ML20244C367

From kanterella
Jump to navigation Jump to search

Summary of 830601 Meeting W/Util in Bethesda,Md Re Util Evaluation & Repair of Cracks in Weld Area of Reactor Heat Removal & Recirculation Sys Piping.Supporting Documentation & Viewgraphs Encl
ML20244C367
Person / Time
Site: Hatch Southern Nuclear icon.png
Issue date: 06/20/1983
From: Rivenbark G
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
TAC-51407, NUDOCS 8307070590
Download: ML20244C367 (64)


Text

.

  1. pw C Aiven bctrk o.

UNITED STATES -

[

3 NUCLEAR REGULATORY COMMISSION

%(

[~/ $' o p

-3 l

Wi&4 tNGTO N, O. C. 20555 1

k

of June 20,1983 f

Docket No. 50-366 i

\\

_bl LICENSEE: Lorgia Power Company FACILITY: Hatch Unit No. 2

SUBJECT:

SUMMARY

OF JUNE 1,1983 MEETIllG WITH GEORGIA POWER COMPAfiY (GPC) CONCERNING CRACKS IN HATCH UNIT 2 PIPING j

i The NRC staff held the subject meeting with GPC representatives in Bethesda, Maryland..GPC made a presentation to the staff in which it discusced its c4 evaluation and repair of cracks discovered in weld areas of the riatch Unit 2 Rear: tor Heat Removcl and Recirculation systems piping. A copy of the q

slides. used by GPC in its presentation is attached as Enclosure 1.

A meeting attendance list is attached as Enclosure 2.

(

?h duh'k ueorge Rivenbark, Project Manager r

Operating Reactors Branch #4 Division of Licensing 7

Enclosures:

As stated

~

cc w/ enclosures:

See next page j

i

)

l i

l I

l 4

a

-.,. _. ~ _,.... _, _,,,.

~.

I

__A

p,,

u,.;-

e

-4..

e q

}i r N

MEE11NG

SUMMARY

DISTRIBUTION l

i licecsee: Georgia Power Company 1

  • Copiec also se.nt to those people on service ('cc) list. for subject plant (s).

Docket File 9,..

NRC POR L PDR ORS #4 Rdg.

t Project Manager -GRivenback f

JStol z EGrimes '(Emerg. Preparedness only)

' ' EL D O

.NSIC ELJordan, IE J

. d!! Taylor !E ACRS,(10)

NRC ' Meeting

Participants:

Cch^ng 11 Hun GJohnson WXoo ASuslik-OClark FWI tt BCr6wley AHerdt j

P,0Liaw UHazel to n t

e 4

____._______a_._.-____

y[ y.

n.

ce

,c

'p l r,;,.;

(:-

l.

f fJctoso.4E

1..

r,,.

-e a s

. AGENDA 1

[',,

- as

'i<

M_ ARCH UNIT'2 RFCIRC & RHR IGSCC Ai4ALYSES/ REPAIRS MEETING

/

Bethesda, Maryland.

-( -

. June 1, I983

-(r 1)

INTRG3UCTION 2)'

NISERVICEINSPECTION o

'I

'A.

SCOPE OF EXAMIrlATIONS

/

B.

RESULTS C.

EXAMINATION METHODS VAL 10ATI0tl u

3)

INVESTIGATION INTO THE CAUSE OF CRACKING' A. ' BACKGROUND 3.

THE INVESTIGATION

,C.

SUMMARY

OF CAUSE OF CRACv,1NG INVESTIGATION '

1 y

4)

AtlALYSES AND REPAIRS l

5)

FUTURE'lilSPECTIONS 6)-

FUTURE. MODI FI CATIONS / RE PLACEMENTS.

7)'

SUMMARY

'AMD CONCLUSIONS 1

g 1

i

'l LT::~_-

~

'^'

c

rp i

j.

w y

)

l SCOPE'0F EXAMIrlATIONS'

{

RECIRCULATIOff SYSTEli 1

- ASME CATEGORY B-F WELDS EXAMINED:

12" - 5 welds 28" ' - I wel d-y 1

Total - 6 welds

'l

---_E_ CATEGORY B-J WELDS EXAMIflED:

ASM

.4" -;4'. welds 1

6" - 2 welds 12" - 41 ' welds '

I 22"

.16 welds 1

28" - 33 welds Total - 96 welcs

[

' TOTAL. NUMBER OF RECIRCULATION SYSTEM UELDS EXAMINED:

102 'wel ds l

RHR SYSTEM' ASME CATEGORY B-F-WELD 3 EXAMIll_ED,:

i 20" - I weld 24" - 2 welds Total - 3 welds 11

'ASME CATEGORY B-J WELDS EXAMINED:

20" - 2 welds 24" - 6 welds Total - 8 welds TOTAL NUMGER OF RHR SYSTEM WELDS EXAMI? LED:

l 11 welds RWCU SYSTEM ASME CATEGORY B-F WELDS EXAMINED :

I 1

6" None, no t apolicable Total - None, not applicable ASME CATEGORY 8-J WELDS EXAMINED:

6" - 5 welds Total - 5 welds TOTAL RWCU SYSTEM WELDS EXAMINED:

5 welds

[

.s lp a.

' SCOPE OF EXAMINAT!0tlS (CONT.')

1 TOTAL NUMBER OF RECIRCULATION, RHR ; AND RWCU WELDS EXAMINED:

a 118 welds *

-4 1

I l

j'
  • This number equates to 85.5F. of all stainless steel welds in the Class 1 portions of the Recirculation, RHR, and RWCU systems l

1 I

j l

4 l

i l

)

o

s+

p.

, j l. [

.=

9

, i l

i

, s t'

STAINLESS' STEEL PIPING UT EXAMINATION RESULTS H

WELD SIGNIFICANT

' WELD-No.

WELD TYPE FAB.

SRI

%C INDICATIONS

% THRU-WALL (MAXY.{

~ RECIRCULATION SYSTEM-i 2B31-1RC-12AR-F-1

'BC-P

,FW 1.11

.065 None j

-2 Y-E' SW 1.44

.065 360* Inter., Pipe Side 25%

-31 E-P'

.SW 1.53

.065.360*' Inter., Pips Side 10%

1

-4' P-SE FW l.30

.065 None

-- SE-N.

SN'

.Not Examined ~

2B31-1RC-12AR-G-l' BC-P FW

~ 1.11

.075 None 1

l

-2 P-E' SW l'.46

.075 360 Inter., Pipe Side 14%

I 1

-3 E-P SW 1.56

.075 360* Inter., Pipe Side 15%

I i

-4 P-SE.

' FW 1.33

.075 None l

1

-5 SE-N-SW Not Examined j

~ 2B31-1RC-12AR-H-1 Red-P FW 1.15

.075 None l

l

-2 P-E SW 1.55

.075 360* Inter., Pipe Side 10.';

)

(

-3 E-P SW 1.65

.060 360* Inter., Pipe Side 300

-4 P-SE PJ 1.46

.060 None i

~5 SE-N SW Not Examined l

2B31-lRC-12AR-J-l BC-P FW l.07

.065 None I

-2 P-E SW l.45

.b65 360* Inter.. Pipe side 233

-3 E-P SW.

1.56

.065 360* Inter., Pipe Side 20%

-4 P-SE FW l.30

.065 360* Inter., Pipe Side 28%

i Not Examined l

-3 SE-N SW 2831-1RC-12AR-K-1 BC-P F'. !

1.05

.070 None

-2 P-E SW l.45

.070 360* Inter., Pipe Side 19 *,

-3 E-P SW l.45

.070 360* Inter., Elbow Side 6%

i

~4 P-SE TW 1.27

.070 None

-5 SE-N SW Not Examined

  • if;

'V l

. w i.::,:

9 3

.w,.

....;. m

.w -

e-bo' -.

3 h

FD'V

.t

, :/

t s ',

i, -

.3; c

?L

'hy' l'

'i' i

WELD' STONIFICANT.

-l h4 i

' VELD'NO.'

WELD TYPE FAB.

SRI

%C INDICATIONS'

% THRU-WALLOtA.'d 4.

RECIRCllLATIOS SYSTDt - (Continued) d 2831-lRC-12BR A-1 BC-P FW 1.04

.060 Mone i

\\ t,

. g.

.-2

-P-E SW 1.40

.060 None e

-~

,q

-3 E-P.

