ML20244C367
| ML20244C367 | |
| Person / Time | |
|---|---|
| Site: | Hatch |
| Issue date: | 06/20/1983 |
| From: | Rivenbark G Office of Nuclear Reactor Regulation |
| To: | Office of Nuclear Reactor Regulation |
| References | |
| TAC-51407, NUDOCS 8307070590 | |
| Download: ML20244C367 (64) | |
Text
.
- pw C Aiven bctrk o.
UNITED STATES -
[
3 NUCLEAR REGULATORY COMMISSION
%(
[~/ $' o p
-3 l
Wi&4 tNGTO N, O. C. 20555 1
k
- of June 20,1983 f
Docket No. 50-366 i
\\
_bl LICENSEE: Lorgia Power Company FACILITY: Hatch Unit No. 2
SUBJECT:
SUMMARY
OF JUNE 1,1983 MEETIllG WITH GEORGIA POWER COMPAfiY (GPC) CONCERNING CRACKS IN HATCH UNIT 2 PIPING j
i The NRC staff held the subject meeting with GPC representatives in Bethesda, Maryland..GPC made a presentation to the staff in which it discusced its c4 evaluation and repair of cracks discovered in weld areas of the riatch Unit 2 Rear: tor Heat Removcl and Recirculation systems piping. A copy of the q
slides. used by GPC in its presentation is attached as Enclosure 1.
A meeting attendance list is attached as Enclosure 2.
(
?h duh'k ueorge Rivenbark, Project Manager r
Operating Reactors Branch #4 Division of Licensing 7
Enclosures:
As stated
~
cc w/ enclosures:
See next page j
i
)
l i
l I
l 4
a
-.,. _. ~ _,.... _, _,,,.
~.
I
__A
p,,
u,.;-
e
-4..
e q
}i r N
MEE11NG
SUMMARY
DISTRIBUTION l
i licecsee: Georgia Power Company 1
- Copiec also se.nt to those people on service ('cc) list. for subject plant (s).
Docket File 9,..
NRC POR L PDR ORS #4 Rdg.
t Project Manager -GRivenback f
JStol z EGrimes '(Emerg. Preparedness only)
' ' EL D O
. d!! Taylor !E ACRS,(10)
NRC ' Meeting
Participants:
Cch^ng 11 Hun GJohnson WXoo ASuslik-OClark FWI tt BCr6wley AHerdt j
P,0Liaw UHazel to n t
e 4
____._______a_._.-____
y[ y.
n.
ce
,c
'p l r,;,.;
(:-
l.
f fJctoso.4E
- 1..
r,,.
-e a s
. AGENDA 1
[',,
- as
'i<
M_ ARCH UNIT'2 RFCIRC & RHR IGSCC Ai4ALYSES/ REPAIRS MEETING
/
Bethesda, Maryland.
-( -
. June 1, I983
-(r 1)
INTRG3UCTION 2)'
NISERVICEINSPECTION o
'I
'A.
SCOPE OF EXAMIrlATIONS
/
B.
RESULTS C.
EXAMINATION METHODS VAL 10ATI0tl u
3)
INVESTIGATION INTO THE CAUSE OF CRACKING' A. ' BACKGROUND 3.
THE INVESTIGATION
,C.
SUMMARY
OF CAUSE OF CRACv,1NG INVESTIGATION '
1 y
4)
AtlALYSES AND REPAIRS l
5)
FUTURE'lilSPECTIONS 6)-
FUTURE. MODI FI CATIONS / RE PLACEMENTS.
7)'
SUMMARY
'AMD CONCLUSIONS 1
g 1
i
'l LT::~_-
~
'^'
c
rp i
j.
w y
)
l SCOPE'0F EXAMIrlATIONS'
{
RECIRCULATIOff SYSTEli 1
- ASME CATEGORY B-F WELDS EXAMINED:
12" - 5 welds 28" ' - I wel d-y 1
Total - 6 welds
'l
---_E_ CATEGORY B-J WELDS EXAMIflED:
.4" -;4'. welds 1
6" - 2 welds 12" - 41 ' welds '
I 22"
.16 welds 1
28" - 33 welds Total - 96 welcs
[
' TOTAL. NUMBER OF RECIRCULATION SYSTEM UELDS EXAMINED:
102 'wel ds l
RHR SYSTEM' ASME CATEGORY B-F-WELD 3 EXAMIll_ED,:
i 20" - I weld 24" - 2 welds Total - 3 welds 11
'ASME CATEGORY B-J WELDS EXAMINED:
20" - 2 welds 24" - 6 welds Total - 8 welds TOTAL NUMGER OF RHR SYSTEM WELDS EXAMI? LED:
l 11 welds RWCU SYSTEM ASME CATEGORY B-F WELDS EXAMINED :
I 1
6" None, no t apolicable Total - None, not applicable ASME CATEGORY 8-J WELDS EXAMINED:
6" - 5 welds Total - 5 welds TOTAL RWCU SYSTEM WELDS EXAMINED:
5 welds
[
.s lp a.
' SCOPE OF EXAMINAT!0tlS (CONT.')
1 TOTAL NUMBER OF RECIRCULATION, RHR ; AND RWCU WELDS EXAMINED:
a 118 welds *
-4 1
I l
- j'
- This number equates to 85.5F. of all stainless steel welds in the Class 1 portions of the Recirculation, RHR, and RWCU systems l
1 I
j l
4 l
i l
)
o
s+
p.
, j l. [
.=
9
, i l
i
, s t'
STAINLESS' STEEL PIPING UT EXAMINATION RESULTS H
WELD SIGNIFICANT
' WELD-No.
WELD TYPE FAB.
%C INDICATIONS
% THRU-WALL (MAXY.{
~ RECIRCULATION SYSTEM-i 2B31-1RC-12AR-F-1
'BC-P
,FW 1.11
.065 None j
-2 Y-E' SW 1.44
.065 360* Inter., Pipe Side 25%
-31 E-P'
.SW 1.53
.065.360*' Inter., Pips Side 10%
1
-4' P-SE FW l.30
.065 None
-- SE-N.
SN'
.Not Examined ~
2B31-1RC-12AR-G-l' BC-P FW
~ 1.11
.075 None 1
l
-2 P-E' SW l'.46
.075 360 Inter., Pipe Side 14%
I 1
-3 E-P SW 1.56
.075 360* Inter., Pipe Side 15%
I i
-4 P-SE.
' FW 1.33
.075 None l
1
-5 SE-N-SW Not Examined j
~ 2B31-1RC-12AR-H-1 Red-P FW 1.15
.075 None l
l
-2 P-E SW 1.55
.075 360* Inter., Pipe Side 10.';
)
(
-3 E-P SW 1.65
.060 360* Inter., Pipe Side 300
-4 P-SE PJ 1.46
.060 None i
2B31-lRC-12AR-J-l BC-P FW l.07
.065 None I
-2 P-E SW l.45
.b65 360* Inter.. Pipe side 233
-3 E-P SW.
1.56
.065 360* Inter., Pipe Side 20%
-4 P-SE FW l.30
.065 360* Inter., Pipe Side 28%
i Not Examined l
-3 SE-N SW 2831-1RC-12AR-K-1 BC-P F'. !
1.05
.070 None
-2 P-E SW l.45
.070 360* Inter., Pipe Side 19 *,
-3 E-P SW l.45
.070 360* Inter., Elbow Side 6%
i
~4 P-SE TW 1.27
.070 None
- if;
'V l
. w i.::,:
9 3
.w,.
....;. m
.w -
e-bo' -.
3 h
FD'V
.t
, :/
t s ',
i, -
.3; c
?L
'hy' l'
'i' i
WELD' STONIFICANT.
-l h4 i
' VELD'NO.'
WELD TYPE FAB.
%C INDICATIONS'
% THRU-WALLOtA.'d 4.
RECIRCllLATIOS SYSTDt - (Continued) d 2831-lRC-12BR A-1 BC-P FW 1.04
.060 Mone i
\\ t,
. g.
.-2
-P-E SW 1.40
.060 None e
-~
,q
-3 E-P.
SW 1.44
.060 360* Inter., Pipe Side.
25%
-4.
