communication.

03/07/89 02:40 Control Room made minor adjustments to

-05:30 Drywell cooling to stabilize temperature.

03/07/89 07:30 ' Stabilization' criteria met. Permission granted by Manager - Plant Engineering to start Type A test. Computer code advanced to ' Type A test' mode.

NOTE: (2) RTDs were slightly out of calibration range at start of Type A test. A total of (5) RTDs were out of calibration range at supplemental test conclusion. Because data was near calibration point of 60 F, sensors were considered functional throughout the test.

03/07/89 10:15 Control Room slowly ad. justed reactor water level .

NOTE: Control Room adjusted make-up flow to reactor vessel throughout the Type A test and supplemental test at 165 in. TAF + 3 in.

03/07/89 18:59 Operations opened isolation valves to high drywell pressure sensors which were previously isolated, as directed by proiect engineer.

l 03/08/89 07:45 Data for measured and 95-UCL leak rate i re vi ewed. Acceptance criteria met.

I Measured leak rate calculated for the final eight hours of the test. Results confirm that no leakage paths revealed near the end of the Type A test.

j

l 03/08/89 07:55 Concluded Type A test.

03/08/89 08:40 Induced leak of 3.22 SCP4 f rom containment.

03/08/89 08:45 Permission granted by Manager - Plant Engineering to begin supplemental test.

03/08/89 09:00 Advanced ILRT computer code to

!. ' verification' mode, and began supplemental i test.

1.

03/08/89 13:30 Minimum duration for supplemental test elapsed. Measured leakage within acceptance criteria.

03/08/89 13:53 Permission granted by Manager - Plant Engineering to conclude supplemental test.

Advanced ILRT computer code to ' conclude test' mode.

03/08/89 1 6:00 Began containment depressurization.

03/24/89 All systems restored, all post test surveillance completed and PCILRT procedure closed out.

1 VIII. TYPE B AND C LOCAL LEAK RATE TESTS Type B and C local leak rate tests were performed on all testable containment isolation valves, gaskets, and penetrations in accordance i with 10CFR50, Appendix J, and the Oyster Creek technical specifications during plant refueling outage 12R.

The following is a summary of all valves / gaskets which had unacceptable leakage for their pre-repair test and the corrective maintenance performed.

COMPONENT IDENTIFICATION CORRECTIVE MAINTENANCE PENETRATION DESCRIFFION V-16-14 Disassembled, blue-checked, C1.eanup System replaced pressure seal and installed live-loaded packing, V-38-38 Disassembled: metal particle 112 Sensing Line embedded in soft seat. Valve disc replaced.

V-19-20 Disassembled, installed new Liauid Poison System piston disk, blue checked.

Disassembled. Corrosion Rx Bldg to Torus Vacuum Brkr V-26-18 products f rom piping found wi t hi n. Cleaned liner, verified full closure in repeated stroke tests.

V-28-18 Adiusted operator.

Torus Vent Valve NS03A Disassembled. Found seat bore Main Steam Isolation Valve out-of-round. Reworked body and modified poppet.

V-2-71 Disassembled enti rely, lapped Feedwater Check and polished seats.

V-2-72 Disassembled entirely, lapped Feedwater Check and polished seats.

Each of the above valves had another valve in series which passed the There was no penetration which failed local leak local leak rate test.

rate testing.

The As-Found (" Pre-Repair") and As-Lef t (including " Post-Repair") results f rom the local leak rate testirsg for the minimum and maxime i pathway leakage of each penetration are shown on Table III and include the pre-and post-repair results of all tests conducted during the 12R refueling outage at Oyster Creek.

Maintenance was conducted during the 11U7 mini-outhge at Oyster Creek which required the performance of selective Local Leak Rate Tests. Test results are included separately in Table III. Consequently, Table III includes all Type B and C Local Leak Rate Tests since the last Type A test outage.

I

.l l

1

t t s a oR P g .

k i 594796418 733373 73 8047 ga s 561301 559 085828 00 4387 ne p 300800892 166005 46 4756 i L d 5 207000000 010001 48 4030 l

u- 3 1 cs nt I l

( u s E t e T 888899888 988989 99 8888 f R A 888888888 888888 88 8888 e D ///////// ////// // ////

Lt 498594777 8757 66 22 2323

- s T 1 1 001 01 00 1 01 202 22 1 111 se S ///////// ////// // ////

AT E 000022000 202202 1 1 0000 T 11 1 1 001 11 01 1 01 0 00 1 1 1 1 Y g R i 622806695 884908 0282 A s 85021 031 2 069025 7561

) p 003600672 924208 22 6525 M

f E tH 33

>> 2000 UG sF 0 605000000 01 0000 SA eC 2 1 1 1 TS EUT NG I )

(

GO T rs A S i e I KR E at g I A2 pa 1 33875 1 047 I E1 T eR i

s 1 9473841 8 06131 0559 085723 6387 L p 266201 22 7756 E KC R

- k 400800892 44 L YE B AE & ea re 5

3 1 07000000 2

110001 >> 1 6030 1

A WR B PL T HC (

T AR PE EP d TY ns MS T ut E UY ol T 888888888 888888 88 8888 MO F u A 888888888 888888 88 8888 I - s D ///////// ////// // ////

s e 7 9851 0777 475362 44 2323 X AR T 00001 3100 101 1 00 1 1 1 1 11 A S ///////// ////// // ////

M E 000009000 002000 1 1 0000 T 1 1 11 1 01 1 1 1 1 1 1 11 1 1 1 1 11 4

1 8 n

&0 2 o2 s 32 i 8 e 2 - 6& t &1 4 9 v 6 a 1 2 l ,1 &7 r1 & - e a 1 - 2 t - &t & 2 V - V1 - e27 a 2 6 65 n213l 8 n 1 s 1 e - - 1 u 2 &

o - u6 - PV3 - c - )

i Vr1 V 23i 2 10 t o- l . - 2t0 2 24 s a rTV e ahV - r1 - - ( e l o n . cc Va 4V 3 v o t orisisp P& 22 sl s ct oLyriue & e - na s I a .t StD eg&9 g&VoV e d

e cn c R carrek aur8 - a1 st n k r - 3 r i n i 8036 n reuel nMP e37h - sao34L3444 a miR t t E a z - 2 c7 ari77 g&&&&

oc ea T n n yV - s2 pt t Vi - yea && n s reoRWk eel n fRt c . ggar DVB nl i 7 91 4 o cd opoonoe

. . . i el i rrAt gpt t P s77 n-eo1 2 s3344 i

t sssl z rut t i rmnn I - - e8888 a y y y u i i qi i 2 nuueel 22S3333 r SSS al AENN0 oPSVV ar - - - - - -

t r a M ceVV nVVVV e pppd rl l l l l l l ll i t e n uuuyel l l l l l l ll ra g e nnnH neeeee eeeet w o P aaa iwwwww wwwwcd yyyyee r

eeeD myyyyy d l l l R er r r rr rrr rl e y CCCCDDDDDD DDDDEF H

_ sa

_ oR

_ P g .