SW 1.44

.060 360* Inter., Pipe Side.

25%

-4.

P-SE

FW 1.21

.060 None i

-5 SE-N SW.

Mone L2B31-1RC-12BR-B-1 BC-P FW 1.06

.070 Eone,

-2'

.P-E SW

1. 4 4 ' -

.070. 360 Inter., Pipe Side 26%

-3 E-?

SW.

1.51

.070 360* Inter., Pipe / Elbow 22%

s Sides

-4 P-SE FW 1.26

.070 '360* Inter., Pipe Side 23%

-5

.SE-N SW None

.t,

-.2 B 31-1RC-12 B R-C-1 Red-P RJ 1.13

.065 None

-2 P-E SW 1,53

.065 360* Inter., Pipe Side 23%

-3 E-P SW 1.60

.060 360* In:er., Pipe Side 30%

-4 P-SE FW 1.38

.055 360* Inter., Pipe Side 32%

-5 SE-N SW None j

2831-1RC-12BR-D-1 BC-P FW 1.10

.060 None

-2 P-E SW 1 44

.060 360* Inter., Pipe Side 14%

1

-3 E-P SW 1.53

.060 360* Inter., Pipe Side 17%

-4 P-SE FW 1.31

.060 None

{

-5 SE-N SW None 2B31-1RC-12BR-E-1 LC-P FW 1.11

.060 None

'I

-2 P-F.

SW 1.43

.060 None I

1

-3 E-P SW 1.49

.060 360* Enter., Pipe / Elbow 22%

i Sides

-3A P-P FW Not Calc.

360* Inter., Pipe Side 21%

i I

l l

s..Ly s&k>

  • -wr z

.s.

s.

t-0

e

's j

t: JJ c

i i

f e

." h

? J.

s3

.C

' 3 "r

\\'

e WELD SIGNIFICANT WELD'NO.

WELD TYPE FAB.

SRI

%C I:tDICATIO"5

% THRU-WALL (MAX h.ECTRCULAT10 S

  • STEM. (Continued) h

-4

'?-SE FW 1.29

.055 360* Inter., Pipe Side-13%

j.

-5 SE-N SW

-- JNone.

2B31-1RC-22AM-1

' C-P SW 1.16

.048 Parallel.to weld.

'C-42%.

Cap 53"L & 7 1/2"L P-14%

Pipe 25 1/2"L & 9"L 4,

-2

'P-CR SW 1.13

.056 Shallow indications in the RAZ called inside j

geo me try. CPC to re--

examine next refueling outage.

j-

-3 CR-P SW 1.07.

.056 Shallow indications in the RAZ called inside geometry.

GPC to re-examine next refueling

- /

outage.

-4

-?-C SW 0.96 054 Parallel.to weld, Pipe

'19t' 60"L.

2B31-1RC-22BM-1 C-?

SW 0.96 0'S ' Parallel to veld, Cap C-16%

25'1/2"L & 5 1/2"L, Pipe P-40%'

k 27"L.

2 P-CR SW 1.13

.056 Shallow indications in the RAZ called inside

~

geometry. CPC to re-examine next refueling

outage, i

-3 CR-P SW 1.10

.056 Shallow indications in the HAZ called inside geometry. GPC to re-I examine next refueling outage.

~

-4 P-C SW 0.96

.043 360* Inter., Pipe / Cap P - 3 7 ';

S id e s C-300 2831-1RC-22AM-1BC-1 P-BC SU 0.98

.060 Shallow indications outside the HAZ.

GPC to re-examine next refueling outage.

-1BC-2 P-RC SW 0.98

.060 Shallow indications outside the HAZ.

GPC to re-examine next refueling outage.

I 4

I

04

's j

y a

o 4

j l

7

,u WELD SICMIFICANT i

. ' !. o WCLD NO.

WELD "tPE F/.B.

SRI

%C INDICATIONS'

% THRU-WALL (MA.V s.-

  • ; RECIRCLtL ATION SYSTCt (Continued) h-i 2831-1RC-22AM-3BC-1 P-BC SW

'1.01

,060 Shallow indications outside the HAZ. GPC to re-examine next refueling outage.

L 3BC-2

.P-BC SW 1.01

.060 Shallow indications p.i.

, outside the RAZ.

CFC to re-examine next refueling outage.

)

2B31-1RC-22BM-13C-1 P-SC SW 1.01

.060 Shallow indications outside the RAZ, CPC to re-examine.next.

refueling outage.

1EC-2 P-BC SW 1.06

.060. None 2B31-1RC-22BM-3BC-1 P-BC SW 1.03

.060. Shallow indications cutside'.the RAZ.

CPC to te-examine next refueling outage.

3BC-2 P-BC SW 1.02 060 Shallow indications outside the RAZ.

GPC i

to re-examine next refueling catage, 2031-1RC-28A-1 N-SE SW None 2

SE-P FR 1.08

.045 Hone

-3 P-E SW 1,46

.060 Parallel to weld,-Elbew 12T; Side-5 1/4"L.

4 E-P SW 1.35

.060 360' Inter., Elbow Side 17T 1

-5 P-T FW 0.96

.062 None

-6 T-P SW 0.92

.062 Shallow indications in

-l the FL\\Z called inside

+

geometrv.

CPC to re-examine next refueling outage.

-7 P-E SU 1.30

.057 360 Inter., Pipe / Elbow P-3*

Sides E-4 l:

-8 E-V FW 1.03

.057 None

-9 V-P FW 1.01

.045 None

.. w..s

- ~ + r

^

I 9

4 WELD SIGNI'IICANT WELD No.

t' ELD TYPE FAB.

SRI

_%C INDICATIONS

  • TH RU-WA LI. f!!.\\

\\

_ RECIRCULATION SYSTD1 (Continued) 2'd31-i r,C-2 8 A-10 P-E SW l.46 056 Parallel to weld, ?ipe 10%

4 Side - 1 1/L"L

-11 E-?e FW l.03

.056 Mono t

-12 Pu-P FW l.13

.041 None 1

-13 P-V FW

'l.03

.041 Mone

-14

.V-E FW 1.07

.058 None.

{

-15 E-P-SW l.40

.058 Shallow indications in the RAZ called inside geometry.

GPC to re-examine next refueling outagd.

-16 P-T SU 1.25

.062 Shallow indications in the RAZ called inside g eome t r't.

GPC to re-examine next refueling outage.

-1" T-C SW l.09

.062 None

-18 CR-Red S'.'

1.0;

.063 None 2B31-1RC-283-1 li-S E SW Set Exaniaed 2

SE-P FW l.01 045 None 0

3 l

3 P-E SW l.28

.060 360* Inter., Pipe Side 15 ',

j

-c E-?

Su 1.21

.060 Shallow indications in l

the RAZ called inside l

geomecry.

CPC to re-l examine next refueling outage.

-5 P-P FW 0.91

.045 Ncne

-7 P-E SW 1.29

.057 360* Inter., Pipe Side 13l;

-8 E-V FW l.37

.057 160* Inter., Elbe'.' S iie 7'

-9 V-P FU 1.01

.045 Sone

-10 P-E SW l.41

.056 360' Inter., Pipe / Elbow P-197, j

Sides E-20 !l,

{

i

~

(

L

f

\\;,;

_r.

-a n...

,t

/

q' 4

'C WEi.D '

SIGNIFICANT C

WELD NO.~

!!' ELD TYPE FAB.

' SRI

~%C I!!DICATIONS 7: TMP.U-WALL D!A7 is;

C RECIRCULATION SYSTCt'(Continued)' '

ll

-11.

C-Po FW l.02

.056 None

,ic

- e

-12 Pu-P FW l.13

.041 Mone

!i

'h

-13

'P-V FW 1.03

.041 Shallow indications in I

the HAZ called inside geometry.

CPC to re-4 y

examine next refueling outage.

-14 V-E FW

-1.05

.056 None

-15 E-P SW l.32

.056 360* Inter., Elbow Side 23 *;

o

-16.

P-T SW 1.24

.062 Shallow indications in the HAZ called inside geometry.

GPC to re-examine next refueling outage.

-17 T-C SW 1.0S

.062 Mone

-18 C-Red SW 1.03'

.063 Mene 2831-lR C-l. AA-1 BC-C FS.'( ? ) --

None o

-4AB-1 BC-C FN(?)