P-SE
- FW 1.21
.060 None i
Mone L2B31-1RC-12BR-B-1 BC-P FW 1.06
.070 Eone,
-2'
.P-E SW
- 1. 4 4 ' -
.070. 360 Inter., Pipe Side 26%
-3 E-?
SW.
1.51
.070 360* Inter., Pipe / Elbow 22%
s Sides
-4 P-SE FW 1.26
.070 '360* Inter., Pipe Side 23%
-5
.t,
-.2 B 31-1RC-12 B R-C-1 Red-P RJ 1.13
.065 None
-2 P-E SW 1,53
.065 360* Inter., Pipe Side 23%
-3 E-P SW 1.60
.060 360* In:er., Pipe Side 30%
-4 P-SE FW 1.38
.055 360* Inter., Pipe Side 32%
2831-1RC-12BR-D-1 BC-P FW 1.10
.060 None
-2 P-E SW 1 44
.060 360* Inter., Pipe Side 14%
1
-3 E-P SW 1.53
.060 360* Inter., Pipe Side 17%
-4 P-SE FW 1.31
.060 None
{
-5 SE-N SW None 2B31-1RC-12BR-E-1 LC-P FW 1.11
.060 None
'I
-2 P-F.
SW 1.43
.060 None I
1
-3 E-P SW 1.49
.060 360* Enter., Pipe / Elbow 22%
i Sides
-3A P-P FW Not Calc.
360* Inter., Pipe Side 21%
i I
l l
s..Ly s&k>
- -wr z
.s.
s.
t-0
e
's j
t: JJ c
i i
f e
." h
? J.
s3
.C
' 3 "r
\\'
WELD TYPE FAB.
%C I:tDICATIO"5
% THRU-WALL (MAX h.ECTRCULAT10 S
- STEM. (Continued) h
-4
'?-SE FW 1.29
.055 360* Inter., Pipe Side-13%
j.
-- JNone.
2B31-1RC-22AM-1
' C-P SW 1.16
.048 Parallel.to weld.
'C-42%.
Cap 53"L & 7 1/2"L P-14%
Pipe 25 1/2"L & 9"L 4,
-2
'P-CR SW 1.13
.056 Shallow indications in the RAZ called inside j
geo me try. CPC to re--
examine next refueling outage.
j-
-3 CR-P SW 1.07.
.056 Shallow indications in the RAZ called inside geometry.
GPC to re-examine next refueling
- /
outage.
-4
-?-C SW 0.96 054 Parallel.to weld, Pipe
'19t' 60"L.
2B31-1RC-22BM-1 C-?
SW 0.96 0'S ' Parallel to veld, Cap C-16%
25'1/2"L & 5 1/2"L, Pipe P-40%'
k 27"L.
2 P-CR SW 1.13
.056 Shallow indications in the RAZ called inside
~
geometry. CPC to re-examine next refueling
- outage, i
-3 CR-P SW 1.10
.056 Shallow indications in the HAZ called inside geometry. GPC to re-I examine next refueling outage.
~
-4 P-C SW 0.96
.043 360* Inter., Pipe / Cap P - 3 7 ';
S id e s C-300 2831-1RC-22AM-1BC-1 P-BC SU 0.98
.060 Shallow indications outside the HAZ.
GPC to re-examine next refueling outage.
-1BC-2 P-RC SW 0.98
.060 Shallow indications outside the HAZ.
GPC to re-examine next refueling outage.
I 4
I
04
's j
y a
o 4
j l
7
,u WELD SICMIFICANT i
. ' !. o WCLD NO.
WELD "tPE F/.B.
%C INDICATIONS'
% THRU-WALL (MA.V s.-
- ; RECIRCLtL ATION SYSTCt (Continued) h-i 2831-1RC-22AM-3BC-1 P-BC SW
'1.01
,060 Shallow indications outside the HAZ. GPC to re-examine next refueling outage.
L 3BC-2
.P-BC SW 1.01
.060 Shallow indications p.i.
, outside the RAZ.
CFC to re-examine next refueling outage.
)
2B31-1RC-22BM-13C-1 P-SC SW 1.01
.060 Shallow indications outside the RAZ, CPC to re-examine.next.
refueling outage.
.060. None 2B31-1RC-22BM-3BC-1 P-BC SW 1.03
.060. Shallow indications cutside'.the RAZ.
CPC to te-examine next refueling outage.
3BC-2 P-BC SW 1.02 060 Shallow indications outside the RAZ.
GPC i
to re-examine next refueling catage, 2031-1RC-28A-1 N-SE SW None 2
SE-P FR 1.08
.045 Hone
-3 P-E SW 1,46
.060 Parallel to weld,-Elbew 12T; Side-5 1/4"L.
4 E-P SW 1.35
.060 360' Inter., Elbow Side 17T 1
.062 None
-6 T-P SW 0.92
.062 Shallow indications in
-l the FL\\Z called inside
+
geometrv.
CPC to re-examine next refueling outage.
-7 P-E SU 1.30
.057 360 Inter., Pipe / Elbow P-3*
Sides E-4 l:
-8 E-V FW 1.03
.057 None
-9 V-P FW 1.01
.045 None
.. w..s
- - ~ + r
^
I 9
t' ELD TYPE FAB.
_%C INDICATIONS
- TH RU-WA LI. f!!.\\
\\
_ RECIRCULATION SYSTD1 (Continued) 2'd31-i r,C-2 8 A-10 P-E SW l.46 056 Parallel to weld, ?ipe 10%
4 Side - 1 1/L"L
-11 E-?e FW l.03
.056 Mono t
-12 Pu-P FW l.13
.041 None 1
-13 P-V FW
'l.03
.041 Mone
-14
.V-E FW 1.07
.058 None.
{
-15 E-P-SW l.40
.058 Shallow indications in the RAZ called inside geometry.
GPC to re-examine next refueling outagd.
-16 P-T SU 1.25
.062 Shallow indications in the RAZ called inside g eome t r't.
GPC to re-examine next refueling outage.
-1" T-C SW l.09
.062 None
-18 CR-Red S'.'
1.0;
.063 None 2B31-1RC-283-1 li-S E SW Set Exaniaed 2
3 l
3 P-E SW l.28
.060 360* Inter., Pipe Side 15 ',
j
-c E-?
Su 1.21
.060 Shallow indications in l
the RAZ called inside l
geomecry.
CPC to re-l examine next refueling outage.
-5 P-P FW 0.91
.045 Ncne
-7 P-E SW 1.29
.057 360* Inter., Pipe Side 13l;
-8 E-V FW l.37
.057 160* Inter., Elbe'.' S iie 7'
-9 V-P FU 1.01
.045 Sone
-10 P-E SW l.41
.056 360' Inter., Pipe / Elbow P-197, j
Sides E-20 !l,
{
i
~
(
L
f
\\;,;
_r.
-a n...
,t
/
q' 4
'C WEi.D '
SIGNIFICANT C
WELD NO.~
!!' ELD TYPE FAB.
' SRI
~%C I!!DICATIONS 7: TMP.U-WALL D!A7 is;
- C RECIRCULATION SYSTCt'(Continued)' '
ll
-11.
C-Po FW l.02
.056 None
,ic
- e
-12 Pu-P FW l.13
.041 Mone
!i
'h
-13
'P-V FW 1.03
.041 Shallow indications in I
the HAZ called inside geometry.
CPC to re-4 y
examine next refueling outage.
-14 V-E FW
-1.05
.056 None
-15 E-P SW l.32
.056 360* Inter., Elbow Side 23 *;
o
-16.
.062 Shallow indications in the HAZ called inside geometry.
GPC to re-examine next refueling outage.
-17 T-C SW 1.0S
.062 Mone
-18 C-Red SW 1.03'
.063 Mene 2831-lR C-l. AA-1 BC-C FS.'( ? ) --
None o
-4AB-1 BC-C FN(?)
None
-4BC-1 BC-C FW(?)
None
-4BD-1 BC-C FW(?) --
None 2D31-1RC-6A-1
-P-FL FW(?) --
None
-6B-1 P-FL FW(?) --
None
]
(
RHR SYSTCt j
t
'2 E11-lRH R-20-R S -1 T-P FW l.33
.062 Shallow indications in
{
the HAZ called inside geometry.