_ k i 105 549011465 9515 0357029 ga s 509 5633131 59 8425 6514513 ne iL p 303 215502405 4532 1900501 d 5 140 078500001 0030 0300500 l

u- 3 1 1 1

_ cs

_ nt I l

( us E

t e T 899 889899988 8888 9888889 fR A 888 888888888 8888 8888888 e D /// ///////// //// ///////

Lt 643 6691 4531 0 5876 621 6638

- - s T 1 00 1 1 2002211 021 1 21 1 001 1 se S /// ///////// //// ///////

_ AT E 033 001 032200 01 00 2000002 T 100 1 1 01 00011 1 1 1 1 01 1 11 1 0 g ~

i 177 36 034826 0 13 841 6092

_ s 058 94051 5300 4 1 9 0913901 Y ) p 532 130100762 251 0900100 R tH 1 . 8. 3 .

A sF 0 81 4 02>300171 7>20 0200400 M eC 2 3 TS ME (

_ UG )

) SA rs EUT G d NI i e at g GO

'tn A KR T pa eR i

s 751 597 59 58031 7059 071 065 9 8

1 5 25 1357026 1 51 4511 o A2 SE R p 376 27.12500305 4. 4 232 0900500 C

(

E1 L

T - k ea 5 11 5 02>500201 0>30 0300500 KC re 3 1 4 1 1 I YE PL I AE & (

WR B -

I HC d E T ns L AR E ut E B PE P ol T 888 888888888 8888 8888888 A TY F u

- s A

D 888 888888888 8888 8888888

/ //////

T MS UY T se

///

61 1

/////////

1 1 1 1 58710

////

5576 7 21 6633 MO AR T 1 00 000001 01 1 001 1 1 1 1 001 1

///////

I S /// ///////// ////

X E 000 000000200 0000 0000000 A T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1111 M

5 e g

9 0 392 n 1 a

& & l

& 0 F 4 31 5 2AB 22 7 9 - - 44 e1 - 1 s 344 & n0 e - 1 1 &&i04 &

v 6 - - e 6 L4 - . 0 l VVl p 1 AB V s 26 6 a V 33 nV r 0 1 1 V s m 9 - - i n k 53 & -

. e a 1 SS agr75 r t &38 n sv S - NN rnu66B && n 9 23 o yl 0V Dit 1 1 e8 15 -

i S a t3 ss l e , 29d - - 1 &V t v n- seeepR&& c a

- 2i0 03 -

a n e4 evvvm 1 - c4 7 232 r l et d2 vl l l ae67V 34 c - - 22 o o gn i - l aaaSl 64 - 2AV 3V - - t s oe cVaVVV p1 1 s ym- - u V - 2

- p V8i I rV c V Vt e 3 n t A& nnnaa55 r g sv V ue - o e gV M d i r k ooorS - - o68 neol n N e t6 ciiip VVT1 1 i nPl ia ek r gaure a s a et t t Sd V

& n o0h aaa il l o&& oL g rMP et s e P4Cl l l eul l t o nd s u z a n rd - ooor qee 57 C eiieP n n yl o i n nVnss soiww 1 1 l l ov eel u i Ao o oI I I CL yyg - - d ponl nggac t C ses r rd66 amoeaeooni a t i nimmm- DDl 22 eaCl V grrAt r nn oioaaa B - - HS o ot t r t eo PLP eee . . oot r VV nSl rii 2 a e mi t t t S. S. t r rw l t NN0P n ut d dSSS o oooeai e ra i i S. S. CCW cW t t t dl BN s ss s P tl u unnn cct p aaumpprrr r uuuu so q q i i i A. S. C C a ns i i aaa BB e eeh aiioooo I I L LMMMPPRRR RRSSTTTTTT tl i

j iI 1 l1 II l1 !l l1 Rij[' .

) g t ) H i 7 20482 2132915 rF s 4 84102 1138017 i C p 4 67000 1 010004 aS p( 0 0 03000 0000008 e 2 1 Rs e

tt sa oR P a 2 8459250 k i 00908 ga s 9 04112 4170114 n4 p 5 96000 1011004 i1 d 5 0 08000 0000004 l

u- 3 2 cs nt Il

( u s E t e T 9 89999 8888999 fR A 8 88888 8888888 e D / / //// ///////

8773555 Lt 3 46488

- s T 0 1 0022 2001000 e

se S / // /// ///////

g AT E 3 03222 1000333 a

T 0 1 0000 1111000 t u

o R

2 1

g . t Y i 2 27620 1132880 sn R s 5 821 11 9138005 k a A

t ) p 7 66001 0010006 al tH ep f E f

sF 0 0 00001 0000001 l UG eC 2_ 4 r

) SA TS( go

. TG nf d

EU GO I N ) i t A T rs t ,

t g n KR S i e at g i i -

o A2 T E1 E pa i 01160 0459017 f s 6 C eR s 03217 2170113 p 2

( L KC R p 2 98004 1011002 t s0 I YE - k 4 ea 00001 0000002 e2 I AE & re 5

3 > t I WR B PL @

HC ( o E T tH L

B AR PE P E d F

ns eC A

MST Y T ut E uS T ol T 8 88888 8888888 d UY Fu A 8 88888 8888888 2 MO I - s D / ///// /////// e7 5773443 g5 X se 6 40035 0001 000 a A AR T 0 13300 S / ///// /////// k4 M E 0 09900 0000000 a T 1 10011 1111111 ed l n a

h gg ii h s

) p 8 d

( e5 -

w3 s s o -

e y h@

v a . s l w s ) H a n r 4 tF V a k 1

(

sC s M r eS n l B t o a r .

A4 2 -

i 7 e e . hhs t 4 S z r cs t t r e

0 a i e ag ruk l & d l v Vn oor p6 y

o e i o i n NSB I

s 8 1

t e

b a

C sR o ui) - - .