None

-4BC-1 BC-C FW(?)

None

-4BD-1 BC-C FW(?) --

None 2D31-1RC-6A-1

-P-FL FW(?) --

None

-6B-1 P-FL FW(?) --

None

]

(

RHR SYSTCt j

t

'2 E11-lRH R-20-R S -1 T-P FW l.33

.062 Shallow indications in

{

the HAZ called inside geometry.

CPC to re-examine next refueling outage

-2 P-K F'i 1.61

.056 360* Inter., Pipe Side 13 *; '

~3 C-P FW l.56

.056 360 Inter., Elbow Side 14.;

2 Ell lRRR-24A-k-10 P-C FW 2.57

.060 None 1

s a

f

. 7',

)

WELD SIGNIFICANT WELD MO.

WELD TYPE FAB.

SRI

%C I'!DICATIOMS

% THRtf-WALLO!AX RRR SYSTCt (Continued) 2 Ell-1RHR-24A-R-ll E-P FW l.69

.062 None

-12 P-E FW l.70

.062 None i E-T

.FW l.74

.060 None-o g

2 Ell-1R.HR-24B-R-10 P-E

'FW 2.58-

.060 None

-11 E-P FW 1.68

.062. Parallel to weld, Elbow 13%

i Side 1-5/8"L, 2-10 9/16"L.

13%

-12

'P-E FW l.70

.062 Shallow indications in the RAZ called inside geometry.

GPC to re-e:: amine next refueling outage.

-13 cW l.74

.060 None Ee 4

RWCU SYSTEM 1.24

.064 Not Esamined 2031-1RWCU-6-D-1 BC-P

-2' P-E 1.92

.064 None j

1 I

1.82

.064 None d

-3 E-P l

1.22

.064 Not Examined j

-4 P-P-1.80

.064-None

-5 P-E l

l

-6 E-P 1.98

.064 None 1

1.63

.064 None

-7 P-V

-8 V-P 1.58

.064 Not Examined

'1.42

'.064 Not Examined

-9 P-E

-10 E-P 1.40

.064 Not Examined

-11 P-P 1.02

.064 Not Examined

1. 4 '.

.064 Not Examined

-12 P -i; 1.46

.064 Not Examined

-13 E-P 1.34

.064 Not Examined

-14 P-E 1.33

.056 Not Examined

-15 E-P l-i L___________.

7

. E

'7 1

4 g-l5 IIELD SIGNIFICANT

' I

,s...

l C. e.

'11 ELD MO.

tJELD TYPE FAB.

SRI-

'%C

~UiDICATIONS

'% THRU-WALL (MAXJ

)

' RUCU SYSTEM (Continued) ~

i

~16

.P-V

~1.23

.045 Not E:<amined

,j'

}

j/

^ 17-V-P 1.31

.063-Not E:<amined

,.}

i;

-17A.

PX-P 1.30-

.063 Not Eiamined 1

-18 P-V 1.11-

.061 Not E:<amined

.l 4

a I

i 1

- i i

iKEY-BT - Field Wald CR - Cross IJ

.'SU - Shop Weld PX - Penetration

.P'

, Pipe.

N - Nozzle Fu -' Pump E - Elbow j.

SE - Safe End FL - Flange T - Tee SC - Branch Connection q.

' Red Reducer C - Cap V - Valve-

' i E:< ample : Under " Weld Type" column, P-E is the abbreviation for a pipe-to-elbow.

- i weld.

1 j

i

('

b

, -s j

r s

N' STRUCTURAL-INTEGRlTY ASSOCIATES J

. 31$0 ALMACEN EXPWYJ SulTE 226 e SAN JOSE. CA 95t18 + (408) 978 8200'

'j j-gNh)

-l l

ASSOCIATES:

i

, T L Gtneta i

i$AS"

'CAUSE OF CRACKING INVESTIGATION P.C. RiccAnocLLA

. COMPARISON OF HATCH UNIT'2 WITH UNIT 1

.l l

-AREA $ INVESTIGATED i

.e FABRICATION HISTORY i

e STRESSES - APPLIED AND RESIDUAL-i i

e OPERATING HISTORY

- TIME / CYCLES

- WATER. CHEMISTRY 1

i e

INSPECTION RESULTS

]

- CURRENT ISI

- BASELINE RADIOGRAPHY j

l i

l 1

\\

i f

1 9

FQV,Q g. ;,' X,> R W h q QWh T. W STL ;

.3, awe

% )hll h V W s; w

a.

.i

?

4[m%,j)Ql

&upfl 6 l.

[

n

+

m ;.,

,e, y;.

,4-(y; t

v

,I

.r

. g's f%, ' ",-

.D ? u t'

s !/,

1 ' l?.

+

J

..e

%;e i

nl

's

~,

'J_..

W

_. f' l

' j k;A ;f a

. \\.k L,

'k f..,,

',.{ lt. -

l,.

Li, ; 2 ;,.

-l

' ).}

' f 'g,

/.[/. 'hr

.[c

.g(,

,).-

- [ g./. (

,},

.{l N, ; ' ' 7 f,!

' ' k,, l r

t.

a

.+r e

+

..w

,6 t,q s w n.,

v p,.

s.

yg,

..g,

, 7..

o-wr

.rl-p! + '

m' s, y g, g. oCONCLUSIONz h , - m a-3g.,, V i c's ! -fry s -q. i />r.., f ' f -1 i c' a...(y, - w i c. 3 -(- 'E ~ V ,y. 7 q( .Q } (t - i ,t in yj 1 y- . #c n, A. ( i .m omi

g y-

.y-c%, y..:q 'c e 10NLY(SUBSTANTIVE DIFFERENCE - WELDrPREP/C0dNTER-l 4, +,. ,, 4 m.p "w BORELINHIGSCC SUSCEPT,I,BLE HEAT.' AFFECTED ZONE -IN - w o UtRid,SHbEWELDS 1 [a " N a < Q. ~ y gn m s ;I. i ,u a\\i m L , D :' ,I/ - f. s : ..' g, N 1 s f +

q-COINCIDES-WITH MAJ0RITY:0F-INDICATIONS' l

a.,a,g , m/, +

p,,

., y, .~ i nA , t. 3'qim' s .aj -l,f[ t v, - - - PRODUCES' STRESS. CONCENTRATION WHIf/4 ;C00.LDi ..q .t ,u 2 ..,t g n- .CAUSE? ACCELERATED CRACKING y 8 a

c y

- \\ m y+ Qi,,O d. i ,. t.b. h . vu v .,[ .' } d ' ')'. &.p "g; jy PRgUCES UT REFLECTOR IN lTSELF WHICH,MUST BE j W~ j yV j $ DISTINGUISHED FROM lGSCC^ o 4- ?- g .o , :, j ' e t 9-g. ss 4 \\., !

  • e wb

... q -j - .s j s ,f q. ? -l {, 1 l y <. (, i ( t-'; ,t u 'q ,py g ,p g, s . :l \\~ '(

I

( g . r /-- > b ( h g ce'. i' -, ;.y, t -X ok i ..f .i Vk J ==1_. u E J D )( 6 (. F m m,. q i 1 j I l 1 I FABRICATION HISTORY e COUNTERBORE EFFECT e CARBON CONTENT OF PIPE MATERIAL e WELDING, WELD REPAIR, GRINDING 4 o FIELD STORAGE RECORDS I 4 l l 1 l l l l 3 -j f u ,5b l m-3 l {; [ f I i. Stainless Steel Pipe Fabrication Information FABRI-WELD WELD-CATION WELD PROCEDURE FILM 4 LINE - SIZE TYPE SHEET NUMBER SPEC. LOCATION '~ j i - B31-1 RC-12 B R-A FW B-10 15GE 44194-0060 B31-1RC-12BR-A-2 SW R D-2-B4 8 102 44303-0029 B31-1RC-12BR-A-3 SW RD-2-B4 C 102 44303-0029-i B31-1 RC-12 B R-A-4 FW B 16GE 44194-0065 ~ B31-1 R C-12 BR-A-5. Comb. B31-1 R C-12 BR-B-1 FW B-11 15GE 44194-0061 'l B21-1RC-12BR-B-2 SW RD-2-B5 B 102 44303-0030 ' B31-1 RC-12 BR-B-3 SW RD-2-B5 C 102 44303-0030-1 B31-1RC-12BR B-4. FW B-16 16GE 44194-0066 831-1RC-12BR-B-5 Comr. B31-1RC-12BR-C-1 FW B-12 15GE 44194-0062 B31-1 R C-1~2 BR-C-2 SW R D-2-B8 B 102 44305-0033 B31-1RC '12BR-C-3 SW RD-2-38 C 102 44303-0030 B31-1 R C-12 B R-C-4 FW B-17 16GE 44194-0067&68 B31-1 RC-12 BR -C-5 Comb. l B31-1RC-12BR-D-1 FW B-13 15G E 44194-0063 B31-1 RC-12 B R-D-2 SW R D-2-B6 B 102 44303-0031. l 831-1 R C-12 B R-D-3 SW RD-2-B6 C 102 44303-0031 B31-1 RC-12 B R-D-4 FW B-18 16GE 44194-0069 B31-1RC-12BR-D-5 Comb. B31-1 RC-12 B R-E-1 FW B-14 15G E 44194-0064 B31 1 RC-12BR-E-2 SW RD-2-B7 .B 102 44303-0032 B31-1RC-12BR-E-3 SW RD-2-B7 C 102 44303-0032 B31-1RC-12BR-E-4 FW. B-19 16GE 44194-00 0 - B31 -1 RC-12 BR-E-5 ComL