CPC to re-examine next refueling outage
-2 P-K F'i 1.61
.056 360* Inter., Pipe Side 13 *; '
~3 C-P FW l.56
.056 360 Inter., Elbow Side 14.;
2 Ell lRRR-24A-k-10 P-C FW 2.57
.060 None 1
s a
f
. 7',
)
WELD TYPE FAB.
%C I'!DICATIOMS
% THRtf-WALLO!AX RRR SYSTCt (Continued) 2 Ell-1RHR-24A-R-ll E-P FW l.69
.062 None
-12 P-E FW l.70
.062 None i E-T
.FW l.74
.060 None-o g
2 Ell-1R.HR-24B-R-10 P-E
'FW 2.58-
.060 None
-11 E-P FW 1.68
.062. Parallel to weld, Elbow 13%
i Side 1-5/8"L, 2-10 9/16"L.
13%
-12
'P-E FW l.70
.062 Shallow indications in the RAZ called inside geometry.
GPC to re-e:: amine next refueling outage.
-13 cW l.74
.060 None Ee 4
RWCU SYSTEM 1.24
.064 Not Esamined 2031-1RWCU-6-D-1 BC-P
-2' P-E 1.92
.064 None j
1 I
1.82
.064 None d
-3 E-P l
1.22
.064 Not Examined j
-4 P-P-1.80
.064-None
-5 P-E l
l
-6 E-P 1.98
.064 None 1
1.63
.064 None
-7 P-V
-8 V-P 1.58
.064 Not Examined
'1.42
'.064 Not Examined
-9 P-E
-10 E-P 1.40
.064 Not Examined
-11 P-P 1.02
.064 Not Examined
- 1. 4 '.
.064 Not Examined
-12 P -i; 1.46
.064 Not Examined
-13 E-P 1.34
.064 Not Examined
-14 P-E 1.33
.056 Not Examined
-15 E-P l-i L___________.
7
. E
'7 1
4 g-l5 IIELD SIGNIFICANT
' I
,s...
l C. e.
'11 ELD MO.
tJELD TYPE FAB.
SRI-
'%C
~UiDICATIONS
'% THRU-WALL (MAXJ
)
' RUCU SYSTEM (Continued) ~
i
~16
.P-V
~1.23
.045 Not E:<amined
,j'
}
j/
^ 17-V-P 1.31
.063-Not E:<amined
,.}
i;
-17A.
PX-P 1.30-
.063 Not Eiamined 1
-18 P-V 1.11-
.061 Not E:<amined
.l 4
a I
i 1
- i i
iKEY-BT - Field Wald CR - Cross IJ
.'SU - Shop Weld PX - Penetration
.P'
, Pipe.
N - Nozzle Fu -' Pump E - Elbow j.
SE - Safe End FL - Flange T - Tee SC - Branch Connection q.
' Red Reducer C - Cap V - Valve-
' i E:< ample : Under " Weld Type" column, P-E is the abbreviation for a pipe-to-elbow.
- i weld.
1 j
i
('
b
, -s j
r s
N' STRUCTURAL-INTEGRlTY ASSOCIATES J
. 31$0 ALMACEN EXPWYJ SulTE 226 e SAN JOSE. CA 95t18 + (408) 978 8200'
'j j-gNh)
-l l
ASSOCIATES:
i
, T L Gtneta i
i$AS"
'CAUSE OF CRACKING INVESTIGATION P.C. RiccAnocLLA
. COMPARISON OF HATCH UNIT'2 WITH UNIT 1
.l l
-AREA $ INVESTIGATED i
.e FABRICATION HISTORY i
e STRESSES - APPLIED AND RESIDUAL-i i
e OPERATING HISTORY
- TIME / CYCLES
- WATER. CHEMISTRY 1
i e
INSPECTION RESULTS
]
- CURRENT ISI
- BASELINE RADIOGRAPHY j
l i
l 1
\\
i f
1 9
FQV,Q g. ;,' X,> R W h q QWh T. W STL ;
- .3, awe
% )hll h V W s; w
a.
.i
?
4[m%,j)Ql
&upfl 6 l.
[
n
+
m ;.,
,e, y;.
,4-(y; t
v
,I
.r
. g's f%, ' ",-
.D ? u t'
s !/,
1 ' l?.
- +
J
..e
%;e i
nl
's
~,
'J_..
W
_. f' l
' j k;A ;f a
. \\.k L,
'k f..,,
',.{ lt. -
l,.
Li, ; 2 ;,.
-l
' ).}
' f 'g,
/.[/. 'hr
.[c
.g(,
,).-
- [ g./. (
,},
.{l N, ; ' ' 7 f,!
' ' k,, l r
t.
a
.+r e
+
..w
,6 t,q s w n.,
v p,.
s.
yg,
..g,
, 7..
o-wr
.rl-p! + '
m' s, y g, g. oCONCLUSIONz h , - m a-3g.,, V i c's ! -fry s -q. i />r.., f ' f -1 i c' a...(y, - w i c. 3 -(- 'E ~ V ,y. 7 q( .Q } (t - i ,t in yj 1 y- . #c n, A. ( i .m omi
- g y-
.y-c%, y..:q 'c e 10NLY(SUBSTANTIVE DIFFERENCE - WELDrPREP/C0dNTER-l 4, +,. ,, 4 m.p "w BORELINHIGSCC SUSCEPT,I,BLE HEAT.' AFFECTED ZONE -IN - w o UtRid,SHbEWELDS 1 [a " N a < Q. ~ y gn m s ;I. i ,u a\\i m L , D :' ,I/ - f. s : ..' g, N 1 s f +
- q-COINCIDES-WITH MAJ0RITY:0F-INDICATIONS' l
a.,a,g , m/, +
- p,,
., y, .~ i nA , t. 3'qim' s .aj -l,f[ t v, - - - PRODUCES' STRESS. CONCENTRATION WHIf/4 ;C00.LDi ..q .t ,u 2 ..,t g n- .CAUSE? ACCELERATED CRACKING y 8 a
- c y
- \\ m y+ Qi,,O d. i ,. t.b. h . vu v .,[ .' } d ' ')'. &.p "g; jy PRgUCES UT REFLECTOR IN lTSELF WHICH,MUST BE j W~ j yV j $ DISTINGUISHED FROM lGSCC^ o 4- ?- g .o , :, j ' e t 9-g. ss 4 \\., !
- e wb
... q -j - .s j s ,f q. ? -l {, 1 l y <. (, i ( t-'; ,t u 'q ,py g ,p g, s . :l \\~ '(
- I
( g . r /-- > b ( h g ce'. i' -, ;.y, t -X ok i ..f .i Vk J ==1_. u E J D )( 6 (. F m m,. q i 1 j I l 1 I FABRICATION HISTORY e COUNTERBORE EFFECT e CARBON CONTENT OF PIPE MATERIAL e WELDING, WELD REPAIR, GRINDING 4 o FIELD STORAGE RECORDS I 4 l l 1 l l l l 3 -j f u ,5b l m-3 l {; [ f I i. Stainless Steel Pipe Fabrication Information FABRI-WELD WELD-CATION WELD PROCEDURE FILM 4 LINE - SIZE TYPE SHEET NUMBER SPEC. LOCATION '~ j i - B31-1 RC-12 B R-A FW B-10 15GE 44194-0060 B31-1RC-12BR-A-2 SW R D-2-B4 8 102 44303-0029 B31-1RC-12BR-A-3 SW RD-2-B4 C 102 44303-0029-i B31-1 RC-12 B R-A-4 FW B 16GE 44194-0065 ~ B31-1 R C-12 BR-A-5. Comb. B31-1 R C-12 BR-B-1 FW B-11 15GE 44194-0061 'l B21-1RC-12BR-B-2 SW RD-2-B5 B 102 44303-0030 ' B31-1 RC-12 BR-B-3 SW RD-2-B5 C 102 44303-0030-1 B31-1RC-12BR B-4. FW B-16 16GE 44194-0066 831-1RC-12BR-B-5 Comr. B31-1RC-12BR-C-1 FW B-12 15GE 44194-0062 B31-1 R C-1~2 BR-C-2 SW R D-2-B8 B 102 44305-0033 B31-1RC '12BR-C-3 SW RD-2-38 C 102 44303-0030 B31-1 R C-12 B R-C-4 FW B-17 16GE 44194-0067&68 B31-1 RC-12 BR -C-5 Comb. l B31-1RC-12BR-D-1 FW B-13 15G E 44194-0063 B31-1 RC-12 B R-D-2 SW R D-2-B6 B 102 44303-0031. l 831-1 R C-12 B R-D-3 SW RD-2-B6 C 102 44303-0031 B31-1 RC-12 B R-D-4 FW B-18 16GE 44194-0069 B31-1RC-12BR-D-5 Comb. B31-1 RC-12 B R-E-1 FW B-14 15G E 44194-0064 B31 1 RC-12BR-E-2 SW RD-2-B7 .B 102 44303-0032 B31-1RC-12BR-E-3 SW RD-2-B7 C 102 44303-0032 B31-1RC-12BR-E-4 FW. B-19 16GE 44194-00 0 - B31 -1 RC-12 BR-E-5 ComL
- J l
B31-1 RC-12 A R-F-1 FW A-10 15G E 44194-0020 B31 -l h C-12 A R-F-2 SW R D A 4 B 102 44303-0023 i B31 -I RC-12 A R-F-3 SW RD-2-A4 C 102 44303-0023 B31-1 RC-12 AR-F-4 FW A-15 16G E 44194-0029 i B31-1 R C-12 AR-F-5 Comb. 831-1 RC-12 A R-G-1 FW A il .15 G E 44194-0022 - B31-1 RC-12 A R-G-2 SW R D A5 8 102 44303-0021-j B31 -1 RC-12 A R-G-3 SW R D A 5 C 102 44303-0021 t331-1 R C-12 A R-G-4 FW A-1G 16GE 44194-0030 i B31-1 RC-12 A R-G-5 Comb. Li N' i J c JWELD. PREP DESIGNS-FOR HATCH' i t RECIRCULAT10N SYSTEM PIPING H '.o 4 ) - l: .j o .g. #....,.q r u t': rr. " i. *,.,,;4 ggl4 1.