Ts t -

k t l e r0t6) c gl d , s S al o a1 4 rra nu n 7 a eo Td r(( eeV i s we a 1 C d Shl nt vv

- l naoaessool or s 8 e ekk aet npnCCl l n 2 l i ccMS seao e l e og o - b h oo .t PTieew i V u Sll ddge tl l y f a t o rraadk rraoor ga k

a t D lii eel seerhhD ne r n aAAHHB ayyt nn t e c Grreaao il t

e V illll r DD nMMt n gllll o e sl e s oeeeet mmP sss ea P u loyyyya wwwwc aa eeprrr uuu t n ei r

o i rrrre t ti ooo RF T BDDDDR SSTTTT

  • II lljillf!(lll ll lll! i(jl! ll llll l1 ll' l lla

6.. P l

R s t t s a oR ga ne iL d

u-cs nt k

e i

5 3

g s

p 390096769 561 201 274 301100441 002000000 327243 04241 8 183005 000001 08 80 03 20 7161 1442 6020 3090 ti st ec t e cr i o t c s

oo nN g

a i .

d y r

I l l

( u ,

e t e s E T 988899888 988989 rv 88 8888 ei f R A 888888888 888888 88 8888 vt e D ///////// ////// // //// ec Lt

- s T 1 98594777 31 001 01 00 875766 43 2323 we op 1 01 202 1 1 1 1 1 1 s e S ///////// ////// // //// H s AT E 1 00022000 202202 1 1 0000 e T 01 1 1 001 1 1 01 1 01 0 1 1 1 1 1 1 r ag ii rs ep t

i 0 r2 Y g c R i 423006803 947508 02 21 96 d A s 35991 01 61 93401 5 83 6381 en M ) p 305000331 8621 08 52 3090 c a ME t H . n UG sF 0 401 000000 000000 1 0 3060 ag SA eC 2 1 t i TS EUT NG ps

( ep I ) c GO T rs A c5 I KR S i e g a3 I

I A2 T E1 E at pa i 090038769 027 945 08 81 61 dt L eR s 7 61 21 027 4 94231 3 80 4442 ea E KC R p 001 1 00441 1 831 01 03 4020 d L YE - k . . . . eH B AE & ea 5 902000000 1 00001 20 4090 eF A WR re 3 1 cC T HC B PL

  • xS T ( e AR E PE P d e7 8

TY ns v .

MS UY T ut ol E

T 888888888 888888 88 8888 l 1 a e MO F u A 888888888 888888 88 8888 vdl I - s D ///////// ////// // //// nb N se 79851 0777 475362 43 2323 s aa I AR T 00001 31 00 1 01 100 1 1 1 1 1 1 i r M S ///////// ////// // //// hH e E 000009000 002000 1 1 0000 TF p T 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 C o

.S d 1 5 e

- 5 r e

4 16- 3.d 2i 1 V s 8 n en

&0 2 e2 hb o s 32 i 8 t c e 2 - 6& t&1 4 9 i o v 6 a 1 2 wt s l ,1 &7 r1 & e a a 1 - 2 t - &t & 2 d ew V - V1 - e27 a 2 et 6 65 n21 3l 8 t a1 n 1 s1 e - - 1 u 2 & ar -

o - u6 - PU3 - c - ) i 6 i V r1 V 23i 2 10 ck1 t o- l . - 2 t 0 2 24 s oa -

a rTV e ahV - r1 - - ( e seV l o n . cc V a 4V 3 v sl o t orisisp P& 22 sl a e s ct oL yri ue a

& e - na s ev I

e . cn t StD eg&9 c

g& V o V e svl k r - 3 r i n il a d

n R carrek aur8 - a1 st n i8036 av a

reuel nMP e37 h - s ao34L3444 d v miR t t E a z - 2 c7 ari77 e d oc ea T n n yV - s2 pt t g&&&& t d n s r eoRWk eel Vi - yea && n aea o

n f Rt c . ggar cd opoonce DVB nl i7 91 4 cw eo1 2 s3344 i oy i . . . i el i r rat gpt t P s77 n - - - - dh r t sssl zr ut t i r n nn I - - e8888 nsa a y y y u i i qi i z nuweel 22S3333 i s r SSS al rAENNO oPSVV ar - - - - - - gs t a M c eVV nVVVV ene e pppd rl l l l l l l l l i t e gi c n uuuyel l l l l l l l l ra g at e e nnnH neeeee eeeet w o k s n P aaa eeeD myyyyy i wwwww wwwwcd yyyyee r

d ae et s l l l R er r rr r r r r rl e y L ea CCCCDDDDDD DDDDEF H

  • r w I

sa oR

_ g

_ P k i 938 949811492 5536 0354597 ga s 278 12341 31 62 4411 6512703

_ ne p 083 075102403 2510 1 900701

_ i L . .

_ d 5 000 018200010 5000 0300200 l

u- 3 cs nt I l

( u s E g t e T 899 989899988 8889 9888889 f R A 888 888888888 8888 8888688 i e

Lt D ///

623

/////////

21 91 4531 0

////

5876

///////

621 6638 p

- s T 1 00 202002211 0202 21 1 001 1 se S /// ///////// //// /////// 0 AT E 033 201 032200 01 02 2000002 2 T 1 00 01 01 0001 1 111 0 01 1 1 1 1 0 0

2 2

g d i 232 609634863 0250 8418578 n s 208 1 0351 5304 2181 091 1 900 a

) p 022 030300782 9400 0900000 Y tH . g R sF 0 01 2 01 61 001 00 3000 0200200 i A eC 2 s M TS p ME (

UG ) 5

) SA G rs 3 EUT NI d i e

  • GO at g @

T pa i 91 9 249871 092 5534 1354590 t A eR s 291 22341 7062 4411 1 51 27 01 H n KR S R p 050 0751 00303 2510 09007 00 F C

o A2 E1 E T - k -

. C

( L ea 5 01 3 01 820021 0 5000 0300200 .S KC re 3 9 81 I YE PL /7

(

1 AE & - 5 .

1 WR B d 1 3 HC ns /

E T ut E 3 s L

B AR E PE P ol T 888 889888888 8888 8888888 i A TY F u A 888 888888888 8888 8888888 n T MS T ~ s D /// ///////// //// /////// on UY se 61 1 1 1 91 5871 0 5876 721 6636 o AR T 1 00 002001 01 1 0201 1 1 1 001 1 Ti MO I S /// ///////// //// /////// Rt E 000 001 000200 01 00 0000000 L a N T 1 1 1 1 1 01 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 I r I t M re en t e f p 5 e a 9 0 g s 392 n di 1 a eh t t