J l

B31-1 RC-12 A R-F-1 FW A-10 15G E 44194-0020 B31 -l h C-12 A R-F-2 SW R D A 4 B 102 44303-0023 i B31 -I RC-12 A R-F-3 SW RD-2-A4 C 102 44303-0023 B31-1 RC-12 AR-F-4 FW A-15 16G E 44194-0029 i B31-1 R C-12 AR-F-5 Comb. 831-1 RC-12 A R-G-1 FW A il .15 G E 44194-0022 - B31-1 RC-12 A R-G-2 SW R D A5 8 102 44303-0021-j B31 -1 RC-12 A R-G-3 SW R D A 5 C 102 44303-0021 t331-1 R C-12 A R-G-4 FW A-1G 16GE 44194-0030 i B31-1 RC-12 A R-G-5 Comb. Li N' i J c JWELD. PREP DESIGNS-FOR HATCH' i t RECIRCULAT10N SYSTEM PIPING H '.o 4 ) - l: .j o .g. #....,.q r u t': rr. " i. *,.,,;4 ggl4 1.

t.9

.c , I'

f.,": #f,fhif

[', . r,.. . g ; -) f' ] .,l< ,p .,.-lj k <p g g,,' I;l..] L 1 2n v :.. n s=ny. l' o 4*. \\ p p , = 4 ]g ~ 4 8 ae, .045 4m* O I c .,,,o. . ; ; a R*, n

  • e*

.t.. 'r 41%- 1 WELD PREP'FOR UNIT 2-SHOP WELDS WELD PREP FOR UNIT. 2 SHOP WELDS .i (SAW) -(RISER &' DISCHARGE PIPE) (GTAW, SMAW) -(END CAPS), 1 I [ 3.,..,.... :...a ' 'h'.' d! y. a-- . gw ( i. e ^ R. -;- -l \\ y , p .,...i /.2.' +.!.* l 3' (. r,1..u. { ~- n .g e ~ .l 4 /' [

{i$

[- } 's n '}. j, lll5 no. / -[. !i.D f I h, 1 u 4 1 1 I

WELD PREP FOR UNIT 1 SHOP WELDS WELD PREP FOR UNIT 1 AN 2 FIELD WELDS s

(SAW) 5 I s 4 g L i.11 11._'. j 4 4 1l

SUMMARY

OF RECIRCULATION SYSTEM PIPING CARBON CONTENT DATA WELDS IN CATEGORY l

HATCH UNIT 1 HATCH UNIT 2 RISER M A NIF.

SUC/DlS RISER M A NIF.

SUC/ DIS j

)

<.035

.035 - 0.499 3

10 i

.05-0.599 6

8 23 2

5 22 l

f

.06 - 0.699 2

8-8-

24 8

.12

.07

.08 32 14 40 16 31 40 16 34 l

l l

l j

s

.6 m _

a.-

- l_

'0

t i

I

?

c l

WATER CHEMISTRY q

1 e

AVERAGE CONDUCTIVITY LOWER IN UNIT 1 THROUGH 1981 I

1 i

e AVERAGE CONDUCTIVITY LOWER IN UNIT 2 IN 13 2 AND 1983 e

ONLY MAJOR CHEMICAL TRANSIENT REPORTED IN UNIT 1

l e

u l

-]

s l

l 4

7 ep i

!.(

\\

)

l l

1 Comparison of Baseline Radiography to Current Ultrasonic

. Results for Unit 2 j

LINE - SIZE

. INDICATION - SIZE REMARKS l

I 12 BR A-1 Nothing.

Counterbore is 1/4" from root on pipe side. Branch i

connection has counterbore' i

1" away. No grinding.

j ut 1

12 BR A-2 Nothing.

No grind!ng. Counterbore

)

1/4" from root edge of weld.

J

)

12 BR A-3 25% just adjacent to Counterbore 7/16" from root J

root. Not in counter-of weld. No grinding. Smooth

.]

bore. Low DAC ~40%

transition on elbow side.

(pipe side).

j i

12 BR A-4 Counterbore geometry Minor counterbore 3/8" from (1/2" from weld root),

root on pipe side. Smooth on safe end side.

12 BR B-1 Root geometry only.

Minor counterbore 3/8" from j

root on pipe side. Minor counterbore on branch 9/16" from root.

12 BR B-2 26% on pipe side ~1/S" Counterbore 3/8" on elbow, from root.

1/4" - 5/16" on pipe (no grinding).

]

Gradual counterbore, not sharp transition.

12 BR B-3 22% in pipe side and 21%

Counterbore sometimes tapered j

on elbow side. 1/16" sometimes sharp 7/16" to 1/4" from weld edge on elbow.

from weld on pipe side. Gentle 1/2" from - weld on pipe -

taper on elbow side. No grinding.

side.

j 12 BR B-4 23% on pipe side. 3/4" Hand prepped. Possible evidence from root of weld.

of repair. No real counterbore.

D AC ~85-40%.

No grinding after welding. Trans-Ition is in the 3/4" to 1" distance from weld root.

1 12 BR C-1 Root geometry only Minor counterbere 3/8" from root on pipe side. No counterbore on branch.

12 BR C-2 28% on pipe. side or 1/4" Counterbore 3/8" - 1/2" on pipe from toot of weld, side; 9/16" on elbow side. More gentle on elbow side. Elbow side may have been hand ground. No post weld grinding.

8 6)

)

9.. w i

I a

i s-i b

Ultrasonic Indications For Each of the Stainless Steel Pipe Systems Number of Indications -

No. of Welds Localtion of Indication *

'l Shop Field Weld System Welds Welds Root Counterbore HAZ Othert Riser 18/20 4

10 6

4/20 2

2 i

Enri Cap" 4/4 1

1 I

- 20"RHR 1/3 1

24" RHR 1/8 2

(

28" Recire 7/15 1

2 6

1/18 l

1-i t Outside expected HAZ i

Number of ir.dications may exceed total of welds because of cracking in

)

both H AZ's,

  • Incomplete data 1

0 I

9 f[,>

i d-.?

I g

~

l.

l 4

STRESSES i.

~

t e

NOMINAL STRESSES COMPARABLE o

STRESS CONCENTRATION EFFECT OF COUNTERBORE-RESULTS IN 0,3 TO 0,6 INCREASE IN STRESS RULE INDEX I

e STRESS CYCLES PER YEAR AT TWO UNITS COMPARABLE e

IGSCC DAMAGE INDEX RESULTS ON TWO SAMPLE WELDS - UNIT 2 HIGHER AT 4 YEARS THAN UNIT 1 AT 7 YEARS (CONSIDERING EFFECT OF COUNTERBORE) l l

~

l 1.

10 s

i

/

_a

y q

SUMMARY

- OF ICSCC STRESS RU.LE INDICES FOR RECIRCULATION SYSTEM PIPING r

2

?

y a) Original Data i

HATCH UNIT 1 HATCH UNIT 2 SRI RISER M ANIF.. SUCIDIS RISER M ANIF.