- t.9
.c , I'
- f.,": #f,fhif
[', . r,.. . g ; -) f' ] .,l< ,p .,.-lj k <p g g,,' I;l..] L 1 2n v :.. n s=ny. l' o 4*. \\ p p , = 4 ]g ~ 4 8 ae, .045 4m* O I c .,,,o. . ; ; a R*, n
- e*
.t.. 'r 41%- 1 WELD PREP'FOR UNIT 2-SHOP WELDS WELD PREP FOR UNIT. 2 SHOP WELDS .i (SAW) -(RISER &' DISCHARGE PIPE) (GTAW, SMAW) -(END CAPS), 1 I [ 3.,..,.... :...a ' 'h'.' d! y. a-- . gw ( i. e ^ R. -;- -l \\ y , p .,...i /.2.' +.!.* l 3' (. r,1..u. { ~- n .g e ~ .l 4 /' [
- {i$
[- } 's n '}. j, lll5 no. / -[. !i.D f I h, 1 u 4 1 1 I
(SAW) 5 I s 4 g L i.11 11._'. j 4 4 1l
SUMMARY
OF RECIRCULATION SYSTEM PIPING CARBON CONTENT DATA WELDS IN CATEGORY l
HATCH UNIT 1 HATCH UNIT 2 RISER M A NIF.
SUC/DlS RISER M A NIF.
SUC/ DIS j
)
<.035
.035 - 0.499 3
10 i
.05-0.599 6
8 23 2
5 22 l
f
.06 - 0.699 2
8-8-
24 8
.12
.07
.08 32 14 40 16 31 40 16 34 l
l l
l j
s
.6 m _
a.-
- l_
'0
t i
I
?
c l
WATER CHEMISTRY q
1 e
AVERAGE CONDUCTIVITY LOWER IN UNIT 1 THROUGH 1981 I
1 i
e AVERAGE CONDUCTIVITY LOWER IN UNIT 2 IN 13 2 AND 1983 e
ONLY MAJOR CHEMICAL TRANSIENT REPORTED IN UNIT 1
- l e
u l
-]
s l
l 4
7 ep i
!.(
\\
)
l l
1 Comparison of Baseline Radiography to Current Ultrasonic
. Results for Unit 2 j
LINE - SIZE
. INDICATION - SIZE REMARKS l
I 12 BR A-1 Nothing.
Counterbore is 1/4" from root on pipe side. Branch i
connection has counterbore' i
1" away. No grinding.
j ut 1
12 BR A-2 Nothing.
No grind!ng. Counterbore
)
1/4" from root edge of weld.
J
)
12 BR A-3 25% just adjacent to Counterbore 7/16" from root J
root. Not in counter-of weld. No grinding. Smooth
.]
transition on elbow side.
(pipe side).
j i
12 BR A-4 Counterbore geometry Minor counterbore 3/8" from (1/2" from weld root),
root on pipe side. Smooth on safe end side.
12 BR B-1 Root geometry only.
Minor counterbore 3/8" from j
root on pipe side. Minor counterbore on branch 9/16" from root.
12 BR B-2 26% on pipe side ~1/S" Counterbore 3/8" on elbow, from root.
1/4" - 5/16" on pipe (no grinding).
]
Gradual counterbore, not sharp transition.
12 BR B-3 22% in pipe side and 21%
Counterbore sometimes tapered j
on elbow side. 1/16" sometimes sharp 7/16" to 1/4" from weld edge on elbow.
from weld on pipe side. Gentle 1/2" from - weld on pipe -
taper on elbow side. No grinding.
side.
j 12 BR B-4 23% on pipe side. 3/4" Hand prepped. Possible evidence from root of weld.
of repair. No real counterbore.
D AC ~85-40%.
No grinding after welding. Trans-Ition is in the 3/4" to 1" distance from weld root.
1 12 BR C-1 Root geometry only Minor counterbere 3/8" from root on pipe side. No counterbore on branch.
12 BR C-2 28% on pipe. side or 1/4" Counterbore 3/8" - 1/2" on pipe from toot of weld, side; 9/16" on elbow side. More gentle on elbow side. Elbow side may have been hand ground. No post weld grinding.
8 6)
)
9.. w i
I a
i s-i b
Ultrasonic Indications For Each of the Stainless Steel Pipe Systems Number of Indications -
No. of Welds Localtion of Indication *
'l Shop Field Weld System Welds Welds Root Counterbore HAZ Othert Riser 18/20 4
10 6
4/20 2
2 i
Enri Cap" 4/4 1
1 I
- 20"RHR 1/3 1
24" RHR 1/8 2
(
28" Recire 7/15 1
2 6
1/18 l
1-i t Outside expected HAZ i
Number of ir.dications may exceed total of welds because of cracking in
)
both H AZ's,
- Incomplete data 1
0 I
9 f[,>
i d-.?
I g
~
l.
l 4
STRESSES i.
~
t e
NOMINAL STRESSES COMPARABLE o
STRESS CONCENTRATION EFFECT OF COUNTERBORE-RESULTS IN 0,3 TO 0,6 INCREASE IN STRESS RULE INDEX I
e STRESS CYCLES PER YEAR AT TWO UNITS COMPARABLE e
IGSCC DAMAGE INDEX RESULTS ON TWO SAMPLE WELDS - UNIT 2 HIGHER AT 4 YEARS THAN UNIT 1 AT 7 YEARS (CONSIDERING EFFECT OF COUNTERBORE) l l
~
l 1.
10 s
i
/
_a
y q
SUMMARY
- OF ICSCC STRESS RU.LE INDICES FOR RECIRCULATION SYSTEM PIPING r
2
?
y a) Original Data i
HATCH UNIT 1 HATCH UNIT 2 SRI RISER M ANIF.. SUCIDIS RISER M ANIF.
SUC/ DIS
< 1.0 4
3 5
4
-1 i
1.0 - 1.2 11 12 15 10 11 17-j 1.2 - 1.5 18 12 21 13 1.5 - 1.8 11 1
9-
> 1.8 1
j
. 40 -
16 31 40 16 34 l
b) Adjusted for Counterbore Stress Concentration HATCH UNIT 1
.l HATCH UNIT 2 RISER M ANIF.
SUC/ DIS RISER M A NIF.