& & l

& 0 F h c 31 5 2AB 22 7 ur 9 - - 44 e1 - 1 d o s 344 & n 0 nf o

e - 11 &&i04 &

v 6 - - e 6 L4 - . 0 c ,

l - VVl p 1 AB - V s 26 6 t a V - 33 nV r 0 1 1 At V s m 9 - i n k 53 & - 3 e

. e a 1 SS agr75 r t &38 0l n ev S NNrnu66B && n 9 1 5 23 S -

Ns o yl 0V Dit 1 1 e6 -

i S a t3 ss l e . 29d - - 1 &V a t V n - s eeepR&& c - 2i0 03 - r a n e4 evvvm a 1 - c4 7 232 r o ,

l et d2 vll l ae67V 34 c - - 22 o f e o gn i l aaaSl 64 - 2AV 3V - - t g s oe cV aVVV p1 1 s V - 2 V8i T a I rV c V ym- - u Vt e - p 3 n Rk t A& nnnaa55 r g s v V ue - o L a d i r k ooorS - - o68 neol e gV M L e n N e t 6 ciiip VVT1 1 i nP a ek r l a s s - et t t Sd l i V gaure e cy

& n o0h aaa il l o&& oL g rMP et s e P4Cl l l eul l t o nd s u z a na n rd - ooor qee 57 C eiieP n n yl aw o i n nV ns s soiwwCL yyg - - d.1 ponl 1 l l ov eel u nh i A o o oI I I nggac et t a t C s es r rd66 amoeaeooni DDl 22 eaCl V grrAt np a t i nimmm- r r nn oioaaa B - - HS o ot t i t eo PLP eee . . oot VV nSl rii 2 a am mu e mi t t t S. S. t r r rw l t NN0P n ut d dSSS o oooeai m e ra i i S. S. CC W cW t t t dl BN s ss s ti P tl u unnn cct p aaumppr r rr uuuu s n so q i i i A. S. CC B Ba e oi ns i iq aaa eeh aiioooo PM I I L LMMMPPRRR RRSSTTTTTT

  • tt s sa p oR P g 0 k i 2 00908 8459259 2 ga s 9 0411 2 41 70114 ne p 5 96000 1011004 @

i L d 5 0 08000 0000004 H u- 3 2 F l C cs S nt 4 Il

( u E 5

6 s

t e T 9 89999 8888999 fR A 8 88888 8888888 0 e D / ///// /////// 2 Lt 3 46488 8773555

- s T 0 1 0022 2101 000 =

e ae S / ///// ///////

s g AT E 3 03222 1 000333 T 0 10000 11 1 1 000 r a

  • i t a u p o e

r R 2

m 1 o

g r .t Y i 7 27620 1 132880 f sn R s 4 821 1 1 91 38005 k a A ) p 4 66001 0010006 n al M t H . o ep f E sF 0 0 00001 0000001 i l UG eC 2 t r

) SA TS c go

. TG ( u nf d EU NI ) d i

' GO T rs e t ,

t A S i e r t g n KR at g ii o A2 ET pa i 2 01 1 60 0459017 k f s C I1 eR s 9 0321 7 21701 1 3 a p

( I R p 98004 1011002 e t KC k 5

. l s0 I YE ea 5 0 00001 0000002 e2 I AE & re 3 n t I WR B PL o @

HC ( o E T E - d t H L AR d e F B PE P ns s eC A TY ut E a uS MS T T ol T 9 88888 8888888 b d UY F u A 8 88888 8888888 2 MO - s D / / //// /////// t e7 I g5 s e 3 40035 5773443 l N AR T 0 1 3300 01 01 000 u a I

S / / //// /////// s k4 M E 3 09900 0000000 e a T 0 1 001 1 1 11 1 1 1 1 r ed l n t a s h e gg t ii h s

) A p 8 d

( e p

e5 w3 s s y o e y T h@

v a . s l w s ) n H a n r 4 i tF V a k 1 sC s M r ( , eS B d t n l n 2 o a r .

u A4 i 7 e e . hh s t 4 S z r cs t t r o 0 a i e ag r uk f e l & d l v V n oor s

- p6 y

o e i o i n NSB s 8 t b C sR o a T s I 1 e a u i) - - .

r t

k t l e r0t 6) c gl d , s S al o a1 4 rra o nu n 7 a eo Td r( ( eeV vv f i s we a 1 G d Shl nt n or

- l naoaessool s 8 e ekk aet npnCCl o l n 2 l i ccMS seao e i l e og

.t PTieew t o - b h oo tl l y c f a i V u Sl l dd ge t o rraadk rraoor e ga k

a t D l ii eel s eerhhD r r n aAAHHB ayyt nn r ne t e c G r r eaao o il e V i ll l l r DD nMMt c t n gl l l l o e sl e s oeeeet mmP s ss l ea P u loyyyya wwwwc aa eeprrr uuu a t

t n ei r

o i rr rr e t t i ooo o RF T BDDDDR SSTTTT T

  • l

~

g 2 i 7 7 7 5 s 76 8 0 0 7 1 p 67 4 0 1 9 0 t .

f 0 54 4 0 1 0 0 e 2 L)

- H sF AC S

,( g 5 0 y i 9 4 2 2 as s 09 0 0 6 9 0 we p 63 5 0 4 2 0 ht t a 5 76 5 0 1 1 0 aR 3 P

k ma ue

_ mL i E xa T 88 8 8 8 8 8 A 88 8 8 8 8 8 M D / / / / / / /

44 4 5 8 1 8 T 00 0 0 0 1 2 S // / / / / /

E 88 8 8 8 8 7 T 00 0 0 0 0 0 g 6 i 3 3 7 7 5 s 91 8 0 0 7 1 p 47 7 0 1 9 0 E t G f 0 03 2 0 1 0 0

) A e 2

. TG L d UN -)

' OI sH t T AF n 7S C UE , S g 8 -

o 1 T y( i 6 4 4 2 0 0 C 1 a s 68 1 0 6 9 2 3

(

C ws p 69 7 0 4 2 0 -

I K h e I E& t t 5 04 3 0 1 1 0 I E aa 3 RB PR E C L E mk B RP ua A EY TT me i L E T S n T 88 8 8 8 8 8 Y i A 88 8 8 8 8 8 O M D / / / / / / /