SUC/ DIS

< 1.0 4

3 5

4

-1 i

1.0 - 1.2 11 12 15 10 11 17-j 1.2 - 1.5 18 12 21 13 1.5 - 1.8 11 1

9-

> 1.8 1

j

. 40 -

16 31 40 16 34 l

b) Adjusted for Counterbore Stress Concentration HATCH UNIT 1

.l HATCH UNIT 2 RISER M ANIF.

SUC/ DIS RISER M A NIF.

SUC/ DIS

< 1.0 4

3 5

f 1.0 -- 1.2 11 12 15 10 11 I

1.2 - 1,5 18 12 10 (Later) 1.5 - 1.8 11 1

> 1.8 20 40 16 31 40 16 34 i

11 W

___._._____.____J

a _

1 m

+

c;I e.t -

op

.x i

J s

3.

't d

c a.

n s, n..,

.g -

-(

j

u

'I L

' '~

~

.'1

' Estimate.'of Stress ' Concentration L

. Effect 'of. Weld' Cobnterbore -

l t

j

' 7/ t J

ti 1

.i

..c l.

.i.

il b

l]

d/2 D/2 i

'lh l

r 1

D/2 =.7. in'.

d/2 =.65 in.

i l h =.05 in.

m J

r =.015 in, j

. f = -' 012;' SC F 2 2.4 d-

'l J -l~

' ?

I

'hr

.7 P

.j 30 -

4 44 t. 'A>

  • ',. 1, L 4 2

't o.

pg '

., [. ' C ' C "----*, -

t l

t

=

=y a

,, n-g W

C
  • e.:

'--e.

' 5,,, e o r,.. tr.,,,,, :

r, g,;, '

'..o.. g,i

_I

}-

s, - i.

I.

l

.g.

i,

.l -l

g. 1,

l.

=,

j y,'! i \\ i

' l.c c. + -r e g ; i l.[

j-g.; j

,E

.t s ; i-N -- I 1 u

.-.3

,'l (t l - l' I;_r.s.,, u,,,, c.,,,,,

,.l.

} l l l g.

c tt. l l l l l I l ! l l l l

! l gg il I r; i.ar r,

i l i, ; ;, i p., <.

r;l-l 1 i i l i c.i i

i i i i.

5 u

b b

I I I I I

! l

! I l'

l it 0

Os 0;

c3 as cs cs or cs os I&

rid I

i i

l l

'I E

12 l

l l(

)

.]j

-)

b

?.

~

- /

1 y

a a

1 L

l '.;

y 7

bi.r_ -

m..

j

M'

[' s,

,o".

[.,S (~

.s A

i' af

'9' s

4 p!!5 b l

.W Q;

'y,

'ig

[3 i

s v

~

~

%, r.., ' _g. m

.. t e

'I'.'

.s, dia '

SUMM ARY OF-PLANT: OPERATION AL CYCLES.

1.

p f :o.' i TSINCE COMMERCIAL. OPERATION m,

m kl:

A

. H ATCH UNIT - l'-

\\

i.

U

., o.

SCRAMS TO-HOT STANDBY '

COLD SHUTDOWNS o.

1YEARi o

rl 1983:

4 0-I i 1982--

.7-3 j

3 e

l

1981 10

-5

. w.

' :: ).

' 3. -

1980

. 21 3

o V

'1979L.

6.

4 o

a y

.'1978 ~

12-3' ~

, ~{

o 17 5'

E m,

'1977

. (,

1976 32

-1~-

i : :,-

q

-t HATCH UNIT 2 i.)

> YEAR' S' CRAMS TO HOT STANDBY -

- COLD-SHUTDOWNS.

y x.

'1983 0

'I L1982 7-5 1981 6

1

.1980-12 5.

l 1979-8-

3 l

.],j 1

4 'i 4

m.

a

,l J

.13 n

g i

Y

.:t,l '

l o

\\

p_,,, g

?

e

. y +,u w-pn;,;

i 37, c

i-q p gglb

.p t'

t

, A

.q n

y;

..s.

I j

',6 e

x

y '

Ju 1:-~

i.

,: j!

'3

.r

-i r

d r;b i

r 9

M x:

-w 3

- c.

3 2

7-

.g c

i E

i L

O' U'

. m

.c.

i 1

SRI b=1.44, SRI a=1.09

'1' 4 yrs.

-)

a. -

. rv 4 I

- 1.

7 r

i 0

2 4

6 8

10 YEARS OF OPERATION f

J i

i(

IGSCC Damage Index for a Relatively Lightly Loaded i

q High Carbon Riser Weld i

a) No stress concentration in HA'Z, KT=1.0, SRI:1.09 1

b)- Stress concentration in HAZ. KT=2.4, SRI:1.44

-/

j

+

m 1

1

^

e '

+'

.{

.,t

.,u (b)-

m SRiba2.43 1

s r.

1 3

'S

4. yrs y

l I

i xw (a) c 3

t c

w 2 C

-e PIy SRia:1.79 O

'd 7+ years b

\\

.k.

1 1

J s

f f

i l

0 2

4 6

8 10 YEARS OF OPERATION IGSCC Damage index for a Relatively Highly Loadeo High Carbon Riser Weld a) No stress concentration in H AZ, KT:1.0, SRl=1.79 b) Stress concentration in H AZ, KT=2.4, SRI:2.43 15 7#

. t __ _ - --.____.:___-

~

,3l i

T,.

e~Q my_

p

$u

=

,b n.

v l

a lao

~

L

+

\\

s

(!

i

~ '

w

, W, M

E L 3t V

GT NS IV Y l[> g3d P. S o

R N c

D D

=

1 I

LT e

r A A u U L s gN g T U 5"%umN i

g F

PG ER C C.

I

% f-y NE c OR V ~ P C e. A R F y l 7 % e(4v%d P O O O 4 a L sx r4 y ' Y }' ~ ~ l, 1L

r n D _~ Hm I 3E y2g>yl g Id .I ~ w o t, f(f,"N' gs%m g. i m {} ^'. r 3 oc ,h y h. 8 4-gW - a2c %, % e 4s " f,_ f f ps y4v a'",l,Q o fp t ?(V,.8bQ m6A. ep '1 J,k 6 '~ i y p g g Q~ y, f 3 t $s O 2 .i x i A ~ 8 A 2 I r 3 ( , /' A 82 3 r 2 A s s 2 n m 37a c l=,c A ! < 2 e gg8 s@ mn$ ~ ( c l f

-c.,2 s. r . o ::3

.=

D .;l f _ 3~ g*..~ e_ q [y '?, 3 3 3 3 2 4 3 _ w= L a e e e e e e e e g_ ~ p ~b u u-u u u u u u .n l r r r r r r r r e g_ 'i s i i i i i i 'g g g g g g g v i .~ ^ O F ~F F F F F F P a _. h._. c.x __G y;m i d i l f' _r n e ~_ W ~ w, ~ ' ~- _J

~

~ .,~s ^ ~. h ~ t O' O 0 U _y. ~ g 0 0 0 0 0 0 0 0 n 6 6 6 6 6 6 6 6 .~y . -. e 3 - 3 '3 3 3 3 3 3 ~ .w. L ~ o n ej o r' t p i w n-p T i / r a c c. 1 4 1 s .h 4 5 0 '6 5 8 2 e _t 1 1 3 2 4 2 2 _ Q . 'E D p L B - ^t e L-n D A o .:T. i l" l l l l ~ t l l l a a a a a a a a a c n i i i i i i i i i o t t t t t t t t d i n n n n n n n n n t e e e e e e e e l a r r r r r r r r t e e e 'e e e e e b. n f f f f f f f f ..~ e m m m m m m m m ~ i u u u u u u u u r c c c c c c c c O r r r r r r r r i i i i i i i i C C C C C C C C ~ L-T r ~ - - 2 m F G G H B 0 C E e b 2 2 3 3 2 3 2 3 u N R R R R R R R R A A A A B B B B d 2 '2 2 2 2 2 2 2 l 1 1 1 1 1 1 1 1 e W l L. f-;- 2 ' ~ -. c