SUC/ DIS
< 1.0 4
3 5
f 1.0 -- 1.2 11 12 15 10 11 I
1.2 - 1,5 18 12 10 (Later) 1.5 - 1.8 11 1
> 1.8 20 40 16 31 40 16 34 i
11 W
___._._____.____J
a _
1 m
+
- c;I e.t -
op
.x i
J s
3.
't d
c a.
n s, n..,
.g -
-(
j
- u
'I L
' '~
~
.'1
' Estimate.'of Stress ' Concentration L
. Effect 'of. Weld' Cobnterbore -
l t
j
' 7/ t J
ti 1
.i
..c l.
.i.
il b
l]
d/2 D/2 i
'lh l
r 1
D/2 =.7. in'.
d/2 =.65 in.
i l h =.05 in.
m J
r =.015 in, j
- . f = -' 012;' SC F 2 2.4 d-
'l J -l~
' ?
I
'hr
.7 P
.j 30 -
4 44 t. 'A>
- ',. 1, L 4 2
't o.
pg '
., [. ' C ' C "----*, -
t l
t
=
=y a
,, n-g W
- C
- e.:
'--e.
' 5,,, e o r,.. tr.,,,,, :
r, g,;, '
'..o.. g,i
_I
}-
s, - i.
I.
l
.g.
i,
.l -l
- g. 1,
l.
=,
j y,'! i \\ i
' l.c c. + -r e g ; i l.[
j-g.; j
,E
.t s ; i-N -- I 1 u
.-.3
,'l (t l - l' I;_r.s.,, u,,,, c.,,,,,
- ,.l.
} l l l g.
c tt. l l l l l I l ! l l l l
! l gg il I r; i.ar r,
i l i, ; ;, i p., <.
r;l-l 1 i i l i c.i i
i i i i.
5 u
b b
I I I I I
! l
! I l'
l it 0
Os 0;
c3 as cs cs or cs os I&
rid I
i i
l l
'I E
12 l
l l(
)
.]j
-)
b
?.
~
- /
1 y
a a
1 L
l '.;
y 7
bi.r_ -
m..
j
M'
[' s,
,o".
[.,S (~
.s A
i' af
'9' s
4 p!!5 b l
.W Q;
'y,
'ig
[3 i
s v
~
~
%, r.., ' _g. m
.. t e
- 'I'.'
.s, dia '
SUMM ARY OF-PLANT: OPERATION AL CYCLES.
1.
p f :o.' i TSINCE COMMERCIAL. OPERATION m,
m kl:
A
. H ATCH UNIT - l'-
\\
i.
U
., o.
SCRAMS TO-HOT STANDBY '
COLD SHUTDOWNS o.
1YEARi o
rl 1983:
4 0-I i 1982--
.7-3 j
3 e
l
- 1981 10
-5
. w.
' :: ).
' 3. -
1980
. 21 3
o V
'1979L.
6.
4 o
a y
.'1978 ~
12-3' ~
, ~{
o 17 5'
E m,
'1977
- . (,
1976 32
-1~-
i : :,-
q
-t HATCH UNIT 2 i.)
> YEAR' S' CRAMS TO HOT STANDBY -
- COLD-SHUTDOWNS.
y x.
'1983 0
'I L1982 7-5 1981 6
1
.1980-12 5.
l 1979-8-
3 l
.],j 1
4 'i 4
m.
a
,l J
.13 n
g i
Y
.:t,l '
l o
\\
p_,,, g
?
e
. y +,u w-pn;,;
i 37, c
i-q p gglb
.p t'
t
, A
.q n
y;
..s.
I j
',6 e
x
- y '
Ju 1:-~
i.
,: j!
'3
.r
-i r
d r;b i
r 9
- M x:
-w 3
- c.
3 2
7-
.g c
i E
i L
O' U'
. m
.c.
i 1
'1' 4 yrs.
-)
- a. -
. rv 4 I
- 1.
7 r
i 0
2 4
6 8
10 YEARS OF OPERATION f
J i
i(
IGSCC Damage Index for a Relatively Lightly Loaded i
a) No stress concentration in HA'Z, KT=1.0, SRI:1.09 1
b)- Stress concentration in HAZ. KT=2.4, SRI:1.44
-/
j
+
m 1
1
^
e '
+'
.{
.,t
.,u (b)-
m SRiba2.43 1
s r.
1 3
'S
- 4. yrs y
l I
i xw (a) c 3
t c
w 2 C
-e PIy SRia:1.79 O
'd 7+ years b
\\
.k.
1 1
J s
f f
i l
0 2
4 6
8 10 YEARS OF OPERATION IGSCC Damage index for a Relatively Highly Loadeo High Carbon Riser Weld a) No stress concentration in H AZ, KT:1.0, SRl=1.79 b) Stress concentration in H AZ, KT=2.4, SRI:2.43 15 7#
. t __ _ - --.____.:___-
~
,3l i
- T,.
e~Q my_
p
$u
=
,b n.
v l
a lao
~
L
+
\\
s
(!
i
~ '
w
, W, M
E L 3t V
GT NS IV Y l[> g3d P. S o
R N c
D D
=
1 I
LT e
r A A u U L s gN g T U 5"%umN i
g F
PG ER C C.
I
% f-y NE c OR V ~ P C e. A R F y l 7 % e(4v%d P O O O 4 a L sx r4 y ' Y }' ~ ~ l, 1L
r n D _~ Hm I 3E y2g>yl g Id .I ~ w o t, f(f,"N' gs%m g. i m {} ^'. r 3 oc ,h y h. 8 4-gW - a2c %, % e 4s " f,_ f f ps y4v a'",l,Q o fp t ?(V,.8bQ m6A. ep '1 J,k 6 '~ i y p g g Q~ y, f 3 t $s O 2 .i x i A ~ 8 A 2 I r 3 ( , /' A 82 3 r 2 A s s 2 n m 37a c l=,c A ! < 2 e gg8 s@ mn$ ~ ( c l f
-c.,2 s. r . o ::3
- .=
D .;l f _ 3~ g*..~ e_ q [y '?, 3 3 3 3 2 4 3 _ w= L a e e e e e e e e g_ ~ p ~b u u-u u u u u u .n l r r r r r r r r e g_ 'i s i i i i i i 'g g g g g g g v i .~ ^ O F ~F F F F F F P a _. h._. c.x __G y;m i d i l f' _r n e ~_ W ~ w, ~ ' ~- _J
- ~
~ .,~s ^ ~. h ~ t O' O 0 U _y. ~ g 0 0 0 0 0 0 0 0 n 6 6 6 6 6 6 6 6 .~y . -. e 3 - 3 '3 3 3 3 3 3 ~ .w. L ~ o n ej o r' t p i w n-p T i / r a c c. 1 4 1 s .h 4 5 0 '6 5 8 2 e _t 1 1 3 2 4 2 2 _ Q . 'E D p L B - ^t e L-n D A o .:T. i l" l l l l ~ t l l l a a a a a a a a a c n i i i i i i i i i o t t t t t t t t d i n n n n n n n n n t e e e e e e e e l a r r r r r r r r t e e e 'e e e e e b. n f f f f f f f f ..~ e m m m m m m m m ~ i u u u u u u u u r c c c c c c c c O r r r r r r r r i i i i i i i i C C C C C C C C ~ L-T r ~ - - 2 m F G G H B 0 C E e b 2 2 3 3 2 3 2 3 u N R R R R R R R R A A A A B B B B d 2 '2 2 2 2 2 2 2 l 1 1 1 1 1 1 1 1 e W l L. f-;- 2 ' ~ -. c
ftl 0 o b 2 da 3 m ) rew k ero cbil amul r u qA Cl e. I R D. I ( ~ t n n i e g r r r a uh M Ct 1 4 p 0 1 1 ee 6 6 6 lD ba wo l lA o - c s - hwh t ot nrp oG e M Do ft e 0 3 0 8 3 9 8 9 6 6 4 8 o l 6 5 1 9 8 5 1 6 2 6 6 7 ) db 1 1 k rea cerw a bi o raul Ct ql NeA e R g d 5 E( 5 e n t i n l g e b r r a o a rh T M ut Cp e I 1 1 4 1 3 I 1 I 1 1 eD 6 4 7 8 9 7 7 0 9 3 3 0 l 3 3 3 3 3 3 3 4 2 3 3 4 bw aa wl oF l lA s e l ba I I I g I I I I I I I I w 3 3 3 3 3 3 3 3 3 3 3 3 o 6 6 6 6 6 6 6 6 6 6 6 6 l h l t A p eD w a t l n F e I 1 I 1 I I 1 I I 1 I I r 2 7 S 0 5 8 7 0 3 3 4 S r 1 1 1 1 1 2 2 1 1 I uC no i l t 2 3 I a 0 0 5 c 3 4 7 1 3 7 B 1 1 S S R i R R B f r A A A A 8 B B B B 0 0 4 ie 8 8 8 8 8 A 8 8 8 2 2 2 tb 2 2 2 2 2 2 2 2 2 nm R R R eu C C C C C C C C C H H H dN R R R R R R R R a R R R I - l l 1 l l l I l i I l l d 1 1 1 1 1 1 1 1 1 l l l l 3 3 3 3 3 3 3 3 3 l l l e B B 8 B B B 8 B B E E E W 2 2 2 2 2 2 2 2 2 2 2 2