44 3 5 8 1 8 T 00 0 0 0 1 2 S / / / / / / /

E 88 8 8 8 8 7 T 00 0 0 0 0 0 e

g 90 1 2 n a

&& l F

1 5 A

- - 4 e s 44 n e 1 1 & i v - - L )

l VV A a 3 n n V s - i o e S s. s i n v N r l )

p t

o l D a c i a s e u e h t V e e S t p t a v v r s r l t l l d a n o o n a a e t I N s e V V t S I V e - t -

n n k e n d r o o s r e r n e i i a P m e a s t t C ( a v n a a n o s e l l e k ki C n d o o l c ca o n s s b o ot e i o I I u l l n l t C o r ro o a m m D i iC h r n a a A A n t o e e r a e i t t l l e M n t S S l l t e a e ef s P l n n w wA u o i i y y( r s a a r r o I M M D D T l'flll llll l il l

IX. SECONDARY CONTAINMENT LEAK RATE TEST A secondary containment leak rate test was performed in accordance with 10CFR50 and Oyster Creek Technical Specifications. The acceptance criteria of the test is satisfied if the Reactor Building is capable of maintaining more than 0.25 inches H O2 vacuum with a Standby Gas Treatment System flow rate of 2600 CFM + 260 CFM. The test was conducted on 10/02/88 and was performed prior to reactor refueling.

TEMPERATURE (70 F)

DATE CORRECTED FLOW (CFM) VACUUM (IN. H2O)_ RESULTS 10/02/88 2660 'El 0.34 ACCEPTABLE 1

1

= _ _ _ _ _ _

ATTACINENT I ,

l CALCULATIONAL METHODS Reference

1. . ANSI 56. 8-1981, Containment System Leakage Testing Requirements. j j The containment leakage rate calculation was performed in accordance with the.above standard, utilizing the Absolute System Analysis  !

I Method and Mass Plot Calculational Techniaue.

The Analysis Method consisted of determining the mass.of air in the ,

containment, absolutely, using the ideal gas law, at each time point I during the test and then using a straight-line~ least sauares analysis to calculate the containment leakage rate.

An exact upper one-sided limit of 95% confidence level is then i applied to the leakaga rate using the relationships identified below. The derivations and details for this calculational method can be found in Reference 1.

The calculational methods employed in the computer. code for the mass .  !

point technique perfoms a least stiares analysis as follows:

NOTE: Symbols are defined at the end of this section.

The least sauares line is given by:

A W = At + B where the slope ( A) are intercept (B) are given, respectively by:

N(It iWi ) - (LWj )(Eti)

A=

N( ti 2) - ( ti)2 and l

(LW )(Ett 2) - (Iti Wi )(Sti) i B=

N(Lti 2) . (gti)2 Each time interval (t) is the elapsed time between a clock time for the initial reading and the clock time at which with ith reading is i taken. The fomulas for A and B do not require eaual time intervals.

i l

)

i i

. I

[-

l The leakage rate is expressed as the ratio of the rate of change of the -

mass and the mass in the containment at the time t = 0. The values of t have units of hours and since the leakage rate is desired in % wt./ day the estimated mass point leakage rate, expressed as a' positive number, 'is calculated as follows:

Ltm = (-2400)-(A/B)

The uncertainty in the estimated value of the leakage rate is assessed in terms of the standard deviations of A and B and their covariance followed by the computation of an upper limit of the 95th confidence level for the calculated leakage rate.

l The best estimate of the common standard deviation of the air masses with respect - to the line is given by:

~

E(Wi -Wi )2 1/2 S= N-2

' ~

where, Wi is the measured mass at time ti Wi is the estimated mass at time ti f rom Wi = Att + B and, N-2 is -he number of degrees of f reedom, In order to determine the standard deviation of the slope (S) let b

K=

IN(rti 2) - (sti)2ji/2 then, the standard deviation of the slope is SA = K(N)l/2 i

the standard deviat. ton of the intercept is Sg = K(Lti 2)l/2 1 and the covariance of the slope and intercept is S AB = K2 (-Etl)

In order to calculate the exact upper one-sided limit of a 95% confidence level for the leakage rate, let a=B2 - t95 2 (33 ) 2, b = AB - t95 2 (SAB), and I

c=A2 - 195 2 (SA) 2 l

9 l

Then the exact upper one-sided limit of a 95% confidence level for the leakage rate is determined as follows:

UCL (95) = -2400 lb -(b2 -ac)1/2] /a The leakage rate is later corrected for changes in containment f ree-air volume due to water leakage into the containment. Changes in reactor vessel water level are automatically accounted for in the computer program in each data set.

Data for drybulb temperature and dewpoint temperature is corrected for any instrument error using three point calibration data provided by the equipment supplier, h'eighting factors are assigned to the RTD Sensors and dewpoint sensors thus providing a mean absolute temperature reading indicative of the actual containment conditions. In addition, the pressure sensor readings are corrected using a similar technt aue. The mass flow sensor readings are corrected for any instrument error using fif th order polynominal ecuation as a best curve fit to the calibration data provided by the eauipment supplier.

i l

)

- - _ _ _ _ _ _ - _ _ _ _ - _ _ _ _ _ - - _ _ l

SYMBOLS AND SUBSCRIPTS I SYMBOLS N- - . Number of pairs of measurements (w,t)

W -

Measured mass of contained air (1bm)

t. - Time interval of measurement af ter initial measurenant (hr)

$ - At 6 B-least sauares line relating measured contained air masses to their corresponding times of measurement

~

A -

Slope of least sauares line B -

Intercept of least sauares line SA Estimate of standard deviation of slope of least sauares line SB Estimate of standard deviation of intercept of least sauares line-SAB - Estimate of covariance between slope and intercept of least sauares line

'Ltm. - -2400(A/B) - Estimate of containment leakage rate, derived f rom least squares slope and intercept,' expressed as a positive number (% wt. / day) t95 - 95th percentile of student's distribution UCL -

Upper one-sided limit of a confidence level for the calculated containment leakage rate.

SUBSCRIFTS 1- -

Indicates the ith data point, i = 1, 2, . . . n 95 -

95% upper confidence level on statistical analysis

COMPLITER CODE QUALIFICATION An independent audit including a validation and verification was performed on the computer code prior to its utilization for the 1989 Primary Containment Integrated Leak Rate Test at Oyster Creek. The audit consisted of technical it,-depth check of the eauations used to confirm agreement with those eauations recommended by the governing standards.