ftl 0 o b 2 da 3 m ) rew k ero cbil amul r u qA Cl e. I R D. I ( ~ t n n i e g r r r a uh M Ct 1 4 p 0 1 1 ee 6 6 6 lD ba wo l lA o - c s - hwh t ot nrp oG e M Do ft e 0 3 0 8 3 9 8 9 6 6 4 8 o l 6 5 1 9 8 5 1 6 2 6 6 7 ) db 1 1 k rea cerw a bi o raul Ct ql NeA e R g d 5 E( 5 e n t i n l g e b r r a o a rh T M ut Cp e I 1 1 4 1 3 I 1 I 1 1 eD 6 4 7 8 9 7 7 0 9 3 3 0 l 3 3 3 3 3 3 3 4 2 3 3 4 bw aa wl oF l lA s e l ba I I I g I I I I I I I I w 3 3 3 3 3 3 3 3 3 3 3 3 o 6 6 6 6 6 6 6 6 6 6 6 6 l h l t A p eD w a t l n F e I 1 I 1 I I 1 I I 1 I I r 2 7 S 0 5 8 7 0 3 3 4 S r 1 1 1 1 1 2 2 1 1 I uC no i l t 2 3 I a 0 0 5 c 3 4 7 1 3 7 B 1 1 S S R i R R B f r A A A A 8 B B B B 0 0 4 ie 8 8 8 8 8 A 8 8 8 2 2 2 tb 2 2 2 2 2 2 2 2 2 nm R R R eu C C C C C C C C C H H H dN R R R R R R R R a R R R I - l l 1 l l l I l i I l l d 1 1 1 1 1 1 1 1 1 l l l l 3 3 3 3 3 3 3 3 3 l l l e B B 8 B B B 8 B B E E E W 2 2 2 2 2 2 2 2 2 2 2 2

F l l ,1 i l A, l ~+ ^ ; ~ ) ) ~ ~ ~ ~ DRA' DY H NA TW AL M R TR 0 E SE 3 S V G S H O E X T K R I I C T F WD 2 S L A RE R W I C A S P CN E I O S _ R NI AT N HA SR CC I O I E FA IT MI P TE A ES R R RU U JF E TE O D CD S N E A O I Z S C OI RC N iWI S F I N A T N Y ) O T A L AK MA I U HF GC L C ( C AA HR S WN EF P R TE I LI r MOOC V C AO I WO l5 N F T 1 EsPG i C RS N RD A E UY KI l T TL CT A L P E H E CAAI EW M C D AN RI R E RA CL F M E I R U T C AR F R I X EA I LP F BE O AR 4 T N PT EU CO CH AT IW r s ,lll'

>w .j 3 l FRACTURE MECHANICS ANALYSIS h l 8 ACCEPTANCE CRITERIA BASED'ON ASME CODE SECTION XI, IWB-3640 (APPROVED BY MAIN COMMITTEE) O CRITERIA BASED ON NET SECTION COLLAPSE IHEORY WITH SAME DESIGN MARGINS AS CONSTRUCTIONS CODE I. UPPER bound IGSCC FLAW GROWTH CURVE USED (EPRI NP-2472 AND EPRI 2423-LD) e a nutech Y

...~ --( s ) 'i i.- I ~ l ( ] j .1 ) ' FLAW EVALUATION INPUTS j s INPUT SOURCE WHERE USED -) 1 PRIMARY STRESS STRESS REPORT ALLOWABLE'a/T 1 STEADY STATE APPLIED STRESS REPORT PREDICTED a/T 4 STRESS ALLOWABLE a/T CRACK GROWTH MODEL NDE REPORT PREDICTED a/T i ' CRACK GROWTH LAW EPRI REPORTS: PREDICTED a/T NP-2472.AND NP-2423-LD WELD RESIDUAL STRESS NUTECH STANDARD CURVES PREDICTED a/T (BASED ON SEVERAL EPRI REPORTS) l t N l. 1 I = _ _ _ _ _ _ -.

n 7 y i / 6 r 3 j l FLAW EVALUATION METHODOLOGY l i I 8 SE' LECT' HIGHEST' APPLIED STRESS IN SIZE OF PIPING BEING EVALUATED l 8 USE ASME SECTION XI TABLES OR. SOURCE EQUATIONS TO DETERMINE END OF INSPECTION INTERVAL " ALLOWABLE" ] FLAW SIZE-8 DETERMINE FLAW SIZE AT BEGINNING OF CYCLE FROM UI DATA l' DETERMINE CRACK GROWTH USING UPPER BOUND CRACK GROWTH CURVE TO IDENTIFY " CALCULATED" END OF CYCLE FLAW SIZE 8 COMPARE " CALCULATED"'TO " ALLOWABLE"'CRACx' DEPTH AT ENo / OF CYCLE TO DETERMINE THE NEED'F0R REPAIR 4 'i J V

l m i L PROPOSED TABLE IWB 38411 g -ALLOWABLE END OF INSPECTION PERIOD SIZE FOR' CIRCUMFERENTIAL FLAWS NORMAL CONDITIONS Ratio of Length to Circumference (1) Pm + Pb 0.1 0.2 0.3 0.4. 0.5 or more Ratio of Flaw Depth toThickness (2) ] 1.5 (3) (3) (3) (3) (3) 1.4 0.30 0.20 (3) (3) (3) 1.3 0.48 0.38 0.28 0.18 0.18 l 1.2 0.66 -0.56 0.46 0.36 0.26-1.1 0.73 0.63 0.53 0.43 0.33 1.0 0.75 0.70 0.60 0.50 0.40 0.9 0.75 0.75 0.66 0.56 0.46 0.8 0.75 0.75 0.72 0.62 0.52 0.7 0.75 0.75 0.75 0.68 0.58 { 0.6 0.75 0.75 0.75 0.73 0.63 f (1) Pm = Primary Membrane Stress Pb = Primary Bending Stress { Sm = ASME Code Design Stress at Temperature j (2) Crack Depth = a for a Surface Flaw ( 2a for a Subsurface Flaw l (3) IWB 3514 3 Standards Govern O 1 y l \\

[ t u .4 y y 3- /10 3, o' - P. : Ford, 1.5 ppm 02

0 - R. Horn,.0.2 ppm 02 t

E10 k / i 1. 1 I ~ da/dt = 1.843 x 10-12 4.615 K j. i . a: Upper Bound .j / 3 l g .j r3 '30.f. . Lower Bound j Ij / a I i I -i -l

10 8 -

1 10' 20 50

100 1000

'f Stress Intensity Factor (ksi 4) TYPICAL IGSCC CRACK GROWTH DATA v (WELD-SENSITIZED 304SS IN BWR ENVIRONMENT) ~" n h q w j ^ J ]w,.. j o

i .l - f -#-. .1 \\ i 1 'd- .E~ 35 I(0 oo. io .3 82 B 2 } 1 i 1 . TYPICAL RES! DUAL STRESS PATTERNS j FOR WELDED STAINLESS STEEL PIPE i O j A___._.____.___________. a

D ' r +35- +3 .= +10 - - - - ~ ~ _E. g 0_ 10 - ODl w 6 l 30 l l .m. __________ I I 1 38 i l I AXIAL RESIDUAL STRESS PIPE DIAMETER OF 10" TO 12" ) .l I l l 1 Ilutech l l e uma_m_.._..____ .O'. 15

y9, :;j;p,, s ' 1,

6 h '-

l y e.. u. S fS,p e . g., 1 b L l: f t: COMPARISON OF EPRI RECOMMENDED AXIAL RESIDUAL STRESS DISTRIBUTION AND DISTRIBUTION trt1LI7.ED IN ANALYSIS (t > 1.0 inch) j, i-I' t l EPRI +12 n g l \\ i \\ I. 4 e. i \\ .5 g __.. _4s. 19._: __.... .3 _ / o .u \\ l 4 \\ CURVE USED IN ANALYSIS \\ i \\ j \\ l l \\ l \\ l \\ _3 0 _ __ __ _ J 1 l i l l l i l l j

K3 i a l1 '( g FRACTURE MECHANICS ANALYSIS FOR LIMITING FLAW SIZE CONCLUSIONS REGARDING NET SECTION COLLAPSE ANALYSIS 9 NET SECTION COLLAPSE ANALYSIS GIVES CONSERVATIVE PREDICTION OF MARGIN AGAINST CRACK INSTABILITY FOR AUSTEN! TIC STAINLESS STEEL PIPES 8 FIELD DATA VERIFIES THAT PIPE RUPTURE NAS NOT OCCURRED FOR LARGE CRACKS IN STAINLESS STEEL, IN AGREEMENT WITH PREDICTIONS 8 TEARING MODULUS ANALYSIS FOR CIRCUMFERENTIAL CRACKS IN STAINLESS STEEL PIPE SHOWS NET SECTION COLLAPSE CRITERION IS CONSERVATIVE 6: 9 nut.ec