F l l ,1 i l A, l ~+ ^ ; ~ ) ) ~ ~ ~ ~ DRA' DY H NA TW AL M R TR 0 E SE 3 S V G S H O E X T K R I I C T F WD 2 S L A RE R W I C A S P CN E I O S _ R NI AT N HA SR CC I O I E FA IT MI P TE A ES R R RU U JF E TE O D CD S N E A O I Z S C OI RC N iWI S F I N A T N Y ) O T A L AK MA I U HF GC L C ( C AA HR S WN EF P R TE I LI r MOOC V C AO I WO l5 N F T 1 EsPG i C RS N RD A E UY KI l T TL CT A L P E H E CAAI EW M C D AN RI R E RA CL F M E I R U T C AR F R I X EA I LP F BE O AR 4 T N PT EU CO CH AT IW r s ,lll'
>w .j 3 l FRACTURE MECHANICS ANALYSIS h l 8 ACCEPTANCE CRITERIA BASED'ON ASME CODE SECTION XI, IWB-3640 (APPROVED BY MAIN COMMITTEE) O CRITERIA BASED ON NET SECTION COLLAPSE IHEORY WITH SAME DESIGN MARGINS AS CONSTRUCTIONS CODE I. UPPER bound IGSCC FLAW GROWTH CURVE USED (EPRI NP-2472 AND EPRI 2423-LD) e a nutech Y
...~ --( s ) 'i i.- I ~ l ( ] j .1 ) ' FLAW EVALUATION INPUTS j s INPUT SOURCE WHERE USED -) 1 PRIMARY STRESS STRESS REPORT ALLOWABLE'a/T 1 STEADY STATE APPLIED STRESS REPORT PREDICTED a/T 4 STRESS ALLOWABLE a/T CRACK GROWTH MODEL NDE REPORT PREDICTED a/T i ' CRACK GROWTH LAW EPRI REPORTS: PREDICTED a/T NP-2472.AND NP-2423-LD WELD RESIDUAL STRESS NUTECH STANDARD CURVES PREDICTED a/T (BASED ON SEVERAL EPRI REPORTS) l t N l. 1 I = _ _ _ _ _ _ -.
n 7 y i / 6 r 3 j l FLAW EVALUATION METHODOLOGY l i I 8 SE' LECT' HIGHEST' APPLIED STRESS IN SIZE OF PIPING BEING EVALUATED l 8 USE ASME SECTION XI TABLES OR. SOURCE EQUATIONS TO DETERMINE END OF INSPECTION INTERVAL " ALLOWABLE" ] FLAW SIZE-8 DETERMINE FLAW SIZE AT BEGINNING OF CYCLE FROM UI DATA l' DETERMINE CRACK GROWTH USING UPPER BOUND CRACK GROWTH CURVE TO IDENTIFY " CALCULATED" END OF CYCLE FLAW SIZE 8 COMPARE " CALCULATED"'TO " ALLOWABLE"'CRACx' DEPTH AT ENo / OF CYCLE TO DETERMINE THE NEED'F0R REPAIR 4 'i J V
l m i L PROPOSED TABLE IWB 38411 g -ALLOWABLE END OF INSPECTION PERIOD SIZE FOR' CIRCUMFERENTIAL FLAWS NORMAL CONDITIONS Ratio of Length to Circumference (1) Pm + Pb 0.1 0.2 0.3 0.4. 0.5 or more Ratio of Flaw Depth toThickness (2) ] 1.5 (3) (3) (3) (3) (3) 1.4 0.30 0.20 (3) (3) (3) 1.3 0.48 0.38 0.28 0.18 0.18 l 1.2 0.66 -0.56 0.46 0.36 0.26-1.1 0.73 0.63 0.53 0.43 0.33 1.0 0.75 0.70 0.60 0.50 0.40 0.9 0.75 0.75 0.66 0.56 0.46 0.8 0.75 0.75 0.72 0.62 0.52 0.7 0.75 0.75 0.75 0.68 0.58 { 0.6 0.75 0.75 0.75 0.73 0.63 f (1) Pm = Primary Membrane Stress Pb = Primary Bending Stress { Sm = ASME Code Design Stress at Temperature j (2) Crack Depth = a for a Surface Flaw ( 2a for a Subsurface Flaw l (3) IWB 3514 3 Standards Govern O 1 y l \\
[ t u .4 y y 3- /10 3, o' - P. : Ford, 1.5 ppm 02
- 0 - R. Horn,.0.2 ppm 02 t
E10 k / i 1. 1 I ~ da/dt = 1.843 x 10-12 4.615 K j. i . a: Upper Bound .j / 3 l g .j r3 '30.f. . Lower Bound j Ij / a I i I -i -l
- 10 8 -
1 10' 20 50
- 100 1000
'f Stress Intensity Factor (ksi 4) TYPICAL IGSCC CRACK GROWTH DATA v (WELD-SENSITIZED 304SS IN BWR ENVIRONMENT) ~" n h q w j ^ J ]w,.. j o
i .l - f -#-. .1 \\ i 1 'd- .E~ 35 I(0 oo. io .3 82 B 2 } 1 i 1 . TYPICAL RES! DUAL STRESS PATTERNS j FOR WELDED STAINLESS STEEL PIPE i O j A___._.____.___________. a
D ' r +35- +3 .= +10 - - - - ~ ~ _E. g 0_ 10 - ODl w 6 l 30 l l .m. __________ I I 1 38 i l I AXIAL RESIDUAL STRESS PIPE DIAMETER OF 10" TO 12" ) .l I l l 1 Ilutech l l e uma_m_.._..____ .O'. 15
y9, :;j;p,, s ' 1,
- 6 h '-
l y e.. u. S fS,p e . g., 1 b L l: f t: COMPARISON OF EPRI RECOMMENDED AXIAL RESIDUAL STRESS DISTRIBUTION AND DISTRIBUTION trt1LI7.ED IN ANALYSIS (t > 1.0 inch) j, i-I' t l EPRI +12 n g l \\ i \\ I. 4 e. i \\ .5 g __.. _4s. 19._: __.... .3 _ / o .u \\ l 4 \\ CURVE USED IN ANALYSIS \\ i \\ j \\ l l \\ l \\ l \\ _3 0 _ __ __ _ J 1 l i l l l i l l j
K3 i a l1 '( g FRACTURE MECHANICS ANALYSIS FOR LIMITING FLAW SIZE CONCLUSIONS REGARDING NET SECTION COLLAPSE ANALYSIS 9 NET SECTION COLLAPSE ANALYSIS GIVES CONSERVATIVE PREDICTION OF MARGIN AGAINST CRACK INSTABILITY FOR AUSTEN! TIC STAINLESS STEEL PIPES 8 FIELD DATA VERIFIES THAT PIPE RUPTURE NAS NOT OCCURRED FOR LARGE CRACKS IN STAINLESS STEEL, IN AGREEMENT WITH PREDICTIONS 8 TEARING MODULUS ANALYSIS FOR CIRCUMFERENTIAL CRACKS IN STAINLESS STEEL PIPE SHOWS NET SECTION COLLAPSE CRITERION IS CONSERVATIVE 6: 9 nut.ec
- 9
c j i' iI f' li; FLAW EVALUATION METHODOLOGY _ I FOR 12 INCH PIPE 8 SELECT HIGHEST APPLIED STRESS IN SIZE OF PIPING BEING EVALUATED (LOOP A, JOINT 13 - 14.9 KSI, 16.6 KSI SM AT 575'F) I FOR 360* INDICATIONS USE SOURCE EQUATIONS'FOR TABLE IWB-3641-1 (EPRI NP2472SY, VOL. If JULY 1982) O CALCULATE ALLOWABLE END OF CYCLE a/T a/T -.41 (NO CREDIT FOR POTENTIAL OVERLAY THICKNESS ADDED TO T) 0 DETERMINE a/T AT BEGINNING OF CYCLE 9 DETERMINE CRACK GROWTH USING UPPER BOUND CRACK GROWTH CURVE TO IDENTIFY " CALCULATED" END OF CYCLE CRACK DEPTH I COMPARE CALCULATED TO MAXIMUM ALLOWABLE CRACK DEPTH AT END OF CYCLE Q
/ ') I FLAW EVALUATION METHODOLOGY r I' FOR LARGE OIAMETER PIPE 8 SELECT HIGHEST APPLIED STRESS IN SIZE OF PIPING BEING EVALUATED 8 USE TABLE IWB-3641-1 TO CALCULATE ALLOWABLE END OF CYCLE a/T a/T =.63 9 DETERMINE a/T AT BEGINNING OF CYCLE FROM ULTRASONIC DATA 4 DETERMINE CRACK GROWTH USING UPPER BOUND CRACK GROWTH CURVE TO IDENTIFY " CALCULATED" END OF CYCLE CRACK DEPTH l l 9 COMPARE CALCULATED TO MAXIMUM ALLOWABLE CRACK DEPTH AT I 1 END OF CYCLE l