In addition, the IIRT computer code was tested using benchmark data obtained f rom previous ILRT tests conducted at Oyster Creek.

f L ._ . - _ _ - - - . - - _ _ _ _ . _ _ - _ _ _ _

ATTAGNENT II LEAK RATE DETECTION SYSTEM The leakage rate detection system consists of thirty (30) four-wire platinum Resistance Temperature Detectors (RTDs) and ten (10) lithium chloride dew cells positioned in.the containment structure as illustrated in Figure III. The analog signals f rom these sensors are -input to a multiplexer scanner also positioned inside the containment. A data-acquisition storage system located external to the primary containment interrogates the scanner on demand for temperature and humidity information.

Containment absolute pressure information is input to the data acquisition system form a pair of fused auartz bourdon tube manometers which are connected external . to the containment. The analog signals are processed through an analog to digital converter and transmitter at preset intervals to a PRIME 750 computer. A system sensitivity check is performed- by- superimposing a known leak through a calibrated mass' flow transducer. The output f rom the transducer is also processed via the analog to digital converter and data acquisition system to the computer.

In addition, the system reads and records' the external ambient temperature and pressure.

The computer operates in a real time mode to collect the transmitted information and calculates on demand the containment leakage rate.

Figure IV is a detailed functional block diagram of the Leak Rate Detection System. Also included in this section are individual appropriate component performance specifications.

4 l

i

FIGURE III (RTD AND DEWCELL SENSOR LOCATION) l l

W -

g . n os o- .3 1

O @@ '

l

\

l 3}

5 t -

w E -

._j El 53'0"

__ __ ._ _ e l

j

,e -

@ gSS

  • _ _ _ _ .  : .. _ El_48'Q"

- _ _ .4 _ . _ _ _ .

@ @ @ ?! i j 8OO

_ __ _. _ lL @ s- f. g _g_ g__ _._ . .

El _ 31'0* _. - _ _ . -

o@ . .

E 00

_.t_. 22. 3 s El 10'3" 6

/

) RTD LOCATIONS NUMBERED 1-30 DEWCELL LOCATIONS NUMBERED A - J l

' l i

--_-__---_---_--_________-___________J

!Iii I l )

s 5pE <

E L

P s I T TR LC U

4 f

N R O R LE I TM E E G AT AIE M0T O TR TST I5U LOIE AI S R7P ATGVIN DUY P M N QS O A DO C C C A 0 S 0 S 0AN 0AN 1IA 1IA

- SR - SR 0PT 0PT P "

g' C B g

A L IK P" V LA 1' H AE _

CL _

T N .

R EP R I M E LE BE XRAN MT Y EENO s A R LNGI A PNI T M IASI E _

I TC D TR R LSDN -

NU P U NO ES M AC IS BE MR

/ y -~_~-

AP S

L L

DE 0NC S3AW T E UMsD _

POD NRT0 I FR1 h'

i l i

l! ll(I!lt I!'llI 1

i.

INSTRlNENTATION I i

i Drybulb Temperature Measurement Configuration: 4 wi re I Operating Range: 32-250*F l Accuracy : 60-120'F, + 0.1 F 32-250 F, + 0.15 F Sensitivity: + 0.01 F I Element : Platinum f Quantity: 30  !

I Dewpoint Temperature Measurement Operating Range: 0-200 F 1 Accuracy:

-+ 1.5 F i

Sensi ti vi ty : + 0.1 F Type of Sensor: Lithium Chloride i i

Quantity: 10 '

1 i

4 1

1 l

l

Pressure Measurement Operating Range: 0-100 PSIA Accuracy: j; 0.01% of reading Sensiti vi ty: 3; 0.001% of full scale Type of Sensor: Quartz Bourdon Tube Manometer Quantity: 2 Flow Measurement Operating Range: 0-10 SCFM Accuracy: f; 2% of full scale Sensitivity: f;1% of full scale Quantity: 2 Time Measurement Accuracy: j; sec/24 hours Data Acquisition Storage System Type : Volumet rics Model A-100 Operating Range: 65536 counts (full' scale)

Resolution 10 microvolts Scanner Interf ace Standard parallel interf ace which accepts analog input signals Scanner Capacity: 100 channels in block of 10 Scanner Speed: 10 channels /second Power Supply 105 VAC, 60Hz l

_ -_--. .______-_____--___-_D

e h* ' l

+ \

ATTACHMENT III SUPPORTING TEST DATA 1 4

I l

TREND OF ILRT CALCULATED VALUES ]

1989 MEAS UCL95 WINDO WINDO AIR WGHTED WGHTED VGHTED VAPOR MILESTONES JDA HR MN LR LR LR UCL MASS PRESSR RTTEMP DCTEMP PRESSR t

= 66 7:45 B.BBB B.000 B.000 0.000 60389.18 37.871 64.135 56.716 B.2277 Start 66 8: B 0.000 B. Beg B.000 0.BBB 60889.22 27.867 64.115 56.496 D.2259 {

Type A 66 8:15 B.000 B.000 c.BBB B.BB0 60892.77 37.863 64.871 56.154 B.2231 66 8:30 B.UB0 B.BBC B. BUB B.DBB 60887.54 37.859 64.832 56.438 B.2253 Test 66 8:45 B.D28 B.279 B.BDB B.200 68899.38 37.856 63.998 56.191 B.2234 66 9: B B.083 B.255 B. BOB B.000 60886.45 37.852 63.949 56.374 0.2249 66 9:15 B.174 B.336 B.000 B.BBB 6B881.88 37.845 63.911 56.297 B.2243 66 9:30 B.214 B.335 B.0BB 0.BB0 6B880.57 37.848 63.871 56.223 B.2237 66 9:45 B.185 B.282 B.BDO B.D00 60883.8B 37.836 63.824 55.922 0.2212 66 18: B B.295 0.283 B.BBB B.000 60878.58 37.832 63.880 56.B73 B.2225 66 10:15 B.213 B.277 0.BBB B.000 60877.59 37.828 63.743 56.189 B.2234 .