- 9

c j i' iI f' li; FLAW EVALUATION METHODOLOGY _ I FOR 12 INCH PIPE 8 SELECT HIGHEST APPLIED STRESS IN SIZE OF PIPING BEING EVALUATED (LOOP A, JOINT 13 - 14.9 KSI, 16.6 KSI SM AT 575'F) I FOR 360* INDICATIONS USE SOURCE EQUATIONS'FOR TABLE IWB-3641-1 (EPRI NP2472SY, VOL. If JULY 1982) O CALCULATE ALLOWABLE END OF CYCLE a/T a/T -.41 (NO CREDIT FOR POTENTIAL OVERLAY THICKNESS ADDED TO T) 0 DETERMINE a/T AT BEGINNING OF CYCLE 9 DETERMINE CRACK GROWTH USING UPPER BOUND CRACK GROWTH CURVE TO IDENTIFY " CALCULATED" END OF CYCLE CRACK DEPTH I COMPARE CALCULATED TO MAXIMUM ALLOWABLE CRACK DEPTH AT END OF CYCLE Q

/ ') I FLAW EVALUATION METHODOLOGY r I' FOR LARGE OIAMETER PIPE 8 SELECT HIGHEST APPLIED STRESS IN SIZE OF PIPING BEING EVALUATED 8 USE TABLE IWB-3641-1 TO CALCULATE ALLOWABLE END OF CYCLE a/T a/T =.63 9 DETERMINE a/T AT BEGINNING OF CYCLE FROM ULTRASONIC DATA 4 DETERMINE CRACK GROWTH USING UPPER BOUND CRACK GROWTH CURVE TO IDENTIFY " CALCULATED" END OF CYCLE CRACK DEPTH l l 9 COMPARE CALCULATED TO MAXIMUM ALLOWABLE CRACK DEPTH AT I 1 END OF CYCLE l

p ~ l' ') li FLAW EVALUATION METHODOLOGY l 4 DETERMINE ALLOWABLE CRACK SIZE t CALCULATE CRACK GROWTH 0 COMPARED PREDICTED AND ALLOWABLE CRACK SIZE MAJOR EFFECT OF PIPE DIAMETER IS BUTT WELD AXIAL RESIDUAL STRESS DISTRIBUTION 8 CONCLUSIONS REPAIR OF 12 INCH PIPE FLAWS MARGINAL ACCEPTABILITY FOR END CAP WELD FLAWS ACCEPTABLE FOR 24 INCH AND LARGER PIPE FLAWS i )

e e GENERAL CONSIDERATIONS REPAIR RECOMMENDATIONS i 0 OCCUPATIONAL RADIATION EXPOSURE (MAN REM) 9 IMPACT ON OUTAGE SCHEDULE e REPAIR COST e IGSCC FLAW SIZING CAPABILITIES USING UT METHODS 9 POTENTIAL FOR UNDETECTED AXIAL CRACKS 4 POTENTIAL FOR WELb REPAIR EFFECTS ON NORMAL RESIDUAL STRESS PATTERNS 9 LEAK DETECTION SCHEME

i /" PRELIMINARY DESIGN OF OVERLAY REPAIR 0 DETERMINE RESIDUAL STRESS PATTERN OF WELD GEOMETRY WITH OVERLAY - RESIDUAL STRESS PATTERN CALCULATED AT SMALL WELD OVERLAY INCREMENTS - HATCH 2 OVERLAYS COMPARED WITH THOSE FOR DRESDEN 2 AND VERMONT YANKEE FOR CONSISTENCY 0 CALCULATE CRACK GROWTH WITH OVERLAY IN PLACE - CRACK GROWTM WOULD BE VERY SMALL l - FOR SIZING IT WAS ASSUMED THAT a/t WOULD INCREASE 0 BY 0.1. WITH THIS ASSUMPTI0tl FOR 360 INDICATIONS, AN a/t OF.31 IS THE BREAK POINT FOR MINI VS. STANDARD (GREATER THAN.31 SHOULD HAVE STANDARD OVERLAY TO ATTAIN ADDITIONAL STRUCTURAL CAPABILITY). O 1 l

l i 1 ) l TECHNICAL BASIS FOR STANDARD OVERLAY DESIGN O AVERLAY APPLIED AS STRUCTURAL REINFORCEMENT TO RESTORE ORIGINAL PIPE SAFETY MARGINS IN ACCORDANCE WITH IWB-3640 0 IGSCC RESISTANT WELD METAL PROVIDES ULTIMATE b BARRIER TO FURTHER CRACK PROPAGATION O REDUCTION IN CRACK GROWTH IN ORIGINAL MATERIAL DUE TO FAVORABLE RESIDUA'L STRESS PATTERN NhJ -n%F

7 PY 7 T Y A 8 L 6 R 4 L E 7 8 V 0 O 3 D S E L P N E YTW N O I G T I S A E C '5 N I D 2 D 2 M I 2 N Y TI I AN R 2 L U E R e E -,S ~ I r u VH R g OC iF TN D AO R HIT ) 5 N F A A 2 E I D L ~ M R 2 N U ( A A C D T R E I C S I C A 5 F R _~ E 7 R OR R U 2 FE 1 S P /,- EAS D LTN E B O N D AYI I L T M TAI E PLS WERN 0 CEA 2 SCVR 0 AAOT g l

/" '} TECHNICAL BASIS FOR MINI-0VERLAY DESIGN O FLAW INDICATION IN WELD IS ACCEPTABLE AS-IS, l BUT CRACK PROPAGATION TO UNACCEPTABLE SIZE l EXPECTED DURING INSPECTION INTERVAL e OVERLAY APPLIED ONLY TO PRODUCE FAVORABLE RESIDUAL STRESS PATTERN AND THUS ARREST FURTHER CRACK PROPAGATION, NOT FOR STRUCTURAL REINFORCEMENT ) 4

l1 )ill I ~ m r 3 ) g m E C w = AFR RO U F S E S P DL N Y EB O T D A iT L T 0 S E P S 5 u WE N 4 N a C A 7 O SC R I AA T s A H N T C G I = C D 2 D I 5 I 7 W S N 0 + E TI DI N 3 N R W UE "5 Y O e R r A S 1 L C C u L HR ,I i = g R C -x i D F E TN M L V AO U E 5 M W OHI T 7 N A I I = N 0 I M L = I M U L C C A o o R LY I 8A N C I 0L M E 3R R E EV 5 PO 2 R 1 O Y F 0 D T D E L U P E PA W T N I T A P r N

A 3 L 5 CS R 4 G P L E F p 8 V 0 O 3 E D L P E YTW "5 N 2 M I 2 ) 6 N F 2 5 I M R 2 ( A E ID CA "5 F R 7 R OR U 2 FE S P 1 EAS D LTN E B O N D AYI I L T M TAI E PLS WERN "0 CEA 2 SCVR O AAOT mi 1 n* g y$EDo 4' E e n n

A e FR 44 ROR 3A U FE 38 S P C P - EAS P G F DLTN Y EB O T DAY IT L TAI ' E PLS 5 WERN 4 CEA 7 SCVR AAOT HT D .5 C I W 7 ~ t O e N W "5 O 1 R L C C I = D. M l = U E "5 M W 7 N I = 0= I M I L C LY 8A N I 0L M 3RE E V 5 ,J PO 2 Y 1 0 T D LE W 3$3 U ![<$g< Pne 2 GgCCsZs$ p ll

3 c a 8 a u C P u q g G F Y I A P L Y t T t ( LE 8V L, 0O A 3 N u I E M P t Yi O 1w N o g 6p_ 4 "6 \\ 3 8 v SD L I I N M E W N

3. N W i

F M oM ~ O 2 0 N _n I 0 I { M ) 7 "J y y 3 g 3 3 l f V ,) 5 1 D E I I M P t P 3 w D i E R L O S O F L I A E F W N S A M n t se m R O 1 F ~ EI D i L P P A T N E T m A t s P a m gI l g g