p ~ l' ') li FLAW EVALUATION METHODOLOGY l 4 DETERMINE ALLOWABLE CRACK SIZE t CALCULATE CRACK GROWTH 0 COMPARED PREDICTED AND ALLOWABLE CRACK SIZE MAJOR EFFECT OF PIPE DIAMETER IS BUTT WELD AXIAL RESIDUAL STRESS DISTRIBUTION 8 CONCLUSIONS REPAIR OF 12 INCH PIPE FLAWS MARGINAL ACCEPTABILITY FOR END CAP WELD FLAWS ACCEPTABLE FOR 24 INCH AND LARGER PIPE FLAWS i )
e e GENERAL CONSIDERATIONS REPAIR RECOMMENDATIONS i 0 OCCUPATIONAL RADIATION EXPOSURE (MAN REM) 9 IMPACT ON OUTAGE SCHEDULE e REPAIR COST e IGSCC FLAW SIZING CAPABILITIES USING UT METHODS 9 POTENTIAL FOR UNDETECTED AXIAL CRACKS 4 POTENTIAL FOR WELb REPAIR EFFECTS ON NORMAL RESIDUAL STRESS PATTERNS 9 LEAK DETECTION SCHEME
i /" PRELIMINARY DESIGN OF OVERLAY REPAIR 0 DETERMINE RESIDUAL STRESS PATTERN OF WELD GEOMETRY WITH OVERLAY - RESIDUAL STRESS PATTERN CALCULATED AT SMALL WELD OVERLAY INCREMENTS - HATCH 2 OVERLAYS COMPARED WITH THOSE FOR DRESDEN 2 AND VERMONT YANKEE FOR CONSISTENCY 0 CALCULATE CRACK GROWTH WITH OVERLAY IN PLACE - CRACK GROWTM WOULD BE VERY SMALL l - FOR SIZING IT WAS ASSUMED THAT a/t WOULD INCREASE 0 BY 0.1. WITH THIS ASSUMPTI0tl FOR 360 INDICATIONS, AN a/t OF.31 IS THE BREAK POINT FOR MINI VS. STANDARD (GREATER THAN.31 SHOULD HAVE STANDARD OVERLAY TO ATTAIN ADDITIONAL STRUCTURAL CAPABILITY). O 1 l
l i 1 ) l TECHNICAL BASIS FOR STANDARD OVERLAY DESIGN O AVERLAY APPLIED AS STRUCTURAL REINFORCEMENT TO RESTORE ORIGINAL PIPE SAFETY MARGINS IN ACCORDANCE WITH IWB-3640 0 IGSCC RESISTANT WELD METAL PROVIDES ULTIMATE b BARRIER TO FURTHER CRACK PROPAGATION O REDUCTION IN CRACK GROWTH IN ORIGINAL MATERIAL DUE TO FAVORABLE RESIDUA'L STRESS PATTERN NhJ -n%F
7 PY 7 T Y A 8 L 6 R 4 L E 7 8 V 0 O 3 D S E L P N E YTW N O I G T I S A E C '5 N I D 2 D 2 M I 2 N Y TI I AN R 2 L U E R e E -,S ~ I r u VH R g OC iF TN D AO R HIT ) 5 N F A A 2 E I D L ~ M R 2 N U ( A A C D T R E I C S I C A 5 F R _~ E 7 R OR R U 2 FE 1 S P /,- EAS D LTN E B O N D AYI I L T M TAI E PLS WERN 0 CEA 2 SCVR 0 AAOT g l
/" '} TECHNICAL BASIS FOR MINI-0VERLAY DESIGN O FLAW INDICATION IN WELD IS ACCEPTABLE AS-IS, l BUT CRACK PROPAGATION TO UNACCEPTABLE SIZE l EXPECTED DURING INSPECTION INTERVAL e OVERLAY APPLIED ONLY TO PRODUCE FAVORABLE RESIDUAL STRESS PATTERN AND THUS ARREST FURTHER CRACK PROPAGATION, NOT FOR STRUCTURAL REINFORCEMENT ) 4
l1 )ill I ~ m r 3 ) g m E C w = AFR RO U F S E S P DL N Y EB O T D A iT L T 0 S E P S 5 u WE N 4 N a C A 7 O SC R I AA T s A H N T C G I = C D 2 D I 5 I 7 W S N 0 + E TI DI N 3 N R W UE "5 Y O e R r A S 1 L C C u L HR ,I i = g R C -x i D F E TN M L V AO U E 5 M W OHI T 7 N A I I = N 0 I M L = I M U L C C A o o R LY I 8A N C I 0L M E 3R R E EV 5 PO 2 R 1 O Y F 0 D T D E L U P E PA W T N I T A P r N
A 3 L 5 CS R 4 G P L E F p 8 V 0 O 3 E D L P E YTW "5 N 2 M I 2 ) 6 N F 2 5 I M R 2 ( A E ID CA "5 F R 7 R OR U 2 FE S P 1 EAS D LTN E B O N D AYI I L T M TAI E PLS WERN "0 CEA 2 SCVR O AAOT mi 1 n* g y$EDo 4' E e n n
A e FR 44 ROR 3A U FE 38 S P C P - EAS P G F DLTN Y EB O T DAY IT L TAI ' E PLS 5 WERN 4 CEA 7 SCVR AAOT HT D .5 C I W 7 ~ t O e N W "5 O 1 R L C C I = D. M l = U E "5 M W 7 N I = 0= I M I L C LY 8A N I 0L M 3RE E V 5 ,J PO 2 Y 1 0 T D LE W 3$3 U ![<$g< Pne 2 GgCCsZs$ p ll
3 c a 8 a u C P u q g G F Y I A P L Y t T t ( LE 8V L, 0O A 3 N u I E M P t Yi O 1w N o g 6p_ 4 "6 \\ 3 8 v SD L I I N M E W N
- 3. N W i
F M oM ~ O 2 0 N _n I 0 I { M ) 7 "J y y 3 g 3 3 l f V ,) 5 1 D E I I M P t P 3 w D i E R L O S O F L I A E F W N S A M n t se m R O 1 F ~ EI D i L P P A T N E T m A t s P a m gI l g g
L r 3 E 1 WELD OVERLAY TEST-SERIES 8 A SERIES OF FULL SCALE MOCK-UP TESTS ON 12" PIPE O THEY INCLUDE THE FOLLOWING TESTS: 1) QUALIFICATION OF LAST PASS HEAT SINK WELD 2) TEST OF A " MINI" OVERLAY 3) TEST OF VARIOUS THICKNESS OVERLAYS J e ALL TISTS WILL EMPLOY CURRENTLY PROVEN WELDING PROCEDURES AND PARAMETERS S SELECTED TESTS WILL HAVE THERMOCOUPLE AND/OR STRAIN \\ MEASUREMENTS 9 TEST RESULTS WILL BE USED TO SUBSTANTIATE ANALYTICAL PREDICTIONS
W u RESIDUAL STRESS ANALYSIS ) i OVERLAY APPLIED TO CRACKED PIPE WELD PROCEDURE 1 8 " WELDS" ANALYSIS'0F 12" SCH. 80 BUTT WELD TO GIVE RESIDUAL STRESS PATTERN. i 0 9 INTRODUCED 40% X 360 CRACK INTO ABOVE CASE -- STRESSES ALLOWED TO REDISTRIBUTE.' 0 " WELDS" ANALYSIS PERFORMED ON BOTH CRACKED AND UNCRACKED CASES WITH HATCH STANDARD OVERLAY. S RESULTED IN 4 RESIDUAL STRESS PATTERNS - STD. BUTT WELD (A) STD. BUTT WELD W/ CRACK (B) - STO. BUTT WELD + OVERLAY (C) - STD. BUTT WELD W/ CRACK + OVERLAY (D) { l a n J \\ l I
I 9 RESULTS CRACK STRESS INTENSITY PATTERN KS I \\/ I N A 48 B 34 C -39 D -20 0 RESIDUAL STRESS PATTERNS FOR CASES C AND D VERY SIMILAR -- ONLY DIFFERENCE IS AT FREE SURFACE OF CRACK 4 WELDS -ANALYS IS-PERFORMED FOR ' IHSI - 0F PRECRACKED
- PIPE SHOWS ESSENTIALLY NO CHANGE IN RESIDUAL STRESS PATTERN FROM THAT DETERMINED FOR UNCRACKED PIPE.