I 66 18: 38 B.220 0.273 B.B0B B.BBB 6B876.02 37.825 63.721 56.981 B.2219 66 1D:45 0.236 B.284 B.BBC 0.000 6B872.13 37.822 63.691 56.154 0.2231 66 11: B B.235 B.275 B.BBB B.000 68873.36 37.819 63.663 55.876 B.2289 66 11:15 B.219 B.257 B.BBD B.000 60875.63 37.816 63.631 55.688 B.2194 66 11:30 B.224 0.258 0.BBB B.000 68869.55 37.813 63.6B; 56.857 B.2223 66 11: 45 B.220 B.258 U.BBB 0.000 68878.77 37.811 63.575 55.913 B.2212 66 12: B B.228 B.247 B.086 B.BB0 60868.22 37.888 63.552 55.944 0.2214 66 12:15 B.222 B.245 0.BBB B.200 60866.3D 37.894 63.531 55.922 B.2213 66 12:30 U.222 0.243 0.000 0.000 60865.21 37.882 63.51B 55.883 B.2209 66 12:45 0.215 B.235 D.BBC 0.000 6B867.58 37.799 63.481 55.681 B.2193 66 13i B B.223 B.244 0.000 B.BBB 60858.59 37.793 63.452 55.887 B.2218 66 13:15 B.226 B.245 B.BBB 0.003 68859.19 37.791 63.438 55.739 B.2198 66 13:38 B.222 B.240 0.000 B.280 60862.22 37.79B 63.421 55.552 0.2183 66 13:45 B.227 8.245 0.000 B.000 6B854.52 37.787 63.413 55.866 B.2288 66 14: D B.227 6.243 0.BBB B.BB0 60856.14 37.786 63.4B6 55.700 D.2195 66 14:15 B.229 B.244 0.000 0.000 68853.72 37.784 63.378 55.843 0.2206 66 14:38 0.231 B.245 B.BBB B.000 6D851.63 27.782 63.369 55.85B B.2287 66 14:45 B.229 B.240 0.000 B.0BB 60853.32 37.779 63.349 55.605 B.2187 66 15: B B.230 f.242 D.DBU C.000 60849.38 37.777 63.336 55.799 B.22B3 66 15:15 B.230 0.241 0.000 0.0B0 60848.76 37.776 63.325 55.825 B.2205 66 15:30 B.228 B.239 0.BBB 0.000 60849.63 37.774 63.322 55.533 B.2182 66 15:45 B.226 B.237 0.002 B.000 60847.61 37.773 63.301 55.631 B.2189 66 16: B 0.229 0.238 B.000 0.000 6B842.2B 37.771 63.291 55.794 B.2202 66 16:15 B.23B B.239 0.000 B.B00 60841.26 37.768 63.276 55.676 B.2193 66 16:30 D.235 B.245 0.BBB B.200 68834.82 37.766 63.261 55.998 8.2219 66 16:45 B.235 U.244 0.000 0.900 6D839.1B 37.765 63.252 55.546 B.2183 66 17: B 0.236 B.246 0.0BB B.000 68835.13 37.763 63.246- 55.686 B.2187 66 17:15 B.238 0.247 0.BBB B.200 60832.89 37.762 63.228 55.76D B.2;DB 66 17:30 0.238 B.246 B.800 B.BD0 60835.29 37.761 63.215 55.514 B.218B 66 17:45 0.239 B.247 B.008 B.000 6B838.78 37.759 63.267 55.719 0.2196 66 18: B B.240 B.248 B.BBB 0.000 60828.66 37.758 63.197 55.819 B.22B4 66 18:15 B.238 0.246 B.BBB 0.B00 60832.54 37.757 63.193 55.465 B.2176 66 18:45 B.237 B.244 B 000 B.000 60829.28 37.753 63.163 55.623 B.2189 66 19: B B.239 B.246 B.BBB D 000 60821.11 37.749 63.162 55.724 B.2197 66 19:15 B.240 B.246 0.B00 0.000 60821.78 37.747 63.142 55.688 B.2194 66 19:30 B.239 B.245 0.000 0.000 68825.02 37.746 63.132 55.388 B.2178 66 19:45 B.238 B.245 0.000 0.280 60826.88 37.744 63.125 55.548 0.2182 66 20s B B.240 B.246 B.000 0.000 60815.98 37.742 63.117 55.778 B.22B1 66 20:15 0.241 B.247 D.000 0.000 60813.46 37.746 63.109 55.822 B.2284 66 20:38 0.241 B.247 0.B80 0.000 60915.18 37.738 63.288 55.653 B.2191 66 20:45 B.242 0.247 0.000 0.000 60812.19 37.735 63.071 55.704 B.2195 66 Oli B B.240 B.245 B.DBU 0.000 60817.43 37.732 63.842 55.278 0.2161 66 21:15 B.239 B.245 0.000 0.002 60812.76 37.728 63.022 55.380 0.2170 66 21:30 B.239 B.244 f.000 B.200 60812.66 37.725 62.992 55.2G6 0.2161

.e l i ATTACHMENT III SUPPORTING TEST DATA TREND OF ILRT CALCULATED VAlbES 1989 MEAS UCL95 WINDO WINDO AIR WGHTED VGHTED WGHTED VAPOR MILESTONES JDA HR MN LR LR LR UCL MASS PRESSR RTTEMP UCTEMP PRESSR 66 21: 45 0.238 B.243 0.002 0.898 60810.88 37.722 62.967 55.254 B.2166 66 22: 0 B.238 B.243 B.000 D.BDB 6B806.82 37.719 62.938 55.263 B.2166 66 22:15 B.238 0.243 B.BBB B.000 60806.84 37.717 62.917 55.265 0.2161 66 22:30 0.239 B.243 B.BBB B.BBB 688B8.8B 37.713 62.884 55.339 B.2166 66 22: 45 0.238 0.243 B.000 0.0DB 6D894.13 37.711 62.856 55.018 B.2141  ;

66 23: B B.239 B.244 B.BBB P.BBB 6B797.25 37.797 62.828 55.296 0.2163 8.2144 1

0.244 B.BDB B.BBU 60795.87 37.7B3 62 798 55.847 66 23:15 0.248 54.697 B.2116 66 23:30 B.248 B.244 B.200 0.000 6B797.63 37.700 62.772 B.245 B.BDB B.BBC 60792.01 37.697 62.741 54.976 B.2138 66 23:45 0.241 67 0: B B.242 B.246 B.BBB F.000 69788.69 37.695 62.725 55.067 55.B43 B.2143 B.2145 1 l