L r 3 E 1 WELD OVERLAY TEST-SERIES 8 A SERIES OF FULL SCALE MOCK-UP TESTS ON 12" PIPE O THEY INCLUDE THE FOLLOWING TESTS: 1) QUALIFICATION OF LAST PASS HEAT SINK WELD 2) TEST OF A " MINI" OVERLAY 3) TEST OF VARIOUS THICKNESS OVERLAYS J e ALL TISTS WILL EMPLOY CURRENTLY PROVEN WELDING PROCEDURES AND PARAMETERS S SELECTED TESTS WILL HAVE THERMOCOUPLE AND/OR STRAIN \\ MEASUREMENTS 9 TEST RESULTS WILL BE USED TO SUBSTANTIATE ANALYTICAL PREDICTIONS

W u RESIDUAL STRESS ANALYSIS ) i OVERLAY APPLIED TO CRACKED PIPE WELD PROCEDURE 1 8 " WELDS" ANALYSIS'0F 12" SCH. 80 BUTT WELD TO GIVE RESIDUAL STRESS PATTERN. i 0 9 INTRODUCED 40% X 360 CRACK INTO ABOVE CASE -- STRESSES ALLOWED TO REDISTRIBUTE.' 0 " WELDS" ANALYSIS PERFORMED ON BOTH CRACKED AND UNCRACKED CASES WITH HATCH STANDARD OVERLAY. S RESULTED IN 4 RESIDUAL STRESS PATTERNS - STD. BUTT WELD (A) STD. BUTT WELD W/ CRACK (B) - STO. BUTT WELD + OVERLAY (C) - STD. BUTT WELD W/ CRACK + OVERLAY (D) { l a n J \\ l I

I 9 RESULTS CRACK STRESS INTENSITY PATTERN KS I \\/ I N A 48 B 34 C -39 D -20 0 RESIDUAL STRESS PATTERNS FOR CASES C AND D VERY SIMILAR -- ONLY DIFFERENCE IS AT FREE SURFACE OF CRACK 4 WELDS -ANALYS IS-PERFORMED FOR ' IHSI - 0F PRECRACKED

  • PIPE SHOWS ESSENTIALLY NO CHANGE IN RESIDUAL STRESS PATTERN FROM THAT DETERMINED FOR UNCRACKED PIPE.

CONCLUSION 0 e OVERLAY PRODUCES COMPRESSIVE STRESSES IN 360 CRACKED PIPE. I l l I y b I

4 f ' i 4 I ( ) \\ RECIRC AND RHR SYSTEM EFFECTS j j 0 STEADY STATE SECONDARY STRESS i - NO ASME CODE LIMIT i - SIMILAR TO COLD SPRING AND OTHER WELDS 0 STRESS IS CALCULATED WITH PIPING MODEL IMPOSED DISPLACEMENTS } - ACTUAL MEASURED SHRINKAGE 9 CALCULATED STRESS - LOW HEAT INPUT; LOW SHRINKAGE - BRUNSWICK HIGHEST STRESS 4. KSI M

s 4 l 'k ayJ1 4 4

c eg-

,r g 1 il o e-e R e ~ n a $e g 5 a = p _., m 1 s i n ,~ \\ { 1 j ?.$?l } s .f N n i i e x a 4 = , c '- E e 2 s x e, ge 5 l 4 3 s Pe i s' i a / a s E: 2 e

~/

n n i k i 2: .2 s ,y/.. {\\ n ws y e / \\ \\ m 7 __ / ~ n i N \\ \\ \\ I \\.r h \\ \\ \\. 4, l be 1 l (

L r F ) EFFECT OF OVERLAY ON SYSTEM STRESSES k. , SAMPLE CALCULATION: - APPLY AN OVERLAY ON ALL 2, 3 AND 4 WELDS IN THE 12" RIZER-PIPING ASSUMPTIONS: - HATCH UNIT 1 AND 2 SYSTEM STRESSES ARE THE SAME - AXIAL WELD SHRINKAGE AT ALL OVERLAYS IS 0.0625" (BASED ON AVERAGE OF ACTUAL SHRINKAGES MEASURED AT BRUNSWICK) RESULTS: \\ - MAXIMUM STRESS 1.7 KSI - JUNCTION OF END RIZER ON HEADER k d n l l

l I j ,s \\ 1 i k It e,, l 1 1 4n, ..x 4 ( , i, ,i, ./ N4. t. w,s, < v i 17 e o I .I \\% l l / I / / f l a uJ Q 1 i e k z l il e g e 5 \\, i 1 A'L n i t i 7 l n. l f 4 / Na 3 l ( l.i, \\it e i e d i Il _t

  • \\

/ lI, $$,, 9 s )? s 1 i l l i l ) /> s l l I

j i FUTURE INSPECTIONS L-l CONTINGENT UPON RADIATION LEVELS, THE FOLLOWING WELDS WILL BE EXAMINED OURING THE NEXT SCHEDULED MAINTENANCE /REFUELI?lG OUTAGE: THE SIX (6) REMAINI?tG ASME CATEGORY B-F WELDS IN THE RECIRCULATION SYSTEM THAT WERE fl0T EXAMINED DURING THE 1983 MAINTENANCE /REFUELIf!G OUTAGE l' THE T,4EllTY-SIX (26) OVERLAY REPAIRED WELDS IN THE RECIRCULATION SYSTEM 4 THE ilINE (9) RECIRCULATION SYSTEM A:10 THREE (3) RHR SYSTEM WELDS HAVING INDICATIONS WHICH WERE NOT REPAIRED 9 .THE NINETEEN (19) WELDS HAVING INDICATIONS NOT INDICATIVE OF IGSCC OR NOT LOCATED IN THE HAZ 4 OtlE HUNDRED PERCENT (100k) 0F THE REMAINIflG STAINLESS STEEL RHR SYSTEM WELDS 9 FIFiY PERCENT (50%) 0F THE REMAINING 12" AilD 28" RECIRCULATION 1 SYSTEM WELDS STAIflLESS STEEL WELDS IN OTHER SYSTEMS WILL BE EXAMINED IN ACCORDANCE WITH GUIDANCE OF ilUREG-0313, REV.1 AND GPC LETTER OF JUNE 29, 1981 i l l l l l 1 c.

l { l ? FUTURE MODIFICATIONS / REPLACEMENTS l ? 8 MODIFICATIONS AND/OR REPLACEMENTS ARE UNDER CONSIDERATION, { NO FIRM PLANS HAVE BEEN MADE j 8 BECAUSE NONCONFORMING MATERIAL IS UTILIZED AT HATCH UNIT 2, CPC HAS COMMITTED TO PERFORM ALGbENTED INSERVICE INSPECTION PER NUREG-0313, REV 1 GUIDANCE AS DISCUSSED IN THE GPC LETTER DATED JUNE 29, 1981 e WHEN REPLACEMENT IS REQUIRED, GPC WILL USE CONFORMING MATERIAL j AND PROCESSES IN ACCORDANCE WITH NUREG-0313, REV 1 GUIDANCE AS q DISCUSSED IN THE GPC LETTER DATED JUNE 29, 1981 8 GPC FOR W D A TASK FORCE TO ADDRESS IGSCC AT THE TWO HATCH UNITS; THE TASK FORCE IS INVESTIGATING ALL AVAILABLE COUNTERE ASURES TO IGSCC AND WILL RECOMNEND A SOLUTION FOR THE HATCH STAINLESS STEEL PIPE CRACKING PROBLEMS i ) \\ 1 l

~. 3 LIST OF ATTENDEES Name Organization J. A. Edwards Georgia Power Company Len T. Gucwa Georgia Power Company Max Manry Georgia Power Company C. Y. Cheng NRC/MTEB P. C. Riccardella Structural Integrity A. J. Giannuzzi Structural Integrity M. R. Hum NRC/MTEB George Johnson NRC/MTEB W. H. Koo NRC/MTEB J. E. Charnley NUTECH J. E. Wilson TVA G. J. Pitz1 TVA Arthur Busiik NRC/RRAB Doug McCusker Georgia Power Company R. K. Godby Georgia Power Company Dick Clark NRC/0RB#2 Davis Ptcairn NUTECH J. M.rk Dvais Southern Company Services James M. Agold Southern Company Services M. Bel ford Southern Company Services Frank Witt NRC/CMEB B. R. Crowley NRC/R:II . A. P. Herdt NRC/R:II G. W. Rivenbark NRC/DL B. D. Liaw NRC/MTEB W. S. Hazel ton NRC/MTEB l t n}}