CONCLUSION 0 e OVERLAY PRODUCES COMPRESSIVE STRESSES IN 360 CRACKED PIPE. I l l I y b I
4 f ' i 4 I ( ) \\ RECIRC AND RHR SYSTEM EFFECTS j j 0 STEADY STATE SECONDARY STRESS i - NO ASME CODE LIMIT i - SIMILAR TO COLD SPRING AND OTHER WELDS 0 STRESS IS CALCULATED WITH PIPING MODEL IMPOSED DISPLACEMENTS } - ACTUAL MEASURED SHRINKAGE 9 CALCULATED STRESS - LOW HEAT INPUT; LOW SHRINKAGE - BRUNSWICK HIGHEST STRESS 4. KSI M
s 4 l 'k ayJ1 4 4
- c eg-
,r g 1 il o e-e R e ~ n a $e g 5 a = p _., m 1 s i n ,~ \\ { 1 j ?.$?l } s .f N n i i e x a 4 = , c '- E e 2 s x e, ge 5 l 4 3 s Pe i s' i a / a s E: 2 e
- ~/
n n i k i 2: .2 s ,y/.. {\\ n ws y e / \\ \\ m 7 __ / ~ n i N \\ \\ \\ I \\.r h \\ \\ \\. 4, l be 1 l (
L r F ) EFFECT OF OVERLAY ON SYSTEM STRESSES k. , SAMPLE CALCULATION: - APPLY AN OVERLAY ON ALL 2, 3 AND 4 WELDS IN THE 12" RIZER-PIPING ASSUMPTIONS: - HATCH UNIT 1 AND 2 SYSTEM STRESSES ARE THE SAME - AXIAL WELD SHRINKAGE AT ALL OVERLAYS IS 0.0625" (BASED ON AVERAGE OF ACTUAL SHRINKAGES MEASURED AT BRUNSWICK) RESULTS: \\ - MAXIMUM STRESS 1.7 KSI - JUNCTION OF END RIZER ON HEADER k d n l l
l I j ,s \\ 1 i k It e,, l 1 1 4n, ..x 4 ( , i, ,i, ./ N4. t. w,s, < v i 17 e o I .I \\% l l / I / / f l a uJ Q 1 i e k z l il e g e 5 \\, i 1 A'L n i t i 7 l n. l f 4 / Na 3 l ( l.i, \\it e i e d i Il _t
- \\
/ lI, $$,, 9 s )? s 1 i l l i l ) /> s l l I
j i FUTURE INSPECTIONS L-l CONTINGENT UPON RADIATION LEVELS, THE FOLLOWING WELDS WILL BE EXAMINED OURING THE NEXT SCHEDULED MAINTENANCE /REFUELI?lG OUTAGE: THE SIX (6) REMAINI?tG ASME CATEGORY B-F WELDS IN THE RECIRCULATION SYSTEM THAT WERE fl0T EXAMINED DURING THE 1983 MAINTENANCE /REFUELIf!G OUTAGE l' THE T,4EllTY-SIX (26) OVERLAY REPAIRED WELDS IN THE RECIRCULATION SYSTEM 4 THE ilINE (9) RECIRCULATION SYSTEM A:10 THREE (3) RHR SYSTEM WELDS HAVING INDICATIONS WHICH WERE NOT REPAIRED 9 .THE NINETEEN (19) WELDS HAVING INDICATIONS NOT INDICATIVE OF IGSCC OR NOT LOCATED IN THE HAZ 4 OtlE HUNDRED PERCENT (100k) 0F THE REMAINIflG STAINLESS STEEL RHR SYSTEM WELDS 9 FIFiY PERCENT (50%) 0F THE REMAINING 12" AilD 28" RECIRCULATION 1 SYSTEM WELDS STAIflLESS STEEL WELDS IN OTHER SYSTEMS WILL BE EXAMINED IN ACCORDANCE WITH GUIDANCE OF ilUREG-0313, REV.1 AND GPC LETTER OF JUNE 29, 1981 i l l l l l 1 c.
l { l ? FUTURE MODIFICATIONS / REPLACEMENTS l ? 8 MODIFICATIONS AND/OR REPLACEMENTS ARE UNDER CONSIDERATION, { NO FIRM PLANS HAVE BEEN MADE j 8 BECAUSE NONCONFORMING MATERIAL IS UTILIZED AT HATCH UNIT 2, CPC HAS COMMITTED TO PERFORM ALGbENTED INSERVICE INSPECTION PER NUREG-0313, REV 1 GUIDANCE AS DISCUSSED IN THE GPC LETTER DATED JUNE 29, 1981 e WHEN REPLACEMENT IS REQUIRED, GPC WILL USE CONFORMING MATERIAL j AND PROCESSES IN ACCORDANCE WITH NUREG-0313, REV 1 GUIDANCE AS q DISCUSSED IN THE GPC LETTER DATED JUNE 29, 1981 8 GPC FOR W D A TASK FORCE TO ADDRESS IGSCC AT THE TWO HATCH UNITS; THE TASK FORCE IS INVESTIGATING ALL AVAILABLE COUNTERE ASURES TO IGSCC AND WILL RECOMNEND A SOLUTION FOR THE HATCH STAINLESS STEEL PIPE CRACKING PROBLEMS i ) \\ 1 l
~. 3 LIST OF ATTENDEES Name Organization J. A. Edwards Georgia Power Company Len T. Gucwa Georgia Power Company Max Manry Georgia Power Company C. Y. Cheng NRC/MTEB P. C. Riccardella Structural Integrity A. J. Giannuzzi Structural Integrity M. R. Hum NRC/MTEB George Johnson NRC/MTEB W. H. Koo NRC/MTEB J. E. Charnley NUTECH J. E. Wilson TVA G. J. Pitz1 TVA Arthur Busiik NRC/RRAB Doug McCusker Georgia Power Company R. K. Godby Georgia Power Company Dick Clark NRC/0RB#2 Davis Ptcairn NUTECH J. M.rk Dvais Southern Company Services James M. Agold Southern Company Services M. Bel ford Southern Company Services Frank Witt NRC/CMEB B. R. Crowley NRC/R:II . A. P. Herdt NRC/R:II G. W. Rivenbark NRC/DL B. D. Liaw NRC/MTEB W. S. Hazel ton NRC/MTEB l t n}}