67 D:15 0.243 B.247 B.200 B.000 60788.52 37.692 62.698 67 B 39 B.243 U 247 B.BBB B.900 6B788.77 37.696 62.675 54.965 8.2137 B.247 B.800 0.000 69786.62 37.688 62.678 54.951 B.2136 67 D 45 B.244 54.88B B.2131 67 13 0 0.244 B.247 B.981 B.163 6B787.B7 37.686 62.652 0.247 0.090 B.140 60785.98 37.684 62.636 54.944 B.2136 67 1:15 B.243 67 1:30 B.243 B.247 B.B56 0.198 60787.66 37.682 62.617 54.695 B.2116 67 1: 45 B.242 B.246 0.949 B.887 60786.73 37.686 62.606 54.582 B.21BB B.246 B B96 B.155 60781.62 37.677 62.586 54.895 0.2132 67 2: B B.242 67 2:15 B.242 0.245 B.114 B.165 60781.71 37.674 62.552 54.839 B.2127 67 2:30 D.242 B.245 B.131 B.175 6B780.05 37.672 62.547 54.747 0.2128 l 67 2: 45 B.241 0.244 B.131 0.167 60780.77 37.671 62.526 54.655 B.2113 l 67 3: 0 B.241 B.244 B.158 0.199 60774.88 37.666 62.499 54.758 B.2121 l 67 3:15 0.241 B.245 B.181 0.223 60772.39 37.664 62.492 54.712 B.2118 67 3:30 B.242 0.245 0.210 0.257 69767.7D 37.662 62.463 55.B58 B.2144 67 3:45 B.240 0.245 B.220 0.262 60769.17 37.66B 62.451 54.683 B.2115  !

67 di B B.243 0.246 U.228 B.265 6B767.41 07.657 62.435 54.615 0.2110 67 4:15 B.243 0.246 0.233 B.267 60765.93 37.654 62.486 54.673 0.2115 0.246 B.239 U.270 60763.82 37.652 62.387 54.729 B.2119 67 4:30 B.243 37.656 62.361 54.694 J.2116 67 4:45 0.243 B.246 B.236 B.264 60765.14 ,

67 5: 0 B.243 B.245 0.233 B.253 60764.56 37.648 62.343 54.bc8 0 '118 J' 67 5:15 B.242 0.245 B.228 0.251 60764.41 37.645 62.314 54.512 0 162 67 5:30 B.242 0.245 0.230 0.252 60759.25 37.642 62.389 54.672 9.2115 67 5:45 0.242 B.245 0.228 0.248 67766.33 37.641 62.293 54.555 B.2186 62 0 0.242 U.244 B.226 0.244 60759.22 37.638 62.275 54.527 0.2103 67 B.2092 67 6:15 0.241 0.244 B.221 0.238 60760.37 37.637 62.261 54.381 B.218 U.234 60757.98 37.634 62.250 54.371 B.2892 67 6:30 B.241 B.243 67 6:45 B.241 6.243 B.220 B.235 60752.88 37.631 62.229 54.552 B.2185 l 60749.59 37.628 62.2'6 54.544 0.2105 i 67 7: B B . 2 41' O.244 B.224 0.238 8 2896 67 7'15 8 241 8 2'3 8 22d 8 238 68758 dd 37 626 6262.183 28d 5'*d33 B.2097 Conclude 67 7:30 B.241 0.243 0.224 0.237 60749.88 37.624 54.441 Type A 67 7:45 0.240 0.243 B.222 c.235 6B758.95 37.621 62.167 54.288 B.2879 B.243 B.222 B.233 60747.79 37.619 62.151 54.293 B.2086 Test r 67 8: B B.240 37.616 62.130 54.474 B.2899 67 8:15 B.240 0.243 0.000 0.000 60743.05 67 8:30 B.240 B.243 B. BUD B.UDO 60745.45 37.614 62.B94 54.285 B.2D79 67 8: 45 B.248 0.243 0.DB0 0.000 60745.8B 37.611 62.F75 53.939 0.2859 B.BBB 0.B00 60734.90 37.667 62.062 54.337 B.2889 67 9: B B.240 B.243 ggg7g --e. 67 9:15 U.BBB 0.B00 B.BBB 0.000 60735.05 37.603 62.027 53.974 B.2862  !

B. BUB B.200 60724.e5 37.598 62.62B 54.253 0.2083 Supplemental 67 9:30 0.000 0.000 62 888 5d 823 8 2865 Test 67 9'd5 8 888 8 888 8 888 80.000 888 68721 57 37 59' 60716.59 37.596 61.982 53.95.4 0.2068 I

67 10: B B.000 0.000 0.000 67 10:15 0.946 1.214 B. BOB 0.000 607B8.84 37.566 61.959 54.888 B.2076 0.000 0.BBB 6U698.38 37.582 61.975 54.272 0.2084  ;

67 10:32 1.D57 1.265 1.138 B.BBB B.BBB 60700.01 37.578 61.965 E3.791 B.2048 l 67 10:45 0.955 61.953 53.771 B.2946 67 lit U B.892 1.041 0.BDB 0.000 60695.55 37.574  :

54.127 B.2B73 l 67 11:15 0.915 1.030 0.00D e.BBB 60694.94 37.576 61.954 67 11:3B B.925 1.016 f.BfD 0.000 69679.31 37.567 61.926 54.155 B.2073 1

l j

)

.* l e-  !

)

ATTACHMENT III  ;

SUPPORTING TEST DATA TREND OF ILRT CALCULATED VALUES 1 1989 MEAS UCL95 WINDO WINDO AIR WGHTED WGHTED WGHTED VAPOR HILE3f0NES JDA HR MN LR LP LR UCL MASS PRESSR RTTEMP DCTEMP PRESSR 67 11:45 8.952 1.031 B.BBB B.BBB 60678.43 37.564 61.937 54.452 B.2898 67 12: B B.932 1.000 B.BBB B.BBB 6B670.35 37.561 61.930 54.861 B.2068 )i i 67 12:15 B.928 B.986 B.BBB B.BBB 60662.84 37.557 61.918 54.261 0.2883 67 12:38 B.918 B.968 B.BBB B.BBB 68658.66 37.554 61.917 54.283 8.2085 67 12:45 f.904 8.949 B.BBB B.BBB 68654.81 37.55B 61.912 54.114 B.2B72 Supplemental 67 13: B U.895 B.935 B.BBB B.BBB 60648.91 37.547 61.982 54.216 B.2B68 67 13:15 B.893 B.928 0.208 e.BBB 6B641.95 37.542 61.893 54.275 B.2884 Test Confirmed -- 67 13:30 B.880 B.914 0.000 B.BBB 60640.54 37.539 61.898 54.B32 8.2B66 Acceptable 67 13:45 B.867 8.900 B.BBB B.BDB 6B636.38 37.535 61.888 53.998 B.2863 Testing Concluded i

l 1

__________j